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Abstract 
 

 
DNA sequences that regulate gene expression are marked by distinct 

chromatin architectures that segregate these functional elements from the 

surrounding genome. In mammals, DNA methylation is prevalent throughout the 

genome and is repressive to transcription. However, the majority of gene 

promoters are associated with regions of CG- and CpG-rich DNA called CpG 

islands (CGIs), which are unmethylated and permissive to transcription. 

Although previous studies have shown that CGIs act as platforms for the 

recruitment of both active and repressive chromatin-modifying activities, it 

remains only partially understood how mechanistically the chromatin 

environment at CGIs is established. To address this, an unbiased proteomics 

approach was adopted to generate an inventory of CGI-binding proteins with 

the aim of understanding how binding to CGIs influences promoter function. In 

parallel to this, a candidate approach was used to gain a greater understanding 

of how the chromatin landscape is established at distal regulatory regions called 

enhancers. Enhancers are typically associated with monomethylation of H3K4, 

placed by the histone methyltransferases (HMTs) MLL3 and MLL4, and with 

acetylation of H3K27, placed by the histone acetyltransferase (HAT) CBP and 

its paralogue p300. To understand how MLL3 and MLL4 contribute to enhancer 

function, the MLL3/MLL4 complexes were purified from mammalian cells and 

interaction partners were analysed by mass spectrometry to determine complex 

composition. To address how CBP contributes to the chromatin environment at 

enhancers, an in vitro domain mapping approach was developed using purified 

CBP and recombinant nucleosome templates. This showed that the CBP TAZ2 

domain, located downstream of the catalytic HAT domain, is required for 

efficient acetylation of H3K27 in chromatin and that this is mediated through the 

TAZ2 domain driving association with nucleosomes via sequence-independent 

interaction with DNA. Further work showed that the TAZ2 domain is important 

for stable binding to chromatin in vivo and facilitates specific acetylation of 

H3K27 to activate transcription from regulatory elements. Together, this work 

elucidates a novel mechanism by which CBP HAT activity is selective for 

H3K27, forming the basis of a model in which mechanisms that determine HAT 

substrate specificity are vital to ensure robust regulation of gene expression.  
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Lay summary 
 

 
Every cell in a multicellular organism contains the same genetic information. A 

major question in biology is how this identical information can be used to give 

rise to a large range of different cell types. Ultimately, this is achieved by 

controlling which genes are switched on and off in each cell, with each cell type 

expressing a different set of genes that defines their identity. 

 

The genetic information in cells is encoded in DNA, which is wound around 

proteins to form a packaged structure called chromatin. The highly packaged 

nature of chromatin means that genes can become relatively inaccessible, so 

that the cell is unable to switch genes on. To overcome this inaccessibility, the 

chromatin undergoes chemical modification to generate regions of more open 

chromatin, where genes can be activated more readily. These modifications to 

chromatin are carried out by enzymes, but it is still unclear how these enzymes 

are controlled so that individual genes are switched on or off in the right cells 

and at the right time. 

 

During my PhD, I used multiple techniques to try to understand how some of 

these chromatin-modifying enzymes are regulated. First, I tried to isolate 

regions of genes that control gene expression to generate an inventory of all of 

the proteins that bind to them. The purpose of this was to determine if there are 

factors present at gene regulatory elements that might be important but that had 

previously been overlooked. My work identified several possible proteins that 

might be involved in regulating gene expression that will be important to follow 

up in future studies.  

 

Second, I focussed on a chromatin-modifying enzyme that is known to activate 

genes to find out how this protein contributes to the highly complex process of 

switching genes on. I found that this enzyme contains a region that binds to 

DNA, and controls how it modifies chromatin and alters gene expression. This 

chromatin-modifying enzyme has a role in diseases such as cancer, so this 

work helping to understand how it is regulated may help us uncover how the 

enzyme is involved in disease and design new therapies in the future. 
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1. Introduction 
 

 

1.1 Chromatin and transcriptional regulation 
1.1.1 Chromatin is a complex of DNA and histone proteins 
 

DNA, originally called “nuclein”, was first isolated by Friedrich Miescher in 1869 

from the nuclei of lymphocytes (Miescher-Rüsch, 1871). Ten years later, in 

1879, Walther Flemming used aniline dyes to stain structures within the nucleus 

that he named “chromatin” and believed to correspond to the DNA isolated by 

Miescher (Flemming, 1879). This chromatin was later found to be identical with 

chromosomes, which were found by Theodor Boveri to be continuous entities 

throughout the cell cycle and central in heredity (Boveri, 1904). In the 1880s, 

Albrecht Kossel purified from erythrocyte nuclei a highly basic protein that was 

bound to nucleic acid, which he named “histone” (Kossel, 1884). Later analysis 

of the components of chromosomes showed that the vast majority of 

chromosome mass corresponds to nucleic acid in complex with histone protein 

(Mirsky and Ris, 1947). This DNA-histone complex, which is now referred to as 

chromatin, is the form in which DNA is packaged in the eukaryotic nucleus. 

Chromatin is divided into two main classes, called euchromatin and 

heterochromatin, intially identified by their differential staining properties (Heitz, 

1928). Heterochromatin is relatively condensed, and as early as 1929 was 

found to comprise the gene-poor fraction of chromosomes (Heitz, 1929). 

Euchromatin, by contrast, is decondensed, gene-rich and associated with the 

actively transcribed regions of the genome. The concept that chromatin is 

closely linked with the activity and function of DNA therefore has a well 

established history in chromatin biology. 

 

 

1.1.2 Chromatin and transcription 
 

The fundamental repeating unit of chromatin is the nucleosome (Kornberg, 

1974; Kornberg and Thomas, 1974), which comprises 147 base pairs (bp) of 

DNA wrapped twice around an octamer of two copies of each of the four core 
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histones H2A, H2B, H3 and H4 (Luger et al., 1997). Histone proteins are highly 

conserved between species, and are made up of a core histone fold domain 

and an unstructured N-terminal tail region that extends from the surface of the 

nucleosome (Luger et al., 1997). The N-terminal tails of histones H2A and H4 

protrude from the top and bottom surfaces of the nucleosome, whilst the H3 and 

H2B tails protrude between the gyres of DNA, with the tail of histone H3 

emerging proximal to the entry/exit site of DNA, and that of H2B emerging distal 

to this site (Davey et al., 2002; Luger et al., 1997). Adjacent nucleosomes in 

vivo are separated by linker DNA, which varies in length between approximately 

20 bp and 90 bp (Szerlong and Hansen, 2011). This linker DNA can be bound 

by a linker histone called histone H1, which comprises a central winged helix 

DNA binding domain, a short unstructured N-terminal region, and a longer and 

highly basic C-terminal domain (Allan et al., 1980; Ramakrishnan et al., 1993). 

The winged helix domain binds to the nucleosome core DNA at the DNA 

entry/exit site and the C-terminal domain makes contacts with linker DNA 

(Bednar et al., 2017), with these linker histone interactions thought to be 

important for the formation of higher order chromatin structures such as the 30 

nm chromatin fibre (Robinson and Rhodes, 2006). 

 

The chromatin structure of eukaryotic DNA reduces access to the underlying 

sequence, and therefore affects all processes that use DNA as a substrate, 

including DNA repair, recombination, and transcription. Chromatin structure has 

an inherently repressive effect on transcription. This was first demonstrated with 

observations from pea embryos showing that whilst free DNA is able to support 

transcription following incubation with extracts containing RNA polymerase 

enzymes, a chromatin template is unable to do so (Huang and Bonner, 1962). 

This was confirmed by in vitro transcription assays using reconstituted 

chromatin templates, which showed that the presence of nucleosomes inhibits 

transcriptional initiation (Knezetic and Luse, 1986; Lorch et al., 1987). This 

repressive effect is also apparent in vivo, where depletion of histones and 

nucleosomes in Saccharomyces cerevisiae is sufficient to activate expression 

of the gene PHO5 (Han and Grunstein, 1988). These observations of the effect 

of nucleosome occupancy on transcription showed the importance of access to 

DNA in transcriptional regulation and suggested the existence of mechanisms 

by which the cell influences chromatin structure to regulate transcription. 
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Transcription in higher eukaryotes is carried out by three RNA polymerase 

enzymes (RNAPs), RNAPI, RNAPII and RNAPIII, which were first purified by 

high salt extraction from sea urchin embryos (Roeder and Rutter, 1969). RNAPI 

is dedicated to the transcription of large ribosomal RNA (rRNA) genes, and 

RNAPIII to the transcription of 5S rRNA, transfer RNA (tRNA) and other small 

RNAs (reviewed in Roeder, 2019). Protein-coding genes, by contrast, are 

transcribed by RNAPII through binding of the transcriptional machinery to 

regulatory elements. 

 

Genes transcribed by RNAPII in mammals typically possess two distinct types 

of regulatory elements (Maston et al., 2006). These elements are promoters, 

which are proximal to the transcription start site (TSS) of a gene and comprise a 

core promoter along with promoter proximal elements, and distal regulatory 

elements, including enhancers, silencers and insulators. Transcription requires 

the assembly of RNAPII on the core promoter together with a pre-initiation 

complex of associated general transcription factors, including TFIIA, TFIIB, 

TFIID, TFIIE, TFIIF and TFIIH, which in total comprise some 44 different 

subunits (Roeder, 2019). Recruitment of RNAPII and the initiation of 

transcription are regulated by sequence-specific DNA binding proteins called 

transcription factors (Blau et al., 1996), which bind at promoter proximal 

elements and enhancers. Transcription factors can recruit the large multi-

subunit complex called Mediator, which is thought to function at least in part by 

acting as a bridge between the promoter and distal enhancer regions to 

facilitate regulation by enhancers (Allen and Taatjes, 2015). In addition, 

transcription factors bound at promoters and enhancers depend on coactivators 

to stimulate transcription. A major mechanism by which coactivators function is 

to modify chromatin, allowing the transcriptional machinery to bind chromatin 

more readily and to transcribe the underlying DNA.  
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1.2 Post-translational modification of histone proteins 
 

A subset of transcriptional coactivator proteins comprises enzymes that function 

to post-translationally modify proteins. One target of coactivator proteins is 

histones, which are subject to extensive post-translational modification in the 

cell in ways that are thought to influence transcription. The unstructured N-

terminal tails of histones, and to a lesser extent the histone cores, have been 

found to undergo modification, including acetylation, phosphorylation, 

methylation, and ubiquitylation (Kouzarides, 2007). 

 

There are several hypotheses as to how histone modifications function in 

transcriptional regulation. Negatively charged groups such as acetylation and 

phosphorylation could have a direct effect on chromatin structure by weakening 

the interactions between basic histones and acidic DNA, thereby allowing 

transcription factors and the transcriptional machinery greater access to the 

underlying DNA sequence (Zentner and Henikoff, 2013). A wider range of 

histone modifications can also be bound by specific domains within effector 

proteins, which can in turn function to influence transcription. The vast array of 

possible combinations of histone modifications at regulatory regions led to the 

formulation of the “histone code” hypothesis (Jenuwein and Allis, 2001; Turner, 

2000), in which combinatorial recognition of sets of histone modifications could 

give rise to particular transcriptional outputs. However, it remains unclear to 

what extent many histone modifications are causative in regulating transcription 

rather than simply reflecting or reinforcing an existing transcriptional state 

(Henikoff and Shilatifard, 2011). 

 

The following sections will describe in further detail what is known about the 

establishment and function of the major histone modifications that will be 

referred to in this thesis, namely histone lysine acetylation and histone lysine 

methylation. 
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1.3 Histone lysine acetylation 
1.3.1 Histone acetylation is associated with active transcription 
 

Acetylation of lysine residues in histone proteins was first demonstrated by 

Vincent Allfrey in 1964 (Allfrey et al., 1964) by labelling newly incorporated 

acetyl groups in cells with 14C. Histone acetylation is generally considered to be 

associated with active transcription, and this connection was already made in 

1964 as Allfrey also showed that acetylation reduced the inhibitory effect of 

histones on transcription in vitro (Allfrey et al., 1964). A correlation was found 

between histone acetylation and gene transcription in cells by the observation 

that regions of DNA that are preferentially digested by DNaseI, and are 

therefore thought to be more accessible in the nucleus, are associated both 

with both active gene sequences and acetylated histones (Sealy and Chalkley, 

1978; Vidali et al., 1978). Further work by Allfrey taking advantage of residue 

cysteine-110 in the core of histone H3, which is exposed in accessible but not 

inaccessible chromatin (Prior et al., 1983), showed that active gene sequences 

could be bound to an organo-mercury column and that associated histones 

were also acetylated (Allegra et al., 1987; Chen and Allfrey, 1987). Early 

chromatin immunoprecipitation (ChIP) experiments using antibodies 

recognizing acetylated histone H4 showed that histone acetylation was found at 

the actively transcribed α-D globin gene in chicken embryo erythrocytes but not 

at the inactive ovalbuminin gene (Hebbes et al., 1988). These results clearly 

indicated a link between histone acetylation and active transcription. 

 

All four core histone proteins can be acetylated, with acetylation occurring 

primarily in the unstructured N-terminal tails, but also at several lysine residues 

in the histone core domains (reviewed in Shahbazian and Grunstein, 2007). 

The best-studied targets of histone acetylation are histones H3 and H4. H3 

acetylation has been detected at numerous residues, including H3K9, H3K14, 

H3K18, H3K23 and H3K27 in the N-terminal tail region (Shahbazian and 

Grunstein, 2007), and H3K56, H3K64 and H3K122 in the globular domain (Di 

Cerbo et al., 2014; Masumoto et al., 2005; Tropberger et al., 2013). The histone 

H4 tail is acetylated at H4K5, H4K8, H4K12 and H4K16, and the globular 

domain of H4 is acetylated at H4K91 (Ye et al., 2005). These histone 
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acetylation modifications are placed by multiple histone acetyltransferase (HAT) 

enzymes, which will be discussed in more detail below. 

 

The N-terminal tails of histones H3 and H4 are not essential in S. cerevisiae, 

suggesting that cells can live in the absence of histone tail acetylation (Durrin et 

al., 1991; Mann and Grunstein, 1992). However, histone acetylation is thought 

to be closely and causally linked to transcription, with deletion of the N-terminal 

tail of histone H4 leading to greatly reduced induction of gene expression 

(Durrin et al., 1991). Moreover, experiments in which the tails of H3 and H4 are 

swapped in vivo suggest that the two histone tails have overlapping but non-

redundant roles in regulating gene expression in budding yeast (Ling et al., 

1996). Consistent with the possibility that different histone tails have specific 

functions, certain histone acetylation marks are thought to have distinct roles in 

gene expression regulation. H4K16ac is thought to play a unique role in 

opposing the formation of higher order chromatin structures that would be 

expected to impact gene accessibility and expression (Shogren-Knaak et al., 

2006). Moreover, H3K27ac is thought to distinguish active from inactive 

regulatory elements in mammalian cells (Creyghton et al., 2010; Rada-Iglesias 

et al., 2011). Indeed, mapping of H3K27ac, and of the CBP/p300 enzyme that 

places this mark, has been used to accurately predict novel functional 

enhancers (Heintzman et al., 2007, 2009). This suggests that H3K27ac might 

also have a unique function in allowing the cell to discriminate between genes 

that should be active or inactive. An alternative possibility, however, is that 

compared to other acetylation marks, H3K27ac can be mapped more closely to 

active regulatory elements because of a better availability of specific, ChIP 

grade antibodies against this modification. Nevertheless, work to understand 

how H3K27ac, which clearly correlates with gene regulatory elements, is 

regulated and what role this modification plays in the acetylation landscape will 

have a profound impact on our understanding of how chromatin modifications 

influence gene expression. 
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1.3.1.1 Histone acetylation: charge neutralisation model 

 

Several models have emerged to provide a mechanistic basis for the correlation 

between histone acetylation and transcriptional activity (Zentner and Henikoff, 

2013). As mentioned above, in the first model acetylation of positively charged 

lysine side chains weaken the interaction between histone proteins and 

negatively charged DNA, allowing the DNA to become more accessible to 

transcription factors and the transcriptional machinery. Consistent with this 

model in which charge neutralisation enhances DNA accessibility, reconstitution 

of chromatin using acetylated histones has been shown to facilitate access for 

the DNA-binding transcription factors USF, HSF and TFIIIA to their cognate 

sequences (Lee et al., 1993; Nightingale et al., 1998; Vettese-Dadey et al., 

1996). Moreover, mutation of lysine residues in the N-termini of H3 and H4 in S. 

cerevisiae shows that whilst these lysines are important for upregulation of 

transcription, individual residues within the same tail are largely interchangeable 

and function cumulatively (Dion et al., 2005; Martin et al., 2004). Furthermore, 

acetylation of the histone H3 globular domain at H3K64 and H3K122, residues 

located on the lateral surface of the histone octamer close to DNA, facilitates 

nucleosome eviction and mobilisation by ATP-dependent chromatin remodelling 

proteins (Di Cerbo et al., 2014; Tropberger et al., 2013), consistent with a 

structural role for histone acetylation in transcriptional regulation. 

 

 

1.3.1.2 Histone acetylation: antagonism with methylation 

 

A second model for how at least some forms of histone acetylation function to 

regulate transcription is by competing with alternative histone modifications, 

particularly methylation. Several histone lysine residues, including H3K9, 

H3K27 and H3K64 can undergo methylation as well as acetylation (Daujat et 

al., 2009; Kouzarides, 2007), and methylation and acetylation are mutually 

exclusive at the same site on the same histone tail. Trimethylation of these 

residues (H3K9me3, H3K27me3, H3K64me3) is associated with the repression 

of gene expression, with H3K9me3 and H3K64me3 found at transcriptionally 

inactive regions such as pericentromeric heterochromatin (Daujat et al., 2009; 

Lachner et al., 2001; Lange et al., 2013; Nakayama et al., 2001; Rea et al., 



 27 

2000), and H3K27me3 found at genes that are repressed by the Polycomb 

repressive system (Boyer et al., 2006; Schwartz et al., 2006). One possibility, 

therefore, is that acetylation of these sites facilitates active transcription by 

preventing repression through methylation. 

 

Such a competition model is consistent with observations of an antagonism 

between H3K27me3 and H3K27ac in vivo, such that genes switch between 

acetylation and methylation of H3K27 depending on their transcriptional status 

(Pasini et al., 2010). Nevertheless, mutation of the H3K27 residue to arginine in 

Drosophila results in derepression of Polycomb target genes such as Hox 

genes, leading to homeotic transformations that phenocopy mutations in 

repressive Polycomb proteins, but does not lead to phenotypes that might be 

predicted to arise from loss of transcriptional activation caused by the absence 

of H3K27ac (Pengelly et al., 2013). However, these observations from H3K27R 

mutations would also be consistent with a model in which, once transcription 

has been established by binding of transcription factors, H3K27ac is not 

absolutely required for its continued maintenance, and in which there is a 

degree of redundancy between histone acetylation marks, such that acetylation 

of other histone residues can compensate for the loss of H3K27ac. Moreover, 

the lack of a phenotype associated with loss of transcriptional activation in 

H3K27R mutant cells does not preclude the possibility of more subtle 

phenotypes that cannot be detected at the level of gross Drosophila anatomy. 

Together these results, although suggestive of a correlative antagonism 

between repressive methylation and active acetylation, do not clearly indicate a 

mechanistic link between prevention of methylation and activation of 

transcription. Furthermore, this model cannot account for the correlation of 

other acetylated histone residues, which are not otherwise methylated, with 

active gene expression. 

 

 

1.3.1.3 Histone acetylation: binding by bromodomains 

 

A third, though not mutually exclusive, model postulates that histone acetylation 

functions as part of a histone code by directly recruiting transcriptional effector 

proteins through domains that specifically bind histone acetylation. Histone 



 28 

acetylation can be bound by a specific domain called the bromodomain 

(Dhalluin et al., 1999; reviewed in Marmorstein and Zhou, 2014). 

Bromodomains comprise a left-handed four-helix bundle in which inter-helical 

loops form a hydrophobic pocket that binds the acetyl-lysine residue with 

moderate affinity, with typical dissociation constants (Kd) in the range of 10-

1000 µM (Filippakopoulos and Knapp, 2012). 

 

Bromodomains are found in a large number of chromatin-binding proteins, 

including components of the core transcriptional machinery, chromatin 

remodelling proteins, and in HATs, the enzymes that place histone acetylation. 

The TFII250 subunit of the TFIID general transcription factor contains a pair of 

bromodomains arranged in tandem, with the binding pockets of the two 

bromodomains arranged such that each domain is thought to bind one acetyl-

lysine residue in diacetylated histone tail peptides (Jacobson et al., 2000). 

Indeed, whilst H4 tail peptide singly acetylated at H4K16 is bound by the 

tandem bromodomains with Kd of approximately 40 µM, doubly acetylated H4 

peptides bind with affinity in the range of 1-6 µM (Jacobson et al., 2000). These 

results suggest that bromodomain binding to histone acetylation could recruit or 

stabilise the binding of the transcriptional machinery at acetylated gene 

regulatory elements. 

 

Chromatin remodellers are ATPase enzymes that use the energy from ATP 

hydrolysis to slide, evict or exchange nucleosomes (Becker and Workman, 

2013). The SWI/SNF family of chromatin remodellers, which includes BRM and 

BRG1 in humans, are characterised by the presence of a C-terminal 

bromodomain, and bind acetylated lysine tails, with some preference for 

H3K14ac (Morrison et al., 2017; Shen et al., 2007; Singh et al., 2007). Another 

role for histone acetylation, therefore, could be to increase the affinity of 

nucleosome remodelling proteins for substrate nucleosomes. This would aid 

nucleosome remodelling or depletion at regulatory elements and facilitate 

transcription factor binding to accessible DNA. 

 

Bromodomains are also found in several HAT enzymes, including the enzymes 

GCN5 and its paralogue PCAF, as well as CBP and its paralogue p300 

(Marmorstein and Zhou, 2014). The bromodomain of GCN5 binds H4 tail 
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peptides modified with H4K16ac, and binding of the bromodomain stabilises the 

HAT on acetylated nucleosome array substrates (Hassan et al., 2002; Owen et 

al., 2000). The CBP/p300 bromodomains have been shown to bind numerous 

acetylated lysines in both H3 and H4 tails (Filippakopoulos and Knapp, 2012). 

Bromodomains in HATs may therefore function to recruit these enzymes to 

sites that have previously been marked by acetylation, reinforcing a positive 

feedback loop. 

 

The importance of acetyl-lysine binding has recently been highlighted by the 

emergence of bromodomains as key targets for pharmacological inhibition 

(Marmorstein and Zhou, 2014). JQ1, a potent and selective inhibitor of BET 

(bromodomain and extra-terminal) family bromodomains, reduces the binding of 

the tandem bromodomains of proteins such as BRD4 to acetylated lysines and 

chromatin, and has dramatic anti-proliferative effects in acute myeloid 

leukaemia (AML) (Filippakopoulos et al., 2010; Zuber et al., 2011). Recent work 

has shown that inhibition of the bromodomain of CBP/p300 leads to a reduction 

in histone acetylation in vitro and in vivo, and could be an effective therapy in 

castration-resistant prostate cancer (Jin et al., 2017; Raisner et al., 2018). 

These results suggest that bromodomain binding to histone acetylation could be 

an important mechanism by which acetylation regulates gene expression. 

 

Nevertheless, it remains unclear to what extent acetyl-lysine binding by 

bromodomains contributes to histone acetylation function. The affinity of 

bromodomains for acetyl-lysine is relatively poor, and proteins such as GCN5 

appear to depend on transcription factors for recruitment (Kuo et al., 2000). In 

addition, despite reports that the CBP/p300 bromodomain binds to multiple 

acetylated lysines in histone peptides (Filippakopoulos and Knapp, 2012), in 

vitro pull down assays using nucleosome arrays show that p300 binding is not 

enhanced by acetylation of H4, and is not reduced by mutation of the acetyl-

lysine binding pocket or by a bromodomain-targeting compound (Raisner et al., 

2018). This raises the possibility that bromodomains may have important 

functions in addition to binding of histone acetylation. One possibility is that 

bromodomains bind acetyl-lysine residues in non-histone substrates. Indeed the 

bromodomain of CBP/p300 can bind to an acetylated form of the transcription 

factor and tumour suppressor protein p53 (Mujtaba et al., 2004). Alternatively, 
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there is growing evidence to suggest that some bromodomains have additional 

roles beyond binding acetyl-lysine. The bromodomain of p300 contributes to 

chromatin association regardless of the acetylation status of nucleosomes 

(Manning et al., 2001). The bromodomains of the BRM/BRG1 chromatin 

remodellers bind to DNA in a sequence-independent manner (Morrison et al., 

2017). Similarly, bromodomains of BET family proteins including BRDT, BRD2, 

BRD3 and BRD4 bind to DNA independent of sequence via a positively 

charged surface that is common to many bromodomains and distinct from the 

acetyl-lysine interaction pocket (Miller et al., 2016). These bromodomain-DNA 

interactions are important both for in vitro interactions with nucleosomes and for 

chromatin interactions in vivo, suggesting that chromatin binding by 

bromodomains is not solely dependent on binding to acetylated histones (Miller 

et al., 2016). 

 

Together, these results suggest that acetyl-lysine binding by bromodomains 

represents a mechanism by which histone acetylation function is mediated. 

However, the relatively low affinity of these interactions, together with the 

reported degeneracy of many bromodomains in terms of specificity of binding 

(Filippakopoulos and Knapp, 2012), suggests that histone acetylation is unlikely 

to represent a highly specific code that mediates protein recruitment, and may 

rather play a role in stabilising protein binding through multivalent interactions 

with chromatin. Nevertheless, the clear therapeutic value of bromodomain 

inhibitors suggests that these domains play an important role in vivo, although it 

has not been conclusively shown that such inhibitors function primarily through 

the inhibition of histone acetyl-lysine binding rather than through other 

mechanisms that might affect additional bromodomain functions. The precise 

contributions, therefore, of the three models described here for histone 

acetylation function remain to be fully elucidated. 
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1.3.2 Histone acetyltransferase (HAT) enzymes 
 

There are three broad families of HAT enzymes in eukaryotes, classified 

according to structural similarity: the GCN5-related histone N-acetyltransferases 

(GNAT) family, the MYST family, and the CBP/p300 family (Fig. 1.1). 

(Marmorstein and Zhou, 2014). The following sections will briefly describe 

members of these families, their substrate specificities and roles, particularly in 

relation to regulation of gene expression. 

 

 

1.3.2.1 GNAT family 

 

The first GNAT family member to be identified and cloned was HAT1 from S. 

cerevisiae (Kleff et al., 1995), which was later found to be a cytoplasmic HAT 

important for acetylation of newly synthesised histones prior to their deposition 

on chromatin (Parthun et al., 1996). However, the major step forward in the 

understanding of HAT function in transcriptional activation came from the 

purification of a HAT enzyme from macronuclei of the ciliated protozoan 

Tetrahymena thermophila (Brownell and Allis, 1995). This Tetrahymena HAT 

was found to be a homologue of the S. cerevisiae protein GCN5 (general 

control non-derepressible 5) (Brownell et al., 1996), which had previously been 

identified as a transcriptional co-activator in budding yeast (Marcus et al., 

1994). This provided the first mechanistic link between a HAT enzyme and 

transcriptional activation, and established GCN5 as the founder member of the 

GNAT family of HATs (Fig. 1A). 

 

Crystal structures of the HAT1 and GCN5 catalytic domains have been solved, 

showing a shared core structure comprising a three-stranded β-sheet and a 

long parallel α-helix, with divergent flanking regions that may account for the 

different substrate preferences of the two enzymes (Marmorstein and Zhou, 

2014). GCN5 uses a ternary complex mechanism for acetylation, in which 

acetyl coenzyme A (acetyl-CoA) and the substrate lysine residue are co-bound 

in the enzyme active site. A conserved glutamate residue in the catalytic site of 

GCN5 deprotonates the substrate lysine side chain, facilitating direct transfer 

  



 32 

 
Fig. 1.1: Mammals have three families of histone acetyltransferase enzymes. 
(A) Domain architecture of the GCN5 N-acetyltransferase HAT family in mice. 
(B) Domain architecture of the MYST HAT family. 
(C) Domain architecture of the CBP/p300 HAT family. 
Abbreviations: bromodomain (Bromo); C2HC-type zinc finger (C2HC); chromobarrel 
domain (CBD) CCHHC-type zinc finger (CCHHC); aspartate/glutamate-rich region (DE-
rich); histone acetyltransferase domain (HAT); kinase-inducible domain (KID)-
interacting domain (KIX); nuclear coactivator binding domain (NCBD); N-terminal part 
of Enok, MOZ or MORF domain (NEMM); plant homeodomain (PHD); RING finger 
(RING); serine-rich region (S-rich); serine/methionine-rich region (SM-rich); 
transcription adaptor zinc finger domain (TAZ); ZZ-type zinc finger (ZZ).  
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of an acetyl group from the co-bound acetyl-CoA (Tanner et al., 1999; Trievel et 

al., 1999). 

 

The budding yeast GCN5 protein acetylates histones (Kuo et al., 1996) and 

functions as part of the multi-subunit SAGA (Spt-Ada-GCN5 acetyltransferase) 

complex, with incorporation into this complex required for acetylation of 

nucleosomes (Grant et al., 1997). Mammalian GCN5, and its homologue PCAF 

(p300/CBP-associated factor), also form part of SAGA-like complexes (Martinez 

et al., 1998; Ogryzko et al., 1998). In vivo, GCN5/PCAF primarily acetylates 

H3K9 (Feller et al., 2015; Gates et al., 2017; Jin et al., 2011), and binds to most 

active genes genome-wide (Krebs et al., 2011; Wang et al., 2009). The SAGA 

complex is responsible for H3K9ac at the majority of active genes in both S. 

cerevisiae and human cells, and loss of GCN5 leads to reduced transcription at 

all tested genes in S. cerevisiae (Baptista et al., 2017; Bonnet et al., 2014). 

GCN5/PCAF complexes are thought to be recruited to target sites through 

interactions with transcription factors (Brown et al., 2001; McMahon et al., 

1998). In budding yeast, GCN5 is targeted to promoters through interaction with 

transcription factors such as GCN4 (Kuo et al., 2000). Moreover, the SAGA 

subunit TRRAP (Tra1 in budding yeast) interacts with sequence-specific DNA 

binding proteins including c-Myc and E1A in mammals, and is required for 

transformation of fibroblasts by c-Myc and E1A (McMahon et al., 1998). This 

indicates that interaction with SAGA is required for transcription factors to 

execute their gene expression programme. 

 

The importance of GCN5 in transcriptional regulation is underlined by 

observations that loss of GCN5 is lethal in mice, although PCAF mutants 

develop normally as a result of compensation by GCN5 (Xu et al., 2000; 

Yamauchi et al., 2000). Moreover, haematological malignancies driven by 

transcription factor fusion proteins, such as the MLL-AF9 fusion protein in acute 

myeloid leukaemia (AML), are dependent on GCN5 for proliferation, so that 

GCN5 could represent a valid pharmacological target in these cells (Tzelepis et 

al., 2016).  
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1.3.2.2 MYST family 

 

The MYST (named for the founder members MOZ, Ybf2, Sas2 and TIP60) 

family of acetyltransferases includes the mammalian HATs MOZ and its 

paralogue MORF, MOF, TIP60, and HBO1 (Fig. 1.1B) (Marmorstein and Zhou, 

2014). Structural elucidation of MYST family HATs showed a similar core 

structure to that of the GNAT family, with a conserved glutamate residue for 

lysine deprotonation (Yan et al., 2000). However, kinetic analysis of enzymatic 

activity demonstrated that MYST HATs catalyse acetylation via a different 

mechanism from GCN5, using a ping-pong mechanism in which a conserved 

cysteine residue forms an acetylated intermediate before transfer of the acetyl 

group to the substrate lysine (Yan et al., 2002). 

 

MYST HATs acetylate a range of histone substrate residues. MOZ/MORF 

acetylates H3K23 in small cell lung cancer cells (Simó-Riudalbas et al., 2015). 

HBO1 also acetylates H3K23, together with H3K14 and the N-terminal tail of 

histone H4 (Feng et al., 2016; Lalonde et al., 2013; MacPherson et al., 2019). 

MOF acetylates H4K16, and its Drosophila homologue plays a key role in the 

MSL dosage compensation complex in flies (Rea et al., 2007). TIP60 forms part 

of the NuA4 complex, which is conserved from yeast to humans, and in budding 

yeast primarily acetylates the histone H4 tail (Allard et al., 1999; Suka et al., 

2001). Similarly to GNAT HATs, MYST proteins such as MOF and TIP60 are 

recruited to promoters throughout the genome, with this general targeting of 

TIP60 potentially mediated by physical interactions with RNAPII (Wang et al., 

2009). However, in budding yeast NuA4 is also specifically recruited to target 

promoters by transcription factors such as Hsf1 in response to heat shock, to 

facilitate acetylation and transcriptional activation of target genes (Reid et al., 

2000). Such targeted recruitment is at least in part mediated by adaptor 

proteins such as TRRAP, which is a component of the NuA4 complex as well as 

SAGA (Brown et al., 2001). 

 

MYST proteins have been implicated in cancer, particularly in leukaemias 

(Yang, 2004). Translocations between the MOZ locus and both the CBP and 

p300 loci can generate MOZ-CBP and MOZ-p300 fusion proteins that contain 

two HAT domains and are important in driving leukaemogenesis (Borrow et al., 
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1996). Recent work has shown that HBO1 is required for leukaemia stem cell 

proliferation, and inhibition of HBO1 reduces H3K14ac and AML growth, so that 

HBO1 could be a feasible therapeutic target (MacPherson et al., 2019). 

 

 

1.3.2.3 CBP/p300 family 

 

p300 (E1A-associated 300 kDa protein) was first identified as an interaction 

partner of the adenoviral oncogenic transcription factor E1A (Whyte et al., 1989; 

Yee and Branton, 1985) and later found to have the properties of a 

transcriptional co-activator (Eckner et al., 1994). CBP (CREB-binding protein) 

was similarly identified as a co-activator protein that interacts with the 

phosphorylated form of the transcription factor CREB (cAMP response element 

binding protein) (Chrivia et al., 1993), and CBP and p300 were later found to be 

paralogues (Arany et al., 1994). Later work demonstrated that CBP and p300 

are HAT enzymes, and that their HAT activity is required for transcriptional co-

activation (Bannister and Kouzarides, 1996; Martinez-Balbás et al., 1998; 

Ogryzko et al., 1996) 

 

CBP/p300 represent a distinct family of HATs (Fig. 1.1C), with little sequence 

similarity with GNAT or MYST enzymes (Dancy and Cole, 2015). Unlike GNAT 

and MYST HATs, which have homologues from S. cerevisiae to humans, 

CBP/p300 are found almost exclusively in metazoans (Marmorstein and Zhou, 

2014), although examples of CBP/p300 homologues have been identified in 

protists such as Capsaspora owczarzaki, a close unicellular relative of animals 

(Sebé-Pedrós et al., 2011). 

 

The importance of CBP/p300 in animal development is shown by observations 

that homozygous knockouts of either CBP or p300 are embryonic lethal in mice, 

with lethality occurring between E8.5 and E10.5 (Oike et al., 1999; Tanaka et 

al., 1997; Yao et al., 1998). This also suggests that, despite their similarity, CBP 

and p300 cannot entirely compensate for one another in vivo. Germline 

mutation of one allele of either CBP or p300 leads to the rare genetic disorder 

Rubinstein-Taybi Syndrome (RSTS) (Hennekam, 2006; Petrij et al., 1995). 

RSTS is characterised by clinical features including intellectual disability, 



 36 

specific facial characteristics, and markedly broad thumbs and halluces 

(Hennekam, 2006). The association of RSTS with haploinsufficiency in CBP or 

p300 suggests that dosage of these genes is important in development, 

consistent with observations that amounts of CBP/p300 are limiting in cells 

(Kamei et al., 1996). Moreover, the lack of homozygous mutations in either CBP 

or p300 in patients suggests that total loss of either protein is incompatible with 

life. 

 

Consistent with the divergence in sequence between CBP/p300 and the GNAT 

and MYST families, the HAT domain of CBP/p300 also has a variant structure 

(Delvecchio et al., 2013; Liu et al., 2008). Crystal structures of the HAT domain 

reveal that it comprises a central seven-stranded β-sheet surrounded by nine α-

helices. The core of this domain contains a region that is structurally similar to 

other HAT domains, and functions in acetyl-CoA binding. The CBP/p300 HAT 

domain is preceded by a bromodomain and an unusual plant homeodomain 

(PHD)-RING finger, which interact closely with the HAT domain and form a 

catalytic core that is required for acetylation function (Delvecchio et al., 2013; 

Kalkhoven et al., 2002; Park et al., 2017). CBP/p300 has been proposed to 

catalyse acetylation via a Theorell-Chance “hit-and-run” ternary mechanism, 

which is distinguished from the ternary mechanism utilised by GNAT proteins in 

that, whilst an enzyme:substrate:acetyl-CoA ternary complex is generated as 

part of catalysis, this complex does not accumulate as a stable intermediate 

(Liu et al., 2008). 

 

CBP/p300 catalytic activity is regulated through several distinct mechanisms. 

First, the HAT domain contains a highly basic loop that is thought to fold back 

into an electronegative pocket in the catalytic site and inhibit the activity of the 

enzyme (Liu et al., 2008; Thompson et al., 2004). Trans-autoacetylation of this 

loop neutralises its positive charge and relieves inhibition (Liu et al., 2008; 

Ortega et al., 2018). Autoregulation is also achieved via a mechanism involving 

the PHD-RING finger of CBP/p300 (Delvecchio et al., 2013; Ortega et al., 

2018). The PHD and RING domains of CBP/p300 adopt non-canonical 

structures. PHD fingers are zinc finger domains that frequently contain an 

aromatic cage and function by binding to methylated lysine residues, 

particularly H3K4 (Fortschegger and Shiekhattar, 2011). The aromatic cage is 
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absent in the CBP/p300 PHD structure, and the PHD finger is interrupted by the 

insertion of the RING finger within a loop (Delvecchio et al., 2013). The RING 

finger is also non-canonical and contains only one zinc ion rather than the two 

that are typical for RING-type zinc fingers. Furthermore, the CBP/p300 RING 

finger possesses an extended loop that forms electrostatic interactions with the 

substrate-binding loop of the HAT domain and inhibits substrate binding. 

Interaction with activating transcription factors is thought to result in structural 

rearrangement of the RING finger that facilitates substrate access to the 

catalytic site (Delvecchio et al., 2013; Ortega et al., 2018). 

 

Finally, it has also been proposed that CBP/p300 is regulated by binding of 

enhancer RNAs (eRNAs) (Bose et al., 2017), short bi-directional transcripts that 

arise from enhancer regulatory regions. CBP was found to crosslink to RNA in 

cells, with bound RNAs mapping to CBP binding sites at enhancers. Binding 

experiments suggested that RNA interacts with the positively charged 

autoinhibitory loop of CBP, so that addition of RNA to enzymatic reactions 

resulted in a small increase in catalytic activity, potentially through displacement 

of this loop from the catalytic site of the enzyme (Bose et al., 2017). However, 

the role of RNAs in regulation of CBP/p300 remains controversial, as later work 

suggested that such regulation was an artefact resulting from denaturation of 

the zinc fingers within CBP due to inclusion of the metal ion chelating agent 

EDTA in enzyme purification buffers (Ortega et al., 2018). 

 

CBP/p300 has been shown to acetylate a wide range of histone substrates in 

vitro, including the N-terminal tails of H3 and H4, and the H3K64 and H3K122 

residues in the globular domain of H3 (An et al., 2002; Di Cerbo et al., 2014; 

Ogryzko et al., 1996; Tropberger et al., 2013). In vivo, CBP/p300 acetylates 

globular domain H3 residues (Di Cerbo et al., 2014; Tropberger et al., 2013), 

but the enzymes appear to have more narrow specificity towards histone tail 

than typically found in vitro, specifically acetylating H3K18, H3K27 and the N-

terminal tail of H2B (Jin et al., 2011; Pasini et al., 2010; Tie et al., 2009; Weinert 

et al., 2018). In addition to histone substrates, CBP/p300 acetylates a wide 

range of non-histone proteins (Dancy and Cole, 2015; Weinert et al., 2018). 

Non-histone substrates include p53, and acetylation appears to be required for 

full p53-mediated transactivation (Grossman, 2001), with mutation of CBP 
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contributing to a defective p53-mediated DNA damage response in progenitors 

of lymphoma (Horton et al., 2017). However, the mechanisms that underlie 

histone acetylation specificity in vivo, and the importance of non-histone 

substrate acetylation to CBP/p300 function, remain incompletely understood. 

 

CBP/p300 are bound at promoter and enhancer regions genome-wide (Krebs et 

al., 2011; Wang et al., 2009), and the enzymes are recruited by a wide range of 

transcription factors, interacting directly with nuclear receptors such as the 

estrogen receptor (ER), the glucocorticoid receptor (GR) and the retinoic acid 

receptor (RAR), as well as dimeric transcription factors such as IRF3, STAT1 

and AP-1 (Kamei et al., 1996; Ortega et al., 2018). CBP/p300 is also thought to 

play a scaffolding role in transcriptional regulation, in which multivalent 

interactions are formed with transcription factors and RNAPII to enhance 

recruitment of the transcriptional machinery to regulatory elements (Kim et al., 

1998). Importantly, however, a scaffolding role is not sufficient to account for 

CBP/p300-mediated transcriptional activation, as catalytic activity is required for 

activation of transcription from chromatin templates in vitro (Lu et al., 2002). 

Recent work has shown that a domain downstream of the catalytic domain, a 

zinc finger called the ZZ domain, interacts directly with the N-terminal tail of 

histone H3 (Zhang et al., 2018). This report suggests that this interaction is 

important not only for the catalytic activity of p300 but also for recruitment of the 

protein genome-wide. It is unclear, however, how such a general histone-

binding activity could generate a specific pattern of CBP/p300 recruitment 

across the genome, although the ZZ domain may play a role in stabilising 

CBP/p300 at target sites to which it is recruited by transcription factors. 

 

CBP/p300 play multiple roles in cancers (Di Cerbo and Schneider, 2013; Iyer et 

al., 2004; Yang, 2004). CBP and p300 loss of function mutations are found in a 

range of cancers, including gastric, breast and colorectal cancer (Gayther et al., 

2000; Muraoka et al., 1996), suggesting that CBP/p300 can act as tumour 

suppressor proteins. As described above, translocations in leukaemia generate 

MOZ-CBP and MOZ-p300 fusion proteins (Borrow et al., 1996). CBP and p300 

translocations also generate fusion proteins in which the catalytic core and C-

terminus of CBP/p300 is fused to the DNA binding domain of the protein MLL1, 

with MLL1-mediated DNA binding thought to drive aberrant gene activation by 
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CBP/p300 at target sites (Yang, 2004). Multiple transcription factors that drive 

tumourigenesis, including ER in breast cancer and the androgen receptor (AR) 

in prostate cancer, interact with CBP and p300 (Ianculescu et al., 2012; 

Mohammed et al., 2013; Papachristou et al., 2018). p300 is upregulated in late 

stage prostate cancers and in response to anti-androgen therapy (Comuzzi et 

al., 2004; Debes et al., 2003), and recent results suggest that inhibition of 

CBP/p300 through targeting of the bromodomain represents a promising 

avenue for therapy in castration-resistant prostate cancer (Jin et al., 2017). 

Together, these results suggest that CBP/p300 and the catalytic activity of 

these enzymes play an important role in processes including development and 

disease. Therefore, work to further our knowledge of how CBP/p300 function is 

vital both for a deeper understanding of the fundamental process of 

transcriptional regulation, but also to develop new therapies in disease. 

 

 

1.3.3 Histone deacetylases (HDACs) 
 

Histone acetylation is a highly dynamic process in living cells (reviewed in 

Clayton et al., 2006). Indeed, Allfrey’s experiments identified histone acetylation 

through the dynamic incorporation of new acetyl modifications (Allfrey et al., 

1964). Histone acetylation can also be dynamically removed by a set of 

enzymes called histone deacetylases (HDACs) (Seto and Yoshida, 2014). 

 

The first HDAC activity was identified from calf thymus extract in 1969 (Inoue 

and Fujimoto, 1969). However, it was not until 1996 that an HDAC was 

successfully cloned and isolated, with the identification of HDAC1 (Taunton et 

al., 1996). There are now 18 HDACs that have been identified in mammals, 

which are divided into four classes based on sequence and structural similarity. 

 

Class I HDACs (HDAC1, HDAC2, HDAC3 and HDAC8) are those that display 

sequence similarity to the budding yeast protein Rpd3. Class II HDACS 

(HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and HDAC10) are homologous to 

the yeast protein Hda1. Class III enzymes (SIRT1-7) are related to yeast Sir2. A 

single Class IV HDAC (HDAC11) shares similarity with both Class I and Class II 

enzymes (Seto and Yoshida, 2014). These classes fall into two broad families. 
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Class I, II and IV HDACs utilize a common mechanism for the hydrolysis of the 

acetyl-lysine acetamide bond that is dependent on a zinc ion, whereas Class III 

sirtuin enzymes require NAD+ as a cofactor. 

 

Multiple studies have attempted to determine whether individual HDAC 

enzymes possess substrate specificity, although the results remain 

controversial. In vivo studies to define specific substrates are complicated by 

redundancy between homologous HDAC proteins, and in vitro studies are 

hindered by the inclusion of HDAC proteins in multi-subunit complexes that 

influence their activity (Seto and Yoshida, 2014). HDAC1/2 proteins, for 

example, are part of three distinct complexes called the Sin3 complex, the Co-

REST complex, and the NuRD (nucleosome remodelling and histone 

deacetylase) complex, which also contains the chromatin remodelling proteins 

CHD3 or CHD4. To illustrate the difficulties in determining substrate specificity, 

a study examining the specificities of complexes containing either HDAC1/2 or 

HDAC3 in a reconstituted chromatin system suggested that the HDAC1/2 

complexes can deacetylate both H3 and H4, whereas HDAC3 selectively 

deacetylates histone H3 (Vermeulen et al., 2004). This is in contrast with 

previous work suggesting that HDAC3 can deacetylate H4K5 and H4K12 in free 

histone and mononucleosome substrates (Johnson et al., 2002). The substrate 

specificity of Class III sirtuin HDACs, by contrast, is clearer, with the major 

targets of yeast Sir2 and SIRT1 being H3K9ac and H4K16ac (Imai et al., 2000; 

Vaquero et al., 2004). 

 

HDACs are thought to work primarily as negative regulators of transcription 

through the removal of activation-associated histone acetylation. Indeed, 

tethering HDAC2 to a reporter gene via fusion to a GAL4 DNA binding domain 

led to repression of a reporter gene in vivo (Yang et al., 1996). However, earlier 

work showed that mutation of yeast Rpd3 leads to pleiotropic effects consistent 

with both activation and repression of target genes (Vidal and Gaber, 1991). In 

mammals, induction of gene expression with TPA in the presence of HDAC 

inhibitors leads to accumulation of histone acetylation at promoter elements but, 

surprisingly, to reduced gene expression compared to cells that are not treated 

with HDAC inhibitors (Hazzalin and Mahadevan, 2005). These results suggest 

that turnover of histone acetylation is highly dynamic, consistent with 
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observations that HDAC inhibition leads to rapid accumulation of histone 

acetylation and that HDACs are recruited to acetylated sites that are co-

occupied by HATs genome-wide (Hazzalin and Mahadevan, 2005; Wang et al., 

2009). This further suggests that, at least for some rapidly inducible genes such 

as immediate-early genes, histone deacetylation is important for activation of 

gene expression. One model to explain this would be that inhibition of HDAC 

activity leads to increased histone acetylation at regulatory sites throughout the 

genome, leading to increased accessibility that reveals cryptic transcription 

factor binding sites. This could lead to redistribution of transcription factors to 

non-target sites and therefore to repression of bona fide target genes by so-

called “squelching” effects (see Gill and Ptashne, 1988; Meyer et al., 1989 for 

examples of negative gene regulation by transcriptional activators through 

squelching). This underlines the importance of histone acetylation, and 

regulation of chromatin accessibility, in control of gene expression. 

 

 

1.4 Histone lysine methylation 
 

Methylation of histone lysines was first identified in 1964 (Murray, 1964), and 

since that time a large number of histone lysine methylation sites have been 

identified (reviewed in Greer and Shi, 2012). Lysine residues can undergo 

mono-, di-, or trimethylation (me1, me2, me3), with lysine methylation generally 

carried out by the SET (Su(var) 3-9/E(z)/Trx) domain of histone 

methyltransferase (HMT) enzymes (Dillon et al., 2005; Herz et al., 2013; Rea et 

al., 2000). Unlike lysine acetylation, lysine methylation does not alter the charge 

of the amino acid side chain, and is therefore thought to function indirectly, 

primarily through recruitment or blocking of effector proteins (Taverna et al., 

2007). Consistent with this possibility, numerous methyl-lysine binding domains 

have been identified, including chromodomains, PHD fingers, WD40 domains, 

MBT repeats and PWWP domains, that could recruit chromatin binding proteins 

to sites of histone lysine methylation (Taverna et al., 2007). 

 

The best-studied histone lysine methylation sites are in the N-terminal tail of 

histone H3, at H3K4, H3K9, H3K27, and H3K36. H3K9 methylation is generally 

associated with constitutively repressed regions of the genome, such as those 
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found at pericentromeric heterochromatin (Dillon et al., 2005). H3K9me2/3 is 

thought to function through recruitment of proteins such as heterochromatin 

protein 1 α (HP1α), which binds to H3K9 methylation via its chromodomain 

(Bannister et al., 2001; Lachner et al., 2001) and is thought to condense the 

chromatin structure at heterochromatic regions. H3K36me2 is pervasive 

throughout the genome in mammals, with the exception of gene promoters 

where it is generally depleted, and H3K36me3 is deposited on the bodies of 

active genes (Mikkelsen et al., 2007). This inter- and intragenic H3K36me2/3 

functions through suppression of spurious transcription initiation from cryptic 

transcription start sites through recruitment of the Rpd3S HDAC complex via 

the chromodomain of complex component Eaf3 (Carrozza et al., 2005). The 

following two sections will focus on methylation of H3K4 and H3K27, which are 

generally associate with active and repressed gene promoters, respectively, 

and on the proteins that place and bind to these marks. 

 

 

1.5 H3K4 methylation and methyltransferases 
1.5.1 H3K4 methyltransferase enzymes 
 

S. cerevisiae possesses a single H3K4 methyltransferase enzyme called Set1 

(Roguev et al., 2001), which can catalyse all three H3K4 methylation states. 

Drosophila has three enzymes homologous to Set1, called Set1, Trithorax (Trx) 

and Trithorax-related (Trr) (Shilatifard, 2012). Mammals possess a total of six 

Set1 homologues: SETD1A and SETD1B are homologous to Drosophila Set1, 

MLL1 and MLL2 to Trx, and MLL3 and MLL4 to Trr (Fig. 1.2A) (Shilatifard, 

2012). Set1 mutations are not lethal in budding yeast, suggesting that H3K4 

methylation is not essential, but are associated with a slow growth phenotype 

(Miller et al., 2001). By contrast, all three H3K4 HMTs are essential in 

Drosophila (Hallson et al., 2012; Mazo et al., 1990; Sedkov et al., 1999). 

Setd1A, Setd1B, Mll1 and Mll2 knockout mice all show embryonic lethality 

(Glaser et al., 2006; Yu et al., 1995), consistent with non-redundant functions of 

these proteins in development. Mll4 knockout embryos die at E9.5, whilst Mll3 

knockout is perinatal lethal, suggesting a degree of redundancy between MLL3 

and MLL4 (Lee et al., 2013).  



 43 

 
 
 
Fig. 1.2: Mammalian H3K4 methyltransferase enzymes. 
(A) Domain schematics of SETD1A, SETD1B, MLL1, MLL2, MLL3 and MLL4.  
Abbreviations: RNA-recognition motif (RRM); catalytic SET domain (SET); ZF-CXXC 
DNA-binding domain (ZF-CXXC); plant homeodomain (PHD); bromodomain (bromo); 
phenylalanine/tyrosine-rich N- and C-terminal domains (FYR-N/FYR-C). 
(B) Schematics representing the complexes formed by SETD1A/B (left). MLL1/2 
(centre), and MLL3/4 (right). 
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All six mammalian Set1 homologues form part of complexes known as 

COMPASS (complex of proteins associated with Set1)-like complexes (Miller et 

al., 2001) (Fig. 1.2B). These complexes share four common subunits called 

WDR5, RBBP5, ASH2L and DPY30, which are required for proper catalytic 

activity (Zhang et al., 2015). The different COMPASS-like complexes are 

distinguished both by their catalytic subunits and by additional accessory 

proteins (van Nuland et al., 2013), and contribute to the H3K4 methylation 

landscape in different ways. 

 

SETD1A and SETD1B are the complexes primarily responsible for the bulk of 

H3K4me3 in both mammals and Drosophila (Ardehali et al., 2011; Wu et al., 

2008). H3K4me3 is found at both active and inactive gene promoters in 

mammals, with higher levels of H3K4me3 correlating with higher levels of 

transcription (Guenther et al., 2007). SETD1A/B complexes contain the 

additional subunits CFP1 (ZF-CXXC finger protein 1), WDR82, and HCFC1 

(host cell factor 1) (Fig 1.2B). CFP1 contains both a PHD finger that binds 

H3K4me3, and a ZF-CXXC DNA binding domain, which recognizes 

unmethylated CpG promoters that overlap with unmethylated CpG island (CGI) 

elements (Eberl et al., 2013; Voo et al., 2000). WDR82 was found to interact 

with the initiating, serine-5 phosphorylated form of RNAPII (Lee and Skalnik, 

2008). Genetic analysis shows that SETD1A/B complexes are required to 

generate high levels of H3K4me3 primarily at active promoters through 

recruitment by WDR82 and CFP1 (Brown et al., 2017; Clouaire et al., 2012, 

2014; Lee and Skalnik, 2008). 

 

MLL1/2 complexes also contain HCFC1, but are characterised by the presence 

of PSIP1 and Menin (also known as MEN1) (Fig. 1.2B) (van Nuland et al., 

2013). Like CFP1, both MLL1 and MLL2 contain ZF-CXXC domains that bind to 

unmethylated DNA (Ma et al., 1993). Nevertheless, MLL1 is present only at a 

subset of active promoters in human lymphoma cells (Milne et al., 2005). MLL2 

is bound at promoters genome-wide in embryonic stem cells (ES cells) 

(Denissov et al., 2014). However, MLL2 is primarily required for placement of 

H3K4me3 at a subset of promoters that are also associated with the Polycomb 

group (PcG) of transcriptional repressors and marked by H3K27me3 (Denissov 

et al., 2014; Hu et al., 2013a), although the mechanisms by which MLL2 activity 
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is restricted to such “bivalent” promoters remains unclear. It is thought that the 

H3K4me3 present at these repressed gene promoters is important for activation 

of developmental genes during differentiation, consistent with the lethal 

phenotype associated with loss of Mll2 (Glaser et al., 2006). However, this 

“poising” of genes for activation remains controversial. 

 

The MLL3/4 complexes are primarily involved in placement of H3K4me1, rather 

than H3K4me3 (Dorighi et al., 2017; Hu et al., 2013b). H4K4me1 has been 

mapped to enhancer regions in the mammalian genome, and is thought to mark 

both active and inactive enhancers (Heintzman et al., 2007, 2009). However, 

the predictive value of H3K4me1 in identifying putative enhancers is open to 

question, given that many identified enhancers have not been tested 

functionally, and that H3K4me1 is present on approximately 30% of all H3 

molecules in ES cells (compared to 1.4% with H3K4me2 and 0.35% with 

H3K4me3) (Dorighi et al., 2017). Consistent with the possibility that generation 

of H3K4me1 may not be their primary function, MLL3/4 catalytic activity is 

largely dispensable for regulation of transcription, and MLL3/4 binding to 

enhancers is thought to play a direct role in binding of RNAPII and activation of 

transcription (Dorighi et al., 2017). MLL3/4 interact with four characteristic 

subunits in their COMPASS-like complex, namely UTX, NCOA6, PTIP, and PA1 

(Fig. 1.2B) (van Nuland et al., 2013). NCOA6, PTIP, and PA1 are thought to 

have roles in recruitment of MLL3/4 complexes through interaction with 

transcription factors (Shilatifard, 2012). UTX (ubiquitously transcribed 

tetratricopeptide repeat, X chromosome) is a histone demethylase enzyme that 

removes the repressive H3K27me3 mark and is required for proper expression 

of developmental genes during Drosophila development (Copur and Müller, 

2013). However, UTX is also thought to have roles independent of its catalytic 

activity, including bridging interactions between the MLL3/4 complex and the 

HAT p300 to enhance gene activation (Wang et al., 2017a). This is consistent 

with observations that at least some UTX functions can be compensated by its 

Y chromosome-encoded homologue UTY (Gozdecka et al., 2018), which is 

thought to be catalytically inactive (Hong et al., 2007; Lan et al., 2007; Shpargel 

et al., 2012). 

  



 46 

1.5.2 Functions of H3K4 methylation 
 

H3K4 methylation is thought to function primarily through influencing the binding 

of effector proteins (Eberl et al., 2013). Amongst many other binders of 

H3K4me3, this modification is bound by PHD domains in the BPTF subunit of 

the NURF nucleosome remodelling complex, and by the TAF3 subunit of the 

general transcription factor TFIID (Vermeulen et al., 2007; Wysocka et al., 

2006). H3K4me3 is therefore thought to promote transcriptional activation by 

increasing the accessibility of associated regulatory elements and by direct 

recruitment of the transcriptional machinery. H3K4me3 is also thought to 

function by blocking binding of repressive factors to promoters. H3K4me3 

inhibits binding of the DNMT3L protein, which interacts with de novo DNA 

methyltransferases DNMT3A and DNMT3B, with nucleosomes (Ooi et al., 

2007). H3K4me3 is also refractory to binding of the repressive NuRD complex, 

and inhibits the activity of Polycomb repressive complex 2 (PRC2) (Musselman 

et al., 2009; Schmitges et al., 2011). 

 

The function of H3K4me1 is less clear. Screens for proteins that bind 

specifically to H3K4me1 have identified proteins, such as the BAF chromatin 

remodeller subunit BRG1, which preferentially bind H3K4 monomethylated 

mononucleosomes compared to nucleosomes carrying H3K4me3 (Local et al., 

2018). However, such proteins typically bind to unmodified nucleosomes with 

similar affinity as to nucleosomes with H3K4me1, although the presence of 

H3K4me1 leads to slightly increased BAF-mediated chromatin remodelling in 

vitro (Local et al., 2018). Together, these results suggest that H3K4me3 is likely 

to play a role in maintaining active transcription at promoters. However, the 

extent to which H3K4me1 promotes active transcription at enhancers remains 

incompletely understood, and several lines of evidence point to roles for MLL3/4 

complexes that are independent of their capacity to generate H3K4me1. Such 

functions may be mediated by MLL3/4 interaction partners that are not part of 

the canonical MLL3/4 COMPASS-like complex, and identification of such 

proteins would benefit from unbiased approaches to identifying the MLL3/4-

associated proteome. 
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1.6 Chromatin modification by the Polycomb repressive system 
 

1.6.1 Overview of the Polycomb system 
 

Polycomb group (PcG) proteins were first identified in Drosophila as 

developmental regulators whose absence leads to lethality and homeotic 

transformations (Lewis, 1978; Struhl, 1981). Segment identity in Drosophila is 

determined by expression of homeotic genes, such as the Hox genes, which 

are expressed in spatially restricted patterns in early development (Akam, 

1987). In embryos mutant for a PcG protein, the initial pattern of expression of 

Hox genes, such as Ultrabithorax (Ubx), are unaltered compared to wild type 

animals, but show widespread misexpression at later developmental time points 

(Struhl and Akam, 1985). PcG proteins are therefore thought to act as negative 

regulators of gene expression by maintaining the repressed state of genes in 

cells where these genes were not expressed early in development. 

 

PcG proteins assemble into several distinct complexes (Simon and Kingston, 

2009). The best-studied PcG complexes are Polycomb repressive complexes 1 

and 2 (PRC1 and PRC2), but additional complexes include the PRC1-like 

complex dRING-associated factors (dRAF), Polycomb repressive 

deubiquitylase (PR-DUB), and Pho repressive complex (PhoRC). The role of 

PhoRC will be briefly discussed, and PRC1, PRC2 and related complexes will 

be discussed in more detail in the sections that follow. 

 

PhoRC is a Drosophila Polycomb complex comprising the sequence-specific 

DNA binding protein Pho (Pleiohomeotic) and its interaction partner Sfmbt 

(Scm-relate gene containing four MBT repeats) (Alfieri et al., 2013; Klymenko et 

al., 2006). The presence of a DNA binding protein in PhoRC suggested the 

possibility that this complex is responsible for recruitment of PcG proteins to 

their target sites in the fly genome, called Polycomb response elements (PREs). 

Consistent with this, Pho binding was found to be important for recruitment of 

other PcG proteins to Hox gene targets in Drosophila (Mohd-Sarip et al., 2002; 

Wang et al., 2004b). Mechanistically, PhoRC-mediated recruitment of PcG 

proteins is thought to occur through interaction of Sfmbt with the sub-

stoichiometric PRC1 component Scm (Sex comb on midleg) via their sterile 
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alpha motif (SAM) domains (Frey et al., 2016; Grimm et al., 2009). However, 

mutation of Pho and its paralogue Pho-like (Phol) leads to lethality later in 

development than mutation of Scm and other PRC1 proteins, and is associated 

with only minor misregulation of target genes (Breen and Duncan, 1986; Brown, 

2003), suggesting that PhoRC-mediated mechanisms cannot account for all 

PRC1 recruitment. This is consistent with observations that PRC1 stabilises 

recruitment of Pho at target sites rather than the reverse (Kahn et al., 2014; 

Schuettengruber et al., 2014), and that deletion of Sfmbt does not lead to 

widespread loss of PRC1 recruitment at PREs (T. Sheahan, J. Muller, 

unpublished observations). This suggests that whilst PhoRC might play a role in 

recruitment of other PcG proteins to a subset of classical Polycomb targets, 

such as Hox genes (Frey et al., 2016; Fritsch et al., 1999), PhoRC does not 

represent a general recruitment mechanism for PcG proteins in Drosophila. 

This is also consistent with observations that binding of the mammalian 

homologue of Pho, YY1, does not overlap with PcG targets genome-wide, and 

is therefore not thought to play a major role in Polycomb recruitment 

(Mendenhall et al., 2010). 

 
 
1.6.2 PRC1, PRC2 and their histone modifications 
1.6.2.1 PRC1 and H2AK119ub1 

 

PRC1 in flies consists of four core components, namely Pc (Polycomb), Ph 

(Polyhomeotic), Psc (Posterior sex combs) and Sce (Sex combs extra), which is 

also known as dRING (Shao et al., 1999). The PRC1-like dRAF complex 

contains the dRING and Psc subunits of PRC1, but lacks Pc and Ph, 

possessing instead additional subunits such as the H3K36 demethylase dKDM2 

(Lagarou et al., 2008). The PRC1 core complex is largely conserved between 

flies and mammals, suggesting that mammalian PRC1 may function using 

similar mechanisms as Drosophila PRC1 (Levine et al., 2002). However, in 

mammals each PRC1 subunit has multiple paralogues, increasing the 

combinatorial complexity of the system (Fig. 1.3). There are two mammalian 

homologues of dRING (called RING1A and RING1B in mice), five homologues 

of Pc (CBX2, 4, 6, 7 and 8), three Ph proteins (PHC1, 2 and 3), and six 

homologues of Psc (PCGF1, PCGF2 (also known as MEL18), PCGF3, PCGF4   
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Fig. 1.3: Polycomb group protein complexes in mammals. 
Left: Canonical and variant PRC1-type complexes, including the variant PCGF1-PRC1 
complex that contains the ZF-CXXC protein KDM2B. 
Right: PRC2 complexes. 
 
 

(also known as BMI1), PCGF5 and PCGF6). Two PCGF proteins, PCGF2 and 

PCGF4, form complexes similar to the classical Drosophila PRC1 complex, 

containing CBX and PHC proteins, which are referred to as canonical PRC1. 

PCGF1, 3, 5 and 6 proteins form variant PRC1 complexes. These variant 

complexes lack CBX and PHC proteins, but contain additional common 

subunits, such as RYBP, and subunits that are unique to each complex (Farcas 

et al., 2012; Gao et al., 2012). 

 

PRC1 is an E3 ubiquitin ligase, which monoubiquitylates H2AK119 in mammals 

and H2AK118 in Drosophila (H2AK119ub1/H2AK118ub1) (Cao et al., 2005; 

Wang et al., 2004a). The catalytic subunit of PRC1 is the RING1A/B subunit, 

but activity depends on interaction between the two RING fingers of the 
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RING1A/B subunit and the PCGF subunit (Buchwald et al., 2006; Cao et al., 

2005). Importantly, the identity of the PCGF subunit in a PRC1 complex 

influences its catalytic activity, so that canonical complexes containing PCGF2 

and PCGF4 have intrinsically lower catalytic activity than variant PRC1 

complexes in vitro (Taherbhoy et al., 2015). Moreover, inclusion of the variant 

PRC1-specific subunit RYBP further stimulates the activity of RING1B-PCGF 

dimers (Rose et al., 2016). The greater catalytic activity of variant PRC1 has 

alsobeen confirmed in vivo, suggesting that canonical and variant PRC1 

complexes may have distinct functions in cells (Blackledge et al., 2014, 2019). 

 

PRC1 is thought to repress gene expression both by directly altering chromatin 

structure and by ubiquitylating H2A, although the extent to which each of these 

mechanisms contributes to PRC1 function remains incompletely understood. 

PRC1 was proposed to compact chromatin via a mechanism involving the long, 

unstructured C-terminal region of Drosophila Psc, a region which is not present 

in mammalian PCGF proteins (Francis et al., 2004; King et al., 2002). PRC1 is 

also thought to contribute to gene repression by engaging in long-range 

interactions between promoters through its PHC subunits, contributing to the 

maintenance of a repressive chromatin environment (Isono et al., 2013; 

Schoenfelder et al., 2015). Work to understand the role of PRC1 catalytic 

activity in PRC1 function showed that removal of RING1B in ES cells led to 

decompaction of repressed target loci, but that this decompaction phenotype 

was not observed in cells expressing a RING1BI53A mutant that should render 

the protein catalytically inactive (Buchwald et al., 2006; Eskeland et al., 2010). 

This suggestion that repression of target genes by PRC1 might be independent 

of its catalytic activity was further supported by work showing that mice 

expressing RING1BI53A mutations are viable and that mutation of H2AK118 to 

arginine in Drosophila larvae does not lead to misexpression of Polycomb target 

genes (Illingworth et al., 2015; Pengelly et al., 2015). 

 

However, several lines of evidence point to a central role for H2AK119ub1 in 

Polycomb-mediated gene repression. Mutation of H2AK118 in flies is embryonic 

lethal (Pengelly et al., 2015). Mutation of the RING1B catalytic domain in ES 

cells in a RING1A-negative background leads to gene expression changes that 

disrupt the maintenance of cell identity (Endoh et al., 2012), suggesting that 
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previous work may have been complicated by compensation by RING1A. 

Moreover, the extensively used RING1BI53A mutation does not fully ablate 

PRC1 catalytic activity (Buchwald et al., 2006; Scheuermann et al., 2012), and 

recent work has shown that mutations that completely abolish RING1A/B 

catalytic activity are lethal in constitutively mutant ES cells (Blackledge et al., 

2019). Moreover, in an inducible system, such catalytic mutations can 

recapitulate the gene misexpression phenotype of RING1A/B knockout cells 

(Blackledge et al., 2019). Mechanistically, H2AK119ub1 is thought to function 

primarily by directing the recruitment of PRC2, with genome-wide PRC2 binding 

greatly reduced in the absence of PRC1 catalytic activity (Blackledge et al., 

2014, 2019; Cooper et al., 2016; Kalb et al., 2014). 

 

 

1.6.2.2 PRC2 and H3K27me3 

 

The mammalian PRC2 complex comprises a core of four subunits, namely 

EZH2 (or its paralogue EZH1), EED, SUZ12 and RBAP46 or RBAP48 (also 

known as RBBP7 and RBBP4, respectively) (Fig. 1.3) (Cao et al., 2002; 

Czermin et al., 2002; Kuzmichev et al., 2002; Müller et al., 2002). PRC2 is an 

HMT enzyme that mono-, di- and trimethylates H3K27 (H3K27me1/2/3). The 

catalytic activity of PRC2 is contained in the SET domain of the EZH2 subunit, 

but interaction with the SUZ12 and EED subunits is required for efficient H3K27 

methylation activity (Cao and Zhang, 2004; Pasini et al., 2004). The PRC2 core 

complex interacts with additional sub-stoichiometric components to form two 

sub-complexes, which may differ in their recruitment or enzymatic activities. 

One sub-complex comprises the PRC2 core components together with the 

additional proteins JARID2 and AEBP2, and a second sub-complex is formed 

with one of three proteins homologous to Drosophila Pcl (called PHF1, MTF2 

and PHF19), EPOP (previously known as C17ORF96) and C10ORF12 

(Alekseyenko et al., 2014; Conway et al., 2018; Grijzenhout et al., 2016; Liefke 

and Shi, 2015; Nekrasov et al., 2007). 

 

PRC2 is thought to function in gene repression primarily through its catalytic 

activity. Mutation of the catalytic domain in the Drosophila EZH2 homologue 

E(z) (Enhancer of zeste) is sufficient for misexpression of Polycomb target 
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genes, and mutation of the H3K27 residue to arginine in Drosophila 

recapitulates a PRC2 mutant phenotype (Müller et al., 2002; Pengelly et al., 

2013). However, recent work has also implicated PRC2 in mediating long-range 

chromatin interactions, facilitating future activation of repressed genes (Cruz-

Molina et al., 2017), suggesting that PRC2 may have functions in addition to 

methylation of H3K27 and repression of gene expression. 

 

Our understanding of how mechanistically H3K27me3 mediates gene 

repression remains incomplete. The CBX subunits in canonical PRC1 

complexes bind H3K27me3 via their chromodomain (Czermin et al., 2002). This 

is sufficient for recruitment of PRC1 to sites marked by H3K27me3 (Blackledge 

et al., 2014), and may lead to transcriptional repression by compacting 

chromatin. In addition, H3K27me3 inhibits the activity of H3K4 

methyltransferases in vitro (Kim et al., 2013), and may therefore reduce the 

capacity of these enzymes to generate a more active chromatin environment in 

vivo. This inhibition of H3K4 methylation may also lead to the generation of 

“bivalent” nucleosomes, in which one H3 molecule is marked by H3K27me3 

and the other by H3K4me3 (Bernstein et al., 2006; Voigt et al., 2012). Such a 

chromatin structure may inhibit gene expression by preventing higher affinity 

binding of proteins such as TAF3 to nucleosomes symmetrically modified with 

H3K4me3. 

 

 

1.6.2.2 Recruitment of Polycomb proteins 

 

As discussed above, PcG proteins in flies are recruited to PREs. Although 

some PREs associated with classical Polycomb target genes, such as Hox 

genes, are located at a distance from the genes that they regulate, the majority 

of PREs in Drosophila and Polycomb target sites in mammals are associated 

with the transcription start sites (TSSs) of genes (Ku et al., 2008; Oktaba et al., 

2008; Schwartz et al., 2006). 

 

In mammals, several mechanisms have been proposed for PcG protein 

recruitment to target sites. As in flies, sequence-specific DNA binding proteins, 

such as REST, were identified as interaction partners of PcG proteins (Ren and 
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Kerppola, 2011). However, given that such transcription factors are not found to 

co-occupy most Polycomb target sites, this is unlikely to represent a general 

mechanism for Polycomb recruitment. Long noncoding RNAs (lncRNAs) have 

also been proposed to interact with PcG proteins and recruit them to targets 

such as the inactive X chromosome (Xi). However, it is unclear how 

mechanistically such recruitment might occur, as super-resolution microscopy 

studies suggest that PcG proteins do not directly interact with the Xist lncRNA 

which associates with Xi (Cerase et al., 2014). Moreover, PRC2 interacts with 

RNAs in a sequence non-specific manner, with such interactions thought to 

counteract rather than direct PcG recruitment genome-wide (Davidovich et al., 

2013). 

 

Genome-wide analysis of binding of PcG proteins and H3K27me3 in mouse 

and human ES cells showed that Polycomb binding occupies the promoters of 

approximately 2000 genes, overlapping almost exclusively with a subset of CpG 

islands (CGIs) (Bernstein et al., 2006; Boyer et al., 2006; Ku et al., 2008; 

Mikkelsen et al., 2007). Indeed, further work showed that introduction of CGI-

like DNA from E. coli or randomly generated CGI-like DNA was sufficient to 

mediate recruitment of Polycomb (Mendenhall et al., 2010; Wachter et al., 

2014). Furthermore, analysis of Polycomb binding sites in Drosophila showed 

that genes marked by H3K27me3 that have Polycomb target homologues in 

mammals have GC-rich promoter sequences, in marked contrast to typical 

Drosophila promoters which are AT-rich (Sharif et al., 2013). These results 

suggested that CGIs might play a direct, and potentially evolutionarily 

conserved, role in Polycomb recruitment. 

 

For many years, PcG proteins were thought to be recruited by a “hierarchical” 

mechanism in which PRC2 was first recruited by proteins such as Pho, 

generating H3K27me3 at target sites. This mark could then be bound by the 

chromodomain of CBX proteins, leading to recruitment of PRC1 (Wang et al., 

2004b). However, more recent work has shown that PRC1 can also be 

recruited to target sites in the absence of PRC2 (Tavares et al., 2012), 

suggesting that although H3K27me3 may play an important role in stabilising 

PRC1 binding and in gene repression, it is not essential for nucleation of PRC1 

at target genes. 
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A direct mechanistic link between CGIs and PRC1 recruitment emerged in the 

form of the protein KDM2B. KDM2B, a mammalian homologue of the 

Drosophila dRAF complex subunit dKDM2, is an H3K36 demethylase enzyme 

that, like the CFP1 and MLL1/2 proteins described above, contains a ZF-CXXC 

DNA binding domain (Farcas et al., 2012; He et al., 2013; Wu et al., 2013). The 

ZF-CXXC domain of KDM2B facilitates its recruitment to CGIs genome-wide, 

but KDM2B is specifically enriched at Polycomb target sites (Farcas et al., 

2012). Importantly, purification of KDM2B from ES cells demonstrated that this 

protein forms part of a variant PRC1 complex characterised by the presence of 

PCGF1. Knockdown of KDM2B or deletion of its ZF-CXXC domain led to loss of 

PRC1 binding and H2AK119ub1 genome-wide (Blackledge et al., 2014; Farcas 

et al., 2012; He et al., 2013; Wu et al., 2013), and reduction in PRC2 and 

H3K27me3 at approximately two-thirds of binding sites (Blackledge et al., 

2014). Moreover, artificial tethering of a KDM2B protein was sufficient for the 

formation of a Polycomb domain, characterised by the presence of PRC1, 

PRC2, H2AK119ub1 and H3K27me3 (Blackledge et al., 2014). This showed 

that binding of a PRC1-associated protein to CGIs was sufficient for the 

recruitment of PRC1 and PRC2 in ES cells. 

 

A further mechanistic link between Polycomb and CGIs has recently been 

uncovered in observations that the PRC2-associated proteins PHF1, MTF2 and 

PHF19 can bind specifically to unmethylated CpG dinucleotides via a winged 

helix domain (Li et al., 2017). Work in vivo further suggested that loss of this 

DNA binding activity leads to a partial loss of PRC2 binding at target sites, 

although there is little effect on H3K27me3. This suggests that the DNA binding 

activity of Pcl proteins cannot fully account for PRC2 recruitment genome-wide. 

Moreover, an additional report investigating the DNA binding activity of Pcl 

proteins found an alternative mechanism for PHF1 binding to DNA, indicating 

that PFH1 binds in a sequence non-specific manner, and does not specifically 

interact with CpG dinucleotides (Choi et al., 2017). Therefore, the contribution 

of Pcl homologues to PRC2 recruitment remains controversial, although these 

proteins are likely have a role in stabilising PRC2 on chromatin (Choi et al., 

2017). 
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In addition to finding that KDM2B can mediate recruitment at Polycomb-

repressed CGIs, careful analysis of the genome-wide ChIP data showed that 

the PRC1 catalytic subunit RING1B is recruited at low levels to essentially all 

CGIs in a KDM2B-dependent manner (Farcas et al., 2012). This surprising 

finding led to the hypothesis that all CGIs are dynamically sampled by KDM2B-

mediated PRC1 binding, but that PRC1 is only stably recruited at repressed 

loci. This would provide a mechanism by which PcG proteins could perform 

their function of maintaining repression of previously repressed genes. 

Consistent with this, inhibition of transcription is sufficient for recruitment of 

PRC2 and generation of H3K27me3 at previously active genes (Riising et al., 

2014). This suggests that PcG proteins bind both active and repressed CGIs, 

but that there are mechanisms in place at active CGIs to destabilise Polycomb 

binding. For example, the transcription-associated histone modification 

H3K4me3 inhibits the activity of PRC2 (Schmitges et al., 2011), the BAF 

chromatin remodelling complex is thought to evict PRC1 from chromatin 

(Stanton et al., 2017), RNA binding is thought to displace PRC2 from chromatin 

(Davidovich et al., 2013), and transcription through a PRE in flies is sufficient for 

loss of Polycomb binding (Erokhin et al., 2015; Schmitt et al., 2005). Through 

one or more such mechanism, CGIs can act as bistable switches, facilitating 

conversion between stably active and repressed states (Klose et al., 2013). 

 

 

1.7 CpG islands and DNA methylation 
 

1.7.1 DNA methylation and repression of transcription 
 

DNA, like histone proteins, undergoes modification in eukaryotic cells. The 

predominant modification of DNA is methylation, which in multicellular 

eukaryotes takes place at the 5-position of the cytosine ring to generate 5-

methyl-cytosine (5mC). In vertebrates, 5mC is found almost exclusively in the 

context of CpG dinucleotides, with some 70-80% of CpG sites found methylated 

across the genome in mammalian cells (Lister et al., 2009). 

 

DNA methylation is generated by DNA methyltransferase (DNMT) enzymes 

(Klose and Bird, 2006). The first DNMT enzyme to be identified was DNMT1 
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(Bestor and Ingram, 1983). This enzyme is significantly more active in vitro 

towards hemimethylated DNA than towards unmethylated DNA (Bestor and 

Ingram, 1983), and therefore plays a role as a maintenance methyltransferase, 

facilitating the propagation of symmetrical DNA methylation following DNA 

replication (Jeltsch, 2006). The importance of maintenance of DNA methylation 

is demonstrated by observations that knocking out Dnmt1 leads to loss of 

approximately two-thirds of DNA methylation in ES cells, and to embryonic 

lethality (Li et al., 1992). 

 

The retention of significant levels of DNA methylation in Dnmt1 null cells 

suggested the presence of additional DNMT enzymes. Indeed, homology 

searches identified two proteins, named DNMT3A and DNMT3B, that can 

methylate CpG in both hemimethylated and unmethylated contexts (Okano et 

al., 1998). Dnmt3a; Dnmt3b double knockout ES cells are unable to methylate a 

newly integrated retroviral DNA sequence, indicating that these enzymes are de 

novo DNMTs, and double knockout embryos die before E11.5 (Okano et al., 

1999). 

 

DNA methylation is thought to be repressive to transcription (Klose and Bird, 

2006), although importantly a strong transactivation signal is sufficient to 

overcome the repressive effects of DNA methylation (Thompson et al., 1986, 

1988) . One mechanism through which DNA methylation inhibits transcription is 

by preventing the binding of sequence-specific transcription factors. DNA 

methylation can interfere with binding of transcription factors whose cognate 

sequence contains a CpG dinucleotide. In this way, DNA methylation is 

refractory to binding of CREB and CTCF, and methylation of a CTCF binding 

site can interfere with CTCF-mediated gene looping and gene expression (Bell 

and Felsenfeld, 2000; Liu et al., 2016; Mancini et al., 1999). 

 

A second mechanism through which DNA methylation influences transcription is 

through binding by proteins that possess a methyl-CpG DNA-binding domain 

(MBD) (Hendrich and Bird, 1998; Klose and Bird, 2006). Several MBD proteins 

associate with transcriptional co-repressor complexes. The MBD protein 

MeCP2 associates with the NCoR/SMRT co-repressor complex, which contains 

HDAC3 (Lyst et al., 2013; Nan et al., 1998). The importance of this interaction is 
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underlined by observations that mutations that abolish either methyl-CpG 

binding or interaction with NCoR/SMRT are associated with the neurological 

disorder Rett syndrome (RTT) (Lyst et al., 2013). Moreover, treatment of cells 

with HDAC inhibitors led to derepression of a reporter gene, indicating that 

recruitment of HDAC activity is likely to play an important role in MeCP2-

mediated transcription silencing. Similarly, the MBD2 and MBD3 proteins are 

thought to play a role in gene repression by their presence in the in the 

repressive nucleosome remodelling and HDAC complex NuRD complex (Zhang 

et al., 1999). 

 

 

1.7.2 CpG islands have a transcriptionally permissive chromatin 

architecture 
 

Although DNA methylation is prevalent across the mammalian genome, there 

are short, contiguous regions that are free of this methylation, called CpG 

islands (CGIs) (reviewed in Blackledge and Klose, 2011). CGIs were originally 

identified as regions that were sensitive to digestion by the restriction enzyme 

HpaII, which is able to cut unmethylated but not methylated DNA, and account 

for approximately 1% of the vertebrate genome (Cooper et al., 1983). CGIs 

were found to be associated with gene sequences, and the lack of DNA 

methylation was thought to render these regions “available” for identification by 

proteins that could influence transcription (Bird, 1986). 

 

CGIs have an average length of approximately 1 kb, and are characterised as 

being both GC-rich and CpG-rich compared to the bulk genome (Illingworth and 

Bird, 2009). CGIs are defined computationally as having a GC base 

composition greater than 50% and a CpG observed/expected ratio of greater 

than 0.6 (Gardiner-Garden and Frommer, 1987). CGIs are frequently 

associated with gene promoters in the mammalian genome, with some 70% of 

promoters overlapping CGIs (Saxonov et al., 2006). Indeed, even CGIs that are 

not associated with annotated TSSs exhibit promoter-like properties, including 

transcriptional initiation (Illingworth et al., 2010). It is therefore thought that CGIs 

contribute to promoter function, although the mechanisms by which they do so 

are not yet fully understood. 
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One mechanism by which CGIs are thought to influence transcriptional 

regulation is through the generation of a unique chromatin architecture that 

renders CGI-associated promoters permissive to transcription (Blackledge and 

Klose, 2011). Consistent with this, CGI chromatin released from the genome by 

digestion with restriction enzymes is comparatively nucleosome-free, enriched 

with histone acetylation and H3K4 methylation, and depleted of H3K9me3 and 

histone H1 (Tazi and Bird, 1990; Thomson et al., 2010). Furthermore, mapping 

of nucleosome occupancy in vivo by digestion with micrococcal nuclease 

(MNase) showed that CGI promoters are depleted of nucleosomes in a manner 

independent of transcription (Fenouil et al., 2012). Consistent with the 

possibility that CGIs promote a transcriptionally permissive chromatin 

environment, induction of gene expression by treatment of macrophages with 

lipopolysaccharide (LPS) reveals that the majority of rapidly induced primary 

response genes are associated with CGIs, whilst the secondary response 

genes are more likely to be non-CGI genes (Ramirez-Carrozzi et al., 2009). 

Moreover, induction of CGI genes was more likely to occur independently of 

chromatin remodelling activities, suggesting that CGIs are transcriptionally 

permissive without mechanisms employed by non-CGI genes to alter chromatin 

architecture. 

 

 

1.7.3 ZF-CXXC DNA binding domain influences CGI chromatin 

architecture 
 

One mechanism by which the permissive chromatin environment at CGIs is 

thought to be established is through binding of proteins containing a domain 

that specifically recognises unmethylated CpG dinucleotides, called the ZF-

CXXC DNA binding domain (Fig. 1.4A) (Long et al., 2013). ZF-CXXC proteins 

include enzymes that modify chromatin directly and subunits of larger 

chromatin-modifying complexes, and therefore contribute to the chromatin 

environment at CGIs. 

 

The ZF-CXXC domain was originally identified in proteins including MLL1, 

DNMT1 and MBD1 (Bestor and Verdine, 1994; Cross et al., 1997; Ma et al., 

1993). However, the selective binding activity for unmethylated CpG was not   
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Fig. 1.4: The ZF-CXXC selectively binds unmethylated DNA. 
(A) Alignment of ZF-CXXC domains from multiple proteins in mice. Greyscale shading 
represents the level of conservation, the KFGG motif is highlighted in red, and the 
KQ/RQ motif that interrogates the methylation status of the CpG dinucleotide in green. 
(B) Cartoon representation of the ZF-CXXC domain of CFP1 bound to a DNA probe 
containing unmethylated CpG (PDB ID: 3QMG). The DNA is shown in wheat, and the 
protein domain in blue. The zinc ions are represented as grey spheres, the KFGG motif 
is shaded red, and the RQ motif residues are shown in stick representation inserting 
into the major groove of DNA. 
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definitively shown until the identification and cloning of the ZF-CXXC protein 

CFP1 (CXXC finger protein 1) (Lee et al., 2001; Voo et al., 2000). Structural 

analysis of the ZF-CXXC domains of MLL1, DNMT1 and CFP1 shows that the 

domain forms a compact crescent-like structure containing eight conserved 

cysteine residues that coordinate two zinc ions (Allen et al., 2006; Cierpicki et 

al., 2010; Xu et al., 2011). The linker region between the two cysteine-rich 

clusters contains a KFGG motif that is required to maintain the rigidity of the 

structure, and a KR/KQ motif in a DNA-binding loop that mediates base 

contacts in the major groove of DNA (Fig. 1.4B). The presence of methylation 

on a cytosine base contacted by the KR/KQ motif results in steric clashes and 

prevents the formation of hydrogen bonding, explaining the selectivity of ZF-

CXXC for unmethylated CpG. Importantly, in addition to the contacts in the 

major groove, regions flanking the ZF-CXXC domain contact the minor groove 

on the opposite face of DNA, providing additional interaction energy. For this 

reason, ZF-CXXC domains are unable to bind DNA that is occluded by 

nucleosomes and can only bind to linker DNA (Zhou et al., 2012), as the 

presence of histone octamer on DNA is thought to be refractory to binding in 

both the major and minor grooves simultaneously. 

 

ZF-CXXC proteins contribute to the chromatin environment at CGIs by 

recruiting chromatin-modifying activities. As discussed above, ZF-CXXC 

domains are found in CFP1, MLL1 and MLL2, which are associated with H3K4 

methyltransferase activity and lead to H3K4me3 at CGIs (Brown et al., 2017; 

Clouaire et al., 2012; Denissov et al., 2014; Thomson et al., 2010). FBXL19 

interacts with the Mediator complex and recruits the complex to a subset of 

gene promoters in vivo (Dimitrova et al., 2018). KDM2A and KDM2B both 

possess Jumonji C (JmjC) lysine demethylase domains and demethylate 

H3K36 at CGI-associated promoters (Blackledge et al., 2010). KDM2B, as 

described previously, interacts with PRC1 and, in the absence of transcriptional 

activation, is sufficient for nucleation of Polycomb domains (Blackledge et al., 

2014; Farcas et al., 2012; He et al., 2013; Wu et al., 2013). In this way, CGIs 

are thought to act as platforms for the recruitment of both activating and 

repressive chromatin-modifying activities, enabling CGI-associated genes to be 

stabilised in either active or repressed states (Klose et al., 2013). 
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However, several important questions remain about how CGIs function. Little is 

known about how the unmethylated state of CGIs is established and 

maintained. The presence of H3K4me3, which inhibits chromatin binding by 

DNMT3L, is thought to prevent de novo DNA methylation once H3K4me3 has 

been established (Ooi et al., 2007). However, how this state is initially 

established remains poorly understood. Several proteins that may play a role in 

demethylation of DNA, namely TET1, TET3 and the TET2 interaction partner 

IDAX, possess ZF-CXXC domains. The TET (ten-eleven translocation) proteins 

are dioxygenase enzymes that convert 5mC to 5-hydroxymethyl-cytosine 

(5hmC) (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009), and subsequently 

convert 5hmC to 5-formyl-cytosine (5fC) and 5-carboxyl-cytosine (5caC) (Ito et 

al., 2011). The presence of 5hmC is thought to lead to the demethylation of 

DNA either through passive loss of 5mC maintenance or actively through the 

base excision repair pathway (Williams et al., 2012). However, the ZF-CXXC 

domains of TET1, TET3 and IDAX differ from the canonical ZF-CXXC (Fig. 

1.4B), and biochemical and structural studies suggest that the TET3 ZF-CXXC 

has more degenerate DNA binding properties (Xu et al., 2012). Therefore, how 

precisely TET proteins or other factos are involved in generating the 

unmethylated status of CGIs remains unclear. 

 

A second important question about how CGIs function that remains to be 

answered is how mechanistically the chromatin environment at a CGI gives rise 

to a specific transcriptional output. Many chromatin-binding proteins that can 

recognise the chromatin modifications found at CGIs have been identified, but it 

is unclear whether additional unknown proteins remain to be found. In 

particular, our understanding of how Polycomb proteins are recruited to CGIs 

and evicted from actively transcribed CGIs remains incomplete, and a 

mechanistic basis for the activation and repression of transcription at CGIs 

awaits further elucidation. Answering these questions would provide valuable 

insights into how CGIs contribute to promoter function and therefore into how 

chromatin architecture contributes to the regulation of gene expression. 
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1.8 Aims of this thesis 
 

Proper regulation of transcription is fundamental to multicellular life. One of the 

major mechanisms by which transcription is regulated is through alteration of 

chromatin architecture at regulatory elements such as gene promoters and 

enhancers (Fig. 1.5). The overall aim of this thesis is therefore to understand 

how chromatin-modifying activities contribute to regulation of gene expression. 

 

Work in Chapter 3 aims to understand how the chromatin environment at 

promoters and enhancers is established. To this end, a strategy was developed 

taking advantage of the affinity of the ZF-CXXC domain for unmethylated DNA, 

to purify proteins associated with CpG island promoters. An alternative ChIP-

mass spectrometry approach was also utilised, and identified DNA damage 

proteins and chromatin modifying proteins as potential regulators of promoter 

function. To understand how the chromatin environment at enhancers is 

established, the enhancer-binding MLL3/4 H3K4 methyltransferases were 

endogenously tagged and purified to identify associated proteins in an unbiased 

manner. 

 

To further our understanding of how histone acetyltransferase enzymes 

contribute to the chromatin environment at regulatory elements, a candidiate 

approach was also adopted to test how the activity of the CBP/p300 family of 

HATs is regulated. Work in Chapter 4 establishes an in vitro biochemical 

strategy to address how the histone acetyltransferase enzyme CBP specifically 

acetylates histones at the key H3K27 residue in the context of chromatin 

substrates. These experiments identified a domain in the C-terminal portion of 

CBP called TAZ2 as crucial for H3K27 acetylation activity. Work in Chapter 5 

then focussed on understanding how mechanistically the TAZ2 domain of CBP 

influences CBP substrate selection, revealing that TAZ2 binds DNA in a 

sequence-independent manner, potentially orienting CBP to favour acetylation 

of H3K27. Finally, work in Chapter 6 identified mutations in the TAZ2 domain 

that abrogate DNA binding and reduce acetylation of H3K27 in vitro, and 

prevent specific H3K27 acetylation by CBP in vivo. 
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Together, this work elucidates a novel mechanism by which CBP/p300 HAT 

activity is selective for H3K27 in vivo, and forms the basis for a discussion of 

how mechanisms that determine HAT substrate specificity are vital to ensure 

robust regulation of gene expression. 

 

 

 

 
 
 
Fig. 1.5: A model for chromatin-modifying activities in regulation of gene 
expression from promoters and enhancers. 
Top: At an active gene, the CpG island promoter is bound by the SETD1A/B complex, 
which places H3K4me3; by CBP/p300, which places H3K27ac; by PRC1, which is 
unable to establish a Polycomb domain; and by actively transcribing RNAPII. An active 
enhancer is bound by the MLL3/4 complex and CBP/p300, which place H3K4me1 and 
H3K27ac, respectively. Additional unknown proteins bind to promoters and enhancers, 
and mediate their function. 
Bottom: At an inactive gene, the CpG island promoter is bound by the MLL2 complex, 
which places H3K4me3; and by PRC1 and PRC2, which place H2AK119ub1 and 
H3K27me3, respectively, generating a repressed Polycomb domain. An inactive 
enhancer is bound by the MLL3/4 complex, which places H3K4me1, but not by 
CBP/p300 HATs.  



 64 

2. Materials and methods 
 

 

2.1 DNA methods 
2.1.1 DNA constructs used in this study 
 
Table 2.1: Summary of DNA constructs used in this study 

DNA inserts 

Construct Origin Source 

ZF-CXXC Mouse KDM2B, codon 

optimised for E. coli 

expression 

Synthesised by IDT with 

N-terminal 6xHis tag and 

C-terminal 3xFlag, 

2xStrepII and 2xGCN4 

tags 

TEV protease Tobacco etch virus pRK793 (Addgene: 

8827) 

CBP Mouse A kind gift from Prof 

Shelley Berger 

(University of 

Pennsylvania) 

CBP truncations and 

mutants 

Mouse Subcloned from full 

length CBP 

p300 core Human, residues 1048-

1664 

pcDNA-dCas9-p300 

Core (Addgene: 61357) 

VP160 Synthetic pAC94-pmax-

dCas9VP160-2A-puro 

(Addgene: 48226) 

Vectors 

Vector name Experimental use Source 

pET22 Bacterial expression Voigt lab 

pRK793 Bacterial expression Addgene: 8827 

pCAG Mammalian protein 

expression 

A kind gift from Dr Anca 

Farcaș (CRUK 
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Cambridge Institute) 

pFastBac Insect cell expression Voigt lab 

pAC94 dCas9 fusion protein 

expression 

Addgene: 48226 

pmU6-gRNA sgRNA expression Addgene: 53187 

pX458 Cas9 and sgRNA 

expression 

Addgene: 48138 

CBP constructs 

Construct Residue numbers Experimental use 

CBP full length (FL) 1-2441 Insect cell expression 

CBP core 1082-1700 Insect cell expression 

Mammalian expression 

CBP Nter-core 1-1700 Insect cell expression 

CBP core-Cter 1082-2441 Insect cell expression 

CBP core-ZZ (CZ) 1082-1751 Insect cell expression 

Mammalian expression 

CBP core-ZZ-TAZ2 

(CZTwt) 

1082-1873 Insect cell expression 

Mammalian expression 

CBP core-ΔZZ-TAZ2 

(CΔZT) 

1082-1873 (Δ1701-1758) Insect cell expression 

CBP core-ZZ-TAZ2mut 

(CZTmut) 

1082-1873 

R1769E/K1832E/K1850E 

Insect cell expression 

Mammalian expression 

CBP core-ZZ-TAZ2 

catalytically inactive 

(CZTci) 

1082-1873 

D1436Y 

Insect cell expression 

ZZ 1701-1751 Bacterial expression 

TAZ2wt 1759-1873 Bacterial expression 

TAZ2mut 1759-1873 

R1769E/K1832E/K1850E 

Bacterial expression 

 

Note that sequencing revealed that the original CBP full length sequence 

contains a P695L mutation, which was carried forward in the constructs 

containing the N-terminus. The mutation is in an unstructured region of the 

protein. 
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2.1.2 Polymerase chain reaction (PCR) 
2.1.2.1 Analytical PCR 

 

Analytical PCRs were carried out in 10 µL final volume, for analysis by 

separation on an agarose gel, or in 50 µL final volume, for analysis by Sanger 

sequencing. DNA was prepared in QuickExtract DNA extraction solution 

(Epicentre) and PCRs were carried out with MangoTaq DNA polymerase 

(Bioline) in 1x MangoTaq buffer (Bioline), 1.5 mM MgCl2 and 0.2 mM dNTP mix 

with 0.2 µM of forward and reverse primers. For problematic regions, 1x GC 

enhancer buffer (for Q5 polymerase, NEB) was added to reactions. 

 

PCR reactions were mixed and briefly centrifuged. Reactions were then carried 

out in an Eppendorf Mastercycler Nexus thermal cycler, with cycling parameters 

varying depending on DNA template and primers. PCR products were then 

analysed by separation on an agarose gel and where necessary gel extracted 

using the EZNA Gel Extraction kit (Omega BioTek) and eluted in 30 µL volume 

for Sanger sequencing. 

 
Table 2.2: Pipetting scheme for analytical PCR. 

Component 10 µL final volume 50 uL final volume 

5x MangoTaq buffer 2 µL 10 µL 

Forward primer (5 µM) 0.2 µL 2 µL 

Reverse primer (5 µM) 0.2 µL 2 µL 

MgCl2 (50 mM) 0.3 µL 1.5 µL 

dNTP mix (10 mM) 0.2 µL 1 µL 

DNA 2 µL 2 µL 

MangoTaq (5 U/µL) 0.2 µL 1 µL 

H2O 4.5 µL 30.5 µL 
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Table 2.3: Thermal cycling conditions for analytical PCR. 

Cycling step Temperature Time 

1. Initial denaturation 94°C 3 mins 

2. Denaturation 94°C 20 s 

3. Annealing 50-60°C 20 s 

4. Extension 72°C 30s/kb 

Repeat steps 2-4 for 35x cycles 

5. Final extension 72°C 5 mins 

6. Hold 12°C - 
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2.1.2.2 High fidelity PCR 

 

To generate constructs for expression in mammalian cells, insect cells or 

bacteria, inserts were PCR amplified using the Q5 DNA polymerase (NEB). 

Reactions were carried out in 1x Q5 buffer, usually with 1x GC enhancer buffer, 

in a 50 µL final volume. PCR reactions were mixed thoroughly and briefly 

centrifuged. Reactions were then carried out in an Eppendorf Mastercycler 

Nexus thermal cycler, with cycling parameters varying depending on DNA 

template and primers. PCR products were then analysed by separation on an 

agarose gel and were purified by gel extraction using the EZNA Gel Extraction 

kit (Omega BioTek) and eluted in 30 µL volume. 

 
Table 2.4 Pipetting scheme for high fidelity PCR. 

Component 50 uL final volume 

5x Q5 buffer 10 µL 

5x GC enhancer 10 µL 

Forward primer (5 µM) 4 µL 

Reverse primer (5 µM) 4 µL 

dNTP mix (10 mM) 1 µL 

Plasmid DNA (10 ng/uL) 1 µL 

Q5 polymerase (2 U/µL) 0.5 µL 

H2O 19.5 µL 

 

Table 2.5: Thermal cycling conditions for high fidelity PCR. 

Cycling step Temperature Time 

1. Initial denaturation 98°C 30 s 

2. Denaturation 98°C 10 s 

3. Annealing 55-60°C 30 s 

4. Extension 72°C 30s/kb 

Repeat steps 2-4 for 35x cycles 

5. Final extension 72°C 10 mins 

6. Hold 12°C - 
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2.1.2 Restriction cloning 
2.1.2.1 Insert digest 

 

Following high fidelity PCR, insert DNA was gel extracted, eluted in 30 µL and 

digested using restriction enzymes from NEB. Inserts were generally digested 

with two enzymes to generate sticky ends where possible, with digests carried 

out for 37°C for 1 h, unless manufacturer’s instructions directed otherwise. The 

digest was then separated on an agarose gel and the digested insert purified by 

gel extraction. 

 
Table 2.6: Pipetting scheme for insert digest. 

Component Volume 

Insert DNA 30 µL 

Enzyme X (10 U/µL) 1 µL 

Enzyme Y (10 U/µL) 1 µL 

Restriction digest buffer 3.5 µL 

 

 

2.1.2.2 Vector digest 

 

The cloning vector was also digested using appropriate restriction enzymes, 

generally for 1 h at 37°C. The digest was then separated on an agarose gel and 

the vector backbone purified by gel extraction. 

 
Table 2.7: Pipetting scheme for vector digest. 

Component Volume 

Vector DNA 1 µL (500-1000 ng) 

Enzyme X (10 U/µL) 1 µL 

Enzyme Y (10 U/µL) 1 µL 

Restriction digest buffer 1 µL 

H2O 6 µL 
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2.1.2.3 Ligation reactions 

 

Following purification of digested insert and vector, ligation reactions were 

carried out using T4 DNA ligase (Promega, M1804) in Rapid ligation buffer for 1 

h on ice, and 4 µL of the ligation reaction was used to transform XL-10 Gold 

chemically competent Escherichia coli. 

 
Table 2.8: Pipetting scheme for ligations. 

Component Volume 

Insert DNA 3 µL 

Vector DNA 1 µL 

T4 ligase (1-3 U/µL) 1 µL 

2x Rapid ligation buffer 5 µL 
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2.1.3 Overlap extension PCR 
 

Overlap extension PCR was used to generate deletion mutants, such as CBP 

core-ΔZZ-TAZ2, as described by (Kanoksilapatham et al., 2007). In the first 

step, two separate 50 µL PCR reactions were set up to amplify the two parts of 

the final desired construct by high fidelity PCR. Primers used in each reaction 

were designed so that one primer has a restriction enzyme overhang for cloning 

into a vector and the other has 30 nt primer with 15 nt that anneals to the part 

being amplified and 15 nt that would anneal to the part adjacent to the deletion. 

These PCR reactions generate “megaprimers” for use in the next step. 

 

In the second step, 5 µL of the two megaprimers were mixed and a 25 µL low 

cycle number high fidelity PCR was carried out to generate a template carrying 

the deletion. 

 
Table 2.9: Pipetting scheme for overlap extension step. 

Component 25 uL final volume 

5x Q5 buffer 5 µL 

5x GC enhancer 5 µL 

Megaprimer 1 5 µL 

Megaprimer 2 5 µL 

dNTP mix (10 mM) 0.5 µL 

Q5 polymerase (2 U/µL) 0.5 µL 

H2O 4 µL 

 

Table 2.10: Thermal cycling conditions for overlap extension step. 

Cycling step Temperature Time 

1. Initial denaturation 98°C 30 s 

2. Denaturation 98°C 10 s 

3. Annealing 72°C 30 s 

4. Extension 72°C 30s/kb 

Repeat steps 2-4 for 10x cycles 

5. Hold 12°C - 
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For the final step, the overlap extension reaction was made up to 50 uL by 

addition of flanking primers carrying restriction enzyme overhangs (as used in 

the first step to generate the megaprimers) and appropriate volumes of PCR 

mix, and the newly generated template carrying the deletion was amplified by 

high fidelity PCR. The PCR product was then separated on an agarose gel and 

purified by gel extraction, digested, ligated into the desired vector and 

transformed into XL-10 Gold competent bacteria. 

 
Table 2.11: Pipetting scheme for amplification of deletion product. 

Component 25 uL final volume 

5x Q5 buffer 5 µL 

5x GC enhancer 5 µL 

Flanking primer forward (5 µM) 4 µL 

Flanking primer reverse (5 µM) 4 µL 

dNTP mix (10 mM) 0.5 µL 

Q5 polymerase (2 U/µL) 0.5 µL 

H2O 6 µL 

 

Table 2.12: Thermal cycling conditions for amplification of deletion product. 

Cycling step Temperature Time 

1. Initial denaturation 98°C 30 s 

2. Denaturation 98°C 10 s 

3. Annealing 72°C 30 s 

4. Extension 72°C 30s/kb 

Repeat steps 2-4 for 10x cycles 

5. Final extension 72°C 10 mins 

6. Hold 12°C - 
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2.1.4 DNA mutagenesis 
 

Mutagenesis was carried out by PCR using the Quikchange II (Stratagene) 

strategy. Two 32 nt complementary primers were designed, both annealing to 

the same sequence with the desired mutation(s) in the middle of the primer 

sequences. The entire vector was then amplified by high fidelity PCR, and the 

original vector was digested with DpnI (NEB) for 3 h at 37°C. The reaction was 

then directly transformed into XL-10 Gold competent bacteria. 

 
Table 2.13: Pipetting scheme for mutagenesis PCR. 

Component 50 uL final volume 

5x Q5 buffer 10 µL 

5x GC enhancer 10 µL 

Plasmid DNA (10 ng/µL) 1 µL 

Flanking primer forward (5 µM) 0.4 µL 

Flanking primer reverse (5 µM) 0.4 µL 

dNTP mix (10 mM) 1 µL 

Q5 polymerase (2 U/µL) 0.5 µL 

H2O 26.7 µL 

 

Table 2.14: Thermal cycling conditions for mutagenesis PCR. 

Cycling step Temperature Time 

1. Initial denaturation 98°C 30 s 

2. Denaturation 98°C 10 s 

3. Annealing 60°C 30 s 

4. Extension 72°C 30s/kb 

Repeat steps 2-4 for 16x cycles 

5. Final extension 72°C 10 mins 

6. Hold 12°C - 

 

Table 2.15: Pipetting scheme for DpnI digest. 

Component Volume 

Mutagenesis PCR product 50 µL 

Cutsmart buffer 6 µL 

DpnI 1 µL 
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2.1.5 DNA manipulations 
2.1.5.1 Transformation of chemically competent bacteria 

 

XL-10 Gold chemically competent bacteria (prepared in-house) were 

transformed using PEG/DMSO. 1-4 µL of plasmid or ligation reaction was mixed 

on ice with 20 µL of sterile filtered 5x KCM buffer (500 mM KCl, 150 mM CaCl2, 

250 MgCl2). 100 µL of competent bacteria were thawed on ice and added to the 

DNA in 5xKCM and incubated on ice for 10-30 mins. The transformations were 

then incubated at room temperature for 5-10 mins before 600 uL of Luria broth 

(LB) was added (10 g/L Tryptone, 5 g/L yeast extract, 10 g/L NaCl, dissolved in 

distilled H2O and pH adjusted to 7.0 prior to autoclaving). The bacteria were 

then allowed to recover for 45 mins at 37°C on a shaker. For circular plasmids, 

100 uL of the transformation mix was then plated on LB agar plates with 

selective antibiotic and colonies were grown overnight at 37°C. For ligation 

reactions, after recovery the bacteria were centrifuged at 1,500 x g for 3 mins. 

The pelleted bacteria were then resuspended in 100 uL of LB and all of the 

bacteria were plated and colonies were grown overnight at 37°C. 

 

 

2.1.5.2 Isolation of plasmid DNA 

 

For small scale plasmid preparations, individual bacterial colonies were picked 

using a pipette tip and used to inoculate 5 mL of LB supplemented with 

appropriate antibiotic. Cultures were grown overnight at 37°C shaking at 200 

rpm and the next morning were collected by centrifugation at 3,750 x g for 10 

mins. Plasmid DNA was then purified using the EZNA Plasmid Mini Kit (Omega 

BioTek) according to the manufacturer’s instructions, with DNA eluted in 50 µL 

of elution buffer. 

 

For large scale plasmid preparations (for example, for transfection into 

mammalian cells), individual bacterial colonies were used to inoculate 125 mL 

of LB in a 500 mL conical flask supplemented with appropriate antibiotic. 

Cultures were grown overnight at 37°C shaking at 200 rpm and the next 

morning were collected by centrifugation at 3,750 x g for 10 mins. Plasmid DNA 

was then purified using the EZNA Plasmid Maxi Kit (Omega BioTek) according 
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to the manufacturer’s instructions. After elution, the isolated DNA was generally 

concentrated by precipitated with isopropanol. To this end, 0.1 volumes of 3 M 

sodium acetate pH 5.2, was added to the DNA followed by 0.7 volumes of 

100% isopropanol. After mixing by inversion, the DNA was pelleted by 

centrifugation at 15,000 x g for 30 mins. The DNA pellet was then washed with 

70% ethanol, centrifuged at 15,000 x g for 10 mins and air dried to evaporate 

residual ethanol. DNA was then resuspended in water, generally to a final 

concentration of 1 mg/mL. 

 

 

2.1.5.3 Analytical restriction digest 

 

Isolated plasmids were analysed by restriction digest in 30 µL reaction volumes 

using restriction enzymes from NEB. Analytical digests were generally carried 

out at for 1 h at 37°C, unless otherwise specified by the manufacturer. Digests 

were then analysed by agarose gel electrophoresis. 

 
Table 2.16: Pipetting scheme for analytical restriction digest. 

Component Volume 

Insert DNA 2 µL 

Enzyme X (10 U/µL) 1 µL 

Enzyme Y (10 U/µL) 1 µL 

Restriction digest buffer 3 µL 

H2O 13 µL 
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2.1.6 Sanger sequencing 
 

All cloned DNA was verified by Sanger sequencing, and sequencing was used 

to confirm positive clones in genome editing. Sequencing reactions were set up 

using approximately 20 ng of DNA for PCR products and 200 ng of DNA for 

plasmids in 1x BigDye sequencing buffer with 0.65 µM sequencing primer and 

BigDye terminator v3.1 (Applied Biosystems). Reactions were carried out in a 

thermal cycler and sequenced by Edinburgh Genomics. 

 
Table 2.17: Pipetting scheme for sequencing reactions. 

Component Volume 

DNA 1-5.7 µL 

5x BigDye buffer 2 µL 

BigDye Terminator v3.1 1 µL 

Sequencing primer (5 µM) 1.3 µL 

H2O to 10 µL 

 

Table 2.18: Thermal cycling conditions for sequencing reactions. 

Cycling step Temperature Time 

1. Initial denaturation 96°C 1 min 

2. Denaturation 96°C 10 s 

3. Annealing 50°C 5 s 

4. Extension 60°C 4 mins 

Repeat steps 2-4 for 25x cycles 

5. Hold 12°C - 

 

 

  



 77 

2.2 Bacterial protein expression and purification 
2.2.1 Bacterial expression constructs 
2.2.1.1 ZF-CXXC construct 

 

The E. coli codon optimised 6xHis-CXXC-3F2S-2xGCN4 construct was 

synthesised by IDT and cloned into pET22 using XbaI and SalI sites in the ZF-

CXXC construct and XbaI and XhoI sites in the vector. 

 

 

2.2.1.2 ZZ and TAZ2wt constructs 

 

Constructs for expression of ZZ and TAZ2 domains were amplified from 

pFastBac CBP FL with 5’ Acc65I site and 3’ SalI site and stop codons. The 

constructs were then cloned into pET22-CXXC into the Acc65I downstream of 

the N-terminal 6xHis and TEV sites and the XhoI site upstream of 3F2S, so that 

stop codons prevent expression of the C-terminal tags. 

 

2.2.1.3 TAZ2mut construct 

 

The TAZ2mut sequence carrying R1769E/K1832E/K1850E mutations was 

synthesised as a gBlock by IDT, amplified by PCR using the same primers as 

TAZ2wt and cloned into pET22-CXXC using Acc65I and XhoI sites. 

 

 

2.2.2 Bacterial protein expression 
2.2.2.1 Expression of ZF-CXXC, ZZ and TAZ2 constructs 

 

The bacterial expression vectors were transformed into BL21 competent 

bacteria by heat shock. 100 µL of bacteria were thawed on ice, 1 µL of plasmid 

was added and incubated on ice for 20 mins. The bacteria were then heat 

shocked at 42°C for 1 min 30 s, followed by incubation on ice for 2 mins. 600 µL 

of LB were then added to the transformations, and the bacteria were allowed to 

recover at 37°C on a shaker for 45 mins. 100 µL of the transformation reaction 

was then plated on LB agar plates supplemented with kanamycin, and colonies 

were allowed to grow overnight at 37°C. 
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For protein expression, a single colony was picked and used to inoculate a 25 

mL starter culture overnight at 37°C, shaking at 200 rpm. The next morning, the 

entire starter culture was added to a 500 mL of LB supplemented with 

kanamycin and the culture was grown at 37°C at 200 rpm for 1-2 h until OD600 

was approximately 0.6. Protein expression was then induced by addition of 

Isopropyl β- d-1-thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM 

and ZnCl2 to a final concentration of 20 µM, and protein expression was allowed 

to proceed for 3 h at 37°C. The bacteria were then harvested by centrifugation 

at 6,000 x g for 15 mins at 4°C, washed with 1x PBS and either used 

immediately for protein purification or flash frozen and stored at -80°C. 

 

 

2.2.2.2 Expression of TEV protease 

 

TEV protease was expressed in bacteria essentially as described for ZF-CXXC, 

with some minor modifications. pRK793 was transformed into BL21 bacteria by 

heat shock and a starter culture and large scale culture were set up as 

described above. Protein expression was then induced only in the presence of 

0.5 mM IPTG, and protein expression was allowed to proceed for 4 h at 30°C 

before bacteria were harvested. 

 

 

2.2.3 Purification of 6xHis-tagged proteins from bacteria 
 

Bacterial pellets were resuspended in lysis buffer (20 mM Tris-Cl pH 8, 500 mM 

NaCl, 0.1% NP40, 0.5 mM PMSF), using 16 mL for a 500 mL culture, and lysed 

by sonication on ice at 40% power, three times for 33 s with pulses of 1 s on/0.1 

s off. The lysate was then cleared by centrifugation at 23,000 x g for 30 mins at 

4°C. The 6xHis tagged protein was then purified by IMAC (immobilised metal 

affinity column) affinity purification using Sepharose 6 Fast Flow Ni-NTA Resin 

(GE Healthcare). 0.5 mL of packed resin was used for 500 mL of bacterial 

culture, and the resin was washed twice with lysis buffer before addition of the 

lysate. The binding reaction was allowed to proceed at for 1 h at 4°C with end 

over end rotation. The beads were then pelleted by centrifugation at 800 x g for 
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2 mins at 4°C and the unbound flowthrough fraction was removed by aspiration. 

The beads were resuspended in 20 column volumes of low salt wash buffer (50 

mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 0.1 mM PMSF, titrated to pH 8 

with NaOH), added to a 10 mL poly-prep chromatography column (Bio-Rad) 

and the wash buffer allowed to flow through the column. The column was then 

washed with 20 column volumes of high salt wash buffer (50 mM NaH2PO4, 1 M 

NaCl, 20 mM imidazole, titrated to pH 8 with NaOH), and subsequently 

equilibrated into low salt with 10 column volumes of low salt wash buffer. Bound 

proteins were eluted 5-10 times with one column volume of elution buffer (50 

mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, titrated to pH 8 with NaOH). 

Protein concentration in the elution fractions was determined by Bradford assay 

or by SDS-PAGE followed by Coomassie staining with Instant Blue (Expedeon), 

and the most concentrated fractions were pooled. For ZF-CXXC, the protein 

was then cleaved with TEV protease using 1 mg of TEV protease for 30 mg of 

ZF-CXXC protein. The cleavage reaction was allowed to proceed at 4°C 

overnight with rotation. 

 

The pooled fractions were then dialysed overnight at 4°C in BioDesign Dialysis 

Tubing (ThermoFisher) with molecular weight cut off (MWCO) of 8 kDa against 

1 L of BC100 (20 mM HEPES pH 8, 100 mM KCl, 10% glycerol, 0.5 mM DTT). 

The dialysed protein was cleared of precipitate by centrifugation for 10 mins at 

4°C at either 5,000 x g or 13,000 x g, for volumes greater or smaller than 1.5 

mL, respectively. The concentration of soluble protein was then determined by 

Bradford assay and its purity assessed by SDS-PAGE followed by Coomassie 

staining. The purified protein was aliquoted and stored at -80°C. 

 

 

2.2.4 Ion exchange chromatography purification of TEV protease 
 

Following 6xHis purification, TEV protease was further purified by ion exchange 

chromatography. TEV protease is expressed with a C-terminal 5xArg tag to 

impart positive charge to the protein, allowing it to be purified by cation 

exchange. The protein has a pI of approximately 9.6 and was dialysed into 

BC100 buffer with pH 7.5 (20 mM HEPES pH 7.5, 100 mM KCl, 10% glycerol, 

0.5 mM DTT). Protein was applied to a 1 mL pre-packed MonoS column using a 
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fast protein liquid chromatography (FPLC) ÄKTA system in BC100. The resin 

was then washed with 20 column volumes of BC100, and protein was eluted 

over a linear gradient over 40 mL to a maximum concentration of NaCl of 1 M. 

Protein fractions were monitored by UV spectrometry at 280 nM, and analysed 

for concentration and purity by SDS-PAGE followed by Coomassie staining. 

Pooled fractions were dialysed overnight against 1 L of BC100 (20 mM HEPES 

pH 8, 100 mM KCl, 10% glycerol, 0.5 mM DTT), and the pure protein was made 

up to a final concentration of 2 mg/mL before aliquoting and storage at -80°C. 

 

 

2.3 Insect cell protein expression and purification 
 

2.3.1 Insect cell culture, freezing and storage 
 

Sf9 cells were maintained in suspension in serum- and antibiotic-free HyClone 

CCM3 media (GE Life Sciences) at 27°C and shaking at 125 rpm. Cell density 

was maintained between 0.5 x 106 and 4 x 106 cells/mL. Centrifugation of cells 

was avoided, but when necessary cells were pelleted at low speed at 200 x g 

for 5 mins before they were resuspended in media for passaging. To freeze 

cells for long term storage, cells were pelleted at 200 x g, resuspended in 

Bambanker serum-free cell freezing medium at a density of 32 x 106 cells/mL, 

and 0.5 mL aliquoted in 2 mL cryovial tubes (Corning), frozen at -80°C 

overnight in Mr Frosty freezing containers (Nalgene) and transferred to liquid 

nitrogen. To thaw cells, one aliquot corresponding to 16 x 106 cells was thawed 

in a 37°C water bath and transferred directly to 20 mL of media. Cell growth 

was monitored over the following days and cells were passaged when they 

reached a density of 4 x 106 cells/mL. 

 

 

2.3.2 Insect cell expression constructs 
2.3.2.1 CBP truncation constructs 

 

CBP truncation constructs were amplified from pFastBac CBP FL using a 

forward primer that inserts 5’ AgeI-1xFLAG-Acc65I and a reverse primer that 

inserts 3’ stop codons and HindIII or SalI sites. The inserts were then cloned 
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into the pFastBacFS vector between the AgeI site, downstream of a 6xHis tag 

and TEV cleavage site, and either HindIII or XhoI sites. 

 

2.3.2.2 CBP core-ZZ-TAZ2mut (CZTmut) construct 

 

The synthesised gBlock containing the TAZ2mut sequence with 

R1769E/K1832E/K1850E mutations was amplified with a forward primer 

containing a 5’ XhoI site and a reverse primer containing 3’ stop codons and a 

HindIII site. The insert was then cloned into the pFB CZTwt vector between an 

internal XhoI site within the coding sequence of the HAT domain of CBP and 

the HindIII site to generate pFB CZTmut. 

 
 
2.3.3 Insect cell protein expression 
2.3.3.1 Generation of recombinant bacmids 

 

To generate recombinant baculoviruses for insect cell expression, recombinant 

bacmids were first generated using the Bac-to-Bac procedure. The insert of 

interest was cloned into the pFastBac vector and 1 µg of miniprep DNA was 

used to transform 50 µL of EmBacY competent cells by heat shock. EmBacY 

cells were thawed and incubated with the DNA on ice for 30 mins. The bacteria 

were then heat shocked at 42°C for 45 s. 200 µL of LB were immediately added 

to the transformation and the bacteria were allowed to recover for 4-6 h at 37°C 

on a shaker, before 80 µL of the transformation mixture was plated on an LB 

agar plate supplemented with 1 x kanamycin, 1 x tetracycline, 1 x gentamycin, 

100 µg/mL Bluo-gal and 168 µM IPTG. Plates were incubated at 37°C overnight 

protected from light and blue colour was allowed to develop for a further 24 h. 

Successful transposition of the insert into bacmid DNA results in disruption of 

the lacZ reporter gene, resulting in white colonies. Therefore, individual white 

colonies were picked, re-streaked on selective plates and used to inoculate 5 

mL cultures grown overnight at 37°C in the presence of 1 x kanamycin, 1 x 

tetracycline, 1 x gentamycin, with six individual colonies picked per construct. 

The following day, the bacteria were collected by centrifugation at 3,750 x g for 

10 mins and recombinant bacmid DNA was prepared using the EZNA plasmid 

mini kit (Omega BioTek). 
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2.3.3.2 Generation of recombinant baculoviruses 
 

To generate recombinant baculoviruses, the recombinant bacmids were 

transfected into Sf9 cells. Sf9 cells were seeded onto wells of a 6 well plate at a 

density of 1.8 x 106 cells per well in 2 mL of CCM3 media and allowed to settle 

for 1 h. For the transfections, 8 µL of X-tremeGENE HP transfection reagent 

(Roche) and 1 µg of fresh bacmid DNA were mixed and incubated at room 

temperature in 100 µL of CCM3 media in a 1.5 mL Eppendorf tube for 30 mins. 

The transfection reagent:DNA complexes were then added to the cells 

dropwise, alongside an untransfected well as a negative control. The 

transfected cells were sealed with parafilm and transferred to a 27°C incubator 

and the transfections allowed to proceed for 4-7 days. The recombinant 

bacmids contain a GFP reporter gene to monitor the transfections. Therefore, 

once strong GFP signal could be observed, the recombinant baculoviruses that 

are released from lysed cells were harvested by collecting the culture medium. 

The virus was cleared of cells by centrifugation at 500 x g for 5 mins and the 

supernatant taken as the P1 virus. A small amount of P1 virus was retained and 

foetal bovine serum (FBS; Gibco) was added to a final concentration of 5% for 

long term storage at 4°C protected from light, and the rest was used for 

amplification of the virus. 
 

2.3.3.3 Amplification of recombinant baculoviruses 

 

To generate sufficient viral titre for efficient protein expression, the viruses 

underwent several rounds of amplification. 20 mL of Sf9 cells at a density of 2 x 

106 cells/mL were inoculated with the P1 virus, and viral infection was allowed 

to proceed for 5 days. The cells were harvested and pelleted by centrifugation 

at 500 x g for 5 mins and the supernatant was taken as the S1 virus. FBS was 

added to the virus to a final concentration of 5% for storage at 4°C. To generate 

S2 virus, 200 µL of S1 virus was used to inoculate 20 mL of Sf9 cells at a 

density of 2 x 106 cells/mL, and the resulting virus was harvested and 

processed in the same way as for S1 virus. The amplification process was 

repeated until an S4 virus was generated, which could then be used for protein 

expression. Importantly, before generation of S4 virus, cells were taken from 

the S3 virus culture, boiled in 1xSDS loading buffer and analysed by SDS-
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PAGE followed by western blot to ensure that cells were expressing the protein 

construct. 

 

2.3.3.4 Infection of insect cells for protein expression 

 

For large-scale expression of proteins in Sf9 cells, cultures were expanded to 

500-1000 mL volumes at a density of 4 x 106 cells/mL and were inoculated with 

S4 virus at a ratio of 1:100, so that 5 mL of S4 virus was added to a 500 mL 

culture. The infection was allowed to proceed for 48-72 h at 27°C and shaking 

at 125 rpm, and the cells were harvested by centrifugation in 250 mL conical 

tubes (Corning) at 1,500 x g for 15 mins at 4°C. The pellets were then snap 

frozen and stored at -80°C until required for protein purification. 

 

 

2.3.4 Purification and concentration of FLAG-tagged proteins from 

insect cells 
 

Insect cell pellets from 500 mL culture were resuspended in 30 mL of lysis 

buffer (20 mM Tris-Cl pH 8.0, 350 mM NaCl, 10% glycerol, 10 µM ZnCl2, 0.1% 

NP40, 0.5 mM PMSF, 1 mM DTT), divided between two 50 mL falcon tubes and 

lysed by sonication on ice for 3x 30 s at 30% power with pulses of 1 s on/0.1 s 

off. The lysate was cleared by centrifugation at 40,000 x g for 30 mins at 4°C 

and the supernatant filtered through a syringe-driven 0.45 µm PVDF membrane 

(Millipore, SLHVM25NS). To prepare the beads, 100 µL of packed FLAG M2 

affinity resin (Sigma) was washed twice with 1 mL of BC100 (20 mM Tris-Cl pH 

8.0, 100 mM NaCl, 10% glycerol, 1 mM DTT), once with 200 µL of 0.1 M glycine 

pH 2.5, twice with 200 µL of 1 M Tris-Cl pH 8 and twice with 1 mL of lysis buffer, 

with the resin collected after each wash step by centrifugation at 800 x g for 2 

mins at 4°C. The resin was then resuspended in 0.5 mL of lysis buffer, added to 

the cleared lysate and incubated with rotation for 2 h at 4°C. The resin was 

collected by centrifugation at 800 x g for 2 mins at 4°C and the flowthrough 

fraction removed by aspiration. The flowthrough was then usually re-applied to 

fresh resin for further protein purification. The bound resin was then washed 

three times for 10 mins with 10 mL of BC350 wash buffer (20 mM Tris-Cl pH 

8.0, 350 mM NaCl, 10% glycerol, 10 µM ZnCl2, 0.5 mM PMSF, 1 mM DTT), 
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once in 1 mL of BC100 and transferred to a 1.5 mL protein LoBind tube 

(Eppendorf). Elution under native conditions was carried out by competition with 

3xFLAG peptide (Sigma). 3xFLAG peptide was received as lyophilized powder 

and reconstituted to a final stock concentration of 5 mg/mL in Tris-buffered 

saline (TBS; 50 mM Tris-Cl, pH 7.9, 150 mM NaCl) and stored at -20°C. Bound 

protein was eluted three times for 30 mins in 0.3 mg/mL 3xFLAG peptide diluted 

in BC100. The concentration of purified protein was then measured by Bradford 

assay and purity was assessed by SDS-PAGE followed by Coomassie staining. 

Protein samples were then either processed further or aliquoted and stored at -

80°C. 

 

For crosslinking mass spectrometry (XL-MS), the presence of the primary 

amine Tris interferes with crosslinking reactions. Therefore, protein purified for 

XL-MS was dialysed three times against HEPES-containing BC100 buffer (20 

mM HEPES pH 8, 100 mM KCl, 5% glycerol, 1 mM DTT). For XL-MS and 

electrophoretic mobility shift assays (EMSAs), proteins were required at higher 

concentrations. Therefore, after purification, protein samples were concentrated 

using Amicon Ultra 0.5 mL centrifugal filters with Ultracel-30 regenerated 

cellulose membrane and MWCO of 30 kDa (Millipore, UFC503008) or Amicon 

Ultra-15 centrifugal filters with Ultracel-3 regenerated cellulose membrane and 

MWCO of 3 kDa (Millipore, UFC900308). Samples were applied to the filter and 

centrifuged at 14,000 x g for 0.5 mL units or at 4,000 x g for 15 mL units for 5-

15 mins at 4°C, until samples were concentrated to approximately 1 mg/mL. 

Protein samples were then aliquoted and stored at -80°C. 
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2.4 Mammalian tissue culture methods 
2.4.1 Mammalian tissue culture media 
 

Medium for embryonic stem (ES) cells comprised Dulbecco’s modified Eagle’s 

medium (DMEM) (high glucose, without sodium pyruvate, Gibco, 41965062) 

supplemented with 15% foetal bovine serum (FBS; One Shot FBS, Gibco), 100 

µg/mL penicillin/streptomycin (Gibco), 2 mM L-glutamine (Gibco), 1x non-

essential amino acids (Gibco), 50 µM β-mercaptoethanol (Sigma) and 10 ng/mL 

leukaemia inhibitory factor (LIF). For antibiotic selection, puromycin (Gibco, 

A1113803) was used at 1.5 µg/mL concentration. For experiments using 4-

hydroxytamoxifen (4-OHT) (Sigma, H7904-5MG), the powder was resuspended 

in ethanol to a final concentration of 8 mM for a 10,000x stock that was stored 

at -20°C. 4-OHT was then added to media to a concentration of 800 nM. Media 

was stored at 4°C and warmed before use. 

 

 

2.4.2 Culturing, thawing and freezing ES cells 
 

ES cells were grown in tissue culture dishes (Greiner) coated in 0.1% gelatin 

(Sigma, G1393), incubated at 37°C in a 5% CO2 atmosphere. To passage cells, 

the medium was aspirated and the cells were first washed with 1x PBS (Life 

Technologies, 70013065). 0.05% trypsin-EDTA reagent (Gibco, 25300-062) 

was added to cover the cells, usually 2.5 mL for a 10 cm plate and 5 mL for a 

15 cm plate, and the cells were trypsinised at 37°C for 5 mins. The trypsin was 

quenched with an equal volume of media, cells were dispersed by pipetting, 

centrifuged at 500 x g for 5 mins where necessary, and added to a fresh tissue 

culture plate. 

 

To freeze cells for storage and future culture, cells were trypsinised, quenched, 

counted and centrifuged as described above. Cells were then resuspended in 

Bambanker serum-free cell freezing medium at a density of 2 million cells/mL 

and 0.5 mL aliquoted in 2 mL cryovial tubes (Corning), frozen at -80°C 

overnight in Mr Frosty freezing containers (Nalgene) and transferred to liquid 

nitrogen. 
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To thaw cells, a cryovial containing 1 million cells was gently thawed in a 37°C 

water bath and added directly to either a 10 cm plate or one well of a 6-well 

plate, depending on the cell line. The cells were allowed to settle and grow 

overnight, and the following morning the media was changed to aspirate any 

dead cells that failed to attach to the tissue culture plate. 

 

 

2.4.3 ES cell transfections 
 

For transfections to express proteins stably or transiently in ES cells, 

Lipofectamine 3000 reagent (Thermo Fisher) was used. Note that transfections 

for CRISPR/Cas9 genome editing and dCas9 targeting experiments are 

described in detail separately. 

 

Transfections were carried out with a DNA:Lipofectamine:p3000 reagent ratio of 

1:2:3. For one well of a 6-well plate this corresponds to 1 µg DNA + 2 µL P3000 

+ 3 µL lipofectamine, for a 10 cm plate to 5 µg DNA + 10 µL P3000 + 15 µL 

lipofectamine. DNA was diluted in 100 µL of Opti-MEM reduced serum media 

(Gibco) and mixed, and P3000 reagent was subsequently added to the same 

tube. Lipofectamine was separately diluted in 100 µL of Opti-MEM. The 

DNA/P3000 mix was then added to the lipofectamine, mixed and incubated at 

room temperature for 20 mins. The DNA:lipofectamine complexes were then 

added dropwise to cells which had been changed to medium from which 

penicillin/streptomycin was excluded at least 1 h before transfection. The 

transfection was then allowed to proceed overnight, and the following morning 

media was changed to regular complete media. For transient transfections, 

cells were harvested by trypsinising or scraping 48 h after transfection. To 

select stable cell lines, cells were passaged on to a 10 cm or 15 cm plate and 

puromycin applied at a concentration of 1 µg/mL. 
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2.4.4 Isolation of stable ES cell clones 
 

To isolate ES cell clones after antibiotic selection, the cells were washed with 

1x PBS and then covered with 1x PBS whilst colonies were picked. ES cell 

colonies were picked by aspirating under a microscope with a 200 µL pipette. 

Each colony was then transferred directly into one well of a V-bottomed 96 well 

plate containing 30 µL of 0.05% trypsin-EDTA. The colonies were then 

trypsinised for 5 mins in a 37°C incubator, dispersed by pipetting and 

transferred to a flat-bottomed 96 well plate with ES cell medium without 

puromycin. After 24 h, the media was changed to media supplemented with 1 

µg/mL puromycin. 

 

 

2.4.5 Immunofluorescence (IF) of ES cells 
 

For IF of ZF-CXXC-3F2S-Venus-ERT2 cell lines, cells were seeded and grown 

on cover slips. Following 4-OHT treatment, cells were fixed with 4% 

formaldehyde for 20 mins and cells were permeabilised in 0.5% Triton X-100 for 

10 mins. Cells were then stained with 4, 6-diamidino-2-phenylindole 

dihydrochloride (DAPI) nuclear stain and mounted on glass slides with 

SlowFade (Thermo Fisher) and imaged with a Zeiss fluorescence microscope. 
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2.5 ZF-CXXC affinity purification (CAP) 
2.5.1 Chromatin preparation for CAP 
 

Ten 15 cm plates of ES cells were grown to confluency, harvested by 

trypsinisation, washed in 1x PBS, resuspended in 60 mL of 1x PBS and split 

between 6x 50 mL falcon tubes. Cells were then crosslinked by addition of 16% 

methanol-free formaldehyde (Pierce, 11586711) to a final concentration of 1% 

and incubated for 10 mins at room temperature. The crosslinking reactions 

were then quenched by addition of glycine to a final concentration of 125 mM, 

and the cells were pelleted by centrifugation at 800 x g for 4 mins. 

 

To prepare nuclei, the cells were lysed in LB1 (50 mM HEPES pH 8, 140 mM 

NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP40, 0.25% Triton X-100, 0.5 mM 

PMSF) for 10 mins at 4°C. The nuclei were recovered by centrifugation at 800 x 

g for 4 mins, and were subsequently washed in LB2 (10 mM Tris-Cl, pH 8, 200 

mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1 mM PMSF) for 10 mins at 4°C. The 

nuclei were again recovered by centrifugation at 800 x g for 4 mins, and 

resuspended in 6 mL of LB3 (10 mM Tris-Cl, pH 8, 200 mM NaCl, 0.1% sodium 

deoxycholate, 0.5% N-lauroylsarcosine, 0.1 mM PMSF) and split between six 

15 mL hard plastic polystyrene falcon tubes for sonication. Sonication probes 

were inserted and the nuclei were sonicated using a Bioruptor (Diagenode) on 

the high power setting for 15 mins with pulses of 30 s on/30 s off, giving a total 

sonication time of 7 mins 30 s and average fragment sizes of 1 kb. 

 

The sonicated chromatin was mixed and 10% Triton X-100 dissolved in LB3 

was added to a final concentration of 1%. The chromatin was cleared by 

centrifugation at 15,000 x g for 10 mins at 4°C and the supernatant was taken 

as the chromatin extract. Chromatin was then either used immediately for CAP 

or aliquoted and stored at -80°C. 
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2.5.2 Chromatin CAP 
 

To purify chromatin using ZF-CXXC protein, ZF-CXXC was first immobilised on 

StreptactinXT Superflow resin (IBA) to saturate the beads with protein. For 

example, with 10 mg of ZF-CXXC, 1 mL of packed StreptactinXT resin was 

used to immobilise the protein. The beads were washed twice with BC100 (20 

mM HEPES pH 8, 100 mM KCl, 10% glycerol, 0.5 mM DTT) and recovered by 

centrifugation at 800 x g for 2 mins and the protein was added and incubated 

with the beads with end-over-end rotation for 1 h at 4°C. The protein-bound 

beads were pelleted by centrifugation at 800 x g for 2 mins and washed once 

for 10 mins with CAP1000 buffer (50 mM HEPES pH 8, 10% glycerol, 0.1% 

Triton X-100, 1000 mM NaCl) to remove any bound DNA and twice with LB3 

(10 mM Tris-Cl, pH 8, 200 mM NaCl, 0.1% sodium deoxycholate, 0.5% N-

lauroylsarcosine, 0.1 mM PMSF) to equilibrate the beads. 3 mL of chromatin 

was added to each of the ZF-CXXCwt and control beads (either beads only or 

bound by ZF-CXXCK616A), and the chromatin was incubated with the beads for 3 

h. The beads were then washed three times for 10 mins with CAP150 (50 mM 

HEPES pH 8, 10% glycerol, 0.1% Triton X-100, 150 mM NaCl) for optimization 

experiments or CAP300 (50 mM HEPES pH 8, 10% glycerol, 0.1% Triton X-

100, 300 mM NaCl) for later experiments. 

 

For optimization experiments, bound chromatin was eluted by successive wash 

steps with one column volume of CAP300/500/700/1000 (50 mM HEPES pH 8, 

10% glycerol, 0.1% Triton X-100, 300/500/700/1000 mM NaCl), followed by 

three elutions with one column volume of buffer BXT (IBA; 100 mM Tris-Cl pH 

8, 150 mM NaCl, 1 mM EDTA, 50 mM D-biotin), and finally boiling the beads in 

one column volume of SDS-PAGE loading buffer. For later experiments, 

chromatin was directly eluted three times in 0.5 column volumes of buffer BXT. 

 

The elution, input and flowthrough fractions were analysed by SDS-PAGE 

followed by western blot or by quantitative PCR (qPCR). 
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2.6 CRISPR-Cas9 genome editing 
2.6.1 Constructs and guide RNAs 
 

To target the MLL3 (NCBI gene ID: 231051) and MLL4 (NCBI gene ID: 381022) 

loci to insert N-terminal tags using CRISPR/Cas9 genome editing technology, 

homology-directed repair (HDR) templates of 1 kb size were designed and 

synthesised by Dundee Cell Products for MLL3 or IDT for MLL4. The HDR 

templates were amplified by PCR and cloned into the pUC19 vector for 

transfection into ES cells. 

 

Appropriate guide RNAs were identified using the CRISPR design tool 

(http://tools.genome-engineering.org). Guide oligos with 20 nt complementary 

regions and with cloning overhangs were synthesised by IDT and reconstituted 

in H2O at 100 µM concentration. To express the guide RNAs as single guide 

RNAs (sgRNAs) in cells, the oligos were annealed and cloned into the pX458 

vector (Addgene plasmid number: 48138), which co-expresses an sgRNA from 

a U6 promoter together with a Cas9-T2A-GFP construct. Oligos were mixed in 

equimolar amounts, phosphorylated by T4 polynucleotide kinase (PNK; NEB) 

and annealed. 

 
Table 2.19: Pipetting scheme for phosphorylation/annealing reactions. 

Component Volume 

Oligo top (100 µM) 1 µL 

Oligo bottom (100 µM) 1 µL 

10x T4 PNK buffer 1 µL 

T4 PNK 1 µL 

H2O 6 µL 

 

The oligos were phosphorylated and annealed in a thermal cycler by incubating 

at 37°C for 30 mins, boiling at 95°C for 5 mins, and then reducing the 

temperature in 5°C intervals, holding each temperature for 1 min, to a final 

temperature of 25°C. The phosphorylated and annealed oligos were then 

diluted 1 in 200 in H2O and ligated into pX458. 
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The oligo duplexes were ligated into pX458 in a digestion/ligation reaction. 

pX458 was digested with the restriction enzyme FastDigest BbsI (also known 

as BpiI; Thermo Fisher) and the oligo duplexes were annealed into the 

generated overhangs by T7 ligase (Thermo Fisher). 

 
Table 2.20: Pipetting scheme for digestion/ligation reactions. 

Component Volume 

pX458 plasmid X µL (100 ng) 

Diluted oligo duplex 2 µL 

10x Tango buffer 2 µL 

10 mM DTT 1 µL 

10 mM ATP 1 µL 

FastDigest BbsI (BpiI) 1 µL 

T7 ligase 0.5 µL 

H2O to 20 µL 

 
Table 2.21: Thermal cycling conditions for digestion/ligation reactions. 

Cycling step Temperature Time 

1. Initial denaturation 37°C 5 min 

2. Denaturation 21°C 5 mins 

Repeat steps 1-2 for 6x cycles 

3. Hold 12°C - 

 

Residual linearized DNA was digested with PlasmidSafe exonuclease (Thermo 

Fisher) at 37°C for 30 mins, followed by heat inactivation at 70°C for 30 mins. 

 

Table 2.22: Pipetting scheme for PlasmidSafe digest. 

Component Volume 

Ligation reaction 11 µL 

10x PlasmidSafe buffer 1.5 µL 

10 mM ATP 1.5 µL 

PlasmidSafe exonuclease 1 µL 
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The ligated plasmid was then transformed into XL-10 Gold competent bacteria 

and colonies were grown on LB agar plates supplemented with ampicillin 

overnight. Single colonies were picked and 5 mL cultures were grown overnight 

in LB with ampicillin. Plasmids were isolated using the EZNA Plasmid Mini Kit 

(Omega BioTek) and were sequenced with U6 sequencing primer. 

 

 

2.6.2 Co-transfection of pX458 and HDR template 
 

Transfections were performed in duplicate in two wells of a 6-well plate, using 

400,000 cells per well. Cells were passaged and counted as normal, and each 

well was seeded with 400,000 cells in media without penicillin/streptomycin. 

 

Transfections were carried out using Lipofecatmine 2000 (Thermo Fisher). For 

duplicate transfections, 10 µL of lipofectamine was added to 200 µL of 

OptiMEM. In a separate tube, 1 µg of pX458 and 1 µg of HDR plasmid was 

mixed with 200 µL OptiMEM. Both tubes were incubated for 5 mins at room 

temperature and then mixed and incubated together at room temperature for 20 

mins. 200 µL of DNA:lipofectamine complexes were then added dropwise to the 

ES cells and the transfection was allowed to proceed overnight. The following 

morning, the media was changed to complete ES media.  

 

 

2.6.3 FACS enrichment of transfected cells 
 

To isolate single ES cell clones that have been successfully genome edited, 

fluorescence-activated cell sorting (FACS) was used to enrich for cells that 

were transfected with GFP-expressing pX458 plasmid. Cells were trypsinised 

48 h after transfection, quenched with complete media and pelleted. The cells 

were resuspended in 1 mL of FACS sorting media comprising serum-free media 

supplemented with 3x Antibiotic-Antimycotic (Gibco), and passed through a 70 

µm cell strained into a FACS tube. GFP-positive cells were sorted by FACS 

(carried out by Dr Martin Waterfall, University of Edinburgh) into FACS sorting 

media. 15,000 sorted cells were seeded onto each of two 15 cm plates in 

complete ES media supplemented with 3x Antibiotic-Antimycotic and allowed to 
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form colonies over approximately seven days. A further 100,000 sorted cells 

were used to confirm that genome editing had been successful in bulk by PCR 

using mutation-specific primers and to optimise conditions for PCR-based 

genotyping. 

 

 

2.6.4 Isolating ES cell clones 
 

To isolate ES cell clones, colonies were picked into 30 µL of 1x PBS in a V-

bottomed 96 well plate. The colonies were trypsinised by addition of 40 µL of 

0.5% trypsin-EDTA (Gibco). The trypsin was quenched by addition of complete 

media and dispersed by pipetting. 80 µL of cells were then added to a flat-

bottomed 96 well plate pre-loaded with an additional 100 µL of media for 

continuing culture. The remainder of the cells were added to a duplicate 96 well 

plate for use in genotyping. Typically, 192 clones were picked per genome 

editing target to ensure multiple positive clones. 

 

 

2.6.5 Genotyping ES cell clones 
 

When the 96 well plate set aside for genotyping reached confluency, the media 

was aspirated and DNA was extracted using QuickExtract DNA extraction 

Solution (Epicentre). 100 µL of QuickExtract was added to each well of the 96 

well tissue culture plate, cells were resuspended and transferred to a 96 well 

PCR plate. The cells were vortexed, heated at 65°C for 6 mins, vortexed again 

and boiled at 98°C for 2 mins. Genotyping PCRs were then carried out using 2 

µL of DNA per reaction, and the extracted DNA was stored at -80°C. 

 

Initial screening PCRs were carried out using mutation-specific primers, in 

which one primer was designed that anneals to the newly integrated tag and the 

second primer anneals to a region of the endogenous locus outside the HDR 

template. PCRs were performed using MangoTaq DNA polymerase, in the 

presence of Q5 GC enhancer buffer for problematic PCRs, and analysed by 

agarose gel electrophoresis. The presence of a PCR product of correct size in 
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the analysed reaction suggested that the clone could have been successfully 

edited. 

 

To verify successful genome editing, positive clones from the first PCR screen 

were used in a second set of PCR reactions using two primers that anneal to 

regions of the endogenous locus outside the HDR template. These reactions 

amplify the target region regardless of whether editing has taken place to reveal 

whether clones are homozygous or (trans)heterozygous for the insertion. 

Reactions were analysed by agarose gel electrophoresis and PCR products 

corresponding to both edited and unedited alleles were purified by gel 

extraction and analysed by Sanger sequencing. 

 

For endogenous tagging of MLL3, however, the GC-rich nature of the locus 

precluded amplification of the target region even after extensive attempts at 

optimisation. Clones containing at least one successfully tagged allele were 

therefore confirmed by immunoprecipitation of the tagged protein with FLAG M2 

beads from whole cell extracts. 

 

 

2.7 Chromatin reconstitution 
2.7.1 Nucleosome positioning DNA 
 

Nucleosome arrays for histone acetyltransferase (HAT) and histone 

methyltransferase (HMT) assays were reconstituted onto a circular plasmid 

called p177-601 containing 12 copies of the 601 strong nucleosome positioning 

sequence (Lowary and Widom, 1998) separated by 30 bp linker DNA 

sequences. For electrophoretic mobility shift assays (EMSAs) using 

nucleosome arrays, the 12x 601 array was excised from p177-601 by digestion 

with EcoRV (NEB) restriction enzyme overnight at 37°C. The digest was 

analysed by agarose gel electrophoresis and the upper band was purified by 

gel extraction using 12 DNA-binding columns per 250 µg of starting material, 

and eluting six columns in a single 60 µL elution volume. 
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Table 2.23: Pipetting scheme for EcoRV digest of p177-601. 

Component Volume 

p177-601 plasmid (1 mg/mL) 250 µL 

EcoRV (5 U/µL) 50 µL 

Cutsmart buffer 35 µL 

H2O 15 µL 

 

For reconstitution of nucleosome core particles (NCPs),147 bp and 209 bp 601 

DNA was amplified by PCR in 50 µL reactions in 96 well plate format from pBS-

601 using a biotinylated forward primer. PCR products were purified using the 

EZNA Gel Extraction kit (Omega BioTek), using one DNA-binding column per 

five PCR reactions, and eluting three columns together in a single 50 µL elution 

to concentrate the DNA. 

 
Table 2.24: Pipetting scheme for 147 bp 601 PCR. 

Component 100x reactions 

5x MangoTaq buffer 1,000 µL 

Forward primer (50 µM) 20 µL 

Reverse primer (50 µM) 20 µL 

MgCl2 (50 mM) 150 µL 

dNTP mix (10 mM) 100 µL 

pBS-601 template (10 ng/µL) 100 µL 

MangoTaq (5 U/µL) 30 µL 

H2O 3,580 µL 

 
Table 2.25: Thermal cycling conditions for 147 bp 601 PCR. 

Cycling step Temperature Time 

1. Initial denaturation 94°C 2 mins 

2. Denaturation 94°C 30 s 

3. Annealing 54°C 30 s 

4. Extension 70°C 45 s 

Repeat steps 2-4 for 35x cycles 

5. Final extension 72°C 3 mins 

6. Hold 12°C - 
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Table 2.26: Pipetting scheme for 209 bp 601 PCR. 

Component 100x reactions 

5x MangoTaq buffer 1,000 µL 

Forward primer (50 µM) 100 µL 

Reverse primer (50 µM) 100 µL 

MgCl2 (50 mM) 200 µL 

dNTP mix (10 mM) 100 µL 

pBS-601 template (10 ng/µL) 100 µL 

MangoTaq (5 U/µL) 30 µL 

H2O 3,370 µL 

 
Table 2.27: Thermal cycling conditions for 209 bp 601 PCR. 

Cycling step Temperature Time 

1. Initial denaturation 94°C 2 mins 

2. Denaturation 94°C 15 s 

3. Annealing 48.9°C 15 s 

4. Extension 70°C 10 s 

Repeat steps 2-4 for 35x cycles 

5. Final extension 70°C 3 mins 

6. Hold 12°C - 

 

	
  

2.7.2 Histone expression and purification 
 

Histone expression and purification was carried out by other members of the 

Voigt lab. 

 

Human histones H2A and H2B, and Xenopus laevis histones H3 and H4 were 

expressed in BL21 bacteria from pET3 bacterial expression vectors. A 50 mL 

starter culture was established overnight in LB and used to seed a 2 L culture. 

Expression was induced once OD600 was approximately 0.6 by addition of 0.2 

mM IPTG, and expression was allowed to proceed for 3 h at 37°C. Bacteria 

were pelleted at 5,000 x g for 10 mins at room temperature, washed in cold 

histone wash buffer (50 mM Tris-Cl pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM 
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benzamidine, 5 mM β-mercaptoethanol), snap frozen in wash buffer and stored 

at -80°C until required. 

 

To purify histones from inclusion bodies, the bacterial pellets were first thawed 

in warm water, and the freeze-thaw cycle repeated one more time. The cells 

were then lysed by sonication on ice at 40% power, three times for 33 s with 

pulses of 1 s on/0.1 s off. The samples were centrifuged at 23,000 x g for 60 

mins at 4°C. 

 

The supernatant was aspirated and the pellet was resuspended in 40 mL of 

histone wash buffer supplemented with 1% Triton X-100 and transferred to a 

Dounce homogenizer. The inclusion body pellet was first broken up with five 

strokes using the loose pestle, and the inclusion bodies were released with ten 

strokes using the tight pestle. The samples were centrifuged at 23,000 x g for 

10 mins at 4°C to pellet the inclusion bodies. 

 

Inclusion bodies were solubilised by addition of 500 µL of 100% DMSO, which 

was allowed to soak into the pellet for 15 mins. The pellet was then 

resuspended in 5 mL of unfolding buffer (Tris-Cl pH 7.5, 7 M guanidinium HCl, 

10 mM DTT) and transferred to a Dounce homogenizer. The pellet was broken 

up first with the loose pestle followed by the tight pestle, as previously, and the 

sample was sonicated at 40% power for 15 seconds. The lysed inclusion bodies 

were stirred at room temperature for 1 h and centrifuged at 23,000 x g for 20 

mins at 4°C. The supernatant was taken as the extracted histone fraction. 

 

Histones were dialysed against Urea Buffer (10 mM Tris-Cl pH 8, 100 mM NaCl, 

7 M urea, 1 mM EDTA, 5 mM β-mercaptoethanol) and precipitate was pelleted 

by centrifugation at 45,000 x g for 30 mins at 4°C. The supernatant was briefly 

sonicated for 15 s at 30% power to break up residual DNA contamination, was 

then filtered through a dual glass/PVDF filter (Millipore) and purified by tandem 

ion exchange chromatography. Histones were purified using an ÄKTA FPLC 

system using a 5 mL HiTrap Q anion exchange column (GE Life Sciences) and 

a HiTrap SP cation exchange column (GE Life Sciences). Protein was eluted in 

Urea Buffer using a salt gradient from 0.1 M to 1 M NaCl. Elution fractions were 

analysed by SDS-PAGE on 15% gels followed by Coomassie staining. Pure 
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histone-containing fractions were pooled, dialysed against H2O supplemented 

with 3 mM β-mercaptoethanol, snap frozen, lyophilized and stored at -80°C. 

 

 

2.7.3 Refolding histone octamers 
Octamer refolding and purification were carried out by other members of the 

Voigt lab. 

 

Histones were resuspended in unfolding buffer, mixed in equal amounts and 

dialysed against refolding buffer (10 mM Tris-Cl pH 8, 2 M NaCl, 1 mM EDTA, 5 

mM β-mercaptoethanol). Precipitate was pelleted by centrifugation at 15,000 x 

g for 10 mins at 4°C. Refolded octamers were purified using a 24 mL Superdex 

200 gel filtration column (GE Life Sciences), elutions were analysed by SDS-

PAGE followed by Coomassie staining and octamer fractions were pooled and 

stored at -80°C. 

 

 

2.7.4 Nucleosome reconstitution 
 

For nucleosome arrays, DNA and histone octamers were mixed in refolding 

buffer at a DNA:histone mass ratio of 1:1.5 (typically 10 µg of DNA with 15 µg of 

histone octamer). For NCPs, DNA and histone octamers were mixed in 

refolding buffer at a DNA:histone mass ratio of 1:2 (typically 6 µg of DNA with 

12 µg of histone octamer). 

 

Reconstitution reactions were transferred to 0.5 mL Slide-A-Lyzer MINI Dialysis 

Devices 3.5 kDa MWCO (Thermo Fisher) and floated in 200 mL of refolding 

buffer. 800 mL of TE buffer (10 mM Tris-Cl pH 8, 1 mM EDTA) was then 

pumped into the refolding buffer using a peristaltic pump at 25 rpm to give a 

flow rate of 1 mL/min. In this way, the salt concentration of the buffer was 

gradually reduced over the course of dialysis. The reactions were then further 

dialysed against 200 mL of TE buffer alone for 5 h. The reconstituted 

nucleosomes were then stored at 4°C. 

 



 99 

Proper reconstitution of NCPs was checked by analysis on a 6% native PAGE 

gel or 1% native agarose gel. Reconstitution of nucleosome arrays was verified 

by analysis on a 0.5% native agarose gel or by digestion of 100 ng (by DNA) of 

nucleosomes with ScaI (NEB) for 1 h followed by native PAGE. 

 

 

2.8 In vitro protein biochemistry 
2.8.1 Histone acetyltransferase (HAT) assays 
 

Enzyme and substrate (nucleosome or octamer) were mixed on ice in 1 x HAT 

buffer (50 mM Tris-Cl pH 7.5, 10% glycerol, 4 mM DTT) to a final concentration 

of 75 nM enzyme and 150 nM substrate (approximately 425 ng of histone 

protein) in a final reaction volume of 25 µL. For 3H-labelled asays, reactions 

were started by addition of [3H]-acetyl coenzyme A (acetyl-CoA) (Hartmann 

Analytic) to a final activity of 1.5 µCi (corresponding to 7.8 µM). For unlabelled 

assays, unlabelled acetyl-CoA (Sigma) was added to a final concentration of 

100 µM, from a stock solution of 5 mM acetylCoA made up in 10 mM sodium 

acetate and stored at -80°C. Reactions were allowed to proceed for 5-60 mins 

at 30°C in a ThermoMixer (Eppendorf) shaking at 550 rpm. Reactions were 

stopped by addition of 12.5 µL of 3xSDS loading buffer (to a final 1x 

concentration) and boiled for 5 mins at 95°C. 

 

For [3H]-labelled HAT assays, quenched reactions were then separated by 

SDS-PAGE on 18% gels to analyse histone proteins and 8% gels to analyse 

the enzymes and transferred to a PVDF membrane using the TurboTransfer 

system (Bio-Rad). The membrane was then stained with Coomassie solution 

(0.5% (w/v) Coomassie Brilliant Blue R-250 (AppliChem), 45% methanol, 10% 

acetic acid), destained with Coomassie destain solution (45% methanol, 10% 

acetic acid) and air dried. Once dry, the membrane was exposed to film 

(Carestream Kodak BioMax MS film, Sigma) through an intensifying screen 

(BioMax Transcreen, Sigma) at -80°C for 6 h to 5 days before the 

autoradiograph was developed. The stained membrane and autoradiograph 

were then imaged using the ChemiDoc Touch (Bio-Rad) imaging system. 
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For cold HAT assays, quenched reactions were also separated by SDS-PAGE 

on 18% gels to analyse histone proteins and 8% gels to analyse the enzymes, 

and were then transferred to a nitrocellulose membrane and analysed by 

western blot. 

 
 
2.8.2 Histone methyltransferase (HMT) assays 
 

HMT assays were carried out as for HAT assays, except that reactions were 

carried out in 1x HMT buffer (50 mM Tris-Cl pH 7.5, 5 mM MgCl2, 4 mM DTT) 

and reactions were started by addition of 1.5 µCi of [3H]-labelled S-Adenosyl 

methionine (SAM; Hartmann Analytic). Reactions were incubated at 30°C for 4 

h, and quenched and analysed as described for HAT assays. 

 

 

2.8.3 DNA pull down 
 

For DNA pull down experiments, 20 µL of Streptavidin M-280 Dynabeads 

(ThermoFisher) were washed twice with 1 mL of 0.5% bovine serum albumin 

(BSA) in 1x PBS to block the beads and twice with 1 mL of TEN buffer (10 mM 

Tris-Cl pH 8.0, 1 mM EDTA, 1 M NaCl). The beads were then resuspended in 1 

mL of TEN buffer and 1 µg of biotinylated 147 bp 601 DNA was added to the 

beads (or no DNA was added for control pull downs without DNA). DNA was 

bound to the beads with rotation for 1 h at 4°C. The beads were then washed 

once with 1 mL of TEN buffer and twice with 1 mL of binding buffer (50 mM 

Tris-Cl pH 8.0, 50 mM NaCl, 0.05% NP40, 0.5 µg/mL BSA, 0.5 mM DTT). 1 µg 

of protein was diluted in 1 mL of binding buffer, added to the beads and 

incubated with rotation for 2-3 h at 4°C. To remove any unbound protein, the 

beads were washed three times for 10 mins with 1 mL of wash buffer (50 mM 

Tris-Cl pH 8.0, 300 mM NaCl, 0.05% NP40, 0.5 µg/mL BSA, 0.5 mM DTT), and 

the remaining bound protein was then eluted by boiling for 5 mins in 60 µL of 1x 

SDS-PAGE loading buffer. Binding was then analysed by separation of 10% of 

input protein and 50% of pull down material on an 18% SDS-PAGE gel followed 

by western blot using anti-His antibody. 
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2.8.4 Electrophoretic mobility shift assay (EMSA) 
 

Binding reactions for EMSA experiments were set up in 10 µL volumes in 1x 

EMSA buffer (20 mM HEPES pH 8, 150 mM KCl, 7.5% glycerol, 0.5 mM DTT). 

DNA or nucleosomes were added to give a final concentration of 35 nM of DNA 

or mononucleosome equivalent (approximately 100 ng of 147 bp 601 DNA). 

Reactions were made up to volume with protein storage buffer and H2O, the 

reactions were mixed by pipetting, and increasing concentrations of protein 

were then added to each reaction. The reactions were mixed again by pipetting 

and incubated on ice for 30 mins. 

 

Binding experiments were analysed by separation on a native PAGE or agarose 

gel. ZF-CXXC EMSAs were analysed by native PAGE as follows. Native 8% 

PAGE gels were poured in 1.5 mm casettes (Invitrogen) in 0.5x Tris-Glycine 

(TG) buffer (1x TG buffer: 25 mM Tris-Cl pH 8, 190 mM glycine). The native 

PAGE gel was pre-run at 100 V for 1 h at 4°C in 1x TG buffer, then loaded and 

run for 2 h at 100 V for 1 h at 4°C in 1x TG buffer. The gel was then stained with 

1x Sybr safe (Life Technologies) in 1x TG buffer for 15 mins, and imaged using 

the ChemiDoc Touch system. 

 

All other EMSA experiments were analysed by native agarose gels. Gel pouring 

equipment was cleaned using diluted Decon90 (Fisher) to remove traces of 

Sybr safe that might interfere with binding to DNA. Agarose gels were then 

poured in 0.5x TBE, using 1.2% agarose for 29 bp dsDNA probes, 1% agarose 

for free 147 bp 601 DNA, 1% agarose for 147 or 209 bp nucleosome core 

particles (NCPs) and 0.5% agarose for 12x nucleosome arrays. 8.5 µL of each 

sample was loaded and the gel was run at 100 V (8.3 V/cm) for 20 mins for 

1.2% gels, 30 mins for 1% gels and 40 mins for 0.5% gels, in 0.5x TBE buffer at 

room temperature. The gel was then stained in 1x Sybr safe for 15 mins and 

imaged using the ChemiDoc Touch system. 

 

To generate 29 bp dsDNA probes for EMSA, complementary 29 nt oligos were 

each reconstituted in H2O at 100 µM concentration and 25 µL of each oligo 

were mixed for annealing. The oligos were annealed in a thermal cycler by 

incubating at 37°C for 30 mins, boiling at 95°C for 5 mins, and then reducing the 
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temperature in 5°C intervals, holding each temperature for 1 min, to a final 

temperature of 25°C. For binding experiments, the duplex DNAs were then 

diluted 1 in 10 and 3 µL of diluted dsDNA was used in each 10 µL binding 

reaction. 

 

 

2.8.5 Crosslinking mass spectrometry (XL-MS) 
 

147 bp NCPs were reconstituted by mixing histone octamer and DNA at a 2:1 

ratio as described above and dialysing against a peristaltic pump-derived 

gradient of HEK buffer (20 mM HEPES, 100 mM KCl, 1 mM EDTA), and then 

dialysed directly against 200 mL of HEK buffer. The NCPs were then 

concentrated using Amicon Ultra 0.5 mL centrifugal filters with Ultracel-100 

regenerated cellulose membrane and MWCO of 100 kDa (Millipore, 

UFC510008) to a concentration of 1 mg/mL based on histone octamer. Purified 

CZTwt protein and concentrated NCP were mixed together at a molar ratio of 

CZTwt:NCP=2:1 in XL buffer (20 mM HEPES pH 8, 100 mM KCl, 1 mM DTT), 

using 6.6 µg of CZTwt and 3.3 µg of NCP, and incubated for 30 mins on ice to 

allow complex formation. 

 

Crosslinking reagents were reconstituted immediately before addition to the 

complex. EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; 

Thermo Fisher) was reconstituted at 20 µg/µL in XL buffer, and sulfo-NHS (N-

hydroxysulfosuccinimide; Thermo Fisher) was reconstituted at 46 µg/µL in XL 

buffer, and the two were mixed in a 1:1 volume ratio to give final concentrations 

of 10 µg/µL EDC and 23 µg/µL sulfo-NHS. The crosslinking reagents were 

added to the complex at a mass ratio of complex:EDC=1:7, using 70 µg of EDC. 

The crosslinking reaction was allowed to proceed for 2 h at room temperature in 

the dark and was quenched by addition of 100 mM Tris-Cl pH 8. 

 

The products of the crosslinking reactions were boiled in 1x LDS-PAGE loading 

buffer (Invitrogen) supplemented with 50 mM DTT, and analysed by SDS-PAGE 

on a 4–12% Bis-Tris NuPAGE gel (Invitrogen) run in 1x MES buffer (Invitrogen) 

followed by Coomassie staining. High molecular weight bands indicative of 

successful crosslinking were excised and destained in acetonitrile (ACN). 
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Protein was reduced in-gel with 10 mM DTT (in ammonium bicarbonate (ABC)) 

for 30 mins at 37°C, and alkylated with 55 mM iodoacetamide (in ABC). Protein 

was then digested in-gel overnight in 13 ng/µL trypsin (Pierce) at 37°C. 

 

Digested peptides were eluted from the gel in 0.1% trifluoroacetic acid (TFA). 

Peptides were loaded onto C18 stage tips that had been activated with 

methanol and washed twice with 0.1% TFA. The stage tips were washed twice 

more with 0.1% TFA and stored at -20°C until analysed by mass spectrometry. 

 

Liquid chromatography tandem mass spectrometry analysis was carried out by 

Dr Juan Zhou (Wellcome Trust Centre for Cell Biology) as described in (Abad et 

al., 2019). Briefly, peptides were eluted from the stage tips in 80% ACN, 

concentrated, reconstituted in 0.1% TFA and introduced into an Orbitrap Fusion 

Lumos mass spectrometer. Data were acquired and matched to crosslinked 

peptides using Xi software (Mendes et al., 2019). 

 

 

2.9 Protein methods 
2.9.1 Whole cell extract preparation 
 

ES cells were harvested by centrifugation at 500 x g for 5 mins and washed 

once with 1x PBS. To prepare whole cell extracts, the cell pellet was 

resuspended in one pellet volume of RIPA buffer (50 mM Tris-Cl pH 8.0, 150 

mM NaCl, 10% glycerol, 1% NP40, 1 mM DTT, 0.5 mM PMSF). Cells were 

lysed on ice for 30 mins with occasional agitation, centrifuged at 15,000 x g for 

20 mins at 4°C and the supernatant was taken as whole cell extract. 

 

 

2.9.2 Nuclear extract preparation 
 

ES cells were harvested by scraping in 1x PBS and pelleted at 500 x g for 5 

mins. Cells were washed once with 1x PBS, resuspended in 10 pellet volumes 

of NE Buffer A (10 mM Hepes pH 8, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 

0.5 mM PMSF) and equilibrated in this hypotonic buffer for 10 mins on ice. Cells 

were recovered by centrifugation at 1,500 x g for 5 mins and the pellet was 
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resuspended in 3 pellet volumes of NE Buffer A supplemented with 0.1% NP40. 

The cells were then lysed on ice for 10 mins with occasional agitation. The 

nuclei were recovered by centrifugation at 500 x g for 5 mins and resuspended 

in 1 pellet volume of NE Buffer B (5 mM HEPES pH 8, 26% glycerol, 1.5 mM 

MgCl2, 0.2 mM EDTA, 0.1 mM PMSF). The salt concentration of buffer B was 

then raised to 400 mM NaCl by dropwise addition of 5 M NaCl. The nuclear 

extraction was allowed to proceed for 1 h on ice with occasional agitation, and 

insoluble material was pelleted by centrifugation at 15,000 x g for 20 mins. The 

supernatant was taken as the soluble nuclear extract. 

 

For salt gradient nuclear extraction, after cell lysis the nuclei were resuspended 

in NE Buffer B supplemented with 150 mM NaCl and extraction proceeded for 

30 mins on ice. The nuclei were recovered by centrifugation at 500 x g for 5 

mins and the supernatant was taken as the 150 mM nuclear extract fraction. In 

the same way nuclei were then washed in 300 mM NaCl NE Buffer B, and 

finally in 450 mM NaCl, with the final extraction followed by centrifugation at 

15,000 x g for 20 mins. 

 

 

2.9.3 Histone acid extract preparation 
 

ES cells were harvested and washed once in 1x PBS. Cells were then washed 

in 1 mL of RSB (10 mM Tris-Cl pH 8, 10 mM NaCl, 3 mM MgCl2) and 

subsequently lysed in 1 mL of RSB supplemented with 0.1% NP40 for 10 mins 

on ice. Nuclei were recovered by centrifugation at 500 x g for 5 mins and 

resuspended in 0.5 mL of 5 mM MgCl2. To this, 0.5 mL of 0.8 M HCl was added 

and acid extraction was allowed to proceed for 20 mins on ice. Insoluble 

material was pelleted by centrifugation at 15,000 x g for 20 mins and the 

histone-containing supernatant was taken. Histone proteins were precipitated 

by addition of trichloroacetic acid (TCA) to a final concentration of 25% and 

incubated on ice for 30 mins. Precipitated histones were pelleted by 

centrifugation at 15,000 x g for 15 mins and washed twice with cold acetone. 

Follwing the final wash and centrifugation step, the acetone was aspirated and 

the histone pellet allowed to air dry at room temperature for 10-15 mins. The 

pellet was then resuspended in 100 µL of 1x SDS-PAGE loading buffer, 
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adjusted with 1 M Tris-Cl pH 8 if necessary, and boiled at 95°C for 5 mins. The 

histone extract was centrifuged once more at 15,000 x g for 5 mins to remove 

any insoluble material and the supernatant was taken as the histone extract. 

 
 
2.9.4 Determination of protein concentration by Bradford assay 
 

The protein concentration of nuclear extracts and purified proteins was 

determined using the method developed by Bradford (Bradford, 1976). 

Concentrated Bradford reagent (Protein assay dye reagent, Bio-Rad, 5000006) 

was diluted 1 in 5 with H2O and 1 mL of diluted reagent was added to 1.5 mL 

eppendorf tubes. A series of volumes of the sample protein were added to 1 mL 

of diluted reagent, together with a standard curve of known concentrations of 

bovine serum albumin (BSA) ranging from 1-10 mg/mL. Absorbance was 

measured at 595 nm using a spectrophotomer (Cecil) and comparison of 

sample values with those of the standard curve allowed the protein 

concentration to be determined. 

 

 

2.9.5 Small scale immunoprecipitation (IP) 
 

IPs were set up either using nuclear extract or whole cell extract. For nuclear 

extract, 0.5 mg of total nuclear extract was taken and made up to 500 µL with 

BC150 (50 mM HEPES pH 8, 150 mM NaCl, 10% glycerol, 0.5 mM EDTA, 0.5 

mM DTT, 0.1 mM PMSF) and a 10% input fraction was taken. For whole cell 

extract, extracts were made up to 500 µL with RIPA buffer (50 mM Tris-Cl pH 

8.0, 150 mM NaCl, 10% glycerol, 1% NP40, 1 mM DTT, 0.5 mM PMSF) and a 

10% input fraction was taken. For FLAG IPs, 20 µL of packed FLAG M2 beads 

were washed twice in BC150, added to the extracts and incubated with rotation 

at 4°C either overnight or for 2 h. For other IPs, 3 µg of antibody were added to 

the extracts and the IPs were incubated with rotation overnight at 4°C. 

 

For non-FLAG IPs, the next morning 25 µL of protein A Dynabeads (Thermo 

Fisher) were washed twice with BC150 and added to the IP reactions for 1 h at 

4°C. For both FLAG and other IPs, the beads were then washed three times for 
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10 mins with BC300 (50 mM HEPES pH 8, 300 mM NaCl, 10% glycerol, 0.5 

mM EDTA, 0.5 mM DTT, 0.1 mM PMSF). The beads were then boiled in 60 uL 

of SDS-PAGE loading buffer for 5 mins, centrifuged for 1 min at 15,000 x g and 

the supernatant was taken as the IP sample. The IP was then analysed 

alongside input samples by western blot. 

 

 

2.9.6 Large scale purification of 3F2S-MLL4 complex 
 

To purify 3F2S-MLL4 complex from endogenously tagged ES cells, 50x 15 cm 

plates of cells were harvested by scraping and washed in 1x PBS. Nuclear 

extact was prepared as described above, and 10 mg of nuclear extract was 

used in each purification. 

 

The 10 mg of nuclear extract was diluted in NE buffer B without NaCl (5 mM 

HEPES pH 8, 26% glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 0.1 mM PMSF) to a 

final salt concentration of 150 mM. The diluted protein was then centrifuged at 

5,000 x g for 5 mins to pellet any precipitate. 75 µL of packed FLAG M2 beads 

were washed once in BC150 (50 mM HEPES pH 8, 150 mM NaCl, 10% 

glycerol, 0.5 mM EDTA, 0.5 mM DTT, 0.1 mM PMSF), once in 150 µL of 100 

mM glycine pH 2.5, twice in 300 µL of 1 M Tris pH 8, and twice more in BC150. 

Each wash step was followed by centrifugation at 800 x g for 2 mins. The 

prepared beads were then added to the diluted nuclear extract for 3 h and 

incubated at 4°C with end-over-end rotation for 2-3 h. 

 

The beads were then pelleted by centrifugation at 800 x g for 2 mins and the 

flowthrough fraction taken by aspiration. The beads were then washed three 

times for 10 mins with BC300 (50 mM HEPES pH 8, 300 mM NaCl, 10% 

glycerol, 0.5 mM EDTA, 0.5 mM DTT, 0.1 mM PMSF). supplemented with 0.1% 

NP40, and then twice with BC350 alone. Bound protein was then eluted three 

times for 30 mins with 2 µg/µL 3xFLAG peptide diluted in BC150. 

 

Purified material was analysed by SDS-PAGE followed by silver stain using the 

SilverQuest kit (Invitrogen) according to manufacturer’s instructions, by western 

blot and by mass spectrometry. For mass spectrometry analysis, purified 
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protein was boiled in 1x LDS-PAGE loading buffer (Invitrogen) supplemented 

with 50 mM DTT and run for approximately 10 mins on a 4-12% Bis-Tris 

NuPAGE gel (Invitrogen). The protein was stained with Coomassie, excised, 

reduced by in-gel with 10 mM DTT, alkylated with 55 mM iodoacetamide and 

digested in-gel overnight in 13 ng/µL trypsin (Pierce) at 37°C. Peptides were 

then loaded on C18 stage tips and analysed by mass spectrometry by Dr 

Christos Spanos. 

2.9.7 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 
 

Proteins were analysed by SDS-PAGE to separate protein species by 

molecular weight using the method first described in (Laemmli, 1970). Gels 

were generally poured using 1.5 mm mini gel cassettes (Invitrogen, NC2015). 

The stacking gel comprised 5% acrylamide/bis solution (37.5:1, VWR), 125 mM 

Tris-Cl pH 6.8, 0.1% SDS, 0.1% ammonium persulphate (APS) and 0.1% 

N,N,N′,N′-Tetramethylethylenediamine (TEMED, Sigma). Separating gels were 

poured with an acrylamide concentration between 6% and 18%, 400 mM Tris-Cl 

pH 8.8, 0.1% SDS, 0.1% APS and 0.1% TEMED. Samples were made up in 1x 

SDS-PAGE loading buffer (63 mM Tris, 10% glycerol, 2% SDS, 50 mM DTT, 

0.1% bromophenol blue) and boiled at 95°C for 5 mins before loading together 

with a protein marker (either Precision Plus Protein Dual Color Standards (Bio-

Rad, 1610374) or HiMark Pre-stained Protein Standard (Invitrogen, LC5699)). 

Gels were run in 1x SDS-PAGE running buffer (25 mM Tris, 192 mM glycine, 

0.1% SDS) at 200 V constant voltage using the Mini gel tank system (Life 

Technologies, A25977) until the required separation was achieved. Gels were 

then analysed either by staining with Coomassie (Instant Blue, Expedeon) or by 

western blot. 

 

 

2.9.8 Western blot 
 

Following SDS-PAGE, gels were transferred to 0.2 µm nitrocellulose 

membranes (Bio-Rad) for western blotting. For proteins of interest with sizes up 

to 120 kDa, gels were transferred using the Trans-Blot Turbo System (Bio-Rad). 

The membrane was soaked in transfer buffer comprising 1x Trans-Blot Turbo 

Buffer supplemented with 20% ethanol and placed on top of pre-soaked filter 
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paper. The gel was placed on top of this membrane and additional pre-soaked 

filter paper placed on top of the gel. Air bubbles were carefully removed from 

the transfer sandwich by rolling with a blot roller (Bio-Rad). Transfer was then 

carried out for 10 mins in a Trans-Blot Turbo Transfer instrument using the 

settings for 1.5 mm mini gels (1.3 A constant current or 2.3 A constant current 

for one or two gels, respectively, with maximum voltage of 25 V). 

 

For higher molecular weight proteins, transfer was carried out either by 

traditional semi-dry transfer or by wet transfer. For semi-dry transfers, the 

transfer sandwich was set up using three pieces of pre-soaked Whatman filter 

paper on either side of the gel/membrane stack. Transfer was carried out in 

semi-dry transfer buffer (48mM Tris, 39mM glycine, 0.037% SDS, 20% 

methanol) in a Trans-Blot SD Semi-dry transfer cell (Bio-Rad) for 90 mins at 

200 mA constant current and maximum voltage of 23 V. 

 

For wet transfers, the transfer sandwich was similarly set up using three pieces 

of pre-soaked Whatman filter paper on either side of the gel/membrane stack. 

Transfer was carried out on ice in wet transfer buffer (25 mM Tris, 192 mM 

glycine, 0.1% SDS, 20% ethanol) in a Mini Trans-Blot cell (Bio-Rad) for 90 mins 

at 90 V constant voltage. 

 

Following transfer, membranes were blocked in 5% milk (non-fat milk powder, 

Marvel) made up in 1x PBS supplemented with 0.1% Tween-20 (VWR) (PBST) 

for 30 mins at room temperature. Primary antibody was made up to an 

appropriate dilution in 2% BSA/PBST and incubated with the membrane either 

overnight at 4°C or for 2 h at room temperature. Following incubation with 

primary antibody, the membrane was washed three times for 5 mins in PBST at 

room temperature. Species-specific secondary antibodies conjugated to 

horseradish peroxidase (HRP) were diluted 1 in 5000 in 2% BSA/PBST and 

incubated with the washed membrane for 1 h at room temperature. Depending 

on the species of the primary antibody, either Peroxidase-AffiniPure Donkey 

Anti-Rabbit IgG whole antibody (Jackson ImmunoResearch, 711-035-152) or 

Peroxidase-AffiniPure Donkey Anti-Mouse whole antibody (Jackson 

ImmunoResearch, 715-035-150) were used as secondary antibodies. Prior to 
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developing the western blot, the membrane was washed three times for 5 mins 

in PBST to remove excess secondary antibody. 

 

Western blots were developed by enhanced chemiluminescence (ECL) using 

the Clarity Western ECL system (Bio-Rad). ECL peroxide solution was mixed in 

a 1:1 volume ratio with ECL luminol/enhancer solution and applied to the 

membrane for 1 min. The membrane was then imaged using the ChemiDoc 

Touch system (Bio-Rad). 

 

 

2.10 Chromatin immunoprecipitation (ChIP) 
2.10.1 Chromatin preparation for ChIP 
 

ES cells were harvested by trypsinisation, washed in 1x PBS, counted and 1 x 

107 cells were resuspended in 10 mL of 1x PBS. Cells were then crosslinked by 

addition of 16% methanol-free formaldehyde (Pierce, 11586711) to a final 

concentration of 1% and incubated for 10 mins at room temperature. The 

crosslinking reactions were quenched by addition of glycine to a final 

concentration of 125 mM (1.5 mL of 1.5 M glycine to each 10 mL crosslinking 

reaction), and the cells were pelleted by centrifugation at 800 x g for 4 mins. 

 

Cells were lysed in 10 mL of LB1 (50 mM HEPES pH 8, 140 mM NaCl, 1 mM 

EDTA, 10% glycerol, 0.5% NP40, 0.25% Triton X-100, 0.5 mM PMSF) for 10 

mins at 4°C. The nuclei were recovered by centrifugation at 800 x g for 4 mins, 

and were subsequently washed in 10 mL of LB2 (10 mM Tris-Cl, pH 8, 200 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1 mM PMSF) for 10 mins at 4°C. The 

nuclei were again recovered by centrifugation at 800 x g for 4 mins, and 

resuspended in 1 mL of LB3 (10 mM Tris-Cl, pH 8, 200 mM NaCl, 1 mM EDTA, 

0.5 mM EGTA, 0.1% sodium deoxycholate, 0.5% N-lauroylsarcosine, 0.1 mM 

PMSF) and transferred to a 15 mL hard plastic polystyrene falcon tube for 

sonication. Sonication probes were inserted and the nuclei were sonicated 

using a Bioruptor (Diagenode) on the high power setting for 30 mins with pulses 

of 30 s on/30 s off, giving a total sonication time of 15 mins and average 

fragment sizes of 200-300 bp. Following sonication, 10% Triton X-100 dissolved 

in LB3 was added to a final concentration of 1%. The chromatin was cleared by 
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centrifugation at 15,000 x g for 10 mins at 4°C and the supernatant was taken 

as the chromatin extract. Chromatin was then either used immediately for ChIP 

or aliquoted and stored at -80°C. 

 

 
2.10.2 Chromatin size verification 
 

The size of sonicated chromatin fragments was checked by reversing chromatin 

crosslinks and analysing the resulting DNA by agarose gel electrophoresis. To 

this end, 50 µL of chromatin was made up to 100 µL with H2O, 4 µL of 5 M NaCl 

and 1.5 µL of 20 mg/mL RNase was added, and the sample was incubated at 

65°C for 30 mins. Following this incubation, 1 µL of 20 mg/mL proteinase K was 

added to the sample, followed by a further incubation of 65°C of at least 3 h 30 

mins. Decrosslinked DNA was then recovered using the Monarch PCR DNA 

Cleanup Kit (NEB) and eluted in 20 µL of elution buffer, and approximately 1 µg 

of DNA was analysed on a 1% agarose gel and imaged using the ChemiDoc 

Touch. 

 

 

2.10.3 ChIP immunoprecipitation step 
 

To immunoprecipitate chromatin, antibodies were first conjugated to protein A 

Dynabeads (Thermo Fisher). 25 µL of beads were aliquoted into 1.5 mL protein 

LoBind tubes (Eppendorf) and washed three times with 0.5% BSA/PBS. The 

beads were resuspended in 1 mL of 0.5% BSA/PBS and 1-5 µg of antibody was 

added. The beads were then blocked and the antibody conjugated to the beads 

for at least 4 h with end-over-end rotation at 4°C. 

 

For each IP reaction, 100 µL of concentrated chromatin (corresponding to 1 x 

106 cells) was used. 100 µL of chromatin was mixed with 900 µL of ChIP 

dilution buffer (20 mM Tris-Cl pH 8, 150 mM NaCl, 1 mM EDTA, 1% Triton X-

100, 0.1 mM PMSF). A larger mastermix was prepared for each chromatin type 

and 20 µL of diluted chromatin was taken as 2% input and stored at -20°C. The 

antibody:bead conjugates were washed three times with 0.5% BSA/PBS and 1 
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mL of diluted chromatin was added to the beads. The IP reactions proceeded 

overnight with end-over-end rotation at 4°C. 

 

The following morning, the beads were magnetized and the flowthrough 

aspirated, and the beads were washed once each with low salt wash buffer (20 

mM Tris-Cl pH 8, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100), 

high salt wash buffer (20 mM Tris-Cl pH 8, 500 mM NaCl, 2 mM EDTA, 0.1% 

SDS, 1% Triton X-100) and LiCl buffer (10 mM Tris-Cl pH 8, 250 mM LiCl, 1 

mM EDTA, 1% NP40, 1% sodium deoxycholate) and twice with TE buffer (10 

mM Tris pH 8, 1 mM EDTA). The washed beads were then resuspended in 100 

µL of ChIP elution buffer (0.1 M NaHCO3, 1% SDS) and shaken viogorously in 

a ThermoMixer for 30 mins at 25°C. The beads were centrifuged at 15,000 x g 

for 1 min and magnetized, and the supernatant was taken as the ChIP elution. 

 

The input sample was thawed and made up to 100 µL with H2O, and both input 

and ChIP samples were decrosslinked. To decrosslink the input and ChIP 

chromatin, 4 µL of 5 M NaCl and 1.5 µL of 20 mg/mL RNase was added, and 

the sample was incubated at 65°C for 30 mins. Following this incubation, 1 µL 

of 20 mg/mL proteinase K was added to the sample, followed by a further 

incubation of 65°C of at least 3 h 30 mins. Decrosslinked DNA was then 

recovered using the Monarch PCR DNA Cleanup Kit (NEB) and eluted in 50 µL 

of elution buffer. The purified input and ChIP DNAs were then stored at -20°C 

until used for quantitative PCR (qPCR). 
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2.10.4 Quantitative PCR (qPCR) 
 

Quantitative PCR (qPCR) reactions were carried out using a LightCycler 

(Roche) instrument in either 96 or 384 well plate format. Each reaction was 

carried out in a total volume of 10 µL, comprising 2.5 µL of DNA, 5 µL of 2x 

Takyon No Rox SYBR MasterMix dTTP Blue (Eurogentech, UF-NSMTB0701), 

0.625 µL of each of 10 µM forward and reverse primers, and 1.25 µL of H2O. 

Reactions were amplified for 45 cycles. Importantly, a melt curve was 

generated for each reaction to verify specificity of amplification, each reaction 

was carried out in duplicate and negative control reactions without template 

were performed for each primer set in each qPCR experiment. 

 

Table 2.28: Pipetting scheme for qPCR reactions. 

Component 10 µL reaction volume 

2x SYBR master mix 5 µL 

Forward primer (10 µM) 0.625 µL 

Reverse primer (10 µM) 0.625 µL 

DNA 2.5 µL 

H2O 1.25 µL 

 

Table 2.29: Thermal cycling conditions for qPCR reactions. 

Cycling step Temperature Time 

1. Initial denaturation 95°C 5 mins 

2. Denaturation 95°C 10 s 

3. Annealing 60°C 15 s 

4. Extension 72°C 15 s 

Repeat steps 2-4 for 45x cycles 

  



 113 

2.10.5 qPCR primer design 
 

Primers for qPCR were designed using the Primer3 program 

(http://bioinfo.ut.ee/primer3-0.4.0) using DNA sequences obtained from the 

UCSC genome browser (https://genome.ucsc.edu). Primers were designed so 

that the product size was 80-120 bp, primer length was 18-27 bp and primers 

had melting temperature (Tm) 59-61°C with maximum Tm difference of 1°C. 

Primers were checked for off-target amplification using the in silico PCR 

function of the UCSC genome browser. Notably, qPCR primers for reverse 

transcriptase qPCR (RT-qPCR) were designed to span intron sequences where 

possible to eliminate potential signal arising from genomic DNA contamination. 

 

 

2.11 Gene expression analysis by reverse transcriptase qPCR 
2.11.1 RNA extraction 
 

For gene expression analysis, ES cells were harvested by trypsinisation, 

washed once with 1x PBS and pelleted by centrifugation at 500 x g for 5 mins. 

Cells were resuspended in 1 mL of TriPure reagent (Roche) and incubated for 5 

mins at room temperature. 200 µL of chloroform was then added to each 

sample and the mixtures were agitated vigorously for 15 s before centrifugation 

at 12,000 x g for 15 mins at 4°C. The upper aqueous fraction containing RNA 

was transferred to a fresh tube and 500 µL of isopropanol was added. The 

samples were incubated at room temperature for 10 mins to precipitate the 

RNA, which was then pelleted at 12,000 x g for 10 mins at 4°C. The 

supernatant was aspirated, the RNA pellet was washed once with 1 mL of 70% 

ethanol and centrifuged at 7,600 x g for 5 mins at 4°C. The supernatant was 

aspirated and the RNA pellet was air dried for 5-10 mins at room temperature. 

Finally the RNA pellet was resuspended in 100 µL of RNase-free water and 

stored at -80°C. 
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2.11.2 Complementary DNA (cDNA) synthesis 
 

cDNA was synthesised from RNA using the SuperScript IV reverse 

transcriptase (Invitrogen). 1 µg of RNA was annealed to oligo (dT)20 primer at 

65°C for 5 mins before incubation on ice for 1 min. The RT reaction was then 

carried out in a 20 µL volume in 1x SuperScript IV buffer with 5 mM DTT, 20 U 

of RNase inhibitor and 200 U of SuperScript IV RT enzyme, with three rounds 

of extension carried out for 10 mins each at 42°C, 50°C and 55°C, followed by 

heat inactivation of the enzyme for 10 mins at 80°C. The cDNA was then 

analysed by qPCR as described in section 2.10.4. 

 
Table 2.30: Pipetting scheme for RT annealing reaction. 

Component 13.5 µL reaction volume 

Oligo (dT)20 primer (50 µM) 1 µL 

dNTP mix (10 mM) 1 µL 

RNA template (100 ng/µL) 10 µL 

H2O 1.5 µL 

 

Table 2.31: Pipetting scheme for RT reaction. 

Component 20 µL reaction volume 

Annealing reaction 13.5 µL 

5x SuperScript IV buffer 4 µL 

100 mM DTT 1 µL 

RNase inhibitor (40 U/µL) 0.5 µL 

Super script IV RT enzyme (200 U/µL) 1 µL 

 

Table 2.32: Thermal cycling conditions for RT reactions. 

Cycling step Temperature Time 

1. Extension 42°C 10 mins 

2. Extension 50°C 10 mins 

3. Extension 55°C 10 mins 

4. Inactivation 80°C 10 mins 
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2.12 Rapid immunoprecipitation-mass spectrometry of 
endogenous elements (RIME) 
 

RIME experiments were carried out by Dr Anca Farcaș (CRUK Cambridge 

Institute) as part of a collaboration and under my supervision. 

 

2.12.1 Chromatin preparation for RIME 
 

2x 15 cm plates of MCF7 cells were used for each RIME experiment. Cells 

were first crosslinked on the plate with 20 mL of 2 mM disuccinimidyl glutarate 

(DSG) (Santa Cruz Biotechnology, sc-285455A) in PBS for 20 mins at room 

temperature. The DSG was then aspirated and the cells were further 

crosslinked with 20 mL of 1% formaldehyde for 10 mins at room temperature 

before quenching with 125 mM glycine. The cells were washed twice in cold 1x 

PBS and then harvested by scraping in 500 µL of 1x PBS per 15 cm plate 

supplemented with 1x Complete Protease Inhibitor Cocktail EDTA-free (PIC; 

Roche). The cells were pelleted at 500 x g for 3 mins, washed once in 1 mL of 

1x PBS with PIC per 15 cm plate, pelleted and either used directly for chromatin 

preparation or snap frozen and stored at -80°C. 

 

To prepare chromatin, nuclei were first released from the cells by lysis with 10 

mL of ChIP LB1 (see ChIP protocol, section 10.10) with PIC for 10 mins at 4°C. 

The nuclei were recovered by centrifugation at 800 x g for 4 mins and washed 

with 1 mL of ChIP LB2 with PIC for 5 mins at 4°C. The nuclei were again 

recovered by centrifugation at 800 x g for 4 mins. The nuclei were then 

resuspend in ChIP LB3 with PIC, using 300 µL per 15 cm plate and divided 

between 1.5 mL sonication tubes. The nuclei were sonicated using a Bioruptor 

Pico (Diagenode) using the high power setting for 15 mins mins with pulses of 

30 s on/30 s off, giving a total sonication time of 7 mins 30 s and average 

chromatin fragments of 200-300 bp. To verify the size of chromatin fragments, a 

10 µL aliquot of chromatin was taken, bolied at 95°C for 10 mins and analysed 

using the E-Gel agarose gel electrophoresis system (Invitrogen). 10% Triton X-

100 in LB3 was added to the chromatin to a final concentration of 1%, samples 

were centrifuged at 20,000 x g for 10 mins at 4°C to remove insoluble material 

and the supernatant was taken as the chromatin extract. 
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2.12.2 RIME immunoprecipitation step 
 

For each RIME experiment, 50 µL of protein A or G Dynabeads (Thermo 

Fisher) were washed three times with 0.5% BSA/PBS and resuspended in 500 

µL of 0.5% BSA/PBS. 5 µg of antibody was then added to the beads and the 

beads were blocked and conjugated to the antibody overnight at 4°C. 

 

The following day, the beads were washed three times with 0.5% BSA/PBS. 

The chromatin extract was made up to 1.5 mL volume with 1% Triton X-100 in 

LB3 and added to the beads, and the IP reaction was allowed to proceed 

overnight at 4°C. The next morning, the beads were washed 10 times in RIPA 

buffer (50mM HEPES pH 7.6, 500 mM LiCl, 1mM EDTA, 0.7% sodium 

deoxycholate, 1% NP-40) and then twice in fresh 0.1 M NaHCO3. The 

immunocomplexes were then on-bead digested with 10 µL of 15 ng/µL trypsin 

in NaHCO3 at 37°C and the released peptides analysed by mass spectrometry, 

as performed in (Mohammed et al., 2013). 

 

 

2.13 dCas9-based genomic targeting 
2.13.1 Constructs and sequences 
 

CBP sequences were cloned into the pAC94-pmax-dCas9VP160-2A-puro 

vector described by (Cheng et al., 2013) by amplifying the desired CBP regions 

by high fidelity PCR with primers generating a 5’ BamHI site and a 3’ AclI site. 

The pAC94 vector was digested with BamHI and ClaI, and the amplified CBP 

sequences were ligated into the vector, taking advantage of the complementary 

overhangs generated by AclI and ClaI. 

 

Guide sequences for the Ascl1 locus were taken from (Black et al., 2016) and 

cloned into the pmU6 vector (Kabadi et al., 2014) for expression as sgRNAs. 

Correct ligation of the guide oligos was determined by sequencing with the mU6 

sequencing primer. 
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2.13.2 Expression of dCas9 fusion proteins and sgRNAs in ES cells 
 

To express the dCas9 fusion proteins and sgRNAs, ES cells were transiently 

transfected with the constructs for 48 h, using one 15 cm plate per dCas9 fusion 

protein. Cells were seeded on a 15 cm plate 24 h before transfection and grown 

in ES media without penicillin/streptomycin. Transfections were carried out 

using Lipofectamine 3000 (Invitrogen). For each transfection, 30 µL of 

Lipofectamine 3000 was added to 200 µL of OptiMEM. In a separate tube, 15 

µg of pAC94 plasmid DNA and 1.25 µg each of four different pmU6 plasmids 

were added to 200 µL of OptiMEM, followed 40 µL of P3000 reagent. After 5 

mins of separate incubation at room temperature, the lipofectamine and DNA 

tubes were mixed and incubated for 20 mins together at room temperature. The 

lipofectamine:DNA complexes were then added dropwise to each 15 cm plate 

of ES cells and transfections were allowed to proceed overnight. The following 

morning, the media was changed on transfected cells to complete ES media 

and cells were cultured for a further 24 h. 48 h after transfection, cells were 

harvested by trypsinisation, washed in 1x PBS and split for extraction of whole 

cell extracts, RNA and chromatin. 
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2.14 List of reagents used in this study 
2.14.1 qPCR primers 
 

Table 2.33: List of qPCR primers used in this study. 

Primer name Primer sequence Application 

SUV420h1 CGI for GACGTGGTTTCTTTGGTGGT ChIP-qPCR 

SUV420h1 CGI rev CGGGAAGAGGCTGAGAGAC ChIP-qPCR 

SUV420h1 body for TGAGGCTCTCAGCAAGACTG ChIP-qPCR 

SUV420h1 body 

rev 

ATCTTCCAGGAGAACGAGCA ChIP-qPCR 

BCOR CGI for GTAAAACCGAAAGCGAGCAA ChIP-qPCR 

BCOR CGI rev GAGGGTTTCTCCTCCGACTT ChIP-qPCR 

Nanog enhancer 

for 

CGCTCGGATCTTTCACCAGA ChIP-qPCR 

Nanog enhancer 

rev 

CGGGTCAAAGGAGTCTGCTT ChIP-qPCR 

BRD2 CGI for TGCTGGGCCTTAGAGAGAAA ChIP-qPCR 

BRD2 CGI rev AGTGATTTTCCGGAATGCAG ChIP-qPCR 

ASCL1 -630 bp for AGGAAGGTAGGAGGGGAGAG ChIP-qPCR 

ASCL1 -630 bp rev TGCTCAGACAGGGTAGAACTTAC ChIP-qPCR 

ASCL1 -260 bp for CAGCCTGGTTTGTTGTTGCA 
 

ChIP-qPCR 

ASCL1 -260 bp rev CCCATTTCTAGAGCCACCCC ChIP-qPCR 

ASCL1 +100 bp for CGCTCTCCCTTGCTCCAG ChIP-qPCR 

ASCL1 +100 bp rev CGGTTAGGGAGGGCGAATT ChIP-qPCR 

ASCL1 for GGAACAAGAGCTGCTGGACT RT-qPCR 

ASCL1 rev GTTTTTCTGCCTCCCCATTT RT-qPCR 

Nanog for AGGCTTTGGAGACAGTGAGGTG RT-qPCR 

Nanog rev TGGGTAAGGGTGTTCAAGCACT RT-qPCR 

GAPDH for CATGGCCTTCCGTGTTCCT RT-qPCR 

GAPDH rev GCGGCACGTCAGATCCA RT-qPCR 
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2.14.2 Guide RNA oligos 
 
Table 2.34: List of guide RNA oligos used in this study. 
Upper case corresponds to complementary regions of guides, and lowercase to 
overhangs. 
Oligo name Oligo sequence Vector 

MLL3 top caccgCCGACGACATCCTAGTCACC pX458 

MLL3 bottom aaacGGTGACTAGGATGTCGTCGGc pX458 

MLL4 top caccgTATCTTCAGCAGGCGGCTTC pX458 

MLL4 bottom aaacGAAGCCGCCTGCTGAAGATAc pX458 

ASCL1-1 top ttgtttgCAGCCGCTCGCTGCAGCAG pmU6 

ASCL1-1 bottom aaacCTGCTGCAGCGAGCGGCTGcaa pmU6 

ASCL1-2 top ttgtttgTGGAGAGTTTGCAAGGAGC pmU6 

ASCL1-2 bottom aaacGCTCCTTGCAAACTCTCCAcaa pmU6 

ASCL1-3 top ttgtttgCCCTCCAGACTTTCCACCT pmU6 

ASCL1-3 bottom aaacAGGTGGAAAGTCTGGAGGGcaa pmU6 

ASCL1-4 top ttgtttgCTGCGGAGAGAAGAAAGGG pmU6 

ASCL1-4 bottom aaacCCCTTTCTTCTCTCCGCAGcaa pmU6 

 

 

2.14.3 EMSA oligos 
 
Table 2.35: List of EMSA oligos used in this study. 
Oligo name Oligo sequence 

60% GC-1 top GTAGGCGGTGCTACACGGTTCCTGAAGTG 

60% GC-1 bottom CACTTCAGGAACCGTGTAGCACCGCCTAC 

60% GC-2 top AATGGGAACAACCACACCATAGCGATTCG 

60% GC-2 bottom CGAATCGCTATGGTGTGGTTGTTCCCATT 

40% GC-1 top TGAGGAATCCAAAAGGTGAACCAAGCCAG 

40% GC-1 bottom CTGGCTTGGTTCACCTTTTGGATTCCTCA 

40% GC-2 top TAGCCGCTATAATTGTCTCTTTGCCGACT 

40% GC-2 bottom AGTCGGCAAAGAGACAATTATAGCGGCTA 
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2.14.4 601 nucleosome positioning sequence PCR primers 
 
Table 2.36: List of 601 nucleosome positioning sequence PCR primers used in 
this study. 
Oligo name Oligo sequence 

601 147 bp for 

(biotinylated) 

ACAGGATGTATATATGTGACAC 

601 147 bp rev CTGGAGAATCCCGGTGCC 

601 209 bp for 

(biotinylated) 

GCTTCACCTCGTGACCC 

601 209 bp rev CGCTCTAGACCATGATGC 

 

  



 121 

2.14.5 Antibodies 
 
Table 2.37: List of antibodies used in this study. 
Antigen Source Species Application 

FLAG Sigma FLAG M2 Mouse mAb WB: 1 in 1000 

ChIP: 1 µL 

6xHis Sigma H1209 Mouse mAb WB: 1 in 1000 

HA CST Rabbit mAb WB: 1 in 1000 

ChIP: 2 µL 

Lamin A/C Santa Cruz 
sc20681 

Rabbit mAb WB: 1 in 1000 

Tubulin DHSBAA4-3-5 Mouse mAb WB: 1 in 1000 

ASH2L CST 5019 Rabbit mAb WB: 1 in 2000 

UTX CST 33510 Rabbit mAb WB: 1 in 1000 

SUZ12 CST 3737 Rabbit mAb WB: 1 in 1000 

RIME: 5 µg 

SUZ12 Bethyl A302_407A Rabbit pAb RIME: 5 µg 

PSIP1/LEDGF Abcam ab70641 Rabbit pAb RIME: 5 µg 

PSIP1/LEDGF Bethyl A300_848A Rabbit pAb RIME: 5 µg 

RNAPII S5P Abcam ab5131 Rabbit pAb RIME: 5 µg 

CBP Sanca Cruz 
sc369(A22) 

Rabbit pAb RIME: 5 µg 

TBP Abcam 51841 Mouse mAb WB: 1 in 2500 

H3K4me3 CST 9751 Rabbit mAb WB: 1 in 1000 

H3K9me3 Abcam ab8898 Rabbit pAb WB: 1 in 1000 

H3K27ac CST 8173 Rabbit mAb WB: 1 in 1000 

ChIP: 0.5 µL 

H3K9ac Abcam ab4441 Rabbit pAb WB: 1 in 1000 

ChIP: 1 µL 

H2BK5ac Abcam ab40886 Rabbit mAb WB: 1 in 500 

H4K5ac CST 8647 Rabbit mAb WB: 1 in 1000 

H2A CST 3636 Mouse mAb WB: 1 in 1000 

H3 Abcam ab1791 Rabbit pAb WB: 1 in 1000 

ChIP: 2 µL 

H4 CST 13919 Rabbit mAb WB: 1 in 1000 
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2.14.6 General buffers and reagents 
2.14.6.1 SDS-PAGE loading buffer 

 
Table 2.38: SDS-PAGE loading buffer. 
Component Final concentration Amount for 50 mL of 3x 

SDS-PAGE buffer 

Tris base 190 mM 1.151 g 

Glycerol 30% 15 mL of 100% 

SDS 6% 3 g 

DTT 150 mM 1.156 

Bromophenol blue 0.3% 0.15 g 

 

2.14.6.2 SDS-PAGE running buffer 

 
Table 2.39: SDS-PAGE running buffer. 
Component Final concentration Amount for 2 L of 10x 

running buffer 

Tris base 250 mM 60.6 g 

Glycine 1.92 M 288 g 

SDS 1% 20 g 

 
2.14.6.3 Transfer buffers 

 
Table 2.40: Wet transfer buffer. 
Component Amount for 2 L of 1x wet transfer buffer 

10x SDS running buffer 200 mL 

Ethanol 400 mL 

 

Table 2.41: Semi-dry transfer buffer. 

Component Final concentration Amount for 1 L of 1x 

semi-dry transfer buffer 

Tris base 48 mM 5.8 g 

Glycine 39 mM 2.9 g 

SDS 0.037% 0.37 g 

Methanol 20% 200 mL 
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2.14.6.4 DNA loading buffer 

 
Table 2.42: DNA loading buffer. 
Component Final concentration Amount for 50 mL of 

6xDNA loading buffer 

Tris-Cl pH 8 10 mM 500 µL of 1 M 

Glycerol 30% 15 mL of 100% 

Xylene cyanol 0.03% 15 mg 

Orange G 0.15% 75 mg 

 

2.14.6.5 TBE 

 
Table 2.43: TBE buffer. 
Component Final concentration Amount for 2 L of 10x 

TBE 

Tris base 892 mM 216 g 

Boric acid 892 mM 110 g 

EDTA 20 mM 14.5 g or 80 mL of 0.5 M 

 

2.14.6.6 Antibiotics 

 
Table 2.44: Antibiotics for prokaryotic culture. 
Antibiotic Concentration of 1000x stock 

Ampicillin 100 mg/mL 

Kanamycin 50 mg/mL 

Chloramphenicol 25 mg/mL 

Tetracycline 10 mg/mL 

Gentamycin 10 mg/mL 
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3. Understanding the chromatin 
environment at regulatory elements 

 
 

Gene expression in eukaryotes is controlled by cis-acting gene regulatory 

elements including gene promoters, present at the transcription start sites 

(TSSs) of genes, and distal regulatory elements called enhancers. These 

elements act as platforms for the binding of sequence-specific transcription 

factors that modulate the transcriptional activity of associated genes. One 

mechanism through which transcription factors regulate gene expression is via 

the recruitment of co-factors such as histone modifying proteins and chromatin 

remodellers that influence the chromatin architecture at promoters and 

enhancers, changing the accessibility of these regions to the transcriptional 

machinery. 

 

Gene promoters are frequently associated with regions of unmethylated DNA 

called CpG islands (CGIs), with some 70% of promoters overlapping with CGIs 

in mammalian cells (Saxonov et al., 2006). In addition, many “orphan” CGIs that 

are not found at annotated gene promoters continue to exhibit promoter-like 

properties, including transcriptional initiation (Illingworth et al., 2010). There is 

therefore a clear correlation between CGIs and promoter regions, but the 

mechanisms by which CGIs contribute to promoter function remain incompletely 

understood. 

 

One mechanism through which CGI function is mediated is via the binding of a 

domain called the ZF-CXXC domain, which specifically recognizes the 

unmethylated CpG dinucleotides found at CGIs (reviewed in Long et al., 2013). 

Indeed, the selectivity of ZF-CXXC for unmethylated DNA is such that ZF-

CXXC has previously been used for ZF-CXXC affinity purification (CAP) to 

purify unmethylated DNA from the genome with high specificity (Blackledge et 

al., 2012; Illingworth et al., 2008). This domain is found within multiple 

chromatin-modifying proteins and complexes including the H3K4 

methyltransferase complexes SETD1, MLL1 and MLL2, the H3K36 

demethylase KDM2A, and the PRC1-associated protein KDM2B (Blackledge et 
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al., 2010; Farcas et al., 2012; Lee and Skalnik, 2005; Ma et al., 1993; Voo et al., 

2000).  

 

One way in which CGIs function at promoters, therefore, is to generate a unique 

chromatin architecture at these regions, through the recruitment of ZF-CXXC 

proteins and other chromatin-modifying proteins (Blackledge and Klose, 2011). 

CGIs are associated with chromatin accessibility, with the presence of histone 

modifications linked with transcriptional activation such as H3K4 trimethylation 

(H3K4me3) and histone acetylation, and with the depletion of histone 

modifications that are antagonistic to transcription initiation such as H3K36 

dimethylation (H3K36me2) (Blackledge et al., 2010; Tazi and Bird, 1990; 

Thomson et al., 2010). This chromatin architecture distinguishes CGIs from the 

surrounding bulk chromatin and generates an environment that is permissive to 

transcription. In addition, however, a subset of CGIs is also subject to 

transcriptional repression. Indeed, the presence of an unmethylated CGI is 

sufficient for the recruitment of Polycomb repressive complex 2 (PRC2) in 

embryonic stem cells (ES cells), which generates the repressive histone 

modification H3K27 trimethylation (H3K27me3) (Mendenhall et al., 2010; 

Wachter et al., 2014), and endogenous CGIs recruit Polycomb repressive 

complex 1 (PRC1) to generate monoubiquitylation of H2AK119 (Farcas et al., 

2012; He et al., 2013; Wu et al., 2013). 

 

Similarly to CGIs, enhancer regions are thought to function through generating 

a chromatin environment that influences transcription (reviewed in Calo and 

Wysocka, 2013). Enhancers are bound by the H3K4 methyltransferases MLL3 

and MLL4, which influence transcription directly and through placing H3K4 

monomethylation (H3K4me1) (Dorighi et al., 2017; Hu et al., 2013c). Enhancer 

regions are also associated with binding of histone acetyltransferases (HATs), 

including CBP and its paralogue p300 (CBP/p300), GCN5 and its paralogue 

PCAF (GCN5/PCAF), TIP60, and MOF (Krebs et al., 2011; Wang et al., 2009). 

Enhancers are therefore correlated with multiple forms of histone acetylation, 

including acetylation of H3K9, H3K14, H3K27 and H4K16 (H3K9ac, H3K14ac, 

H3K27ac and H4K16ac) (Ernst et al., 2011; Karmodiya et al., 2012; Wang et 

al., 2009), and the presence of H3K4me1 and H3K27ac is thought to distinguish 
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active enhancers from the surrounding genome (Creyghton et al., 2010; Rada-

Iglesias et al., 2011). 

 

However, although much is now known about the chromatin environment of 

promoters and enhancers, our understanding of how precisely the chromatin 

architecture at these regions is established and how it is interpreted to give rise 

to transcriptional outputs remains incomplete. One way to further our 

understanding of these processes is to use unbiased proteomics approaches to 

generate an inventory of proteins bound at gene regulatory regions, as has 

previously been applied to chromatin regions such as telomeres, 

pericentromeric heterochromatin, and ribosomal RNA genes (rDNA) (Déjardin 

and Kingston, 2009; Ide and Dejardin, 2015; Saksouk et al., 2014). Work in this 

chapter made use of the ZF-CXXC domain to attempt to purify the chromatin 

associated with CGIs in an unbiased manner to identify the CGI-associated 

proteome, together with an alternative chromatin immunoprecipitation (ChIP)-

mass spectrometry approach. 

 

Complementary to this, candidate approaches can be used to understand better 

how known regulatory element binding proteins contribute to gene regulatory 

function. To this end, the MLL3 and MLL4 enhancer-binding proteins were 

endogenously tagged and purified to understand the complexes they form and 

how their enzymatic activity is regulated. These techniques permit the 

identification of novel players at promoters and enhancers to allow a greater 

understanding of how transcription is regulated from these regions. 

 

3.1 A ZF-CXXC affinity purification (CAP) approach to 
identifying the CGI-associated proteome 
 

To generate an inventory of CGI-associated proteins, an approach was used 

exploiting the affinity and selectivity of ZF-CXXC for unmethylated DNA (Fig. 

3.1). Previous work has used ZF-CXXC domains from MBD1 (Illingworth et al., 

2008) and KDM2B (Blackledge et al., 2012) to purify CGI DNA from bulk 

genomic DNA. To purify CGI-associated proteins, this approach was extended 

to use recombinantly expressed ZF-CXXC domain from KDM2B to purify the 

chromatin at CGIs and identify associated proteins by mass spectrometry.  
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Fig. 3.1: ZF-CXXC affinity purification (CAP) to identify the CpG island proteome. 
A flow diagram illustrating the CAP approach to purify CGI-associated proteins. ES 
cells were crosslinked and chromatin solubilised by sonication to yield fragments 
containing regions with DNA methylation (black circles) and with unmethylated DNA at 
CGIs (white circles), and associated with histone modifications (stars) and both known 
and unknown proteins. Purified ZF-CXXC protein was then immobilised on 
StreptactinXT resin via a StrepII tag and used to affinity purify CGI chromatin with 
associated proteins, which could be identified by mass spectrometry.  
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First, to purify the large quantities of ZF-CXXC protein required for this 

approach, the domain was cloned into a bacterial expression vector with an N-

terminal 6xHis tag for purification of the protein, and C-terminal 3xFLAG, 

2xStrepII and 2xGCN4 tags for immobilisation of the domain on beads during 

the CAP procedure (Fig. 3.2A). Importantly, as a control for non-specific binding 

of chromatin to the immobilised protein, a mutant ZF-CXXC that is unable to 

bind to unmethylated CpG, K616A in mouse KDM2B (ZF-CXXCK616A) (Zhou et 

al., 2012), was generated in addition to the wild type domain (ZF-CXXCwt). 

 

The ZF-CXXC proteins were expressed in bacteria and purified via the 6xHis 

tag on a nickel-NTA (Ni-NTA) affinity column (Fig. 3.2B, C). Previous work has 

shown, however, that the presence of the N-terminal 6xHis tag interferes with 

the DNA binding activity of the domain (Blackledge et al., 2012). The 6xHis tag 

was therefore removed prior to use in downstream applications by cleavage 

with the tobacco etch virus (TEV) protease (Fig 3.2D). To this end, TEV 

protease itself was first expressed and purified in bacteria (Fig. 3.3). TEV was 

expressed as previously described (Tropea et al., 2009) as a self-cleaving 

maltose binding protein (MBP) fusion protein to aid solubility, and purified via 

the 6xHis tag on a Ni-NTA affinity column and then further purified by cation 

exchange to yield essentially pure TEV protease. 

 

After cleavage of the 6xHis tag, the suitability of ZF-CXXC as a module for use 

in CAP was verified by successfully binding the protein to StreptactinXT beads 

via the StrepII tags, yielding beads saturated with ZF-CXXC but free of 

contaminant proteins (Fig. 3.2D). The binding of ZF-CXXCwt specifically to 

unmethylated DNA was then confirmed by electrophoretic mobility shift assay 

(EMSA) using a 209 bp DNA probe containing 18 CpG dinucleotides that were 

either unmethylated or methylated in vitro using the M.SssI CpG 

methyltransferase (Fig. 3.2E). ZF-CXXC was able to bind to the unmethylated 

but not to the methylated DNA probe, and, importantly, that this binding was 

dependent on ZF-CXXC maintaining an intact structure, as denatured protein 

was unable to bind to unmethylated DNA. These results show that purified ZF-

CXXC is a suitable module for purifying CGIs.  
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Fig. 3.2: Purification of ZF-CXXC protein for CAP. 
(A) ZF-CXXC (light blue box) was cloned into a bacterial expression and expressed 
with an N-terminal 6xHis tag (H, dark blue box) separated by a TEV cleavage site, and 
C-terminal 3xFLAG (3F, red box), 2xStrepII (2S, green box) and 2xGCN4 tags 
(magenta boxes), the latter of which are separated by a 3C protease site. 
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3.2 Optimisation of CAP to purify CGI chromatin 
 

To attempt to purify CGI chromatin, 25 µg of ZF-CXXCwt were immobilised on 

StreptactinXT beads and incubated with crosslinked chromatin extracted from 

mouse embryonic stem (ES) cells. After washing the beads, bound chromatin 

was eluted using a salt gradient followed by competitive elution of ZF-CXXCwt 

with biotin. Bound material was analysed by quantitative PCR (qPCR) and by 

western blot for the CGI-associated histone modification H3K4me3, the CGI-

associated protein SUZ12 and H3K9 trimethylation (H3K9me3) as a negative 

control histone modification that is not found at CGIs (Fig. 3.4A, B). The qPCR 

analysis of the DNA content of purified chromatin shows that DNA from the CGI 

of the Suv420h1 gene was enriched in the presence of ZF-CXXCwt but absent 

from of the beads only control. Moreover, a non-CGI region in the body of the 

same gene was not enriched by ZF-CXXCwt. This suggests that ZF-CXXCwt can 

specifically enrich for CGI chromatin. However, the levels of enrichment 

achieved with ZF-CXXCwt were relatively low, and CGI chromatin was only 

mildly depleted in the unbound flowthrough fraction, suggesting that the majority 

of CGI chromatin was not captured by ZF-CXXCwt. This interpretation is 

supported by the western blot analysis. Although H3K4me3 was specifically 

enriched in the ZF-CXXCwt elutions, the level of enrichment was relatively low, 

and the non-histone CGI-associated protein SUZ12 could not be detected in the 

purified chromatin. This indicates that the CAP approach had successfully 

purified CGI chrmatin, but relatively inefficiently. 

 

 
(Fig. 3.2 cont.)  
(B) Flow diagram showing the purification scheme for ZF-CXXC. The protein was 
expressed in bacteria and the bacterial lysate applied to a nickel-NTA (Ni-NTA) column 
to purify the protein via the 6xHis tag. The bound protein was washed in 0.3 M and 1 M 
NaCl conditions to remove protein and DNA contaminants, and eluted in 0.25 M 
imidazole. The 6xHis tag was then removed by cleavage with TEV protease and the 
proteins was dialysed into storage buffer. 
(C) Input, flowthrough (FT), wash and elution fractions for both ZF-CXXCwt and ZF-
CXXCK616A proteins were analysed by SDS-PAGE followed by Coomassie staining. 
(D) ZF-CXXCwt and ZF-CXXCK616A proteins were analysed by SDS-PAGE and 
Coomassie staining before (-TEV) and after (+TEV) TEV cleavage. Protein was then 
incubated with StreptactinXT resin and both bound and unbound (FT) material was 
analysed. 
(E) Binding reactions with increasing concentrations of intact or denatured ZF-CXXCwt 
protein with unmethylated (white circles) or methylated (black circles) 209 bp DNA, 
analysed by EMSA. 
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Fig. 3.3: Expression and purification of tobacco etch virus (TEV) protease. 
TEV protease was expressed in bacteria as a self-cleaving maltose-binding protein 
(MBP) fusion protein with N-terminal 6xHis (H, dark blue box) and C-terminal 5xArg (R, 
light blue box) tags. TEV protease was first purified via the 6xHis tag and elutions were 
analysed by SDS-PAGE followed by Coomassie staining. Pooled elutions were then 
further purified on a MonoS cation exchanger and purified protein was analysed by 
SDS-PAGE followed by Coomassie staining.  
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Fig. 3.4: Optimisation of CXXC affinity purification (CAP). 
(A) Flowthrough (FT) and elution fractions from CAP experiments using 25 µg of ZF-
CXXC protein or beads only as a negative control were analysed by qPCR at the 
SUV420h1 CGI region or at the gene body as a negative control. 
(B) Input, flowthrough (FT), and elution fractions from CAP experiments using 25 µg of 
ZF-CXXC protein or beads only as a negative control were analysed by western blot 
using antibodies against H3K4me3, H3K9me3 and SUZ12. 
(C) Input, flowthrough (FT), and a single step biotin elution fraction from CAP 
experiments using 250 µg of ZF-CXXC protein were analysed by western blot using 
antibodies against H3K4me3, SUZ12 and TBP. 
(D) Input, flowthrough (FT), and biotin elution fractions from CAP experiments using 10 
mg of ZF-CXXC protein were analysed by western blot using antibodies against 
H3K4me3, H3K9me3 and SUZ12. 
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To optimise the CAP method to increase the yield of CGI chromatin, two 

modifications were introduced. First, elution of bound chromatin was carried out 

in a single step through competition with biotin rather than using a salt gradient, 

to concentrate purified proteins in a single elution. Second, increasing amounts 

of ZF-CXXC protein were used to increase the proportion of CGI chromatin that 

is captured. With these changes, CAP was carried out using 250 µg of ZF-

CXXCwt and ZF-CXXCK616A proteins (Fig. 3.4C). Western blot analysis shows 

that H3K4me3 was enriched in the ZF-CXXCwt elution but not in the ZF-

CXXCK616A, confirming that ZF-CXXCwt could specifically purify chromatin 

associated with CGIs. However, the levels of H3K4me3 enrichment remained 

comparatively low and H3K4me3 was not depleted in the flowthrough. 

Moreover, the CGI- and promoter-associated proteins SUZ12 and TBP could 

not be detected in the purification, suggesting that the proportion of CGI 

chromatin captured in this experiment remained relatively low. To attempt to 

increase the yield further, CAP was carried out using 10 mg of ZF-CXXC 

protein (Fig. 3.4D). However, these higher amounts of protein led to increased 

background binding so that H3K4me3, H3K9me3 and SUZ12 were all 

detectable at similar levels in purifications with both ZF-CXXCwt and ZF-

CXXCK616A. 

 

The results of these CAP experiments show that although ZF-CXXC can 

successfully capture chromatin associated with CGIs, the amounts of chromatin 

that are purified are insufficient to capture a high proportion of the CGI 

chromatin present in the input sample or to detect known CGI-associated 

proteins. This is in contrast to previous work using ZF-CXXC to purify free CGI 

DNA from genomic DNA, in which essentially 100% of input CGI DNA could be 

captured (Blackledge et al., 2012). One explanation for the much lower 

efficiency of CGI purification in the present study could be that incorporation of 

CGIs into chromatin and crosslinking of CGI-bound proteins to the DNA renders 

the CpG dinucleotides that are recognised by ZF-CXXC inaccessible, especially 

given that ZF-CXXC domains require free linker DNA to bind efficiently (Zhou et 

al., 2012). To overcome this limitation, therefore, an alternative approach was 

developed in which ZF-CXXC could be expressed in ES cells in vivo, 

crosslinked in situ to bound CGIs, and used to purify the associated chromatin. 
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3.3 An in vivo approach to purify CGI chromatin 
 

To express ZF-CXXC in vivo, the domain was cloned into a mammalian 

expression vector under the control of the CAG promoter, with C-terminal 

3xFLAG and 2xStrepII tags (3F2S) (Fig. 3.5A). In addition, vectors were 

generated to encode a C-terminal Venus fluorescent protein, and all ZF-CXXC 

proteins were expressed as fusions with the ERT2 domain. ERT2 is a modified 

form of the estrogen receptor (ER) ligand binding domain, which sequesters 

proteins in the cytoplasm through interaction with chaperone proteins. 

Treatment with the small molecule 4-hydroxytamoxifen (4-OHT) relieves this 

sequestration and permits translocation of the protein into the nucleus. ERT2 

was included in the ZF-CXXC constructs to allow inducible binding of the 

domain to CGIs, and to prevent constitutive ZF-CXXC binding from interfering 

with the recruitment of endogenous CGI-binding proteins. 

 

Western blot analysis of transiently transfected ES cells showed that the 

constructs were expressed as expected (Fig. 3.5B), and stable cell lines were 

subsequently generated. Using the ZF-CXXCwt-3F2S-Venus-ERT2 stable cell 

line, a 4-OHT time course was carried out to verify that treatment of the cells 

leads to translocation of the expressed protein from the cytoplasm to the 

nucleus (Fig. 3.5C). Analysis of the time course experiment by western blot 

showed that the protein is present exclusively in the cytoplasm in the absence 

of 4-OHT and translocates to the nucleus within 24 h of treatment. Further 

analysis of 4-OHT treatment by immunofluorescence using the Venus tag 

shows that translocation to the nucleus occurs within 4 h (Fig. 3.5D), suggesting 

that this length of treatment would be suitable for future experiments. 

 

To test whether the expressed ZF-CXXC proteins bind appropriately to CGIs 

upon 4-OHT treatment, ChIP experiments were carried out using FLAG 

antibody in cell lines stably expressing wild type or mutant ZF-CXXC protein, in 

the presence or absence of the Venus tag (Fig. 3.5E). The ChIP experiments 

show that ZF-CXXCwt proteins were recruited to CGIs only after treatment with 

4-OHT, but absent from non-CGI regions. By contrast, ZF-CXXCK616A proteins 

were unable to bind CGIs or non-CGI regions in the presence or absence of 4-

OHT. Notably, although ZF-CXXCwt constructs lacking the Venus tag bound to  
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Fig. 3.5: An in vivo CXXC affinity purification approach. 
(A) ZF-CXXC protein was expressed under the control of a CAG promoter with C-
terminal 3xFLAG (3F, red box) and 2xStrepII (2S, green box) tags, followed by a 3C 
protease site and without (top) or with (bottom) a Venus fluorescent tag. Nuclear 
localization of the protein was controlled by inclusion of a ERT2 domain (magenta box), 
and cell line selection was made possible by an internal ribosome entry site (IRES) 
followed by a puromycin selectable marker (I-Puro). 
(B) Whole cell extracts from ES cells expressing the indicated ZF-CXXC constructs 
were analysed by western blot using FLAG antibody. 
(C) ES cells stably expressing ZF-CXXCwt-3F2S-Venus-ERT2 were treated for 24 h, 48 
h or 72 h with 800 nM 4-hydroxytamoxifen (4-OHT) and the cytoplasmic or nuclear  
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CGIs, constructs containing Venus bound more efficiently and with greater 

enrichment over background, although the absolute enrichment is only 1% of 

the input chromatin. The ZF-CXXC-3F2S-Venus-ERT2 cell lines were therefore 

selected to attempt to purify CGI chromatin. 
 
To purify CGI chromatin using this in vivo approach, cells stably expressing wild 

type or mutant protein were treated for 4 h with 4-OHT, crosslinked and 

harvested to prepare chromatin. Large scale ChIP experiments were then 

carried out using antibodies against FLAG (Fig. 3.5F) or using StreptactinXT 

(3.5G) beads to pull down the ZF-CXXC protein. The protein and any 

associated chromatin was then eluted using either 3xFLAG peptide or biotin, 

respectively, and the beads were finally boiled in SDS-PAGE loading buffer to 

elute any remaining bound material. Input, flowthrough and elutions were then 

analysed by western blot probing for the ZF-CXXC protein via the FLAG tag, 

and for the CGI- and promoter-associated protein TBP and histone modification 

H3K4me3. Whilst the ZF-CXXC proteins were successfully pulled down, they 

failed to elute efficiently, and could only be eluted from the beads by boiling. For 

the FLAG purification, elution of the protein upon boiling also led to the elution 

of TBP and H3K4me3, but these were also found at high background levels in 

the ZF-CXXCK616A control (Fig. 3.5F). In the StreptactinXT purification, by 

contrast, neither TBP nor H3K4me3 could be detected in the purified material. 

These results suggest that, like the in vitro approach, this in vivo approach was 

unable to purify CGI chromatin at levels greater than background. 
 

 
(Fig. 3.5 cont.) localization of the protein was tested by subcellular fractionation into 
cytoplasmic (cyt.) or soluble nuclear (nuc.) extracts followed by western blot using 
FLAG antibody or antibodies against Lamin A/C or tubulin as controls. 
(D) ES cells stably expressing ZF-CXXCwt-3F2S-Venus-ERT2 were treated for 30 mins 
or 4 h and localization of the proteins was analysed by immunofluorescence (IF). 
(E) Chromatin immunoprecipitation (ChIP) experiments were carried out using FLAG 
antibodies in either untreated cells or cells treated with 4-OHT for 4 h, in cell lines 
stably expressing constructs with Venus (top) or without Venus (bottom). ChIP 
experiments were then analysed by qPCR at two CGI regions and two non-CGI 
regions. 
(F), (G) Cells stably expressing the indicated ZF-CXXC constructs were treated with 4-
OHT for 4 h and chromatin was purified via the FLAG tags (F) or the Strep tags (G). 
Purified material was eluted (E1) through competition with 3xFLAG peptide (F) or biotin 
(G) and by boiling the beads in SDS-PAGE loading buffer. Inputs, flowthrough (FT) and 
elutions were then analysed by western blot using antibodies against FLAG, TBP and 
H3K4me3.  
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3.4 A ChIP-mass spectrometry approach to purify promoter 
chromatin 
 

Given that the approaches used to purify CGI- and promoter-associated 

proteins via the ZF-CXXC domain could not successfully enrich for CGI 

chromatin, an alternative ChIP-mass spectrometry approach was then used to 

purify promoter-associated proteins. In collaboration with Dr Anca Farcaș 

(CRUK Cambridge Institute), and under my supervision, rapid 

immunoprecipitation mass spectrometry of endogenous proteins (RIME) was 

used to pull down chromatin crosslinked to promoter-bound targets, and 

associated proteins were identified by mass spectrometry (Fig. 3.6A) 

(Mohammed et al., 2016). In this method, cells from the MCF7 human breast 

cancer cell line were crosslinked and chromatin solubilised by sonication. ChIP 

was then carried out using antibodies against the S5 phosphorylated C-terminal 

domain of RNA polymerase II (RNAPII), the histone acetyltransferase CBP, the 

PSIP1 component of the MLL1/2 complex, and the PRC2 subunit SUZ12. After 

extensive washing of immunocomplexes, the purified chromatin was eluted and 

analysed by mass spectrometry. 

 

RNAPII is primarily found at active promoters and CBP at both enhancers and 

promoters (Seila et al., 2008; Yue et al., 2014), whilst PSIP1 is expected to be 

found at CGI regions as part of the MLL1/2 complex (Denissov et al., 2014). 

SUZ12, by contrast, is found at the repressed subset of CGI promoters (Ku et 

al., 2008). RIME experiments were carried out using one RNAPII and one CBP 

antibody, and two antibodies against each of PSIP1 and SUZ12, as well as 

negative control experiments using immunoglobulin G (IgG). Overlap of the 

identified proteins including only proteins that were consistently detected in 

independent experiments and with multiple antibodies where possible, and that 

were not detected in the IgG controls, showed a large number of proteins that 

were co-bound in RIME experiments for RNAPII, CBP and PSIP1 (Fig. 3.6B). 

This suggests that these proteins could represent a set of core promoter-

associated proteins. 
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Fig. 3.6: Rapid immunoprecipitation mass spectrometry of endogenous proteins 
(RIME) to identify regulatory element-associated proteins. 
(A) Schematic showing the RIME approach to purifying proteins associated with 
regulatory elements. Cells from the human breast cancer cell line MCF7 were 
crosslinked and chromatin solubilised by sonication. Chromatin was 
immunoprecipitated using antibody against a target protein and immunocomplexes 
were extensively washed before purified proteins were analysed by mass 
spectrometry. 
(B) Venn diagram showing numbers of proteins identified by RIME using antibodies 
against RNA polymerase II (RNAPII), the MLL1/2 complex component PSIP1 and the 
histone acetyltransferase CBP. The results represent data from at least three 
independent experiments, and only proteins that were present in all purifications but  
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This set of potential promoter-binding proteins includes known regulators of 

transcription such as the FACT (facilitates chromatin transcription) complex, 

histone deacetylases (HDACs) and the transcriptional repressor TRIM28 (Fig. 

3.6C). However, these RIME experiments also identified additional proteins that 

could play a role at promoters. These include proteins involved in the DNA 

damage response, such as the poly(ADP-ribose) polymerase PARP1, and the 

XRCC5 and XRCC6 proteins (also known as Ku80 and Ku70, respectively) and 

their interaction partners APEX1 and HNRNPL. The presence of these proteins 

could point to a general role for DNA damage response proteins at sites of 

transcription initiation, consistent with observations that sites of transcription 

initiation are associated with genome instability (Aguilera and Gómez-González, 

2008; Helmrich et al., 2013). 

 

A second set of proteins identified as promoter-associated by RIME is the 

complex associated with the arginine methyltransferase PRMT1, including 

CHTOP (Chromatin target of PRMT1) and ERH (Enhancer of rudimentary 

homologue). PRMT1 can associate with CHTOP and ERH to form a complex 

that monomethylates and asymmetrically dimethylates H4R3 (H4R3me1 and 

H4R3me2a, respectively) (van Dijk et al., 2010; Takai et al., 2014). This 

complex has been shown to bind to 5-hydroxymethylated cytosine (5hmC) 

(Takai et al., 2014), which is found enriched at promoter and enhancer 

elements (Ficz et al., 2011; Pastor et al., 2011; Wu and Zhang, 2011), and the 

complex is thought to play an important role in transcriptional activation 

following gene induction (van Dijk et al., 2010). Binding of this complex to 

promoters could therefore represent a general mode of transcriptional 

regulation by the PRMT1 complex. 

 
(Fig. 3.6 cont.) not in IgG negative control experiments were included in this analysis. 
(C) Representative results from one set of RIME experiments using antibodies against 
RNAPII, CBP, PSIP1 and SUZ12. Coverage and unique peptide counts are shown for 
proteins with roles in DNA damage, chromatin binding and transcriptional regulation. 
(D) Venn diagram showing numbers of proteins identified by RIME using antibodies 
against RNAPII and SUZ12. The results represent data from at least three independent 
experiments, and only proteins that were present in all purifications but not in IgG 
negative control experiments were included in this analysis. 
(E) Representative results from one set of RIME experiments using antibodies against 
RNAPII, CBP, PSIP1 and SUZ12. Coverage and unique peptide counts are shown for 
PRC2 complex subunits. 
All RIME experiments presented in this figure were carried out by Dr Anca Farcaș 
(CRUK Cambridge Institute) under my supervision.  
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RIME experiments with SUZ12 antibodies, by contrast, identified comparatively 

few proteins overall, with 29 proteins consistently detected in multiple 

experiments using two different antibodies, compared to 479 proteins identified 

using the RNAPII antibody (Fig. 3.6D). Of the proteins identified in SUZ12 RIME 

experiments, approximately two-thirds are also detected in association with 

RNAPII. These proteins include XRCC6, CHTOP and ERH, indicating that 

these proteins may be important in the regulation of promoters that are 

repressed by Polycomb group (PcG) proteins as well as active promoters. The 

remaining proteins that were not identified in RNAPII RIME are all components 

of the PRC2 complex (Fig. 3.6E). Every subunit of PRC2 was identified in at 

least one SUZ12 RIME experiment, including the core PRC2 subunits SUZ12, 

EZH2 (and its paralogue EZH1), EED and RBBP4 and RBBP7, and the 

accessory subunits AEBP2, JARID2, PHF1, PHF19, MTF2 and EPOP. Of 

these, only the RBBP4 and RBBP7 subunits, which also form part of other 

complexes such as the nucleosome remodelling factor (NURF) complex (Barak 

et al., 2003), are also detected in RNAPII RIME experiments, suggesting that 

PRC2 is found solely at PcG-repressed loci in MCF7 cells and is not distributed 

to promoters more generally. 

 

Consistent with previous work using ChIP-mass spectrometry of PRC2 proteins 

(Alekseyenko et al., 2014), very few proteins were identified by SUZ12 RIME in 

addition to the PRC2 complex. Indeed, even the PRC1 complex, which 

generally co-occupies PcG-repressed loci with PRC2, is not detected in SUZ12 

RIME, although the complex is present in MCF7 cells, as indicated by 

identification of PRC1 proteins in RNAPII RIME (Fig. 3.6E). This relative 

absence of other proteins from SUZ12 RIME could suggest that PRC2-bound 

sites are not co-occupied by PRC1 or other proteins in this cell type. However, 

an alternative possibility is that PRC2 forms a biochemically distinct complex 

that does not enter sufficiently close proximity with other proteins to crosslink to 

non-PRC2 proteins efficiently. This would mean that even proteins that are 

present at the same sites as PRC2 are not found in SUZ12 RIME experiments. 

 

Overall, these results suggest that RIME could provide a viable alternative 

approach to identify proteins that function at regulatory elements. Indeed, these 

preliminary experiments suggest that DNA damage response proteins and 



 141 

PRMT1 and its associated complex may play a hitherto largely unexplored role 

in regulating promoter function. 

 

 

3.5 A candidate approach to study MLL3 and MLL4 function at 
enhancers 
 

To understand how the H3K4 methyltransferase complexes MLL3 and MLL4 

(MLL3/4) contribute to enhancer function, a similar proteomics approach was 

adopted in which MLL3 and MLL4 were purified from ES cells. The purified 

complexes could then be analysed to identify the interaction partners of 

MLL3/4, and the complexes could further be used in enzymatic assays in vitro 

to understand how their catalytic activities are regulated. 

 

To purify MLL3/4 complexes from ES cells, cell lines were generated using 

CRISPR/Cas9 genome editing in which either MLL3 or MLL4 was tagged with 

3xFLAG and 2xStrepII tags (3F2S) at the N-terminus of either protein (Fig. 

3.7A, B). PCR-based screening identified possible positive clones for each cell 

line (Fig. 3.7C, D), and these were confirmed by further PCR analysis (Fig. 

3.7E), immunoprecipitation (IP) followed by western blot for the known 

interaction partner UTX (Fig. 3.7F), and by sequencing. These analyses 

identified cell lines in which one allele of either MLL3 or MLL4 was successfully 

tagged. Due to the high GC content of the endogenous MLL3 and MLL4 genes, 

sequencing of the untagged alleles proved impossible, and the high molecular 

weight of the MLL3 (540 kDa) and MLL4 (600 kDa) proteins meant that tagged 

and untagged proteins could not be distinguished by western blot. Therefore, it 

cannot be stated definitively whether the remaining untagged alleles in these 

cell lines are either wild type or, more likely, mutated and rendered non-

functional. Neither case, however, should interfere with the function of the 

tagged proteins. 

 

Once the 3F2S-tagged cell lines were established, 3F2S-MLL4 was purified via 

the FLAG affinity purification (Fig. 3.8). Analysis of the purified complex by 

SDS-PAGE followed by silver staining revealed the presence of proteins that  
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Fig. 3.7: A CRISPR/Cas9 strategy to endogenously tag MLL3 and MLL4. 
(A), (B) Homology directed repair (HDR) templates carrying 3xFLAG (3F, red box) and 
2xStrepII (2S, green box) tags were used to insert N-terminal affinity tags at the start of 
the coding regions of the MLL4 (A) and MLL3 (B) loci using CRISPR/Cas9-mediated 
genome editing. Introns are represented by lines, 5’ untranslated region (UTR) by small 
boxes and coding region by larger boxes. Primers used for PCR-based screening 
assays are indicated above the genomic loci. 
(C), (D) ES cell colonies were screened for insertion of the tag cassette by PCR using 
primers 1 and 2 indicated in (A) and (B), and potentially positive clones are indicated. 
(E) Successful tagging of a heterozygous 3F2S-MLL4 cell line was confirmed by PCR 
using the indicated primers, compared to wild type parental E14 ES cells and a non-
template control (NTC). 
(F) Potential 3F2S-MLL3 clones were screened by immunoprecipitation (IP) of whole 
cell extracts using FLAG M2 resin, with IPs analysed by western blot using antibodies 
against FLAG and interaction partner UTX. 

 
are not seen in a negative control purification from wild type E14 ES cells, 

suggesting that a complex of proteins was successfully purified (Fig. 3.8A). The 

presence of the MLL4 complex in the purified material was confirmed by 

western blot, which indicated the presence of known MLL4 complex 

components UTX and ASH2L (Fig. 3.8B). 

 

To determine whether the purified complex contained all of the expected MLL4 

complex members and whether any additional proteins co-purified with MLL4, 

the purified material was analysed by mass spectrometry (Fig. 3.8C, D). This 

analysis showed that purified 3F2S-MLL4 contains all of the known components   
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Fig. 3.8: Purification of endogenous MLL4 complex from ES cells. 
(A) 3F2S-MLL4 was purified via the FLAG tags, with purification from wild type E14 ES 
cells as a negative control. Purified material was eluted by competition with 3xFLAG 
peptide (E1, E2) and by boiling in SDS-PAGE loading buffer. Purified material was 
analysed by SDS-PAGE followed by silver staining. 
(B) As in (A), except purified material was analysed by western blot using antibodies 
against MLL4 complex components ASH2L and UTX. 
(C), (D) Proteins purified from 3F2S-MLL4 cells was analysed by mass spectrometry, 
showing the presence of known MLL4 complex subunits (C) and proteins that have not 
previously been identified as MLL4 interaction partners (D). 
(E) Purified MLL3 complex and two independent MLL4 complex purifications were 
used as enzymes in histone methyltransferase (HMT) assays with recombinant 
nucleosome arrays and 3H-labelled S-adenosyl methionine (SAM). Reactions were 
analysed by SDS-PAGE, transferred onto a PVDF membrane, stained with Coomassie 
to reveal equal loading of nucleosomes between reactions, and exposed to film to 
generate an autoradiograph (3H). 
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of the MLL4 complex (Fig. 3.8C), namely the WDR5, RBBP5, ASH2L and 

DPY30 subunits that are common to all mammalian H3K4 methyltransferases, 

and the UTX, PTIP, PA1 and NCOA6 subunits that are distinct to the MLL3/4 

complexes. In addition to these proteins, UTY, a paralogue of UTX that has not 

previously been identified as part of the MLL4 complex, was detected, and 

small amounts of the MLL3 protein. UTX is an H3K27 demethylase enzyme 

encoded on the X chromosome, whilst UTY is encoded on the Y chromosome 

in males and lacks catalytic activity in vitro and in vivo (Hong et al., 2007; Lan et 

al., 2007; Shpargel et al., 2012). This could suggest that UTX and UTY have 

functional roles as part of the MLL4 complex that are independent of their 

catalytic activity, consistent with results suggesting a functional redundancy 

between UTX and UTY in development and in tumour suppressor function that 

does not depend on H3K27 demethylase activity (Gozdecka et al., 2018; 

Shpargel et al., 2012) 

 

Further analysis of the mass spectrometry data shows that 3F2S-MLL4 co-

purified with several other known chromatin-associated proteins (Fig. 3.8D). 

These include components of the SETD1A H3K4 methyltransferase complex, 

including CFP1, WDR82, HCFC1 and the enzymatic subunit SETD1A (Lee and 

Skalnik, 2005). Additional co-purified proteins include components of the 

TIP60/p400 histone acetyltransferase complex, the cohesin and condensin 

complexes involved in chromatin looping, the BAF chromatin remodelling 

complex, the NuRD nucleosome remodelling and histone deacetylase complex, 

and the CoREST histone deacetylase complex. The most probable explanation 

for the detection of these proteins in the 3F2S-MLL4 purification is that many of 

these complexes play a role at the same genomic locations as the MLL4 

complex, with TIP60/p400, cohesin, BAF, NuRD and CoREST all known to bind 

to enhancers (Kagey et al., 2010; Laurent et al., 2015; Morris et al., 2014; 

Phillips-Cremins et al., 2013; Wang et al., 2009). These proteins may therefore 

come into contact with MLL4 without forming a stable complex, consistent with 

the lower number of peptides identified for these proteins compared to the core 

MLL4 complex subunits. 

 

The presence of components of the SETD1A complex in the 3F2S-MLL4 

purification is more surprising than the presence of known enhancer-binding 
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proteins, given that the SETD1A complex is thought to bind primarily at active 

promoters rather than enhancers, through its CFP1 and WDR82 subunits 

(Brown et al., 2017; Clouaire et al., 2012; Lee and Skalnik, 2008; Thomson et 

al., 2010). The presence of SETD1A subunits in association with MLL4 could 

suggest that SETD1A has an additional role at distal regulatory elements. This 

possibility would be consistent with the reduced levels of DNA methylation 

found at enhancers (Lister et al., 2009; Schmidl et al., 2009; Stadler et al., 

2011; Thurman et al., 2012), which could lead to the recruitment of the SETD1A 

complex through the ZF-CXXC domain of the subunit CFP1 (Voo et al., 2000). 

An alternative, but not mutually exclusive, possibility is that MLL4 plays a 

greater role at promoter elements than previous reports would suggest (Dorighi 

et al., 2017; Hu et al., 2013c). Consistent with this hypothesis, examination of 

MLL4 ChIP-seq data shows that approximately one-quarter of MLL4 binding 

sites are at gene promoters in the human colon cancer cell line HCT116 (Hu et 

al., 2013c). Moreover, the observation that MLL3/4 shows little occupancy at 

promoter regions in ES cells was carried out in 2i+LIF culture conditions 

(Dorighi et al., 2017), which can have drastically altered chromatin profiles 

compared to ES cells cultured only in the presence of LIF (Leitch et al., 2013). 

One possibility is therefore that MLL3/4 could bind to a broader range of 

promoter elements in the LIF-only conditions used in this study. To test whether 

MLL4 binds to promoters in addition to enhancers, ChIP experiments were 

carried out using antibodies against MLL4 in wild type ES cells and against the 

FLAG and StrepII tags in the 3F2S-MLL4 cell line. However, MLL4 signal could 

not be detected by qPCR even at known MLL4 binding sites, suggesting that 

the antibodies used were not able to immunoprecipitate MLL4 in ChIP 

conditions. 

 

Finally, to understand how MLL3/MLL4 enzymatic activity is regulated, purified 

complexes were used in histone methyltransferase (HMT) assays with 

recombinant nucleosome arrays and 3H-labelled S-adenosyl methionine (SAM) 

(Fig. 3.8E). Were MLL3/4 complexes to have sufficient activity towards 

nucleosomes, MLL3/4 enzymatic activity could then be tested in the presence 

of specific histone modifications or of other chromatin proteins, to determine 

whether these influence MLL3/4 activity. However, although activity could be 

detected with MLL4 purifications, the activity was relatively weak, and no 
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activity was detectable with reactions using the MLL3 complex. This weak 

activity meant that it was not possible to test the activity of the complexes in 

other settings, as changes in activity would be difficult to detect and potentially 

unreliable. 

 

Overall, these results show that tagging of endogenous alleles of MLL3/4 

proteins facilitates the purification of their associated complexes and of other 

additional proteins. This could potentially indicate that H3K4 methyltransferases 

have a broader role at regulatory regions in ES cells than has previously been 

appreciated, with greater overlap between the SETD1A and MLL3/4 complexes 

at target sites. 

 

 

3.6 Summary and discussion 
 

Promoter and enhancer regions are important for the regulation of gene 

expression in mammalian cells. Although it is clear that the chromatin states at 

these regions play a key role in mediating their function, how these states are 

established and interpreted remains incompletely understood. Work in this 

chapter attempted to further our understanding of the mechanisms by which 

regulatory regions function by using proteomics approaches to reveal the 

proteins that bind to promoters and enhancers. 

 

3.6.1 Purification of CGIs and promoters 
 

Previous work has successfully isolated the chromatin associated with large 

genomic regions such as telomeres, pericentromeric heterochromatin and 

rDNA, and identified proteins associated with these regions by mass 

spectrometry using the technique called PICh (proteomics of isolated 

chromatin) (Déjardin and Kingston, 2009; Ide and Dejardin, 2015; Saksouk et 

al., 2014). CGIs and telomeres constitute similar proportions of the genome, 

with both comprising at most 1% of the mouse genome (Antequera and Bird, 

1993; Déjardin and Kingston, 2009). Therefore, it was plausible that an 

approach that extended the capacity of the ZF-CXXC domain to purify CGI DNA 

(Blackledge et al., 2012; Illingworth et al., 2008) to purify CGI chromatin could 
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yield sufficient material to permit identification of CGI-associated proteins. 

However, differences in the methodologies applied in these studies meant that 

a CAP-based approach was less successful than purifications of other genomic 

compartments. 

 

The major difference between CAP and the PICh  approach applied previously 

is the identity of the affinity reagent used to bind to the chromatin region of 

interest. Whilst CAP makes use of the ZF-CXXC protein domain that binds to 

unmethylated CpG, PICh uses locked nucleic acids (LNAs) that hybridize to 

repetitive DNA elements. One consequence of this is that whilst CpG 

dinucleotides might be occluded by binding of other proteins, LNAs are likely to 

be able to hybridize to at least partial complementary sequences at a given 

target site, and each target site will have multiple regions that can be bound due 

to their highly repetitive nature. Therefore, the efficiency of binding between the 

affinity reagent and the target site is likely to be greater in PICh than in CAP. 

This could explain why only a small proportion of CGI chromatin was 

successfully enriched with CAP. 

 

An additional limitation of the CAP approach compared to PICh is that the ZF-

CXXC domain is also likely to have lower affinity for its target site than the LNAs 

used in PICh. ZF-CXXC has an affinity for unmethylated CpG of approximately 

0.6 µM (Blackledge et al., 2010), whereas LNAs can have picomolar affinity in 

hybridization reactions in vitro (Möhrle et al., 2005). This again suggests that 

LNAs would bind target sites with greater efficiency than ZF-CXXC. It would be 

possible to overcome this binding inefficiency by increasing the amount of ZF-

CXXC affinity reagent used in the CAP experiment. However, because the low 

affinity of ZF-CXXC for CpG prohibits stringent washes, using large quantities of 

ZF-CXXC leads to greatly increased background binding of non-CGI chromatin. 

Together, these issues meant that a CAP approach to purify CGI chromatin was 

not viable. Similarly, although the in vivo approach of expressing ZF-CXXC in 

cells allowed the domain to access its target sites, the approach was limited by 

low pulldown efficiency, with only around 1% of any given CGI being purified in 

ChIP experiments. 
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By contrast, RIME experiments using antibodies against endogenous proteins 

that bind to promoter elements with high affinity, combined with a stringent 

bioinformatics analysis to rule out false positives, appears to provide a more 

profitable avenue for identification of novel regulatory element binding proteins. 

Indeed, the experiments described here suggest that DNA damage response 

proteins and the PRMT1-CHTOP complex may play a role at promoters in 

MCF7 cells. Further work, including ChIP experiments for the identified 

proteins, will be required to confirm that these complexes are truly present at 

promoters, but these proteins have potential for future mechanistic study of 

promoter function. 

 

However, RIME experiments also have their limitations, as exemplified by the 

SUZ12 RIME results presented here. Whilst these successfully purified the 

known PRC2 complex, they failed to identify any novel factors that might be 

unique to PcG-repressed promoters and that might be required to maintain the 

repressed state. One possible explanation for this is that promoters bound and 

repressed by PcG proteins have a more compact chromatin structure that 

prevents binding of other proteins, and that this may be one mechanism by 

which gene repression is mediated. However, the finding that even PRC1 

proteins were not detected in SUZ12 RIME, despite the observation that PRC1 

and PRC2 binding overlaps in MCF7 cells (ENCODE Project Consortium, 

2012), suggests that a technical explanation is more likely. This could be that 

some nucleoplasmic, rather than chromatin-bound, PRC2 is present in the 

chromatin preparations used for RIME experiments, and that binding of this 

PRC2 fraction to the antibody competes with the chromatin-associated PRC2. 

Alternatively, the chromatin-bound PRC2 complex could be relatively self-

contained and fail to crosslink efficiently to other proteins at the same genomic 

locations, preventing identification of proteins that associate with PcG-

repressed promoters. This suggests that whilst RIME is a valuable protoeomics 

tool, it may not be equally useful for all possible target sites. 
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3.6.2 Purification of MLL3/4 complexes 
 

 

Endogenous tagging of the MLL3 and MLL4 loci permitted successful 

purification of the MLL4 complex from ES cells and identification of associated 

proteins by mass spectrometry. However, identified proteins that are not part of 

the known MLL4 complex were only purified at comparatively low levels and 

comprised mostly known regulatory element-binding proteins, suggesting that 

these proteins interact only transiently with MLL4 rather than representing novel 

MLL4 complex components. The technical difficulties of ChIP experiments with 

these proteins meant that it was not possible to use RIME to identify novel 

enhancer-bound proteins at MLL3/4 target sites. Moreover, in vitro approaches 

to studying regulation of MLL3/4 enzymatic activity were not possible because 

of the poor activity displayed by the complexes purified from ES cells. The 

reason for this is most likely that only small amounts of complex could be 

purified due to the low abundance of endogenous MLL3/4 proteins in vivo. One 

way of overcoming this problem could be to express the enzymatic subunit 

exogenously at higher levels to purify a larger amount of enzyme. However, 

because the enzymatic subunit would be overexpressed compared to the other 

components of the complex, purification would yield a complex that may not 

exhibit the appropriate stoichiometry of the endogenous MLL3/4 complex, and 

may therefore have different enzymatic properties (Zhang et al., 2015). An 

alternative possibility would be to express and purify the MLL3/4 complexes 

recombinantly to yield large amounts of protein. However, such an approach is 

again limited by the need to express multiple complex components at the 

correct stoichiometry, and also by the large size of the enzymatic subunits, 

which renders cloning the full length Mll3 and Mll4 cDNAs into recombinant 

expression vectors highly problematic. 

 

However, this suggests an alternative approach to study regulatory element 

function using purified enzymes. In addition to MLL3/4 complexes, enhancers 

and promoters are bound by other chromatin-modifying proteins, including the 

HATs CBP and p300. Although these proteins associate with many other 

proteins in vivo, they do not require complex formation for activity, and they 

have been successfully purified from insect cells using the baculovirus 
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expression vector system to yield large amounts of pure protein for enzymatic 

experiments. Therefore, an alternative strategy to study regulatory element 

function would be to make use of purified CBP/p300 to understand how these 

proteins acetylate chromatin to regulate gene expression. 
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4. The CBP TAZ2 domain directs H3K27 
acetylation in chromatin 

 
 

CBP and its paralogue p300 are histone acetyltransferase (HAT) enzymes that 

are conserved in metazoans, plants and some unicellular eukaryotes (Bordoli et 

al., 2001; Sebé-Pedrós et al., 2011; Yuan and Giordano, 2002). Homozygous 

knockouts of either CBP or p300 are embryonic lethal in mice, with lethality 

recapitulated by mutants lacking enzymatic activity (Oike et al., 1999; Tanaka et 

al., 1997; Yao et al., 1998). Germline mutation of one allele of CBP or p300 in 

humans leads to a rare developmental disorder called Rubinstein-Taybi 

Syndrome (RSTS) (Hennekam, 2006; Petrij et al., 1995), and CBP/p300 is 

emerging as a target for cancer treatment (Attar and Kurdistani, 2017; Jin et al., 

2017). Together, these observations suggest that the HAT activity of CBP/p300 

plays a key role in development and disease. 

 

Histone acetylation is thought to function through regulation of gene expression, 

with acetylation contributing to activation of transcription. Initial work identifying 

CBP/p300 as HATs showed that these enzymes can acetylate lysine residues 

within all four core histone proteins (Bannister and Kouzarides, 1996; Ogryzko 

et al., 1996), and further studies have identified a large number of sites that can 

be acetylated by CBP/p300 in vitro, both in histone N-terminal tails and in the 

globular domain of histone H3 (An et al., 2002; Di Cerbo et al., 2014; Ogryzko 

et al., 1996; Tropberger et al., 2013). However, in vivo studies have shown that 

loss of CBP/p300 activity, either through genetic ablation or through drug-

mediated enzymatic inhibition, leads to loss of specific histone acetylation 

marks (Jin et al., 2011; Pasini et al., 2010; Tie et al., 2009; Weinert et al., 2018), 

with mass spectrometry analysis indicating that inactivation of CBP/p300 leads 

to almost total depletion of H3K27ac, H3K18ac, and acetylation of the H2B N-

terminal tail in mammalian cells, while acetylation of other histone residues 

remains largely unchanged (Weinert et al., 2018). H3K27ac is considered to be 

a key histone modification in the regulation of gene expression, specifically 

marking active gene regulatory elements. This modification frequently overlaps 

with CBP/p300 binding genome-wide, suggesting that H3K27 may be a key 
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target for CBP/p300 HAT activity (Creyghton et al., 2010; Heintzman et al., 

2009; Rada-Iglesias et al., 2011). 

 

There are several possible explanations for the apparent contradiction between 

in vivo and in vitro analysis of CBP/p300 substrate specificity. One possibility is 

that multiple HAT enzymes exist in the cell and that whilst one or more of these 

are able to compensate for loss of CBP/p300 activity towards many histone 

lysine residues, they are unable to do so for H3K27ac and certain other 

residues. However, kinetic studies using CBP/p300 inhibitors show that loss of 

CBP/p300 activity leads to rapid loss of H3K27ac whilst acetylation of residues 

such as H3K9 is maintained, even before compensatory mechanisms are likely 

to have taken effect (Weinert et al., 2018). This implies that the observed 

substrate specificity is unlikely to be attributable solely to compensatory 

acetylation by other HATs, but is rather an inherent property of the CBP/p300 

enzymes. 

 

An alternative explanation for the discrepancy between the promiscuity of 

histone acetylation by CBP/p300 in vitro and its specificity in vivo is the 

difference between substrates in these experiments. Many in vitro HAT 

experiments demonstrating acetylation of histone residues that are apparently 

not key targets of CBP/p300 in vivo were carried out using non-physiological 

substrates for histone acetylation, such as free core histones. By contrast, 

histone proteins that are acetylated by CBP/p300 in vivo are assembled into 

histone octamers and incorporated into DNA to form polynucleosomal arrays. 

This physiological substrate could render lysine residues that are accessible to 

CBP/p300 in free histones inaccessible in chromatin in vivo, with residues 

potentially occluded by the presence of other histone proteins or DNA. Indeed, 

several reports indicate that CBP/p300 acetylates free histone proteins more 

effectively and more promiscuously than nucleosomal histones, and that 

nucleosome assembly also leads to alterations in substrate specificity (An and 

Roeder, 2003; Kraus et al., 1999). However, how mechanistically CBP/p300 

might interact with nucleosome substrates to generate the specificity observed 

in vivo remains unclear. 
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Therefore, to examine how CBP/p300 substrate specificity is achieved, an in 

vitro biochemical approach was adopted using purified recombinant CBP 

proteins together with either reconstituted histone octamer or nucleosome array 

substrates to map which domains of CBP contribute to specificity towards 

H3K27ac. Understanding how mechanistically CBP/p300 specifically targets 

H3K27 for acetylation could lead to a deeper understanding of how CBP/p300 

functions to direct H3K27ac in vivo to regulate the fundamental process of gene 

expression. 

 

4.1 Expression and purification of full length CBP protein 
 

To understand how CBP regulates acetylation of histones in chromatin, the 

protein was first expressed and purified for use in enzymatic assays. CBP is a 

large protein of approximately 265 kDa with a complex domain structure (Fig. 

4.4A). Therefore, to express intact full length mouse CBP at high levels the 

protein was expressed in Sf9 insect cells using the baculovirus expression 

vector system (BEVS) with N-terminal 6xHis and FLAG tags (Fig. 4.1A). CBP 

was then purified from Sf9 cell lysate through binding of the FLAG tag to FLAG 

M2 resin, and eluted under native conditions by competition with FLAG peptide 

(Fig. 4.1B) to yield a relatively pure, concentrated and undegraded sample of 

CBP, as assessed by SDS-PAGE and Coomassie staining (Fig. 4.1C). 

 

4.2 Reconstitution of nucleosome array 
 

To test the activity of purified CBP towards chromatin, nucleosome arrays were 

reconstituted in vitro. To generate nucleosome arrays, histone octamers were 

incorporated into a DNA template comprising 12 repeats of a 177 bp sequence 

containing the 147 bp 601 strong nucleosome positioning sequence (Lowary 

and Widom, 1998) flanked by 15 bp linker DNA overhangs (Fig. 4.2A). 

Incorporation of histone octamer was confirmed by the observation of a gel shift 

upon reconstitution of the arrays with increasing amounts of histone octamer 

(Fig. 4.2B). The quality of the array was analysed using a restriction digest-

based assay, adapted from (Yuan et al., 2012), that makes use of a ScaI 

restriction enzyme site located in the linker DNA between nucleosome 

positioning sequences (Fig. 4.3C). Digestion of arrays leads to release of either  
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Fig 4.1: Expression and purification of CBP protein from Sf9 cells. 
(A) CBP or CBP truncation proteins were cloned with 6xHis (H, blue box) and FLAG (F, 
red box) tags with TEV cleavage site (TEV) in the pFastBac vector, under the control of 
the Polyhedrin promoter (pPolh, black box) between Tn7 attachment sites (light blue 
triangles). The donor plasmids were used to transform EmBacY competent bacteria, 
recombinants were selected and bacmid DNA was isolated. Recombinant bacmid was 
then transfected into Sf9 cells and P1 virus was harvested and used to amplify the viral 
stock for protein expression.  



 155 

 
 
Fig 4.2: Preparation of recombinant nucleosome arrays. 
(A) Arrays comprise 12 repeats of a 177 bp sequence containing the 601 nucleosome 
positioning sequence. 
(B) Nucleosome arrays were reconstituted using different DNA:histone octamer mass 
ratios and analysed for gel shift by separating on a 0.5% native agarose gel and 
staining with Sybr safe. 
(C) The quality of nucleosome arrays reconstituted in vitro was tested by digestion with 
ScaI (shown schematically, top) to release either free DNA from unoccupied 
positioning sequences or mononucleosomes from nucleosome-occupied sequences. 
Reactions were analysed by native PAGE followed by staining with Sybr safe (bottom), 
to determine optimal nucleosome assembly. 
 

 

 

 

 

 

 

 

 
(Fig. 4.1 cont.) 
(B) Following protein expression, harvested cells were lysed by sonication to prepare 
whole cell extract, which was applied to FLAG M2 resin. Protein-bound beads were 
washed and pure protein was eluted by competition with FLAG peptide. The purity and 
quality of protein was then analysed by SDS-PAGE followed by Coomassie staining, 
and protein was used for downstream applications including histone acetyltransferase 
(HAT) assays and interaction assays. 
(C) Purified full length CBP protein was separated by SDS-PAGE on a 3-8% Tris-
Acetate gel and stained with Coomassie.  
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free 177 bp DNA if a nucleosome positioning sequence is unoccupied, or to 

release of a higher molecular weight mononucleosome if the sequence is 

occupied by a histone octamer. 

 

The results of this of this assay showed that reconstitution of arrays with a 

DNA:histone octamer mass ratio of 1:1.5 leads to full occupancy of the DNA but 

does not lead to oversaturation of the array, which would result in blocking of 

some ScaI sites and therefore to the release of dinucleosomes and 

polynucleosomes upon ScaI digestion (Fig.4.2C). These reconstituted 

nucleosome arrays were therefore a suitable substrate to test the enzymatic 

activity of CBP towards chromatin. 

 

4.3 Establishing a histone acetyltransferase (HAT) assay 
 

To test how CBP acetylates chromatin substrates, suitable HAT assays were 

first established and optimised. To this end, two types of HAT assay were 

developed, first using a 3H label to allow the overall acetylation of individual 

histones to be examined, and second using unlabelled substrate and antibodies 

to probe for acetylation of individual histone lysine residues by western blot 

(Fig. 4.3). In both assays, CBP enzyme was mixed together with nucleosome 

substrate, and the HAT reaction was initiated by addition of either 3H-labelled or 

unlabelled acetyl-CoA cofactor. The reactions were then quenched and 

analysed by SDS-PAGE followed by autoradiography for 3H-labelled HAT 

assays to allow simultaneous detection of total acetylation of the four histone 

proteins, or followed by western blot to examine individual histone acetylation 

marks for unlabelled reactions. Together, these assays provide powerful tools 

to assess the activity and specificity of CBP enzymes in vitro. 

 
4.4 The C-terminus of CBP is required for acetylation of histone 
H3 in chromatin 
 

CBP is a large, multi-domain protein (Fig. 4.4A) comprising three main parts. 

The enzymatic activity of CBP is located in the centre of the protein and 

contains the HAT domain itself, but also requires the bromodomain, PHD finger   
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Fig. 4.3: A histone acetyltransferase (HAT) assay to analyse CBP function. 
CBP enzyme is incubated with nucleosome arrays and an acetyltransferase reaction is 
started by addition of either 3H-labelled (top) or unlabelled (bottom) acetyl-CoA 
cofactor, leading to acetylation of histone residues (green stars). 3H-labelled acetylation 
reactions (top) are then analysed by SDS-PAGE followed by transfer to a PVDF 
membrane, Coomassie staining and exposure to film to generate an autoradiograph 
(3H). Unlabelled acetylation reactions (bottom) are analysed by SDS-PAGE followed by 
western blot using antibodies against specific histone acetylation modifications, against 
total histones present in each reaction, and against FLAG to show levels of enzyme. 
 

 

and RING finger to be fully functional (Delvecchio et al., 2013; Kalkhoven et al., 

2002; Manning et al., 2001). Together these domains make up the CBP 

catalytic core. The N-terminal portion of the protein contains a transcriptional 

adaptor zinc finger (TAZ) domain called TAZ1, and a kinase inducible domain 

(KID)-interacting domain (KIX). Both of these domains mediate interactions with 

other proteins, including p53 for the TAZ1 domain (Krois et al., 2016) and a 

large number of KID-containing proteins such as CREB and c-Myb for the KIX 

domain (reviewed in Thakur et al., 2014). The C-terminus of CBP contains a 

ZZ-type zinc finger immediately downstream of the HAT domain, which has 

recently been shown to bind to the N-terminus of histone H3 (Zhang et al., 

2018), a second TAZ-type zinc finger called TAZ2 and a nuclear coactivator 

binding domain (NCBD) which interacts with proteins including p160 

coactivators such as SRC-1 (Waters et al., 2006). 

 

To understand the contribution of these domains to the acetylation of histone 

H3 in a physiologically relevant chromatin substrate, CBP proteins containing 

CBP core together with either the N-terminus (Nter-core) or C-terminus (core-   
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Figure 4.4: CBP C-terminus mediates histone H3 acetylation in nucleosome 
substrates. 
(A) Schematic representation of the domain architecture of full length (FL) mouse CBP 
(top), Nter-core (middle) and core-Cter (bottom) proteins, showing unstructured regions 
(line) and structured domains (boxes), with numbers representing amino acid positions. 
TAZ1, transcription adaptor zinc finger domain 1; KIX, kinase-inducible domain (KID)-
interacting domain; Bromo, bromodomain; PHD, plant homeodomain zinc finger; RING, 
really interesting new gene zinc finger; HAT, histone acetyltransferase domain; ZZ, ZZ-
type zinc finger; TAZ2, transcription adaptor zinc finger domain 2; NCBD, nuclear 
coactivator binding domain. 
(B) Proteins expressed in Sf9 cells were purified via the FLAG tag and analysed by 
SDS-PAGE followed by Coomassie staining. 
(C) HAT assays using CBP FL, Nter-core or core-Cter enzymes with nucleosome array 
or histone octamer substrates as indicated. Coomassie staining of membrane shows 
loading of histone proteins, with individual histone proteins indicated, and 3H shows 
long and short autoradiograph exposures with the position of histone H3 indicated. 
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Cter) were expressed and purified from Sf9 cells (Fig. 4.4A, B). The activities of 

full length CBP (FL), CBP Nter-core and CBP core-Cter were then tested using 

either nucleosome arrays or histone octamers as substrates in a 3H-labelled 

HAT assay (Fig. 4.4C). All three enzymes had comparable activity towards 

histone octamers, which in the conditions of this experiment likely dissociate to 

form H2A-H2B dimers and H3-H4 tetramers, including similar activity towards 

histone H3. Moreover, consistent with previous observations, the activity of 

CBP was greater towards histone octamer than towards nucleosomes and 

appears to be primarily directed against histones H3 and H4 (An and Roeder, 

2003; Kraus et al., 1999). 

 

Importantly, using nucleosome array substrates, only enzymes containing the 

C-terminus of CBP were active towards histone H3, confirming previous studies 

showing that the CBP core is not sufficient for H3 acetylation in nucleosomes 

(Bannister and Kouzarides, 1996; Zhang et al., 2018), whilst the N-terminus of 

CBP was dispensable for H3 acetylation. In addition, in nucleosomes specificity 

appeared to be shifted towards acetylation of H2A and/or H2B, in agreement 

with previous work (An and Roeder, 2003; Kraus et al., 1999), and this shift was 

enhanced for enzymes containing the CBP C-terminus. Together, these results 

suggest that CBP has altered substrate specificity towards nucleosome 

substrates compared to histone octamers alone, and that an activity is 

contained within the C-terminus of CBP that is required for efficient acetylation 

of histone H3 in the context of nucleosomes. 

 

4.5 The CBP TAZ2 domain is required for H3K27ac 
 

To determine which domains within the CBP C-terminus are required to direct 

H3 acetylation, further constructs were generated containing the two most 

promising candidate domains, namely the ZZ and TAZ2 domains immediately 

adjacent to the HAT domain (Fig. 4.5A). CBP core (C), core-ZZ (CZ) and core-

ZZ-TAZ2 (CZT) proteins were expressed and purified from Sf9 cells (Fig. 4.5B) 

and their enzymatic activities tested towards nucleosome arrays in 3H-based 

HAT assays (Fig. 4.5C). This experiment showed that while CBP core is active 

towards nucleosomes, it lacks detectable activity towards histone H3, similar to 

the Nter-core construct (Fig. 4.4C). While showing similar levels of activity   
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Figure 4.5: The CBP TAZ2 domain is required for efficient H3K27ac. 
(A) Schematic representation of the domain architecture of CBP FL, CBP enzymatic 
core (C), core-ZZ (CZ) and core-ZZ-TAZ2 (CZT). 
(B) Proteins expressed in Sf9 cells were purified via the FLAG tag and analysed by 
SDS-PAGE followed by Coomassie staining. 
(C) HAT assays showing reactions with C, CZ and CZT enzymes with nucleosome 
array. Long and short autoradiograph exposures, and Coomassie staining to show 
enzymes and histone proteins are shown. 
(D) Western blot analysis of unlabelled HAT assay timecourse experiments using no 
enzyme (-), C, CZ or CZT with nucleosome array, for reaction times of 5, 10, 20 or 60 
mins, analysed using antibodies against FLAG, H3K27ac, H2BK5ac, H3K9ac, H4K5ac 
or total H2A. Asterisks indicate non-specific bands present in CZ reactions (see 
Appendix, Fig. S1). 
(E) Quantification of HAT assay shown in (D). Signal for each antibody is normalized to 
CZT reaction at 60 mins and represents the mean of three independent experiments, 
with error bars indicating SEM.  
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towards histones H2A, H2B and H4 as CBP core, CZ exhibited a small but clear 

increase in acetylation towards H3, consistent with previous work suggesting 

that the ZZ domain influences CBP activity towards nucleosomes and increases 

H3 acetylation (Bannister and Kouzarides, 1996; Zhang et al., 2018). CZT, by 

contrast, showed higher levels of acetylation of all four core histone proteins 

andacetylates H3 to far higher levels than CZ, indicating that the TAZ2 domain 

of CBP plays an important role in directing H3 acetylation in nucleosomes. 

 

To extend this analysis, unlabelled HAT assays were carried out followed by 

western blot for H3K9ac, H3K27ac, H2BK5ac and H4K5ac to determine which 

specific histone lysine residues are acetylated by CBP in the presence of the ZZ 

and TAZ2 domains (Fig. 4.5D, E). Consistent with the 3H-labelled HAT assays, 

this time course experiment showed that CBP core only weakly acetylates any 

of the residues tested. CZ shows markedly greater activity towards H3K9 and 

H4K5 than CBP core alone, but shows only slightly increased activity towards 

H3K27 and H2BK5. CZT, by contrast, is able to acetylate H3K9 and H4K5 to 

the same final levels as CZ, albeit with a decreased rate of reaction, but, 

importantly, CZT generates ten-fold higher levels of H3K27ac and H2BK5ac. 

This suggests that the higher levels of H3 acetylation generated by CZT are 

attributable primarily to increased H3K27ac and that the TAZ2 domain of CBP 

is therefore essential for efficient acetylation of H3K27 in nucleosome 

substrates. 

 

 

4.6 Summary and discussion 
 

CBP/p300 regulates transcription through acetylating histones, with the major 

products of CBP/p300-mediated histone acetylation in vivo being H3K18ac, 

H2B acetylation, and the key marker of active enhancers, H3K27ac (Jin et al., 

2011; Weinert et al., 2018). However, in vitro studies have suggested a far 

more promiscuous HAT activity for CBP/p300, and it has been unclear how to 

reconcile these two sets of observations. 

 

Work in this chapter attempted to resolve this discrepancy by examining CBP 

enzymatic activity in vitro using purified proteins to avoid the possibility of 
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compensatory effects in the cell, while making use of reconstituted nucleosome 

array substrates to better reflect the substrate encountered by CBP/p300 in 

vivo. These experiments showed that CBP has altered specificity in the context 

of nucleosomes compared to non-nucleosomal histone substrates. Moreover, 

acetylation of key targets of CBP/p300 in vivo, such as H3K27 and H2BK5, 

requires a zinc finger domain called TAZ2 located in the C-terminus of CBP in 

addition to the enzymatic core. 

 

These results suggest therefore that enzymatic assays using nucleosome array 

as substrate can recapitulate CBP activity towards H3K27ac observed in vivo. It 

further suggests that packaging histones into nucleosomes is inherently 

suppressive to the catalytic activity of the CBP enzymatic core towards H3K27. 

This suppression can be partially overcome by the presence of the ZZ domain 

of CBP, in agreement with previous work (Bannister and Kouzarides, 1996; 

Zhang et al., 2018), presumably through binding of the ZZ domain to the N-

terminal tail of histone H3 (Zhang et al., 2018). However, these reports 

suggested that the ZZ domain is sufficient to generate high levels of H3K27ac, 

whereas this study indicates that the TAZ2 domain is also required. One 

explanation for this is that while these previous studies use nucleosomes as 

substrates, mononucleosomes were used rather than nucleosome arrays. This 

suggests that the ZZ domain of CBP/p300 is sufficient to overcome the 

suppressive effect towards H3K27ac of assembly into nucleosomes but not of 

packaging into the more physiological substrate of nucleosome arrays. 

 

The TAZ2 domain therefore plays an important role in specifying CBP/p300 

activity towards H3K27, and could explain how CBP/p300 targets H3K27 in 

vivo. Understanding the mechanism by which the TAZ2 domain achieves 

targeted H3K27ac in chromatin could therefore provide key insights into how 

H3K27ac is generated by CBP/p300 genome-wide and how these chromatin-

modifying enzymes function to regulate gene expression. 
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5. The CBP TAZ2 domain binds DNA to drive 
interactions with chromatin 

 
 

The TAZ2 domain of CBP directs the acetylation of H3K27 in chromatin 

substrates whilst reducing promiscuous activity towards other histone residues 

(see Chapter 4). TAZ2 is a highly conserved domain (Ponting et al., 1996; 

Sebé-Pedrós et al., 2011) and mutations in the domain in humans are 

associated with disease (Menke et al., 2016, 2018), consistent with TAZ2 

playing an important role in mediating CBP/p300 function. However, how 

mechanistically TAZ2 might contribute to histone acetylation specificity is not 

clear. 

 

Previous work has suggested that TAZ2 is involved in mediating protein-protein 

interactions with transcription factors that facilitate CBP/p300 recruitment to 

target sites, with structures solved for TAZ2 interactions with the intrinsically 

disordered activation domains of p53, STAT1 and C/EBP (Bhaumik et al., 2014; 

Feng et al., 2009; Jenkins et al., 2009, 2015; Wojciak et al., 2009). Whilst for 

the best studied interaction with p53 there have been attempts to address 

functional relevance through the design of mutations that disrupt interactions in 

vitro (Jenkins et al., 2009, 2015), for other interactions this has remained 

unexplored. Moreover, little work has been carried out to test the importance of 

these interactions in vivo. Furthermore, the validity of these structures is unclear 

given that in a crystal structure of free TAZ2, a normally unstructured region at 

the C-terminus of the domain has been found to fold into a helical structure and 

interact with a neighbouring TAZ2 molecule (Dyson and Wright, 2016; Miller et 

al., 2009). This suggests that under the conditions of crystallisation, TAZ2 could 

readily form non-physiological interactions with unstructured protein sequences, 

meaning that the use of high concentrations of interacting peptide or chimeric 

TAZ2 fusion proteins may result in structures that are difficult to interpret. 

 

Importantly, in HAT assays using purified CBP proteins, none of the proposed 

interaction partners should be present to influence TAZ2 function. Moreover, if 

trace amounts of transcription factor were present in reactions through 
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interaction of CBP with endogenous Sf9 proteins, there are no binding sites for 

known CBP interaction partners within the DNA template used in these assays. 

This suggests that TAZ2 might influence histone acetylation specificity through 

a novel mechanism unrelated to interaction with other proteins. 

 

In HAT assays, TAZ2 influences CBP function in the presence only of 

chromatin, acetyl-CoA and the enzyme itself. One mechanism through which 

TAZ2 could function is through autoregulation of the enzyme. CBP/p300 is 

regulated through an unstructured loop region within the HAT domain that 

occludes the substrate binding pocket of the enzyme. Autoacetylation of this 

loop leads to its eviction from the catalytic site and to relief of CBP/p300 

inhibition (Liu et al., 2008; Ortega et al., 2018; Thompson et al., 2004). One 

possible mechanism, therefore, through which TAZ2 could regulate CBP/p300 

function is through influencing acetylation of the autoinhibitory loop. However, 

the TAZ2 domain does not affect CBP activity towards non-nucleosome 

substrates, such as histone octamers, in vitro. Moreover, previous studies have 

shown that deletion of TAZ2 does not affect CBP/p300 autoacetylation (Kraus 

et al., 1999; Ortega et al., 2018) and that TAZ2 does not form direct interactions 

with the CBP/p300 core (Aguilar-Gurrieri, 2013). Together, these observations 

suggest that TAZ2 does not function to influence CBP/p300 activity by 

modulating autoregulation. 

 

An intriguing alternative possibility, therefore, is that TAZ2 might affect 

CBP/p300 substrate specificity by interacting with chromatin. To test this 

possibility, a combination of sequence and structural analyses together with in 

vitro interaction and enzymatic assays were used to determine how 

mechanistically the TAZ2 domain contributes to CBP/p300 function.  
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5.1 TAZ2 is a highly conserved and positively charged domain 
 

To address how TAZ2 functions mechanistically, the sequence of the domain 

was first examined by alignment with CBP/p300 proteins from humans to the 

early multicellular animal Trichoplax adhaerens and the unicellular protist 

Capsaspora owczarzaki (Fig. 5.1A). This analysis shows that the TAZ2 domain 

is highly conserved even among distantly related species, and that this 

conservation extends not only to key structural residues, such as the zinc-

coordinating residues in this zinc finger domain, but also to other non-structural 

amino acids, including multiple lysine and arginine residues. Crystal structures 

of the domain show that TAZ2 is organised into four alpha helices, with three 

zinc-binding clusters in the loops and helix ends (Fig. 5.1B). Calculation of the 

surface charge across the domain shows that the TAZ2 surface is strongly 

positively charged (Fig. 5.1C), consistent with the conservation of basic amino 

acids, yielding an isoelectric point (pI) of 10.1. By comparison, the pI of human 

histone proteins ranges from 10.3 for H2B to 11.9 for H3. Together, these 

observations suggest the intriguing possibility that, in the context of HAT 

assays, TAZ2 could mediate interactions with negatively charged molecules, 

such as the DNA onto which nucleosomes are assembled. 

 

 

5.2 TAZ2 is a sequence-independent DNA-binding domain 
 

To test whether the TAZ2 domain interacts with DNA, TAZ2 was first expressed 

and purified from bacteria, with the ZZ domain purified as a negative control 

domain (Fig. 5.2A). DNA pulldown experiments were then carried out by 

incubating ZZ or TAZ2 with either streptavidin beads alone or with streptavidin 

beads coated in biotinylated 147 bp DNA. These assays showed that whilst ZZ 

binds in neither condition, TAZ2 binds only in the presence of DNA (Fig. 5.2B). 

This TAZ2 DNA-binding activity was confirmed by electrophoretic mobility shift 

assay (EMSA) experiments, which show that whilst increasing concentrations of 

TAZ2 are able to generate a band shift, ZZ is unable to bind DNA even at 

relatively high concentrations (Fig. 5.2C).  



 166 

 
 
 
Figure 5.1: The CBP TAZ2 domain is highly conserved with a positive surface 
charge. 
(A) Alignment of CBP and p300 protein sequences in humans (Hs), mouse (Mm), 
Xenopus laevis (Xl), Danio rerio (Dr), Drosophila melanogaster (Dm), Caenorhabditis 
elegans (Ce), Trichoplax adhaerens (Ta) and Capsaspora owczarzarki (Co); greyscale 
shading shows the level of conservation, asterisks (*) indicate identical residues, 
colons (:) indicate similar residues, and arrows beneath the sequences indicate zinc-
coordinating residues. 
(B) Cartoon depicting the crystal structure of human p300 TAZ2 domain (PDB ID: 
3IO2) showing protein in blue and coordinated zinc ions as grey spheres. 
(C) Surface depiction of the structure in (B) with colour-coded surface charge.   
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To understand whether TAZ2 exhibits sequence specificity or preferences in its 

DNA binding, further EMSA experiments were carried out using four 29-bp DNA 

probes of either 40% or 60% GC content with otherwise randomly generated 

DNA sequences (Fig. 5.2D). These show that TAZ2 binds to these sequences 

with similar affinity, suggesting that TAZ2 binds to DNA independent of its 

sequence. 

 

To determine whether this DNA binding of TAZ2 also facilitates the interaction 

of enzymatically active constructs with DNA, and could therefore explain how 

TAZ2 affects CBP histone acetylation activity, EMSA experiments were carried 

out using CBP core-ZZ (CZ) and CBP core-ZZ-TAZ2 (CZT) proteins together 

with 147 bp DNA (Fig. 5.2E). Whilst CZ was unable to bind DNA, inclusion of 

the TAZ2 domain in the construct was sufficient to achieve DNA binding. 

Together, these results show that TAZ2 binds DNA in a sequence-independent 

manner and can mediate interactions between an active CBP protein and free 

DNA. 

 

 

5.3 TAZ2 drives CBP interactions with nucleosomes 
 

The observation that TAZ2 binds to free DNA raised the possibility that TAZ2 

might function to mediate interactions between CBP and nucleosomes. To test 

whether TAZ2 can interact with nucleosomal DNA or whether it would require 

free linker DNA to interact with nucleosomes, EMSA experiments were carried 

out with TAZ2 and ZZ domains and nucleosome core particles (NCPs) 

assembled with either the minimal 147 bp 601 nucleosome positioning DNA 

sequence or a longer 209 bp sequence with 31 bp linker DNA overhangs (Fig. 

5.3A, B). These experiments showed that whilst the ZZ domain is unable to 

bind to NCPs at the concentrations tested, despite the previously identified 

interaction with histone H3 (Zhang et al., 2018), TAZ2 is able to bind to both 

147 bp and 209 bp NCPs with similar affinity, suggesting that TAZ2 can bind to 

nucleosomal DNA as well as free DNA. 
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Fig. 5.2: CBP TAZ2 is a sequence-independent DNA-binding domain. 
(A) CBP ZZ and TAZ2 domains were expressed in bacteria, purified via a 6xHis tag 
and analysed by SDS-PAGE followed by Coomassie staining. 
(B) Pulldown assay with ZZ or TAZ2 domain and either streptavidin beads alone or 
streptavidin beads bound by biotinylated 147 bp DNA. 
(C) Binding reactions using increasing concentrations of TAZ2 or ZZ domain with 147 
bp DNA analysed by EMSA. 
(D) Binding reactions using increasing concentrations of TAZ2 domain with 29 bp 
duplex DNAs of differing GC content and sequence analysed by EMSA. 
(E) Binding reactions with increasing concentrations of CBP core-ZZ (CZ) and core-ZZ-
TAZ2 (CZT) with 147 bp DNA analysed by EMSA. 
 
 
To determine whether this DNA binding activity can mediate interactions 

between an enzymatically competent construct and nucleosomes, EMSAs were 

carried out using CZ and CZT proteins together with 147 bp and 209 bp NCPs 

(Fig. 5.3C, D). These experiments show that whilst CZ can generate some 

binding to NCPs resulting in a small band shift, CZT generates far more efficient 

binding, as measured by depletion of the free NCP band, for both 147 bp and 

209 bp NCPs. Quantification of these EMSAs shows that CZT binds to 147 bp 

NCPs with a dissociation constant (Kd) of 1.0 µM and to 209 bp NCPs with a Kd 

of 540 nM, indicating that whilst TAZ2 can bind to nucleosomal DNA, the 

presence of linker DNA aids the association of CZT with nucleosomes. 
  



 169 

Finally, to test whether TAZ2 is important for mediating interactions with the 

more physiological substrate of chromatin, EMSAs were carried out with CBP 

core, CZ and CZT proteins with 12-mer nucleosome arrays as substrates (Fig. 

5.3E). This shows that whilst only weak binding could be observed between 

CBP core or CZ and nucleosome arrays, CZT binds with a Kd of 309 nM, 

indicating that CZT binds to nucleosome arrays with approximately three-fold 

higher affinity than to 147 bp NCPs. 

 

These results show that the TAZ2 domain of CBP can bind to nucleosomal 

DNA, and that the presence of this domain is necessary and sufficient for stable 

binding of CBP constructs to nucleosomes. This suggests that mediating 

interactions with nucleosomes may be a key function of the TAZ2 domain, and 

that this may explain how TAZ2 determines CBP substrate specificity. 

 

 

5.4 TAZ2 DNA binding determines CBP activity towards 
nucleosomes 
 

To test whether the DNA binding activity of TAZ2 determines how CBP interacts 

with its substrate in enzymatic assays, HAT assays were performed using CBP 

core, CZ, core-ΔZZ-TAZ2 (CΔZT) and CZT. These were carried out using 

nucleosome array substrates assembled with two different ratios of 

DNA:histone octamer to generate chromatin with different numbers of 

nucleosomes per DNA molecule (Fig. 5.4A). Using these substrates shows that 

CBP core and CZ are similarly active towards the two different substrates, 

whilst CΔZT and CZT show higher activity towards substrates with higher 

numbers of nucleosomes per DNA at all tested acetylation sites. This suggests 

that in the presence of the TAZ2 domain, TAZ2-mediated DNA binding drives 

chromatin association leading to greater levels of acetylation when more 

nucleosomes are found on the same DNA molecule. By contrast, in the 

absence of TAZ2, the location of nucleosomes on DNA is no longer important 

and equal levels of acetylation are seen regardless of the number of 

nucleosomes found on each DNA. Moreover, the effect seen with the TAZ2 

domain requires only this domain as the effect can be observed in reactions 

with CΔZT constructs that lack the ZZ domain.  
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Fig. 5.3: CBP TAZ2 domain mediates interaction with nucleosomes. 
(A), (B) Binding reactions using increasing concentrations of TAZ2 or ZZ domain with 
147 bp (A) or 209 bp (B) nucleosome core particle (NCP), analysed by EMSA. 
(C), (D) Left: binding reactions using increasing concentrations of CZ and CZT with 147 
bp (A) or 209 bp (B) NCPs analysed by EMSA. Right: quantitative analysis of EMSAs 
from three independent experiments, measured by depletion of free NCP band. Error 
bars represent SEM. 
(E) Left: binding reactions using increasing concentrations of C, CZ or CZT with 12x 
nucleosome array analysed by EMSA. Right: quantitative analysis of EMSA from three 
independent experiments, measured by depletion of free nucleosome array band. Error 
bars represent SEM. 
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To understand further how TAZ2-mediated nucleosome interactions influence 

CBP enzymatic activity, HAT assays were carried out using CBP core, CZ and 

CZT enzymes with either 147 bp NCP or nucleosome array as substrates (Fig. 

5.4B, C). The results show that whilst CBP core has little enzymatic activity 

toward either substrate, CZ is highly active towards all tested residues in NCP 

substrates. The increase in activity between CBP core and CZ towards these 

residues in NCPs shows that the ZZ domain is sufficient to increase acetylation 

towards multiple histone tail lysines in NCPs, not only towards H3K27 as 

reported previously (Zhang et al., 2018). The reason for this discrepancy is 

most likely that whilst the present study uses a two-fold molar excess of 

nucleosome compared to enzyme, previous work has used a three-fold molar 

excess of enzyme (Zhang et al., 2018). This could mean that in this previous 

report, acetylation of residues such as H3K9 was saturated and appeared to 

remain unchanged by the presence of the ZZ domain, whilst less readily 

modified residues such as H3K27 continued to show increased acetylation. 

 

The addition of the TAZ2 domain, however, led to decreased levels of 

acetylation in NCP substrates compared to CZ, in spite of the observation that 

CZT has higher affinity for NCPs than proteins lacking TAZ2 (Fig. 5.3C, D). One 

explanation for this is that the increased affinity of CZT for NCPs leads to a 

stable association between CZT and nucleosomes that effectively sequesters 

the enzyme. This would therefore prevent CZT from detaching from one NCP 

substrate and re-binding to a second, resulting in an overall reduction in 

acetylation. This implies that whilst the previously reported binding of the ZZ 

domain to the N-terminal tail of histone H3 (Zhang et al., 2018) is sufficient to 

bring about a transient interaction between CZ and nucleosomes which 

increases acetylation compared to CBP core alone, this interaction does not 

lead to stable binding of CZ to NCPs, and therefore facilitates greater levels of 

acetylation of this non-physiological substrate. 

 

Importantly, incorporation of nucleosomes into chromatin arrays led to a 

decrease in CZ activity. The extent of this decrease, however, differs between 

different histone lysine residues, so that whilst there is an approximately ten-

fold loss in H3K27ac and H2BK5ac, there is only a two-fold loss of H3K9ac and  
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Fig 5.4: CBP TAZ2-mediated DNA binding defines histone acetylation in 
chromatin. 
(A) Western blot analysis of HAT assays using C, CZ, CΔZT or CZT enzymes with 
nucleosome array substrates of differing nucleosome occupancy, analysed using 
antibodies against FLAG, H3K27ac, H2BK5ac, H3K9ac, H4K5ac, or total H2A. 
(B) Western blot analysis of HAT assays using C, CZ or CZT enzymes with 147 bp 
NCP or nucleosome array substrates, analysed using antibodies against FLAG, 
H3K27ac, H2BK5ac, H3K9ac, H4K5ac or total H2A. 
(C) Quantification of HAT assay shown in (B). Signal for each antibody is normalized to 
CZT reaction with nucleosome array and represents the mean of three independent 
experiments, with error bars indicating SEM.  
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little change in H4K5ac. This suggests that whilst the transient interaction with 

nucleosome substrates mediated by ZZ is sufficient to achieve acetylation of 

H3K9 and H4K5, it is insufficient to generate high levels of H3K27ac and 

H2BK5ac in more physiological chromatin substrates. This suggests that H3K9 

and H4K5 residues might be more accessible in chromatin than H3K27 and 

H2BK5, and that acetylation of these latter residues might be hindered because 

of the additional DNA present in nucleosome arrays compared to NCPs. 

 

With CZT enzyme, by contrast, assembly of nucleosomes into arrays led to an 

increase in activity compared to NCPs, with a five- to ten-fold increase in 

acetylation of all tested residues. Importantly, however, whilst there is an 

approximately ten-fold increase in H3K27ac and H2BK5ac in nucleosome 

arrays between CZ and CZT, the addition of the TAZ2 domain results in only a 

two-fold increase in H3K9ac and little change in H4K5ac. This shows that the 

activity of the TAZ2 domain, which binds DNA, can overcome the suppressive 

effect that incorporation into nucleosome arrays has on acetylation of H3K27 

and H2BK5, but is largely dispensable for the acetylation of H3K9 and H4K5. 

 

One mechanism by which TAZ2 might achieve this modulation of activity is 

through increasing the residency time of the enzyme on nucleosomes, allowing 

it to direct its activity towards less accessible residues over time. However, if 

increasing residency time on chromatin were the only function of TAZ2, it would 

be expected that acetylation of all residues would be increased to a similar 

extent, whereas H3K27ac and H2BK5ac show specifically greater increases in 

acetylation. This suggests that an additional mechanism may exist, such as that 

TAZ2 DNA binding promotes interaction with the nucleosome in a conformation 

that enables efficient acetylation of these physiologically important residues. 

 

 

5.5 CBP interacts with the nucleosome via the enzymatic core 
and the TAZ2 domain 
 

To address how TAZ2 interacts with the nucleosome and whether this could 

explain how mechanistically TAZ2 directs H3K27ac, a crosslinking mass   
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spectrometry approach using CZT protein and 147 bp NCPs was adopted to 

map to the level of individual amino acids how domains within CBP interact with 

one another and how CBP interacts with the nucleosome. This technique 

(reviewed in Rappsilber, 2011) takes advantage of the zero-length chemical 

crosslinker EDC ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) to covalently 

link the carboxyl groups of aspartate or glutamate side chains with either 

primary amines found in lysine side chains and N-terminal residues or the 

hydroxyl groups of serine, threonine and tyrosine residues, before analysing the 

resulting products by mass spectrometry to identify amino acids that are found 

in close spatial proximity. 

 

First, confirming previous work suggesting that TAZ2 does not form interactions 

within CBP that might influence its activity (Aguilar-Gurrieri, 2013), no crosslinks 

were detected between TAZ2 and other regions of CBP. By contrast, extensive 

crosslinks were observed between other domains of the protein, fitting well with 

the compact structure previously observed for the CBP/p300 enzymatic core 

(Delvecchio et al., 2013; Park et al., 2017). 

 

Second, multiple contacts were detected between CBP and the histone proteins 

of the nucleosome (Fig. 5.5A, B). Three crosslinks were detected between the 

CBP bromodomain and the nucleosome. The first connects K1177 of CBP, 

within the fourth alpha helix of the bromodomain and located near the acetyl-

lysine binding site, with E52 of histone H4, a residue on the outer surface of the 

nucleosome near to the site where the H3 N-terminal tail exits the nucleosome 

core. Two further residues from the same alpha helix within the bromodomain, 

E1184 and E1189, located distal to the acetyl-lysine binding pocket and closer 

to the exit to the substrate-binding site of the HAT domain, were crosslinked in 

proximity to the key substrate site of H3K27. Moreover, two residues located 

near the opening to the substrate-binding pocket within the HAT domain, E1354 

and E1357, form contacts with residues near H3K27, namely H3T22 and 

H3S28, and E1357 forms an additional contact with H2BP1. These interactions 

between the CBP core and both the surface of histone H4 and the N-terminal 

tails of histone H3 and H2B suggest that the enzyme is positioned for 

acetylation of H3K27 and the H2B tail, and that, consistent with previous work, 

contacts formed by the bromodomain are key to interaction with the 
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nucleosome and therefore to enzymatic activity (Manning et al., 2001; Zhang et 

al., 2018). 

 

In addition to these interactions between histone proteins and the CBP core, 

one further contact was detected between the TAZ2 domain and the 

nucleosome. One explanation as to why so few crosslinks were observed 

between TAZ2 and histone proteins despite the key role played by the domain 

in nucleosome interactions is that many TAZ2 residues, particularly positively 

charged and crosslink-forming lysine residues, are likely to be in contact with 

DNA. Multiple amino acids that are involved in interacting with DNA are 

therefore likely to be shielded from coming into sufficiently close proximity with 

histone proteins for the formation of crosslinks, despite such residues playing 

an important role in the interaction with nucleosomes. Nevertheless, residue 

K1807 of TAZ2, located at the C-terminal end of the second alpha helix, 

crosslinks to H3E59, a residue found in the globular domain of histone H3 on 

the lateral surface of the histone octamer, close to nucleosomal DNA and to the 

site at which the H3 N-terminal tail exits the nucleosome between the gyres of 

DNA. This suggests a mechanism by which TAZ2 might bind to the DNA 

proximal to this region, orienting the CBP core and bringing it into stable contact 

with the tail of histone H3 to allow efficient acetylation of H3K27. 

 

 

5.6 Summary and discussion 
 

The TAZ2 domain of CBP is required for efficient acetylation of the 

physiologically important residue H3K27 in chromatin substrates whilst reducing 

promiscuity towards other substrate residues. Work in this chapter attempted to 

address the mechanism by which TAZ2 directs the activity of CBP. Sequence 

and structural analysis revealed that the surface of TAZ2 has overall positive 

charge, and DNA-binding experiments show that TAZ2 interacts with DNA in a 

sequence-independent manner. This DNA binding activity mediates interactions 

with nucleosomes and determines how CBP acetylates nucleosomal histone 

proteins.  
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Fig. 5.5: CBP interacts with the nucleosome via the enzymatic core and the TAZ2 
domain. 
(A) Crosslinking mass spectrometry analysis of CZT in complex with 147 bp NCP. 
Green lines within the circle represent inter-protein crosslinks and purple lines outside 
the circle represent intra-protein crosslinks. 
(B) Top: Cartoon representation of structures of CZT domains shaded as follows: 
bromodomain, dark blue; PHD finger, brown; RING finger, orange; HAT domain, green; 
ZZ domain, red; TAZ2 domain, light blue. (PDB IDs of structures: p300 core, 4BHW; 
CBP CZ, 5U7G; TAZ2, 3IO2.) 
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Previous work has suggested that CBP/p300 might contain a DNA binding 

activity (Rikitake and Moran, 1992; Song et al., 2002; Suhara et al., 2002), 

although the evidence was somewhat contradictory (Manning et al., 2001). 

Moreover, it was unclear whether any observed DNA binding was dependent on 

the presence of other, sequence-specific DNA-binding proteins (Rikitake and 

Moran, 1992; Suhara et al., 2002). In addition, problematic biochemical analysis 

meant that the observed DNA binding could be dependent on denaturation of 

the protein (Song et al., 2002), either through generation of mutations that 

would be expected to perturb the structural integrity of domains, or though 

purification of zinc-rich proteins in the presence of metal ion-chelating agents 

such as EDTA and EGTA, which has previously been shown to lead to non-

physiological interactions of CBP/p300 (Matt et al., 2004; Ortega et al., 2018). 

The present work attempted to avoid these difficulties to show unambiguously 

that TAZ2 binds directly to DNA in a sequence-independent manner, 

suggesting that this activity is important for the previously observed role for 

TAZ2 in regulating acetylation of nucleosome substrates (Kraus et al., 1999). 

 

These results provide a mechanistic explanation as to why TAZ2 is required for 

acetylation of H3K27 specifically in the context of chromatin, but not in other 

substrates such as histone octamers, suggesting that TAZ2 is required to 

overcome an inherent suppression of acetylation by the additional DNA present 

in nucleosome arrays. This further suggests that this key physiological 

substrate of CBP/p300 is rendered inaccessible to the enzyme in chromatin, but 

not in non-physiological substrates devoid of DNA, such as histone octamers, 

or with limited DNA, such as NCPs. 

 

One reason H3K27 might be less accessible in the context of chromatin is its 

proximity to nucleosomal DNA, which could, for steric or electrostatic reasons, 

prevent the H3K27 residue from efficiently entering the catalytic site of the HAT 

 
(Fig. 5.5 cont.) 
Middle: CBP residues involved in inter-protein crosslinks, separated by domain, with 
arrows to corresponding crosslinked histone residues. 
Bottom: Surface representation of NCP structure coloured by charge, showing side 
view (left) or top view (right). Circles indicate the positions of histone residues involved 
in crosslinks to CBP, with the domain of CBP to which a residue is crosslinked 
indicated by the colour of the shaded box: bromodomain, dark blue; HAT domain, 
green; TAZ2 domain, light blue. (PDB ID: 1KX5.)  



 178 

domain. This possibility is supported by the observation that the N-terminal tail 

of histone H2B, which also emerges from the nucleosome core between the 

gyres of DNA and stays in close proximity to DNA, is similarly dependent on 

TAZ2 for efficient acetylation specifically in the context of nucleosome arrays. 

By contrast, acetylation of H3K9, which is also present on the H3 tail but 

located distal to the DNA compared to H3K27, is less dependent on TAZ2. 

Moreover, acetylation of H4K5, present on the H4 tail that exits the nucleosome 

from the upper surface of the nucleosome and away from DNA, is not 

dependent on TAZ2 for acetylation even in chromatin substrates. The 

crosslinking mass spectrometry results suggest that TAZ2 overcomes this 

suppressive effect on H3K27 and H2B acetylation and mediates substrate 

specificity by facilitating binding of CBP to DNA at the lateral surface of the 

nucleosome and directing acetylation towards proximal histone tail residues. 

 

Such a key role for sequence non-specific DNA binding in chromatin 

interactions is not unique to CBP/p300, but appears to be a common 

mechanism in chromatin-binding proteins (reviewed in Afek and Lukatsky, 

2012). Numerous examples of sequence-independent DNA binding have been 

identified in chromatin modifying proteins and complexes, encompassing both 

active and repressive histone modifying enzymes and nucleosome remodellers, 

including Polycomb repressive complexes 1 and 2 (PRC1 and PRC2), the 

H3K9 methyltransferase SUV39h1, the H2B ubiquitylase complex DOT1L, the 

histone acetyltrasferase MOZ, the H3K4 methyltransferase complex MLL1 and 

the SWI/SNF chromatin remodelling complex BAF (Bentley et al., 2011; Holbert 

et al., 2007; Morrison et al., 2017; Park et al., 2019; Shirai et al., 2017; Wang et 

al., 2017b; Worden et al., 2019). This suggests that sequence-independent 

DNA binding is a major biological mechanism for generating interactions with 

chromatin. 

 

An important role for the TAZ2 domain in determining CBP/p300 chromatin 

binding is consistent with previous findings in vivo that deletion of a region 

encompassing TAZ2 leads to widespread re-localisation of p300 in the nucleus 

and to increased acetylation of non-histone targets (Ortega et al., 2018). It may 

further explain the importance of TAZ2 to CBP/p300 function, given that TAZ2 

was found to be essential in CRISPR-Cas9 domain knockout screens (He et al., 
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2019), and that mutations that affect the structure of the domain cause 

Rubinstein-Taybi syndrome (RSTS) with symptoms comparable in severity to 

patients harbouring mutations that disrupt CBP/p300 catalytic activity (Menke et 

al., 2016, 2018). 

 

Together, these results suggest that TAZ2 is conserved as a core part of the 

catalytic machinery of CBP/p300, and that sequence-independent DNA binding 

to nucleosomes at target sites could play a key role in directing accurate 

H3K27ac placement for the proper regulation of gene expression. 
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6. The CBP TAZ2 domain binds DNA to 
direct specific H3K27ac in vivo and in vitro 

 
 

The TAZ2 domain of CBP directs substrate specificity in chromatin substrates, 

binds to DNA, and is required for CBP interactions with nucleosomes (see 

Chapters 4 and 5). However, it remains possible that the role of TAZ2 in 

determining acetylation specificity in vitro is independent of its DNA binding 

activity, and moreover it is unclear whether these functions are important for 

CBP/p300 function in vivo. 

 

In cells, CBP/p300 is thought to be recruited to target loci through combinatorial 

interactions with the activation domains of multiple transcription factors bound 

simultaneously to gene regulatory elements (Goodman and Smolik, 2000). 

TAZ2-mediated DNA binding would then be expected to direct CBP/p300 

activity towards substrate residues in nearby nucleosomes, resulting in the 

establishment of histone acetylation and gene transcription. However, 

experiments in which the p300 enzymatic core, which lacks the TAZ2 domain, 

is tethered to a locus de novo via a catalytically inactive Cas9 (dCas9) protein 

show that this minimal region of p300 is sufficient to generate H3K27ac and to 

activate transcription (Hilton et al., 2015). This suggests that when CBP/p300 is 

targeted to a gene regulatory element in a manner resembling transcription 

factor-mediated recruitment, the TAZ2 domain is not required for CBP/p300 

function. 

 

Nevertheless, the importance of CBP/p300 in stabilising transcription factors on 

DNA has been shown in vitro (Suhara et al., 2002), whilst deletion of a region of 

p300 that includes the TAZ2 domain leads to relocalisation of the protein within 

the nucleus (Ortega et al., 2018). This suggests that this region of CBP/p300 is 

important for interactions with chromatin even when other domains could 

facilitate binding at target sites through interactions with sequence-specific 

DNA-binding proteins. This implies that the activity of CBP/p300 catalytic core 

alone is not sufficient to mediate the full function of these enzymes in vivo. 

However, whilst previous work has suggested that the bromodomain and ZZ 
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domain of CBP/p300 are important in generating histone acetylation in cells 

(Zhang et al., 2018), it is unclear whether chromatin interactions mediated by 

TAZ2 are also important for histone acetylation in vivo. 

 

To test whether TAZ2-mediated DNA binding is required for histone acetylation 

specificity both in vitro and in vivo, sequence analysis together with structural 

modelling was used to identify mutations that could specifically reduce DNA 

binding activity. These proteins were then expressed in cells and targeted to a 

locus de novo to determine what role TAZ2 DNA binding has in regulating 

histone acetylation and gene expression in vivo. 

 
 
6.1 Conserved basic residues are required for TAZ2 DNA 
binding 
 

To identify residues within the TAZ2 domain that might be involved in DNA 

binding, the TAZ2 protein sequence was aligned to 150 different TAZ2 

sequences with a range of identity from 35% to 95% using the ConSurf 

algorithm (Ashkenazy et al., 2016). The level of conservation of individual 

residues was then mapped onto the structure of the TAZ2 domain to identify 

conserved surfaces that could be involved in interactions with DNA (Fig. 6.1B). 

Inspection of this structure identified three amino acids with positively charged 

side chains that are highly conserved even amongst evolutionarily distant 

species and which would not be expected to be important for the structural 

integrity of the domain (Fig. 6.1A, B). These three residues (R1769, K1832 and 

K1850, numbered according to mouse CBP) were then selected to drive 

modelling of a TAZ2-DNA interaction using the program HADDOCK (High 

Ambiguity-Driven Docking), which uses ab initio thermodynamic modelling 

together with user-defined interaction constraints to generate a structural model 

for the interaction (Van Zundert et al., 2016). This model suggests that these 

amino acids could indeed mediate an interaction with DNA (Fig. 6.1B). 

Moreover, the model fits with previous observations that TAZ2 interacts with 

DNA independent of sequence (see Chapter 5), as these residues form ionic 

interactions with the negatively charged phosphate backbone of DNA without 

interrogating the DNA sequence through interactions with nucleotide bases.  
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Fig. 6.1: CBP TAZ2 contains highly conserved basic residues that could mediate 
DNA-binding. 
(A) Alignment of CBP and p300 protein sequences in humans (Hs), mouse (Mm), 
Xenopus laevis (Xl), Danio rerio (Dr), Drosophila melanogaster (Dm), Caenorhabditis 
elegans (Ce), Trichoplax adhaerens (Ta) and Capsaspora owczarzarki (Co); greyscale 
shading shows the level of conservation, asterisks (*) indicate identical residues, 
colons (:) indicate similar residues and arrows beneath sequence indicate residues that 
were mutated in this study. 
(B) Surface depiction of human p300 TAZ2 structure (PDB ID: 3IO2) coloured 
according to level of conservation of individual amino acids as determined by ConSurf 
and modelled to bind a DNA molecule using HADDOCK. Arrows indicate the positions 
of residues that were mutated in this study.  
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To test whether these three amino acids could be involved in binding DNA, all 

three residues were mutated to glutamate to reverse the charge of their side 

chains, and the resulting mutated TAZ2 domain probed for DNA binding activity. 

The intact TAZ2 domain (TAZ2wt) and TAZ2 carrying the mutations 

R1769E/K1832E/K1850E (TAZ2mut) were then expressed and purified from 

bacteria (Fig. 6.2A). DNA binding activity was first tested using a DNA pulldown 

experiment (Fig. 6.2B). This shows that whilst TAZ2wt binds to streptavidin 

beads coated with biotinylated 147 bp DNA, binding of TAZ2mut is almost 

undetectable. Furthermore, EMSA experiments using a 147 bp DNA probe 

showed that binding of TAZ2mut to DNA, although not completely abolished, is 

severely reduced compared to TAZ2wt (Fig. 6.2C), and that binding of TAZ2mut 

to 147 bp nucleosome core particles (NCPs) is greatly diminished (Fig. 6.2D). 

 

Together these results suggest that TAZ2 contains a DNA-binding surface that 

includes at least three positively charged amino acids that bind DNA 

independent of sequence, and that mutation of these residues to reverse their 

charge compromises the capacity of TAZ2 to bind to DNA. 

 

 

6.2 TAZ2 DNA binding mediates histone acetylation specificity 
in vitro 
 

To test whether the observed requirement for the TAZ2 domain for acetylation 

specificity towards H3K27 is dependent on the DNA binding activity of the 

domain, the R1769E/K1832E/K1850E mutations that reduce DNA binding were 

introduced into the CBP core-ZZ-TAZ2 (CZT) construct to generate an enzyme 

with compromised DNA binding (CZTmut). CZTmut was expressed and purified 

from Sf9 cells (Fig. 6.3A) and its activity was tested towards nucleosome arrays 

in 3H-labelled histone acetyltransferase (HAT) assays alongside CBP core, 

core-ZZ (CZ) and intact CZT enzyme (CZTwt) (Fig. 6.3B). Consistent with 

previous results (see Chapter 4), inclusion of an intact TAZ2 domain resulted in 

greater overall activity towards nucleosomes and a specifically greater activity 

towards histone H3 than was observed with CBP core or CZ. However, 

mutation of TAZ2 led to a decrease in overall activity, with the greatest loss of 

activity   
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Fig. 6.2: TAZ2 mutations greatly reduce DNA-binding. 
(A) CBP TAZ2wt and TAZ2mut domains were expressed in bacteria, purified via a 6xHis 
tag and analysed by SDS-PAGE followed by Coomassie staining. 
(B) Pull down assay with TAZ2wt or TAZ2mut domain and either streptavidin beads or 
streptavidin beads bound by biotinylated DNA. 
(C) Binding reactions using increasing concentrations of TAZ2wt or TAZ2mut domain 
with 147 bp DNA analysed by EMSA. 
(D) Binding reactions using increasing concentrations of TAZ2wt or TAZ2mut domain 
with 147 bp NCP analysed by EMSA. 
 
 

seen towards histone H3. This suggests that TAZ2-mediated DNA binding is 

indeed required for CBP substrate specificity. 

 

To further examine this effect of TAZ2 DNA binding on substrate specificity, 

unlabelled HAT assays were carried out using CZ, CZTwt and CZTmut enzymes 

in time course experiments, which were then analysed by western blot for 

specific histone modifications (Fig. 6.3C, D). These experiments confirmed that 

CZTwt has specifically greater activity towards H3K27 and H2BK5 than CZ but a 

lower rate of acetylation towards H3K9 and H4K5. CZTmut showed a lower rate 

of acetylation than CZTwt towards all tested residues, but the greatest loss of 

acetylation is towards H3K27 and H2BK5, the residues that are most 

dependent on the presence of the TAZ2 domain. 
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Fig. 6.3: TAZ2 DNA binding directs H2K27ac in chromatin. 
(A) CZ, CZTwt and CZTmut proteins were expressed in Sf9 cells, purified via the FLAG 
tag and analysed by SDS-PAGE followed by Coomassie staining. 
(B) HAT assays showing reactions with CZ, CZTwt and CZTmut enzymes with 
nucleosome array. Long and short autoradiograph exposures, and Coomassie staining 
to show enzymes and histone proteins are shown. 
(C) Western blot analysis of unlabelled HAT assay timecourse experiments using no 
enzyme (-), CZ, CZTwt or CZTmut with nucleosome array, for reaction times of 5, 10, 20 
or 60 mins, analysed using antibodies against FLAG, H3K27ac, H2BK5ac, H3K9ac, 
H4K5ac or total H2A. 
(D) Quantification of HAT assay shown in (D). Signal for each antibody is normalized to 
CZT reaction at 60 mins and represents the mean of three independent experiments, 
with error bars indicating SEM.  
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These results suggest that the DNA binding activity of the TAZ2 domain of CBP 

contributes to overall levels of histone acetylation, but that DNA binding is 

specifically required to generate high levels of acetylation towards H3K27 and 

the N-terminal tail of H2B, the most important in vivo targets of CBP/p300. 

 

 

6.3 TAZ2 drives CBP association with chromatin in vivo 
 

To test whether TAZ2 DNA binding is important to CBP function in vivo as well 

as in vitro, CBP core, CZ, CZTwt and CZTmut proteins were expressed 

transiently in mouse embryonic stem (ES) cells, with the four proteins 

expressed to similar levels in whole cell extracts (Fig. 6.4A). To examine 

whether TAZ2 mediates interactions with chromatin, nuclei from transfected 

cells were isolated and nuclear proteins extracted with increasing salt 

concentrations (Fig. 6.4B). In this experiment, proteins that are weakly bound to 

chromatin are likely to be extracted at lower salt concentrations, whereas 

proteins that are strongly bound to chromatin will be solubilised only at higher 

salt concentrations. The results show that CBP core is primarily extracted in the 

150 mM and 300 mM salt fractions, and CZ peaks in the 300 mM salt fraction, 

suggesting that the previously reported interaction of the ZZ domain with 

histone H3 contributes to CBP chromatin binding (Zhang et al., 2018). CZTwt 

protein, by contrast, elutes primarily in the 300 mM and 450 mM salt fractions, 

suggesting that addition of the TAZ2 domain leads to stronger interactions of 

CBP with chromatin in vivo, consistent with the results observed in vitro. 

Surprisingly, mutation of the DNA binding domain in CZTmut does not affect the 

nuclear fractionation profile of the protein. This is most likely because CZTmut 

retains some DNA binding activity and any subtle changes in occupancy cannot 

be detected in this assay examining global chromatin binding. 

 

To test whether expression of these CBP truncations and mutants leads to 

changes in histone acetylation, acid extracted histones from transfected cells 

were probed for histone acetylation marks by western blot (Fig. 6.4C). The 

results suggest that there are no overall changes in the levels of H3K27ac, 

H2BK5ac, H3K9ac or H4K5ac between transfected and untransfected cells, or 

between the different CBP constructs. Although no global changes in histone  
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Fig. 6.4: TAZ2 drives CBP binding to chromatin in vivo. 
(A) ES cells were transiently transfected for 48 h with CBP core (C), CZ, CZTwt or 
CZTmut, and whole cell extract from transfected and untransfected cells was analysed 
by western blot for HA tag and tubulin as loading control. 
(B) Nuclei were isolated from cells transiently expressing CBP core, CZ CZTwt or 
CZTmut, washed sequentially with nuclear extract buffer containing the indicated salt 
concentrations, and nuclear extracts were analysed by western blot for HA tag. 
(C) Histone acid extracts were prepared from untransfected and transiently transfected 
cells and analysed by western blot for H3K27ac, H2BK5ac, H3K9ac, H4K5ac and 
histone H4, and by Coomassie staining. 
(D) ChIP for H3K27ac was carried out in untransfected and transiently transfected cells 
and analysed by qPCR. Signal represents the mean of three independent transfections 
and error bars indicate SEM. 
 
 
 

acetylation were observed, to determine whether there were changes in 

H3K27ac at the level of individual loci, chromatin immunoprecipitation (ChIP) 

was carried out followed by quantitative PCR (qPCR) at known CBP/p300-

bound gene regulatory elements (Fig. 6.4D). This shows that, consistent with 

the observations for global histone acetylation levels, there are no changes in 

H3K27ac at the level of individual genes. 

 

These findings that expression of CBP proteins do not lead to changes in 

histone acetylation are in contrast to recent work suggesting that expression of 

a similar p300 CZT construct leads to widespread changes in histone 

acetylation in the human lung cancer cell line H1299, both at a global level and 
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at the level of individual genes (Zhang et al., 2018). One explanation for this 

difference is that the previous study made use of lentiviral transduction followed 

by antibiotic selection for 4-10 days to generate stably overexpressing cell lines. 

This means that the efficiency of transfection and the level of proteins 

expressed is likely higher than in the present study, which could account for the 

observed differences in acetylation.  

 

However, examination of data from ChIP followed by massively parallel 

sequencing (ChIP-seq) carried out in (Zhang et al., 2018) shows that only 679 

peaks of p300 CZT protein were identified genome-wide, whereas more than 

25,000 peaks of H3K27ac have previously been mapped in H1299 cells (Mi et 

al., 2017), suggesting that p300 CZT binding is not taking place at the vast 

majority of endogenous CBP/p300 binding sites. Moreover, closer inspection of 

the ChIP-seq data shows that sites that were identified as p300 CZT binding 

sites, and validated by ChIP-qPCR, closely mirror peaks in input signal and 

fluctuations in background signal that are also observed in the vector only 

control ChIP (see Appendic, Fig. S2). In addition, background signal in the p300 

CZT ChIP data is greatly increased overall compared to the vector only control, 

so that p300 CZT peaks could in part be explained by differences in 

background levels and fluctuations in input across the genome. Moreover, the 

increases in H3K27ac that are also detected by ChIP-qPCR at these sites are 

not reflected in the ChIP-seq data, in which H3K27ac remains at background 

levels. It is unclear whether the p300 CZT binding seen across the genome is 

increased background due to variation between samples, or whether it reflects 

true binding of p300 CZT throughout the genome. However, the latter would 

suggest that the protein is overexpressed to a non-physiological level, as such 

coating of the genome is not observed for endogenous p300 protein (Yue et al., 

2014), and therefore that the observed changes may not represent true 

CBP/p300 function in vivo. 

 

The results of the present study, therefore, suggest that TAZ2 is sufficient to 

mediate higher affinity binding of CBP to chromatin in vivo, but does not induce 

the stable, targeted binding of CBP required to generate changes in histone 

acetylation. This is apparently in conflict with previous work (Zhang et al., 

2018), although detailed examination of this report shows that the observed 
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changes in histone acetylation are likely to represent either differences in 

background levels between samples or effects that result from expression of 

non-physiological levels of protein. Indeed, given that the CZT construct used 

here lacks major protein-protein interaction domains such as TAZ1, KIX and 

NRID that are important for interaction with transcription factors (see Chapter 4 

and Fig. 4.4), it is unsurprising that CZT is not bound sufficiently stably at target 

sites for changes in histone acetylation to be observed. This supports a model 

in which the major targeting mechanism for CBP/p300 in vivo is through 

interaction with transcription factors, and that TAZ2 plays a role in stabilising the 

protein on chromatin and directing histone acetylation following recruitment. 

 
 
6.4 TAZ2 stabilises CBP bound to chromatin and directs 
substrate specificity to regulate gene expression 
 

To test this model of transcription factor-directed CBP/p300 function, a system 

was established in which CBP enzymes could be recruited de novo to a target 

gene as a dCas9 fusion protein, mimicking the recruitment of CBP at regulatory 

elements by transcription factors (Fig. 6.5A). In this system, dCas9 was fused to 

CBP core, CZ, CZTwt, CZTmut or to a CZT construct carrying a mutation 

(D1436Y) that renders the enzyme catalytically inactive (CZTci) as a negative 

control, or to the VP160 transcriptional activator as a positive control (Cheng et 

al., 2013). These constructs were transfected transiently into ES cells together 

with four plasmids expressing different single guide RNAs (sgRNAs) to target 

the dCas9 fusion proteins to the promoter of the Ascl1 gene, and the effect of 

tethering different fusion proteins on histone acetylation and gene expression 

was measured by ChIP and reverse transcriptase-qPCR (RT-qPCR). 

 

Following expression for 48 h, the six dCas9 fusion proteins were expressed at 

similar levels, as shown by western blot of whole cell extracts (Fig. 6.5B). To 

test whether the proteins were bound at similar levels to the Ascl1 target locus, 

ChIP was carried out using an antibody against an HA tag present at the N-

terminus of the dCas9 fusion proteins, and binding was measured by qPCR 

using primers located near the site of dCas9 targeting (-260 bp compared to the 

transcription start site of Ascl1) or at two regions 300-400 bp either side of the   
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Fig. 6.5: TAZ2 DNA binding stabilises CBP on chromatin and promotes specific 
H3K27ac in vivo to regulate gene expression. 
(A) Schematic showing targeting of CBP fusion proteins to the promoter of the Ascl1 
gene by dCas9, with potential outcomes such as histone acetylation (green star) and 
gene transcription. Positions of bars represent the locations of amplicons used for 
ChIP-qPCR relative to the transcription start site of Ascl1. 
(B) ES cells were transfected for 48 h with constructs expressing four gRNAs targeting 
Ascl1 and dCas9 fused to CBP core (C), CZ CZTwt, CZTmut (CZT with DNA-binding 
mutations), CZTci (CZT with catalytically inactivating mutations) or VP160. Whole cell  
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target site (-630 bp and +100 bp) (Fig. 6.5A, C). Whilst background HA signal in 

untransfected cells and at the endogenous Nanog enhancer control region was 

very low, there was a clear increase in binding of all fusion proteins at the -630 

bp and -260 bp regions, with little signal detected at +100 bp. The positive 

control VP160 fusion is the most highly bound protein, possibly as a result of 

stabilising interactions with the transcriptional machinery (Hall and Struhl, 

2002). Importantly, although binding of all fusion proteins was robustly detected, 

the greatest levels of binding by CBP fusion proteins were achieved by CZTwt 

and CZTci, with lower levels of binding detected either in the absence of the 

entire TAZ2 domain, for CBP core and CZ, or in the absence of TAZ2 DNA 

binding activity for CZTmut. This shows that when a sequence-directed DNA 

binding protein tethers CBP proteins to a target site, TAZ2 plays a role in 

stabilising CBP on chromatin in a manner that depends on the DNA binding 

activity of TAZ2 but is independent of the catalytic activity of the enzyme. 

 

To test whether these differences in fusion protein binding result in differences 

in histone acetylation, ChIP was carried out using antibodies against H3K27ac, 

a physiological product of CBP/p300, and against H3K9ac, a modification that is 

not dependent on CBP/p300 in vivo (Jin et al., 2011; Weinert et al., 2018) (Fig. 

6.5C). These experiments showed that dCas9-tethered CBP core, CZ, CZTwt, 

CZTmut and VP160 were all able to generate clear increases in H3K27ac 

compared to the background levels that are present in untransfected cells, 

leading to H3K27ac at levels only slightly lower than those found at the  

 

 

 

 
(Fig. 6.5 cont.) extracts from untransfected and transiently transfected cells were 
analysed by western blot for HA tag and tubulin as loading control. 
(C) ChIP qPCR analysis was carried out in untransfected and transiently transfected 
cells, using antibodies against HA to measure binding of the dCas9 fusion protein, 
H3K27ac, H3K9ac and histone H3. qPCR was carried out at three regions within the 
Ascl1 promoter and at the active Nanog enhancer as a positive control region. Signal 
represents the mean of three independent transfections and error bars indicate SEM. 
(D) Gene expression analysis was performed by RT-qPCR in untransfected and 
transiently transfected cells, using primers for Ascl1 and for Nanog as a gene that 
should remain unchanged. Gene expression was measured relative to Gapdh and 
normalised to the untransfected cells, and is show on a logarithmic scale. Signal 
represents the mean of three independent transfections and error bars indicate SEM.  
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endogenous Nanog enhancer. Importantly, these changes in 

H3K27acgenerated by CBP enzymes do not simply reflect changes in overall 

nucleosome occupancy, as measured by total histone H3 ChIP, and are 

dependent on the catalytic activity of the tethered proteins, as CZTci is unable to 

generate H3K27ac. These results show that the TAZ2 domain of CBP is not 

required for acetylation of H3K27 in vivo when CBP is stably tethered to a target 

sequence. They further show that the level of H3K27ac generated at the target 

site is not directly related to the level of enzyme bound, as H3K27ac levels are 

similar between the different active CBP fusion proteins despite CZTwt binding 

at higher levels. 

 

However, by contrast with H3K27ac, differences were observed in the levels of 

H3K9ac generated by the different CBP enzymes. Cells expressing CZTwt show 

H3K9ac at the same levels that are observed in cells expressing CZTci. By 

contrast, CBP core, CZ and CZTmut generate higher levels of H3K9ac, 

especially at the -630 bp and -260 bp regions of Ascl1. This suggests that all of 

the tethered CBP enzymes are able to generate H3K27ac when recruited to this 

region, but that the role of TAZ2 is to maintain the specificity of CBP-mediated 

acetylation in vivo by facilitating H3K27ac whilst preventing acetylation of off-

target sites such as H3K9. Moreover, the greater levels of H3K9ac observed 

with CZTmut show that this maintenance of specificity is dependent on the DNA 

binding activity of TAZ2. 

 

To determine whether these changes in histone acetylation in turn affect the 

regulation of transcription, RT-qPCR was carried out to examine gene 

expression changes at the Ascl1 gene and the control Nanog gene (Fig. 6.5D). 

This analysis shows that the greatest change in Ascl1 expression is in cells 

transfected with VP160 fusion protein, which shows a greater than 100-fold 

increase in expression compared to untransfected cells, presumably as a result 

of direct recruitment of components of the transcriptional machinery (Hall and 

Struhl, 2002). All CBP fusion constructs elicit an increase in transcription, with 

the exception of CZTci, showing that these gene expression changes are 

dependent on the acetyltransferase activities of the enzymes. Importantly, 

whilst targeting of CBP core and CZ led to an approximately 15-fold increase in 

transcription compared to untransfected cells, targeting of CZTwt only leads to a 
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three-fold increase in transcription. This suggests that the additional 

promiscuous acetylation of substrates other than H3K27 by CBP core and CZ, 

seen both in vitro and in vivo, leads to greater transcriptional activation than 

acetylation of H3K27 alone by CZTwt. This interpretation is supported by the 

observation that CZTmut, which lacks the DNA binding activity of CZTwt and 

generates higher levels of H3K9ac, clearly and reproducibly generates higher 

levels of transcription than CZTwt, although not to the same level as CBP core 

and CZ. One explanation for the observation that CZTmut does not reach the 

same levels of transcriptional activation as CBP core and CZ could be that a 

degree of DNA binding activity is retained in CZTmut. One possibility is that 

whilst this small amount of DNA binding does not limit the acetylation of H3K9, 

it could decrease the acetylation of other off-target substrates such as H4K5, 

the acetylation of which is reduced in vitro for CZTmut (Fig. 6.3C). 

 

These results suggest that the major role of TAZ2 DNA binding in vivo is to 

allow CBP to acetylate target residues such as H3K27, whilst preventing 

promiscuous acetylation of residues such as H3K9. The function of this could 

be to limit the extent to which the inherently promiscuous CBP/p300 enzymes 

can acetylate histones at target sites in vivo, to prevent undesirable stochastic 

activation of gene expression and to allow CBP/p300-mediated histone 

acetylation to fine tune the expression of target genes. 

 
 
6.5 Summary and discussion 
 

The TAZ2 domain of CBP binds DNA and is required in vitro to acetylate H3K27 

whilst limiting promiscuity towards other potential substrate sites. Work in this 

chapter used mutations that diminish TAZ2 DNA binding to show that the 

influence of TAZ2 on CBP substrate specificity is dependent on its interaction 

with DNA. Moreover, further work showed that TAZ2 stabilises CBP bound to 

chromatin in vivo and directs CBP substrate selection at target sites to limit 

transcriptional activation. 

 

However, the dCas9-based tethering experiments presented here have 

limitations in the extent to which they model endogenous CBP/p300 recruitment 

by transcription factors. First, Cas9 proteins have greatly increased residency 
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time on chromatin compared to typical mammalian DNA binding proteins. For 

example, the glucocorticoid receptor (GR) and oestrogen receptor (ER), the 

latter of which can recruit CBP/p300 to target sites (Zwart et al., 2011), have a 

residency time on the scale of seconds (Presman et al., 2017; Swinstead et al., 

2016). By contrast, Cas9 proteins have been measured to reside on chromatin 

for in excess of 3 h (Ma et al., 2016). Second, in vivo the levels of CBP/p300 

protein are limiting and transcription factors compete for interaction with these 

coactivators (Hottiger et al., 1998). This means that CBP/p300 will interact 

dynamically with multiple DNA binding proteins, potentially cycling on and off 

chromatin rather than remaining stably bound. In the dCas9 system, however, 

CBP is fused directly to the sequence-specific recruitment module and is unable 

to be released from chromatin independently of dCas9 through interaction with 

other proteins. 

 

These considerations suggest that, whilst a dCas9-based tethering system is a 

valuable tool to probe the function of CBP in vivo, it does not reflect true 

CBP/p300 function in cells entirely faithfully. Indeed, this may explain some 

discrepancies between the results of this experiment and the properties of CBP 

observed in vitro. For example, the static tethering of CBP core on chromatin 

may allow this protein to overcome its comparative lack of activity seen in vitro, 

facilitating a similar level of activity to that observed with the CZ construct, 

which would be expected to have greater activity than CBP core alone. This 

may also account for the lack of observable differences in H3K27ac between 

CZTwt, which in vitro has far greater activity towards H3K27, and the constructs 

that lack an intact TAZ2 domain. The non-physiological tethering of CBP to the 

target site by dCas9 may, therefore, be sufficient to diminish the importance of 

interactions between TAZ2 and chromatin in directing H3K27ac. 

 

Nevertheless, the results of this experiment point to an important role of the 

TAZ2 domain in vivo for stabilising CBP binding at target sites, and in both 

targeting CBP activity towards H3K27 and reducing its activity towards non-

target histone lysine residues. These results further suggest that CBP/p300-

mediated acetylation of H3K27 alone is not sufficient to generate high levels of 

transcriptional activity, but that transcription is enhanced by further acetylation 

of residues that are not targets by CBP/p300, such as H3K9. This implies that 



 195 

other HAT enzymes, such as the H3K9 acetyltransferases GCN5 and PCAF 

(Feller et al., 2015; Gates et al., 2017; Jin et al., 2011), may be required for full 

activation of gene expression at endogenous target sites, consistent with the 

overlapping binding pattern of these proteins with CBP/p300 in mammalian 

cells (Krebs et al., 2011). One reason why this cooperation between different 

HATs to generate an active chromatin state might be important is that it could 

allow both for precise control of quantitative transcriptional responses to nuclear 

signalling and for robustness in switches of gene activity. 

 

This model in which multiple HATs independently acetylate different histone 

lysine residues to integrate signalling pathways at gene regulatory elements 

suggests that maintaining the specificity of individual HATs towards their target 

residues would be highly important in preventing undesirable stochastic 

activation of gene expression by a single HAT enzyme. This importance may 

explain why the TAZ2 domain, which both directs H3K27ac and limits 

acetylation of other histone lysine residues, is so highly conserved amongst 

CBP/p300 proteins, and why TAZ2 mutations are associated with disease in 

humans (Menke et al., 2016, 2018). This would mark TAZ2 DNA binding as an 

important novel mode of regulation for CBP/p300 that facilitates precise control 

of gene expression. 
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7. Conclusions and implications for future 
work 

 
 

Regulation of gene expression is a fundamental process for living organisms, 

allowing response to external signals and facilitating the development of highly 

specialised cell types in multicellular organisms. In eukaryotes, gene expression 

is controlled through binding of proteins to gene regulatory elements, primarily 

gene promoters and enhancers. One mechanism through which gene 

regulatory elements function is by generating a chromatin environment that 

modulates transcription from associated genes. However, the mechanisms by 

which the chromatin architecture is established at these elements, and how this 

leads to a functional transcriptional output, remain unclear. Work in this thesis 

attempted to address these questions, first by using proteomics approaches to 

generate an inventory of proteins that bind to regulatory regions, and second by 

adopting a candidate approach and probing how mechanistically the histone 

acetyltransferase CBP/p300 acetylates chromatin to regulate gene expression. 

The results of the proteomics work suggested future avenues to explore novel 

mechanisms by which gene expression is regulated, which were addressed in 

Chapter 3. This discussion will therefore focus exclusively on the results from 

Chapters 4, 5, and 6. The results of the CBP/p300 candidate approach in these 

chapters uncovered a novel DNA binding activity in CBP that regulates histone 

acetylation in vitro and in vivo. In this chapter, the main findings of this work will 

be summarized and the implications of these findings discussed in more detail, 

together with the questions that remain to be addressed in the future. 

 

 

7.1 Sequence-independent DNA binding: a universal 
mechanism in chromatin interactions? 
 

Work in Chapter 4 of this thesis showed that the TAZ2 domain of CBP is 

required for histone acetylation specificity towards H3K27 in nucleosome 

substrates. Further work in Chapters 5 and 6 showed that TAZ2-dependent 
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acetylation specificity is mediated by a sequence-independent DNA binding 

activity. This DNA binding activity functions to direct CBP specificity through two 

mechanisms. First, binding to DNA increases the efficiency of CBP interaction 

with nucleosomes, leading to increased overall acetylation of histone 

substrates. Second, TAZ2 DNA binding leads to specifically increased 

acetylation of H3K27 compared to alternative substrate lysine residues, 

potentially by binding to the lateral surface of the nucleosome to direct the CBP 

catalytic domain towards the H3K27 substrate. 

 

A major focus of previous work was on the role of sequence-specific DNA 

binding proteins in the recruitment of CBP/p300 and other chromatin-modifying 

proteins to target loci. Indeed, transcription factor-mediated recruitment likely 

represents the major mode of CBP/p300 tethering at target loci, as shown by 

induction of CBP/p300 binding genome-wide by transcription factors such as 

the estrogen receptor (ER), and CBP-dependent induction of p53 target genes 

(Gu et al., 1997; Zwart et al., 2011). However, recent work has brought to light 

the importance of sequence-independent DNA binding in chromatin interactions 

(Bentley et al., 2011; Holbert et al., 2007; Morrison et al., 2017; Park et al., 

2019; Shirai et al., 2017; Worden et al., 2019). A clear example of this is in the 

recently identified DNA binding activity of Polycomb repressive complex 2 

(PRC2), which binds to DNA in a sequence-independent manner both through 

its core subunits and through the accessory subunit Pcl (PHF1 in mammals) 

(Choi et al., 2017; Wang et al., 2017b). This DNA binding is thought to stabilise 

the PRC2 complex on nucleosome substrates, increasing its residency time and 

allowing it to generate H3K27me3 at target sites. This is consistent with 

observations that loss of Pcl in vivo leads to reduced, but not abolished, PRC2 

occupancy at target genes, and diminished H3K27me3 (Hunkapiller et al., 

2012; Nekrasov et al., 2007; Walker et al., 2010). This suggests that sequence-

independent DNA binding may represent a commonly employed mechanism for 

stabilising chromatin-modifying activities on chromatin, allowing proteins and 

complexes such as CBP/p300 and PRC2 to bind stably to a wide variety of 

target sequences following recruitment by other mechanisms. 

 

Indeed, sequence-independent DNA binding appears to be employed not only 

by CBP/p300 but by all branches of the histone acetyltransferase (HAT) family. 
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In the MYST family of HATs, the HAT domain of MOZ is closely linked to a zinc 

finger that binds DNA (Holbert et al., 2007). In addition, MOZ and MORF 

possess a NEMM (N-terminal part of Enok, MOZ or MORF) domain that is rich 

in basic amino acids and contains a histone H1/H5-like fold that is likely to bind 

to DNA and is required for nuclear localization (Kitabayashi et al., 2002). 

Moreover, the double PHD finger (DPF) domain of MORF binds DNA 

independent of sequence, and this activity is important for interactions with 

nucleosomes (Klein et al., 2019). Although GCN5 family HATs have not been 

found to bind DNA directly, the ADA2 subunit that interacts with GCN5 as part 

of the SAGA and ATAC complexes contains a SANT domain with structural 

similarity to the DNA binding domain of c-Myb (Sun et al., 2018). MYST family 

members similarly interact with partner proteins that contain DNA binding 

domains, including the BRPF1, 2 and 3 subunits, which interact with the MOZ, 

MORF and HBO1 enzymes, and which bind DNA sequence-independently 

through their PHD-Zn knuckle-PHD (PZP) module (Klein et al., 2016; Lalonde et 

al., 2013; Liu et al., 2012).  

 

The observation of sequence-independent DNA binding in such a wide variety 

of chromatin modifiers through structurally distinct domains suggests that 

evolution of DNA binding is highly favoured in chromatin interactions. A clear 

possibility is that DNA binding would increase the affinity of chromatin modifiers 

for their target sites on chromatin. Whilst such sequence-independent 

interactions would not direct recruitment to specific target sites in the genome, 

these interactions could cooperate with binding to transcription factors or 

histone modifications to generate multivalent, high affinity interactions with 

chromatin. 

 

However, the importance of sequence-independent DNA binding activities has 

remained relatively unexplored. Multiple reports have shown that mutations that 

affect the structure of the TAZ2 domain of CBP, or would be expected to affect 

sequence-independent DNA binding by the PZP domain of BRPF1 and the 

BRG1 subunit of the BAF chromatin remodelling complex, are associated with 

disease (Menke et al., 2016, 2018; Morrison et al., 2017; Yan et al., 2017). This 

suggests that DNA binding is likely to represent an important function of these 

proteins. Moreover, work in this thesis showed that DNA binding by the TAZ2 
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domain of CBP stabilises the protein on chromatin in an artificial tethering 

system. Further work would test whether DNA binding by TAZ2 is also 

important for CBP binding at endogenous targets and whether loss of this 

activity would prevent efficient H3K27ac at target sites. 

 

 

7.2 Sequence-independent DNA binding: a mechanism for 
substrate specificity? 
 

Work in the first decade or so following identification of HAT enzymes 

suggested that HATs were relatively promiscuous enzymes, each acetylating 

many different histone lysine residues (reviewed in Kouzarides, 2007; Lee and 

Workman, 2007; Sterner and Berger, 2000). However, more recent work in both 

mammals and Drosophila has shown that, although individual HATs may 

acetylate multiple substrates in vitro, they have a relatively narrow substrate 

specificity in vivo (Feller et al., 2015; Jin et al., 2011; Weinert et al., 2018). 

 

Work in this thesis showed that TAZ2 DNA binding is required for CBP to 

acetylate H3K27 specifically. This is in contrast to many other sequence-

independent DNA binding domains, where there is evidence of a function in 

determining affinity for chromatin but not for enzymatic specificity. Surprisingly, 

however, the MYST family HAT enzyme HBO1 shows a similar dependency on 

a sequence-independent DNA binding factor for its substrate specificity 

(Lalonde et al., 2013). 

 

HBO1 can interact in a mutually exclusive fashion with multiple scaffold 

proteins, including the two homologous proteins BRPF1 and JADE1 (Doyon et 

al., 2006; Ullah et al., 2008). The HBO1-BRPF1 complex can acetylate free 

histone H3 and H4 promiscuously in vitro (Lalonde et al., 2013). By contrast, in 

nucleosomal substrates HBO1-BRPF1 specifically acetylates H3, particularly 

H3K14 and H3K23, which are major physiological substrates of HBO1 (Feng et 

al., 2016; Lalonde et al., 2013; MacPherson et al., 2019; Yan et al., 2017). This 

H3 specificity depends on critical residues within the PZP sequence-

independent DNA binding domain of BRPF1. In contrast to the HBO1-BRPF1 

complex, the HBO1-JADE1 complex is largely unable to acetylate H3, and 
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instead specifically acetylates histone H4 in a nucleosomal context. Importantly, 

sequence analysis of the PZP region of JADE1 suggests that this protein lacks 

residues that are present in BRPF1 and are important for its DNA binding 

function (Yan et al., 2017). This suggests that, similarly to TAZ2-mediated DNA 

binding in CBP, BRPF1 DNA binding facilitates specific acetylation of target 

substrates. 

 

One explanation for this apparent similarity between sequence-independent 

DNA binding in CBP and the HBO1-BRPF1 complex is that, given the proximity 

of lysine residues such as H3K23 and H3K27 to nucleosomal DNA, post-

translational modification of H3 tail lysine residues proximal to the nucleosome 

core may require sequence-independent interaction with DNA for efficient 

acetylation. Mechanistically, the proximity of these H3 tail lysines to 

nucleosomal DNA may sterically or otherwise hinder access of the HAT domain 

to these residues, preventing their efficient acetylation. Binding to DNA may 

provide additional interaction energy, allowing interactions between the HAT 

domain and the H3K27 residue to become more favourable. A consequence of 

this hypothesis would be that chromatin-modifying enzymes including 

CBP/p300 and HBO1, and also complexes such as PRC2, might require 

sequence-independent DNA binding not only to increase residency time on 

chromatin but also to allow access to the substrate H3K27 residue, potentially 

by orienting the enzymes in a topology that favours interaction with H3K27. 

 

Testing this hypothesis would benefit from structural studies to determine, 

potentially in atomic detail, how domains such as TAZ2 interact with DNA and 

drive nucleosome binding. The observation that the CBP core-ZZ-TAZ2 (CZT) 

construct readily forms a complex with the nucleosome core particle (NCP), and 

that this complex is amenable to crosslinking, suggests that a CZT-NCP 

complex structure could be suitable for elucidation by techniques such as 

electron cryo-microscopy. Structural detail of the interaction between TAZ2 and 

nucleosomal DNA could then permit the generation of a set of mutations in 

TAZ2 that would more completely ablate DNA binding than those designed here 

and could be used to study TAZ2 function more effectively in vivo. 
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7.3 HAT specificity: a mechanism for robust transcriptional 
regulation? 
 

Multiple reports show that HAT enzymes possess relatively narrow specificity 

towards histone substrates in vivo, although the mechanisms for directing this 

specificity remain to be identified for many enzymes. GCN5 and its paralogue 

PCAF (GCN5/PCAF) primarily acetylate H3K9, MOZ/MORF acetylates H3K23 

and MOF acetylates H4K16 (Feller et al., 2015; Jin et al., 2011; Simó-Riudalbas 

et al., 2015). However, these different acetylation marks are strongly associated 

with the same set of active promoters and enhancers genome-wide (Ernst et 

al., 2011; Karmodiya et al., 2012; Wang et al., 2009), and regions that are 

acetylated are typically co-occupied by multiple HATs, including CBP/p300, 

GCN5/PCAF and MOF (Krebs et al., 2011; Wang et al., 2009). The question 

therefore arises, why does the cell utilize multiple HATs targeted to the same 

region to acetylate multiple different target residues, rather than recruiting a 

single HAT to a given locus and allowing it to acetylate promiscuously to drive 

gene expression? 

 

One explanation for the apparent redundancy in HAT recruitment is that it 

allows for robust regulation of gene expression. In such a model, gene 

expression would be regulated by the independent recruitment of multiple HATs 

to the same locus to generate acetylation of multiple different lysine residues, 

with maximal gene expression being achieved only upon recruitment of multiple 

HAT enzymes. Consistent with this model, previous work has shown that 

induction of acetylation through inhibition of histone deacetylases (HDACs) and 

stimulation of transcription through treatment with epidermal growth factor 

(EGF) generates H3 molecules that are acetylated not only at a single site but 

at multiple sites (Clayton et al., 2000). This suggests that multiple HATs are 

acting on the same H3 molecules during transcriptional induction. Further work 

examining rapidly inducible gene expression systems shows that following 

stimulation of the serum response factor (SRF) by treatment with TPA 

(tetradecanoylphorbol acetate), histone acetylation occurs in an ordered 

fashion. In this system, H3K9 is acetylated first, in conjunction with H3S10 

phosphorylation (H3S10ph), and followed by H4K16ac, H3K27ac and H3K14ac, 

respectively, during the course of activation of immediate-early target genes 
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(Esnault et al., 2017). This ordered histone acetylation is then followed by the 

recruitment of the transcriptional machinery. Similarly, induction of IFN-β 

expression in HeLa cells by infection with Sendai virus generates an ordered 

temporal pattern of histone acetylation through the sequential recruitment of 

GCN5 and CBP HATs (Agalioti et al., 2000, 2002). These results suggest that 

gene activation follows the coordinated action of multiple HATs. In this model, 

HAT specificity would play a central role in facilitating robust activation of gene 

expression following appropriate signals but would prevent stochastic activation 

of gene expression through binding of a single HAT to a given gene regulatory 

element. 

 

This model could be tested in vivo by generating a CBP enzyme with increased 

promiscuity through mutation of the TAZ2 domain. If this model of HAT 

specificity conferring robustness on gene regulation is correct, a less specific 

CBP would be expected to result in greater transcriptional noise and 

inappropriate gene activation genome-wide.  

 

 

7.4 Histone acetylation: a mechanism for quantitative 
regulation of gene expression? 
 

An additional, complementary explanation for targeting multiple HATs to the 

same loci would be to allow quantitative regulation of gene expression. Many 

genes are regulated in an essentially bistable manner, switching only between 

“on” and “off” states. A subset of genes, however, requires more quantitative 

regulation, in which the level of gene expression is proportional to the strength 

or duration of signalling, with regulatory elements controlling gene expression in 

the manner of rheostats. Examples of such loci are developmentally regulated 

genes that respond to morphogenic gradients in the development of animals, 

and immediate-early genes that respond to signalling pathways such as 

mitogen-activated protein kinase (MAPK) pathways (reviewed in Hazzalin and 

Mahadevan, 2002). 

 

Morphogens are signalling molecules, usually proteins, examples of which 

include Bicoid in the specification of the anterior-posterior axis in the Drosophila 
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embryo, and Activin in Xenopus mesoderm formation (reviewed in Gurdon and 

Bourillot, 2001). Morphogens are released from a localised source and form a 

concentration gradient over a population of cells through diffusion. Cells within 

this population that are exposed to different morphogen concentrations show 

qualitatively different responses, giving rise to different cell fates. One way in 

which these different responses are achieved at the transcriptional level is 

through controlling the gene expression response to morphogen concentration 

with the use of thresholds, so that such genes operate as bistable switches. In 

this case, genes are switched to an “on” state when the concentration of 

morphogen exceeds a certain level, or remain in the “off” state when this 

threshold is not reached. However, a subset of genes can also respond to 

morphogen in a quantitative way, so that gene expression is proportional to the 

concentration of signalling molecule. Examples of this quantitative control of 

gene expression include control of expression of Xgscd by Activin and of Xbra 

by fibroblast growth factor (FGF) signalling in Xenopus development (Green et 

al., 1992; Gurdon et al., 1994), and of target genes by Krüppel in Drosophila 

(Sauer and Jäckle, 1991). 

 

Similarly, activation of MAPK signalling pathways with increasing 

concentrations of lysophosphatidic acid (LPA) in Rat fibroblasts leads to 

proportional, quantitative increases in expression of target genes such as c-Fos 

and c-Jun (Cook et al., 1999). Moreover, the use of different stimuli, such as 

TPA or FGF, to activate MAPK pathways in mouse embryonic fibroblasts 

(MEFs) leads to different levels of activation of the same target genes (Hazzalin 

and Mahadevan, 2002). This suggests that regulation of these loci is not 

through a binary switch in expression between “on” and “off” states but can 

respond quantitatively to different signalling events. 

 

The dCas9-based tethering experiments presented in this thesis suggest that 

histone acetylation could provide a mechanistic basis for this quantitative 

regulation of gene expression. In these experiments, targeting of different 

truncated forms of CBP as fusion proteins to the Ascl1 promoter led to different 

levels of transcription of the target gene. One explanation for the observed 

differences in transcriptional activation is that the truncated enzymes show 

different levels of specificity, both in this experiment and in vitro. As a result, the 
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more promiscuous enzymes, such as CBP core, core-ZZ (CZ) and core-ZZ-

TAZ2mut (CZTmut), generated higher levels of transcription than the more 

specific CZTwt enzyme. This suggests that transcriptional activation is directly 

linked to overall levels of acetylation at the locus, rather than to acetylation of a 

particular residue, such as H3K27. 

 

Similarly, in an artificial system in which p53 recruits CBP to a luciferase 

reporter under the control of the Mdm-2 promoter, levels of upregulation were 

directly proportional to the level of CBP that p53 could recruit (Gu et al., 1997). 

This again suggests that binding of CBP and acetylation of target sites at a 

gene promoter does not lead to a binary switch from an “off” to an “on” state, 

but that intermediate levels of transcriptional activation exist for these genes. In 

this way, targeting of multiple HATs to a gene regulatory region to acetylate 

different residues could control the overall level of nucleosome acetylation, and 

therefore provide a mechanism to control the level of gene expression in a 

quantitative manner. 

 

Similar observations of a link between acetylation levels and gene expression 

have been made in the endogenous MAPK system, in which levels of histone 

acetylation at target genes over time correspond closely to levels of gene 

expression (Edmunds et al., 2008; Hazzalin and Mahadevan, 2002). In this 

system, expression of immediate-early genes is rapidly induced in response to 

stimulation by factors such as epidermal growth factor (EGF), and the 

promoters of these genes are simultaneously acetylated. Importantly, within 

hours of stimulation, expression of target genes returns to normal levels, and 

histone acetylation levels are similarly reduced. This suggests that histone 

acetylation is a highly dynamic system, and that histone acetylation does not 

necessarily function to generate a stable shift in transcriptional status, but rather 

provides a mechanism to convey, in a quantitative manner, on-going signalling 

and gene expression. 

 

This model could again be tested using mutations in the TAZ2 domain to 

generate a less specific CBP enzyme. This would be predicted to lead to more 

rapid and less precise upregulation of gene expression in response to signalling 

events. This could be particularly important during processes such as 
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development, where gene expression must be very finely controlled, and may 

explain why mutation of the TAZ2 domain in only a single allele of CBP is 

sufficient to generate developmental disease (Menke et al., 2016, 2018). 

Therefore, testing the effect of TAZ2 mutations over the course of differentiation 

could be an important step in understanding how CBP and other HATs function 

in vivo. 

 

 

7.5 Towards a model for histone acetylation function? 
 

These observations provide insight into how mechanistically histone acetylation 

might function to regulate gene expression. Several models have been 

proposed for how histone acetylation affects gene expression (Henikoff, 2005; 

Zentner and Henikoff, 2013). First, the “histone code” model suggests that 

individual histone modifications exert their function through specific binding by 

domains of effector proteins (Jenuwein and Allis, 2001; Turner, 2000). Histone 

acetylation in particular can be recognised by bromodomain-containing proteins 

associated with transcriptional activation, including chromatin remodellers and 

components of the transcriptional machinery (Filippakopoulos and Knapp, 

2012). A second model suggests that certain histone acetylation marks, 

including H3K9ac and H3K27ac, function to activate transcription by preventing 

repressive methylation modifications at these residues. 

 

However, it is difficult to reconcile these models with the results presented here. 

Were transcription guided by the binding of a specific effector to a specific 

acetylation mark such as H3K27ac, or the blocking of methylation at H3K27, it 

would be expected that all of the catalytically active CBP proteins tethered as 

dCas9 fusion proteins should give rise to similar levels of transcription, as each 

of these proteins generates the same levels of H3K27ac. In these experiments, 

however, the level of transcription corresponded to the overall level of 

acetylation rather than to the levels of one particular acetylation mark. 

Moreover, the histone code hypothesis relies on the existence of proteins that 

possess highly specific acetyl-lysine binding domains. In reality, however, 

bromodomains are rather promiscuous, with individual bromodomains binding 

to multiple different acetylated histone residues (Filippakopoulos and Knapp, 
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2012). This suggests that if proteins binding acetylated histones influence 

transcription, they do so by binding to multiple different acetylated lysines with 

limited specificity for individual sites. 

 

A third model for histone acetylation function is that acetylation neutralises the 

positive charge of lysine side chains, weakening interactions between histones 

and the negatively charged DNA phosphate backbone, thereby allowing the 

transcriptional machinery access to the underlying DNA (Wade et al., 1997). 

This model would be consistent with the quantitative changes in gene 

expression observed here in dCas9-based tethering of truncated CBP proteins, 

and in previously reported responses to endogenous MAPK signalling, as 

cumulative increases in histone acetylation at multiple residues could be directly 

translated into increased accessibility and transcriptional activation. The charge 

neutralisation model is further supported by earlier work in which combinations 

of lysine-to-arginine mutations were made in H3 and H4 histone tails in S. 

cerevisiae, finding that different lysine residues within the same histone tail, with 

the possible exception of H4K16, function redundantly and cumulatively in the 

activation of gene expression (Dion et al., 2005; Martin et al., 2004). This 

suggests that the major role of histone acetylation is structural, facilitating 

access to the underlying DNA for the transcriptional machinery. This is 

consistent with the observation that directly recruiting the transcriptional 

machinery by tethering VP160 to a gene promoter results in far greater levels of 

transcriptional activation than are achieved even with promiscuous acetylation. 

Such a model could be further supported by extending the dCas9-based 

tethering experiments to additional loci to test whether the quantitative changes 

in histone acetylation and gene expression observed at Ascl1 can be 

generalised to other gene regulatory elements with different DNA sequences 

and chromatin environments. 

 
 
7.6 HAT specificity and disease: an avenue for therapy? 
 

Central to these considerations of robustness in gene expression and 

quantitative transcriptional regulation is the observation that different HATs 

possess different specificities. This includes both substrate specificities 

mediated by mechanisms such as DNA binding by TAZ2 in CBP/p300, but also 
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specificity of recruitment mediated by interaction with transcription factors. In 

this way, gene activation is likely to involve concerted action of multiple HATs at 

the same locus, recruited by multiple transcription factors and acetylating 

different histone residues. Consistent with the importance of these 

mechanisms, multiple findings suggest that these forms of specificity are 

subverted in diseases such as cancer to drive aberrant gene expression, and 

that therefore HATs might be valid targets for future therapy. 

 

Subversion of specificity can occur in several ways. For example, MOZ-CBP 

fusion proteins generated by translocation events in acute myeloid leukaemia 

(AML) possess two separate HAT activities, potentially conferring dual 

specificity and targeting, and permitting overexpression of target genes (Yang, 

2015). AML can also be driven by alternative CBP/p300 fusion proteins, in 

which the catalytic domain and C-terminus of CBP or p300 is fused to the N-

terminus of MLL1, resulting in a HAT enzyme that can be aberrantly recruited to 

promoters genome-wide through the ZF-CXXC domain of MLL1 (Yang, 2004). 

Similarly, in hormone receptor-driven cancers such as ER-positive breast 

cancer and androgen receptor (AR)-positive prostate cancer, transcription 

factors such as ER and AR can bind to target sites, recruit co-activators such as 

CBP/p300, and drive a transcriptional program independently of normal 

regulatory mechanisms (reviewed in Green and Carroll, 2007). 

 

Studies pointing to the importance of HAT misregulation in cancer suggest that 

these enzymes would be promising targets for therapy. However, targeting of 

HATs has until recently been largely avoided. This is in part because specific 

and cell-permeable compounds targeting HAT enzymatic activity proved 

relatively elusive (Di Cerbo and Schneider, 2013). An additional problem, 

though, is that these enzymes are broadly expressed in different tissue types 

and act as general coactivators at a wide range of target genes, with HATs 

such as GCN5 thought to function at essentially all transcribed genes (Baptista 

et al., 2017; Bonnet et al., 2014). Inhibition of HATs could therefore be expected 

to give rise to unacceptable toxicity. However, recent work using CRISPR-Cas9 

based screens has shown that loss of the HATs GCN5 and HBO1 affects cell 

proliferation in AML, and inhibition of GCN5 with small molecules does not lead 

to general toxicity in other cell types (MacPherson et al., 2019; Tzelepis et al., 
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2016). Moreover, targeting of the bromodomain of CBP/p300 in AR-positive 

prostate cancer leads to loss of AR-dependent H3K27ac and to inhibition of cell 

proliferation without significant effect on AR-negative cells (Jin et al., 2017; 

Raisner et al., 2018), suggesting that non-transformed cells can compensate for 

CBP/p300 loss by the activity of other HAT enzymes. 

 

These results show that loss of robustness in gene expression regulation, by 

driving gene expression through a single transcription factor and its specific 

coactivators in cancers, renders HAT inhibition a promising avenue for therapy, 

and demonstrates the importance of robust transcriptional regulation by multiple 

substrate-specific HATs in healthy cells. 

 

 

7.7 Conclusions 
 

The work presented in this thesis revealed that the substrate specificity of the 

histone acetyltransferase CBP is controlled by the sequence-independent DNA 

binding activity of the TAZ2 domain. This novel DNA binding activity points to a 

general role for sequence-independent DNA binding in chromatin interactions, 

and suggests that all HATs may have mechanisms to restrain their substrate 

specificity. This leads to a model in which concerted action by multiple HATs at 

gene regulatory regions plays an important role in ensuring robust regulation of 

gene expression (Fig. 7.1). 
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Fig. 7.1: A model for HAT function at regulatory elements. 
In this model, representatives of all three HAT families are bound at a gene promoter. 
CBP specifically acetylates H3K27, with specificity mediated by TAZ2 DNA binding. 
HBO1 acetylates H3K23, with specificity mediated by BRPF1 DNA binding. GCN5 
acetylates H3K9. Together, this coordinated acetylation facilitates access to the 
underlying DNA for the transcriptional machinery and leads to robust transcription of 
the target gene by RNA polymerase II. 
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8. Appendix 
 

 

 

 

  
 
Fig. S1: Testing the specificity of antibodies used in HAT assays. 
HAT assays were carried out for 20 mins using CBP CZ enzyme in the presence of 
acetyl-CoA and in the presence or absence of nucleosome array. Reactions were 
analysed by western blot using antibodies against H3K27ac, H3K9ac, H4K5ac, total 
H2A, and FLAG. The results suggest that a non-specific band (*) detected using 
H4K5ac antibody is only detectable in the presence of nucleosomes and therefore 
likely represents cross-reactivity with another acetylated histone residue. A non-
specific band detected using H2A antibody is present, to a lower extent, in reactions 
without nucleosome, and likely represents a small amount of acetylated histone protein 
that co-purifies with the CZ enzyme. 
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Fig. S2: p300 CZT does not form clear peaks at sites of H3K27ac 
ChIP-seq snapshots using data from (Zhang et al., 2018), showing FLAG and 
H3K27ac ChIP in vector only and p300 CZT cell lines, and input for p300 CZT. Genes 
are indicated by horizontal black arrows below the sequencing traces and sites of 
amplicons used for qPCR analysis by vertical red arrows. 
Top: two snapshots showing sites called as peaks of p300 CZT and with increasing 
H3K27ac. 
Bottom: two snapshots without p300 CZT peaks or increasing H3K27ac. 
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