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Abstract 

Next-generation sequencing (NGS) technologies have revolutionised research into 

nature and diversity of genomes and transcriptomes. Since the initial description of 

these technology platforms over a decade ago, massively parallel RNA sequencing 

(RNA-seq) has driven many advances in the characterization and quantification of 

transcriptomes. RNA-seq is a powerful gene expression profiling technology 

enabling transcript discovery and provides a far more precise measure of the levels of 

transcripts and their isoforms than other methods e.g. microarray.  

 

However, the analysis of RNA-seq data remains a significant challenge for many 

biologists. The data generated is large and the tools for its assembly, analysis and 

visualisation are still under development. Assemblies of reads can be inspected using 

tools such as the Integrative Genomics Viewer (IGV) where visualisation of results 

involves ‘stacking’ the reads onto a reference genome. Whilst sufficient for many 

needs, when the underlying variance of the genome or transcript assemblies is 

complex, this visualisation method can be limiting; errors in assembly can be 

difficult to spot and visualisation of splicing events may be challenging.  

 

Data visualisation is increasingly recognised as an essential component of genomic 

and transcriptomic data analysis, enabling large and complex datasets to be better 

understood. An approach that has been gaining traction in biological research is 

based on the application of network visualisation and analysis methods. Networks 

consist of nodes connected by edges (lines), where nodes usually represent an entity 

and edge a relationship between them. These are now widely used for plotting 

experimentally or computationally derived relationships between genes and proteins.   

 

The overall aim of this PhD project was to explore the use of network-based 

visualisation in the analysis and interpretation of RNA-seq data.  In chapter 2, I 

describe the development of a data pipeline that has been designed to go from ‘raw’ 

RNA-seq data to a file format which supports data visualisation as a ‘DNA assembly 

graph’. In DNA assembly graphs, nodes represent sequence reads and edges denote a 
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homology between reads above a defined threshold. Following the mapping of reads 

to a reference sequence and defining which reads a map to a given loci, pairwise 

sequence alignments are performed between reads using MegaBLAST. This provides 

a weighted similarity score that is used to define edges between reads. Visualisation 

of the resulting networks is then carried out using BioLayout Express3D that can 

render large networks in 3-D, thereby allowing a better appreciation of the often-

complex network structure. This pipeline has formed the basis for my subsequent 

work on the exploring and analysing alternative splicing in human RNA-seq data. In 

the second half of this chapter, I provide a series of tutorials aimed at different types 

of users allowing them to perform such analyses. The first tutorial is aimed at 

computational novices who might want to generate networks using a web-browser 

and pre-prepared data. Other tutorials are designed for use by more advanced users 

who can access the code for the pipeline through GitHub or via an Amazon Machine 

Image (AMI).  

 

In chapter 3, the utility of network-based visualisations of RNA-seq data is explored 

using data processed through the pipeline described in Chapter 2. The aim of the 

work described in this chapter was to better understand the basic principles and 

challenges associated with network visualisation of RNA-seq data, in particular how 

it could be used to visualise transcript structure and splice-variation. These analyses 

were performed on data generated from four samples of human fibroblasts taken at 

different time points during their entry into cell division. One of the first challenges 

encountered was the fact that the existing network layout algorithm (Fruchterman-

Reingold) implemented within BioLayout Express3D did not result in an optimal 

layout of the unusual graph structures produced by these analyses. Following the 

implementation of the more advanced layout algorithm FMMM within the tool, 

network structure could be far better appreciated. Using this layout method, the 

majority of genes sequenced to an adequate depth assemble into networks with a 

linear ‘corkscrew’ appearance and when representing single isoform transcripts add 

little to existing views of these data. However, in a small number of cases (~5%), the 

networks generated from transcripts expressed in human fibroblasts possess more 

complex structures, with ‘loops’, ‘knots’ and multiple ends being observed. In a 



v 
 

majority of cases examined, these loops were associated with alternative splicing 

events, a fact confirmed by RT-PCR analyses. Other DNA assembly networks 

representing the mRNAs for genes such as MKI67 showed knot-like structures, 

which was found to be due to the presence of repetitive sequence within an exon of 

the gene. In another case, CENPO the unusual structure observed was due to reads 

derived from an overlapping gene of ADCY3 gene present on the opposite strand 

with reads being wrongly mapped to CENPO. Finally, I explored the use of a 

network reduction strategy as an approach to visualising highly expressed genes such 

as GAPDH and TUBA1C. Having successfully demonstrated the utility of networks 

in analysing transcript isoforms in data derived from a single cell type I set out to 

explore its utility in analysing transcript variation in tissue data where multiple 

isoforms expressed by different cells within the tissue might be present in a given 

sample. 

 

In chapter 4, I explore the analysis of transcript variation in an RNA-seq dataset 

derived from human tissue. The first half of this chapter describes the quality control 

of these data again using a network-based approach but this time based the 

correlation in expression between genes and samples. Of the 95 samples derived 

from 27 human tissues, 77 passed the quality control. A network was constructed 

using a correlation threshold of r ≥ 0.9, which comprised 6,109 nodes (genes) and 

1,091,477 edges (correlations) and clustered. Subsequently, the profile and gene 

content of each cluster was examined and enrichment of GO terms analysed. In the 

second half of this chapter, the aim was to detect and analyse alternative splicing 

events between different tissues using the rMATS tool. By using a false-discovery 

rate (FDR) cut-off of < 0.01, I found that in comparisons of brain vs. heart, brain vs. 

liver and heart vs. liver, the program reported 4,992, 4,804 and 3,990 splicing events, 

respectively. Of these events, only 78 splicing events (52 genes) with more than 50% 

of exon inclusion level and expression level more than FPKM 30. To further explore 

the sometimes-complex structure of transcripts diversity derived from tissue, RNA-

seq assembly networks for KLC1, SORBS2, GUK1, and TPM1 were explored. Each 

of these networks showed different types of alternative splicing events and it was 

sometimes difficult to determine the isoforms expressed between tissues using other 
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approaches. For instance, there is an issue in visualising the read assembly of long 

genes such as KLC1 and SORBS2, using a Sashimi plots or even Vials, just because 

of the number of exons and the size of their genomic loci. In another case of GUK1, 

tissue-specific isoform expression was observed when a network of three tissues was 

combined. Arguably the most complex analysis is the network of TPM1 where the 

uniquification step was employed for this highly expressed gene.  

 

In chapter 5, I perform a usability testing for NGS Graph Generator web application 

and visualising RNA-seq assemblies as a network using BioLayout Express3D. This 

test was important to ensure that the application is well received and utilised by the 

user. Almost all participants of this usability test agree that this application would 

encourage biologists to visualise and understand the alternative splicing together 

with existing tools. The participants agreed that Sashimi plots rather difficult to view 

and visualise and perhaps would lose something interesting features. However, there 

were also reviews of this application that need improvements such as the capability 

to analyse big network in a short time, side-by-side analysis of network with Sashimi 

plot and Ensembl. Additional information of the network would be necessary to 

improve the understanding of the alternative splicing. 

 

In conclusion, this work demonstrates the utility of network visualisation of RNA-

seq data, where the unusual structure of these networks can be used to identify issues 

in assembly, repetitive sequences within transcripts and splice variation. As such, 

this approach has the potential to significantly improve our understanding of 

transcript complexity. Overall, this thesis demonstrates that network-based 

visualisation provides a new and complementary approach to characterise alternative 

splicing from RNA-seq data and has the potential to be useful for the analysis and 

interpretation of other kinds of sequencing data. 
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Lay Summary 

Alternative splicing is a regulated process during gene expression that results in a 

single gene coding for multiple proteins. In this process, particular exons of a gene 

may be included within or excluded from the final, processed messenger RNA 

(mRNA) produced from that gene. In these recent years, sequencing of RNA (RNA-

seq) has emerged as the favoured technology for the simultaneous measurement of 

transcript sequences and expression abundance. The data visualisation of RNA-seq 

data presents novel challenges and many methods have been developed for the 

purpose of building a network and visualising transcript variation. In the first part of 

my thesis, I developed a network-based pipeline for preparing for visualising RNA-

seq datasets from a ‘raw’ data to a layout file which can be visualised using a 

network analysis tool, BioLayout Express3D. This pipeline formed the basis for my 

subsequent work on the exploration and analysis of alternative splicing in a single 

cell type and human tissue sample. I explore the optimal parameters for network 

analysis of these data and interpreting the resulting the DNA assembly graphs, in 

particular how this approach can be used to better define transcript variation and 

alternative splicing. Most of the network structure generated from human fibroblast 

data generate networks is in a linear structure but in a small number of cases with 

more complex structures, with ‘loops’, ‘knots’ and multiple ends being observed. 

Since alternative splicing in gene expression is thought to regulate many of the 

isoforms differences between tissues, visualising and analysing the splicing variant 

transcript of a gene responsible for these changes is an important goal of molecular 

biology. For this, I explore and analyse the alternative splicing divergence of human 

tissue gene and isoform expression using network-based approach and splice variant 

detector tool. I demonstrate that gene expression from the network analysis diverges 

extensively between tissues. In conclusion, the utility of this approach for RNA-seq 

data, including the unusual structure of these networks and how they can be used to 

identify issues in assembly, repetitive sequences within transcripts and splice 

variation. This approach has the potential to significantly improve our understanding 

of transcript complexity. In overall, the network-based visualisation can be an 

alternative way over the current existing visualisation platform to visualise and 

characterise alternative splicing of RNA-seq of such data. 
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Chapter 1 - Introduction 

 

1.1 History of DNA sequencing 

When the structure of DNA was discovered in 1953 by Watson and Crick (Watson 

and Crick, 1953), it was one of the most significant scientific discoveries of the 20th 

century. It was followed by the innovation of a new chemical degradation method for 

sequencing DNA (Maxam and Gilbert, 1977) and the enzymatic chain termination 

technique (Sanger et al., 1977a). These technologies would transform biology as a 

whole by providing a tool for complete sequencing genes and eventually entire 

genomes. The Sanger method was successfully applied to sequence 5,375 DNA 

nucleotides of bacteriophage ϕX174 (Sanger et al., 1977b) and later by a group from 

the Medical Research Council (MRC), Cambridge, decoding 172,282 base pairs of 

the Epstein–Barr virus (Baer et al., 1984).  

 

1.1.1 The Sanger Method 

The Sanger method (Sanger et al., 1977), also known as the dideoxynucleotide chain 

termination method. The method uses DNA polymerase to replicate DNA in the 

presence of a mix of the four deoxynucleotides (dNTPs), with a small amount of one 

of the four dideoxynucleotides (ddNTPs) for generating DNA fragments terminated 

at a specific nucleotide. It required single-stranded DNA molecules as a template, a 

DNA polymerase, DNA primer, normal dNTPs and dents that terminate DNA strand 

elongation. A primer was annealed to a specific region on the DNA template strand, 

which provided a starting point to synthesise a new DNA strand in the presence of 

DNA polymerase. The ddNTPs lack the 3’-hydroxyl group of dNTPs, which is 

required for phosphodiester bond formation between one nucleotide and the 

following nucleotide during DNA strand extension. The reaction was conducted in 

four separate tubes, each containing one of the four ddNTPs and the four normal 

dNTPs. All generated fragments had the same 5’-end, whereas the residue at the 3’-

end was determined by the specific ddNTP used in the reaction. DNA fragments 

were labelled using a radioactive dNTP. The fragments resulting from these reactions 

were separated by size on thin denaturing slab polyacrylamide gels in four parallel 
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lanes. The bands on the autoradiogram were identified by virtue of 35S, which was 

the radioactive label on one dNTP. It showed the size of fragments terminated with a 

specific nucleotide and the sequence could be determined by assembling the 

fragments in order of size (Figure 1.1).  

 

 

Figure 1.1: A schematic representation of Sanger sequencing. The Sanger method 

used dideoxynucleotides that terminate newly synthesised DNA fragments at specific 

bases either A, T, C or G. Then, the resulting fragments were resolved by 

electrophoresis on a denaturing polyacrylamide gel in four parallel lanes, and the 

DNA sequence was read. Figure redrew from Rosenberg and Pascual (2014). 

 

 

The initial Sanger sequencing method has been subjected to several significant 

improvements and developed remarkably over three decades. Cloning of DNA 

fragments into a plasmid vector was originally required in Sanger sequencing, but the 

polymerase chain reaction (PCR) (Saiki et al., 1988) for the amplification of specific 

DNA fragments in vitro has been extensively applied in the field of Sanger 

sequencing. The development of the technique for labelling of the chain terminator 
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ddNTPs with four different fluorescent dyes as an alternative to radioisotope 

labelling allowed sequencing in a single reaction tube and was also the foundation 

for the use of automated DNA sequencing instruments (Ansorge et al., 1987). The 

technology advancement of capillary electrophoresis together with highly sensitive 

detection of nucleotides and a high degree of parallelisation remarkably enhanced the 

throughput of Sanger sequencing data (Mardis, 2013). Automated DNA sequencing 

machines can sequence up to 384 fluorescently labelled samples in a single batch. 

The machines automatically carry out capillary electrophoresis for size separation, 

detection, and recording of dye fluorescence, and output data as fluorescent peak 

trace chromatograms. The read length of DNA fragments generated by Sanger 

sequencing is approximately 500 – 1000 base pairs (bp). The Human Genome 

Project (HGP) was only possible due to the innovative technological advancements 

as described above (International Human Genome Sequencing Consortium, 2004).   

 

1.1.2 Automated DNA sequencing 

Since the 1990s, DNA sequencing has almost always been carried out with semi-

automated implementations of the Sanger technique (Shendure and Ji, 2008). In 

high-throughput production pipelines, the DNA to be sequenced is prepared either 

for shotgun de novo sequencing or a targeted sequencing approach. In the first 

approach, randomly fragmented DNA is cloned into a high copy number plasmid and 

bacterial artificial chromosomes (BACs) which are then transformed into 

Escherichia coli, while in the second approach, PCR amplification is carried out with 

primers that flank the target (Shendure and Ji, 2008).  

 

The first genome of a free-living species ever sequenced was Haemophilus 

influenzae, which was published in 1995 (Fleischmann et al., 1995). The genome 

was sequenced at The Institute for Genomic Research (TIGR) using the whole-

genome shotgun sequencing method. Data from this project, which included 

1,830,137 bp of DNA and 1743 predicted genes, showed for the first time the full 

genetic complement of a bacterial organism. Numerous other bacteria were 

sequenced within five years of the publication, including Mycobacterium 

tuberculosis (Cole et al., 1998), one of the most important human bacterial 
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pathogens, Escherichia coli (Blattner et al., 1997) and the first archaeon, 

Archaeoglobus fulgidus (Klenk et al., 1997). In 2001, the first consensus sequence of 

the human genome was obtained by using Sanger sequencing (Lander et al., 2001; 

Venter et al., 2001) and the first individual human diploid sequence was published in 

2007 (Levy et al., 2007). Other bacterial genome sequences, along with the large 

genomes of mammals such as human (Lander et al., 2001), mouse (Mouse Genome 

Sequencing Consortium, 2002) and chimpanzee (The Chimpanzee Sequencing and 

Analysis Consortium, 2005) also have been sequenced and characterised.  

 

1.2 Next-generation DNA sequencing 

The second complete genome was sequenced using new next-generation sequencing 

(NGS) technology and marked the first human genome (James D. Watson) 

sequenced with this technology (Wheeler et al., 2008). NGS technologies have had 

an astounding impact on genomic research since first introduced to the market in 

2005. The technologies have been used for general sequencing applications, such as 

genome sequencing and re-sequencing, and for novel applications previously 

unexplored by classic Sanger sequencing (van Dijk et al., 2014; Morozova and 

Marra, 2008). Using today’s NGS sequencers, billions of DNA molecules can be 

sequenced, but the read lengths are relatively short, from 100 to 500 bp. The third-

generation sequencer of the PacBio RS system, which was commercialised in 2010 

by Pacific Bioscience, is the first single molecule real-time DNA sequencer (Eid et 

al., 2009). The read lengths can be very long, up to 20,000 bp, compared with the 

second-generation sequencers where read length depends on the size of the library 

fragments and the time of data generation. The error rate is higher (15%) compared 

to second-generation sequencers on a per read basis, but the accuracy achieved from 

multiple passes on a single molecule can exceed 99% (Rosenberg and Pascual, 

2014).  

 

These sequencing technologies include a number of methods that are commonly 

shared, such as template preparation, sequencing and imaging and data analysis. The 

exclusive combination of specific protocols distinguishes one technology from 

another and determines the type of data produced from different types of available 
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platforms (Metzker, 2010). These new technologies are rapidly expanding and have 

been modified to include sequencing and quantification of RNA as well as genomic 

sequencing. Details of the sequencing approach using the most common Illumina 

platform are given in Section 1.5. With the exponential increase in genomic and 

RNA sequencing data, imminent challenges include the development of vigorous 

protocols for generating sequencing libraries, building efficient new approaches for 

downstream analysis, handling of large data sets and often re-evaluation of 

experimental design (Buermans and den Dunnen, 2014; Shendure and Ji, 2008). The 

work described in this thesis examines the use of these sequencing technologies to 

understand the structure, processing, and expression of RNA molecules and how this 

has increased our knowledge of how information is transferred from the genomic 

DNA in the nucleus to the cell and its environment. 

 

1.3 Life cycle of an mRNA 

Since this thesis focuses on next-generation sequencing approaches to understanding 

RNA, this section reviews current knowledge of the RNA molecule that conveys 

information from DNA to the ribosome for the synthesis of protein, the messenger 

RNA (mRNA). mRNAs carry the essential information for the synthesis of proteins. 

The half-lives of mRNAs are relatively short compared to other molecules in a cell, 

for instance, most mammalian mRNAs remain in the cell for roughly 9 hours while 

proteins can last for 46 hours (Schwanhäusser et al., 2011). These mRNA molecules 

are controlled by a complex regulatory system that determines which messages are 

finally expressed (Figure 1.2).  
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Figure 1.2: Primary stages in the regulation of eukaryotic gene expression. Gene 

expression commences with nuclear transcription of specific DNA loci such as genes 

which contain the information required for the synthesis of proteins required by the 

cell. After several processing stages, the transcription products are then converted 

into mature mRNAs which will be exported to the cytosol. At this stage, a stringent 

quality control mechanism is taking place where unprocessed RNAs and RNA 

fragments will be degraded. When the mRNA is in the cytosol, it will be recognised 

by ribosomes and translated into protein, and finally, this mRNA will be degraded 

(http://www.nature.com/scitable/topicpage/gene-expression-14121669). 

 

 

1.3.1 Transcription 

Transcription is the first step in determining the set of RNAs expressed in a cell and 

is a primary control point of gene expression (Mutalik et al., 2013; Porrua and Libri, 

2013). During transcription, stretches of DNA (gene) known as the transcription unit 

are used as a template for the synthesis of RNA molecules (transcript). In eukaryote 

cells, depending on the type of gene being targeted, these reactions can be catalysed 

by three different enzymes, RNA polymerases I, II and III. Of the three RNA 
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polymerases, RNA polymerase II is responsible for the synthesis of RNAs from 

protein-coding genes. RNA polymerase I and III are involved in the transcription of 

other types of RNA: transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and various 

small RNAs (Paule and White, 2000). 

 

Transcription by RNA polymerase II is a multi-step process that begins with the 

binding of several proteins to a promoter, which is a regulatory region located 

upstream of the gene (Fuda et al., 2009). These proteins facilitate the assembly of the 

polymerase and the formation of the transcription initiation complex. They are 

termed general transcription factors (TFs) due to their participation in recognition of 

most promoters. More specific TFs also exist, which are able to modulate the fate of 

transcription by binding to promoters as well as DNA regions that promote 

(enhancers) or inhibit (silencers) polymerase assembly, thus contributing to the 

regulation of gene expression levels (Vaquerizas et al., 2009). RNA polymerase II is 

then released from the large complex of proteins after conformational 

rearrangements, and moves along the DNA from the promoter region, with 

transcription entering the elongation phase (Kwak and Lis, 2013). The transition to 

this stage is not instantaneous, and in most cases, the polymerase stays at the 

promoter, producing short truncated transcripts which are known as abortive 

initiation. RNA is synthesised from the transcription start site (TSS) during 

elongation, and nucleotides complementary to the DNA strand are incorporated in 

the 5’ to 3’ direction. Finally, the polymerase transcribes through the cleavage and 

polyadenylation (poly-A) signals that indicate the end of the gene and is released 

from the DNA template (Kuehner et al., 2011). 

 

1.3.2 Transcription and mRNA processing 

Before they are exported to the cytosol, mRNA molecules will undergo several 

modifications, which comprise 5’ capping, the polyadenylation of the 3’ end and the 

removal of non-coding intervening sequences (introns) through splicing (Darnell, 

2013). A methylated guanine nucleotide (‘cap’) is added to the 5’ end through an 

enzymatic reaction immediately after the RNA polymerase II has entered the 

elongation phase (Ramanathan et al., 2016). The cap not only protects the 5’ end of 
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transcripts but also facilitates the differentiation of mRNAs from other RNA species 

such as the uncapped RNAs produced by RNA polymerase I and III (de Klerk and ‘t 

Hoen, 2015). Immediately after termination of transcription, the 3’ end of the 

mRNAs is also modified through the addition of approximately 200-250 nucleotides 

(in mammalian cells), known as the poly-Adenosine (poly-A) tail (Jalkanen et al., 

2014). RNA polyadenylation serves the purpose of extending the half-life of mRNA, 

and it has been exploited for research, where one of the most common RNA 

extraction protocols depends on the explicit selection of poly-A-tailed RNA species 

(Elkon et al., 2013). Splicing is a more complicated reaction where intronic regions 

of the pre-mRNA are removed, and the stretches of sequence that contain the 

essential information (exons) for protein synthesis are merged (Kornblihtt et al., 

2013). The mechanism of splicing is discussed in more detail in section 1.4. 

Eventually, a mature mRNA product is produced. 

 

1.3.3 Life of mRNA in cell 

When a mature mRNA molecule is processed in the nucleus, it undergoes selective 

export via the nuclear pore through multiple steps. mRNA export is subjected to 

strict quality control mechanisms or surveillance pathways that ensure fidelity and 

quality products where immature RNAs remain in the nucleus (Denti et al., 2013). 

These mechanisms depend on the identification of protein complexes that 

accompany the RNA molecules such as RNA binding proteins (RBPs), which act as 

markers for the completion status of the processing steps mentioned in section 1.3.2. 

For instance, the cap-binding and poly-A binding complexes are indicators of 

successful capping and polyadenylation reactions, respectively, while protein 

complexes (exon-junction complex - EJC) mark the completion of splicing similarly. 

The mRNA molecule is marked as immature because of the binding of RBPs 

involved in carrying out each of these steps. 

 

Unprocessed mRNAs, together with the residues from the transcription and splicing 

reactions, will be degraded by the exosome, a multi-protein complex, which 

possesses ribonucleolytic activity (Pérez-Ortín et al., 2013). More quality control 

mechanisms exist to prevent translation where mRNAs are incorrectly exported or 
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when intact mRNAs are damaged in the cytosol. These mechanisms, for the most 

part, are inherent to the steps needed for the beginning of protein synthesis, for 

example, recognition of the 5’ cap and poly-A tail by the translation initiation 

machinery. A separate system for surveillance known as nonsense-mediated decay 

(NMD) actively searches for abnormal mRNAs for degradation, in advance of 

translation. NMD targets mRNAs with premature stop codons, which could be a 

result of inaccuracies in the splicing reaction or genetic mutations (Pérez-Ortín et al., 

2013). When NMD occurs, translation begins immediately after the 5’ end of the 

mRNA emerges from the nuclear pore, when the EJC that encloses each splice-site 

would normally be removed from the mRNA. The mRNA stays bound to these 

complexes and is rapidly degraded (Alberts et al., 2002) 

 

After the export process, mRNAs are localised to distinct regions within the cytosol 

based on the signals encoded in the 3’ UTR regions, finally recognised by ribosomes 

and translated (Alberts et al., 2002). The binding process of ribosomes to the mRNAs 

competes with mRNA degradation, a process that starts immediately after transcripts 

are exported into the cytosol and involve the gradual shortening of the poly-A tail. 

mRNAs are eventually degraded when the poly-A tail reaches a critical length in the 

course of continued digestion from the 3’ end or through the decapping process 

which is the removal of the 5’ cap and subsequent 5’ to 3’ decay (Schoenberg and 

Maquat, 2012). Alternatively, a process of cytosolic polyadenylation can also 

happen, therefore having a positive impact on the mRNA half-life (Villalba et al., 

2011). In general, these processes regulate mRNA stability and translation efficiency.  

 

1.4 The splicing reaction 

The splicing process was first discovered by Phillip Sharp and Richard J. Roberts in 

1977 (Gelinas and Roberts, 1977), who detected, independently, that in the DNA, 

coding sequences were discontinuous and included intervening non-coding segments. 

In their studies, adenoviral mRNAs were hybridised with complementary single-

stranded DNA fragments, and after careful observation using electron microscopy 

(EM), it was discovered that there were alternate double-stranded and single-stranded 

stretches in the hybrid that resulted. The conclusion from this was that, while the 
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initial RNA transcript is maturing, some regions of it are removed; this now brings 

separate parts of the mRNA together (Lodish et al., 2000). Splicing predominates in 

eukaryotes, but the splicing process has also been observed in all forms of life. 

Although splicing has been detected in prokaryotes, they do not have the major 

eukaryotic pathway to achieve this process (Alberts et al., 2002). 

 

1.4.1 Major mechanisms in mRNA splicing 

Splicing is carried out in eukaryotes via the spliceosomal pathway, by which intron 

removal is orchestrated by a large complex of proteins and RNAs. This large 

complex is known as the spliceosome, and it has been defined as one of the most 

complicated types of machinery in the cell (Hoskins and Moore, 2012). Two types of 

spliceosome have been recognised, the major and minor spliceosome, which vary in 

their components and the properties of the introns they remove. The major 

spliceosome is involved in almost all the splicing events and is responsible for the 

removal of the introns that harbour specific signals indicating intron-exon boundaries 

(consensus splice site sequences) (Figure 1.2a) (Matera and Wang, 2014).  On the 

other hand, a small set of introns which are different from the consensus introns is 

targeted by the minor spliceosome (non-canonical splicing) (Irimia and Roy, 2014). 

 

Besides spliceosomal introns, another class of introns that undergo splicing in a 

protein-independent manner has also been discovered. These are self-splicing introns 

which are able to mediate the splicing reaction by acting as ribozymes through the 

RNA structure (Alberts et al., 2002). Even though these reactions are not usually 

seen in eukaryotes, they are involved in the splicing of certain rRNAs and organelle 

genes.  Therefore showing that mRNAs are not the only RNA molecules that 

undergo splicing, and even non-coding RNAs like micro-RNAs, tRNAs and long 

non-coding RNAs can also undergo splicing (Cech and Steitz, 2014; Kelemen et al., 

2013). Their presence is widely believed to support the RNA world hypothesis, 

which postulates that the initial building blocks of life were self-replicating RNAs 

(Robertson and Joyce, 2012).  
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1.4.2 The major spliceosome splicing 

The major spliceosome is composed of five different small nuclear RNA molecules 

(snRNAs) which are U1, U2, U4, U5 and U6, and several hundred proteins. Each of 

the snRNAs associated with a number of proteins to form complexes known as small 

nuclear ribonucleoproteins (snRNP) (Will and Lührmann, 2011). These snRNPs 

form the main components of the spliceosome and are involved in the detection of 

splice sites and branch-point sequences (Figure 1.3) within the introns, in addition to 

their role in catalysing the splicing reaction. One of the most prominent features of 

the spliceosome is the enzymatic reaction of intron removal from an RNA molecule 

(Kosmyna and Query, 2016). Splicing is the outcome of two transesterification 

reactions, (Figure 1.3B) (Will and Lührmann, 2011). In the first reaction, the 5’ exon 

is cleaved from the intron through a nucleophilic attack of the 2’-OH group of the 

branch-site residue (located in the phosphate group of the GU dinucleotide at the 5’ 

splice site), thus forming a branched intron known as a lariat. Meanwhile, in the 

second reaction, the two exons are joined together (ligated) therefore releasing the 

lariat. 

 

The active catalytic site of the spliceosome needs to be formed before intron removal 

can take place. This requires numerous changes in its composition and conformation 

(Figure 1.3C) (Matera and Wang, 2014). Splice-site recognition is the first step of 

the splicing reaction. Base pairing between the U1 snRNP with the 5’ splice site 

results in the formation of complex E (Figure 1.3C). The branch point and 3’ splice 

site nucleotide sequences are recognised by the U2 snRNP, which then interacts with 

the U1 snRNP and forms complex A (pre-spliceosome), therefore bringing together 

both splice sites. U4, U5 and U6 snRNPs pre-assembled to form a complex called the 

U4/U6.U5 tri-snRNP which joins complex A to form complex B. Then complex B 

becomes activated due to a number of conformational changes and loss of U1 and U4 

from the complex. The activated complex B initiates the first catalytic core step in 

the splicing reaction and directs the formation of complex C which includes the free 

5’ exon and lariat intermediate. Following further rearrangements, complex C 

executes the second catalytic step and creates a post-spliceosomal complex which 

consists of the spliced exons and the lariat. The lariat is finally released together with 
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the remaining snRNPs, which will be used for further cycles of splicing. The binding 

of the freshly created exon junction to a new complex of proteins (EJC) occurs after 

the previous steps; this now marks the effective conclusion of splicing at that 

particular location. This further aid in determining the fate of the mRNA molecule 

(Section 1.3.3). 
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Figure 1.3: Splicing by the major spliceosome. (A) The major spliceosome 

recognises core splicing signals. It recognises several core signals in the pre-mRNA 

transcript, which are the 5’ splice sites and 3’ splice sites, the branch point sequence 

(normally located between 15 and 50 nucleotides upstream of the 3’ intron) and 

polypyrimidine tract. R represents a purine (A or G), Y represents a pyrimidine (U or 

C), and N represents to any nucleotide. Introns that harbour the consensus sequences 
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are referred to as U2-type introns because they are identified by the U2 snRNP. (B) 

Steps in the splicing reaction process. Splicing is the consequence of two 

transesterification reactions that engage the nucleotides from the pre-mRNA and 

snRNA molecules. (C) Spliceosomal rearrangements during the splicing process. 

As transcription progresses, some parts of the spliceosome are transferred from the 

polymerase tail to the nascent pre-mRNA, thus assisting the process of splice site 

recognition. Then, the spliceosome undergoes several compositional and 

conformational changes that direct the creation of the catalytic site, the cleavage of 

the intron and the final release of the splicing products. Figure redrew from Will and 

Lührmann (2011). 

 

 

1.4.3 Diversification of genes through alternative splicing  

Sometimes exons may be excluded from the final mRNA product during the splicing 

process, and likewise, some introns may fail to be removed. This results in the 

formation of mature alternative mRNA products from a particular genomic locus 

(Figure 1.4). This process is identified as alternative splicing (AS) event, and it is an 

important diversification mechanism of the message encoded in a gene (Kornblihtt et 

al., 2013). Approximately 85% of genes have been detected that produce more than 

one mature mRNA transcript in humans, and much scrutiny has been given to the 

relatively low number of genes in mammals. However, in comparison to lower 

eukaryotes such as Caenorhabditis elegans, mammals contain a considerably higher 

number of genes (Pan et al., 2008; Wang et al., 2008). Alternative splicing can result 

in the production of proteins with diverse biological function, structure, localisation 

and interaction capabilities. This is due to the possible differences in biological 

function between the distinct alternative transcripts (i.e. transmembrane domain, a 

calcium-binding domain, a protein binding domain, a targeting domain etc.) 

(Kalsotra and Cooper, 2011; Kelemen et al., 2013). Detection of alternative splicing 

products at the protein level validates the potential of the splicing process in 

increasing cellular protein diversity (Tress et al., 2008). It has also been proposed 

that a considerable amount of the detected alternative splicing products result merely 

from noise in the splicing process and has no function (Melamud and Moult, 2009). 

 

AS events can be categorised into four major subgroups. The first major type which 

accounts for nearly 40% of AS events in higher eukaryotes (Alekseyenko et al., 
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2007; Keren et al., 2010) but is exceptionally rare in lower eukaryotes, is exon 

skipping or skipped exon (SE). It involves a type of exon, also known as a cassette 

exon, which is spliced out of the transcript together with its flanking introns (Figure 

1.4A). The second and third types are alternative 3′ splice site (3′ SS) and 5′ SS 

selection which account for 18.4% and 7.9% of all AS events in higher eukaryotes, 

respectively (Figure 1.4B and C). These types of AS events happen when more than 

two splice sites are detected at one end of an exon. The fourth type is the rarest AS 

event in both vertebrates and invertebrates, accounting for less than 5% of known 

events (Burgess, 2014; Kornblihtt et al., 2013), and is termed intron retention (Figure 

1.4D). This type of AS event occurs when an intron remains in the mature mRNA 

transcript. In contrast to animals, intron retention is the most common AS events in 

plants, fungi, and protozoa (Syed et al., 2012; Xiong et al., 2012; Zhao et al., 2013).  

 

Another three AS events that produce alternative transcript variants that occur 

infrequently include mutually exclusive exons (MXE) (Figure 1.4E) (Pohl et al., 

2013), alternative promoter usage (Figure 1.4F) and alternative polyadenylation 

(APA) (Figure 1.4G) (Tian and Manley, 2013). Splicing of exons distinguishes 

MXE in an organised way where two or more splicing events are not independent.  

The name of “mutually exclusive” indicates that one out of two exons is retained, 

while the other one is spliced out (Pohl et al., 2013). The use of alternative promoters 

is a widespread phenomenon in humans and enables diversified transcriptional 

regulation of a single gene. This AS event serves as a molecular foundation for the 

complexity of systems in humans (Batut et al., 2013) where more than half of human 

genes are regulated by alternative promoters (Cooper et al., 2006; Kimura et al., 

2006). APA is a well-known phenomenon to control gene expression, producing 

mRNAs with alternative 3′ ends. This event occurs at the 3′ end of most protein-

coding genes and long non-coding RNAs. A number of studies have shown that a 

large proportion of these genes have more than one polyadenylation site (Elkon et al., 

2013).  
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Figure 1.4: Types of alternative splicing. Variations in the splicing reaction can 

lead to message diversification (A) exon skipping, (B) alternative 3’ splice sites, (C) 

alternative 5’ splice sites, (D) intron retention and (E) mutually exclusive exons 

(MXE) (F) alternative promoters and (G) alternative polyadenylation. Constitutive 

exons are shown in light brown and alternatively spliced regions in dark brown. 

Introns are represented by solid grey lines and dashed lines indicate splicing options. 

Figure redrew from Keren et al. (2010). 

 

 

The biological importance of alternative splicing becomes clear with evidence of 

tissue-specific events (Chen et al., 2012; Naftelberg et al., 2015), and the role of AS 

in dynamic processes; proliferation (Chen et al., 2012), development (Kalsotra and 

Cooper, 2011), and differentiation (Pimentel et al., 2014). Therefore, the functional 

characterization and annotation of alternative transcript mRNA products are vital. 

The GENCODE project (Harrow et al., 2012) aims to annotate all evidence-based 

features in the human genome. One of the GENCODE gene sets, the so-called 

GENCODE Comprehensive, is rich in alternative splicing, novel CDSs, novel exons 

and high genomic coverage information (Frankish et al., 2015).  
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However, protein diversification mechanisms are not limited to alternative splicing. 

For instance, a process called trans-splicing allows exons from different genes to be 

merged during the splicing reaction (Kornblihtt et al., 2013). Similarly, RNA editing 

comprises a distinct mechanism where the information within an mRNA can be 

modified through the insertion, deletion or substitution of specific nucleotides (Peng 

et al., 2012). Lastly, post-translational modification processes also contribute to 

protein diversity. Inteins are segments of a protein that is able to excise themselves 

and join the remaining portions (the exteins) with a peptide bond in a process termed 

protein splicing (Bah and Forman-Kay, 2016; Shah and Muir, 2014). 

 

1.4.4 Splicing regulation 

Regulation of the alternative splicing process requires a core splicing mechanism that 

binds to splicing signals around the exon-intron junctions (splice sites). The core 

splicing signals comprise the canonical 5- and 3-splice site (located at the 5 and 3-

ends of the intron, respectively), polypyrimidine tract (PPT) (located upstream of the 

3-splice site), and the branch site (located upstream of the PPT) (Wang and Burge, 

2008).  Besides the core splicing signals, more elements are added to the regulation 

of splicing and defining exon-intron boundaries. Other cis-regulatory sequences, 

such as splicing regulatory elements (SREs), which can differ regarding location and 

effect, are normally present in the pre-mRNA (Figure 1.5A) (Matera and Wang, 

2014). In most cases, SREs contribute to the recruitment of a set of proteins such as 

trans-acting splicing factors (SFs) that can function as repressors or activators of 

splicing, usually by manipulating spliceosome assembly.  

 

A process known as exon definition is one of the well-known roles of SREs because 

of their involvement in recognition of exon-intron junctions (Figure 1.5B) (De Conti 

et al., 2013). In higher eukaryotes, intron size commonly exceeds that of exons 

(Cooper, 2000). This could lead to splicing errors due to the existence of cryptic 

splice sites. Therefore, a class of SFs called Serine-Rich proteins (SR proteins) binds 

to exonic splicing enhancers (ESE) to promote the binding of snRNPs to the splice 

sites located at both ends of the same exon. Consequently, a ‘cross-exon’ recognition 

complex is formed which will ultimately lead to intron-spanning interactions via 



Chapter 1 

18 
 

spliceosomal rearrangements. On the other hand, for short introns and in lower 

eukaryotes, intron definition is the most common mechanism for splice site 

recognition (Figure 1.5B) (De Conti et al., 2013). In this situation, splice sites 

located on both ends of the same intron are directly identified without the help of 

specific SFs.  

 

 

Figure 1.5: Regulation of splicing regulators. (A) Regulation of intron removal 

process by cis-acting sequences. Supplementary to the core splice signals such as 5’ 

splice site, branch point, and 3’ splice site, a number of regulatory sequences 

influence the splicing decision through trans-acting splicing factors (SFs). Typical 

SFs include SR proteins and hnRNPs, which promote and inhibit splicing, 

respectively. There is a high dependence on SRE activity: even if the same SF is 
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recruited, opposite functions can be produced from the same sequence, depending on 

the location, whether within exonic or intronic boundaries. Figure redrew from 

Matera and Wang, (2014). (B) Exon and intron definition. In lower eukaryotes, 

intron definition is the common-mode of splice site recognition, with both 5’ and 3’ 

splice sites paired together at the ends of the intron. The longer intron size in higher 

eukaryotes could lead to the use of cryptic splice sites, so exon definition is used. In 

this instance, the identification of the splice sites that enclose such exons is mediated 

by SR proteins, to promote the formation of a ‘cross-exon’ recognition complex. 

Eventually, further spliceosomal rearrangements ensure intron-spanning interactions 

take place. Figure redrew from Ast (2004). 

 

 

A lot of these splicing events happen before transcription termination, in humans, 

resulting in a phenomenon which is called co-transcriptional splicing (Merkhofer et 

al., 2014). It has been suggested that the rate of transcription elongation can have an 

effect on the choice of splice site to be used; a fast elongation will afford an 

opportunity window for recognising strong splice sites. However, a slow elongation 

will afford an opportunity window for recognising splice sites that are weak 

(Kornblihtt et al., 2013; Naftelberg et al., 2015). Since instability in the concentration 

of core components of the spliceosome is known to influence the outcome of 

splicing, the regulation of splicing decisions will ultimately not be limited to the role 

played by the specific SFs (Karamysheva et al., 2015).  

 

From all the processes mentioned above, it can be concluded that there is a likelihood 

that splicing would occur in a precise through flexible fashion (Djebali et al., 2012). 

Its precision is increased further by the numerous readjustments that are necessary 

before the reaction involving the removal of the actual intron can occur. The 

nonsense-mediated decay pathway helps to avoid errors in splicing. Conversely, the 

modification or accumulation of splice site mutations in the spliceosomal 

components can lead to serious phenotypic results and dysregulation of splicing has 

been linked to a number of diseases such as cancer (Ladomery, 2013; Padgett, 2012). 
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1.5 Transcriptomic studies using RNA sequencing 

The work described in this section examines the use of the next generation 

sequencing technologies (described briefly in Section 1.2) to understand the 

structure, processing, and expression of RNA molecules and how this has increased 

our knowledge of how information is transferred from genomic DNA in the nucleus 

to the cell and its environment. NGS technologies were initially developed for 

genomic sequencing but have now been modified to sequence RNA molecules, 

providing information about both the sequence and the relative quantity of different 

RNAs.  

 

RNA sequencing (RNA-seq) is the application of a variety of NGS methods which 

are also known as deep sequencing technologies due to the potential for high 

coverage of sequence to study RNA (Chu and Corey, 2012). It is also an approach to 

transcriptome profiling that uses next-generation sequencing technologies. Studies 

using this approach have already changed our view of the level and complexity of 

eukaryotic transcriptomes. RNA-seq also provides a far more accurate measurement 

of levels of transcripts and their isoforms than the other methods (Wang et al., 2009). 

It is also an approach to reveal the existence and quantity of RNA in a biological 

sample from different types and time points (Chu and Corey, 2012).  

 

The popularity of RNA-seq for the study of transcriptomes has been increasing over 

the last decade (Mortazavi et al., 2008a; Wang et al., 2009). RNA-seq provides a 

much higher dynamic range than other approaches to studying gene expression 

patterns, and facilitates a much larger set of analyses, in contrast to microarrays, 

which have been the primary technology for the high-throughput comparison of 

transcriptome-wide expression levels across samples and conditions (Malone and 

Oliver, 2011). Other applications of RNA-seq, in addition to gene expression 

analysis, include the identification of novel transcribed regions (Wang et al., 2016), 

detection of fusion transcripts (Maher et al., 2009; Supper et al., 2013). Furthermore,  

detection of allele-specific expression (Berger et al., 2010), estimation of expression 

levels of different transcripts from the same gene (Trapnell et al., 2012) and study of 

differential splicing across conditions.  
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Besides that, RNA-seq is also useful in genome annotation and gene model building 

(Yandell and Ence, 2012), discovery of alternative promoters or polyadenylation 

(which are potentially involved in regulation), detection of enhancers through 

bidirectional transcription, finding novel transcribed elements such as micro RNAs 

and novel genes and looking at allelic imbalance in expression (Eswaran et al., 

2013). Even though microarrays can be a cheaper platform, time- and cost-efficient 

to perform routine differential expression analysis at the gene level (Guo et al., 

2013), the additional studies, the amount of data and the falling costs of sequencing 

explain the increasing popularity of RNA-seq. In this section, the typical steps 

required to sequence a transcriptome with an Illumina platform to generate RNA-seq 

data are outlined. Furthermore, a detailed description of the most commonly used 

methods to study the transcriptome composition of RNA-seq data will be provided. 

 

1.5.1 RNA-seq vs microarrays 

RNA-seq methods involve the conversion of transcripts into complementary DNA 

(cDNA) which is sequenced directly in a massively parallel sequencing reaction 

(Mortazavi et al., 2008a). The expression levels of genes relative to another condition 

of interest or absolute levels can be quantified by counting the number of short 

sequencing reads mapping onto the reference genome (Marguerat and Bähler, 2010; 

Nagalakshmi et al., 2010). In contrast, the basic principle of microarrays is that 

labelled samples of transcribed RNAs are hybridised to immobilised complementary 

DNA probes representing target genes. The relative abundance of each transcript in 

samples can be assessed by measuring the signal intensity of the two distinct 

fluorescent dyes (two-colour arrays) or more commonly now by comparing the 

signal of one dye across arrays (Hegde et al., 2000; Pariset et al., 2009; Ramsay, 

1998; Schena et al., 1995). Currently, there are two popular platforms in microarray 

technologies; Affymetrix and Illumina. 

 

DNA microarrays have been employed as the main technology platform for 

transcriptome profiling studies since their development approximately 15 years ago. 

Microarrays are still widely used for whole transcriptome analysis, but currently, 

RNA-seq is rapidly becoming the favoured method of choice in certain 
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circumstances as it overcomes some of the inherent limitations of microarrays (Fu et 

al., 2009; Wang et al., 2009). Microarrays depend on the prerequisite knowledge of 

the reference transcriptome (to design probes), RNA-seq does not (Raz et al., 2011). 

There are several advantages of RNA-seq when compared to a microarray with 

regards to the data: it produces a very low background signal, a higher dynamic 

range of expression levels and more accurate quantification of transcript abundance 

(Wang et al., 2009). However, the efficiency of RNA-seq is also associated with 

various problems including the huge volume of data (big memory footprint), amount 

of rRNA in the sample, short reads, less base accuracy and variation of read density 

along the length of the transcript (Fu et al., 2009; Martin and Wang, 2011). Both 

RNA-seq and microarrays have their strengths and limitations but between them 

cover most needs for transcriptome research (van Vliet, 2010; Wang et al., 2009). 

 

Estimating gene expression levels using RNA-seq data requires reads counts to be 

normalised in order to get meaningful expression estimates (Blencowe et al., 2009; 

Mortazavi et al., 2008a; Wang et al., 2008). There are two major reasons why RNA-

seq data requires normalisation: Firstly, longer transcripts produce more reads 

compared to shorter transcripts during library construction, assuming the same 

abundance in the sample (Marioni et al., 2008). Secondly, different runs produce 

varying read depths thereby affecting the number of reads assigned to a given 

transcript (Marioni et al., 2008a; Mortazavi et al., 2008). To address these issues, 

normalisation is usually now performed to adjust transcript read counts by the length 

of the gene and the total number of mapped reads in the sample and expression levels 

are recorded as a number of reads per kilobase of transcript per million mapped reads 

(RPKM) metric. The fragment per kilobase of transcript per million mapped reads 

(FPKM) metric is used for both gene and isoform quantification of paired-end reads 

data (Trapnell et al., 2010). The read count normalisation is discussed in more detail 

in section 1.5.8. 

 

1.5.2 RNA-seq workflow 

A typical RNA-seq workflow involves three main sections which are experimental 

biology, computational biology, and systems biology. The experimental section 
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includes the methods for RNA collection, first strand synthesis, and library 

construction, producing millions of short read sequences from the NGS sequencer. 

Various sequencing platforms have been implemented for RNA-seq studies which 

include Illumina Genome Analyzer GAIIx and HiSeq (Liu et al., 2012; Nagalakshmi 

et al., 2008), Roche 454 Life Science (Marioni et al., 2008), Applied BioSystems 

SOLiD (Eid et al., 2009), Ion Torrent Personal Genome Machine (PGM) (Rothberg 

et al., 2011), single molecule real-time (SMRT) machine PacBio RS System (Eid et 

al., 2009) and the nanopore technology-driven portable device MinION.  

 

RNA preparation methods differ for different types of sequencing platforms, RNA 

sub-types, and sequencing purpose. Furthermore, sample quality is a major factor in 

obtaining good quality data and deriving biological insights from unbiased analyses. 

Selection of Poly-A mRNA with oligo-dT oligonucleotides has been used in a range 

of transcriptomic analyses including gene expression, variant detection and 

alternative splicing (Carrara et al., 2015; Tariq et al., 2011). For both random 

sequencing and single cell sequencing, the labelled molecules on Illumina 

sequencing platform can achieve a significant mRNA sequencing efficiency (Carrara 

et al., 2015).  

 

In Illumina sequencing technology, typically the reaction is based on the use of 

modified versions of the four bases, which vary from the standard nucleotides 

because they incorporate a reversible terminator, in addition to a fluorescent dye. 

Therefore, throughout each sequencing cycle, and following the addition of the 

necessary reagents, elongation will be blocked after the successful incorporation of a 

single base and the identity of a nucleotide can be traced by measuring its fluorescent 

signal. Repetition of this process will lead to a set of images that are converted into a 

set of sequences or reads after interpretation using a base calling software (Das and 

Vikalo, 2013). The reads represent the set of molecules in the initial sample, and the 

length of the reads corresponds to the number of cycles performed throughout the 

sequencing reaction. Finally, the acquired sequence information is stored in a plain 

text file in a FASTQ format with the probability of a wrong base call at each position 

of the read given by metrics such as the Phred score (Cock et al., 2010). 
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The raw reads are supplied as starting material for the computational biology 

analysis (Conesa et al., 2016). Initially, biological and technical contaminations are 

removed by preprocessing steps, followed by mapping qualified reads either to the 

genome or transcriptome. The mapped reads for each sample are subsequently 

indexed into three different levels: gene, exon, or transcript-level depending on the 

experimental purpose, to evaluate the abundance of reads (Martin and Wang, 2011). 

Then, the summarised data are estimated by statistical models to detect differentially 

expressed genes and alternative splicing events, or regulatory mechanisms are 

evaluated through integration analysis with the data set (Han et al., 2015). Lastly, 

network or pathway analyses are examined to obtain biological insight from the data 

(Freeman et al., 2007; Theocharidis et al., 2009). 

 

1.5.3 RNA-seq using Illumina sequencing technology 

The initial step in transcriptome sequencing is library preparation, which consists of 

extracting RNA from the starting material, converting it into a cDNA library and 

loading into the NGS sequencing machine (Figure 1.6) (van Dijk et al., 2014). 

Following the RNA extraction step, the RNA type of interest is usually enriched 

through either ribodepletion or polyadenylated RNA selection. In both cases, the aim 

is to reduce the concentration of ribosomal RNAs (rRNAs), the most abundant type 

of RNA in the cell. However, for polyadenylated RNA selection, the use of oligo-dT 

beads is needed, which facilitates the extraction of polyadenylated RNAs, therefore 

ensuring a high-quality representation of mRNAs (Figure 1.6 - step 1). In contrast, 

ribodepletion depends on the use of ribonucleases to exclusively digest rRNAs and 

has the advantage of not limiting the analyses to polyadenylated RNA. In fact, the 

term “total RNA” is usually used to refer to datasets produced with the rRNA 

depletion protocol, whereas those acquired with the former method are known as 

“poly-A-selected”. Poly-A selection has become the most popular selection amongst 

the presently available RNA-seq datasets because of the easier protocol and its 

competitive price, with the important exception of those studies aimed at 

characterising non-polyadenylated RNA types, such many non-coding RNA types 

which typically lack a poly-A tail. The extracted RNA is fragmented through 

hydrolysis with divalent cations and will be transcribed into first strand cDNA with 
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random hexamer primers. Then, there will then be a second strand synthesis (Figure 

1.6 - step 2). This is followed by the ligation of adapter sequences at both ends of 

each cDNA fragment (Figure 1.6 - step 3). The adapters serve two different roles. 

Firstly, they facilitate the immobilisation of the cDNA fragments by hybridization to 

anchored complementary sequences in the flow cell where the sequencing will take 

place. Secondly, they serve as primers for the sequencing reaction. The resulting 

cDNA fragments are then size-selected (typically 300-500 bp) through gel 

electrophoresis to fit within the range required by the next-generation sequencing 

machine. cDNA fragments outside this range will be ignored; therefore alternative 

protocols for the study of small RNAs have been created  (Zhuang et al., 2012), in 

which the cDNA library is amplified by the polymerase chain reaction (PCR). 

 

Samples are loaded into a flow cell for transcriptome sequencing when the library 

preparation procedure has finished (Mardis, 2013). After this step, in order to 

increase the signal for the sequencing reaction, the starting material needs to be 

amplified once again through bridge amplification (Figure 1.6 - step 4). The process 

consists of the synthesis of fragments that are complementary to the hybridised 

cDNA molecules which bind and hybridise with neighbouring adapters (Figure 1.6, 

step 4), therefore facilitating subsequent rounds of synthesis. Consequently, many 

clusters with identical sequences will be formed, which is now ready for sequencing. 

Illumina platforms rely on sequencing by synthesis technology to read the base pair 

composition of each cDNA cluster (Figure 1.6 - step 5) (Bentley et al., 2008).  

 

 



Chapter 1 

26 
 

 

Figure 1.6: An overview of library preparation and sequencing steps in an 

Illumina platform. A representative paired-end workflow is illustrated here, which 

consists of ligation different adaptors at each end of the initial cDNA molecule. This 

enables sequencing each cDNA fragment from both ends, in two separate reactions, 

and has further advantages for the downstream bioinformatics analyses compared to 

single-end approaches. Figure redrew from Mardis (2013). 
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1.5.4 Quality assessment of RNA-seq data 

It is not a straightforward process to identify and quantify all RNA species from the 

reads sequenced since RNA-seq is a complex, several step process which involves 

sample library preparation, fragmentation, purification, amplification, and 

sequencing    (Han et al., 2015). Hence, read quality assessment is the first step of the 

bioinformatics analysis pipeline of RNA-seq and is a crucial step before downstream 

analysis (Conesa et al., 2016). It is recommended and always necessary to filter data, 

removing low-quality sequences, any base contamination, or overrepresented 

sequences to ensure a coherent final data set (Wang, 2016). A variety of tools is 

currently available for this purpose. Read quality can be visualised graphically for 

example through FastQC (Andrews, 2010). Recently, Kraken, a flexible and efficient 

pre-processing tool was designed to streamline the analysis of next-generation 

sequencing data. It was developed for demultiplexing, trimming, removing 

redundancy and filtering short read sequencing data (Davis et al., 2013), while 

HTSeq was designed to deduce the base calling and evaluate base quality in every 

position as well as the overall read features (Anders et al., 2015). 

 

1.5.5 Read mapping strategy 

The next step in an RNA-seq analysis pipeline consists of allocation each sequencing 

read to a known gene or genomic sequence. The outcome is equivalent to 

discovering the loci that are expressed in a given sample (Conesa et al., 2016). In 

principle, two different strategies exist to perform this task where reads can be 

aligned to the reference genome or transcriptome, if available for the species of 

interest (Garber et al., 2011); otherwise, they can be directly assembled into contigs 

to produce contiguously expressed regions with the purpose of reconstructing the set 

of expressed transcripts (Flicek and Birney, 2009; Trapnell et al., 2012). SOAP (Eid 

et al., 2009), SOAP2 (Li et al., 2009), MAQ (Eid et al., 2009), Bowtie (Eid et al., 

2009), BWA (Li and Durbin, 2009), STAR (Dobin et al., 2013) and Kallisto (Bray et 

al., 2016) are   popular bioinformatics packages that can be implemented in the 

analyses for this purpose.  
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A different approach has also been taken, the reads that map to the intron-exon 

junctions help with the determination of  alternative splicing variation models, and in 

the early days of RNA-seq promoted the development of  a new generation of spliced 

alignment software, including BLAT (Fonseca et al., 2012; Kent, 2002),  TopHat 

(Kim et al., 2013; Trapnell et al., 2009), and MapSplice (Wang et al., 2010). 

 

Two evaluations of RNA-seq data analysis methods have been presented based on 

the performance of several spliced alignment programs. The evaluations focused on 

the quality of the alignments (Engström et al., 2013) and the computational methods 

for transcript reconstruction and quantification from human RNA-seq data (Steijger 

et al., 2013). The study compared 26 mapping protocols based on 11 programs and 

pipelines to measure the performance of current mapping software (Engström et al., 

2013).  The alignment evaluation showed that STAR aligner performed remarkably 

well based on various factors such as alignment yield, accuracy, nucleotide 

mismatches, exon junction discovery and suitability of alignments for transcript 

reconstruction. However, for transcript reconstruction evaluation, this study found 

that none of the protocols excelled at all metrics.  

 

The strategy of mapping to a reference sequence is much easier than assembling 

contigs de novo and it is generally the method of choice when working with model 

organisms. Regardless of the strategy used, read mapping is usually the most time-

consuming step of the analysis workflow, and to speed up this step, the existing tools 

use heuristic parameters such as the maximum number of allowed mismatches per 

read. The possibility of loss of information is high due to a decreased quality at the 3’ 

end of the sequence read because of the difficulty in deducing the fluorescent signal 

as sequencing cycles build up (Minoche et al., 2011). For this reason, it is usually 

practical to perform a quality control and pre-filtering step to avoid such reads being 

discarded where read sequences can be shortened or trimmed based on the quality of 

the base calls (Trivedi et al., 2014). Similarly, in order to speed up the subsequent 

mapping process, reads with overall low quality can be removed (Dozmorov et al., 

2015; Eid et al., 2009; Mortazavi et al., 2008). Genetic polymorphism is a great 

challenge for short reads that have a very high copy number and repetitive 
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sequences. A longer read sequencer system such as the Roche 454 or PacBio 

sequence analyser may be required to overcome these challenges (Campbell et al., 

2008; Hillier et al., 2008; Holt and Jones, 2008).  

 

1.5.5.1 Alignment to the genome or transcriptome 

A general approach when a reference genome exists is to align or map the reads 

directly to that sequence (Conesa et al., 2016). Likewise, reads can be aligned to the 

transcriptome if a good annotation exists. Alignment to transcriptome has the 

advantage because alignment job is simplified due to lack of intronic sequences. This 

comes at the price of limiting the number of downstream analyses that can be 

performed. For example, alignment to the transcriptome is not compatible with the 

identification of novel expressed regions or the study of intronic expression levels. 

Therefore, a good compromise is the use of hybrid approaches, as implemented in 

TopHat and Tophat2  (Kim et al., 2013; Trapnell et al., 2009). 

 

TopHat is a read mapping tool specifically designed for RNA-seq data since it 

facilitates alignment of the reads to the genome while considering the existence of 

splice junctions (Figure 1.7). The core of TopHat is based on Bowtie (Langmead et 

al., 2009), which is an independent algorithm for the alignment of short reads, and its 

main strength is the ability to detect exon-exon junctions without the need for any 

prior knowledge on the annotation. Nevertheless, TopHat will first attempt to map 

the reads to the derived transcriptome to simplify the search by providing such 

information. Reads that fail to align to the transcriptome will be then queried against 

the genome (Figure 1.7 - step 1). Reads can also be mapped to the genome directly 

(Figure 1.7 - step 2). Reads that fail to align in this initial stage, and those that map 

with low alignment scores, are subsequently used to build a database of potential 

splice junctions, by splitting them into smaller segments and realigning 

independently (Figure 1.7 - step 3). In this situation, every time a read appears to 

span several exons, a splice junction is reported, for example, when an internal 

fragment fails to align, or when two consecutive fragments from the same read do 

not align contiguously on a known genomic locus. Subsequently, the identified splice 

sites and their flanking sequences are concatenated into a novel transcriptome, which 



Chapter 1 

30 
 

is used to realign the set of unmapped reads (Figure 1.7 - step 4). With paired-end 

read data, each read is processed separately, and the alignments obtained are assessed 

in final phase by considering additional sources of information such as the 

orientation of the reads and fragment length. Eventually, all the information 

combined during the mapping process is reported in SAM/BAM format (Li et al., 

2009). 

 

 

Figure 1.7: An overview of the mapping algorithm implemented in TopHat. 

When an annotation file is provided, TopHat employs a hybrid approach to discover 

the genomic loci from which the detected reads could have originated. Otherwise, 

TopHat can directly align the reads to a reference genome. In both situations, the first 

step consists of discovering a set of expressed exons and is followed by the detection 

of splice junctions by using information from reads that span multiple exons. Figure 

redrew from Kim et al. (2013). 
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1.5.5.2 De novo assembly 

Where the species of interest lacks a reference genome it is necessary to perform de 

novo assembly. This approach can also be used where the genome composition of a 

sample is expected to vary greatly from the reference assembly, such as a cancer 

sample. The aim here is to assemble the reads into sets of expressed regions 

(contigs), by relying on their overlap. Nevertheless, the short-read length adds to the 

non-trivial problems. For example, lowly expressed regions are often difficult to 

solve even though the use of paired-end data can simplify the process. Trinity, 

developed by Garber et al. (2011), is one of the most popular software platforms to 

perform this task. 

 

1.5.6 The estimation of expression levels 

After the reads have been mapped to a specific location in the genome or 

transcriptome, the next step in the RNA-seq bioinformatics analysis pipeline consists 

of estimating expression levels for the features of interest, such as genes and 

transcripts. Like the mapping step, the quantification of expression levels can be 

accomplished by using existing annotation information, but it can also be performed 

independently, therefore enabling de novo identification of transcribed regions such 

as novel genes or unannotated transcripts within known gene loci. 

 

Measurement of a gene’s expression level means determining the number of RNA-

seq reads that map to the gene (Mortazavi et al., 2008). Counting the reads that 

mapped to the gene based on the reference genome, will facilitate the subsequent 

steps. A library preparation method such as a strand-specific protocol is a factor for 

counting of reads. A bedtools (Quinlan and Hall, 2010) is one example of a tool for 

read counting from a bam file, it takes a feature file (GFF) and count reads in certain 

regions (e.g. all exons of a gene). It counts reads on both strands within specified 

regions by a default setting and it can also work in a strand-specific mode if required. 

HTseq is a specialised tool for counting reads although increasing its speed for read 

counting is necessary for the future (Anders et al., 2015). In addition, the gene model 

that hypothesises the structure of transcripts/isoforms expressed by a gene also 

affects the subsequent analysis. UCSC (Speir et al., 2016), Ensembl (Yates et al., 
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2016) and RefSeq (Pruitt et al., 2014) are the most popular annotation databases for 

genome annotation. The selection of genome annotation databases directly affects 

gene expression estimation. One study (Zhao and Zhang, 2015) showed that the 

different definitions of gene models result in a discrepancy in gene quantification. 

 

Furthermore, there is several R packages can be used to count reads. This includes a 

BioConductor package for the integrative statistical analysis of range-based genomic 

data (Lawrence et al., 2013). The main features include scalable data structures for 

annotated genomic ranges and genome-length vectors, and efficient algorithms for 

overlap detection, especially in RNA-seq data. The tools include the IRanges, 

GenomicRanges, and GenomicFeatures which are the core of this package. The 

IRanges class encodes only the start and end of ranges but not the chromosome, 

strand or other information that is critical in genomic applications. Whilst 

GenomicRanges class can support many of the same range operations as IRanges and 

concentrates them for genomic data. One of the important features in this 

GenomicRanges which provides special consideration to the chromosome as well as 

the strand is findOverlaps (Figure 1.8). The findOverlaps feature is specifically able 

to take advantage of the chromosome information when detecting overlaps 

(Lawrence et al., 2013). All the information retrieved from the genomic data is stored 

in a database. The database is called TranscriptDb class and the information stored 

includes the range of each exon, the coding range, the transcript ID, the gene ID, and 

metadata about the source of the transcript information. All this information is very 

important when creating a layout file for network visualising of a gene. The 

integration of this package will be described in Chapter 2.  
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Figure 1.8: GenomicRanges overview. (A) Illustration of overlap (top) and 

adjacency (bottom) relationships. The any mode detects hits with partial or 

complete overlap, while within requires that the query range represents a subregion 

of the subject range. (B) Overlap computations between two GRangesList objects. 

Each set of rectangles linked by solid lines represents a compound range, i.e., an 

element of the list. Ranges in the query (top) are being matched against ranges in the 

subject (bottom). The labels between them indicate the type of overlap (any, within, 

none). Figure redrew from Lawrence et al. (2013).  

 

 

1.5.6.1 Gene expression levels 

Estimation of read abundance can be determined by counting the total number of 

reads overlapping each locus at the gene level together with a complete annotation. 

Count-based tools such as DESeq2 (Love et al., 2014) and DEXSeq (Anders et al., 

2012), comprise the starting point for most of the downstream analysis algorithms 

and can be performed with the tool htseq-count (Anders et al., 2015). There are some 
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challenges that need to be considered despite this obvious simplicity. The first 

challenge is the multi-mappers, and the second is repetitive or duplicated loci, both 

of which circumstances need to be handled with care to avoid over-estimated 

expression levels. Generally, approaches included uniformly distributing reads to all 

mapped positions (Trapnell et al., 2010), or probabilistically assigning them based on 

the coverage at each mapping locus (Trapnell et al. 2010; Turro et al. 2011), as first 

proposed by Mortazavi et al. (2008).  

 

1.5.6.2 Transcript expression levels 

Since many reads will overlap with exons that are shared across multiple isoforms of 

the same gene, the task of estimating expression levels becomes more complicated 

when dealing with individual transcripts. In general, the currently available 

algorithms depend on a variety of sources of information to statistically estimate 

transcript expression levels which are most relevant to reads mapping uniquely to 

one of the annotated transcripts within the chromosome region. Furthermore, reads 

that span two different exons become informative. For instance, splice junctions that 

involve skipped exons, tend to give unambiguous support for their skipping or 

inclusion. At this stage, the information from paired-end reads become most 

applicable where sequencing both ends of the cDNA fragment facilitates covering 

larger genomic regions, therefore increasing the chance that a given read pair is 

mapped across different exons i.e. spliced reads.  

 

1.5.7 Read count normalisation 

Normalisation is an important step in the analysis of RNA-seq data which has a 

strong impact on the detection of differentially expressed genes (Dillies et al., 2013). 

The most common measurement for expression level derived RNA-seq data is the 

Reads/Fragments per Kilobase per Million mapped reads (RPKMs or FPKMs, in the 

case of single-end or paired-end data, respectively) (Mortazavi et al., 2008). Data 

normalisation is one of the most important steps of data processing after getting the 

read counts. There are various aspects of the RNA-seq data that need to be 

considered including sequencing depth, transcript size, sequencing error rate, GC-

content and insert size (Filloux et al., 2014; Li et al., 2014).  
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1.5.8 Differential alternative splicing  

Several tools have been developed to identify and classify major alternative splicing 

events such as alternative 5’ splice sites, mutually exclusive exons and skipped exons 

(see Figure 1.4). There are two methods for quantification of alternative splicing 

using RNA-seq data: count-based models and isoform resolution models, using 

rMATS (Shen et al., 2014) and Cuffdiff 2 (Trapnell et al., 2013) respectively. 

rMATS was developed to detect differential, alternative splicing events from 

datasets. Correction for multiple sample comparisons is vital because of the huge 

number of genes in an RNA-seq dataset. Therefore, the false discovery rate (FDR) 

(Benjamini and Hochberg, 1995) offers an attractive measure of control for multiple 

testing. It involves a statistical model that calculates the p-value and FDR for the 

differences in the isoform ratio of a gene between two conditions (Shen et al., 2012). 

rMATS uses read counts of RNA-seq data mapped to an exon junction and its two 

flanking exons, to measure the exon inclusion levels in two samples (percentage 

spliced inclusion [Ψ]). Then, it compares values between samples to provide the 

probability of differential splicing expressed in Ψ. It classifies different types of 

alternative splicing (for example skipped exons and mutually exclusive exons; refer 

to Figure 1.4) and generates both p-value and magnitude (ΔΨ) for each alternative 

spliced form in the result (Chen et al., 2013). Cuffdiff 2 measures expression using a 

negative binomial model for fragment counts at transcript level resolution, 

controlling for variability and read mapping ambiguity. It determines differentially 

expressed transcripts and genes and reports differential splicing and promoter 

changes (Trapnell et al., 2013).  

 

1.5.9 Challenges in RNA-seq 

Despite its many advantages, RNA-seq still provides challenges as it is not an 

established technology like expression microarrays. For instance, the PCR 

amplification step has been shown to lead to differential amplification of fragments 

with lower or higher GC content (Benjamini and Speed, 2012). Incorrect base calls 

can be made due to two situations: failure to block the elongation reaction and failure 

to remove the fluorescent dye during the sequencing step, which would apply to 

DNA sequencing as well (Metzker, 2010).  
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In most cases, to overcome these problems, alternative protocols or analyses have 

been introduced. For instance, several algorithms such as Cufflinks have been 

developed to correct for the potential biases from the random hexamer amplification 

step (Trapnell et al., 2010). Other library preparation methods have also been 

suggested to account for PCR bias, whereby random barcodes are used as molecular 

identifiers to quantify the absolute number of molecules (Shiroguchi et al., 2012). 

Some downstream analysis algorithms also include information on the probability of 

a wrong base call at specific positions of the read, as reported by the Phred score, for 

example as reported in Del Fabbro et al., (2013). A very widespread strategy to 

overcome limitations on the read length and try to span larger regions consists of 

sequencing each cDNA fragment from both ends (paired-end sequencing; Figure 1.6 

and Section 1.5.3), as opposed to the single-end strategy, and can be accomplished 

through modified adapters (Mardis, 2013). 

 

Alternative library preparation strategies can add more information to the 

experiment, especially for strand-specific protocols, which are able to provide strand 

information for each read (Levin et al., 2010). Likewise, multiplexing has become a 

broadly used approach to optimise the amount of data that can be acquired from each 

sequencing run, by allowing pooling of several different samples into a single lane of 

the flow cell using a range of sequence identifier bar codes (Wong et al., 2013).  

 

1.6 Visualisation 

This section reviews current knowledge of the visualisation platforms and their 

advantages and disadvantages. Data visualisation is one of the major challenges in 

the analysis of large biological datasets, particularly when dealing with large 

organised structures with diverse clusters (Rubel et al., 2010). This is vital when 

analysing 3-dimensional (3D) data sets. Typically, the first step in interpreting the 

data is to visualise a biological process or feature. Then, downstream process 

analysis can be continued when data is visualised and the quality of the data is 

assessed. Often the second step is to cluster the observations into different sub-

clusters based on gene-gene interactions. The output from the clustering process 

requires visualisation. A number of 3D visualisation tools have been developed 
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where the software can be locally installed such as BioLayout Express3D 

(Theocharidis et al., 2009) or Cytoscape (Shannon et al., 2003). Furthermore, only 

machines with recent graphics card will be able to perform such analysis in a 3D 

environment.  

 

1.6.1 Visualisation of co-expression gene network 

Visualisation and analysis of biological data as networks have been an increasingly 

important approach to explore and investigate a variety of biological relationships 

(Freeman et al., 2007). Network analysis has had a growing role in our efforts to 

comprehend the complexity of biological systems. NGS platforms have the ability to 

generate large datasets, and the relations or distance between biological components 

can be either measured experimentally or calculated (Theocharidis et al., 2009). 

Many studies have been successful using the approach in the study of sequence 

similarity (Enright et al., 2002), protein structure and protein interactions (Enright et 

al., 2003), and evolution (Li et al., 2003).  

 

Incorporating biological data into a network model will enable one to exploit 

algorithms, techniques, ideas, and statistics previously developed in graph theory, 

engineering, computer science, and computational systems biology (Freeman et al., 

2007). Networks are widely used in computer science. In network theory, a network 

usually consists of nodes connected by edges (lines). In biological networks, nodes 

usually represent an entity e.g. genes, transcripts, or proteins, while edges represent a 

relationship e.g. an experimentally determined similarity between entities (Bader and 

Enright, 2005; Miller et al., 2010). 

 

Cytoscape (Shannon et al., 2003) is an open-source bioinformatics software platform 

for visualising molecular interaction networks together with gene expression profiles 

integration and other state data. It is one of the most popular available network 

visualisation tools which have been well supported in the community. The best 

features in Cytoscape is a plugin which is available for many analyses such as 

network and molecular profiling analyses, new layouts, additional file format support 

for expression and connection with databases and searching data in large networks. 
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However, the tool is unable to display and analyse very large networks and this 

tremendously limits its utility. When handling a large, highly structured network 

graph generated from expression or sequence data, Cytoscape strictly limits the 

ability to visualise and explore a network’s topology. Nonetheless, the network 

analysis software BioLayout Express3D (Freeman et al., 2007; Theocharidis et al., 

2009) was designed to analyse very large network graphs and provides a unique tool 

to analyse large complex expression datasets. It renders graphs in a 3D interactive 

OpenGL interface allowing a far better appreciation of complex graph structures 

which has proved to be extremely useful when dealing with large networks derived 

from microarray expression data. The statistical approach based on the transcript-to-

transcript comparison of the microarray expression signal across different samples 

using a Pearson or Spearman correlation matrix is a basic principle of co-expression 

analysis (Freeman et al., 2007; Theocharidis et al., 2009). 

 

Complex biological systems may be characterised and analysed as computable 

networks such as protein-protein interactions, genetic, biochemical, metabolic and 

cell signalling networks (Sevimoglu and Arga, 2014). Since BioLayout Express3D 

was released in 2007, it has been used to visualise gene expression using a network-

based approach in many studies, such as a study of gene expression across a variety 

of tissues in the pig (a pig gene expression atlas) (Freeman et al., 2012), gene 

expression in human macrophages (Xue et al., 2014) and gene regulation in 

mammalian cells undergoing state changes (Arner et al., 2015). In the study of genes 

expressed in pig tissues (Freeman et al., 2012), an undirected network graph was 

built of a weighted pairwise transcript-to-transcript correlation matrix using a 

Pearson correlation threshold cut-off of r ≥ 0.80. The resultant graph was large and 

highly structured (Figure 1.9). Network analysis of biological data has shown great 

promise, especially for microarray gene expression data, but no attention has been 

paid to RNA-seq data. These data are now abundant and of high quality, and consist 

of the type of high-dimensional data for which such approaches are well-suited 

(Freeman et al., 2007). Theoretically, the transformation of RNA-seq data into a 

network graph holds few challenges which depend on the read coverage, complexity 

of the graph and the splice variation of the selected gene.  
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Figure 1.9: Network visualisation and clustering of the pig transcriptome. (A) 3-

D visualisation of a Pearson correlation graph of data derived from analysis of pig 

tissues and cells. Nodes represent individual probe sets on the array whilst the edges 

(lines) represent the correlations between individual measurements above the defined 

threshold. The network is comprised of 20,355 nodes (probe sets) and 1,251,575 

edges (correlations ≥ 0.8). The complex topology of the network is a result of sets of 

coexpressed genes forming groups of high connectivity within the network. 

Clustering of the graph with the MCL algorithm (Section 1.6.1.1) was used to assign 

genes to groups based on coexpression. Areas of the network can be associated with 

genes expressed by specific tissue or cell populations. Plots of the average expression 

profile of genes shown on the right are (B)  a profile of cluster 4 genes whose 

expression is restricted to brain and spinal cord (C) a profile of cluster 7 genes whose 

expression is highest in blood; (D) a profile of cluster 10 genes whose expression is 

restricted to skeletal muscle; (E) a profile of cluster 22 genes whose expression is 

highest in the adrenal gland (Freeman et al., 2012). 

 

 

1.6.1.1 Graph clustering 

High-throughput sequencing data need to be processed, analysed, and interpreted 

carefully. Clustering is one of the methods used to understand biological processes 

based on large data sets, particularly at the genomics level (Pirim et al., 2012). A 

cluster analysis step is commonly used for gene expression analysis. The process of 

identifying clusters of genes based on some aspect of biological similarity allows the 

data to be partitioned into smaller segments. Subsequently handling and analysis 
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becomes easier and more effective (Jiang et al., 2004). The MCL algorithm (Markov 

CLuster algorithm)  was invented by van Dongen, (2000) and clustering of the nodes 

in BioLayout Express3D using the MCL algorithm was performed to assign genes to 

groups based on co-expression (Freeman et al., 2007). The MCL algorithm is one of 

the most effective graph-based clustering methods (Brohée and van Helden, 2006). 

This section explores the use of network-based visualisation of RNA-seq data to 

provide a complementary approach to understanding the accuracy of and differences 

in assembly algorithms, transcript structure, and splice variation.  

 

1.6.2 Network visualisation 

Generally, a graph G = (V, E) is used to draw information that can be represented as 

objects (the node set V) and relations between those objects (the edge set of E) 

(Hachul and Jünger, 2005). A major tool for analysing a graph is the automatic 

generation of layouts that visualise the graph and are easy to understand. A 

prominent type of algorithm to visualise graphs is the force-directed graph drawing 

method (Hachul and Jünger, 2007). It is based on assigning edges as springs and the 

nodes are electrically charged particles. The graph, G, is simulated as a physical 

system. The algorithm will try to place the nodes so that the total energy of the 

physical system is minimal (Harel and Koren, 2001; Herman et al., 2000). The 

graphs drawn using these methods are usually aesthetically pleasing and display 

symmetries, few edges crossings, uniformity of edge length and non-overlapping 

nodes and edges (Hachul and Jünger, 2007; Kobourov, 2012).  

 

There are a few force-directed algorithms that are popular in graph layout as they are 

easy to implement and generally generate a ‘nice’ graph. These algorithms include 

versions published by Eades (Eades, 1984), Kamada-Kawai (Kamada and Kawai, 

1989), Fruchterman-Reingold (Fruchterman and Reingold, 1991) and Davidson-

Harel (Davidson and Harel, 1996). Both Eades and Fructherman-Reingold 

algorithms are based on spring forces which are based on Hooke’s Law. There are 

repulsive forces between all nodes, but also attractive forces between nodes that are 

adjacent (Kobourov, 2012). Further improvements have been made to improve the 

speed and accuracy of these algorithms, including JIGGLE (Tunkelang, 1998), 
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FADE (Quigley and Eades, 2001),  a hierarchical force-directed method for drawing 

large graphs (Gajer et al., 2001), a fast multi-scale method for drawing large graphs 

(Harel and Koren, 2001) and a multilevel algorithm for force-directed graph drawing 

(Walshaw, 2003). All these force-directed algorithms generate layouts of large 

graphs at reasonable times and the differences between them in terms of output are 

often small.  

 

Initial development of BioLayout (Enright and Ouzounis, 2001) used a Fruchterman-

Reingold algorithm (Fruchterman and Reingold, 1991) to construct a large network 

derived from biological data. This section will describe an alternative algorithm, the 

Fast Multipole Multilevel Method (FMMM) (Hachul and Jünger, 2005) for the 

purpose of visualising RNA-seq data. The FMMM algorithm is available through the 

Open Graph Drawing Framework (OGDF) (Chimani, 2007), an open source library 

that includes a variety of algorithms used in the drawing and analysis of graphs. The 

force-directed graph drawing algorithm developed by Hachul and Jünger (2005) and 

is a combination of an adequate multilevel technique to get the repulsive force 

between all pairs of nodes. The FMMM generates “pleasing” layouts and is 

comparatively fast (Godiyal et al., 2009). As part of the work described in Chapter 3, 

I have examined the use of two different algorithms on the layout of RNA-seq 

assembly graphs, Fruchterman-Reingold and FMMM algorithms. 

 

1.6.3 Algorithms for sequence assemblies 

In RNA-seq assembly graphs, nodes represent sequence reads while edges denote a 

similarity overlap or homology between reads above a defined threshold. Overlaps 

must be pre-computed by a series of (computationally expensive) pairwise sequence 

alignments (Pop, 2009) as the first step in building a graph from such data (Miller et 

al., 2010). The evolution of assembly algorithms has accompanied the development 

of sequencing technologies. Currently, there are two widely used classes of 

algorithms: overlap–layout–consensus (OLC) and de-Bruijn-graph (DBG) (Zerbino 

and Birney, 2008). 
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1.6.3.1 The Overlap-Layout-Consensus (OLC) algorithm 

OLC generally works in three steps: first overlaps (O) among all the reads are found, 

then it carries out a layout (L) of all the reads and overlaps information on a graph 

and finally, the consensus (C) sequence is inferred (Flicek and Birney, 2009). It is an 

assembly algorithm, initially developed by Staden (1980) and subsequently extended 

and elaborated upon by many scientists. OLC became successful with the wide 

application of Sanger sequencing technology (Section 1.1.1). Many widely used 

assembly programs adopted OLC, such as the Celera Assembler (Myers et al., 2000) 

and CAP3 (Huang and Madan, 1999). In the OLC algorithm, the identification of 

overlap between each pair of reads is explicit; typically by doing all-against-all 

pairwise read alignment (Flicek and Birney, 2009). As a result, the OLC algorithm 

constructs a reads graph, which places reads as nodes and assigns a link between two 

nodes when these two reads overlap by more than a cut-off length. The basic 

principle of the OLC method has been used in this thesis to construct a graph-based 

assembly of RNA-seq data.  

 

1.6.3.2 The de Bruijn Graph (DBG) algorithm 

The method used to exploit the overlap information is different in the DBG algorithm 

than in the OLC algorithm. A DBG is a compact representation based on short words 

(k-mers) that is ideal for high coverage, very short read (25–50 bp) datasets where 

the k is 19 or higher (Zerbino and Birney, 2008). For every k-mer observed in the 

sequence set, a node is created, while edges are drawn between every pair of 

successive k-mers in a read if the k-mers overlap by k −1 bases. Some of the edges 

are therefore correlated with the single-step base difference of moving the fixed k-

mer window along by one position.  

 

The DBG formulation has properties that differ from OLC in important ways 

because of the use of k-mers to calculate the overlaps, even though it is seemingly 

like the read overlap graph used by traditional assembly programs which use OLB 

algorithms. There are three steps involved in DBG algorithms. The first step is that a 

read will be split across its component nodes. Secondly, a short sequence repeat will 

be a series of adjacent k-mers which many reads pass through. The graph will 
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diverge into the unique regions of the genome at the edges of the repeat. Finally, the 

graph can be constructed in an amount of computational time that scales linearly with 

the number of reads (Flicek and Birney, 2009). An overview of the DBG graph is 

shown in Figure 1.10. 

 

Novák et al. (2010) first introduced the idea of using graph-based methods to 

visualise DNA assemblies. Their work was based on an all-to-all comparison of 

sequence reads to generate the similarities, which were used to build clusters of 

overlapping reads representing different repetitive elements of two plant genomes 

(pea and soybean) where read similarity exceeded a specified threshold. This method 

focused on the characterisation of the repetitive regions of plant genomes where it 

was argued the method could be used to better analyse the variability and 

evolutionary divergence of repeat families, as well as to discover and characterise 

novel elements. This all-to-all comparison can be performed using MegaBLAST 

(Morgulis et al., 2008) which is a part of the BLAST (Altschul et al., 1990) program 

in the NCBI toolkit. It is this basic approach that was developed in this thesis, and 

detailed explanation is given in Chapter 2. 
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Figure 1.10: Differences between an OLC and a DBG for assembly. Based on the 

set of 10 8-bp reads (A), we can build an overlap graph (B) in which each read is a 

node, and overlaps > 5 bp are indicated by directed edges. Transitive overlaps, which 

are implied by other longer overlaps, are shown as dotted edges. (C) In a DBG a 

node is created for every k-mer in all the reads; here the k-mer size is 3. Edges are 

drawn between every pair of successive k-mers in a read, where the k-mers overlap 

by k −1 bases. In both approaches, repeat sequences create a diversion in the graph. 

This example only considered the forward orientation of each sequence to simplify 

the figure. Figure redrew from Schatz et al. (2010). 

 

 

1.6.4 Visualisation of RNA-seq assemblies 

When next-generation sequencing came into the market in 2005, RNA-seq 

application became an option to generate enormous amounts of expression data. 

Various pipelines such as TopHat and Cufflinks are widely applied to analyse these 

datasets. The most important aspect in analysing RNA-seq data is the ability to 

visualise the complexity of AS. Previously, many tools have been developed to 

visualise alternative isoform from cDNAs and ESTs data (Bhasi et al., 2009). 

Visualisation for RNA-seq assemblies needs dedicated tools that efficiently process a 

large amount of data from multiple samples from different cells or tissues. Thus, 

several tools have been developed for the purpose to visualise alternative isoforms 

and events from RNA-seq data.  However, accessing and handling the analytical 

output remain challenging for most researchers. To further analyse, visualise and 

interpret the RNA-seq data, the assemblies can be viewed using visualisation tools. 
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The simplest approach to visualise isoforms and events from such gene is to generate 

track files for a genome browser e.g.  UCSC browser (Speir et al., 2016) or GBrowse 

(Donlin, 2002). A number of tools such as RSEM (Li and Dewey, 2011), 

SpliceGrapher (Rogers et al., 2012) and DiffSplice (Hu et al., 2013) can produce 

WIG files or GFF-like formats to be uploaded into these browsers. Today, perhaps 

the most popular tool to visualise RNA-seq data is Integrative Genomics Viewer 

(IGV) (Robinson et al., 2011; Thorvaldsdóttir et al., 2013). This software provides a 

versatile visualisation and exploration platform for DNA/RNA sequence data. It was 

developed to support a wide-range of data types, including NGS and array-based 

platforms. The distinguishing feature compared to other visualisation viewers such as 

Tablet (Milne et al., 2010), BamView (Carver et al., 2010) and Artemis (Carver et 

al., 2012), is that IGV can view data in multiple genomic regions simultaneously. 

 

All these visualisation tools have limitations and the software is constantly under 

development. Most of the visualisation tools available provide assembly/alignment 

views as reads ‘stack’. Whilst this is sufficient for many needs when the underlying 

variances in the genome or transcript assemblies are complex, existing visualisation 

methods can be limiting. One approach that assists is a quantitative multi-sample 

visualisation of RNA-seq reads aligned to gene or locus annotations, called Sashimi 

plots, developed by Katz et al. (2013) (Figure 1.11). The Sashimi plots are made 

using alignments (stored in the SAM/BAM format) and gene model annotations (in 

GFF format), which can be visualised using the IGV browser, which enables swift 

and dynamic creation of the plots for any gene or locus suitable for exploratory 

analysis of alternatively spliced regions of the transcriptome. This tool produces 

publication-ready plots of isoform expression for RNA-seq analyses. The Sashimi 

plots provide a quantitative summary of genomic and splice junction reads together 

with the gene model annotations and read alignments. The quantitative and 

comparative visualisation of RNA-seq reads can be done across different samples to 

detect differentially expressed spliced exons and isoforms (Katz et al., 2010). 

However, none of these tools uses a network-based approach to visualise and identify 

alternatively spliced isoforms in RNA-seq data, which is described in this thesis.  
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Figure 1.11: Example Sashimi plots for an alternatively spliced exon. (A) Gene 

model annotation showing two transcripts where the middle exon is alternatively 

spliced. Sashimi plots for the black exons (shown in lower panel) is shown, where 

genomic reads are converted into read densities (measured in FPKM) and junction 

reads are plotted as arcs whose width is determined by the number of reads aligned to 

the junction spanning the exons connected by the arc (Katz et al., 2010). (B) 

Representative IGV view (upper panel) together with Sashimi coverage plot (lower 

panel) showing RNA-seq reads mapping to the PRC1 locus from human fibroblasts 

at 24 h after serum refeeding (Freeman et al, unpublished data). The height of the 

bars represents overall read coverage. Splice junctions are displayed as loops. The 

number of reads observed for each junction is indicated within segments, and y-axis 

ranges for the number of reads per exon base are shown (read coverage, left). The 

plot suggests different isoforms expressed in the sample, as shown by the arcs 

connecting a pair of exons. 
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Recently, Strobelt et al. (2016) developed a visual analysis tool called Vials 

(VIsualizing ALternative Splicing) (Figure 1.12) to explore the publicly available 

datasets to determine the abundance of isoforms which are associated with coding 

regions of the gene and evidence for read junctions. The tool is scalable for the 

simultaneous analysis of numerous samples in multiple groups. Vials tool allows 

the researcher to identify patterns of isoform abundance in groups of samples for 

example tissues and the quality of the data can be determined. This tool is used to 

determine the isoforms and compare with the network analysis of a human tissue 

atlas described in Chapter 4.  

 

 

 

Figure 1.12: Vials - Visualisation of Alternative Splicing. Vials showing isoforms 

for the Kinesin light chain 1 (KLC1) gene and data from the Illumina BodyMap 2.0 

data. In this figure, there are three junctions; junction view, isoform abundance view 

and expression view. Three tissues of the brain, heart, and liver are selected from the 

expression view. 
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1.7   Aims of the thesis 

Data visualisation is increasingly recognised as an essential component of genomic 

and transcriptomic data analysis, enabling large and complex datasets to be better 

understood. However, the analysis of RNA-seq data remains a significant challenge 

for many biologists. The data is large and the tools for its assembly, analysis, and 

visualisation are still under development. Currently, there are a number of software 

tools available for the visualisation of sequencing data, the most widely used of 

which is the Integrative Genomics Viewer (IGV).  

 

However, visualisation of the data is still linear and basically involves read stacking 

onto the genome reference and visualisation of splicing events is difficult. The 

limitation of linear visualisation is that the data could not be interpreted at a glance 

e.g. to detect an alternative splicing. Difficulty to determine isoform expressed could 

potentially lead to data misinterpretation. Therefore, the work described in this thesis 

explores ways of visualising and examining RNA-seq data. Hence, the hypothesis is 

to provide an alternative visualisation of the sequencing data and therefore better 

analysis of exon structure and splice variants.  

 

Ultimately, this new method of visualising RNA-seq data will become important in 

RNA-seq analysis to discover and explore the nature of the sequence. Therefore, the 

overall aim of this thesis was to explore the utility of network-based visualisation in 

the analysis and interpretation of RNA-seq data. In summary, the aims of this thesis 

were: 

 

1. To develop a pipeline to go from ‘raw’ RNA-seq data to a layout file that can be 

visualised as an ‘RNA-seq assembly graph’ using the network analysis tool, 

BioLayout Express3D. 

 

2. To better understand the basic principles and challenges associated with network 

visualisation of RNA-seq data, in particular how it could be used to visualise 

transcript structure and splice variation.  

 



Chapter 1 

49 
 

3. To explore the analysis of transcript variation in an RNA-seq dataset derived from 

human tissue including the quality control of the sample using a network-based 

approach, detect alternative splicing events and validate them using network-

based visualisation. 

 

4. To investigate the usability of network-based visualisation using NGS Graph 

Generator application thus enables review and feedback from users to improve the 

user experience for this application. 
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Chapter 2 - Development of an analysis pipeline 

for the network analysis of RNA-seq data  

 

2.1 Introduction 

Data visualisation is a fundamental component of genomic and transcriptomic data 

analysis. However, diversity and size of the data sets produced by current sequencing 

and array-based transcriptome profiling methods present major challenges for 

analysis and visualisation. Several analytical and visualisation approaches have been 

used to analyse and display the relative abundance of a mixture of transcript isoforms 

in a sample as analysed using RNA-seq data (Refer Chapter 1 Section 1.5.3). To 

address the need for alternative methods to explore transcript isoform diversity in 

RNA-seq data, I developed a computational pipeline that uses genome-mapped short-

read sequences to generate a network-based visualisation of these data. This web 

application, called “NGS Graph Generator”, can be accessed at http://seq-

graph.roslin.ed.ac.uk, is written as a Bash script and maintained in a GitHub 

repository. The pipeline relies on several external libraries, many of which enable 

fast and efficient processing of short read data, namely: SAMtools, R programming 

language, its Python wrapper and GenomicRanges for read overlap. This pipeline has 

been incorporated into a web application which can be used to generate DNA 

assembly networks from RNA-seq data.  

 

This chapter describes the NGS Graph Generator pipeline used to generate networks 

from RNA-seq data, the results of which will be described in subsequent chapters. 

The package provides a network layout file to enable visualisation of read assemblies 

the result for a given gene or transcript. This pipeline processes data from a sequence 

mapping file (i.e. BAM file) to a network layout file which can then be visualised 

using network visualisation software, BioLayout Express3D or Miru from Kajeka Ltd, 

Edinburgh, United Kingdom.   

 

http://seq-graph.roslin.ed.ac.uk/
http://seq-graph.roslin.ed.ac.uk/
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In this chapter, the use of network-based visualisations of sequencing data was 

further explored, applying the fundamental principles first described by Novak et al. 

(2010) to RNA-seq data. The aim of this chapter was to develop a complementary 

approach to understanding differences between RNA assembly algorithms as well as 

to better understand transcript structure and splice variation. In doing so, a platform 

that supports the improved interpretation of complex transcript isoforms is provided. 

This approach will be useful in the exploration and discovery of new insights from 

sequence data.  

 

The objectives of this work were: 

 

a) To develop a seamless informatics pipeline from a sequence file of RNA-seq 

data to a network visualisation file. 

 

b) To implement the pipeline into a web-based application tool to allow a user to 

run the pipeline via a web interface. 

 

c) To create an Amazon Cloud Image (AMI) to allow the pipeline to be run in a 

cloud environment. 
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2.2 Correction of GraphNGS pipeline 

GraphNGS pipeline (Faulkner et al, unpublished, Roslin Institute) was initially 

developed to analyse and visualise NGS data using a network-based approach. The 

pipeline was based on the work of Novák et al. (2010), which creates networks from 

NGS data i.e. genomics or transcriptomics data. This GraphNGS pipeline contains 

several Python and R scripts to process the FASTA files to create a network input 

file that can be visualised on BioLayout Express3D. The pipeline written in Python 

produced two types of cluster outputs which are in a portable document file (PDF) 

format in 2D, as described by Novak et al. (2010), and .BL format which can be 

imported into BioLayout Express3D where the network can be visualised in 3D 

format. The output from GraphNGS can also be visualised on a SeqGrapheR 

visualisation tool (Novák et al., 2010).  

 

Several steps are involved in this GraphNGS pipeline (Figure 2.1), which is a) 

making the alignment; b) creating the graph; c) hierarchical clustering; d) assembly 

of the cluster, and e) creating the BioLayout file. The first step of this pipeline is 

making the alignment, which uses the MegaBLAST to perform a read-to-read 

comparison. The MegaBLAST scripts create a table which reports the similarity 

metrics for each pair of sequences (suffix_megablast.txt). This MegaBLAST output 

is used to create another table (suffix_pairwise.txt) which has three columns (Node 

A, Node B, Weight) using the megablast2ncol scripts in the second step. The third 

step is using an R script named fgclust4.4.r to compute the weight of the edge 

between two reads. The fourth step creates contigs (cluster) and class sets for each 

cluster in BioLayout format. In the last step, two outputs are generated, which is in 

PDF (2D) and .BL format.  
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Figure 2.1: The basic principle of GraphNGS pipeline. The pipeline that uses 

FASTA read as an input to process the read, cluster and produce outputs in a .BL 

format that can be visualised using BioLayout Express3D as well as a PDF format. 

 

 

In order to ensure the GraphNGS pipeline was working, an RNA-seq data of human 

fibroblasts were used. The details analysis of this sample will be described in 

Chapter 3. However, for this purpose, reads mapping to COL5A1 was used. A quality 

control was performed and the data were aligned to the human reference genome 

(GRCh37.71) using TopHat (Trapnell et al., 2009). The COL5A1 is large (8,468 bp), 

containing 66 exons, and is one of the most highly expressed genes in human 

fibroblasts. Around 40,170 reads were mapped to this gene locus (t24 h sample) and 

these were put through the GraphNGS pipeline. The output file from GraphNGS was 

laid out and produced four components using SeqGrapheR (Figure 2.2).   

 

 

 

Figure 2.2: Network visualisation of the COL5A1 transcript. In this case, 

COL5A1 was used. The output generated using GraphNGS pipeline using 

SeqGrapheR. The network transcript of COL5A1 separated into four components. 

The transcript network of COL5A1 generated after the correcting the GraphNGS 

pipeline.  
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As COL5A1 (Figure 2.3) has a high coverage of reads and when visualised in IGV 

there were no weak links or gaps in the sequence, the network layout should not, in 

theory, break up, thus this result was quite unexpected. However, it was believed that 

additional code could solve the error of producing multiple components to the 

COL5A1 transcript network. This code was hitsort2cluster.r, merge2cluster.r, and 

cluster2graph where the four different components produced by the GraphNGS 

pipeline were merged (Figure 2.4). The hitsort2cluster takes the input file of paired 

reads and weights and creates a file which defines clusters. The two different outputs 

generated are “INPUT.cls” and “INPUT.tcls. The .cls file is generated based on 

hierarchical agglomerative algorithms while .tlcs file is generated based on 

connected components’ algorithms.  

 

 

Figure 2.3: Network transcript of COL5A1. This network consists of 40,170 nodes 

and 802,182 edges mapped on this gene, and crucially they assemble as one network. 

This network is visualised using the Fruchterman-Reingold algorithm in BioLayout 

Express3D. 
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Figure 2.4: Correction of the GraphNGS pipeline. The pipeline was corrected by 

adding the code available at SeqGrapheR developed by Novák et al. (2010). Three R 

scripts (grey box) were added into the pipeline and produced the desired network 

transcript of NGS data.  

 

 

In order to make it more reliable for the analysis of NGS data, especially for RNA-

seq data, this pipeline has been corrected in several ways. This includes testing the 

pipeline and adding some scripts from the SeqGrapheR development site. The 

outputs from hitsort2clusters.R were subjected to another step to merge the clusters. 

This step used the merge2clusters.R script to merge the cluster that generated from 

the previous step. This merging step generated a file that contains all connected 

cluster in a GL format. This GL format is a binary format which only could be 

opened using SeqGrapheR software developed by Novák et al. (2010). SeqGrapheR 

is a package that provides an interactive GUI for visualisation of DNA sequence 

clusters. The output GL format was imported into SeqGrapheR, with a network 

layout connected component being generated, suggesting that this GL format could 

be used as a layout file for BioLayout; however, this format it cannot be loaded in the 

BioLayout Express3D software. The readable output was tweaked from the 

merge2clusters.R scripts to get the output that could be imported into the BioLayout. 

Nonetheless, the GraphNGS pipeline possesses a few limitations. This includes the 

limitation to visualise and explore alternative splicing or isoform divergence within a 

single cell or across tissues. Therefore, in the next section, I described a network-

based visualisation pipeline which can analyse a comprehensive gene transcript using 

BioLayout Express3D. 
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2.3 Network-based visualisation pipeline: an 

alternative solution 

Since the GraphNGS pipeline output was not able to produce a complete analysis to 

visualise the DNA assembly network on BioLayout Express3D as well as the 

limitation of SeqGrapheR on visualising the network without any exon or isoform 

annotation, a seamless pipeline was needed to visualise, explore and determine a 

DNA assembly network of a gene. The idea to develop this pipeline is based on a set 

of linked Bash and Python scripts that perform the following tasks. Figure 2.5 shows 

an overview of the data processing pipeline for analysis of RNA-seq data developed 

in this chapter for the preparation of network files for transcript visualisation. The 

initial steps in this pipeline i.e. data QC and mapping of reads to a reference genome 

are described elsewhere (Garber et al., 2011; Trapnell et al., 2012). Described here 

are the stages from the output of an alignment analysis (BAM file) to the generation 

of a text file suitable for network visualisation using BioLayout Express3D.  

 

To be able to run this pipeline, a user requires the short sequence read files generated 

by an NGS platform i.e. FASTQ file. The size of short sequence reads vary from 

platform to platform and in this chapter 100 bp paired-end reads generated from 

Illumina sequencer were used. Normally short read sequences produced from a 

sequencer will produce high-quality sequence reads. If data is of a poor quality then 

downstream sequence analysis is compromised by low-quality sequences, sequence 

contamination, and sequence artefacts, ultimately leading to misassembly and 

potentially leading to erroneous conclusions. Such data requires enhanced tools for 

preprocessing and quality control of sequence datasets.  

 

The quality assessment for most NGS data sets includes analysis of sequence length, 

quality score, GC content and sequence complexity distributions (i.e. sequence 

duplication, artefacts, contamination and number of ambiguous bases). In the pre-

processing stage, unwanted sequence resulting from adaptors or poor-quality 

sequence should be trimmed and filtered, respectively. The Kraken tool (Davis et al., 

2013) is recommended to perform this quality control step and is it necessary to 
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perform subsequent steps in generating the network-based analyses (Figure 2.5 – 

Step 1).  

 

After quality control, the next step is to align the FASTQ files to a reference genome 

using tools such as TopHat (Trapnell et al., 2009) or STAR (Dobin et al., 2013) 

(Figure 2.5 – Step 2). The output from these tools is a sequence alignment in a 

binary format (BAM – Binary Alignment Mapping file). This sequence alignment 

will then be input into the NGS Graph Generator pipeline. The NGS Graph 

Generator pipeline comprises four core components; SAMtools, GenomicRanges 

(Lawrence et al., 2013b), MegaBLAST and Uniquification (Figure 2.5 – Step 3 to 

6). The input for the pipeline is a BAM, GTF and a chromosome length file. The 

chromosome length file is a tab-delimited text file that contains the chromosomal 

name and the chromosome length in bases. If the alignment is an unsorted BAM file, 

the file will be sorted based on the genome location using the SAMtools sort function 

(Li et al., 2009a) (Figure 2.5– Step 3).  

 

The R package GenomicRanges (Figure 2.5 – Step 4) is then used to create the file, 

a GTF (gene transfer format) file is required for annotating nodes in the network 

(representing sequence reads). A GTF file holds information about gene structure (as 

defined by Ensembl GRCh37.71) and is used by GenomicRanges to obtain isoform 

and exon information. The output from this step is a tab-delimited file containing 

information that includes Ensembl transcript IDs and exon number. This information 

is extracted from the BAM file and can be overlaid onto networks using the ‘class 

sets’ function within BioLayout Express3D. Upon selection of the Ensembl transcript 

ID, nodes representing reads that map to this transcript model will be coloured 

arbitrarily according to the exon number. The sequence mapping to a selected gene 

(e.g. COL5A1) will be created as a FASTA file.  

 

Depending on the target gene’s length and coverage, it will take longer to generate a 

network of a highly expressed gene than moderate or low expressed genes. One 

option is to ‘uniquify’ (discard redundant reads) thereby reducing the computational 

time to calculate the read-to-read similarity matrix (Figure 2.5 – Step 5).  
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The next step is to define the similarity (sequence identity) between reads mapping to 

a gene of interest (Figure 2.5 – Step 6). A FASTA file containing all the sequences 

that have been mapped to a particular gene is extracted and the supporting 

information used for the visualisation of transcript isoforms in the context of the 

resultant network. For read-to-read comparison, MegaBLAST (Zhang et al., 2000) is 

used to generate a similarity matrix with edge weights derived from the 

MegaBLAST bit score. The better the alignment between a pair of reads the higher 

the bit score.  

 

Parameterisation of this step i.e. defining the threshold for percentage sequence 

similarity (p) and length (l) coverage for which two sequences must be similar for an 

edge to be drawn between them is of importance. Ideally, a network should contain 

the maximum number of reads (nodes) connected by a minimum number of edges 

and where possible give rise to a single network component i.e. a single group of 

connected nodes that together represent the mRNA species of interest. These 

parameters, p, and l can be varied. If the read depth is high, the parameters can be 

more stringent, the opposite being true when coverage read is low. 

 

The NGS Graph Generator pipeline was implemented as three different platforms to 

reach different audiences. First, a DNA assembly layout of a gene can be generated 

from a website (Figure 2.5A). Secondly, the source’s code was deposited in GitHub 

repository (Figure 2.5B) and finally the pipeline is implemented in as an Amazon 

Machine Image (AMI) at Amazon Web Services (Figure 2.5C). The layout file is the 

product of the NGS Graph Generator pipeline. This file is saved as a text file that 

contains a list of weighted edges between pairs of reads, together with class sets 

information that defines reads as belonging to Ensembl transcript models. This 

network description file is called a .layout file and can be opened using BioLayout 

Express3D or Miru (Figure 2.5E). To compare and analyse the network layout, a 

BAM file can be visualised using IGV software (Figure 2.5D).   
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Figure 2.5: Pipeline for network-based visualisation of RNA-seq data. The 

analysis pipeline is shown for building networks of RNA-seq data from raw 

sequencing FASTQ files through a series of analysis steps (green box), generating 

several files (blue box) leading to the production of a file for network visualisation 

layout in the BioLayout Express3D software. Short read sequence (i.e. FASTQ) files 

from the NGS sequencer are used as the input for this pipeline, followed by quality 

control (1) for which the Kraken pipeline is recommended. Then the FASTQ files are 

aligned to a reference genome for the sequence alignment step using TopHat or 

STAR (2). The output from the aligners is a BAM file which is used as an input for 

the NGS Graph Generator (grey box) pipeline together with GTF and the 

chromosome length file. The BAM file will subsequently be sorted based on the 

genome coordinates using SAMtools (3). This is followed by sequence read 

annotation using GenomicRanges (4). The output of this step is FASTA sequence of 

mapped reads and the node class file of exon and isoform annotation for each 

sequence read. Depending on the depth of sequencing (gene expression level), an 

option to remove redundancy of sequence reads can be used (5). The next step is to 

perform a read-to-read comparison of all short sequence reads of selected gene/locus 

using MegaBLAST (6) producing a pairwise sequence file. The pairwise sequence 

and node class file merge to produce a transcript network layout. This NGS Graph 

Generator (grey box) is incorporated into three different platforms, (A) web-based 

application, (B) GitHub (UNIX) and (C) Amazon Cloud. To view the RNA-seq data 

using a conventional visualisation platform, IGV viewer should be used, and the 

results can be compared with the network-based visualisation approach using 

BioLayout Express3D. 

 

 

This chapter presents a network-based visualisation pipeline to generate networks 

from RNA-seq datasets. This pipeline has provided the results described in the 

subsequent chapters. The pipeline was written in Bash script which includes Python, 

Bash, and R to analyse short-read NGS data from RNA-seq data of the cell cycle of 

human fibroblasts. The package provides a layout file to help scientists to visualise 

the result of a gene or transcript.  

 

All the pipeline design and implementation work was my own apart from the 

corrected GraphNGS pipeline and adaptation of the pipeline for its use as web 

application and the preparation of the software, which were done in collaboration 

with Tim Angus, The Roslin Institute, and Anton Enright from the EMBL European 

Bioinformatics Institute (EBI). The implementation of the pipeline for its use in the 
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Amazon Machine Image which was done together with Professor Mick Watson from 

Edinburgh Genomics, The Roslin Institute.  

 

This pipeline processes data from a BAM file to a layout file which can be visualised 

using network analysis software, BioLayout Express3D. A Bash file, create-

biolayout-file.sh, written in a Bash script, contains a series of commands to execute 

different scripts including R, Python, and shell script. It takes mapping data, 

preferably an unsorted BAM file through all the processes to produce a network and 

visualise it using network visualisation software. The NGS Graph Generator is an 

open source and can be run on Linux systems. 

 

Documentation and the full source code are in the NGS Graph Generator package 

and can be downloaded from GitHub allowing users to analyse their own data using 

this approach. BAM and GTF files are required to run this pipeline. In order to 

demonstrate this pipeline without the need to run it on in-house servers, I have 

developed a front-end interface that allows the scripts to be run from a website. This 

front-end is called ‘NGS Graph Generator’ and can be accessed at http://seq-

graph.roslin.ed.ac.uk. Using this website, a user can select BAM files of RNA-seq 

time-course samples from human fibroblasts or example data from the human tissue 

atlas. Other default settings are required, such as the chromosome length file, the 

GTF file and the name of the gene of interest. A user can adjust the desired 

percentage similarity, p and percentage sequence length overlaps, l, to use with 

MegaBLAST and choose whether to include an option –u to uniquify (discard 

redundant reads). The user must provide their email address, and they will be 

informed through email once the job has finished. The results section shows the job 

id, owner of the job, arguments on the Linux system; time queued, processing time 

on the job and result. When the job has finished, the network layout file can be 

accessed, in the results section. When selected (clicked) BioLayout Express3D or 

Miru will automatically open with the network displayed (if installed on the 

computer).  

 

 

http://seq-graph.roslin.ed.ac.uk/
http://seq-graph.roslin.ed.ac.uk/
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2.4 Component of NGS Graph Generator 

Described in the previous section is the principle of each step in building a network 

of a transcript from RNA-seq data and visualisation of the resultant network. Here, I 

describe the development of the framework and getting it into a pipeline that can be 

used by others. The framework in Figure 2.6 is a shell script called create-biolayout-

file.sh which was written in conjunction with Tim Angus and contains all scripts 

necessary to build a layout file. It also has dependencies on R packages, SAMtools 

and MegaBLAST. The input needs a BAM file, a GTF file (the same GTF file use in 

the mapping process) and a chromosome length file which is used to annotate 

sequence reads. In this network-based visualisation, a gene or locus of interest is 

used to generate a layout file. 

 

 

Figure 2.6: Framework of NGS Graph Generator. The overall scripts used in the 

framework are written in R, Python, and Bash. Inputs of BAM file, GTF and 

chromosome length file are fed into the framework. These inputs are processed 

through a series of scripts and eventually produce a layout file which can be 

visualised using BioLayout Express3D. Step 1 – Extracting mapped reads of a 

specific gene. R scripts of granges.R, granges_gtf.R and findOverlaps.R are used to 

manipulate the BAM file and extract reads mapped to a specific gene. These 

processes produce a table file containing all important information such as read ID, 

sequence, isoform ID and exon. Step 2 – Creating FASTA, node class, and node 

colour files. In this step, a FASTA file of reads mapped to a specific gene or locus is 

created using a Bash script tab-to-fasta.sh, whilst to annotate all reads to their 

isoforms and exons in a later layout file, other Bash scripts tab-to-nodeclass.sh and 

tab-to-nodecolor.sh are used. Step 3 –Read to read comparison. The last step is a 

read-to-read comparison. All reads mapped to a specific gene or loci are compared 
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using a Python script read2read.py. The output produces a large MegaBLAST file 

and another Python script megablast2ncol.py is used to cut off to a certain edge 

weight. The parameter percentage sequence similarity over percentage length 

coverage is used to determine edge weight between two reads. 

 

 

This task is accomplished using grangesscript.R and grangesscript_gtf.R as shown in 

Figure 2.6 – Step 1. These two R scripts utilise the GTF file and classified reads 

mapped to associated isoforms. The output of these scripts is a table consisting of 

several pieces of information, including, read IDs, sequence read, exon number, gene 

ID, transcript ID, and isoform ID.  

 

The next step is to compare all reads mapped to a gene above a certain threshold to 

build a network. Therefore, to build a network, all reads mapped to a given gene will 

be extracted out using an R script, findOverlaps.R. At this stage, all reads from all 

isoforms based on the GTF file are mixed up. The origin of all reads from each 

isoform in each gene needs to be specified. To extract reads mapped to the gene, a 

script tab-to-fasta.sh is used to get a FASTA file (Figure 2.6 – Step 2). If a gene is 

highly expressed, it will contain a lot of identical reads and use the option –u is 

highly recommended. It will take a lot of computational time if this option is not 

used and eventually the network will not be able to be visualised on a desktop 

computer due to the massive size of the layout file.  

 

In the last step (Figure 2.6 – Step 3), comparison of all reads is needed to build up a 

network. To handle this task, a Python script read2read.py is used. This script takes 

the reads in FASTA format to create a database for the specific gene using formatdb. 

After that, a MegaBLAST program is executed to perform a read-to-read comparison 

and generate the output as a MegaBLAST file. In this output, a bit score of each 

alignment is used as an edge to build a network. Edges need to be passed at a certain 

threshold to build a minimal size network using another Python script 

megablast2ncol.py. This script will transform MegaBLAST output in n column 

(ncol) format and filter out edges below the given threshold. The script reads the 

output of MegaBLAST (-D 3 option for output format). It takes a lot of memory if 

the MegaBLAST output file is big. To overcome this problem, I parallelised the 
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MegaBLAST based on the available server memory. The output of this script is a 

basic layout file without any annotation. This file can be visualised using network 

analysis software, but it has no information on the origin of reads (nodes). To 

annotate the network, other scripts tab-to-nodeclass.sh and tab-to-nodecolor.sh are 

used. They take the output MegaBLAST and annotate each read as belonging to 

known transcript isoforms. Finally, the layout file, node class, and node colour files 

are merged to produce the final layout file which can be visualised with BioLayout 

Express3D or Miru. 

 

2.5 Implementation network-based visualisation 

pipeline 

2.5.1 Web-based application 

NGS Graph Generator is a web-based application for visualisation of RNA-seq data 

assemblies as a network. A user can generate a layout file from a website or provides 

access to a GitHub account where the software can be downloaded for local use. The 

website version can only use pre-loaded RNA-seq data from our analysis, whilst the 

local version allows users to process their own RNA-seq data. The front-end of NGS 

Graph Generator was written in PHP and HTML, together with a Python daemon 

whose responsibility it is to execute the jobs as created on the website. The system 

requires a MySQL database to which access is configured through dbSettings.json 

file. Executing daemon will create tables if they do not already exist, but further 

supplementary settings must be provided to suit the installation environment. These 

settings are made via a MySQL command line or an SQL script such as the supplied 

init.sql. The prerequisites needed before running this front-end are Python, PHP, and 

MySQL.  

 

2.5.2 Public repository 

The pipeline is uploaded on the public repository GitHub https://github.com/systems-

immunology-roslin-institute/ngs-graph-generator to allow a user to download and 

run the pipeline on a UNIX server system.  

 

https://github.com/systems-immunology-roslin-institute/ngs-graph-generator
https://github.com/systems-immunology-roslin-institute/ngs-graph-generator
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2.5.3 Amazon machine image (AMI) 

Cloud computing has become a powerful technology platform to perform large-scale 

and complex computations. It eradicates the need to sustain high-priced computing 

hardware, software and dedicated space. A massive growth in the amount of data 

generated through cloud computing has been reviewed (Hashem et al., 2015). Cloud-

based storage and analysis are becoming a popular alternative for NGS data 

processing (Stein, 2010), due to the relative flexibility, scalability, and affordability 

(Baker, 2010; Dudley and Butte, 2010; Dudley et al., 2010; Marx, 2013). Genomics 

cloud computing providers (i.e. Google Genomics and Amazon Web Services), offer 

services using various models and pipelines. Further detailed cloud-based 

bioinformatics workflow platforms offer additional capabilities.  

 

Cloud computing offers an effective solution to the physical infrastructure of any 

software application. The ability to promptly acquire, setup, and scale physical 

resources is a vital feature provided by Amazon's Cloud through the Infrastructure-

as-a-Service or IaaS layer. A part of this chapter uses the IaaS layer through a 

Software-as-a-Service (SaaS) web application to create a virtual network-based 

pipeline for users. This will allow users to create, connect and terminate instances, 

hence providing an immediate service to hold multiple instances. It exploits a 

flexible architecture to effortlessly scale the resource consumption based on the data 

usage. The Amazon Web Service (AWS) APIs are used to connect with the IaaS 

layer of cloud and add computational demands based on a pay-per-use basis. The 

Amazon Cloud provides the computation using the Elastic Cloud Compute (EC2) 

product. It offers several machine images to create virtual computational instances 

ranging from micro to High-CPU. This instance supports several operating systems 

(OS) such as Windows and Linux. Therefore, the Amazon Machine Images (AMI) 

format of this pipeline was created using the Amazon Web Services (AWS) to reach 

a wider audience of users.  
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2.6 Discussion 

RNA-seq technology has rapidly evolved into standard methodologies for the 

identification of isoform variation in various research. This has resulted in the rapid 

development of bioinformatics tools to visualise splice variation and identification of 

isoform expression of these data. However, the visualisation for the analysis of 

transcriptomes data still represents an unresolved challenge for researchers looking 

for alternative visualisation aid. The data generated is large and the tools for its 

assembly, analysis, and visualisation are still under development. Furthermore, while 

a few have developed a fundamental work of network analysis using repetitive DNA 

sequence (Novák et al., 2010), there has been no emphasis on approaches for 

network-based visualisation of RNA-seq data. The aim of this chapter is to describe 

the development of network-based visualisation pipeline for analysis RNA-seq data. 

This pipeline, NGS Graph Generator pipeline provides a new perspective for the 

visualisation and analysis of RNA-seq data. 

 

SeqGrapheR (Novák et al., 2010) is a graph-based visualisation tool of the DNA 

sequence cluster, however, inability to overlay additional information for visualising 

RNA-seq data such as isoform and exon information. Tools such IGV 

(Thorvaldsdóttir et al., 2013), UCSC genome browser (Kent et al., 2002), GBrowse 

(Donlin, 2002) and Ensembl (Yates et al., 2016) allow for the visualisation of 

sequencing reads mapped to a reference genome, mutations i.e. SNP and 

characteristics profile i.e. ChIP-seq and DNA methylation. While constructive for 

various applications, ability to visualise splice variation is basically limited by the 

representation of junctions read to identify isoform expression i.e. Sashimi plots 

(Katz et al., 2013). Overall, whereas all the tools described above can be practical for 

genome-wide analysis, a pipeline that allows RNA-seq data to be explored using 

network approaches is still lacking.  

 

Network-based visualisation tools such as Cytoscape (Shannon et al., 2003) or 

BioLayout Express3D (Freeman et al., 2007; Theocharidis et al., 2009) allow one to 

visualise a 2-dimensional or 3-dimensional data, respectively with the representation 

of correlation shown as nodes connected by edges. These tools offer more flexibility 
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on how the data is visualised and represented which typically overlay gene 

expression data. This has become interesting for us to exploit the function in these 

tools, especially to visualise RNA-seq which overlay to isoform and exon annotation 

data. Therefore, I have developed a network-based visualisation of RNA-seq data as 

a tool to explore the data and aid researchers with the exploration and identification 

of their RNA-seq data, especially identification of splice variants. This approach 

allows one to explore data, the user to enter specific gene names to construct gene 

network transcript. A gene of interest can be visualised after the data has been 

processed through this pipeline. The network can help one to determine whether a 

transcript exists as a single linear form or is expressed as multiple isoforms. 

However, as the pipeline is not able to concurrently visualise multiple genes or loci, 

the functionality can impose limits to visualise data at a genome-wide level. The 

NGS Graph Generator is designed to allow the user to remove redundant sequence 

reads of the highly expressed genes, i.e. TUBA1C and GAPDH (see Chapter 3, 

Section 3.3.3.1) while still allowing users to visualise the network in different size of 

nodes relative to sequence coverage.  

Through my use case to optimise network structure, I show that network-based 

visualisation can help to address this need. While the major aim of the development 

of network-based visualisation of RNA-seq was to provide a seamless pipeline for 

preparing data, it also allows the user to set a parameter prior to network 

construction. It also will allow users to generate layout file of their RNA-seq data. 

Given incredible amounts of transcriptomic data being generated now, it is crucial 

that researchers have an alternative approach to explore their RNA-seq data 

especially in the identification of splice variation. Therefore, cell cycle sample of 

human fibroblast (Freeman et al, unpublished) and human tissue (Fagerberg et al., 

2013) data types are provided from the NGS Graph Generator web-based 

application. The network transcript (i.e. COL5A1) can easily be visualised in 

BioLayout Express3D. From the node class option, users can select to display data 

from other isoforms (e.g. alternative splicing isoform). Moreover, the node class of 

BioLayout Express3D could be added to incorporate other information such as 

regulatory relationships or additional types of data e.g. SNP, DNA methylation. By 

maintaining the NGS Graph Generator code in a public repository (GitHub), this will 
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facilitate the implementation of new functionality in the future release versions. This 

pipeline has been used for the exploration of transcript network in subsequent 

Chapter 3 (human fibroblasts) and Chapter 4 (human tissues). In summary, although 

no single tool reveals the splice variation, through a network approach will allow 

users to visualise and identify alternative splicing of their data, making it easier to 

potentially understand the biological to which it may be relevant.  
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Chapter 3 - Network-based visualisation and 

analysis of RNA-seq data 

 

3.1 Introduction 

Networks are increasingly used in biological research, in particular for plotting 

experimentally or computationally derived relationships between genes and proteins. 

Networks consist of nodes connected by edges (lines), where nodes usually represent 

an entity and edge a relationship between them (Miller et al., 2010). Networks are 

now employed widely in biological research as a means to analyse a wide variety of 

complex data types, to infer functional associations based on neighbourhood analyses 

or clustering, and to model pathways (Barabasi and Oltvai, 2004).  

 

Network visualisation of DNA sequence data has been little explored. Novák et al. 

(2010) first introduced the idea of using a network-based method to visualise DNA 

assemblies. As with the approach described here, in their studies nodes represent 

individual reads of DNA sequence, whilst edges denote a sequence similarity i.e. 

homology between reads above a defined threshold. Overlaps must be pre-computed 

by a series of computationally intensive pair-wise sequence alignments (Pop, 2009), 

and this represents the first step in building a network from such data. After 

generating this matrix of similarity scores from an all-versus-all read comparison, 

read similarities exceeding a specified threshold are used to define network edges. 

Their study focused on the characterisation of the repetitive regions of plant genomes 

(pea and soybean). It was argued that the complex topology and diversity of the 

networks produced could be used to better analyse the variability and evolutionary 

divergence of repeat families, as well as to discover and characterise novel elements. 

Network visualisation, however, was in the form of generating a PDF file limiting 

the opportunity for data exploration. Here, network-based visualisations of 

sequencing data are further explored, applying the fundamental principles first 

described by Novak et al. (2010) to RNA-seq data. The aim of this work has been to 

develop a complementary approach to understanding differences between RNA 

assembly algorithms as well as to better understand transcript structure and splice 
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variation. In this chapter, a novel method for the visualisation of RNA-seq data using 

the network analysis tool BioLayout Express3D was developed. In so doing, a 

platform that supports the improved interpretation of complex transcript isoforms is 

presented. This approach will be useful in the exploration and discovery of new 

biological insights from sequence data.  

 

The objectives of this chapter were: 

 

a) To process the newly generated RNA-sequencing data derived from human 

fibroblasts at different points following serum starvation synchronisation (map 

to the genome, assemble transcripts and generate normalised read counts). 

 

b) To optimise parameters for read overlap to minimise the number of edges and 

better display features. To explore different graph layout algorithms. 

 

c) To explore various cell cycle gene networks by generating a network-based 

layout using RNA-seq data and identify the structure of networks across 

samples. 

 

d) To compare network assemblies of transcripts with those using conventional 

assembly methods highlighting the advantages or disadvantages of the 

approach.   
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3.2 Methods 

3.2.1 RNA-seq data used for these studies 

Four samples of RNA-seq data were generated from serum-starved human 

fibroblasts (NHDF) (0 h) and three-time points (12, 18 and 24 h) following serum 

refeeding during the cultures partially synchronised entry into the cell cycle. This 

work was performed by Dr Mark Barnett and David Chen from Freeman Lab. RNA 

sequencing was performed on the Illumina HiSeq 2500 platform (Illumina, San 

Diego, California, USA) with 100 bp paired-end sequencing in a rapid mode 

according to the manufacturer's recommendations. RNA sequencing was carried out 

by Ark Genomics, at The Roslin Institute using the TruSeq™ RNA Sample Prep Kit 

(Illumina). Briefly, poly-(A) RNA was isolated from total RNA using oligo d(T) 

coupled to magnetic beads and fragmented using divalent cations to produce 

fragments of an average 180 bases in length. Fragmented RNA was reverse 

transcribed using a random primer and Superscript II enzyme (Invitrogen, Carlsbad, 

California, USA). A single-stranded DNA template was used to generate double-

strand cDNA using RNase H and DNA polymerase. The resulting double-stranded 

cDNA was blunt-ended using T4 DNA polymerase prior to the addition of an 

adenosine base to assist ligation of the sequencing adapters. Flowcell preparation 

was carried out according to Illumina protocols; the libraries were denatured and 

diluted to a concentration of 15 pM for loading into the flow cells.  

 

3.2.2 RNA-seq data processing 

RNA-seq data were processed using Kraken, a set of tools for quality control and 

analysis of high-throughput sequence data developed by Davis et al. (2013) (Davis 

et al., 2013). This FASTQ format can directly use the Kraken pipeline which 

includes reaper, filter and annotates the data. The Kraken package downloaded from 

(http://www.ebi.ac.uk/research/enright/software/kraken) version 13-274 (11 October 

2013). The analysis using Kraken has been incorporated in the SequenceImp 

pipeline which contains all the tools (Reaper, tally, BowTie and various R 

BioConductor packages). The filtered RNA-seq data were processed using packages 

in the TopHat and Cufflinks. The data were aligned to the Homo sapiens reference 

genome (GRCh37.71) (Flicek et al., 2014) using Bowtie with Ensembl annotation 

http://www.ebi.ac.uk/research/enright/software/kraken
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file (gtf file). Read alignment processed within TopHat v2.0.9 (Trapnell et al., 2009) 

to identify loci and splice junctions. Then, Cufflinks v2.1.0 (Langmead et al., 2009) 

was run with the Ensembl annotation file to estimate the relative abundance of the 

transcripts in the data. The Fragments Per Kilobase of transcript per Million mapped 

reads (FPKM) metrics at the gene, and transcript level was used for subsequent 

analysis of differential expression and sample variation. The relative expression of a 

transcript is proportional to the number of cDNA fragments that originate from it. 

Primary visualisation of the data was performed using IGV to visualise the reads 

mapped onto the reference genome in a certain locus or gene across samples.  

 

3.2.3 Network layout 

BioLayout Express3D had for a long time used a version of the Fruchterman-

Reingold (F-R) algorithm (Fruchterman and Reingold, 1991) for the layout of large 

networks derived from biological data, such as protein interaction/similarity 

networks and correlation networks derived from genome-wide expression data. 

Whilst implementation of the F-R algorithm was capable of producing layouts for 

many large networks the unusual topology of DNA/RNA sequence networks 

necessitated a new layout approach. The Fast Multipole Multilevel Method (FMMM) 

(Hachul and Jünger, 2005) algorithm was examined and shown to be well suited to 

the layout of these types of network. The FMMM algorithm was re-implemented in 

Java from the Open Graph Drawing Framework (OGDF), including the novel ability 

to perform network layout in 3D space and incorporated into the BioLayout code 

base. This work carried out by Tim Angus from Freeman Lab.  

 

Initially, a ‘perfect’ overlap network was generated by assuming 100 ordered reads 

(nodes) where each read overlaps the previous read by 95% of its length (i.e. edge 

weight between adjacent nodes is 0.95). In this paradigm, the first read would 

overlap successive reads by 5% less each time, sharing only 5% similarity to read 20 

and no similarity to subsequent reads. The second file of this type was prepared to 

represent two splice variants, where one variant was identical to the first network but 

a second variant included a 50 read addition where similarities started to branch off 

after the first 50 reads from the first. Following examination of these synthetic 
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‘transcript’ graphs, a series of tests were performed using data mapping to collagen 

type 1 V alpha 1 (COL5A1), a long (8.5 kb) and highly expressed genes in human 

fibroblasts encoded by a single transcript species.  

 

3.2.4 Optimisation of read comparison parameters 

In the approach described here, quality of network visualisation is primarily 

determined by the depth of sequencing of the target gene, which in turn is based on 

its relative expression level. Therefore, I set out to determine generalised default 

parameters for network visualisation exploring the threshold settings for percentage 

similarity (p) and percentage length coverage (l) between reads. 

 

Briefly, there were two types of data used in these analyses; ‘synthetic’ and ‘real’ 

RNA-seq data. In the first instance, a synthetic RNA-seq dataset was generated from 

a 5-kb sequence of COL5A1 mRNA. A read length of 100 bp was used with reads 

being spaced at 1, 5, 10 or 20 bp intervals. This mimics real data where read-depth 

varies. These represent perfect data where the spacing of reads is regular, and 

sequence reads do not contain sequencing errors or SNPs. To explore the threshold 

settings, for each set of reads, a read-to-read comparison with various ranges of 

parameter percentage length coverage, l=10-100 (percentage similarity was set fixed 

at 100% as there were no sequencing errors or SNPs in these data) were performed.  

 

Whilst for ‘real’ data, four transcripts with anomalous network structures were 

identified. These networks were selected because they either possessed a splice 

variant (CASC5 and CENPE), internal homology (SGOL2) or an issue with assembly 

due to the presence of an overlapping gene on the opposite strand (CENPO). All the 

reads associated with these genes were placed in a single read bin and used to 

determine the generalised optimal setting for network construction by performing a 

read-to-read comparison at various settings of the p, and l, parameters. At each 

setting for both data sets, the number of nodes, edges, and components were recorded 

for the resultant networks.  
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3.2.5 Collapsing of redundant reads 

Highly expressed genes are represented by a high number of reads. In these 

instances, there can be a high degree of redundancy in read coverage i.e. exactly the 

same sequence may be present in the data many times. This makes the read-to-read 

comparison step unnecessarily time-consuming and the resultant network difficult or 

impossible to visualise, whilst adding little or nothing to the network’s readout. 

Using Tally from the Kraken package, multiple identical reads are mapped to a single 

identifier a FASTA file being produced where the identifier is linked to the number 

of occurrences of that specific sequence. In the visualisation of collapsed node 

networks, a single node is used to multiple reads and the diameter of a node is 

proportional to the original number of occurrences of the reads it represents.  

 

3.2.6 Analysis of the network structure 

Initially, a set of 550 genes whose expression was up-regulated as fibroblasts entered 

into S, G2 and M phase of the cell cycle (0, 12, 18 and 24 h after being refed serum) 

were chosen to be examined. A network derived from the 24 h data was plotted for 

each gene in each case using generalised MegaBLAST parameters (p=98, l=31). 

Where the topology of a given gene network is relatively simple an explanation of its 

structure required only the overlay of individual transcript exon information in order 

to identify splice variant(s) represented. In other cases, more detailed analyses are 

required. 

 

3.2.7 Validation of splice variant using RT-PCR 

To validate the existence of splice variants predicted by network analyses, RT-PCR 

of candidate splice variants was performed. Total RNA from human fibroblasts used 

for the RNA-seq experiment was reverse transcribed using SuperScript lll 

(Invitrogen, Carlsbad, CA) as follows; 50 µM of oligo (dT)20, 10 mM dNTPs: Heat 

the mixture to 65°C for 5 minutes and incubated in ice at least 1 minute. 5X buffer, 

0.1 M RNaseOut (Invitrogen), 1 µg of total RNA were added. Incubate the mixture 

for 2 minutes at 42°C, and then SuperScript III was added, followed by 60 min at 

50°C and inactivated the reaction at 75°C for 15 min. Primers were designed using 

Primer3 software33 to amplify the region for validation of the splice variant. For 
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LRR1, a pair of primers was designed to amplify three splice variants as suggested 

from the network visualisation while for PCM1 two pairs of primers were designed 

across two different splice variant locations. For LRR1: Forward primer 5’-

TGTTGAGCCTCTGTCAGCAG-3’ and reverse 5’- 

GTGTGGGCAACAGAATGCAG-3’ that span exon 3, 4 and 5. PCM1 set 1: 

Forward primer 5’-TCTGCTAATGTTGAGCGCCT-3’ and reverse 5’- 

TGCAGAGCTAGAAGTGCAGC-3’ and PCM1 span exon 7, set 2: Forward 5’- 

ACGGAAGAAGACGCCAGTTT-3’ and reverse 5’- 

AGCTGCAGCTCATGGAAGAG-3’ span exon 24. PCR was carried out by 

preparing a master mix that containing 34.6% sucrose, β-mercaptoethanol (1:10 in 

0.1x Tris-ETA buffer), 10 mM dNTPs, 12 µM pre-mixed each primer pair, 10X 

reaction buffer (1 M Tris-HCl pH 8.8, cresol red solution, 1 M MgCl2, (NH4)2SO4), 

dilution buffer (T0.1E, cresol red solution and 4M NaOH), Taq Polymerase 

(Invitrogen) in PCR thermocycler machine. The products were amplified through 35 

cycles (92°C, 30 secs; 60°C, 90 secs; 72°C, 60 sec) and run on a 2% agarose gel. 

Gels visualised by UV on a Syngene transilluminator and recorded using the 

GeneSnap acquisition software (Syngene, Synoptics, Frederick, MD).  

 

3.3 Results 

The principle of rendering sequence data as a network has been discussed and 

illustrated in Chapter 2. A pipeline to create such networks from RNA-seq data was 

developed, where the outputs can be visualised in IGV or as a network within 

BioLayout Express3D. In this chapter, RNA-seq data from four human fibroblast 

samples that were sequenced following serum starvation when the cells undergoing 

partially synchronised cell division were generated. Paired-end cDNA libraries for 

each RNA sample were prepared and sequenced. A summary of RNA-seq 

sequencing data after filtering using the Kraken pipeline and alignment using TopHat 

is provided.  

 

3.3.1 Optimisation of network visualisation ‘perfect’ overlap data 

An optimal layout is crucial to the interpretation of network structure. Initially, the 

layout of RNA-seq data (NHDF 24 h post-serum refeeding) for COL5A1 was 
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explored; COL5A1 has 66 exons, 8,471 bp long transcript that is highly expressed by 

fibroblasts (40,170 reads mapped to this gene in this sample). Initial studies of RNA-

seq network visualisation for COL5A1 within BioLayout Express3D demonstrated the 

Fruchterman-Reingold (F-R) layout algorithm implemented within the tool 

performed poorly on these types of networks producing difficult to interpret knot-like 

structures (Figure 3.1B). It was clear that if this approach was to provide 

interpretable results, an improved network layout would be required. Following 

examination of the available algorithms for network layout, the FMMM (Hachul and 

Jünger, 2005) algorithm was incorporated into the tool’s code base, enabling layout 

in a 3D environment in the process. Implementation of the FMMM provides an 

interface where the force model can be selected (F-R or Eades) and includes various 

settings that offset layout quality versus the speed of network layout. The higher the 

quality i.e. the ‘straighter’ the network of a linear sequence becomes, but the more 

time the algorithm will take to run and vice versa (Figure 3.2A and B). Network 

visualisation of a theoretical matrix of 100 reads where consecutive reads overlap by 

95% demonstrates that they show a corkscrew-like appearance at a local level 

(Figures 3.1C and D). Indeed, the more edges present (defined by the stringency of 

similarity cut off) the tighter a network is coiled. This unique feature of overlap 

networks can also be observed in networks generated from RNA-seq data, 

particularly when the depth of sequencing is high. When a splice variant is 

introduced the alternatively spliced exon is seen to loop out (Figure 3.1E) as reads at 

alternative splice junctions are connected but pulled in different directions. 
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Figure 3.1: Optimisation of the network layout. (A) The layout of a perfect 

overlap matrix consisting of 100 ‘reads’ where consecutive reads overlap by 95% 

and a > 5% similarity has been used as the minimum threshold for defining edges. In 

example Ai a modified Fruchterman-Reingold layout was used to the layout of the 

network, in Aii the FMMM algorithm using the Eades force model and a ‘Low 

Quality, High Speed’ setting and Aiii is the same as Aii but the ‘High-Quality, Low-

Speed setting’ was used. Aiv is an end in view of Aiii illustrating the corkscrew 

structure of the graph. Av is a visualisation of a synthetic alternatively spliced 

transcript. (B) Network visualisation of COL5A1, which is highly expressed gene in 

human fibroblasts. Bi network layout using the Fruchterman-Reingold algorithm as 

originally implemented within BioLayout Express3D and Bii layout of COL5A1 using 

FMMM algorithm (Eades force model and the High-Quality, Low-Speed setting). 
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Figure 3.2: Network layout - quality vs. speed. Network layout of BUB1 (A) force 

model Eades and (B) force model Fruchterman-Reingold in FMMM algorithm 

utilising different settings implemented within BioLayout Express3D. ‘Very high 

quality, very low speed’ is the most linear while in the mode of ‘Low quality, high 

speed’ is the less linear network were obtained for both force models. For model 

Eades ‘Very high quality, very low speed’, it took 8.93s to layout the network layout 

on a machine 3.2 GHz 32.0 GB RAM 64-bit Windows OS. For ‘High quality, low 

speed’ (3.28s), ‘Medium quality, medium speed’ (2.25s) and ‘Low quality, high-

speed’ (1.91s). Whilst for Fruchterman-Reingold force model which took 1.90s for 

‘Very high quality, very low speed’ setting, 1.83s, 1.45s and 1.71s for ‘High quality, 

low speed’, ‘Medium quality, medium speed’ and ‘Low quality, high speed’ 

respectively.  



Chapter 3 

79 
 

3.3.2 Optimisation of read-to-read comparison similarity score 

threshold 

Another factor in defining the network structure is the method used to define an edge 

i.e. the similarity score threshold between a pair of reads. Two MegaBLAST 

parameters are adjustable, the length over which a similarity search is performed (l) 

and the percent similarity required over this length (p). If the thresholds for these 

settings are too high networks may fragment, and fine structure will be lost, if too 

low the underlying structure may be obscured and it will greatly increase the memory 

footprint of a network and layout time due to an excess number of edges. 

 

In order to perform this analysis, two different sets of data were examined; 

‘synthetic’ and ‘real’ data. 5 Kb of COL5A1 gene was selected from the human 

fibroblast data on the fact it produces a linear transcript without any anomaly, and it 

is highly expressed thus produces a convincing resultant network. After observing 

the ‘synthetic’ data, the number of edges steadily decreased with increasing value of 

l.  Hence, this result was insufficient to resolve the best parameter for RNA-seq data. 

While for the number of components reached the optimum number of all sets of 

sequences at l=60 before it was necessary to break the graph into more than one 

component (Figure 3.3A). This experimentation is significant to find the optimal 

parameters for ‘synthetic’ data and to infer the pattern of nodes, edges, and 

components. For ‘synthetic’ data, the percentage length coverage, l, should be less 

than 60 to be optimised otherwise the graph will be fragmented into more than one 

component to determine to build a network-based on the fact that the network should 

be retained as a linear network to be an optimum parameter (Figure 3.3B).  
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Figure 3.3: Optimisation plot of ‘synthetic’ data of COL5A1. Read-to-read 

comparison was performed using MegaBLAST with two parameters; a fixed 

percentage length similarity (p) and percentage length coverage (l). (A) Log number 

of edges for each set of sequences steadily decrease over the percentage length 

coverage (l). Three sets of sequences (1, 5 and 10 bp space) show the lowest number 

of edges at l=90 while a set of sequence of 20 bp space shows the lowest at l=80. (B) 

The number of components for all set of sequences is optimum i.e. 1 from l=10 to 

l=60 and further breaks into two components when it reaches l > 60. 

 

 

In order to get the generalised value of these parameters, four transcripts were 

selected from the human fibroblast data based on the fact that they represented a 

range of sequencing depths and complex network topologies. After exploring the two 

variables for thresholding the read-to-read similarity score, a percentage length 

similarity p=98 and percentage length coverage l=31 were chosen, as reasonable 

generalised values for these variables (Figure 3.4A, B, and C). For these values, the 

networks for CENPO and SGOL2 have just one component, but retain their higher 
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order structure, while networks for CASC5 and CENPE have two components (as 

they do have at even lower stringency threshold values) but again retain their higher 

order structure (Figure 3.4D).  

 

 

Figure 3.4: Optimisation plot of ‘real’ data of four different complex genes 

(CENPO, SGOL2, CASC5, and CENPE). This optimisation was performed at the 

same previous experiment for ‘synthetic’ data. Mark ‘X’ in each plot (A), (B) and 

(C) shows optimum parameter for network-based visualisation. The optimum 

parameter is a percentage similarity (p=98) and percentage length coverage (l=31) 

with maximum thresholds that maintained node numbers and interesting network 

structures, whilst where possible keeping the networks as single network 

components. (D) Network-based visualisation of four complex gene structures was 

generated using the optimum parameter (p=98 and l=31). At the optimum parameter, 

CENPE (red) and CASC5 (yellow) generate two component networks while SGOL2 

(blue) and CENPO (green) generate one component network. Using these 

parameters, interesting features of the network can be retained without losing any 

information.  
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3.3.3 Network visualisation of transcripts 

Having default general settings for network construction, 550 gene networks from 

the NHDF data of genes upregulated as cells undergo mitosis were manually 

examined. In most of cases, the networks of these genes suggest that a single 

transcript was expressed by fibroblasts. Similarly, to COL5A1 the networks were 

single linear strings comprised of a single or multiple disconnected component 

depending on coverage (Figures 3.5Ai and 3.5Aii). In these cases, no obvious 

secondary structure was present and arguably little had been learned by visualising 

these data as networks. Even with linear graphs transcript variance can be observed. 

The single linear network representing CCNB1 there is clear evidence that two 

transcript isoforms were expressed by the fibroblasts, one of which was truncated at 

the 3’ end. This was manifest by the fact that there were fewer reads present at the 3’ 

end of the network, the fall off in read density occurring at the point where a known 

variant occurs (ENST00000505500), and the coiled structure broke down beyond 

that point. This decrease in reads at the 3’ end of CCNB1 is also visible in the 

standard IGV (Sashimi plots) (Figure 3.5B). 
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Figure 3.5: Typical networks of RNA-seq data derived from linear transcripts. 

(A) Examination of a wide range of RNA-seq assembly networks derived from the 

human fibroblast expressed genes reveals most networks are linear unbranched 

structures. Shown here are two such transcripts for (Ai) KRT19 and (Aii) CCNB1 

(overlay node colour derived from ENST00000361566 and ENST00000256442, 

respectively). Top: expression profile of the two genes as measured by microarray 

analysis of the time-course of transcriptional events following serum refeeding (data 

not shown). Expression of KRT19 is rapidly down-regulated and whilst CCNB1 is 

up-regulated. This differential expression is evident from the networks with the 

number of nodes decreasing or increasing by approximately 10-fold in the 0 h 

derived vs. the 24 h derived RNA-seq data. It is interesting to note that in the CCNB1 

networks there is a rapid decrease in the density of nodes within exon 9 at both time 

points (marked by arrow). This corresponds to where the IGV view in (B) also shows 

a decrease in the density of reads and corresponds to CCNB1 transcript 

(ENST00000505500) that exhibits a truncated exon 9 at this position.   
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3.3.3.1 Network reduction  

In some instances, large numbers of reads mapping to a gene mean that network 

visualisation is not possible due to the sheer number of nodes and edges need to 

represent the data as described above. For instance, in the 24 h serum, re-fed 

fibroblast samples the highly expressed genes TUBA1C and GAPDH had 38,294 and 

59,998 reads mapping to them respectively. Network reduction is a process whereby 

identical reads are collapsed down to and represented by a single node; the size of the 

node being proportional to the number of nodes it represents. In the case of TUBA1C, 

this reduces the number of nodes from 38,294 to 6,511 nodes (Figure 3.6A), whilst 

the number of edges is reduced from 90,340,179 to 1,779,069. In the case of another 

gene GAPDH, the reduction in nodes is from 59,998 to 9,264, whilst the number of 

edges is reduced from 208,221,932 to 3,562,688 (Figure 3.6B). The reduced network 

for GAPDH is also shown generated at two different BLAST threshold settings. On 

the left, the network is generated at the default BLAST settings p=98, l=31, the 

second using more stringent settings. Such is the depth of sequencing of this gene 

that even using BLAST setting of 98% similarity over 95 bp of length the network 

still forms one component where the number of edges is reduced by approximately 

90% but the number of nodes by less than approximately 0.1%. At this higher 

stringency BLAST setting, the network uncoils exposing small nodes representing 

unique reads due to sequencing errors. 
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Figure 3.6: Read uniquification of highly expressed genes TUBA1C and GAPDH 

in human fibroblasts. (A) Network representation of TUBA1C after read 

uniquification. The number of reads mapping to TUBA1C was 38,294 in the 24 h 

serum-refed fibroblast sample. After read uniquification, this was reduced to 6,511 

unique reads. When networks are collapsed down to unique sequences, node size is 

proportional to the number of individual reads represented, and nodes have been 

coloured according to the exon onto which they map. The TUBA1C transcript model 

here matching the network being ENST00000301072, a 3,001 bp transcript encoding 

a 449-amino acid protein. (B) Uniquification of GAPDH after read uniquification as 

described above but shown at two different thresholds of BLAST scores.  On the left 

using the ‘standard’ threshold of 98% similarity over 31 bp, on the right 98% 

similarity over 95 bp, increasing the edge threshold dramatically reduces the number 

of edges, whilst the number of nodes is barely affected. It also “opens up the 

structure” and when edges are removed a large number of tiny nodes representing 

unique reads due to sequencing errors can be observed (inset). The GAPDH 

transcript model here matching the network being ENST00000396856, a 1,266 bp 

transcript encoding a 260-amino acid protein. 
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3.3.3.2 Splice variant network structure 

In normal human dermal fibroblast (NHDF) networks approximately 5% of the 

transcripts studied exhibited complex topologies. In these instances, the underlying 

reasons for these unusual structures were investigated. LRR1 (leucine-rich repeat 

protein 1) interacts with TNFRSF9, a member of the tumour necrosis factor receptor 

(TNFR) superfamily. In the case of the LRR1 network, a single loop was observed 

corresponding to the two known transcript isoforms for this gene. The first transcript 

(ENST00000298288) contains four exons while the other transcript 

(ENST00000318317) present in these data has only three exons and skips exon 3 

(Figure 3.7A). There was also evidence for the presence of a nonsense-mediated 

decay product (ENST00000554869) as a small number of reads mapped to exon 3 

specific to this transcript. The network transcript for PCM1 (pericentriolar material 

1), a 6,075 nucleotides gene containing 36 exons with seven known protein-coding 

variants, provided evidence for two splicing events when expressed in fibroblasts.  

One loop was indicative of the splicing out of exon 7 and the other exon 24 

suggesting the presence of transcripts ENST00000517730 and ENST00000522275 

respectively, in addition to the main isoform of this gene (ENST00000325083). RT-

PCR confirmed the splicing events for LRR1 and PCM1 genes predicted by the 

network-based analysis. The visualisation of splice variants was also supported in the 

Sashimi plots for these genes but even in these relatively simple examples of splice 

variation, the plots can be challenging to interpret especially in the case of LRR1 

(Figure 3.7B).  
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Figure 3.7: Splice variant visualisation and confirmation (A) Confirmation of 

splice variant LRR1 using RT-PCR assay. (i) Loop in the LRR1 network suggested 

multiple transcript isoforms expressed in the sample. Three isoforms are likely 

expressed in fibroblasts these are shown overlaid on the network n together with a 

schematic representation of each isoform. (ii) Close-up view of exon skipping the 
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event in LRR1 shows by the connection exon 2 (yellow nodes) to exon 5 (light purple 

nodes) skipping exons 3 and 4 (blue/green nodes). (iii) Sashimi plot generated in 

IGV showing RNA-seq reads mapping to LRR1 locus of human fibroblast sample. 

Splice junctions are displayed as arcs connecting exons. The number of reads 

observed for each junction is indicated within segments, and y-axis ranges for the 

number of reads per exon base are shown. Arcs connecting a pair of exons indicate 

junctions. (iv) The result of RT-PCR of LRR1 using time-course human fibroblast 

RNA. Three bands in the results represent alternatively spliced products due to either 

exon 3/4 skipping, or exon 3 skipping. The PCR band sizes were 1130 bp, 1022 bp, 

and 310 bp indicates the short, medium and longest isoform of LRR1 gene. (B) 

Confirmation of splice variant PCM1 using RT-PCR assay. (i) Two different 

splicing events for PCM1 were evident from the network visualisation of this gene. 

(ii) Result for RT-PCR of PCM1 using time-course human fibroblast RNA for two 

different locations of splice variant. The two bands observed in each assay represent 

alternatively spliced product caused by exon 7 and 25 skipping, respectively. The 

PCR band sizes were 339 bp and 223 bp shows the skipping of exon 7, and 496 bp 

and 331 bp for the skipping of exon 25 of the PCM1 gene. (iii) Representative 

Sashimi coverage plot generated in IGV showing RNA-seq reads mapping to the 

PCM1 locus of human fibroblast sample.  

 

 

3.3.3.3 Issues with assembly and internal repeats 

CENPO encodes the centromere O protein which is a component of the Interphase 

Centromere Complex (ICEN) components. It is localised at the centromere 

throughout the cell cycle (Saito et al.) and required for bipolar spindle assembly, 

chromosome segregation, and checkpoint signalling during mitosis. When the 

network assembly of CENPO was visualised it showed a complex topology within its 

final 3’ exon (Figure 3.8A). In principle network elements representing exons should 

form linear graphs, bifurcation of network structure only occurring at exon junctions.  

In order to explain the observed anomalies in the network structure, the location of 

those reads in the network giving rise to the looped structures was investigated. The 

genomic origin reads in the network mapping to junctions within the exon were 

examined using BLAST. It transpires that adenylate cyclase 3 (ADCY3) that encodes 

a membrane-associated enzyme and is located on the opposite strand of chromosome 

2. There are a few its 5’ exons that overlap with the final 3’ exon of CENPO. The 

RNA-seq libraries were non-directional in nature, and due to an error in read 

mapping, there were reads in the assembly CENPO that were derived from ADCY3 
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and the exon boundaries of this transcript. These gave rise to the observed alternative 

splicing like the structure of the final portion of the CENPO network. These 

anomalies are difficult to observe using conventional visualisation tools such as IGV 

and even with the Sashimi plots, it is not easy to distinguish that reads are derived 

from two overlapping genes.  

 

MKI67 encodes the antigen Ki-67 is a well-established cell proliferation marker. The 

RNA-seq mapping network of MKI67 contains two complex features; a loop 

representing a splice variant and knotted structure due to internal repeat sequences. 

In the case of the former, exon 7 is spliced out in transcript ENST00000368653 as 

compared to ENST00000368654, both isoforms being expressed within fibroblasts, 

and within their exon 14 are 13 repeats of a K167/chmadrin domain leading to the 

formation of internal homology loops (Figure 3.8B). 
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Figure 3.8: Complex gene network structure. (A) Miss-assembly of reads from 

overlapping gene. (i) IGV visualisation of CENPO exon 8 together with 

corresponding Sashimi plot. ADCY3 overlaps with CENPO on the opposite strand of 

DNA. (ii) In this case, reads derived from ADCY3 mRNA are being wrongly mapped 

to CENPO resulting in the complex network structure observed in exon 8. The 

schematic diagram of overlapping genes CENPO and ACDY3 is shown above and 

regions of the network mapped back to it. The loops in exon 8 of CENPO are being 
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formed by junction reads derived from ADCY3 encoded on the opposite strand. (B) 

Repeat sequence causes perturbation in the network structure. Network-based 

visualisation of MKI67 (ENST00000368654). In this network, there are two 

structures (i) an alternatively spliced exon and (ii) internal duplication. Skipping of 

exon 6 giving rise to ENST00000368653 can be observed as the loop structure, 

whilst the knotted structure is formed due to the presence of 16 K167/Chmadrin 

repeat domains within exon 12.  

 

 

3.3.3.4 Highly expressed gene network analysis 

In order to explore transcript variation within a single gene, one gene TPM1 that 

encodes for the muscle/cytoskeletal protein tropomyosin was focused. This gene was 

selected because it is widely expressed across human tissues but at very variable 

levels, being particularly strongly expressed in muscle (https://www.ebi.ac.uk/gxa/). 

It has 10 exons and a large number of potential isoforms. There are 19 protein-coding 

transcript isoforms, with a further 14 non-coding isoforms i.e. with a retained intron 

or the products of nonsense-mediated decay are reported in Ensembl. Using a 

network approach, a network of TPM1 generated from in-house RNA-seq data 

(9,702 reads) was analysed (Figure 3.9A). 

 

Network visualisations provide a clear indication of underlying transcript 

complexity. Within BioLayout Express3D the ability to overlay different transcript 

models onto the network greatly assists in working out where network elements map 

back to on the genome. Where networks really help us in providing a visual 

representation of complexity, which in turn helps define the branch points in 

transcript diversity.  

 

Network-based analysis of the TPM1 gene expression in the human fibroblast, 

revealed that there was possibility of four major isoforms expressed in this cell 

(ENST00000348278, ENST00000267996, ENST00000559397 and 

ENST00000559556) containing exons 1a, 2a/2b, 3, 4, 5, 6a/6b, 7, 8 and 9d, the deep 

coverage of which can be inferred from the size of nodes. It appears that there are 

two mutually exclusive exons (MXE) sites, in this case, which is exon 2 and exon 6. 



Chapter 3 

92 
 

From the network and histogram read count per 100 bp, the tendency selection of 

exon 2b is higher compared to exon 2b was observed.  

 

Whilst for exon 6, there are quite a similar number of reads and size of the node 

between exon 6a and 6b. However, there appeared to be evidence of other minor 

transcript isoforms being expressed in this tissue as visualised from the small 

branches emerging out from of the dominant network structure. Mapping the reads 

from these minor structures to exon uniquely present in known TPM1 transcript 

isoforms and their branch points suggested the presence up to four other transcript 

isoforms in the fibroblast data. Network-based analyses of TPM1 was compared as 

summarised in Figure 3.9C with the corresponding Sashimi plots (Figure 3.9D).  
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Figure 3.9: Network-based visualisation of TPM1 of human fibroblasts at 24 

after serum refeeding. (Ai) Network-based visualisation of human fibroblast where 

the colour nodes represent exon, nodes represents a sequence read and edges 

similarity score between reads above a defined threshold. In these graphs, node size 

reflects the relative number of reads depth. In this graph, it shows one major isoform 

expressed while another three isoforms are minor isoforms which can be visualised 

from the fewer nodes branch out from the graph. The mutually exclusive exon 6a and 

6b can hardly be seen from the graph while the retention intron of 6b can be 

visualised from a few nodes branching from the graph. The branch out nodes are 

supported by the gene model of human reference genome shows that protein-coding 

and retained intron which is an alternatively spliced transcript that contains an 

intronic sequence. (Aii) TPM1 transcript network lacking ‘Node size’ class. The 

‘loop’ and bifurcation of the network can be seen clearly in this network. (Aiii) 

Whilst, the same layout file generated using GraphTool with filtering edges of 

similarity Mega BLAST score less than 170 reveals the obvious two MXE sites in 

the network. This high stringency of network parameter shows this splice variant site 

is expressed in real data. The network shows here reveals the alternative splicing 

sites which occur at two mutually exclusive (MXE) sites which are (Aiia & Aiiia) 

exon 2a or 2b and (Aiib & Aiiib) exon 6a or 6b. (B) Histogram of TPM1 human 

fibroblasts. Histogram number of reads per exon per sample in each tissue is shown 

in the graph. The coloured histogram represents exon in the graph visualisation. (C) 

Schematic gene representation of TPM1. All isoforms expressed shows at the top of 

the isoforms gene representation and expressed in human fibroblasts. (D) 

Representative sashimi coverage plot generated in IGV showing RNA-seq reads 

mapping to TPM1 locus from human fibroblasts at 24 h after serum refeeding. The 

height of the bars represents overall read coverage. Splice junctions are displayed as 

loops. The number of reads observed for each junction is indicated within segments, 

and y-axis ranges for the number of reads per exon base are shown (read coverage, 

left). The plot suggests different isoforms expressed in the sample shows by the arc 

connecting a pair of exons.  

 

 

The network-based analyses were continued to compare non-collapsed network of 

TPM1 gene of human fibroblasts. In this network, it shows two alternative splice 

sites represent ‘loop’ in the network. Whilst intron could be seen from the branching 

nodes out of the network (Figure 3.9Aii), the other loop can be seen from the 

network was not convincing splice sites and could be a sequence homology in the 

network and intron sequences. The mutually exclusive exons (MXE) sites in the 

network could be seen when the same layout file was laid out using GraphTool by 

increasing stringency of the network (Figure 3.9Aiii). By filtering the number of 
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edges MegaBLAST score between nodes below 170, shows the strong evidence the 

existence of four possibilities of the expressed transcript.  

 

3.3.3.5 Internal splicing network structure 

In order to further explore network-based visualisation of human fibroblasts, three 

more genes have been examined which are BUB3, FAM64A, and NRM. In the first 

case, BUB3 encodes mitotic checkpoint protein, which it has a dual function in 

spindle-assembly checkpoint signalling and promotes the establishment of proper 

kinetochore-microtubule (K-MT) attachments (Logarinho et al., 2008; Tang et al., 

2004). It has 8 exons and a number of potential isoforms. Ensembl reports there to be 

4 protein-coding transcript isoforms and only one non-coding isoform i.e. with a 

retained intron or the products of nonsense-mediated decay. Using network 

approach, a network of BUB3 generated from human fibroblast RNA-seq after 24h 

serum refeeding data was analysed. 

 

In this BUB3 network, two major isoforms can be visualised from a loop that caused 

by the different size of same exon 8 generate two transcripts variant encoding 

different isoforms whilst nodes emerge from major network structure was identified 

as a processed transcript. Both of the major isoforms have 8 exons while minor 

isoform isoforms have only 2 exons (Figure 3.10A).  

 

Network-based analysis of BUB3 transcript co-expressed in the human fibroblast 

revealed that there were essentially two major isoforms expressed. Due to internal 

splicing, the shorter exon of second isoform (ENST00000368865) causes a loop that 

emerges from the same location of a longer exon of first isoform 

(ENST00000368858). The small connecting nodes emerge from the major network 

identified as a processed transcript (ENST00000481952) (Figure 3.10B).  
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Figure 3.10: Network-based visualisation of BUB3 of human fibroblasts. (A) In 

this network, it shows two major isoforms expressed which can be visualised from 

the loop branch out from the graph caused by the last exon of an isoform. A minor 

isoform (processed transcript) can be seen from single linear nodes emerge the graph. 

(B) Schematic gene representation of BUB3. (C) Sashimi plots.  

 

 

3.3.3.6 Three loops network structure 

In the second case, network transcript of FAM64A was examined. FAM64A (Family 

with Sequence Similarity 64, Member A) encodes protein FAM64A or other names 

of regulator of chromosome segregation protein. It may play a role in the control of 

metaphase-to-anaphase transition during mitosis. FAM64A was selected because of 

its network structure has two loops features. It has 6 exons and a number of isoforms 

– 9 in total. The network of FAM64A contains three loops which representing splice 



Chapter 3 

97 
 

variants due to a different transcript expressed. A structure of the FAM64A transcript 

in human fibroblast network has 1,772 reads and 124,460 edges.  

 

Network-based analysis of FAM64A transcript network in the human fibroblasts 

(Figure 3.11A), revealed that there were at least three major isoforms expressed in 

this tissue ENST00000250056 contains exon 1, 2, 3, 4 and 5 (Figure 3.11Ai), 

ENST00000572447 contains exon 1, 2, 3, 4, 5 and 6 and ENST00000571373 

contains exon 3, 4 and 6/7. These transcripts can be seen from small nodes emerge 

inside a loop at exon 5 (Figure 3.11Aii-a) and a splice out at exon 5 (Figure 

3.11Aiv-c). However, there appeared to be evidence of another minor isoform 

(ENST00000571572). This minor isoform can be visualised from splice out of exon 

4 (Figure 3.11Aiii-b). In Figure 3.11B, schematic gene representation of FAM64A 

which was believed to be expressed in the fibroblast. The Sashimi plots show the 

quantitative visualisation of the RNA-seq read alignment of the liver (Figure 3.11C). 

In this view, the isoforms detected in fibroblast are only two rather than five isoforms 

detected using network-based analysis.  
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Figure 3.11: Network-based visualisation of FAM64A of human fibroblasts. (A) 

In this network, it shows three major isoforms expressed and one isoform is a minor 

isoform. The major isoform can be visualised from the linear graph (Ai), the large 

and small loop emerge from the network (Aii-a and Aiv-c). While the minor isoform 

(processed transcript) can be visualised from the nodes looped out the network. (B) 

Schematic gene representation of FAM64A. (C) Sashimi plots. 

 

 

3.3.3.7 Alternative splice network structure 

In the last case, the network transcript of NRM was examined. NRM encodes nuclear 

envelope membrane protein. The protein encoded by this gene contains 

transmembrane domains and resides within the inner nuclear membrane, where it is 

tightly associated with the nucleus. It shares homology with isoprenylcysteine 
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carboxyl methyltransferase (ICMT) enzymes. Alternative splicing results in multiple 

transcript variants encode different protein isoforms. NRM has 4 exons and a number 

of isoforms which four protein-coding isoforms and five processed transcripts – with 

a total number of nine different isoforms. The network transcript of NRM contains 

three loops; two big loops which can be seen from the network whilst a small loop 

can be seen from the small nodes loop inside the bigger loop. The network consisted 

of exon 1-4, with alternative splicing occurred at exon 2 or 3 while another isoform 

skips both exon 2 and 3. This network has 4,301 reads. 

 

Network-based analysis of NRM in the human fibroblasts (Figure 3.12A) revealed 

that there were four major isoforms expressed in this tissue, ENST00000470733 

contains exon 1, 2, 3 and 4 (Figure 3.12Bi), ENST00000376420 contains exon 1, 2 

and 4. This transcript can be seen spliced out at exon 3 (Figure 3.12Bii), 

ENST00000474864 contains exon 1, 3 and 4 (Figure 3.12Biii) and final isoform 

ENST00000482141 contains only exon 1 and 4 (Figure 3.12Biv). In figure 3.12B, 

the schematic gene representation of NRM gene is shown, which is believed to be 

expressed in fibroblasts. The Sashimi plot shows only two isoforms rather than four 

isoforms detected using network-based analysis.  
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Figure 3.12: Network-based visualisation of NRM of human fibroblasts. (A) In 

this network, it shows four possible isoforms expressed which can be visualised from 

the two loops branch out from the network. (B) Schematic gene representation of 

NRM. All isoforms expressed shows at the top of the isoforms gene representation 

and expressed in human fibroblasts. (C) Sashimi plot. 

 

 

3.4 Discussion 

As with microarrays RNA sequencing has the potential to not only measure 

transcript abundance but also offers a platform to explore transcript diversity within 

and between cells and tissues and to be able to analyse expression from unsequenced 

genomes. Sequencing platforms that produce short-read data (50-250 bp) currently 

dominate the field. Many tools and analysis pipelines already exist to process these 

data from the DNA sequencer, through mapping onto a genome or de novo assembly 

and summarise these data down to read counts per gene/transcript. These data are 
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then ready for differential expression or cluster-based analyses. It is also routine 

practice to port data into tools such as IGV, where it can be visualised in the context 

of the reference genome (where available). Reads are shown stacked onto the point 

from which they have been determined to originate. In instances where a single RNA 

species are transcribed from a specific locus, existing visualisations are sufficient for 

most needs. However, where multiple transcripts are produced from a given loci, 

deconvolution of that assembly into the component transcripts can be challenging. 

Tools such as Sashimi plots use information derived from exon boundaries and 

paired-end reads to display connections between exons, the thickness of the joining 

line indicating the number of reads derived from a given exon-exon boundary. When 

transcript diversity is relatively simple, these views provide a good and sufficient 

representation of events, when transcript variance is complex they can be difficult to 

interpret.   

 

This work describes a new and complementary approach to the analysis of RNA-seq 

data that is based upon the construction and visualisation of RNA assembly 

networks. In this method, RNA-seq reads mapping to specific loci are directly 

compared with each other by calculating an all-vs-all similarity matrix. In the context 

of a network visualisation of these data, nodes represent individual reads or 

collections of identical reads, whilst edges represent similarity scores between them 

above a given threshold. Information about a read can be mapped onto them and used 

to annotate nodes. In this manner, different transcript models can be overlaid onto the 

network assemblies, reads derived from a given exon sharing the same colour. This 

provides a way to quickly visualise how well a given transcript model matches the 

assembly. 

 

A fundamental challenge in implementing this approach is the ability to layout and 

display network assemblies of data, such that the underlying structure of the 

networks can be interpreted. BioLayout Express3D was originally developed for the 

visualisation and the analysis of expression data as correlation networks, a purpose 

for which it still provides a powerful solution. In this paradigm, networks can consist 

of 10’s of thousands of nodes (each representing a gene or transcript) connected by 
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millions of edges based on calculated similarity measures, i.e. correlation coefficient 

between expression profiles.  For this reason, the tool has been designed to support 

the visualisation and exploration of big network diagrams up to 30,000 nodes 

(Freeman et al., 2007; Theocharidis et al., 2009) e.g. In a gene expression atlas of the 

domestic pig study by Freeman et al. (2012), a graph consisted of 20,355 nodes and 

1,251,575 edges was generated while a study by Mabbott et al. (2013) on primary 

human cell, they generated a graph consisted of 24,808 nodes connected by 

1,476,632 edges. With such networks, 3D visualisation offers distinct advantages. 

The use of OpenGL to render networks means the size of network supported can be 

larger (and are arguably more beautiful) and interpretation of their layout and 

navigation around them. While the topologies of correlation networks are usually 

complex, due to multiple cliques (areas of high connectivity) formed by groups of 

co-expressed genes, their layout using a Fruchterman-Reingold (F-R)-based 

algorithm is sufficient to allow comprehension of the topology of these networks. 

However, RNA-seq assembly networks have a fundamentally different type of 

structure. Reads only share edges with others derived from up or downstream 

positions in the genome, thereby giving rise to a string-like overlap network.  The F-

R algorithm is effective in separating nodes on a local scale, but our early studies 

showed it to perform poorly in separating more distant interactions resulting in twists 

in the ‘string’. The FMMM algorithm is based on a combination of an efficient 

multilevel scheme and a strategy for approximating the repulsive forces in the system 

by rapidly evaluating potential fields (Hachul and Jünger, 2005). When used to 

layout linear RNA assembly networks (at its highest quality setting) they straighten 

out allowing clear visualisation of the underlying structure.  At a local level when 

read density provides sufficient high and even coverage, nodes are arranged in a 

spiral structure by the FMMM. Lower quality but higher speed settings of the 

algorithm are often sufficient to appreciate higher level network structure with 

greatly reduced layout times. 

 

Here I explore the power of good network visualisations of RNA-seq read assemblies 

to interpret transcript diversity. When a sole transcript is present in the data, a linear 

string-like network is generated. If the coverage of the gene is low, the network may 
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appear as a number of isolated components, at higher levels of coverage a single 

network component is formed. As coverage increases, the network started showing a 

characteristic of spiral appearance as a ‘perfect’ overlap network is achieved. At a 

point where every base position along a transcript has one read mapping to it, in 

principle, further reads add nothing to the network. However, additional reads add 

greatly to the computation time taken to calculate a read similarity matrix, and add 

nodes and edges have to be rendered. Collapsing redundant reads to a unique 

sequence/node, therefore, speeds up all aspects of visualisation. Currently, in this 

analysis pipeline only maps down to unique reads, so reads that map to a specific 

haplotype, i.e. they cover contain SNP or reads containing sequencing errors are 

represented in the network. In principle, networks could be collapsed further if a 

small number of within sequence variations were ignored.  

 

In order to differentiate nodes representing many reads from those that represent 

unique reads in lower numbers, I visually encoded this information using node size. 

Abundant identical reads being represented by large nodes, the size of the node 

decreasing with read depth. The graphs are shown here of GAPDH and TUBA1C 

illustrate results of this approach to collapsing complexity of RNA-seq assemblies. 

These graphs are of single transcripts sequenced at high depth; the many small nodes 

are an interesting visualisation of sequencing ‘noise’. They are almost impossible to 

visualise when this collapsing strategy is not applied. The size of networks, in 

particular, the number of edges, is largely determined by the set threshold for 

similarity; lower thresholds are giving rise to an increased number of edges. In order 

to minimise layout times and improve the fluidity of network rendering, a similarity 

threshold should ideally be selected that allows the construction of a single 

component network with a maximum number of nodes and a minimum number of 

edges. This threshold value is dependent on the depth of sequencing, i.e. number of 

reads per unit length of DNA. From the experiments exploring the ‘ generalised’, a 

p-value (% length similarity) of 98 and l-value (% length coverage) of 31 as default 

MegaBLAST settings were defined, to be made more stringent when read coverage 

is a high potential.    
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Whenever sequences diverge or contain homologous domains, the RNA-seq 

assembly networks take on ‘loop’ structure. Where alternatively two spliced 

transcripts deviate in sequence, forks in the network are observed starting and 

finishing at exon boundaries. LRR1, as expressed in human fibroblasts, is a relatively 

simple example of an alternatively spliced transcript. In one version of the LRR1 

transcript expressed by these cells, exon 3 and 4 are spliced out, and a large loop is 

observed in the network. The network of PCM1 possesses two loops corresponding 

to known splice variants at exon 7 and 24. The splicing events are immediately 

obvious from the network visualisations; debatable they are less easy to understand 

from the corresponding sashimi plot.  

 

In certain gene networks, I observed different structure within and between nodes 

position within an exon. Within exon 8 of CENPO, I observed complex network 

topology. In this case, the analysis showed that it was due to reads produced from the 

transcription of ADCY3 whose terminal 5’ exon overlaps on the opposite strand. 

Exon boundary reads mis-mapped from the transcripts of ADCY3 causing loops 

within network representing exon of CENPO. The inability to correctly map reads 

from overlapping transcribed exons is one of the reasons the majority RNA-seq 

analyses are now generated from directional cDNA libraries. In the case of MKI67, a 

series of 14 K167/Chmadrin domains within exon 14 of the gene cause a knotted 

structure in that portion of the network representation. An alternative splice variant 

missing exon 6 is also apparent in the network visualisation of this gene.  

 

Next, I wanted to test the potential of network visualisation to analyse transcript 

complexity of highly expressed genes. In the case shown here, TPM1 transcript 

diversity in RNA-seq data derived from human fibroblast 24 hours after serum 

refeeding was examined. Tropomyosin 1 is most heavily expressed most tissues 

including human fibroblast where it functions as an actin-binding protein involved in 

the contractile system of muscle. A dominant and possible sole functional transcript 

is expressed to fibroblast expressed isoform of the protein. Also, a relatively small 

number of reads mapped to exon 2a and terminal intron sequences, suggesting the 

presence of a very low number of other transcript isoforms. Whether these represent 
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the presence of transcriptional noise or transcription of these isoforms by cell types 

present in a low abundance, it is not clear. Through studying these networks and 

mapping this information back to the Ensembl transcript models for this gene, up to 

four transcript isoforms are estimated to be expressed in human fibroblasts. In this 

network, there are two mutually exclusive exons (MXE) sites which are either exon 

2a or 2b and either exon 6a or 6b. Based on the histogram analysis, I could consider 

that exon 2b is more highly expressed than 2a while for exon 6 seem to be relatively 

as the same level of expression. Therefore, these two transcripts were possible to be 

expressed in human fibroblasts with only two transcripts which have exon 2b, and 

either exon 6a and 6b are likely to be expressed. This is largely based on the presence 

of the data of reads mapping back transcript-specific exons. Even with the 

availability of network visualisations and other visualisation tools, interpreting these 

data is difficult. Transcript assemblies such as these are inherently complex.  

 

Here I present a new and complementary approach to aid the analysis of RNA-seq 

data. In this chapter, I describe an analysis pipeline whereby reads mapping to given 

loci can be compared, and then assemblies visualised as a network. In this 

environment, information can be overlaid onto the network regarding node colour 

and/or size (potentially shape), and the structure of the network can be explored in 3-

dimensional space. The network structure is revealing the nature of the underlying 

sequence assembly and complexities therein. I demonstrate the ability to recognise 

splice variants in these networks, areas internal homology and issues with read 

mapping using this approach. I also provide an example of just how complex these 

assemblies can be and the strengths and limitations of networks and other approaches 

in these instances. Overall, I have attempted to show how the visual cues provided by 

this network visualisation can be used to explore the reasons behind observed 

complexity and complement other solutions to the analysis of these data. 
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Chapter 4 – An analysis of transcript variation 

in human tissues 

 

4.1 Introduction 

Alternative splicing (AS) plays a fundamental role in the diversification of protein 

function, regulation and the main contributor to cellular diversity (Tazi et al., 2009). 

It is frequently being used to produce tissue-specific protein isoforms (Merkin et al., 

2012). While the disruption of specific AS events and wrong splice sites usage have 

been associated with a number of human genetic diseases (Xiong et al., 2015). To 

date, the 20,000 or so protein-coding genes in the human genome have been shown 

to generate more than 140,000 different gene transcripts (Flicek et al., 2014). 

Furthermore, divergence in isoform-specific read coverage indicates that most AS, 

cleavage and polyadenylation events differ between tissues and vary between 

individuals (Yeo et al., 2004). AS may occur in a different situation: exon skipping, 

intron retention, mutually exclusive exons, alternative first and last exons, alternative 

5′ and 3′ splice sites, and alternative 5′ and 3′ untranslated regions (UTRs) 

(Wagner and Berglund, 2014; Wang et al., 2008). However, the identification and 

quantification of differentially spliced transcripts in genome-wide transcript analysis 

are very important aspects (Conesa et al., 2016). 

 

4.1.1 Alternative splicing analysis 

RNA-seq has a wide variety of application, but no single analysis pipeline can be 

used in all cases. Many computational methods have been developed for the past 

several years for RNA-seq analysis of alternative splicing (Shen et al., 2014). 

However, these methods have limitations and disadvantages of replicate RNA-seq 

data (Hooper, 2014). There are two major categories to analyse alternative splicing 

which is transcript-level and exon-level differential expression. In the analysis of 

transcript-level differential expression, it is able to detect changes in the expression 

level of transcript isoforms within the same gene. Furthermore, another tool such as 

Cufflinks (Trapnell et al., 2013) and DiffSplice (Hu et al., 2013) use the Jensen–

Shannon divergence metric to infer differential isoform proportion while accounting 
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for variability between replicates. rSeqDiff employs a hierarchical likelihood ratio 

test to identify both differential gene and isoform expression (Shi and Jiang, 2013). 

Nevertheless, all these methods are mostly obstructed by the limitations of short-read 

sequencing for accurate identification at the isoform level (Xie et al., 2014). 

Cufflinks consider the estimation uncertainty, nonetheless, the test statistic unable to 

distinguish the contributions from replicates with high or low degrees of estimation 

uncertainty (Trapnell et al., 2013). ALEXA-seq (Griffith et al., 2010), MISO (Katz et 

al., 2010), rSeqDiff (Shi and Jiang, 2013), and SpliceTrap (Wu et al., 2011) is 

designed for two-sample comparison, however, unable to handle replicates samples. 

 

On the other hand, the second category is the exon-based approach. The signal of 

alternative splicing can be detected by comparing the distributions of reads on exons 

and junctions of the genes between the compared samples (Anders et al., 2013). This 

approach is based on the theory that differences in isoform expression can be 

detected through the signals of exons and its junctions. DEXSeq (Anders et al., 2013) 

and DSGSeq (Wang et al., 2013), test for significant differences in read counts on 

exons and junctions of the genes to detect differentially spliced genes. rMATS infers 

differential usage of exons by comparing exon-inclusion levels defined with junction 

reads (Shen et al., 2014). Furthermore, another tool called rDiff (Drewe et al., 2013) 

compares read counts on alternative regions of the gene in the presence of annotated 

alternative isoforms in order infer differential isoform expression (Conesa et al., 

2016). The better accuracy of an exon or junction methods in identifying individual 

alternative splicing events is the advantage of this method (Conesa et al. 2016). 

While to study on the inclusion and exclusion of specific exons, functional protein 

domains are suitable to use exon-based methods. However, no existing method 

handles paired replicate data and this is important to analyse and determine splice 

variant in this chapter. Therefore, by using rMATS which were developed because of 

the need for robust analytic tools to detect alternative splicing changes from replicate 

samples as well as can handle different types of replicate study design, i.e. unpaired 

or paired (Shen et al., 2014). 

 

 

http://www.pnas.org/content/111/51/E5593.long#ref-18
http://www.nature.com/nmeth/journal/v7/n10/full/nmeth.1503.html?foxtrotcallback=true
http://www.nature.com/nmeth/journal/v7/n12/full/nmeth.1528.html
http://www.nature.com/nmeth/journal/v7/n12/full/nmeth.1528.html
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079448
https://academic.oup.com/bioinformatics/article/27/21/3010/217325/SpliceTrap-a-method-to-quantify-alternative
http://www.sciencedirect.com/science/article/pii/S0378111912014667
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4.1.2 rMATS – one of the best tool to detect alternative splicing 

A number of methods to detect and visualise AS have been described. Shen et al. 

(2014) designed a new statistical model and developed a computer program called 

replicate Multivariate Analysis of Transcript Splicing (rMATS) to detect differential 

AS from replicate RNA-seq data. It employs a hierarchical model to simultaneously 

account for sampling uncertainty in individual replicates and variability among 

replicates. In addition to the analysis of unpaired replicates, rMATS also includes a 

model specifically designed for paired replicates between sample groups. The 

hypothesis-testing framework of rMATS is flexible and can measure the statistical 

significance over any magnitude of splicing change.  

 

Shen et al. (2014) described rMATS has several key features. The first key feature is 

that rMATS uses a hierarchical framework to model exon inclusion levels denoted as 

Ψ (PSI –percent spliced in), which simultaneously accounts for estimation 

uncertainty in individual replicates and variability among replicates. The second 

important feature is, rMATS includes a model specifically designed for paired 

replicates as well as unpaired replicate data. Bivariate normal distribution is 

introduced with a correlation parameter to model the correlation between matched 

pairs. Importantly, the use of paired-read information in paired replicate data 

eventually improves the statistical power. The third key feature of rMATS, a user can 

define either null or alternative hypotheses in the hypothesis-testing framework for 

differential alternative splicing. rMATS employs a likelihood-ratio test to compute 

the P-value that the difference in the mean ψ values between two sample groups 

exceeds a given threshold. From this framework, rMATS can measure the statistical 

significance based on the user-defined magnitude of splicing change. Moreover, the 

use of the likelihood-ratio test in rMATS significantly improves the speed of the 

computation compared to the sampling-based p-value calculation in previously in 

MATS (Shen et al., 2014). The last key feature, rMATS able to analyse all major 

types of AS patterns and use RNA-seq reads mapped to both exons and splice 

junctions because it uses a statistical model that normalises the lengths of individual 

splice variants. In their studies, rMATS outperformed two existing methods, Cuffdiff 
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(Trapnell et al., 2012) and DEXSeq (Anders et al., 2012) for replicate RNA-seq data 

in all simulation settings.  

 

4.1.3 Visualising alternative splicing 

Visualising the complexity of AS is an important aspect of the analysis. Visualisation 

for RNA-seq needs dedicated tools that can efficiently process a huge amount of data 

from several different samples. This has triggered the development of tools to 

visualise alternative isoforms and events from RNA-seq data. One of the simplest 

ways to visualise isoforms and events is to produce track files and upload into 

genome browser (Wang et al., 2015). For instance, TopHat or STAR produces BAM 

files that can be viewed in the Integrative Genomics Viewer (IGV). Likewise in 

SpliceGrapher (Rogers et al., 2012) and DiffSplice (Hu et al., 2013) generate files in 

GFF formats and can be uploaded into the IGV. Nonetheless, tools such as 

SpliceGrapher (Roger et al., 2012) and Alexa-Seq (Griffith et al., 2010) have their 

own visualisation utilities. For comparative study between network approaches, the 

Sashimi plots are generated using alignments file which stored in the SAM/BAM 

format and gene model annotations. Furthermore, Sashimi plots can be generated to 

quickly scan the differentially spliced exons along genomic regions of interest. 

Finally, there are standalone tools that provide visualisation of results together with 

additional information of mapping reads, quantifying events and differential splicing 

such as SpliceSeq (Ryan et al., 2012) and SplicingViewer (Liu et al., 2012). 

Nevertheless, these visualisation tools employ read stack to the genome as well as a 

linear line connecting over exon. This is rather complicated to visualise and 

determine the splice variant. 

 

In Chapter 3, explorations of splice variants using network analysis were limited to 

transcripts expressed in a single cell type (human fibroblast). However, in this 

chapter, the use of network-based visualisations of RNA-seq data is explored further 

by an investigation of splice-variation between different human tissues. 95 

individuals of RNA-seq data derived from 27 human tissues were subjected to 

quality control using network analysis. A correlation network was constructed using 

only sample-to-sample relationships and samples with a low correlation to samples 



Chapter 4 

110 
 

from the same tissue were excluded from subsequent analyses. Subsequently, all 27 

human tissues were aligned individually to the human genome, followed by splicing 

analysis to infer patterns of AS in human genes. The usefulness of the network-based 

visualisation approach in determining AS of a gene across different tissues is 

presented here. In so doing, these analyses further validate the utility of network 

visualisation to explore AS events.  

 

Therefore, the objectives of this chapter were: 

1) To work up a human tissue atlas of RNA-seq data using network analysis. 

 

2) To identify and analyse AS events between different human tissues using the 

rMATS method. 

 

3) To validate the AS of genes detected by rMATS through a network analysis. 

 

 

4.2 Methods 

Shown in Figure 4.1 are the data analysis workflow from quality control to data 

visualisation and exploration of AS across different tissues. In this workflow, there 

are four different stages: (A) mapping reads to a reference, (B) quality control, (C) 

co-expression analysis, and (D) alternative splicing analysis. For stage (A) the data 

were downloaded and aligned to the reference human genome using STAR aligner 

and using Cufflinks for transcript assembly and quantification. For stage (B) and (C), 

BioLayout Express3D/Miru was used for the quality control and co-expression 

analysis. In stage (D), rMATS was used for the identification of alternative splicing 

events. BioLayout Express3D/Miru software was used for QC, gene clustering and 

network visualisation in stages (B), (C) and (D).   
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Figure 4.1: Data analysis workflow. Data analysis pipeline for RNA-seq data from 

ArrayExpress, including read alignment to the human genome, transcript 

quantification, quality control, annotation and network analysis. Further analyses 

were conducted to detect AS in the dataset using the rMATS tool which produces a 

list of genes likely to be AS between tissues providing a readout that indicates 

whether there is a skipped exon, alternative 5’ splice sites, alternative 3’ splice sites, 

intron retention and/or mutually exclusive exons. The lists of genes from each tissue 

comparison using rMATS were then sorted by maximum FPKM fold change and 

FDR. Network layouts of four genes were generated using NGS Graph Generator, 

and the resulting networks explored. 

 

 

4.2.1 Datasets 

FASTQ files of RNA-seq atlas of human tissues were downloaded from 

ArrayExpress (Ac.No.: E-MTAB-1733). The data consisted of 95 samples derived 

from 27 tissues consisting of between two and seven biological replicates per tissue. 

The samples were sequenced multiplexed 15 per lane, producing an average of 18 

million mappable read pairs per sample (Fagerberg et al., 2014). 

 

4.2.2 Read alignment and quantification 

100 bp paired-end reads for each tissue were individually mapped to the human 

genome (Ensembl GRCh37.71) (Flicek et al., 2014) with STAR v2.4.1c (Dobin et 

al., 2013) and transcripts assembly using Cufflinks v2.2.1  (Trapnell et al., 2010). 

Moreover, Cufflinks was used to calculate for each sample the number of fragments 
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per kilobase of exon per million fragments mapped (FPKM) for downstream 

analyses. A gene was determined as expressed if the FPKM value was more than 1. 

This threshold has been recommended as the minimum expression required for 

transcript and protein detection (Fagerberg et al., 2013; Vogel and Marcotte, 2012). 

A numerical matrix of FPKM values for each gene in all 95 human tissue samples 

was produced.  

 

4.2.3 Quality control and data analysis 

To examine this dataset, a sample-sample correlation network was constructed where 

nodes represent samples and edges represent the Pearson correlation value between 

samples above the cutoff value. In this dataset, one tissue has seven biological 

replicates (testis), three tissues have five replicates (lymph node, lung, and colon), 

eight tissues have four replicates (prostate, placenta, kidney, bone marrow, spleen, 

heart, small intestine, thyroid), eleven tissues have three replicates (skin, fat, 

endometrium, gallbladder, liver, appendix, stomach, esophagus, salivary gland, 

adrenal, and brain), and four tissues have only two replicates (ovary, urinary bladder, 

pancreas, and duodenum).  

 

Details of this data set are summarised in Supplementary Table 4.1. All non-protein 

coding genes and coding genes with FPKM ≤ 1 in all samples were excluded, 

resulting in expression levels for 18,319 protein-coding genes. In order to produce a 

more balanced dataset with only three replicates per tissue (where possible), samples 

with a low correlation between the same tissue type or samples with the lowest read 

count in a case where all samples had highly similar (correlated value), e.g. testis, 

were removed for subsequent analysis. Ideally, when visualised using a sample-

sample correlation network, samples from the same tissue should cluster by tissue 

type.  

 

After QC, the final data set consisted of 77 samples derived from 27 tissues which 

were ordered according to tissue type and saved as an ‘.expression’ file. The data 

were then loaded into BioLayout Express3D. A pairwise Pearson correlation matrix 

was calculated for each protein-coding genes (18,319 genes) represented in the 
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RNA-seq data as a measure of similarity between the FPKM values derived from 

different genes. All Pearson correlations (r ≥ 0.7) were saved to a ‘.pearson’ file and 

a correlation cutoff of r = 0.85 were used to construct a network. At this threshold 

correlation cutoff, the data set is relatively large and diverse in the range of biology it 

represents.  

 

Network layout was performed using the Fast Multipole Multilevel Method 

(FMMM) algorithm (Hachul and Jünger, 2005) and Fruchterman-Reingold force 

model (Fruchterman and Reingold, 1991). Markov clustering (MCL) algorithm (van 

Dongen, 2000), which has proven to be one of the most efficient graph-based 

clustering algorithms (Brohée and Helden, 2006), was used within the BioLayout 

Express3D tool to define co-expression clusters of genes. The MCL inflation value, 

which controls the granularity of clustering, was set to 2.2 to as this value has been 

demonstrated to be optimal when working with highly structured expression graphs 

(Freeman et al., 2007).  

 

4.2.4 Functional annotation 

The expression profile and gene content of each cluster were examined to mine genes 

for overrepresentation of classes of tissue. This approach is broadly used in research 

to explore gene lists to query for overrepresentation of certain classes of genes 

usually relating to gene function, i.e. GO terms. A gene ontology web application 

(http://www.geneontology.org/) was used to assess overrepresentation of GO 

categories of overlapped regulated DEGs and collaboratively regulated genes in the 

biological process with FDR < 0.05 were chosen as the cut-off criterion. 

 

4.2.5 Differential splicing 

RNA-seq reads were mapped to the human genome (Ensembl GRCh37.71) using 

STAR v2.4.1c (Dobin et al., 2013b). Differential AS events was identified between 

pairs of samples, for a group of three human tissues, e.g.  brain versus heart, brain 

versus liver and heart versus liver using rMATS v3.2.2 (http://rnaseq-

mats.sourceforge.net). Only three comparisons were used in this study to determine 

the effectiveness of network analysis. This will be the foundation of future works to 

http://www.geneontology.org/
http://rnaseq-mats.sourceforge.net/
http://rnaseq-mats.sourceforge.net/
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transcriptome-wide network analysis. Furthermore, these tissues were chosen as they 

are known to be very different in biology due to the different gene expression level. 

This is an important aspect to explore the different alternative splicing pattern in 

network analysis. Using rMATS, five major types of AS events from RNA-seq data 

with replicates can be detected (Dobin et al., 2013). They are alternative 5′ splice site 

(A5SS), 3′ splice sites (A3SS), skipped exons (SE), mutually exclusive exons (MXE) 

and retained introns (RI). In each rMATS run, all replicates from the first group were 

compared to all replicates from the second group to identify differential splicing 

events with an associated change in the percent spliced in (PSI - Ψ) of these events. 

The inclusion level of each candidate splicing event was calculated using reads 

mapping to the body of exons as well as splice junctions from three human tissue 

samples. Differentially spliced events were required to have a complete difference in 

inclusion (Ψ) level greater than 50% and a false discovery rate (FDR) less than 1%. 

These settings to ensure the list of genes generated from rMATS was contained 

alternative splicing and useful for network analysis.  

 

4.2.6 Analysis of the network structure 

Genes with highest significance score for AS events as detected by rMATS were 

chosen for examination. Each of the genes expressed in the brain, heart, and liver 

data were subjected to network visualisation using default MegaBLAST p=98 and 

l=31. For highly expressed genes, e.g. TPM1 uniquification was applied to remove 

redundant reads for network construction. After that, the networks were examined 

and compared to the result of Sashimi plots and Vials. Where topology of a given 

gene, network is relatively simple an explanation of its structure required the only 

overlay of individual transcript exon information in order to identify splice variant(s) 

represented. In other cases, more detailed analyses were required. Determining 

transcript isoform expression from these networks requires comparing each 

network’s structure to the Ensembl database. By calculation, the number of reads 

mapping to each exon, a histogram of the number of reads per exon per sample for 

each tissue was generated for comparison the transcript assembly network. Sashimi 

plots were built from IGV to compare and determine isoforms generated from the 

network. Recently, Strobelt et al. (2016) developed a visualisation of splice variant 
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tool called Vials. It was also used to compare and contrast transcript expression with 

the network visualisations as described here (refer to Chapter 1 Figure 1.12). 

 

4.3 Results 

4.3.1 Quality control of human tissue atlas RNA-seq 

The layout of a sample-sample correlation network of 95 human tissue samples 

showed them to cluster according to tissue type, except one of the lung samples 

(Figure 4.2A). This sample was a clear outlier and removed from the dataset. To 

avoid a potential problem of insignificant or noisy genes, the outlier samples were 

removed in a sample-sample network correlation. Colon, testis and small intestine 

had more than three samples, and the outlier samples were removed. 18 samples 

were removed from the original dataset to leave 77 samples shown in Table 4.1 were 

clustered again using BioLayout Express3D (Figure 4.2B). The reasons of these 

samples were removed when either a low correlation between samples or low 

sequencing reads count. For an instant, the correlation value of placenta is 0.68 was 

removed from the original set. While in the colon, even though the correlation value 

is 0.89 is considered high, it was removed to limit up to three samples per tissue. 

 

4.3.2 Network construction and layout 

The BioLayout Express3D/Miru software reads a text file containing FPKM data in 

tabular format. Each row of this file starts with a unique gene symbol, followed by a 

number of columns of annotation tissue data specific to that gene. The final data 

columns represent FPKM values for that gene across different tissues. The tool then 

performs all-versus-all Pearson correlation calculations for all genes. This step is 

highly optimised and performed in memory because the number of calculations 

required is very large. Pairs of genes whose Pearson correlation is greater than a 

threshold (p ≥ 0.85) are calculated and subsequently generated a network graph. The 

network consists of genes (nodes) connected by expression (FPKM) correlations 

above a threshold value (edges). Nodes are connected by weighted lines, which 

represent correlations between similar expression profiles. Nodes are connected with 

each other if the Pearson correlation coefficient between them exceeds 0.85. A high 

correlation threshold of 0.85 was chosen in order to restrict the network analysis to 
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relationships between very similar expressions. This threshold can impact on the 

network characteristics which provide a more in-depth understanding of the gene 

expression profiles of the tissues.  

A network graph was constructed using a correlation threshold of r ≥ 0.85, whereby 

nodes represent genes and edges represent correlation greater than the threshold. This 

threshold allows high correlated nodes included in the network. Increasing threshold 

will lose nodes or break the network while lowering threshold will tighten structure 

of the network. The network comprises 6,109 nodes (genes) and 1,091,477 edges 

(correlations) and network clustering performed using MCL algorithm within 

BioLayout Express3D at an inflation value of 2.2. Inflation affects the granularity of 

the resulting clustering. Lowering the inflation value will obtain coarser clusters 

while increasing it will produce more granular clusters. The MCL algorithm 

simulates stochastic flow through the network, iteratively enhancing flow to well-

connected nodes at the expense of poorly connected nodes until a stable state occurs 

in which inherent network structure is revealed. An MCL inflation value of 2.2 was 

used as the basis for determining the granularity of network, i.e. the inflation value 

determines the size of individual clusters. This generated 20 clusters containing more 

than ten genes. Genes in a component smaller or less than ten were not included in 

this network. Figure 4.3A shows the network graph produced. Clustering of the 

network using Markov clustering algorithm inflation value of 2.2 resulted in 64 

components. The largest component consisted of 4,498 genes, and it comprises of 

240 clusters defined by MCL algorithm. The remainder of the network was a sparse 

topology and divided into various sizes of small clusters. While collapsed cluster 

diagram is another way of visualising at such transcriptional networks which one of 

the functions in BioLayout Express3D. An important feature of network graph is that 

clusters with similar expression profiles tend to form neighbourhoods. Figure 4.3B 

shows the relationship between cluster size and position of the cluster within the 

network.  
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Figure 4.2: Clustering of the human tissue data sample. A Pearson correlation 

matrix was prepared to compare data derived from all samples from human tissue 

atlas. A network was then constructed using only those sample-to-sample 

relationships where r ≥ 0.85. Nodes represent samples and edges are coloured 

according to the strength of correlation (red = high correlation, blue = low 

correlation). Samples are coloured based on tissue type. Networks are shown (A) 

before and (B) after filtering outlier, samples which have lowest correlation within 

the tissue (thyroid gland, small intestine, colon, heart, spleen, lymph node, bone 

marrow, kidney, placenta, prostate, lung, testis). While the lowest read count within 

the tissue (colon and testis). Samples removed are marked with a red box. Samples 

with no correlations r < 0.85 were not included in these networks. 
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Table 4.1: List of samples removed. Eighteen samples were removed based on a 

low correlation value or lowest read count within the same tissue.  

Tissue type Sample ID 
Read 
count 

Reason sample 
removed 

Thyroid gland thyroid_5a.V196 12,190,400 
Lowest correlation within 

tissue (0.65) 

Small 
intestine 

smallintestine_4a.V151 4,999,121 
Lowest correlation within 

tissue 

Colon colon_c.V14 20,278,760 
Lowest correlation within 

tissue (0.89) 

Colon colon_f.V22 9,356,516 Lowest read count 

Heart  heart_6a.V235 12,099,974 
Lowest correlation within 

tissue (0.73) 

Lung lung_4d.V133 7,844,042 
Lowest correlation within 

tissue (0.93) 

Lung lung_4a.V130 4,950,061 Lowest read count 

Spleen spleen_3b.V83 7,004,952 Lowest read count 

Lymph node lymphnode_5a.V190 9,987,765 
Lowest correlation within 

tissue (0.85) 

Lymph node lymphnode_5b.V192 7,930,958 
Lowest correlation within 

tissue (0.85) 

Bone marrow bonemarrow_5a.V230 8,885,586 
Lowest correlation within 

tissue (0.68) 

Kidney kidney_b.V6 16,980,044 
Lowest correlation within 

tissue (0.87) 

Placenta placenta_3a.V76 18,517,742 
Lowest correlation within 

tissue (0.61) 

Prostate prostate_a.V12 11,162,655 
Lowest correlation within 

tissue (0.88) 

Testis testis_7c.V257 22,389,166 
Lowest correlation within 

tissue (0.85) 

Testis testis_7b.V256 20,609,541 
Lowest correlation within 

tissue (0.85) 

Testis testis_7a.V255 12,174,081 
Lowest correlation within 

tissue (0.87) 

Testis testis_4a.V134 5,183,071 Lowest read count 
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Figure 4.3: (A) Network visualisation and clustering of the human tissue atlas 

RNA-seq data. This is a 3D visualisation of a Pearson correlation graph of data 

generated from analysis of the human tissues. Each node (sphere) in the graph 
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represents a gene and edges (lines) between nodes represent correlations between 

individual measurements r ≥ 0.85. This network comprises 6,109 nodes (genes) and 

1,091,477 edges (correlations). This highly structured network is a result of co-

expressed genes forming groups of a highly connected node within the network. 

MCL (Markov Cluster) algorithm value of 2.2 within BioLayout Express3D was used 

to assign and cluster co-expressed genes in the same group. (B) Collapsed cluster 

diagram of human tissue expression atlas. This is a simplified version of the 

network shown in (A). Each node represents one of the 79 largest clusters of genes, 

the size of the node is proportional to the number of individual nodes (genes) within 

that cluster while edges represent correlations r ≥ 0.85 between clusters whereby 

nodes in one cluster share edges with nodes in another.  

 

 

The expression profile and gene content of each cluster were examined in details, 

and top 20 largest clusters are shown in Figure 4.4. Some of these clusters represent 

genes co-expressed in a tissue-specific manner while others not. The network 

structure is derived from clustering of genes which are co-expressed and connected 

by a number of edges forming groups within the network. Gene set enrichment 

analysis was performed on clusters using DAVID (http://david.abcc.ncifcrf.gov/) 

analysis tools. Analysis using DAVID used the functional annotation clustering tool 

to identify and classify the clusters. The 20 largest clusters are shown in Table 4.2.  

 

 

 

http://david.abcc.ncifcrf.gov/
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Figure 4.4: Expression profile of top 20 clusters from the human tissue atlas 

RNA-seq data. These expression profiles can be seen from a class viewer by 

selecting cluster in BioLayout Express3D. Histograms are an average expression level 

(FPKM) of all genes in the cluster.  
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Table 4.2: List of 20 largest gene clusters. Listed in the table are the 20 largest 

clusters of genes originating from the analysis of the human tissue atlas. Clusters are 

numbered according to their size (the largest is designated as cluster 1). The first two 

columns give cluster ID, and a number of genes present in the cluster and subsequent 

column describe an average expression profile of all genes within the cluster. The 

next column aims to group clusters according to the class of tissues and which these 

genes are predominately expressed and the tissues they represent. The last three 

columns aim to present the top three ontologies (GO) terms for each cluster together 

with their accession number and a p-value of enrichment. 

Cluster 
ID 

Number 
of 

Genes 

Profile 
Description 

Class of 
tissue 

GO terms 
GO term 

accession 
number 

P-value 

1 1887 Testis 
Male 

reproductive 

Sexual reproduction GO:0019953 2.49E-67 

Spermatogenesis GO:0007283 4.09E-66 

Male gamete generation GO:0048232 5.63E-66 

2 782 Brain CNS 

Nervous system 
development 

GO:0007399 5.27E-81 

Chemical synaptic 
transmission 

GO:0007268 4.11E-58 

Trans-synaptic 
signalling 

GO:0099537 4.11E-58 

3 262 Liver Digestive 

Immune system process GO:0002376 7.06E-86 

Immune response GO:0006955 2.75E-73 

Regulation of immune 
system process 

GO:0002682 1.58E-71 

4 262 
Lymph 

node>>splee
n>>appendix 

Immune 

Digestion GO:0007586 5.69E-19 

Digestive system 
process 

GO:0022600 6.75E-10 

Xenobiotic metabolic 
process 

GO:0006805 1.82E-08 

5 260 Heart Circulatory 

Protein activation 
cascade 

GO:0072376 4.99E-34 

Organic acid metabolic 
process 

GO:0006082 8.75E-32 

Small molecule 
metabolic process 

GO:0044281 2.72E-30 

6 253 
Skin>>esoph

agus 
Skin 

Epidermis development GO:0008544 1.73E-54 

Skin development GO:0043588 2.20E-43 

Keratinocyte 
differentiation 

GO:0030216 1.53E-40 

7 227 
Brain>>other

s 
CNS 

Immune system process GO:0002376 1.36E-17 

Defence response GO:0006952 4.37E-13 

Response to another 
organism 

GO:0051707 2.12E-11 
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Cluster 
ID 

Number 
of 

Genes 

Profile 
Description 

Class of 
tissue 

GO terms 
GO term 

accession 
number 

P-value 

8 210 Esophagus GI tract 

Cell cycle process GO:0022402 4.77E-95 

Cell cycle GO:0007049 4.48E-93 

Mitotic cell cycle 
process 

GO:1903047 5.38E-82 

9 173 Duodenum GI tract 

Muscle structure 
development 

GO:0061061 6.29E-36 

Muscle contraction GO:0006936 1.13E-34 

Muscle system process GO:0003012 2.96E-34 

10 168 
Bone 

marrow 
Immune 

Organic acid metabolic 
process 

GO:0006082 6.86E-19 

Small molecule 
metabolic process 

GO:0044281 2.16E-17 

Anion  GO:0006820 4.54E-17 

11 164 Placenta Dermal 

Female pregnancy GO:0007565 3.26E-09 

Multi-multicellular 
organism process 

GO:0044706 3.11E-08 

Reproductive process GO:0022414 4.55E-07 

12 111 Kidney GI tract 

Keratinization GO:0031424 3.44E-16 

Epidermis development GO:0008544 3.59E-16 

Keratinocyte 
differentiation 

GO:0030216 4.87E-15 

13 71 
Bone 

marrow>>oth
ers 

Immune 

Defence response to 
bacterium 

GO:0042742 1.16E-07 

Nucleosome assembly GO:0006334 1.43E-06 

Chromatin assembly GO:0031497 4.18E-06 

14 71 
Adrenal>>ot

hers 
Endocrine 

Hormone biosynthetic 
process 

GO:0042446 1.19E-13 

C21-steroid hormone 
metabolic process 

GO:0034754 2.61E-10 

Cellular hormone 
metabolic process 

GO:0008207 5.09E-10 

15 66 Fat Adipose 

Metabolic process GO:0008152 1.51E-08 

Lipid metabolism 
process 

GO:0006629 1.69E-08 

Cellular lipid metabolic 
process 

GO:0044255 1.77E-07 

16 62 Testis>Brain 
Cell-cell 

communicati
on 

Unclassified - - 

17 58 
General, 
relatively 

even 
Pathway 

SRP-dependent 
cotranslational protein 
targeting to membrane 

GO:0006614 
6.31E-

119 

Protein targeting to ER GO:0045047 1.72E-



Chapter 4 

126 
 

Cluster 
ID 

Number 
of 

Genes 

Profile 
Description 

Class of 
tissue 

GO terms 
GO term 

accession 
number 

P-value 

117 

Cotranslational protein 
targeting to membrane 

GO:0006613 
4.96E-

117 

18 58 
Skin>esopha
gus>>urinary 

bladder 
Epidermis 

Epidermis development GO:0008544 6.84E-07 

Desmosome 
organization 

GO:0002934 1.76E-02 

- - - 

19 58 
General but 

not even 
Cell-cycle 

related 

Cell cycle process GO:0022402 1.72E-39 

Cell cycle GO:0007049 1.83E-37 

Mitotic cell cycle 
process 

GO:1903047 4.85E-28 

20 54 
General but 

not even 
Cell-cycle 

related 

Cell cycle process GO:0022402 2.75E-41 

Cell cycle GO:0007049 1.79E-39 

Mitotic cell cycle 
process 

GO:1903047 3.40E-38 

 

 

4.3.3 Analysis of alternative splicing between tissue using rMATS 

rMATS v3.2.2 (Shen et al. 2014) was used to identify alternatively spliced genes 

through comparison of three human tissues (brain, heart, and liver). These tissues 

have very different biology. By using a cut-off false-discovery rate (FDR) < 0.01, 

comparison of brain versus heart, brain versus liver and heart versus liver detected 

4992, 4804 and 3990 splicing events respectively. At FDR < 0.001, around 1 in 

1,000 alternative spliced genes was expected is false discoveries, thus from this 

fewer than ten false discoveries can be expected in the list of alternatively spliced 

genes. Therefore, the difference required between two isoforms to be biologically 

significant enough to define as differential splicing. Shown in Figure 4.5 is a 

summary of AS events with a total number of splicing event and number of 

significant AS events detected by rMATS for each group of comparison. Several 

criteria were taken into consideration to select a gene list for the network analysis 

such as the lowest FDR and FPKM value of the gene. The output from rMATS from 

each of pairwise analysis (brain versus heart, brain versus liver and heart versus 

liver) were ranked according to p-value and FDR. To confirm these differences, top 

30 AS genes for network-based visualisation structure confirmation mainly on their 
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potential difference across tissues shown in Table 4.3. This table was filtered with 

FDR < 0.01 and sorted according to largest FPKM fold change from each of tissue 

comparison.  

 

 

Figure 4.5: Summary of different types of significant AS events. This AS events 

identified from comparison of three human tissue atlas; brain versus heart, brain 

versus liver and heart versus liver. SE skipped exon; MXE, mutually exclusive exon; 

A5SS, alternative 5′ splice site; A3SS, alternative 3′ splice site; RI, retained intron. 
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Table 4.3: Differential splicing events in human tissue atlas ranked by FDR value (brain versus heart; brain versus liver; heart 

versus liver). The output of rMATS was filtered out with FDR > 0.01 and inclusion level difference |Δψ|> 0.5. The first five columns give 

the gene, gene description, chromosome, the location of exon start and end. The next column aims to include the FDR value of rMATS 

analysis. The next column is exon inclusion level difference. A negative number means more inclusion and a positive number more 

exclusion of the sequence in tissue comparison. The exon inclusion level difference is an absolute, rather than relative, change in the 

percentage of a specific splicing isoform in all mRNAs produced from the parent gene that follows the indicated splicing pattern. Event 

Types: 1) A3SS: alternative 3′ splice site 2) A5SS: alternative 5′ splice site 3) MXE: mutually exclusive exons 4) RI: retained intron and 5) 

SE: skipped exon. The last four columns give the sample examined and the expression level in FPKM value.  

Gene Description Chr Exon Start Exon End FDR 

Inclusion 
Level 

Difference 
(ψ1 - ψ2) 

AS 
Event 

Sample 
1  

Sample 
2 

FPKM 
Sample 

1 

FPKM 
Sample 

2 

KLC1 kinesin light chain 1  14 104145720 104153548 5.57E-308 0.547 SE Brain Heart 218.3 39.9 

FUS 
FUS RNA binding 
protein  

16 31196259 31199678 1.22E-292 0.64 RI Brain Liver 129.2 44.9 

TPM1 tropomyosin 1 (alpha)  15 63353067 63354476 3.83E-272 -0.771 MXE Heart Liver 6863.5 33.8 

      63354774 63358292 1.32E-224 0.532 SE Heart Liver 6863.5 33.8 

      63353067 63353987 6.12E-116 -0.732 SE Heart Liver 6863.5 33.8 

      63353067 63354476 1.48E-43 -0.592 MXE Brain Liver 49.1 33.8 

      63353396 63354476 4.73E-38 0.572 RI Heart Liver 6863.5 33.8 

      63353396 63354476 1.93E-28 0.559 SE Brain Liver 49.1 33.8 

      63353067 63353987 8.90E-28 -0.587 SE Brain Liver 49.1 33.8 

SORBS2 
sorbin and SH3 domain 
containing 2  

4 186551702 186567936 2.94E-245 0.566 
SE Heart Liver 651.0 58.7 

TPM3 tropomyosin 3  1 154143124 154145454 1.23E-244 -0.767 MXE Heart Liver 75.7 58.1 

GUK1 guanylate kinase 1  1 228328018 228333325 2.88E-230 0.548 SE Heart Liver 112.3 54.3 
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      228327982 228333768 2.36E-19 0.558 SE Heart Liver 112.3 54.3 

      228328018 228333325 1.74E-15 0.511 SE Brain Liver 122.4 54.3 

APP 
amyloid beta (A4) 
precursor protein  

21 27354656 27394358 1.21E-218 -0.873 SE Brain Liver 564.9 133.0 

PDLIM5 PDZ and LIM domain 5  4 95497093 95506888 2.64E-197 0.944 SE Heart Liver 1081.3 49.1 

SLC25A3 

solute carrier family 25 
(mitochondrial carrier; 
phosphate carrier), 
member 3  

12 98987756 98991813 1.27E-189 -0.659 MXE Brain Heart 145.4 467.9 

TMED2 
transmembrane emp24 
domain trafficking 
protein 2  

12 124071293 124074993 2.04E-184 0.568 
SE Heart Liver 64.0 115.3 

CAMK2D 
calcium/calmodulin-
dependent protein 
kinase II delta  

4 114421618 114430831 8.31E-143 -0.677 MXE Brain Heart 
42.8 90.6 

      114372187 114378719 1.01E-130 -0.619 SE Brain Heart 42.8 90.6 

      114421618 114429424 6.75E-79 0.722 SE Brain Heart 42.8 90.6 

GNAS GNAS complex locus  20 57470666 57478640 1.43E-135 0.564 SE Brain Liver 723.1 196.4 

CLTB clathrin, light chain B  5 175819455 175824719 1.62E-123 0.66 SE Brain Heart 44.6 87.3 

NDRG4 NDRG family member 4  16 58528867 58537807 6.66E-111 0.584 SE Brain Heart 306.6 204.1 

SEC31A 
SEC31 homolog A (S. 
cerevisiae)  

4 83778841 83784545 1.64E-101 0.587 
SE Heart Liver 49.7 46.8 

UGP2 
UDP-glucose 
pyrophosphorylase 2  

2 64068087 64083567 2.98E-96 -0.618 SE Brain Liver 59.1 243.6 

RBM3 
RNA binding motif 
(RNP1, RRM) protein 3  

X 48433948 48434471 2.72E-84 0.74 RI Brain Liver 64.3 37.2 

      48433948 48434471 3.58E-15 0.686 RI Heart Liver 91.7 37.2 

      48433948 48434807 9.94E-15 0.572 RI Heart Liver 91.7 37.2 

ABLIM1 
actin binding LIM protein 
1  

10 116233637 116247775 6.38E-84 -0.653 SE Brain Heart 
38.1 129.9 
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DST dystonin  6 56328362 56330993 7.94E-81 0.523 SE Brain Liver 64.1 36.4 

      56328362 56330993 4.53E-45 0.701 SE Heart Liver 46.7 36.4 

      56393638 56394931 2.68E-25 -0.563 SE Brain Heart 64.1 46.7 

KIAA1191 KIAA1191  5 175782573 175788742 3.50E-79 -0.514 SE Brain Heart 59.3 46.6 

CLTA clathrin, light chain A  9 36204064 36210657 5.53E-78 0.849 SE Brain Heart 81.0 37.7 

ACTN4 actinin, alpha 4  19 39200034 39205201 7.03E-76 -0.638 MXE Brain Liver 93.9 75.8 

TPD52L1 tumor protein D52-like 1  6 125574862 125584208 4.44E-74 -0.756 SE Heart Liver 71.4 33.8 

      125574862 125584372 9.67E-17 0.664 SE Brain Heart 43.4 71.4 

      125574862 125584208 5.86E-14 0.778 SE Brain Heart 43.4 71.4 

DCAF6 
DDB1 and CUL4 
associated factor 6  

1 167973770 168007726 1.10E-72 -0.687 SE Brain Heart 
33.3 71.1 

MACF1 
microtubule-actin 
crosslinking factor 1  

1 39715685 39720047 1.11E-70 -0.748 SE Brain Heart 
41.6 33.1 

QKI 
QKI, KH domain 
containing, RNA binding  

6 163987752 163984751 4.64E-69 0.647 A3SS Brain Heart 199.4 140.3 

ANK2 ankyrin 2, neuronal  4 114294514 114302672 5.77E-69 -0.504 SE Brain Heart 79.9 60.7 

      114294472 114304888 5.01E-50 -0.554 SE Brain Heart 79.9 60.7 

MFF 
mitochondrial fission 
factor  

2 228205007 228212100 1.80E-65 -0.543 SE Brain Heart 
44.8 30.5 

      228205007 228220477 6.95E-34 -0.571 MXE Brain Heart 44.8 30.5 

PKIG 
protein kinase (cAMP-
dependent, catalytic) 
inhibitor gamma  

20 43160425 43218507 1.62E-61 -0.62 SE Brain Heart 
56.4 172.7 

CDK5RAP3 
CDK5 regulatory subunit 
associated protein 3  

17 46050884 46051397 6.29E-61 -0.573 RI Brain Heart 49.6 31.1 
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4.3.4 Network analysis of alternative splicing transcripts of human 

tissue atlas 

At threshold |Δψ| > 50%, false discovery rate (FDR) of 0.01 and FPKM ≥ 30, 

rMATS (see Chapter 1 Section 1.5.8) identified 78 differential AS events in three 

pairwise comparisons; brain vs heart, brain vs liver and heart vs liver, using both 

splice junction counts and exon body counts as an input for rMATS. To demonstrate 

the utility of network-based visualisation, a network of four genes were examined 

using NGS Graph Generator (as described in Chapter 2) using default parameters 

(p=98 l=31). All genes in Table 4.3 have been laid out using BioLayout Express3D, 

however, only four networks (KLC1, GUK1, SORBS2, and TPM1) were selected to 

be studied due to the interesting structure of network, and they represent different 

type of AS and features, e.g. skipped exon (SE), mutually exclusive exons (MXE), 

alternative 5’ splice site (A5SS) and length of the gene. In certain cases, uniquify 

option was used to remove redundant reads of highly expressed genes, e.g. TPM1 

before network construction. In order to compare and contrast the network-based 

visualisation to other methods, Sashimi plots and Vials diagrams are presented.  

 

4.3.4.1 Analysis of KLC1 

KLC1 was selected because it was reported as the most significant alternatively 

spliced exon detected using rMATS tools when comparing between the brain and 

heart tissue. rMATS analysis for KLC1 shows exon 15 to be skipped with the lowest 

FDR value of 5.57E-308. In the tissue comparison of the brain vs heart, the exon 

inclusion level of exon 15 is 0.9 in the brain compares only 0.35 in the heart (Table 

4.3). Figure 4.6A is an expression profile of KLC1 across 27 human tissues 

demonstrating that KLC1 is highly expressed in the brain, with relatively lower 

expression in other tissues. This observation is consistent with protein expression 

data (Uhlen et al., 2010). KLC1 has been shown to play a crucial role in organelle 

transport in the brain. Genetic variation in the transport of protein KLC1 may 

contribute to the risk of Parkinson's disease (PD), Alzheimer's disease (AD) and 

cataract (Andersson et al., 2007; Dhaenens et al., 2004; von Otter et al., 2010). 

Furthermore, KLC1 transcript variant expression might also function in the 

development of axoplasmic transport defects in AD (Morel et al., 2011).  



Chapter 4 

132 
 

In order to verify the result from rMATS, each transcript network from brain and 

heart are presented. KLC1 has 21 exons, and a large number of potential isoforms – 

27 in total, 20 protein-coding transcript isoforms, with a further seven transcript non-

coding isoforms are recorded in Ensembl. Underneath each network, schematic gene 

models of KLC1 in the brain and heart are presented. The number of reads mapped to 

KLC1 in the brain and heart is 8,726 reads and 1,105 reads, respectively. These two 

transcript networks consist of a start exon 2, exon 3-14. At the c-terminus, the last 

exon of each the transcript has the choice to terminate at exon 14, 15, 16, 17 or 21. 

To further illustrate KLC1 splicing across different tissues, the transcript network 

from liver was included. 

 

Network-based analysis of the KLC1 transcripts co-expressed in the brain (Figure 

4.6B) shows there were three major and two minor isoforms expressed. The first 

major isoform is indicated by the structure from exon 2 to 16 (ENST00000389744 – 

designated as a on the gene model below the brain DNA mapping transcript 

network). The second major isoform can be observed from the loop of the exon 15+ 

(ENST00000553286 - b) which is not the alternatively spliced but the larger size of 

the exon 14 and overlaps to the middle of exon 16. The last major isoform is believed 

to be expressed (ENST0000552325 - c).  

 

The minor isoforms can be observed from a small number of nodes emerging out 

from the major network. From the bifurcation of the network, it was identified as 

minor isoforms of KLC1 in the brain tissue which are ENST00000348520 (exons 2 

to 14 and the last exon of 17 ENST00000348520 – d) and ENST00000347839 (exon 

2-14 and 20, 21 – e). These were supported by the brain RNA-seq mapping transcript 

network structure. Another gene APOPT1 was present in this network.  

 

Figure 4.6C is a Sashimi plot generated using IGV showing exon expression and 

junction support of the brain and heart RNA-seq data. The visualisation of isoform 

expression with the gene model at the bottom of the plot can be visualised. There are 

only three isoforms reported in IGV which are ENST00000348520 (d), 

ENST00000452929 (e) and ENST00000389744 (f). Junctions are shown by the arcs 
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join from one exon to another exon is barely perceivable especially the edges 

connecting in the high-density area, e.g. the edges connecting in the region of exon 

15 are difficult to explain. Isoform d and e are only observed in the brain RNA-seq 

mapping transcript network. It is demonstrated that IGV did not report the major 

isoform. 

 

Figure 4.6D shows the Vials visualisation KLC1 of the human transcriptome of the 

brain from Illumina BodyMap 2.0 data. The visualisation of all isoforms, isoform 

abundance, expression and junction views are shown for brain tissue. In this view, 

the expression level displays as transcript per million (TPM) and the highest 

isoforms detected in the brain (blue) is (a) ENST00000389744 (TPM=0.47) follow 

by (b) ENST00000553826 (TPM=0.32) and (c) ENST00000553325 (TPM=0.14). It 

is interesting to note that the agreement of RNA-seq expression between a network 

analysis and Vials. It indicates that the major isoforms expressed visualised in 

network analysis (a, b, and c) displays as the highest expression in Vials. However, 

isoforms d, e, and f reported in IGV displays low expression in Vials and minor 

isoforms in network visualisation.  
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Figure 4.6: Visualisation of KLC1 transcript in the human brain. (A) RNA-seq 

gene expression profile across 27 different tissues. KLC1 is highly expressed in the 

brain and lowly expressed in the heart. (B) Network-based visualisation of KLC1 in 

the brain.  All exons showed at the top of the isoforms gene model and expressed in 

the brain. In this network, it shows three major isoforms expressed in the brain tissue 

(gene model in black). Other isoforms are minor isoforms (gene model in grey) 

which can be visualised from the fewer nodes branching out of the major network. 

‘Loop’ network structure that separates from the major network essentially is 

APOPT1 gene (dashed box). (C) Sashimi plots. Representative Sashimi coverage 

plots generated in IGV showing RNA-seq reads mapping to KLC1 locus from human 

brain (red) and heart (blue). IGV reports three isoforms in this view. The height of 

the bars represents overall read coverage. Splice junctions are displayed as loops. 

The number of reads observed for each junction is indicated by segments, and y-axis 

(450) ranges for the number of reads per exon base are shown (read coverage, left). 

The plot suggests different isoforms expressed in the sample is indicated by the arc 

connecting a pair of exons. (D) Vials – visualising AS of genes. Data shown here are 

from the Illumina BodyMap 2.0. There are two views which are isoform abundance 

and expression view. For each row in the isoform abundance view represent a 

particular isoform. Dot plots indicate abundance for brain isoforms. The tissue of 

brain was selected and multiple dot plots (blue) shown to allow comparison between 

isoforms. Two highest isoforms expression in the brain are ENST00000389744 

(TPM=0.47) and ENST00000553325 (TPM=0.28). TPM, transcript per million. 
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Figure 4.7: Visualisation of AS gene of KLC1 in the human heart. (A) Network-

based visualisation of gene KLC1 in the heart tissues. In this network, it indicates 

three isoforms expressed (gene model in black) in the heart tissue. Other isoforms are 

retained intron isoforms which can be visualised from the fewer nodes branch out of 

the major network. None of these isoforms is considered as major isoform except the 

exon 2 to 14, and there is no isoform of these exons currently available. All the 

bifurcation with a low number of nodes immediately after exon 14 and they are 

considered as minor reads. Splice variant network structure that separates from the 

major network essentially is APOPT1 gene (dashed box). In agreement with rMATS 

analysis, the network indicates exon 15 is a low number of nodes in the heart. (C) 

Sashimi plot. Only three isoforms reported by IGV from this view. (D) Vials – 

visualising AS of genes. Three highest isoforms expression in the heart are 

ENST00000557575 (TPM=0.21), ENST00000554280 (TPM=0.17) and 

ENST00000452929 (TPM=0.14). TPM, transcript per million.  
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The analysis of KLC1 transcript network of the heart, four isoforms expressed is 

shown in Figure 4.7. All these isoforms have different c-terminus of exon 14, 15 or 

16 which can be observed from split branches at the end of the network. The first 

isoform (ENST00000389744 – a) is believed to be expressed can be explained by the 

last exon 16 emerge from the major network. This isoform contains exon 2 to 16. 

The second and third isoform (ENST00000553286 – b and ENST00000553436 – c) 

can be explained by small bifurcation of exon 15+ and 14+, respectively.  However, 

the lower number of nodes of the last exon (grey exon) of all isoforms except from 

exon 2 to 14, none of them is considered as major isoforms. There is no isoform 

contains exon 2 to 14 can be retrieved from Ensembl database. A retain intron 

(ENST00000557143 – d) can be visualised from the small branch out of exon 20 and 

21. As in the brain, an APOPT1 was also present in this network which will be 

explained in Figure 4.9. 

 

Figure 4.7B is Sashimi plots generated using IGV displays exon expression and 

junction support of the heart can be visualised. Three isoforms reported in IGV 

which are ENST00000348520 (e), ENST00000452929 (f) and ENST00000389744 

(g) indicate similar expression with the brain. The junctions are shown by the arcs 

align from exon 2 to 14 are apparent and support the network analysis. This can be 

observed from the spiral nodes from exon 2 to 14. The junction following exon 14 

apparent to distinguish compared to the brain due to lower of KLC1 expression in the 

heart. None of the isoforms identified in the heart RNA-seq mapping transcript 

network is reported in the IGV.  

 

Figure 4.7C shows the Vials visualisation KLC1 of the human transcriptome of heart 

from Illumina BodyMap 2.0 data. The visualisation of isoforms, isoform abundance, 

isoform expression and junction views are shown for brain tissue. In this view, the 

expression level displays as transcript per million (TPM) and the highest isoforms 

detected in the heart (orange) are ENST00000557575 (TPM=0.21) follow by 

ENST00000554280 (TPM=0.17) and ENST00000452929 (TPM=0.14). It is 

interesting that there is disagreement between network analysis and Vials 

visualisation where three highest RNA-seq expressions in Vials are not observed in 
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the network. The highest expression in Vials shows by the ENST00000557575 

contains a truncated exon of 16. However, there is no evidence of skipping exon 15 

in the network. The second and third highest isoform (ENST00000554280 and 

ENST00000452929 – f) expressed contain exon 17. However, there is no exon 17 

observed in the network. While the agreement between Vials and IGV on isoform 

(a), except the lower number of reads on this exon, caused the network does not 

support the mapping on exon 17.  

 

Table 4.4 shows a tissue comparison of KLC1 between brain and heart in two 

different visualisation approaches. Network-based analysis of the KLC1 gene 

transcripts co-expressed in the brain revealed that there was one major isoform 

expressed in this tissue disagree with Sashimi plot. However, another one major 

isoform of network agrees with three isoforms in Sashimi plot. Furthermore, there 

are two isoforms cannot be seen from the network not shown in Sashimi plots. 

 

 

Table 4.4: Summary of visualisation analysis of KLC1 between the brain and 

heart tissue.  

 
Visualisation 

approach/Tissue 
Brain Heart 

 

Network 

 

Major 

(3 major isoforms)  

a - ENST00000389744 

b - ENST00000553286 

c - ENST00000553325 

 

Minor 

(2 minor isoforms) 

d - ENST00000348520 

e - ENST00000452929 

Major 

(3 major isoforms) 

a - ENST00000389744 

b - ENST00000553286 

c - ENST00000553436 

 

Minor 

(1 minor isoforms) 

d - ENST00000557143 

 

 

Sashimi plots 

 

- Two isoforms (d, e) – shown in 

the network 

 

- One isoform (f) – not shown in 

the network 

 

- Three isoforms (e, f, g) – none 

show same with network 

 

- only agree with isoform (a) in 

Sashimi plot 
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There are issues with network RNA-seq assembly observed in both brain (Figure 

4.8A) and liver (Figure 4.8B) RNA-seq assembly transcript network. In the brain 

network, a ‘thinning’ structure appears at the exon 6 and no ‘corkscrew’ structure 

was observed. The lower number of reads of this exon exhibits this structure, and it 

appeared to be an immediate drop in sequence coverage (marked by arrow) of exon 6 

shows in IGV (Figure 4.8C). Another issue in the liver RNA-seq mapping transcript 

network is the structure disconnect between exon 5 and 6.  There is evidence that the 

low sequence coverage at the exon 5 and 6 as seen in IGV (Figure 4.8C).  

 

 

 

Figure 4.8: Issue with DNA read-assembly. (A) Network-based visualisation of 

KLC1 transcript in the brain tissue. The network of exon 6 shows ‘thinning’ 

caused by the immediate reduction of sequence coverage in the middle of exon 6 

observed in IGV (C) (marked by arrow). (B) Network-based visualisation of KLC1 

transcript in the liver. Network breaks between exon 5 and 6 in the heart RNA-seq 

mapping transcript network due to the low sequence coverage in exon 5 and 6 also 

can be observed in IGV (C).  
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When the network assembly of KLC1 was visualised in the brain and heart, it 

indicates a splicing structure (dashed box in Figure 4.7A and Figure 4.8A). 

However, none of the KLC1 isoforms overlaid to this structure of both networks. In 

order to explain the observed separate graph in the network structure of KLC1, the 

location of those reads was investigated through visualising the genome location in 

Ensembl. It turns out that Apoptogenic 1, mitochondrial (APOPT1) gene that 

encodes a mitochondrial protein and is located within the KLC1 locus of 

chromosome 14 (Figure 4.9A). When the process of extracting mapped read of 

KLC1 using NGS Graph Generator, the reads of APOPT1 were included for building 

network-based on the location of the gene. The location of APOPT1 just 69 bp 

downstream of the KLC1, hence reads mapped to this location including APOPT1 

were included (Figure 4.9B). These gave rise to the separated splicing structure of 

KLC1 network. The ‘loop’ of APOPT1 network indicates an AS of exon 2. There 

were three isoforms expressed in both brain and heart tissue. 
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Figure 4.9: Network-based visualisation of APOPT1 transcript in the brain and 

heart. The APOPT1 loci are located within the KLC1 locus resulting the read 

assembly of APOPT1 includes in the KLC1 network. The start exon of APOPT1 is 69 

bp downstream the first exon of KLC1. The bifurcation of the networks is mostly 

derived from the processed transcript.  
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4.3.4.2 Analysis of GUK1 

GUK1 appeared to be alternatively spliced at exon 2 in two different tissue 

comparisons which were; heart vs liver and brain vs liver by rMATS analysis (Table 

4.3). Therefore, the isoforms expressed in three tissues; brain, heart, and liver from 

network analysis are presented. The inclusion level in the heart is 0.9 and 0.35 in the 

liver, for tissue comparison of heart vs liver; whereas the inclusion level in the brain 

is 0.83 and 0.28 in the liver, for tissue comparison of brain vs liver. Figure 4.10A is 

an expression profile of 27 human tissues demonstrates GUK1 is expressed in all 

tissues. This observation is consistent with protein expression data (Uhlen et al., 

2010). Also, protein GUK1 has been shown to play a vital role to catalyse the 

transfer of a phosphate group from ATP to guanosine monophosphate (GMP), to 

form guanosine diphosphate (GDP). AS of GUK1 results in multiple transcript 

variants with at least one of which encodes a guanylate kinase protein to produce the 

mature protein. The encoded protein is assumed to be a good target for cancer 

chemotherapy (Young et al., 2008). Several transcript variants encoding different 

isoforms have been found for this gene. A study by Joehanes et al. (2013), 

discovered that GUK1 is associated with coronary heart disease (CHD). In their 

study, to identify transcriptomic biomarkers of CHD in 188 cases with CHD, they 

found a total of 35 genes were differentially expressed in cases with CHD versus 

controls including GUK1.  

 

GUK1 has 9 exons and a large number of potential isoforms. Hence, 40 in total; 13 

protein-coding transcript isoforms with a further 27 processed transcripts are 

recorded in Ensembl. Three network structures of the GUK1 in three human tissues 

(brain, heart, and liver) were analysed through the public human RNA-seq data, 

using a network-based approach. The number of nodes in each network of brain, 

heart, and liver is 1,970 reads, 804 reads, and 207 reads respectively. All these 

networks consisted of an alternative promoter start exon 1a, 1b, 1c or 1d and 

common exon 2-9. 

 

Network-based analysis of the GUK1 transcripts co-expressed in the brain, two 

major isoforms (protein-coding) and four minor isoforms (3 protein-coding and 2 
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processed transcripts) are believed to be expressed in the brain (Figure 4.10B). 

GUK1 in the brain tissue contains exon 1a, 1b, 1c, 2, 3, 4, 5, 6, 7, 8 and 9, and it 

supports the brain RNA-seq mapping transcript network structure. In this network, 

the truncated exon 9 can be visualised from the thin nodes at the end of the network.  

 

The network revealed that there were two major isoforms expressed in this tissue. 

There are ENST00000453943 (a) contains exon 1b, 3, 4, 5, 6, 7, 8 and 9 (truncated) 

and ENST00000312726 (b) contains exon 1b, 2, 3, 4, 5, 6, 7, 8 and 9. However, 

there appeared to be evidence of four minor isoforms which are two proteins coding 

(ENST00000366730 – c and ENST00000412265 – d) and two processed transcripts 

(ENST00000469973 – e and ENST00000498092 – f) expressed in this tissue. All 

these four minor isoforms can be visualised from the small branch nodes emerge 

from the network.  

 

The Sashimi plots indicate a quantitative visualisation of the RNA-seq read 

alignment of the brain, heart, and liver together with expression in FPKM value 

(Figure 4.10C). The junctions indicated by the arcs that align from one exon to 

another exon. The visualisation of read alignment with the gene model on the bottom 

of the plot can be visualised. Only isoform c, d, and e indicate in the Sashimi plot 

while another two models show disagreement with network structure. 

 

Figure 4.10D shows a Vials visualisation of GUK1 of brain, heart, and liver. The 

data is from the human transcriptome Illumina BodyMap 2.0. In this view, the 

expression level shows as transcript per million (TPM) and the highest isoforms 

expressed in the brain (blue) is ENST00000453943, heart (orange) is 

ENST00000312726 and liver (green) is ENST00000391865. All these highly 

expressed tissues indicate agreement with network structure.  
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Figure 4.10: Visualisation of GUK1 transcript in the human brain. (A) RNA-seq 

gene expression profile across 27 different tissues. GUK1 is ubiquitously 

expressed in all tissues (B) Network-based visualisation of GUK1 transcript in the 

brain. In this network, it indicates one isoform expressed in each tissue 

(ENST00000453943 – brain) while others are minor isoforms which can be 

visualised from the fewer nodes branch out of the major network. The ‘loop’ and 

bifurcation of the networks are mostly derived from the processed transcript. In 

agreement with two rMATS analysis; in both tissue comparisons brain vs liver and 

heart vs liver, exon 2 is skipped in the liver. It is interesting to note that in the GUK1 

networks, there is a rapid decrease in the density of nodes within exon 9 in the brain 

transcript network. This corresponds to where the IGV view in (C) also indicates a 

decrease in the density of reads and it corresponds to GUK1 transcript 

(ENST00000453943) that exhibits a truncated exon 9 at this position. (B) Sashimi 

plot. Representative Sashimi coverage plot generated in IGV indicating RNA-seq 

reads mapping to GUK1 locus from human brain (red), heart (blue) and liver (green). 

(D) Vials – visualising AS of genes. The tissue of heart (orange), liver (green) and 

brain (blue) were selected. Tissues indicate different highest isoform expression; 

brain (ENST00000453943, TPM=0.36), heart (ENST00000312726, TPM=0.38) and 

liver (ENST00000391865, TPM=0.29). TPM, transcript per million. 

 

 

The analysis of the GUK1 transcript network of from heart, there were four isoforms 

expressed (one major isoform and three minor isoforms) (Figure 4.11A). One major 

isoform expressed (ENST00000312726) contains exon 1b, 2, 3, 4, 5, 6, 7, 8 and 9. 

While three minor isoforms expressed in this tissue are processed transcripts. The 

‘loop’ (bIntron 3-4 - ENST00000485168) contains an intronic sequence of 3-4, exon 

5 and final exon 6. The branch out nodes (cIntron 2-1c - ENST00000469973) appears 

at the beginning of the network. This isoform contains exon 1b and intronic sequence 

of 2 to 1c. The last minor isoform is ENST00000493209 contains exon 1b, 2, 1c, 3, 4 

and 5. All these minor isoforms are processed transcript. 

 

The Sashimi plots show a quantitative visualisation of the RNA-seq read alignment 

of the brain, heart, and liver together with expression shows in FPKM value (Figure 

4.11B). The junctions are shown by the arcs that align from one exon to another 

exon. The visualisation of read alignment with the gene model on the bottom of the 

plot can be visualised. 
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Figure 4.11: Visualisation of GUK1 transcript in the heart. (A) Network-based 

visualisation of gene GUK1 in the heart. In this network, it shows one major 

isoform expressed (ENST00000312726 – a) while other isoforms are minor isoforms 

which can be visualised from the fewer nodes branch out of the major network. The 

‘loop’ (ENST00000485168 – b) is derived from intronic sequence, and bifurcation of 

the networks (ENST00000469973 – c and ENST00000493209 – d) is derived from 

the processed transcript. (B) Sashimi plot. IGV reports four isoforms in this view.  

 

 

Perhaps, the simplest network analysis of GUK1 was derived from the liver due to a 

low expression level of this gene (Figure 4.12A). From the observation of this 

network, three isoforms were believed to be expressed in the liver tissue. There was 

only one major isoform, and the other two were a processed transcript. The branch 

out nodes caused by the alternatively start sites of exon 1b of major isoform 



Chapter 4 

147 
 

(ENST00000391865) and intronic sequence at exon 2 (ENST00000469973) and 

exon 3 (ENST00000485082). The intronic sequence (bIntron 2-1c and cIntron 3-4) 

can be visualised from the nodes branch out from the network. These isoforms are 

processed transcript.  

 

 

Figure 4.12: Visualisation of GUK1 transcript in the liver. (A) Network-based 

visualisation of gene GUK1 in the liver. In this network, it shows one major 

isoform expressed (ENST000003191865 - a) while others are minor isoforms which 

can be visualised from the fewer nodes branch out of the major network. The 

bifurcation of the network is derived from the processed transcript 

(ENST00000469973 – b and ENST00000485083 – c). (B) Sashimi plot. IGV 

reports five isoforms in this view.  

 

Table 4.5 shows a tissue comparison of GUK1 between brain, heart, and liver in 

three different visualisation approaches. Network-based analysis of the GUK1 gene 

transcripts co-expressed in the brain revealed that there was one major isoform 
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expressed in this tissue disagree with Sashimi plots. However, another one major 

isoform of network agrees with three isoforms in Sashimi plot. Furthermore, there 

are two isoforms was not observed from the network not shown in Sashimi plot. 

Interestingly, all major isoforms in each tissue indicate agreement between network 

and Vials. 

 

Table 4.5: Summary of visualisation analysis of GUK1 between the brain, heart, 

and liver tissue. 

 
Visualisation 

approach/Tissue 
 

Brain Heart Liver 

Network 

 

Major 

(2 major isoforms) 

a – ENST00000453943 

b – ENST00000312726 

 

Minor 

(4 minor isoforms)  

c – ENST00000366730 

d – ENST00000412265 

e – ENST00000469973 

f – ENST00000485083 

 

Major 

(1 major isoform) 

a – ENST00000312726 

 

 

Minor 

(3 minor isoforms) 

c – ENST00000485168 

d – ENST00000469973 

e – ENST00000493209 

 

Major 

(1 major isoform) 

a – ENST00000391865 

 

 

 

Minor 

(2 minor isoforms) 

b – ENST00000469973 

c – ENST00000485083 

 

Sashimi plots 

 

- 3 isoforms only 

(b, c, d) 

  

 

- 1 isoforms only (a)  

 

- 1 isoform only (a) 

 

 

4.3.4.3 Analysis of SORBS2 

Large gene is more likely to give a difficulty for most visualisation tools to visualise 

RNA-seq data. The setbacks are including determining isoform expressed to 

distinguish AS event in such gene. SORBS2 possesses a large of gene size of 371,273 

bp located on chromosome 4. It gives the challenge to visualise a large gene. This 

includes the IGV and Vials, however, these two tools have their capability and 

network analysis gives an alternative way in visualising AS. In this case, SORBS2 

was selected because it was reported as one of the most significance alternatively 

spliced exon detected using rMATS tools in tissue comparison between heart and 

liver. From the rMATS analysis for SORBS2 indicates significantly alternative 

spliced of skipped exon 27 with the FDR value of 5.57E-308. In the tissue 
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comparison of the heart vs liver, where the exon inclusion level of exon 27 is 0.9 in 

the heart and 0.35 in the liver (Table 4.3).  

 

The SORBS2 expression is strongly expressed in the heart tissue mainly in the 

nucleus. This gene is expressed in all tissues and enriched in the heart, thyroid, 

adrenal and urinary bladder.  It has 39 exons and a large number of potential 

isoforms – 64 in total, 40 protein-coding transcript isoforms, with a further 24 

transcript non-coding isoforms which include retained intron and process transcript. 

To further illustrate the SORSB2 gene across tissues, brain and thyroid network were 

also included. The number of reads in each network of the heart and liver is 8,766 

reads and 604 reads respectively. While for the brain and thyroid network consists of 

1,747 reads and 10,919 reads, respectively. 

 

Figure 4.13A is an expression profiles of 27 human tissues demonstrate that the 

SORBS2 was highly expressed in the heart, ubiquitously low expressed in other 

tissues except in thyroid, adrenal, urinary bladder, and oesophagus. Moreover, 

SORBS2 has been shown to play an important role as an adapter protein to assemble 

signalling complexes in stress fibres in the heart.  

 

An RNA-seq assembly network of the heart was examined to determine isoform 

expressed in this tissue (Figure 4.13B). The structure of this network is complex and 

important to examine it carefully. The analysis of the SORBS2 of heart, there were 

four major and three minor isoforms. The first major isoform (ENST00000393528 – 

a) is explained by the structure from exon 4 to 39. This isoform can be observed as a 

linear form where the nodes colour along the structure. It contains exon 4, 8, 13, 15, 

16, 19, 20, 22-25, 27-30, 32 to 39 (truncated exon 39).  

 

The second major isoform can be observed from the alternative 5’ start site of exon 

21 (ENST00000418609 - b) to the final exon 39+. The broken structure of exon 39 is 

an exon 39 (designated as 39+). From the network structure, exon 30 is directly 

connected to exon 32, and there is no indication of split or loop structures were 

observed. Therefore, exon 31 (white box) is completely skipped, and it is believed to 
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be spliced out during mRNA processes. When referring the gene model to Ensembl, 

there is no other isoform exactly match to this model. This would suggest the novel 

isoform was discovered but further investigation needed to confirm the novelty of 

this isoform.  

 

The third major isoform (ENST00000448662 – c) can be explained from the c-

terminus exon 39+ with skipping exon 31. However, the only differences between 

this gene model from Ensembl are lack of start exon of 6 in the network.  

 

The fourth major isoform can be explained from the big loop of exon 17 which is an 

isoform of (ENST00000437304 – d). It matches to this isoform in all exons where it 

is the only isoform had the full-length of exon 17 and reported as the second highest 

expression in the heart. Except for the first exon of this isoform where it starts at 

exon 8. Based on the Ensembl, start exon of this isoform is exon 7. However, from 

the observation of the network structure shows there is no evidence the existence of 

exon 7. This could be the possibility of novel isoform as found in the previous 

isoform and this needs further investigation to confirm the novelty of this isoform.  

 

The fifth and last major isoform is believed to be expressed in the heart is 

ENST0000428330 (e). This isoform can be observed from the branch nodes emerge 

from the network which is the alternative 3’ end of exon 18. This isoform contains 

exon 4, 8, 13-16 and last exon 18. All these five major isoforms demonstrate by the 

heavily ‘corkscrew’ structure. 

 

There are a small number of nodes emerge from the major network in this heart 

RNA-seq mapping transcript network. These structures are considered as minor 

isoforms. According to Ensembl, these minor isoforms are identified as retained 

intron and processed transcript. It is obvious from this network that the bifurcation 

was identified as minor isoforms of SORBS2 in the heart. These isoforms are 

ENST00000490779 (f) contains exon 20, 22-26, ENST00000466289 (g) contains 

exon 220, 21-24 and extended of last exon 25, and the last minor isoform is 

ENST00000498125 (h) contains exon 20, 21-25, 28-30, and 32 to 36+. All these 
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minor isoforms are supported by the heart RNA-seq mapping transcript network 

structure.  

 

A Sashimi plot was used to compare with network-based analysis. However, the plot 

of SORBS2 generated using IGV is lengthy and cannot be fit in the figure. The 

reason is that the size of the gene is large hence the IGV cannot scale it down. 

Figure 4.13C display the Sashimi plot with exon expression and junction support of 

the brain and heart. There are nine isoforms showed in this plot which are 

ENST00000284776, ENST00000355634, ENST00000449407, ENST00000393528 

(a), ENST00000319471, ENST00000448662 (c), ENST00000437304 (b) and 

ENST00000418609. Only isoform a, b and c are observed in the heart RNA-seq 

mapping transcript network.  
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Figure 4.13: Visualisation of the SORBS2 transcript in the human heart. (A) 

RNA-seq gene expression profile across 27 different tissues. SORBS2 is highly 

expressed in the heart and ubiquitously expressed in other tissues except in thyroid, 

adrenal and urinary bladder. (B) Network-based visualisation of SORBS2. In this 

network, it indicates five major isoforms expressed in the heart tissue. Three minor 

isoforms can be visualised from the fewer nodes emerge from the major network. 

The bifurcation of the networks is derived from the processed transcript. (C) Sashimi 

plot. There are nine isoforms are reported by IGV in this view.  

 

 

 

Figure 4.14: Network-based visualisation of the SORBS2 transcript in the liver. 

In this network, it shows three isoforms expressed (ENST00000431808 – an 

ENST00000437304 – b, and ENST00000470685 - c). 

 

 

Figure 4.15: Network-based visualisation of the SORBS2 transcript in the brain. 

In this network, it shows two isoforms expressed (ENST00000431808 – a, and 

ENST0000470685 – b).  
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For liver and brain tissue networks (Figure 4.14 and 4.15), there is no major or 

minor isoform can be determined due to the low expression of SORBS2 in these 

tissues. Liver DNA mapping transcript network (Figure 4.14) shows a linear 

structure with an alternative start site and AS of exon 27. There are three possible 

isoforms are believed to be expressed in this tissue. The first isoform is 

ENST00000431808 (a) start with exon 5, 8, 14-16, 19, 20, 22-25, 29-38 and final 

exon of 39. This isoform also can be observed from spliced out of exon 27. The 

second isoform can be explained from the branch out nodes of exon 7. This isoform 

is ENST00000437304 (b) contains start exon of 7, 8, 15, 19, 20, 22-26, 28-30, 32-37 

and last exon of truncated exon 39. The only isoform contains start exon of 7 is 

ENST00000437304 which also contain exon 17, however, in this network, there is 

no evidence of exon 17, and it skipped in the network. Therefore, the exon 17 in the 

gene model is designated as a white box. The last isoform is believed to be expressed 

in this tissue is ENST00000470685 (c) (retained intron) which can be explained from 

the start exon 4. 

 

From the network analysis of heart and liver, it is indicated that the agreement 

between network analysis and rMATS analysis where exon 27 is skipped in the liver 

tissue. However, the analysis performed here is not only validating the rMATS result 

but also found evidence of new isoforms in both tissues. With the comparison 

between network analysis and Ensembl, one isoform from each of heart 

(ENST00000418609) and liver (ENST0000043304) networks indicate the novelty 

however further investigation is needed.  

 

rMATS was used to analyse the differential splicing between three different tissue; 

brain, heart, and liver. However, differential splicing of SORBS2 was only between 

heart and liver. Therefore, it is worth to visualise the brain RNA-seq mapping 

transcript network as well. The brain tissue network of SORBS2 (Figure 4.15) shows 

a linear structure, broken at exon 39, with a total number of nodes is 1,747 and 

number of edges are 31,640. This reason is that the low expression of SORBS2 in the 

brain. Two isoforms are believed to be expressed in this tissue; ENST00000431808 

(a) and ENST00000470685 (b). Both isoforms can be explained from the two splits 

of alternative 5’ end.  
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Figure 4.16 shows Vials visualisation of SORBS2 from Illumina BodyMap 2.0 data. 

Four tissues, heart, liver, and brain, were selected in this view. All these three 

different tissues share common highest isoform expression which is 

(ENST0000448662 – c). The expression of this isoform in the heart, liver, and brain 

estimated in transcript per million (TPM) is 0.49, 0.63, 0.39 and 0.58 respectively. It 

is interesting the agreement between a network analysis and Vials where this isoform 

(ENST00000448662) can be observed in the heart and thyroid network transcript 

analysis.  

 

 

Figure 4.16: Vials – visualizing AS of genes. Three tissues of heart, liver, and brain 

were selected, and multiple dot plots are shown to allow comparison between these 

tissues. All four tissues indicate the same highest isoform expression which is 

ENST00000448662. TPM, Transcript per million. 

 

 

Table 4.6 shows a tissue comparison of SORBS2 between heart, liver, and brain in 

three different visualisation approaches.  Network-based analysis of the SORBS2 

gene transcripts co-expressed in the heart revealed that there were five major 

isoforms expressed in this tissue while only three and two major isoforms expressed 

in the liver and brain. One isoform indicates agreement between heart and liver 

(ENST00000437304), two isoforms indicate agreement between liver and brain 

(ENST00000431808 and ENST00000470685). However, there is no isoform indicate 

agreement between heart and brain. Furthermore, there are seven isoforms only 

indicate expression in the heart (four major, three minor). Nonetheless, there were 
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two possible of novel isoform which ENST00000418609 (exclude exon 31) and 

ENST00000437304 (include exon 17) can be visualised in the heart using network 

approach. Nonetheless, there was difficulty in visualising splicing event due to the 

vast length of the Sashimi plots of this gene. 

 

Table 4.6: Summary of visualisation analysis of SORBS2 between the heart, 

liver, and brain tissue. Asterisk mark (*) is a novel isoform detected using 

network approach. 

 
Visualisation 

approach/Tissue 
 

Heart Liver Brain 

Network 

 

Major 

a - ENST00000393528 

b - ENST00000418609* 

c - ENST00000448662 

d - ENST00000437304* 

e - ENST00000428330 

 

Minor 

f - ENST00000490779 

g - ENST00000466289 

a - ENST00000431808 

b - ENST00000437304* 

c - ENST00000470685 

a - ENST00000431808 

b - ENST00000470685 

Sashimi plots - a, b, c and d only - a, b, c and d only - a, b, c and d only 

 

 

4.3.4.4 Analysis of TPM1 

In order to explore the issues associated with the network-based analysis of transcript 

variation between tissues here, gene TPM1 was focused and examined. TPM1 was 

selected because it is widely expressed across tissues, but its expression varies 

considerably in different tissues, being particularly strongly expressed in muscle 

(Table 4.3). It has 15 exons and a large number of potential isoforms – 33 in total, 19 

protein-coding transcript isoforms, with a further 14 transcript non-coding isoforms, 

e.g.  with a retained intron or the product of nonsense-mediated decay, are recorded 

in Ensembl. Three structures of the TPM1 transcript in three human tissues (heart, 

liver, brain) networks whereas analysed using the public human RNA-seq data using 

a network-based approach.  
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The Sashimi plots show the quantitative visualisation of the RNA-seq read alignment 

of heart, liver, and brain (Figure 4.17A). The visualisation of read alignment with 

the gene model on the bottom of the plot can be visualised. Figure 4.17B shows the 

UCSC Genome Browser visualisation TPM1 of human transcriptome from the brain, 

heart, and liver platform from PacBio sequencing (Pacific, 2014). The visualisation 

is a polished, non-redundant, full-length transcript sequences are indicated for each 

tissue. In this view, the isoforms detected in the heart (blue), liver (orange) and brain 

(purple) are five, one and three respectively. It indicates partial agreement between 

PacBio and network visualisation. The disagreement is included a few transcripts 

indicate a combination exon and intron as one exon in the gene model, e.g. in the 

heart, PB.1446.2 (from exon 8 to 9b), PB.1446.3 (from Exon 9a to 9b) and 

PB.1446.5 (from exon 8 to 9b). Furthermore, in the brain which is PB.2100.1 and 

PB.2100.2 (from exon 9c to 9d). 

 

Figure 4.17: Visualisation of RNA-seq data of TPM1. (A) Representative Sashimi 

coverage plot generated in IGV indicating RNA-seq reads mapping to TPM1 locus 

from different tissue. The height of the bars represents overall read coverage. Splice 

junction is displayed as loops. The number of reads observed for each junction is 

indicated by segments, and y-axis ranges for the number of reads per exon base are 

shown (read coverage, left). The plot suggests different isoforms expressed in the 

sample is indicated by the arc connecting a pair of exons. (B) UCSC Genome 

Browse browser sequence visualisation of TPM1 from a different study of the whole 

human transcriptome of brain, heart, and liver using the PacBio platform. The 

number of isoforms detected by PacBio relatively different from the network-based 
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based visualisation. PacBio detected five isoforms in the heart (blue), one in the liver 

(orange) and three in the brain (purple). 

 

 

The number of reads in each network of heart, liver, and brain is 10,347 reads, 431 

reads, and 1,006 reads respectively. All these three networks consisted alternative 

promoter start exon 1a or 1b, mutually exclusive exon 2a or 2b, exon 3-9 with AS 

occurred at exon 6 with the mutually exclusive exon 6a or 6b. At the c-terminus, the 

transcript is spliced again at exon 9, with the choice of exon 9a, 9b, 9c, or 9d.  

 

Network-based analysis of the TPM1 gene transcripts co-expressed in the heart 

(Figure 4.18A), revealed that there was only one major isoform expressed in this 

tissue (ENST00000403994 - a) contains exon 1a, 2b, 3, 4, 5, 6b, 7, 8 and 9a/b. 

However, there appeared to be evidence of another four minor isoforms 

(ENST00000288398 – b, ENST00000267996 – c, ENST00000560959 – d, and 

ENST00000560131 – d). The minor isoforms can be visualised from the small 

branches nodes emerge from of the major network. TPM1 gene in the heart muscle 

tissue contains exon 1a, 2b, 3, 4, 5, 6b, 7, 8 and 9a/b, and it supports heart RNA-seq 

mapping transcript network structure. In the network, the isoform which uses these 

exons is deep in coverage, which can be visualised from the size of nodes. 

 

The analysis of TPM1 transcript network of the liver, there were six isoforms 

expressed. There are two major isoforms where the alternative 5’ splicing can be 

observed from the split branch at the beginning of the network (ENST00000559556 

– a, and ENST00000404484 – b). The alternative splice of exon 6a and 6b 

(ENST00000559397 – d, ENST00000358278 – e) also can be visualised from the 

network even though it was not an obvious splice event. The small branch out two 

minor isoforms can be visualised from the fewer nodes emerge from intron 6 and 

intron 9 (ENST00000560975 – c, and ENST00000558910 – f).  

 

The most complex network of this TPM1 was derived from the brain. In this 

network, eight isoforms are believed to be expressed in this tissue. There were three 

major isoforms, and the rest were retained introns. The intronic sequence can be 
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visualised from the nodes emerge from the network, for instance, intron 5, 6 and 8 

(ENST00000560975 – d, ENST00000558868 – e, and ENST00000561242 – h). In 

this network, the major isoform splice at 3’ end, which can be visualised in exon 9c 

and 9d (ENST00000559556 – a, and ENST00000317516 – b). Another isoform 

(ENST00000560959 – c) is indicated by the branching out of nodes from the 

network which contain a longer size of exon 8. Two isoforms which contains intronic 

sequence 9a1 (i9a1) (ENST00000560131 – g) and exon 9a2 (i9a2) 

(ENST00000558910 – f) were another retained intron expressed in this tissue.  

 

Histogram read count per 100 bp exon length represents a relative number of reads in 

the networks (Figure 4.18B). In the heart histogram, the major isoform uses exon 2b 

rather than exon 2a, exon 6b rather than exon 6a and exon 9a. Fewer numbers of read 

indicate the minor isoforms. In the liver histogram, the alternative promoter indicates 

two different primary isoforms from different start site which are exon 1a and exon 

1b. However, the alternative splice exon for exon 6a and 6b show the relatively same 

number of reads. Furthermore, alternative c-terminus of exon 9d only shows 

expression in the liver and brain. In the brain histogram, read count for exon 1a is 

more than exon 1b and the choices for exon 2b more over 2a. In this histogram, the 

uses an intronic sequence of intron 6b (i6b) is higher compared to another intronic 

sequence of intron 9a1 (i9a1) and 9a2 (i9a2). For the isoform that consists longer for 

the last exon 8 is designated as exon 8+ relatively indicate a similar expression with 

the intronic sequence of exon 9a (i9a). From these histograms, the level of read for 

exon 3, 4, 5, 7 and 8 is relatively higher indicating a highly conserved exon of TPM1. 

In Figure 4.18C, schematic gene representation of TPM1 gene which was believed 

to be expressed in the heart, liver, and brain. 
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Figure 4.18: Network-based visualisation of TPM1 transcripts from a different 

tissue. (A) Network-based visualisation of a heart, liver, and brain. In these 

networks, node size reflects the relative number of reads depth. For the network of 

heart, it shows one major isoform expressed while another four isoforms are minor 

isoforms which can be visualised from the fewer nodes branch out from the network. 

In the network of the liver, all isoforms are expressed almost at the same level. 

Alternative transcript initiation can be visualised from the first two branches of the 

network. The mutually exclusive exon 6a and 6b can be seen from the network while 

the retention intron of 6b and 9a can be visualised from a few nodes branching from 

the network. In the network of the brain, multiple isoforms expressed is indicated by 

the tangled branches of the network from different locations. The branch out nodes 

are supported by the gene model of human reference genome indicates that protein-

coding and retained intron which is an alternatively spliced transcript that contains an 

intronic sequence. (B) Histogram number of reads per exon per sample in each tissue 

is indicated in the network. The coloured histogram represents exon in the network 

visualisation. These isoforms are believed to be expressed in each tissue sample 

based on the network-based visualisation. (C) Schematic gene representation of 

TPM1. All isoforms expressed indicates at the top of the isoforms gene 

representation and expressed in each of the tissues; heart, liver, and brain.  

 

 

Table 4.7 shows a tissue comparison of TPM1 between heart, liver, and brain in 

three different visualisation approaches. Network-based analysis of the TPM1 gene 

transcripts co-expressed in the heart, liver, and brain revealed that there was one 

major isoform expressed in these tissues. The major isoforms expressed in the liver 

and brain shared the same isoform but not in the heart.  
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Table 4.7: Summary of visualisation analysis of TPM1 between heart, liver, and 

brain tissue.  

 
Visualisation 

approach/Tissue 
Heart Liver Brain 

Network 

 

Major 

(1 major isoforms)  

a – ENST00000403994 

 

Minor 

(4 minor isoforms) 

b – ENST00000288398 

c – ENST00000267996 

d – ENST00000560959 

e – ENST00000560131 

Major 

(2 major isoforms) 

a – ENST00000559556 

b – ENST00000404484 

 

Minor 

(4 minor isoforms) 

c – ENST00000560975 

d – ENST000005599397 

e – ENST00000358278 

f –  ENST00000558910 

Major 

(3 major isoforms) 

a – ENST00000559556 

b – ENST00000317516 

c – ENST00000560959 

 

Minor 

d – ENST00000560975 

e – ENST00000558868 

f –  ENST00000558910 

g – ENST00000560131 

h – ENST00000561242 

 

Sashimi plots 

 

 

7 isoforms 

 

7 isoforms 

 

7 isoforms 

 

PacBio 

 

 

5 isoforms 

PBB.1446.1 

PBB.1446.2 

PBB.1446.3 

PBB.1446.4 

PBB.1446.5 

 

1 isoform 

PB.1147.1 

 

3 isoforms 

PB.2100.1 

PB.2100.2 

PB.2100.3 

 

 

4.3.5 Comparing visualisation approaches 

A critical review on this visualisation comparison between network approach and 

Sashimi plots, i.e. what is agreed disagree and what is novel are presented. Four 

genes were analysed to compare between these approaches; KLC1, GUK1, SORBS2, 

and TPM1. All these genes have been subjected to the analysis to find out the 

agreement/disagreement and to discover a novelty of this approach.  

 

First, the comparison of KLC1 gene between brain and heart tissue are presented. 

Two major isoforms agreed in both brain and heart network, and one disagreed. 

However, two minor isoforms from both brain and heart are different. Regarding a 

comparison between network and Sashimi plots in the brain, there are only two 

isoforms agreed while the other four isoforms disagreed. Nonetheless, in the heart, 

all isoforms disagreed between network and Sashimi plot except one isoform.  
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Whereas for the GUKI gene, three isoforms from Sashimi plot are agreed with the 

network while the other three isoforms disagreed. It shows only one major isoform, 

and two minor isoforms from Sashimi plots agreed with the network. In the heart, 

only one isoform agreed while other three disagreed. The disagreement shows by the 

minor isoforms in network approaches. In the liver, it shows a consistency as in the 

heart whereas only one isoform agreed with the network while other two disagreed. 

The disagreement shows by two minor isoforms in the network approaches as well.  

 

In the comparison in SORBS2 of network and Sashimi plot approaches, agreement, 

disagreement and novel isoform were found. In the heart, four isoforms in Sashimi 

plot agreed with the network while three isoforms disagreed. However, it appears 

that two isoforms are novel found in the network compared to the plot. Likewise, in 

the liver, only one isoform disagreed shows only in Sashimi plot while one isoform 

found to be a novel isoform.   

 

Finally, for TPM1 gene, there are two isoforms in the Sashimi plot disagreed with the 

network while only one isoform disagreed in the liver. For the brain, it all agreed 

between network and Sashimi plots. However, none of the isoforms found in the 

PacBio disagreed with the network.  
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4.4 Discussion 

Our understanding of gene expression has been revolutionised considerably over the 

last decade, mainly because of technological improvements. High-throughput 

sequencing of cDNA (RNA-seq) has generated enormous amounts of gene 

expression data that are deposited in public repositories, e.g. ArrayExpress. These 

data are accessible to every biologist to reuse and further analyse the data. This 

includes when it comes to analysing human transcriptome which comprises a large 

number of tissues to be sequenced. Therefore, public RNA-seq data set becomes a 

choice to explore network-based visualisation across human tissues. Many tools for 

quality control exist to process these public data which typically come as a ‘raw’ 

FASTQ files. These data are then set for mapping to the genome or transcriptome 

data, and subsequently, ready for differential expression and alternatively spliced 

analyses. These data can be visualised using a tool such as IGV, and splice variation 

across multiple samples can be inspected using Sashimi plot. The data are usually 

summarised as read densities while junction reads are collapsed into arcs whose 

width is proportional to the number of reads spanning the exons connected by the 

arc. However, when the multiple transcripts have been expressed for such gene, the 

arcs that display the junction connection is difficult to explain as discussed in 

Chapter 3. 

 

The first half of this chapter aims to perform a quality control of human tissue atlas 

RNA-seq data using a network-based approach. But this time, it would be based on 

the correlation in expression between genes and samples. In this method, the RNA-

seq data are performed as sample-to-sample clustering expression profile as a mean 

for quality control. In this context, nodes represent samples and edges are denoted as 

the correlation between samples. In this situation, samples with low correlation 

within the same tissue type are sparse or separated from the main cluster. This 

provides a way to identify the low quality of these samples. Furthermore, lowest 

correlation values within a group of tissues where all tissue samples had high inter-

tissue correlation values; the read count was used as the basis to remove samples. 
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Top 20 clusters were subjected to functional annotation with GO terms and its p-

value. This analysis is based largely upon the human GO terms content. Moreover, 

the importance of such co-expression information is evident in the analysis of genetic 

data. It can be deduced the possible phenotype of a mutation in any specific gene 

from its pattern of expression. There are a number of GO terms that were not 

expected in the list, e.g. Cluster 4 with profile description of lymph node, spleen, and 

appendix. This cluster has GO terms of digestive, digestion system process and 

xenobiotic metabolic process. The reason of this case that these analyses examine the 

gene list for the event of GO terms that are more ubiquitous in the query gene list 

than expected by chance (Yon Rhee et al., 2008). Therefore, over-represented terms 

may preferentially and differentially regulate in such cluster. A feature of GO that is 

both a strength and a limitation is its hierarchical structure. Even though efforts have 

been made to explain this structure in GO enrichment analysis (Jantzen et al., 2011), 

it can still be hard to resolve which level of the hierarchy is most liable for the 

statistical enrichment. Usually, the most enriched terms often are broad functional 

categories which can be of limited use to inform new functional insight. 

 

BioLayout Express3D (Freeman et al., 2007; Theocharidis et al., 2009) is a tool for 

the analysis of large complex expression datasets, e.g. microarray and RNA-seq. The 

principle of co-expression is that a gene-to-gene comparison of expression of value 

across human tissue is performed by calculation of a Pearson correlation matrix, 

which is the main statistical measure in the tool. Therefore, with given any gene 

comparison, the Pearson value can range from +1 (perfect correlation) to -1 (perfect 

anti-correlation). A graph derived from any correlation cut-off value includes genes 

that are related to the expression of others above the selected threshold. 

Consequently, a decrease in this value results in the production of a more complex 

graph, while an increase in this value results in a less complex graph.   

 

A limiting factor in network analysis is the current inability to know upfront what 

portions of the data might be worth visualising as a DNA mapping network and to 

examine more than one network at a time (see Chapter 3). Many existing tools are 

used to detect splice variants such as DEXSeq (Anders et al., 2012),  or rMATS 
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(Shen et al., 2014) before network construction. This way, time is not wasted 

creating large uninformative visualisations of linear transcripts. For this reason, a 

tool for detecting alternative splicing (AS) is needed. Therefore, the second half of 

this chapter aimed to explore, analyse, and visualise network DNA sequence for 

examining differential splicing using rMATS packages that have already been 

developed and widely used for differential splicing analysis. The rMATS package 

provides a framework for analysing experiments with multiple sample groups; also, 

it provides robust statistics using network graph to identify and compare the AS 

analysis with Sashimi plot and Vials. However, the main issue with the rMATS 

approach is able to perform only pairwise analysis and prevent genome-wide analysis 

of human AS. The expression of an alternatively spliced gene is essential to produce 

a network adequately. Thus, a minimum threshold of expression, the inclusion of 

exon level, and a p-value of an alternatively spliced gene were applied to rMATS 

result to produce a gene list.  

 

Here, I explore the potential of network visualisation to compare an alternatively 

spliced exon reported from rMATS tool between tissues, and to interpret isoform 

expression. In principle, when the exon is being skipped, the number of junction 

reads of that exon is low. The resultant network of that skipped exon can be easily 

visualised between tissues. The network is shown here of KLC1, GUK1, SORBS2, 

and TPM1 illustrate results of rMATS. In the analysis, not only the network of a 

skipped exon can be visualised, but also multiple isoform expression can be 

determined. In the previous chapter (see Chapter 3 section 3.3.3.3), I observed an 

issue with a secondary structure within an exon of human fibroblast cell (CENPO 

and ADCY3). While in the case of KLC1, another structure appeared on the network 

and was observed as a separate structure. In my analysis, it showed that it was an 

APOPT1 whose gene location within KLC1 locus. This issue is most probably related 

to my pipeline where GenomicRanges tool was unable to extract read mapped based 

on gene name and not gene location, i.e. artefact. Transcript network of KLC1 in the 

brain possesses a ‘thinning’ structure which corresponds to an immediate reduction 

of sequence reads within exon 6. The possible reason is that when an aligner does not 

align any reads with intermediate indel, there is a significant coverage drop around 
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the indel region. It may affect downstream differential expression analysis between 

samples with and without the indel. The significant drop may also potentially lead to 

a false alternative splicing event at this exon (Sun et al., 2016). An alternative splice 

variant skipped exon 15 is apparent in the network visualisation of KLC1.  

 

Perhaps, the simplest network graph comparison between tissues is GUK1. The 

transcript diversity of GUK1 in the brain, heart, and liver was analysed. GUK1 is 

ubiquitously expressed in all tissues and mainly function as a housekeeping gene, 

which is related to metabolism and pathway. The GUK1 role in catalysing the 

transfer of a phosphate group is essential in these tissues. Meanwhile, network 

analysis of these tissues shows agreement with rMATS analysis with skipped exon 2 

in the brain and liver. The different role of exon 2 is mainly functioning in the heart 

and study by Joehanes et al. (2013), discovered that GUK1 is associated with 

coronary heart disease (CHD). Furthermore, the highest isoform expression in the 

Illumina BodyMap 2.0 agreed with the network analysis which suggested that 

network analysis has a potential to deduce an isoform expression in RNA-seq data. 

 

In the case shown here, the SORBS2 transcript diversity from four different human 

tissue, heart, liver, brain, and thyroid was examined. SORBS2 is highly expressed in 

the heart where it functions as an adapter protein to assemble signalling complexes in 

stress fibres. The skipped exon 31 event in the DNA network transcript of SORBS2 

in the heart and 17 in the liver suggest new isoforms expressed in these tissues; and if 

these new isoforms are still not clear, then further investigation is needed. Also, in 

the heart RNA-seq mapping transcript network, no evidence of exon 6 structure 

suggesting there is no transcriptional start site from this exon, but this isoform is the 

only one that supports the skipped exon of 31 and full-length exon 39. This isoform 

also appears in the thyroid network and suggests the same protein function in the 

heart and thyroid tissue. In the liver RNA-seq mapping transcript network, there also 

appears a skipped exon 17; but based on the Ensembl gene model, only this isoform 

supports the start exon 7. However, this would not be convincing as the expression 

level of SORBS2 is low in the liver tissue. The expression level of SORBS2 in the 

liver and brain is approximately ten times lower than in the heart, which suggests the 
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different role in signalling complexes. It is interesting that the highest isoform 

expression of SORBS2 in Illumina BodyMap 2.0 of these four tissues is only found in 

the heart and thyroid; hence, this would be based on the expression of tissue-specific 

isoform. This is the reason why this isoform is not being expressed in the liver and 

brain. Another interesting note is that using network analysis; non-coding transcript 

can be detected and comparison to Sashimi plot is much clearer to identify the 

transcripts. 

 

In the case shown here, TPM1 transcript diversity in RNA-seq data derived from 

three human tissues, heart, liver, and brain was examined. Tropomyosin 1 is most 

heavily expressed in the heart (and other muscles) where it functions as an actin-

binding protein involved in the contractile system of muscles. A dominant and 

possibly sole functional transcript isoform is expressed corresponding to muscle 

expressed isoform of the protein. Also, a relatively small number of reads mapped to 

exon 2a and terminal intron sequences suggests the presence of a low number of 

other transcript isoforms. However, it is not clear whether these represent 

transcriptional noise or transcription of these isoforms by cell types present in low 

abundance. Expression levels of TPM1 in the liver and brain are approximately ten 

times lower than in the heart. In these tissues, tropomyosin 1 is thought to play 

different roles in a cytoskeletal organisation. The two RNA assembly networks 

generated for TPM1 exhibited complex topologies. Through studying these networks 

and mapping this information back to the Ensembl transcript models for this gene, up 

to 6 transcript isoforms to be expressed in the liver, 10 in the brain were expressed. 

This is largely based on the presence of the data of reads mapping back transcript-

specific exons. Despite the availability of network visualisations and other 

visualisation tools, interpreting these data is difficult. These types of transcript 

assemblies are inherently complex. It is interesting to note that the publicly available 

PacBio analyses of these three tissues were only in partial agreement with my 

analysis. Many transcript isoforms suggested by my analysis were not reported in the 

PacBio data. However, it also appeared that in our analyses, the use of only reads 

that mapped to exons for network construction failed to represent transcribed intronic 

regions observed in the PacBio data. 



Chapter 5 

169 
 

Chapter 5 – Evaluating the usability of network-

based visualisation approach using NGS Graph 

Generator & BioLayout Express3D 

 

5.1 Introduction 

The use of visualisation tools for RNA-seq data analysis and exploration of 

alternative splicing (AS) plays an essential role in research using next-generation 

sequencing (NGS). Unfortunately, many of existing visualisation tools are still 

showing read stack to the reference genome. Therefore, a network-based 

visualisation pipeline was developed to provide an alternative way to visualise splice 

variation. This pipeline is implemented as a web-based application named – NGS 

Graph Generator. Using this application, one can produce a network of a transcript of 

RNA-seq data and visualise it using the BioLayout Express3D software. However, to 

ensure that the network-based visualisation approaches useful, a number of 

participants were asked to evaluate and give feedback.  

 

One of the best and most popular methods to find issues with any new visualisation 

approach is usability testing (Nielsen, 2012; Rubin et al., 2008). Usability testing is a 

cost-effective approach to study how users interact with a new tool. Usability testing 

asks participants to perform representative tasks using the tool and observes what 

they do, where they have difficulties, and where they succeed (Nielsen, 2012). The 

usability test was carried out by the network-based visualisation pipeline (NGS 

Graph Generator) described in Chapter 2. The work described in this chapter aimed 

to gain user feedback to understand the usability and interpretability of network-

based visualisations of RNA-seq data. Understanding the user experience gives an 

opportunity to improve the pipeline and the application. By improving the web 

application based on participant needs, it can help and aid in the visualising RNA-seq 

assemblies as a network better. This test focuses on two aspects. First is how 

usability testing will be used to improve the application and draws implications for 
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analysis. Second, it focuses on the survey responses based on network-based 

approach.  

 

Therefore, the objectives of this usability test were: 

1) To conduct a usability test involving a small group of participants to evaluate 

ease of visualising, ease of application use, and participant satisfaction. 

 

2) To focus on getting to know the design context and identifying the task 

participants experienced to be most challenging.  

 

3) To focus on how the workflow of the application should be designed to 

support the participants work best.  

 

5.2 Method 

5.2.1 Test metrics 

Usability is measured using a number of observable and quantifiable metrics that 

overcome the need to rely on simple intuition. A few of the metrics that were used in 

this usability test were referred to the website (www.usability.gov) resource for user 

experience (UX) best practices and guidelines. The test metrics were as follows: 

 

5.2.1.1 Successful task completion 

Each situation needs the participant to attain specific data that would be used in a 

typical task. The situation is completed when the participants indicated they had 

found the answer or completed the task goal. 

 

5.2.1.2 Critical errors 

Critical errors are differences at completion from the goals of the task. For instance, 

reporting the wrong figure in the gallery due to the participant’s behaviour such as 

they were not concentrating on the task given. Ultimately the participant will not be 

able to complete the task. A participant may or may not be aware that the task goal is 

wrong or incomplete. 
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5.2.1.3 Non-critical errors 

Non-critical errors are errors that do not interfere with a participant’s ability to 

complete the task but result in the task being completed less efficiently. For instance, 

an exploratory action such as opening the wrong navigation menu or using a control 

incorrectly is non-critical errors. 

 

5.2.1.4 Likes, dislikes, and future recommendations 

Participants give what they liked most or what they liked least about the application, 

and provide future recommendations for improving it. 

 

5.2.2 Usability test 

The test was conducted by allowing the participant to complete several tasks. This 

includes generating a layout file from the web application NGS Graph Generator, 

downloading the file and visualising the layout file using the BioLayout Epxress3D 

software. The tasks were read to them and their activities observed. This process will 

allow determining any potential problems or mistakes during the test. 

 

5.2.2.1 Session introduction 

Five participants were given an introduction verbally. The introduction was read to 

the participants to ensure that all participants receive consistent information. The 

participants were briefed on the expectation from the test. Then, they were given a 

chance to raise any questions or concerns regarding the application. The main ideas 

of the brief introduction were to ensure the participant feel relaxing and know what 

they are going to do in the test. Another three participants were completing the task 

by themselves on their computer, and returning a form with comments via email.  

 

5.2.2.2 Pre-test briefing 

A short prerequisite training was conducted before giving the participants the tasks to 

ensure that all participants had a basic knowledge of BioLayout Express3D. It 

involved explaining how a network-based visualisation in our case typically looks 

like and how it works. I also demonstrated a bit of the application, basic operations 

such as selecting “Gene”, “Parameters” and “Layout” file and how this correlated to 
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the determining alternative splicing. Participants from the outside of the Institute had 

familiarised themselves with a tutorial page on the website (http://www.seq-

graph.roslin.ed.ac.uk/tutorial). 

 

5.2.2.3 Tasks 

Six tasks were created for the usability participants to try completely in a half hour 

session. The first three tasks were relatively simple to ensure the participant more 

comfortable and get a sense of usability testing. The last three tasks were a bit 

difficult than the first three tasks. The tasks were designed by looking at the context 

of the application and how it can be used by the real participants, i.e. biologist. By 

understanding the context and having developed the application with my colleagues, 

a list of tasks that emulated real-world practice was created. There were six tasks 

were laid out for the participant to perform this usability test (Table 5.1).  

 

Table 5.1: Usability test task. Six tasks were given for participants to perform in 

this test.  

 

No. 

 

 

Task description 

 

  1. Can you show a figure of CERS5 gene in the gallery? 

 

2. Can you view the Ensembl browser in that gene? 

 

3. Can you download and open CERS5 gene in BioLayout Express3D/Miru 

software? 

 

4. Can you generate an LRR1 gene of NDHF (24h) layout file from the 

application using default setting without removing redundant reads? 

 

5. Can you open the file and explain about the network of LRR1? 

 

6. Can you show the ENST00000627738 isoform? 

 

 

5.2.2.4 Questionnaire survey 

A questionnaire survey was sent out soon after the usability test to find out what they 

experience with the application. In this questionnaire, they were allowed to choose 

more than one answer. 

http://www.seq-graph.roslin.ed.ac.uk/tutorial
http://www.seq-graph.roslin.ed.ac.uk/tutorial
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5.2.2.5 Participants 

The NGS Graph Generator pipeline was developed for the biologist who lacks 

bioinformatics background but has an interest in splice variation. The participants 

were first recruited by sending an email as shown in Appendix A (Supplementary 

Material Chapter 5). The time and location were scheduled based on the availability 

of the students and staff.  

 

Eight participants participated for the usability survey. Five participants were from 

The Roslin Institute, while three were from the outside of Institute. Six people tested 

were familiar with the BioLayout Express3D/Miru software, while others were not 

familiar (Table 5.2). Some had even used the software and worked on expression 

data and RNA-seq but used different approaches and methodologies to its analysis 

such as R and other open-source software tools. They also worked with computers on 

a daily basis such to perform bioinformatics analysis. There were four PhD students, 

two postdoctoral researchers, one bioinformatician and one programmer took part of 

this usability and questionnaire survey. However, none of them was familiar with the 

network-based approach to visualising RNA-seq data as a network.  

 

Table 5.2: Breakdown of participants who participated in the usability test and 

questionnaire survey with the familiarity of BioLayout Express3D/Miru software.  

 

Aspect / Location Roslin Outside Roslin 

Usability test 5 3 

Familiarity with BioLayout 

Express3D/Miru 
5 1 

 

5.2.2.6 Location and usability setup 

Five participants from the Institute took the test in the PhD Thesis Writing’s room at 

Alexander Robson Building, The Roslin Institute. It was a basic setup comprising of 

a desk with a computer fitted with a high-spec graphics card. Three participants from 
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the outside of Institute were performing the test by themselves and returning a task 

form with comments via email.  

 

5.3 Results 

5.3.1 Successful task completion 

This section shows task completion results. The participants were measured by 

determining if they passed or failed each task. The summary of the results (Figure 

5.1) shows how many participants that passed or failed each task. In the results also 

shows that only one participant was unable to find a network gene in the gallery in 

task 1. Three participants failed in task 2 where they failed to open the Ensembl view 

of the selected gene. It also shows that three participants failed to download and open 

the layout file using BioLayout Express3D/Miru. Half of the participants failed in task 

4 where they failed to generate network assembly from the web application. Lastly, 

the results show that at least five participants failed to complete task 5 and 6. Task 5 

involved opening and understanding how information the layout file and task 6 

showing a specific isoform from the nodes class button. Figure 5.1 shows the number 

of participants that successfully finished tasks 1-6. 

 

Figure 5.1: Amount of people who completed each task. 

 

5.3.2 Finding a network figure of a gene 

Only one participant was unable to locate a CERS5 gene in the gallery. When asked 

to find the gene, the participant struggled to locate the gene in the gallery and tried to 

find it using a control+f function. While the other participants were able to find the 
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gene even though they were having difficulties to find them at first. They finally 

discovered that they needed to hover a mouse pointer on the network of CERS5 gene 

image (Figure 5.2). On the other hand, two participants were unable to view the 

Ensembl record for CERS5 gene or download the layout file (Figure 5.3).    

 

Figure 5.2: Finding network assemblies of a gene. Participants need to hover on 

the network image box to find a gene name. A grey transparent box showed CERS5 

gene when a mouse hovered on this box.  

 

Figure 5.3: CERS5 gene information. The gene information box opened when the 

box is clicked. The information includes the gene name, description, sample, 

parameter, the number of nodes and number of edges. Three different buttons appear 

on this gene which is a set of a link to Ensembl, GeneCard and a button to download 

a pre-set layout file of this gene.  
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5.3.3 Generating a layout file 

Half of the participants did not understand how a network visualisation of RNA-seq 

worked. When asked to set up generate a layout file of the specified gene they 

thought they were supposed to download the network file in the gallery without 

having created the file from “Generate A File” tab (Figure 5.4). The participants all 

swiftly recovered from this error when they saw that they had no file to select from 

the gallery. This problem can be improved by placing the “Generate A File” in front 

of the web application rather than on the separate page. This separation is to ensure 

that the application of NGS Graph Generator as the main on the website.  

 

 

Figure 5.4: A network-based visualisation pipeline page. A network is created 

from ‘Generate A Graph’ page. In this page, a participant will select a suitable 

parameter to generate a layout file.  

 

 

Another problem occurred to most of the participants after submitting a job to 

generate a layout file on this page shown in Figure 5.5. Participants confused with 

the information and no result shows on this page. However, after a while, all the 

participants were able to click on ‘All results’ button to go to the result page (Figure 

5.6). On this page, the processing time froze, but most of the participants were 
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eagerly waiting for the result to appear. Ultimately, only two participants could 

figure out by clicking the refresh button on the browser, and the results appeared on 

the page.  

  

 

Figure 5.5: Job sent confirmation page. On this page shows a successful job 

schedule from the previous page. A confirmation email was sent to a participant for 

validation. In this page contains a button link to glossary and results of a running job.  

 

 

 

Figure 5.6: Result page. A result page appears if a button ‘All results’ is clicked 

from the previous page. It shows an ID, description of gene and the parameters used, 

time, processing time and the status of the process. However, the processing time 

remains freeze (A) unless the participant clicks the refresh button on the browser. 

The time and the layout file are ready to be downloaded shown in (B). 
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5.3.4 Opening BioLayout Express3D 

One participant failed to open the BioLayout Express3D software to visualise RNA-

seq as a network. The participant instead tried to open the layout file itself rather than 

imported into the software. 

 

5.3.5 Visualising network using BioLayout Express3D 

Four of eight participants failed to find the node class for isoforms information in 

BioLayout Express3D. The main problem of the participants was finding where to run 

the application form and where to select isoforms from the class. This could be 

considered a major problem if they were not realised what the network of RNA-seq 

meant. Another major concern by the participants was that the lacking information in 

the network which was a great disappointment such as sequence coverage, 

chromosome information and information of comparison network and another 

method. 

 

5.3.6 Determining alternative splicing in the network 

All participants could find and explain alternative splicing isoform in the network. 

However, this is not straightforward visualising as this need careful viewing on the 

software.  

 

5.3.7 Questionnaire survey 

A questionnaire was sent to the participants by email, requesting them to answer 

after usability test. This questionnaire was answered by all eight participants, and 

they can choose more than one answer. 

 

5.3.7.1 Question 1: What field are you working on? 

In the first question, most of the participants are working on both genomics and 

transcriptomics field (Figure 5.7).  

 



Chapter 5 

179 
 

 

Figure 5.7: Question 1: What field are you working on? 

 

 

5.3.7.2 Question 2: What organism are you working on? 

In the second question, half of the participants are working with a human while 

others are working with pig, sheep, mouse, chicken, dairy and buffalo (Figure 5.8).  

 

Figure 5.8: Question 2 - What organism are you working on? 

 

 

5.3.7.3 Question 3: How do you analyse your RNA-seq data? 

In the third question, five participants responded they used open source software and 

BioLayout Express3D to analyse their RNA-seq data. While four participants used R 

package and one participant analysed using SQL (Figure 5.9).  
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Figure 5.9: Question 3: How do you analyse your RNA-seq data? 

 

 

5.3.7.4 Question 4: How do you visualise your RNA-seq data? 

In the fourth question, the participants were asked about the software or tools they 

are using to visualise their RNA-seq data. The response shows most of them (90%) 

are using Integrative Genomic Viewer (IGV) to visualise RNA-seq data followed by 

Sashimi plots (70%) and Integrative Genomic Browser (IGB) (20%) (Figure 5.10). 

These tools are very common among researchers who are working on genomics and 

transcriptomics study. However, only one participant is using Artemis to visualise 

the data and one participant unable to answer the question.  

 

 

Figure 5.10: Question 4: How do you visualise your RNA-seq data? 
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5.3.7.5 Question 5: How do you find visualising your data using 

IGV/Sashimi plot? 

In the fifth question, the participants have shown a figure of RNA-seq data using 

IGV viewer and Sashimi plot (Figure 5.11). Most of them (87.5%) responded that 

visualising the data using IGV and Sashimi plot was hard or medium while only 

12.5% of them responded easy (Figure 5.12).  

 

 

Figure 5.11: Visualisation of RNA-seq data using (A) IGV and (B) Sashimi plots.  

 

Figure 5.12: Question 5: How do you find visualising your data using IGV/Sashimi 

plots? 

 

 

5.3.7.6 Question 6: Have you ever used BioLayout Express3D/Miru for 

visualisation? 

In the sixth question, the participants were asked whether they had experienced using 

BioLayout Express3D/Miru for visualisation purposes. The responses show that seven 
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participants have used this software while only one participant has not used this 

software (Figure 5.13). 

 
 

Figure 5.13: Question 6: Have you ever used BioLayout Express3D/Miru for 

visualisation? 

 

 

5.3.7.7 Question 7: Do you know that we can visualise RNA-seq 

assemblies of a gene as a network in BioLayout Express3D/Miru? 

The response was same from the previous question presuming they were unaware of 

this software for visualising purposes. 87.5% response they did not know while 

12.5% response they knew you could look at the RNA-seq assemblies (Figure 5.14). 
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Figure 5.14: Question 7: Do you know that we can visualise RNA-seq data of a 

gene as a network in BioLayout Express3D/Miru? 

 

 

5.3.7.8 Question 8: Here is an example of a RNA-seq data of LRR1 gene 

using network-based visualisation. How do you find this network 

visualisation (i and ii) of LRR1 gene compare to Sashimi plot (iii) in 

terms of splice variant? 

In this question, a figure showing two different approaches visualising RNA-seq 

data; network approaches using BioLayout Express3D (i and ii) and Sashimi plots (iii) 

(Figure 5.15). For this participant mostly responded that splice variant from network 

visualisation better than Sashimi plot in terms of distinguishing between variant. The 

looping of LRR1 indicates the alternative splicing exist in the data. Some of them 

responded it is more intuitive and illustrative to understand the splice variant 

compare to Sashimi plot. One of them responded that the colour-coded of an exon 

was helped to determine splice variant. 
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Figure 5.15: Network visualisation of LRR1. (i) Network-based visualisation of 

LRR1 gene (ii) Zoom-in splice variant of LRR1, (iii) Sashimi plot of LRR1.  

 

 

5.3.7.9 Question 9: Will you use NGS Graph Generator in the future? 

In this question, most of them answered ‘Yes’ with 62.5% of them and 37.5% 

answered ‘Maybe’. However, none of them answered ‘No’ (Figure 5.16).  

 

 

Figure 5.16: Question 9: Will you use NGS Graph Generator in the future? 

 

 

5.3.7.10 Question 10: What do you like about NGS Graph Generator? 

Explain. 

In the tenth question, the participants were asked about what they like about NGS 

Graph Generator and its approaches. Most of them like the way of its visualisation 

which gives them an alternative way to visualise NGS data that complements with 
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other methods. Easier to generate a network of gene interest and much better than 

Sashimi plot when visualising alternative splicing. The networks are very intuitive 

and aesthetically pleasing network graph generated from this approach. Some of 

them responded that the network approaches different from existing approach. One 

of them responded graph network is nice, distinguishable exon by colour-coded and 

easy to understand.  

 

5.3.7.11 Question 11: What do you dislike about NGS Graph Generator? 

Explain. 

In this question, the participants were also asked about on what they dislike about 

NGS Graph Generator. It is important to improve web application in the future. In 

the response, some of the participants responded it could be difficult to visualise the 

splice variant loops in 3D as other parts of the graph may hide them. General 

difficulty in interpreting what the graph structure signifies apart from splice variant 

loops. Some of them responded the network could be confused to analyse. A major 

problem for them is to wait quite a long time to generate a large gene. When they 

were laying out the network, and their computer crashed.  

The most important feedback on network approaches lack information such as 

sequence coverage, chromosome location and comparison to the reference sequence 

(genome) can be hard to the participant. Other than that, the network can be 

confusing to identify the exon location. They also find hard to determine which 

isoform and alternative splicing. Several participants responded it was hard to 

determine which isoform that has been spliced and they need to be more careful in 

analysing and visualising the data. The major problem is that they confused about the 

next things to do after generating this network. 

 

5.3.7.12 Question 12: Can you give overall feedback, suggestions or 

recommendation for this application, NGS Graph Generator? 

In the final question, the participants were asked to give overall feedback to improve 

this NGS Graph Generator. Some of the participants responded it is a good web 

application for NGS data analysis but need to put more effort to improve the pipeline 

as well as the participant experience on analysing the data. This feedback would 
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change the overall network approach. They suggest that this would be a 

complementary to current existing approach. It will be more popular if it becomes an 

interactive platform.  

 

One of the participants suggests that the NGS Graph Generator should work solely 

without needing to export the map into BioLayout Express3D/Miru for better 

visualisation. It might output a report document with information and graph statistics, 

e.g. transcript list and links to Ensembl database. The NGS Graph Generator should 

allow the participant to create an account on the website to save results. 

 

Some participants concerned about the time for generating the network. They 

suggested this need to be improved especially when laying out time and if it is 

possible to faster the process of generating the network. One of the participants 

suggests that we should simplify graph and make a comparison output with Sashimi 

plot. This world will be a better comparison with another method. This simplified 

graph would make faster to layout a graph.  

 

While in the aspect of network approaches, the respondents mentioned that the 

network graph is a valuable resource for the analysis of NGS data especially in 

analysing alternative splicing of genes. They satisfied with the approaches because of 

easy-to-understand data. The ways to visualise splice variants is easy to use the tool, 

and it provides an interesting option to visualise transcript isoforms.  

 

One of them gives feedback that this approach is a more intuitive and aesthetically 

pleasing method for analysing transcript variants than the current standard of Sashimi 

plots. This would be most of the participants suggest adding more information to the 

graph so then will be easy to understand the graph and determine the splice variant. 

Improve by adding more information such as sequence coverage, chromosome 

information, type of splice variant and possibility of splice variant graph. They 

suggest if it had information prior generating the graph before creating the graph.  
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5.4 Discussion and future recommendation works 

There are some proposed directions and future work based on the results of this 

usability test and questionnaire survey. The results are important to evaluate and 

improve the usability and effectiveness for more various and complex analysis 

problems. In addition to making some of these features available in a future release 

of NGS Graph Generator, this has helped to improve the process of developing new 

features.  

 

First of all, the user interface (UI) can be quite a problem a first-time participant 

specially to generate a graph. The UI is not straightforward; however, it can be 

improvised to enable the participant to generate a graph directly from the website 

easily. A search tab feature can be included to ensure the accessible and easy when 

searching a network of a gene in the gallery. Several features are still required to 

support the usability of the web application.  

 

Another feature can be introduced in the web-application is to include a ‘compare 

and contrast’ between network-based visualisation and another visualisation tool 

output, i.e. Sashimi plot. Providing a Sashimi plots side-by-side to the network 

would be better to compare and contrast between two approaches. This would be 

beneficial to a participant to confirm a splicing variant from two different tools.  

 

Lacking information on the network such as read depths was one of the major 

complaints of the network approach. To improve this, the pipeline should process 

data that include read coverage information on the nodes to ensure the analysis using 

network-based which is similarly offered by tools such as IGV/Sashimi plots. 

Furthermore, parameters to generate a network, such as a graphical summary of 

network analysis of multiple sample/tissue could be added hence improve the 

usability of the tool. A participant voiced his minor dislike for a gallery on the 

website. In particular, the gene name of each network in the gallery needs to hover 

over the images to find the gene name. This process will be easier if the website has 

the search bar to find the desired gene.  
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All participants struggled to find the class set options, and they had to do some 

exploration on the web application to find them. An example of this was where they 

had to change the isoform information. Most them thought it was automatically open 

the isoform information when they open up the layout. While most of them are 

impressed the way, they visualise the network of RNA-seq, some of them found it 

difficult to know what they should do next and without the gene model or Ensembl 

browser to compare.  

 

A long waiting time to generate a graph would be a major problem most of the 

participant. However, this could be improved by providing an estimation time for the 

application to finish generating a graph. The participant could be warned if the gene 

of interest is large and uniquification feature should be used. This test shows that this 

application which already online could improve regarding their usability. The 

deficiencies found, lead to longer analysis time and confusing with a high potential 

of dislike to participants. Therefore, it seems to be necessary for the new algorithm to 

be implemented for the visualising of the big and large network. From the output of 

the test, it can be assumed, that mixed satisfying and unsatisfying usability bears a 

high potential for improvement in the future. Therefore, it is necessary to improve 

the user experience regarding usability and to implement these findings into the 

application improvements.  

 

5.5 Conclusions 

The focus during the development of NGS Graph Generator was to develop an 

alternative tool for visualising RNA sequencing data. A normal extension is toward a 

general statistical analysis such as the number of read coverage in the graph 

compared to other methods. My vision is to eventually encourage the biologist also 

to generate and analyse their RNA-seq data themselves and make them accessible 

through a personal account. Although most biologists would like to visualise their 

data better, the platform and visualisation tool must first be adopted by them. Hence, 

for now, this web-based application needs to continue including a different feature to 

the existing pipeline. 
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Chapter 6 – General discussion and 

conclusions 

 

High-throughput sequencing of RNA (RNA-seq) for the first time allows concurrent 

measurement of sequence and expression of RNAs. However, analysis of RNA-seq 

data remains a challenge for many biologists. Data generated by these platforms are 

large and complex, and the need to analyse these data has necessitated the 

development of novel bioinformatics approaches for mapping, analysis, and 

visualisation. A number of NGS visualisation tools can be used to examine the data 

including GBrowse (Donlin, 2002), BamView (Carver et al., 2010), UCSC Browser 

(Kent et al., 2002) and perhaps the most popular, Integrative Genomics Viewer 

(IGV) (Thorvaldsdóttir et al., 2013). In these cases, visualisation of RNA-seq data 

involves showing reads stacked onto a reference genome. Furthermore, these 

visualisation tools offer numerous useful features including flexibility to display read 

abundances on exons, transcripts, and junctions. Even though the Sashimi plots have 

prominent features, it also does have its limitations when it comes to a complex 

genome or transcript assemblies. The constraints include difficult to spot errors in 

assembly, to visualise splicing event and to deduce isoform expression.  

 

Data visualisation is increasingly recognised as a key element of genomic and 

transcriptomic data analysis since it allows large and complex datasets to be better 

understood. However, interpretation of the data from visualisation tool is critical and 

essential to incorporate into findings. There are many ways to overcome the 

limitation, but an approach that has been gaining traction in biological research is 

derived from an application of network visualisation and analysis methods. Networks 

consist of nodes which usually represent an entity, e.g. genes, transcripts or proteins 

connected by edges i.e. lines where edges are experimentally or computationally 

derived relationships between them.  

 

This thesis presents four stages of a study examining a novel means of analysing 

RNA-seq data through its visualisation as RNA-seq assembly networks. I have 
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developed a novel data processing pipeline to generate files for network construction. 

Furthermore, I have focused on the application of this method to study human 

transcript diversity in data derived from human cells and tissues where visualisation 

of resulting network allows for a deeper understanding of transcript structure, splice 

variation and issues with sequence assembly. Finally, I focused on usability test for 

NGS Graph Generator and BioLayout Express3D application.  

 

My first task was to develop a pipeline to process RNA-seq read mapping ready for 

network visualisation which had been described in Chapter 2. The pipeline consists 

of a combination of different scripts was written in various programming languages 

and statistical packages such as Python, Bash, Perl, and R. However, this could be 

enhanced to enable a seamless integration of pipeline by using a single type of 

language rather than multiple languages. For instance, Ruby which is described as 

more intuitive and easier programming language to implement in this pipeline 

developed here, even though it is a less popular programming language compared to 

C++, Python, or Perl. This pipeline can also be implemented using web application 

framework such as Ruby on Rails (ROR) which allows multiple users to generate 

multiple data. Ultimately, the framework will be able to provide a seamless way to 

analyse and visualise RNA-seq data. With the revolution of the NGS sequencing 

machine and the affordability of sequencing more samples nowadays, this pipeline 

can evolve to become a better tool for network visualisation of NGS data which can 

be a method choice in the field of biology.  

 

The pipeline has been devised to go from raw RNA-seq data mapping file to a file 

format which supports data visualisation as a ‘cDNA assembly graph’. In cDNA 

assembly graphs, nodes represent sequence reads while edges denote a sequence 

homology between reads, above a defined threshold. Following the mapping of reads 

to a reference genome and defining which reads a map to a given locus, pairwise 

sequence alignments are performed between reads using MegaBLAST. It produces a 

matrix of weighted similarity scores that are used to define edges between reads. 

Visualisation of the resulting networks is then carried out using BioLayout 
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Express3D/Miru that can render large networks in 3-D, thereby allowing a better 

appreciation of the often-complex network structure.  

 

The NGS Graph Generator is a web-based application for visualising RNA-seq data 

assemblies (see Chapter 2). While NGS Graph Generator is an underpinning 

technique, there is still room for improvements. I believe the individual transcript of 

network visualisation and the cases I have discussed will be informative to other data 

sets. For instance, it would be advantageous to determine if the RNA-seq network 

transcript data can be associated and link with other pathways such as cancer data or 

protein atlas data. Furthermore, this pipeline would serve as a foundation for future 

works such as pipeline integration with additional functionality to visualise and 

identify SNP marker using network approach. 

 

The NGS Graph Generator is the first network-based visualisation approach that 

allows biologists to explore transcripts and alternative isoforms within or across 

different samples. It can also overcome the limitations of SeqGrapheR and 

GraphNGS (see Chapter 2, Section 2.2) as it underlines the use of PDF and less 

efficient visualisation performance. Furthermore, in several cases, I have shown that 

network visualisation outperformed Sashimi plots where the determination of 

isoform expression and splice junction can sometimes be complicated in the Sashimi 

plots. For instance, in the case of network transcript of SORBS2 (see Chapter 4, 

Figure 4.14) and TPM1 (see Chapter 4, Figure 4.20) where the visualisation of splice 

junction was very difficult to visualise and hard to determine the isoform expression. 

Even though network analyses performed better than Sashimi plots, however, there 

are also a few setbacks of network analysis approaches. Currently, the NGS Graph 

Generator can process only a gene/transcript per analysis. It would be impossible if 

we are investigating into the genome-wide analysis. However, there are few ways to 

overcome this limitation which is including the implementation of a different 

network RNA-seq assembly drawing algorithm to reduce the computation of network 

layout processes. Looking further into the future, I foresee network tools can 

visualise big network, smoother visualisation of isoform expression and edge 

thresholds can be filtered dynamically in more detail analysis of network structure. 
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Side-by-side comparison with existing approaches such as Sashimi plot or Vials 

would give a better comparison and details analysis on the analysis of selected genes. 

While visualising a network of the gene with additional information such as exon 

information and read coverage when a user hovers on the network would give the 

great advantage of this approaches. 

 

While a process of read-to-read comparison using MegaBLAST can be 

computationally expensive for a highly expressed gene, e.g. TUBA1C or GAPDH. 

However, a recently published tool called HS-BLASTN (Chen et al., 2015) can be 

implemented to improve the speed of reads comparison. The computational speed is 

greatly faster than MegaBLAST used in this study. The HS-BLASTN is 22 times 

faster than MegaBLAST, and it demonstrates better parallel performance. This 

implementation will improve the overall performance of NGS Graph Generator 

which mainly reaches the goal to investigate genome-wide transcriptome using 

network analysis. 

 

The NGS Graph Generator integrates information needed for isoform analysis, such 

as isoform transcript ID and exons but it needs more improvement. For instance, 

more useful information such as read coverage for each exon is essential and will be 

eventually transformed to bar plots to illustrate the isoform expression of such gene 

that can be added. It will not only provide an overview of isoforms expression but 

also enables one to exploit the data associated with individual isoform. I have shown 

in several cases that the network-based technique is compatible in determining 

alternative splice isoform using this plot which I manually generated for TPM1.  

 

This pipeline was turned into a web-based application for RNA-seq network 

visualisation analysis. Another way to utilise this pipeline is by downloading from 

GitHub or running it as an Amazon Machine Image (AMI). This pipeline has formed 

the basis for my subsequent work on the exploring and analysing alternative splicing 

in human RNA-seq data. A platform for community curation of network transcript 

visualisation can be developed which will benefit others in this field.  
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Chapter 3 describes my initial explorations on the potential visualising of DNA 

assembly networks for the analysis of transcript diversity in short read data. The 

work aimed to understand better fundamental and challenges related to the network 

visualisation of RNA-seq data particularly on how it could be used to visualise 

transcript structure, isoform divergence, and splice variation. In order to start the 

network exploration, these analyses were performed on RNA-seq data produced from 

four samples of human fibroblasts which were taken at a different stage of the human 

cell cycle. A cleanup and quality control were performed on all dataset using Kraken 

pipeline to remove low-quality data before constructing network graph using NGS 

Graph Generator.  

 

Nonetheless, the first challenges I encountered was the fact that existing network 

layout algorithm (Fruchterman-Reingold) implemented within BioLayout Express3D 

did not produce an optimal layout of unusual network structures produced in these 

analyses. Initial visualisations of transcript networks, e.g. COL5A1 were poorly laid 

out, twisted and knotted structure of the networks which was making them 

impossible to interpret. However, following implementation of an advanced layout 

algorithm FMMM in the BioLayout Express3D, visualising network structure could 

be far better appreciated. After that, work began on optimising the best network 

visualisation conditions with a series of different datasets. This includes using ‘real’ 

and ‘synthetic’ sequence data to find a generalised parameter. The default parameter 

settings to build up networks are varied for each gene, even though I discovered that 

p=98 and l=31 would be the best settings. Nevertheless, the parameters should be 

less stringent when working with a highly expressed gene or vice versa. After using 

default parameter for transcript network construction, I observed the majority of 

genes sequenced to a sufficient depth and assembled into networks with a linear 

‘corkscrew’ structure and when representing single isoform transcripts, add little to 

existing views of these data. The most reasonable evidence of such network is 

because of only one major isoform expressed in the cell cycle genes.  

 

However, in a few number of cases (~5%), the RNA-seq assembly transcript 

networks in human fibroblasts possess more complex structures with ‘loops,' ‘knots,’ 
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and multiple ends being observed. In most of cases examined, these loops were 

associated with alternative splicing events, a fact confirmed by RT-PCR analyses. 

Instrumental for this work was a different network structure. For this, I have used 

BLAST and Ensembl browser for confirmation network structure and gene model for 

such gene. This includes genes such as MKI67 that exhibit knot-like structures, 

which was found to be due to the presence of repetitive sequence within an exon of 

the gene. In this situation, it can be an extra feature of network analysis to identify 

such repetitive sequence, especially when dealing with another organism such as 

animal and plant. It is well known that repetitive DNA sequences are mostly in plant 

and animal genome. This network analysis can be a potential approach to analyse 

such data by integrating a repetitive sequence database, e.g. RepeatMasker or 

RepBase.  

 

In another case of CENPO, unusual structure observed was due to reads derived from 

an overlapping gene of the ADCY3 present on the opposite strand with reads being 

wrongly mapped to CENPO. It is important to have a stranded rather than un-

stranded sequencing for better analyses and accurate interpretation of the data, e.g. 

which strand of the RNA is transcribed. When I analysed the human fibroblasts 

samples, I discovered that most networks of DNA assembly are linear and some are 

complex. For instance, it depends on the sequence reads mapped to such gene and it 

sometimes does not simply turn into a theoretical model. However, to build up an 

RNA-seq assembly transcript, the network needs to consider the amount of read 

mapping of such gene.  

 

Therefore, I explored the use of a network reduction strategy as an approach to 

visualising highly expressed genes such as GAPDH and TUBA1C. It is near 

impossible to layout such highly expressed gene that contains a huge number of 

redundant sequences (deep coverage). This observation triggered the development of 

the reduction of identical sequence reads of these genes. While redundancy of 

sequence reads is being represented by the size of nodes, very small nodes observed 

denote sequencing error in the data. This can be improved by lowering threshold to 

remove small nodes in the network assembly. Another insight that can be suggested 
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is that simplification of the RNA-seq network assembly in determining the network 

structure prior layout visualisation, but it requires a different algorithm to process the 

data. The strategy of having information on network structure will give more 

advantages on genome-wide analysis. Furthermore, successfully demonstrates the 

utility of networks in analysing transcript isoforms of data derived from a single cell 

type which I have set out to explore its utility in analysing transcript variation in 

tissue data where multiple isoforms expressed by different cells within the tissue 

might be present in each sample. 

 

In Chapter 4, I used the same experimental pipeline and methodology with additional 

tools to explore isoform divergence in an RNA-seq dataset derived from human 

tissues. There are two parts in this chapter which are quality control and detection of 

a splicing event in the data. In the first half, quality control of these data was 

performed using a network-based approach based on co-expressed between genes 

and samples. When a sample-to-sample correlation network analysis was employed 

with edges which represented the Pearson correlation value and nodes represented 

samples, I found a number of replicates which apparently were not grouped with 

similar samples and these samples then were removed for subsequent analysis. Only 

77 out of 95 samples derived from human tissues passed the quality control. The 

most likely errors happened when collecting or processing these samples. However, 

this shows one of the advantages of network analysis, which has been successfully 

detected the lowest tissues correlation of samples in the datasets. Hence, a network 

was constructed using a correlation threshold of r ≥ 0.85, which comprises of 6,109 

nodes (genes) and 1,091,477 edges (correlations) and clustered using MCL 

algorithm. Subsequently, the profile and gene content of each cluster was examined, 

and enrichment of GO terms was analysed.  

 

In the second half of this chapter, the aims were to detect and analyse alternative 

splicing events between different tissues using splice variant detector tool. For this 

purpose, I assessed the alternative splicing events detected using rMATS tools. The 

tools reported 4,992 splicing events in the tissue comparisons of brain vs heart, 4,804 

events in the brain vs liver and 3,990 events in the heart vs liver based on the false-
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discovery rate (FDR) cut-off of < 0.01. The further threshold was applied to select 

the best candidates for network analysis of the gene with more than 50% of exon 

inclusion level and expression level more than FPKM 30. It ended up producing a list 

of 78 splicing events from 52 genes.  

 

However, not all the gene transcripts can be constructed as network due to the low 

expression level and eventually only a few genes with a fair amount of expression 

were selected for further analysis. This includes the complex network structure of 

transcripts diversity derived from the tissue, and cDNA assembly networks for 

KLC1, GUK1, SORBS2, and TPM1 were explored. Each of these networks exhibited 

different types of alternative splicing events, and it was sometimes difficult to 

determine the isoforms expressed between tissues using other approaches. I 

discovered that isoform expression can be determined and has additional advantages 

over other ‘read-stack to reference genome’ visualisation platform. For instance, 

there is a setback when I want to visualise the assembly of long genes such as KLC1 

and SORBS2 in Sashimi plot or even Vials. This setback is just because of the 

number of exons and the size of their genomic loci. 

 

The network reconstruction of these transcripts, however, easily identifies specific 

isoforms and exons expressed in a tissue. Especially when working on SORBS2 

network where novel isoforms were detected based on the evidence from the network 

and compared with existing Ensembl data. The only isoform that supports start at 

exon 21 in the RNA-seq network assembly of SORBS2 in heart missed exon 31 is 

likely to produce novel isoform. Therefore, further investigation is needed. However, 

such evidence could potentially show that network analysis could detect not only the 

alternative splicing but also identify novel isoform. The way to identify novel 

isoform is based on the algorithm and statistical analysis of such tool as Cufflinks 

and TopHat. Undoubtedly, this is impossible when it comes to visualising data and to 

identify novel isoform if we depend only on Sashimi plot or another visualisation 

platform. Hence, network analysis has the potential in identifying novel isoform. 
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Arguably, the most complex analysis is the RNA-seq mapping transcript network of 

TPM1 where the uniquification step was employed for this highly expressed gene of 

heart. However, the other two network structures were perhaps simpler but need a 

careful approach in identifying the isoform expression. While I believe that network-

based visualisation of RNA-seq is a new and useful alternative splicing visualisation 

technique, it also has some limitations. The limitations include the visualisation of 

RNA-seq data that are limited to a single gene or locus only compared to Sashimi 

plot where all information related to one or more sample is in a single tool. It is more 

difficult in network-based approach to visualising vast network structure in a 

standard machine as they require a high-quality graphics card for rendering 3-D 

network structure. However, in these two visualisation tools, Sashimi plots and Vials 

have different ultimate goals where Vials is developed as an exploratory data 

analysis tool for visualisation of lots of samples; while Sashimi plots are fit for 

visualisation of individual samples (Strobelt et al., 2016).  

 

In chapter 5, I conducted a usability test for NGS Graph Generator. This test was 

important to ensure that the application is well received and utilised by the user. 

Almost all participants of this usability test agree that this application would 

encourage biologists to visualise and understand the alternative splicing together 

with existing tools. The participants agreed that Sashimi plot rather difficult to view 

and visualise and perhaps would lose something interesting features. However, there 

were also reviews of this application that need improvements such as the capability 

to analyse big network in a short time, side-by-side analysis of network with Sashimi 

plot and Ensembl. Additional information of the network would be necessary to 

improve the understanding of the alternative splicing. 

 

While working on these sets of data, there are few limitations which can be observed 

from the network analysis. In early of this work, I expected to analyse a genome-

wide analysis of isoform expression and a well-defined mixture of a set of different 

isoforms. For instance, RNA-seq sequence assemblies of isoforms from different 

tissue can be distinguished better. However, it turns out to be impossible to lay out a 

multiple or combination of more than one sample which is not only difficult in 



Chapter 6 

198 
 

interpreting its data but also adding the computational setback. The network analysis 

of RNA-seq data has proven the advantages over other visualisation approaches, 

though it exhibits some limitation which can be improved. Furthermore, many NGS 

applications such as genomic, metagenomic and epigenomic have yet to be explored 

using network-based approaches. I believe that these areas have something to offer 

and provide a better solution to understanding the biological question.  

 

The development of a new approach to network visualisation of NGS data using 

network visualisation platform is providing a detailed enhancing characterisation of 

the splicing events characterisation. In the last two chapters, I have demonstrated 

how graph network using RNA-seq data enables the elucidation of understanding the 

gene expression study by visualising the pattern of the network.  

 

Next-generation sequencing technologies are growing swiftly, and it is expected that 

RNA-seq will become routine for many laboratories in the next few years. The area 

of alternative splicing variation analysis using RNA-seq data is still in its infancy and 

would benefit from new approaches and strategies. An extensive assessment and 

comparison of the existing methods would be advantageous, and until now, there is 

no common agreement regarding the method that performs best under particular 

conditions and situations. We are anticipating seeing the novel visualising methods 

to be developed and discovered in this growing field shortly.  

 

The advancement of sequencing technology and computational analyses have 

significantly increased our knowledge of gene transcription and its regulation. 

However, many challenges remain to be addressed. Difficulties in identifying and 

visualising the isoform expressed of the human gene exist at a different level, 

whether within a cell or tissue, significant amounts of intervening (noncoding) 

sequences, and the development of computational analysis tools steadily increased. 

For instance, using network-based approach, these issues can be solved, and the 

isoform can be determined. It will be impossible to visualise multiple genes using 

this method. However, the ultimate solution of annotation lies in developing a simple 
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yet constructive approach to reducing the amount of computational time when 

performing a read comparison and speed up the drawing network structure.  

 

I believe the data pipeline and tools presented here will provide an analytical 

platform that will be a useful addition to the available tools for the analysis of the 

huge amounts of complex but information-rich data produced by modern DNA 

sequencing machines. This new approach of visualising RNA-seq data is crucial to 

discover isoform expression, especially related to cancer and diseases. The insight 

from alternative splicing isoform using network-based visualisation not only better 

our understanding about splicing expression regulation but leads to advance 

scientific knowledge of the biological processes of the disease.  

 

In conclusion, this work demonstrates the utility of network visualisation of RNA-

seq data where the unusual structure of these networks can be used to identify issues 

in assembly, repetitive sequences within transcripts and splice variation. As such, 

this approach has the potential to improve our understanding of transcript complexity 

significantly. In summary, this thesis demonstrates that network-based visualisation 

provides a new and complementary approach to characterise alternative splicing of 

RNA-seq data and has the potential to be useful for the analysis and interpretation of 

other kinds of sequencing data. 
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Supplementary Materials 

Appendix – Supplementary Chapter 4 

 

Supplementary Table 4.1: Details list of 95 samples from human tissue atlas. In this table shows the list of all 95 samples. By 

analysing sample-sample correlation, tissues that have the lowest correlation within tissues and have lowest read count were discarded for 

subsequence analysis.  

Tissue class Tissue type Sample ID 
Ensembl 

gene ID 
Read count 

Sample 

removed 

No. of gene 

expressed (FPKM > 

1) 

 
Cerebral cortex brain_3b.V102 ERR315477 17,870,547 

 
13,300 

Brain Cerebral cortex brain_3c.V103 ERR315455 15,948,377 
 

13,594 

  Cerebral cortex brain_a.V29 ERR315432 12,040,330   13,397 

 
Thyroid gland thyroid_5b.V197 ERR315412 16,396,512 

 
12,845 

 

Thyroid gland thyroid_5a.V196 ERR315358 12,190,400 Yes 12,224 

 

Thyroid gland thyroid_5d.V199 ERR315397 9,648,231 
 

12,909 

Glandular Thyroid gland thyroid_5c.V198 ERR315363 8,812,675   12,293 

 
Adrenal gland adrenal_4d.V122 ERR315417 6,911,906 

 
13,288 

 
Adrenal gland adrenal_4a.V119 ERR315452 6,005,653 

 
13,112 

  Adrenal gland adrenal_4c.V121 ERR315450 5,826,516   13,041 

 
Salivary gland 

salivarygland_6b.V2

39 
ERR315459 9,591,599 

 
11,965 

 

Salivary gland 
salivarygland_6a.V2

38 
ERR315382 9,375,978 

 
12,681 
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Salivary gland 

salivarygland_6c.V2

40 
ERR315418 5,938,808   11,929 

 
Esophagus esophagus_5c.V185 ERR315398 13,330,622 

 
12,883 

 
Esophagus esophagus_5b.V184 ERR315411 11,747,261 

 
13,012 

 
Esophagus esophagus_5a.V183 ERR315489 9,988,919   13,436 

 
Stomach stomach_3a.V90 ERR315379 13,080,365 

 
13,410 

 
Stomach stomach_a.V18 ERR315467 11,072,372 Yes 13,144 

GI tract Stomach stomach_3b.V91 ERR315485 8,534,846   12,929 

 
Duodenum duodenum_4b.V145 ERR315461 5,318,405 

 
13,238 

 
Duodenum duodenum_4c.V150 ERR315442 4,617,568   13,144 

 
Small intestine 

smallintestine_4c.V1

53 
ERR315381 6,857,948 

 
13,611 

 
Small intestine 

smallintestine_4b.V1

52 
ERR315408 6,196,966 

 
13,278 

 
Small intestine 

smallintestine_4d.V1

56 
ERR315409 5,635,651 

 
13,325 

 
Small intestine 

smallintestine_4a.V1

51 
ERR315344 4,999,121 Yes 13,106 

 
Colon colon_b.V11 ERR315357 27,738,457 

 
13,413 

 
Colon colon_c.V14 ERR315484 20,278,760 

 
13,281 

 
Colon colon_d.V15 ERR315400 17,425,564 

 
12,760 

 
Colon colon_d.V10 ERR315348 11,000,633 Yes 13,202 

  Colon colon_f.V22 ERR315462 9,356,516 Yes 12,932 

 

Heart muscle heart_5b.V195 ERR315384 12,449,232 
 

12,264 

Circulatory Heart muscle heart_6a.V235 ERR315356 12,099,974 
 

12,178 

 

Heart muscle heart_6b.V237 ERR315367 10,542,138 
 

12,016 

  Heart muscle heart_5a.V191 ERR315328 9,362,692 Yes 11,652 
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Lung lung_3f.V81 ERR315341 18,601,187 

 
13,463 

 

Lung lung_3e.V80 ERR315346 15,539,350 
 

13,717 

Respiratory Lung lung_4d.V133 ERR315487 7,844,042 
 

13,532 

 
Lung lung_4a.V130 ERR315424 4,950,061 Yes 13,479 

  Lung lung_4b.V131 ERR315444 3,011,499 Yes  13,393 

 

Appendix appendix_4c.V160 ERR315481 5,288,209 
 

13,531 

 
Appendix appendix_4a.V154 ERR315465 5,102,962 

 
13,277 

 
Appendix appendix_4b.V155 ERR315366 5,062,707   13,230 

 
Spleen spleen_3d.V85 ERR315448 16,957,358 

 
13,149 

 
Spleen spleen_3a.V82 ERR315338 16,211,143 

 
13,004 

 
Spleen spleen_3c.V84 ERR315473 14,577,236 

 
12,982 

 

Spleen spleen_3b.V83 ERR315405 7,004,952 Yes 13,015 

Immune Lymph node lymphnode_5a.V190 ERR315493 9,987,765 
 

12,350 

 
Lymph node lymphnode_5c.V193 ERR315329 9,549,668 

 
12,791 

 
Lymph node lymphnode_5b.V192 ERR315426 7,930,958 Yes 12,611 

 

Lymph node lymphnode_4a.V157 ERR315371 6,314,443 
 

12,837 

 
Lymph node lymphnode_4b.V164 ERR315488 6,144,172 Yes 12,528 

 
Bone marrow 

bonemarrow_6c.V25

0 
ERR315333 11,006,285 

 
11,164 

 
Bone marrow 

bonemarrow_6b.V24

9 
ERR315406 10,964,022 

 
11,253 

 
Bone marrow 

bonemarrow_6a.V24

8 
ERR315396 10,073,171 Yes 10,959 

  Bone marrow 
bonemarrow_5a.V23

0 
ERR315469 8,885,586   10,659 

 
Liver liver_d.V111 ERR315414 16,209,827 

 
11,372 

 

Liver liver_a.V108 ERR315463 11,368,772 
 

11,554 
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Liver liver_c.V110 ERR315327 4,712,077   11,507 

 
Gallbladder gallbladder_5a.V179 ERR315474 11,892,467 

 
13,875 

 
Gallbladder gallbladder_5b.V182 ERR315480 11,277,457 

 
13,733 

 

Gallbladder gallbladder_5c.V186 ERR315360 9,850,735   13,451 

Digestive organ Kidney kidney_b.V6 ERR315443 16,980,044 
 

12,865 

 
Kidney kidney_d.V24 ERR315383 11,972,258 

 
12,860 

 

Kidney kidney_a.V5 ERR315494 11,516,286 
 

13,609 

 
Kidney kidney_c.V23 ERR315468 7,717,404 Yes 13,464 

 
Pancreas pancreas_6a.V229 ERR315466 9,844,424 

 
10,562 

 
Pancreas pancreas_6b.V232 ERR315436 8,021,996   12,107 

 
Urinary bladder 

urinarybladder_5c.V

177 
ERR315355 11,291,669 

 
13,693 

  Urinary bladder 
urinarybladder_5b.V

176 
ERR315447 10,656,508   13,669 

 

Placenta placenta_3a.V76 ERR315375 18,517,742 Yes 12,852 

 
Placenta placenta_6c.V224 ERR315336 11,639,826 

 
12,989 

 
Placenta placenta_6a.V221 ERR315374 10,632,558 

 
12,952 

 

Placenta placenta_6b.V223 ERR315478 9,800,239   13,105 

Female reproductive Ovary ovary_6b.V234 ERR315458 10,813,749 
 

12,294 

 
Ovary ovary_6a.V233 ERR315380 10,451,444 

 
12,756 

 
Uterus 

endometrium_5a.V2

00 
ERR315495 9,950,110   13,359 

 
Uterus 

endometrium_4b.V1

65 
ERR315433 4,959,222 

 
13,144 

 
Uterus 

endometrium_4a.V1

43 
ERR315438 3,866,425 

 
13,341 

  Prostate prostate_a.V12 ERR315410 11,162,655 Yes 13,651 
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Prostate prostate_4a.V127 ERR315359 6,803,971 
 

13,458 

 
Prostate prostate_4b.V128 ERR315407 6,013,636 

 
13,364 

 
Prostate prostate_4c.V129 ERR315365 5,284,571   13,317 

 
Testis testis_7f.V260 ERR315492 28,722,714 

 
15,143 

Male reproductive Testis testis_7e.V259 ERR315415 28,338,436 
 

14,988 

 
Testis testis_7c.V257 ERR315391 22,389,166 

 
14,977 

 
Testis testis_7d.V258 ERR315446 22,219,815 Yes 14,754 

 
Testis testis_7b.V256 ERR315456 20,609,541 Yes 14,878 

 
Testis testis_7a.V255 ERR315352 12,174,081 Yes 15,029 

 
Testis testis_4a.V134 ERR315350 5,183,071 Yes 15,002 

  Adipose tissue fat_e.V20 ERR315342 15,750,186   12,333 

 
Adipose tissue fat_a.V1 ERR315332 13,469,445 

 
12,576 

Adipose/skin Adipose tissue fat_x1.V2 ERR315431 2,830,606   12,661 

 
Skin skin_5f.V247 ERR315460 10,903,170 

 
12,801 

 
Skin skin_5e.V246 ERR315401 9,874,830 

 
12,745 

  Skin skin_6a.V245 ERR315339 8,465,158   13,048 
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Supplementary Table 4.2: Full list of differentially spliced events in human tissue atlas ranked by FDR value. The output of rMATS 

was filtered out with FDR > 0.01 and inclusion level differences |>| 0.5. The first five columns give the gene, gene description, 

chromosome, the location of exon start and end. The next column aims to include the FDR value of rMATS analysis. The next column is 

exon inclusion level difference. A negative number means more inclusion and a positive number more exclusion of the sequence in tissue 

comparison. The exon inclusion level difference is an absolute, rather than relative, change in the percentage of a specific splicing isoform 

in all mRNAs produced from the parent gene that follows the indicated splicing pattern. Event Types: 1) A3SS: alternative 3′ splice site 2) 

A5SS: alternative 5′ splice site 3) MXE: mutually exclusive exons 4) RI: retained intron and 5) SE: skipped exon. The last four columns 

give the sample examined and the expression level in FPKM value. 

Gene Description Chr Exon Start Exon End FDR 
Inclusion 

Level 
Difference 

AS 
Event 

Sample 
1  

Sample 
2 

FPKM 
Sample 

1 

FPKM 
Sample 

2 

KLC1* kinesin light chain 1  14 104145720 104153548 5.57E-308 0.547 SE Brain Heart 218.3 39.9 

FUS 
FUS RNA binding 
protein  

16 31196259 31199678 1.22E-292 0.64 RI Brain Liver 129.2 44.9 

TPM1* 
tropomyosin 1 
(alpha)  

15 63353067 63354476 3.83E-272 -0.771 
MXE Heart Liver 6863.5 33.8 

      63354774 63358292 1.32E-224 0.532 SE Heart Liver 6863.5 33.8 

      63353067 63353987 6.12E-116 -0.732 SE Heart Liver 6863.5 33.8 

      63353067 63354476 1.48E-43 -0.592 MXE Brain Liver 49.1 33.8 

      63353396 63354476 4.73E-38 0.572 RI Heart Liver 6863.5 33.8 

      63353396 63354476 1.93E-28 0.559 SE Brain Liver 49.1 33.8 

      63353067 63353987 8.90E-28 -0.587 SE Brain Liver 49.1 33.8 

SORBS2* 
sorbin and SH3 
domain containing 2  

4 186551702 186567936 2.94E-245 0.566 
SE Heart Liver 651.0 58.7 

TPM3 tropomyosin 3  1 154143124 154145454 1.23E-244 -0.767 MXE Heart Liver 75.7 58.1 

GUK1* guanylate kinase 1  1 228328018 228333325 2.88E-230 0.548 SE Heart Liver 112.3 54.3 
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      228327982 228333768 2.36E-19 0.558 SE Heart Liver 112.3 54.3 

      228328018 228333325 1.74E-15 0.511 SE Brain Liver 122.4 54.3 

APP 
amyloid beta (A4) 
precursor protein  

21 27354656 27394358 1.21E-218 -0.873 SE Brain Liver 564.9 133.0 

PDLIM5 
PDZ and LIM domain 
5  

4 95497093 95506888 2.64E-197 0.944 
SE Heart Liver 1081.3 49.1 

SLC25A3 

solute carrier family 
25 (mitochondrial 
carrier; phosphate 
carrier), member 3  

12 98987756 98991813 1.27E-189 -0.659 MXE Brain Heart 145.4 467.9 

TMED2 
transmembrane 
emp24 domain 
trafficking protein 2  

12 124071293 124074993 2.04E-184 0.568 
SE Heart Liver 64.0 115.3 

CAMK2D 
calcium/calmodulin-
dependent protein 
kinase II delta  

4 114421618 114430831 8.31E-143 -0.677 MXE Brain Heart 
42.8 90.6 

      114372187 114378719 1.01E-130 -0.619 SE Brain Heart 42.8 90.6 

      114421618 114429424 6.75E-79 0.722 SE Brain Heart 42.8 90.6 

GNAS GNAS complex locus  20 57470666 57478640 1.43E-135 0.564 SE Brain Liver 723.1 196.4 

CLTB clathrin, light chain B  5 175819455 175824719 1.62E-123 0.66 SE Brain Heart 44.6 87.3 

NDRG4 
NDRG family 
member 4  

16 58528867 58537807 6.66E-111 0.584 SE Brain Heart 
306.6 204.1 

SEC31A 
SEC31 homolog A 
(S. cerevisiae)  

4 83778841 83784545 1.64E-101 0.587 
SE Heart Liver 49.7 46.8 

UGP2 
UDP-glucose 
pyrophosphorylase 2  

2 64068087 64083567 2.98E-96 -0.618 SE Brain Liver 59.1 243.6 

RBM3 
RNA binding motif 
(RNP1, RRM) protein 
3  

X 48433948 48434471 2.72E-84 0.74 RI Brain Liver 64.3 37.2 

      48433948 48434471 3.58E-15 0.686 RI Heart Liver 91.7 37.2 

      48433948 48434807 9.94E-15 0.572 RI Heart Liver 91.7 37.2 
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ABLIM1 
actin binding LIM 
protein 1  

10 116233637 116247775 6.38E-84 -0.653 SE Brain Heart 
38.1 129.9 

DST dystonin  6 56328362 56330993 7.94E-81 0.523 SE Brain Liver 64.1 36.4 

      56328362 56330993 4.53E-45 0.701 SE Heart Liver 46.7 36.4 

      56393638 56394931 2.68E-25 -0.563 SE Brain Heart 64.1 46.7 

KIAA1191 KIAA1191  5 175782573 175788742 3.50E-79 -0.514 SE Brain Heart 59.3 46.6 

CLTA clathrin, light chain A  9 36204064 36210657 5.53E-78 0.849 SE Brain Heart 81.0 37.7 

ACTN4 actinin, alpha 4  19 39200034 39205201 7.03E-76 -0.638 MXE Brain Liver 93.9 75.8 

TPD52L1 
tumor protein D52-
like 1  

6 125574862 125584208 4.44E-74 -0.756 SE Heart Liver 71.4 33.8 

      125574862 125584372 9.67E-17 0.664 SE Brain Heart 43.4 71.4 

      125574862 125584208 5.86E-14 0.778 SE Brain Heart 43.4 71.4 

DCAF6 
DDB1 and CUL4 
associated factor 6  

1 167973770 168007726 1.10E-72 -0.687 SE Brain Heart 
33.3 71.1 

MACF1 
microtubule-actin 
crosslinking factor 1  

1 39715685 39720047 1.11E-70 -0.748 SE Brain Heart 
41.6 33.1 

QKI 
QKI, KH domain 
containing, RNA 
binding  

6 163987752 163984751 4.64E-69 0.647 A3SS Brain Heart 199.4 140.3 

ANK2 ankyrin 2, neuronal  4 114294514 114302672 5.77E-69 -0.504 SE Brain Heart 79.9 60.7 

      114294472 114304888 5.01E-50 -0.554 SE Brain Heart 79.9 60.7 

MFF 
mitochondrial fission 
factor  

2 228205007 228212100 1.80E-65 -0.543 SE Brain Heart 
44.8 30.5 

      228205007 228220477 6.95E-34 -0.571 MXE Brain Heart 44.8 30.5 

PKIG 

protein kinase 
(cAMP-dependent, 
catalytic) inhibitor 
gamma  

20 43160425 43218507 1.62E-61 -0.62 SE Brain Heart 

56.4 172.7 

CDK5RAP3 
CDK5 regulatory 
subunit associated 

17 46050884 46051397 6.29E-61 -0.573 RI Brain Heart 49.6 31.1 
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protein 3  

FXR1 

fragile X mental 
retardation, 
autosomal homolog 
1  

3 180687945 180693192 1.55E-59 -0.863 SE Brain Heart 38.2 85.5 

YPEL5 
yippee-like 5 
(Drosophila)  

2 30371110 30379658 4.96E-51 -0.527 SE Brain Heart 
58.5 33.0 

      30371110 30379653 3.57E-54 -0.577 SE Brain Heart 58.5 33.0 

SORBS1 
sorbin and SH3 
domain containing 1  

10 97081719 97099084 1.03E-51 -0.569 SE Brain Heart 
37.6 174.2 

      97131082 97135813 1.84E-42 -0.622 SE Brain Heart 37.6 174.2 

PPP2R5C 
  

protein phosphatase 
2, regulatory subunit 
B', gamma  
  

14 
  

102252354 102302769 2.45E-47 -0.568 SE Heart Liver 108.5 30.5 

102252354 102302769 0.007130622 -0.581 SE Brain Liver 51.3 30.5 

DTNA dystrobrevin, alpha 18 32407556 32418135 1.12E-43 0.874 SE Brain Heart 107.5 112.3 

            CAST calpastatin  5 96058342 96063234 5.00E-42 0.617 SE Heart Liver 175.4 37.0 

TMBIM6 
transmembrane BAX 
inhibitor motif 
containing 6  

12 50135739 50146332 2.49E-38 -0.568 A5SS Brain Liver 232.3 563.5 

EWSR1 
EWS RNA-binding 
protein 1  

22 29694722 29695270 7.63E-37 0.577 RI Brain Liver 63.0 31.7 

ANXA7 annexin A7  10 75148069 75156341 1.02E-30 0.559 SE Brain Liver 46.5 47.0 

SUN1 
Sad1 and UNC84 
domain containing 1  

7 882977 891119 1.05E-24 -0.702 SE Brain Heart 
32.4 74.4 

      856916 872238 8.29E-05 -0.538 SE Brain Heart 32.4 74.4 

APOC1 apolipoprotein C-I  19 45417503 45418206 3.54E-24 -0.535 SE Brain Liver 48.5 6823.0 

MLIP muscular LMNA- 6 54025164 54034370 5.28E-20 0.575 SE Heart Liver 164.6 32.4 
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interacting protein  

CIRBP 
cold inducible RNA 
binding protein  

19 1271979 1274439 2.51E-15 0.599 RI 
Heart Liver 173.2 83.8 

NCAM1 
neural cell adhesion 
molecule 1  

11 113105754 113126723 5.29E-14 -0.686 SE Brain Heart 
205.2 82.9 

KCNIP2 
Kv channel 
interacting protein 2  

10 103588831 103603677 4.03E-07 0.53 SE Brain Heart 
32.7 48.8 

TACC1 
transforming, acidic 
coiled-coil containing 
protein 1  

8 38599868 38646337 8.63E-07 -0.512 MXE Brain Heart 44.6 36.7 

PRR13 proline rich 13  12 53837462 53836517 4.80E-06 -0.583 A3SS Brain Liver 45.5 51.6 

PFDN5 prefoldin subunit 5  12 53689622 53691708 4.59E-05 -0.5 SE Brain Liver 154.5 172.7 

PHLDB1 
pleckstrin homology-
like domain, family B, 
member 1  

11 118514789 118515409 0.00013919 0.61 RI Brain Heart 60.8 44.0 

CALM2 
calmodulin 2 
(phosphorylase 
kinase, delta)  

2 47397872 47403650 0.000327377 -0.755 
SE Heart Liver 217.9 159.6 

MAN2C1 
mannosidase, alpha, 
class 2C, member 1  

15 75659851 75660539 0.003159714 0.501 A3SS Brain Heart 
59.6 51.5 

HP1BP3 
heterochromatin 
protein 1, binding 
protein 3  

1 21106304 21113124 0.02567602 0.5 SE Brain Heart 
67.6 42.6 
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Supplementary Chapter 5 

Appendix A - Email invitation 

Hello, 

 

My name is Wan Fahmi and I am currently writing my PhD’s thesis here at The 

Roslin Institute about network-based visualization and usability of user interfaces in 

NGS Graph Generator (http://seq-graph.roslin.ed.ac.uk/).  

 

As a part of my thesis, I will be conducting a usability study on the NGS Graph 

Generator application. I am currently looking for people to take part in this usability 

study. Tim has told me that you are available for this.  

 

Prerequisites 

 

The prerequisite for participating is to have a basic knowledge of the BioLayout 

Express3D software. I am looking who have been involved with the splice 

variation/transcriptome/alternative splicing either using RNA-seq or microarray. You 

can try it yourself first and follow the tutorial section in NGS Graph Generator 

website.  

 

What will you be doing in a usability study? 

 

You will be asked to do several short tasks using the application and be asked to 

share your experience and perceptions of the application. 

 

How long is a session?  

 

30-60 min 

 

When and where? 

 

The plan is to do this usability test between April 24th to 29th during weekdays 

10:00-17:00 and it will be done here at the Alexander Robson Building (PhD Thesis 

Writing's Room) 

 

Interested? 

 

Please reply to this email if you are interested with your name and when you are 

available for the study. The dates are not set in stone and are quite flexible and can 

be adjusted to your schedule. If you have any questions, please contact me at 

wan.fahmi@roslin.ed.ac.uk 

 

Thank you for reading, 

Wan Fahmi 

PhD Student 

Systems Immunology Group, The Roslin Institute, University of Edinburgh 
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