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Abstract 

 
 Arbuscular mycorrhization and rhizobial nodulation are two major root endosymbioses which 

play important roles in plant development by improving their mineral nutrition. Produced by Rhizobia 

bacteria and mycorrhizal fungi, lipo-chitooligosaccharides (LCOs) were shown to be essential for the 

formation of the rhizobial symbiosis and to have stimulatory effects on mycorrhization. In the legume 

Medicago truncatula three lysin motif (LysM) receptor-like kinases LYR3, NFP and LYK3 have been 

shown to be involved in LCO perception. Here work is presented aimed at the biochemical 

characterization and application of these important receptor proteins.  

 Cloned from several legume species orthologs of M. truncatula LYR3, except from lupin, were 

shown to bind LCOs with high affinity, but not structurally-related chitooligosaccharides (COs). 

Domain swaps between the lupin and Medicago proteins were used as a tool to decipher the molecular 

basis of LCO recognition and revealed the importance of the third LysM domain for LCO binding.       

The possibility of exploiting the LCO-binding capacity of LYR3 in biotechnology, through the 

composition of chimeric receptors, was investigated by combining together the extracellular domain of 

LYR3 protein with the kinases of Arabidopsis thaliana immune receptors, AtCERK1 and EFR. The 

results suggest that LYR3 could be used for constructing biologically active chimeric proteins whose 

mode of activation needs to be improved.  

 Finally studies on the two LysM symbiotic receptors NFP and LYK3 suggest that they are 

regulated by changes in their phosphorylation after symbiotic treatments.  

 Together this work brings light on the mechanisms underlying LCO perception and the 

modifications that receptors undergo after their treatment with LCO.  

 

Key words: Rhizobium/Legume symbiosis; receptor structure function; lipo-chitooligosaccharides; 

Medicago truncatula; LysM; Phos tag; plant defence; PAMPs 

 

 

 

 

 

 

 



 

 



Résumé 

 
 Les symbioses rhizobienne et mycorhizienne à arbuscules sont deux endosymbioses racinaires 

jouant des rôles importants dans le développement des plantes en améliorant leur nutrition minérale. 

Les lipo-chitooligosaccharides (LCOs), produits par les bacteries Rhizobia et les champignons 

mycorhiziens, sont essentiels pour l’établissement de la symbiose rhizobienne et stimulent la 

mycorhization. Chez la légumineuse Medicago truncatula, trois récepteurs-like kinase à motifs lysin 

(LysM), LYR3, NFP et LYK3 sont impliqués dans la perception des LCOs. Le travail présenté a eu 

pour objectif la caractérisation biochimique de ces récepteurs et leurs applications potentielles. 

 Les orthologues de LYR3 de M. truncatula ont été clonés et se sont tous révélés, à l’exception 

de celui du lupin, capables d’établir une interaction d’affinité élevée avec les LCOs mais pas avec les 

chitooligosaccharides de structure apparentée. Afin de mieux comprendre les bases moléculaires de la 

reconnaissance des LCOs, des échanges de domaine entre les protéines LYR3 de lupin et de Medicago 

ont été effectués et ont révélé l’importance du troisième domaine LysM dans l’interaction. 

 L’exploitation des capacités de reconnaissance des LCOs par LYR3 à des fins 

biotechnologiques a été évaluée à l’aide de récepteurs chimériques constitués du domaine 

extracellulaire de LYR3 et du domaine kinase des récepteurs immunitaires AtCERK1 et EFR. Il est 

apparu que LYR3 peut être utilisé pour élaborer des récepteurs chimériques mais leur mode 

d’activation reste à optimiser.  

 Enfin l’étude des deux récepteurs symbiotiques NFP et LYK3 suggère qu’ils sont régulés par 

phosphorylation suite au traitement par les signaux symbiotiques. 

 L’ensemble de ce travail apporte un éclairage nouveau sur les mécanismes de perception des 

LCOs et sur les modifications associées à leurs récepteurs qui en résultent.  

 

Mots-clés : Symbiose Rhizobium/légumineuse; récepteur structure-fonction; lipo 

chitooligosaccharides ; Medicago truncatula ; LysM ; Phos tag, défense des plantes; PAMPs 
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 The majority of land plant species possess the ability to form mutualistic root endosymbioses 

with several types of soil microorganisms. These symbiotic relations are beneficial for both partners 

and are based on the improvement of plant mineral nutrition provided by the microorganisms 

(particularly nitrogen and phosphorus). Microbes in return receive carbon containing compounds, 

necessary to support their life and growth, which are produced by the plant’s photosynthesis (Denison 

and Kiers, 2011). The three most important mutualisms are formed between plants and arbuscular 

mycorrhizal fungi (the AM symbiosis), between different legume species and nitrogen-fixing Rhizobia 

bacteria (the RL symbiosis) and between certain non-legume “actinorhizal” species and actinomycete 

bacteria called Frankia (the AR symbiosis) (Parniske, 2008; Oldroyd et al., 2011; Kucho et al., 2010). 

All three symbioses are based on a commonality: genetic studies have shown that in plants a similar 

set of genes (common symbiotic pathway or CSP) are required for the formation of the AM, RL and 

AR symbioses. This similarity suggests a common evolutionary origin of these three mutualisms with 

the presumed evolution of both the actinorhizal and rhizobial symbioses from the much more ancient 

mycorrhizal association (Svistoonoff et al., 2014; Markmann and Parniske, 2009; Geurts et al., 2012).   

Model plants 

 For research in the plant field, including plant microbe interaction studies, the use of model 

plants has led to major advances in the field. For symbiosis two model plants have been proposed 

(Medicago truncatula and Lotus japonicus) and work on symbiosis also uses model plants developed 

for more general plant studies (Arabidopsis thaliana and Nicotiana benthamiana).   

For symbiotic studies  

Medicago truncatula  

 Medicago truncatula Gaertn belongs to the Fabaceae family, Faboideae sub-family, Trifolieae 

tribe. M. truncatula was selected as a model plant for several reasons, among them is its rapid life 

cycle, small diploid genome (~5 × 108 bp) which was recently sequenced from the cultivar Jemalong, 

line A17 (Young et al., 2011), self-fertile nature, possibility for its genetic transformation (Barker et 

al., 1990; Cook, 1999). It possesses the ability to form symbiotic associations with both Rhizobia, 

resulting in the development of indeterminate nodules containing an active apical meristem 

(Sinorhizobium meliloti- genome was sequenced (Galibert et al., 2001)), and AM fungi. M. truncatula 

symbiotic relations with bacterial and fungal symbionts have been studied for many years which has 

led to the identification of genes required for establishment of both or either one of the symbiotic 

associations (Cook, 1999; Oldroyd et al., 2011).  
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Lotus japonicus 

 Belonging to the Fabaceae family Lotus japonicus owns a small genome (400 Mb), self-fertile 

nature, short life cycle (3-4 months) and can be easily transformed with Agrobacterium (Handberg and 

Stougaard, 1992). Being able to form both rhizobial and arbuscular mycorrhizal symbioses L. 

japonicus became a model plant used to study these symbioses. It forms determinate nodules with 

Mesorhizobium loti. As for M. truncatula a set of symbiotic genes has also been identified for L. 

japonicus (Sato and Tabata, 2006; Madsen et al., 2010). 

For non-symbiotic studies (plant development, interactions with pathogens)  

Arabidopsis thaliana  

 Arabidopsis thaliana belongs to the Brassicaceae family and does not form either the bacterial 

or fungal symbioses. A. thaliana owns several features that make it an excellent experimental model 

for studying plant development. It possesses one of the smallest plant genomes of about 125 Mb. Its 

life cycle is short (approx. 6 weeks) and results in high yields of produced seeds. A. thaliana can be 

efficiently transformed with Agrobacterium tumefaciens and a large number of mutant lines and 

ecotypes already exist and are available. 

 A. thaliana is studied by a broad research community and all arising information is collected 

in the opened for public access- Arabidopsis Information Resource (TAIR- 

http://www.arabidopsis.org/). 

Nicotiana benthamiana 

 Nicotiana benthamiana belongs to the Solanaceae family. N. benthamiana is susceptible to a 

large number of plant viruses and other pathogens such as bacteria, oomycetes and fungi and thus is 

widely used in plant virology and for host–pathogen interaction studies. For the reason that its large 

leaves can be easily transformed with high efficiency with Agrobacterium tumefaciens, N. 

benthamiana is often used for transient protein expression and functional characterization (Goodin et 

al., 2008).   

The Arbuscular mycorrhizal symbiosis  

 The AM symbiosis is suggested to have appeared approximately 460 million years ago (mya) 

and is currently wide-spread, affecting 70–90% of all terrestrial plants in the plant kingdom, including 

angiosperms, gymnosperms, pteridophytes, and some bryophytes (Harrison, 2005). AM fungi are a 

major contributor to the enhancement of plant nutrition with phosphorus, a mineral compound which 

is essential for plant growth, health, and productivity (Parniske, 2008). It has been reported that, 

through the AM symbiosis, all the phosphorus taken up by the plant could originate from its fungal 

symbiont (Smith et al, 2003). Mycorrhizal fungi, although being unable to fix atmospheric nitrogen, 

are however able to improve host nutrition with nitrogen and other minerals. AM fungi are obligate  



10 
 

 

  



 

11 
 

biotrophs, depending entirely for their carbon nutrition on the host plants. Plants can use 4–20% of 

their photosynthate compounds to support AM fungi (Bago et al., 2000). Phylogenetically all AM 

belong to a single Glomeromycota phylum (Harrison, 2005), which currently contains more than 150 

species (da Silva et al., 2008). Those studied to date (for example Rhizophagus irregularis and 

Gigaspora spp.) do not show host specificity as they can colonize a wide range of plants in laboratory 

conditions.  

Development of the AM symbiosis     

 In the soil AM fungi exist in the form of spores. Germination of the spores and hyphae growth 

can occur in the absence of host plants, however these two processes can be notably intensified in the 

presence of root exudates and volatiles, including CO2 (Harrison, 2005). Attracted by the plant, the 

hyphae grow through the soil toward the host root, where they differentiate and form a special 

penetration organ called the appressorium or hyphopodium. Formation of the appressorium initiates 

intracellular changes in the adjoining plant cells, aimed at preparing for fungal penetration. Thus 

within 4-5 hours after attachment of AM fungi the plant develops the so called prepenetration 

apparatus (PPA), a cytoplasmic tunnel crossing the vacuole of the cell aimed to direct the growth of 

fungi after its penetration (Genre et al., 2008). Once the PPA is formed, fungal hyphae invade the host 

root and grow intra and intercellularly towards the inner cortex. Next the hyphae penetrate the cortical 

cells and form branched tree-like structures, the so-called arbuscules, which are used for nutrient 

exchange with the host plant. Formed inside of the cell, arbuscules stay separated from the cytoplasm 

being surrounded with the extended plant plasma membrane. Newly formed arbuscules stay functional 

for only a few days after which they get degraded without harming the plant cell which can later host 

another arbuscule (Harrison, 2005; Parniske, 2008) (Fig.1)  

The Rhizobia-legume symbiosis 

 To support their growth, most plants acquire nitrogen from the soil in the biologically active 

forms of nitrate and ammonia. Despite gaseous nitrogen (N2) being the most abundant component of 

the Earth's atmosphere (78%) its biologically available forms are present in very limited 

concentrations. However, certain bacteria (termed diazotrophs) have acquired the ability to fix gaseous 

nitrogen and use it to support their growth. Some plants, mainly belonging to the large Fabaceae 

(formally Leguminoseae) family, have developed a beneficial symbiosis with soil diazotrophic 

bacteria, termed Rhizobia, that can convert dinitrogen into ammonia and thereby supply its host plant 

with this mineral (Oldroyd, Murray, 2011). Rhizobia are unicellular gram-negative bacteria which in 

contrast to AM fungi are phylogenetically diverse, with members belonging to both the alpha- and 

beta- proteobacteria (Masson-Boivin et al., 2009). The most widely studied species belong to the 

Rhizobium, Mesorhizobium, Sinorhizobium (also known as Ensifer), or Bradyrhizobium genera of 

alpha-proteobacteria. Each Rhizobia possesses host specificity and can establish a symbiotic 

association with either a few or several legume species (Perret et al., 2000), and also with one tropical  
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Fig.1 The different steps leading to the establishment of arbuscular mycorrhizal symbiosis. 

In response to strigolactones, the spore germinates and the hypha grows towards the host root to form 

a fungal appressorium. After the formation of the prepenetration apparatus (PPA) by the plant, the 

fungal hypha penetrates the PPA and is guided towards the inner cortex where it branches to form 

arbuscules (adapted from (Parniske, 2008)). 
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tree Parasponia andersonii belonging to the Ulmaceae family (Op den Camp et al., 2012). The 

rhizobial symbiosis usually results in the development of root nodules, organs in which bacteria 

convert atmospheric nitrogen into ammonia, which is then assimilated by the plant. Similarly to the 

AM symbiosis, in return the plant provides the micro-symbiont with carbohydrates produced by 

photosynthesis. Nodules formed by different legumes can be divided into two major types according 

to their structural organization. Phaseolus vulgaris, Lotus japonicus and Glycine max form 

determinate nodules which are spherical in shape and lack a permanent meristem. Medicago 

truncatula, Pisum sativum and Trifolium form indeterminate nodules that are elongated and cylindrical 

in shape and contain a permanent apical meristem that continually generates new nodule cells which 

become infected by the Rhizobia present in the infection zone of the nodule (Oldroyd et al., 2011).   

 Being beneficial for both partners the symbiotic state is however not obligatory for either the 

host plants or for Rhizobia (Segovia et al., 1991). However this symbiosis is very important in both 

natural and agricultural ecosystems. Thus, for example, the list of important crops forming the 

rhizobial symbiosis includes Glycine max (soybean), Phaseolus vulgaris (common bean), Pisum 

sativum (pea), Medicago sativa (alfalfa), Cicer arietinum (chickpea), Arachis hypogaea (peanut) and a 

number of Lupinus species.  

Development of the RL symbiosis: example of indeterminate nodule formation   

 To initiate the RL symbiosis, bacteria produce signal molecules which stimulate symbiotic 

responses in plant cortical cells provoking the formation of pre-infection threads (PIT), similar to the 

mycorrhizal PPA cytoplasmic tunnels crossing the cells. The signals also stimulate cell division in the 

inner cortex and pericycle, leading to the formation of the nodule primordium. Bacteria can enter the 

host root intracellularly through root hairs, by intercellular penetration (crack entry) or via intercellular 

infection (Oldroyd et al., 2011; Gage, 2004). Invasion through root hairs is the most common mode of 

rhizobial infection, for most of the agronomically important legumes. In this case, the bacteria signal 

to the root hair to trigger its deformation, ultimately resulting in the formation of a tight curl 

(shepherd’s crook), surrounding and entrapping the Rhizobia which then divide to form a 

microcolony. Once such an infection pocket is formed, this initiates the development of an infection 

thread (IT), a special tubule that grows inside of the root hair that allows Rhizobia to reach and 

colonize the nodule primordium. IT formation starts with the degradation of the cell wall inside of the 

curl due to bacterial or/and plant enzymatic activities and allows invagination of the cell membrane. 

The invaginated membrane and newly deposited cell wall material forms the infection thread which 

continues its growth down through the root hair to the root epidermis, due to pressure from the 

dividing bacteria which thus continuously lead to extension of the tubule. Infection threads progress 

down through the cortical PITs and infect the divided cells of the nodule primordium. At this stage the 

outer cells of the nodule primordium form the nodule meristem, which continues its growth leading to 

the developing nodule emerging from the root. In the mature nodule the apical, distal meristem is 

followed by an infection zone in which infection threads are releasing bacteria into the cytoplasm,  
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surrounded by a plant membrane. Staying inside the nodule cells, the bacteria differentiate 

morphologically into a specific cell type, called bacteroids, which are capable of fixing dinitrogen 

(Timmers et al., 1999; Gage, 2004; Masson-Boivin et al., 2009; Oldroyd et al., 2011) (Fig.2).    

Actinorhizal symbiosis  

 The acinorhizal symbiosis is formed between a nitrogen-fixing gram positive actinomycete 

called Frankia and roots of dicotyledonous plants belonging to eight plant families Betulaceae, 

Casuarinaceae, Myricaceae, Elaegnaceae, Rhamnaceae, Rosaceae, Coriariaceae, Datisticaceae and 

25 genera (Pawlowski and Demchenko, 2012). Similarly to Rhizobia, in the AR symbiosis Frankia 

supplies the host plant with biologically-fixed nitrogen and, in return, obtains carbon compounds 

produced by the plant. Fixation of nitrogen occurs in the nodules formed on the host plant roots after 

their infection with Frankia. Actinorhizal nodules consist of several lobes each representing a modified 

lateral root lacking a root cap and containing infected cells in the cortex. Frankia is not an obligate 

biotroph and can exist in the soil in a free-living state in three cellular forms, filaments, nitrogenase-

containing vesicles and multilocular sporangia (Wall, 2000).  

Development of AR symbiosis   

 Frankia enters the root either through the root hairs or via intercellular infection. Invasion 

through the root hairs develops in a similar way as in the rhizobial symbiosis consisting of such steps 

as root hair curling and infection/pre-infection thread formation. Simultaneously with the infection 

thread progression cell divisions are induced in the cells of the outer cortex. Newly formed tissue 

becomes next infected with the bacteria which differentiate after being released into the nitrogen 

fixing vesicles. This newly formed structure is typical and specific for some actinorhizal plants and is 

called the pre-nodule. Cell divisions in the pericycle then give rise to the nodule primordium. Growing 

through the root, the future nodule merges with the pre-nodule tissue (Fig.3) (Wall, 2000; Kucho et al., 

2010).  

Plant and Microbial signal molecules required for establishment of AM, RL and AR symbioses  

Signals released during AM symbiosis 

 It is suggested that the release of carotenoid-derived hormones strigolactones by the host 

plants underlies their ability to stimulate formation of the AM symbiosis. This statement arises from 

the positive effect of strigolactones on AM fungi metabolism (Besserer et al., 2006) and hyphal 

branching (Akiyama et al., 2005). Strigolactones may form a concentration gradient in the rhizosphere 

and are hypothesized thereby to either attract the AM fungi to the proximity of a host root (Parniske, 

2005) or to direct it to suitable special penetration zones of the root (Kretzschmar et al., 2012). 

 A number of studies have shown that AM fungi produce diffusible signals which stimulate 

different plant symbiotic responses (Kosuta et al., 2003; Weidmann et al., 2004; Olah et al., 2005; 

Gutjahr et al., 2009; Kuhn et al., 2010). Recently two related types of symbiotic signal molecules were 
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Fig.2 The different steps in the establishment of symbiosis between Medicago truncatula and 

Sinorhizobium meliloti.  

Following inoculation, molecular and morphological responses occur simultaneously in the epidermis 

and in internal tissues of the root: microtubular cytoskeleton rearrangements and corresponding 

cellular changes in the pericycle (1); activation of cells in the inner cortex and formation of the first 

division which will lead to the nodule primordium (2); activation of root hairs (3) and of outer cortical 

cells (3’); activation of the middle cortex and extension of the nodule primordium (4); formation of 

pre-infection threads (5); root hair curling (6); formation of infection threads (7); growth of the 

infection threads towards the nodule primordium (8); formation of the nodule meristem from middle 

primordial cells (9); growth and emergence of the nodule (10). Adapted from (Timmers et al., 1999). 
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identified for Glomus intraradices (Rhizophagus irregularis) (Maillet et al., 2011; Genre et al., 2013). 

The first class of compounds, extracted from mycorrhized roots and spores, and named Myc-LCOs are 

structurally similar to Nod factors produced by Rhizobia (see next section) and consist of tetrameric or 

pentameric N-acetyl glucosamine backbones with C16:0 or C18:1 N-acyl chains attached to the non-

reducing sugar. On the reducing terminal sugar Myc-LCOs can be decorated with a sulphate group 

(Fig.4A). Myc-LCOs were shown to stimulate mycorrhization in legume (M. truncatula) and non-

legume (Tagetes patula and Daucus carota) species, induce symbiotic gene expression (ENOD11) and 

influence root architecture (root branching). Whether the synthesis of Myc-LCOs is stimulated by 

strigolactones, has not yet been shown.   

 Other signal molecules were detected in the exudates of germinated G. intraradices spores and 

found to be short-length chitin oligomers, CO-IV and CO-V. These compounds were shown to 

activate such symbiotic response (response typically activated by Nod factors) as nuclear Ca2+ spiking 

in the M. truncatula root epidermis (Genre et al., 2013; Sun et al., 2015). Production of these signal 

molecules was enhanced in the presence of strigolactones.  

 Because of the coenocytic nature of AM fungi and the absence of genetic tools, the genes 

determining the production of AM symbiotic signals remain unknown (Sanders and Croll, 2010).  

It is hypothesized that production of an array of different LCOs and COs by one AM fungi might 

explain their ability to form associations with a wide variety of plant species in which case different 

plants could recognize different signal molecules in the mixture (Oldroyd, 2013).  

Signals released during RL symbiosis 

 To establish most rhizobial symbioses a set of bacterial genes is required (called nod, nol, or 

noe genes) which are activated by plant diffusible molecules (for example, flavonoids) secreted by the 

host plant roots (Hassan and Mathesius, 2012). For these Rhizobia, it is known that flavonoids or other 

signal molecules are recognized by bacterial NodD receptor proteins which then activate transcription 

of the other nodulation genes. Each Rhizobium species owns its individual set of nodulation genes 

determining its host-specificity (for example nodE, F, H, L, P and Q) and five nod genes which are 

common for all Rhizobia, nodA, B, C, I and J. These genes encode enzymes involved in the synthesis 

of the so called Nod factors, which were identified to be lipo-chitooligosaccharides (LCOs) (D'Haeze 

and Holsters, 2002). NodA, B and C are in charge of chitooligosaccharide backbone synthesis, whereas 

nodI and J are involved in LCO secretion. Nod factors produced by Rhizobia generally consist of 4-5 

N-acetyl glucosamine (GlcNAc) residues connected via β1–4 -glycosidic bonds, with an N-acyl chain 

attached to the C2 of the non-reducing terminal sugar. Different Rhizobia strains produce Nod factors 

varying in their acyl chains structures (level of saturation and the length) and in the chemical 

substitutions on the sugar residues (such as methyl, fucosyl, acetyl or sulphate groups) (Dénarié et al., 

1996; D'Haeze and Holsters, 2002) (Fig. 4B). Studies performed on bacterial mutants producing 

defective Nod factors have demonstrated that Nod factor structural individuality is crucial for the 

symbiotic association between bacteria and their host plants. For example, production of sulphated  
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Fig.3 Steps in the development of actinorhizal symbiosis.  

Symbiosis with Frankia is formed in several steps: Signal exchange between the actinorhizal plant and 

Frankia with following root hair deformation and infection (1); penetration of Frankia into a deformed 

root hair and elicitation of cortical cell divisions (2); infection of dividing cortical cells and formation 

of a prenodule (3). Simultaneously with prenodule, nodule primordium is formed by pericycle cell 

divisions. Frankia coming from the prenodule infects the nodule primordium (4). Formation of mature 

nodules (5). Adapted from (Peret, Swarup, Jansen et al., 2007).  
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Nod factors by the nodH gene is the major determinant of host-specificity of S. meliloti for Medicago 

truncatula. In plants Nod factors applied at very low concentrations (10-12 M), were shown to trigger a 

number of symbiotic responses such as root hair curling, induction of early nodulin (ENOD) genes, 

calcium spiking, nodule primordium and lateral root formation.  

 Surprisingly a few symbiotic photosynthetic Rhizobia were reported to lack the genes required 

for Nod factor biosynthesis. The ability of these bacteria to colonize their host plants and form nodules 

suggests that these Rhizobia are either bypassing this signaling step or are producing signals other than 

LCO for symbiosis establishment (Giraud et al., 2007).   

Signals released during AR symbiosis 

 It is believed that actinorhizal plants produce flavonoid signal compounds which being 

recognized by Frankia are provoking its growth toward the host root system (Hocher et al., 2011a). 

For the actinorhizal symbiosis it was shown that factors, inducing root hair deformation, were present 

in Frankia culture surpernatants (Popovici et al., 2010). Absence of nod genes in three sequenced 

Frankia genomes may suggest that actinorhizal symbiotic factors possess different structures than Nod 

factors produced by Rhizobia (Hocher et al., 2011a). However studies of other Frankia species need to 

be made to reinforce this conclusion. 

Common Symbiotic Pathway  

 As mentioned earlier, genetic analyses of symbiotic mutants performed on model legumes M. 

truncatula and L. japonicus have revealed set of genes crucial for development of both the AM and 

RL symbioses. Proteins encoded by these genes form a signal transduction pathway, the so called 

common symbiotic pathway (CSP) (Fig.5) (Kouchi et al., 2010). Most of the CSP genes were also 

identified in C. glauca and A. glutinosa, two actinorhizal plant species, and some of these genes have 

been shown to be required for establishing the AR symbiosis, showing that AR symbiotic signaling 

also proceeds through the CSP (Gherbi et al., 2008, Hocher et al., 2011b).  

 One of the earliest plant symbiotic responses determined by the proteins of the CSP is the 

oscillation of cytosolic Ca2+ (Ca2+ spiking) appearing in the perinuclear region of root epidermal cells. 

It was shown that Ca2+ spiking is induced by Nod factors and both Myc LCOs and CO-IV produced by 

AM fungi and is also presumed to be stimulated by AR signal molecules (Liang et al., 2014; Genre et 

al., 2013; Hocher et al., 2011b). Based on the studies performed with different symbiotic mutants, 

genes of the CSP could be divided into two groups depending on their relation to Ca2+ spiking. The 

first group acts upstream of calcium oscillations and is believed to control the process of spiking. This 

group consists of the plasma membrane located leucine-rich repeat receptor kinase, LjSYMRK in L. 

japonicus or MtDMI2 in M. truncatula and cation channels located in the nuclear membrane, 

LjCASTOR and LjPOLLUX or MtDMI1. The exact mode of action is not yet defined for 

SYMRK/DMI2. However, interaction studies have led to a preliminary model which could explain the 

way this plasma membrane protein communicates with nuclear cation channels and coordinates  
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A. 

 

 
 

 

 

B. 

 
 

Fig.4 Chemical structures of Nod factors and Myc-LCOs.  

(A) One of the major Myc-LCOs produced by Rhizophagus irregularis (LCO-IV (C18:1 Δ9)) which 

was shown to stimulate mycorrhization. (B) Major Nod factor produced by Sinorhizobium meliloti 

(LCO-IV (Ac, S, C16:2 Δ2,9)) crucial for the establishment of the symbiosis between M. truncatula 

and its symbiont.  
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calcium spiking. It was shown that SYMRK/DMI2 can interact with 3 hydroxy-3 methylglutaryl-CoA 

reductase (HMGR) (Kevei et al., 2007). This enzyme catalyzes a key step in the synthesis of 

mevalonic acid (mevalonate) a precursor molecule from the so called mevalonate biosynthetic 

pathway. This pathway gives a rise to multiple isoprenoid compounds including phytosteroids. It is 

hypothesized that association of DMI2 with HMGR may result in the activation of this enzyme and the 

production of isoprenoids, which could be involved in signal transduction between DMI2 and DMI1. 

Additionally SYMRK/DMI2 was shown to interact with a mitogen-activated protein kinase kinase 

(MAPKK- SIP2) that could also play a role in signal exchange between plasma membrane-associated 

DMI2 and nuclear membrane associated ion channels (Chen et al., 2012). Both HMGR and SIP2 were 

shown to play essential roles in the development of the RL symbiosis. Presumed to be controlled by 

DMI2, cation channels LjCASTOR/LjPOLLUX or MtDMI1 were shown to serve for regulating 

potassium flow and thus are expected not to be involved directly in calcium release. It is hypothesized 

that DMI1could trigger the opening of calcium channels or act as a counter ion channel compensating 

the charge produced during the movement of calcium. These calcium channels are not yet identified, 

however the first calcium pump involved in symbiotic calcium signaling, MCA8 was found for M. 

truncatula (Capoen et al., 2011). In L. japonicus two nucleoporins NUP85 and NUP133 were shown 

to be required for Ca2 + spiking although their mode of action is not yet understood (Saito et al., 2007).  

 Mutants in these common symbiotic genes are impaired in calcium spiking and are defective 

in AM and RL symbioses (Parniske, 2008).    

 Downstream of calcium spiking acts the second group of CSP genes which are involved in the 

perception of the calcium oscillations. This group consists of nucleus-localized calcium and 

calmodulin dependent protein kinase (CCaMK or MtDMI3). CCaMK /DMI3 gets activated by 

calcium which either can be bound directly to the EF hand motifs at the C terminus of the protein or in 

a complex with calmodulin (CaM) to the CaM-binding domain of CCaMK /DMI3. Activated CCaMK 

next phosphorylates a coil coiled protein LjCYCLOPS or MtIPD3, which acts as a transcriptional 

activator (Singh et al., 2014).  

 The components of the CSP are required for both RL and AM symbioses. Specificity for 

establishing each of these two mutualisms is believed to be determined both upstream and downstream 

of the CSP. Downstream of DMI3/IPD3 several transcription factors have been shown to be involved 

either primarily in nodulation, NSP2 and NSP1 (driving next expression of two additional 

transcription factors with nodulation specific functions NIN and ERN1) or mycorrhization, NSP2 and 

RAM1 (driving expression of the gene specific for mycorrhization, RAM2) (Oldroyd, 2013; 

Venkateshwaran et al., 2012). In addition, specificity for the rhizobial symbiosis is also conferred by a 

pathway that operates in parallel to the CSP, composed of genes specific for infection (such as 

PIR/NAP/CERBERUS). Cross-talk between the two pathways is ensured at the level of 

CYCLOPS/IPD3 (Madsen et al., 2010). The fact that mutants in the common SYM genes were still 

able to respond to the addition of Nod factors (rapid calcium influx and swelling of root-hair tips) 

suggested that these signal molecules were recognized by receptors placed upstream of the CSP.  
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Fig.5 Model describing the receptors involved in LCO perception and the components of CSP.    

This scheme proposed by (Venkateshwaran et al., 2012) shows the perception of Nod factors by 

LjNFR5/MtNFP and LjNFR1/MtLYK3 in case of rhizobial symbiosis and unknown receptors for 

Myc-LCOs, the signal transduction through the plasma membrane localized LRR-receptor kinase, 

SYMRK/DMI2 the first component of CSP, and the downstream signaling to the nuclear ion channel 

CASTOR,POLLUX/DMI1 and calcium pump MCA8 which are triggering calcium spiking resulting 

in the activation of the calcium/calmodulin-dependent protein kinase, CCaMK /DMI3, which then 

coordinates the expression of symbiotic genes, determining either nodulation or mycorrhization (For 

detailed description see the text).  
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Through studies of Medicago truncatula and Lotus japonicas lysin-motif receptor-like kinases (LysM-

RLKs) crucial for the rhizobial symbiosis were identified (Cullimore and Dénarié, 2003). This family 

of receptors has now also been implicated in the AM symbiosis and in pathogen responses as 

described below. 

Perception of symbiotic signals by plant LysM RLKs  

 Forward genetic studies performed on L. japonicus symbiotic mutants impaired in Nod factor 

responses led to the identification of plasma membrane located Nod Factor Receptors, LjNFR1 and 

LjNFR5 (Madsen et al., 2003; Radutoiu et al., 2003). In M. truncatula synteny with a region in pea 

involved in Nod factor recognition identified a cluster of genes including MtLYK3, which is highly 

similar to LjNFR1 (Limpens et al., 2003). M. truncatula MtNFP was later identified from a Nod factor 

response mutant by homology to LjNFR5 (Arrighi et al., 2006). Later on similar symbiotic receptors 

were also identified for Glycine max (Indrasumunar et al., 2011) and Pisum sativum (Zhukov et al., 

2008). Structurally these receptors belong to LysM-type receptor like kinases (LysM-RLKs) 

consisting of an extracellular domain with three Lysin motifs (LysM), which are known to bind 

GlcNAc containing compounds (Mesnage et al., 2014), a transmembrane region and an intracellular 

serine/threonine kinase-like domain. Lotus NFR5 and its orthologous protein from Medicago, NFP, 

lack the activation loop in their kinase domains and have been shown to possess so called dead kinases 

(Oldroyd, 2013; Madsen et al., 2011). In contrast NFR1 and LYK3 possess active kinases required for 

their symbiotic functioning and capable of auto and trans-phosphorylation (Fig.5) (Fig.6) (Madsen et 

al., 2011; Klaus-Heisen et al., 2011).  

 In accordance with symbiotic phenotypes, NFR1 and NFR5 are equally important for early 

Nod factor responses as well as rhizobial infection and nodulation. Identical mutant phenotypes 

determined by both receptors have led to the hypothesis of their hetero-oligomerization which was 

proposed to be required for Nod factor perception and downstream signaling. This suggestion is 

supported by the fact that transformation of M. truncatula with both NFR1 and NFR5 allows it to 

interact with Mesorhizobium loti, which normally nodulates L. japonicus (Radutoiu et al., 2007). 

Recent studies suggest that both NFR1 and NFR5 independently from each other bind Nod factors 

with nano-molar affinity (Broghammer et al., 2012). Similarly to NFR5, NFP mutants are impaired in 

all symbiotic responses to purified Sinorhizobium meliloti Nod factors, infection and nodule 

organogenesis (Ben Amor et al., 2003). LYK3 mutants, being defective in proper root hair curling, 

infection threads formation and progression of CCD, still retain early symbiotic responses such as 

calcium spiking and root hair deformation, therefore differing from the NFR1 and NFP phenotypes. 

This suggests that LYK3 serves as an entry receptor for rhizobial infection, whereas NFP acts as a 

signaling receptor for early Nod factor responses, thus supporting the two-step model of Nod factor 

perception in Medicago, based on studies of S. meliloti mutants (Ardourel et al., 1994; Smit et al., 

2007).  

 Despite NFP being predicted to associate with S. meliloti Nod factor by homology modeling  
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Fig.6 Schematic representation of plant lysin motif (LysM) proteins.  

The main three groups of plant LysM proteins: the LysM Receptor Like Kinases (LysM-RLK) 

involved in both symbiosis and immunity possessing either an active kinase (LYKs) or a dead kinase 

(LYR); defense related GPI-anchored LysM proteins lacking intracellular kinase domains (LYMs). 

Abbreviations: PM, plasma membrane. Adapted from (Gust, Willmann, Desaki et al., 2012). 
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and docking, (Mulder et al., 2006), to date no direct binding was demonstrated for Nod factors to 

either NFP or LYK3 (Bono et al. unpublished). The inability to bind LCO may suggest that NFP and 

LYK3 undergo hetero-oligomerization or complex formation with another receptor which is capable to 

bind LCOs. The existence of an additional yet unidentified Nod factor binding protein in M. 

truncatula was also suggested from a MtNFP/PsSYM10 domain swapping study showing that 

MtNFP/PsSYM10 do not discriminate sulphated and non-sulphated Nod factors (Bensmihen et al., 

2011). A recently identified in M. truncatula LCO binding LysM RLK, LYR3 (Fliegmann et al., 2013) 

could be a good candidate for such a co-receptor (see chapter I).  

 Like NFR1 and NFR5, there is evidence that LYK3 and NFP functionally interact with each 

other. This is suggested from the hypersensitive response observed in case of their co-expression in N. 

benthamiana leaves (Pietraszewska-Bogiel et al., 2013). The recent demonstration that LYK3 and 

NFP hetero-oligomerization only occurs in specific nodule cells preparing for infection, has led to the 

suggestion that their interaction needs to be carefully regulated to avoid defense responses (Moling et 

al., 2014). The involvement of LYK3 in partner specificity is evident from studies in which plants 

with silenced LYK3 or weak LYK3 mutants (hcl-4) were shown to have reduced nodulation with 

nodL and nodFE S. meliloti mutants (Limpens et al., 2003; Smit et al., 2007). Interestingly in M. 

truncatula host specificity determined by LYK3 was suggested to be partly dependent on its 

interaction with an E3 ubiquitin ligase, PlantU-box protein 1 (PUB1), because RNAi PUB1 plants 

were shown to be better nodulated by nodL and nodFL mutants in comparison to wild-type plants 

(Mbengue et al., 2010). In M. truncatula NFP has also been shown to play a role in plant immunity 

(Gough and Jacquet, 2013), which has led to the suggestion that it may play an adapter role in 

different protein complexes.    

 Neither NFR5 and NFP nor NFR1 and LYK3 are essential for mycorrhization. However Myc 

LCOs, produced by AM fungi, were shown to trigger symbiotic responses partially dependent on NFP 

(Maillet et al., 2011). Additionally a potential ortholog of NFR5/NFP from P. andersonii was shown 

to have a dual function and serve for both nodulation and mycorrhization (Op den Camp et al., 2011). 

Thus taken together the fact that AM fungi produce symbiotic signals which are recognized by the 

plants and trigger symbiotic responses, it is hypothesized that specific receptor possessing the ability 

of Myc LCOs perception should exist. The recent finding that NFR1/LYK3 mutants are partially 

defective for mycorrhization, suggests that this receptor may act partially redundantly with other 

LysM-RLKs for this function (Zhang et al., 2015).   

 

 The production of lipo-chitooligosaccharides (Nod factors) by Rhizobia and their following 

recognition by plant LysM receptor like kinases (LysM-RLK) is proposed as a symbiotic mechanism 

appropriated by the legume/bacterial symbiosis from the AM association. This hypothesis is firstly 

supported by the ability of AM fungi to produce Myc-LCOs which are structurally close to Nod 

factors (Maillet et al., 2011) and secondly by the involvement of plant LysM-RLKs in mycorrhization. 

In Parasponia andersonii, a single gene, NFP, was shown to be necessary for the Parasponia  
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symbiosis with both Rhizobia and AM fungi (Op den Camp et al., 2011). Interestingly, in M. 

truncatula NFP although being involved in the recognition of the Myc-LCOs is however not essential 

for AM symbiosis formation (Maillet et al., 2011; Zhang et al., 2015). This may suggest that, in 

contrast to Parasponia, legumes have improved on their inherited AM symbiosis signaling machinery 

by evolving additional receptors specifically for the perception of Nod factor symbiotic signals. Indeed 

it has been suggested that the whole genome duplication event occurring approximately 55 mya in the 

legume family, could have given rise to additional receptors which became specialized for nodulation 

(Young et al., 2011).  

 The presence of at least 20 LysM-RLKs in legumes, suggest that this family has evolved for 

different functions. 

Perception of chitooligosaccharides and other PAMPs 

 Beside perception of symbiotic signals LysM proteins were shown to be in involved in the 

recognition of several pathogen-associated molecular patterns (PAMPs) such as fungus-derived 

chitooligosacharides or bacteria- derived peptidoglycans.  

 The first LysM receptor for chitin, named OsCEBiP (Oryza sativa chitin elicitor binding 

protein), was identified from the plasma membrane of rice cells. By its structure this protein lacks an 

intracellular kinase domain and consists of an extracellular region with LysM domains, which is 

attached to the plasmamembrane by a GPI anchor. OsCEBiP was shown to bind chitin and to be 

essential for chitin responses since its silencing abolished plant defense responses to chitin and 

decreased plant resistance to pathogenic fungi (Kaku et al., 2006; Kishimoto et al., 2010). Recently a 

biochemical/structural approach has suggested that CEBiP molecules simultaneously bind to one 

chitin oligosaccharide, resulting in the dimerization of CEBiP. To transduce the chitin signal, a LysM-

RLK called OsCERK1 (Oryza sativa chitin elicitor receptor kinase 1) was shown to be essential. This 

protein does not bind chitin but heterodimerizes with CEBiP, triggering OsCERK1 phosphorylation 

and activation of plant defense responses (Fig.6) (Shimizu et al., 2010; Hayafune et al., 2014).  

 Studies performed in Arabidopsis thaliana resulted in the identification of AtCERK1 (Miya et 

al., 2007), which is essential for chitin elicitor signaling. Unlike OsCERK1, the Arabidopsis protein 

binds chitin and crystallization studies  have demonstrated that chitin gets accommodated by its 

second LysM domain (Liu et al., 2012) leading to homo-oligomerization. The affinity of AtCERK1 

for chitin is quite low and recently another Arabidopsis LysM-RLK, AtLYK5 has been identified, 

possessing much higher affinity binding to chitin. Carrying an inactive kinase domain AtLYK5 has 

been shown to interact and trigger phosphorylation of AtCERK1, which then activates plant defense 

responses (Cao et al., 2014; Miya et al., 2007; Wan et al., 2008). A third A. thaliana LysM-RLK, 

AtLYK4, may act together or redundantly with AtLYK5, as absolute loss of chitin defense responses 

is obtained only through simultaneous mutation of AtLYK4 and AtLYK5 (Cao et al., 2014). 

Additionally chitin binding was demonstrated for the AtLYM2 protein which is closely related to 

OsCEBiP, however in Arabidopsis this protein is not essential for the activation of plant defense  
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responses but controls chitin triggered immunity at the level of the intercellular communication via 

plasmodesmata (Shinya et al., 2012; Faulkner et al., 2013).  

 Recently two A. thaliana LysM receptors, LYM1 and LYM3, were shown to bind directly 

bacterial peptidoglycan (PGN) and determine plant defense responses triggered by this elicitor 

(Willmann et al., 2011). Both LYM1 and LYM3 are structurally similar to OsCEBiP/AtLYM2 

consisting of three LysM domains in the extracellular regions and lacking a kinase domain. Single 

lym1 and lym3 mutants were shown to have identical phenotypes possessing enhanced susceptibility to 

bacterial infection. This suggests that LYM1 and LYM3 are not functionally redundant and together 

are probably forming a PGN recognition complex. Interestingly AtCERK1 was shown to be also 

involved in PGN-triggered immunity being however unable to bind PGN. In the proposed model of 

PGN recognition LYM1 and LYM3 heterodimerize after PGN perception and then interact with 

AtCERK1 resulting in its activation and elicitation of plant defense responses. 

 

 In addition to LysM-RLKs plants carry many other RLKs (over 200 in Arabidopsis) which are 

evolutionarily related by possessing similar kinase domains, but in which the trans-membrane region 

is linked to different classes of ECDs (Shiu and Bleecker, 2001). Among them the best studied are two 

leucine- rich repeat receptors (LRR-RLKs) of A. thaliana, AtFLS2 receptor for bacterial flagellin 

(Chinchilla et al., 2006) and AtEFR receptor for bacterial elongation factor EF-TU (Zipfel et al., 

2006). In case of FLS2 it was shown to bind bacterial flagellin-derived peptide ligand flg22 together 

with its co-receptor LRR-RLK AtBAK1. Perception of flg22 was shown to trigger FLS2 hetero-

dimerization with BAK1 leading to FLS2 activation and subsequent appearance of plant defense 

responses (Sanchez-Vallet et al., 2015). A similar mechanism of ligand perception (elf18) with BAK1 

as a co-receptor was demonstrated for AtEFR receptor (Roux et al., 2011). 

 Binding of specific elicitors to their ECDs can be used for the creation of chimeric proteins 

which are allowing to enlarge the number of biological responses which could be triggered by 

particular signal molecules. Thus, for example, several chimeric receptors were created by exchanging 

the ECDs between the AtCERK1, EFR and FLS2 proteins (De Lorenzo et al., 2011; Wang et al., 

2014) (see chapter II).   
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 As described in the introduction, perception of LCO signal molecules plays a crucial role in 

the rhizobial symbiosis and is thought to be also required for the establishment of the mycorrhizal 

symbiosis. To date two genetically identified receptors NFP and LYK3 were clearly shown to be 

involved in LCO perception, however neither appears to bind these signal molecules directly. 

Together with the unknown mode of LCO perception, the biochemical functioning of LYK3 and NFP 

is unclear.   

 Recently identified with a biochemical approach, the M. truncatula LYR3 protein possesses 

high affinity binding to Nod factors and Myc-LCOs versus COs, thus it is presumed to have a specific 

symbiotic function. However, to date its biological role in the two symbioses remains unclear. Also it 

is not known whether orthologs of LYR3 are present in other legume species and if the LCO binding 

ability is conserved among these orthologs. 

 Thus, to improve existing knowledge about the biological and biochemical functioning of 

NFP, LYK3 and LYR3 the following specific objectives were addressed during my PhD project.  

1. To analyze Nod and Myc- LCO binding to MtLYR3 orthologs from different legume 

species.  

 

This objective addresses whether LCO binding ability is conserved among M. truncatula 

LYR3 protein orthologs from different legume species (Pisum sativum, Glycine max, 

Phaseolus vulgaris, Lotus japonicus) including Lupinus angustifolius which is blocked in 

mycorrhization. This together with the investigation of LYR3 binding specificity towards Nod 

and Myc LCOs should result in better understanding of the role that the LYR3 protein could 

play in the rhizobial and mycorrhizal symbioses.  

Furthermore biochemical characterization of LCO binding to LYR3 aiming to understand 

mode of LCO perception will be performed.  

 

2. To study if LCO binding by LYR3 might be used for the induction of plant responses in 

non-legumes.  

 

By using a domain-swapping approach, chimeric receptors will be created consisting of the 

LYR3 extracellular domain fused to the kinase domain belonging to receptors involved in 

plant defense. Through expression in model plants, the ability of the chimeric receptors to 

trigger particular defense responses after LCO perception will be examined. This will 

demonstrate the possibility of using LYR3 to create new applications for LCO.    

 

3. To study activation by LCOs of NFP and LYK3, using phosphorylation as an activation 

sign. 

 

Playing crucial roles in the rhizobial symbiosis and being partially involved in Myc-LCO  
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responses and the mycorrhizal symbiosis respectively, NFP and LYK3 are still poorly 

understood in terms of their relations with LCO. Here we propose to investigate LCO 

perception by NFP and LYK3 through detection of their phosphorylation after symbiotic 

treatments.  
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Chapter I 

Molecular Basis of Lipo-chitooligosaccharide 

Recognition by the Lysin Motif Receptor-like 

Kinase LYR3 in Legumes 
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Background: Medicago Lysin Motif Receptor-
Like Kinase LYR3 is a high-affinity binding 
protein for lipo-chitooligosaccharidic (LCOs) 
symbiotic signals.  
Results: LYR3 from other legumes except lupin 
bind LCOs and domain swapping/mutagenesis 
reveals regions required for binding.  
Conclusion: Residues in LysM3 of LYR3 play a 
crucial role in LCO recognition. 
Significance: Elucidating the LCO binding 
mechanisms helps to understand how plants 
discriminate friends producing LCOs, from foes. 
 
ABSTRACT 
 In Medicago truncatula, the lysin motif 
(LysM) receptor-like kinase LYR3 has been 
recently identified as a high affinity binding 
protein for lipo-chitooligosaccharides (LCOs), 
i.e. the Nod factors and Myc-LCO signals 
produced by symbiotic Rhizobia bacteria and 
arbuscular mycorrhizal fungi respectively. In 
this work, LYR3 from other legume species 
has been cloned and characterized in terms of 
affinity and specificity for the Myc-LCOs and 
the Nod factors produced by different 
Rhizobial symbionts. All the LYR3 orthologs, 
except those from two Lupinus species, where 
no LCO binding could be detected, exhibited 
binding characteristics similar to those of the 
Medicago protein: a high affinity for LCO but 
not for chitooligosaccharides, and no strong 
selectivity towards the chemical substitutions 
of the Nod factors which are important for the 

specific recognition of the rhizobial 
symbionts. Swapping experiments between 
each of the three LysMs of the extracellular 
domain of the M. truncatula and Lupinus 
angustifolius LYR3 proteins revealed the 
crucial role of the third LysM in LCO 
binding. Further site directed mutagenesis on 
this domain identified residues involved in 
high affinity binding. These studies suggests 
that LCO recognition by LYR3 might differ 
from that of chitin perception by structurally-
related LysM receptors identified in 
Arabidopsis and rice, for which ligand 
binding relies primarily on the second lysin 
motif. 
_______________________________________
_ 
  
 In plant-microbe interactions, lipo-
chitooligosaccharides (LCOs)3, namely rhizobial 
Nod factors and Myc-LCOs produced by 
arbuscular mycorrhizal (AM) fungi, are 
important signaling molecules for establishing 
two major agricultural and ecological root 
endosymbioses. Nod factors are essential for the 
establishment of the nitrogen-fixing symbiosis 
with legumes, whereas Myc-LCOs stimulate 
mycorrhization of higher plants (1). Nod factors 
and Myc-LCOs are LCOs consisting of a chitin 
backbone made of 4 or 5 β-1,4-linked N-
acetylglucosamine (GlcNAc) units, in which the 
nonreducing terminal unit is de N-acetylated and 
N-acylated by a fatty acid. Chemical 
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substitutions on both reducing and non-reducing 
ends and the length and degree of unsaturation of 
the fatty acid chain characterize the Nod factors 
produced by each rhizobial strain and are 
important determinants of host legume 
specificity (2). To date only one AM fungus has 
been studied and it is not clear how the lower 
diversity of LCOs (3) and the production of 
related short chain chitooligosaccharides (COs) 
(4), are involved in the wide host range of these 
fungi. Beside the symbiotic signals, longer chain 
COs composed of 6 to 8 GlcNAc units, 
originating from the cell wall of pathogenic 
fungi, are involved in plant immunity (5).  
 How structurally-related LCO/CO signals 
are perceived, allowing plants to discriminate 
different friends and foes, is an important 
question. A major breakthrough has been 
achieved by the identification of plant lysin 
motif (LysM)-containing proteins, such as 
extracellular receptor-like proteins (LYMs) and 
trans-membrane receptor-like kinases (LysM-
RLKs), termed LYKs (LysM domain-containing 
RLK)  or LYRs (LYK-related), as key 
components of CO and LCO perception (6,7). 
All these proteins contain three LysMs, each 
consisting of 40-50 amino acids, separated by 
linker regions containing two Cys-X-Cys motifs. 
For chitin and COs, LysM-RLKs (AtCERK1, 
AtLYK4 and AtLYK5) and a LYM protein 
(OsCEBiP) have been shown to bind these 
GlcNAc-containing signals and to be involved in 
defense responses in Arabidopsis and rice 
respectively (8-14). Structural studies provided 
further evidence that the second lysin motif 
(LysM2) of AtCERK1 and OsCEBiP mediates 
interaction with the GlcNAc residues (15,16). 
 Recently, a biochemical approach has 
identified the LysM-RLK LYR3 of the legume 
Medicago truncatula as a high affinity LCO-
binding protein (17). This protein is highly 
selective for the LCO structure since it exhibited 
a high affinity (Kd in the nanomolar range) for 
Nod factors and Myc-LCOs but not for COs (Kd 
in the micromolar range). Here we report the 
characterization of LYR3 orthologs in other 
legumes. We found that, among the tested 
legumes, only the lupin ortholog was unable to 
bind LCOs. In order to better understand the 
molecular basis of LCO recognition, we 
developed a chimeric gene and domain-
swapping approach to pinpoint the role of 
individual lysin motifs in ligand binding. 
  
EXPERIMENTAL PROCEDURES  
 Cloning and transient expression of LYR3 
from different legumes - BLAST searches in 
different genomic databases 

(http://blast.ncbi.nlm.nih.gov/; http:// 
www.kazusa.or.jp/; http:// www. 
phytozome.org/) using the MtLYR3 sequence 
were performed to identify putative orthologs in 
different legume species.  Candidate genes were 
then examined by micro-synteny analysis. Based 
on the sequences available in the databases for 
the different plant species, specific primers were 
designed and all the putative orthologous genes 
were amplified using Phusion high fidelity DNA 
polymerase (New England Biolabs, 2000 
units/ml) and genomic DNA from the following 
plant lines as template: Pisum sativum cv. 
Cameor, Lotus japonicus Gifu B-129-S9, 
Phaseolus vulgaris G19883, Glycine max cv. 
Williams 82, Lupinus angustifolius cv. Turkus, 
Lupinus atlanticus GM083B. The genes were 
then cloned via Gateway technology into 
pENTR, sequenced, and phylogenetic analysis of 
the sequences was performed 
(http://www.phylogeny.fr). The genes were 
transferred into binary vectors to create fusions 
with YFP. The proteins were then expressed in 
Nicotiana. benthamiana leaves and verified after 
3-4 days by fluorescent microscopy. Membrane 
fractions were prepared from extracts of 
expressing leaves and equal quantities of 15-25 
ug membrane proteins per lane were separated 
by SDS-PAGE and the LYR3 proteins were 
checked by immunoblot detection using anti-
GFP antibodies (amsbio, 1/7000). The detailed 
procedure for the cloning, expression and 
analysis of LYR3 is described in (17). 
 Production of the LYR3 chimeric proteins 
and HCA analysis - All the chimeric proteins 
were cloned by using the Golden Gate 
technology. Fragments containing single LysM 
domains were amplified using primers 
specifically designed for Golden Gate reaction, 
containing BsaI restriction sites and compatible 
cohesive ends. The Cys-X-Cys motifs delineated 
the ends of the LysM1 and LysM2 domains such 
that the LysM1 domain contained the N-terminal 
signal peptide (SP) and flanking region and the 
LysM3 domain contained the flanking region up 
to the predicted trans-membrane (TM) domain. 
All internal BsaI restriction sites detected inside 
of the fragments to be combined were eliminated 
by site-directed mutagenesis. Fragments of 
LysM3 containing point mutations were obtained 
either by site-directed mutagenesis or by custom 
DNA synthesis. Chimeric proteins were 
assembled from the single LysM containing 
fragments as well as YFP tagged NFP (Nod 
Factor Perception) trans-membrane TM and 
intracellular kinase domain (NFP/YFP chimera) 
into the pCAMBIA2200 binary vector as 
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previously described (17), and transiently 
expressed in N. benthamiana leaves. 
HCA was performed using the dedicated 
program (http://mobyle.rpbs.univ-paris-
diderot.fr/). 
 Confocal microscopy – Disks of 
transformed leaves were de-aerated with a 10 ml 
syringe filled with water and mounted in water 
on a microscope slide. Image series covering the 
entire depth of the lower epidermis were taken 
with a Leica SP2 confocal microscope with the 
514 laser line for excitation and an emission 
window from 525 to 580 nm, using a 40x0.8 
water immersion objective. Images are presented 
as maximum projections covering at least half of 
the total depth of the lower epidermis. 
 Ligands and binding assays – NodRlv-
IV(Ac, C18:4∆2,4,6,11) was isolated from the 
bacterial supernatant of R. leguminosarum 
LPR5045 (pIJ1089) (18) and purified by reverse-
phase HPLC on a C18 column as described in 
(19). Myc-LCOs and other LCOs were described 
in (3,19,20). LCO-V(C18:1∆11, Me-Fuc) was a 
gift of Novozymes BioAg, Inc (Milwaukee, 
Wisconsin, USA). 
 Nod factor binding assays were performed 
as described in (17), using membrane fractions 
(containing 10–100 µg protein) isolated from the 
different LYR3 and LYR3 chimera expressing 
leaves and 0.4–2 nM of 35S-LCO (LCO-
IV(C16:2∆2,9, 35S). At least two replicate 
extracts were analysed with three binding assays 
and the standard error of the mean (SEM) was 
calculated. The specific binding activity of the 
expressed proteins was normalized by 
densitometry scanning of western blots. 
 
 
RESULTS 
 Identification of LYR3 orthologs in 
legumes - In M. truncatula NFP and LYR3 are 
located as an inverted tandem repeat on 
chromosome 5 (21,22). BLAST searches in 
different genomic databases using the MtLYR3 
sequence identified the closest homologs. The 
putative orthologous genes in P. sativum, L. 
japonicus, P. vulgaris, G. max, L. angustifolius 
and L. atlanticus were then selected, where 
possible, by microsynteny analysis. This was 
particularly useful to choose two, probably 
homoeologous genes on chromosomes 1 and 11 
from allotetraploid G. max (23). The deduced 
protein sequences showed high levels of identity 
ranging from 64 to 95% for the entire proteins 
and from 71 to 96% for their extracellular 
domains (Fig. 1A). The phylogenetic analysis 
confirmed that these genes were the orthologs of 

MtLYR3, with PsLYR3 being the closest one 
(Fig. 1B). 
 LYR3 orthologs in legumes, except in 
lupin, exhibit LCO binding properties - All the 
MtLYR3 orthologs were expressed in Nicotiana 
benthamiana leaves as YFP fusions, via A. 
tumefaciens infiltration. After 3-4 days, the YFP 
fluorescence was detected as expected in the 
plasma membrane, suggesting that all the 
proteins were properly folded, processed and 
correctly localized. Fig. 2A shows the expression 
of PsLYR3 and LanLYR3 as representatives of 
the set of proteins. Immunoblot analysis of 
membrane extracts prepared from expressing N. 
benthamiana leaves reported in Fig. 2B, showed 
that the different LYR3 orthologs were well 
expressed. 
 The affinity of the LYR3 orthologs for 
LCOs was then determined by radioligand 
binding experiments using a 35S-LCO (LCO-
IV(C16:2∆2,9, 35S)). This compound 
corresponds to the Nod factor produced by 
Sinorhizobium meliloti (NodSm factor) and was 
previously used to characterize MtLYR3 (17). 
Except for the orthologs of the two lupin species, 
where no binding was detectable, all the other 
orthologs showed clear binding activity that was 
further characterized. Scatchard analysis of 
saturation binding experiments revealed the 
presence of a single class of binding sites for 
each LYR3 protein, exhibiting a high affinity 
(Kd) for the 35S-LCO. The affinities for the 35S-
LCO, reported in Table I, showed that they were 
in the same order of magnitude as that of 
MtLYR3 (Kd = 25 nM). In order to characterize 
the selectivity of the binding of the different 
orthologs, competition experiments were 
performed with various LCOs including Myc-
LCOs (Myc-LCO-IV(C16:0, S); Myc-LCO-
IV(C16:0); Myc-LCO-IV(C18:1∆9, S)) (3) or 
synthetic and natural Nod factors corresponding 
to those produced by the symbionts of P. sativum 
(NodRlv-IV(Ac, C18:4∆2,4,6,11)), P. vulgaris 
(NodRt-V(Me, C18:1∆11)) and G. max (LCO-
V(C18:1∆11, MeFuc)) (24). CO-V was used as a 
competitor to determine the selectivity of 
recognition of LCOs vs COs. As reported in 
Table I and as previously observed for MtLYR3 
(17), all the tested orthologs showed a high 
selectivity for the lipo-chitooligosaccharidic 
structure, since CO-V was a poor competitor of 
35S-LCO binding (Ki > 10 µM). None of the 
orthologs discriminated the chemical 
substitutions of the Nod factors involved in the 
specific recognition between Rhizobia and their 
host plants. For example the NodRlv-IV(Ac, 
C18:4∆2,4,6,11), with a poly-unsaturated fatty 
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acid representing the major determinant of host 
specificity for P. sativum (25), had a comparable 
affinity for all the LYR3 orthologs. LYR3 
orthologs also exhibited a high affinity for the 
Myc-LCOs which was comparable to that for the 
Nod factors. However, the affinity of the two G. 
max homoeologues for the Myc-LCO-IV(C16:0) 
was lower compared to that of the other legumes. 
Considering all the data reported in Table I, the 
affinity for the LCOs appeared to increase with 
either increasing the length of the acyl chain 
from 16 to 18 or that of the oligochitin backbone 
from IV to V, suggesting that a LCO-V (C18) 
structure could be a common feature for high-
affinity binding of LCOs to the LYR3 proteins. 
The absence of any detectable binding of L. 
angustifolius (LanLYR3) and L. atlanticus 
(LatLYR3) LYR3 proteins was unexpected 
considering the overall level of homology of the 
extracellular domain within the legume orthologs 
(Fig. 1).  
 LysM3 is required for high affinity binding 
to LCOs - We took advantage of the lack of LCO 
binding to LanLYR3 to better understand the 
molecular basis of LCO recognition by 
MtLYR3. For this purpose we swapped the 
LysMs between MtLYR3 and LanLYR3 to 
determine their role in high-affinity binding to 
LCOs. Golden Gate cloning was used to obtain 
the individual LysMs and associated flanking 
regions of MtLYR3 and LanLYR3 (Fig.3A). 
They were then assembled in different 
combinations to construct eight chimeric 
extracellular domains (ED) where each LysM of 
LanLYR3 was replaced by the corresponding 
one of MtLYR3. These constructs were all made 
as NFP/YFP chimeras to facilitate expression 
and detection (17). 
 The eight chimeric proteins were produced 
in N. benthamiana leaves and all of them showed 
some localization in the plasma membrane as 
observed by confocal microscopy for LLM, 
MMM, MML or LLL taken as examples (inset 
Fig. 3B). The membrane fractions prepared from 
the expressing leaves were then probed by 
immunoblot to determine the level of expression 
of each chimeric protein, before testing for their 
LCO-binding ability. The results reported in Fig. 
3B showed that all the chimeras were well 
expressed, but only four, including that with the 
reconstituted ED of MtLYR3 (MMM), were able 
to bind the 35S-LCO. The other three chimera 
which bound the 35S-LCO all possessed the 
LysM3 of MtLYR3 and either the LysM1 and 
the LysM2 of LanLYR3 (LLM) or the LysM1 of 
LanLYR3 and the LysM2 of MtLYR3 (LMM) or 
vice-versa (MLM). To examine whether the 
MtLysM3 and/or its flanking region confers high 

affinity binding, two additional chimeras were 
made: one with the LanLysM3 flanked by the 
linker regions of MtLysM3 (LLmLm), and the 
other one, with MtLysM3 flanked by the linker 
regions of LanLysM3 (LLlMl). Analysis of these 
chimeras demonstrated that MtLysM3, and not 
its flanking regions, plays a critical role in Nod 
factor binding, since LLmLm remained inactive 
like LLL, whereas LLlMl gained binding activity 
(Fig. 3B).  
 Scatchard plots deduced from saturation 
experiments for the reconstituted ED of MtLYR3 
(MMM) and the chimeric proteins LLM, LMM 
and MLM revealed the presence of a single class 
of binding site. The affinities (Kd) of these 
different binding proteins for the 35S-LCO, 
reported in Fig. 3B, showed that they were 
comparable to that of MtLYR3 (17). All the 
chimeras showed a similar specificity for LCOs, 
since a concentration of up to 2 µM of CO-V did 
not compete for 35S-LCO binding (data not 
shown).  
 To determine if the ligand recognition 
only depended on the third lysin motif, chimeras 
consisting of an ED containing MtLysM3 alone 
or MtLysM1 followed by MtLysM3 in tandem 
were produced. As revealed by confocal images 
of N. benthamiana expressing leaves, the 
resulting YFP-tagged proteins were mis-
localized, suggesting a problem of protein 
folding (data not shown). The membrane 
fractions prepared from the expressing leaves did 
not show any binding activity.  
 Several amino acids, including Y-228 in 
LysM3 are critical for LCO binding - To further 
characterize the molecular basis of LCO 
recognition by LYR3 proteins, point mutations 
were introduced in the LysM3 of LanLYR3 with 
the flanking regions of MtLysM3 (LLmLm) or 
in the LysM3 of MtLYR3 with the flanking 
regions of LanLysM3 (LLlMl) in order to obtain 
either a gain or a loss of binding activity. A first 
set of point mutations was designed by targeting 
W196, L222 and Y228, based on the numbering of 
the sequence of MtLYR3, which are highly 
conserved in the LysM3 of LYR3 proteins 
exhibiting LCO-binding activity but are not 
present in LanLysM3 (Fig. 4A upper panel). As 
shown (Fig. 4A), the substitution Y228Q in the 
ED of MtLysM3 completely abolished the 
binding activity of the chimeric protein LLlMl, 
while the other substitutions, W196G and L222M, 
did not provoke any change. However, none of 
the reverse substitutions in the LysM3 of 
LanLYR3 conferred binding activity, suggesting 
that residues in addition to Y228 are required.  
 MtLYR3 and LanLYR3 share 84% and 
74% identity for LysM1 and LysM2 
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respectively. Their LysM3 domains are less 
conserved with only 70% identity (with 15 
amino acids different). Moreover, hydrophobic 
cluster analysis (HCA), revealed a different 
pattern of structural features for the LysM3 of 
LanLYR3 compared to that of MtLYR3 (Fig. 
4B). Therefore, mutations were introduced in the 
sequence of LanLysM3 (G196W, D197G, T211F, 
N219T, M222L, N224Q, Q228Y) in order to mimic 
MtLYR3 in terms of HCA pattern and conserved 
residues present in LYR3 proteins exhibiting 
high affinity LCO-binding (Fig. 4B). The 
mutated protein produced in N. benthamiana 
leaves was correctly addressed to the plasma 
membrane and showed a binding activity 
corresponding to an affinity (Kd) of 111 nM for 
the 35S-LCO, as determined by the Scatchard 
plot analysis of a saturation experiment (Fig. 
4C). Therefore the introduced mutations in 
LanLysM3 to mimic MtLysM3, resulted in a 
clear gain of binding activity for LanLYR3 even 
if the affinity of the mutated protein did not fully 
reach that of LLlMl (Kd = 36 nM).  
 
DISCUSSION 
 In our search for LCO binding proteins 
using a biochemical approach, we have recently 
identified in M. truncatula the LysM-RLK 
LYR3 as a high affinity LCO-binding protein. 
The affinity of LYR3 for Nod factors and Myc-
LCOs was similar and in the nM range, in 
contrast to the µM affinities for COs of different 
degrees of polymerization corresponding to 
signals produced by either pathogens or AM 
fungi (17). In the present work LYR3 orthologs 
have been identified in a set of nitrogen fixing 
legumes (Fig. 1) including the other model 
legume L. japonicus and legumes of agronomical 
interest, among them, lupin, a rare example of a 
legume species, being a non-host for AM fungi 
(26). We showed that all the MtLYR3 orthologs, 
except those from the two lupin species, are high 
affinity LCO-binding proteins. The binding was 
specific for the LCO structure (Nod factors and 
Myc-LCOs) since the affinity for COs was over 
500-fold less than for the best LCO (Table I). 
However, no selectivity was observed towards 
the different substitutions of the Nod factors 
involved in host-specific recognition (27), 
suggesting that LYR3 does not play a particular 
role in the recognition of the specific Nod factors 
produced by rhizobial symbionts. The binding 
characteristics of LYR3 are more in line with 
either a generic role in the symbiosis with 
Rhizobia or a role in the AM symbiosis. This 
latter role is further suggested by the observation 
that LYR3 from lupins, which does not form the 

AM symbiosis, lacks LCO binding activity. 
However, transcriptomic and genomic data 
indicate that several genes important for the 
establishment of the mycorrhizal symbiosis, such 
as RAM2 are missing in lupins (28). Thus the 
loss of binding to LYR3 in lupins is unlikely to 
be the sole cause of the lack of mycorrhization in 
these species but could be one of many changes 
that occurred following the loss of selective 
pressure for the functioning of the AM 
symbiosis.  
 The lack of binding activity of the lupin 
orthologs, which share 75% identity in the ED 
with the other orthologs that bind LCOs (Fig. 1), 
gave the opportunity to address the question of 
the role of the individual lysin motifs in LCO 
recognition by the LYR3 proteins. Analysis of 
chimeric LysM domain-swapped proteins 
revealed the importance of LysM3 for high 
affinity binding (Fig. 3). Indeed, swapping the 
LysM3 of LanLYR3 by the corresponding one of 
MtLYR3 resulted in a gain of binding activity, 
whereas LysM1 and LysM2 were 
interchangeable between LanLYR3 and 
MtLYR3 provided that MtLysM3 was present in 
the chimeras.  
 Docking studies and structural analyses of 
plant LysM proteins have shown that a single 
LysM is able to accommodate a Nod factor or 
CO (15-17,29-31). For AtCERK1 and OsCEBiP, 
the second lysin motif physically interacts with 
the GlcNAc residues (15,16). For the LysM 
effector Ecp6 of the fungal pathogen 
Cladosporium fulvum, crystal structure analysis 
established that chitin binding was achieved by 
two binding sites, one in LysM2 with an affinity 
in the micromolar range and a second one in a 
groove between LysM1 and LysM3, exhibiting a 
picomolar affinity (32). Our attempts to examine 
whether LCO binding to LYR3 requires either 
LysM1 or LysM2 in addition to LysM3 were 
inconclusive. Chimeric proteins, containing 
either the LysM3 of MtLYR3 alone or in a 
tandem repeat following LysM1, were not 
correctly addressed to the plasma membrane and 
thus the lack of binding to these proteins may be 
due to incorrect folding and processing, which is 
known to affect the biological activity of LysM-
RLKs (33).  
 Site-directed mutagenesis performed in 
LysM3, allowed Y228 to be identified as a critical 
residue for LCO recognition, since Y228Q 
substitution in the ED of MtLysM3 completely 
abolished the binding activity (Fig. 4). Gain of 
function studies suggest that this Y residue must 
be in a particular structural context to allow LCO 
recognition. The lack of conservation of this 
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residue in the CO binding sites of AtCERK1 or 
Ecp6 may suggest that it plays a specific role in 
the recognition of LCOs. This would be 
consistent with differences in the mode of 
binding of asymmetrical LCOs, compared to 
symmetrical COs (15,16, 32). LCO recognition 
by LYR3 could involve the LysM3 to 
accommodate the acyl chain in an accessory 
binding site close to a site for the 
oligosaccharidic backbone, similar to the 
mechanism described for the binding of a 
glycolipid to an extended binding site of a C-
type lectin (34). Our aim now is to solve the 
structure of the ED of MtLYR3 in combination 
with a LCO in order to map the ligand-binding 
site and to better understand the role of the 
different lysin motifs in LCO binding. 
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TABLE I: Affinity (Kd) of the LYR3 orthologs for LCOs (Nod factors and Myc-LCOs) and COs. 

The nomenclature used shows the degree of polymerization of the GlcNAc backbone (IV or V) and in 
parenthesis the modifications at the non-reducing end including the acyl chain, followed by those at 
the reducing end. LCOs are synthetic molecules, Nod factors are biologically produced LCOs.  

 

Compound Kd (nM with SEM) of the LYR3 proteins 

 
PsLYR3 PvLYR3 LjLYR3 

 
GmLYR3-01 GmLYR3-11 

LCO-IV(C16:2∆2 ∆ 9, S) 31 +/- 4.8 40 +/- 3.5 33 +/- 3.4 
 

32 +/- 2.2 64 +/- 5.1 

   
     Myc-LCO-IV(C16:0, S) 24 +/- 3.2 17 +/- 2.6 11 +/- 2.4 

 
18 +/- 2.8 32 +/- 4.9 

Myc-LCO-IV(C16:0) 50 +/- 8.8 23 +/- 6.9 42 +/- 2.5 
 

71 +/- 8.8 140 +/- 29 

Myc-LCO-IV(C18:1∆9, S) 16 +/- 1.6 13 +/- 2.6 9 +/- 2.0 
 

12 +/- 2.0 20 +/- 3.5 

   
     NodRlv-IV(Ac, C18:4∆2,4,6,11) 14 +/- 2.0 29 +/- 4.8 10 +/- 1.9 

 
20 +/- 3.5 16 +/- 2.8 

NodRt-V(Me, C18:1∆11) 21 +/- 3.5 20 +/- 1.6 10 +/- 2.5 
 

13 +/- 0.7 14 +/- 2.2 

LCO-V(C18:1∆11, MeFuc) 7 +/- 2.9 11 +/- 2.8 7 +/- 1.2 
 

14 +/- 2.2 17 +/- 1.1 
LCO-V(C18:1∆11) 7 +/- 0.9 29 +/- 3.7 9 +/- 2.0 

 
17 +/- 1.8 35 +/- 3.6 

LCO-V(C18:1∆11, S) 11 +/- 2.1 9 +/- 0.8 8 +/- 1.4 
 

6 +/- 1.2 18 +/- 2.4 

   
     CO-V >103 >103 >103 

 
>103 >103 
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Figure 1 

A B    

   

 

 

FIGURE 1. Similarity between legume LYR3 proteins. A, percentage of identity between the LYR3 
orthologs at the level of the entire protein (in grey) or the extracellular domain. B, phylogenetic tree of 
the LYR proteins of M. truncatula, showing the orthology of the legume LYR3 proteins with 
MtLYR3. MtLYK3 and AtCERK1, representatives of the LYK group of LysM-RLKs, were used as 
outgroup. The branches show the bootstrap values. The LYR3 proteins are named with the first letters 
of the genus and species: Ps= Pisum sativum, Lj = Lotus japonicus, Pv = Phaseolus vulgaris, Gm = 
Glycine max, Lan = Lupinus angustifolius, Lat = Lupinus atlanticus, At = Arabidopsis thaliana. 
  

 
 

 
MtLYR3 PsLYR3 LjLYR3 PvLYR3 

GmLYR3- 
01 

GmLYR3- 
11 

LanLYR3 LatLYR3 

MtLYR3 - 80.6 69.3 66.4 67.6 67.1 63.6 67.6 

PsLYR3 89.7 - 67.0 65.3 67.2 67.1 62.4 64.7 

LjLYR3 77.6 76.4 - 67.9 73.0 72.0 66.8 69.6 

PvLYR3 75.9 76.4 72.4 - 82.5 81.8 66.9 70.5 

GmLYR3- 
01 

79.9 82.2 77.6 85.1 - 94.6 68.7 71.5 

GmLYR3-
11 

79.9 81.6 76.4 83.3 96.0 - 68.6 70.6 

LanLYR3 74.7 75.9 73.6 74.1 75.3 74.7 - 86.2 

LatLYR3 73.0 72.4 73.6 71.8 74.1 73.0 89.7 - 



50 
 

 

FIGURE 2. Expression of LYR3 orthologs in N. benthamiana leaves. A, confocal images of 
epidermal cells showing the plasma membrane localization of PsLYR3 and LanLYR3 YFP-tagged 
proteins. B, immunodetection of YFP-tagged LYR3 orthologs in membrane fractions, using anti-GFP 
antibodies. Nomenclature as in legend to Figure 1. 
  

PsLYR3 LanLYR3A

B

α-GFP

Figure 2
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FIGURE 3. Analysis of LCO binding to M. truncatula and L. angustifolius LysM domain- swapped 
LYR3 proteins. A, schematic representation of the extracellular domains showing positions of borders 
and amino acids at the end of each individual module of the MtLYR3 (M) and LanLYR3 (L) proteins, 
used for domain swapping. The third module is shown subdivided into flanking regions (m or l) and 
LysM domain (M or L). Signal peptide (SP) and trans-membrane domain (TM) are shown. B, specific 
binding activity (with SEM) of the protein chimera with ED consisting of swapped LysM domains 
between MtLYR3 and LanLYR3, showing the importance of the LysM3 domain. The modules are 
ordered from LysM1 to LysM3. Immunodetection of the chimeric proteins in membrane fractions of 
N. benthamiana leaves and themodynamic parameters of the LCO interaction, affinity (Kd with SEM) 
is shown beneath. nd = not determined. Inset: confocal images of epidermal cells of N. benthamiana 
leaves expressing chimeric proteins, which either show LCO-binding activity (LLM, MMM), or not 
(LLL, MML). 
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Figure 4 

 
FIGURE 4. Identification of amino acid residues in LysM3 of MtLYR3, involved in high affinity 
LCO-binding. A, upper panel: sequence alignment of LYR3 proteins showing three highly conserved 
residues not present in LanLYR3. Lower panel: specific binding activity (with SEM) of the chimeric 
proteins LLmLm and LLlMl carrying single point mutations in the identified LysM3 residues, 
showing the importance of MtLYR3 Y228 by loss of function. Immunodetection of the proteins in 
membrane extracts of N. benthamiana leaves is shown beneath.  B, HCA plots of the LysM3 of 
MtLYR3, LanLYR3, and of LanLYR3-Mut, which contains point mutations targeting conserved 
residues of LCO-binding proteins or shaping the HCA pattern to that of MtLYR3. C, Scatchard plot 
analysis of LCO binding to LLlMl (●) and LanLYR3-Mut (o), showing that mimicking the MtLYR3 
HCA pattern in LanLYR3-Mut leads to gain of binding. 
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Chapter II 

Use of the LYR3 extracellular domain in 

chimeric receptors for potential 

biotechnological applications 
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Introduction  

 As described in the previous chapter, the LysM-RLK LYR3 was shown to be conserved as a 

LCO binding protein in different legume species. LCOs have been used since 2004 in the agricultural 

sector to stimulate plant growth and development, resulting in better yield and thus serving as positive 

regulators. From the side of new applications it was attractive to investigate whether LYR3 and its 

capability to bind LCO could be used to enlarge the spectrum of LCO application by, for instance, 

engineering its ability to provoke plant defense responses. For this study it was decided to use an 

approach based on the creation of chimeric proteins. The general idea was to create chimeric receptors 

which would consist of the extracellular domain (ECD) of LYR3 fused to the kinase domain (KD) of 

one of the defense-related RLKs. It was expected that high affinity binding of LCO by the ECD of 

LYR3 would lead to the activation of the chimeric protein kinase followed by the elicitation of defense 

responses. The relevance of this approach was recently demonstrated in the study performed for two 

Lotus japonicus symbiotic receptors NFR1 and NFR5 whose extracellular domains were combined 

with the kinase of AtCERK1, an Arabidopsis thaliana receptor essential for chitin signaling (Wang et 

al., 2014). By co-expression in cerk1-2 A. thaliana plants, NFR1/CERK1 and NFR5/CERK1 chimeric 

receptors were shown to trigger a number of defense responses after their activation with 100 µM 

LCO. As the CERK1 kinase was shown to stay functional in these chimeric receptors, the kinase of 

CERK1 was chosen for the creation of LYR3 chimeric receptors. Two approaches were used for this 

work. In the first approach, an already existing transgenic A. thaliana cerk1 line expressing aequorine 

(Wan et al., 2012) was used in stable transformation with LYR3/CERK1 constructs,  therefore 

allowing the early defense response of cytosolic calcium influx to be used to detect the activation of 

LYR3/CERK1 chimeras with LCO. Secondly, as stable transformation of the A. thaliana cerk1, 

aequorine line was expected to be time-consuming, an approach of transient expression of chimeric 

proteins in the leaves of Nicotiana benthamiana was used in order to provide a faster means to analyze 

activation with LCO and measurement of defense responses in this heterologous system.    

 Another A. thaliana defence receptor EFR was selected as the second candidate protein whose 

kinase could be fused to the ECD of LYR3. Defining recognition of bacterial elongation factor EF-

TU, EFR has been used several times in the composition of chimeric receptors (Zipfel et al., 2006; 

Albert et al., 2010; De Lorenzo et al., 2011). For instance, kinase of EFR being fused to the ECD of 

WAK1, the A. thaliana receptor for oligogalacturonides (OGs), was shown to stay biologically active 

and trigger the defence responses in N. benthamiana leaves after treatment with OGs (Brutus et al., 

2010). Thus by analogy with WAK1/EFR and OGs it was expected that expressed in N. benthamiana 

LYR3/EFR chimeric receptors would be responsive to LCO. The genome of Nicotiana spp. does not 

contain EFR, however transient expression of this receptor was shown to be sufficient to trigger 

emission of ethylene after treatment with the EF-TU derived peptide elicitor, elf-18 (Zipfel et al., 

2006). Accordingly, for our study, the appearance of stress ethylene in response to LCO was selected 

to be used as the sign of LYR3/EFR activation.      
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 For creation of both CERK1 and EFR containing chimeras two LYR3 proteins were selected, 

originating either from Medicago truncatula (MtLYR3) or from Glycine max (GmLYR3). In this way 

LYR3 binding and activation specificity could be studied through monitoring the differences in the 

intensity of the stress responses after the treatment of chimeras with the LCOs preferentially 

recognized by the M. truncatula or G. max proteins.    

Experimental procedures 

Genetic constructions and N. benthamiana transient transformation. 

 Generation of chimeric constructions by using Golden Gate technology and subsequent 

Agrobacterium transformation and transient expression of chimeric proteins in the leaves of N. 

benthamiana was performed as described in chapter I.  

Stable transformation of A. thaliana cerk1 plants expressing aequorine. 

 Stable transformation of A. thaliana was performed by using the floral dip method (Clough 

and Bent, 1998). Agrobacterium tumefaciens strains (GV3101) harboring sequences encoding 

chimeric proteins were grown for 2 days at 28°C on selective YEB agar plates. Next Agrobacterium 

were scratched from the plates and resuspended in 10 ml YEB liquid medium. The bacteria were 

incubated for four hours at 28°C and these pre-cultures were used to inoculate 250 ml of liquid culture. 

Grown overnight at 28°C up to an OD600=1,5, the liquid cultures were centrifuged at 8000 rpm for 

10min at room temperature. Pelleted down bacteria were next resuspended in 5% sucrose in water in 

order to reach a final OD600=1. The resulting solutions were supplemented with Silwett L77 at 100 

μl/L concentration. For each stable transformation five A. thaliana plants in the beginning of their 

florification stage (approx. five weeks old) were used. The first flowering shoots were previously cut 

to induce the formation of additional inflorescences. During the transformation plants were dipped and 

gently agitated in the bacterial suspension for 10 seconds. After short drying the treated plants were 

covered with a plastic film and held away from direct light for 24 hours. Afterwards plastic covers 

were removed and plants were cultivated in the greenhouse for a full life cycle up to the appearance of 

seeds.      

Measurement of aequorin luminescence.   

 Seeds obtained from the A. thaliana plants stably transformed with chimeric 

constructions were surface-sterilized in ethanol solution supplemented with hypochlorite (95% ethanol 

and 0,26% hypochlorite) and grown on MS agar plates for 14 days at 25oC with 16h/8h day/night 

cycle. Grown plantlets were screened for the presence of red fluorescence under Leica MZ6 

stereomicroscope. Selected fluorescent plants were next incubated overnight in 2.5 μM coelenterazine 

(Calbiochem, Bad Soden, Germany) water solution. Bioluminescence was measured in the digital 

luminometer (Lumat LB9507; Berthold, Bad Wildbad, Germany) for the samples consisting of five 

plantlets. Samples were treated with the elicitors within the first three minutes after being placed in the  



58 
 

  



 

59 
 

luminometer. Luminescence was monitored for 10-20 minutes by recording relative light units every 

second. At the end of each measurement the total amount of aequorin was determined by adding 500 

µL of lysis buffer (10 mM CaCl2, 2% Nonidet P-40, and 10% ethanol) to the samples. Luminescence 

data was transformed into cytosolic Ca2+ concentration using the equation established by (Allen et al., 

1977).   

Measurement of ethylene. 

 For ethylene measurements, 5mm disks were cut out from N. benthamiana agroinfiltrated 

leaves and incubated overnight in water, with their abaxial side turned up. Next, samples consisting of 

five disks were placed in sealed 10-mL flasks containing 2 mL H2O or elicitor solutions and incubated 

with agitation for 2 hours. For some of the experiments disks were first infiltrated with water or 

elicitors and then exposed as described above. To analyze emission of ethylene 1 mL gas samples 

were withdrawn with a syringe from the flasks and injected into an Agilent 7820A gas chromatograph 

(Felix et al., 1999). Obtained data was treated with Agilent ChemStation offline software.   

Western blotting 

 Immuno-detection of the proteins was performed as described in the previous chapter by using 

anti-HA-HRP (Roche, 1:2000) antibodies.  

Results 

Stable transformation of cerk1 Arabidopsis thaliana plants expressing aequorine, with 

LYR3/AtCERK1 chimeric constructions and selection of transformants.   

 Stable transformation was performed for the chimeric proteins consisting of the ectodomains 

of MtLYR3 or GmLYR3 proteins and the kinase domain of the A. thaliana CERK1 receptor. Each 

chimera was designed in two modifications according to the type of its trans-membrane (Tm) region 

which was either originating from LYR3 (LYR3Tm) or from CERK1 (TmCERK1). All proteins were 

fused at their C-termini to the HAST tag and their expression was driven by the 35S promoter.      

 In addition to the p35S:GmLYR3/TmCERK1-HAST, p35S:GmLYR3Tm/CERK1-HAST, 

p35S:MtLYR3/TmCERK1-HAST, p35S:MtLYR3Tm/CERK1-HAST constructions, plants were also 

transformed with a p35S:CERK1/TmCERK1-HAST construction (reconstituting AtCERK) and with 

the pCAMBIA2200 vector (empty vector) in which all genetic constructions were cloned. 

Transformation of A. thaliana cerk1 plants was done with Agrobacterium tumefaciens bacteria 

carrying the 6 different genetic constructions. After the transformation, plants (F0 generation) were 

grown to produce the seeds which were then germinated (F1 generation) and screened for the presence 

of the T-DNA. Screening was based on the detection of red fluorescence determined by the DsRed 

reporter gene present in the pCAMBIA2200 binary vector. No plants transformed with 

p35S:GmLYR3Tm/CERK1-HAST, p35S:MtLYR3/TmCERK1-HAST, p35S:MtLYR3Tm/CERK1-

HAST and p35S:CERK1/TmCERK1-HAST constructions were found. However, several fluorescent  
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Fig.1 Selection of the stably transformed A. thaliana plants by the detection of DsRed 

fluorescence.  

Two seedlings expressing the DsRed protein obtained from the plant transformed with the 

GmLYR3/TmCERK1 chimera are shown. 

 

 

 

 
 

Fig.2 Changes in free calcium concentration in the cytosol of wild type col-0 A. thaliana plants 

after their treatment with LCO-IV(S,C16:2Δ2,9) or CO-VIII. 

For each measurement five 14 days old A. thaliana plantlets expressing aequorine were treated with 

either 1µM LCO-IV (Ac, S, C16:2Δ2, 9) or 10µM CO-VIII. Strong Ca response was detected only for 

chito-octamer treatment.   
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plants were found among the p35S:GmLYR3/TmCERK1-HAST and empty vector transformants. The 

ratio between the number of selected fluorescent plants and total amount of analyzed plants (3 

fluorescent for approx. 600 analyzed in case of p35S:GmLYR3/TmCERK1-HAST) suggested that the 

efficiency of transformation was less than 0.5%. As the ubiquitin promoter was driving expression of 

the DsRed protein, fluorescence was observed in both roots and shoots of the selected plants (Fig.1). 

These, few selected transformed plants were grown to produce seeds which were then germinated and 

analyzed under the fluorescent microscope. As expected for genetic segregation, the majority of the 

observed plants (80%) (F2 generation) appeared to be fluorescent.  

Calcium response to Nod factors or CO-VIII of wild type A. thaliana and transgenic plants 

expressing GmLYR3/TmCERK1 or GmLYR3Tm/CERK1 

 The cytosolic calcium influx in response to LCO was first studied for wild type A. thaliana 

plants. Five14-days old A. thaliana plantlets, stably expressing aequorin, were treated either with 1µM 

Sinorhizobium meliloti Nod factor (LCO-IV (Ac, S, C16:2 Δ2, Δ9)) or 10µM chito-octamer (CO-

VIII). Two elicitor independent rapid calcium responses, evoked, probably by mechanical stress, were 

detected within the first two minutes of measurement for all analyzed samples. Longer lasting calcium 

influx was observed for the plants treated with CO-VIII, whereas addition of LCO did not trigger a 

calcium response (Fig.2). Obtained results were suggesting that wild type A. thaliana plants are 

insensitive to LCO and thus could be used for studies of LCO specific activation of defense responses.  

 One of the transgenic lines possessing the strongest fluorescence and expected to express 

GmLYR3/TmCERK1 chimeric protein was used to study the calcium influx in response to LCO. With 

that aim five 14-days old seedlings were treated with either H2O or 1 µM LCO-IV (Ac, S, C16:2 Δ2, 

9). Each treatment was performed in triplicate. Both curves obtained in this experiment were 

containing smooth shoulders decreasing to the basal level within the first three minutes of 

measurement and so far were looking different to the curves observed with the wild type A. thaliana 

plants. Appearance of the shoulders was probably caused by a slight modification in the measurement 

procedure which led to the alignment of the two peaks corresponding to the mechanical stress. 

However, starting from the 3 minutes time point up to the end of measurement no calcium influx was 

detected either for H2O or for LCO treated samples (Fig.3). With the aim to check the level of 

GmLYR3/TmCERK1chimeric protein expression, western blotting detection was performed in the 

crude extracts obtained from the fluorescent plants (data not shown). No immunoreactive signals that 

could correspond to the whole protein or its degradation product were detected. Analysis of two other 

transgenic lines revealed that they were also lacking expression of the chimeric receptor.  

 The obtained results suggested that in spite of the presence of the DsRed protein, the protein 

of interest GmLYR3/TmCERK1 was absent in the selected transgenic plants. As the initially 

performed transformation did not result in the creation of transgenic lines stably expressing 

LYR3/CERK1 chimeric proteins it was decided to repeat the transformation of A. thaliana cerk1plants 

with all chimeric constructions.  
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Fig.3 Changes in free calcium concentration in the cytosol of the A. thaliana plants transformed 

with the GmLYR3/TmCERK1 chimeric receptor.  

Five 14 days old fluorescent plantlets were treated with 1µM LCO-IV(S,C16:2Δ2,9). Measurements 

were repeated three times with different seedlings and resulted in the absence of LCO dependent stress 

Ca response.  
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Fig.4 Immunodetection of the chimeric proteins 

in crude extracts from A. thaliana plants stably 

transformed with empty vector and 

GmLYR3Tm/CERK1, GmLYR3/TmCERK1 

constructions.  

For each transgenic line crude extracts were 

prepared from three 14 days old A. thaliana 

plantlets. Detection of chimeric proteins was 

performed with anti-HA-HRP antibodies. Faint 

band corresponding to the GmLYR3Tm/CERK1 

(110 kDa) protein was observed only in one line, 

number 14.  
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 Screening of transformed plants was realized through detection of red fluorescence, as 

described above. A few fluorescent plants (efficiency of transformation was as low as in previous 

experiment) were found among the p35S:GmLYR3Tm/CERK1-HAST, p35S:GmLYR3/TmCERK1-

HAST and empty vector transformants. Each selected line was cultivated up to the F2 generation. To 

check the chimeric protein expression several F2 red fluorescent plants were analyzed by western 

blotting for each of the transgenic lines. The faint signal corresponding to the 

GmLYR3Tm/CERK1protein was detected only for one out of 18 analyzed lines (Fig.4). Plants 

belonging to this line were used to measure the calcium response after LCO treatment. Several 

modifications were introduced in the new experiment. As the studied chimera contained the GmLYR3 

extracellular domain the Sinorhizobium meliloti Nod factor was replaced with the LCO produced by 

the soybean symbiont, Bradyrhizobium japonicum (LCO-V (Fuc, Me, C18:1)).The measurement was 

performed in a similar way to (fig.1) in case the LCO would trigger an early calcium response of short 

duration. The LCO concentration was decreased from 1 µM to 200 nM to be in agreement with the nM 

range affinity of the LYR3 proteins for the LCO. As a positive control wild type plants were treated 

with 1 µM CO-VIII. Measurement performed for the plantlets expressing GmLYR3Tm/CERK1 

protein resulted in the absence of calcium influx after their treatment with H2O or 200 nM LCO-V 

(Fuc, Me, C18:1). A strong calcium response was observed after addition of 1 µM CO-VIII to the wild 

type plants (Fig.5). Thus, according to the obtained data, GmLYR3Tm/CERK1 chimeric receptor 

expressed in A. thaliana stayed inactive in the presence of LCO.   

Transient expression of LYR3/CERK1 chimeric proteins in the leaves of N. benthamiana.  

 As stable transformation of A. thaliana did not work for the majority of the chimeric 

constructions, together with the absence of LCO dependent calcium response in the transgenic plants 

containing the GmLYR3Tm/CERK1 construct, it was decided to use an alternative strategy for the 

LYR3/CERK1 activation study. The four LYR3/CERK1 chimeric proteins, the reconstituted CERK1 

protein and the empty vector control were expressed in the leaves of N. benthamiana, in order to study 

their activation with LCO in this simpler system.   

 To produce the proteins, leaves of the plants were infiltrated with the same Agrobacterium 

tumefaciens bacteria as used for stable A. thaliana transformation. At 44 hours after infiltration (hai) in 

the leaves transformed with the p35S:GmLYR3/TmCERK1-HAST, p35S:GmLYR3Tm/CERK1-

HAST, p35S:MtLYR3/TmCERK1-HAST and p35S:MtLYR3Tm/CERK1-HAST constructions the 

symptoms of hypersensitive response (HR) were detected. The observed HR was manifested by the 

number of water soaked lesions on the abaxial side of the leaf. At 48 hai rare areas of shiny water 

soaked lesions were observed in the leaves transformed with the p35S:CERK1/TmCERK1-HAST 

construction, whereas the leaves expressing Mt and GmLYR3/CERK1 chimeric proteins were flaccid 

and some necrotic desiccated zones were detected (Fig.6). Chimeric proteins with the trans-membrane 

region of LYR3 were triggering similarly strong HR as the chimera with the CERK1 Tms (data not 

shown). At this time point the quantification of HR was performed (Fig.7). All LYR3/CERK1  
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Fig.6 Visualization of the HR symptoms observed at 48 hai in the tobacco plants expressing 

LYR3/AtCERK1 chimeric proteins or native CERK1 receptor.  

A- Plants expressing GmLYR3/TmCERK1, the leaves are faded and their desiccation has started; B- 

Plants expressing MtLYR3/TmCERK1, the HR is identic to the one observed for 

GmLYR3/TmCERK1; C- Plants expressing CERK1/TmCERK1, the leaves are not possessing 

flaccidity or desiccation; D- Plants expressing empty vector, no stress symptoms. Chimeric proteins 

with the trans-membrane region of LYR3 were triggering similarly strong HR as the presented 

chimeras.    
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Fig.5 Changes in free calcium concentration in the cytosol of the wild type A. thaliana plants and 

plants expressing the GmLYR3Tm/CERK1 chimeric receptor.  

Five 14 days old A. thaliana plantlets expressing aequorine and GmLYR3Tm/CERK1 chimeric 

protein were treated with either 200nM LCO-V (Fuc, Me, C18:1) or 1µM CO-VIII. Strong Ca 

response was detected only in case of chito-octamer treatment.   
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chimeras triggered equally strong HR which was much stronger than in plants expressing the chimera 

reconstituting the native CERK1. At the last observations, performed at 72 hai, leaves expressing 

LYR3 chimeric receptors were consisting mainly of necrotic and desiccated tissue. Leaves expressing 

the reconstituted CERK1 receptor at this time point were fully covered with water soaked lesions, 

however lacking any necrosis or desiccation. No HR symptoms were observed at any time point for 

the plants transformed with the empty vector.   

 With the aim to check the expression levels of the chimeric proteins, N. benthamiana 

transformation was repeated and samples for western blotting were collected at 36 hai, before the 

appearance of the first HR symptoms. Relatively weak bands of equal intensity were detected with 

anti-HA antibodies for the two GmLYR3 chimeric receptors and the one reconstituting CERK1 

(Fig.8).      

 Since for the two GmLYR3/CERK1 chimeric proteins no differences in terms of their 

expression or triggered HR were observed it was decided to perform the LCO activation treatment for 

only one chimeric protein, namely GmLYR3/TmCERK1. Plants expressing this chimeric receptor 

were infiltrated with H2O or 1 µM LCO-V (Fuc, Me, C18:1) at 24 hai. Similar treatment was 

performed for the plants expressing the CERK1/TmCERK1 receptor. Both plants expressing LYR3 

chimeric protein and reconstituted CERK1were also treated with 10 µM CO-V with the aim to check 

whether the CO would lead to the reduction of HR, according to a recently published inhibitory effect 

of this ligand on CERK1 activation (Liu, Liu, 2012). Quantification of the HR performed at 48 hours 

after bacterial infiltration resulted in the detection of equal stress response in the plants expressing 

GmLYR3/TmCERK1 protein treated with LCO-V (Fuc, Me, C18:1), CO-V or water (Fig.9). However 

the HR observed in this experiment was slightly reduced in comparison to the previous experiment. A 

decrease in the cell death response was observed for the plants expressing the chimera reconstituting 

native CERK1 receptor, but only specifically after treatment with CO-V (not with LCO).    

Expression and evaluation of LCO binding activity of the LYR3/EFR chimeric proteins.  

 Chimeric constructions were prepared consisting of the Medicago or soybean LYR3 

extracellular domains with their own TM regions or the TM region of EFR fused to the kinase domain 

of EFR. These chimeras, plus a chimera reconstituting native EFR and the empty vector control were 

expressed in N. benthamiana leaves. At 72 hai crude extracts obtained from leaves transformed with 

LYR3/EFR constructs were analyzed by western blotting (Fig.10A). All the LYR3/EFR chimeric 

proteins showed comparable and high levels of expression. In comparison to LYR3/EFR, the 

EFR/TmEFR protein was expressed to a lower degree. Equilibrium binding experiments with the 

LCO-IV (35S,C16:2Δ2,9) ligand, performed on the membrane fraction extracted from the leaves,  

revealed a high binding activity for the chimera consisting of soybean ECD and EFR transmembrane 

and kinase regions - GmLYR3/TmEFR (Fig.11). The binding activity of the MtLYR3/EFR proteins 

was much lower and in case of the other chimeras was not greater than the background levels observed 

for the empty vector control and for the chimera reconstituting native EFR. With the aim to check the  
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Fig.8  Immunodetection of the chimeric proteins in crude extracts from N. benthamiana leaves. 

N. benthamiana samples for western blotting were collected at 36 hai. Polypeptides corresponding to 

GmLYR3/TmCERK1(100 kDa), GmLYR3Tm/CERK1(100 kDa) and CERK1/TmCERK1(80 kDa) 

chimeric proteins were detected with anti-HA-HRP antibodies.  
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Fig.7 Quantification of the HR in the leaves of Nicotiana benthamiana plants expressing 

LYR3/AtCERK1 chimeric proteins and native CERK1 receptor. 

Each chimeric protein was expressed in five N. benthamiana plants for 48 hours when the 

quantification of the HR was done. The intensity of the stress symptoms was measured by using the 

scale: 0-no stress symptoms, 1- first symptoms, rare water soaked lesions; 2-strong symptoms, 

generalized water soaked lesions, leaf flaccidity; and 3- necrosis and desiccation of the leaf. All 

LYR3/AtCERK1 chimeras triggered equally strong HR which was larger than in the plants expressing 

the chimera reconstituting native CERK1.   
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level of the chimeric proteins expression in the membrane extracts, western blotting was performed 

(Fig.10B). Strong degradation probably explaining the lack of binding was observed for 

GmLYR3Tm/EFR, however, all other chimeras were present in similar high levels.   

 From these results the chimera possessing the strongest binding activity i.e. GmLYR3/TmEFR 

was chosen for further studies together with the EFR reconstituting chimera as a control.    

Measurement of ethylene production in the leaves of N. benthamiana expressing LYR3/EFR 

chimeric proteins after their treatment with NodSm factor.        

 For the stress ethylene measurements leaves of N. benthamiana were infiltrated with A. 

tumefaciens carrying p35S:GmLYR3/TmEFR-HAST, EFR/TmEFR-HAST or empty vector 

constructions. At 72 hai 5 mm diameter leaf disks were dissected out from the infected leaves and 

incubated over-night in water to eliminate ethylene evoked by the mechanical stress. Stimulation of 

ethylene production was performed at 86 hai. With that aim samples (five leaf disks per sample) 

expressing GmLYR3/TmEFR or EFR/TmEFR proteins were incubated for 2 hours in water containing 

1 µM LCO-IV (S, C16:2Δ2,9), 5 µM elf18 or H2O. Similar treatments were performed for the sample 

transformed with the empty vector. Ethylene measurements showed an absence of ethylene emission 

in the GmLYR3/TmEFR sample after treatment with 1 µM LCO, 5 µM elf18 or water (Fig.12A). For 

the EFR/TmEFR sample a noticeable ethylene signal (4,4 pMol/mg/h) was detected only after 

treatment with 5µM elf18. No ethylene was produced in the empty vector sample after its treatment 

with different elicitors.    

 Absence of ethylene production in response to LCO treatment could be explained by the 

inability of Nod factor, due to its physico-chemical properties, to penetrate the cutine of epidermal 

cells to reach the cell plasma membrane where the activation of GmLYR3/TmEFR chimeric receptor 

should happen. With the aim to improve LCO penetration the experiment was repeated, except that the 

activation of the chimeric receptors was attempted by pressure infiltration of 1 µM LCO-IV (S, 

C16:2Δ2,9), 5 µM elf18 or water to the abaxial side of the leaf disks. Additionally a 

GmLYR3/TmEFR leaf sample was treated in a similar way to the previous experiments but with an 

increased concentration of 10 µM NodSm factor to exclude the possibility that the previously used 1 

µM concentration was insufficient for this receptor activation. The measurements showed an absence 

of ethylene emission by the GmLYR3/TmEFR sample after its infiltration with water, 5 µM elf18 or 1 

µM LCO. Treatment with 10 µM LCO also did not lead to ethylene production (Fig.12B). For the 

EFR/TmEFR sample an ethylene response (4,3 pMol/mg/h) was detected specifically with 5 µM elf18. 

No ethylene was detected for the empty vector sample. A rise in the basal ethylene level was observed 

for all infiltrated samples. In this case ethylene emission was probably evoked by the mechanical 

stress due to the injection of elicitors.           
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Fig.9 Quantification of the HR after treatment of N. benthamiana plants expressing chimeric 

receptors with LCO-V (Fuc, Me, C18:1) or CO-V.    

Quantification of the HR at 48hai was done by using the same scale (from 0 to 3) as indicated in fig.7 

and resulted in a general weakening of stress symptoms in comparison to the one observed previously  

probably due to an additional infiltration of the plants with the ligands. Strong HR insensitive to the 

treatments with 10µM CO-V or 1µM LCO-V (Fuc, Me, C18:1) was observed for the plants expressing 

GmLYR3/TmCERK1. Chimera reconstituting native CERK1 was triggering weaker cell death 

symptoms which were reduced after its treatment with CO-V.   
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Fig.10 Detection of GmLYR3 and MtLYR3/EFR and EFR/TmEFR chimeric proteins in the 

crude extracts and microsomal fractions obtained from N. benthamiana leaves at 72 hai.     

Polypeptides corresponding to the chimeric receptors were detected with anti-HA-HRP antibodies in 

the extracts obtained from the transformed tobacco leaves (A) and membrane fractions (B) which were 

used for the binding experiments. In both crude extract and membrane fraction EFR/TmEFR protein 

was less abundant in comparison to LYR3/EFR chimeras. GmLYR3Tm/EFR protein was strongly 

degraded in microsomal fraction.  
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Measurement of ethylene production in the leaves of N. benthamiana expressing AtCERK1/TmEFR 

chimeric protein after their treatment with CO-VIII.   

 A study of ethylene production, triggered by the AtCERK1/TmEFR chimeric receptor after its 

treatment with CO-VIII, was used to clarify whether the absence of LCO dependent ethylene 

production observed for GmLYR3/TmEFR protein could be caused by the physico-cgemical 

properties of LCO. CO-VIII being less hydrophobic than LCO should have less difficulties in passing 

the plant cell wall and activating membrane located receptor. To test this hypothesis an 

AtCERK1/TmEFR chimeric protein was constructed and expressed in the leaves of N. benthamiana 

and a leaf sample was prepared as described above and treated for 2 hours in the presence of 10 µM 

CO-VIII or with water. As the positive control, transient expression of EFR/Tm/EFR receptor and its 

treatment with 5 µM elf18, 10 µM CO-VIII or water was performed. In the subsequent measurements 

no ethylene was detected for the AtCERK1/TmEFR sample after treatment with CO-VIII or water. A 

strong ethylene response (5,8 pmol/mg/h) was observed in the EFR/Tm/EFR sample specifically 

following treatment with 5 µM elf18 (Fig.12C).    

Measurement of ethylene production in the leaves of N. benthamiana co-expressing 

GmLYR3/TmEFR and GmLYR3/TmBAK1 chimeric proteins after treatment with NodSm factor.    

 In vivo perception of bacterial PAMP (elf18) by EFR leads to its hetero-dimerization with 

another A. thaliana receptor BAK1 and this is crucial for EFR activation and signal transduction 

(Roux, Schwessinger, 2011).We therefore decided to investigate ethylene emission in response to 

LCO treatment in leaf samples co-expressing the GmLYR3/TmEFR chimeric protein with a protein 

consisting of the soybean LYR3 extracellular region and A. thaliana BAK1 trans-membrane region 

and kinase domain, GmLYR3/TmBAK1. Once the corresponding genetic construction was cloned, co-

expression as well as separate expression of GmLYR3/TmBAK1 and GmLYR3/TmEFR was 

performed. Additionally proteins reconstituting EFR (EFR/TmEFR) and BAK1 (BAK1/TmBAK1) 

were co-expressed and expressed independently from each other in the N. benthamiana leaves.   

 At 40 hai, HR symptoms, represented by a number of small areas with water soaked lesions, 

were observed on the abaxial side of the leaves expressing the BAK1/TmBAK1 receptor alone and co-

expressing BAK1/TmBAK1 together with EFR/TmEFR. Four hours later at 44 hai similar symptoms 

were detected in leaves co-expressing GmLYR3/TmEFR and GmLYR3/TmBAK1. At this time point 

weaker symptoms were observed in the leaves expressing EFR/TmEFR protein (Fig.13). At 72 hai 

leaves expressing BAK1/TmBAK1, BAK1/TmBAK1 together with EFR/TmEFR and 

GmLYR3/TmEFR together with GmLYR3/TmBAK1 showed HR symptoms of similar intensity 

represented by the shiny water soaked lesions fully covering the abaxial side of the leaves. Leaves 

expressing the EFR/TmEFR protein, at this time point, demonstrated a much less intensive HR. 

During the complete time period no stress symptoms were detected in the leaves expressing either 

GmLYR3/TmEFR or GmLYR3/TmBAK1 chimeric proteins alone. Therefore, in the next experiment 

aiming to measure an ethylene response activation by LCO, all the samples were harvested at 48 hai  



70 
 

 

Fig.11 Specific binding of LCO-IV(35S,C16:2Δ2,9) to the GmLYR3 and MtLYR3/EFR chimeric 

proteins. 

Specific binding was measured for 25µg of membrane proteins obtained from transformed N. 

benthamiana leaves and resulted in the detection of strong binding for the GmLYR3/TmEFR, comparable 

to the binding observed for native GmLYR3 protein. For two MtLYR3/EFR receptors binding was 

strongly reduced. No binding to LCO-IV (35S,C16:2Δ2,9) was detected for the GmLYR3Tm/EFR, 

EFR/TmEFR and empty vector.    
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Fig.12 Induction of ethylene biosynthesis with 

different elicitors in N. benthamiana leaves 

expressing GmLYR3/TmEFR, EFR/TmEFR 

and AtCERK1/TmEFR chimeric proteins. 

Emission of ethylene was analyzed in N. 

benthamiana samples at 86 hai (five 5mm leaf 

disks per sample/3 repetitions) and resulted in the 

detection of signal only in case of EFR/TmEFR 

treatment with 5µM elf18 (A). Improved 

treatments, via LCO infiltration (inf) or with 

more concentrated LCO did not lead to the LCO 

dependent ethylene emission (B). No ethylene 

response was detected either after 

AtCERK1/TmEFR chimeric receptor treatment 

with CO-VIII (C). 
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and not at 72 hai to try to avoid the HR. However, despite this earlier harvesting, at the moment of 

ethylene measurement corresponding to a 72 hai time point, strong HR symptoms were present in the 

leaves expressing BAK1/TmBAK1, BAK1/TmBAK1 + EFR/TmEFR, GmLYR3/TmEFR + 

GmLYR3/TmBAK1 and to a lower degree in leaves expressing EFR/TmEFR. Measurement of 

ethylene elicitation showed an absence of the gas emission in response to water, 1 µM LCO-IV (S, 

C16:2Δ2,9) or 5 µM elf 18 in all samples expressing alone or co-expressing GmLYR3/TmEFR and 

GmLYR3/TmBAK1 chimeras. Surprisingly no ethylene response was observed for one out of two 

positive controls, BAK1/TmBAK1 + EFR/TmEFR after treatment with 5 µM elf 18. Emission of 

ethylene was detected only for the EFR/TmEFR sample treated with 5µM elf18 (data not shown).       

 Since most of the samples showed stress symptoms that could have negatively affected the 

functionality of the chimeric proteins, the experiment was  repeated by shifting the harvesting time to 

24 hours (24 hai) and the time of ethylene measurement to 48 hai. To check whether all proteins were 

enough expressed at 48 hai, western blot analysis at this time point was performed. Immuno-reactive 

signals at molecular masses corresponding to those of the chimeric proteins, 150 kDa for 

EFR/TmEFR, 90 kDa for BAK1/Tm/BAK1, 100 kDa for GmLYR3/TmEFR and 110 kDa for 

GmLYR3/TmBAK1 were detected in the relevant samples (Fig.14). In the case of GmLYR3/TmEFR 

and GmLYR3/TmBAK1 co-expression, despite the close molecular mass of the two proteins the more 

extended shape of the main band (100 kDa-110 kDa) and the presence of the minor bands 

corresponding to both GmLYR3/TmEFR and GmLYR3/TmBAK1 validated the co-expression of the 

two proteins. Following treatment of the leaf samples with water, 1 µM LCO-IV (S, C16:2Δ2,9) or 5 

µM elf 18 an ethylene response was detected for both positive controls expressing either EFR/TmEFR 

chimeric protein alone (0.73 pMol/mg/h) or co-expressing EFR/TmEFR together with 

BAK1/TmBAK1(0.72 pMol/mg/h) after treatment with 5 µM elf18 (Fig.15). Absence of ethylene 

production in response to LCO or elf 18 treatments was observed for BAK1/TmBAK1, 

GmLYR3/TmEFR or GmLYR3/TmBAK1samples. Interestingly the basal levels of ethylene were 

increased in all samples expressing chimeric proteins containing the BAK1 kinase i.e. 

BAK1/TmBAK1, BAK1/TmBAK1 + EFR/TmEFR, and GmLYR3/TmBAK1 in comparison to the 

ethylene backgrounds observed for the other chimeras (EFR/TmEFR and GmLYR3/TmEFR). A very 

strong ethylene response was detected for the sample co-expressing the GmLYR3/TmEFR and 

GmLYR3/TmBAK1 chimeric proteins, but this was independent of LCO treatment as it occurred after 

either water (1.31 pmol/mg/h) or 1 µM LCO-IV (S, C16:2 Δ29) (1.45 pmol/mg/h) treatment.   

Measurement of ethylene production in response to NodSm factor in the leaves of N. benthamiana 

co-expressing GmLYR3/TmEFR and GmLYR3/TmBAK1 chimeric proteins pretreated with CO-IV 

and in the leaves co-expressing MtLYR3/TmEFR and GmLYR3/TmBAK1.   

 One of the explanations for the strong non-specific ethylene response and HR observed in the 

plants co-expressing GmLYR3/TmEFR and GmLYR3/TmBAK1 could be auto-activation of the EFR 

kinase due to ligand-independent hetero-dimerization between GmLYR3/TmBAK1 and   
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Fig.13 Quantification of the HR in the leaves of N. benthamiana plants expressing alone or co-

expressing GmLYR3/TmEFR and GmLYR3/TmBAK1 chimeric proteins as well as native EFR 

and BAK1 receptors.  

Quantification was performed at 44 hai. HR was observed in five N. benthamiana plants for each 

chimeric protein or proteins combination. Intensity of the stress symptoms was measured by using the 

same scale as before (0-no stress symptoms, 1- first symptoms, rare water soaked lesions; 2-strong 

symptoms, generalized water soaked lesions, leaf flaccidity; and 3- necrosis and desiccation of the 

leaf) and resulted in detection of equally strong HR for BAK1/TmBAK1, 

EFR/TmEFR+BAK1/TmBAK1 and GmLYR3/TmEFR+GmLYR3/TmBAK1 whereas EFR/TmEFR 

was triggering weaker stress symptoms. 
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Fig.14 Immunodetection of single or co-expressed GmLYR3/TmEFR and GmLYR3/TmBAK1 

chimeric proteins and native EFR and BAK1 in the crude extracts from N. benthamiana leaves. 

Polypeptides corresponding to all chimeric receptors and their combinations were detected with anti-

HA-HRP antibodies in crude extracts obtained from N. benthamiana leaves at 48 hai.  
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GmLYR3/TmEFR. The stability of such dimers could be strengthened by the homo-dimerization 

between the two identical GmLYR3 extracellular domains of these chimeras. Based on these 

assumptions two modifications which could interfere with the chimeric proteins hetero-dimerization or 

stability of formed dimers were tested.  

 Firstly plants co-expressing GmLYR3/TmBAK1 and GmLYR3/TmEFR were pretreated with 

CO-IV. This pre-treatment was proposed because of the recently shown negative effect of a short CO 

(CO-V) on CERK1 oligomerization and binding, and because of the known ability of LYR3 to bind 

CO-IV with low affinity (KI<10µM) (Fliegmann et al., 2013).The aim was to reduce or eliminate the 

HR symptoms by interrupting homo-dimer formation and before further ligand-induced ethylene 

measurements. Leaves of the plants expressing GmLYR3/TmBAK1 and GmLYR3/TmEFR chimeric 

receptors were infiltrated with 10µM CO-IV at 24 hai. The HR quantification done at 48 hai and 74 

hai resulted in the absence of any effect of CO-IV on the HR which was equally strong for treated and 

untreated plants (data not shown). The measurement of ethylene was therefore not done because of 

this cell death response.    

 In the second experiment GmLYR3/TmBAK1 was co-expressed with MtLYR3/TmEFR 

instead of GmLYR3/TmEFR. It was expected that the ligand independent dimerization between these 

two proteins would be less stable due to the number of differences present in MtLYR3 and GmLYR3 

extracellular domains. Chimeric proteins MtLYR3/TmEFR with GmLYR3/TmBAK1 and 

GmLYR3/TmEFR with GmLYR3/TmBAK1were co-expressed in the tobacco leaves for 48 hours and 

HR was quantified. The results showed a two-fold reduction in the cell death response for the 

MtLYR3/TmEFR and GmLYR3/TmBAK1 protein couple in comparison to co-expressed 

GmLYR3/TmEFR and GmLYR3/TmBAK1 (Fig.16). Since less HR was observed in the case of 

MtLYR3/TmEFR and GmLYR3/TmBAK1 co-expression, an experiment aimed at measuring the 

ethylene response activation with LCO in this sample was performed. Samples from transgenic N. 

benthamiana leaves expressing GmLYR3/TmEFR, MtLYR3/TmEFR, GmLYR3/TmBAK1 and co-

expressing EFR/TmEFR with BAK1/TmBAK1, GmLYR3/TmEFR with GmLYR3/TmBAK1 and 

MtLYR3/TmEFR with GmLYR3/TmBAK1 were harvested (at 24hai) and treated (at 48 hai) with 

water, 1 µM LCO-IV (Ac, S, C16:2 Δ2, Δ9) or 5 µM elf 18. Western blotting detection performed at 

this time point suggested that the chimeric proteins were equally well expressed in both single and co-

transformed leaves (Fig.17). A relatively strong ethylene response (0.72 pmol/mg/h), triggered by 5 

µM elf 18, was detected in the control sample co-expressing EFR/TmEFR with BAK1/TmBAK1 

(Fig.18). No gas emission was observed in response to the treatment with elicitors in 

GmLYR3/TmEFR, MtLYR3/TmEFR and GmLYR3/TmBAK1 samples. A strong elicitor independent 

ethylene response (1.2-1.8 pmol/mg/h) was detected in the sample co-expressing GmLYR3/TmEFR 

and GmLYR3/TmBAK1 chimeric proteins. Non-specific emission of ethylene to a lower degree was 

observed for the sample co-expressing MtLYR3/TmEFR and GmLYR3/TmBAK1 (0,3-0,5 

pmol/mg/h). No clear, specific LCO induction of the ethylene response was seen for these two 

samples.  
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Fig.15 Induction of ethylene biosynthesis with different elicitors in N. benthamiana leaves 

expressing alone or co-expressing GmLYR3/TmEFR and GmLYR3/TmBAK1 chimeric proteins 

as well as native BAK1 and EFR receptors. 

Emission of ethylene was analyzed in N. benthamiana samples at 48 hai (five 5mm leaf disks per 

sample/3 repetitions) and resulted in the detection of ethylene response after elf18 treatment in the 

samples containing native EFR and strong ligand independent response in case of GmLYR3/TmEFR 

and GmLYR3/TmBAK1 co-expression. 

 
 

Fig.16 Quantification of the HR in the leaves of N. benthamiana plants co-expressing 

GmLYR3/TmEFR with GmLYR3/TmBAK1 and MtLYR3/TmEFR with GmLYR3/TmBAK1.  

Quantification was performed at 48hai and resulted in the detection of much reduced HR in case of 

MtLYR3/TmEFR co-expression with GmLYR3/TmBAK1.  
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 To exclude the possibility that the co-expression of LYR3 containing chimeras could 

negatively influence their ability to bind LCO, equilibrium binding for all chimeric receptors and their 

co-expressed combinations was performed. Strong binding of LCO-IV(35S,C16:2Δ2,9) was detected 

in leaf membrane extracts for all individual LYR3 containing chimeras and for co-expressed chimeric 

proteins, GmLYR3/TmEFR with GmLYR3/TmBAK1 and MtLYR3/TmEFR with 

GmLYR3/TmBAK1 (Fig.19).           

Conclusions and discussion.     

 Results obtained in this study have shown that col-0 A. thaliana plants expressing aequorine 

do not activate a stress calcium response after treatment with NodSm factor (LCO-IV (S, C16:2Δ29)) 

in contrast to CO-VIII, suggesting that LCO is unable to trigger this defense response in A. thaliana. 

Thus, A. thaliana is a good heterologous system to study whether LCO binding to LYR3 chimera can 

lead to LCO dependent calcium responses (Fig.2).  

 In the experiments with plants stably expressing LYR3/CERK1 chimeric proteins we faced 

several problems which affected the obtained results. Firstly, due to low efficiency of transformation 

no red fluorescent plants considered as transformed and expected to express the chimeric proteins 

were obtained for the MtLYR3/TmCERK1, MtLYR3Tm/CERK1 and CERK1/TmCERK1 

constructions. Secondly, among the few fluorescent transformants found for GmLYR3/TmCERK1 and 

GmLYR3Tm/CERK1 only in one plant expression of the GmLYR3Tm/CERK1 protein was 

confirmed by immuno-detection (Fig.4). Absence of chimeric proteins in all other fluorescent plants 

could point to the chimeric genes being silenced or to problems of their co-integration with the 

fluorescent marker into the genome of A. thaliana. Lack of calcium influx observed after the treatment 

of transgenic plants expressing the GmLYR3Tm/CERK1 protein with B. japonicum Nod factor 

suggests that this chimeric receptor remained inactive in the presence of LCO (Fig.5). However, the 

low level of this protein expression could have been insufficient for defense response activation and 

therefore we cannot exclude the possibility that stronger expression of GmLYR3Tm/CERK1 would 

trigger calcium influx in response to LCO. Additionally it should be noted that the trans-membrane 

region originating in this chimeric protein from the GmLYR3 receptor might not be optimal for either 

LCO binding (see Fig. 11) or the activation of the CERK1 kinase. Several studies have shown that 

chimeric protein activation works better if the kinase domain is fused to its native Tm (Brutus et al., 

2010).  

 Summarizing the above observations, stable transformation of A. thaliana plants with all 

chimeric proteins carrying different trans-membrane regions and with positive CERK1/TmCERK1 

control should be repeated by introducing such modifications in the transformation procedure which 

would improve its efficiency. Also because of the limited expression observed for 

GmLYR3Tm/CERK1 driven by the 35S promoter the use of stronger promoters providing better 

expression in A. thaliana should be considered. To exclude the possibility of gene silencing, genetic  
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Fig.17 Immunodetection of single or co-expressed GmLYR3/TmEFR and GmLYR3/TmBAK1 

or MtLYR3/TmEFR and GmLYR3/TmBAK1 chimeric proteins as well as native EFR and 

BAK1 receptors in the crude extracts from N. benthamiana leaves.  

Polypeptides corresponding to all chimeric receptors and their combinations were detected with anti-

HA-HRP antibodies in crude extracts obtained from N. benthamiana leaves at 48 hai. 

 
Fig.18 Induction of ethylene biosynthesis with different elicitors in N. benthamiana leaves 

expressing alone or co-expressing GmLYR3/TmEFR and MtLYR3/TmEFR with 

GmLYR3/TmBAK1 chimeric proteins as well as native BAK1 and EFR receptors.  

Emission of ethylene was analyzed in N. benthamiana samples at 48 hai (five 5mm leaf disks per 

sample/3 repetitions) and resulted in the detection of ethylene response after elf18 treatment in the 

sample co-expressing EFR and BAK1 proteins. Strong ligand independent response was observed in 

case of GmLYR3/TmEFR and GmLYR3/TmBAK1 co-expression. Similar but much reduced non-

specific ethylene production was detected in the sample co-expressing MtLYR3/TmEFR and 

GmLYR3/TmBAK1 chimeric proteins. 

0

0,5

1

1,5

2

E
th

yl
en

e 
pM

ol
/m

g/
h

1µM NodSm

H2O

5µM elf18

1-EFR/TmEFR+BAK1/TmBAK1 

2-GmLYR3/TmEFR 

3-MtLYR3/TmEFR 

4- GmLYR3/TmBAK1 

5-GmLYR3/TmEFR + GmLYR3/TmBAK1 

6- MtLYR3/TmEFR + GmLYR3/TmBAK1 

100 

70 

55 

130 

40 

      1        2         3        4          5          6 



 

77 
 

constructions for new transformation could be supplemented with the gene encoding P19, the siRNA 

binding protein (Lakatos et al., 2004).     

 Strong cell death response triggered by heterologous production of LYR3/CERK1 and 

CERK1/TmCERK1 proteins in the leaves of N. benthamiana points to the auto-activation of the 

chimeras after their expression in this system (Fig.6, 7). In the case of CERK1/TmCERK1, this 

observation is in agreement with previously reported ligand independent oligomerization of CERK1 

driven by the 35S promoter in A. thaliana (Liu et al., 2012) or induction of defense-like responses in 

case of CERK1 overexpression in N. benthamiana leaves (Pietraszewska-Bogiel et al., 2013). 

According to the immuno-detection results, the LYR3/CERK1 and CERK1/TmCERK1 proteins were 

very strongly and equally expressed in the N. benthamiana leaves, which probably led to their 

homooligomerization and subsequent activation of the CERK1 kinase up to a level sufficient to trigger 

the cell death response (Fig.8). However it is notable that the HR triggered by CERK1/TmCERK1 was 

much weaker than the stress response observed in the case of LYR3/CERK1 expression. This could 

point to better homodimerization of the LYR3/CERK1 chimeras, resulting in the reinforcement of 

their auto-activation. As the MtLYR3 protein has recently been shown to form homodimers in N. 

benthamiana leaves (J. Fliegmann and A. Jauneau, unpublished data) it could be expected that the 

LYR3/CERK1 chimeras are additionally stabilized by the homodimerization between Mt or Gm 

LYR3 ectodomains.   

 The absence of changes in the intensity of HR symptoms observed after pretreatment of plants 

expressing GmLYR3/TmCERK1 protein with LCO-V (Fuc, Me, C18:1) or CO-V suggests that both 

elicitors in the given conditions were not able to affect the biological activity of the chimeric protein.  

In contrast CO-V partially inhibited the stress responses triggered by the CERK1/TmCERK1 protein, 

supporting previously published data suggesting that binding of this ligand leads to the interruption of 

CERK1 dimerization which is required for its active state (Fig.9) (Liu et al., 2012).   

 Thus, the study of defense responses triggered by LYR3/CERK1 chimera in response to LCO 

would need, to use a weaker promoter to lower their transient expression in N. benthamiana in order to 

avoid an autoactivation leading to HR in absence of ligand, which is in contrast to the suggestions 

made for improving the expression of the same proteins in stable transformants of A. thaliana.  

 Concerning the EFR chimera, the absence of ethylene production in response to LCO-IV (S, 

C16:2Δ2,9) treatment observed for the GmLYR3/TmEFR chimera, together with the strong ethylene 

response detected for the weaker expressed EFR/TmEFR protein after its treatment with elf18, 

suggests that the GmLYR3/TmEFR chimeric receptor is not sensitive to and could not be activated by  

LCO (Fig.12A). The ability to bind LCO, validated for the GmLYR3/TmEFR protein in equilibrium 

binding experiments with LCO-IV(35S,C16:2Δ2,9), suggests that the problem is not with intrinsic 

ligand binding by the GmLYR3/TmEFR protein (Fig.11). The lack of ethylene response after 

GmLYR3/TmEFR chimera treatments, designed to improve access of LCO (infiltration or exposure 

with LCO at 10 µM concentration), points to the problem not being either due to ligand accessibility  
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Fig.19 Specific binding of LCO-IV(35S,C16:2Δ2,9) to the GmLYR3/TmEFR and 

MtLYR3/TmEFR chimeric proteins expressed alone or co-expressed with GmLYR3/TmBAK1. 

Specific binding was measured for 25µg of membrane proteins obtained from transformed N. 

benthamiana leaves (48hai) and resulted in the detection of strong binding for all LYR3 containing 

proteins and their combinations. No binding was detected for single or co-expressed EFR/TmEFR and 

BAK1/TmBAK1 receptors as well as for empty vector. 
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(Fig.12B). The inability of the AtCERK1/TmEFR chimeric protein to be activated with CO-VIII, 

suggests a problem in the activation of the EFR kinase in these LysM-EFR constructs (Fig.12C).  

 To try to improve the activation of the EFR kinase and the ethylene response, the co-receptor 

BAK1 was used, as it has previously been shown to be required for EFR responses in A. thaliana 

(Roux, Schwessinger, 2011). Co-expression of BAK1 with EFR did not lead to an improvement in 

elf18-dependent ethylene production and with GmLYR3/TmEFR, GmLYR3/TmBAK1 led to a strong 

HR and constitutive ethylene response (Fig.13, 15). This could suggest an EFR kinase activation, 

probably caused by its ligand-independent dimerization with the kinase of BAK1. Attempts to reduce 

this constitutive ethylene response, by treatment with CO-IV, failed (Fig.15, 18) suggesting that 

dimerization of these chimeric receptors could not be interrupted in a similar way as was demonstrated 

for CERK1 with CO-V. However the response was partly reduced for co-expression with 

GmLYR3/TmBAK1, when GmLYR3/TmEFR was replaced with MtLYR3/TmEFR (Fig.16,18), 

demonstrating that LYR3/TmEFR-TmBAK1 dimerization is at least partially determined by GmLYR3 

ECDs homodimerization. However even in these conditions, no LCO dependent ethylene production 

was observed. Since overexpression of the chimeric proteins is likely to be the main reason for their 

ligand-independent interaction it could be expected that weaker expression may solve the problem of 

LYR3/TmEFR and LYR3/TmBAK1 proteins nonspecific dimerization, leaving the opportunity for 

LCO, which was shown to bind to both chimeric receptors (Fig.19), to participate in EFR kinase 

activation. 

 

 Thus, summarizing the observations made for both LYR3/TmCERK1 and LYR3/TmEFR 

chimeric proteins it could be concluded that the LYR3 protein possesses the potential to be used as a 

part of chimeric receptors, as some LYR3 chimera retained LCO binding activity when coupled with 

different Tm and kinase domains. There appears to be a need to control carefully the expression of the 

chimeric proteins to avoid constitutive activation of the kinase domains so that their biological activity 

can be controlled by the ligand. Further study of the LYR3 protein, especially investigation of its LCO 

binding mechanisms and  the control of oligomerization, would help to design more efficient chimeric 

proteins containing the LYR3 ECD and responsive to LCO.  
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Chapter III 

Activation of symbiotic LysM-RLKs by 

phosphorylation 
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Introduction 

 This chapter describes the study of NFP and LYK3 activation in the epidermis of Medicago 

truncatula roots after their treatment with Sinorhizobium meliloti or purified Nod factor from this 

bacterium.    

 Two M. truncatula LysM-RLKs NFP and LYK3 required for nodulation and Nod factor 

responses were chosen as the objects of this study since both of them are involved in LCO perception 

(Arrighi et al., 2006; Smit et al., 2007). In the case of NFP its LysM domains were predicted to bind 

LCOs by homology modeling and docking with Nod factor (Mulder et al., 2006) whereas LYK3 was 

shown to be involved in the specific recognition of Nod factor chemical decorations (Smit et al., 

2007). However, in our conditions no direct binding of LCOs to NFP and LYK3 was detected. It was 

thus decided to study indirectly the interaction of these receptors with symbiotic molecules by 

detecting their activation after the symbiotic treatments. We found it advantageous to work with the 

proteins located in the epidermis since in this case their activation could be studied in the cells directly 

in contact with the symbiotic signal molecules.     

 To investigate the activation of symbiotic receptors in this specific tissue several tools could 

be used. One of them is to observe symbiotic responses triggered by the studied receptor after its 

activation. For NFP its symbiotic activity in the epidermis was recently investigated (Rival et al., 

2012). In this study promoter pLeEXT1 originating from tomato was used to express NFP in the 

epidermal tissue of M. truncatula. Firstly using a pLeEXT1:GUS construction this promoter was 

shown to be expressed specifically in epidermal cells but not in the cortex of Medicago roots. Hairy 

root transformation of nfp mutant plants with the pLeEXT1:NFP construction resulted in 

complementation for early symbiotic responses such as ENOD11 gene expression and cortical cell 

division (CCD) in these plants after their treatment with Sinorhizobium meliloti. In this chapter we 

describe similar experiment performed to study LYK3 symbiotic activity in the epidermis of M. 

truncatula roots.      

 The second tool to study receptor activation originates from the known phenomenon that 

ligand perception by a RLK often leads to the phosphorylation of its kinase domain. This very 

common posttranslational modification often plays a crucial role in the activation and biological 

functioning of the proteins. For example, AtCERK1, a LysM-RLK of Arabidopsis thaliana, was 

shown to be specifically phosphorylated after chitooligosaccharide (CO) perception and this, in turn, 

was necessary for the activation of defense responses (Petutschnig et al., 2010). One of our proteins of 

interest, LYK3, possesses 60% identity and is phylogenetically close to AtCERK1, so it may be 

activated by LCO in a similar way as AtCERK1 with CO. Therefore ligand-induced phosphorylation 

of LYK3 might be used to detect its interaction with Nod factor. By analogy with LYK3 we also 

investigated in our study the phosphorylation induced by ligand perception for NFP.   

 To detect the phosphorylation it was decided to use a novel approach called Phos-tag™ SDS-

PAGE. Phosphorylation can lead to the retardation of protein migration during SDS-PAGE. Recently 

it was shown that this retardation can be enhanced by applying the selective phosphate-binding tag  
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molecule, Phos-tag™ (Tomida et al., 2008). Phos-tag™ represents an acrylamide pendant molecule 

holding a phosphate binding site which consists of two Zn2+ or Mn2+ ions and is able to bind 

phosphorylated forms of tyrosine, serine and threonine. Addition of Phos-tag™ to the acrylamide gel, 

followed by SDS-PAGE, causes a decrease of the migration speed and strong retardation of the 

phosphorylated proteins in comparison to their non-phosphorylated forms due to the temporary 

trapping of the phosphate groups by the evenly diffused Phos-tag™ molecules anchored in the gel.   

 For the reason that NFP possesses a dead kinase (Arrighi et al., 2006), in the event of detection 

of its phosphorylation, the study would be extended to the identification of the protein kinase that 

phosphorylates NFP. Such question could be answered by the expression and further analysis of NFP 

phosphorylation in plants mutated in the kinase genes chosen as the candidates for NFP 

phosphorylation. Two receptors LYK3 and DMI2 possessing active kinases and participating in the 

same symbiotic processes as NFP are the most expected candidates for NFP trans-phosphorylation. 

This assumption especially makes sense in the light of the studies done for NFP (NFR5), LYK3 

(NFR1) and DMI2 (SYMRK) orthologs in L. japonicus in which NFR1 was shown to be able to 

phosphorylate NFR5 in vitro (Madsen et al., 2011) whereas SYMRK was able to interact with NFR5 

when co-expressed in N. benthamiana leaves (Antolín-Llovera et al., 2014). Generation of a 

hypersensitive response observed during NFP and LYK3 co-expression in N. benthamiana also points 

to the possibility of interaction (direct or indirect) between these two receptors (Pietraszewska-Bogiel 

et al., 2013).  

 It was decided also to study LYR3 phosphorylation by LYK3.This receptor, described in the 

previous chapter, owns, like NFP, an inactive kinase and thus it would require another protein kinase 

for its phosphorylation. A recent study (J. Fliegmann, unpublished) has shown that LYK3 interacts 

with LYR3 and so may serve as the protein kinase for LYR3 phosphorylation. Therefore the 

phosphorylation status of NFP and LYR3 was examined in wild-type plants and also in DMI2 and 

LYK3 mutants in order to determine the potential role of DMI2 and LYK3 in this process. 

Experimental procedures 

Plant growth conditions 

Generation and growth of A. rhizogenes transformed plants: 

 Seeds of the Medicago truncatula wild type plants (A17) and EMS Nod- mutants (lyk3-1 (hcl-

1)) and dmi2-1) (Catoira et al., 2000; Catoira et al., 2001) were scarified with concentrated sulfuric 

acid for five minutes and then surface sterilized with 12% sodium hypochlorite for 2 minutes. Next, 

sterilized seeds were vernalized for two days on 1% agar plates at 4oC and germinated in the dark at 

25oC for three days. For A. rhizogenes transformation five days old seedlings were transferred to 

Fahraeus agar plates (15g/l agar, MgSO4-0.5 mM, KH2PO4-0.7 mM, Na2HPO4-0.8 mM, Fe-EDTA-

0,02 mM and microelements MnCl2, CuSO4, ZnCl2, H3Bo3, Na2MoO4 each at 0.1 μg/l concentration, 

after autoclaving supplemented with sterile CaCl2-1 mM, NH4NO3 – 5 mM and Kanamycin -20 μg/ml)  
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where the tips of the roots of the plantlets were cut off with a sterile razor. Place of the cut was treated 

with Agrobacterium rhizogenes strain ARqua1 (OD600=0.03) carrying on the pCambia2202 plasmid the 

pLeEXT1:LYK3-FLAG, p35S:LYK3-FLAG, pLeEXT1:NFP-FLAG or pLeEXT1:LYR3-HAST 

constructions together with the kanamycin resistance gene. For generation of  transgenic roots plants 

were grown for two weeks at 25oC with 16h/8h day/night cycle and then moved either to sepiolite 

solid media in the case of lyk3-1 complementation experiments or to an aeroponic system in the case 

of NFP and LYR3 phosphorylation studies in lyk3-1 and dmi2-1 mutants.   

 Plants transferred to sepiolite were first grown for two weeks in 5ml pipette tips and after for 

one week in mini-pots of 50ml volume. During the cultivation, plants were watered with liquid 

Fahraeus medium, supplemented with 1 mM NH4NO3. Two days before the symbiotic treatment the 

sepiolite pots were washed with water and equilibrated in nitrogen deficient Fahraeus medium.  

 In the aeroponic system, plants were grown for one month with nutrient medium (CaCl2-2 

mM, MgSO4-0.25 mM, K2SO4-0.5 mM, K2HPO4-3.8 mM, KH2PO4-1.7 mM Fe-EDTA-0,05 mM 

NH4NO3-5 mM and microelements MnSO4-10.6 μM, CuSO4-3.2 μM, ZnSO4-0.7 μM, H3Bo3-30 μM, 

Na2MoO4-1 μM). Three days before harvesting the aeroponic medium was replaced with water and in 

one hour with aeroponic medium lacking NH4NO3.  

Growth conditions for experiments with stably transformed plants:  

 Seeds of M. truncatula plants stably expressing pLeEXT1:LYK3-FLAG or pLeEXT1:NFP-

FLAG constructions were sterilized and germinated in the similar way as was described for the plants 

used for A. rhizogenes transformations. Five days old seedlings were transferred from Fahraeus agar 

plates to the aeroponic system and grown for one month in the presence of the nitrogen source. Three 

days before symbiotic treatments the medium was replaced with water for one hour and then with the 

aeroponic medium lacking a nitrogen source.        

Symbiotic treatments  

For the lyk3-1 complementation experiment: 

 Wild-type Sinorhizobium meliloti strain GMI6526 harboring the pXLGD4 plasmid with a 

constitutively-expressed  ß-galactosidase (LacZ) gene was grown for three days at 28°C on tryptone 

yeast agar medium (TY) containing 6 mM CaCl2 and 10 µg/ml tetracycline. Grown bacteria were 

resuspended in water and used to inoculate five weeks old plants in mini-pots (2 mL of an OD600 = 

0.1per plant). After inoculation half of the plants were grown for 6 days and the other half for 21 days.  

For the NFP activation experiments: 

 Wild-type Sinorhizobium meliloti strain GMI6526 was grown on TY agar plates at 28°C for 

two days. Grown bacteria were used to inoculate 10 ml of LB medium (NaCl-10 g/l, yeast extract-5 

g/l, bacto-tryptone- 10 g/l). Overnight (o/n) grown 10 ml liquid bacterial culture was used as a pre-

culture to produce 200 ml liquid culture. Grown o/n 200 ml liquid culture was diluted to an OD600= 0.4  
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and cultivated for five more hours in the presence of luteolin at 5 μM concentration. Next, the bacteria 

were spun down at 4x103g, resuspended in sterile water and added to the aeroponic medium, reaching 

a final concentration of 2x107 bacteria/ml. One month old plants stably expressing the pLeEXT1:NFP-

FLAG construction were incubated with the bacteria for two hours in the aeroponic system after which 

time their roots were harvested, frozen in liquid nitrogen and ground to a powder.  

For the LYK3 activation experiment:  

 Plants, stably expressing pLeEXT1:LYK3-FLAG construction and grown for one month in 

aeroponic system, were treated with purified Nod factor (LCO-IV (Ac, S, C16:2 Δ2, Δ9)) from 

Sinorhizobium meliloti (Roche et al., 1991). During the treatment the roots of the transgenic plants 

were soaked for 20 minutes in water containing 10-8 M Nod factor. After the treatment roots were 

harvested, frozen in liquid nitrogen and ground to a powder.   

Staining and microscopy methods 

 Histochemical staining for β-galactosidase activity provided by the pXLGD4 plasmid in S. 

meliloti was performed as described previously (Ardourel et al., 1994). To prepare the sections, root 

fragments were embedded in 4% agarose solution and cut into 50 μm-thick slices with the vibratome 

(Leica VT1000S). Root fragments as well as sections were observed with Zeiss Axioplan2 imaging 

microscope.  

Standard and Phos-tag SDS-PAGE  

 To avoid the de-phosphorylation of the studied proteins, extracts were treated with two 

phosphatase inhibitors Na3VO4 (1 mM) and NaF (10 mM). During both normal and Phos-tag™ SDS-

PAGE proteins were separated on 9% acrylamide gels. Phos-tag™ gel was supplemented with 25 μM 

Phos-tag™ and 50 μM MnCl2. After migration, proteins were transferred onto nitrocellulose 

membranes and detected with antibodies coupled to horseradish peroxidase (HRP): anti-GST-HRP 

(GE Healthcare, 1:10,000), anti- rabbit -phospho-Thr (Invitrogen, 1:1000) in combination with anti-

rabbit-coupled HRP (Millipore, 1:25,000), anti-FLAG-HRP (Sigma, 1:5000) and anti-HA-HRP 

(Roche, 1:2000).  

Sample extraction and fractionation  

 Fractionation of sample extracts was performed using a SIGMA 3K18 centrifuge or an Optima 

MAX-E Ultracentrifuge. Frozen root powder was resuspended in the extraction buffer (25 mM Tris-

HCl buffer pH 8.5, 0.47 M sucrose, 10 mM EDTA, 10 mM dithiothreitol, protease inhibitor cocktail 

(4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF), antipain, leupeptin, aprotinin, 

pepstatin, chymostatin) or in the same buffer lacking EDTA and centrifuged for 10 minutes to obtain 

the 3x103 g supernatant fraction. To obtain the 20x103g or 45x103g supernatant fractions the 3x103 g 

supernatant was centrifuged for 40 minutes at these centrifugal forces. The pellets obtained after this  
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Fig.1 Results of lyk3-1 complementation with pLeEXT1:LYK3-FLAG. 

(A) Microscopy of mutant lyk3-1 plants transformed with p35S:LYK3, pLeEXT1:LYK3 and empty 

vector at 6 dpi with S. mileloti. For both plants transformed with p35S:LYK3 or pLeEXT1:LYK3 

initiation of infection thread formation was observed. (B) Microscopy of similar transformants at 21 

dpi- fully developed nodules were detected for the plants complemented with p35S:LYK3, whereas 

plants transformed with pLeEXT1:LYK3 were owning the bumps. (C) Sections of the nodules 

validating their normal morphology and the bumps showing the arrest of infection thread on the level 

of epidermis. (D) Quantification of nodules and bumps in p35S:LYK3, pLeEXT1:LYK3 and empty 

vector transformants.  
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centrifugation corresponding to the 20x103g or 45x103g membrane fractions were resuspended in the 

binding buffer (25 mM Na-cacodylate buffer pH 6.0, 0.25 M sucrose, 1 mM MgCl2, 1 mM CaCl2, 

protease inhibitor cocktail) and centrifuged for another 10 minutes at 20x103g or 45x103g respectively. 

The obtained pellets were resuspended in the binding buffer.     

Results  

Study of LYK3 symbiotic activity in the epidermis of Medicago truncatula roots. 

 To study LYK3 biological activity in the epidermal tissue we performed an experiment similar 

to the one which was recently done for NFP (Rival et al., 2012) and described in the introduction. 

Hairy root transformation of lyk3-1 mutant plants with the pLeEXT1:LYK3 construction was done, 

using Agrobacterium rhizogenes. The control plants were transformed with either empty vector 

pCambia2202 (in which LYK3 was originally cloned) or with LYK3 expressed from the constitutive 

35S promoter (p35S:LYK3). Both LYK3 proteins were tagged at their C-termini with the 3xFLAG 

tag. After the regeneration of transformed roots on the selective medium, plants were inoculated with 

the wild-type strain of Sinorhizobium meliloti harboring the ß-galactosidase gene on the pXLGD4 

plasmid (strain GMI6526). Transgenic roots were analyzed at 6 and 21 days after inoculation (dai) by 

histochemical staining based on ß-galactosidase activity and further observed under the 

stereomicroscope. At 6 dai several symbiotic responses, namely tight root hair curls with entrapped 

bacteria and the beginning of infection thread (IT) formation, were detected for the plants transformed 

with either pLeEXT1:LYK3 or p35S: LYK3 (Fig.1A). Plants transformed with the empty vector 

showed root hair deformation and formation of some loose root hair curls whereas no infection threads 

were detected. Observations done at 21dai (Fig.1B) resulted in the detection of several developed 

infection threads which were reaching the sub-epidermal cell layer and the occurrence of few bumps 

on the roots of majority of the plants transformed with pLeEXT1:LYK3 (Fig.1D). Next, the bumps 

were embedded and microtome sectioned with the aim to check whether they were infected by 

Rhizobium. For all analyzed samples, infection threads were shown to be arrested immediately after 

reaching the base of the epidermal cell, being, therefore, unable to invade and infect the cortical cell 

layers forming the bump (Fig.1C). Fully developed pink nodules and many bumps were observed for 

the plants transformed with p35S:LYK3 (Fig. 1B/C). Further sectioning confirmed their normal 

morphology with the typical indeterminate nodule zonation and the stained bacteria present in the 

infection and inter-zones (Zone II and Zone II-III). Additional blue staining, present in some of the 

images, was caused by endogenous plant ß-galactosidase activity. Plants transformed using the empty 

vector at 21dai continued to demonstrate the previously-described lyk3-1 phenotype (Catoira et al., 

2001). In addition to the observed earlier deformation of root hairs, periodical thickenings of the roots 

caused by several rounds of cortical cells division in these areas were also observed (Fig.1B). After 

LYK3 was shown to stay active in the epidermis in the symbiotic conditions, we proceeded further to 

the development of Phos-tag™ assay.      
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Fig.2 Immunodetection of the GST-LYK3-IR and G334E proteins after their separation on 

standard and Phos-tagTm acrylamide gels. 

GST-LYK3-IR and G334E proteins were migrated on the Standard and Phos-tagTm gels and next 

detected with anti-GST-HRP (α-GST) or anti- rabbit -phospho-Threonine (α-pT) antibodies (A) or via 

coomassie blue staining (B). In all cases GST-LYK3-IR protein was retarded in the presence of Phos-

tagTm molecule. 
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Development of Phos-tag™ SDS-PAGE assay.  

 To develop the Phos-tag™ assay for detection of NFP and LYK3 phosphorylation we decided 

to use previously obtained proteins consisting of the GST tag fused to the N terminus of the 

intracellular regions of LYK3 wild type (GST-LYK3-IR) and point mutated (G334E) proteins. By 

analyzing both purified proteins with anti-phospho-Thr (-pT) and anti-phospho-Ser (-pS) antibodies it 

was demonstrated that GST-LYK3-IR is capable of auto and trans-phosphorylation whereas G334E 

has lost this ability (Klaus-Heisen et al., 2011). GST-LYK3-IR and G334E thus represent a pair of 

equivalent proteins only differing in their phosphorylation status and therefore were expected to show 

no differences during migration on the standard acrylamide gel, but to get separated during Phos-tag™ 

SDS PAGE. Regular SDS-PAGE and western blotting performed with GST-LYK3-IR and G334E 

showed a similarly migrating polypeptide observed with anti-GST antibodies for both proteins, except 

that GST-LYK3-IR migrated as a pronounced smear. Optimization of the conditions for Phos-tag™ 

SDS PAGE took several trials and resulted in finding conditions in which GST-LYK3-IR migrated as 

two separated bands, one highly retarded and one migrating at the same level as G334E (Fig.2A). 

Detection of the proteins with anti-phospho-Thr (-pT) antibodies resulted in the visualization of only 

the retarded band belonging to the GST-LYK3-IR sample. These observations suggested that the shift 

of the band observed in the case of GST-LYK3-IR was caused by the Phos-tag™ dependent separation 

of its phosphorylated and non-phosphorylated forms. These GST-LYK3 proteins were used as the 

Phos-tag™ quality controls during the study of NFP and LYK3 phosphorylation. In some experiments, 

to simplify and speed up the procedure of the control proteins detection the treatment with anti-GST 

antibodies, which was used previously, was replaced by Coomassie blue (CB) staining, which was 

shown to provide similar visualization of the GST-LYK3 proteins to the one obtained with antibodies. 

The presence of several retarded bands in the over-loaded sample of GST-LYK3-IR (Fig.2B), suggests 

that it consists of several different phosphorylated forms.         

Study of LYK3 and NFP phosphorylation in the roots of M. truncatula plants after their treatment 

with Sinorhizobium meliloti or with pure LCO obtained from this bacterium.    

 After Phos-tag™ SDS PAGE was shown to work satisfactorily we proceeded further to the in 

vivo NFP and LYK3 phosphorylation study. For the experimental procedures we used two 

homozygous transgenic lines of M. truncatula stably expressing in epidermis FLAG tagged NFP 

(pLeEXT1:NFP line M51A7) and LYK3 (pLeEXT1:LYK3 line M52B12). Receptor activation 

experiments were performed on the transgenic plants grown for one month in aeroponic system and 

starved of nitrogen during three days before treatment with symbiotic molecules. At this stage some of 

the transgenic roots were harvested to serve as the untreated controls in future phosphorylation 

detection by Phos-tag™ SDS-PAGE. To study LYK3 phosphorylation, roots of the transgenic plants 

were soaked for twenty minutes in the liquid medium containing purified S. meliloti Nod factor- LCO-

IV (Ac, S, C16:2 Δ2, Δ9) at 10-8 molar concentration. After the treatment, transgenic roots were 

harvested, frozen in liquid nitrogen and ground to a powder. Next, to analyze the changes in receptor  
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Fig.3 Immunodetection of LYK3 proteins after electrophoresis analysis on standard and Phos-

tagTm gels.    

Crude extracts obtained from roots expressing pLeEXT1:LYK3-FLAG, treated (+Nod) or not treated 

(-Nod) with S. meliloti Nod factor, were analyzed by electrophoresis on Standard and Phos-tagTm gels. 

After transfer on nitrocellulose, LYK3 was detected with anti-FLAG-HRP antibodies. To validate the 

Phos-tagTm approach, GST-LYK3-IR (lane 1) and G334E (lane 2) proteins were separated on the same 

gels and visualized after coomassie blue staining. GST-LYK3-IR protein and minor bands 

corresponding to LYK3 +/-Nod factor (lane 3 and 4) were clearly retarded on Phos-tagTm gel. 
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phosphorylation, crude extracts from the transgenic roots treated with purified Nod factor 

(LYK3+Nod) together with the extracts obtained from untreated roots (LYK3-Nod) were migrated on 

the standard 9% acrylamide gel and the gel supplemented with Phos-tag™ (Fig.3). Phos-tag™ 

capability of phosphorylated proteins detection was validated by the separation of GST-LYK3-IR 

protein performed in the same gel. No differences in migration during standard SDS-PAGE were 

observed for LYK3+Nod and LYK3-Nod samples. In both cases migration profiles consisted of a 

main 90 kDa band corresponding to whole FLAG tagged LYK3 protein and several bands of 30 kDa- 

50 kDa probably belonging to the products of LYK3 degradation. However, LYK3 bands from both 

Nod factor treated and untreated roots demonstrated strong similarity also while migrating on the 

Phos-tag™ gel. Interestingly, for both Nod + and Nod- samples bands placed below the main 90 kDa 

band were shifted with respect to each other and present in higher amounts on the Phos-tag™ gel than 

on the standard one. This observation provides evidence that the degradation products may be 

phosphorylated.    

 In the case of NFP, roots of the transgenic plants were exposed for two hours with S. meliloti 

strain GMI6526 which was added to the nutrient solution of the aeroponic system reaching the final 

concentration of 2x107 bacteria/ml. Before starting the experiment bacteria were preactivated in terms 

of LCO production by the incubation for five hours in luteolin containing media. Migration profiles 

obtained for NFP in the lack of Phos-tag™ were identical for the samples extracted from Rhizobium 

treated (NFP+Rhz) and non-treated (NFP-Rhz) roots (Fig.4). Polypeptides observed on the standard 

gel were represented by the main 100 kDa band corresponding to the FLAG tagged NFP and several 

bands placed below originating, probably, from the degraded NFP protein. Phos-tag™ analysis 

resulted in the detection of a strongly retarded band placed above the main 100 kDa band in the130-

170 kDa area for the NFP-Rhz sample. This band was absent in the extract obtained from the 

NFP+Rhz roots. In addition all bands placed below 100 kDa band were retarded in NFP+Rhz sample 

in relation to the same bands from NFP-Rhz sample. Further comparison of migration profiles 

obtained during standard and Phos-tag™ SDS-PAGE revealed general differences for both treated and 

untreated proteins in their modes of migration in presence and absence of Phos-tag™. Firstly, in both 

NFP-Rhz and NFP+Rhz samples, the100 kDa band was followed by a smaller 90 kDa band which was 

not observed on the standard gel. Secondly, bands placed below 100 kDa area were organized 

differently in relation to each other in the presence of Phos-tag™. On the Phos-tag™ gel minor bands 

were migrating as one 70 kDa band separated from the pack of smaller bands (starting around 60 kDa) 

whereas on the standard gel two 70 kDa and 60 kDa bands were divided from the number of smaller 

bands (starting at 50 kDa) (Fig. 4).   

 The obtained results suggested that both LYK3 and NFP samples could contain 

phosphorylated proteins. Most promising data was produced for NFP particularly when a highly 

retarded polypeptide, probably corresponding to the phosphorylated form of the protein, was detected 

in NFP-Rhz sample. To verify the NFP phosphorylation, the experiment was repeated but using a new 

homozygous M. truncatula line expressing pLeEXT1:NFP (M51C9.11 ). This line was selected for the  
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Fig.4 . Immunodetection of NFP proteins after electrophoresis analysis on standard and Phos-

tagTm gels.   

Crude extracts obtained from roots expressing pLeEXT1:NFP-FLAG, treated (+Rhz) or not treated (-

Rhz) with S. meliloti, were analyzed by electrophoresis on Standard and Phos-tagTm gels. NFP proteins 

were detected after transfer on nitrocellulose with anti-FLAG-HRP antibodies. GST-LYK3-IR and 

G334E proteins were separated on the same gels and next detected with anti-GST-HRP antibodies. 

GST-LYK3-IR protein was strongly retarded in the presence of Phos-tagTm validating its phosphate 

binding functionality. For NFP-Rhz, a strongly retarded polypeptide was detected on the Phos-tagTm 

gel. All minor bands corresponding to NFP+Rhz polypeptides were shifted in Phos-tagTm gel. 
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reason that the NFP signal was weakening in the previously used M51A7 line probably caused by a 

problem of gene silencing. The NFP phosphorylation experiment was performed in a similar way as 

was done previously. On the standard gel no differences in the migration profiles were observed for 

NFP+Rhz and NFP-Rhz samples (Fig.5). The detected polypeptides were represented by the main 100 

kDa band followed by a much less abundant 90 kDa band and several smaller size bands (starting 

from 55 kDa) with the most pronounced band of 45 kDa. On the fully functional Phos-tag™ gel no 

differences in the separation were observed for the proteins extracted from the treated and un-treated 

with bacteria roots. The migration profiles obtained during the Phos-tag™ SDS-PAGE were consisting 

of one main 100 kDa band and several smaller size bands placed in the 55-25 kDa area with the most 

abundant 50 kDa band. Possessing similarity in terms of migration within one gel, both NFP samples 

were, however, behaving differently in the presence or absence of Phos-tag™. Present on the standard 

gel, the 90 kDa band accompanying the main 100 kDa NFP band was lacking on the Phos-tag™ gel, 

perhaps due to retardation and co-migration with the major 100 kDa band. High amount of equally 

distanced minor bands consisting of bands of 55 kDa and 50 kDa, a sharp 45 kDa band possessing the 

strongest signal and several bands placed below was observed in the presence of Phos-tag™. Minor 

bands detected on the standard gel were represented by one 55 kDa band separated from the stronger 

45 kDa band, which migrates with a smear and several bands placed below.    

 In both NFP phosphorylation experiments the bands placed below the main 100 kDa band 

were shifted in the presence of Phos-tag™ probably due to their phosphorylation. The predicted size 

of the intracellular region of NFP with the 3xFLAG tag is 38 kDa. Therefore the size of some of the 

minor bands suggested that some of the corresponding truncated proteins could still include the TM 

region and hence be attached to the plasma membrane (PM), whereas the smaller bands might 

correspond to soluble proteins. To examine the association of the phosphorylated derivatives of NFP 

with the PM, the studied samples were fractionated by performing differential centrifugation.  

Fractionation of NFP extracts and Phos-tag™ analysis of the proteins from different fractions.   

 During the fractionation both NFP+Rhz and NFP-Rhz samples were separated by differential 

centrifugation into the 3x103g supernatant, the 20x103g supernatant and the 20x103g pellet fractions. It 

was expected that in the chosen conditions the 3x103g supernatant would contain both soluble and 

membrane attached proteins whereas at 20x103g the membrane associated proteins will be pelleted and 

divided from the soluble ones which will stay in the supernatant.    

 To show that the observed bands are specific to the tagged NFP protein the 3x103g supernatant 

was prepared from the roots of wild type M. truncatula (A17). All fractions were analyzed by standard 

and Phos-tag™ SDS-PAGE. On both supplemented with Phos-tag™ and standard gels no differences 

were observed in the migration profiles of the NFP+Rhz and NFP-Rhz samples as well as no bands 

were detected in the 3x103g supernatant corresponding to the A17 sample (Fig.6). Migration profiles 

observed on the standard gel for the NFP proteins consisted of two bands of 100 kDa and 90 kDa 

detected in the 3x103g supernatant and the 20x103g pellet. These bands were missing in the 20x103g  
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Fig.5 . Second immunodetection of NFP proteins after electrophoresis analysis on standard and 

Phos-tagTm gel of crude extracts from roots expressing pLeEXT1:NFP-FLAG, treated (+Rhz) or 

not treated (-Rhz) with S. meliloti.    

NFP proteins were analysed on Standard and Phos-tagTm gels and detected after transfer on nitrocellulose 

with anti-FLAG-HRP antibodies. GST-LYK3-IR and G334E proteins were separated on the same gels 

and next detected via coomassie blue staining.GST-LYK3-IR protein was strongly retarded on Phos-

tagTm. No differences in the migration of NFP+Rhz and NFP-Rhz samples were observed on standard and 

Phos-tagTm gels.  
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supernatant. The most abundant protein was represented by a 45 kDa band which was observed in all 

fractions. On the Phos-tag™ gel, the two100 kDa and 90 kDa bands were detected only in the 3x103g 

supernatant. Both the 3x103g and 20x103g supernatants contained the 45 kDa band. This band was 

however slightly shifted down in the 20x103g supernatant samples. In the 20x103g pellet the band with 

the strongest signal was migrating at 50 kDa level and therefore was shifted in comparison to the 45 

kDa band of equal intensity observed in the two other fractions.   

 The obtained data was unexpected in several aspects. Firstly, the observed 45 kDa band in the 

standard gel was present in both 20x103g supernatant and pellet fractions, whereas other experiments 

had not shown bands remaining in the supernatant (see Fig. 7). This could suggest that the 

centrifugation force at 20x103 g was insufficient to pellet completely the membrane associated 45 kDa 

protein and part of it was remaining in the 20x103 g supernatant.  Secondly, retardation of the band to 

50 kDa from the 20x103g pellet observed on the Phos-tag™ gel in comparison to its migration at 45 

kDa level in all fractions on the standard gel showed that this 50 kDa band is clearly phosphorylated. 

However, it was surprising that no equally retarded band was detected in the 3x103g supernatant on the 

Phos-tag™ gel. Looking for the possible explanation for the observed phenomenon we identified a 

slight difference in the composition of the two buffers routinely used during the differential 

centrifugation and for the resuspension of the obtained pellets. The extraction buffer in which all 

supernatants were obtained was supplemented with ethylenediaminetetraacetic acid (EDTA) whereas 

the 20x103g pellet was resuspended in EDTA free buffer. It is known that EDTA acts as a Phos-tag™ 

inhibitor due to its ability to chelate the Mn2+ ions, leading to the interruption of the phosphate binding 

sites of the Phos-tag™ molecules. It is therefore possible that EDTA present in the 3x103g and 20x103 

supernatants could protect phosphorylated proteins in these samples from their retardation during 

Phos-tag™ SDS-PAGE.  

 The fractionation was therefore repeated but with excluding EDTA from all types of buffers 

and increasing the centrifugation force up to 45 x103 g. Since on the Phos-tag™ and standard gels 

migration profiles of NFP+Rhz and NFP-Rhz samples were identical, the new fractionation 

experiment was performed only for the NFP-Rhz sample. For the 3x103g supernatant on the standard 

gel one 100 kDa main band and several minor bands including the separated 55 kDa band and several 

smaller bands migrating as a smear were detected (Fig.7). The 115 kDa band detected in the 45 x103 g 

supernatant, suggests that it is a non-specific soluble protein. The migration profile obtained for the 45 

x103 g pellet was similar to the one observed for the 3x103g supernatant. On the Phos-tag™ gel in the 

3x103g supernatant and in the 45 x103 g pellet we observed the main 100 kDa band and at least five 

minor bands approximately equally distanced and migrating in the 55 kDa – 40 kDa area. The spacing 

of some of these bands in relation to the standard gel suggests that some of them are phosphorylated. 

As on the standard gel no specific bands were detected in the 45 x103 g supernatant. 
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Fig.6 Immunodetection of NFP proteins after electrophoresis analysis on standard and Phos-

tagTm gel of different fractions obtained for roots expressing pLeEXT1:NFP-FLAG, treated 

(+Rhz) or not treated (-Rhz) with S. meliloti.    

The roots were extracted and three cell fractions were obtained by differential centrifugation. 3x103g 

supernatant, 45x103g supernatant both supplemented with EDTA and 45x103g pellet were analysed on 

standard and Phos-tagTm gels. NFP was detected with anti-FLAG-HRP antibodies. On the same gels 

extract obtained from A17 wild type plants and GST-LYK3-IR protein were analysed, corresponding 

respectively to a negative control and a positive control for Phos-tagTm functionality. GST-LYK3-IR 

protein was retarded in the presence of Phos-tagTm. Immunoreactive polypeptides detected in the 

45x103g pellet corresponding to NFP+/- Rhz were retarded on the Phos-tagTm gel in comparison to the 

similar ones observed in 3x103g supernatant and 45x103g supernatant fractions. 
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Study of NFP and LYR3 phosphorylation in the roots of M. truncatula LYK3 (lyk3-1) or DMI2 

(dmi2-1) mutants.       

 In all NFP phosphorylation experiments a slight retardation of minor bands on the Phos-tag™ 

was detected. This could be interpreted in favor of NFP phosphorylation. It is known that NFP has an 

inactive kinase (Arrighi, Barre, 2006) and thus would require another protein kinase for its 

phosphorylation. To study whether two receptors LYK3 and DMI2 possessing active kinases are 

involved in NFP trans-phosphorylation expression of NFP in the LYK3 (lyk3-1) and DMI2 (dmi2-1) 

mutated backgrounds was performed.    

 For NFP trans-phosphorylation study, M. truncatula lines B56 (lyk3-1) and Tr25G (dmi2-1) as 

well as wild type line A17 were transformed by Agrobacterium rhizogenes with the pLeEXT1:NFP-

FLAG construction. The plants, containing transgenic roots were grown for two weeks on the selective 

medium and were then transferred to the aeroponic system and grown for another two weeks. For the 

reason that phosphorylation of symbiotic receptors might be sensitive to the abundance of nitrogen, 

even without further treatment with Rhizobium, it was decided to starve the plants for nitrogen for 

three days before harvesting. To analyze the phosphorylation of NFP, extracts obtained from the roots 

of wild type plants and the two mutated lines were migrated on the standard and Phos-tag™ 

acrylamide gels (Fig.8). Migration profiles obtained on the standard gel were similar for all examined 

samples consisting of the main 100 kDa band corresponding to the FLAG tagged NFP, a 55 kDa band 

and three smaller size bands migrating below. Comparing the behavior of NFP extracted from the wild 

type plants and lyk3-1or dmi2-1 mutants on the Phos-tag™ gel we were not able to find any 

differences in terms of migration of either the main 100 kDa band or the smaller sized bands placed in 

the 55 kDa-25 kDa area. For all samples the minor bands seemed to be in higher amounts and to be 

more equally distanced in the presence of Phos-tag™ in comparison to the profiles observed on the 

standard gel.  

 In parallel with NFP, a similar experiment was performed for LYR3. To study LYR3 

phosphorylation lyk3-1and wild type plants were transformed A. rhizogenes carrying pLeEXT1-

LYR3-HAST. Samples obtained from the transgenic plants were simultaneously analyzed with the 

NFP samples described above by standard and Phos-tag™ SDS-PAGE (Fig.9). Migration profiles 

observed on the standard gel were similar for both wild type and lyk3-1 samples consisting of a main 

90 kDa band and few faint minor bands of 40 kDa and 35 kDa. On the Phos-tag™ gel for both 

samples no differences in migration of the main 90 kDa band was observed. The minor bands present 

in higher amount on Phos-tag™ gel in comparison to the standard were migrating similarly for lyk3-1 

and wild type samples in case of 45 kDa, 40 kDa and 25 kDa bands whereas the 35 kDa band was 

slightly retarded in the lyk3-1 sample, suggesting that it is phosphorylated. In comparison to the 

standard gel, the 40 kDa band resolved into two bands on the Phos-tag™ gel, suggesting that at least 

the upper one is phosphorylated.         
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Fig.7 Second immunodetection of NFP proteins after electrophoresis analysis on standard and 

Phos-tagTm gel of different fractions, free of EDTA, obtained for roots expressing 

pLeEXT1:NFP-FLAG not treated (-Rhz) with S. meliloti.     

The roots were extracted and three cell fractions were obtained by differential centrifugation. 3x103g 

supernatant, 45x103g supernatant and 45x103g pellet all lacking EDTA were analysed on standard and 

Phos-tagTm gels. NFP was detected with anti-FLAG-HRP antibodies. On the same gels GST-LYK3-IR 

protein was analysed and used as a positive control for Phos-tagTm functionality. GST-LYK3-IR 

protein was retarded in the presence of Phos-tagTm. The immunoreactive polypeptides detected in the 

3x103g supernatant and 45x103g pellet were migrating equally possessing better separation on Phos-

tagTm gel.  
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Conclusions and discussion. 

 Expression of LYK3 in the epidermis of lyk3-1 plants has shown that LYK3 stays biologically 

active in this tissue and serves as an entry receptor promoting invasion of Rhizobium. In our 

experiment epidermal-expressed LYK3 complemented the lyk3-1mutant phenotype for such symbiotic 

responses as root hair curling, and the formation and progression of infection threads (Fig.1). 

However, the infection process was still strongly affected by the limitations in LYK3 expression, with 

the ITs, becoming arrested before reaching the cortical tissue. This indicates the importance of LYK3 

cortical expression for normal development of infection. Surprisingly, epidermal LYK3 was shown to 

trigger the formation of visible bumps in the lyk3-1 plants, suggesting that it has the ability to signal 

downstream from the epidermis to the cortex and evoke such symbiotic response as cortical cell 

division (CCD). Such a finding puts LYK3 in line with NFP which was previously shown to rescue 

the CCD response while being expressed from the epidermal promoter in the nfp mutant background 

(Rival et al., 2012). However, in contrast to LYK3, epidermal expression of NFP was insufficient for 

initiating infection thread formation. Participation of LYK3 in infection at the level of the epidermis 

makes it similar to DMI3, for which epidermal expression was recently shown to rescue bacterial 

infection in epidermal tissue of dmi3-1 plants (Rival et al., 2012).  However unlike LYK3 and NFP, 

epidermal expression of DMI3 did not lead to bumps. Together our observations are suggesting that 

epidermal LYK3 contributes to both infection and nodule organogenesis combining therefore both 

NFP and DMI3 activities. After showing the symbiotic role of LYK3 in the epidermis, by analogy 

with the similar study performed for NFP and DMI3, it would be interesting to continue the research 

by investigating in which symbiotic responses LYK3 participates in the cortex and how epidermal 

NFP and LYK3 activate cortical cell division.  

 The development of PhosTag gels, allowed a study of LYK3 phosphorylation and possible 

changes in its phosphorylation following symbiotic treatments. No clear differences in the migration 

on the standard and Phos-tag™ gels were observed for the major 90 kDa band corresponding to whole 

LYK3 proteins in both Nod factor treated and non-treated samples (Fig.3). This observation suggests 

that LYK3 might not be phosphorylated although it is possible that the phosphorylated form may not 

be retarded enough to be resolved at this molecular weight. However, slight Phos-tag™ dependent 

retardation, identical in the presence and absence of symbiotic treatment, was detected for the LYK3 

50 kDa-30 kDa minor bands. This work, although preliminary, suggests that LYK3 is phosphorylated 

in vivo independently of symbiotic stimulation. The fact that LYK3 seems to be phosphorylated is in 

agreement with its capability for auto-phosphorylation which was discovered using the GST-LYK3-IR 

protein expressed in E. coli (Klaus-Heisen et al., 2011) The very strong retardation of this GST-

LYK3-IR protein on the Phos-tag™ gel (which is known to be phosphorylated in 15 different 

residues) compared to the very weak shift of the bands corresponding to the LYK3 protein from roots, 

suggests that in M. truncatula LYK3 may be phosphorylated to a much lower degree then in E. coli. 

To detect LYK3 phosphorylation sites, mass spectrometry analysis of LYK3+Nod and LYK3-Nod 

samples should be performed. The capability of auto-phosphorylation does not exclude the possibility  
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Fig.8 Immunodetection of NFP proteins after electrophoresis analysis on standard and Phos-

tagTm gel of crude extracts from roots of wild type A17 plants or lyk3-1 or dmi2-1 mutant plants 

transiently expressing pLeEXT1:NFP-FLAG. 

NFP proteins from wild type A17 plants and lyk3-1 or dmi2-1 mutants were analysed on the standard 

and Phos-tagTm gels and next detected by immunoblotting with anti-FLAG-HRP antibodies. GST-

LYK3-IR protein was separated on the same gels and visualized by coomassie blue staining. GST-

LYK3-IR protein was strongly retarded in the presence of Phos-tagTm . Migration profiles were similar 

for NFP obtained from A17, lyk3-1 or dmi2-1 plants, however better separation and higher amount of 

the minor bands was observed for all three samples on the Phos-tagTm gel.  
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that in M. truncatula LYK3 could be trans-phosphorylated by another protein with an active kinase. 

To study LYK3 trans-phosphorylation mutated LYK3 protein possessing an inactive kinase (for 

example G334E) and therefore blocked in auto-phosphorylation could be used. Phos-tag™ and mass 

spectrometry analyses performed for wild type and mutated LYK3 proteins after their expression in M. 

truncatula should clarify which out of the two possible mechanisms of phosphorylation takes place in 

the case of root-expressed LYK3. As the nitrogen status could play an important role in the activation 

of symbiotic receptors and because both LYK3+Nod and LYK3-Nod samples were obtained from 

nitrogen starved plants, phosphorylation of LYK3 in nitrogen sufficient conditions should also be 

investigated.  

 Phosphorylation of NFP in the presence and absence of Rhizobium was studied in several 

Phos-tag™ experiments. Results of the first experiment suggested that the NFP protein being initially 

phosphorylated in nitrogen-starved conditions gets degraded after treatment with symbiotic bacteria 

(Fig. 4). The NFP phosphorylated status is suggested by the highly retarded band detected on the 

Phos-tag™ gel in the extract obtained from non-treated with Rhizobium plants (Fig.4). The fact that 

the highly retarded band is absent in the sample treated with bacteria whereas all bands placed below 

the main 100 kDa band corresponding to whole NFP protein are retarded, could be explained by the 

degradation of phosphorylated NFP protein followed by the Phos-tag™ dependent retardation of the 

products of its degradation. However, repetition of this NFP activation experiment resulted in similar 

Phos-tag™ migration profiles for NFP+Rhz and NFP-Rhz samples, suggesting no effect of Rhizobium 

treatment on NFP phosphorylation (Fig.5). The differences between the two experiments could 

originate from some slight changes in the experimental conditions which could not be controlled in the 

aeroponic growth system and/or differences in the transgenic lines used. To clarify whether the 

bacteria affect NFP phosphorylation, additional experiments should be performed using another more 

reproducible system to produce the samples. Common to the two experiments was the Phos-tag™ 

dependent retardation of the minor bands placed below the 100 kDa band, probably corresponding to 

the phosphorylated products of NFP degradation. However, the main 100 kDa bands corresponding to 

the whole NFP protein seemed to be either not phosphorylated or so poorly phosphorylated that it 

could not be separated from its more abundant non-phosphorylated form, since no differences in their 

migration on the control and Phos-tag™ gels were detected. The retardation of the minor bands was 

detected for samples from roots both treated and non-treated with bacteria, suggesting that NFP is 

phosphorylated in both symbiotic and non-treated conditions. Both Phos-tag™ experiments were 

performed by using plants starved of nitrogen and since this may affect NFP phosphorylation similar 

experiments should be done with plants grown in the presence of nitrogen. Two fractionation 

experiments (Fig.6, Fig.7) performed to study the membrane association of NFP truncated forms 

(migrating below 100 kDa) indicated that all these polypeptides (with apparent molecular weights 

between 35 kDa and 55 kDa) are associated with the PM since they were detected in the microsomal 

fractions sedimenting at 20x103 g and 45x103 g. An interesting outcome from the first fractionation 

experiment is the validation of phosphorylation of the 45 kDa polypeptide which arises from the  
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Fig.9 Immunodetection of LYR3 proteins after electrophoresis analysis on standard and Phos-

tagTmgel of crude extracts obtained from roots of wild type A17 or lyk3-1 mutant plants 

transiently expressing pLeEXT1:LYR3-HAST. 

LYR3 proteins from wild type A17 and lyk3-1 mutant plants were analysed on standard and Phos-

tagTm gels and next detected with anti-HA-HRP antibodies by immunoblotting. Migration profiles 

were similar for LYR3 obtained from A17 or lyk3-1 plants on the standard gel, however on the Phos-

tagTm gel retardation of the minor immunoreactive polypeptide in the 35-40 kDa area was observed for 

LYR3 extracted from lyk3-1 mutant plants.   
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difference in its migration on the Phos-tag™ gel in the presence and absence of EDTA (Fig.6).The 

fact that the phosphorylated forms of NFP are associated to the membrane suggests that they result 

from a truncation targeting the extracellular region. This could be a result of so called ectodomain 

shedding which from studies on some mammalian receptors is known to play an important role in 

protein activation (Higashiyama et al., 2011). Recently, it was shown that ectodomain shedding is also 

crucial for the biological functioning of the LRR-RLK SYMRK from L. japonicus (Antolín-Llovera, 

Ried, 2014).  Whether such a mechanism of activation also takes place for NFP remains to be 

discovered. With that purpose, further study of truncated forms of NFP and particularly detection and 

mutation of the cleavage sites located in its ECD followed by complementation experiments should be 

performed.   

 For the reason that in several experiments NFP seemed to be phosphorylated, its 

phosphorylation was investigated in lyk3 or dmi2 mutant backgrounds. The obtained results suggest 

that neither LYK3 nor DMI2 are essential for NFP phosphorylation since no differences in the Phos-

tag™ migration profiles were observed for the samples of NFP obtained from A17, lyk3-1 or dmi2-1 

plants (Fig.8). The presence of NFP phosphorylation in the mutants is shown by the Phos-tag™ 

dependent retardation of the minor bands observed in all samples. According to the obtained results, 

NFP can be phosphorylated by kinase(s) expressed in the epidermis, which are different to LYK3 and 

DMI2. The search for the protein(s) that trans-phosphorylates NFP should be continued and to 

facilitate the selection of the protein-candidates, the SYMbiMICs database, which includes 

transcriptomics of laser-dissected epidermal cells, could be used.   

 A study of LYR3 phosphorylation by LYK3, was also performed since, like NFP, LYR3 

possesses an inactive kinase and thus would require trans-phosphorylation. Also the kinase like 

domain of LYR3 has been shown to be phosphorylated by the kinase domain of LYK3 in vitro (J. 

Fliegmann, unpublished). The detection of slightly retarded minor bands in both lyk3-1and A17 

samples on the Phos-tag™ gel in comparison to the standard one (Fig.9), could indicate that, 

independently of LYK3, LYR3 is phosphorylated at a low level in vivo. Additionally, one of the minor 

bands from the lyk3-1 sample was shown to be retarded in comparison to the same band in the A17 

sample, suggesting that LYR3 undergoes supplementary phosphorylation in the absence of LYK3. 

This in turn could mean that LYK3 plays a negative role in LYR3 phosphorylation. However, this 

extra phosphorylation, shown only for the truncated form of LYR3, requires further validation by the 

repetition of the experiment followed by purification of the protein and mass spectrometry analysis.  
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Conclusions and perspectives 
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 Mutualistic plant microbe symbioses are known to play very important biological, agricultural 

and ecological roles. In the last twenty years it has been revealed that a key element required for 

symbiosis establishment is the molecular dialog between the host plant and its microsymbiont. Initially 

this was demonstrated for the rhizobial symbiosis, where the legume plant activates its rhizobial 

partner to produce LCO signal molecules, which were shown to be essential for nodulation, infection 

and specific recognition between Rhizobia and legumes. Following their discovery in 1990, within a 

few years Nod factors were shown to trigger a number of plant responses, such as root growth 

stimulation and increase in nodulation. In1994 LCOs were commercialized and used to improve yield 

of several important legume crops. Subsequently arbuscular mycorrhizal fungi were shown to produce 

signals, structurally similar to Nod factors, called the Myc-LCOs, which display stimulatory effects on 

mycorrhization. These signal molecules potentially extend LCOs application to all plants susceptible 

to AM fungi, which includes 90% of the land plants, and LCO products are now available for maize. 

Despite the biological and commercial importance of LCOs, to date little is known about the 

mechanisms underlying their perception and discrimination in plants. Recently a high affinity LCO 

binding protein LYR3 was identified in M. truncatula. Due to its ability to perceive LCOs, LYR3 

could be expected to be a part of the plant symbiotic machinery.      

 The characterization of the LYR3 protein and its interaction with LCOs was the main focus of 

my thesis.  

 Through the characterization of LYR3 in different legumes (P. sativum, G. max, P. vulgaris, 

L. japonicus and L. angustifolius) I showed that LYR3 proteins from all these species, except L. 

angustifolius, possess high affinity binding to both Nod factors and Myc-LCOs but not to COs.  

Although demonstrating specificity for LCOs versus COs, LYR3 proteins were unable to discriminate 

different structures of LCOs determined by their chemical decorations. The lack of specificity for 

LCO decorations present on rhizobial and mycorrhizal LCOs, may suggest a generic role of LYR3 in 

both the bacterial and fungal symbioses. The LYR3 protein from L. angustifolius was shown to be 

impaired in LCO binding and since this species is known to be a non-host for mycorrhizal fungi it is 

tempting to link these two phenomena and suggest a role of LYR3 in mycorrhization. However, recent 

studies have shown that L. angustifolius lacks several other genes implicated in mycorrhization, 

suggesting that the loss of binding to LYR3 could not be the sole determinant for the Myc– phenotype 

(Delaux et al., 2014).   

 The inability of LYR3 from L. angustifolius to bind LCO was used to study the involvement 

of different LysM domains of LYR3 protein in LCO binding. For that, domain swapping was 

performed between the three LysM domains of M. truncatula (Mt) and L. angustifolius (Lan) LYR3 

proteins. According to the obtained results, the third LysM domain (LysM3) plays a crucial role in 

LCO accommodation. This was concluded since all chimeric proteins containing MtLysM3 were 

shown to conserve their ability to bind LCO. Subsequent site directed mutagenesis pinpointed a 

particular amino-acid in the third LysM domain, Y228, which is conserved in all the legume LYR3  
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binding proteins and which is crucial for LCO binding. Since this residue was never reported to be a 

component of CO binding site it seems to be specifically involved in LCO recognition.    

 Structural studies are now revealing the molecular basis of CO recognition. For example, 

chitin and COs have been shown to be recognized by the second LysM domain of both rice CEBiP 

(Hayafune et al., 2014) and Arabidopsis CERK1 receptors (Liu et al., 2012). A fungal LysM receptor, 

Ecp6, carries two CO binding sites, one is located in the LysM2 and exhibits a low affinity for CO (in 

the µM range) and the other, a high affinity binding site, is formed at the interface between the LysM1 

and the LysM3 domains (Sánchez-Vallet et al., 2013). In all these cases CO binding involves the same 

groove in the conserved βααβ structure of a LysM domain. Our results show a clear role of LysM3 of 

LYR3 in LCO perception. Whether the other two domains of LYR3, LysM1 and LysM2 also 

participate in LCO perception or play a structural role remains to be discovered. To study this, site 

directed mutagenesis could be performed by targeting residues of the LysM1 or LysM2 of M. 

truncatula LYR3 corresponding to those identified in the LysM1 of Ecp6 or LysM2 of AtCERK1. 

However, for a complete understanding of the mechanism of LCO perception structural analyses by 

X-ray crystallography or NMR of the extracellular domain of LYR3 in interaction with LCO is 

needed. 

 As LYR3 is a target for LCOs, experiments were aimed to investigate whether its ECD could 

be used to trigger responses in non-legume plants after their treatment with LCOs. These studies have 

shown that the LYR3 ECD could be combined with the kinase domain of other proteins to form a 

biologically functional chimeric receptor. Thus, LYR3/CERK1 chimeric receptors were found to 

trigger a cell death response following expression in N. benthamiana. In turn LYR3/EFR chimeras 

expressed together with a LYR3/BAK1 co-receptor were shown to evoke a cell death response and 

emission of ethylene in tobacco leaves. However, both types of chimeric proteins were auto-active and 

insensitive to LCO, suggesting that the creation of regulatable chimeric constructions requires some 

improvements. One of the possible reasons for auto-activation of the chimeras could be their ligand 

independent dimerization, probably triggered by their overexpression from the strong 35S promoter. 

Thus selection of a new, weaker promoter could be proposed as one of the possible future 

improvements. For LYR3/EFR, co-expression together with a LYR3/BAK1 chimera was required for 

response activation. The ligand independent activation observed in this case could be due to the 

interaction of the LYR3 ECDs in the heteromeric chimeras, as it has been shown recently that the 

complete LYR3 protein is capable of homodimerization (J. Fliegmann, unpublished). Deeper 

exploration of LYR3 by revealing the residues involved in its dimerization could be used for 

introducing some changes in the LYR3 ECD to improve its functionality in a composition of chimeric 

receptors. However, for possible agricultural application, it would be more convenient to base LCO 

response activation on single chimeric receptors.  The recently identified A. thaliana 

lipochitooligosaccharide (LPS) binding RLK, SD1-29, which does not require the co-receptor BAK1, 

but activates defense responses (Ranf et al., 2015) could be used for the creation of new chimeric 

receptors with LYR3 ECD.  



114 
 

  



 

115 
 

 Recent studies in the group, using lyr3 mutants, have not revealed a clear role for this protein 

in symbiosis. In contrast the LysM-RLKs NFP and LYK3 have clear genetically-defined roles in LCO 

responses and in the Rhizobium symbiosis and LYK3 also participates in the mycorrhizal symbiosis 

(Zhang et al., 2015). These two proteins, unlike LYR3, do not appear to bind Nod factors (J.J. Bono, 

unpublished).  Thus an alternative technique (PhosTag) was developed, which allowed us to detect the 

phosphorylation of these proteins in the epidermal cells in planta. An experiment aimed to investigate 

the symbiotic role of LYK3 in the level of epidermis revealed a previously unknown ability of LYK3 

to trigger a CCD response demonstrating its involvement in the signal transduction from the epidermis 

to the cortex. This role is in addition to its role in infection (Smit et al., 2007). Results obtained from 

our studies of LYK3 phosphorylation in the root epidermis suggest that it is phosphorylated in both 

symbiotic and normal conditions. In the case of NFP, this protein was shown to be phosphorylated 

independently of the symbiotic treatments. Interestingly, phosphorylation was detected only for the 

truncated forms of LYK3 and NFP. Some of the phosphorylated minor proteins belonging to NFP 

were associated with the membrane fraction and according to their molecular weights, appear to lack 

the extracellular domains. By analogy with SYMRK (Antolín-Llovera et al., 2014) it is tempting to 

hypothesize that the NFP ECD removal could be caused by so called ectodomain shedding which was 

shown to be essential for SYMRK biological functioning.   

 Mass spectrometric analysis of truncated forms of LYK3 and NFP is an obvious next step in 

the characterization of these two proteins since it should define the LYK3 and NFP phosphorylation 

sites and also the cleavage sites in the case of NFP. Subsequent site directed mutagenesis of the 

residues involved in phosphorylation or cleavage, followed by complementation studies of the 

appropriate mutants, would clarify whether these two processes are essential for LYK3 and NFP 

biological functioning.  

 The study of NFP phosphorylation in dmi2-1 and lyk3-1 mutant backgrounds suggests that 

neither DMI2 nor LYK3 are responsible for the phosphorylation of NFP, which contains a dead 

kinase. Therefore another receptor possessing trans-phosphorylation activity serves for this 

posttranslational modification of NFP. Future search for this interacting kinase protein could recruit 

such tactics as exploiting the SYMbiMICs epidermal transcriptomics database 

(https://iant.toulouse.inra.fr/symbimics) and identifying NFP interactors by co- immunopurification, 

from root tissue.   

 

 Together this work has contributed to our knowledge of three receptors, LYR3, NFP, and 

LYK3, involved in LCO perception. Further studies are required to understand the interaction between 

these receptors and how different Nod and Myc LCOs are discriminated to activate symbiotic 

responses.  
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