
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



   

 

The Impacts of Nutrition Quality  

on Host-Parasite Dynamics  

in Wild Wood Mice 
Amy Sweeny 

 

 

Submitted for the degree of Doctor of Philosophy 

Institute of Evolutionary Biology 

University of Edinburgh 

2020 

  



  ii 

 



 iii 

Authorship Declaration 
I declare that I am the sole author of this thesis. All writing and analyses within represent my 

own work, with input from my supervisors and co-authors.  

Data for Chapter 2 is comprised of a field experiment inclusive of two replicates in 2015-16 

and one laboratory experiment conducted in 2016. Field and laboratory data for the 2015 

replicate was collected by Melanie Clerc and Paulina Pontifes. I carried out fieldwork and 

laboratory work for the 2016 replicate. Saudamini Venkatesan helped with ELISA assays for 

the 2016 replicate. I carried out all laboratory work for the laboratory experiment presented 

in this chapter, with sampling help from SV.  

Data and samples for chapter 3 analysis is from 2015-2016 field experiments with credit as 

described above. DNA extraction and PCR for blood-borne parasites was carried out by 

myself and Madison MacLean as part of an honours project co-supervised by me. All 

statistical analyses were completed by me.  

Chapter 4 is based primarily on data from a 2017 field experiment and laboratory. I 

conducted all fieldwork with help from SV. All laboratory and statistical analyses were 

completed by me, save for some faecal egg counts from this experiment which Jess Hall and 

SV assisted with.  

Chapter 5 is based on data from field experiments designed by Amy Pedersen and Andy 

Fenton. Susan Withenshaw, Godefroy Devevey, and many others were involved in fieldwork 

which contributed to data represented in this chapter. Data on mast events presented in this 

chapter was provided by the Woodland Trust. 

Chapters 2, 3, and 5 are in late-stage preparation for submission, and Chapter 4 represents an 

in-progress manuscript. Co-authors for Chapter 2 are MC, PP, SV, SAB, and ABP. Co-

authors for Chapter 3 are SAB and ABP.  Co-authors for Chapter 4 are SV, SAB, and ABP. 

Co-authors for Chapter 5 are Greg Albery, SV, AF, and ABP. Co-authors provided input into 

writing and analyses. I use ‘we’ throughout my data chapters because they were written as 

papers.  

Many volunteers and students played a role in field data collection and sample processing for 

fieldwork represented in this thesis.  



  iv 

 

  



 v 

Abstract 
Factors from the environmental, host, and parasite community levels can all 

determine helminth burden in natural populations. In particular, the nutritional 

resources available to the host have long been associated with helminths; a large 

body of work in the laboratory has shown that both macro-and micro-nutrients play 

an important role in host response to infection. However, the relationship among 

nutrition, immunity, and helminth infection can depend upon several factors in the 

wild including season, host condition, and co-infecting parasites. Co-infection is the 

norm in natural populations, and the many parasites present may each have unique 

and contradictory relationships with nutrition quality. Recent increase in 

anthropogenic influences to the food available to wild animals –either accidental 

through urban waste or intentional through supplemental feeders—has therefore 

generated a crucial need for understanding the short- and long-term effects of 

changes to nutrition quality on disease outcome in natural host-parasite systems. To 

date, however, experimental, empirical data is still lacking in these areas particularly 

in regards to naturally co-infected populations.   

This thesis comprises a combination of statistical analysis and experimental work in 

the field and laboratory in a wood mouse (A. sylvaticus) system. I carried out diet 

supplementation manipulations for one laboratory and two field experiments 

designed to investigate how experimental perturbation to host environment in the 

context of resource availability influence the dynamics of both a highly prevalent 

nematode, Heligmosomoides polygyrus, and co-infecting parasites within the system. 

Making use of historical wood mouse trapping data, I further designed statistical 

approaches to determine how much the natural variation in environmental context 

affects host-parasite relationships 

Using experimental diet supplementation in both a wild and a captive population of 

A.sylvaticus, I found that supplemented nutrition quality increased both natural 

resistance to H. polygyrus and the efficacy of anthelminthic treatment via increased 

host condition and both general and H. polygyrus-specific immune investment. These  
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results have important consequences for the control of disease and transmission of  

helminth infections in natural populations. 

 

I screened wood mouse populations in the wild following diet supplementation for an 

additional >10 parasite species including several other gastrointestinal helminths, 

gastrointestinal protozoans, ectoparasites, and blood-borne protozoans, bacteria, and 

viruses. I show that although supplemented nutrition decreased infection with 

helminths and ectoparasites via increased investment in immunity and condition, it 

unexpectedly increased infection risk and burden of some blood-borne and intestinal 

microparasites. This gives important insight into how nutrition may shape parasite 

communities and host fitness in wild populations where co-infection is the norm.  

I carried out a long-term field experiment with ongoing nutrition supplementation to 

investigate the effects of nutrition supplementation for host infection, reproduction, 

and survival over multiple seasons. I found that beyond short-term effects on parasite 

infection dynamics, supplemented nutrition drastically alters population dynamics 

for wood mouse populations, and the effects of nutrition on immunity within the 

population were both season- and cohort- dependent. 

Finally, through statistical analysis of six years of trapping data across multiple sites 

and seasons, I first show that there were significant drivers of helminth infection 

intensity at both the environment and host level. However, by accounting for 

spatiotemporal variation, I show further that these drivers varied significantly in 

magnitude and direction according to environmental context (i.e. across-years), and 

that sampling regime is key for the estimation of biological variation in H. polygyrus 

dynamics in a natural population.  

These results represent important experimental and statistical insights into the role of 

resource availability and environmental context for host-parasite dynamics in the 

wild. I discuss these findings and their implications for the study of nutrition quality 

and infection dynamics in disease ecology. I also present several avenues of ongoing 

and future work to complement insights provided by these experiments
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Lay Summary 
Parasites are present in all populations of humans, animals, and wildlife. Most 

individuals in natural populations will therefore experience parasite infection at some 

point in their life. The quality of food that an individual consumes plays a large role 

in how well they will respond to parasite infection. For human populations where 

malnutrition is common, or wildlife populations where times are hard and resources 

are scarce, this can have serious impacts on risk of infection and individual health. 

This has been well studied in the laboratory, but is very hard to study in the wild, 

where animals face a number of environmental stressors, a number of parasites, and 

food availability varies over time and space. However, understanding these 

relationships can give important insights into the use of nutrition as a means to 

combat disease in humans or manage wildlife populations. 

In this thesis, I experimentally tested the relationship between nutrition quality and 

infection with a well-known gastrointestinal parasitic worm in wild wood mice (A. 

sylvaticus). By adding high-quality supplemental food to natural populations of 

wood mice in the wild and alongside a deworming drug, I showed that nutritional 

supplemental can dramatically reduce infection and increase the effectiveness of a 

common drug. By replicating this in a laboratory setting I was able to show that these 

benefits are due to increased host condition and immunity. I next took advantage of 

this mouse population which is typically infected with multiple parasites to ask: is 

extra nutrition always good for the host during infection? By monitoring multiple 

parasites at the same time, I showed that surprisingly some parasite infections 

became worse after in populations after food was added, and that often this was due 

to relationships between the parasites themselves. These results suggest that nutrition 

is a viable option for infection control for parasitic worms, but that the complexity of 

the wild, where many parasites co-exist, may alter expected outcomes of food 

quality. 

I next tested how variation in time and space influences the role of food quality for 

wild animals. I found that additional food in the wild increases condition, immunity, 

and reproduction most strikingly in the summer when wood mice are breeding 
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frequently, but that in years of plentiful natural food, effects on parasitic worms were 

non-existent. Finally, I used data from many years of wood mice trapping carried out 

by my research group to ask how predictable patterns in this gastrointestinal parasite 

are in wild populations and find that there is a tremendous amount of variation over 

time and space in which groups of individuals and what season are likely to have the 

most severe infections. These results explore how dynamic these relationships are 

and give important context to studying the role of nutrition quality in the wild.  

Overall, my thesis represents a collection of statistical and experimental work in the 

field and laboratory which advances current understanding of how the potential 

benefits of improved nutrition quality are influenced by environmental and host 

diversity in the wild.      
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Chapter 1  1 

Chapter 1 General Introduction  

1.1 Overview: An experimental approach to disease ecology  

Parasites, defined broadly here to include both macroparasites (i.e. helminths, 

ectoparasites, etc.) and microparasites or pathogens (i.e. viruses, bacteria, 

protozoans, etc.), are ubiquitous in humans, livestock, and wildlife. Over the past few 

decades both ecologists and evolutionary biologists have begun to use apply tools to 

better understand the role that infectious diseases, caused by parasites, can play in 

natural populations (May and Anderson, 1979; Anderson and May, 1985; Grenfell 

and Dobson, 1995).  The resultant field of ‘disease ecology’ has advanced the study 

of infectious disease in many novel and important ways, for example by highlighting 

the impacts that even sublethal parasites can have on individual health and 

population dynamics and that these are not static relationships, and by conducting 

studies of naturally infected hosts in the wild to assess the abiotic and biotic factors 

which drive these processes.  

For the last several decades, a large focus in this field has been the cost of immunity 

for wild animals and variation in the outcome of parasite infection due to limited 

resources to allocate among other processes, such as reproduction (Sheldon and 

Verhulst, 1996). Several hypotheses about possible trade-offs arising from these 

costly activities have been developed, such as individuals with access to higher 

quality resources should have reduced parasite infections, and/ or reproductively 

active individuals will suffer higher parasite burdens (number of parasites) due to a 

compromised immune response. However, in practice there is a high degree of 

variation found in these relationships and it is often difficult to determine specific 
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mechanisms governing the interactions between resources, immunity, and parasitism. 

These heterogeneities can arise from several factors, including a high degree of inter-

individual variation, spatial and temporal variation, abiotic and biotic effects, and 

interactions between multiple parasite species. For example, temporal variation in 

both resource availability and energetic demands can interact with host factors such 

as sex or body condition influencing infection. Seasonal or other cyclical patterns in 

environmental conditions and host behaviour may also have important consequences 

for host-parasite relationships, such as changing the transmission potential of the 

parasites or the susceptibility of the host (Nelson and Demas, 1996; Altizer et al., 

2006), however, many studies are unable to account for this variation over time, due 

to sampling or monetary constraints.  

A further layer of complexity for disease ecology studies that aim to understand the 

causes and consequences of parasitism is simultaneous infection with multiple 

parasites. Co-infection is the norm in wild populations, humans and animals alike, 

and the resulting interactions among parasites that can be analogous to what happens 

between free living species within an ecosystem. These within-host parasite 

interactions can alter the outcome of each parasite species infection and transmission 

and impact host fitness (Cox, 2001; Pedersen and Fenton, 2007). Diverse parasite 

communities can therefore fundamentally change the dynamics of infectious diseases 

in a population, but often are ignored in many studies, which tend to focus on a 

single parasite of interest. Experiments using anti-parasite treatments as a way to 

reduce or eliminate one parasite taxa or group, have shown significant effects on 

non-target parasite species and host condition (Pedersen and Greives, 2008; Knowles 
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et al., 2013; Pedersen and Antonovics, 2013; Pedersen and Fenton, 2015; Budischak 

et al., 2018). These perturbations to the within-host parasite community have 

provided important advances for understanding both the costs of parasitism and the 

dynamic relationships that can occur within the parasite community due to either 

direct or indirect interactions mediated by a shared immune response or host 

resources (Pedersen and Fenton 2007, Graham 2008).  However, effectiveness of 

anti-parasite treatments can vary in magnitude over time (Hudson et al., 1992), and 

the outcome of within-host parasite interactions may be dependent on 

environmentally variable factors such as the host’s resource availability (Budischak 

et al., 2015b). 

This thesis aims to address the intersection of how environmental variation can 

impact host-parasite interactions using a combination of field experiments, 

laboratory experiments, long-term observational studies, and statistical analysis. 

Using experimental resource supplementation and anti-parasite drug treatments in a 

natural host-helminth worm system (Apodemus sylvaticus & Heligmosomoides 

polygyrus) in both the wild and laboratory, I specifically test the short-term effects of 

resource availability for host condition, immunity, and resistance to H. polygyrus. I 

next explored the consequences of resource supplementation and anti-parasite 

treatment for the broader parasite community of wild A. sylvaticus to test for possible 

within-host interactions that could be mediated by resource availability. I further 

conducted an intensive, longitudinal (capture-mark-recapture) experiment where I 

manipulated both resource supplementation and the parasite community through 

drug treatment to investigate the longer terms impacts of increased availability of 

high-quality resources. Finally, I use a newly available six-year observational dataset 
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from a collection of A. sylvaticus populations to explore how natural spatiotemporal 

variation in seasonality, host characteristics, and the broader parasite community can 

drive H. polygyrus infection. In this introduction, I present background and 

knowledge on the environmental and individual factors governing helminth 

infections, with a specific focus on advances made by experimental work in wild 

rodents and the suitability of H. polygyrus and co-infecting parasite community 

ecology in A. sylvaticus as an ideal system in which to address the above aims.  

1.2 Part 2. Gastrointestinal helminths  

1.2.1 Ecology  

Helminthic worms, which include parasitic trematodes, cestodes and nematodes, are 

ubiquitous parasites and among the most common causes of chronic infections in 

wildlife mammal, domestic animal and human populations (Brooker, 2010). Among 

wildlife, helminths typically are highly prevalent, and play an important role in 

population dynamics by reducing survival and reproduction (Dobson et al., 1992; 

Dobson and Hudson, 1992). This has been demonstrated experimentally in both wild 

red grouse (Hudson et al., 1998) and deer mice (Pedersen and Greives, 2008), where 

helminth removal through anthelmintic drug treatment prevented population crashes.  

Many of the most problematic species of helminths for domestic and wild animals 

are gastrointestinal (GI) nematodes. Much of the current knowledge regarding GI 

nematode lifecycles, infection, and host immune responses come from controlled 

rodent studies conducted in the laboratory. Wild small mammals also harbour a 

diverse array of GI nematode species, such as Strongyloides spp., Nippstrongylus 
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brasiensis, Trichuris spp., Syphacia spp., and Heligmosomoides polygyrus (Morand 

et al., 2007). H. polygyrus in particular, is a well-studied model for chronic human 

GI nematode infections such as Ascaris spp. and hookworms (Behnke et al., 2009b). 

The lifecycle of these soil-transmitted GI nematodes, H. polygyrus included, is 

typically comprised of two phases—an adult stage of males and females whom 

reside, mate, and reproduces within the host and a free-living egg and four larval 

stages phase which occurs in the environment or in some cases an intermediate host 

(Morand et al., 2007):Figure 1.1)). Transmission of nematodes is driven by an 

infected host shedding eggs produced by adult female worms within the host into the 

environment via faeces followed by ingestion of infectious larval stages by 

susceptible hosts through environmental contact or via contaminated food or water 

(Brooker et al., 2006).  

 

Figure 1.1.The lifecycle of many soil-transmitted gastrointestinal nematodes, including 
H. polygyrus.  

Adult worms live in the host’s small or large intestine (upper duodenum is the preferred site 
for H. polygyrus). Worms mate and shed eggs via the faeces, where they develop through 

several larval stages in the soil. Hosts encounter these infectious larval stages in the 
environment and infection occurs upon ingestion of larvae. Once in the host, 4th stage H. 

polygyrus larvae embed in the gut epithelium, mature into adult worms, and then emerge in 
the gut lumen to infect the small intestine. H. polygyrus goes from egg to egg (full lifecycle) 

within 9-12 days, although the specific site of infection and lifecycle duration with vary 
across different GI nematode species.  
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1.2.2 Human Helminths and Control Programmes  

Several of the most important human helminth infections are caused by soil-

transmitted GI nematode species, such as Ascaris lumbricoides, Trichuris trichiura, 

and hookworm (Hotez et al., 2008). Although helminth infection often does not 

present overt clinical symptoms, (Hotez et al., 2008), infections can negatively 

impact the daily life of the approximately one third of humans harbouring one or 

more species  (Hotez et al., 2008); specifically leading to diminished educational 

performance due to impaired memory and cognition, nutritional deficits, stunted 

growth, and impaired physical fitness in children, and pregnancy complications, 

nutritional deficits, and decreased worker productivity in adults (Nokes and Bundy, 

1994; Hotez et al., 2008; Taylor-Robinson et al., 2012).  

To reduce the burden (number of worms per individual) and morbidity (sublethal 

pathology) of helminth infections, the standard practice in humans and livestock is 

anthelmintic drug therapy, using one of several currently effective, low cost 

pharmaceuticals (Anderson and Medley, 1985; Bundy and de Silva, 1998; Jamison et 

al., 2006; Keiser and Utzinger, 2008). However, despite the high availability and low 

cost of these drugs, morbidity from helminth infections remains high (Hotez et al., 

2008) and effective control faces several hurdles (Brooker et al., 2006).  On specific 

concern is the increasing rise in anthelmintic drug resistance for both human and 

domestic populations where the drugs are commonly used (Geerts et al., 1997). 

Development of resistance in livestock has motivated alternative approaches which 

take a more holistic approach to helminth control, including both measures to reduce 

primary and secondary (after the initial infection/exposure) helminth exposure 
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(Barger et al., 1994; Krecek and Waller, 2006). This is particularly important, as re-

infection following anthelmintic treatment can occur very rapidly and is a 

widespread problem in endemic areas (Anderson and Medley, 1985). Within one 

year of treatment in endemic populations, A. lumbricoides prevalence can reach 

nearly 100% of pre-treatment levels, while T. trichiura and hookworm can reach 

50% of pre-treatment prevalence (Anderson and Medley, 1985; Jia et al., 2012). 

Public health programmes have therefore aimed to integrate measures drug treatment 

with hygiene and sanitation improvement to reduce re-exposure rates (Strunz et al., 

2014); but re-infection remains a significant problem. Altogether, challenges 

surrounding our current reliance of repeated use of anthelmintic drugs, and the fact 

that there are no currently effective helminth vaccines available, suggest that a more 

holistic view is needed for effective control. This requires understanding both the 

environmental conditions that contribute to high helminth prevalence and burdens 

and mechanistic details about host-helminth interactions, specifically those that drive 

successful infection and onward transmission. While most previous work has 

focused on laboratory models, I believe that a combined laboratory – wild host – 

helminth approach will provide the needed, tractable model to better understand the 

environmental and host drivers of helminth infection, immunity and transmission. 

1.2.3 Anti-helminth immunity  

While many environmental factors and host behaviour and movement patterns may 

dictate exposure, once helminths are able to successful infected a host, these 

infections are  typically chronic, possibly driven by the fact that helminths have 

evolved to evade host immune responses and persist within the host for long periods 

of time (Mulcahy et al., 2004; Maizels et al., 2004). These immunomodulatory 
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helminths can manipulate the induction of the T-helper cell 2 (Th2; anti-parasitic 

response) and T-helper cell regulatory (Treg; regulatory response) arm of the 

immune system (Maizels et al., 2004). These responses are suited to minimise 

damage to the host, rather than directly clearing parasites, and involve a suite of Th2-

related cytokines, including the following interleukins (IL):  IL-3, IL-4, IL-9, IL-13, 

and Treg cytokine IL-10 (Maizels & Yazdanbakhsh 2003). The latter two cytokines 

are particularly important mediators for controlling inflammatory responses of the T 

helper cell 1 (Th1; anti-pathogen response) arm of the immune system (Graham et 

al., 2005). As a result, many helminth infections are not associated with overt 

symptoms and present with little clinical disease (Mulcahy et al., 2004). However, 

when symptoms occur, they are often gastrointestinal in nature, including diarrhoea 

or impaired nutrient absorption related to protective immune responses which affect 

gut physiology to increase motility and facilitate worm expulsion (Mulcahy et al., 

2004).  

Clearing or killing adult worms living with the GI tract can be very damaging to the 

host leading to tissue damage, so many hosts have evolved immune responses to 

other stages of helminth development, such as impairing development from larval to 

adult stages or reducing fecundity of adult worms to limit onward transmission 

(Maizels et al., 2004). For example, activation of IL-5 can results in high numbers of 

eosinophils (eosinophilia) which target and kill larval stages of helminths such as N. 

brasiliensis and Strongyloides stercoralis, and immunoglobulin class switching to 

Immunoglobulin A (IgA) (Harrison et al., 2008), IgE (Obata-Ninomiya et al., 2013; 

Fitzsimmons et al., 2014), or IgG (Hewitson et al., 2015). During secondary 
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challenge with H. polygyrus larvae, a combination of IgG1 antibodies and IL-4 

dependent effector molecules are responsible for trapping larvae in tissues and 

blocking maturation to adult worms, which is a key resistance mechanism in this 

system (Hewitson et al., 2015). 

While our knowledge of the anti-helminth immune response is mostly known form 

the laboratory mouse model where extensive immunological tools have been 

developed, it remains a pressing challenge for wild studies, where these tools are not 

currently available (Pedersen & Babayan 2011). One common approach in 

ecological studies of disease to assess immunity is to measure  total and parasite-

specific antibodies, but the use of such techniques for non-model systems and for 

individual in the wild still face many limitations (Gilbert et al., 2013). First, reagents 

for common serological assays such as enzyme-linked immunosorbent assay 

(ELISA) have been developed for model systems in the laboratory, and therefore 

adaptation to wild species is not always straightforward (Bradley and Jackson, 2008; 

Pedersen and Babayan, 2011). Data from these assays which have been validated for 

use on non-model species, still raises practical or interpretation issues from wild 

populations, as serological assays rely on blood sampling, which can be impractical 

for many systems, particularly large mammals (Gilbert et al., 2013). Serological 

methods for measuring the most common mucosal antibody (IgA) –which is found in 

epithelial surfaces—using non-invasive faecal samples have been developed for 

investigation of anti-helminth immunity in Soay sheep (Watt et al., 2016) and 

adapted to other species (Clerc et al., 2018). However, typically the range of immune 

molecules quantifiable for a wild species is limited; although there have been 

significant recent advances in characterization of the immune responses in wild 
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rodents, using both standard immunological tools and genomic techniques (Abolins 

et al., 2011; Babayan et al., 2018; Wanelik et al., 2019). The resolution of the 

sampling regime also presents common challenges, where longitudinal sampling 

with repeated captures per individual is logistically difficult for many systems, but 

can be key for interpretation in the relationship of variation of immunity across and 

within individuals with infection burden (Pedersen and Babayan, 2011). Importantly 

this type of data even when accurately measured can be difficult to interpret, as a 

high antibody measure may represent either high exposure to a parasitic antigen or a 

strong, effective immune response, but these are difficult processes to separate in the 

wild, especially without repeated sampling and/or experimental perturbations 

(Gilbert et al., 2013).  

A myriad of factors can influence both exposure and susceptibility in the wild 

(Lazzaro and Little, 2009; Pedersen and Babayan, 2011). This is particularly true for 

helminths as transmission depends both on environmental exposure and within-host 

success. As a result, helminth infection patterns within individual in natural 

populations is typically characterised by a high degree of variation in burdens, where 

infections are often highly aggregated, with  20% of individuals responsible for 80% 

of disease transmission (Woolhouse et al., 1997). More specifically, exposure to 

nematodes is often determined by host behaviour which can influence contact rates 

with contaminated material in the environment and extrinsic factors (e.g. 

geographical location, climate, season) which can affect the success of 

environmental stages of the parasites (Keymer and Dobson, 1987; Appleton and 

Gouws, 1996; Brooker et al., 2003). Host susceptibility, meanwhile, is influenced 
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primarily by intrinsic host variables (e.g. sex, age, nutrition status, host microbiota, 

genetics) (Gregory et al., 1990; Woolhouse et al., 1991; Chan et al., 1996; Curtale et 

al., 1999; Stephenson et al., 2000; Bethony et al., 2002; Quinnell, 2003; Quihui-Cota 

et al., 2004).  

1.2.4 Extrinsic variables  

The complex, soil-transmitted life cycle of many GI helminths includes free-living 

stages which persist in the environment for long periods of time. Microhabitat 

characteristics, such as climate (i.e. temperature and rainfall), topography (altitude 

and landscape and soil-type) are therefore key determinants of free-living helminth 

larval survival and subsequent transmission (Hotez et al., 2008). These 

environmental characteristics explain, in part, the consistent high prevalence of soil-

transmitted helminths in the tropics and sub-tropics where temperatures are higher 

and soil is moist (de Silva et al., 2003) and higher prevalence in warmer months, as 

these conditions are optimal for survival of many helminth species (Stromberg, 

1997).  

Environmental factors can also influence parasites indirectly via changes within 

individual hosts and/or the host population, including both spatial (the broad 

geographical area) and temporal (seasonal changes, especially in species with large 

changes in population size) factors.  For example, many helminths that infect small 

mammal populations tend to exhibit seasonality, whereby infection is highest over 

winter when the population age structure is at its oldest (Keymer and Dobson, 1987).  
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1.2.5 Intrinsic host characteristics  

Host demographic traits 

Host traits, such as age, sex and condition, can influence on helminth infection 

success and burdens through both behavioural or physiological mechanisms. The age 

of an animal is an important determinant of helminth burden in humans (Bundy, 

1988; Maizels et al., 1993), large (Gulland and Fox, 1992) and small mammals 

(Behnke et al., 1999). This is often hypothesised to be driven by variation in 

susceptibility due to the delayed development and maturity of the immune system in 

young animals and/or immunosenesence (a reduction in immune response efficacy 

with ageing), which predisposes the youngest and oldest individuals in a population 

to the highest burdens of infection (Grenfell et al., 1995). However, for hosts which 

remain susceptible to reinfection as is the case for many small mammals, age effects 

are often manifested as an increase in burden over time due to an increase in 

exposure as an individual ages (Keymer and Dobson, 1987; Gregory, 1992). 

Sex bias in parasitic infection is common (Moore and Wilson, 2002) and can stem 

from both ecological factors (i.e. behaviour) and/or physiological ones (i.e. 

hormones) (Zuk and McKean, 1996). Typically, males are generally expected to 

have higher levels of parasitism due to stress from engaging in more competitive and 

aggressive behaviours, because androgens, such as testosterone, can act as a 

depressor of the immune system, and because secondary sexual traits, such as deer 

antlers, can be testosterone dependent (Poulin, 1996; Zuk and McKean, 1996; Schalk 

and Forbes, 1997). In free-living gazelles, negative associations were found between 

testosterone and adaptive immunity and positive relationships between territoriality 
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in males and nematode burden (Ezenwa, 2004; Ezenwa et al., 2012; Ezenwa and 

Snider, 2016). 

For both sexes, the costs of reproduction can have costs for immunity, with a general 

expectation of a corresponding reduction in immunity and/or increase in infection 

burden during periods of reproduction (Sheldon and Verhulst, 1996); however there 

are many exceptions (Schwanz, 2008). For example, lactation was associated with 

increased lungworm larvae counts in in bighorn ewes (Festa-Bianchet, 1989), and 

lactation has been associated with costs for both anti-strongyle immunity and 

strongyle count in red deer (Albery et al., 2018b). Similar trade-offs between 

macroparasites and female reproductive effort have been shown in African ground 

squirrels (Hillegass et al., 2010), red squirrels (Gooderham and Schulte-Hostedde, 

2011), flycatchers (Nordling et al., 1998), and humans (Blackwell et al., 2015). 

Importantly, many of the observed effects of reproductive effort on parasitism (or 

vice versa) in the wild are sex-dependent, either occurring only in one sex (Norris et 

al., 1994; Ezenwa, 2004; Gooderham and Schulte-Hostedde, 2011; Ezenwa et al., 

2012; Ezenwa and Snider, 2016) or more strongly  in males than females (Hayward 

et al., 2014a).These sex-biased differences suggest that host factors do not operate 

independently in driving variation in parasitism, and that relative costs of 

reproduction between sexes should be considered within each system.  

Host condition & nutrition  

Proper high quality whole-diet nutrition is crucial for an effective immune system. 

However, the relationship between nutrition, immunity, and infection is complex, 

dynamic, and can operate through effects on multiple components of the immune 
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response (Chandra, 1997). Inadequate nutrition/ malnutrition (defined by insufficient 

macro-and micro-nutrients) can impair effective and protective immune responses 

and increase infection risk.  The most common form of malnutrition considered in 

relation to immunity is due to inadequate protein-energy, which can significantly 

impair the majority of host defence mechanisms, including cellular and humoral 

immunity (Chandra, 1997). Specific micronutrients (i.e. vitamin A, Zinc, Iron) also 

play an important role in immune function, and deficiencies in these nutrients can 

therefore increase severity of infection (Calder and Jackson, 2000).  

Impaired immunity due to malnutrition is particularly important for helminth 

infections, and there is a high degree of geographical overlap in human populations 

of malnutrition and high helminth prevalence (Strunz et al., 2016). This may be 

driven by the nutritional symptoms associated with helminth infection, creating a 

positive feedback loops in these areas, where malnutrition predisposes individuals to 

high burdens of infection, and high burdens of infection exacerbate malnutrition, 

increasing susceptibility to reinfection later (Koski and Scott, 2001). Likewise, 

wildlife typically face limited and variable resources and stressful environmental 

conditions, but are concurrently challenged with many parasites including helminths 

(Cox, 2001). Though nutrition plays a key role for helminth dynamics in these 

natural populations, noise from multiple environmental and host characteristics often 

confound interpretation of nutrition-infection relationships in nature (but see 

(Pedersen and Greives, 2008; Forbes et al., 2014)).  
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Much of our knowledge on the mechanisms of nutritional impacts on infection is 

from controlled laboratory studies, particularly in birds and rodents (Lochmiller et 

al., 1993; Lochmiller and Deerenberg, 2000). Protein deficiencies were found to 

significantly impair development of the spleen and lymphocyte yield in Northern 

Bobwhite (Colinus virginianus) chicks (Lochmiller et al., 1993), and deficiencies of 

both protein (Slater and Keymer, 1986a; Ing et al., 2000) and micronutrients such as 

Zinc (Shi et al., 1997; Boulay et al., 1998) impair host immune response and increase 

susceptibility to the helminth H. polygyrus bakeri in laboratory mice.  Effects of 

nutritional supplements on the clinical symptoms of helminth infection have been 

explored in humans (Long et al., 2007; Nga et al., 2009; Rajagopal et al., 2014; Al-

Mekhlafi et al., 2014), but results overall have been equivocal (Yap et al., 2014). In 

the wild, increasing attention is being paid to the influence of nutrition on infectious 

disease dynamics (Becker et al., 2015); however, interpretation of these relationships 

are affected by factors from the environment and host, which are often not available 

in many studies.  

1.3 Part 4. Complexities for studying parasitism in the wild: 
interactions across scales  

1.3.1 Interactions between abiotic & biotic factors  

Host-parasite dynamics in the wild are highly context-dependent, as extrinsic and 

intrinsic factors often act simultaneously within a population. Laboratory studies 

provide controlled opportunities to study the effect intrinsic variables such as sex, 

nutrition, and age on helminth infection, but laboratory conditions do not represent 

ecologically realistic settings. Fluctuating resource availability provides a good 

example of how extrinsic and intrinsic variables can interact to affect host-parasite 
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relationships. A notable example of variable resource availability in the wild is mast 

events (synchronous crops of specific tree species providing very high levels of food)  

for small mammal populations (Ostfeld et al., 1996). For populations of deer mice in 

the US (Peromyscus spp.) and wood mice in the UK (Apodemus sylvaticus) the 

additional resources available to individuals from periodic beech and acorn masts 

increase host reproduction and abundance (Flowerdew, 1972; Montgomery et al., 

1991). However, while higher quantities and qualities of food may have benefits at 

the individual level, increased population density driven by more breeding may 

actually facilitate increased parasite exposure and transmission, leading to possible 

negative feedback loops (Pedersen & Grieves 2008).  

The complex effects of resource availability on immunity and parasitism have 

become increasingly investigated in the last five years, in part to better understand 

and address the rising incidence of anthropogenic activities impacting wildlife food 

sources (Becker and Hall, 2014; Becker et al., 2015; Civitello et al., 2018; Strandin 

et al., 2018). Both theoretical and empirical work has highlighted both the potential 

positive and negative effects of resource provisioning on parasitism within wildlife 

populations as a result of indirect and direct effects on within- and between-host 

factors (Becker et al., 2015), suggesting laboratory studies or wild studies which 

account for only individual-level differences may miss important population-level 

effects and feedbacks. Seasonality of both parasitism and host processes (Altizer et 

al., 2006) and alteration of the host immunity as a result of exposure to co-circulating 

parasites (Cox, 2001) are examples of conditions which represent important 

deviations from laboratory populations, but which are common place in the wild.  



 

Chapter 1  17 

1.3.2 Multiparasite communities  

For natural populations in which helminth infections are common, co-infection with 

other macro- and micro-parasite species is the norm (Graham, 2008a; Poulin, 2011; 

Ezenwa, 2016). Co-infection (defined here as concomitant infection of multiple 

parasite species) can change both the magnitude and type of immune response 

elicited either directly (i.e. occupying the same niche or using the same resources) or 

indirectly (via immune molecules) by interfering with the response the host would 

mount against the other, co-infecting pathogen, particularly in the case of helminth-

microparasite infections (Graham, 2008b). Chronic activation of immunosuppressive 

Th2 responses by helminths can change the immune response to concomitant 

microparasite (positively) or additional macroparasites (negatively) infections (Lello 

et al., 2004; Pedersen and Fenton, 2007; Graham, 2008b; Griffiths et al., 2015). A 

community ecology perspective to frame the within-host parasite community as 

analogous to free-living community dynamics can provide import insight into 

understanding the variation observed in patterns of infection in naturally co-infected 

populations (Pedersen and Fenton, 2007). However, cross-sectional data (single 

samples per individual) has been found to fail to provide information on parasite 

interactions (Lello et al. 2010, Fenton et al. 2015), which poses a limitation for the 

study of such interactions in the wild. However, controlled co-infection experiments 

in the laboratory or studies in systems where longitudinal or time-series data is 

available can circumvent this problem. Importantly, drug treatment experiments, 

defined previously, which remove one parasite taxa and measure the impacts on 

other co-infecting parasite which are not targeted by the drug, can reveal potential 

negative or positive within-host parasite interactions (Pedersen & Fenton 2015). Host 
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–parasite  laboratory models have shown that interactions between parasites can alter 

host susceptibility and infection length (Graham, 2008b), and time-series data from 

wild field voles (Microtus agrestis) showed that parasite interaction effects exerted 

even greater effects on infection risk in the population than did host susceptibility or 

exposure (Telfer et al., 2010).  Notably, the environmental context, such as the 

resource availability or microclimate, can alter the outcome of parasite species 

interactions. In laboratory mice, experimental resource limitation altered showed that 

outcome of co-infection between helminths (N. brasiliensis or H. p. bakeri) and a 

microparasite (M. bovis) was dependent on protein levels, where limited protein 

increased fecundity of N. brasiliensis during co-infection (Budischak et al., 2015b).  

1.4 Experimental approaches in wild rodent populations  

Wild rodent populations represent an ideal system for the investigation of the drivers 

of helminth infections in a natural population. Helminth infections are common 

among wild rodents (Keymer and Dobson, 1987; Behnke et al., 2009a), populations 

are usually large which enables large sample sizes, recapture rates are high 

facilitating longitudinal studies, and they are tractable for field perturbations at both 

the individual and population level. However, much of the existing knowledge on 

immunity to helminths comes for laboratory mouse systems, which are typically 

associated within unlimited food, minimal genetic variation, and minimal 

environmental stress (Finkelman et al., 1997; Pedersen and Babayan, 2011). Wild 

mouse systems can benefit from tools developed for laboratory mice (Abolins et al., 

2017; Pedersen & Babayan, 2001). but also represent ecologically realistic settings 
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and therefore may be an ideal system to carry out experimental work in investigate 

both cause and effect in natural host-helminth interactions.  

1.4.1 Anti-parasite perturbations  

Assessing the cost of parasitism in a natural population is difficult by observation 

alone, as there may be many confounding factors (i.e. exposure, co-infection, host 

condition, etc.) which are either difficult to measure or control. Several landmark 

studies in disease ecology have used anthelminthic treatment to experimentally 

investigate the role of parasites in wild host population dynamics (Hudson et al., 

1992; 1998; Vandegrift et al., 2008). In the first such study published, Hudson and 

colleagues removed/reduced the nematode Trichostrongylus tenuis in red grouse 

(Lagopus lagopus scotius) populations, which prevented dramatic periodic 

population crashes (Hudson et al., 1998) and improved reproductive output (Hudson 

et al., 1992). Many studies have subsequently followed this approach (see Pedersen 

& Fenton 2015), and have shown a myriad of responses, including an increase in the 

probability of reproduction in the year following removal of the nematode Ostertagia 

grueneri in reindeer (Rangifer tarandus plathyrynchus) (Albon et al. 2002).  

Anthelmintic treatment experiments have been used frequently in small mammal 

population dues to high trapping success and ability to collect longitudinal data 

(Pedersen and Fenton, 2015). Sex-specific removal of H. polygyrus in yellow-necked 

mice in Europe (Apodemus flavicolis) showed that males contribute 

disproportionately more than females to transmission (Ferrari et al., 2004). 

Anthelmintic treatment in an ecologically similar white-footed mice (Peromyscus 

leucopus) in the US eliminated the summer breeding hiatus typical of this species 
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(Vandegrift et al., 2008). In addition to identifying costs of parasitism, parasite 

removal experiments can provide insights into the relationships of helminths with 

other factors in the wild such as co-infecting parasites. Previous work by our 

research group in UK wood mice (Apodemus sylvaticus) has shown that removal of 

H. polygyrus increases intensity of infection by over fifteen-fold for Eimeria 

hungaryensis, a gastrointestinal protozoan which resides in the same portion of the 

gut as H. polygyrus and may share resources with the nematode (Knowles et al., 

2013; Rynkiewicz et al., 2015).  

1.4.2 Resource supplementation  

The role of fluctuating food sources in rodent populations has been reasonably well-

studied, often showing that increased availability to resources is associated with 

increases in individual survival and reproduction (Wolff, 1996; Ostfeld and Keesing, 

2000). The relationship between resources, parasites, and population dynamics has 

also been explored experimentally in wild mouse systems using experimental 

resource supplementation to mimic mast events either alone or in conjunction with 

anthelmintic treatment (Flowerdew, 1972; Diaz and Alonso, 2003; Pedersen and 

Greives, 2008; Shaner et al., 2018). These studies have found that increased food 

availability alone resulted in increased reproductive activity (Flowerdew, 1972) and 

reduction of some nematode species within the population (Diaz and Alonso, 2003). 

However, when combined synergistically with anthelmintic treatment, resulted in 

removal of annual population crashes, suggesting that an interaction between 

resource availability and helminth infection drove population dynamics (Pedersen 

and Greives, 2008).  
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Such interactions between resources and helminths are complex (Figure 1.2), and can 

be mediated by both host processes (i.e. demography, behaviour, condition, and 

immunity) which are subject to natural variation or influence from other parasites in 

the community and environmental factors. In this thesis I use experimental 

perturbations of both resource availability and helminth infection alongside 

longitudinal live-trapping in wild Apodemus sylvaticus (wood mice) populations 

commonly infected with H. polygyrus to experimentally investigate the how nutrition 

and helminth infections interact and the consequences of these interactions for both 

host and parasite fitness.  

 

Figure 1.2. A network of possible relationships between environment (green) 
and host (yellow) factors that could impact helminth parasite infection/co-

infection (purple) and resource availability (blue) in a wild mammal population 
infected with helminths. 

1.5 Apodemus sylvaticus & Heligmosomoides polygyrus  

The wood mouse (Apodemus sylvaticus) is one of the most common species of small 

mammals in the United Kingdom. These granivorous, nocturnal rodents have distinct 
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seasonal population cycles, with the peak breeding season from June-September. 

Individuals born during this time will survive for approximately a year, 

overwintering and becoming the breeding adults in the following year (Flowerdew 

1985). Among the diverse community of parasites identified in wild wood mice, the 

gastrointestinal nematode H. polygyrus is a very common and important species 

(Gregory et al. 1990; Knowles et al. 2013). H. polygyrus has a direct life cycle 

typical of GI nematodes, with eggs passed via host faeces into the environment, 

where infective larval stages develop and then are ingested by hosts (Figure 1.1). 

Heligmosomoides bakeri (a sister taxa to wild Heligmosomoides polygyrus of wood 

mice (Cable et al., 2006)) is one of the best laboratory models of human and 

domestic animal gastrointestinal nematodes, specifically for understanding 

immunosuppression during chronic infection and modification of host behaviour 

(Behnke 1987; Behnke et al. 2009).  

The population biology and ecology of H. polygyrus in wild wood mice has been 

well-documented, and exhibits typical endemic helminth infection patterns (i.e. 

temporal persistence, high prevalence, uneven, aggregated distribution among hosts 

(Anderson & May 1982; Gregory et al. 1990). Extensive observational studies of H. 

polygyrus infection in wood mice across different geographic areas and time periods 

(Montgomery and Montgomery, 1988; 1989; Abu-Madi et al., 2000; Eira et al., 

2006) support differential exposure (i.e. season- and site-specific effects) as a driver 

of variation in prevalence and burden. Previous observational work has also 

suggested that host characteristics such as sex and age (intrinsic factors) affect 
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susceptibility and infection risk (Keymer and Dobson, 1987; Gregory et al., 1990; 

Behnke et al., 1999).  

Although much of this work has been observational, A. sylvaticus provides a 

valuable experimental study system because (1) helminths (and specifically H. 

polygyrus) are highly prevalent and found at high burdens (40- 90%; up to 100+ 

worms per mouse (Keymer and Dobson, 1987; Gregory et al., 1990; 1992; Knowles 

et al., 2013) (2) they have high repeatability of trapping thus individuals can be 

followed longitudinally, (3) anthelmintic treatment can be conducted effectively at a 

large-scale in wild populations (Clerc et al., 2019a), (4) co-infection is common 

(~70% (Knowles et al. 2013)). Previous work from the Pedersen research group has 

established a long-running trapping systems of wood mice in England and Scotland 

inclusive of 10 years of trapping with extensive information about the environment, 

host demographic characteristics, >30 species of parasites and pathogen species, and 

individual effects of anthelmintic treatment (Knowles et al., 2012; 2013; Clerc et al., 

2018; 2019a). 

In addition to the suitability of wild wood mouse populations for field experiments, 

we also maintain the only current wild-derived colony of wood mice in the UK. Over 

the last 5 years, we have begun pairing wild experiments to correlates in the 

laboratory using the same host and parasites species as we study in the wild (Clerc et 

al., 2019b). These types of direct lab to wild comparisons are extremely rare, but 

invaluable for overcoming some common limitations of wild populations such as 

heterogeneity in parasite exposure, immunity, and behaviour. Some exciting and 

complementary studies by Graham and colleagues have recently focused on taken 
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inbred laboratory mice and moving them to enclosures in the wild to determine the 

impact on infection and immunity (Budischak et al., 2017; Leung et al., 2018). Both 

of these approaches can provide exciting possibilities for disentangle these complex, 

but important host-parasite interactions.   We currently maintain H. polygyrus and 

Eimeria hungaryensis (a common gastrointestinal coccidian protozoan) parasite 

isolates collected from our local Scottish field sites, via regular lifecycle experiments 

using colony mice, which enables experimental infection studies in controlled 

environments. For example, foundational work from our wood mouse colony (Clerc 

et al., 2019b) has shown key advances to our understanding of the H. polygyrus – E. 

hungaryensis relationship previously observed in the wild. 

1.6 Parasitology and nutrition manipulation  

1.6.1 Wood mice parasites and within-host parasite interactions 

Parasites of wood mice in the UK have been previously shown to be a diverse group 

of taxa, including both micro- and macro-parasitic species (Knowles et al., 2013). 

Although H. polygyrus is by far the most common parasite of wood mice (~50% 

prevalence; Knowles et al. 2013), additional GI helminths have also been identified, 

including the nematode Capillaria murissylvatici, pinworms (Syphacia spp.), and 

cestodes (i.e. Hymenolepid spp). Several species (up to 5) of the coccidian protozoan 

genus Eimeria also commonly inhabit the gut, including E. hungariensis and E. 

apiodonis.  In addition, we commonly find mice infected with several ectoparasites 

including ticks (Ixodes spp.), mites, and fleas, as well as are several species of 

microparasites, including the blood-borne, flea transmitted bacteria Bartonella spp., 

infections of chronic Wood Mouse Herpes Virus (WMHV), the blood-borne, flea 
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transmitted protozoan Trypanasoma grosi, and Cowpox virus have all been identified 

previously through wood mouse trapping within our research group (Knowles et al., 

2012; 2013) 

Accurately assessing parasite infection can be challenging in the wild due to limited 

sampling opportunities and methodological limitations. Within the wild wood mouse 

populations, I am able to longitudinally monitor this diverse community of blood-

borne, ectoparasites, and gastrointestinal macro and micro-parasites (Box 1.1). Each 

mouse within our experimental framework is tagged with a microchip at first 

capture, which enables me to follow individuals longitudinally and sample for 

parasite infection at each capture. Across my field experiments, to assess blood-

borne parasites, I collected blood samples with minimal stress from the animal from 

either venipuncture of the cheek or venesection of the tail, separated blood pellets 

from the sera, and used DNA extraction and parasite-specific PCR for 

presence/absence data. At each capture, I also surveyed individuals for ectoparasites 

by brushing the fur and counting individual ticks, fleas and mites. I quantified the 

gastrointestinal parasites species infections in two ways: (i) by lethal sampling at the 

end of experiments and counting the number of adult worms (worm burden) in the 

small intestine, or (2) by counting the number of helminth eggs in the faeces 

(abundance) of an animal; which can be measured throughout an individual’s life 

through repeated sampling. Egg burdens, which are generally standardised to 1g of 

faeces (egg/gram- EPG), is often used as a proxy for number of adult worms in the 

gut. Though the correlation of EPG with adult worms in the host can vary 

(Budischak et al., 2015a), within the populations that I studied in this thesis I find a 

highly significant correlation between egg abundance and worm burden  (Pearson’s 
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R= 0.74, p<0.001; Box 1.1), indicating that EPG is a suitable proxy for adult H. 

polygyrus burdens, as well as an indicator of egg shedding and onward transmission,  

Throughout this thesis I use the following guidelines for parasitological terms. I 

describe an individual’s infection status as presence/ absence data. Statistical models 

using binary infection data (infection:1/uninfected:0) as a response can be interpreted 

as giving insights into the factors that determine the probability of infection with a 

specific parasite taxa. I refer to indirect measures of parasites according to Bush et 

al., 1997. Accordingly, I use ‘abundance’ (all individuals) or ‘intensity’ (infected 

individuals only) for EPG data (Box 1.1). To differentiate direct from indirect 

measures, I use ‘burden’ to refer to the number of parasites when directly measured 

(Box 1.1). Models using abundance, intensity, or burden of infection as a response 

can be interpreted as insights into the mean within the groups considered.  
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Box 1.1 A description of parasite diagnostics and terms used to describe various 
infection with common parasite groups of mice.  

A. blood-borne B. ectoparasites C. gastrointestinal parasites. Top row illustrates 
locations of infections for groups depicted and a glossary of parasitological terms 

used throughout. Boxes A-C detail sample types, method of quantification 
associated, and the resultant data. Bottom right depicts the correlation between adult 
worm burden and EPG abundance in Scotland wood mouse populations (n=36), with 

Pearson’s R and 95% credibility intervals. 

 

1.6.2 Nutrition supplementation  

Dietary manipulation experiments are common in laboratory mouse systems (Calder 

and Jackson, 2000). Investigating the impacts of nutrition on infection or immunity 

typically involves extreme manipulations (either restriction or addition) or specific 
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nutrients such as protein, vitamins, or trace elements (Slater and Keymer, 1986a; 

Carman et al., 1992; Shi et al., 1997; Boulay et al., 1998; Ing et al., 2000)  Diet 

supplementation experiments have likewise been conducted in wild mouse 

populations, but in contrast commonly mimic natural variation in wild resources by 

using supplements such as seeds (Diaz and Alonso, 2003; Pedersen and Greives, 

2008; Shaner et al., 2018). For all experimental nutrition supplementations that I 

employed in this thesis, I sought to enrich the diet of wood mice with a high-quality 

resource consisting of high levels of both macro- and micro-nutrients. This chow 

(diet) is high-nutrient, standard veterinary feed which is formulated for optimum 

breeding performance in laboratory mice (Table 1.1).  

Table 1.1 Nutrition content of the mouse chow used in both the field and laboratory 
experiments. 

 TransbreedTM was used in the wild as the supplemental resources and as the high-quality 
resource, while Rat Mouse 1 (RM1TM) was used at the standard diet . Both diets are made by 

Special Diet Services (SDS). Micronutrients included are selected elements and vitamins 
which have previously been implicated in host response to helminth infection, however full 

calculated analysis of RM1TM and TransbreedTM nutritional content can be found at 
http://www.sdsdiets.com/pdfs/RM1P-E-FG.pdf 
&http://www.sdsdiets.com/pdfs/TransBreed.pdf. 

 

 

1.6.3 Field sites  

All experimental work in this thesis was carried out in 100ha broadleaf woodland in 

Falkirk, Scotland (Callendar Wood, 55.990470, -3.766636). This woodland has 

wood mouse (A. sylvaticus) populations that are naturally infected with H. polygyrus 

(Clerc et al. 2019a). Each year experimental grids as appropriate to experimental 



 

Chapter 1  29 

design were set-up prior to trapping. This thesis contains experimental fieldwork 

carried out in Callendar Wood from three separate years. The study area was 

consistent year-to-year, but the grids were set each year dependent on area available 

and experimental design (Figure 1.2). Between years, grids that were designated as 

supplemented were not kept constant to avoid confounding of experimental results 

with grid effects. Within each trapping grid, trapping stations were set every 10m. In 

2015, grids consisted of 3 plots of 8x8 trapping station. In 2016, this was increased to 

4, 6x5 grids, and in 2017, 4 grids of 7x5 trapping stations. Each trapping station was 

set with 2 traps.  

 

Figure 1.2 Schematic of trapping grids in Callendar Park spanning three years. Full 

study area is outlined in top panel, while approximate location of experimental grids set in 

each year are indicated in bottom panels. Grids designated as supplemented for each year are 

indicated in blue, while control grids are indicated in white. 
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1.7 Study aims  

The primary research question of this thesis was: What are the impacts of nutrition 

quality on host-parasite dynamics in a wild rodent? My specific aims were:  

1. To characterise the effect of an experimentally enriched diet on the infection 

dynamics of the gastrointestinal nematode H. polygyrus and the hosts 

response to treatment in wild wood mouse populations in a controlled 

laboratory setting (Chapter 2). 

2. To examine the effects of increased resource availability on the entire 

parasite community of wild wood mice by extending the analysis of the field 

experiments presented in Chapter 2 to include addition parasite diagnostics of 

helminths, ectoparasites, and microparasites (protozoan & blood-borne) 

(Chapter 3).  

3. To use both a long-term single year nutrition supplementation experiment and 

collation of data from multiple years of supplementation to investigate the 

long-term effects of resource supplementation and how these effects may be 

mediated by season, host age, birth cohort, and possible other environmental 

changes (Chapter 4).  

4. To use a large-scale data set including multiple years and sites of 

observational trapping data for wild populations to investigate the natural 

drivers of H. polygyrus infection and how these drivers vary over space and 

time (Chapter 5).  

In Chapter 6 (Discussion), I synthesise the results of my thesis in the context of 

current disease ecology research and policy implications beyond ecological insight. 
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Specifically, I discuss the results of Chapter 2 in relation to previous knowledge on 

the mechanisms underlying the relationship between nutrition and helminth infection 

and the use of nutrition supplements alongside anthelmintic treatment. I then link 

findings of Chapter 3 to a growing body of work exploring the effects of resource 

provision on wildlife infectious disease, and further discuss considerations of 

interpreting these studies using results from Chapter 4. I next discuss the 

implications of Chapter 5 for considerations for biological interpretation and practice 

design for studies of parasitism in the wild. Finally, I address limitations of this study 

and address areas of ongoing and future work to complement the results of this thesis 

and discuss how greater understanding of the processes underlying the relationship 

of nutrition to host-parasite dynamics can inform the design of treatment 

programmes in both wild and human populations.
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Chapter 2 Supplemented nutrition increases immunity and 
drug efficacy in a natural host-helminth system  

 

 

 

 

 



 
 

 34 

2.1 Summary  

Gastrointestinal helminths are among the most common parasites of humans, 

wildlife, and livestock. Despite the availability of effective anthelminthic drugs, high 

prevalence and chronic infections still persist in large parts of the world. Further, the 

overlapping incidence of malnutrition and helminth infections can predispose 

individuals to higher burdens of infection and reduced anthelmintic efficacy due to 

compromised immunity in malnourished individuals. While the relationship between 

nutrition and helminth immunity and infection has been well-studied in controlled 

laboratory models, the documented benefits of supplemented nutrition have typically 

focused on large-scale alterations of specific macro- or micro-nutrients – an 

approach which is unlikely to scale to heterogeneous populations. However, much 

less is known about the benefits of a whole-diet enrichment in natural host-helminth 

systems, and whether these effects increase protective immune responses and control 

infection across all individuals. Here, we experimentally supplemented the diet of 

wood mice (Apodemus sylvaticus) and measured anthelmintic treatment efficacy and 

resistance to infection with the gastrointestinal nematode Heligmosomoides 

polygyrus in both natural and captive populations. In both settings, wood mice given 

a supplemented diet, even for just a few weeks, were more resistant to H. polygyrus 

infection, cleared adult worms more efficiently after treatment, had better body 

condition and higher general and parasite-specific immune responses. In addition, 

supplemented nutrition in conjunction with anthelminthic treatment significantly 

reduced H. polygyrus egg shedding, nearly eliminating transmission into the 

environment. These effects were observed in all individuals and were strongest in the 

reproductive adults. These rapid, large-scale effects of supplemented nutrition across 
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all metrics measured in controlled and wild environments show the dramatic benefits 

of switching to an enriched diet. These findings have important implications for the 

feasibility of diet interventions to improve host condition, immunity and treatment 

efficacy.  

2.2 Introduction  

Gastrointestinal (GI) helminth parasite infections are ubiquitous and one of the most 

common causes of chronic disease in wildlife, livestock, and human populations 

(Bethony et al., 2006). Globally, helminths infect one in three humans (Hotez et al., 

2008), often causing stunted growth and development, impaired physical fitness and 

cognition in children, pregnancy complications, and decreased productivity in 

livestock (Nokes and Bundy, 1994; Bethony et al., 2006; Hotez et al., 2008; Charlier 

et al., 2009; Taylor-Robinson et al., 2012). Among wildlife, helminth infections are 

very common and can significantly impact host survival and reproduction, while also 

playing a key role in regulating population cycles and dynamics (Grenfell et al., 

1995; Hudson et al., 1998; Pedersen and Greives, 2008). To reduce the burden 

(number of worms per individual) and morbidity of helminth infections, standard 

practice in humans and livestock is anthelmintic drug therapy, using one of several 

currently effective pharmaceuticals (Bundy and de Silva, 1998; Jamison et al., 2006). 

However, despite the high availability and low cost of these drugs, morbidity from 

helminth infections remains high (Hotez et al., 2008).  

Further, reinfection post treatment is rapid (Speich et al., 2016). Several of the most 

common human helminth infections are caused by gastrointestinal nematodes (Hotez 

et al., 2008), whose transmission cycles includes infective larvae shed via faeces, 
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after which they can persist for long periods of time, especially in areas with poor 

sanitation (de Silva et al., 2003). For example, within one year of treatment in 

populations where worms are endemic, A. lumbricoides prevalence can reach nearly 

100% of pre-treatment levels, while T. trichiura and hookworm can reach 50% of 

pre-treatment prevalence (Anderson and Medley, 1985; Jia et al., 2012). Effective 

helminth control therefore depends not only on reducing burdens within all 

individuals, but also reducing exposure and susceptibility to reinfection. To achieve 

this, a better understanding of both the environmental and host factors that drive 

reinfection is needed (Brooker et al., 2006).  

Limiting environmental exposure by integration of such measures as sanitation and 

hygiene improvement (Strunz et al., 2014) or grazing management in livestock 

(Barger et al., 1994; Krecek and Waller, 2006) can be an effective strategy for 

nematode control,  but these methods do not address underlying susceptibility to 

infection or treatment efficacy. Individual differences in response to infection and 

treatment are largely mediated by immune and nutritional status (Bundy and Golden, 

1987; Koski and Scott, 2001).  It is well-established that micronutrient, 

macronutrient, and overall energy deficiencies impair the immune system (Calder 

and Jackson, 2000) and given that mounting an immune response is costly, 

insufficient resources can worsen the impact of nematode infection (Sheldon and 

Verhulst, 1996). Additionally, pre-existing malnutrition can also increase 

susceptibility to infection and/or compromise immune responses (Koski and Scott, 

2001). These relationships have largely been studied in humans in areas with 

endemic nematode infections and malnutrition  (Bundy and Golden, 1987; Strunz et 
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al., 2016), but also exist in other organisms. In livestock, the increased nutrition 

demand of late pregnancy and lactation is associated with a substantial increase in GI 

nematode burdens (Houdijk, 2008) and  in wild animal where resource availability is 

typically limited, trade-offs between the immune response and other energetically 

costly processes mean that individuals must divert resources between different 

physiological demands (Sheldon and Verhulst, 1996).  

Integration of nutritional supplementation with standard drug therapies has been 

explored to address the problem of reinfection after treatment (van Houtert and 

Sykes, 1996; Houdijk et al., 2012), and clinical trials in humans have measured the 

impact of micronutrient supplements (Vitamin A (Donnen et al., 1998; Al-Mekhlafi 

et al., 2014) Zinc (Friis et al., 1997), Iron (Casey et al., 2017), or multiple 

micronutrients (Nga et al., 2009)) on the reduction of Ascaris, Trichuris, and 

hookworm burdens. However, a recent meta-analysis found mixed results, including 

even negative impacts of supplemented nutrition on nematode infection (Yap et al., 

2014). Laboratory mouse models have shown that both macro- and micro-nutrients 

play a key role in host immunity to nematodes and susceptibility to infection (Slater 

and Keymer, 1986a; Slater, 1988; Shi et al., 1997; Boulay et al., 1998; Ing et al., 

2000). For example, deficiencies in protein (Ing et al., 2000) and zinc (Shi et al., 

1997; Boulay et al., 1998) have been shown to increase worm burdens and reduce 

eosinophilia and parasite-specific IgG1 response (Boulay et al., 1998) to 

Heligmosomoides polygyrus bakeri, a well-studied model nematode. Laboratory 

conditions, however, are highly controlled and unlikely to mimic life in the wild, and 

most laboratory house mice (Mus musculus domesticus) models are not natural hosts 

to the helminths, as in the case of H. polygyrus bakeri (Behnke et al., 2009b). 
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Although effects of experimental supplementation have been investigated in wild 

mouse models (Diaz and Alonso, 2003; Pedersen and Greives, 2008; Shaner et al., 

2018), these studies have typically used supplements to mimic natural variation in 

food supply.   

Here we experimentally enriched nutrition, by supplementing mice with a well-

balanced diet, to test the impacts on immunity to H. polygyrus and anthelmintic 

treatment efficacy in wood mice (Apodemus sylvaticus). Wood mice live in 

woodlands across much of Europe and are commonly, chronically infected with H. 

polygyrus (prevalence 20-100%) (Keymer and Dobson, 1987; Gregory et al., 1990), 

a sister taxa to H. polygyrus bakerii (Cable et al., 2006). Importantly, while 

anthelmintics are effective for wood mice, reinfection rapidly occurs, with mice 

returning to pre-treatment burdens within 2-3 weeks of treatment (Knowles et al., 

2013; Clerc et al., 2019a). Further, wild wood mice have significant energetic 

demands for reproduction, foraging, and survival, and are exposed to marked 

seasonal changes (Pedersen and Babayan, 2011; Maurice et al., 2015); conditions 

which laboratory settings cannot replicate, but which are likely very important 

drivers of infection, immunity and nutritional status. Crucially, here we have the 

unique ability to test same host-helminth system in both the wild and controlled 

laboratory conditions in order to control infection/reinfection, exposure, coinfection 

and other important factors, as we have a wild-derived, but now laboratory reared, 

colony of wood mice and a wild-collected H. polygyrus isolate (Clerc et al., 2019b). 

We experimentally tested the effects of supplemented nutrition and anthelmintic 

treatment on (i) H. polygyrus burden and egg shedding in the wild (ii) egg shedding, 
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susceptibility to infection and reinfection in the laboratory and (iii) body condition 

and immune responses in both settings. We find strong evidence of rapid and broad 

impacts of supplemented nutrition for host condition, helminth resistance and 

treatment efficacy; suggestion that a balanced diet supplementation could provide 

significant benefits for helminth control by increasing the host’s ability to respond to 

infection and reducing the probability of reinfection.   

2.3 Methods  
2.3.1 Field experiment  
We conducted the field experiment in a 100ha broadleaf woodland in Falkirk, 

Scotland (Callendar Wood, 55.990470, -3.766636). This woodland has wood mouse 

(Apodemus sylvaticus) populations that are naturally infected with H. polygyrus 

(Clerc et al., 2019a). We conducted two 8-week experiments (2 temporal replicates) 

during the wood mouse breeding season, when host energetic demands are highest: 

(i) May - July 2015 and (ii) June - August 2016. We used a 2 x 2 factorial design, 

where supplemented nutrition was manipulated using high-quality, whole-diet food 

pellets (hereafter simply “diet”) at the population level (unit – trapping grid; control 

(unmanipulated) vs. supplemented) and anthelmintic treatment (hereafter simply 

“treatment”) was manipulated at the individual level (unit – mouse; control (water) 

vs. treatment; Fig. 1). In 2015, we trapped three grids (1 supplemented grid, 2 control 

grids, 49 trapping stations per grid with 2 traps/station, 10m between each trap, for a 

total area of 3600m2), while in 2016, we trapped four grids (2 supplementation and 2 

control grids; with each grid set up as a 6x5 array of 30 trapping stations with 2 

traps/station, 10m between each trap, for a total area of 2000m2). All grids in both 

years were spaced a minimum of 50m from each other to minimise mouse movement 
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between grids, and grids were randomly assigned to nutrition regimes prior to the 

start of the experiment.  

We diet-supplemented for three weeks before and then throughout the 8-week 

experiment twice per week with 2kg/ 1000m2 of sterilised, TransBreedTM mouse 

chow pellets, scattered at regular intervals across the grids to ensure an even spatial 

distribution. TransBreedTM is a high-nutrient, standard veterinary feed which is 

formulated for optimum breeding performance in laboratory mice and offers whole-

diet nutrition to the wild mice in this study (20% protein, 10% fat, 38% starch, high 

content of micronutrients, see Chapter 1, Table 1.1 for full details), therefore our 

supplementation complemented natural food availability. We live-trapped mice for 3 

nights/week using Sherman live traps (H.B. Sherman 2x2.5x6.5-inch folding trap, 

Tallahassee, FL, USA). Each trap contained cotton wool bedding, and was baited 

with seeds, carrot, mealworms, and TransBreedTM pellets (on supplemented grids 

only), set in the early evening (16.00-18.00) and then checked early the following 

morning. All wood mice weighing >10g at first capture were tagged with a 

subcutaneous microchip transponder for identification (Friend Chip, AVID2028, 

Norco, CA, USA). On both control and diet-supplemented grids, all mice at first 

capture were rotationally assigned within each sex to either control or drug treatment 

groups. We administered a single 2ml/g dose of Pyrantel pamoate (Strongid-P, 100 

mg/kg) and Ivermectin (Eqvalan, 9.4mg/kg) to each mouse allocated to the 

anthelminthic group. Ivermectin and Pyrantel pamoate are broad-spectrum 

anthelmintics which target adult and larval stages (Ivermerctin) and adult stages 

(Pyrantel) of H. polygyrus in both laboratory and wild mice (Wahid et al., 1989; 
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Ferrari et al., 2004; 2009). Previous work in wild A. sylvaticus found that the 

combination of Ivermectin and Pyrantel at 9.4mg/kg and 100 mg/kg, respectively, 

efficiently cleared H. polygyrus infection for ~14 days (Clerc et al. 2019).  

For each mouse at every capture we measured: sex, age, and host condition including 

body mass, length, fat scores, and reproductive status. Age of mice (classed as: 

juvenile, subadult, adult) was determined by weight and coat colour based on 

juvenile moulting patterns. Generally, juveniles weigh 10g or less, subadults weigh 

between 10-15g, and adults are 15g or heavier. Juveniles have a distinctly different 

coat colour (grey, compared to brown colour of adults), while subadults have an 

intermediate colour coat (grey/brown). Sex and reproductive status were assigned by 

visual examination of the genitals as male A. sylvaticus have a greater urogenital 

distance than females. Males were classed into the following reproductive categories: 

Abdominal (testes non-visible); Descended, or Scrotal. Females were classed into the 

following reproductive categories: Non-perforate vagina; Perforate vagina; Pregnant 

or Lactating. Animals which are scrotal, pregnant, or lactating are considered 

reproductive for binary reproductive status assignment. Weight in grams and length 

in mm was measured for each individual. Body fat scores were assessed on a scale of 

1-5 (emaciated-obese) by palpating the sacroiliac bones (back and pubic bones) 

(Ullman-Cullere and Foltz, 2011). Blood samples were collected via mandibular 

bleed (first capture) or tail snip (subsequent captures) a maximum of once per week 

from which serum was separated by centrifugation at 12,000 rpm for 10 minutes and 

then stored at -80°C. Faecal samples were collected for each mouse at every capture 

from previously sterilised traps and preserved in 10% formalin. In addition, 2-3 
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pellets from each faecal sample were stored at -80°C for faecal IgA antibody 

measures.  

Mice were sacrificed 12-16 days after first capture, corresponding to the period of 

efficacy for these drugs in wild wood mice [52,55]. Mice caught outside of this date 

range, or those pregnant or lactating at capture, were released. Eyes were collected 

and stored in 10% formalin for dissection of eye lenses for assessment of animal age. 

Eye lens mass has been shown to strongly correlate with age in many species 

(rodents and others), and has successfully been used to distinguish age classes for 

both laboratory and wild mice (Rowe et al., 1985; Augusteyn, 2014). Eyes collected 

from sacrificed animals were removed from their container and left at room 

temperature for 5-10 minutes to allow the formalin to evaporate. Eye lenses were 

then extracted and dried at 70°C overnight. They were then weighed to the nearest 

mg using a precision balance. The combined weight of both eye lenses (log-

transformed) for each individual were used as a proxy for age. We calculated the 

relationship between age and eye lens weight using wood mice of known ages from 

our colony to be:  

!"#	(&##'() =	
#+#	,#-(	&#."ℎ0	(1") − 0.043 ∗ 189(#	&#."ℎ0	(") − 5.34	

0.152
 

Small intestine, caecum, and colon of each individual were stored in 1X phosphate-

buffered saline and dissected on the same day for counts of adult H. polygyrus 

worms present.  
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2.3.2 Laboratory experiment  
We maintain a formerly-wild, but now lab-reared wood mouse colony in standard 

laboratory conditions at the University of Edinburgh. The colony has been in 

captivity for many generations, but the wood mice are purposely outbred to maintain 

genetic diversity. In this experiment, all mice were housed individually in ventilated 

cages (Techniplast, 1285L) with food and water ad libitum. H. polygyrus L3 larvae 

were isolated from the same Callendar Wood wild wood mouse population and were 

screened using PCR diagnostics to ensure the isolate was not contaminated with any 

other known mouse parasites or pathogens (IDEXX Bioresearch, Germany), and then 

passaged several times through colony-housed wood mice (Clerc et al., 2019b).  

Experimental design 

We conducted a 2x2 factorial design in the lab, parallel to our field experiment: (i) 

diet (standard vs. supplemented, both Special Diet Services (SDS) pelleted rodent 

chow) and (ii) anthelmintic treatment (control (water) vs. treatment); both 

implemented at the individual level (Figure 1.1).  As in the field experiment, 

TransbreedTM was used for the diet supplementation. Rat Mouse 1 (RM1TM) was 

used as the control diet, as it is a maintenance chow with lower nutrient content, but 

is not considered a restrictive diet (Table 1.1). Mice on both diets were fed ad libitum 

and were given a 32-day diet acclimatisation period and we included both primary 

and secondary H. polygyrus infections to mimic the high level of exposure found in 

wild wood mice. Sixteen wood mice from our colony, aged 15-21 weeks (median 18 

weeks), were randomly assigned to 4 experimental groups (n = 4/group; Figure 1.1): 

(i) supplemented nutrition, treated, (ii) supplemented nutrition, control, (iii) standard 

nutrition, treated, and (iv) standard nutrition, control. Eight mice were designated as 
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controls and placed on the same standard and supplemented mice as experimental 

mice (n = 4 per group; Figure 1.1). After diet acclimatisation, all experimental mice 

were infected with 200 wild-derived H. polygyrus L3 in 150uL dH2O via oral 

gavage. Third stage larvae (L3) of H. polygyrus were originally derived from wild A. 

sylvaticus that were infected with H. polygyrus (Clerc et al., 2019b). Since then they 

have been passaged approximately ten times through colony-housed A. sylvaticus at 

the University of Edinburgh. In order to extract H. polygyrus eggs from faecal 

samples, the pellets were broken up and mixed with inactivated charcoal to mimic 

soil. The charcoal-soil mix was spread thinly on moist filter paper maintained in petri 

dishes at 17C. Larvae started to hatch after 9-12 days after culture and were collected 

into dH2O and kept at 4°C until use. Prior to infections, larvae concentrations were 

adjusted to a final concentration of 200 L3/ 150uL. Infective doses were 

administered to mice via oral gavage. 

On day 46, 14 days post-infection, half of the male and female mice challenged with 

H. polygyrus were randomly assigned to treatment groups and were given either 

anthelmintic drug treatment (identical combinations and doses as in field experiment) 

or a control dose of water via oral gavage. Control animals received equivalent water 

control on day 32 and 46 experimental primary infection and treatment timepoints. 

On day 53, all experimental mice were re-infected with 200 H. polygyrus L3 in 

150uL H2O via oral gavage to act as a secondary challenge, and control mice were 

given a primary challenge with 200 H. polygyrus L3. On day 67 (14 days post-

secondary challenge) all mice were culled and adult H. polygyrus in the small 

intestine were counted.  
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Sampling 

Once per week, both weight (grams) and fat scores were recorded. From the day of 

primary infection (day 32) we collected a weekly blood sample for each individual; 

on days 32, 39, and 53 the samples were taken via venesection (tail bleed), while on 

day 46, the samples were taken via venepuncture (cheek bleed). On day 67, 

individuals were sacrificed and sampled as described above. Faecal samples were 

collected three times/week starting at primary infection and then continued 

throughout the course of the experiment, by changing the cage bedding ~12 hr prior 

to each collection and then collecting faecal pellets from the freshly-used bedding 

and then preserving the samples in 10% buffered formalin. A small sample of 2-3 

pellets was also collected to measure faecal IgA. Over the course of this experiment, 

5 mice exhibited weight loss over the threshold for our experimental protocol, not 

related to the diet supplementation or H. polygyrus infection and were culled and 

removed from further analysis.  

 

Figure 2.1 Diagram of supplemented diet- H. polygyrus infection laboratory 
experimental design. 



 
 

 46 

All wood mice were assigned to diet groups at day 0 (d0). After 32 days of diet 
acclimatisation (d32), all experimental (n=16; solid lines) mice were given a primary 

challenge of H. polygyrus. On day 46, 14 days post infection (dpi), the experimental mice 
were randomly assigned within diet groups to either receive an anthelminthic treatment 

(darker lines) or a control dose of water (lighter lines; n=4/ group). On day 53, all 
experimental mice received a secondary challenge of H. polygyrus, and were culled on day 
67, 14 days post-secondary challenge. On days 32 and 46, control mice (dashed lines, n=4/ 
group) received equivalent volumes of water, and on day 53 received a primary challenge 
with H. polygyrus. Control mice were culled on day 67, 14 days post primary challenge. 

2.3.3 Laboratory assays for both field and laboratory experiments  

H. polygyrus egg shedding was measured as eggs per gram of faeces (EPG). using 

salt flotation and microscopy following Knowles et al. (2013). Briefly, saturated salt 

solution was added to formalin-preserved faecal samples to concentrate eggs on a 

coverslip, counted at 10X magnification, and adjusted by sample weight to EPG. 

Adult H. polygyrus were counted from PBS-preserved small intestine sections within 

5 hours of dissection.  

We used ELISA assays to measure (1) total faecal IgA concentration and (2) sera H. 

polygyrus-specific IgG1 antibody titres for each mouse at each capture/sampling 

point using protocols optimised for wood mouse samples [56]  

For IgA ELISA, a 3:1 volume of protease inhibitor solution (Complete Mini Protease 

Inhibitor Tablets, Roche) was added each faecal sample and then homogenised. 

These faecal extractions were then incubated for 1hr at room temperature and then 

centrifuged at 12,000 rpm for 5min. Supernatants were separated from faecal pellets 

and stored at -80C. 96-well microplates (NuncTM MicroWellTM, ThermoScientifcTM) 

were coated with goat anti-mouse IgA (Southern Biotech 1040-01, 2ug/ml) diluted in 

carbonate buffer overnight at 4°C. Capture antibody was then flicked off plates and 
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4% BSA-TBS was added and incubated for 2hr at 37°C to block non-specific 

binding sites. Faecal extracts were diluted 1:50 in 1% BSA TBS in triplicate and 

added to plates and incubated overnight at 4°C. Two serial dilutions of IgA standard 

(BD Bioscience 3039828) were included on each plate as positive controls and to 

obtain curves for calculation of IgA concentration. Following incubation, plates were 

washed 3 times with TBS-Tween and 50uL of goat anti-mouse IgA-HRP (Southern 

Biotech 1040-05) diluted 1:4000 in 1% BSA TBS was added to each well. Plates 

were incubated for 1hr and washed 4x with TBS-Tween and 2x with ddH20. 50ul 

TMB substrate was added to each well and plates were developed for 7 minutes 

protected from light. After that, 50uL of 0.18M sulphuric acid was added to each 

well to stop the enzymatic reaction. Plates were read at 450nm and sample 

concentrations were determined by fitting a 4-parameter logistic regression to 

standard curves.  

To determine H. polygyrus-specific IgG1 titres from blood sera, 96-well microplates 

were coated with H. polygyrus excretory-secretory antigen (HES, 1.0ug/ml; obtained 

from Amy Buck, University of Edinburgh, and Rick Maizels, University of 

Glasgow) diluted in carbonate buffer overnight at 4°C. Capture antigen was then 

flicked off plates and 4% BSA-TBS was added and incubated for 2hr at 37°C to 

block non-specific binding sites. Sera samples were prepared as twofold serial 

dilutions with a starting concentration of 1:100in 1% BSA TBS and added to plates, 

and incubated overnight at 4°C. Two serial dilutions of sera from infected colony 

mice were included on each plate as positive controls. Following incubation, plates 

were washed 3x with TBS-Tween and 50uL of goat anti-mouse IgG1-HRP (Southern 
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Biotech 1070-05) diluted 1:2000 in 1% BSA TBS was added to each well. Plates 

were incubated for 1hr and washed 4x with TBS-Tween and 2x with ddH20. 50ul 

TMB substrate was added to each well and plates were developed for 7min protected 

from light, at which point 50uL of 0.18M sulphuric acid was added to each well to 

stop the enzymatic reaction. H. polygyrus specific IgG1 was calculated as a relative 

concentration to a positive reference sample consisting of sera from Mus musculus 

experimentally infected with H. polygyrus in the laboratory. Plates were prepared 

with serial dilutions of reference and experimental samples, and a dilution factor of 

1:200 was selected for calculation of relative antibody concentrations. Standardised 

IgG1 concentrations were calculated by plate as follows:  

=">1	?0@-A@BA.(#A	C8-D#-0B@0.8- = 	
?@1E,#	FG −H#@-	I,@0#	J,@-'(

I,@0#	I8(.0.K#	C8-0B8,	FG −H#@-	I,@0#	J,@-'(	
 

We assigned a value of 0 to samples for which the OD did not exceed 3x SD of 

control blanks as we considered them indistinguishable from no IgG1 response. We 

refer to both IgA and IgG1 values as ‘antibody concentration’. 

2.3.4 Statistical Analysis  

We carried out all statistical analysis using R v 3.5.1 (R Core Team, 2019). All 

models were fit using the package ‘glmmTMB’ [1]. All model components are listed 

in Appendix A, Table S2.1, and additional information on model terms in Appendix 

A, Table S2.2. Year (factor; two levels) was included in condition and immunity 

models to account for variation across replicates, but was dropped for models of 

infection in the wild as we no observed no significant differences between years in 

infection variables.  
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H. polygyrus infection  

Wild experiment: To investigate the impact of supplemented nutrition on H. 

polygyrus infection, we used Generalized Linear Models (GLMs) and Mixed Models 

(GLMMs) for the following response variables (i) intensity of infection (EPG) at first 

capture (before treatment) (ii) mean EPG per individual for subsequent post-

treatment captures and (iii) infection burden (adult worm count) at final capture. The 

distribution of EPG abundance and worm burden were highly over-dispersed with a 

high number of zero counts, which is typical for many helminth infections (Grenfell 

et al., 1995), thus we fit the models with negative binomial (NB) error distributions. 

Fixed effects in all models included diet and host characteristic variables (i.e. sex, 

reproductive status, age full details in Table S2.1). A random effect of grid:year (7 

levels) was also included in all models to account for spatiotemporal variation in H. 

polygyrus infection. Drug treatment and a treatment - supplement interaction were 

included in models of data after first capture. Age was only included as an 

explanatory variable in the model examining worm burden, where lethal sampling 

allowed the use of eye lens weight as a proxy for age (Rowe et al. 1985). Mice were 

classified as ‘supplemented’ if they were captured > 50% of the time on 

supplemented grids and as ‘control’ otherwise. Only 18% (n = 16) of mice were 

captured on both grid types, but to test the possibility that effects of supplemented 

nutrition could be dependent on the time spent on these grids, we fit another set of 3 

models, identical to those described above, but including three levels of 

supplemented nutrition as an explanatory variable (control, mix, supplemented), 

where ‘mix’ represented sixteen mice that were found on both control and 

supplement grids across the experiment (see Appendix A). 
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Laboratory experiment: We investigated the impact of supplemented nutrition and 

treatment on H. polygyrus infection in the laboratory using GLMs with NB errors to 

the following response variables to primary infection: (i) peak EPG shed, (ii) total 

EPG shed, and (iii) adult worm burden. Although all experimental mice were 

infected and re-infected, only two individuals had EPG values >0 after reinfection, 

and models could not be reliably fit to this dataset. Therefore, only adult worm 

burden was used as a response variable for secondary infection. Explanatory 

variables for all models are listed in Table S2.1, and included diet, host 

characteristics, and day of experiment as fixed effects. Although anthelmintic drugs 

were administered to half of the experimental group before secondary challenge, 

there was no difference in worm clearance (as indicated by EPG) between drug-

treated and control mice (Appendix A, Figure S2.7B) and thus they were combined 

for these analyses.  

Body condition  

At each capture, weight in grams and length in mm was measured for each 

individual. Body fat scores were assessed on a scale of 1-5 (emaciated-obese) by 

palpating the sacroiliac bones (back and pubic bones) as detailed in (Ullman-Cullere 

and Foltz, 2011). After field data collection, body condition index was calculated by 

obtaining the residuals of an OLS regression of Mass against Length (Peig and 

Green, 2009). Because we expected less variable body length in the laboratory than 

in the wild, we did not take regular length measurements, therefore we only tested 

body mass (g) (not weight/ length residuals) and total fat score (as measured in the 

wild, details in Appendix A) as response variables. 
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Wild experiment: We fit GLMMs to two metrics of body condition to determine the 

effect of supplemented nutrition (i) body condition index (BCI, weight vs. length 

regression residuals; (Peig & Green, 2009)) and (ii) total fat score (FS, sum of dorsal 

and pelvic fat scores (Ullman-Cullere and Foltz, 2011), both of which were normally 

distributed. Diet and drug treatment, host characteristisc, and time were included as 

fixed effects, as well as H. polygyrus infection abundance (log of egg/gram+1; Table 

1). We also fit a supplement-by-day interaction to investigate differences in the slope 

of the body condition-diet relationship over the 2-week period. Due to variation in 

weight change due to growth and gestation, we excluded pregnant females from base 

body condition models, and fit separate models for these individuals. Explanatory 

variables included in models for pregnant females were as above, except that sex and 

reproductive condition were excluded.  

Laboratory experiment:  We fit linear mixed models (LMM) to determine the effect 

of supplemented nutrition on body condition. Because we expected less variable 

body length in the laboratory than in the wild, we did not take regular length 

measurements, therefore we only tested body mass (g) (not weight/ length residuals) 

and total fat score (as measured in the wild, details in SI) as response variables. We 

selected terms to investigate the same relationships as in the wild (Table S2.1).  

General and specific antibody measures  

We tested for the effect of supplemented nutrition and H. polygyrus infection on 

general and specific antibody response in the wild and laboratory, by fitting GLMMs 

with either total non-specific IgA or H. polygyrus-specific IgG1 as the response 

variable with gaussian error distributions. Fixed effects included host characteristics, 
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year and day of experiment, and experimental manipulations (Table S2.1) and all 

mixed models included mouse ID as a random effect.  

2.4 Results  

Our field experiment included 310 captures of 91 individual mice (2015: n = 49 and 

2016: n = 42), 61 of which were captured > 1 time (mean number of captures = 3.42 

+/- 0.26). Of these, 36 mice were sacrificed after two weeks to measure H. polygyrus 

adult worm burdens; and for all other captures H. polygyrus eggs/gram was used as a 

proxy of adult worm burden (Chapter 1, Box 1.1). Adult mice comprised 87.5% of 

all captures in our dataset (juveniles = 2.4%, subadults = 10.1%). At the start of field 

and colony experiments, wood mice in the colony compared to wild wood mice had 

higher body mass (Colony mean weight = 23.88g; Wild mean weight = 20.32g;  T-

test, t = -2.99 p = 0.005) and better body condition (Colony mean total fat score = 

9.08/10; Wild mean total fat score = 5.7/10, Wilcoxon Rank-Sum test, W = 127, p < 

0.001). 

2.4.1 Supplemented nutrition decreased H. polygyrus worm burdens 
and egg shedding and improved anthelmintic drug efficacy  

Field experiment 

On average, mice spent ~30 days on supplemented grids (SEM = 1.5 days), but the 

range was between 12–63 days. We found that mice caught for the first time on 

supplemented grids had significantly lower H. polygyrus EPG than mice on control 

grids (Figure 2.2A and 2.3, b = -1.42, p = 0.018); resulting in ~50% reduction in egg 

shedding (23.55 vs 43.68 EPG, Appendix A Table S4).  By 12–16 days after first 

capture, mice on supplemented grids also had 60% fewer adult worms compared to 
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mice on control grids (Figures 2.2C and 2.3, b = -1.2, p = 0.045; Appendix A Table 

S2.3).   

In addition to main effects of diet supplementation alone, we also found a significant 

interaction between diet and anthelminthic treatment following assignment to 

treatment groups at first capture (EPG; b = -4.51, p = 0.01, Figure 2.3A). Notably, 

treatment reduced shedding to < 1 H. polygyrus egg per gram faeces in diet-

supplemented mice for two weeks following treatment, while the mice on control 

grids still shed ~29 eggs/gram faeces during the same period (b = -7.62, p < 0.001, 

Figure 2.2B, Appendix A Table S2.3) compared to control grids (Tukey post-hoc 

test: b = -6.06, p < 0.001, Figure 2.2B). Likewise, for adult worms, anthelmintic 

treatment efficacy was highest in mice on supplemented grids (b = -2.74, p < 0.001, 

Figures 2.2C and Figure 2.3); resulting in complete worm clearance for all but one 

mouse, who had a single worm (Figure 2.2C, Table S2.3).  

For all models of H. polygyrus EPG in the wild, diet and a diet-by-treatment 

interaction were the only significant predictors (Figure 2.3). For H. polygyrus worm 

burden, we found body mass and age to be additional predictors of infection, where 

larger (b = 0.21, p = 0.019) and older (b = 2.22, p = 0.016) individuals carried higher 

worm burdens (Figure 2.3). Including a factor level accounting for a mixed amount 

of supplemented nutrition did not significantly improve the fit for models of EPG at 

first capture, post-treatment, or at end point (ΔAIC = 1.62, ΔAIC = -1.15, 

ΔAIC = 1.28, respectively; Fig S2.1) and accounting for levels of supplementation 

(time spent on supplemented grids) did not change any of the results (See Appendix 

A and Figures S2.1 and S2.3)  
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Figure 2.2.  Effect of a supplemented nutrition diet on H. polygyrus infection in wild 
and laboratory wood mice. 

Top row- wild; bottom row-laboratory. A. Infection abundance (log EPG) at first capture, 
N=88 individuals B. Mean EPG for all individuals captured beyond first capture and after 
assignment to treatment categories, N=62 individuals; 166 captures C. Burden (log adult 

worms) at end point for culled individuals, N=36.  D. Peak EPG shed E. Total EPG shed. F. 
Effect of nutrition supplementation on H. polygyrus burden in the laboratory in the presence 
and absence of anthelminthic treatment. Burdens represent log of adult worm counts from 

gut dissections 14 days post primary or secondary infection with 200L3, n=19 mice (Primary 
only control group, n=6, Primary +Secondary group, n=13). 

Laboratory experiment 

In the controlled laboratory experiment, supplemented diet reduced both peak (b = -

1.96, p = 0.017) and total H. polygyrus EPG (b = -1.07, p < 0.001) compared to mice 

on the standard ‘control’ diet, and, importantly mice receiving the diet supplement 

shed no eggs during reinfection (Figures 2.2D-E and 4; Appendix A, Table S2.4). 

While there was no difference in adult worm burdens between mice on supplemented 

or control diets after primary infection, mice on the supplemented diet were 
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significantly less susceptible to secondary challenge, with a 75% lower adult worm 

burden (b = -1.76, p = 0.002, Figures 2.2F and 4; Appendix A, Table S2.3).  

 

Figure 2.3.  Effect size estimates from models investigating the effect of supplemented 
nutrition on H. polygyrus infection in the wild. 

Response variable and data used in each model is indicated by colour. Models represent 
faecal egg counts (EPG) for (i) first capture (light blue, GLM) and (ii) mean post-treatment 
captures (blue; GLM) and adult worm burdens for (iii) the experimental end point for culled 
animals (~ 12-16 days post treatment; dark blue; GLM) . Points and ranges represent model 
estimates and 95% credibility estimates for each model. Asterisks indicate the significance 

of variables: ***, ** and * indicate P<0.001, P<0.01 and P<0.05 respectively. Eye lens mass 
(log-transformed) was included as a proxy for age in final capture model only where samples 

were available. 
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Figure 2.4. Effect size estimates from models investigating the effect of supplemented 
nutrition on H. polygyrus infection in the laboratory. 

Colours represent separate models for egg shedding or adult worm data collected during 
primary infection (EPG, GLM) or at endpoint of the experiment (Worm burden, GLM). 

‘Group’ represents experimental and control mice, where controls received only a primary 
treatment and no secondary challenge. Diet*timepoint interaction was included in the 
endpoint models to investigate potential differences in effects of supplemented diet on 

primary and reinfection. Points and ranges represent model estimates and 95% credibility 
estimates for each model. Asterisks indicate the significance of variables: ***, ** and * 
indicate P<0.001, P<0.01 and P<0.05 respectively. ‘Group’ represents experimental and 

control mice, where controls received only a primary treatment and no secondary challenge. 

 

2.4.2 Supplemented nutrition increased wood mouse body condition  

Wild wood mice on supplemented grids had higher body condition (BCI) and total 

fat scores (FS) compared to mice on control grids (BCI b = 1.46, p = 0.011; FS 

b = 0.64, p = 0.006; Figures 2.4; Appendix A, S2.4); however, we also found 

significant interactions between diet and day of experiment, suggesting that 

supplemented mice lost weight over time despite overall greater condition (BCI: diet, 
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supplemented*day b = -0.16, p = 0.011; FS: diet, supplemented*day b = -0.09, 

p = 0.002; Appendix A, Figure S2.4). In addition, we found that reproductively 

active mice had higher BCI scores (b = 1.53, p < 0.001); however, the relationship 

with FS was non-significant (b = -0.22, p = 0.215) (Appendix A, Figure S2.4). 

Among pregnant females, supplemented diet was also associated with significantly 

higher BCI and total FS (BCI b = 8.32, p < 0.001, FS b = 1.98, p = 0.005, Figures 

2.5; Appendix A, S2.4). In general, males had lower FS (b = -0.44, p = 0.02) 

compared to females, and mice from 2016 had higher BCI (b = 1.09, p = 0.038) but 

lower FS (b = -0.63, p < 0.001) compared to 2015 (Figure S2.4). There were no 

effects of treatment detected on either metric of body condition, however among 

pregnant females, higher H. polygyrus infection abundance was associated with 

lower BCI scores (b = -0.64, p < 0.001) (Figure S2.4). 

In the laboratory, supplemented diet resulted in higher total FS compared to control 

mice (b = 0.85, p = 0.019, but did not affect body mass (Figures S2.5-S2.6). Males 

had both higher mass (b = 8.56, p < 0.001) and FS (b = 2.24, p < 0.001) compared to 

females (Figure S2.6). Lastly, higher H. polygyrus infection abundance was 

associated with overall decreased body mass (b = -1.40, p = 0.012, Figure S2.6). 

2.4.3 Supplemented nutrition increased total faecal IgA and H. 
polygyrus-specific IgG1  

Total faecal IgA antibody concentrations differed between the years in the field 

experiment, with lower levels found in 2016 (b = -5.14, p = 0.0008). In 2016, wood 

mice on supplemented grids had significantly higher total faecal IgA antibody 

concentrations (b = 5.31 p = 0.007, no difference in 2015; Figure 2.6A; Appendix A 
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Table S2.7) and anthelminthic treatment was also associated with higher total faecal 

IgA in both years (b = 2.19, p = 0.031; Appendix A, Table S2.7).  Body condition 

(BCI) was also found to be positively associated with higher concentrations of IgA 

(Figure 2.6A-B; Appendix A, Table S2.7) and was the only significant predictor of 

H. polygyrus-specific IgG1; where better body condition was associated with higher 

H. polygyrus-specific IgG1 concentration (b = 0.02, p = 0.01, Figure 2.6C; Appendix 

A, Table S2.8). Following controlled H. polygyrus infection in the laboratory, mice 

on a supplemented diet had significantly higher total faecal IgA 2-4 weeks post-

infection (b = 2.40, p = 0.018) and H. polygyrus-specific IgG1 3 weeks post-

infection (Figure 2.6D-E; Appendix A, Table S2.7).  

 

Figure 2.5. Effect of supplemented diet on body condition metrics. 

Figure represents raw means +/- SEM for the metric indicated. Numbers above bars indicate 
number of observations per group. Body condition index was higher in supplemented 

individuals for both A. Non-pregnant mice B. Mice pregnant at the time of body condition 
measurement 

 



 

Chapter 2 59 

 

 

 

 

Figure 2.6. The impact of diet supplementation on wood mouse antibody responses, 
wild: top row; laboratory: bottom row.  

IgA Concentration (absolute, ng/uL) at all captures (A) across years and (B) compared to the 
body condition index (BCI). (C) H. polygyrus specific IgG1 concentration (standardised) at 
all captures compared to BCI. (D) Mean IgA Concentration (absolute, ng/uL) and (E) mean 

H. polygyrus specific IgG1 concentration (standardised) at days 14, 21, 28 post-primary 
challenge E. IgG1 Concentration d21 post-primary challenge. Bar plots represent raw means 
+/- SEM for the metric indicated. Numbers above bars indicate number of observations per 
group. Point-line plots represent raw data points and model-predicted regression slopes with 

95% credibility interval ribbons. 
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2.5 Discussion  

We investigated the impact of supplementing with diet enriched with micro- and 

macro-nutrients on helminth infection and immunity in a natural host-parasite 

relationship in both controlled laboratory and wild conditions. Our results 

demonstrate dramatic and surprisingly fast-acting benefits of supplemented nutrition 

for host resistance, immunity, treatment efficacy and body condition within just a 

few weeks in both the wild and laboratory. By conducting a parallel experiment with 

the same host and nematode species in controlled laboratory conditions we overcame 

many of the limitations of field experiments by allowing us to control for variation 

among individuals in parasite exposure, demographic characteristics and nutritional 

status. We demonstrate that an enriched diet directly reduces both infection and 

onward transmission of H. polygyrus in its natural host via increased host condition 

and immunity and suggest that this type of integrated approach could be important 

for successful helminth management.   

While the relationship between nutrition and gastrointestinal nematode infections 

have been extensively studied in the laboratory, their impacts in natural populations 

are less well understood. A previous field experiment on wood mice during winter 

found that supplemented diet with grass seeds and found a reduction in pinworms 

(Syphacia stroma and Syphacia frederici) but not cestodes (Gallegoides arfaai and 

Hymenolepis diminuta) or other nematodes (Gongylonema neoplasticum) (Diaz and 

Alonso, 2003).  Similarly, a recent study in a semi-wild mouse system (laboratory 

strain C57BL/6) found no effect of restricted resource availability on Trichuris muris 

burden despite documenting effects of increased host feeding and lower IL-13 and T. 
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muris-specific IgG1 in restricted animals (Budischak et al., 2017). In addition, most 

previous studies in wild systems investigating benefits of supplementation in wild 

mouse populations (e.g. Peromyscus spp. (Pedersen and Greives, 2008) and A. 

sylvaticus (Diaz and Alonso, 2003) mimicked food that was naturally available. 

Here, we found that supplementing with well-balanced diet in order to enhance 

nutrition beyond their naturally available resources had quick and significant impacts 

on H. polygyrus infection in the wild. Wood mice had markedly lower worm burdens 

and transmission potential (as measured by egg shedding) compared to mice on 

control grids. The positive impacts of supplementation were observed after just 14 

days, and were detected in transient mice, who were not residents on the 

supplemented grids. This suggests resources are naturally limiting in wild wood mice 

populations, hampering their ability to produce a protective immune response to H. 

polygyrus.   

Interestingly, we find very similar results of supplemented nutrition reducing worm 

burdens and egg shedding in the controlled laboratory experiment, suggesting that 

the benefits of whole-diet supplementation are driven by physiological and/or 

immunological changes and not due to differences in wild wood mice behaviour or 

foraging patterns. The enriched diet reduced both H. polygyrus egg shedding during 

primary infection and susceptibility to reinfection compared to mice fed the standard, 

maintenance lab chow – the latter being similar to the diet used in many lab mouse 

studies. Protein and zinc levels have been previously found to impact susceptibility 

and protective immunity to H. polygyrus in lab mice (Slater and Keymer, 1986a; Shi 

et al., 1997; Boulay et al., 1998). However, much of this previous work was 

conducted using diet restrictions regimes (i.e. protein restriction ( 2-3% protein) 
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compared to high protein (16-24% protein)) (Slater and Keymer, 1986b; Slater, 

1988; Keymer and Tarlton, 1991; Boulay et al., 1998; Clough et al., 2016). We find 

similar and compelling effects of diet on infection in the laboratory, but using more 

modest differences in macro-and micro-nutrients (i.e. 20% vs 14% protein, 80mg/kg 

vs 36mg/kg zinc), and importantly no difference in caloric intake. Our results suggest 

that diet-induced changes to nematode infection dynamics are not limited to 

significant malnutrition, or cases where there is a severe deficit in a specific nutrient. 

We hypothesise that the balance of multiple micro-and macro-nutrients contained in 

the enriched diet increased the host’s ability to produce specific molecules and 

effectors in response to infection, and resulted in a more protective response. 

However, more research is needed to determine if benefits of supplementation on 

condition and immunity to H. polygyrus are due to net effects of our additional 

resources, or specific macro-and micro-nutrients contained in the supplemented diet.  

Adequate levels of macro- and micro-nutrients are vital to the function of cellular 

and humoral components of the immune system(Chandra, 1997; Calder and Jackson, 

2000). We found that our supplemented diet increased adaptive immunity in both 

wild and laboratory settings, specifically total faecal IgA and H. polygyrus-specific 

IgG1 levels were higher in supplemented individuals in the laboratory and total 

faecal IgA was higher in supplemented mice in 2016. Faecal IgA is an important 

component of resistance to gastrointestinal nematodes and has been used as an 

indicator of general gut health (Macpherson et al., 2012; Watt et al., 2016), whereas 

parasite-specific IgG1 has a key role in the strong Th2 immune response induced by 

H. polygyrus (Reynolds et al., 2012). These antibodies specifically play an important 
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function in blocking the maturation of larvae into adult worms within the host 

intestinal tissue and reducing worm fecundity (Hewitson et al., 2015). Our findings 

align with previous work suggesting that inadequate levels of nutrients (e.g. protein 

and zinc) compromise both general and specific host immune response (Shi et al., 

1997; Boulay et al., 1998; Ing et al., 2000; Budischak et al., 2017). Although we saw 

weaker evidence for a direct effect of supplemented nutrition on immune expression 

in the wild, we found positive associations between the body condition index (BCI) 

and both total faecal IgA and the H. polygyrus -specific immune response. Therefore, 

the increase in body condition for supplemented individuals may indicate an indirect 

effect of supplementation on antibody levels and increased resistance. Typically, 

immune measures in the wild are difficult  to interpret due to the context-dependency 

of immune phenotypes in the wild, and our limited ability to relate immune measures 

to exposure (Pedersen and Babayan, 2011). Thus, our results from our exposure-

controlled colony experiment may be a more reliable indicator of how supplemented 

nutrition can impact both specific and general immune responses and impact 

helminth resistance.  

Hosts in the wild are typically resource-limited, with finite energy to invest in 

immunity, reproduction, and other processes (Sheldon and Verhulst, 1996). In 

addition to improving immunity, we found that a supplemented diet improves body 

condition and investment in reproduction. Mice, particularly pregnant females, on 

supplemented grids had increased host body condition scores (BCI; body condition 

index and FS; fat scores). Higher body condition during pregnancy, particularly for 

BCI which represents a body mass/ body length relative score, may indicate 

increased allocation to more or larger offspring. These results agree with  previous 
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research in which females in A. sylvaticus populations supplemented with grass seeds 

during the winter bred earlier and had larger litter sizes (Diaz and Alonso, 2003). In 

our  laboratory experiment, supplementation had only a weak positive effect on fat 

scores, and did not affect BCI, which is contrary to previous laboratory studies which 

found that animals given lower protein had significantly lower weight, while our 

standard diet group did not lose weight over the experiment (Boulay et al., 1998). 

However, this may not be surprising, as wood mice in our laboratory colony are able 

to feed ad libitum and have higher body mass and better body condition than those in 

the wild whom are likely to be chronically under some degree of dietary restriction. 

Due to the relatively short nature of this field experiment within one season, it is 

unclear whether these condition and reproductive effects in the wild may alter host 

survival or density and have important population-level consequences for disease 

transmission in this system. Future work sustaining nutrition supplementation for a 

longer duration can help to provide complementary insights to the short-term 

individual effects of H. polygyrus infection dynamics and treatment efficacy 

investigated in the present study.  

Effective helminth control in endemic areas is difficult because even with readily 

available anthelmintic drugs, reinfection rates are usually high (Speich et al., 2016). 

Limiting infection in a population requires (1) lowering worm burdens, (2) reducing 

onward transmission, and (3) preventing reinfection. While our previous research in 

wild rodents has shown additive benefits of anthelmintic treatment and nutrition 

supplementation for mouse fitness and population dynamics, we were not able to 

measure the direct implications on nematode infection prevalence, worm burdens or 
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reinfection rates (Pedersen and Greives, 2008). In addition, evidence for additive 

effects of these interventions in human populations remains equivocal (Yap et al., 

2014). In our wild population, we found that supplementation synergistically 

enhanced effects of anthelmintic treatment, reducing H. polygyrus adult worm 

burdens and egg shedding to almost zero following treatment for mice on 

supplemented grids. Notably, supplemented individuals in the laboratory also shed 

zero eggs during secondary challenge, even when harbouring adult worms. Our 

results demonstrate the significant impact of nutrition on reducing onward 

transmission; an important component to limiting exposure and reinfection. In 

addition, we found that increased resistance to reinfection in supplemented 

individuals in the laboratory highlights an additional benefit of supplemented 

nutrition in managing nematodes in natural populations where reinfection after 

treatment is problematic. Given varied results from human trials investigating the 

addition of supplements with different nutrients (Yap et al., 2014) and the range of 

macro-and micro-nutrients implicated in immunity to gastrointestinal nematodes 

(Michael and Bundy, 1992; Koski and Scott, 2003; Clough et al., 2016), our study 

presents key experimental results regarding the role of nutrition as a viable option for 

complementing helminth control interventions.  
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Chapter 3 Diverse impacts of resource provisioning on 
parasite infection in a naturally co-infected host  
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3.1 Summary   

Resource availability plays a key role in determining exposure and resistance to 

parasites in the wild. Increasingly, anthropogenic activities alter food sources 

available to wildlife, either directly or indirect; resulting in important impacts on 

host-parasite dynamics. However, much of our knowledge is from single-host, 

single-parasite systems, yet co-infection with multiple species is the norm in nature. 

In a wild population of wood mice (Apodemus sylvaticus), we experimentally 

supplemented resources to improve nutrition and treated individuals with an 

anthelmintic drug to remove nematodes to measure the direct and synergistic impacts 

on the broader parasite community of >10 species. We found that the impact of 

supplemental resources on parasite infection was incredibly variable and dependent 

on parasite biology and transmission mode. Resource supplementation reduced 

susceptibility to gastrointestinal nematodes and some ectoparasites, but actually 

increased infection risk and burden for several blood-borne and intestinal 

microparasites. Furthermore, some effects of resource supplementation were 

impacted by anthelmintic drugs and the subsequent reduction of nematodes, 

suggesting that within-host interactions between coinfecting parasites can determine 

their response to resource supplementation. Importantly, resource supplementation 

impacted host condition, immunity, reproduction and population size, highlighting 

the complexity of both direct and indirect impacts of resource provisioning in a wild 

population. Our results represent an important advance for understanding the 

outcomes of disease at the human-wild interface and suggests that measuring the 

whole parasite community is crucial for understanding and predicting the response of 

parasites to resource availability in the wild. 
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3.2 Introduction  

Resource availability plays a crucial role in determining both individual- and 

population-level dynamics of infectious diseases (Randolph and Storey, 1999; Calder 

and Jackson, 2000; Clotfelter et al., 2007; Bogdziewicz and Szymkowiak, 2016). 

Increasingly, anthropogenic activities, whether intentional or accidental, are altering 

the quality and quantity of naturally resources available to wildlife (Oro et al., 2013). 

These supplemental resources can have significant impacts in wild populations, such 

as changing individual body condition and nutritional status. Although it is expected 

that these changes to the host might result in increased allocation of energy to the 

immune system (Calder and Jackson, 2000) there are several exceptions to this 

outcome (Becker et al., 2015), such as poor quality food from urban waste instead 

reducing immune function in coyotes (Murray et al., 2015). Furthermore, effects of 

resource provisioning in a population extend beyond host condition and affect host 

demography and behavior as well as condition, processes which have substantial 

implications for parasite transmission (Becker and Hall, 2014). The outcome of 

resource provisioning for infectious disease will therefore depend on the quality of 

food source, effects at the host-level, and the effects at the population-level (Becker 

et al., 2015). 

There have been an increasing number of theoretical and empirical studies that have 

highlighted the diversity of outcomes possible following resource provisioning, with 

highly varied results across systems and parasites investigated. It is becoming 

increasingly clear that effects of resource availability on host demography and 

movement patterns often indirectly alter parasite infection dynamics. For example, a 

recent experiment that increased the density of bird feeders resulted in significantly 
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increased Mycoplasma gallisepticum transmission within house finches (Moyers et 

al., 2018), and intentional resource provisioning among Elk populations resulted in 

an increases infection with Brucella abortis, both likely due to increased host 

densities and contacts (Cross et al., 2007). Meanwhile, recent theoretical frameworks 

have likewise highlighted the varied outcomes of resource availability according to 

heterogeneity of within-host response to infection (Cressler et al., 2014), and 

population-level consequences (Becker and Hall, 2014). These results have advanced 

our understanding of diverse effects across a broad range of host-parasite systems, 

but to date how this complexity is manifest in a single host population with multiple 

parasites is poorly understand.  

Co-infection is ubiquitous in wild populations (Petney and Andrews, 1998; Cox, 

2001) and mammals typically host a diverse community of parasites throughout the 

course of their life.  Simultaneous or subsequent infection with multiple parasite 

species can change both the magnitude and type of immune response elicited either 

directly (i.e. occupying the same niche or utilising the same resources) or indirectly 

by interfering with response to the other, co-infecting pathogen; particularly in the 

case of helminth-microparasite infections (Graham, 2008b).   Specifically, chronic 

activation of immunosuppressive T helper-2 (Th2) responses during helminth 

infection can suppress the immune response to co-infecting microparasites or reduce 

additional  macroparasites via cross-reactivity of immune responses (Lello et al., 

2004; Pedersen and Fenton, 2007; Graham, 2008b; Griffiths et al., 2015). Viewing 

the host as an ecosystem for a community of pathogens has helped inform our 

understanding of why the infections in wildlife have significant variation across 
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hosts and locations, where the direct and indirect relationships among co-infecting 

parasites can alter host health and infection (Pedersen and Fenton, 2007). The effects 

of resource provisioning on individual parasites in a host population can therefore 

have repercussions for the entire parasite community. However, dynamics of 

multiple pathogens in a single host population are difficult to study and typically 

require experimental perturbation of the parasite community and ability to measure 

downstream effects (Pedersen & Fenton 2015; Hellard et al., 2015). Here we use 

both experimental resource supplementation and anti-parasite treatment in a naturally 

co-infected small mammal population to ask whether resource provisioning alters 

parasite community dynamics in a single host population.  

Wild wood mice (Apodemus sylvaticus) are found throughout Europe and are the 

natural host to Heligmosomoides polygyrus, an extensively-studied gastrointestinal 

nematode (Maizels et al., 2012), but are also commonly infected with a diverse and 

abundant community of other parasites (Knowles et al., 2013). We have previously 

shown that experimental supplementation of resources increases resistance and 

lowers H. polygyrus worm burdens while also positively impacting anthelmintic drug 

efficacy (Sweeny et al. 2019; Chapter 2). Here we investigate the impact of 

supplementation of a high-quality resource on the broader parasite community, 

including both micro- (e.g. protozoans, viruses, bacteria) and macro-parasites (e.g. 

helminths, fleas, ticks, etc). We conducted a large-scale population-level nutritional 

supplementation experiment, where we also treated individual mice with an 

anthelmintic drug to remove/reduce nematode infection and perturb the parasite 

community. We quantified the probability of infection and parasite intensity (when 

available) for gastrointestinal helminths and protozoa, ectoparasites, and blood-borne 
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viruses and protozoa. We investigated a. the main effects of resource 

supplementation on parasite community and b. the interaction between anthelmintic 

treatment and resources. We found that food supplementation significantly impacted 

the parasite community; with some parasite species decreasing in infection 

probability and intensity while others remained unaffected, and importantly, some 

parasites species increased. The experimental supplementation of resources, while 

only conducted over a short period of time, had substantial impacts on host 

condition, demography, and contact networks. Importantly, we also find found strong 

evidence of how within-host parasite interactions may have mediated the outcomes 

of co-infecting parasites.  Overall, we found that supplementing resources can have 

diverse and complex impacts across the parasite community of a single host 

population, highlighting the importance of understanding both the direct and indirect 

impacts of wildlife resource provisioning.  

3.3 Methods  

3.3.1 Field Experiment  

We conducted a field experiment in Callendar Wood (55.990470, -3.766636; Falkirk, 

Scotland), a 100ha broadleaf woodland, which contain a populations of wood mice, 

which are naturally exposed to and infected with a wide range of parasites and 

pathogens (Clerc et al., 2019a). The experiment had two, 8-week long, temporal 

replicates; both of which took place during the wood mouse breeding season: (i) May 

- July 2015 and (ii) June - August 2016. We used a 2 x 2 factorial design, where (i) 

nutrition was manipulated at the population level by supplementing resources (unit – 

trapping grid; control (unmanipulated) vs. supplemented nutrition) and (ii) 
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anthelmintic treatment was manipulated at the individual level (unit – individual 

mouse; control (water) vs. anthelminthic treatment). Full details of the methods and 

trapping grids can be found in Chapter 2. Briefly, we carried out resource 

supplementation for three weeks prior to the beginning of the trapping and then 

continued throughout the 8-week period. We supplemented grids twice per week 

with 2kg/ 1000m2 of sterilized, TransBreedTM  mouse chow pellets, scattered at 

regular intervals across the grids to ensure an even spatial distribution. TransBreedTM 

is a high-nutrient, standard veterinary feed which is formulated for optimum 

breeding performance in laboratory mice and offers whole-diet nutrition to the wild 

mice in this study (20% protein, 10% fat, 38% starch, high content of micronutrients, 

full details in Table S1 of Chapter 2). Following this 3-week period of supplemented 

nutrition, we live-trapped mice for 3 nights/week using Sherman live traps (H.B. 

Sherman 2x2.5x6.5 inch folding trap, Tallahassee, FL, USA). Traps were baited with 

cotton wool bedding, seeds, carrot, mealworms, and TransBreed pellets (on 

supplemented nutrition grids only), set in the early evening (16.00-18.00) and then 

checked early the following morning. All wood mice weighing >10g were tagged 

with a subcutaneous microchip transponder for identification (Friend Chip, 

AVID2028, Norco, CA, USA). On both control and nutritional supplementation 

grids mice at first capture were rotationally assigned within each sex to either control 

or anthelminthic treatment groups. We used a weight-adjusted dose (2ml/g) of both 

Pyrantel pamoate (Strongid-P, 100 mg/kg) and Ivermectin (Eqvalan, 9.4mg/kg) (full 

details in Chapter 2).  

Each tagged individual was followed for a period of 12-16 days. During this time, we 

collected the following morphometric data at every capture: sex, age, measures of 



 
 

Chapter 3  74 

host condition, including body mass, length, fat scores, and reproductive status (as 

described in Chapter 2). Blood samples were collected via mandibular bleed (first 

capture) or tail snip (subsequent captures) a maximum of once per week; faecal 

samples were collected for each mouse at every capture from previously sterilised 

traps and preserved in 10% formalin. Mice were sacrificed 12-16 days after their first 

capture.  

3.3.2 Laboratory Assays  

Gastrointestinal helminths were detected by counting adult worms in the gut 

following dissection at days 12-16, and both GI helminths and coccidian were 

assessed as eggs per gram (EPG) of faeces through salt flotation methods and 

microscopy taken from samples collected throughout the experiment (Knowles et al., 

2013). Ectoparasites (mites, fleas, and ticks) were counted following fur-brushing in 

the field. We also screened for blood-borne parasites (Mouse Herpes Virus, and 

Trypanosomes) using diagnostic PCR (details in Appendix B). We previously 

quantified the absolute concentration of total faecal IgA and relative, standardised 

concentration of H. polygyrus-specific IgG1 and report those results here for 

illustration of the effects of resource supplementation (details in Chapter 2).  

3.3.3 Statistical Analysis  

All statistical analysis was run using R v 3.6.0 (R Core Team 2019). All models were 

run using the package ‘glmmTMB’ [1]. Edge lists for network construction were 

generated using the package ‘spatsoc’ [3] and networks were constructed using the 

package ‘igraph’ [4]. 
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Parasite community  

We first calculated infection intensity (where possible) and prevalence for all 

parasite species that we identified within this wood mouse population (Table 1). We 

then investigated whether nutritional supplementation impacted (i) total 

(gastrointestinal (GI), ectoparasites, blood-borne) parasite species richness and (ii) 

GI parasite species richness by comparing the mean number of co-infecting parasite 

species using a Wilcoxon Rank-Sum Test. We restricted further analyses to those 

species/genera with 10% or higher prevalence in the population to prevent fitting 

models to unsuitable sample sizes for convergence. When the data was available for 

specific parasite taxa we used intensity of infection (log (eggs/ oocysts per gram of 

faeces +1) or log(ectoparasite count+1); infected individuals only) as the response 

variable.  For the parasite species where intensity was not measured, we used 

probability of infection (presence/absence) as the response variable. For flea and 

mite infection data, although we did collect count data, a very high percentage (85% 

in mites and 99% in fleas) were 0 or 1 counts; so we instead investigated the 

probability of infection (presence/absence) for both groups. 

We fit the following the following fixed effects to each model of the probability of 

infection or intensity of infection for models for each parasite considered: 

supplementation (control or supplemented), sex (male or female), body mass 

(continuous, g) and reproductive status (active or inactive). To account for the 

possibility that the effects of supplementation may be mediated by the changes to the 

parasite community via anthelminthic treatment and subsequent nematode removal; 

we also ran another set of model for each parasite species/group, just using the 

trapping data beyond first capture (when treatment would be effective) with the same 
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fixed effects as described above, but including a supplement-by-treatment 

interaction. All models included individual ID as a random effect (Paterson and 

Lello, 2003) and grid:year (7 levels). Error distributions for parasite intensity models 

were gaussian and binomial for the probability of infection models. To compare the 

effect sizes across all parasites investigated, we calculated effect size using Hedges’ 

g for a standardised measure of nutrition impacts on each parasite for each intensity 

model (Hedge & Olkin 1985). Hedges’ g was calculated from estimated means from 

supplemented and control resource groups (Y1 and Y2) as follows:  

" =
LMN − LMO

P(-N − 1)(N
O + (-O − 1)(OO

-N + -O − 2

	R	 

Where:  

R = 1 −	
3
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+	
"O
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For probability models, we calculated odds ratio (OR) values for predictors and 

Hedges’ g was derived from OR values to facilitate comparison across intensity and 

probability models. Hedges’ g was derived from OR values as follows:  
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When there was no interaction between supplementation and treatment retained after 

model selection, effect sizes are reported for the effect of supplementation alone. 

However, where a significant interaction of supplementation and treatment was 

detected, the effect size is reported for both anthelmintic treated and control levels of 

the interaction in addition to the main effect. 

Host demography, contacts, and behaviour 

To investigate further effects of the supplemental resources on population-level traits 

we measured host demography, by estimating the number of new individuals born on 

supplemented or control grids over the trapping period, and then testing the 

differences in new cohort population size between resource groups with a GLMM 

with resources as a fixed effect and week of the experiment (‘time’) as a random 

effect. To investigate the impacts of resource supplementation on host behaviour and 

the number and distribution of contacts between individuals we constructed social 

contact networks for both grid supplemented and control types. We first constructed 

edge lists, where a contact or ‘edge’ was defined as two individuals occurring at the 

same or adjacent trapping station within the same trap session (one night).  We next 

constructed undirected social networks for each grid, where each edge was drawn as 

an unweighted (thickness constant, not weighted by the number of contacts between 

nodes where n>1 contact) line between the appropriate nodes (individual mice of 

each grid). Individuals with no contacts during the trapping duration were included 

in networks as unconnected nodes. Node size was set as proportionate to the number 

of total captures per individual. We extracted the degree distributions (distributions 

of number of contacts per node) and used a Wilcoxon rank-sum test to test the mean 
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differences in degree (number of contacts) within a grids across the supplemented 

and control resource grid groups.   

3.4 Results  

3.4.1 Diverse impacts of resource supplementation on parasite 
community  

Throughout the course of the experiment, we identified a diverse parasite community 

harboured by the wild wood mouse populations (Table 3.1).  The six most common 

genera of parasite species/groups were Heligmosomoides polygyrus (70% 

prevalence), Capillaria murissylvatici (26%), Eimeria spp. (67%), Ixodes spp. 

(100%), mites (29%), Trypanasoma grosi  (29%), and Wood Mouse Herpes Virus 

(WMHV; 10%).  Individual mice were commonly co-infected with multiple parasite 

species/groups (median of 2; maximum of 6). Gastrointestinal parasite species 

richness was significantly different between mice on resource supplemented vs. 

control grids, where supplemented mice had average of 1.17 parasites species, while 

control mice have 0.82 (Figure 3.1; Wilcoxon rank-sum test: p=0.001). We found no 

significant difference in ectoparasite (p = 0.623), blood-borne (p = 0.495) or overall 

parasite species richness (Figure 3.1; p=0.108). 
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Figure 3.1. Parasite species richness for parasite groups surveyed in wood mice 
populations. 

Supplemented mice had lower gastrointestinal parasite species richness than mice on 
control grids; however, there were no differences in parasite richness for 

ectoparasites, blood-borne parasites, or for all parasites combined.  Boxplots and 
points represent raw data describing the number of parasites species found within an 
individual mouse at a single timepoint. The maximum number of species found in a 

wood mouse and the p-values from Wilcoxon-rank sum tests are reported above each 
boxplot.



 
 

Chapter 3  80 

Table 3.1.  The infection prevalence and intensity of the parasite community in the wood mice population.  

Group  Parasite type  Method of 
transmission Species Prevalence  Intensity  

(eggs or oocysts /gram)  

Gastro- 
intestinal  

Macroparasites  Helminth Environmental  

Heligmosomoides 
polygyrus 

70% 44.3 (0 – 1,829) 

Syphacia  
stroma 6.6% 0.32 (0 – 70) 

Capillaria 
murissylvatici 

26% 90.74 (0 – 8,744) 

Acute, 
microparasite  

Protozoan  Environmental Eimeria spp. 67% 910.5 (0 -127,185) 

Ectoparasite  
    Environmental Ixodes spp. 100% 5 (0-30) 
    Direct Fleas 15.0% 0.10 (0-6) 
    Direct Mites 28.0% 1 (0-10) 

Blood-borne  

Acute, 
microparasite  

Bacteria  Flea-borne Bartonella spp. NA NA 

Chronic, 
microparasite  

Protozoan  Flea-borne 
Trypanasoma  

grosi 
29% NA 

Virus  Direct 
Wood mouse 
herpes virus 

10% NA 
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Resource supplementation had significant, diverse effects on the parasite community. 

The main effect of resource supplementation varied considerably across the parasite 

taxa found in this study; with food supplementation found to have positive, negative, 

and even null relationships with probability and/or intensity of infection for a suite of 

parasites (Figure 3.2; Appendix B, Table S3.1).  Specifically, wood mice on 

supplemented grids had significantly lower mean infection intensity of H. polygyrus 

(EPG; b = -0.73, SE = 0.30, p = 0.015, Figures 3.2, 3.3A) and this effect was 

independent of anthelminthic treatment. In contrast, there was no main effect of 

resources on intensity of C. murissylvatici infection (intensity: b =  1.41, SE=0.98, p 

= 0.15, Figures 3.2, 3.3B). We also found that mice on resource-supplemented grids 

had lower rates of infection with some ectoparasites, but not others. Specifically, tick 

intensity for individuals on supplemented grids were significantly lower (b = -0.46, 

SE = 0.11, p < 0.001, Figures 3.2, 3.3G), however, there was a trend (though non-

significant) of higher mite infection for supplemented individuals (Probability: b = 

0.64, SE = 0.33 p = 0.053) and no effect of resources on fleas (Probability: b = -0.55, 

SE = 0.60, p = 0.355, Figures 3.2, 3.3H&I).  

For the micro-parasites (both gastrointestinal and blood-borne), we found contrasting 

effects of resource supplementation on infection. We found no main effect of 

resource supplementation on the intensity of the GI protozoan Eimeria hungaryensis 

(Intensity: b = -0.08, SE = 1.1, p = 0.944, Figure 3.3C) or Eimeria uptoni (Intensity: 

b = -0.66, SE = 1.2, p = 0.580, Figure 3.3D). For blood-borne parasites we found no 

main effects of resource supplementation on either T. grosi or MHV (Figure 3.3E-F; 

Appendix B, Table S3.1)  
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3.4.2 Resource supplementation interacts with drug treatment to 
impact non-target parasite infection  

We found a resource supplementation-by-anthelmintic drug treatment interaction for 

several parasite species, when treated individuals responded differently than control 

mice, based on whether they were on a resource supplemented or control grid. In 

some instances, there was a significant effect of resources in conjunction with 

treatment where there were no main effects of resources alone (Figures 3.2 & 3.3, 

bottom panels). For example, with regard to the gastrointestinal helminth C. 

murissylvatici, individuals who were both supplemented and treated had significantly 

lower intensity of infection (b = -4.99, SE =1.84, p = 0.007, Figures 3.2-3.3K). 

Similarly, there was a significant interaction of supplemented resources and 

treatment for E. uptoni infection (b = -4.99, SE=1.84, p=0.007, Figures 3.2-3.3M). In 

contrast, the same group had slightly higher E. hungaryensis infection intensity after 

treatment, although this interaction was not significant (Figure 3.2, Appendix B- 

Table S3.1).  Despite a negative main effect of resources on ticks (where infection 

was reduced by supplemented resources), we found a significant interaction of 

resources and treatment, where only untreated individuals on supplemented grids 

showed this reduction, and there was no difference between supplement groups for 

treated individuals (Figure 3.3P, b = 0.57, SE = 0.28, p=0.044). In addition, for the 

blood-borne parasite T. grosi, mice on resource supplemented grids had lower 

probability of infections if anthelmintic-treated, and higher probability of infection in 

the control treatment group (Figure 3.3N, probability: b = -2.32, SE=1.03, p=0.024).  
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Figure 3.2. Standardised mean differences (Hedges’ g) representing the effect size of 
resource supplementation (supplemented vs. control).  

Top panel represents resources fit as a main effect in the model and bottom panels represents 
a resource-by-treatment interaction in a model that only included data beyond first capture. 
For intensity models (I), Hedges’ g was calculated using estimated means from GLMMs, 
while the for probability of infection (P) models Hedges’ g was derived from lnOR values 

from binomial GLMMs to facilitate comparison across response types. In the top panel, 
Hedges’ g values below zero (dashed vertical line) indicate that the resource supplemented 

group had lower intensity or probability of infection than mice on control grids, while values 
above zero represent cases where mice on supplemented grids had higher infection 

probability or intensity. For the interaction effects (bottom panel), mean resource differences 
are represented from model estimates for both untreated (water control; circles) and 
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anthelmintic-treated (triangles) individuals for comparison. Shading gradient indicates the 
magnitude of the effect, where dark blue represents the most negative, dark pink the most 
positive, and grey the null effects. The three vertical lines on either side of the dashed zero 

line represent suggested guidelines for interpretation of Hedges’ g, where 0.2 is considered a 
small effect, 0.5 a moderate effect and 0.8 a large effect, respectively (Lakens, 2013). 

3.4.3 Resource supplementation alters host condition, behaviour, 
and demography 

Resource supplementation altered both within- and between-host dynamics in the 

wood mouse population (Figure 3.4). Specifically, individual mice on supplemented 

grids had significantly better body condition (body condition index; BCI) than those 

on control grids (b = 1.87, SE = 0.63, p = 0.003; see Chapter 2). In addition, better 

body condition was associated with significantly higher concentration of both total 

and parasite-specific antibodies (total faecal IgA: b = 0.46, SE = 0.15, p = 0.003; H. 

polygyrus-specific IgG1: b = 0.02, SE = 0.01, p = 0.01; see Chapter 2).  

We also found evidence for increased investment in reproduction in mice on resource 

supplemented grids (Figure 3.4). Female mice on supplemented grids had 

significantly higher body mass (g) during pregnancy (b=8.51, SE=1.93, p<0.001). 

Furthermore, significantly more juvenile mice were found on resource supplemented 

grids, compared to manipulated control grids, over the course of the experiments 

(b = 3.33 , SE=1.04, p=.001). We also found that resource supplementation altered 

the contacts between mice within a population (Figure 3.4); contact networks that 

were constructed for both grid types showed that mice on resource supplemented 

grids had a higher average degree (number of contacts; median=2.00, max=4.00) 

versus unmanipulated, control grids (median =1.00, max=3.00; Wilcoxon rank sum, 

W=1423, p=0.003).
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Figure 3.3. Effects of resource supplementation on gastrointestinal, micro-, and ectoparasites in wild wood mice. 

Each figure (A-O) represents the results of a model run for a specific parasite taxa, where the figures A-I represent models with resource 
supplementation as a main effect (top panel); while the bottom plan represent effects of resource supplementation according to anthelmintic treatment 
(J-R) on the dynamics of the wood mouse parasite community. The effects of resource supplementation (blue) versus control (green mice) on parasite 

infection probability and intensity of infection were highly variable and the bars represent raw means (as indicated) ± SEM. Numbers above bars 
indicate sample size for each group. 
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Figure 3.4. Resource supplementation impacts both within-host (top panel) and between host (bottom panel) processes. 

Body condition index (BCI; weight vs length residuals, raw data ±  SEM; top panel, eft) was significantly higher for mice on resource 
supplemented plots. Total faecal IgA (ng/mL) and standardised H. polygyrus-specific IgG1 had a positive association with body 

condition index (Model fit regression lines and 95% credibility intervals presented with raw data points, (see Chapter 2, Condition & 
Immunity shown here for comparison). The main demography plots represents the number of new mice born on control & supplemented 

grids throughout the trapping period. The inset demography plot represents raw data ± SEM for weight of pregnant females. Contact 
plots represent contact networks constructed from trapping locations across the experiment and the corresponding degree distributions 

for the numbers of contacts within both resource groups. 
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3.5 Discussion  

By experimentally manipulating resource availability, we found that supplemental 

resources altered the parasite community dynamics in a naturally co-infected 

population; but not always in the same direction. Following only a short period of 

resource supplementation with a high-quality diet, we found positive, negative, and 

null effects across the 9 most common parasite species in the wood mouse 

population. Surprisingly, for several parasites the effect of supplemented resources 

was altered when anthelmintic treatment was administered, indicating that the 

interaction among parasites themselves may mediate the outcome of resource 

provisioning in co-infected populations. In addition to the diverse impacts on the 

probability and intensity of parasite infection, we previously found that resource 

supplementation impacts body condition and immunity (Sweeny et al. 2019; Chapter 

2) and reproductive effort, population demography, and the number of contacts 

between individuals.  Broadly, these results imply that that resource provisioning 

impacts both within- and between-host processes and may be impacting parasite 

infection both directly and indirectly. Overall, these results suggest that considering 

the parasite community as a whole is integral to understanding the outcome of how 

resources and altered nutrition are likely to impact parasites. Importantly, as both 

accidental and purposeful resource provisioning of wildlife populations is being 

increasingly common, understanding the response of the parasite community, as 

opposed to a single parasite of interest, will be important for making appropriate and 

effective management decisions.  

Within a diverse parasite community, we found that mice on resource supplemented 

grids had lower species richness of co-infecting gastrointestinal parasite species, 
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however there were no differences in richness of ectoparasites, blood-borne parasites 

or across the whole parasite community. For specific parasite species’ intensity and 

probability of infection, we found that mice on resource supplemented grids had 

lower intensities of the gastrointestinal helminth H. polygyrus, but that C. 

murissylvatici intensity was lowered in response to supplementation only in 

conjunction with anthelmintic treatment. However, due to a low prevalence of C. 

murissylvatici, very few individuals were infected post-treatment and results for this 

parasite should be interpreted with caution. We have previously reported both the 

effectiveness of anthelmintic treatment and supplemented resources for reduction of 

H. polygyrus intensity as well as the synergistic effects of supplementation with 

anthelmintic treatment in this field study, and confirmed these results using the same 

host and parasite in a controlled laboratory study (Sweeny et al. 2019; Chapter 2).  

Other mouse laboratory systems (Slater and Keymer, 1986b; Boulay et al., 1998; Ing 

et al., 2000) and other experimental work in the wild have shown the benefits of 

adequate nutrition for resistance to helminths (Diaz and Alonso, 2003; Budischak et 

al., 2017), however laboratory studies typically manipulate specific nutrients, and 

those in the wild often mimic natural variation in food sources available in the wild, 

and therefore likely are not comparable to anthropogenic-sourced food. Results from 

this experiment therefore support the hypothesis that higher-quality diet enriched 

with multiple nutrients has a negative effect on helminth infection, but that this may 

depend on the species of helminth.  

Among the broader parasite community, we found a high degree of variation in the 

both the direction and magnitude of the effect of resource supplementation on the 
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intensity and probability. For example, among the ectoparasites, we found that mice 

on resource-supplemented grids had fewer ticks, a trend of higher rate of infection 

with mites and the same rate of infection with fleas as mice on control grids. 

Additionally, effects observed post-first capture were altered according to whether 

the mouse has received anthelminthic treatment or a placebo. After assignment to 

treatment groups only untreated mice had significantly lower tick infection 

intensities on resource supplemented grids, while there was no difference in treated 

mice. This may be because there was a main effect of anthelmintic treatment itself on 

tick intensity and this was stronger than effects of resources. We have previously 

shown that this drug treatment is highly effective at removing gastrointestinal 

nematodes for 12-16 days (Knowles et al. 2013, Clerc et al. 2018), and confirm this 

within this population, so within this experiment treated individuals effectively 

represent an absence of H. polygyrus, by far the most prevalent endoparasite in this 

population.  

The complex effects of provisioning also extended to blood-borne microparasites, 

dependent on whether H. polygyrus had been removed. For the flea-transmitted 

blood-borne protozoan, T. grosi, we found contrasting direction of effect in control 

and anthelmintic treatment groups. Among anthelmintic-treated individuals, 

probability of infection for supplemented grids is approximately half that of control 

grids. We find exactly the opposite for the control treatment group (probability of 

infection for supplemented grids is greater than twice that of controls). Although we 

saw no effect of supplementation on fleas (the vector of T. grosi) in this experiment, 

fleas of A. sylvaticus are often located in the nests (Langley and Fairley, 1982). Our 

counts are conducted by investigation of the fur to identify ectoparasites after mice 
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have been trapped overnight. It is therefore possible that we are not detecting the full 

extent of flea infestation in this population, and the mechanism of interaction 

observed in this study requires further investigation. These results suggest important 

and unexpected indirect effects of resource supplementation potentially caused by 

relationships among the parasite community.  

Previous work from our group has shown evidence for a negative relationship 

netween H. polygyrus and the gut protozoan E. hungaryensis (Knowles et al., 2013; 

Clerc et al., 2019b). An experimental perturbation study showed that anthelmintic 

treatment reveals a negative relationship between H. polygyrus and E. hungaryensis 

(Knowles et al., 2013), where the highly effective removal of the GI nematode 

facilitates increased intensity of the protozoan. Tests of this relationship in the 

laboratory showed that H. polygyrus can suppress E. hungaryensis infection intensity 

(Clerc et al., 2019b). E. hungaryensis is notable among Eimeria spp. in that it shares 

an infection niche with H. polygyrus and therefore competes for space and resources 

(Rynkiewicz et al., 2015). In this population E. hungaryensis and E. uptoni were the 

two most common Eimeria species. We saw no main effect of supplemented 

resources on E. hungaryensis or E. uptoni, but contrasting effects of resources on the 

intensity of infection following treatment, where E. uptoni decreased significantly & 

E. hungaryensis had a trend of increasing in supplemented individuals. Previous 

work from this experimental design has shown that anthelmintic treatment in 

supplemented individuals clears worms more effectively than for control resource 

groups (Sweeny et al. 2019).  The suggestion of treatment-dependent increases in E. 

hungaryensis in this experiment, alongside decreased intensity for a parasite of the 



 

Chapter 3   91 

same genus which does not share the same infection niche (E. uptoni) (Nowell and 

Higgs, 1989), may indicate that more effective helminth removal in supplemented 

individuals is exacerbating a negative relationship between H. polygyrus and E. 

hungaryensis. This mechanism would support previous work from the laboratory 

which show that resource availability dictates the outcome of coinfection between 

helminths and the microparasite M. bovis (Budischak et al., 2015b) and highlights an 

important example of resource provisioning exacerbating existing relationships 

within a natural parasite community. Such interactions may be crucial considerations 

for predicting the outcome of altered resource availability in the wild.  

However, infection with Eimeria spp. is extremely acute and can be cleared in only a 

few days, so that intensity of infection can vary dramatically in a short time (Clerc et 

al., 2019b). Consequently, intensity data from the wild will have a large degree of 

noise – particularly in this study, where samples are on average one week apart. The 

acute nature of Eimeria spp. infections may further result in spatial as well as 

temporal noise in infection data. Although we attempted to address variation of this 

nature by accounting for grid and year in our models, the representativeness of each 

sample is reduced when exposure is unknown and estimations of Eimeria spp. 

infections in this population show large confidence intervals. Possible relationships 

between nutrition quality, H. polygyrus and E. hungaryensis in wood mice would 

therefore benefit from investigation of these two parasites in a controlled laboratory 

system may help to elucidate their interaction and the role of resource 

supplementation in influencing their dynamics.  
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The conceptual framework for understanding the impacts or resource provisioning on 

host health, introduced by Becker et al. (2015) highlights the potential for changes to 

both resource quantity and quality to influence parasite infection by both direct 

effects of altered host condition and immunity on parasites and indirect effects of 

altered host demography and behaviour to parasite transmission within the 

population. We found broad effects of experimental resource supplementation on 

host condition (Sweeny et al. 2019 & see Chapter 2), demography, and social contact 

degree. Given that we find evidence of the impacts supplementation on both within- 

and between-host processes, our results suggest that impacts of infection may be 

occurring through both direct and indirect effects on parasites present. Importantly, 

the outcomes of resource provisioning will likely vary across parasite groups, both in 

terms of biology and transmission mode, and according to the nature of their impacts 

to host health and  population dynamics (Becker et al., 2015).  

Although we highlight effects beyond the individual in this study, there are 

limitations on the metrics of demography and social contacts used. For example, the 

number of new individuals recruited to supplemented and non-supplemented grids 

provides some information on reproductive activity within each grid type, but given 

the short duration of trapping regimes, it is not clear whether all individuals recruited 

stay on the same grid or immigrate elsewhere. This can have important implications 

for density-mediated mechanisms of disease. Likewise, weight gained during 

pregnancy provides only a rough estimate of reproductive output. Number of 

offspring or morphological qualities off offspring would provide a more complete 

picture, but were not feasible to collect in this experiment. Future work will be 
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needed to monitor larger populations over a longer trapping duration to partition 

effects of supplementation on demographic and population-level processes for better 

understanding of mechanism. Future monitoring multiple parasites simultaneously in 

a single host population longitudinally will provide important complementary 

knowledge to previous work documenting the interplay between individual- and 

population- level processes in multiple single host- single parasite species studies or 

theoretically (Becker and Hall, 2014; Becker et al., 2015). Although we suggest only 

preliminary explanations for mechanism, to our knowledge this is the first study to 

consider this complexity within a naturally co-infected host and documented varied 

infection outcomes for a diverse parasite community in a single host population. 

In this study we show high heterogeneity in the outcome of resource provisioning 

dependent on parasite considered and the presence of specific co-infecting parasites 

present. Parasite interactions are difficult to study in the wild, and often require 

perturbation experiments to detect, and disentangle complex direct and indirect 

relationships (Pedersen and Fenton, 2015). Importantly, we show the potential for 

within-host interactions to be an important, and understudied, indirect effect that can 

mediate the outcome of resource provision, often in unpredicted, and negative ways. 

The possible within-host parasite interactions that we detected within anthelmintic 

drug treatment and resource supplementation would benefit from further 

investigation in controlled laboratory settings or within a theoretical framework, but 

our study serves to highlight the potential role of direct and indirect relationships 

between parasites in multi-parasite community in mediating the outcome of resource 

provisioning. Overall, this study is a novel experimental demonstration of the ability 

of resource availability to shape parasite community dynamics. These results suggest 
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that the context of the entire parasite community is a crucial consideration for 

understanding and predicting the impact of resource provisioning on wildlife 

populations.  
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Chapter 4 Long-term effects of resource supplement for wild 
wood mice and their gastrointestinal parasites   
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4.1 Summary  

Resource availability and nutritional quality can play a central role in driving the 

dynamics of wildlife populations, with impacts on both individual- and population-

level factors. Increasingly, the influence of anthropogenic activities has led to new 

food sources becoming available to wildlife, either intentionally, as part of 

management programs or accidentally. While there has been empirical research that 

highlights the impacts of resource provisioning on wildlife, recently further attention 

has focused on both the direct and indirect implications that changes in resource 

availability can have for the outcomes of infectious diseases. Previous resource 

supplementation experiments have been conducted in small mammal populations, 

and results have provided important, but sometimes contradictory evidence for the 

benefits of increased nutrition. Several studies show resource supplementation can 

improve body condition, immunity, and reproduction; however, these benefits are 

not always found. We have previously shown that in wood mice, supplementing 

resources with a high-quality diet during peak breeding season can reduce 

gastrointestinal helminth burdens and increase anthelminthic drug treatment efficacy. 

However, there is naturally a high degree of variation in energetic demands for 

individuals throughout the course of their life, and resource availability across 

seasons and years, both of which will likely influence the outcome of the interaction 

between resources and infectious disease. Because of limitations in the duration of 

many field experiments, it is often difficult to determine if the benefits of 

supplementation are dependent on the characteristics of the individual, population, or 

site. To address the longer-term impacts of resource supplementation, we conducted 

a five-month longitudinal supplementation and anthelmintic treatment experiment in 
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a wild wood mouse population to investigate how these perturbations impact host 

individual and population factors, and the dynamics of their key gastrointestinal 

nematode (Heligomosomoides polygyrus). We find that the benefits of 

supplementation on H. polygyrus-specific immunity and circulating protein levels 

were strongest during the peak breeding months (late summer). Additionally, we find 

evidence that supplemental resources are associated with lower host survival and can 

alter population-level demographic patterns. Furthermore, previously documented 

short-term benefits of supplementation on H. polygyrus infection were not clear in 

the longer-term experiment. We analysed data from three years of resource 

supplementation experiments conducted in wild wood mice populations to 

investigate the interannual variation in these short-term responses to high-quality diet 

supplementation. We found that our resource supplementation had strongest effects 

on reducing helminth infections in the year with the lowest average tree fruit (mast) 

score, but short-term effects on body condition were consistent across all years. 

Overall, these results suggest that naturally fluctuating resources and energetic 

demands can fundamentally change the host responses to experimentally altered 

resource availability. Understanding this complex interaction will be crucial for 

considering supplementation strategies for effective wildlife management.  

4.2 Introduction  

Resource availability is a central factor determining wild populations dynamics 

(Clotfelter et al., 2007) and infectious disease (Johnson et al., 2010). Resource 

limitation plays a key role in the regulation of wild animal populations due to the 

energy requirements of reproduction, and increases in resource availability can have 

important consequences for reproductive activity and demography—processes which 
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play a key role in disease transmission in the wild (Becker et al., 2015). Mast 

events—where species synchronise their breeding or emergence by producing very 

abundant, synchronised crops—can provide an excellent, transient resource pulse 

that can impact both individual and population dynamics for those species that 

consume this resource (Ostfeld and Keesing, 2000).  Every 3-5 years in the eastern 

United States, white oaks (Quercus alba) and red oaks (Q. rubra) produce a 

synchronised acorn mast across a ~10km area. These mast events can have direct, 

positive impacts on small mammal populations, where mice tend to extend their 

breeding cycle throughout the winter and have higher over-wintering survival 

(Smyth, 1966; Ostfeld et al., 1996; Wolff, 1996). Previous extensive observational 

studies have shown that the populations dynamics of deer and white-footed mice 

(Peromyscus maniculatus and P. leucopus) in the US (Wolff, 1996)  and wood mice 

(Apodemus sylvaticus) in the UK (Montgomery 1989) are, at least in part, driven by 

oak and beech mast events, respectively. Our research group previously 

demonstrated that experimental resource supplementation to wild Peromyscus 

populations can limit seasonal population crashes (Pedersen and Greives, 2008). 

Importantly in this study, we found that when resource supplementation was 

combined with anthelmintic drug treatment that reduces nematode infections, the 

benefits to the mouse population were enhanced. This suggests that parasites and 

resources interact in their effects on population dynamics, but the exact mechanism 

of the effects at the host and population level that mediate these relationships have 

not often been explored experimentally in the wild.  
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While there is increasing evidence of the impacts of resource supplementation on 

both host and parasite dynamics (Becker et al., 2015) it is often difficult to determine 

whether the changes in infection patterns are mediated through individual or 

population level responses.  A key component of anti-parasite defence is the immune 

response, but this is a costly process, potentially requiring the diversion of resources 

from other processes (Sheldon and Verhulst, 1996). There is strong evidence from 

controlled laboratory populations that resource quality can significantly benefit host 

immunity, reproduction, and resistance to infection (French et al. 2007, Jones et al. 

2012, Cox et al. 2010). For example, in female tree lizards, experimentally 

increasing reproductive investment in resource-limited conditions resulted in a 

suppressed immune response; however this result was only detected during 

energetically demanding reproductive periods (French et al. 2007). Similar 

reductions in immune investment have been documented in ground crickets when 

their mating activity was increased (Fedorka et al., 2004). Such trade-offs are often 

difficult to detect in wild populations, due to variation within and between hosts in 

acquisition of resources, where individuals that have access to a high quality diet 

may not exhibit trade-offs because they do not experience any constraints for 

allocating to multiple costly processes (van Noordwijk and de Jong, 1986). However, 

several wild studies have demonstrated trade-offs associated with periods of high 

energetic demand. A recent meta-analysis of wild birds showed increased 

parasitaemia in four common blood parasites following experimental increases in 

reproductive effort (Knowles et al., 2009), and in wild red deer the significant costs 

of lactation have negative associations with strongyle nematode infection and 

immunity (Albery et al., 2018b). Reliably estimating resource partitioning among 
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immunity, reproduction, and other processes like survival in the wild is difficult, but 

using experimental perturbations of both resource availability and parasite infection 

combined with intense longitudinal sampling of individuals, can enable robust 

investigation of these complex relationships. 

The implications for changes in food availability for parasite infection in small 

mammal populations have been investigated by experimentally supplementing food 

with ecologically relevant food sources and assessing the impact on nematode 

infections, host condition, immunity, and breeding (Diaz and Alonso, 2003; Pedersen 

and Greives, 2008; Shaner et al., 2018). For example, supplementing Apodemus 

sylvaticus with canary grass seeds increased winter breeding and reduced infection 

with some gastrointestinal nematodes (Syphacia stroma and Syphacia frederici 

pinworms) but not cestodes (Gallegoides arfaai and Hymenolepis diminuta) or other 

nematodes (Gongylonema neoplasticum) (Diaz and Alonso, 2003), while 

supplementary sorghum seeds were found to increased litter size in Taiwan field 

mice (Apodemus semotus) (Shaner et al., 2018). In addition, we previously showed 

that supplementation with a high-quality diet (laboratory mouse chow) in wild wood 

mice populations increased resistance to an important gastrointestinal nematode, 

Heligosomoides polygyrus, while improving mouse body condition and the adaptive 

immune response (Chapter 2). However, because these studies are often conducted 

over a short period of time, occur in only one site, or have a single temporal 

replicate, it is difficult to interpret the longer term impacts to host individuals and the 

population dynamics, as well as to the parasite community (but see (Pedersen and 

Greives, 2008).  It is therefore often unclear if the results of supplementation 
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experiments occur only in the context of very limited natural resources, or what role 

parasites play in the effects of resource availability on population dynamics. 

Understanding these complex interactions is becoming increasingly important, as 

anthropogenic influences are rapidly altering the quality and quantity of food sources 

available to wildlife (Oro et al. 2013). Despite a large body of work dedicated to 

understanding and predicting the outcome of these changes for infectious disease in 

the wild (Becker and Hall, 2014; Becker et al., 2015; Civitello et al., 2018; Strandin 

et al., 2018), very few of these studies are able to simultaneously consider natural 

and artificial fluctuations in resources. In A. sylvaticus, significant effects of 

temporal and spatial variation in tree seed availability have been found to impact 

dispersal patterns in populations studies, where the relationship between seed 

availability and dispersal declined within year from winter to summer and was 

weakest in years of high population size (Montgomery et al., 1991).  However, it is 

unclear how natural spatiotemporal variation in food availability may influence the 

impacts of experimental resource provisioning. In addition to differences across 

years, within-year seasonality can have broad consequences for host and parasite 

community dynamics (Altizer et al., 2006) For example, seasonal changes in 

temperature, humidity and precipitation can directly affect exposure to parasites via 

climatic effects on survival of transmission stages in the environment (Altizer et al., 

2006). Seasonal fluctuations in resource availability and the seasonal demands of 

reproduction can also impair host susceptibility (Nelson:1996hn; Martin et al., 

2008). Overall parasite dynamics will be shaped both by direct impacts on individual 

exposure and changes in susceptibility, as well as seasonal changes and population 

traits, such as changes to population size and transmission potential for parasites 
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following recruitment of new individuals after breeding periods (Montgomery and 

Montgomery, 1988; Altizer et al., 2004; Begon et al., 2009). However, how 

seasonality will affect the outcome of resource provisioning on host and parasite 

dynamics in the wild is still poorly understood (Becker et al., 2015). Untangling the 

possible confounding between these processes and resource availability requires 

either experimental perturbation or longitudinal sampling of both parasitological and 

immunological outputs.  

Here we investigate the long-term effects of experimental resource supplementation 

in wild wood mouse (Apodemus sylvaticus) populations in Falkirk, Scotland, in order 

to investigate how the effects of supplementation may be dependent on dynamic 

processes such as reproductive cycles, age structure of populations, and naturally 

fluctuating resource availability. Wood mice have a seasonal breeding pattern, 

beginning in the spring and continuing throughout the autumn. Increased population 

sizes following the breeding season can face a survival bottleneck in the winter, 

when resources are scarce. Those that survival to the next year become the first 

group of breeding adults. New individuals born in the spring or early summer will 

mature and beginning reproducing the same year, but those born in the autumn 

typically delay reproduction until the following year.  These patterns suggest the 

benefits of resource supplementation on mouse body condition and reproduction, and 

their subsequent knock on effects on parasites, may be dependent on the time of the 

year and the breeding condition and sex of the mouse.  
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Wood mice are exposed to and infected/co-infected with a diverse community of 

macro- and micro-parasites, including gastrointestinal parasites, bacteria, protozoans, 

viruses, and ectoparasites (see Chapter 3).  Importantly, wood mice have a high 

prevalence of a well-studied, immunomodulatory gastrointestinal nematode, 

Heligmosomoides polygyrus, and within this population we have previously shown 

rapid effects of high-quality resource supplementation, including increasing H. 

polygyrus resistance, severe reductions in H. polygyrus transmission potential, 

increasing anthelmintic drug efficacy, improving host condition and adaptive 

immunity (Chapter 2), changing population demography through increasing 

reproductive investment, and unpredictable changes to the rest of the parasite 

community (Chapter 3). Here we build on our previous work, which was focused on 

the short-term implications of supplementation and anthelmintic treatment to address 

three questions: (1) What are the longer-term impacts of resource supplementation 

and anthelmintic drug treatment on parasitism, immunity, host condition, and 

demography? (2) Are the effects of resource supplementation within a year 

dependent on season, host age, or parasite infection/coinfection? And (3) How do 

inter-annual fluctuations of natural resource availability alter the impacts of 

experimental supplementation on host dynamics and H. polygyrus infection? We find 

that in this longer-term experiment, supplemented resources did not significantly 

impact H. polygyrus abundance, though transient anthelmintic treatment was highly 

effective at lowering abundance for the entire trapping duration. However, we 

provide evidence that supplemented resources still have significant impacts on host 

condition, immunity, and demography, resulting in short-term positive effects on 

host condition and increase reproduction, but lower overall survival.  In addition, by 
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collating three years of data from resource supplementation experiments, we find that 

there is interannual variation in the effects of increased resource availability on H. 

polygyrus infection; and this interaction may be dependent on the naturally available 

food abundance and quality. These results provide important evidence that the 

outcome of experimental resource supplementation is linked to natural biological 

variation in the wild – which may impact how resource supplementation can impact 

host-parasite dynamics and immunity, and that short-term effects of supplementation 

do not necessarily represent the full picture for host populations.  

4.3 Methods  

4.3.1 Field Experiments  

We conducted field experiments in a 100ha broodleaf woodland in Falkirk, Scotland 

(Callendar Wood, 55.990470, -3.766636). We trapped wild populations of wood 

mice across three years in 2015, 2016, & 2017. In 2015 and 2016 we trapped an 8-

week experimental period from June-August (detailed in Chapter 2 and 3). In 2017, 

we extended the trapping season to 17 weeks from July-November. The 2015 and 

2016 replicates represented ‘short-term’ experiments in which all animals were 

followed for 2 weeks and then sacrificed at 12-16 days after first capture for 

destructive sampling for parasitology. However, the 2017 field experiment 

represented the ‘longer-term’ dynamics; in which all animals were followed for as 

long as possible within the full 17 weeks of trapping and were not sacrificed to allow 

investigation of host reproduction and survival.  
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For all three experimental replicates, we used a 2 x 2 factorial design, where resource 

supplementation was manipulated using a high-quality, whole-diet food chow 

(hereafter simply “resources”) at the population level (unit – trapping grid; control 

(unmanipulated) vs. supplemented), while anthelmintic treatment (hereafter simply 

“treatment”) was manipulated at the individual level (unit – mouse; control (water) 

vs. treatment; Fig. 4.1). We trapped three grids in 2015 (1 supplemented and 2 

control) and four grids in both 2016 and 2017 (2 supplemented and 2 control). Grids 

were set up as rectangular arrays with 2 traps/station, 10m between each trap (2015: 

7x7 array, 2016: 6x5, 2017: 7x5). In all years, grids were spaced a minimum of 50m 

from each other to minimise mouse movement between grids, and grids were 

randomly assigned to resource regimes groups.  New grids were formed, prior to the 

start of each annual experiment to minimise the effects of the previous years 

experiment.  

We supplemented each grid for three weeks prior to the start of trapping, and then 

throughout the experiment - twice per week with 2kg/ 1000m2 of sterilised, 

TransBreedTM mouse chow pellets, scattered at regular intervals across the grids to 

ensure an even spatial distribution. TransBreedTM is a high-nutrient, standard 

veterinary feed which is formulated for optimum breeding performance in laboratory 

mice and offers whole-diet nutrition to the wild mice in this study (20% protein, 10% 

fat, 38% starch, high content of micronutrients, full details in Table 1.1), therefore 

our supplementation complemented natural food availability. We live-trapped mice 

for 3 nights/week in 2015-16 and 2 nights per week in 2017 using Sherman live traps 

(H.B. Sherman 2x2.5x6.5-inch folding trap, Tallahassee, FL, USA). Each trap 

contained cotton wool bedding, and was baited with seeds, carrot, mealworms, and 
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TransBreedTM pellets (on supplemented grids only), set in the early evening (16.00-

18.00) and then checked early the following morning. All wood mice above 13 

grams were tagged at first capture with a subcutaneous microchip transponder for 

identification (Friend Chip, AVID2028, Norco, CA, USA). On both control and 

resource-supplemented grids, all mice at first capture were rotationally assigned 

within each sex to either control or drug treatment groups. We administered a single 

2ml/g dose of Pyrantel pamoate (Strongid-P, 100 mg/kg) and Ivermectin (Eqvalan, 

9.4mg/kg) to each mouse allocated to the anthelminthic group, a combination dose 

shown to be  highly effective at removing both adult and larval H. polygyrus from 

wood mouse for 12-16 days in our previous work (Clerc et al., 2019a). In short-term 

replicates of 2015-16, mice were sacrificed 12-16 days post first capture for 

destructive sampling to count H. polygyrus worms in the small intestine. In our long-

term replicate (2017), treatment was re-administered at the same dosage 4 weeks 

after first capture/treatment and mice were followed for as long as they were 

recaptured within our 17-week trapping period.  

For each mouse at every capture we measured: sex, age, and host condition including 

body mass, length, fat scores, and reproductive status (see Chapter 2 for more 

details). Blood samples were collected via mandibular bleed (first capture; maximum 

of once per 4 weeks) or tail snip (subsequent captures; a maximum of once per week) 

from which serum was separated by centrifugation at 12,000 rpm for 10 minutes and 

then stored at -80°C. Faecal samples were collected for each mouse at every capture 

from previously sterilised traps and preserved in 10% formalin. In addition, 2-3 
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pellets from each faecal sample were stored at -80°C for faecal IgA antibody 

measures.  

4.3.2 Mast data  

‘Mast’ describes the fruit of trees which can serve as a food source for small 

mammals and other wildlife. Years of above-average seed crops are termed a ‘mast-

year’, and these pulses of resources have widespread consequences in an ecosystem 

(Ostfeld et al., 1996). We used data provided by Nature’s Calendar to quantify mean 

tree fruit score of oaks and beech, two common species within Callendar Park for 

each year (details in Appendix D and at: 

https://naturescalendar.woodlandtrust.org.uk). We fit general linear models (GLM) 

using mean fruit score as a response variable, with year and tree species as 

explanatory variables. Tree fruit score was ranked on a scale of 1-5 (1-no fruit, 2- 

meagre, 3-moderate, 4-good crop, 5-exceptional).  

4.3.3 Laboratory Analysis  

H. polygyrus abundance was measured as eggs per gram of faeces (EPG). using salt 

flotation and microscopy as described in Chapter 2.  Briefly, saturated salt solution 

was added to formalin-preserved faecal samples to concentrate eggs on a coverslip, 

which were counted at 10X magnification, and the abundance adjusted by sample 

weight to give EPG. 

We used Enzyme-Linked Immunosorbence Assays (ELISAs) to measure (1) total 

faecal IgA concentration and (2) serum H. polygyrus-specific IgG1 antibody titres 

for each mouse at each capture/sampling point as previously described (Chapter 2).  
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We calculated total faecal IgA concentration by extrapolation from a standard curve 

of known concentrations from a synthetically manufactured standard antibody. H. 

polygyrus-specific IgG1 was calculated as a relative concentration to a positive 

reference sample consisting of sera from Mus musculus experimentally infected with 

H. polygyrus in the laboratory. Plates were prepared with serial dilutions of reference 

and experimental samples, and a dilution factor of 1:200 was selected for calculation 

of relative antibody concentrations. Standardised IgG1 concentrations were 

calculated by plate as follows: (Sample OD1:200- Mean Blanks)/ (Positive reference 

OD1:200-Mean Blanks). We assigned a value of 0 to samples for which the OD did 

not exceed 3x SD of control blanks. We refer to both IgA and IgG1 values as 

‘antibody concentration’. 

Nutritional status was assessed by quantifying circulating serum albumin 

concentration from the serum samples. Serum albumin is a dynamic and long-lived 

plasma protein which has important functions for multiple physiological roles 

(Garnier et al., 2017). Assays were optimized from (Garnier et al., 2017) for use on 

mouse samples using samples from our University of Edinburgh colony of formerly-

wild wood mice. Samples for the serum albumin assays were diluted 1:4 in Mill-Q 

water and 5uL was added to each well and adjusted to a total volume of 50uL with 

albumin buffer. 100uL of bromocresol green reagent (prepared according to kit 

guidelines, Biovision Albumin (BCG) Colorimetric Assay Kit) was added to each 

well. Plates were shaken for 45”, incubated at RT for 20’ and read at 650nm. 

Samples for total protein assays were diluted 1:60 in Milli-Q water and 10uL of 

sample was added to each well. 300uL of Coomassie Reagent (Thermoscientific 
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Coomassie Plus Bradford Assay) was added to each well. Plates were shaken for 

45”, incubated at RT for 10’ and read at 570nm. Samples were run in duplicate for 

both assays. Two standard dilutions of known concentrations of BSA were included 

for each plate in both assays. Standard curves were fit using a 4-parameter logistic 

regression and sample concentrations were determined by plate using the standard 

curves. Concentrations were corrected by sample dilution factors and expressed as 

ug/uL for analyses.   

4.3.4 Statistical Analysis  

All statistical analysis was carried out in R Version 3.6.0 (R Core Team, 2019). All 

models were fit using the package ‘glmmTMB’ [1], model selection was carried out 

using the package ‘buildmer’ [2], and post-hoc tests were carried out with package 

‘emmeans’[5]. We used two Model Sets to investigate: 1) intra-annual variation of 

resource supplementation effects on parasite infection, host condition, and immunity 

within a single year (2017) in which individuals were followed over a 120-day 

period and 2) inter-annual consistency of short-term resource supplementation 

effects on H. polygyrus count EPG from 2015-2017. Additionally, using 2017 data 

we investigated the effects of supplementation on observation period length as a 

proxy for survival. Model sets are described below and in Table 4.1. 
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Figure 4.1. Experimental design of resource supplementation experiments from 2015-2017. 

Briefly, we used a 2x2 factorial design (two resource groups at the population level; two treatment groups at the individual level) in all years.. In 
years 2015-16, treatment or water control was administered once upon initial capture (day 0; d0), and individuals were followed for two weeks (±2 
days) and sacrificed at the end of the experimental period. In 2017, treatment or water control was administered at first capture (d0) and then again 

four weeks later (±2 days), and were trapped as long as possible or until the end of the trapping season (d120). Data from the longer-term field 
experiment of 2017 was analysed in Model Set 1, and data from all three annual field experiments was analysed in Model Set 2.
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4.3.5 Model Set 1 – Long-term effects of resource supplementation  

Within our 2017 field experiment, we trapped mice from July-November which 

covered two ‘seasons’ (Summer: July & August; Autumn: September, October, 

November). In the spring of each year, A. sylvaticus populations are comprised 

primary of adults who have survived the winter and represent the breeding adults for 

the new year. Breeding typically begins in late spring and continues through the 

Autumn, with the highest population sizes occurring in early Autumn. In our 

experimental populations in 2017, the numbers of new individuals recruited to the 

population began to rise from week 35. Analysis of capture history and body size 

indicates that from week 35 onward, individuals entered into the experiment were of 

substantially lower body weight at first capture (mean 15g versus mean 21g prior to 

week 35). Therefore, we suggest that data from this experiment represents two birth 

‘cohorts’, a ‘first cohort’ of older wood mice that survived the winter and are 

breeding the following spring/summer, and a ‘second cohort’ of young mice, born in 

the summer, who are breeding in the same year as their birth. These two cohorts will 

differ in many ways in the wild, but specifically the first cohort will only have had 

supplemental resources available for one part of their life, where the second cohort of 

mice may have experienced supplemented resources from birth. We classed 

individuals entered into the experiment from week 35 on as the second cohort, 

resulting in a total of 54 individuals in the first and 55 in the second cohort 

(Appendix C, Figure S4.1).  

Using data from our 2017 field experiment, we investigated intra-annual variation in 

resource supplementation effects according to season, cohort, and anthelminthic 

treatment (109 individual wood mice captured 479 times). We fit 7 total models to 
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investigate resource supplementation on to response variables of: parasite infection 

(H. polygyrus, abundance), host condition (body condition index (BCI), 

weight/length residual), immunity (H. polygyrus-specific IgG1 (standardised) and 

total faecal IgA (ng/mL, square-root transformed)) ,host nutritional status (serum 

albumin (µg/µL, log-transformed)), and host demography (survival (observation 

length), and reproduction (new births)). For parasite, immunity, and nutritional status 

models we first performed forward model selection adding fixed effects and 

interactions to a minimal model with only resources (control-unaltered/ 

supplemented), treatment (water control /anthelminthic drug), and an individual ID 

random effect. Fixed effects were sex (female/ male), reproductive status (binary, 

inactive/active body condition index (BCI, scaled), body length (mm, scaled) and 

year (2015, 2016, 2017). The exceptions were condition models, which were not fit 

with BCI or body length as explanatory variables, and immunity models, which were 

fit with additional fixed effects of H. polygyrus infection status and the ELISA block 

(replicate, n=2) in which plates were run (Table 4.1). Continuous fixed effects were 

scaled to have a mean of zero and a SD of 1 to aid interpretability. Interactions tested 

were: resources by season (summer or autumn), resources by cohort (first or second 

cohort), and resources by treatment. Cohort and season were included as fixed effects 

as well. Each term was added one-by-one to obtain an order of effects and evaluated 

by the change in AIC to the model. A reduction of >2AIC was taken as the threshold 

to improve model fit. In each additional model addition, the fixed effect or 

interaction (if any) which improved model fit most was retained in the model, and 

this was repeated until no interactions improved the model.
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Table 4.1. Model structure for short- and long-term effects of resource supplementation.  

Model Set Data 
Replicate Response Transformation 

Experiment 
period 

represented 

Model 
Class 

Model 
Family Fixed Effects Interactions Tested Random 

Effects 

1 
Long-
term 

2017 

H. polygyrus  
abundance EPG rounded to 

nearest integer  

Full trapping 
period  

17 weeks  

GLMM 

Negative 
Binomial  

Sex + Body condition index + 
Body length + Reproductive 

status +Treatment+ 
Resources + Season  

resources:season  
resources:cohort  

resources:treatment 
ID  

E. hungaryensis  
abundance EPG  

Ixodes spp.  
Burden    

Body condition 
index    

  
Gaussian  

Sex  + Reproductive status + 
Treatment + Resources + 

Season  

H. polygyrus-
specific IgG1   

Sex + Age + Body condition 
index + H. polygyrus 

infection + Experiment 
Timepoint + Resources + 
Season + ELISA Block  

Total Faecal IgA square-root  

Serum albumin log-transformed 

Sex + Age + Body condition 
index + H. polygyrus 

infection + Experiment 
Timepoint + Resources + 

Season  

New individuals 
recruited    

GLM Negative 
Binomial  

Resources + Trapping week      

Survival  
Days observed    

Sex + Age + log(H. 
polygyrus EPG) + Resources 

+ Day of First Capture + 
Treatment  

    resources:treated   

2 
Short-
term 

2015-
2017 

H. polygyrus  
abundance EPG 

rounded to 
nearest integer  First Capture 

+ 12-16 days 

GLMM Negative 
Binomial 

Body Mass + Reproductive 
status + Sex +Resources + 

Year resources:year ID  
Body condition 

index   GLMM Gaussian Reproductive status + Sex 
+Resources + Year 
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Demographic models did not represent longitudinal sampling but rather absolute 

numbers of either new individuals recruited over the trapping period or survival 

(observation length). We therefore did not approach these models with the same 

interaction testing. We fit a GLM for each demographic response variable with terms 

as detailed in Table 4.1. We included resources and the week of trapping season as 

fixed effects for recruited individuals and sex,  

Age, H. polygyrus abundance (log EPG+1), day of first capture (continuous, scaled), 

treatment, and resources. We also tested a resource by treatment interaction based on 

previous evidence of synergistic effects of these two perturbations (Chapter 2).  

4.3.6 Model Set 2 – Short-term effects of resource supplementation  

Because individuals were sacrificed 12-16 days post first capture in 2015-16, we 

used data from first capture through a maximum of 16 days post capture from all 

three-year replicates to investigate variation in short-term supplementation effects on 

H, polygyrus infection. This dataset was comprised of 159 individuals captured 481 

captures over 16 days. We fit two models using H. polygyrus EPG (abundance) and 

body condition index (BCI; weight/ length residuals, scaled) as a response variable 

negative binomial and gaussian error structure respectively. We included the 

following fixed effects as explanatory variables: sex, reproductive status, treatment, 

BCI, resources—all as detailed above—year (factor: 2015, 2016, 2017), and a year-

by-resources interaction. Where a significant interaction with year was found, we 

used a Tukey post-hoc comparison test to investigate the differences between 

multiple levels of the interaction.  
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4.4 Results  

4.4.1 Supplemented resources have both short- and long-term 
effects on host condition, immunity, and demography   

Throughout our 2017 longer-term field experiment, we captured a total of 109 

individuals, with first capture incidences that spanned the full trapping period, and 

these wood mice were captured 479 times over 17 weeks. We found that 

reproductive activity varied across the experiment, with the number of 

reproductively active (scrotal) males and pregnant or lactating females peaking in the 

late summer (August) and then declining throughout the remainder of the experiment 

(Appendix C, Figure S4.2).  

For Model Set 1 (intra-annual variation), we found that for 4/5 response variables 

(parasitism, immunity and condition), interactions of supplementation with either 

season, cohort, or treatment (or multiple interactions) significantly improved model 

fits,  DAIC>2, and were retained in final models of infection and host dynamics over 

our long-term dataset (Table 4.2).   

In our short-term models and in contrast to our previous research (Chapters 2 & 3), 

we found no main effect of supplemental resources on H. polygyrus EPG for our 

longer-term 2017 field experiment (GLMM: b= 0.80, SE=0.62, p=0.20). However, a 

resource supplementation-by-season interaction significantly improved model fit (b= 

-1.74, SE=0.73, -0.017), and we found that while wood mice on control grids did not 

have significantly different H. polygyrus abundance across seasons (Tukey post-hoc 

comparison, p=0.73), individuals on supplemented grids had lower H. polygyrus 

EPG abundance in the autumn than in the summer (Tukey post-hoc comparison, 
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p=0.018, Figure 4.2A). We detected several other significant predictors of H. 

polygyrus EPG infection (Table 4.2).  As expected, anthelmintic treated individuals 

had significantly lower H. polygyrus abundance (b= -2.67, SE = 057, p <0.001; 

Appendix C Figure S4.2). Additionally, the second cohort of mice had lower 

abundance than those in the first cohort (b= -1.76, SE = 0.71, p=0.014). There was a 

significant positive main effect of resource supplementation on body condition index 

(b= 0.22, SE=0.09, p=0.02), and these effects were not dependent on season, cohort, 

or treatment. Additionally, reproductively active individuals had significantly better 

body condition than inactive (b= 0.44, SE=0.11, p <0.001), and the mice in the 

second cohort had significantly worse body condition than the first cohort (b= -0.48, 

SE=0.15, p = 0.001).  

Models of H. polgyrus-specific IgG1 and total faecal IgA were significantly 

improved by resource supplementation-by-season and resource supplementation-by-

cohort interactions, respectively (Figure 4.2B-C). There was a trend of higher IgG1 

concentration for supplemented grids in the summer (Tukey post-hoc comparison 

test, p=0.064), but this trend was not supported in the autumn (Tukey post-hoc 

comparison test, p=0.71). There was no significant differences among mice on 

resource supplementation and control grids for either cohort for total faecal IgA. 

However, the difference between control and supplemented grids had a very modest 

change in direction across cohorts, where the second cohort had higher IgA on 

supplemented grids and the first cohort had slightly lower IgA on supplemented grids 

(Figure 4.3C).  We also found higher concentrations of IgG1 in autumn compared to 

summer for all mice (b= 0.43, SE=0.13, p<0.001), and a positive correlation of IgG1 
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with both higher body condition (b= 0.27, SE=0.06, p<0.001) and larger (longer 

body length) individuals (b= 0.40, SE=0.07, p<0.001). However, anthelminthic-

treated individuals (b= -0.37, SE=0.14, p=0.009) and reproductively active 

individuals (b= -0.25, SE=0.10, p=0.016) had lower concentrations of IgG1. Total 

faecal IgA was likewise significantly higher in larger (longer body length) 

individuals (b= 0.18, SE=0.06, p=0.03) and significantly higher in autumn compared 

to summer (b= -0.31, SE=0.11, p=0.006). There was also significant variation across 

blocks of the ELISA assay runs for IgA (b=1.43, SE=0.1, p<0.001), and block was 

therefore retained in models to account for this variation.  

An interaction of resource supplementation with season significantly improved the 

model fit for serum albumin, used here as a marker of nutrition. As with total faecal 

IgA and cohort, marginal means indicate that although there is no significant 

difference among mice on either resource supplemented or control grids in either 

season, estimated mean differences changed direction from summer to autumn. Mice 

on supplemented grids went from slightly higher to slightly lower levels of 

circulating serum albumin compared to control grids (Tukey post-hoc comparison 

test, summer: b = -0.41, SE=0.36, p = 0.216; autumn: b = 0.34, SE=0.35, p = 0.33; 

Figure 4.3D).  Additionally, individuals in the second cohort compared to the first 

cohort had higher levels of circulating albumin (b=0.82, SE=0.32, P=0.011). 

Supplemented resources significantly increased reproduction as measured by the 

number of new births observed on supplemented compared to control grids (Figure 

4.4B, b = 0.92, SE = 0.21, p <0.001). New births also increased significantly as the 
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field experiment progressed (Figure 4.3B, week number (scaled): b = 0.95, SE = 

0.15, p <0.001). However, we also found negative effects of supplemented resources 

for wood mouse survival over the course of the experiment, when using total length 

of time observed (log, days) accounting for first capture date as a proxy for survival 

(Figure 4.3A, b=-1.66, SE=0.64, p=0.009). No other fixed effects were significant 

predictors of survival.  

 

 

Figure 4.2. Estimated means for interactions with resources which improved model fit. 

Interactions which improved model fit for GLMMs fit to the response variables A. H. 
polygyrus abundance, B. H. polygyrus-specific IgG1, C. Total faecal IgA D. Serum albumin. 

Bar plots represent estimated marginal means ±SE. 
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Figure 4.3. Effects of resource supplementation on host survival (A) and demography 
(B). 

(A) Survival is represented using a proxy of the maximum length known alive (days 
observed) during trapping, with raw means ±SEM. (B) New cohort population size is 

representing the number of new individuals recruited on grids of both resource types per 
week over the full 17 weeks of the experiment. 
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Table 4.2. Model estimates from final models following forward selection. Blank cells represent cases where a term was not retained in the 
final model; ‘na’ cells represent cases where a term was not fit in a given model.  Bolded p-values indicates significance at p<0.05. 

 

 
H. polygyrus EPG  Body Condition Index  H. polgyrys-specific IgG1 Total Faecal IgA Serum Albumin 

Term  Estimate  p  Estimate  p  Estimate  p  Estimate  p  Estimate  p  

Resources, 
Supplemented:  
Season, Autumn 

-1.74  
(-3.16 to -0.32)  

  
0.017  

  -0.05 
(-0.12 - 0.02) 0.133   -0.23 

(-0.52 - 0.07) 0.133 

Resources, 
Supplemented:  
Cohort, New 

      0.25 
(-0.08 - 0.58) 0.138   

Resources, 
Supplemented 

0.8  
(-0.42 - 2.02) 0.197 0.22  

(0.03 - 0.4)  
0.02  

0.07 
(0 - 0.13) 0.063 -0.11 

(-0.29 - 0.07) 0.234 0.12 
(-0.09 - 0.34) 0.252 

Treated, 
Anthelminthic 

-2.67  
(-3.79 - -1.54)  

<0.001 0.01  
(-0.19 - 0.21)  

0.931  
-0.08 

(-0.14 - -0.02) 0.009 0.06 
(-0.1 - 0.21) 0.464 -0.04 

(-0.18 - 0.1) 0.583 

Season, Autumn 1.03  
(-0.09 - 2.16) 0.072 -0.11 

(-0.55 - 0.32)  
0.61 0.09 

(0.03 - 0.14) 0.001 -0.19 
(-0.32 - -0.05) 0.006 -0.03 

(-0.27 - 0.21) 0.814 

Cohort, New -1.76 
 (-3.16 - -0.36) 0.014 -0.48  

(-0.76 - -0.19)  
<0.001 -0.07 

(-0.15 - 0) 0.059 -0.08 
(-0.39 - 0.24) 0.639 0.25 

(0.06 - 0.44) 0.011 

BCI (scaled) 0.35  
(0 - 0.7)  

0.052 na na 0.06 
(0.03 - 0.08) <0.001     

Body length (scaled)   na na 0.08 
(0.06 - 0.11) <0.001 0.11 

(0.04 - 0.19) 0.003   

Sex, Male           

Reproductive, active   0.44  
(0.23 - 0.66) <0.001 -0.05 

(-0.09 - -0.01) 0.016 -0.05 
(-0.17 - 0.08) 0.478   

ELISA Block na na na na   0.86 
(0.74 - 0.99) <0.001   

Intercept 1.92  
(0.89 - 2.94) <0.001 -0.16  

(-0.39 - 0.08)  
0.188 0.14 

(0.08 - 0.21) <0.001 3.53 
(3.35 - 3.72) <0.001 1.5 

(1.34 - 1.67) <0.001 
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4.4.2 Short-term effects of supplemented resources on H. polygyrus 
EPG show high inter-annual variation  

Over the three years sampled in this experiment, mean tree fruit scores varied 

significantly across years (Figure 4.4A, GLM observation year 2017: b= 0.98, SE= 

0.35, p=0.0046; observation year 2016: b= 0.49, SE= 0.27, p=0.071). Mean fruit 

score in 2017 was significantly higher than in 2015 but not 2016 (Figure 4.4A, 

Tukey post-hoc comparison, p= 0.016).  

Across our short-term, multi-year dataset, we found that effects of resource 

supplementation on H. polygyrus EPG abundance varied according to year (Figure 

4.4B GLMM supplement-by-year - 2017: b = 2.16, SE = 0.92, p = 0.019), and there 

was significantly lower estimated mean EPG in 2017 (b = -2.01, SE = 0.73, p = 

0.0057). Notably, means of H. polygyrus abundance for control grids in 2017 were 

comparable to supplemented grids in 2015-16 (Figure 4.5A). We also found 

significant main effects of treatment and reproductive status across the entire three 

years, where anthelminthic-treated individuals had significantly lower EPG than 

individuals given water controls (b = -1.75, SE = 0.38, p<0.001), and reproductively 

active individuals had consistently higher H. polygyrus EPG than reproductively 

inactive mice (b =0.66, SE = 0.10, p < 0.001).  Short-term effects of supplemented 

resources were consistent across years (resources (b = 0.30, SE = 0.12, p= 0.015). 

There were additional main effects of sex, where males had significantly lower BCI 

compared to females (b = -0.33, SE = 0.12, p= 0.007) and reproductive status, where 

actively reproductive individuals had higher body condition compared to inactive (b 

= 0.66, SE = 0.10, p < 0.001).  
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Figure 4.4. Variation of naturally available resources and effects of experimentally 
supplemented resources over three, year replicates. 

A. Mean fruit scores within Scotland, UK from 2015-2017. Bars represent raw mean data ± 
SEM. Comparison bar and asterisks designate significance of Tukey post-hoc comparison 
tests for all pairs of years. B. GLMM estimated mean differences between H. polygyrys 

abundance for control and supplemented resource grids, where zero would equal no effect of 
supplemented resources. Asterisks designate significance between contrasts from Tukey 

post-hoc comparison test for resource groups at each year level. 
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Figure 4.5. Short-term effects of supplemented resources on (A) H. polygyrus 
abundance and (B) host body condition (raw data). 

(A) Barplots represent raw means ± SEM for A. H. polygyrus abundance (log(EPG+1), 
infected only), which exhibited inter-annual variation in effects of supplementation and (B) 
host body condition (BCI; weight/length regression residuals) which exhibited only a main, 

positive effect of supplementation. 

 

4.5 Discussion  

We carried out a long-term resource supplementation and anthelmintic treatment 

field experiment which incorporated intensive longitudinal sampling of individual 

wood mice during and after the peak breeding season in a Scottish woodland. We 

found that our perturbations impacted key host demographic patterns and 

gastrointestinal nematodes, which supports previous studies in small mammal 

populations (Flowerdew, 1972; Diaz and Alonso, 2003; Pedersen and Greives, 2008; 
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Forbes et al., 2014; Shaner et al., 2018), but here we pair investigation of 

demographic effects with finer scale host effects.  Anthropogenic resource 

provisioning in wild populations likewise impacts infectious disease through 

population- and host-level processes (Becker and Hall, 2014; Civitello et al., 2018), 

but it is unclear how natural variation in resource availability and spatiotemporal 

fluctuations in host population processes might influence the outcome of additional 

resource provisioning. Here we show that within a single year, the effects of 

sustained longer-term supplementation with a high-quality diet are not always 

positive, but rather are dependent on season and the age of the individual.  

Importantly, the impact of supplementation can actually switch directions from 

beneficial to apparently harmful, dependent on these extrinsic and intrinsic variables. 

Furthermore, we show that the effects of experimental resource supplementation in a 

wild wood mouse population can vary dependent on naturally occurring food 

availability. Specifically, we found that the benefits of short-term supplementation 

on H. polygyrus infection varied across years, and was correlated with the tree fruit 

score, such that when natural resources may be plentiful, the impacts of 

supplementation on hosts and their parasites may be reduced. These results suggest 

primarily that individual traits such as age and environment traits such as season and 

tree fruit abundance can mediate, and ultimately, determine the broader 

parasitological, immunological, and demographic effects of resource provisioning for 

wild population.  

Our field experiment which simultaneously perturbed both resource availability and 

nematode infection suggests that the outcome of these changes is dependent on 
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sometimes complex relationships between multiple variables. Specifically, we found 

that by fitting interactions of resource group with season, cohort, and treatment, we 

show that both season and host age mediate the effects of resource supplementation 

in wood mice. Both H. polygyrus abundance and H. polygyrus-specific IgG1 were 

higher for individuals on supplemented grids in summer, however in autumn, mice in 

both supplemented and control grids were comparable. We have previously 

demonstrated that supplementation with a high-quality supplement increases 

adaptive immunity, body condition, and resistance to the nematode H. polygyrus 

(Sweeny et al. 2019; Chapter 2). Importantly, we detected these effects rapidly, 

within a relatively short timeframe of approximately two weeks, and only in summer. 

Surprisingly, the results of this current experiment only found a positive impact of 

supplementation on reducing H. polygyrus in autumn, but not summer, which is 

contradictory to our previous supplementation experiments (Sweeny et al. 2019; 

Chapter 2). One hypothesis for this discrepancy among year replicates is that the 

degree to which the supplemental resources offer benefits for resistance may vary 

according to how the level of resource-limited in the population. This hypothesis is 

supported, in part, by our interannual results which showed that the differences in H. 

polygyrus abundance between mice on control and supplemented grids was greatest 

in the year of lowest tree fruit score (2015), and lowest in the year of highest tree 

fruit score (2017).  

Higher H. polygyrus-specific IgG1 on supplemented grids observed in this long-term 

season in summer, but not autumn, does not have an immediately clear explanation. 

Antibody measures in the wild are difficult to interpret because without exposure 

history, it is not possible to determine whether a high antibody response represents 
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simply a host forced to respond to repeated parasite challenge or whether host is 

eliciting a stronger, more protective immune response (Pedersen and Babayan, 2011; 

Gilbert et al., 2013). In a wild ungulate, parasite-specific IgA responses were found 

to correlative negatively with abundance of the gastrointestinal nematode, 

Teladorsagia circumcincta (Albery et al., 2018b); however previous work by our 

group in wood mice has shown a positive correlation between H. polygyrus-specific 

IgG1 titre and probability of infection, which we had hypothesised indicated that 

these antibodies may be best suited as makers of exposure/infection (Clerc et al., 

2018). Further work using both wild and controlled laboratory studies of wood mice 

and H. polygrus infection may provide a better indication of whether these antibodies 

are playing a protective role.  

 There are a few possible explanations as to why supplemented individuals have 

higher IgG1 in summer only, when H. polygyrus abundance was higher for 

supplemented individuals. Seasonal variation in immune responses is a common 

phenomenon for wild animals (Nelson and Demas, 1996; Dowell and Ho, 2004). 

Cyclic variation in immune activity can be driven by environment (Nwaogu et al., 

2019), seasonal reproductive activity (Martin et al., 2008), or may be indicative of 

seasonal variations in exposure to parasites (Stromberg, 1997; Altizer et al., 2006). 

We suggest two primary mechanisms that may explain our observed patterns of H. 

polygyrus abundance and H. polygyrus-specific IgG1 and why the impact of resource 

supplementation may dependent on the season. The first hypothesis is that H. 

polygyrus specific IgG1 levels simply reflect H. polygyrus abundance for mice on 

both grid types and in both seasons. This is partially supported by our results, given 
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that in the summer we find both higher levels of H. polygyrus abundance of H. 

polygyrus specific IgG1. In this scenario, overall increases of parasite-specific IgG1 

from summer to autumn may simply reflect increasing exposure as time goes on. The 

significant negative effect of treatment on H. polygyrus-specific IgG1 further 

supports this hypothesis that antibody levels reflect the abundance of H. polygyrus, 

as we have found that our drug treatment was highly effective at reducing infection 

in this population. 

The second possible hypothesis is that there is an underlying mechanism that 

antibody concentrations in summer are indicative of H. polygyrus abundance patterns 

in the autumn. It is possible that despite higher H. polygyrus abundance on resource 

supplemented grids earlier in the year (summer), that the increased resources during 

the peak of the breeding season enable individuals to mount a stronger immune 

response to H. polygyrus, which is reflected in the significantly lower abundance 

from summer to autumn on supplemented grids. The changes in peak IgG1 is not 

instantaneous, and occurs approximately 21 days after infection (Clerc et al., 2019b). 

Furthermore,  H. polygyrus-specific IgG1 acts on larval stages of the parasite by  

blocking maturation to adult stages (Hewitson et al., 2015). This may mean that the 

effects of increased IgG1 levels on H. polygyrus abundance would have a time lag 

before a reduction in egg shedding of adult worms would be documented, which 

would support this second possibility. Additional work will be required to resolve the 

mechanism underlying these results, particularly given the addition of effects found 

in this study for reproduction and demography.  
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We observed significantly increased reproductive activity on resource supplemented 

grids in our longitudinal sampling, as indicated by the birth of new mice on 

supplemented grids. Previous work investigating the longer-term effects of resource 

availability have typically focused on broader population dynamics; including 

reduced population crashes (Pedersen and Greives, 2008), and the recruitment of 

new individuals (Flowerdew, 1972). Interestingly, in contrast to common findings of 

alleviation of population crashes (Pedersen and Greives, 2008; Forbes et al., 2014) 

and increased population size following supplemented food (Flowerdew, 1972), we 

found that individuals on supplemented grids had significantly lower observation 

length, suggesting that supplementation had a negative effect on survival. This may 

be indicative of a cost or trade-off incurred from increased reproductive or immune 

activity during summer for supplemented individuals. However, observation length 

may be influenced by trapping probability as well as survival. Behavioral responses 

to resource supplementation may alter trapping probability, so observation length 

results should be regarded as preliminary and further work incorporating additional 

longitudinal trapping to estimate both capture probability and survival is warranted. 

Though the mechanism is not clear, this preliminary result does highlight the 

important of considering both individual- and population-level processes.  

Evidence from empirical and theoretical work investigating the effects of 

anthropogenic provisioning to wildlife highlight the importance of considering both 

the individual and population level effects, as population level effects can 

‘overwhelm’ individual-level benefits in condition or immunity and result in higher 

infection rates due to increased aggregation or population densities (Becker and Hall, 
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2014; Becker et al., 2015; Moyers et al., 2018). At the within-host level, mice that 

are in an actively reproductive state had lower H. polygyrus-specific IgG1, 

suggestive of a general cost of reproduction for the adaptive immune response. 

Increased IgG1 levels during summer (which was peak breeding time during this 

trapping season) may therefore reflect a relaxation in the limited resources to be 

allocated between immunity and reproduction. Though we cannot conclusively infer 

this from out data, host level effects of increased condition and immunity may play a 

role in costs to survival and downstream population effects.  

Increases in population size observed in this study will have fundamental effects on 

the age structure of the population. H. polygyrus typically shows consistent seasonal 

patterns, where infection abundance is often lowest when population sizes are 

largest, which is due to the fact that there are a high proportion of young mice that 

are less likely to be exposed or infected (Gregory et al., 1990). These seasonal 

changes after breeding and altered age structure may have played a role in the lower 

H. polygyrus abundance found in the autumn in mice on supplemented grids. 

Furthermore, throughout the longer trapping season of 2017 individuals were 

regularly recruited to the population, but not all were tagged. Because our data and 

interpretation in this study is restricted to data collected from tagged individuals on 

trapping occasions, there may be population-level movement and transmission 

processes contributing to H. polygyrus, immunity, and condition results observed in 

this experiment.  

 Population-level changes to age structure and density may have additional important 

consequences for non-target parasites beyond H. polygyrus as well, so it is possible 
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that the interaction of individual- and population-level effects over seasons will 

result in outcomes of co-infecting parasites that disagree with those seen in the short-

term (Chapter 3). We suggest that this type of longer-term experimental resource 

supplementation while monitoring the broader parasite community after an anti-

parasite perturbation paired with longitudinal monitoring is an ideal extension to 

advance understanding of fine-scale relationships between resource availability and 

host-parasite dynamics in the wild.  

In addition to the complex predictors of H. polygyrus -specific IgG1, both non-

specific total faecal IgA and serum albumin measures were determined by resource 

supplementation interactions with cohort and season, respectively. However, 

differences among the levels were more modest compared to H. polygyrus 

abundance and IgG1, and these interactions may represent spurious improvements to 

model fit. IgA is a common antibody of mucosal surfaces (Mulcahy et al., 2004; 

Macpherson et al., 2012) and ,is likely to indicate overall immune activation. The 

only significant predictors of total faecal IgA concentration and serum albumin were 

wood mouse body length and cohort; where longer individuals had higher total IgA 

and second cohort mice had higher levels of circulating albumin, respectively. This is 

most likely indicative of older individuals accumulating exposure to a number of 

antigens which may have stimulated an IgA response. Previous work in Soay sheep 

has shown age-dependent relationships with the allocation of plasma proteins, where 

older individuals benefit from maintaining higher nutritional plane (plasma protein 

levels) and younger individuals benefit from investing in immunity (Garnier et al., 

2017) . Wood mice represent a very different system to ungulates, with much faster 



 

Chapter 4  131 

pace of life and differences in helminth epidemiology within the populations. The 

second cohort of wood mice in this system represents younger individuals, and 

therefore higher circulating proteins in these individuals may be indicative of an age-

specific priority, but this is speculative and will require addition timepoints of 

sampling for serum albumin.  

Building on previous work investigating the effects of resource supplementation on 

H. polygyrus infection and host condition, we have carried out both experimental 

resource supplementation and sustained removal of a key nematode and monitored 

parasitological, immunological, and demographic responses. We have shown that 

although supplemented resources improved host body condition consistently, effects 

on H. polygyrus infection vary intra- and even interannually. Furthermore, long-term 

monitoring revealed that benefits of supplementation for parasite-specific immunity 

was limited to the summer. In conjunction with observed effects of increased 

reproductive activity and decreased survival in our long-term experiment, these 

results suggest that short-term benefits of condition can have downstream costs and 

implications for population structure driven contributions to parasite transmission. 

Overall, this study highlights that the responses to resource manipulation in the wild 

are subject to variation from both biological variation within a population 

environmental conditions and understanding these complex relationships will be 

important if we are to predict the implications for wildlife and their parasite 

community when subjected to intentional or accidental resource supplementation.  
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5.1 Abstract  

Host-parasite interactions in nature are highly context-dependent, with parasite 

infection dynamics being driven by a wide range of factors occurring across several 

ecological scales, from individual to ecosystem. The importance of each of these 

drivers, in isolation and combination, are unclear because they can vary profoundly 

across space and time, and practical limitations to sampling designs can bias 

inferences. Here, we used a long-term longitudinal (repeated captures) dataset of 

>1000 individual wood mice (Apodemus sylvaticus) spanning 6 years of sampling 

across 5 different woodland field sites. Using this extensive dataset which followed 

mice throughout their lives, we aimed to determine how both intrinsic and extrinsic 

factors drive infection intensity of a highly prevalent and important gastrointestinal 

nematode Heligmosomoides polygyrus. Season, host body condition, and sex were 

the three most important determinants of infection intensity, but notably the strength 

and even direction of their effects varied in time, but not in space. We also show that 

using longitudinal (repeated-sample points) datasets, in which we could control for 

within-individual variation provided better estimates of the drivers of parasite 

infection intensity, then when restricted to using cross-sectional (single-sample 

point). These results highlight the importance of sampling regime design in 

ecological studies. Furthermore, they suggest that embracing rather than simply 

controlling for spatiotemporal variation can reveal important insight into host-

parasite relationships in the wild.  
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5.2 Introduction  

Host-parasite interactions in the wild are highly context-dependent, with a wide 

range of intrinsic and extrinsic factors driving the dynamics. Potential drivers range 

from large-scale environmental factors such as seasonal fluctuations (Nelson and 

Demas, 1996; Dowell, 2001; Altizer et al., 2013) or geographic variation (Davies 

and Pedersen, 2008; Tompkins et al., 2011) to host-level factors such as sex (Zuk 

and McKean, 1996), age (Plowright et al., 2017), or nutritional status (van 

Noordwijk and de Jong, 1986; Sheldon and Verhulst, 1996) and even include within-

host effects such as co-infection (Cox, 2001; Fenton and Pedersen, 2005).  Many 

ecological studies of infectious disease are limited in their spatiotemporal replication 

and sampling breadth, so such variation is difficult to detect and ability to determine 

whether the drivers of infection are consistent across space and time is limited. These 

limitations can have important consequences on understanding infection disease 

dynamics, but this area remains understudied (Becker et al., 2019).  

Disease ecologists generally seek to understand drivers of parasite dynamics, yet 

results are often equivocal across studies, systems, and temporal or spatial replicates. 

For example, host body condition – a widely used metric suggested to be a proxy of 

fitness—is typically thought to be negatively correlated with parasite infection. 

However, a recent meta-analysis of  >500 body condition - parasite infection 

relationships demonstrated high heterogeneity in both strength and direction, with a 

high proportion of null patterns (Sánchez et al., 2018). Anti-parasite perturbation 

experiments (e.g. via drug treatment) have provided insight into the dynamics of 

host-parasite relationships, but the results have also been shown to be context-

dependent. Impacts of parasitism and treatment efficacy have been found to vary 
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from year to year, between host groups (e.g. sex, age), and according to presence of 

co-infecting parasites (Pedersen and Fenton, 2015). In a ten-year study of red grouse 

(Lagopus lagopus), survival and reproduction (clutch size and hatching success) 

were greater in animals with experimentally reduced helminth burdens from drug 

treatment, but the magnitude of these effects varied in magnitude from year to year 

and the effects were only detected as statistically significant in 2 of 6 years sampled 

for survival and 3 or 4 years for reproduction (clutch size and hatching success 

respectively (Hudson et al., 1992).  These examples highlight important, common 

problems in the study of disease ecology: specifically, low detection ability of, or 

mixed evidence for, hypothesised relationships in natural populations, and spatial or 

temporal variation across sampling replicates. Thus, quantifying this spatiotemporal 

variation in the drivers of parasitism allows us to address two fundamental questions: 

(i) what are the key factors driving host-parasite variation over space and time, and 

(ii) how should we best sample within these populations to detect important 

biological variation within a system?  

Few studies have systematically addressed the above questions simultaneously. 

Many ecological studies face practical sampling limitations, precluding simultaneous 

investigation of spatiotemporal factors such as seasonality, inter-annual variation, 

and geographical location. Consequently, it is not clear how often disease ecology 

studies experience biased inference emerging from the chosen sampling resolution. 

Investigating the relative contributions from multiple ecological scales, such as 

environmental and host factors, typically requires multiple years and multiple sites. 

For example, data collected from dace (Leuciscus leuciscus) across 3 years and 8 
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sites demonstrated that host and environmental effects differentially influence 

ectoparasite burden and pathogenicity, and that relationships were inconsistent across 

years (Cardon et al., 2011). Similarly, sampling across four annual cycles of 530 

tropical Common Bulbuls (Pyconotus barbatus) revealed that occurrence of rainfall, 

and not breeding stage, drive seasonal differences immune function (Nwaogu et al., 

2019). These studies make a strong case for the use of carefully structured statistical 

approaches and well-replicated sampling to disentangling the complex drivers of 

parasitism. However, while both studies collected multiple samples within a 

population over time, they focused on single samples per individual and single 

parasite species. There is therefore still a need for studies involving longitudinal 

sampling at the individual level to investigate the roles of environmental, host, and 

parasite interaction factors in shaping parasitism over spatiotemporal scales in wild 

systems (Clutton-Brock and Sheldon, 2010). 

Helminths—large parasitic worms including nematodes, cestodes and trematodes—

are important parasites of humans, domestic and wild animals and livestock. 

Helminths of wild mammals represent a valuable study system for addressing these 

complex relationships. The ecology  of helminths has been extensively studied in 

many wild systems (Anderson and May, 1982; Grenfell et al., 1995). Most 

gastrointestinal helminths live within their hosts, but typically have developmental 

stages of eggs and/or larvae which are shed into the environment via the faeces 

where these infectious stages are encountered by susceptible hosts (Keymer, 1982). 

Infection is typically chronic, morbidity is often related to the number of worms 

(infection intensity) within the host, and importantly patterns of prevalence and 

intensity can be driven by both environmental factors (i.e. season, weather, 
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geography (Stromberg, 1997; Abu-Madi et al., 2000)) and host traits (i.e. sex, age, 

condition(Behnke et al., 1999; Ferrari et al., 2004)) . For example, helminth infection 

often peaks in more temperate months (Keymer and Dobson, 1987; Stromberg, 

1997), but this can vary considerably across species (Albery et al., 2018a). Similarly, 

helminth burdens have also been shown to vary with host traits such as sex common 

for helminths in natural populations (Poulin, 1996), and higher body condition (in 

this instance slower weight loss) has been shown to increase reproductive fitness in 

the face of high worm burdens (Hayward et al., 2014b).  

Wild wood mice (Apodemus sylvaticus) are widely distributed European rodents with 

distinct seasonal population cycles that are commonly infected with 

Heligmosomoides polygyrus, an extensively studied gastrointestinal helminth 

(Gregory 1992). Numerous previous studies have demonstrated variation in H. 

polygyrus parasitism according to environmental factors (Langley & Fairley 1982; 

Montgomery & Montgomery 1988; Gregory 1992; Brown et al. 1994; Abu-Madi et 

al. 2000; Eira et al. 2006), host factors (Gregory et al. 1990; Ferrari et al. 2004), and 

parasite interactions (Behnke et al. 2005; Knowles et al. 2013). Many of these 

studies, however, are limited in temporal replication, and focus on either a single 

year or single sampling points per indiviudal over multiple years, and to the best of 

our knowledge no studies simultaneously measure the impact of factors across three 

scales (environment, host, within-host). 

Here we use a 6-year, 5-woodland site wood mouse dataset to investigate 

determinants of H. polygyrus infection intensity among environmental factors 
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(season), host factors (body condition, sex, age, reproductive status) and co-infecting 

parasites (gastrointestinal parasites). We first use the full aggregated dataset (which 

includes both singly- and multiply-sampled individuals) to investigate average 

effects of selected fixed effects on H. polygyrus intensity. We next fit year- and site-

level interactions to ask whether the magnitudes and/or directions of the focal effects 

varied over space and time, and whether there are significant differences in the 

slopes of effects across spatiotemporal environments. Next, we sub-sampled the 

dataset to spatial ‘single site’ and temporal ‘single year’ replicates to investigate the 

variation in what conclusions we would make about the drivers of infection, if each 

replicate was a stand-alone study, as is often the case for wild host-parasite studies. 

Lastly, we tested how robust our conclusions were from cross sectional (single 

sample per individual) datasets, specifically to determine if multiply sampling 

individuals improves the ability to detect biological relationships in the wild. We 

predicted that infection intensity would be considerably variable between years and 

sites, and that the slopes of the effects would be dependent on the spatiotemporal 

environment, especially when limited to cross-sectional data. We found considerable 

spatial and temporal variation in H. polygyrus infection intensity, and clearly 

demonstrate that the key drivers of infection (season, sex, and body condition) vary 

in magnitude and direction across space and time, and that repeated sampling can 

increase confidence in interpretation of these results as biological (rather than 

methodological) variation. This highlights the importance of accounting for 

spatiotemporal variation for understanding ecological processes in the wild and when 

designing sampling regimes.  

 



 

 

Chapter 5 140 

 

Figure 5.1 Statistical approaches for analysis of the drivers of infection intensity across 
multiple environments. 
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5.3 Methods  

5.3.1 Data Collection  

Wild wood mouse populations located near Liverpool, UK were trapped regularly 

between May-December for six consecutive years (2009-2014). We sampled 19 

distinct trapping grids ranging in size from 2500m2-10,000m2, spread across six 

different woodland sites (Appendix D, Table S5.1; Figure S5.1).  On each grid, 

trapping stations were placed every 10m apart in a grid, with two live traps (H.B. 

Sherman 2x2.5x6.5 in. folding traps, Tallahassee, FL, USA) at each station baited 

with grains and bedding material. We sampled each grid every 4 weeks from 2009-

2011 and every 3 weeks between 2012-2014) with each grid trapped 3-4 nights per 

week. Traps were set in the late afternoon and checked the following morning. At 

first capture, we tagged each mouse with a subcutaneous microchip transponder 

(AVID, PIT tag), and then for all captures, we recorded morphometric data (age, sex, 

weight, body length, reproductive condition; details below), collected a faecal and 

small volume blood sample, and examined the fur to record ectoparasite (ticks, fleas 

and mites) presence and intensity.  Faecal samples were collected from the pre-

sterilised traps, weighed and stored in 10% buffered formalin at 4°C until parasite 

identification.  

We quantified gastrointestinal parasites (including H. polygyrus) via faecal egg 

counts using a salt flotation to obtain number of eggs or oocysts per gram 

(EPG/OPG) (Knowles et al., 2013). Within A. sylvaticus EPG correlates highly to 

adult worm burdens for H. polygyrus (Chapter 1, Figure 1.3). Briefly, saturated salt 

solution was added to the faecal samples and eggs/oocysts floated to the top 

collected on a coverslip and examined at 10X magnification (identified to species at 
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40X magnification). We identified Eimeria to species according to unsporulated 

oocyst morphology (Nowell and Higgs, 1989). Raw counts were divided by the 

weight of the faecal sample to obtain a standardised value used in subsequent 

analyses.  

5.3.2 Statistical Analysis  

Defining model variables and dataset  

We investigated how host-, environmental- and parasite coinfection-related factor 

drive H. polygyrus intensity (EPG from infected animals only). In four of the six 

years of sampling, we conducted experiments in which anthelminthic treatments and 

controls (given an equal dose of water) were carried out on randomly selected mice 

to remove/reduce gastrointestinal nematodes, such as H. polygyrus (see Knowles et 

al. 2013). Because this can affect H. polygyrus infection intensity, we restricted our 

analyses to only those individual mice which had not been anthelminthic-treated; in 

addition, we have tested for and never detected any knock-on effects or reduced 

transmission or infection in untreated animals when in the presence of treated 

animals on the same grid. Sample sizes from all years and woodland sites included in 

final analyses can be found in Table 1. One woodland site (Mudhouse) was excluded 

from analyses due to low mouse captures and low H. polygyrus prevalence (41 

infected mice).  

In all of the statistical models, we included the following terms as fixed effects:  

environmental factors: season (categorical, 3 levels: spring, summer, autumn). host 

characteristics: sex (categorical, 2 levels: male/ female); scaled mass in grams as a 
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measure of body condition (continuous, (Peig and Green, 2009)); reproductive status 

(categorical, 2 levels: active [males- descended or scrotal testes, females- lactating or 

gestating]; inactive [males- abdominal testes, females- perforate or non-perforate 

vagina]). Previous work from this system has demonstrated negative interactions 

between two coinfecting parasites (Eimeria hungaryensis and H. polygyrus (Knowles 

et al., 2013)), thus to  investigate this, and other gastrointestinal (GI) parasite 

interactions, we included the presence/absence of the two most common GI 

parasites: the coccidian Eimeria hungaryensis and a Hymenolepid cestode (both 

categorical, 2 levels: present/absent).  

Model Structure  

Statistical analysis was carried out in R version 3.6.0, in the Bayesian linear 

modelling package MCMCglmm [6] (Hadfield, 2010). MCMC methods produce a 

distribution of estimates of effect sizes for a given variable. The proportional overlap 

of these estimates can be used to give a measure of significance for the difference 

between effects (pMCMC) as well as an estimate of the mean and 95% credible 

intervals of the difference, without the use of posthoc tests (Hadfield 2010). In order 

to investigate spatiotemporal variation in H. polygyrus intensity and the detection of 

biological variation through different ecological sampling regimes, we constructed 

three sets of models, two that use the full dataset which includes multiple captures 

for most individual mice, and one with the full dataset, and one using data 

subsampled within sampling replicates (year and site). Specifically, we had three 

aims in this analysis, which correlate to model sets described below: (1) investigation 

of predictors of H. polygyrus intensity when year and site variation are controlled for 

(2) estimation of variation in fixed effects across years and sites (3) the benefits of 
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different levels of spatiotemporal resolution in sampling for estimating drivers of 

infection intensity.  

First (‘Model Set 1’), we used the full dataset to investigate the effects present across 

the entire study system using a base model, with site and year included as fixed 

effects in addition to season, host, and parasite community effects previously 

described. For each level of site, and year we examined the proportional overlaps 

among the estimated posterior distributions of each fixed effect to determine which 

sites and years differed in terms of H. polygyrus intensity. Additionally, we fit an 

alternative model formula with year, site, site:year, grid, and grid:year as random 

effects to estimate the proportion of variance explained by each spatiotemporally 

relevant term. For the second aim (‘Model Set 2’), we then added two-way 

interaction terms between year or site and the other fixed effects into the full models 

to investigate whether such interactions could reveal spatiotemporal interactions in 

the host- and parasite community-related drivers of H. polygyrus infection intensity, 

which the base model does not account for. We carried out a model addition 

approach using INLA [7] to determine the importance of the interactions without 

overloading the model. Starting with the base model including all fixed effects, we 

added interaction terms (e.g. season:year) one at a time. Each round, the interaction 

which lowered the DIC of the model the most (improving model fit) was kept, and 

the process was repeated with the remaining interaction terms. This was repeated 

until the model was optimised, and could not be improved in fit with the addition of 

any further interaction terms (decrease DIC by >2). We then ran all final model 

formulae in MCMCglmm [6]. We again examined the posterior distributions of the 
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effect estimates for interactions derived from MCMCglmm in the optimal model, 

which gave an estimate for pairwise distribution overlaps for each year or site, 

demonstrating which years and sites differed in terms of their effect sizes for each 

fixed effect (e.g., were seasonal effects greater in 2010 than in 2011?).  

Next in (‘Model Set 3’), we explored whether different spatial and temporal 

sampling regimes impacted estimation of the effects driving infection intensity, by 

running a series of models for either each site (N=5; all years combined) or each year 

(N=6; all sites combined), to investigate whether the results were consistent across 

site or year sampling resolutions. Finally, we compared the merits of cross-sectional 

(single capture per individual) versus longitudinal (repeat captures) sampling of 

individuals (Clutton-Brock and Sheldon, 2010). All analyses were repeated with the 

cross-sectional dataset which includes only the first capture of each mouse 

(Ni=Nc=783) and with the longitudinal data, which includes all captures (Ni= 926, 

Nc=1609, max captures per individual=28, median captures per individual=4; Fig 

S2). All longitudinal models included individual ID as a random effect (Paterson & 

Lello, 2003).  All models were run for 130,000 iterations, with a 100-iteration 

thinning interval and a 30,000-iteration burnin period, for a total of 10,000 stored 

iterations.  

5.4 Results 

5.4.1 Model Set 1 – Longitudinal dataset with fixed spatiotemporal 
effects 

Within our full, longitudinal (repeat capture) dataset, we found environment (season) 

and a co-infecting parasite (Hymenolepid infection) were the most important 



 

 

Chapter 5 146 

predictors of H. polygyrus infection intensity (Figure 5.2; Appendix D, Table S5.2).  

Summer and Autumn both showed significantly lower infection intensity compared 

to Spring (Figure 5.2, pMCMC:Summer <0.001, pMCMC:Autumn <0.001). 

Hymenolepid presence was associated with higher intensities of H. polygyrus 

infection (Figure 5.2, pMCMC=0.018). We found no main effects of host 

characteristics on intensity of infection in these analyses without spatiotemporal 

interactions.  In addition, there was significant spatial variation in mean H. polygyrus 

intensities across the five woodland sites, and 6 years (Figure 5.3). Across sites, we 

found significantly higher infection intensities in Haddon Wood compared to all 

other woodlands (Figure 5.3B&D). There were also significant between-year 

differences detectable across many pairs of years (Figure 5.3B&D); notably, H. 

polygyrus infection intensity was higher in 2010 than in any other year, and 

intensities in 2012-2014 were lower than each year from 2009-11 (Figure 5.3D). 

Alternative full models with spatiotemporal terms (year, site, site-by-year, and site-

by-grid) specified as random effects alongside individual ID showed that year (7.9%; 

95% CI = 0.031% - 33.99%), individual ID (11.0%; 95% CI = 4.70%-17.70%), and 

site (15.9%; 95% CI = 0.96% - 54.07%) explained the highest proportion of variance 

for H. polygyrus intensity, while site:year (1.9%; 95% CI = 0.0011% - 9.87%), 

grid:year (2.4%; 95% CI = 0.055% - 7.29%), and grid (0.8%; 95% CI = 0.00064% - 

4.25%) explained relatively much lower proportions of variance.  
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Figure 5.2. Full model output for data from all years and site collected using 
longitudinal samplings. 

Points and ranges represent model estimates and 95% credibility estimates for each model. 
Asterisks indicate the significance of variables with a pMCMC <0.05 threshold. 
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Figure 5.3. Spatiotemporal variation in mean H. polygyrus intensity across full dataset.  

Top row: raw data for significant spatiotemporal main effects from base model: Bars 
represent mean intensity  (± SE) for A. site, and C. year. Middle row: ridge plots below bar 

graphs (C-D) represent pair-wise comparisons for base model output for fixed effect factors. 
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Density ridges represent distributions drawn from the differences between the posterior 
means of the indicated comparison levels [a-b] for each iteration (Niterations=130000). Blue 

shading denotes that the mean of effect estimates from the x-axis is lower than that on the y-
axis. Differences between effects can be interpreted by comparison of the density ridges to 
zero; grey lines for each ridge indicate the 95% credibility intervals for these distributions. 
Blue shading denotes that the mean of effect estimates for [a] is lower than that of [b] for a 
given interaction. Pink shading denotes that mean of effect estimates from [a] is higher than 
that of [b]. If credibility intervals do not cross zero, this is considered a significant difference 
in effects between [a-b]. Significant differences between effects are indicates by ***, ** and 

* for P<0.001, P<0.01 and P<0.05 respectively. ‘Intercept’ represents the baseline year of 
the model (2009) in all panels. ‘Intercept’ represents spring for season, Gordale for site 

effect levels, and ‘2009’ for year. Bottom row: E. Proportion variance explained by each 
spatiotemporal random effect in an alternate model.  

5.4.2 Model Set 2: Variation of ecological and demographic drivers 
of parasitism across year and site  

Including spatiotemporal interactions in models of the full, longitudinal dataset 

revealed substantial variation in the fixed effect estimates across years (Figure 5.4). 

Three by-year interactions with fixed effects significantly improved model fit for 

longitudinal models (Appendix D, Table S5.3-5.4; Figure S5.5). Proportional overlap 

for the interactions which remained in the optimal model revealed significant change 

across interaction levels for all 3 interactions (season △DIC=-58.92, body condition 

△DIC=-14.61, sex △DIC=-5.42) which remained in the final longitudinal model 

(Figure 5.4). All levels of season-by-year interaction effects in longitudinal models 

consistently agreed in direction of effect (Appendix D, Fig S5.3); however, 

proportional overlaps for effects still showed significant variation in magnitude and 

direction of effect (Fig 4; Fig S7A). Effects of season for Summer were greatest in 

2011 and 2012 and associated with significantly lower infection intensities compared 

to all other years (Fig 4; Fig S7A). Effects of season for Autumn for all years 2011-

14 were greater (showing lower infection intensities) than 2009 and 2010 (Fig 4; Fig 

S7A). Interactions of year with body condition improved models by the second-

largest DIC decrease (Table S4). Longitudinal models indicated a high degree of 
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variation for the effect of body condition-by-year, where the effect in each year from 

2011-14 was greater (higher scaled mass associated with lower intensity of infection) 

than in 2009, and effects in both 2011 and 2014 were greater than in 2010 (Figure 

5.4; Appendix D, Figure S5.7C). Proportional overlap for sex-by-year interaction 

effects indicated a significantly higher male bias of infection intensity in 2012-14 

compared to 2010, and a greater male bias in 2013 compared to 2009 (Figure 5.4, 

Figure S5.7B). Furthermore, variation in the effect of sex on infection intensity 

represents a change of direction in effect (from female bias to male bias) between the 

years 2010 and 2011 (Appendix D, Figure S5.7B). 

 

Figure 5.4. Differences across estimated effects (with 95% credible intervals) for 
interaction levels which improved full model fit, longitudinal models. 

Density ridges represent distributions drawn from the differences between the posterior 
means of the indicated comparison levels [a-b] for each iteration (Niterations=130000). Blue 
shading denotes that the slope of effect from the x-axis is lower than that on the y-axis. 

Differences between effects can be interpreted by comparison of the density ridges to zero; 
grey lines for each ridge indicate the 95% credibility intervals for these distributions. Blue 

shading denotes that the slope of effect for [a] is lower than that of [b] for a given 



 

Chapter 5 151 

interaction. Pink shading denotes that slope of effect from [a] is higher than that of [b]. If 
credibility intervals do not cross zero, this is considered a significant difference in effect 
slope of [a-b]. Significant differences between effects are indicates by ***, ** and * for 
P<0.001, P<0.01 and P<0.05 respectively. ‘Intercept’ represents the baseline year of the 

model (2009) in all panels. 

5.4.3 Model Set 3 - Consistency of effect estimation across spatial 
and temporal sampling regimes  

In models from subsampling for year- and site-specific replicates, estimates of 

drivers of parasite infection varied considerably across sampling contexts, both in 

time and space (Figure 5.5; Appendix D, Table S5.5-5.6). Across year-specific 

models, season was the most consistent effect in both direction and detection. 

Summer was associated with significantly lower intensity of H. polygyrus infection 

in 2/6 years for longitudinal models (Figure 5.5; Appendix D, Table S5.5). Autumn 

was likewise associated with lower intensity compared to Spring in in the majority 

(4/6) of longitudinal models (Figure 5.5; Appendix D, Table S5.5). Models within 

years revealed main effects of host characteristics were less consistent than 

environmental (season) main effects (Figure 5.5; Appendix D, Table S5.5). Males 

were associated with a higher intensity of infection compared to females in one year 

only, and show contrasting direction of effect over the years. Body condition had a 

significant association with H. polygyrus in two years, and this association was 

likewise either positive or negative dependent on the year (Figure 5.5; Appendix D, 

Table S5.5). The presence of both co-infecting parasites examined increased the 

intensity of H. polygyrus infection in one longitudinal model each (Figure 5.5; 

Appendix D, Table S5).  

Our models which investigating sampling within single sites showed similar trends 

to the year-specific models, with seasonal effects being the most consistent and 



 

 

Chapter 5 152 

frequently detected (Figure 5.5; Appendix D, Table S6). We found significantly 

lower intensity of infection in Summer compared to Spring for 2/5 sites and for 

Autumn compared to Spring in 4/5 sites. A host effect of body condition was 

detected for two sites, where individuals in better condition were associated with 

lower intensity of infection. Males had higher intensity of infection compared to 

females only in the Rode Hall woodland. Lastly, we found positive associations 

between the presence of both Hymenolepid cestodes and E. hungaryensis and H. 

polygyrus intensity for one woodland site only each in longitudinal models (Figure 

5.2; Appendix D,Table S5.2).  

5.4.4 Comparison of cross-sectional versus longitudinal sampling  

Across all three model sets, models fit to longitudinal sampling data estimated the 

effects of the drivers influencing H. polygyrus with higher confidence than the cross-

sectional analyses. For models of the full dataset without interactions (Model Set 1), 

all effects save reproductive status were estimated with tighter 95% credibility 

intervals (Appendix D, Figure S5.3). For Model Set 2, cross-sectional and 

longitudinal models differed in regard to which year and site interactions improved 

model fit (Appendix D, Figure S5.5, Table S5.4). As with longitudinal models, cross-

sectional models were improved significantly by season-by-year (ΔDIC=-56.79), 

body condition-by-year (ΔDIC= -23.41), and sex-by-year (ΔDIC= -7.85) 

interactions; posterior overlaps for interaction levels from the optimal cross-sectional 

model showed significant variation across years, but detected less variation than 

those from the corresponding longitudinal optimal model (Figures 5.3; Appendix D, 

S5.6). Furthermore, cross-sectional models were also improved by three additional 
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interactions compared to the corresponding longitudinal model (Appendix D, Table 

S5.4): sex-by-site, reproductive status-by-year, and Hymenolepid presence-by-year. 

However, there was very little variation across these interaction levels (Appendix D, 

Figure S5.6); only the effect of Hymenolepid presence varied significantly across 

interaction levels, where Hymenolepid presence in 2011 had a stronger positive 

association with H. polygyrus intensity than in all other years.  

Among models fit to data subsampled within each year or site (Model Set 3), cross-

sectional models largely agreed with the directions of the drivers of infection 

intensity effect compared to longitudinal models, but detected fewer significant 

effects for all ecological scales (environment, host, and parasite community) (Figure 

5.5). As with longitudinal sampling models, effects of season were largely consistent 

in cross-sectional models, but effects of host factors and co-infecting parasite 

presence were detected less frequently, and variations detected by interactions in 

optimal models for the full dataset were estimated with lower confidence (wider 95% 

credibility intervals; Figure 5.5).  
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Figure 5.5. Effect size estimates from models investigating the effect environment, host, 
and parasite community-level predictors of H. polygyrus intensity within sampling 
resolutions. 

Points and ranges represent model estimates and 95% credibility estimates for each model. 
Asterisks indicate significance at a threshold of p<0.05. Intercepts for categorical covariates 
are as follows: Season, Spring; Sex, Female; Reproductive status, Inactive; Age, Adult; E. 

hungaryensis & Hymenolpeid, absent.  



 

Chapter 5 155 

5.5 Discussion 

Using a highly spatially- and temporally- replicated data set, we demonstrate that 

fitting interactions with year and site with common environmental and host drivers of 

helminth infection demonstrates support for both environment (season) and host 

factors (body condition and sex) varying biologically in their relationship with H. 

polygyrus over six years. Methodologically, we then used our dataset to approximate 

temporal and spatial replicates of sampling and show the utility of a large sampling 

scale for estimating factors driving parasitism in the wild. These results suggest that 

caution should be taken when generalising interpretation of the effects from analyses 

of drivers of parasitism in the wild that are limited in their spatial or temporal 

replication. Overall, we highlight the importance of inclusion of spatiotemporal 

context in estimating the effects of factors across ecological scales across parasitism 

in the wild.  

We found that among all fixed effects considered trapping sites, year, and seasons 

were the most important predictors of variation in H. polygyrus intensity (Figure 

5.2), and that there was a high degree of variation in mean intensity across both 

space and time (Figure 5.3). These results support previous work on helminth 

infection dynamics in the wild (Anderson, 1986; Keymer and Dobson, 1987). For 

example, it is well-established in human (Anderson, 1986), large mammal (Albery et 

al., 2018a), and small mammal populations that helminths exhibit a high-degree of 

seasonality—with higher transmissibility in warmer, wetter temperatures and  inter-

annual and geographic variation in prevalence and infection intensity (Montgomery 

and Montgomery, 1988; 1989; Abu-Madi et al., 2000; Eira et al., 2006). Despite 

great interest in understanding the relationship between hosts and helminths, and 
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what factors are likely to determine heterogeneity in burden (e.g., highest number of 

worms/host (Anderson, 1986)]), there is little knowledge on how the effects of 

intrinsic and extrinsic drivers of helminth infection can vary over space and time.  

We selected potential drivers of infection which have been previously investigated in 

helminth disease ecology. Our results from the base model suggest that, aside from 

weak positive correlations between both Eimeria hungaryensis and Hymenolepid 

presence and infection intensity (Figure 5.2), no host characteristics had significant 

effects across all years and sites. This goes somewhat against a number of studies 

investigating the impact of host factors such as age, sex, reproductive status, and 

body condition, as well as interactions from co-infecting pathogens on helminth 

infection intensity. Indeed, several studies of H. polygyrus in Apodemus spp. 

populations have documented male-biased transmission (Ferrari et al., 2004) and 

burden (Langley and Fairley, 1982; Gregory et al., 1990). Similarly, age-dependent 

burdens and response to helminths (Behnke et al., 1999; Clerc et al., 2019a), costs of 

reproduction (Albery et al., 2018b), impacts of body condition (add ref), and 

interactions between co-infecting parasites (Behnke et al., 2005; Clerc et al., 2018) 

are well-documented in mammal-helminth systems. Importantly, however, these 

relationships are highly inconsistent across studies, and there has been little 

systematic investigation into the true extent of variation.  

Model fit was drastically increased by the addition of interactions which accounted 

for spatiotemporal variation in the slope of the relationship between fixed effects and 

H. polygyrus intensity. Overall, interactions by year were associated with much 
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larger reductions in DIC than interactions by site (Table S4), suggesting that 

allowing temporal variation via interaction effects is important for confident 

estimation of the factors driving parasitism in this dataset. As noted above, the three 

fixed effects included in interactions which remained in the optimal model after 

selection (season-by-year, sex-by-year, and body condition-by-year) have all 

previously associated with helminth infections in wild populations. Common patterns 

for helminth ecology suggest that burdens are highest in the spring and decline 

throughout the winter (Stromberg, 1997), and these patterns are aligned with the 

results from our base model (Figures 5.2-5.3). Our interaction models, however, 

show that the magnitude and direction of this effect changes significantly across 

years, and that in some years intensities in Spring are in fact lower than in Summer 

or Autumn, for example (Figures 5.4; Appendix D, S5.7). Seasonality in helminth 

dynamics can be related to either microclimate effects on survival of infectious 

lifecycle stages (Stromberg, 1997) but is also linked to changing age structures 

according to reproductive seasons in small mammals (Keymer and Dobson, 1987). 

Within this study, there was large variation in the age structures over time across 

years (Appendix D, Figure S5.9), indicating potentially important underlying 

demographic context for variation in seasonal infection dynamics.  

Despite no mean effect of either sex or body condition in our base model, our 

interaction models revealed that the magnitude and direction of the slope varied 

across years (Figure 5.4, Appendix D, S5.7). This finding indicates some plasticity in 

the relationship between host characteristics and helminth infection according to 

environmental context. Sex differences have been extensively studied in relation to 

infection, with many responsible processes playing a role (Zuk and McKean, 1996). 
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Likewise, the relationship of body condition and infection may be positive, negative, 

or null dependent on the mechanism involved (i.e. clearance versus tolerance) 

(Sánchez et al., 2018). Meta-analyses of both sex bias (Moore and Wilson, 2002) and 

body condition effects (Sánchez et al., 2018) have shown that despite prevailing 

hypotheses of positive slopes for male effects and negative slopes for body condition 

effects on parasitism, effects can vary by host system and/ or the method of 

sampling. Meta-analyses, however, typically consider a wide range of host species. 

In contrast, our results indicate important temporal variation in sex and body 

condition effects within a single host species. Applying statistical analyses to the 

posterior distributions from these interaction models further allowed us to make 

inferences on specific pair-wise differences in these effect slopes across years. 

Overall, these differences suggest that the relationship between parasitism and both 

seasonality and host characteristics may be dependent on environmental context.  

Results from our models applied to subsampled datasets from single years and sites 

suggest that interpretation of drivers of parasitism from limited spatiotemporal 

replicates are often not generalisable across years and sites (Figure 5.5). However, 

encouragingly, our longitudinally  subsampled models do approximate the trends 

revealed by the interaction effects using the full dataset in Model Set 1 (Figure 5.4 

B&D vs Appendix D, Figure S5.5; Table 2). Though this does not alleviate the lack 

of reproducibility across replicates, it does suggest confidence in the estimates of 

main effects of interest within a given sampling replicate when multiple samples per 

individual are taken. 
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For all model sets in this study, there was universal support for longitudinal (repeat 

sample) models outperforming cross-sectional (single sample). In our base model 

with no interactions, cross-sectional effect estimates largely follow the trends of 

longitudinal (Appendix D, Figure S5.3). This encouragingly indicates that cross-

sectional sampling does provide insight into data trends, but longitudinal models 

provided smaller credibility intervals and higher confidence in estimation (Appendix 

D, Figure S5.3). For models including interaction effects, longitudinal models 

differed in both the interactions which remained in the optimal model (Appendix D, 

Table S5.4) and the detection of variation in effect slopes across interaction levels 

(Appendix D, Figure S5.6 vs Figure 5.4). Cross-sectional models featured more 

retained interaction effects, but fewer of these effects featured significant difference 

across interaction levels; this lack of significant differences may indicate spurious 

retained effects and/or less power to detect important spatiotemporal variation. These 

differences between cross-sectional and longitudinal models are notable given that 

the median number of observations per individual was low (4) and very few animals 

approach the maximum number recorded (28; Fig S1), so the benefit of longitudinal 

sampling for estimating factor driving parasitism is conferred even with very few 

additional data points per individual. These findings generally agree with findings 

showing that longitudinal versus cross-sectional sampling is more robust for 

detecting parasite interactions (Fenton et al., 2014), and although we were asking 

different statistical questions, highlight the broad benefits of longitudinal sampling 

for multiple areas of interest within wildlife ecological studies. 
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This study revealed substantial temporal variation in effects of season, sex, and body 

condition on H. polygyrus intensity. We focused our aims exclusively on those 

factors which influence infection intensity and their spatiotemporal variation. 

Though our response variable infection intensity (measured as EPG) is a common 

proxy for infection burden (Budischak et al., 2015a), prevalence probability of 

infection is also a key metric of disease for many study systems and may be 

influenced by different processes than intensity. It is well-known that helminth 

burdens are over-dispersed in populations, with heterogeneity in predisposition to 

heavier infections for some individuals in the population (Anderson, 1986). Factors 

which increase exposure and infection probability may therefore differ from those 

which dictate infection burden, and this should be kept in mind for interpretation of 

these results.  

Both model sets indicated a higher degree of temporal than spatial variation in this 

dataset. There was only one spatial interaction effect (sex-by-site) retained in cross-

sectional interaction models, and this effect did not actually show any significant 

variation across sites (Appendix D, Figure S5.6). In line with these interaction effect 

results, models on single-year and -site data subsets’ confidence interval estimates 

for within-site main effects largely spanned zero (Figure 5.5). This may suggest 

either that temporal variation is more common, or that our dataset cannot adequately 

partition spatial variation. Year and site combinations in this dataset were not 

perfectly independent, and there is a degree of confounding between the two terms 

(Table 1). It is possible therefore that some apparent temporal variation is 

attributable to spatial site changes, and vice versa. It is also possible that despite 
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vegetation differences across sites considered here, these differences are not drastic 

enough for significant variation in environmental context shaping drivers of 

parasitism. Previous work has found significant differences in the seasonality & 

species compositions of helminth infections of A. sylvaticus over highly different 

habitats (i.e. sand dunes versus lake margins) (Eira et al., 2006). Further application 

of this approach to datasets across varied habitats would therefore be useful.  

It was not in the scope of this study to determine specific mechanisms behind 

variation in magnitude or direction of slope for the effects considered here, however, 

it is likely that there are important ecological mechanisms behind and implications 

for the variation detected here. (Additionally, despite weakly significant positive 

associations between H. polygyrus and coinfecting parasites in both model sets, we 

do not consider these to be interpretable as interactions between these parasites. 

Commonly, untangling the relationships among parasites requires perturbation of the 

parasite community (Pedersen and Fenton, 2015), and we view these results as 

suggestive of either co-exposure patterns or tentative associations warranting further 

investigation.  

5.5.1 Inferences and Practical Takeaways  

By incorporating model structures that allow for spatiotemporal variation in factors 

influencing parasitism in the wild, we have provided evidence for important temporal 

changes in seasonality, sex, and body condition effects on helminth infection 

dynamics in a wild wood mouse population. These findings add important insight to 

previous knowledge that mean intensity of infection varies substantially over space 

and time. Furthermore, they suggest that varied support for hypotheses regarding 
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factors influencing parasitism may represent important biological variation rather 

than simply variation in detection or limited statistical power across different 

populations and replicates. Given practical limitations of many ecological studies it 

is typically of interest to investigate which sampling resolution in a wild system can 

provide reliable estimates of main effects of interest. Our results suggest that 

longitudinal sampling within limited replicates provides reliable estimates of effects, 

but highlight that caution should be applied in extrapolating these results beyond the 

context of the study. Overall, we hope that more studies will investigate and control 

for spatiotemporal variation in effects driving wildlife disease ecology. 
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6.1 Thesis summary  

This thesis aimed to explore how variation in the environment of the host influences 

parasite infection, with a particular focus on how resource quality and availability 

drives dynamics of H. polygyrus and co-infecting parasites in wood mice. I used a 

combination of paired experimental and laboratory experiments, longitudinal 

sampling, and statistical analysis to investigate the impacts of supplemented nutrition 

in A. sylvaticus populations of Scotland, and how natural drivers of H. polygyrus 

parasitism vary in time and space.  

In Chapter 2, I used a combination of experimental supplementation with an enriched 

diet and anthelmintic treatment in both a wild and laboratory population of A. 

sylvaticus. I found that in both wild and laboratory setting, an enriched diet improved 

host condition and increased expression of adaptive immune response. These 

physiological benefits resulted in increased resistance to H. polygyrus, higher drug 

efficacy, and lower egg shedding in supplemented mice. By using our laboratory 

population to control for variation in exposure and susceptibility in the wild, I show 

important evidence for the role of nutrition quality in host response to infection with 

a natural helminth. Results from this chapter also indicate the potential for nutrition 

supplements as a beneficial complement to traditional anthelmintic treatment.  

In Chapter 3, I expand upon the study of supplementation effects on H. polygyrus in 

a wood mouse population and characterise the effects on the broader parasite 

community. Through a combination of field data collection, faecal egg count 

analysis, and diagnostic PCR, I show that supplemented resources generally reduce 
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infection with macroparasites—both the gastrointestinal helminths H. polygyrus and 

C. murissylvatici and Ixodes spp. ectoparasites. Unexpectedly, supplementation 

increased infection with some gastrointestinal and blood-borne microparasites, but 

these effects were dependent on whether anthelminthic treatment had been 

administered. Along with evidence of within- and between-host processes affected 

by supplemented resources, this study suggests experimentally that the outcome of 

altered resources is dependent on parasite biology, host effects, and presence of co-

infecting parasites. My results imply that measuring co-infection is crucial for 

predicting the outcome of resource provisioning in wildlife.  

In Chapter 4, I combine data from three years of experimental resource 

supplementation and show the short-term effects of nutrition on H. polygyrus 

infection are greatly diminished when the quality of resources naturally available to 

the population during supplementation is high. I next used data from a long-term 

experiment I conducted over 5 months of supplementation to show that even within a 

year of high food availability, additional resources can increase host immunity and 

reproduction, but that these effects vary by season and according to the age of mice 

at supplementation. In addition, I combined data from three years of experimental 

resource supplementation and show the short-term effects of nutrition on H. 

polygyrus infection are greatly diminished when the quality of resources naturally 

available to the population is high. These results demonstrate the importance of 

understanding the host and environmental context in determining the outcome of 

perturbations to resources and parasites of wildlife.  
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In Chapter 5, I used six years of data from an intensively sampled A. sylvaticus 

populations from woodlands near Liverpool, UK and showed that season, body 

condition, and host sex were the most important drivers of H. polygyrus infection 

intensity. Importantly, however, the relationship between these factors and H. 

polygyrus varied in both magnitude and direction over time and space. These results 

suggest that accounting for spatiotemporal variation should be embraced, rather than 

merely controlled for, when investigating determinants of parasite infection in the 

wild.  

In this final discussion chapter, I will discuss the broader implications of my research 

for the role of understanding how resources impact natural host-parasite systems 

(Figure 6.1) and how these insights advance current knowledge within disease 

ecology and human helminth control. I will discuss limitations of the research 

presented, and ongoing and future avenues of work following from this thesis to 

complement results to date.  

6.2 Nutrition-nematode relationships  

The relationship of host nutrition and gastrointestinal helminths is of high priority 

given its clinical significance in areas with high geographical overlap of malnutrition 

and helminth presence (Koski and Scott, 2001). This has resulted in extensively 

studied effects of baseline nutritional status impacts on helminth infection (Hagel et 

al., 1995; Payne et al., 2007; Long et al., 2007; Al-Mekhlafi et al., 2014) and the 

effects of nutrition supplements alongside anthelminthic treatment in humans (Hall, 

2007; Casey et al., 2009; Yap et al., 2014; Rajagopal et al., 2014; Casey et al., 2017). 
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Although many studies suggested benefits of supplementation, interpretation from 

these studies within clinical interventions are often equivocal due to small sample 

size, confounding in the data, and a range of nutrients considered for 

supplementation (Yap et al., 2014). Furthermore, few have considered the synergistic 

effects of nutrition supplements as a complement to anthelmintic treatment (but see 

(Nga et al., 2009; Wieringa et al., 2011)).  

Controlled laboratory studies in model systems have provided much clarification on 

the mechanism of the relationship between macro- and micro-nutrients, providing 

key evidence that deficiencies in protein (Slater and Keymer, 1986b; Michael and 

Bundy, 1992; Ing et al., 2000) and micro-nutrients such as zinc (Shi et al., 1997; 

Boulay et al., 1998) and vitamin A (Carman et al., 1992) impair parasite-specific 

adaptive immune responses in laboratory mouse strains. However, hosts facing 

helminth challenges in natural populations will face markedly different conditions—

high genetic diversity, challenge with multiple parasites, and highly variable 

resources (Pedersen and Babayan, 2011) —and relationships may not be as 

straightforward.  

In Chapter 2, I aimed to combine benefits of ecologically realistic conditions and 

controlled exposure and timeseries possible in the laboratory. To the best of my 

knowledge, results presented in this Chapter represent the first experimental 

demonstration of a paired investigation of the effects of supplemented nutrition on 

nematode infection in a laboratory and natural population using the same host and 

nematode species. In contrast to previous laboratory studies which primarily focus on 

severe differences in nutrient levels, I enriched nutrition using the same multi-
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nutrient supplemented diet in the laboratory and wild. This supplement is similar to 

multi-micronutrient biscuits which have been used in clinical trials in areas of 

endemic helminths (Nga et al., 2009; Hieu et al., 2012; de Gier et al., 2014). 

Investigation of the benefits of such fortified biscuits have found encouraging results, 

such as increased efficacy of deworming and improved cognition (Nga et al., 2009; 

Wieringa et al., 2011), but typically have not simultaneously measured adaptive 

immune responses and rely solely on EPG as a proxy for infection, meaning the 

mechanism and direct effects on worm burden were not well understood. I measured 

a very broad range of outputs in both my wild and laboratory experiments inclusive 

of immune measures, condition indices, egg shedding, and adult worm burden. This 

showed conclusively that a modest increases of a well-balanced array of nutrients 

can dramatically reduce egg shedding and burden of H. polygyrus in both the 

laboratory and wild wood mice and that the mechanism of this reduction was an 

increase in body condition and increased adaptive immunity.
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Figure 6.1. Illustration of results from three years of resource supplementation experiments in this thesis. 

Lines represent support for the relationship indicated. Relationships detected statistically are indicated by solid lines, where thick lines indicate an 
effect detected across both supplementation experiments and thin black lines indicate an effect seen in only one year or season. Dashed lines indicate 

relationships that are suggested but not statistically supported by results. 
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The consistent results of Chapter 2 for laboratory and wild populations are an 

important finding for model helminth systems given the gap that typically exists 

between the observational nature and/or limited samples of wild or human systems 

and the contrived setting of the laboratory. However, within this experiment, we 

found evidence for increased reproductive investment in individuals on a higher 

quality diet. This was not surprising, as reproduction is well known to be a costly 

process, and the addition of resources and reduction of parasites should alleviate 

some strain of resource allocation. However, it suggested potential population-level 

effects that were not addressed in my specific investigation of nematode infections. 

Furthermore, I expected that wood mice populations in this woodland would be host 

to a number of parasites beyond H. polygyrus, and so my next two chapters were 

dedicated to understanding how far-reaching effects of supplemented nutrition might 

be in this population.  

6.3 Experimental insight into broad effects of resources and 
parasites in the wild  

This thesis bridges several somewhat disparate areas through experimental 

approaches investigating common focal areas of resource limitation and co-infection 

in wild disease studies. Many classical ecological studies of wild populations have 

identified resource availability as a key determinant of population cycles and 

demography (Wolff, 1996; Ostfeld and Keesing, 2000; Clotfelter et al., 2007). Eco-

immunological studies have classically considered the dependence of investment in 

immunity, reproduction, and survival (Sheldon and Verhulst, 1996; Svensson et al., 

1998). Several key advances in this area experimentally demonstrating costs of 
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reproduction for immunity and infection have been made by either measuring 

immunological and fitness measures simultaneously and longitudinally (Graham et 

al., 2011; Ezenwa et al., 2012; Nussey et al., 2014; Hayward et al., 2014b; Albery et 

al., 2018b), but this is not always possible in the wild.  

It is likewise difficult to interpret data on multiple parasites in the wild to make 

conclusions regarding co-infection dynamics without longitudinal sampling, 

perturbation of the parasite community, or robust statistical approaches (Pedersen 

and Fenton, 2007; Telfer et al., 2010; Vaumourin et al., 2014; Carver et al., 2015). 

There is substantial evidence that co-infection can alter the outcome of infection in 

the wild (Telfer et al., 2010; Knowles et al., 2013; Clark et al., 2016; Abbate et al., 

2018; Gorsich et al., 2018; Tołkacz et al., 2018). However, the role of resources has 

rarely been investigated as a determinant of co-infection in the wild, despite evidence 

from the laboratory (Budischak et al., 2015b), humans (Budischak et al., 2018), 

mathematical energy budget models (Cressler et al., 2014), and theoretical 

frameworks (Pedersen and Fenton, 2007; Graham, 2008a; Rynkiewicz et al., 2015) 

which suggest that resources are a key factor governing the relationships between 

parasite species within a host.  

The recent focus on increasing access to anthropogenic food sources as a driver of 

wildlife disease (Oro et al., 2013; Becker et al., 2018) highlights the need for a 

synthesis of understanding of these responses to artificially altered food sources, 

mechanisms underlying resource allocation between costly processes in the wild, and 

the outcomes for infection in the context of co-infection with multiple parasites. A 

key framework for understanding the processes which govern the outcome of 
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anthropogenic provisioning was established by Becker and colleagues (2015). Within 

this theoretical framework, parasitism may increase, decrease, or have a null 

response to changes to food sources dependent on the effects on host condition 

weighed up against the effects on patterns influencing transmission such as 

aggregation or behaviour. Empirical examples of several of these scenarios are 

presented both along this framework (Wright and Gompper, 2005; Cross et al., 2007; 

Murray et al., 2015; Moyers et al., 2018) and since (Hwang et al., 2018; Strandin et 

al., 2018), but few empirical studies have been able to manipulate both resources and 

parasites and monitor immunological, demographic, and a suite of parasitological 

responses longitudinally. By doing exactly this in Chapter 3, I built upon the detailed 

analysis of supplemental nutrition and nematode relationships and further documents 

that supplemented resources affects both population-level (host contacts, 

reproductive activity, and population size) and individual-level (host condition and 

immunity) consistently, and these effects seem to have diverse consequences for the 

parasite community of wood mice. To my knowledge this is the first time that the 

heterogeneity that has been observed across multiple, single host-parasite systems 

has been demonstrated in a single, co-infected host population, which provides 

important evidence that predicting the impact of supplementation on different 

parasite species is difficult, even when the host, environmental context, and type of 

supplementation is controlled. 

In Chapter 4, I further explored another often-ignored aspect of resource 

provisioning by investigating the longer-term effects of resource supplementation to 

determine how dynamic the host responses to increased food availability, both across 
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seasons within a single year and across multiple years. These analyses provided 

important context for understanding the consequence of resource supplementation in 

this system. One major benefit of the non-destructive sampling and longitudinal 

trapping used in this experiment was that we detected a cost to survival for 

individuals on supplemented grids, highlighting an important effect I was not able to 

measure in the short-term, destructively sampled experiments; but which may 

represent a trade-off as a result of rapid increased condition, immunity, and 

reproduction following supplementation. Additionally, I found that although 

increases in host condition were fairly consistent, the effects on H. polygyrus varied 

across years and seasons and that the impact of supplemental resources on all other 

parasitological and immunological or condition measures also varied according to 

season or host cohort. Although I present some hypotheses as to why we may see 

specific patterns in Chapter 4, overall these results suggest that outcomes of 

provisioning may be governed by the energetic demands or natural resources 

available.  

6.3.1 Spatiotemporal variation and drivers of parasitism  

Results from Chapter 4 highlighted the value of embracing spatiotemporal variation 

in longitudinal sampling data for greater understanding of biological relationships 

between hosts and parasites. In my final data chapter, I sought how observational 

data from an intensively sampled wood mouse population would enable investigation 

of the possibility that the natural drivers of parasitism in the wild vary 

spatiotemporally. We expect, and often find, spatiotemporal variation in mean 

helminth parasitism across spatiotemporal scales such as season (Montgomery and 

Montgomery, 1988; Stromberg, 1997; Albery et al., 2018a), year (Montgomery and 
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Montgomery, 1988; Behnke et al., 1999), and site (Abu-Madi et al., 2000; Eira et al., 

2006), but variation in the slope of helminth parasitism versus commonly 

hypothesized drivers of helminth infection such as sex, body condition, or 

reproductive status have rarely been examined systematically. A modelling approach 

which included interactions with year and site in this dataset with high numbers of 

temporal and spatial replicates detected important biological variation in the 

relationships between sex, body condition, and seasonality with helminth infection 

intensity. Although we did not specifically investigate it within this Chapter, 

fluctuating resources and microclimate are often a key component of seasonal, 

geographic, and interannual variation (Stromberg, 1997; Altizer et al., 2006). Results 

across my data chapters suggest that a general trend of spatiotemporal and resource 

availability context as crucial determinants of host-parasite dynamics in the wild, and 

furthermore suggest that focus on a focal parasite (even the most prevalent in a 

population) or single temporal or spatial replicate may lead to misleading results 

masking important indirect processes.  

6.4 Methodological limitations and caveats  

Although I sought to design experimental perturbations, sampling and laboratory 

work, and statistical analysis to allow for robust conclusions, there were several 

limitations in this work that should be considered when interpreting results.  

6.4.1 Causal processes in the wild  

In my field sampling, the primary parasitological and immunological outputs I used 

were abundance or intensity of infection (EPG) and total and parasite-specific 
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antibody responses. Although the use of EPG as a proxy for worm burden was 

verified in these populations (Chapter 1, Box 1.1), as discussed in Chapters 2 & 4, 

the interpretation of antibody responses in the wild is complex due to lack of 

exposure history and comparatively high activation compared to laboratory 

correlates (Pedersen and Babayan, 2011; Gilbert et al., 2013; Abolins et al., 2017). 

In Chapter 2, I addressed this issue by carrying out paired laboratory and wild 

experiments. This was crucial to my interpretation as my strongest results in regard 

to supplementation effects on immunity were observed in the colony, where 

exposure was controlled and timepoints of sampling were highly regular. From this 

experiment, I would conclude that a higher level of H. polygyrus -specific IgG1 

represents a more immunocompetent individual, as these individuals later had 

significantly lower adult worm burdens and zero egg shedding during reinfection. 

However, it is possible that these results are not representative of the dynamics of the 

wild. Dramatic effects on condition in the wild and the positive associations of body 

condition with higher immunity suggest that supplemented nutrition is still 

contributing to an increased ability to mount general and parasite-specific immune 

responses. Paired experiments were not possible or appropriate for the analyses in 

Chapters 3 and 4, however, as we are not able to study the interaction of parasites, 

reproduction, and survival in the colony. We maintain lifecycles of both H. 

polygyrus and E. hungaryensis, and have recently added Wood Mouse Herpes Virus 

to the parasites we are able to experimentally infect with in the colony. Further 

research could experimentally consider the resource effects on co-infection outcome 

among combinations of the above parasites where possible for additional 
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clarification on whether outcomes within the parasite community were driven by 

host-level immune or condition or population-level densities or contacts.  

The relative contribution of the population-level responses such increased population 

densities observed on supplemented grids throughout supplementation experiments 

compared to host condition and immune responses for infection metrics cannot 

reliably be partitioned in the analyses shown here. I typically considered strictly 

individual level traits in models as explanatory variables for my experimental 

supplementation studies, however results from Chapter 5 which indicate significant 

spatiotemporal variation likely involves a degree of influence from changing age 

structures across years and seasons. Empirical data from these or similar experiments 

would be ideal to use for mathematical models similar to those used by Becker et al. 

(2014) to theoretically explore the impact of the population-level effects of 

supplementation.  

6.4.2 Experimental design   

Experimental design for work presented in this thesis was designed to maximise 

replicates for experimental manipulations of interest and, where possible, repeated 

samples for individuals over time. This entailed the set-up of grids for ‘population-

level’ perturbations (resource supplementation) and randomisation within grids for 

individualised perturbations (anthelmintic treatment). Though most analyses 

contained in this thesis control for grid to account for variation due to this blocking 

set-up, there may be finer scale spatial variation in either naturally available 

resources or parasite presence which influence results from experimental field work. 
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Spatiotemporal models from Chapter 5 highlight the substantial impact that site and 

year can have on host-parasite relationships, and suggest that underlying spatial 

distributions of parasites investigated and/or temporal variation in host density or 

other environmental factors could play a non-trivial role in host-parasite dynamics 

observed. In addition to intrinsic variance which may not be fully captured by 

models, field experiments were carried out in the same study area for three years in a 

row. Although I designed experimental manipulations to avoid cumulative effects on 

the same grids from year to year, trapping was carried out for only a portion of the 

year, so my interpretation of effects is limited to a portion of each year. This may 

leave out important data on population dynamics and individual movement within or 

outside of the study area that would further inform conclusions drawn from this 

thesis. Though the focus of analyses presented here were largely focused on the 

individual host, future work using this data could explicitly link longitudinal 

population-level data available to individual parasite, condition, and immunity 

measures to investigate possible confounding effects. Additionally, spatially explicit 

models could be applied to all years and grids for investigation of underlying 

variation in the landscape of parasite and host traits.  

6.4.3 Current limitations and prospects for A. sylvaticus as a model 
system  

Although A. sylvaticus is an excellent system for experimental manipulations and 

longitudinal sampling of tagged individuals, it does have drawbacks for the study of 

immunological and parasitological processes. Unlike longer lived observational 

populations of large ungulates were individual identity is known and reproduction 

events are documented and offspring remain associated with parents (i.e. in the Soay 
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sheep (Hayward et al.2014b; Graham et al. 2010), genetic pedigree and specific 

reproductive metrics such as number of offspring or offspring size are generally 

unknown as birthing events occur in nests, and offspring are typically only caught 

after weaning. A few wild studies have used microsatellites for genotyping to 

circumvent unknown parentage (Selkoe and Toonen, 2006; Makova:1998uy; 

Pemberton, 2008), but pedigrees constructed by microsatellites may be less reliable 

than single-nucleotide polymorphisms (Pemberton, 2008; Bérénos et al., 2014). 

During my PhD I tested nest boxes on my field sites to attempt identification of 

offspring directly, however I did not have success in wood mice using the nest boxes 

for breeding. Still, overcoming this limitation in wood mice in the future within our 

system is very possible.  

An additional limitation is related to the unknown birth date of the wild wood mice, 

as we are only able to use crude estimates of age in our field sampling. Age 

according to coat colour and morphology was described in Chapter 2. This typically 

results in highly skewed group sizes, where up to 90% of individuals eligible for 

microchip tags by weights are typically classed as ‘adults,’ which makes including 

age as an explanatory variable difficult due to uneven group sizes. Other variables 

such as weight and body length can give rough proxies of the age of an individual, 

but are confounded with measures of host body condition and reproduction; both of 

which are typically associated with larger animals and can be related to reproductive 

status. As indicated in Appendix A, eye lens weight from sacrificed animals is highly 

correlated with known age in wood mice and other small mammals (Rowe et al. 

1985; Clerc et al., 2019a), but this requires destructive sampling.  When eye lens 
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weight was available, it indicated that older wood mice in our populations have 

higher burdens of H. polygyrus, but interests in longitudinal sampling for subsequent 

experiments meant that we did not have access to this information. It is therefore 

possible that there is a degree body condition and reproductive variables may be 

confounded with age. Generally, for models using data from non-destructive 

samples, I used body length (mm) as a proxy for age under the assumption that it 

would be the least subject to variation from its confounding relationship with 

condition. However, there are exciting prospects for overcoming this limitation in the 

future. An ‘epigenetic clock’ has been developed using multiple tissue samples and 

DNA methylation data in laboratory (Han et al., 2018). Recently Tom Little & Amy 

Pedersen have optimized this method for A. sylvaticus using tissue, blood and faecal 

samples, with a predictive power of within two weeks of known age (unpublished 

data). This offers a robust addition to the wood mouse system for considering ageing 

related immunological and fitness processes.  

6.5 Ongoing and future avenues of nutrition quality research in A. 
sylvaticus  

6.5.1 Natural versus laboratory host  

Work from my thesis has led to several ongoing and planned avenues of 

complementary research. Results from my paired field and laboratory experiment 

and previous work showing variation in resistant to H. polygyrus bakeri in inbred 

laboratory strains (Filbey et al., 2014) led to the development of an honours project 

in collaboration with Matthew Taylor co-supervised by myself and Amy Pedersen 

investigating the mechanism of immune response to H. polygyrus bakeri in 

laboratory (BALB/c strains) versus our captive wood mice. We found promising 
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preliminary results indicating that methods of resistance were fundamentally 

different in the strains, where BALB/c resistance to secondary infection was 

mediated by granuloma formulation and wood mice, although also resistant to 

secondary infection, did not develop any granulomas. This line of work was carried 

on to masters’ student projects which investigated this comparison of laboratory and 

wild captive mouse H. polygyrus bakeri resistance in the context of the diet groups 

used in my thesis and will be an ongoing area of research to determine the 

mechanism of nutrition-dependent immune variation across mouse strains.  

6.5.2 Diet quality and distribution  

Preliminary data from Chapters 2 and 3 contributed to the successful award of a large 

NERC grant. This grant project, already underway, will address the gap between 

individual-level and population-level responses to resource supplementation by 

comparison high- and poor-quality diets and homogenous (as used in my thesis) 

versus aggregated resources. Insights from explicit tests of these conditions will 

provide important mechanistic understanding to the observation of diverse impacts 

on the parasite community of A. sylvaticus in Chapter 3. I will continue to work with 

my advisor, Amy Pedersen, who leads this grant and colleagues to help decipher the 

results of the paired laboratory and field experiments.  

6.5.3 Deciphering the complex interactions within the mammalian 
gut  

Microbiota community analysis has been surging in recent years in relation to its 

impact on helminth infections (Walk et al., 2010; Lee et al., 2014; Kreisinger et al., 

2015; Newbold et al., 2017), diet (Muegge et al., 2011; Kau et al., 2011), and host 
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and environmental variation (Maurice et al., 2015). I received a small grant to 

sequence 16S V4 regions of individual time series from both field and laboratory 

experiments after diet supplementation and experimental helminth removal (or 

experimental infection and reinfection). These data will be analysed for investigation 

of the microbiota responses to experimental perturbations in diet and helminth 

infection across a controlled and wild environment. These experimental and 

observational insights may provide key insights into the within-host responses of 

mammals to artificially or naturally fluctuating resources in relationship to outcome 

of parasite infection.  

6.6 Broader implications 

Embracing the role of environmental variation in shaping host-parasite dynamics in 

the wild can have important implications beyond biological understanding. Results 

from laboratory and wild experiments in Chapter 2 suggest that nutritional 

supplementation can serve as a complement to deworming programmes to address 

the common problem of rapid reinfection after treatment by both limiting onward 

transmission by reducing egg shedding of H. polygyrus and by increasing host 

resistance to parasites they are exposed to, which significantly disrupts multiple 

phases of the transmission cycle (Figure 6.2). Evidence from supplement plus 

treatment groups in Chapter 2, and treatment outcome in Chapter 4, which was 

carried out only transiently, but in a year of high tree-fruit, also suggest that the 

synergistic effects of supplementation with anthelmintic treatment can increase the 

efficacy of these commonly used drugs. The co-occurrence of malnutrition with 

helminths is regarded as a serious problem (Koski and Scott, 2001). Multi-nutrient 

biscuits have been used in clinical trials previously for this aim, but conclusive 
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results have been difficult to reach with observational data and without specific 

quantification of both parasitological and immunological responses (Yap et al., 

2014). Wood mice and H. polygyrus are considered a model system for chronic 

helminths in humans (Behnke et al., 2009b). Work from this thesis therefore 

represents important experimental tests of this intervention.  

 

 

Figure 6.3 Illustration of disruption of H. polygyrus transmission cycle following 

nutrition supplementation.  

Results from Chapter 3 and Chapter 4 may have key implications for predicting the 

outcome of altered wildlife food sources as a result of increasing anthropogenic-

wildlife overlap. Primarily, they show that sole focus on even the most prevalent 
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parasite of a population may overlook numerous other altered infectious disease 

dynamics. Chapter 4 additionally shows that there are important longer-term effects 

of resource provisioning which are not suggested by short-term assessment only. 

These suggest that co-infection and host population cycles are crucial context for 

predicting the outcome of access to anthropogenic food sources. Although the 

sampling required to consistently account for these factors is typically prohibitive in 

the wild, consideration of the mechanisms underlying these potential relationships 

for theoretical work could also be considered.  

Finally, in addition to highlighting that the relationships of season and host 

characteristics with H. polygyrus intensity vary fundamentally over time, results 

from Chapter 5 highlight the need for robust sampling designs for disease studies in 

the wild. Single temporal or spatial replicates, even if high-powered, can result in 

misleading inferences. This chapter also suggests substantial benefits of longitudinal 

sampling for investigating the drivers of parasitism in the wild.  

6.7 Concluding remarks  

Using a naturally co-infected, wild wood mouse system I was able to combine 

experimental perturbations, longitudinal sampling, and statistical analysis to 

investigate the relationships among nutrition quality, host immunity, and a diverse 

parasite community. Experimental perturbations in a wild natural host-helminth 

system enabled me to test the ecological role of resources within the population, 

while similarities of H. polygyrus epidemiology to human helminth infections and of 

experiment nutritional supplementation with anthropogenic provisioning to wildlife 

provide extensions to considerations for policy. This work represents to the best of 
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my knowledge the first demonstration of the synergistic effects of nutrition 

supplementation and anthelmintic treatment in a wild and laboratory study in the 

same natural host-helminth system and the first demonstration of diverse effects of 

resource supplementation on both host traits and parasite infection in a naturally co-

infected host population. Statistical approaches designed for the investigation of 

long-term effects of nutrition supplementation and spatiotemporal variation in can be 

applied to other focal questions and datasets for investigation of the influence of time 

and space on the determinants of parasitism in the wild. Overall, the results from this 

thesis in addition to continued ongoing and planned work provides both mechanistic 

and broad insights into the role of nutrition quality in wild wood mouse parasite 

dynamics.  
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R Packages Used  

1. Mollie E. Brooks, Kasper Kristensen, Koen J. van Benthem, Arni 
Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin 
Maechler and Benjamin M. Bolker (2017). glmmTMB Balances Speed and 
Flexibility Among Packages for Zero-inflated Generalized Linear Mixed 
Modeling. The R Journal, 9(2), 378-400. 

2. Cesko C. Voeten (2019). buildmer: Stepwise Elimination and Term 
Reordering for Mixed-Effects Regression. R package version 1.1. 
https://CRAN.R-project.org/package=buildmer 

3. Alec L. Robitaille, Quinn M.R. Webber, Eric Vander Wal (2018). 
Conducting social network analysis with animal telemetry data: applications 
and methods using spatsoc. bioRxiv. URL https://doi.org/10.1101/447284. 

4. Csardi G, Nepusz T (2006). The igraph software package for complex 
network research. InterJournal, Complex Systems 1695. 
URL  http://igraph.org 

5. Russell Lenth (2019). emmeans:Estimated Marginal Means, aka Least-
Square Means. R package version 1.3.4. https://CRAN.R-
project.org/package=emmeans  

6. Jarrod D Hadfield (2010). MCMC Methods for Multi-Response 
Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of 
Statistical Software, 33(2), 1-22. URL http://www.jstatsoft.org/v33/i02/. 

7. Havard Rue, Sara Martino, and Nicholas Chopin (2009), Approximate 
Bayesian Inference for Latent Gaussian Models Using Integrated Nested 
Laplace Approximations (with discussion), Journal of the Royal Statistical 
Society B, 71, 319-392. 
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Table S2.1. Model formulae for analyses of wild and laboratory experiments. EPG stands for eggs per gram faeces; dpi for days post-infection 

MODEL GROUP SYSTEM RESPONSE EXPERIMENT 
TIMEPOINT 

MODEL 
CLASS 

MODEL 
FAMILY FIXED EFFECTS* INTERACTIONS RANDOM 

EFFECTS 

H. POLYGYRUS 
INFECTION  

Wild 

 EPG First capture GLM 

Negative 

Binomial 

Body Mass + Reproductive status + Sex +Diet   Grid*Year 

EPG (mean) 
Trapping 

duration 
GLM as above + Treatment Diet:Treatment  Grid*Year 

Adult worm End point GLM as above + Age Diet:Treatment Grid*Year 

Lab 

EPG (peak) 
Primary 

challenge 

GLM 
Negative 

Binomial 

Body Mass+ Sex + Age + Group+ Diet   

 

EPG (total) 

Primary 

challenge 
as above   

Adult worm End point as above Diet:timepoint   

ANTIBODY 
RESPONSE  

Wild 

IgA (total) 

All captures GLMM Gaussian 

Body condition index + Reproductive status+ Sex, H. 

polygyrus infection + Diet + Year 
Diet:Year ID + Grid*Year 

IgG1 (specific) as above  Grid*Year 

Lab 

IgA (total) 14 & 21 dpi GLMM 

Gaussian 

Sex + Age + H. polygyrus infection + Experiment 

Timepoint + Diet 
Diet:timepoint ID  

IgG1 (specific) 21 dpi GLM Sex + Age + H. polygyrus infection (n worms) + Diet   

BODY  
CONDITION  

Wild  

(a) non-

pregnant 

BCI 

All captures LMM Gaussian 

Reproductive status + Sex + H. polygyrus infection 

(Log, EPG) + Year + Day + Diet + Treatment 
Diet:Day ID + Grid*Year 

Total fat score as above Diet:Day ID + Grid*Year 

Wild  

(b)pregnant 

BCI 
H. polygyrus infection (Log, EPG) + Year + Day + Diet 

+ Treatment 
Diet:Day ID + Grid*Year 

Total fat score as above Diet:Day ID + Grid*Year 

Lab 
Body mass (g) 

All captures LMM Gaussian 

Sex + Age + H. polygyrus infection (Log, EPG) + Day  

+ Diet 
Diet:Day ID  

Total fat score as above Diet:Day ID 
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Table S2.2. Description of fixed effects included in models  

Term System Class Description  

Diet  

Wild 

Factor  

Control (grids not supplemented);  

Supplemented (High quality pellets 

added to grids)  

Laboratory  

Control (standard chow);  

Supplemented (high-quality chow used in 

wild)  

Treatment Wild & Laboratory  Factor  Control (water); Treated (anthelminthic) 

H. polygyrus 
infection  

Wild & Laboratory  Continuous  
Endpoint: N worms; Other timepoints: 

Log, EPG  

Body Mass  Wild & Laboratory  Continuous  Mass in g  

Body Condition 

Index (BCI)  
Wild  Continuous  Residuals of weight ~ length regression  

Age 
Wild 

Continuous  
Age proxy: Log, paired eye lenses mass) 

Laboratory  Age in weeks  

Reproductive 

status  
Wild  Factor  

Inactive (Males- Abdominal or 

Descended Testes; Females- 

nonperforate or perforate vagina);  

Active (Males- Scrotal; Females - 

Pregnant or Lactating);  

Year Wild Factor  2015 Replicate; 2016 Replicate  

Day  Wild & Laboratory  Continuous  Day of experiment 

Timepoint  Laboratory  Factor  Day 14 or 21 post-infection  

Group Laboratory  Factor  

Control (primary challenge only group); 

Experimental (primary and secondary 

challenge)  

Grid Wild Factor 
Spatial replicates: 2015 (Grids 1-3) or 

2016 (Grids 1-4) 
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Raw Data Summary, Full Model Output & Model Variation Output  

This section includes raw data summaries and full model output for further 

interpretation of data presented in the main text. Additionally, we describe the 

models using a 3-level factor for supplementation in the wild to more accurately 

classify mice who were captured on both supplemented and control grids. Model 

output for full main models is shown in Figure 2.3. For model variation described, 

fixed effects are held the same as in the main models, with the exception of the 

addition of Supplement category (‘Mix’) (Figure S2.1). Estimates for fixed effects 

are compared between main models and their variations. 

For both models where an effect of supplemented nutrition was detected, both levels 

of supplemented nutrition (mix and supplemented) lowered H. polygyrus EPG and 

worm burden, and the magnitude and direction of other fixed effects closely mirrored 

those of the base model of comparison (Figures S2.1& S2.3). 
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Table S2.3 Raw data H. polygyrus summary. Data represents mean egg/gram (EPG) (± SE) and sample sized for the indicated group.   

 Group  Control (dH2O) Treated Anthelmintic 
  Control Supplemented Control Supplemented 

Wild  First Capture  
(mean EPG) 

23.55 (± 8.72); 
n=36 

12.41 (± 3.20); 
n=52 

na na 

 Trapping During 
(mean EPG) 43.68 (± 8.78); 

n=37 
29.96 (± 11.07); 

n=46 
29.02 (± 19.99); 

n=36 
0.136 (± 0.136); 

N=48 
 End point (N 

worms) 30.50 (± 7.99);  
n=6 

12.21 (± 3.96);  
n=14 

1.71 (± 0.89);  
n=7 

0.11 (± 0.11);  
n=9 

 

 Group  Primary Challenge Secondary Challenge 
  Control Supplemented Control Supplemented 

Colony  Peak EPG 48.03(± 25.79);  
n=9 

19.59 (± 8.42); 
n=10 

1.76 (± 1.19);  
n=6 

0.00 (± 0.00);  
n=7 

 Sum EPG 63.86 (± 26.82);  
n=9 

28.26 (± 11.38); 
n=10 

2.72 (± 2.07);  
n=6 

0.00 (± 0.00);  
n=7 

 End point (N 
worms) 

9.67 (± 3.38)’  
n=3 

12.33 (±4.91); 
n=3 

28.33 (±6.50); 
n=6 

6.71 (± 1.98); 
n=7 
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Table S2.4. Model estimates for fixed effects on wild H. polygyrus infection 

 
First Capture 

EPG  
Trapping Duration  

EPG  
End Point 

Number of adult worms 
                        

Term Estimate (CI) Std.error p.value   Estimate (CI) Std.error p.value   Estimate (CI) Std.error p.value 

Diet, Supplemented:  
Treated, 
Anthelminthic 

    -4.51 (-8.12 - -
0.9) 1.84 0.014   

-2.25 (-5.26 - 0.75)  
1.53 0.142 

Treated, 
Anthelminthic 

    -2.11 (-4.58 - 
0.35) 1.26 0.092  -2.74 (-4.26 - -1.22) 0.78 < 0.001 

Diet, Supplemented -1.42 (-2.59 - -
0.24) 0.6 0.018 

 -1.56 (-3.65 - 
0.53) 1.07 0.145  -1.2 (-2.38 - -0.03) 0.6 0.045 

Sex, Male -0.99 (-2.27 - 
0.3) 0.66 0.132 

 0.25 (-1.59 - 
2.09) 0.94 0.787  -1.16 (-2.58 - 0.26) 0.72 0.109 

Reproductive, active -0.53 (-1.74 - 
0.68) 0.62 0.387 

 1.37 (-0.26 - 
3.01) 0.83 0.100  -0.25 (-1.26 - 0.77) 0.52 0.632 

Body Mass, g 0.15 (-0.01 - 
0.32) 0.08 0.065 

 0.3 (0 - 0.6) 0.15 0.053  0.21 (0.03 - 0.39) 0.09 0.019 
Age  
(Eye lens weight, 
mg)     

     2.22 (0.41 - 4.04) 0.93 0.016 

(Intercept) 1.42 (-1.32 - 
4.16) 1.4 0.309 

 -2.46 (-7.84 - 
2.91) 2.74 0.369  -6.32 (-11.48 - -1.16) 2.63 0.016 
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Table S2.5. Model estimates for fixed effects on laboratory H. polygyrus infection  

  
Primary Challenge  

  
Primary Challenge 

  

End Point  
(Primary & Secondary Challenge) 

Peak EPG Sum EPG N worms 
                        

Term Estimate (CI) Std.error p.value   Estimate (CI) Std.error p.value   Estimate (CI) Std.error p.value 

Diet, 
Supplemented: 
Secondary 
Challenge  

        -1.76 (-2.88 - -
0.64) 0.57 0.002 

Diet, 
Supplemented  

-1.09 (-1.99 - -
0.19) 0.46 0.017 

 
-1.07 (-2.04 - 

-0.11) 0.49 0.03 
 

0.21 (-0.73 - 
1.14) 0.48 0.663 

Group, 
Experimental 

1.96 (0.86 - 
3.05) 0.56 <0.001 2.22 (1.07 - 

3.37) 0.59 <0.001 0.89 (0.07 - 
1.71) 0.42 0.033 

Sex, Male -0.51 (-2.05 - 
1.03) 0.79 0.515  0.06 (-1.62 - 

1.74) 0.86 0.945  -0.08 (-1 - 0.83) 0.47 0.857 

Body Mass, g 0.01 (-0.17 - 
0.19) 0.09 0.902  -0.06 (-0.25 - 

0.14) 0.1 0.57  0.06 (-0.04 - 
0.16) 0.05 0.248 

Age (Weeks) -0.01 (-0.09 - 
0.08) 0.04 0.875  -0.01 (-0.1 - 

0.08) 0.05 0.81  -0.02 (-0.08 - 
0.04) 0.03 0.428 

(Intercept) 2.82 (-0.9 - 
6.54) 1.9 0.138  3.52 (-0.46 - 

7.5) 2.03 0.083  1.84 (-0.53 - 
4.21) 1.21 0.127 
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Table S2.6. Model estimates for fixed effects on body condition in the wild  

 All Adults Pregnant Females  

 Body Condition Index Total Fat Score  Body Condition Index Total Fat Score  

                  

Term 
Estimate 

(CI) 
Std. 
error  

p 
value 

Estimate 
(CI) 

Std. 
error  

p 
value 

Estimate 
(CI) 

Std. 
error  

p 
value 

Estimate 
(CI) 

Std. 
error  

p 
value 

Diet, Supplemented:  
Day 

-0.16  
(-0.28 - -

0.04) 
0.06 0.011 

-0.09 
(-0.15 - -

0.02) 
0.03 0.007 

-0.61  
(-0.76 - -

0.45) 
0.08 <0.001 -0.15  

(-0.3 - 0) 0.08 0.045 

Diet, Supplemented 1.46  
(0.34 - 2.59) 0.57 0.011 0.64 

(0.18 - 1.11) 0.24 0.006 8.32  
(5.5 - 11.15) 1.44 <0.001 1.98  

(0.6 - 3.37) 0.71 0.005 

Day -0.03 
(-0.13 - 0.07) 0.05 0.525 0.01 

(-0.04 - 0.07) 0.03 0.582 0  
(-0.11 - 0.12) 0.06 0.969 0.11  

(-0.01 - 0.22) 0.06 0.062 

Year, 2016 1.02 
(0.04 - 1.99) 0.5 0.041 

-0.81 
(-1.14 - -

0.47) 
0.17 <0.001 1.57  

(-0.8 - 3.95) 1.21 0.194 -0.83  
(-1.72 - 0.06) 0.46 0.069 

Log, H.polygyrus EPG 0.08 
(-0.14 - 0.29) 0.11 0.49 0.03 

(-0.07 - 0.12) 0.05 0.583 
-0.64  

(-0.87 - -
0.41) 

0.12 <0.001 0.06  
(-0.2 - 0.32) 0.13 0.64 

Treated, 
Anthelminthic  

0.28 
(-0.71 - 1.26) 0.5 0.582 -0.14 

(-0.49 - 0.21) 0.18 0.429 0.26  
(-2.27 - 2.79) 1.29 0.838 0.16  

(-0.81 - 1.13) 0.5 0.746 

Sex, Male 0.57 
(-0.42 - 1.55) 0.5 0.258 -0.25 

(-0.59 - 0.09) 0.17 0.15         

Reproductive, active 1.53 
(0.74 - 2.33) 0.4 <0.001 -0.22 

(-0.57 - 0.13) 0.18 0.215         

Intercept 
-2.6 

(-4.03 - -
1.17) 

0.73 <0.001 5.98 
(5.41 - 6.56) 0.29 <0.001 -0.46  

(-4.24 -3.32) 1.93 0.81 4.57  
(2.81 - 6.34) 0.9 <0.001 
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Table S2.7. Model estimates for fixed effects on wild and laboratory immune responses 

 Wild Laboratory  

 IgA, Total IgG1, Specific  IgA, Total IgG1, Specific  
                  

Term Estimate (CI) 
Std. 
error  p.value Estimate (CI) 

Std. 
error  p.value Estimate (CI) 

Std. 
error  p.value 

Estimate 
(CI) 

Std. 
error  p.value 

Diet, Supplemented:  
Year, 2016 (wild) 
Time point (Lab)  

5.31 
(1.46 - 9.17) 1.97 0.007 0.2 

(-0.11 - 0.52) 0.16 0.204 -2.39 
(-5.68 - 0.9) 1.68 0.155    

Diet, Supplemented -0.08 
(-2.69 - 2.53) 1.33 0.953 -0.12 

(-0.29 - 0.06) 0.09 0.204 2.4 
(0.42 - 4.38) 1.01 0.018 0.2 

(0.11 - 0.3) 0.05 <0.001 
Year, 2016  
(wild)  
Timepoint, d21 (Lab)  

-5.14 
(-8.13 - -2.15) 1.52 0.001 -0.05 

(-0.3 - 0.2) 0.13 0.689 1.53 
(-1.4 - 4.46) 1.49 0.306    

Body condition Index  0.46 
(0.16 - 0.76) 0.15 0.003 0.02 

(0 - 0.03) 0.01 0.01       

Log, H.polygyrus EPG 0.43 
(-0.07 - 0.93) 0.25 0.089 -0.01 

(-0.03 - 0.01) 0.01 0.32 -0.2 
(-0.82 - 0.43) 0.32 0.538 0 

(0 - 0) 0 0.442 

Treated, 
Anthelminthic  

2.19 
(0.2 - 4.18) 1.02 0.031 0.07 

(-0.08 - 0.21) 0.07 0.366    
0.16 

(-0.81 - 
1.13) 

0.5 0.746 

Sex, Male 0 (-1.87 - 
1.87) 0.96 1 0 

(-0.15 - 0.14) 0.07 0.981 0.42 
(-1.72 - 2.57) 1.09 0.699 

-0.23 
(-0.31 - -

0.15) 
0.04 <0.001 

Reproductive, active 1.18 
(-0.65 - 3.01) 0.93 0.205 0 

(-0.08 - 0.08) 0.04 0.974       

Age, weeks       -0.42 
(-0.9 - 0.05) 0.24 0.082 

0 
(-0.02 - 
0.02) 

0.01 0.804 

Intercept 
18.71 

(15.72 - 
21.71) 

1.53 <0.001 0.38 
(0.18 - 0.57) 0.1 <0.001 

31.63 
(20.88 - 
42.38) 

5.48 <0.001 
0.93 

(0.39 - 
1.47) 

0.28 0.001 
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Figure S2.1. Effect size estimates from models investigating the effect of supplemented 
nutrition on H. polygyrus infection, accounting for individuals captured only a portion 
of time on supplemented grids (mix). Panels represent separate models for first capture, 
infection abundance, (EPG infected individuals only) and risk; average abundance (EPG) 
across two weeks (infected individuals only) and risk for individuals captured beyond first 
capture and after assignment to treatment categories; end point burden (adult worm count) 

for individuals culled 12-16 days post first capture. Models represented are identical to those 
included in Fig 3 with the exception of the inclusion of an additional factor level in the 

supplemented nutrition explanatory variable. Points and ranges represent model estimates 
and 95% credibility estimates for each model. Asterisks indicate the significance of 

variables: ***, ** and * indicate P<0.001, P<0.01 and P<0.05 respectively. Change in AIC 
from main models is included in the bottom left of each panel. Only risk models including 
two supplemented categories represent a superior fit to models including only category for 

supplemented individuals.   

DAIC= +1.62   

 

 

DAIC= -1.15   

 

 

DAIC= +1.28   
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Additional figures  

 

Figure S2.2. Correlation of mouse age predicted from eye lens weight and known age 
(in weeks). Pearson’s R with 95% credibility intervals and significance of the correlation is 
included for both 2015 and 2016 data. Points have been jittered by 10% of raw values to aid 

in visualisation. 
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Figure S2.3. Effect of supplemented nutrition on H. polygyrus infection in wild wood 
mice, accounting for both individuals who were found exclusively on supplemented 

grids or individuals who were found on supplemented grids only a portion of the time 
(‘Mix”). A. Infection abundance (EPG) at first capture, N=88 individuals. B. Mean EPG for 

all individuals captured beyond first capture and after assignment to treatment categories, 
N=62 individuals; 166 captures C. Adult worm burden at end point for culled individuals, 
N=36.  Data represent log means and SE for raw EPG data. Labels above bars indicate the 

number of observations for each group. 
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Figure S2.4. Effect size estimates from the models investigating the effect of 
supplemented nutrition on wood mouse body condition in the wild, measured by 
body condition index (residuals of weight against length regression) and total fat 

score. Points and ranges represent model estimates and 95% confidence intervals. 
Asterisks indicate the significance of variables: ***, ** and * indicate P<0.001, 
P<0.01 and P<0.05 respectively. .A. Models including all adult mice excepting 

pregnant females; N=79 individuals, 178 captures. B. Models on pregnant females, 
N=15 individuals and 32 captures 
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Figure S2.5. Effect of supplemented diet on body condition in the laboratory. 

Bar plots represent raw data means ± SEM. 
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Figure S2.6. Effect size estimates from the models investigating the effect of 
supplemented nutrition on wood mouse body condition in the laboratory, 

measured by mass and total fat score. Points and ranges represent model estimates 
and 95% confidence intervals. Asterisks indicate the significance of variables: ***, 

** and * indicate P<0.001, P<0.01 and P<0.05 respectively. 
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Figure S2.7. H. polygyrus abundance dynamics, as measured by eggs/gram over 
the course of A. field experiment and B. colony experiment. Data represent the 

log of EPG+1 and SE. Dashed lines in A represent individuals who were treated with 
anthelminthics. Dashed lines in B indicate infection and end timepoints of 

experiment.  
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Appendix B: Supplementary Material for Chapter 3 

 
PCR protocols  
 
DNA was extracted from blood samples using a MagMAX™-96 DNA Multi-Sample 

Kit (ThermoFisher Scientific) on a KingFisher™ Flex Purification System optimised 

for small blood volumes and mouse samples according to manufacturer instructions.  

This kit is designed for high throughput purification of DNA from animal tissue and 

blood and uses magnetic bead-based isolation and extractions were carried out 

according to manufacturer’s instructions. Briefly, 10 µL of dH2O was added to whole 

blood pellets and homogenised. Samples were lysed with proteinase K followed by a 

treatment with guanidinium thiocyanate-based solution. Following lysis, samples 

were mixed with isopropanol and combined with paramagnetic beads with a nucleic 

acid binding surface. The beads, with bound nucleic acid, are immobilized on 

magnets and washed to remove proteins and other contaminants. A second wash 

solution is used to remove residual binding solution and then the nucleic acid is 

eluted using a low-salt buffer.  

 

Trypanosomes were detected using a nested PCR targeting a 530bp section of the 

18S rRNA gene (1). Primers TRY927F 5’-GAAACAAGAAACACGGGAG and 

TRY927R 5’-CTACTGGGCAGCTTGGA were used in the first round, and 

SSU561F 5’-TGGGATAACAAAGGAGCA and SSU561R 5’-

CTGAGACTGTAACCTCAAAGC in the second round. Each reaction contained 2µl 

genomic DNA, 0.1mM each dNTP, 0.2µM each primer, 0.8mM MgCl2, 0.5U 

Platinum Taq DNA Polymerase (Invitrogen) with the accompanying buffer at 1x 

concentration. A touchdown PCR profile was used, with initial denaturation at 96°C 

for 3min, followed by 20 cycles of 96°C for 30s, 60°C for 1min (decreasing by 0.5°C 

each cycle until 55°C), and 72°C for 90s, followed by a final extension at 72°C for 

10min. In the event that any negative control was positive, the entire PCR plate was 

repeated. 5µl of all PCR products were run on 2% agarose gels stained with ethidium 

bromide and visualized under UV light. For the trypanosome PCR, samples showing 

an approx. 500bp band were scored as positive. All positive samples were sequenced 
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and across the 502bp sequence obtained (excluding primers) all were 100% identical 

to Trypanosoma grosi (Genbank accession: AB175624). Wood Mouse Herpes Virus 

(WMHV) was detected using pan-herpesvirus primers targeting a 160 bp region of 

the DPOL gene: ILK+ 5′-ATAAACAACAGCTGGCCATCAA-3′ and KG1+ 5′- 

CTGACCAGATCCACCCCTTT-3′ in the first round, followed by TGV+ 5′- 

TGTAATTCTGTCTATGGCTTCACAGGAGT-3′ and IGY+ 5′-

AAGAGAATCTGTGTCTCCATAAAT-3′ in the second round (2). Reactions were 

run in 25 µl volumes, containing 0.4 µM each primer (Metabion), 0.2 mM dNTPs, 3 

mM MgCl2, one unit GoTaq DNA Polymerase (Promega), 5 µl 5× GoTaq Flexi 

Buffer (Promega) and 2 µl template DNA. The following PCR conditions were used 

for either 25 cycles (first round) or 35 cycles (second round): initial denaturation at 

95 °C for 3 min, cycles of 95 °C for 20 s, 61 °C for 30 s and 72 °C for 30 s, and a 

final extension of 72 °C for 10 mins.  
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Table S3.1 Model output for parasite-specific models presented in Chapter 3 

parasite term estimate std.error p.value response model 

C. murissylvatici Intercept 9.87 (4.24 - 15.5) 2.87 0.001 intensity main 

C. murissylvatici 
Resources, 

supplemented 1.41 (-0.51 - 3.33) 0.98 0.15 intensity main 

C. murissylvatici Body Mass, g -0.3 (-0.59 - -0.01) 0.15 0.041 intensity main 

C. murissylvatici Sex, M 1.4 (-0.12 - 2.93) 0.78 0.071 intensity main 

C. murissylvatici Year, 2016 -1.86 (-4.62 - 0.91) 1.41 0.188 intensity main 

C. murissylvatici Intercept 3.83 (2.56 - 5.11) 0.65 <0.001 intensity post-treatment 

C. murissylvatici 
Resources, 

supplemented 3.28 (0.95 - 5.61) 1.19 0.006 intensity post-treatment 

C. murissylvatici Treatment, drug 2.04 (-0.66 - 4.75) 1.38 0.139 intensity post-treatment 

C. murissylvatici 

Resources, 
supplemented:  

Treatment, drug 
-4.99 (-8.6 - -1.38) 1.84 0.007 intensity post-treatment 

E. hungaryensis Intercept 8.03 (3.36 - 12.71) 2.39 0.001 intensity main 

E. hungaryensis 
Resources, 

supplemented -0.08 (-2.23 - 2.08) 1.1 0.944 intensity main 

E. hungaryensis Body Mass, g -0.17 (-0.41 - 0.08) 0.13 0.185 intensity main 

E. hungaryensis Sex, M 0.77 (-1.37 - 2.92) 1.1 0.481 intensity main 

E. hungaryensis Year, 2016 3 (0.96 - 5.05) 1.04 0.004 intensity main 

E. hungaryensis Intercept 11.98 (4.38 - 19.59) 3.88 0.002 intensity post-treatment 

E. hungaryensis 
Resources, 

supplemented 0.23 (-3.32 - 3.79) 1.81 0.897 intensity post-treatment 

E. hungaryensis Body Mass, g -0.41 (-0.81 - -0.02) 0.2 0.042 intensity post-treatment 

E. hungaryensis Sex, M 2.35 (-0.52 - 5.22) 1.46 0.108 intensity post-treatment 

E. hungaryensis Year, 2016 3.36 (0.59 - 6.12) 1.41 0.017 intensity post-treatment 

E. hungaryensis Treatment, drug -0.69 (-5.11 - 3.73) 2.25 0.76 intensity post-treatment 

E. hungaryensis 

Resources, 
supplemented:  

Treatment, drug 
2.65 (-3.02 - 8.33) 2.9 0.359 intensity post-treatment 

E. uptoni Intercept 8.97 (2.92 - 15.01) 3.08 0.004 intensity main 

E. uptoni 
Resources, 

supplemented -0.66 (-3.02 - 1.69) 1.2 0.58 intensity main 

E. uptoni Body Mass, g -0.23 (-0.54 - 0.08) 0.16 0.153 intensity main 

E. uptoni Sex, M 0.44 (-0.96 - 1.84) 0.71 0.537 intensity main 

E. uptoni Year, 2016 0.17 (-1.71 - 2.04) 0.96 0.862 intensity main 

E. uptoni Intercept 12.88 (8.43 - 17.34) 2.27 <0.001 intensity post-treatment 

E. uptoni 
Resources, 

supplemented 3.88 (0.28 - 7.47) 1.83 0.035 intensity post-treatment 

E. uptoni Body Mass, g -0.39 (-0.6 - -0.19) 0.1 <0.001 intensity post-treatment 

E. uptoni Sex, M -2.92 (-4.16 - -1.68) 0.63 <0.001 intensity post-treatment 

E. uptoni Year, 2016 -3.24 (-6.52 - 0.03) 1.67 0.052 intensity post-treatment 

E. uptoni Treatment, drug -1.22 (-2.34 - -0.1) 0.57 0.033 intensity post-treatment 

E. uptoni 

Resources, 
supplemented:  

Treatment, drug 
-4.31 (-8.48 - -0.15) 2.13 0.042 intensity post-treatment 
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Fleas Intercept -3.95 (-7.23 - -0.68) 1.67 0.018 probability main 

Fleas 
Resources, 

supplemented -0.55 (-1.72 - 0.62) 0.6 0.355 probability main 

Fleas Body Mass, g 0.09 (-0.07 - 0.25) 0.08 0.261 probability main 

Fleas Sex, M 0.34 (-0.82 - 1.5) 0.59 0.566 probability main 

Fleas Year, 2016 -1.13 (-2.37 - 0.1) 0.63 0.073 probability main 

Fleas Intercept -3.71 (-8.16 - 0.74) 2.27 0.103 probability post-treatment 

Fleas 
Resources, 

supplemented -1.23 (-3.75 - 1.28) 1.28 0.337 probability post-treatment 

Fleas Body Mass, g 0.09 (-0.13 - 0.31) 0.11 0.425 probability post-treatment 

Fleas Sex, M -0.22 (-1.65 - 1.2) 0.73 0.758 probability post-treatment 

Fleas Year, 2016 -0.71 (-2.17 - 0.75) 0.74 0.341 probability post-treatment 

Fleas Treatment, drug 0.96 (-0.97 - 2.9) 0.99 0.33 probability post-treatment 

Fleas 

Resources, 
supplemented:  

Treatment, drug 
0.14 (-3.06 - 3.33) 1.63 0.934 probability post-treatment 

H. polygyrus Intercept 4.46 (2.7 - 6.22) 0.9 <0.001 intensity main 

H. polygyrus 
Resources, 

supplemented -0.73 (-1.32 - -0.14) 0.3 0.015 intensity main 

H. polygyrus Body Mass, g -0.05 (-0.14 - 0.04) 0.05 0.24 intensity main 

H. polygyrus Sex, M 0.5 (-0.09 - 1.08) 0.3 0.096 intensity main 

H. polygyrus Year, 2016 0.04 (-0.52 - 0.59) 0.28 0.901 intensity main 

H. polygyrus Intercept 3.68 (0.19 - 7.16) 1.78 0.039 intensity post-treatment 

H. polygyrus 
Resources, 

supplemented -0.64 (-1.7 - 0.41) 0.54 0.231 intensity post-treatment 

H. polygyrus Body Mass, g -0.03 (-0.21 - 0.15) 0.09 0.748 intensity post-treatment 

H. polygyrus Sex, M 0.64 (-0.45 - 1.73) 0.56 0.246 intensity post-treatment 

H. polygyrus Year, 2016 0.24 (-0.79 - 1.26) 0.52 0.652 intensity post-treatment 

H. polygyrus Treatment, drug -0.07 (-2.61 - 2.48) 1.3 0.96 intensity post-treatment 

H. polygyrus 

Resources, 
supplemented:  

Treatment, drug 
-0.42 (-4.64 - 3.81) 2.15 0.847 intensity post-treatment 

MHV Intercept -12.08 (-33.49 - 9.33) 10.92 0.269 probability main 

MHV 
Resources, 

supplemented -0.8 (-8.81 - 7.21) 4.09 0.845 probability main 

MHV Body Mass, g 0.02 (-0.95 - 0.99) 0.49 0.967 probability main 

MHV Sex, M 0.06 (-8.22 - 8.33) 4.22 0.989 probability main 

MHV Year, 2016 -2.23 (-14.1 - 9.63) 6.05 0.712 probability main 

MHV Intercept -12.18 (-32.79 - 8.42) 10.51 0.247 probability post-treatment 

MHV 
Resources, 

supplemented -0.2 (-9.48 - 9.08) 4.73 0.967 probability post-treatment 

MHV Body Mass, g 0.03 (-0.88 - 0.95) 0.47 0.944 probability post-treatment 

MHV Sex, M -0.11 (-8.33 - 8.11) 4.19 0.979 probability post-treatment 

MHV Year, 2016 -2.37 (-14.28 - 9.54) 6.08 0.696 probability post-treatment 

MHV Treatment, drug 0.13 (-10.15 - 10.42) 5.25 0.98 probability post-treatment 
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MHV 

Resources, 
supplemented:  

Treatment, drug 
-1.65 (-18.18 - 14.89) 8.44 0.845 probability post-treatment 

Mites Intercept -0.15 (-1.64 - 1.35) 0.76 0.847 probability main 

Mites 
Resources, 

supplemented 0.64 (-0.01 - 1.28) 0.33 0.053 probability main 

Mites Body Mass, g -0.08 (-0.15 - 0) 0.04 0.052 probability main 

Mites Sex, M 0.62 (-0.01 - 1.25) 0.32 0.054 probability main 

Mites Year, 2016 0.55 (-0.07 - 1.17) 0.32 0.08 probability main 

Mites Intercept -0.25 (-2.7 - 2.2) 1.25 0.84 probability post-treatment 

Mites 
Resources, 

supplemented 0.93 (-0.3 - 2.16) 0.63 0.137 probability post-treatment 

Mites Body Mass, g -0.07 (-0.19 - 0.05) 0.06 0.264 probability post-treatment 

Mites Sex, M 0.77 (-0.09 - 1.62) 0.43 0.078 probability post-treatment 

Mites Year, 2016 0.34 (-0.53 - 1.21) 0.44 0.448 probability post-treatment 

Mites Treatment, drug 0.51 (-0.85 - 1.86) 0.69 0.464 probability post-treatment 

Mites 

Resources, 
supplemented:  

Treatment, drug 
-1.16 (-2.96 - 0.64) 0.92 0.206 probability post-treatment 

T. grosi Intercept 0.55 (-1.99 - 3.09) 1.29 0.67 probability main 

T. grosi 
Resources, 

supplemented 1.35 (-0.34 - 3.04) 0.86 0.117 probability main 

T. grosi Body Mass, g -0.12 (-0.24 - -0.01) 0.06 0.039 probability main 

T. grosi Sex, M 0.15 (-0.94 - 1.24) 0.55 0.788 probability main 

T. grosi treatedY 1.15 (-0.53 - 2.84) 0.86 0.18 probability main 

T. grosi 

Resources, 
supplemented:  

treatedY 
-2.77 (-5.05 - -0.49) 1.16 0.017 probability post-treatment 

T. grosi Intercept 0.74 (-1.56 - 3.04) 1.17 0.529 probability post-treatment 

T. grosi 
Resources, 

supplemented 1.38 (0 - 2.76) 0.7 0.051 probability post-treatment 

T. grosi Body Mass, g -0.12 (-0.23 - -0.01) 0.06 0.029 probability post-treatment 

T. grosi Sex, M 0.25 (-0.79 - 1.29) 0.53 0.636 probability post-treatment 

T. grosi Treatment, drug 0.84 (-0.66 - 2.35) 0.77 0.271 probability post-treatment 

T. grosi 

Resources, 
supplemented:  

Treatment, drug 
-2.3 (-4.33 - -0.26) 1.04 0.027 probability post-treatment 

Ticks Intercept 1.59 (1.12 - 2.06) 0.24 <0.001 intensity main 

Ticks 
Resources, 

supplemented -0.46 (-0.67 - -0.24) 0.11 <0.001 intensity main 

Ticks Body Mass, g 0.02 (-0.01 - 0.04) 0.01 0.175 intensity main 

Ticks Sex, M 0.16 (-0.03 - 0.35) 0.1 0.091 intensity main 

Ticks Year, 2016 0 (-0.21 - 0.2) 0.11 0.972 intensity main 

Ticks Intercept 1.53 (0.75 - 2.31) 0.4 <0.001 intensity post-treatment 

Ticks 
Resources, 

supplemented -0.53 (-0.96 - -0.11) 0.22 0.014 intensity post-treatment 

Ticks Body Mass, g 0.01 (-0.02 - 0.05) 0.02 0.479 intensity post-treatment 

Ticks Sex, M 0.31 (0.04 - 0.59) 0.14 0.026 intensity post-treatment 
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Ticks Year, 2016 -0.02 (-0.29 - 0.26) 0.14 0.897 intensity post-treatment 

Ticks Treatment, drug -0.36 (-0.77 - 0.05) 0.21 0.088 intensity post-treatment 

Ticks 

Resources, 
supplemented:  

Treatment, drug 
0.57 (0.01 - 1.13) 0.28 0.044 

intensity post-treatment 
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Appendix C: Supplementary Material for Chapter 4  

 
Mast data  

Detailed information an all recording species and categories can be found at:  

https://naturescalendar.woodlandtrust.org.uk/what-we-record-and-why/species-we-

record/ 

Nature’s Calendar is a citizen science project run by the Woodlan Trust and Centre 

for Ecology & Hydrology. Recorders may enter sightings on the website for a 

number of events of interest. One such event is flowering events, both date of 

flowering events and a tree fruit quality score. Species recorded for Nature’s 

Calendar includes Beech (Fagus sylvatica) and Oak (Quercus robur & Q. petraea), 

fruit-beering trees. ‘Amount of fruit’ is a subjective assessment of fruit crop used in 

this analysis and has been recorded as a score of 1-5, where 1 represents no fruit, 2- 

meagre fruit, 3- moderate, 4- good crop, and 5- exceptional.  

For every entry recorded, a thorough list of information is recorded including: 

Species name, Latin name, observation year, observation date, season, the event 

recorded (i.e. ‘amount of fruit), easting, northing, whether the recorder is a new 

recorder, how current the recorders last entry was, the county and region of 

observation.  

Nature’s Calendar kindly provided us with complete records of the mast-associated 

events ‘amount of fruit’ and ‘date of first flower.’ We used the species, easting, 

northing, year, and amount of fruit categories to calculate average fruit scores for 

Oak and Beech trees per year of experimental resource supplementation for the 

region in which trapping was conducted.  
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Figure S4.1. Body mass at first capture across experimental period. 

From week 29-35, all first captured mice were of a larger boy mass and many were 
reproductively active; using these criteria we defined these mice as ’cohort one’; 

which would have survived the winter. However, from week 35 onward, individual 
mice first captured into the experiment were primarily in lower weight classes, 

associated with younger individuals, and we proposed that these mice represented 
individuals recruited to the population within the trapping season and were defined 

as ‘cohort two’. 
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Figure S4.2. Number of reproductively active individuals throughout 2017 trapping 
season. 

Points represent the number of captures per month belonging to either gestating, 
lactating, or scrotal individuals. Pink points and lines running along the top of the 

graph indicates the total number of captures per month. 
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Figure S4.3 Anthelmintic treatment effects over the course of the experiment. 

Sustained anthelmintic treatment (every 28 days) lowered H. polygyrys abundance 
throughout the trapping season. Barplots represent log-transformed EPG data means 

± SEM. 
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Appendix D: Supplementary Material for Chapter 5  
Dataset information 

 

Figure S5.1. Sites included in dataset A. Gordale B. Haddon Wood C. Manor Wood 
D. Maresfield Farm E. Rode Hall F. Mudhouse  
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Table S5.1. Dimensions of grids included in analysis  

 

 

 

 

 

 

 

 

 

  

  

Years Sites  Grids Dimensions (m) 

2009 

Haddon Wood HW1, HW2, HW3, HW4  70 x 70  

Manor Wood  MW1, MW2 70 x 70  

2010 

Haddon Wood HW1, HW2, HW3, HW4  70 x 70  

Manor Wood  MW1, MW2 70 x 70  

2011 

Haddon Wood HW1, HW2, HW3, HW4  70 X 70  

Manor Wood  

MW1, MW2 70 x 70  

MW3, MW4 50 x 50 

2012 

Haddon Wood 

HA1 100 x 100 

HA2, HA3 50 x 50 

Maresfield MF1, MF2 50 x 50 

Rode Hall RH2, RH3, RH4  50 x 50  

2013 

Gordale  GOR 50 x 50 

Maresfield MF1, MF2 50 x 50 

Rode Hall RH1 20 x 120  

  RH2, RH3, RH4  50 x 50  

2014 

Gordale  GOR 50 x 50 

Maresfield MF1, MF2 50 x 50 

Rode Hall 

RH1 20 x 120  

RH2, RH3, RH4  50 x 50  
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Figure S5.2. Histogram of observations per individual included in longitudinal 
models. Ni=927; Nc=1611. Dashed line represents the median number of 

observations. 
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Table S5.2. Full Model Output, without interactions  

            

 
Cross-sectional 

 
Longitudinal  

variable Estimate pMCMC   Estimate  pMCMC 

Site, Rode Hall 

0.13 (-0.43 - 

0.67) 0.646 
 

0.17 (-0.16 - 

0.45) 0.294 

Site, Maresfield 

0.31 (-0.28 - 

0.93) 0.342 
 

0.27 (-0.09 - 

0.62) 0.118 

Site, Manor 

0.05 (-0.92 - 

1.1) 0.924 
 

0.09 (-0.51 - 

0.69) 0.778 

Site, Haddon 

0.83 (-0.04 - 

1.78) 0.09 
 

0.9 (0.44 - 1.43) 0.001 

Year, 2010 

0.63 (0.35 - 

0.93) 0.001 
 

0.52 (0.27 - 0.8) 0.001 

Year, 2011 

0.23 (-0.12 - 

0.56) 0.188 
 

0.06 (-0.22 - 

0.43) 0.698 

Year, 2012 

-0.26 (-0.69 - 

0.13) 0.22 
 

-0.46 (-0.76 - -

0.17) 0.004 

Year, 2013 

-0.67 (-1.65 - 

0.09) 0.122 
 

-0.67 (-1.18 - -

0.17) 0.01 

Year, 2014 

-0.37 (-1.23 - 

0.41) 0.362 
 

-0.47 (-0.94 - 

0.03) 0.058 

Season, Summer 

-0.32 (-0.57 - -

0.02) 0.02 
 

-0.35 (-0.54 - -

0.19) 0.001 

Season, Autumn 

-0.49 (-0.83 - -

0.15) 0.006 
 

-0.6 (-0.81 - -

0.35) 0.001 

Sex, Male 

-0.04 (-0.25 - 

0.13) 0.666 
 

0.09 (-0.05 - 

0.23) 0.23 

Body condition 

0.02 (-0.11 - 

0.18) 0.788 
 

-0.05 (-0.15 - 

0.04) 0.288 

Age, Non-adult  

0.28 (-0.03 - 

0.56) 0.056 
 

0 (-0.29 - 0.28) 0.982 

Reproductive, active 

0.11 (-0.18 - 

0.41) 0.472 
 

-0.1 (-0.28 - 

0.09) 0.306 

E. hungaryensis, 

present 

0.11 (-0.1 - 

0.32) 0.282 
 

0.14 (0.01 - 

0.29) 0.058 

Hymenolepid, 

present 

0.2 (-0.13 - 

0.51) 0.224 
 

0.2 (0.04 - 0.37) 0.018 

Intercept 

2.36 (1.39 - 

3.37) 0.001   2.69 (2.1 - 3.26) 0.001 
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Figure S5.3. Full model output for cross-sectional and longitudinal models on data from all years and 
sites. Points and ranges represent model estimates and 95% credibility estimates for each model. 

Asterisks indicate the significance of variables with a pMCMC <0.05 threshold. 
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Figure S5.4. Spatiotemporal variation in mean H. polygyrus intensity in cross-sectional base 
model: Bars represent mean intensity  (± SE) for A. site and B. year. Ridge plots below bar graphs (C-
D) represent the pair-wise comparisons for base model output for fixed effect factors. Density ridges 

represent distributions drawn from the differences between the posterior means of the indicated 
comparison levels [a-b] for each iteration (Niterations=130000). Blue shading denotes that the mean of 
effect estimates from the x-axis is lower than that on the y-axis. Differences between effects can be 
interpreted by comparison of the density ridges to zero; grey lines for each ridge indicate the 95% 

credibility intervals for these distributions. Blue shading denotes that the mean of effect estimates for 
[a] is lower than that of [b] for a given interaction. Pink shading denotes that mean of effect estimates 

from [a] is higher than that of [b]. If credibility intervals do not cross zero, this is considered a 
significant difference in effects between [a-b]. Significant differences between effects are indicates by 
***, ** and * for P<0.001, P<0.01 and P<0.05 respectively. ‘Intercept’ represents the baseline year of 

the model (2009) in all panels. ‘Intercept’ represents spring for season, Gordale for site effect levels, 
and ‘2009’ for year. E. Proportion variance explained by each spatiotemporal random effect in an 

alternate model.  
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Figure S5.5. Interactions remaining in final model after selection. Interactions remaining represent 
those which had DDIC >2. Points and ranges represent model estimates and 95% credibility estimates 

for each model. Asterisks indicate the significance of variables: ***, ** and * indicate P<0.001, 
P<0.01 and P<0.05 respectively. 
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Figure S5.6.  Differences across estimated effects (with 95% credible intervals) for interaction levels which improved full model fit, cross-sectional models. Density ridges represent 

distributions drawn from the differences between the posterior means of the indicated comparison levels [a-b] for each iteration (Niterations=130000). Blue shading denotes that the 
slope of effect from the x-axis is lower than that on the y-axis. Differences between effects can be interpreted by comparison of the density ridges to zero; grey lines for each ridge 

indicate the 95% credibility intervals for these distributions. Blue shading denotes that the slope of effect for [a] is lower than that of [b] for a given interaction. Pink shading denotes 
that slope of effect from [a] is higher than that of [b]. If credibility intervals do not cross zero, this is considered a significant difference in effect slope of [a-b]. Significant differences 

between effects are indicates by ***, ** and * for P<0.001, P<0.01 and P<0.05 respectively. ‘Intercept’ represents the baseline year of the model (2009) in all panels.
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Table S5.3. Full Model Output, with interactions 

            

 Cross-sectional  Longitudinal  

variable Estimate pMCMC   Estimate  pMCMC 

(Intercept) 3.21 (1.42 - 4.79) 0.001  -0.64 (-2.75 - 1.68) 0.608 

Season,Summer -0.7 (-1.66 - 0.29) 0.156  1.47 (-0.19 - 3.28) 0.098 

Season,Autumn -1.3 (-2.36 - -0.24) 0.016  1.64 (-0.26 - 3.29) 0.072 

Sex,M -1.76 (-3.68 - 0.4) 0.092  -0.22 (-0.6 - 0.14) 0.262 

Reproductive,active -0.32 (-1.07 - 0.44) 0.424  -0.14 (-0.32 - 0.04) 0.152 

Age, Non-adult  0.2 (-0.13 - 0.52) 0.24  0.13 (-0.17 - 0.43) 0.374 

Body condition -0.01 (-0.38 - 0.38) 0.954  0.29 (0.03 - 0.53) 0.026 

E. hungaryensis, pres. 0.18 (-0.01 - 0.38) 0.068  0.17 (0.03 - 0.3) 0.012 

Hymenolepid spp., pres. -0.86 (-2.47 - 0.62) 0.256  0.18 (0.01 - 0.35) 0.05 

Year,2010 -0.45 (-1.68 - 0.8) 0.458  2.34 (0.54 - 4.25) 0.01 

Year,2011 -0.32 (-1.51 - 1) 0.638  3.3 (1.46 - 5.35) 0.002 

Year,2012 -0.65 (-1.99 - 0.61) 0.294  1.91 (0.08 - 3.73) 0.036 

Year,2013 -1.55 (-3.27 - 0.39) 0.09  0.98 (-0.81 - 2.85) 0.306 

Year,2014 -1.88 (-3.54 - -0.42) 0.018  1.47 (-0.25 - 3.46) 0.128 

Site,Haddon 0.85 (-0.4 - 2.13) 0.19  1.01 (0.49 - 1.5) 0.001 

Site,Manor -0.43 (-1.85 - 1.07) 0.562  -0.15 (-0.83 - 0.5) 0.694 

Site,Maresfield 0.42 (-0.54 - 1.46) 0.43  0.33 (-0.01 - 0.66) 0.064 

Site,Rode Hall 0.32 (-0.52 - 1.24) 0.5  0.2 (-0.08 - 0.53) 0.164 

Reproductive,active:Body condition 0.27 (0.01 - 0.54) 0.046  0.08 (-0.11 - 0.24) 0.382 

Season,Summer:Year,2010 0.34 (-0.81 - 1.4) 0.54  -1.93 (-3.72 - -0.09) 0.03 

Season,Autumn:Year,2010 1.38 (0.07 - 2.66) 0.03  -1.68 (-3.37 - 0.3) 0.074 

Season,Summer:Year,2011 0.08 (-1.08 - 1.26) 0.888  -3.12 (-4.87 - -1.16) 0.002 

Season,Autumn:Year,2011 -0.13 (-1.41 - 1.27) 0.86  -4.06 (-6.01 - -2.11) 0.001 

Season,Summer:Year,2012 -1.04 (-2.18 - 0.19) 0.11  -2.85 (-4.62 - -1.1) 0.006 

Season,Autumn:Year,2012 0.19 (-1.21 - 1.36) 0.8  -2.82 (-4.65 - -1.02) 0.002 

Season,Summer:Year,2013 0.81 (-0.73 - 2.47) 0.294  -1.26 (-3.08 - 0.47) 0.162 

Season,Autumn:Year,2013 0.15 (-1.57 - 1.75) 0.838  -2.7 (-4.56 - -0.84) 0.004 

Season,Summer:Year,2014 0.98 (-0.1 - 2.08) 0.078  -1.51 (-3.25 - 0.33) 0.094 

Season,Autumn:Year,2014 1.17 (-0.15 - 2.38) 0.066  -2.28 (-4 - -0.42) 0.012 

Sex,M:Year,2010 0.26 (-0.32 - 0.86) 0.412  -0.07 (-0.55 - 0.46) 0.768 

Sex,M:Year,2011 0.57 (-0.04 - 1.28) 0.09  0.53 (-0.05 - 1.11) 0.08 

Sex,M:Year,2012 1.07 (0.33 - 1.94) 0.008  0.54 (0.03 - 1.11) 0.054 

Sex,M:Year,2013 1.93 (0.01 - 3.81) 0.038  0.73 (0.15 - 1.29) 0.006 

Sex,M:Year,2014 1.75 (0.03 - 3.55) 0.05  0.38 (-0.06 - 0.83) 0.098 

Reproductive,active:Year,2010 0.39 (-0.55 - 1.35) 0.428    
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Reproductive,active:Year,2011 0.7 (-0.45 - 1.68) 0.196    

Reproductive,active:Year,2012 -0.24 (-1.43 - 0.79) 0.674    

Reproductive,active:Year,2013 0.02 (-1.52 - 1.4) 0.982    

Reproductive,active:Year,2014 0.72 (-0.29 - 1.71) 0.154    

Body condition:Year,2010 0.04 (-0.32 - 0.45) 0.808  -0.15 (-0.44 - 0.12) 0.31 

Body condition:Year,2011 -0.3 (-0.77 - 0.12) 0.204  -0.57 (-0.93 - -0.18) 0.006 

Body condition:Year,2012 0.08 (-0.43 - 0.5) 0.746  -0.44 (-0.77 - -0.14) 0.008 

Body condition:Year,2013 -0.12 (-0.77 - 0.63) 0.714  -0.42 (-0.76 - -0.14) 0.002 

Body condition:Year,2014 -0.5 (-0.9 - -0.11) 0.016  -0.54 (-0.81 - -0.3) 0.001 

Hymenolepid spp., pres.:Year,2010 1.42 (-0.34 - 3.31) 0.132    

Hymenolepid spp., pres.:Year,2011 3.02 (0.72 - 5.55) 0.012    

Hymenolepid spp., pres.:Year,2012 0.79 (-0.9 - 2.32) 0.328    

Hymenolepid spp., pres.:Year,2013 0.73 (-1.08 - 2.47) 0.4    

Hymenolepid spp., pres.:Year,2014 1.25 (-0.38 - 2.82) 0.126    

Sex,M:Site,Haddon 1.33 (-0.91 - 3.16) 0.194    

Sex,M:Site,Manor 1.71 (-0.34 - 4.05) 0.126    

Sex,M:Site,Maresfield 0.32 (-0.94 - 1.65) 0.642    

Sex,M:Site,Rode Hall 0.06 (-0.99 - 1.3) 0.906    
 
Blank cells represent instances where interactions did not remain in longitudinal  
models after selection.  
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Table S4. DDIC for interactions added to full models for each run of model selection.  
 

Model Additions, Cross-Sectional 
                  

 variable dDIC 1 dDIC 2 
dDIC 
3 

dDIC 
4 

dDIC 
5 

dDIC 
6 

dDIC 
7 

 season:year 
-

57.316       

 body condition:year 
-

31.553 
-

22.568      
 reproductive status:year 1.04 6.447 -7.3     
 sex:year -10.84 -6.664 -4.92 -7.919    
 sex:site -3.863 -3.95 -1.139 -1.589 -5.614   
 Hymenolepid presence:year -1.818 -3.713 -5.805 -6.951 -5.173 -5.113  

 body condition:site 
-

27.794 
-

21.218 2.162 1.793 1.189 4.174 3.432 

 season:site 
-

25.587 3.844 4.126 3.535 5.68 3.93 4.509 

 
E. hungayrensis 
presence:year 1.464 4.765 2.588 3.282 2.66 2.772 4.677 

 reproductive status:site 3.906 -1.099 5.661 5.975 5.752 7.362 7.314 

 age:site  3.315 5.368 3.551 3.056 1.863 4.822 5.359 

 
E. hungayrensis 
presence:site 4.642 5.818 7.148 6.51 6.712 6.332 5.754 

  age:year 6.505 2.352 6.985 7.176 8.247 8.976 8.575 
 

Model Additions, Longitudinal 
  
  variable dDIC 1 dDIC 2 dDIC 3 dDIC 4 

 season:year -58.916    
 body condition:year -0.034 -14.608   
 sex:year 1.298 -0.198 -5.42   

 E. hungayrensis presence:site 8.023 6.64 0.734 10.928 

 E. hungayrensis presence:year 6.651 7.325 -1.951 5.673 

 Hymenolepid presence:year 7.298 -2.678 -0.567 -0.039 

 reproductive status:site -4.259 -5.582 2.511 8.718 

 reproductive status:year  0.685 -2.435 -3.443 -0.666 

 season:site -24.45 7.01 6.285 13.197 
 age:site  8.848 1.915 3.201 3.827 

 sex:site 15.569 0.622 -4.72 1.682 

 body condition:site 2.785 -4.34 5.548 6.737 
 age:year -5.11 -3.22 2.067 7.796 



 

 

 246 

Table S5.6. Model output from within-year models.  

 

 

 

Year Specific Models 

Factor Estimate pMCMC Model Factor Estimate pMCMC Model Factor Estimate pMCMC Model Factor Estimate pMCMC Model 
0.29 (-0.89 - 1.67) 0.666 2013 -0.47 (-1.15 - 0.34) 0.238 2009 0 (-0.75 - 0.78) 0.982 2013 -0.78 (-1.34 - -0.17) 0.014 2009

0.26 (-0.28 - 0.9) 0.4 2014 0.11 (-0.49 - 0.63) 0.686 2010 0.24 (-0.06 - 0.55) 0.142 2014 -0.08 (-0.59 - 0.45) 0.752 2010

-0.21 (-1.65 - 1.15) 0.806 2012 0.29 (-0.47 - 1.05) 0.446 2011 0.37 (-0.35 - 1.12) 0.33 2012 -0.04 (-0.81 - 0.68) 0.914 2011

0.75 (-0.67 - 2.18) 0.314 2013 -0.61 (-1.47 - 0.22) 0.15 2012 0.09 (-0.8 - 0.93) 0.816 2013 0.06 (-0.43 - 0.53) 0.812 2012

0.49 (-0.21 - 1.15) 0.164 2014 -0.26 (-1.41 - 0.8) 0.66 2013 0.35 (0.02 - 0.71) 0.042 2014 -0.29 (-0.78 - 0.2) 0.25 2013

1.16 (0.17 - 2.07) 0.024 2009 0.37 (-0.29 - 0.93) 0.246 2014 1.22 (-0.08 - 2.29) 0.054 2009 0 (-0.31 - 0.34) 0.974 2014

0.49 (-0.21 - 1.13) 0.156 2010 0.3 (-0.15 - 0.74) 0.204 2009 0.97 (0.12 - 1.75) 0.018 2010 0.15 (-0.31 - 0.56) 0.534 2009

1.53 (0.82 - 2.29) 0.001 2011 -0.04 (-0.41 - 0.36) 0.824 2010 1.04 (0.2 - 1.74) 0.002 2011 -0.07 (-0.47 - 0.3) 0.746 2010

0.82 (-0.54 - 2.11) 0.226 2012 0.07 (-0.46 - 0.57) 0.77 2011 1.02 (0.4 - 1.68) 0.002 2012 0.18 (-0.31 - 0.7) 0.478 2011

-0.8 (-1.87 - 0.28) 0.154 2009 0.66 (-0.17 - 1.43) 0.112 2012 1.35 (-0.82 - 3.63) 0.242 2009 0.44 (0 - 0.95) 0.084 2012

-0.21 (-0.81 - 0.38) 0.464 2010 0.47 (-0.43 - 1.46) 0.302 2013 -0.43 (-1.07 - 0.19) 0.17 2010 0.56 (0.18 - 0.94) 0.008 2013

-0.84 (-1.69 - -0.06) 0.058 2011 0.11 (-0.32 - 0.56) 0.668 2014 -1.51 (-2.29 - -0.74) 0.001 2011 0.05 (-0.15 - 0.25) 0.66 2014

-1.85 (-2.7 - -1.01) 0.001 2012 -0.96 (-2.5 - 0.67) 0.246 2009 -1.36 (-1.85 - -0.76) 0.001 2012 0.55 (-0.81 - 1.79) 0.41 2009

0.2 (-0.9 - 1.25) 0.75 2013 0.51 (-0.53 - 1.34) 0.31 2010 0.19 (-0.23 - 0.52) 0.32 2013 -0.03 (-0.74 - 0.6) 0.946 2010

0.26 (-0.33 - 0.73) 0.332 2014 1.85 (-0.18 - 3.86) 0.074 2011 -0.08 (-0.34 - 0.18) 0.576 2014 1.18 (-0.08 - 2.57) 0.092 2011

-1.55 (-2.68 - -0.45) 0.01 2009 -0.11 (-0.85 - 0.59) 0.796 2012 1.17 (-0.94 - 3.47) 0.296 2009 0.43 (-0.03 - 0.82) 0.072 2012

0.29 (-0.41 - 0.98) 0.412 2010 -0.01 (-0.9 - 0.81) 0.98 2013 0 (-0.72 - 0.65) 0.99 2010 -0.03 (-0.41 - 0.3) 0.882 2013

-1.87 (-3 - -0.8) 0.001 2011 0.43 (0.01 - 0.87) 0.058 2014 -2.32 (-3.45 - -1.32) 0.001 2011 0.15 (-0.09 - 0.38) 0.21 2014

-1.14 (-2 - -0.27) 0.006 2012 2.46 (0.63 - 4.36) 0.014 2009 -1.15 (-1.7 - -0.57) 0.001 2012 -1.24 (-4.2 - 1.91) 0.44 2009

-1.08 (-2.36 - 0.15) 0.096 2013 2.65 (1.15 - 4.42) 0.002 2010 -1.17 (-1.77 - -0.65) 0.001 2013 2.33 (1.01 - 3.76) 0.002 2010

-0.23 (-0.9 - 0.35) 0.514 2014 3.8 (1.83 - 6.04) 0.002 2011 -0.57 (-0.87 - -0.26) 0.001 2014 5.32 (3.25 - 7.65) 0.001 2011

-0.4 (-0.89 - 0.01) 0.076 2009 1.67 (-0.7 - 4.14) 0.176 2012 -0.17 (-0.61 - 0.29) 0.422 2009 3.06 (1.43 - 4.62) 0.001 2012

-0.11 (-0.51 - 0.26) 0.562 2010 1.78 (-1.45 - 5.21) 0.282 2013 -0.32 (-0.7 - 0.08) 0.1 2010 2.21 (0.76 - 3.73) 0.001 2013

0.2 (-0.29 - 0.68) 0.408 2011 3.29 (2 - 4.59) 0.001 2014 0.21 (-0.34 - 0.75) 0.418 2011 3.29 (2.42 - 4.02) 0.001 2014

0.33 (-0.37 - 1.07) 0.364 2012 0.18 (-0.23 - 0.58) 0.394 2012

0.39 (-0.32 - 1.06) 0.26 2013 0.52 (0.15 - 0.88) 0.01 2013

0.1 (-0.27 - 0.52) 0.628 2014 0.14 (-0.09 - 0.35) 0.268 2014

0.04 (-0.02 - 0.12) 0.31 2009 0.11 (0.05 - 0.19) 0.001 2009

0.02 (-0.04 - 0.08) 0.518 2010 0.04 (-0.01 - 0.09) 0.144 2010

-0.05 (-0.15 - 0.02) 0.242 2011 -0.07 (-0.17 - 0.01) 0.104 2011

0.06 (-0.05 - 0.15) 0.256 2012 -0.03 (-0.1 - 0.03) 0.32 2012

-0.01 (-0.15 - 0.15) 0.89 2013 -0.01 (-0.07 - 0.06) 0.782 2013
-0.09 (-0.15 - -0.02) 0.002 2014 -0.06 (-0.1 - -0.02) 0.002 2014

Site, 
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Site, 
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Season, 
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Body 
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Table S5.6. Model output from within-site models  

 

 

Site Specific Models 

Factor Estimate pMCMC Model Factor Estimate pMCMC Model Factor Estimate pMCMC Model Factor Estimate pMCMC Model 
-0.09 (-1.37 - 1.29) 0.88 Gordale -0.02 (-2.68 - 2.6) 0.986 Gordale 0.06 (-0.8 - 0.93) 0.878 Gordale -0.06 (-0.9 - 0.77) 0.912 Gordale

-0.23 (-1.11 - 0.58) 0.612 Maresfield 0.01 (-0.39 - 0.39) 0.962 Haddon -0.21 (-0.72 - 0.23) 0.396 Maresfield -0.16 (-0.47 - 0.15) 0.31 Haddon

-0.22 (-1.46 - 0.97) 0.734 Rode Hall -0.29 (-1.31 - 0.76) 0.596 Manor 0.14 (-0.37 - 0.67) 0.63 Rode Hall -0.04 (-0.91 - 0.87) 0.942 Manor

-0.21 (-1.43 - 0.91) 0.76 Maresfield -0.03 (-1.07 - 1.16) 0.942 Maresfield -0.65 (-1.27 - -0.03) 0.04 Maresfield -0.12 (-0.61 - 0.38) 0.626 Maresfield

-0.59 (-1.75 - 0.77) 0.35 Rode Hall 0.16 (-0.51 - 0.78) 0.632 Rode Hall -0.06 (-0.63 - 0.5) 0.79 Rode Hall -0.02 (-0.36 - 0.29) 0.93 Rode Hall

Year, 2012 -0.47 (-0.87 - -0.06) 0.024 Haddon 0.47 (-1.01 - 1.83) 0.502 Gordale Year, 2012 -0.63 (-0.96 - -0.3) 0.001 Haddon 0.19 (-0.3 - 0.68) 0.446 Gordale

0.12 (-0.26 - 0.47) 0.534 Haddon 0.15 (-0.11 - 0.44) 0.286 Haddon -0.07 (-0.47 - 0.29) 0.686 Haddon 0.09 (-0.12 - 0.35) 0.466 Haddon

-0.12 (-1.38 - 1.11) 0.83 Manor -0.03 (-0.75 - 0.73) 0.936 Manor -0.96 (-3.1 - 1.19) 0.384 Manor 0.15 (-0.58 - 0.92) 0.702 Manor

0.61 (0.29 - 0.92) 0.001 Haddon 0.52 (-0.2 - 1.18) 0.124 Maresfield 0.47 (0.14 - 0.76) 0.002 Haddon 0.09 (-0.26 - 0.46) 0.626 Maresfield

0.62 (-0.63 - 1.79) 0.32 Manor 0.09 (-0.38 - 0.63) 0.724 Rode Hall -0.96 (-3.14 - 1.17) 0.394 Manor 0.26 (0.03 - 0.53) 0.036 Rode Hall

0.52 (-0.89 - 2.02) 0.476 Gordale -0.72 (-2.9 - 1.22) 0.464 Gordale -0.29 (-0.99 - 0.44) 0.434 Gordale 0.15 (-0.97 - 1.2) 0.78 Gordale

-0.9 (-1.34 - -0.44) 0.001 Haddon 0.28 (-0.29 - 0.78) 0.306 Haddon -1 (-1.46 - -0.6) 0.001 Haddon 0.38 (0.01 - 0.73) 0.038 Haddon

-0.38 (-1.28 - 0.48) 0.424 Manor 0.03 (-0.77 - 0.73) 0.92 Maresfield -0.77 (-1.55 - 0.05) 0.058 Manor 0.24 (-0.08 - 0.63) 0.19 Maresfield

-0.53 (-1.55 - 0.56) 0.336 Maresfield 0.33 (-0.07 - 0.74) 0.128 Rode Hall -0.56 (-1.02 - -0.11) 0.012 Maresfield 0.1 (-0.12 - 0.34) 0.392 Rode Hall

0.29 (-0.24 - 0.75) 0.27 Rode Hall 3.73 (-0.21 - 8.01) 0.076 Gordale 0.13 (-0.16 - 0.37) 0.318 Rode Hall 2.75 (0.77 - 4.84) 0.01 Gordale

-0.25 (-2.95 - 2.14) 0.844 Gordale 3.15 (2.13 - 4.18) 0.001 Haddon -0.44 (-1.14 - 0.28) 0.216 Gordale 3.46 (2.71 - 4.38) 0.001 Haddon

-0.87 (-1.33 - -0.35) 0.001 Haddon 3.16 (0.23 - 6.12) 0.048 Manor -0.84 (-1.28 - -0.4) 0.001 Haddon 3.37 (-0.17 - 6.82) 0.056 Manor

-1.92 (-3.64 - -0.26) 0.018 Manor 3.49 (0.98 - 5.78) 0.004 Maresfield -2.24 (-4.26 - -0.08) 0.038 Manor 4.2 (2.8 - 5.63) 0.001 Maresfield

-1.16 (-2.13 - -0.18) 0.028 Maresfield 3.59 (1.59 - 5.5) 0.001 Rode Hall -1.02 (-1.47 - -0.6) 0.001 Maresfield 3.02 (1.99 - 4) 0.001 Rode Hall

-0.36 (-1.04 - 0.29) 0.3 Rode Hall -0.56 (-0.91 - -0.23) 0.004 Rode Hall

-0.16 (-1.21 - 0.97) 0.802 Gordale 0.12 (-0.29 - 0.66) 0.636 Gordale

-0.08 (-0.32 - 0.2) 0.54 Haddon -0.08 (-0.3 - 0.18) 0.538 Haddon

0.54 (-0.33 - 1.42) 0.232 Manor 0.59 (-0.36 - 1.45) 0.174 Manor

0.34 (-0.48 - 1.21) 0.426 Maresfield 0.15 (-0.21 - 0.57) 0.446 Maresfield

0.15 (-0.25 - 0.6) 0.524 Rode Hall 0.27 (0.05 - 0.51) 0.024 Rode Hall

-0.09 (-0.28 - 0.06) 0.23 Gordale -0.04 (-0.13 - 0.05) 0.412 Gordale

0.03 (-0.01 - 0.07) 0.148 Haddon 0.03 (0 - 0.07) 0.06 Haddon

-0.02 (-0.13 - 0.1) 0.754 Manor 0.02 (-0.09 - 0.14) 0.68 Manor

-0.05 (-0.16 - 0.07) 0.332 Maresfield -0.07 (-0.13 - 0) 0.056 Maresfield

-0.07 (-0.15 - -0.01) 0.056 Rode Hall -0.05 (-0.09 - -0.01) 0.008 Rode Hall

Body condition
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present

Intercept
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present

Intercept

Year, 2011

Year, 2010

Season, 

Summer

Season, 

Autumn
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Figure S5.7. Raw data, interactions selected for final longitudinal models A. 
Season:year B. Sex:year C. Body condition:year. Bar graphs represent mean +/- SE 

of raw H. polygyrus intensity per category; Points represent raw values with 
regression slopes. 
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Figure S5.8. Age structure of populations by months across years included in this 

study. Stacked bars represent the percentage of captures during the month and year 

indicated which represent given age classes. 
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