
THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 24/09/2015 par :

Ran ZHAO

Trajectory Planning and Control for Robot Manipulations

JURY

Ahmed RAHMANI Mâıtre de conférences Rapporteur

Andre CROSNIER Professeur d’Université Rapporteur

Christian BES Professeur d’Université Examinateur

Micaël MICHELIN Ingénieur de recherche et

développement

Examinateur

Rachid ALAMI Directeur de Recherche CNRS Examinateur

Daniel SIDOBRE Mâıtre de conférences Directeur de Thèse

École doctorale et spécialité :

EDSYS : Robotique 4200046

Unité de Recherche :

Laboratoire d’Analyse et d’Architecture des Systèmes (UMR 8001)

Directeur(s) de Thèse :

Daniel SIDOBRE

Rapporteurs :

Ahmed RAHMANI et Andre CROSNIER

UNIVERSITÉ TOULOUSE III - PAUL SABATIER

ÉCOLE DOCTORALE SYSTÈMES

THÈSE

en vue de l’obtention du

Doctorat de l’Université de Toulouse

délivré par l’Université Toulouse III Paul Sabatier

Spécialité: Computer Science and Robotics

Trajectory Planning and Control for Robot

Manipulation

Ran ZHAO

Préparée au Laboratoire d’Analyse et d’Architecture des Systèmes

sous la direction de M. Daniel SIDOBRE

Jury

M. Ahmed RAHMANI Rapporteur

M. Andre CROSNIER Rapporteur

M. Christian BES Examinateur

M. Micaël MICHELIN Examinateur

M. Rachid ALAMI Examinateur

M. Daniel SIDOBRE Directeur de Thèse

Abstract

In order to perform a large variety of tasks in interaction with human or in human environ-

ments, a robot needs to guarantee safety and comfort for humans. In this context, the robot

shall adapt its behavior and react to the environment changes and human activities. The

robots based on learning or motion planning are not able to adapt fast enough, so we pro-

pose to use a trajectory controller as an intermediate control layer in the software structure.

This intermediate layer exchanges information with the low level controller and the high

level planner.

The proposed trajectory controller, based on the concept of Online Trajectory Genera-

tion (OTG), allows real time computation of trajectories and easy communication with the

different components, including path planner, trajectory generator, collision checker and

controller.

To avoid the replan of an entire trajectory when reacting to a human behaviour change,

the controller must allow deforming locally a trajectory or accelerate/decelerate by modi-

fying the time function. The trajectory controller must also accept to switch from an initial

trajectory to a new trajectory to follow. Cubic polynomial functions are used to describe tra-

jectories, they provide smoothness, flexibility and computational simplicity. Moreover, to

satisfy the objective of aesthetics, smoothing algorithm are proposed to produce human-like

motions.

This work, conducted as part of the ANR project ICARO, has been integrated and vali-

dated on the KUKA LWR robot platform of LAAS-CNRS.

Keywords: Robotics, Trajectory planning, Trajectory control, Humn-Robot Interac-

tion, Manipulation

V

Résumé

Comme les robots effectuent de plus en plus de tâches en interaction avec l’homme ou dans

un environnement humain, ils doivent assurer la sécurité et le confort des hommes. Dans

ce contexte, le robot doit adapter son comportement et agir en fonction des évolutions de

l’environnement et des activités humaines. Les robots développés sur la base de l’apprentissage

ou d’un planificateur de mouvement ne sont pas en mesure de réagir assez rapidement,

c’est pourquoi nous proposons d’introduire un contrôleur de trajectoire intermédiaire dans

l’architecture logicielle entre le contrôleur bas niveau et le planificateur de plus haut niveau

Le contrôleur de trajectoire que nous proposons est basé sur le concept de générateur

de trajectoire en ligne (OTG), il permet de calculer des trajectoires en temps réel et facilite

la communication entre les différents éléments, en particulier le planificateur de chemin, le

générateur de trajectoire, le détecteur de collision et le contrôleur.

Pour éviter de replanifier toute une trajectoire en réaction à un changement induit par

un humain, notre contrôleur autorise la déformation locale de la trajectoire et la modifi-

cation de la loi d’évolution pour accélérer ou décélérer le mouvement. Le contrôleur de

trajectoire peut également commuter de la trajectoire initiale vers une nouvelle trajectoire.

Les fonctions polynomiales cubiques que nous utilisons pour décrire les trajectoires four-

nissent des mouvements souples et de la flexibilité sans nécessiter de calculs complexes. De

plus, les algorithmes de lissage que nous proposons permettent de produire des mouvements

esthétiques ressemblants à ceux des humains.

Ce travail, mené dans le cadre du projet ANR ICARO, a été intégré et validé avec les

robots KUKA LWR de la plate-forme robotique du LAAS-CNRS.

Mots clés: Robotique, planification de trajectoires, contrôle de trajectoire, interaction

homme-robot, manipulation.

VII

· VIII

Acknowledgement

The thesis at LAAS-CNRS has been three years of precious experience. During these years,

I have learned so much. Therefore, I would like to express my gratitude, without trying to

make a complete list of the people who have helped me during these years.

Firstly, I would like to express my sincere gratitude to Prof. Daniel Sidobre and Prof.

Rachid Alami for giving me this opportunity to work in a prestigious team and in the promis-

ing area of robotics. I would like to thank my supervisor, Prof. Daniel Sidobre, for the

continuous support of my Ph.D study and related research, for his patience, motivation, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better advisor and mentor for my Ph.D study.

Besides, I would like to thank Mathieu Herrb and Anthony Mallet for their support and

time. They gave me a lot of useful suggestions both on the hardware and the software of the

system.

Then I would like to say thanks to the other members of the group who helped me a lot

in the past three years. Many thanks to the project partners for their friendly collaboration.

Also I thank my friends in the following institution: UPS, INSA, and SUPAERO, with

whom I have spent the breaks from work on sports and inspiring discussion on everything.

Last but not the least, I would like to thank my family: my parents and my sister for

supporting me spiritually throughout writing this thesis and my life in general. A Special

thanks to my wife, Sang Rui, for her accompany, encouragement and great support during

my Ph.D study.

IX

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Research Objectives . 4

1.4 Outline of this Manuscript . 5

1.5 Publication, Software Development, and Research Projects 6

2 Related Work and Background 9

2.1 Introduction . 9

2.2 Software Architecture for Human Robot Interaction 9

2.3 Trajectory Generation . 11

2.3.1 Trajectory Types . 12

2.3.2 Trajectory Generation Algorithms 14

2.3.3 Planning-based Trajectory Generation 17

2.3.4 Learning-based Trajectory Generation 21

2.4 Robot Motion Control . 24

2.5 Trajectory Control . 25

2.5.1 Control primitives . 25

2.5.2 Reactive Trajectory Controller . 28

2.6 Conclusion . 30

3 Methodology: Trajectory Generation 33

3.1 Introduction . 33

3.2 A Trajectory Model . 34

3.2.1 Basic Concepts of the Trajectory Generation 34

3.2.2 One Dimensional Point to Point Trajectory Generation 38

3.3 Trajectory Generation From a Given Path 40

3.3.1 Phase-Synchronized Trajectory 41

3.4 Smooth Trajectory Generation . 45

3.4.1 Three-Segment Interpolants . 48

3.4.2 Three-Segment Interpolants With Bounded Jerk 48

XI

· XII

3.4.3 Jerk, Acceleration, Velocity-Bounded Interpolants 49

3.4.4 Managing the Error . 50

3.5 Comparison With B-Spline Trajectory Smoothing 51

3.6 Shortcutting Smoothing . 52

3.6.1 Shortcutting Algorithms . 52

3.6.2 Trajectory Collision Checking . 53

3.6.3 Online Shortcutting . 56

3.7 Simulation and Experimental Results . 57

3.7.1 Smoothing Trajectory From a Given Path 57

3.7.2 Shortcut Smoothing Method . 59

3.8 Conclusions . 63

4 Polynomial Trajectory Approximation 65

4.1 Introduction . 65

4.2 Polynomial trajectory approximations . 66

4.2.1 Problem Formulation . 66

4.2.2 Approximation Possibilities . 66

4.2.3 3rd Degree Polynomial Functions 68

4.2.4 4th Degree Polynomial Functions 69

4.2.5 5th Degree Polynomial Functions 72

4.3 Comparisons of different approximations 72

4.3.1 Characteristics Definition . 72

4.3.2 Error of approximation for a trajectory 74

4.3.3 Example of a circular trajectory: 75

4.3.4 Comparison Demonstration . 76

4.4 Experimental Results . 78

4.4.1 Control Level . 79

4.5 Conclusions . 80

5 Reactive Trajectory Controller 81

5.1 Introduction . 81

5.2 Introduction of ICARO project . 81

5.3 Applications in the ICARO Project . 85

5.3.1 Gesture Tracking . 85

5.3.2 Reactive Planning . 87

5.3.3 Positioning of the outer shell . 87

5.3.4 Ball Insertion Task . 90

5.3.5 Hands Monitoring . 95

5.4 Conclusion . 96

XIII · Trajectory Planning and Control for Robot Manipulation

6 Conclusion and perspectives 99

6.1 Conclusion . 99

6.1.1 Trajectory Generation . 100

6.1.2 Trajectory Based Control . 100

6.2 Perspectives . 101

6.2.1 Trajectory Generation . 101

6.2.2 Flexible Controller . 102

A Quaternions and Rotations 103

A.1 Axis-Angle Representation . 103

A.2 Definition of Quaternion . 103

A.3 Rotation matrix . 105

A.4 Rotations and Compositions . 105

A.5 Perturbations and Derivatives . 106

B Computation of Approximations 109

B.1 Constraints type II . 109

B.2 Constraints type III . 110

C Résumé en Français 111

C.1 Introduction . 111

C.1.1 Introduction . 111

C.1.2 Motivation . 111

C.1.3 Objectifs poursuivis . 112

C.2 Génération de trajectoire . 114

C.2.1 Introduction . 114

C.2.2 Génération d’une trajectoire à partir d’un chemin 114

C.2.3 Trajectoires avec phases synchronisées 115

C.2.4 Génération de trajectoires lisses 115

C.2.5 Lissage par raccourci . 119

C.2.6 Conclusions . 120

C.3 Approximation de trajectoire . 120

C.3.1 Introduction . 120

C.3.2 Différentes solutions d’approximation 121

C.3.3 Conclusions . 121

C.4 Le contrôle de trajectoire pour le projet ICARO 122

C.4.1 Introduction . 122

C.4.2 Éléments du projet ICARO . 122

C.4.3 Conclusion . 124

C.5 Conclusions et perspectives . 124

· XIV

C.5.1 Conclusions . 124

C.5.2 Perspectives . 124

Bibliography 127

List of Figures

1.1 The robot manipulator shares the workspace with a human operator. They

cooperate to assemble a Rzeppa Joint. Figure comes from the ANR Project

ICARO . 2

1.2 Trajectory Controller as an intermediate layer in the software architecture,

the servo system on robot is fast, while task planning and path planning are

slow. 5

2.1 Software Architecture of the robot for HRI manipulation. Tm is the main

trajectory calculated initially by MHP. The controller takes also costs from

SPARK, which maintains a module of the environment. The controller

sends control signals in joint (q in the figure) to the robot arm controller,

and during the execution, the controller returns the state of the controller (s

in the figure) to the supervisor . 10

2.2 Trajectory Controller is introduced as an intermediate layer in the software

architecture, between the low level and fast motor controller and the high

level planner, which is slow. 11

2.3 Categories of trajectories [Siciliano 08b] 12

2.4 Classification of trajectories based on dimension and task type [Biagiotti 08] 14

2.5 Rigid body localization in 3D space . 15

2.6 Input and output values of the Online trajectory generation algorithm. P:

Positions, V : Velocities, A: Accelerations 17

2.7 Left: 3D reachability map for a human. Green points have low cost, mean-

ing that they are easier for the human to reach, while the red ones, having

high cost, are difficult to reach. One application is that when the robot plans

to give an object to a human, an exchange point must be chosen in the green

zone. Right: 3D visibility map. Based on visibility cost, the controller can

suspend the execution if the human is not looking at the robot. 19

2.8 Configuration Space and a planned path in C space from qI to qF 19

2.9 Results of path planning (by diffusion) as a series of points in the configu-

ration space. The resulting path is in black. 20

XV

· XVI

2.10 T-RRT constructed on a 2D costmap (left). The transition test favors the

exploration of low-cost regions, resulting in good-quality paths (right). . . . 20

2.11 Frames for object exchange manipulation: Fw: world frame; Fr: robot

frame; Fa: robot base frame; Fc: camera frame; Fe: end effector frame;

Fo: object frame; Fh: human frame. The trajectory Tm realizing a manip-

ulation should be successfully controlled in different task frames. Figure

from [He 15]. 26

2.12 Left: trajectories of the control primitives. Right: trajectory switching for

the controller due to the movement of an obstacle. 26

2.13 A simple case of grasp. Left: a planned grasp defines contact points be-

tween the end effector and the object. Right: To finish the grasping, the

manipulator must follow the blue trajectory P1 - Pc, and then close the grip-

per. This movement must be controlled in the object frame Fo. 28

2.14 In the left, each circle represents the controller of a control primitive. The

system can suspend or stop the execution of a control primitive. 30

3.1 The jerk evolution for the j axis of the T (t) trajectory. 37

3.2 Jerk, acceleration, speed and position curves and motion in the acceleration-

velocity frame for a single axis. 39

3.3 Example of the smoothing of a set function. 40

3.4 Way points motion: time synchronized, phase-synchronized and without

synchronization . 44

3.5 Position, velocity, acceleration and jerk profile of unsynchronized 2D via-

points motion. 45

3.6 Position, velocity, acceleration and jerk profile of time-synchronized 2D

via-points motion. 46

3.7 Position, velocity, acceleration and jerk profile of phase-synchronized 2D

via-points motion. 46

3.8 Influence of the start and end points for the smooth area 47

3.9 Error between the smoothed trajectory and pre-planed path 50

3.10 Smooth algorithm. (a) A jerky path as a list of waypoints. (b) Converting

into a trajectory that halts at each waypoints. (c) Performing a shortcut that

fails in collision check. (d),(e) Two more successful shortcuts (f) The final

trajectory. 53

3.11 (a) A collision-free C -space path covered by free bubbles. (b) 2D robot ma-

nipulator showing the maximum distance r1, r2 and the minimum obstacle

distance dobst . The circle at the axis of joint 1 of radius r1 (the red dashed

line) contains the entire manipulator. The circle at joint 2 of radius r2 (the

blue dashed line) contains link 2. 54

XVII · Trajectory Planning and Control for Robot Manipulation

3.12 A simulated move from an initial position to a final position with a static

obstacle. (1) The purple dashed line is the first trajectory computed. (2) The

robot detects an obstacle and plan a new trajectory. Note that the purple

trajectory is in collision. (3) A new trajectory that avoid collision. (4) The

complete trajectory realized in green. The green solid line is the real path,

which the robot follows. By adding two waypoints, the robot reaches the

target position without collision and path replanning at the high level. . . . 58

3.13 The position, velocity, acceleration and jerk of online generated via-points

trajectory on Z axis . 59

3.14 Paths of the robot end effector with different errors 59

3.15 Left: A manipulator reaches under a shelf on a table from the zero position.

Right: The blue curve depicts the original end effector path. The red curve

depicts the smoothed path after 200 random shortcuts. 60

3.16 Progression of the smoothing illustrated by the duration of the trajectory

travelling for 10 initial paths for the same reaching task. The trajectories

are relative to the task presented in Figure 3.15 61

3.17 The position, velocity, acceleration and jerk profile of the calculated trajec-

tory in the robot reaching task . 61

3.18 The planning setup of the ICARO industrial scenario. Left: a global view

of the setup. Right: the start configuration. 62

4.1 A trajectory is composed of K polynomial segments, tI and tF are the initial

time and final time of the trajectory. 66

4.2 3rd degree polynomial interpolants with fixed time: the position, velocity,

acceleration and jerk profiles. 67

4.3 3rd degree polynomial interpolants with fixed jerk 68

4.4 Constraint type I of 4th degree polynomial interpolants 70

4.5 Constraint type II of 4th degree polynomial interpolants 71

4.6 Constraint type III of 4th degree polynomial interpolants 72

4.7 One continuous interpolant with 5th degree polynomial 73

4.8 Four path samples to be approximated (unit: m) 76

4.9 Comparison of characteristics for different approximations 77

4.10 Top: computed motion law for the horse path; Middle: velocity error be-

tween desired and computed motion law; Bottom: trajectory error between

the given trajectory and the approximated one. 78

4.11 Theoretical path, computed trajectory and the one recorded while the LWR

arm is executing the computed horse trajectory. 79

5.1 Left: Joint usage in a car. Right: Mechanical structure of a joint 83

5.2 The ICARO setup at LAAS-CNRS . 83

· XVIII

5.3 The software architecture of ICARO project 85

5.4 Two different gestures. (a) Validation: Validate the current operation, go to

the next task of the whole procedure. (b) Rebut: Reject the current operation. 85

5.5 The trajectory received the Command 2 and stopped the current motion at

around t = 3.8s. At the instant t = 13.8s, the Validation gesture was sent to

trajectory controller so that it recover the previous movement. 86

5.6 Reactive planning structure. The input and output of each component is de-

tailed in this figure. Trajectory Monitor supervises the current robot motion

and checks if future positions are in a collision state. In case of a coming

collision, it requests a new path to the path planner. The new path is di-

rectly sent to the trajectory generator and is converted into a new trajectory.

The trajectory controller merges the current trajectory with the new one to

obtain a smooth transition while avoiding the obstacles. 88

5.7 Aligning the outer shell using the force detection and a 3D printed part. . . 89

5.8 The position and force of the end-effector along the Z axis during the posi-

tioning task. 89

5.9 Force Fx, Fy, Torque Tx, Ty, Tz during the task. Measures are provided by

the FRI interface . 89

5.10 A human operator inserts balls into the RZEPPA joint. In picture (d), the

human uses one hand to open the joint and the other hand to insert the ball. 90

5.11 Sub-task of the insertion task of one ball. (a): Initial position. (b): Open

position. (c): Insertion position. (d): Closed position. 91

5.12 The structure of the Online Trajectory Generator based impedance controller. 91

5.13 The frames of the ICARO setup. Ft : the tool frame; Fe: the end-effector

frame; Fb: the robot base frame. 92

5.14 Real experiment of the ball insertion task with ICARO setup. (a): Initial

position. (b): The outer shell is aligned with the tool. (c): The robot moves

to go to open position. (d): The operator places a ball in the gap. (e): The

outer shell can hold the ball without the help of human. (f): The robot

goes back to close the outer shell. It moves a bigger angle than step (c) to

guarantee that the ball is fully enfolded by the outer shell. (g): The robot

moves again to the aligned position and is ready to rotate for inserting the

next ball. (h): Once all 6 balls are inserted successfully, the robot returns to

the initial position. 94

5.15 Top: the force along the Z axis on the end-effector. Middle: the position

of the end-effector along the Z axis. Bottom: the received position and real

position of joint 1. 95

XIX · Trajectory Planning and Control for Robot Manipulation

5.16 The hand of the human gets close to the outer shell when inserting a ball.

If the robot moves unexpectedly at this moment, the human fingers may be

injured. 96

5.17 Hands monitoring for safety . 96

6.1 Nonconstant motion constraints. The robot at the state M1 list in the red

constraints frame is going to transfer a new state. The states M2 and M3

locate in new constraints frames which are denoted as green and blue. The

kinematics motion bounds (jJmax, jAmax, jVmax) are all changed. 101

A.1 Axis-Angle Representation . 104

C.1 Le robot manipulateur partage l’espace de travail avec un opérateur humain

pour réaliser l’assemblage collaboratif d’un joint Rzeppa. L’illustration

provient du projet ANR-ICARO. 112

C.2 Le contrôleur de trajectoire se trouve à un niveau intermédiaire de l’architecture

du contrôleur, entre les contrôleurs rapides des axes du robots et le niveau

planification plus lent. 113

C.3 Influence du choix des points initiaux et finaux délimitant la zone lissée . . 116

C.4 Algorithme de lissage par raccourci. (a) La ligne polygonale initiale. (b)

Conversion en une trajectoire qui s’arrête à chaque point de passage. (c)

Une trajectoire plus courte en collision. (d-e) Deux trajectoires plus courtes

réussies. (f) la trajectoire finale. 119

1
Introduction

1.1 Introduction

Interactive robots are now beginning to joint assembly and production lines. They com-

plement the previous generation of robots, which were designed for performing operations

quickly, repeatedly and accurately. They have now a long heritage in the manufacturing

industry for operating in large numbers in relatively static environments. The development

of traditional robotics in industry is confronted to the difficulty of programming and to the

cost of safe guard designed to separate humans and robots. Due to the multiple advantages

over a human operator, the arm manipulators, for example, have been used in various kinds

of industrial applications, such as pick-and-place operations, welding, machining, painting,

etc. The introduction of interactive robots simplifies the design of the production lines and

the programming of robots.

Arm manipulator control for industrial applications has now reached a good level of

maturity. Many solutions have been proposed for specific uses. However, all these applica-

tions are confined to structured and safe spaces where no human-robot interactions occur.

With the growth of robotic presence in the human community, the need of intuitiveness in

the human-robot interaction has become inevitable. The human-robot coexistence with var-

ious degrees of restriction can be found in many areas, specifically in the industry services.

There exist many tasks in the industrial scenarios where the robots (robotic arms) work to-

gether with the humans. Therefore, it is necessary for the robots to interact smoothly and

1

Chapter 1 Introduction · 2

intuitively to solve the task effectively, successfully and safely.

If robots could coexist with human workers, the robots could carry out monotonous and

repetitive tasks with accuracy and at high-speed. Human workers could use their skills to do

more complex tasks, such as assembly and preparation, post-processing tasks for the robots.

This compensation of each other’s disadvantages holds promise for cooperation between

human workers and robots. The concept of closeness is to be taken in its full meaning,

robots and humans share the workspace but also share goals in terms of task achievement.

Figure C.1 illustrates a scenario where a human operator cooperates with a KUKA LWR

arm manipulator to achieve an assembly task.

Figure 1.1: The robot manipulator shares the workspace with a human operator. They

cooperate to assemble a Rzeppa Joint. Figure comes from the ANR Project ICARO

To realize robots working alongside humans in environments such as the home, at work,

a hospital or any public place, the robots have to be safe, reliable and easy to use. In practice,

the robot must guarantee the safety of humans when they share the same workspace, it is

important to make the robot to avoid hurting humans during the operation even when an

unexpected or not detected event occurs. The human’s comfort is another important aspect

in robotic applications. In the context of human robot interaction, the robot should not cause

excessive stress and discomfort to the human for extended periods of time [Lasota 14].

The two important approaches to define a robotic task are learning and motion planning.

The learning approach uses different techniques to record a human-demonstrated motion or

a skill, plans a task from these data and improves the execution of the task by learning,

3 · Trajectory Planning and Control for Robot Manipulation

such as Reinforcement Learning (RL) [Kober 13] and Learning from Demonstration (LfD)

[?]. These approaches often represent the learned actions as trajectories. However, there are

always unforeseen events in a dynamic environment. In this case the learning approaches

are becoming less effective to adapt the produced trajectory to the context in real time, e.g.

to grasp a moving object, or to avoid an obstacle.

The other way to define the robotic task is motion planning. Most of the motion planners

define the motion by paths, which will be followed up by the robot. Unfortunately, the robot

controller can only trace a small subset of these paths, but fails to follow up the majority

of them efficiently and precisely. A better approach is to define motions more precisely

using trajectories, which define the position as a function of time. We propose to introduce

an intermediate level of control between the motion planner and the low level controller

provided by the robot manufacturers. When the task is changing, e.g. by the presence of

humans, planning new trajectories is necessary. In this case, a feedback from the controller

describing its state and a trajectory describing the future state could be helpful to adapt the

planned trajectory to the robot’s predicted state at the end of the next planning loop.

Moreover, motion planning is usually done off-line, especially when the trajectory gen-

eration processes are computationally expensive. However, to perform a large variety of

tasks autonomously and reactively, a robot must propose a flexible trajectory controller that

can generate and control the trajectories in real time. To react to environment changes,

the trajectory generation must be done online. Meanwhile, the robot needs to guarantee

the human safety and the absence of collision. So the model for trajectory must allow fast

computation and easy communication between the different components, including path

planner, trajectory generator, collision checker and controller. To avoid replanning of an en-

tire trajectory, the model must allow deforming locally a path or a trajectory. The trajectory

controller must also accept to switch from an initial trajectory to follow to a new one.

1.2 Motivation

In a near future, robots are going to share workbench with humans, they even will work

on the same workpiece together. Thus, the role of industrial robots is becoming a tool that

engineers and technicians can interact with. Historically, robots used in industrial service

are designed and programmed for relatively static environments. Anything unanticipated

in the robot’s environment is essentially invisible, as the robot feedback is really limited

(joint sensors for position and eventually torques). These primitive sensory capacities in

most cases necessitate running robots in ‘work cells’, free from people and other changing

elements. Once programmed, it is expected that the work environment the robot interacts

with remain within a very narrow range of variance. Thus the robots are isolated in a

physical as well as sensorial sense, little different from any number of dangerous, automated

factory machines.

Chapter 1 Introduction · 4

The motivation of this work can be expressed by an analogy: imagine that two human

operators need to finish an assembly task together on a fabrication line. One of the operator

A has to focus on the main construction task, while the other operator B is expected to

prepare work sites, collect and deliver tools just as they are needed, or stabilize components

during assembly. For industries or enterprises, it might be a lack of competitiveness in the

modern business with expensive labor. So it is necessary to extend the capacity of the robots

to enable the possibility for a robot to work with human and to assist humans. This thesis

sets out to develop a robot that work side-by-side with human, i.e. the robot will assist the

operator in the whole task. We propose to build a more flexible controllers that are needed

to switch between different sensors and control laws, and thus to build a more reactive

system. A part of the solution is to use trajectories to exchange information among the

motion planner, the collision checker, the vision/force systems and the low level controller.

1.3 Research Objectives

The objective of this work is to build more reactive robots by introducing a trajectory con-

troller as an intermediate layer in the software structure in the context of human-robot inter-

action. Thus the controller should provide a method of generating smooth and time-optimal

trajectories in real time. It also must be able to react to the environment changes. There-

fore, the trajectory generation algorithm must be computationally simple. The trajectories

must take into account the physical limitations of the robot, that is, not only the velocity

limitation but also acceleration and jerk limitations.

This work aims to produce a trajectory controller that can not only accept any trajec-

tory produced by a path planner, but also can approximate any types of trajectories. It

will enlarge the type of paths that the robot can follow, which makes the robot competent

in more complex tasks. The proposed trajectory controller, based on the concept of On-

line Trajectory Generation (OTG), allows real time computation of trajectories and easy

communication with the different components, including path planner, trajectory generator,

collision checker and controller. The controller can also allow deforming locally a trajectory

and accept to switch from an initial trajectory to a new trajectory to follow.

Moreover, the controller can accelerate/decelerate the robot on the main trajectory by

changing the time function s(t). Imagine for example that a fast movement could cause

some people anxiety when the robot is close to them. In this situation, the controller can

still execute the task but only at a reduced speed. The time-scaling schemes can also be

used to avoid dynamic obstacle while not changing the path of the robot.

A further objective is to apply this technique to sensor-based control. When the robot

is able to build the dynamic model of the manipulated object, to track the movement of

objects and human body parts, and to detect special events, it needs to finish the tasks

while reacting to the movement or events. Based on the work of previous colleagues, we

5 · Trajectory Planning and Control for Robot Manipulation

propose a trajectory controller to achieve reactive manipulations. The controller integrates

information from multiple sources, such as vision systems and force sensors, and use online

trajectory generation as the central algorithm.

Trajectory Controller

Sensor data Actuators
ROBOT

q

Path Planner

Trajectory
planner

PTP
planner

Smoothing

TRs

Task Planner/supervision

low level controller

x

x

s(t)

Figure 1.2: Trajectory Controller as an intermediate layer in the software architecture, the

servo system on robot is fast, while task planning and path planning are slow.

Figure C.2 illustrates the intermediate level in the software structure. The controller

integrates information from other modules in the system, including geometrical reasoning

and human aware motion planning. From the sensor information, the trajectory planner

can generate non-linear time-scaling functions or replan new trajectories for reacting to the

environment change. One advantage of our algorithm is to be more reactive to dynamically

changing environments. A second advantage is the simplicity of the use of the controller.

1.4 Outline of this Manuscript

Following this introduction, this dissertation begins with the presentation of background

and literature review on motion control, focusing on learning approach, path planning, tra-

Chapter 1 Introduction · 6

jectory generation and reactive trajectory control. Chapter 3 presents the trajectory genera-

tion problem, including straight-line trajectory generation between waypoints, smooth near

time-optimal trajectory generation. All these algorithms produce jerk-bounded motions. In

Chapter 4, we present the trajectory approximation with polynomial functions. Chapter 5

focuses on the reactive trajectory controller, with the concept of control primitives and how

it is used in human robot interactions. Following the three chapters, we give the discussion

and conclusion, as well as the recommendation for future works in chapter 6. Because each

chapter deals with a different problem, experimental results are given at the end of each

chapter.

1.5 Publication, Software Development, and Research Projects

Publication during the thesis:

• RAN ZHAO, DANIEL SIDOBRE, Trajectory Smoothing using Jerk Bounded Short-

cuts for Service Manipulator Robots, 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept. 28 – Oct. 02, 2015

(Accepted)

• RAN ZHAO, DANIEL SIDOBRE AND WUWEI HE, Online Via-points Trajectory Gen-

eration for Reactive Manipulations, 2014 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM), besançon, France, 2014

• WUWEI HE, DANIEL SIDOBRE AND RAN ZHAO, A Reactive Trajectory Controller

for Object Manipulation in Human Robot Interaction, The 10th International Con-

ference on Informatics in Control, Automation and Robotics (ICINCO), Reykjavik,

Iceland, 2013

• WUWEI HE, DANIEL SIDOBRE AND RAN ZHAO, A Reactive Controller Based on

Online Trajectory Generation for Object Manipulation, Lecture Notes in Electrical

Engineering, 159-176, Springer International Publishing

• DANIEL SIDOBRE, RAN ZHAO, Trajectoires et contrôle des robots manipulateurs

interactifs, Journées Nationales de la Robotique Humanoı̈de, Nante, France, Jun.

2015

• RAN ZHAO, DANIEL SIDOBRE, Online Via-Points Trajectory Generation for Robot

Manipulations, Congrès des Doctorants EDSYS,2014

This work was partially reported in the ICARO project, which aims to developed tools

to improve and to simplify the interaction between industrial robots on one side and humans

and the environment on the other side. The author contributed to the development of several

7 · Trajectory Planning and Control for Robot Manipulation

software running on the robot kuka LWR, and maintenance of the robots. The author par-

ticipated actively to the development of software and to the final integration for a research

project:

• Project ICARO1, see Figure C.1. ICARO is a collaborative research project aiming

to develop tools to improve and simplify interaction between industrial robots and

humans and their environment. ICARO was funded by the program CONTINT of the

ANR agency from 2011 to 2014.

The author participated in the development of several softwares:

• softMotion-libs: A C++ library for online trajectory generation. It can be tested in the

MORSE, the Modular OpenRobots Simulation Engine2.

• lwri-genom: A GenoM3 module for the trajectory generation of the KUKA LWR

arm.

• lwrc-genom: A GenoM3 module for the trajectory control of the KUKA LWR arm.

• coldman-genom: A GenoM3 module for the collision detection in robot manipula-

tion.

• pr2-softMotion: Genom interface for pr2-soft-controllers

Most of the softwares listed above are accessible in robotpkg3.

1http://icaro-anr.fr/
2http://www.openrobots.org/wiki/morse/
3http://robotpkg.openrobots.org/

2
Related Work and Background

2.1 Introduction

Service robots are becoming used to work in environments like home, hospitals and schools

in the presence of humans. Therefore this expansion raises challenges on many aspects.

Since the tasks for the robot to realize will not be predefined, they are planned for the new

situations that the robots have to handle. Clearly, purely motion control with predefined

trajectories will be not suitable for these situations. The robot should acquire the ability

to react to the changing environment. Before presenting the main background of our de-

velopments, several aspects need to be discussed and be compared to the state of the art:

architecture for human-robot interaction, trajectory generation and control including online

adaptation and monitoring. In this chapter, we will give a brief review of some foundation of

the service robotic. Then we will survey the planning-based and learning-based techniques

that are used for trajectory generation, followed by background material that motivates this

research.

2.2 Software Architecture for Human Robot Interaction

The robots capable of doing HRI must realize several tasks in parallel to manage vari-

ous information sources and complete tasks of different levels. Figure 2.1 shows the pro-

posed architecture where each component is implemented as a GENOM module. GENOM

9

Chapter 2 Related Work and Background · 10

Figure 2.1: Software Architecture of the robot for HRI manipulation. Tm is the main tra-

jectory calculated initially by MHP. The controller takes also costs from SPARK, which

maintains a module of the environment. The controller sends control signals in joint (q in

the figure) to the robot arm controller, and during the execution, the controller returns the

state of the controller (s in the figure) to the supervisor

[Mallet 10a, Mallet 11] is a development environment for complex real time embedded soft-

ware.

At the top level, a task planner and supervisor plan tasks as the output, such as cleaning

the table, bring an object to a person and then supervises the execution. The module SPARK

(Spatial Reasoning and Knowledge) maintains a 3D model of the whole environment, in-

cluding objects, robots, posture and position of humans [Sisbot 07b]. It provides also the

related geometrical reasoning on the 3D models, such as evaluating the collision risk be-

tween the robot parts and between the robot and its environment. An important element

regarding SPARK is it produces cost maps, which describe a space distribution relatively to

geometrical properties like human accessibility. The software for perception, from which

SPARK updates the 3D model of the environment, is omitted here for simplicity. The mod-

ule runs at a frequency of 20Hz, limited mainly by the complexity of the 3D vision and of

the detection of human.

MHP (Motion in Human Presence) is another important module that integrates path

11 · Trajectory Planning and Control for Robot Manipulation

and grasp planner. RRT (Rapidly exploring Random Tree)[LaValle 01b] and its variants

[Mainprice 10] are used by the path planner. The paths could be described in Cartesian

or joint spaces depending on the task type. The output path of the planner is defined as a

broken line. From this path, an output trajectory is computed to take the time into account.

MHP calculates a new trajectory each time the task planner defines a new task or when the

supervisor decides that a new trajectory is needed to react to the changes of the environment.

When the motion adaptation is achieved by path replanning, the robot would switch

between planning and execution, producing slow reactions and movements because of the

time needed for the complex path planner. Furthermore, if object or human moves during

the execution of a trajectory planned by the module MHP, the task will fail and so a new

task or a new path needs to be planned. The human counterpart often finds the movement

of the robot unnatural and so not intuitive to interact with.

Motor

Controller

Trajectory

Controller

Motion

Planner

Figure 2.2: Trajectory Controller is introduced as an intermediate layer in the software

architecture, between the low level and fast motor controller and the high level planner,

which is slow.

2.3 Trajectory Generation

Trajectory generation computes the time evolution of a motion for the robot. Trajectories

can be defined in joint space or in Cartesian space. They are then directly provided as the

input for the controller. Trajectories are important because they enable the system to ensure:

• feasibility: the motion can be verified to respect the dynamic constraints of lower-

level controllers.

• safety and comfort: the trajectories can limit velocity, acceleration and jerk, which

are directly related to the safety and comfort for humans.

Chapter 2 Related Work and Background · 12

Space of defination

Task type

Path geometry

Timing law

Synchronization

Cartesian trajectory

Joint trajectory

Point to point (PTP)
Multiple points

Bang-bang in acceleration
Trapezoidal in velocity
Polynomial

Coordinated

Independent

Dimension
Monodimensional

Multidimensional

}
}
}
}
}
}...

Rectilinear

 Cycloid
Polynomial

...

Continous
Concatenated

Figure 2.3: Categories of trajectories [Siciliano 08b]

• optimization: optimization can integrate both geometry and time.

• flexibility: trajectories allow to define a lot of tools to adapt and transform them.

2.3.1 Trajectory Types

Siciliano proposed classifications to verify trajectories [Siciliano 08b] (Figure 2.3). From

spatial point of view, trajectories can be planned in joint space or Cartesian space. Joint

space trajectories have several advantages:

• Trajectories planned in joint space can be used directly to control low-level motors

without need to compute inverse kinematics.

• No need to deal with the redundant joints or singularities of multi-DOF manipulators.

13 · Trajectory Planning and Control for Robot Manipulation

• The dynamic constraints, like maximum acceleration on joints, can be considered

while generating the trajectories. On the contrary, these constraints should be tested

after inverse kinematic for Cartesian space trajectories.

Cartesian space trajectories are directly related to task properties, allowing a more direct

visualization of the generated path. Generally, they produce more natural motions, which

are more acceptable results for people. For a simple motion like hand over an object, a

trajectory planned in Cartesian space can produce a straight-line movement, which is not

easy to guarantee while planning in joint space. The advantage of Cartesian space planning

is also evident for task constraints. For example, when the robot needs to manipulate a cup

of tea without spilling it out.

From another point of view, a motion can be completed by the choice of different timing

laws s(t) along the same path P .

T (t) = P(s(t)) (2.1)

where T (t) is the trajectory. If s(t) = t, the path is parameterized by the natural time. The

timing law is chosen based on task specifications (stop in a point, move at constant velocity,

and so on). It also may consider optimality criteria (min transfer time, min energy, . . .).

Constraints are imposed by actuator capabilities (max torque, max velocity, . . .) and/or by

the task (e.g., max acceleration on payload).

Trajectories might also be classified as coordinated trajectories or independent trajec-

tories, according to the synchronization property. For coordinated trajectories the motions

of all joints (or of all Cartesian components) start and end at the same instant. It is equiv-

alent that all joints have the same time law. While independent trajectories are timed in-

dependently according to the requested displacement and robot capabilities. This kind of

trajectory exists mostly only in joint space.

From another point of view, Biagiotti [Biagiotti 08] proposed a classification based on

the dimension and task type, as shown in Figure 2.4. Mono-dimensional trajectories cor-

respond to trajectories for systems of only one degree of freedom (DOF), while Multi-

dimensional for more than one DOF. Compared to the case of mono-dimension, the diffi-

culty for multi-dimensional trajectories is the synchronization of the different axis. A point-

to-point trajectories simply link two points, while a multi-points trajectories pass through all

points in the middle. Trajectory approximation and interpolation are usually used when we

get movement data from a set of measured locations at known times. In general, trajectory

interpolation of locations defines the velocity.

These trajectories are usually long-term trajectories as there is some distance between

each waypoints provided by a motion planner. A trajectory can also connect two different

trajectories. When the robot is moving along a trajectory and receiving a request to switch

to another trajectory, generation of a connection trajectory can allow the robot to joint up

smoothly the new trajectory. In this case, the trajectory links two robot states of non-null

Chapter 2 Related Work and Background · 14

velocities and/or accelerations.

Figure 2.4: Classification of trajectories based on dimension and task type [Biagiotti 08]

2.3.2 Trajectory Generation Algorithms

Trajectory generation for manipulators have been discussed in numerous books and papers,

among which readers can find [Brady 82], [Khalil 99] and [Biagiotti 08]. Kroger, in his

book [Kroger 10b], gives a detailed review on on-line and off-line trajectory generation. He

proposes a classification based on the complexity of the generation related to the number

of constraints, as in table 2.1 [Kroger 10b]. From any situation, Kröger proposes to reach

a goal defined by constraints (position, velocity, acceleration, jerk, . . .) while respecting

bounds (Vmax, Amax, Jmax, Dmax, . . .). Vmax is the maximum velocity, Amax is the maximum

acceleration, Jmax is the maximum jerk, Dmax is the maximum derivative of jerk. The defi-

nitions presented in this table are used in this document.

2.3.2.1 Robot Motion Representation

We firstly consider the kinematics of a rigid body in a 3D space. Considering a reference

frame, Fw, which can be defined as an origin Ow and an orthogonal basis (Xw,Yw,Zw). A

rigid body B is localized in 3D space by a frame FB, as shown by Figure 2.5.

Translations and rotations shall be used to represent the relation between these two

frames. For the translation, Cartesian coordinates are used, but for rotations, several choices

are available:

• Euler rotations

• Rotation matrices

• Quaternions

• Euler axis and angle

15 · Trajectory Planning and Control for Robot Manipulation

Figure 2.5: Rigid body localization in 3D space

The homogeneous transformation matrix is often used to represent the relative displacement

between two frames in computer graphics and robotics because it allows common opera-

tions such as translation, rotation, and scaling to be implemented as matrix operations. The

displacement from frame FW to frame FB can be written as:

T
FB

FW
=













x

R3×3 y

z

0 0 0 1













(2.2)

In which, R3×3 is the rotation matrix and [x,y,z]T represents the translation. Given a point

b which is localized in local frame FB:

BPb = [xb yb zb 1]T

And T
FW

FB
represents the transformation matrix between frame FB and FW , then the position

of point b in frame FW is given as:

W Pb = T
FB

FW

BPb

If a third frame is given as FD, the composition of transformation matrix is also directly

given as:

T
FD

FW
= T

FB

FW
T

FD

FB

Other representations used in this thesis are quaternion and Euler axis and angle, the de-

tails of which is given in Appendix. Readers can also refer to the literature such as the

book of Siciliano [Siciliano 08a] for more comparison and discussion on different types of

representations for rotations and translations.

Chapter 2 Related Work and Background · 16

2.3.2.2 Online Trajectory Generation (OTG)

A large work is relative to off-line trajectory generation in the literature. A general overview

of basic off-line trajectory planning concepts is presented in the textbook of Khalil and

Dombre [Khalil 99]. Kahn and Roth [M.E 71] belong to the pioneers in the field of time-

optimal trajectory planning. They used methods of optimal, linear control theory and

achieved a near-time-optimal solution for linearized manipulators. The work of Brady

[Brady 82] introduces several techniques of trajectory planning. In later works, the ma-

nipulator dynamics were taken into account [Bobrow 85], and jerk-limited trajectories were

applied [Kyriakopoulos 88]. The concept of Lambrechts et al. [Lambrechts 04] produces

very smooth fourth-order trajectories but is also limited to a known initial state of motion

and to one DOF. As the thesis tries to achieve reactive robot control, only on-line generation

is suitable for the trajectory control level.

We first introduce the concept of the Online Trajectory Generation. A first OTG algo-

rithm is able to calculate a trajectory at any time instant, which makes the system transfer

from the current state to a target state. Figure 2.6 illustrates the input and output values of

OTG algorithm. The trajectory generator is capable of generating trajectories in one time

cycle. The usage of an online trajectory generation algorithm may have two main reasons:

• The first reason is that the trajectory can be adapted in order to improve the path accu-

racy. [Dahl 90] proposed to use one-dimensional parameterized acceleration profiles

along the path in joint space instead of adapted splines. [Cao 94, Cao 98] used cu-

bic splines to generate smooth paths in joint space with time-optimal trajectories.

In this work, a cost function was used to define an optimization problem consider-

ing the execution time and the smoothness. [Constantinescu 00] suggested a further

improvement of the approach of [Shiller 94] by leading to a limitation of the jerk

in joint space, considering the limitation of the derivative of actuator force/torques.

[Macfarlane 03] presented a jerk-bounded, near time-optimal, one-dimensional tra-

jectory planner that uses quintic splines, which are computed online. Owen published

a work on online trajectory planning [Owen 04]. Here, an off-line planned trajectory

was adapted online to maintain the desired path. The work of Kim in [Kim 07] took

robot dynamics into account.

• The other one is the robotic system must react to unforeseen events based on the sen-

sor singles when the robot works in an unknown and dynamic environment. [Castain 84]

proposed a transition window technique to perform transitions between two different

path segments. [Liu 02a] presented a one-dimensional method that computes linear

acceleration progressions online by parameterizing the classic seven-segment acceler-

ation profile. [Ahn 04] used sixth-order polynomials to represent trajectories, which

is named Arbitrary States POlynomial-like Trajectory (ASPOT). In [Chwa 05], Chwa

presented an advanced visual servo control system using an online trajectory planner

17 · Trajectory Planning and Control for Robot Manipulation

Figure 2.6: Input and output values of the Online trajectory generation algorithm. P: Posi-

tions, V : Velocities, A: Accelerations

considering the system dynamics of a two-link planar robot. An algorithm proposed

in [Haschke 08a] is able to generate jerk-limited trajectories from arbitrary state with

zero velocity. Broquère proposed in [Broquere 08] an online trajectory planner for an

arbitrary numbers of independent DOFs. This approach is strongly related to a part

of this thesis.

Some approaches to build a controller capable of controlling a complete manipulation

tasks are based on Online Trajectory Generation. More results on trajectory generation for

robot control can be found in [Liu 02b], [Haschke 08b], and [Kröger 06]. Kröger proposed

an algorithm to generate type IV trajectories in table 2.1. Broquère et al. ([Broquere 08])

proposed type V trajectories, with arbitrary final velocity and acceleration. The difference

is important when the controller needs to generate trajectories to join points with arbitrary

velocity and acceleration. This is the case to follow a trajectory using an external sensor.

2.3.3 Planning-based Trajectory Generation

We present firstly basic notions for planning in presence of geometrical constraints for Hu-

man Robot Interaction. Then we discuss the motion of a rigid body in space, before we

introduce the motion planning techniques and control laws for the robot manipulators.

2.3.3.1 Geometrical Constraints in HRI

The presence of humans in the workspace of a robot imposes new constraints for the motion

planning and the control for navigation and manipulation. This field has been intensively

studied especially at LAAS-CNRS. The more important constraints are relative to the se-

Chapter 2 Related Work and Background · 18

VF = 0 VF ∈ R VF ∈ R VF ∈ R

AF = 0 AF = 0 AF ∈ R AF ∈ R

JF = 0 JF = 0 JF = 0 JF ∈ R

Amax ∈ R

Type I Type II - -

Amax ∈ R

Jmax ∈ R Type III Type IV Type V -

Amax ∈ R

Jmax ∈ R Type VI Type VII Type VIII Type IX

Dmax ∈ R

Table 2.1: Different types for on-line trajectory generation. VF : final velocity, AF : final

acceleration, JF : final jerk.

curity, the visibility and the comfort of human counterpart, two of these constraints are

illustrated in Figure 2.7.

For robot motion, the workspace could be associated with many cost maps, each com-

puted for a type of constraint. The first costmap is computed mainly to guarantee the safety

and security of people at motion planning and robot control level by considering the dis-

tance to dangers. In this case, only distances are taken into consideration. This constraint

keeps the robot far from the head of a person to prevent possible dangerous collision be-

tween the robot and the person. The theory from [Hall 63] shows that the sensation of fear

is generated when the threshold of intimate space is passed by other people, causing inse-

curity sentiments. For this reason, the cost near a person is high while tends towards zero

when the distance becomes high.

The second constraint is called visibility, this is to limit firstly the surprise effect to

a person while robot is moving nearby, secondly, a person feels less surprised when the

robot is moving in the visible zone, and feels more comfortable and safe [Sisbot 07a]. For

example, when the robot hand over an object, this constraints can verify that the person is

paying attention to the object exchange.

Other constraints are also used, which can be found in [Sisbot 07a] and related publica-

tions. For example, while planning a point in space to exchange an object, this point should

be reachable by the person, computed by the length of his arm and the possibility to produce

a comfortable posture for the person. A cost of comfort is also computed for every human

posture [Yang 04].

When all the cost maps are computed, they are combined in the global cost c(h,x):

c(h,x) =
N

∑
i=1

wici(h,x)

in which h is the posture of the human and x represent the three-dimensional position in

19 · Trajectory Planning and Control for Robot Manipulation

which the cost maps are computed. wi is the weight. This combined cost map is used

during the motion planning. In this thesis, we proposed to use it to modulate the velocity at

the trajectory control level.

Figure 2.7: Left: 3D reachability map for a human. Green points have low cost, meaning

that they are easier for the human to reach, while the red ones, having high cost, are difficult

to reach. One application is that when the robot plans to give an object to a human, an

exchange point must be chosen in the green zone. Right: 3D visibility map. Based on

visibility cost, the controller can suspend the execution if the human is not looking at the

robot.

2.3.3.2 Path Planning

Through this thesis, the robot is assumed to operate in a three-dimensional space (R3), called

the work space (W). This space contains many obstacles, which are rigid bodies, written

as W O i, i means it is the ith obstacle. And the free space is then W f ree = W \⋃i W O i,

where \ is the set subtraction operator. Motion planning can be performed in working space

or in configuration space Q, called C-space (Figure 2.8). C-Space is the set of all robot

configurations. Joint space is often used as C-space for manipulators. Configurations are

often written as q 1. The obstacles in the configuration space correspond to configurations

where the robot is in collision with an obstacle in the workspace.

A path is a continuous curve from the initial configuration (qI in Figure. 2.8) to the

final configuration (qF in Figure. 2.8). It can be defined in the configuration space or

in the workspace (planning in Cartesian space). Path is different from trajectory such that

trajectories are functions of time while paths are functions of a parameter. Given a parameter

u ∈ [umin,umax], often chosen such that u ∈ [0,1], a path in configuration space is defined as

a curve P such that:

P : [0,1]→ Q where P(0) = qI,P(1) = qF and P(u) ∈ Q f ree,∀u ∈ [0,1] (2.3)

1It should be noticed that q is also used as to represent quaternions.

Chapter 2 Related Work and Background · 20

Figure 2.8: Configuration Space and a planned path in C space from qI to qF .

Path planning has been one of the essential problems to solve in robotics. Among nu-

merous papers and books, chapter V of Handbook of Robotics, by Kavraki and La Valle

[Kavraki 08] provides an introduction to this domain, and the book of LaValle [LaValle 06]

provides numerous methods. For this work, we selected the large class of planners that pro-

vide the output path in the form of via-points. Figure 2.9 shows an example of the result of

a path planning, which gives a series of waypoints in the configuration space, linking points

qI and qF .

Figure 2.9: Results of path planning (by diffusion) as a series of points in the configuration

space. The resulting path is in black.

When the robot shares the workspace with humans, the path planner must take into

account the costs of HRI constraints. We perform this planning with the T-RRT method

[Jaillet 10] which takes advantage of the performance of two methods. First, it benefits

from the exploratory strength of RRT-like planners [LaValle 01a] resulting from their ex-

pansion bias toward large Voronoi regions of the space. Additionally, it integrates features

of stochastic optimization methods, which apply transition tests to accept or reject poten-

tial states. It makes the search follow valleys and saddle points of the cost-space in order

to compute low-cost solution paths (Figure. 2.10). This planning process leads to solution

paths with low value of integral cost regarding the costmap landscape induced by the cost

function.

To smooth the broken line obtained, the shortcut method [Berchtold 94] or the path per-

21 · Trajectory Planning and Control for Robot Manipulation

Figure 2.10: T-RRT constructed on a 2D costmap (left). The transition test favors the

exploration of low-cost regions, resulting in good-quality paths (right).

turbation variant described in [Mainprice 11] are usually employed. In the latter method,

a path P(s) (with s ∈ R
+) is iteratively deformed by moving a configuration qperturb ran-

domly selected on the path in a direction determined by a random sample qrand . This process

creates a deviation from the current path, the new segment replaces the current segment if

it has a lower cost. Collision checking and kinematic constraints verification are performed

after cost comparison because of the longer computing time.

The path P(s) computed with the human-aware path planner consists of a set of via-

points that correspond to robot configurations. Via-points are connected by local paths

(straight line segments). Additional via-points can be inserted along long path segments to

enable the path to be better deformed by the path perturbation method. Thus each local path

is cut into a set of smaller local paths of maximal length lmax.

2.3.4 Learning-based Trajectory Generation

Here we present a brief overview of methods for motion generation based on observing

and repeating sample motion trajectories. Unlike the planning and control methods we

presented so far, imitation learning methods make no assumption that a cost function spec-

ifying desired motions exists. Rather, the challenge is to learn approximate models (e.g.

with machine learning) of this cost using the available data that can be used to generate

motion.

2.3.4.1 Direct Policy Learning

Direct Policy Learning (DPL) is one of the fundamental approaches for imitation learning,

see [Pomerleau 91, Argall 09]. Sometimes it is also called “behavior cloning”, because it is

a straightforward approach that tries to repeat observed motions.

A standard way to describe a robot trajectory is {xt ,ut}T
t = 0, where xt represents the

robot state at time t and ut is the control signal, e.g. the rate of change ẋt . DPL tries to

find a policy π : xt 7−→ ut from these observations. Different assumptions can be made

for the choice of x,u and π [Calinon 07], with refinements like data transformations and

Chapter 2 Related Work and Background · 22

active learning. Given a parameterization of the policy, DPL essentially corresponds to a

regression problem, e.g. with loss:

Ed pl =
T

∑
t=0

‖π(xt)−ut‖2 (2.4)

where ‖.|2 demotes the squared L2 norm. Minimizing Ed pl finds a policy close in the least

squares sense to the demonstrations. The above loss can be extended to multiple demon-

stration trajectories by averaging over them.

Howard et. al [Howard 09] introduces an interesting alternative loss for DPL:

Ed pl =
T

∑
t=0

(‖ut‖−π(xt)
T ut/‖ut‖)2 (2.5)

This loss penalizes the discrepancy between the projection of the policy π(xt) on ut and

the true control ut . This article shows that in some problem domains this loss leads to better

behavior than the standard least squares loss.

When the state and control spaces are high dimensional, DPL has a disadvantage: Gen-

eralization is an issue and would essentially require the data to cover all possible situations.

2.3.4.2 Markov Decision Process and Reinforcement Learning

A Markov Decision Process (MDP) is a graphical model involving world states (e.g. robot

position) and actions a (e.g. go left). It is a popular formalism for multiple learning prob-

lems, including Reinforcement Learning (RL), see [Russell 09]. The MDP is defined by the

following probabilities, taken for reference from [Jetchev 11]:

• world’s initial state distribution P(s0)

• world’s transition probabilities P(st+1|at ,st)

• world’s reward probabilities P(rt |at ,st) and R(a,s) := E{|a,s}

• agent’s policy π(at |st) = P(a0|s0;π)

The value (expected discounted return) of policy π when started in state s with discount-

ing factor γ ∈ [0,1] is defined as:

V π(s) = Eπ{r0 + γr1 + γ2r2 + . . . |s0} (2.6)

One way to do reinforcement learning in a MDP is to iterate the Bellman optimality

equation until convergence of the value function - Value Iteration algorithm [Bellman 03]:

V ∗(s) = max
a

[R(a,s)+ γ ∑
s′

P(s′|a,s)V ∗(s′))] (2.7)

23 · Trajectory Planning and Control for Robot Manipulation

The optimal policy given the optimal value function is simply the policy maximizing the

immediate reward and expected future rewards:

π∗(s) = argmax
a

[R(a,s)+ γ ∑
s′

P(s′|a,s)V ∗(s′))] (2.8)

The value of a state V (s) is a more global indicator of desired states than the immediate

reward of an action R(a,s). The values V (s) provides a gradient towards the desired states-

going in direction of increasing V (s) is the desired behavior of the robot system.

2.3.4.3 Inverse Optimal Control

Reinforcement learning or planning in general (e.g. within a MDP framework) tries to

generate motions maximizing some reward. Learning (e.g. with Value Iteration) requires

constant feedback in the form of rewards for the states and action of the agent. However,

in many tasks the reward is not analytically defined and there is no way to access it from

the environment accurately. It is then up to the human expert to design a reward leading the

robot to the desired behavior. There is an algorithm that can effectively learn the desired

behavior and a policy for it just by observing example motions. Inverse Optimal Control

(IOC), also known as Inverse Reinforcement Learning (IRL), aims to limit the reward feed-

back requirement and human expertise required to design behavior for a task. IOC learns a

proper reward function only on the basis of data, see [Ratliff 06]. Let’s assume that policies

π give rise to expected feature counts ϖ(π) of feature vectors φ : i.e. what feature we will

see if this policy is executed. A weight vector ω such that the behavior demonstrated by the

expert π∗ has higher expected reward (negative costs) than any other policy is learned by

minimizing a loss:

min |ω|2 (2.9)

s.t. ∀π ωT ϖ(π∗)> ωT ϖ(π)+L (π∗,π) (2.10)

The term ωT ϖ(π) defines an expected reward, linear in the features. The scalable margin

L penalizes those policies that deviate more from the optimal behavior of π∗. The above

loss can be minimized with a max margin formulation. Efficient methods are required to

find the π that violates the constraints the most and add it as new constraint. Once the

reward model is learned, another module is required to generate motions maximizing the

reward, e.g. [Ratliff 06] uses an A∗ planner to find a path to a target with minimal costs.

Learning a policy based on estimated costs is much more flexible than DPL, and a

simple cost function can lead to complex optimal policies. IOC can often generalize well

to new situations, because states with low costs create a task manifold, a whole space of

desired robot positions good for the task. In some domains it is much easier to learn a

mapping from state to cost than to learn a mapping from state to action. The latter is a

Chapter 2 Related Work and Background · 24

more complex and higher dimensional problem, especially when considering actions in

high dimensional continuous spaces such as robot control.

2.3.4.4 Discriminative Learning

Discriminative learning provides a common framework for many learning problems, in-

cluding structured output regression. Popular approaches include large margin models

[Tsochantaridis 05] and energy based models using neural networks [Lecun 06]. Data is

given in the form of pairs of input and output values {xi,yi}. As in standard discriminative

approaches (e.g., structured output learning), the energy or cost f (xi,yi;ω) provides a dis-

criminative function such that the true output should get the lowest energy from the model

f :

yi = argmin
y∈y

f (xi,y) (2.11)

Training the parameter vector ω of the model f is done by minimizing a loss over the

dataset. The loss should have the property that f is penalized whenever the true answer

yi has higher energy than the false answer with lowest energy which is at least distance r

away:

yi = argmin
y∈y‖y−yi‖>r

f (xi,y) (2.12)

Finding the most offending answer yi is very often a complicated inference problem in itself.

2.4 Robot Motion Control

Firstly, trajectory generation based approaches were developed. In [Buttazzo 94], results

from visual system pass firstly through a low-pass filter. The object movement is modeled

as a trajectory with constant acceleration, based on which, catching position and time is

estimated. Then a quintic trajectory is calculated to catch the object, before being sent to a

PID controller. The maximum values of acceleration and velocity are not checked when the

trajectory is planned, so the robot gives up when the object moves too fast and the maxi-

mum velocity or acceleration exceeds the capacity of the servo controller. In [Gosselin 93],

inverse kinematic functions are studied, catching a moving object is implemented as one

application, a quintic trajectory is used for the robot manipulator to joint the closest point

on the predicted object movement trajectory. The systems used in those works are all quite

simple and no human is present in the workspace. A more recent work can be found in

[Kröger 12b], in which a controller for visual servoing based on Online Trajectory Genera-

tion (OTG) is presented. The results are promising.

Secondly, the research area of visual servoing provides also numerous results, a survey

25 · Trajectory Planning and Control for Robot Manipulation

of which were presented by Chaumette and Hutchinson [Chaumentte 06], [Chaumentte 07]

and a comparison of different methods can be found in [Farrokh 11]. Classical visual ser-

voing methods produce rather robust results and stability and robustness can be studied

rigorously, but they are difficult to integrate with a path planner, and could have difficulties

when the initial and final positions are distant.

Another approach to achieve reactive movements is through Learning from Demonstra-

tion (LfD). In [Calinon 04] and [Vakanski 12], points in the demonstrated trajectory are

clustered, then a Hidden Markov Model(HMM) is built. Classification and reproduction

of the trajectories are then based on the HMM. A survey for this approach is proposed

in [Argall 09]. Although LfD can produce the whole movement for objects manipulation,

many problems may arise in a HRI context as LfD demands large set of data to learn, and

the learned control policies may have problem to cope with a dynamic and unpredictable

environment where a service robot works.

The controller must be capable of dealing with various data in HRI context. Compared

to methods mentioned above, approaches based on OTG have the following advantages:

• The integration with a path planner is easy and allows to comply with kinematic limits

like the one given by human safety and comfort.

• The path to grasp a complex moving object is defined in the object frame, making

sure that the grasping movement is collision free.

• The trajectory based method allows to create a simple standard interface for different

visual and servo systems, so easy plug-in modules can be created.

2.5 Trajectory Control

Reactive controller for object manipulation is a research topic that is part of the funda-

mentals of robotic manipulation. Considering that we have a robotic system with multiple

degrees of freedom (DOFs) and a mobile base. This system is equipped with one or more

sensors delivering digital and/or analog sensor signals. No matter of question, sensor inte-

gration and sensor-based control belong to the very basics in robotics. Nonetheless, there is

still one important question in the robot control level: If we consider a robot in an arbitrary

state of motion, how can we control the robot if we want the robot to react instantaneously

to unforeseen sensor events? This is comparable to many scenarios in the human daily life

(e.g. if a human touch a very hot surface, he/she will reacts immediately by pulling his/her

hand away) and in industries (e.g. during an assembly task, an operator grasps a workpiece

when he sees that the workpiece arrives in front of him on a conveyor belt).

Chapter 2 Related Work and Background · 26

Figure 2.11: Frames for object exchange manipulation: Fw: world frame; Fr: robot frame;

Fa: robot base frame; Fc: camera frame; Fe: end effector frame; Fo: object frame; Fh:

human frame. The trajectory Tm realizing a manipulation should be successfully controlled

in different task frames. Figure from [He 15].

2.5.1 Control primitives

In HRI, the robot does various tasks like picking up an object, giving an object to human,

taking an object from the human. For each task, He [He 13a] proposed first to plan a path

to achieve it and then to transform the path into a trajectory. The controller designed here

takes directly this trajectory as input and segments it based on the sensor information.

Figure 2.11 shows the basic frames needed to define a task. The trajectory Tm defines

the move that allows the robot to do the task of grasping an object handed by the human.

obstacle

obstacle

obstacle

obstacle

Object

v

Object

Figure 2.12: Left: trajectories of the control primitives. Right: trajectory switching for the

controller due to the movement of an obstacle.

27 · Trajectory Planning and Control for Robot Manipulation

Based on the cost values associated with each point of the trajectory, the trajectory is

divided into segments associated with a control strategy. The 3D cost maps used are of

different types: collision risk map calculated based on the minimum distance between the

trajectory and the obstacles; visibility and reachability map of a human [Sisbot 11] and

safety and comfort 3D map of a human, section 2.3.3.1 presented two examples of cost

maps. For example, when the risk of collision with the robot base is high, the trajectory

can be controlled in the robot frame. Similarly, in the case where the human is handing an

object to the robot, the grasping must be controlled in the object frame. [Sidobre 12] details

other aspects of the use of cost maps to plan manipulation tasks.

To simplify the presentation, in the reminder of the document we focus on the manip-

ulation tasks where a human hands over an object to the robot. During the manipulations,

the human moves and the different frames defining the task move accordingly. Based on

the change of cost values, [He 15] divide the trajectory Tm in Figure 2.11 into three seg-

ments, as illustrated in the configuration space in the left part of Figure 2.12. In the figure,

the points connecting the trajectory segments are depicted by red dots. The first segment

T1, which is defined in the robot frame, has a high risk of auto-collision. When human

or object moves, the cost value of collision risk stays the same. Segment T2 has a lower

collision cost value, so modifying the trajectory inside this zone does not introduce high

collision risk. The end part, segment for grasping movement Tg, has a high collision cost

value. To ensure the grasping succeeds without collision this segment of trajectory should

be controlled in the moving object frame.

We name task frame the frame in which the trajectory must be controlled. We define a

control primitive C P by the combination of five elements: a segment of trajectory, a cost

function, a task frame, a control mode, and a stop condition.

C P(t) = (Tseg(t), c(t), F , O, S)T (2.13)

In which, Tseg(t) is the trajectory segment, c(t) is the cost value, provided by SPARK

and associated with the trajectory which is monitored during the execution of a control

primitive, F is the task frame, O is the control mode which we will define in next section,

and S is the stop condition of the control primitive. For example, the grasping movement

includes five elements: the trajectory segment Tg, the high collision risk cost value C(t),

the task frame Fo, the control mode as trajectory tracking, and the stop condition S as a

predefined threshold for the distance between the robot end effector and the end point of

Tg. In the literature, Manipulation Primitives or Skill Primitives are often the concept for

the intermediate level between planning and control and have been discussed in numerous

works, as in [Kröger 11].

Using the definition of control primitives (C P(t)) and Motion Condition: M(t) =

(X(t),V (t),A(t)), or written as Mt . The initial trajectory Tm is segmented into a series

of C P(t). The cost values c(t) are used during the segmentation, they are also monitored

Chapter 2 Related Work and Background · 28

Figure 2.13: A simple case of grasp. Left: a planned grasp defines contact points between

the end effector and the object. Right: To finish the grasping, the manipulator must follow

the blue trajectory P1 - Pc, and then close the gripper. This movement must be controlled in

the object frame Fo.

by the controller during execution of a control primitive. The collision checker integrates

data from vision, human perception and encoder of the robot. It prevents collision risk by

slowing down or suspending the task execution. With all the data and the current Motion

Condition Mt of the robot, different control modes can compute Motion Condition for the

next control cycle, which are the input for the robot servo system.

Figure 2.13 shows the last control primitive of grasping an object. It is similar to the

end part, Tg, of the trajectory in Figure 2.11. The grasp position, the contact points and

the final trajectory are planned by the grasp planner. More details on the grasp planner are

given in [Bounab 08] and [Saut 12]. When the object moves, the object frame Fo and the

path of the trajectory move at the same time. So to avoid collision, the trajectory of these

control primitives must be controlled in the object frame Fo.

2.5.2 Reactive Trajectory Controller

At the control level, a task is defined by a series of control primitives, each defined by a

quintuplet. The first level of the proposed trajectory controller is a state machine, which

monitors the execution, controls the succession of the control modes, and manages the

collision risk and other special situations. Target tracking and trajectory tracking are parts

of the control modes presented after the state machine.

2.5.2.1 Execution Monitoring

A state machine controls the switching between the different control modes associated with

each control primitive and monitors the execution. Due to human presence, the robot en-

29 · Trajectory Planning and Control for Robot Manipulation

vironment is moving and the control task must be adapted accordingly. The state machine

can also suspend or stop the control of a control primitive like depicted in Figure 2.14.

• Suspend Events: When the visual system fails or the target becomes unavailable, or

because of some specific human activities based on the monitoring of cost value C (t),

the trajectory controller should suspend the task.

• Stop Events: Whatever the control mode chosen, unpredictable collisions can occur

and they must stop the robot. Our controller uses two modules to detect these situa-

tions.

The first is a geometric collision checker based on results from Larsen et al.[Larsen 99].

It updates a 3D model of the workspace of the robot, and runs at the same frequency

as the trajectory controller. This checker is geometric based, and can stop the robot

when a collision between the robot and the environment is predicted.

De Luca [De Luca 08] proposed to monitor the external torques. The method was

designed to detect unexpected physical collision between the robot and the obstacles.

The fast detection of collision is realized using the momentum-based method reported

in the paper, which does not require any external sensing. This monitor provides a

security guarantee for Human Robot Interaction context. With the implementation of

the torque monitor on the robot, the robot automatically stops when collision occurs.

• Slow Down On Trajectory: Based on the input cost function, the controller can slow

down on the main trajectory by changing the time function s(t). Imagine that a fast

movement could cause some people anxiety when the robot is close to them, for

example. We propose to use the geometric models of the robot and models of the

human, updated at each iteration during the execution to ensure the safety and comfort

of humans. We choose to take into account the weighted average cost of the security

and visibility constraints introduced in chapter II. The method to adapt the motion

law is the same as the one presented in the previous section. The costs are high when

the distance human-robot is short or when the robot is outside the field of view of the

human, the cost taken into account is costinv ∈ [0,1] such that:

costinv(k∆T) = 1− cost(k∆T) (2.14)

The cost costinv is then smoothed on-line, using methods presented in section 3.2.2.5.

Each elementary controller based on online trajectory controller is implemented with a

simple state machine inside.

2.5.2.2 Trajectory Control Mode

[He 13b] also proposed several control modes for the trajectory controller:

Chapter 2 Related Work and Background · 30

Figure 2.14: In the left, each circle represents the controller of a control primitive. The

system can suspend or stop the execution of a control primitive.

• Target tracking. If we suppose the robot is in an area without risk of collision, the

system can track the end point of the trajectory. In this case, the controller generates

iteratively a trajectory to reach the end point and send the first step of this trajectory

to a low-level controller. In the special case where the controller does target tracking

with visual system, it does visual servoing.

• Trajectory tracking in task frame. Once the robot reaches a point, which is close to

the object to be grasped, it starts the grasping movement. The object can still move,

but as the robot is in the high cost zone, it should track the grasp trajectory in the task

frame.

• Path re-planning and trajectory switching. During the execution, a path can be re-

planned, for example when an obstacle blocks the robot’s trajectory. A new trajec-

tory is computed by the planner and given to the controller that switches to the new

trajectory.

The controller integrates various information from high-level software, such as SPARK

(Spatial Reasoning and Knowledge Module) and MHP (Motion in Human Presence), which

were presented previously in this chapter.

2.6 Conclusion

This chapter presented firstly the software architecture for Human Robot Interaction and

included the literature review of the topic of this thesis and some presentation of the related

works at LAAS-CNRS. Then the planning based motion generation and learning motion

31 · Trajectory Planning and Control for Robot Manipulation

generation were surveyed. This thesis has been a part of the effort to develop a reactive

robot manipulator. For this reason, a controller in the trajectory level is essential. So we

compared both the trajectory controller based on planning and learning, and concluded that

in the HRI context, learning approaches are not fast enough to cope with a dynamic and

unpredictable environment. However, a controller based on Online Trajectory Generation

can integrate various information from high-level software, visual and servo systems, and

the low-level robot controller.

3
Methodology: Trajectory Generation

3.1 Introduction

Introducing a trajectory generator inside the controller provides the robot with a description

of the near future of its movements. These trajectories allow the robot to anticipate different

events and notably collisions. This anticipation gives a strong advantage to the high level

layers of a hierarchical controller, which can in particular better ensure the safety of the

interacting humans.

In this chapter, we present tools to define and manipulate trajectories with the aim of

building robot multi-layer controller. Trajectory generators and trajectory approximations

define two types of tools. Tools for multi-dimensional trajectories are more complexes and

some tools developed for approximation are useful for generation. We also propose to take

advantage of the time evolution defining a trajectory to improve the smoothing of trajecto-

ries compared with the classical approach that smooth firstly the path before generating the

time evolution.

Autonomous robots that interact with humans or operate in human environments must

have the capability to quickly generate safe and natural looking motion. So far, it has been

a challenge to simultaneously satisfy the three objectives of speed, safety, and aesthetics

for high-DOF robots performing complex tasks in unstructured environments. Sample-

based planners (e.g., probabilistic roadmaps (PRMs)[Kavraki 96], rapidly-exploring ran-

dom trees(RRTs)[LaValle 01b], etc.) are widely used to plan collision-free paths for high-

33

Chapter 3 Methodology: Trajectory Generation · 34

DOF robots. These planners are often fast, but they produce jerky and unnatural paths,

which are, for example, defined by via-points as a broken lines. The following of these

paths by a robot is not possible without stopping the robot at every vertex along the path.

This is slow and looks unnatural, so smoothing is often performed before execution.

The rest of the chapter is organized as follows. Firstly, we give the basic concept of

converting paths to trajectories in the Section 3.2. The polynomial line trajectory generation

will be discussed in Section 3.3. After this, two different algorithms to smooth the generated

straight-line trajectory are presented in Section C.2.4 and Section C.2.5, respectively.

3.2 A Trajectory Model

A Path denotes the locus of points in the joint space, or in the operational space, which

the manipulator has to follow in the execution of the assigned motion. A path is then a

pure geometric description of motion. The goal of trajectory generation if to generate the

reference inputs to the motion control system which ensures that the manipulator executes

the planned trajectory.

Broquère proposed the Soft Motion Trajectory planner to generate a trajectory from a

path[Broquere 08, Broquère 10, Broquère 11]. The path can come from a RRT path planner

or its variants, presented in chapter II. This section is the results of previous work at LAAS,

and has been reported in [Sidobre 12]. The author of this document has participated in some

development and the test of the software. Research in robotics is often a cooperative work,

and the content of this section, although not part of the scientific contribution of the author,

is included because it is a key to understand this thesis.

3.2.1 Basic Concepts of the Trajectory Generation

3.2.1.1 Trajectory Model

Trajectories are time functions defined in geometrical spaces, essentially Cartesian space

and joint space. The rotations can be described using different coordinates system: quater-

nion, vector and angle etc. The books from Biagiotti [Biagiotti 08] on one hand and the one

from Kröger [Kröger 10a] on the other hand summarize background trajectory material.

Given a system whose position is defined by a set of coordinate X if the coordinates are

in Cartesian space or Q if the coordinates are in joint space, a trajectory T is a function of

time defined as:

T : [tI, tF]−→ R
n (3.1)

t 7−→ T (t) = X(t) or Q(t) (3.2)

Where T (t)=Q(t)= (1Q(t), 2Q(t), · · · , nQ(t))T
for joint motions or T (t)=X(t)= (1X(t),

2X(t), . . . , nX(t))T in Cartesian space. The trajectory is defined from the time interval [tI, tF]

35 · Trajectory Planning and Control for Robot Manipulation

to R
n where n is the dimension of the motion space. The T (t) function can be a direct func-

tion of time or the composition C (s(t)) of a function giving the path C (s) and a function

s(t) describing the time evolution along this path.

At first glance the latter offer more possibilities as the time evolution is independent

of the geometrical path and so the two elements can be modified independently. Unfor-

tunately, this approach is limited by the difficulty to integrate the derivative of the path to

obtain the curvilinear abscissa. Without this parameterization, the function s(t) doesn’t give

the tangential velocity and the kinematic of the motion is difficult to manipulate and inter-

pret. So, as the former has a simpler expression, it provides simpler solutions to define and

manipulate trajectories.

A trajectory T (t) defined from tI to tF can be defined by a series of trajectories defined

between intermediate points. Given, tu which satisfies tI < tu < tF , an equivalent represen-

tation of T (t) is defined by the series of two trajectories T1 and T2 defined respectively

by:

T1 : [tI, tu]−→ R
n T2 : [tu, tF]−→ R

n

t 7−→ T1(t) = T (t) t 7−→ T2(t) = T (t)
(3.3)

Similarly a trajectory can be defined by a series of sub-trajectories if some continuity criteria

specified for the trajectory and its derivative are verified. Generally this criterion is defined

as a differentiability class Ck with k ≥ 2. The possible choices to define trajectory functions

are very large, but as we intend to compute motions in real time, we need a simple solution

like polynomial functions. As we need C2 functions, we choose polynomial function of

third degree and name this trajectories Soft Motion trajectories. Using a long series of

polynomial function, trajectories following very complex path can be defined. It is also

possible to approximate or interpolate a set of points to define Soft Motions trajectories. In

the sequel, we firstly present Soft Motion trajectories and then a set of consistent trajectory

generator to solve robotic problems.

3.2.1.2 Motion Condition

For the discussion of the next sections, we define a Motion Condition M(t) as a triplet

associating the position, velocity and acceleration at time t along the trajectory:

M(t) = (X(t), V (t), A(t)) in Cartesian space (3.4)

= (Q(t), Q̇(t), Q̈(t)) in joint space (3.5)

We define the function getMotionCond from [tI, tF]⊂ R to R
3 to compute the motion con-

dition M(t) from a trajectory T and a time t:

M(t) = getMotionCond(t,T) (3.6)

Chapter 3 Methodology: Trajectory Generation · 36

3.2.1.3 Series of 3rd degree polynomial trajectories

A trajectory T (t) is represented by a combination of n series of cubic polynomial curves.

The trajectory jT (t) corresponds to the evolution of the j axis and is composed of N cubic

polynomial segments (curves) (Figure 3.1). We consider that all the axes have the same

number of segments otherwise they can be divided.

Functions jJk(t), jAk(t), jVk(t), jXk(t) respectively represent the jerk, acceleration, ve-

locity and position evolution over the segment k for the axis j. tI is the initial time of the

trajectory and tF the final one.

A segment is defined by the Eq. (3.7) and depends on its duration Tk and on five param-

eters:

• the initial time tlk,

• the initial conditions (3 parameters: jAk(tlk), jVk(tlk), jXk(tlk)),

• the jerk value jJk

∀t ∈ [tlk, tlk +Tk] :

jXk(t) =
jJk

6
(t − tlk)

3 +
jAk(tlk)

2
(t − tlk)

2 + j Vk(tlk)(t − tlk)+ j Xk(tlk) (3.7)

where jJk, jAk(tlk), jVk(tlk), jXk(tlk) and tlk are constant ∈ R.

The initial Motion Conditions of the trajectory jT (t) are jMI = (jXI, j VI, j AI):

jX1(tI) = j XI

jV1(tI) = j VI (3.8)

jA1(tI) = j AI

and the final conditions jMF = (jAF , j VF , j XF):

jXN(tF) = j XF

jVN(tF) = j VF (3.9)

jAN(tF) = j AF

where tF − tI = ∑
K
i=1 Ti.

The multidimensional trajectory is then a composition of trajectories as:

T (t) = [1T (t) 2T (t) ... nT (t)]T (3.10)

where n is the number of axis.

37 · Trajectory Planning and Control for Robot Manipulation

We define Soft Motion trajectories as series of 3rd degree polynomial trajectories. Such

a trajectory is composed of a vector of one-dimensional trajectories. Without loss of gen-

erality, we suppose that all jX(t) or all jQ(t), 0 ≤ j < n (n is the dimension of the space)

share the same time intervals and that tI = 0.

K

KK

K

Figure 3.1: The jerk evolution for the j axis of the T (t) trajectory.

A one dimensioned trajectory jX(t) can be defined by its initial motion conditions

(jX(0) = jXI , jV (0) = jVI and jA(0) = jAI) and K elementary trajectories jXi(t) defined

by the jerk jJi and the duration Ti where 1 ≤ i ≤ K and ∑
K
i=1 Ti = tF − tI . By integration we

can define the acceleration jAi(t), the velocity jVi(t) and then the position jXi(t).

Assuming k ≤ K is such that ∑
k−1
i=1 Ti ≤ t < ∑

k
i=1 Ti, the trajectory jX(t) and its derivative

are defined by :

jJ(t) = jJk (3.11)

jA(t) = jJk

(

t −
k−1

∑
i=1

Ti

)

+
k−1

∑
l=1

jJl Tl + jAI (3.12)

jV (t) =
jJk

2

(

t −
k−1

∑
i=1

Ti

)2

+
k−1

∑
l=1

jJl Tl

(

t −
l

∑
i=1

Ti

)

+
k−1

∑
l=1

jJl T 2
l

2
+ jAIt + jVI (3.13)

jX(t) =
jJk

6

(

t −
k−1

∑
i=1

Ti

)3

+
k−1

∑
l=1

jJl Tl

2

(

t −
l

∑
i=1

Ti

)2

+
k−1

∑
l=1

jJl T 2
l

2

(

t −
l

∑
i=1

Ti

)

+
k−1

∑
l=1

jJl T 3
l

6

+
jAI

2
t2 + jVIt + jXI (3.14)

This general expression of the trajectories and their derivatives can be used directly to con-

trol a arm, for example, but it is not easy to obtain directly. So we will now describe different

generators to build these trajectories.

From the K couples (jJk,Tk) and the initial conditions (3.8) of the trajectory jT (t) we

can compute the Motion Condition along the j axis at a given time with (3.12), (3.13) and

Chapter 3 Methodology: Trajectory Generation · 38

(3.14). In order to simplify the notation, the j index representing the axis will be omitted

most of the time.

3.2.2 One Dimensional Point to Point Trajectory Generation

3.2.2.1 The Kinematic Constraints

The trajectory generation method is based on constraints satisfaction for velocity, accel-

eration and jerk. Each constraint is supposed constant along the planned motion. In the

multidimensional case, each axis can have different constraints. We also suppose that the

constraints are symmetrical:

jJmin = − jJmax

jAmin = − jAmax (3.15)

jVmin = − jVmax.

Hence, the jerk, acceleration and velocity must respect:

| jJ(t)| ≤ jJmax

| jA(t)| ≤ jAmax (3.16)

| jV (t)| ≤ jVmax.

In the context of human robot interaction, safety and comfort should be concerned in

any applications. In the literature, a lot of works considered the human’s safety and/or hu-

man’s comfort in a human-robot interaction task, either for service robotics or for industrial

robotics [Alami 06, Meisner 08, Arai 10, Sisbot 07b, Sisbot 10, Haddadin 08, Tonietti 05,

Rybski 12, Mainprice 13, Nikolaidis 13]. The first, and most obvious, is physical safety.

To maintain physical safety, all unwanted human-robot contact must be prevented, and if

contact is required by the task at hand or is inevitable for another reason, the forces exerted

by the robot on the human must fall below limits that could cause discomfort, large velocity

or injury

The second, and often overlooked aspect is comfort. In the context of HRI, the robot

should not cause excessive stress and discomfort to the human for extended periods of

time. Therefore, the separation distance, the end effector speed, the advance notice of robot

motion and the human’s field of vision should be all considered in the trajectory planning

level.

3.2.2.2 The Canonical Point-to-Point Case and its Kinematic Constraints

In the basic case a motion between two points where initial and final kinematic conditions

are null, the Figure 3.2 represents the optimal point-to-point motion (according to the im-

39 · Trajectory Planning and Control for Robot Manipulation

posed kinematic constraints). This point-to-point motion is composed of seven segments of

cubic polynomial functions at most [Broquere 08].

Figure 3.2: Jerk, acceleration, speed and position curves and motion in the acceleration-

velocity frame for a single axis.

In the multidimensional case each axis has also seven cubic polynomial segments at

most. Computation details can be found in [Broquère 11].

3.2.2.3 The Minimal Time Motion Between Two Non-null Kinematic Conditions

From the canonical point-to-point case we extend the monodimensional algorithm to com-

pute minimal time motion between two non-null kinematic states (non-null acceleration

and velocity). An overview of this algorithm is presented in [Broquere 08] and the details

in [Broquère 11]. This kind of motion is composed of a set of elementary motions saturated

in jerk, acceleration or velocity. The number of elementary motions is also seven at most.

For the multidimensional case, [Broquère 11] proposes a solution to synchronize the axis

motions.

Chapter 3 Methodology: Trajectory Generation · 40

3.2.2.4 The Time Imposed Motion Between Two Non-null Kinematic Conditions:

the 3-Segment Method

[Broquère 10] previously presented a method for computing a motion with an imposed du-

ration. This method does not bound the jerk, acceleration nor velocity. It uses three cubic

polynomial curves to define such a motion. This simple definition provides a solution to

compute analytically the motion.

3.2.2.5 Smoothing an Input Function

Figure 3.3: Example of the smoothing of a set function.

Broquère proposed a method in [Broquere 08] to compute online a smooth movement

from an input defined by acceleration and velocity. At each update of the set function,

a move is computed from the current state of the system. This move is bounded by the

kinematic constraints (Jmax, Amax and Vmax). Under these kinematic constraints, the min-

imal time motion is defined by the critical movement associated to the critical length dc

[Broquere 08].

Thus, in order to allow a mono-dimensional system to reach its set value in minimal

time, the critical movement is computed at each iteration. An example of a smoothed signal

is plotted in the Figure 3.3. The blue dotted curve is the input and the green curve is the

smoothed velocity. The method acts like a filter for the acceleration.

3.3 Trajectory Generation From a Given Path

In this section, we introduce how to convert a path, defined in the form of several waypoints,

to a trajectory that can be directly followed by the robot. The input is the path P computed

by the path planner, such as a RRT planner or a PRM planner.

The first step is to calculate a trajectory passing through all the nodes of the path P .

This trajectory, which we call Tpt p consists of point-to-point movement (Sect. 3.2.2.2) and

therefore includes stop motions at each configuration defining a node.

In literature there are several examples of bounded jerk trajectory planning methods

also known as “Trajectory with Double S Velocity Profile[Biagiotti 08]”. Several algo-

41 · Trajectory Planning and Control for Robot Manipulation

rithm for planning trajectories with bounded jerk was proposed [Broquère 10] [Gerelli 10]

[Haschke 08b]. But, none of the already proposed methods manage correctly the shape of

the trajectory and the inter-axis phase synchronisation for multi-DOFs movements. They

manage to synchronize the trajectory for multi-DOFs robots through time scaling tech-

niques. This technique pre-calculates the time on each DOF and readjusts the kinematics

limits (Jmax,Amax,Vmax) in the basis of the slowest variable. However, trajectories are only

guaranteed to have the same duration and not the real synchronization, since motion vari-

ables do not complete the same percentage of the trajectory at a given instant of time. In

other words, this only succeeds to synchronize the time along the whole motion, but not to

manage to synchronize the times on each 3rd degree polynomial segment.

Our proposed method called On-line Phase-Synchronized Bounded Jerk Trajectory al-

lows us to overcome all these issues, assuring phase synchronization, low computational

time for real-time purposes, no need of iterative/optimization processes and no collisions

with mechanical stops. It is one of the contributions of this thesis. In the following sections,

we take the joint space trajectory generation as an example to detail the approach.

3.3.1 Phase-Synchronized Trajectory

3.3.1.1 Trajectory Generation and Synchronization

Let C = R
n denote the n-dimensional configuration space, q0 is the initial position and

q f ∈ C is the target joint value. Once the final joint value q f ∈ C has been determined, the

trajectory is generated by imposing that all the first three time derivatives of joint variables

have to be limited, according to the bounded jerk planning definition:

|q̇| ≤Vmax

|q̈| ≤ Amax (3.17)

|...q | ≤ Jmax

where Jmax is a user-design parameter representing the maximum allowed jerk, that

should be fixed according to measurements performed on human subject movements. All

constraints [q0,q f ,Vmax,Amax,Jmax] are imposed respectively by maximum joint admissible

excursions and maximum kinematic values of motor performance according to the human

state.

Different solutions were proposed to generate monoaxial trajectories, but for the mul-

tiaxial case, generating trajectories with the same duration is not enough and a continuous

phase synchronization is necessary to define the shape of the path. For example, to generate

a straight line the ratio between the velocities of each axes must be constant.

Our trajectory planner takes as input the values [q0,q f ,Vmax,Amax,Jmax] and generates

for each joint a bang–bang jerk law
...
q (t). The jerk law is then integrated three times to

Chapter 3 Methodology: Trajectory Generation · 42

obtain the trajectory q(t) to follow.

Definition 1. Phase synchronization is the synchronization in position, velocity, accelera-

tion and jerk spaces. It means that, given any instant of time, all variables must complete

the same percentage of their trajectories. In a n dimensional space, it verifies the following

law:

iq(t)− iq(tI)

jq(t)− jq(tI)
=

iq(t)− iq0

jq(t)− jq0

= λ ∀i, j ∈ [1,n], t ∈ [t0, t f] (3.18)

Where λ is a constant, q0 is the initial position. To compute the factor λ simply, we use the

initial joint value and the final joint value which are given as conditions:

λ =
iq(t f)− iq0

jq(t f)− jq0

=
iq f − iq0

jq f − jq0

(3.19)

Applying the equation above on each axis, we can get a set of λ . Since our trajectory

planner generate jerk profile first and then make the integration, it is necessary to develop the

relationship between the jerk profile of each joint and the constant λ . For sake of simplicity,

we consider a two-DOFs robot manipulator, then we have the following property:

Property 1. Given that the following initial conditions are verified

1q̇(t0) = 2q̇(t0) = 0 1q̇(t f) = 2q̇(t f) = 0

1q̈(t0) = 2q̈(t0) = 0 1q̈(t f) = 2q̈(t f) = 0

and that the following kinematic constraints hold all along the trajectory

1q̇max

2q̇max

=
1q̈max

2q̈max

=
1

...
q max

2

...
q max

=
1Jmax

2Jmax

= λ (3.20)

then, the synchronization condition given by Eq. C.2 is also satisfied along the trajec-

tory. Moreover, we will have the following equalities along the trajectory as well:

1q̇(t)

2q̇(t)
=

1q̈(t)

2q̈(t)
= λ ∀t ∈ [t0, t f] (3.21)

Proof 1. For the sake of clarity only two joint variables will be taken into account. Since

we use 3rd polynomial functions to represent the trajectory, therefore we have the following

43 · Trajectory Planning and Control for Robot Manipulation

equalities in any time interval t ∈ [t0, t f]:

iq(t) = i

...
q (t0)

(t − t0)
3

6
+ iq̈(t0)

(t − t0)
2

2
+ iq̇(t0)(t − t0)+ iq(t0)

iq̇(t) = i

...
q (t0)

(t − t0)
2

2
+ iq̈(t0)(t − t0)+ iq̇(t0)

iq̈(t) = i

...
q (t0)(t − t0)+ iq̈(t0)

where i ∈ [1,2]. If the initial and final conditions (the velocity and acceleration) are null,

and λ satisfies the Eq. 3.20, at any time instant t, the accelerations of each joint are :

1q̈(t) = 1

...
q (t0)(t − t0)+ 1q̈(t0) =1 Jmax(t − t0) (3.22)

2q̈(t) = 2

...
q (t0)(t − t0)+ 2q̈(t0) =2 Jmax(t − t0)

=
1

λ
1Jmax(t − t0) =

1

λ
1q̈(t) (3.23)

while the velocity returns to the following representations respectively:

1q̇(t) = 1Jmax

(t − t0)
2

2
+ 1q̈(t0)(t − t0) (3.24)

2q̇(t) = 2Jmax

(t − t0)
2

2
+ 2q̈(t0)(t − t0) = 2Jmax

(t − t0)
2

2
+

1

λ
1q̈(t0)(t − t0)

=
1

λ
(1Jmax

(t − t0)
2

2
+ 1q̈(t0)(t − t0)) =

1

λ
1q̇(t) (3.25)

Then, the Eq. 3.21 of Property 1 is proved. To verify if the trajectory is phase-synchronized

or not when the kinematic constraints satisfy Eq. 3.20, we need to represent the relationship

between the joint value q(t) and the maximum jerk Jmax for each axis.

1q(t) = 1Jmax

(t − t0)
3

6
+ 1q0

2q(t) = 2Jmax

(t − t0)
3

6
+ 2q0

Thus, we can get the following equality with the transformation of the above equations:

1q(t)− 1q0

2q(t)− 2q0

=
1Jmax

2Jmax

= λ (3.26)

which is the same as the Eq. C.2. Therefore, we can get the conclusion that the trajectory

is phase-synchronized.

For the n-dimensional problem, it can be as well easily approved that the property holds.

Property 1 gives the solution to extend the algorithm to the case n-DOFs.

• Firstly, we compute the final time for each dimension. Considering the largest motion

Chapter 3 Methodology: Trajectory Generation · 44

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05

0.1

0.15

0.2

0.25

X (m)

Y
 (

m
)

Unsynchronized

Time−synchronized

Phase−synchronized

P1

P2

P3

Figure 3.4: Way points motion: time synchronized, phase-synchronized and without syn-

chronization

time Tmax, we readjust the other dimension motions to this time.

Tmax = max f (jq0, j q f ,Vmax,Amax,Jmax) j ∈ [1,n] (3.27)

• Time adjusting is done by decreasing linearly Jmax,Amax,Vmax. According to Property

1, we should determine the index of joint which has the longest execution time. We

use m to represent this joint. Thus, the kinematic constraints of other joints can be

adjusted as follow:

jVmax = λ jVmax =
jq0 − j q f

mq0 −m q f

Vmax

jAmax = λ jAmax =
jq0 − j q f

mq0 −m q f

Amax

jJmax = λ jJmax =
jq0 − j q f

mq0 −m q f

Jmax

For each segment of the trajectory, one of the velocity, acceleration, or jerk functions

of the n initial joints is saturated, while the others are inside their validity domain. In

other words, the motion consumes minimum time for one direction. At other directions,

the motions are conditioned by the minimum one. Repeating this strategy for each straight

segment, we build the time optimal trajectory Tpt p that stops at each waypoint.

3.3.1.2 Comparison of synchronization methods

In this paragraph, the performance of the time-synchronized algorithm is compared with

the synchronization achieved by the proposed method. Figure 3.4 illustrates the path of a

simple via-points motion in 2D space. P1,P2,P3 are waypoints with zero velocities and ac-

celerations. We generated the time-synchronized, phase-synchronized and un-synchronized

45 · Trajectory Planning and Control for Robot Manipulation

0 1 2 3 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

P
os

iti
on

 (
m

)

Px

Py

0 1 2 3 4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

V
el

oc
ity

 (
m

/s
)

Vx

Vy

0 1 2 3 4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Ax

Ay

0 1 2 3 4
−1

−0.5

0

0.5

1

Time (s)

Je
rk

 (
m

/s
3)

Jx

Jy

Figure 3.5: Position, velocity, acceleration and jerk profile of unsynchronized 2D via-points

motion.

trajectories with the same kinematic constraints:

|Jmax| ≤ 0.9m/s3

|Amax| ≤ 0.3m/s2

|Vmax| ≤ 0.9m/s

The difference among these three trajectories are clearly depicted from Figure 3.5 to

Figure 3.7. Phase-synchronized trajectories are very important for many real-world applica-

tions. For instance, phase-synchronized trajectories make sense when we want to modulate

time w.r.t. cost values, which means, all axis stay at the same phase and slow/accelerate at

the same time. In our case the shape of the curve is not defined, so we have to synchronize

the initial and final state of motion and to define an acceptable curve.

3.4 Smooth Trajectory Generation

The polygonal-line trajectory Tpt p obtained in the previous paragraph is feasible, but it is

not satisfactory because the velocity varies greatly at each via-point to stop the motion.

These stops can be avoided by allowing the trajectory to deviate slightly from the via-points

by rounding the edges to smoothly travel near the point while changing the direction without

stopping.

Without loss of generality we consider three adjacent points (Pi−1, Pi, Pi+1) and the

Chapter 3 Methodology: Trajectory Generation · 46

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

P
os

iti
on

 (
m

)

Px

Py

0 1 2 3 4 5

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

V
el

oc
ity

 (
m

/s
)

Vx

Vy

0 1 2 3 4 5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Ax

Ay

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Time (s)

Je
rk

 (
m

/s
3)

Jx

Jy

Figure 3.6: Position, velocity, acceleration and jerk profile of time-synchronized 2D via-

points motion.

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

P
os

iti
on

 (
m

)

Px

Py

0 1 2 3 4 5

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

V
el

oc
ity

 (
m

/s
)

Vx

Vy

0 1 2 3 4 5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Ax

Ay

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Time (s)

Je
rk

 (
m

/s
3)

Jx

Jy

Figure 3.7: Position, velocity, acceleration and jerk profile of phase-synchronized 2D via-

points motion.

smoothing at the intermediate via-point Pi. Firstly, the two straight-line trajectories TPi−1Pi

and TPiPi+1
are computed respectively. Then we choose two points (Pstart , Pend) based on

the distance dstart and dend to the point Pi on the trajectory. These two points define the

47 · Trajectory Planning and Control for Robot Manipulation

Acceleration
Velocity

Tv
c

T s
vc

T jn
a

T ac
a

T jp
a

T jn
b

T ac
b

T jp
b

Pi-1

Pi+1
Pi+2

TjpaTacaTjnaTvcTjnbTacb Tjpb

Pstart

Tevc

P e
nd

dstart

d end

Pi

Figure 3.8: Influence of the start and end points for the smooth area

smoothed area, which is parameterised by the two distances. The possible choices of these

two points are infinite, and the resulting trajectories can vary greatly due to the different

choices, see Figure C.3.

But, since we wish an optimal time for the motion, a first simple idea is to keep the

maximum velocity segment and smooth the area where the trajectory is not travelled at

constant speed. Thence we choose the two time instants Tevc, which is the end of the velocity

constant segment of TPi−1Pi
, and Tsvc, which is the start of the velocity constant segment of

TPiPi+1
, as shown in Figure C.3.

In this case, the points Pstart and Pend are associated with the two motion conditions:

Mstart = (Xevc, Vevc, Aevc) and Mend = (Xsvc, Vsvc, Asvc). As these points are part of the

velocity constant segments, the accelerations Aevc and Asvc are zero. Then we compute the

minimum time trajectory between Pstart and Pend independently on each of the two axes

using the 7 segments method, proposed by Broquère in [Broquere 08]. The optimal time is

the longest one and the problem becomes to find a motion along the other n− 1 axes that

last the same time.

Chapter 3 Methodology: Trajectory Generation · 48

Since each joint variable is assumed to be independent, the minimum execution time

Timp between Mstart and Mend is determined by the slowest single-joint trajectory. This

thesis defines a function f to compute the optimal time for an axis using the 7 segments

method. From the initial and final motion conditions (Mstart and Mend) and kinematics

bounds (Jmax, Amax and Vmax) for the axis, the function f computes the transit time as

f (Mstart ,Mend ,Jmax,Amax,Vmax). Thus,

Timp = max
j∈[1,n]

(f (jMstart , j Mend , j Jmax, j Amax, j Vmax)) (3.28)

Timp defines the time necessary for the motion along the associated axis. For each of

the other axes, the interpolation problem becomes to build a motion with predefined time

between two motions conditions (jMstart and jMend). A large variety of solutions exist and

each one defines a different smoothing. We propose three methods by computing different

parameters for the trajectory.

3.4.1 Three-Segment Interpolants

If we consider motion conditions Mstart and Mend defined by a starting instant tI and an

ending instant tF , the starting and ending situations to be connected are: (XI,VI,AI) and

(XF ,VF ,AF). An interesting solution to connect this portion of trajectories is to define

a sequence of three trajectory segments with constant jerk that bring the motion from the

initial situation to the final one within time Timp. We choose three segments because we need

a small number of segments and there is not always a solution with one or two segments.

The system to be solved is then defined by 13 constraints: the initial and final situations

(6 constraints), the continuity in position velocity and acceleration for the two switching

situations and time. Each segment of a trajectory is defined by four parameters and time. If

we fix the three durations T1 = T2 = T3 =
Timp

3
, we obtain a system with 13 parameters where

only the three jerks are unknown[Broquère 10]. As the final control system is periodic with

period T , the time Timp/3 must be a multiple of the period T , and in this study, Timp is

chosen to be a multiple of 3T .

3.4.2 Three-Segment Interpolants With Bounded Jerk

The three-segment interpolants solves the problem of trajectory generation with fixed du-

ration for each segment. As the time Timp is longer than the minimum time necessary for

joining the two motion conditions, we can hope that a solution defined by 3 segments exists.

However, it cannot be guaranteed that the computed jerks are always bounded. Here, we

introduce a variant three-segment method with two defined jerk.

As for the three-segment method, the system is defined by 13 constraints. With this

variant method, however, we fix the jerks on the first and third segments as |J1|= |J3|, which

have the value bounded within the kinematic constraints. Then, the unknown parameters in

49 · Trajectory Planning and Control for Robot Manipulation

the system are J2 and the three time durations. Thus we obtain a system of four equations

with four parameters (J2, T1, T2 and T3):

AF = J3T3 +A2 (3.29)

VF = J3

T 2
3

2
+A2T3 +V2 (3.30)

XF = J3

T 3
3

6
+A2

T 2
3

2
+V2T3 +X2 (3.31)

Timp = T1 +T2 +T3 (3.32)

where

A2 =J2T2 + J1T1 +AI

V2 =J2
T 2

2

2
+(J1T1 +AI)T2 + J1

T 2
1

2
+AIT1 +VI

X2 =J2

T 3
2

6
+(J1T1 +AI)

T 2
2

2
+(J1

T 2
1

2
+AIT1 +VI)T2

+ J1

T 3
1

6
+AI

T 2
1

2
+VIT1 +XI

To choose the values of jerks on each dimension, we resort to the velocities VI and VF .

The jerks are fixed by J1 =−J3 = Jmax when VI −VF > 0, and by J1 =−J3 =−Jmax when

VI −VF < 0. If VI −VF = 0, we compare the values of AI and AF instead.

Algorithme 1 : All-Bounded Interpolants Generation

Require: Motion conditions: Mstart , Mend ; number of DOFs: n; Kinematic constraints;

Ensure: Jerk-Bounded, Acceleration-Bounded, Velocity-Bounded Interpolants

1: Compute Timp: Timp = max j∈[1,n](f (jMstart , j Mend , j Jmax, j Amax, j Vmax))
2: for j = 1 to n do

3: Compute the time-optimal interpolants between Mstart and Mend , then get the

execution time Tj

4: Get N j and the execution time on each segment T N
j

5: if N j = 0 then

6: No motion on this joint, maintain the time-optimal interpolants

7: else

8: Enlarge T N
j by T N

j = T N
j +

Timp−Tj

N j

9: Compute the new Jerk on each segment JN
j

10: end if

11: Generate the interpolants with JN
j and T N

j

12: end for

Chapter 3 Methodology: Trajectory Generation · 50

3.4.3 Jerk, Acceleration, Velocity-Bounded Interpolants

Now we derive the all-bounded trajectory given a fixed duration Timp. The method in sec-

tion C.2.4.2 can directly bound the jerk, but have to readjust the jerk values by a predefined

resolution to bound the velocity and acceleration. As we detect the longest execution time

Timp by computing the time-optimal trajectory on each joint, the jerk is saturated and the

acceleration and velocity may be saturated, depending on different cases. Thus, we can

extend the duration of all joints (except the one with the longest duration) to Timp by unsat-

urated interpolants while maintaining the number of segments N j on each joint. We name

it a Slowing Down Motion. Algorithm 1 shows the generation of all-bounded interpolants.

However, an exception exists when the angle α (as shown in Figure 3.9) formed by the

3 points is quite small (α < αlim, αlim depends on the kinematic constraints), the previous

solutions can not work any more because they will get either jerks much larger than the

kinematic constraints or negative time. In this case, for d ≤ dstart the optimal time solution

is to stop at the via-points. So we propose to increase the distance by d′
start = dstart +d′ to

smooth the corner.

3.4.4 Managing the Error

From a user point of view, managing the position error at via-points can be more important

than defining the distance d where smoothing begins. The trajectory error can be defined

as the largest distance between the initial straight-line trajectory and the smoothed one. It

represents how much the smooth trajectory deviates from the via-points. This approach

is useful, for example, if the path planner provides some tube around the path where the

motion is free of collision.

3.4.4.1 Error Definition

Considering the case of three adjacent points Pi−1, Pi and Pi+1, see Figure 3.9,
−→
ni being the

normal unit vectors to the straight line Pi−1Pi, and Tsi(t) the smoothed trajectory. Then the

error E can be defined as:

E (t) = min([Tsi(t)−Pi] ·−→ni , [Tsi(t)−Pi+1] ·−−→ni+1)

E = max
t∈[tI ,tF]

(E (t)) (3.33)

To compute this error, we introduce another parameter Ev, which is represented by the

minimum distance between the vertex Pi and the trajectory Tsi(t) :

Ev = min
t∈[tI ,tF]

d(Pi,Tsi(t)) (3.34)

where d is the Euclidean distance. As the start and end points of the blend we choose

51 · Trajectory Planning and Control for Robot Manipulation

Figure 3.9: Error between the smoothed trajectory and pre-planed path

locate at the symmetric segments on each straight-line trajectory, the error Ev happens at the

bisector of the angle α formed by the 3 adjacent points, Therefore,

Ev = d(Pi,T tI+tF
2
) (3.35)

E = Ev ∗ sin
α

2
(3.36)

The advantage of this expression is that the error is easily computed. In the real time appli-

cations, error computation is usually time consuming while this method helps to avoid such

problems.

3.4.4.2 Comply with Maximum Error

We suppose that the task planner provides a maximum tolerable error D. A simple possibil-

ity is to change the distance d to make the error E ≤ D, see the red dashed trajectory shown

in Figure 3.9. We introduce a parameter δ , for a general case, it is defined as:

δ =
d(Pstart ,Pi)

d(PTevc,Pi)
(3.37)

Thus δ ∈ [0,1]. But when α < αlim, Pstart locates at the segment before PTevc, so in this case:

δ =
d(Pstart ,Pi)

d(PTevc,Pi)
−1 (3.38)

Suppose Pi
end is the end point of the previous blend and Pi+1

start is the start point of the next

one. To avoid the overlapping, the distance d of new points must satisfy:

di
end +di+1

start ≤ d(Pi,Pi+1) (3.39)

Chapter 3 Methodology: Trajectory Generation · 52

Then we can compute in a loop and get the δmax that makes E ≤ D and also satisfies 3.39.

3.5 Comparison With B-Spline Trajectory Smoothing

Many techniques have been proposed in the literature to generate smooth trajectories using

the B-Splines. [Cao 97] addressed constrained time-efficient and smooth cubic spline trajec-

tory generation for industrial robots.[Pan 12] presented a trajectory computation algorithm

to smooth piecewise linear collision-free trajectories computed by sample-based motion

planners. This approach uses cubic B-splines to generate trajectories which are C 2 almost

everywhere, except on a few isolated points. [xiu Kong 13] employed the cubic B-spline to

construct the curve of the square of pseudo-velocity as smooth constraint of the transformed

convex optimization model, thus to plan smooth and near time-optimal trajectory for robot

manipulators. [Tanaka 12] proposed a smooth trajectory generation method by minimizing

the jerk by using quintic splines. While seven-degree B-splines are exploited to generate

smooth joint trajectories with continuous velocity, acceleration and jerk in [Wu 09].

Compared with the B-Spline methods, the main advantage of our smoothing algorithms

are:

1. We use a concept of local trajectory planning. Only the portion of trajectory that is

near the waypoints are considered to smooth. Therefore, it is adequate to perform

the collision check on the local smoothed trajectories. While the Spline approach is a

global idea of trajectory smoothing. The occurrence of collision must be done along

the whole path.

2. It is difficult to check the maximum kinematic variables (such as Jmax, Amax, Vmax) for

the B-Spline trajectories. In contrast, the jerk, acceleration and velocity are computed

directly in the construction of the trajectory with our method, so the maximum values

are quite easy to obtain. Moreover, it is also easy to satisfy kinematic motion bounds.

3.6 Shortcutting Smoothing

3.6.1 Shortcutting Algorithms

The smooth trajectory generated in the previous section can avoid the halts at each waypoint,

thus shortening the execution time. This method is useful when the smoothed trajectory

must remain close to the initial path defined the via-points. However, to obtain more natural

looking trajectories, other solutions must be developed.

To produce more human-like robot motions, we introduce a variant of the shortcutting

method commonly used in robotics and graphic animation. First of all, the method uses

some heuristic to choose two points along the initial trajectory. Here, we simply apply a

53 · Trajectory Planning and Control for Robot Manipulation

QI

(a) (b)

(c) (d)

(e) (f)

QF

QI

QI QI

QI

QF

QF

QF

QF QF

QI

Figure 3.10: Smooth algorithm. (a) A jerky path as a list of waypoints. (b) Converting into

a trajectory that halts at each waypoints. (c) Performing a shortcut that fails in collision

check. (d),(e) Two more successful shortcuts (f) The final trajectory.

uniform random function to select the two points. In a second stage we generate a trajectory

segment between the two motions conditions associated to the points. Then, if the generated

segment passes the collision-checking test, the new segment replaces the portion of the

initial trajectory. Figure C.4 illustrates the smoothing algorithm that performs four iterations

of shortcutting on a polygonal path. The collision check fails during the first shortcut, and

after two more attempts, a feasible trajectory is generated.

The algorithm 2 describes the shortcutting method. In a first stage, we suppose that

a motion planner produces a polygonal collision-free path. From this polygonal path, we

build a feasible trajectory composed of piecewise straight-lines that are bounded in jerk,

acceleration and velocity. Then the trajectory is smoothed iteratively. The construction of

the shortcutting trajectory uses the smooth trajectory generation approaches presented in

Chapter 3 Methodology: Trajectory Generation · 54

Algorithme 2 : Shortcutting algorithm

Require: a path as a list of waypoints, iteration count N

Ensure: a smoothed collision-free trajectory

1: Plan a time-optimal trajectory Tpt p that stops at each waypoints;

2: Initialize the smooth trajectory Tsmooth →clear(), Tsmooth = Tpt p

3: for iteration = 0 to N do

4: Pick tI and tF randomly from [0, tF]
5: Mstart = getMotionState(Tsmooth, tI)=(QI,VI,AI)

Mend = getMotionState(Tsmooth, tF)=(QF ,VF ,AF)
6: Tsc =ComputeShortcutTra j(Mstart ,Mend)
7: if Tsc → CollisionFree() then

8: Replace TMstart Mend
by Tsc in Tsmooth

9: end if

10: end for

11: return Tsmooth

Section C.2.4.

The output of the algorithm is a smooth trajectory that respects the collision and kine-

matic motion bounds (velocity, acceleration and jerk).

3.6.2 Trajectory Collision Checking

Collision checking is a basic operation in any robot motion planning and smoothing al-

gorithm. This operation is commonly realized by discretizing the curve at a predefined

constant resolution ε and statically testing each sampled configuration. However, this ap-

proach is inexact and cannot detect any collision that occurs. If ε is too small, the collision

checker will be unnecessarily slow. On the other hand, choosing ε too large might result in

missing some obstacles.

In order to overcome this problem, we use an alternative local trajectory-checking algo-

rithm based on the divide and conquer algorithm [Schwarzer 04] and the concept of bubbles

of free configuration space, introduced in [Quinlan 95]. It is an exact collision checking by

attempting to cover the path with collision-free neighborhoods. This algorithm recursively

splits the path in two sub-paths, and then calculates bubbles of free space around a con-

figuration and therefore can guarantee the collision-free status of a trajectory segment by

overlapping these bubbles along each segment (Figure 3.11(a)). The bubble B(Q) at the

current configuration Q is an upper bound computed using a distance dobst , where dobst de-

fines the minimum distance between the robot in configuration Q and the obstacles. For the

robots with n revolute joints, the bubble will be diamond shaped [Quinlan 95]:

B(Q) =

{

X ∈ C :
n

∑
i=1

ri|Xi −Qi| ≤ dobst

}

(3.40)

55 · Trajectory Planning and Control for Robot Manipulation

obstacle

Q2

Q1

obstacle

joint2joint1

r1

dobst

(a) (b)

r2

Figure 3.11: (a) A collision-free C -space path covered by free bubbles. (b) 2D robot manip-

ulator showing the maximum distance r1, r2 and the minimum obstacle distance dobst . The

circle at the axis of joint 1 of radius r1 (the red dashed line) contains the entire manipulator.

The circle at joint 2 of radius r2 (the blue dashed line) contains link 2.

where ri is the radius of the cylinder that is centered along the axis of the i-th joint and

contains all the subsequent links of the manipulator. Figure 3.11(b) gives an example of

a two-degree-of-freedom planar robot showing the maximum distance of each joint and

the minimum obstacle distance dobst . Algorithm 3 shows the overall pseudo-code of exact

collision check.

Algorithme 3 : Exact collision check

Require: A trajectory T in time interval [tI, tF]
1: Compute the free bubbles B(QI) and B(QF)
2: if OVERLAP(B(QI), B(QF)) then

3: return collision-free

4: else

5: Bisect the trajectory at tI+tF
2

6: repeat

7: Recurse on the two halves

8: until collisionDetected or B(Q)≤ threshold

9: return collision or collision-free

10: end if

Given a trajectory segment {T (t)|tI ≤ t ≤ tF}, the algorithm computes the free bub-

bles B(QI) and B(QF) for initial and final configurations QI and QF , respectively. If the

bubbles overlap, the algorithm terminates and reports a collision-free trajectory. Otherwise,

the segment is bisected at tI+tF
2

and the algorithm recurses on the two halves. We break

the recursion when a collision is detected, or the largest segment, uncovered by bubbles,

Chapter 3 Methodology: Trajectory Generation · 56

becomes smaller than the predefined threshold.

As this method calculates a lower bound for the free bubble radius based on the min-

imum obstacle distance, the radius tends to get very small at a configuration with a low

obstacle distance. Numerous distance and collision calculations are required in this situa-

tion, which slows down the collision check procedure. The trajectories that pass away from

the obstacles are preferable, allowing to choose the minimum radius reasonably large.

3.6.3 Online Shortcutting

To avoid waiting for smoothing it is possible to interleave trajectory smoothing with exe-

cution. Shortcutting algorithms can be conveniently implemented in an on-line technique

that executes and smooth the trajectory in parallel, which makes choosing a termination

criterion unnecessary. In this technique, shortcuts are generated at random only from the

trajectory after the current time, plus some small padding. The pseudo-code is as follow:

Algorithme 4 : Online Shortcutting algorithm

Require: A path as a list of waypoints to be executed and smoothed,

padTime, a constant ≈ a bound on the time it takes to perform one shortcut,

a timer function Time()
Ensure: A smoothed collision-free trajectory

1: Plan a time-optimal trajectory Tpt p that stops at each waypoints

2: Initialize the smooth trajectory Tsmooth →clear(), Tsmooth = Tpt p

3: Execute the trajectory Tsmooth

M = getMotionCond(Time(), Tsmooth), move towards to state M

4: while Time()< Tsmooth.GetDuration() do

5: t1 = Rand(Time()+ padTime, Tsmooth.GetDuration())

6: t2 = Rand(Time()+ padTime, Tsmooth.GetDuration())

7: M1 = getMotionCond(t1, Tsmooth)

8: M2 = getMotionCond(t2, Tsmooth)

9: Tsc = ComputeShortCut(M1, M2)

10: if (Time()> t1) then

11: The shortcut may have taken too long, if so, throw it out. Continue

12: else

13: Replace TM1M2
by Tsc in Tsmooth

14: end if

15: end while

16: return Tsmooth

For slightly better performance, the sampling strategy for picking points along the trajectory

can be tuned. For example, increasing the probability to choose the initial time tI close to

the current execution time seems to be effective.

57 · Trajectory Planning and Control for Robot Manipulation

3.7 Simulation and Experimental Results

3.7.1 Smoothing Trajectory From a Given Path

3.7.1.1 Simulation

We set up a simulation environment with a collision checker1, a module that reads the

description of a robot (kinematic tree and list of bodies) and its environment and can check

collision between any two bodies. The same module is used in real-time during the robot

motion control for collision detection. In each time cycle, the collision checker checks

the collision and each time a collision is detected, the system will replan the trajectory.

The algorithm is shown in algorithm 5. In this simulation, we set δ = 1 to manage the

error between the via-points and the smoothed trajectory because we aim at a time optimal

motion.

Algorithme 5 : Reactive motion to environment changes

1: Plan a point to point trajectory TPiPf

2: if motion is not completed then

3: Execute the trajectory and check collision risk

4: while a collision is detected in 1 second at time t do

5: Get the motion condition M(TPiPf
, t +0.5), mark this point as Pc that will

encounter a collision in 0.5 second

6: Choose a via-point Pm

7: Compute a via-points trajectory with Pc,Pm and Pf

8: Update the trajectory

9: end while

10: Execute the new trajectory

11: end if

Fig.3.12 shows the movement of the robot arm from an initial position Pi to a final

position Pf with an obstacle. The robot successfully reaches the target position after two

local trajectory deformations. It shall be noted that the robot is reactive, and the same

trajectory can be used for a moving obstacle.

Figure 3.13 presents the travelled trajectory along the Z axis. The position curve shows

how the trajectory deviates from the pre-planed one (straight line from the initial position to

the final position) due to the predicted collision risk. In the first four segments, the executed

trajectory coincides with the pre-planed one. At the collision prediction point 1, the system

switches to a new trajectory. The smooth velocity profile shows that the trajectory transition

is instantaneous and continuous.

The computation for this Cartesian space trajectory with 6 via-points requires an average

execution time of 1.2 ms (time only spent in the trajectory computation, without collision

detection) on a Intel Core(T M)2 Quad CPU 2.66GHz machine. It is fast enough for real time

1http://robotpkg.openrobots.org/robotpkg/graphics/coldman-genom

Chapter 3 Methodology: Trajectory Generation · 58

Figure 3.12: A simulated move from an initial position to a final position with a static

obstacle. (1) The purple dashed line is the first trajectory computed. (2) The robot detects

an obstacle and plan a new trajectory. Note that the purple trajectory is in collision. (3) A

new trajectory that avoid collision. (4) The complete trajectory realized in green. The green

solid line is the real path, which the robot follows. By adding two waypoints, the robot

reaches the target position without collision and path replanning at the high level.

applications, such as visual servoing or reactions to other sensor events.

3.7.1.2 Robot Experiments

We also implemented the via-points trajectory generator on a KUKA light-weight robot

IV [GmbH 08], which was controlled through the Fast Research Interface[Schreiber 10].

The software control is developed using Open Robots tools: GenoM3[Mallet 10a]. The

sampling time is fixed to 10 ms. The Pose of the manipulator’s end effector is defined

by seven independent coordinates named Operational Coordinates. It is composed of a

position vector P = [x,y,z]T and by a quaternion Q = [n,q]T , where q = [i, j,k]T . They give

the position and the orientation of the final body in the reference frame. The linear and

angular end-effector motion bounds are given in table 3.1.

Figure 3.14 illustrates a motion of the robot end effector. δ = 1.0 means the smoothed

trajectory starts at the end of maximum velocity segment. While δ = 0.8 means the start

59 · Trajectory Planning and Control for Robot Manipulation

Figure 3.13: The position, velocity, acceleration and jerk of online generated via-points

trajectory on Z axis

Figure 3.14: Paths of the robot end effector with different errors

points are closer to the intermediate points, which results a smaller error. The straight-line

path is a path with zero error, which can be represented by defining δ = 0.

3.7.2 Shortcut Smoothing Method

3.7.2.1 Simulation

We performed the simulation of a reaching task for a KUKA LWR IV robot arm (Figure

3.15). A total of 10 initial paths were generated with the same start and end configurations

using a sample-based planner. Then these paths were converted into trajectories using both

generation of phase-synchronized trajectory (presented in this chapter) and our smooth al-

gorithm. Figure 3.15 shows that the smoothed path of the end-effector during the reaching

Chapter 3 Methodology: Trajectory Generation · 60

Table 3.1: Robot motion is limited in jerk, acceleration, and velocity

Jmax Amax Vmax

Linear limits 0.900 m/s3 0.300 m/s2 0.150 m/s

Angular limits 0.600 rad/s3 0.200 rad/s2 0.100 rad/s

Figure 3.15: Left: A manipulator reaches under a shelf on a table from the zero position.

Right: The blue curve depicts the original end effector path. The red curve depicts the

smoothed path after 200 random shortcuts.

task is much shorter and more natural looking compared to the unprocessed path directly

given by the motion planner. Figure 3.16 illustrates that the execution time is largely re-

duced by 36.77% on average after 200 shortcutting iterations.

The computation for these smooth trajectories consumes an average time of 5.2 s with

200 iterations on an Intel Core(T M)2 Quad CPU 2.66GHz machine. Because of our analyti-

cal construction, the necessary time to build the shortcuts is negligible. The smoothing time

is overwhelmingly dominated by collision checking time(4.6 s on average). As expected,

the collision checker runs the most slowly when the robot passes under the shelf in this

experiment.

3.7.2.2 Robot Experiments

The smoothing algorithm was also applied to a real KUKA light-weight robot IV. We

used a real-world industrial scenario for evaluation. Figure 3.18 shows the planning setup.

This setup will be detailed in Chapter V. The control software was also developed with

GenoM3[Mallet 10b] with sampling time fixed to 10 ms.

The maximum joint velocity is decided by the physical properties of the motor. The

numerical values of the velocity constraint for each joint were cited from [GmbH 08]. Thus,

61 · Trajectory Planning and Control for Robot Manipulation

Figure 3.16: Progression of the smoothing illustrated by the duration of the trajectory trav-

elling for 10 initial paths for the same reaching task. The trajectories are relative to the task

presented in Figure 3.15

0 1 2 3 4 5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Po
si

tio
n

(ra
d)

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Joint 7

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

V
el

oc
ity

 (
ra

d/
s)

0 1 2 3 4 5
−4

−2

0

2

4

Time (s)

A
cc

el
er

at
io

n
(r

ad
/s

2)

0 1 2 3 4 5

−15

−10

−5

0

5

10

15

20

25

Time (s)

Je
rk

 (
ra

d/
s3)

Figure 3.17: The position, velocity, acceleration and jerk profile of the calculated trajectory

in the robot reaching task

Chapter 3 Methodology: Trajectory Generation · 62

Figure 3.18: The planning setup of the ICARO industrial scenario. Left: a global view of

the setup. Right: the start configuration.

Vmax can be defined by a vector :

Vmax = [v1 v2 v3 v4 v5 v6 v7]
T

= [1.75 1.92 1.75 2.26 2.26 3.14 3.14]T rad/s (3.41)

Then, the kinematic motion bounds are defined in Table 3.2. Therefore, the numeric values

Table 3.2: Robot motion is limited in jerk, acceleration, and velocity

Jerk Acceleration Velocity

5*Amax rad/s3 2.5*Vmax rad/s2 Vmax rad/s

of the kinematic constraints are:

Amax = [4.38 4.80 4.38 5.65 5.65 7.85 7.85]T rad/s2 (3.42)

Jmax = [21.9 24.0 21.9 28.3 38.3 39.3 39.3]T rad/s3 (3.43)

In the timing experiments, 50 iterations of shortcutting were finished with a computation

time of 1.5 s and a reduced execution time of 2.8 s on average. Figure 3.17 illustrates the

position, velocity, acceleration and jerk profile on each joint. Compared with the numeric

bounds, results show that all kinematic variables were well bounded during the construction

of the smooth trajectory.

63 · Trajectory Planning and Control for Robot Manipulation

3.8 Conclusions

In this chapter, we presented a solution to generate synchronized trajectories from a given

path. We presented also two fast trajectory smoothing algorithms based on third-degree

polynomial functions for high-DOF robot manipulators. The main contributions are:

1. The proposition of a simple and fast algorithm that operate in the configuration/velocity/acceleration

state space.

2. We make an analytical derivation of time-optimal, velocity-bounded, acceleration-

bounded and jerk-bounded trajectories that interpolate between endpoints with spec-

ified velocity and acceleration. For a single joint, the time-optimal interpolant can

be derived in the closed form. We interpolate multiple joints by detecting the joint

with the longest execution time, and then interpolate the remaining joints by finding

the jerk-bounded, acceleration-bounded and velocity-bounded interpolants with fixed

duration.

We developed also an algorithm to generate locally smooth trajectories from path de-

fined by via-points while limiting the distance to the initial path. The main benefit is the

possibility to guarantee that the trajectory stay inside a tube. This is particularly interesting

when the path planner can define a tube free of collision along the path.

The last proposition is a global trajectory smoothing based on a well-known shortcutting

heuristic for path. Smoothing directly the trajectory appears more efficient than smooth-

ing the initial path. In addition to the computation time reduction, the trajectory can be

smoothed in parallel with its execution.

Simulation and experimental results show that the use of third-degree polynomial func-

tions to describe the trajectories provides efficient tools to obtain smooth robot moves.

4
Polynomial Trajectory Approximation

4.1 Introduction

Our objective is to build robot controllers simple and capable to realize and control a large

variety of task and, in particular, human/robot interactive tasks. As we have seen, most

of the tasks can be described by a trajectory and a control primitive. As the mathematical

possibilities to imagine functions to depict trajectories is without any limit and the obtained

model not necessary compatible with real time computation, approximation tools are nec-

essary to transform these trajectories in a type that the controller can accept as input.

The objective of this chapter is to choose one or a small set of trajectory models and

build tools to approximate any type of trajectories using these models.

As the tasks we wish to achieve are complex, the controller must provide necessary

properties like allowing switching between input trajectory, control laws and sensors data.

Trajectories of class C2 are necessary to ensure human safety and comfort. As the sys-

tem must be reactive, we need a fast and simple model. The trajectories are also used to

exchange motion model between the different layers of the robot controller. Given this con-

text, building an efficient trajectory controller is important likewise the choice of a good

model for the trajectories. Generally polynomial functions are considered as the simplest

one, so in this chapter we compare 3rd , 4th and 5th degrees polynomial functions to approx-

imate any trajectories.

65

Chapter 4 Polynomial Trajectory Approximation · 66

T
()x

()
StrkStr0

Str1

Str2
StrK-1

k k+1

()Q

()

()

()
()

()

Figure 4.1: A trajectory is composed of K polynomial segments, tI and tF are the initial time

and final time of the trajectory.

4.2 Polynomial trajectory approximations

4.2.1 Problem Formulation

We firstly give here a general definition of the problem. A trajectory T (t) to be approx-

imated can be defined by a large set of mathematical functions. In order to simplify the

controller we need to define a small set of functions. Considering that a trajectory T (t)

is to be approximated over the period t ∈ [TI,TF], where TI is the initial time and TF is the

final time. For the sake of simplicity, the initial and final states of T (t) are defined as

M(TI) = (X0,A0,V0) and M(TF) = (XF ,AF ,VF), respectively. We suppose that the initial

and approximated trajectory is at least of class C2. It is because higher-order initial tra-

jectories can avoid large errors during the approximation, while high-order approximated

trajectories have good properties for the robot controller. To build a simpler robot, our ob-

jective is to manipulate all type of trajectories. Thus the aim of approximation is to find out

a series of segments of k-degree polynomial function between M(TI) and M(TF) within the

period Timp = TF −TI .

A trajectory T (t) can be represented by a series of trajectories defined between inter-

mediate points. As shown in Figure 4.1, a trajectory T (t) is composed of K segments of

trajectories. Thus, an equivalent representation of T (t) is defined as:

T (t) =
K−1

∑
k=0

Strk(t) t ∈ [tI, tF] (4.1)

Equation 4.1 is the prerequisite to use our approximation approaches. The internal repre-

sentation of the interpolated sub-trajectories requires time-continuous polynomials. One

important property is the continuity class of the trajectory C m (m ≥ 2 in this paper).

4.2.2 Approximation Possibilities

Regarding the target of C2 functions, we need polynomial function with degree higher than

2. An imposed time motion between two points involves seven constraints: three initial

67 · Trajectory Planning and Control for Robot Manipulation

Figure 4.2: 3rd degree polynomial interpolants with fixed time: the position, velocity, ac-

celeration and jerk profiles.

conditions (X0,A0,V0), three final conditions (XF ,AF ,VF) and the imposed time Timp. Thus

we propose to compare 3rd , 4th and 5th degree functions to approximate a given trajectory.

Moreover, each C2 continuity between two segments introduces 3 constraints, so the ap-

proximation needs at least 3 trajectory segments of cubic polynomials[Broquère 10]. Each

cubic segment is defined by 5 parameters: J, A, V , X0 and TI .

Cubic functions:

X(t) =
J

6
(t −TI)

3 +
A

2
(t −TI)

2 +V (t −TI)+X0 (4.2)

A quartic polynomial segment is defined by 6 parameters, so 2 quartic segments are at least

required to represent the motion. S is the snap.

Quartic functions:

X(t) =
S

24
(t −TI)

4 +
J

6
(t −TI)

3 +
A

2
(t −TI)

2 +V (t −TI)+X0 (4.3)

A single 5th degree polynomial function is already characterized by 7 parameters, so we

can just use one segment to define the motion. C is the first derivative of the snap. Quintic

functions:

X(t) =
C

120
(t −TI)

5 +
S

24
(t −TI)

4 +
J

6
(t −TI)

3 +
A

2
(t −TI)

2 +V (t −TI)+X0 (4.4)

Chapter 4 Polynomial Trajectory Approximation · 68

Figure 4.3: 3rd degree polynomial interpolants with fixed jerk

4.2.3 3rd Degree Polynomial Functions

4.2.3.1 3-Segment cubic functions with fixed time

This approach called 3-segment method is proposed by Broquère in [Broquère 10], it de-

fines a sequence of three trajectory segments with constant jerks. Broquère fixes the three

durations T1 = T2 = T3 =
Timp

3
and obtain a system with 13 parameters where only the three

jerks are unknown. Figure 4.2 shows an example of profile for position, velocity, accelera-

tion and jerk relative to a sub-trajectory of one dimension. The initial and finial conditions

are set as M(TI) = (0,0,0) and M(TF) = (1,0,0) respectively and the duration as Timp = 1s.

4.2.3.2 3-Segment Cubics with Fixed Jerk

The 3-segment method solves the fixed time trajectory generation problem with fixed du-

ration for each segment. However, it cannot guarantee that the computed jerk is always

bounded. Here we introduce a variant of the three segments method with defined jerk.

As for the three segments method, the system is also defined by 13 constraints. But here

we fix the jerk on the first and third segment |J1|= |J3|6 Jmax, where Jmax is the bound for

the jerk. Thus the unknown parameters of the system are J2 and the three time durations

linked by the whole duration of the trajectory Timp (Timp = T1 +T2 +T3).

To choose the value of jerks, we take the velocity VI and VF into account. The jerks are

fixed by J1 = J3 = −Jmax when VI > VF , while J1 = J3 = Jmax when VI 6 VF . Figure 4.3

illustrates a trajectory with the same situation as in Figure 4.2. The main difference is the

jerk value J1 = J3 = Jmax = 60 m/s3.

What to be noticed is, there are infinite choices of the jerk value. The reason why we

set J1 and J3 as Jmax is that we would get a longer period with a smaller J2 (T2 = 0.78s, J2 =

69 · Trajectory Planning and Control for Robot Manipulation

−18m/s3 in this case). So in the second segment, the acceleration will increase/decrease

slower. From the movement’s point of view, the motion becomes much smoother. However,

if any computed time is negative or smaller than the machine cycle time, effort should be

made to adjust the jerk.

4.2.4 4th Degree Polynomial Functions

As discussed in section C.3.2, we need two segments of 4th degree functions to define a

motion and the equation C.10 is associated with 5 unknowns:

S1 : the snap of the first segment;

S2 : the snap of the second segment;

T1 : the duration of the first segment;

J0 : the initial jerk at the time instant TI;

J1 : the jerk at the time instant T1;

and 3 constraints :

X(TF) = XF (4.5)

V (TF) =
d(X(t))

dt
|t=TF

=VF (4.6)

A(TF) =
d2(X(t))

dt2
|t=TF

= AF (4.7)

To solve the problem, we need two more constraints. To choose these constraints, we take

into account the different profile of time and jerk, with which the whole trajectory can

be constructed. Therefore the trajectory is represented by different formats of 4th degree

functions, depending on the types of constraints.

4.2.4.1 Constraint type I

In a first instance, we introduce one parameter JF , which is the final jerk at time TF . In type

I we have a continuous jerk at time T1 and set the same initial and final jerks. So that the

two constraints are denoted as:

J1
+ = J1

−

J0 = JF

Figure 4.4 shows the trajectory between the two same states as in Figure 4.2.

Chapter 4 Polynomial Trajectory Approximation · 70

Figure 4.4: Constraint type I of 4th degree polynomial interpolants

4.2.4.2 Constraint type II

Like for type I, we maintain the jerk continuity at T1, but we make an equivalent duration

on each segment, which means:

J1
+ = J1

−

T1 =
Timp

2

With these 2 constraints, it is possible to solve the 3 polynomial equations 4.5 to 4.7 and

get the result as following:

S1 =
192X0 −192XF

Timp4
+

108V0 +84VF

Timp3
+

22A0 −10AF

Timp2
(4.8)

S2 =
192XF −192X0

Timp4
− 84V0 +108VF

Timp3
+

22AF −10A0

Timp2
(4.9)

J2 =−48X0 +18XF

Timp3
− 30V0 +18VF

Timp2
+

2AF −8A0

Timp
(4.10)

To show the difference with the next constraint type, we choose a new final state

M(TF) = (1,1,0), which is no more symmetrical in velocity. As clearly shown in Fig-

ure 4.5, the trajectory is divided into 2 segments with the same time. The initial jerk J0 = 30

m/s3 and the final jerk JF = 18 m/s3 are different. The jerk profile is continuous at time

T1 = 0.5 s.

71 · Trajectory Planning and Control for Robot Manipulation

Figure 4.5: Constraint type II of 4th degree polynomial interpolants

4.2.4.3 Constraint type III

The third type discards the jerk continuity while keeping the same time on each segment

and same initial and final jerk:

J0 = JF

T1 =
Timp

2

Similarly as for constraints type I and II, we solve the associated system as:

S1 =
192X0 −192XF

Timp4
+

72V0 +120VF

Timp3
+

4A0 −28AF

Timp2
(4.11)

S2 =
192XF −192X0

Timp4
− 120V0 +72VF

Timp3
+

4AF −28A0

Timp2
(4.12)

J2 =−48X0 +48XF

Timp3
− 24V0 +24VF

Timp2
+

5AF −5A0

Timp
(4.13)

An example of trajectory which connects the states defined in section 4.2.4.2 for type II

is shown in Figure 4.6. Because of jerk discontinuity at time T1 (J1
− = −12m/s3, J1

+ =

−36m/s3), the trajectory has the same initial and final jerks (J0 = JF = 24m/s3) with dif-

ferent snaps (S1 =−72m/s4, S2 = 120m/s4) in the same time interval (T1 = T2 = 0.5 s).

Chapter 4 Polynomial Trajectory Approximation · 72

Figure 4.6: Constraint type III of 4th degree polynomial interpolants

4.2.5 5th Degree Polynomial Functions

Using a 5th degree polynomials segment to define the motion (see Equation C.11), the solu-

tion is obtained directly from the six constraints:

X(TI) = X0 X(TF) = XF

V (TI) =V0 V (TF) =VF

A(TI) = A0 A(TF) = AF

Figure 4.7 illustrates one trajectory segment from state M(0) = (0,0,0) to M(1) = (1,0,0).

The jerk profile is a parabola with the maximum value Jm = 60m/s3. In this case, we have

no additional parameters to bound the jerk.

4.3 Comparisons of different approximations

In this section, we propose to approximate some trajectories with the previous models.

Firstly, we present some characteristics and show the results of an approximation. Then we

compare the result of these approximations for some trajectories proposed in [Broquere 08].

These trajectories are defined by a path and a motion law.

4.3.1 Characteristics Definition

4.3.1.1 Trajectory error

An important characteristic of the approximation is the maximum error between the two

trajectories, the approximated trajectory T (t) and the original trajectory Tin(t). From sev-

73 · Trajectory Planning and Control for Robot Manipulation

Figure 4.7: One continuous interpolant with 5th degree polynomial

eral types of distances for comparison of trajectories, we choose the Hausdorff distance and

the synchronous Euclidean distance and errors between velocities. The Hausdorff distance

is defined as:

dHaus = max(sup
tin∈[tI ,tF]

inf
t∈[tI ,tF]

d(Tin(tin),T (t)), (4.14)

sup
t∈[tI ,tF]

inf
tin∈[tI ,tF]

d(T (t),Tin(tin)) (4.15)

The synchronous Euclidean distance between the approximated trajectory T (t) and the

original trajectory Tin(t) is defined as:

dSE = max
t∈[tI ,tF]

√

n

∑
j=1

(jT (t)− j Tin(t))
2

(4.16)

The synchronous Euclidean distance between velocities is defined as:

dSEV = max
t∈[tI ,tF]

√

√

√

√

n

∑
j=1

(

d jT (t)

dt
− d jTin(t)

dt

)2

(4.17)

4.3.1.2 Number of segments

The total number of segments, Nseg, depends on the length of the intervals to approximate

a function. It is an important parameter because it influences the trajectory error and the

computation time. The Nseg can be provided by the user or computed according to the

definition of a maximum error. To compare among the approaches on different paths, we

set each approximation with the same maximum error and thus compute the Nseg, which

Chapter 4 Polynomial Trajectory Approximation · 74

ensures that the trajectory error is smaller than the predefined limit.

The computation of Nseg for linear, circular and sinusoidal trajectories using 3rd degree

polynomials is illustrated in [Broquère 11]. For trajectories with irregular shapes and trajec-

tories approximated with 4th or 5th degree functions, we propose an algorithm to compute

Nseg that can limit the maximum error.

Algorithme 6 : Computation of Nseg

1: Nseg = 1; given a maximum error ε

2: Compute the trajectory and error dSE

3: while dSE > ε do

4: Nseg = Nseg + 1

5: Compute the new trajectory and error dSE

6: end while

7: return Nseg

4.3.2 Error of approximation for a trajectory

We suppose now that Tin(t) is bounded respectively in jerk, acceleration and velocity by

Jmax, Amax and Vmax. We show in this paragraph that a relation exists between the error of

approximation, the time Timp and the bound Jmax.

Let Vin(t) and Ain(t) denote respectively the velocity and acceleration of Tin(t). In a

first time, we examine the case where the trajectory Tin(t) to approximate satisfies:

Tin(tI) = Tin(tF) = 0 (4.18)

Vin(tI) = Vin(tF) = 0 (4.19)

Ain(tI) = Ain(tF) = 0 (4.20)

One can easily verify that these initial and final conditions gives three null jerks.

The trajectory to approximate Tin that gives the maximum error is symmetric. As the

trajectory to approximate Tin is kinematically bounded and due to the symmetry, the max-

imum error between the two trajectories is at the middle of the trajectory. Likewise, the

maximum error is obtained for a saturated function. For a short trajectory, the accelera-

tion is not saturated and the more difficult function to approximate is defined by the four

segments trajectory:

T1 = T4 = Timp ∗
2−

√
2

4
(4.21)

T2 = T3 = Timp ∗
√

2

4
(4.22)

and the jerks are J1 = J4 = Jmax, J2 = J3 =−Jmax.

75 · Trajectory Planning and Control for Robot Manipulation

The maximum error between the two trajectories is then:

ε =

√
2−1

48∗
√

2
≈ 0.0061∗ Jmax ∗T 3

imp (4.23)

General case

Suppose T (t) is the approximation by the 3 segments method of the trajectory Tin(t)between

tI and tF .

We can write the Tin(t) trajectory as Tin(t) = T (t)+(Tin(t)−T (t))

By design the trajectory T0(t) = Tin(t)−T (t) verifies the conditions 4.18, 4.19, and

4.20.

So the approximation error of T0(t) on [TI,TF] by a trajectory composed of three seg-

ments of cubic polynomial trajectory is less than 0.0061×T 3
imp ∗ (2∗ Jmax).

As T (t) is approximated without error, Tin(t) that is the sum T (t) +T0(t) can be

approximated with an error less than: 0.0061∗T 3
imp ∗ (2∗ Jmax).

This result is extremely interesting as it gives the length of the time interval to approx-

imate a function while insuring the approximation error is smaller than a defined threshold

for Jmax. What to be noticed is, a special case may happen where the jerk equals to zero

in a segment. In this case, the error of this segment is zero, which means this is an exact

approximation.

4.3.3 Example of a circular trajectory:

To approximate a trajectory following a circle of radius R at constant speed ωR, we can

compute the maximum time interval Timp to approximate the circle with a maximum error

of ε .

The trajectory of the motion is defined by:

Xx(t) = R∗ cos(ωt) (4.24)

XY (t) = R∗ sin(ωt) (4.25)

and the jerk by:

JX(t) = ω3R∗ sin(ωt) (4.26)

JY (t) =−ω3R∗ cos(ωt) (4.27)

So the constant jerk is ω3R and the maximum time interval is then

T =
ε
√

3

0.0061∗2∗ J
=

ε
√

3

0.0061∗2∗ω3R
(4.28)

For a mobile completing a turn in one second about a circle of radius R = 0.1m with a

Chapter 4 Polynomial Trajectory Approximation · 76

0 0.05 0.1
0

0.05

0.1

0.15

(a) Line

−0.2 −0.15 −0.1 −0.05 0
−0.1

−0.05

0

0.05

0.1

(b) Circle

0 0.05 0.1 0.15 0.2
−0.04

−0.02

0

0.02

0.04

(c) Sinusoid

−0.04 −0.02 0 0.02

0

0.02

0.04

0.06

(d) Horse

Figure 4.8: Four path samples to be approximated (unit: m)

maximum error of ε = 10−6 m, T is T = 0.0149 s corresponding to 68 points (6 points for

an error of ε = 10−3 m). This result can be used directly when radius of curvature is known

and the path is traversed at constant speed.

4.3.4 Comparison Demonstration

We build 4 trajectories (Figure 4.8) to evaluate our approximation procedures. These tra-

jectories are defined from a path and a motion law: T (t) = P(u(t)). u(t) is the motion

law, which is defined by a classical time-optimal 7 segment functions that is bounded in

jerk, velocity and acceleration[Broquere 08]. The first three paths are linear, circular and

sinusoidal, respectively, and are associated with the motion law, while the last path is de-

fined by inkscape1 and corresponds to a series of Bézier curves associated with the motion

law. The motion law is defined as: Jmax = 0.9 m/s3, Amax = 0.3 m/s2, Vmax = 0.04 m/s.

To determine Nseg, we define the approximation accuracy with a maximum dSE = 0.001

mm. Figure 4.9 presents the comparison between the six methods: Cubic I is the 3-Segment

method with fixed time (section 4.2.3.1), Cubic II is the 3-Segment method with fixed time

(section 4.2.3.2), Quartic I-III represent the 4th degree polynomials with constraints type

I-III. In each case, we compute all the characteristics mentioned in the last paragraph. We

conclude from Figure 4.9 that:

1http://inkscape.org/

77 · Trajectory Planning and Control for Robot Manipulation

Line Circle Sinusoid Horse

0

0.2

0.4

0.6

0.8

H
au

sd
o
rf

f
(m

m
)

Line Circle Sinusoid Horse

0

0.5

1

d
S

E
(1

0
−

3
m

m
)

Line Circle Sinusoid Horse

0

20

40

d
S

E
V

(m
m

/s
)

Line Circle Sinusoid Horse

2

4

6

8

ln
(N

se
g
)

Cubic-I Cubic-II Quartic-I

Quartic-II Quartic-III Quintic

Figure 4.9: Comparison of characteristics for different approximations

1. Increasing the degree of the polynomial does not improve the quality of the approx-

imation. With line as an example, 6, 14, 10, 16, and 100 segments are needed in

approximation with cubic, Quartic I, Quartic II, Quartic III and Quintic functions,

respectively. Likewise, the computation time of cubic approximation is shorter com-

pared with other high-degree functions. The computation time is linked with the

number of segments used to approximate the trajectory. The more the segments are

used, the larger the computation time is.

2. The difference between Cubic-I and Cubic-II depends on the type of the trajectory.

When the acceleration is high (small-radius curve), the first is more appropriate and

vice versa.

3. As the 3rd , 4th, and 5th degree approximations use 3, 2 and 1 segment, respectively,

Chapter 4 Polynomial Trajectory Approximation · 78

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time (s)

Ve
lo

ci
ty

 (
m/

s)

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10
x 10

−3

Time (s)

Ve
lo

ci
ty

 e
rr

or
 (

m/
s)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1x 10
−6

Time (s)

d SE
 (
m)

Figure 4.10: Top: computed motion law for the horse path; Middle: velocity error between

desired and computed motion law; Bottom: trajectory error between the given trajectory

and the approximated one.

a larger number of parameters are needed to define the approximated segment. How-

ever, this difference does not explain all the required segments for the 5th-degree case

.

4.4 Experimental Results

To illustrate the implementation of approximation approaches based on SoftMotion trajecto-

ries [Broquere 08], we tested these approaches with a 7-DOF KUKA LWR-IV arm2, which

was controlled through the Fast Research Interface. The software control was developed

using Open Robots tools: GenoM[Mallet 10b].

2http://www.kuka.com/en/company/group

79 · Trajectory Planning and Control for Robot Manipulation

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

0.05

0.1

0.15

0.2

0.25

0.3

X (m)

Y
 (

m
)

Input trajectory p(u(t))

Approximated trajectory
Recorded trajectory

Figure 4.11: Theoretical path, computed trajectory and the one recorded while the LWR

arm is executing the computed horse trajectory.

4.4.1 Control Level

The configuration of a seven joints arm manipulator is defined by a vector θ of seven inde-

pendent joint coordinates which correspond to the angle of the articulations.

θ = [q1 q2 q3 q4 q5 q6 q7]
T

The Pose of the manipulator’s end effector is defined by seven independent coordinates

named Operational Coordinates. It is composed of a position vector P = [x,y,z]T and a

quaternion Q = [n,q]T , where q = [i, j,k]T . They give the position and the orientation of

the final body in the reference frame. Whitney [Whitney 69] gives the relation between joint

velocities and Cartesian velocities:

θ̇ = J−1[V Ω]T (4.29)

where V and Ω represent the linear and angular velocities of the robot’s end effector. And

J is the Jacobian matrix.

To guarantee the tracking in presence of singularity, we have selected the damped least

squares method for inverse kinematics:

J−1 ≃ JT (JT J+λ I)−1

It is known that in the proximity of a singularity, the joint velocity references exceed

the limits (θ → ∞). To avoid this problem, we propose to limit the velocity reference by

weighting the velocities in function of the largest exceeding.

Chapter 4 Polynomial Trajectory Approximation · 80

The KUKA arm was used to draw the horse shown in Figure 4.8d. This curve is chosen

because it is composed of lines and curves. This approach is commonly used for indus-

trial robots. As the 4th and 5th degree polynomial functions produce large errors, the horse

trajectory was approximated using the method introduced in section 4.2.3.2. The desired

motion law is a simple point-to-point soft motion computed by our soft motion planner

[Broquere 08]. The linear end-effector motion bounds are set as: Jmax = 0.9m/s3, Amax =

0.3m/s2,Vmax = 0.04m/s. Figure 4.10 illustrates the computed velocity law and the two

error curves. Figure 4.11 shows the input path, the approximated path and the path recorded

during the robot execution. These two figures depict that the computed and executed trajec-

tory coincides well with the given one with a quite small trajectory error. Result shows that

validity of our trajectory generator.

4.5 Conclusions

In this chapter, we discussed the trajectory approximation problem and the possibility to

built a simple trajectory generator using trajectory approximation. First, we proposed three

approximation possibilities, 3rd , 4th, 5th degree polynomial functions, to represent trajec-

tories. For each trajectory type, different parameters are computed during the trajectory

constructions. The overall approach can be summarized as follows:

• Expressing a given trajectory as a summation of K segments of the same duration

• Defining each segment as a polynomial function of degree k with some unknown

coefficients

• Finding these unknown parameters based on the constraints of the motion (e.g., ve-

locity, acceleration, jerk limits, etc.) while minimizing some performance criteria

(e.g., trajectory error, number of segments, etc.)

• Once the unknown parameters of the approximated trajectory have been computed

(e.g., end effector velocities), they are mapped to joint velocities by using the inverse

of the Jacobian.

Then we compared 3rd , 4th, 5th polynomial functions in approximation of any given

geometrical trajectory by defining different characteristics, such as the trajectory error and

number of segments. As a result, the 3rd degree polynomial trajectories show high per-

formance and simplicity for robot applications, which encourages us to develop tools to

manipulate these trajectories for construction of robot controllers and planners.

5
Reactive Trajectory Controller

5.1 Introduction

In this chapter, we present the application of the trajectory controller in an industrial context,

provided by the partners of the ANR ICARO1 project. This setting is ideal for trajectory

control because a worker is at the center of the assembly cell and the assembly to realize

needs force control and real time obstacle avoidance. The trajectory controller enables the

robot to realize the complete industrial assembly task while respecting human’s safety and

other HRI specifications. This interactive assembly task demands integration of different

elements like geometrical reasoning, position and external force monitoring and control,

3D vision and human robot collaboration. The control system presented in this chapter

is associated with the trajectory segmentation. This chapter presents firstly the ICARO

project and the assembly setting, then it details the solution developed around the trajectory

controller.

5.2 Introduction of ICARO project

ICARO is the abbreviation of ”Industrial Cooperative Assistant Robotics”. This project aims

the development of tools in order to improve and to simplify the interaction between indus-

1http://www.agence-nationale-recherche.fr/?Project=ANR-10-CORD-0025

81

Chapter 5 Reactive Trajectory Controller · 82

trial robots on one side and humans and the environment on the other side. The project also

aims to produce tools build around a middleware software architecture securing the interop-

erability of these tools. ICARO distinguishes from other projects aiming service robots by

the implementation of industrial use cases, by the association of research laboratories and

SMEs ready to commercialize the project’s results, by the importance granted to the safety

standards and by the participation of a team working in ergonomics. The ergonomic aspects

are important in order to deal throughout the project with all the aspects related to humans.

ICARO is a highly collaborative project, which associates seven partners:

• LAAS-CNRS2: the two teams, Robotics and InteractionS (RIS) and Robotics, Ac-

tion and Perception (RAP), are involved in this project. LAAS integrated one of the

demonstration and developed tools for HRI around vision and trajectory control.

• The CRTD 3: Le Centre de Recherche sur le Travail et le Développement. The CRTD

worked on the ergonomics and the social impact of the proposed solution.

• EADS4: Airbus group. EADS provided an example of application in aeronautic in-

dustry and evaluated the proposed solution in this context.

• Tecnalia5: Tecnalia proposed an architecture for the integration developed around the

middleware ROS. They also worked on the demonstration of the results.

• SIEMENS6: KINEO-CAM acquired by SIEMENS is a specialist of industrial colli-

sion checking and path planning.

• PSA7: Same for EADS, but for automotive industry. PSA provided also parts to be

assembled and tools associated.

• LIRMM8: Laboratoire d’Informatique, de Robotique et de Microélectronique de Mont-

pellier. It provides tools for the force/torque and vision monitoring and control.

Today, inside the production plants the assembly stations are either manual or robo-

tized. Protection grids systematically split the space between the robots and the humans and

strongly limit the design of the assembly line. In particular, they occupy a large area and

restrict the movement of people and vehicles. Recent evolutions of technology as well as of

the safety standards allow a new production paradigm where humans carry out complex ac-

tivities in collaboration with robots that execute the actions easy to automate, dangerous or

non-ergonomic. Human and robots sharing a collaborative workspace is expected, either in

2https://www.laas.fr/
3http://tof-ms.cnam.fr/
4http://www.airbusgroup.com
5http://www.tecnalia.com/
6http://www.siemens-home.fr/
7http://www.sochaux.psa.fr/
8http://www.lirmm.fr/

83 · Trajectory Planning and Control for Robot Manipulation

Figure 5.1: Left: Joint usage in a car. Right: Mechanical structure of a joint

Figure 5.2: The ICARO setup at LAAS-CNRS

co-action or co-operation. An improvement of the global performance of the socio-technical

system through the added value of human work in terms of ergonomics, through a better use

of specific capabilities of each and through a simpler automation is expected.

So the goal of the ICARO project is to produce:

• Tools for intuitive robot programming including reactive planning of trajectories through

fusion of real and virtual data as well as tools for robot programming through points

learned by manual guidance and completed by process knowledge.

Chapter 5 Reactive Trajectory Controller · 84

• Tools for perception of the environment linked to 3D models allowing faster, richer

and more reliable interactions with the environment and the operators

• An open source software architecture enabling the interoperability of the tools devel-

oped as well as their dissemination. As ROS (the Robot Operating System)9 middle-

ware is now an industrial standard, it allows to transfer new human-robot interaction

methods for complex manipulation applications towards the industry.

• A methodology of task attribution among humans and robots based on the physical,

cognitive and ergonomic analyses as well as the production constraints.

After a long discussion, the partners chose to work on the assembly of the RZEPPA

joint. These joints are widely used in industries, especially in the automotive industry.

Figure 5.1 shows an example of a RZEPPA joint used in a car between the gearbox and the

wheels. The mechanical structure of a joint is also illustrated in this figure. It includes 4

parts: an outer shell, a cage, 6 balls and an inner race.

The project built up an automated setting, presented in Figure 5.2. The objective of this

setup is to validate the concepts developed in a real assembly task. In this task, the robot

and human operator share the same workspace. The robot supports to human workers by

collecting, delivering parts just as needed, by positioning of the workpiece and stabilizing

components during assembly. The safety of the operator must be guaranteed when he/she

cooperates with the robot manipulator, hence the robot has to be reactive. A first depth

sensor is used to track the gesture of the operator. A second depth sensor is employed to

update the environment model, such as the human position and the obstacle information.

Collision Detector (KCD) from the SIEMENS Company provides fast and reliable collision

detection, based on minimal distance computations.

Figure 5.3 illustrates the software architecture. The ICARO project uses a ROS architec-

ture. In such architecture, all the models are combined in a URDF10 file. Each component

in the software structure is a ROS node11. The KCD module is synchronized with the

OctoMap module [Hornung 13]. The OctoMap is updated at 30Hz with the point clouds ac-

quired by an Xtion PRO LIVE RGB-D12 camera. In order to limit the apparition of sparse

outliers, this project uses a statistical filter [Rusu 11] available in the PCL library [PCL 10].

For all points, the statistical filter measures the distance between every point and its closest

N neighbours. These data are fitted to a Gaussian. A threshold is set in function of the mean

and variance of the Gaussian. For every point for which the mean distance to its neighbours

is higher than the threshold, is considered as an outlier and is removed. The path planner

uses the standard OMPL [Şucan 12] module. Each one of these nodes is implemented us-

ing a robust state machine fully driven by the ROS actionlib protocol allowing multi process

9http://www.ros.org/
10http://wiki.ros.org/urdf
11http://wiki.ros.org/Nodes
12https://www.asus.com/us/Multimedia/Xtion PRO LIVE/

85 · Trajectory Planning and Control for Robot Manipulation

depth sensor1

depth sensor2

KWS-ROS

 Planner

cloud

filters

KCD

Trajectory

Generator

Trajectory

Controller

controller

F/T sensor

Robot Arm

gesture

OCTOMAP

p
a
t
h

traj

q

F/T

gesture

Machine

State

Trajectory

Monitor

Trajectory Level

Figure 5.3: The software architecture of ICARO project

communication. Both nodes update the robot position by a ROS topic and provide conve-

nient topics to add, move, remove, attach and detach geometric parts on the fly. This allows

covering a wide variety of scenarios from simple pick and place tasks to complex human

collaboration tasks.

We are going to present the different elements of this architecture in the rest of this

chapter. We will detail the role of our controller in each sub-task. Then, the experimental

results will be presented as well.

Figure 5.4: Two different gestures. (a) Validation: Validate the current operation, go to the

next task of the whole procedure. (b) Rebut: Reject the current operation.

5.3 Applications in the ICARO Project

5.3.1 Gesture Tracking

The objective of this module is to use gestures analysis to replace the usage of buttons on the

control panel. The advantage of using gestures is that it makes the human operator interact

with the robot easily. This module use OpenNI to create a nodelet graph to transform raw

Chapter 5 Reactive Trajectory Controller · 86

data from the device driver into point clouds, disparity images, and other products suitable

for processing and visualization. Here two gestures are applied, shown in Figure 5.4. A

Validation gesture can accept the current action and switch to the next step. For instance,

when the operator is ready and the robot is at the initial position, a Validation gesture asks

the robot to beginning the first task. On the contrary, the Rebut gesture tells the system

that there is something wrong in the current operation, so that the system will halt at the

moment, or execute the action corresponding to the Rebut gesture. For example, when the

robot shows the outer shell so that the human inspects it, the Rebut gesture asks the robot to

place the outer shell into the garbage.

What to be noticed is, the depth sensor can recognise two gestures and generate there

three commands:

• Command 0: represents the Validation gesture;

• Command 1: represents the Rebut gesture;

• Command 2: the Kinect doesn’t see the operator.

Command 2 is generated if the operator goes too far away from the workbench or leaves the

useful area of the depth sensor. For example, if the human operator leaves temporarily for

something unexpected, the robot receives immediately Command 2 and stops the current

movement. The state machine memorizes the current state. When the operator come back,

a Validation gesture trigger the recovery of the task.

The trajectory controller reacts to Command 0 and Command 1 by transforming dif-

ferent paths to trajectories. It reacts also to Command 2 by slowing down the motion and

changing the trajectory timing law to s(t) = 0. Figure 5.5 illustrate a case where the trajec-

tory controller pause and recover the robot motion by receiving different commands.

0 5 10 15 20

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

P
o

s
it
io

n
s

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Joint 7

s(t)

Figure 5.5: The trajectory received the Command 2 and stopped the current motion at

around t = 3.8s. At the instant t = 13.8s, the Validation gesture was sent to trajectory

controller so that it recover the previous movement.

It should be noticed that we cannot set the time law s(t) to zero directly, because it will

stop the robot immediately and cause a huge force/torque on the robot joints. It may damage

87 · Trajectory Planning and Control for Robot Manipulation

the hardware of the robot and it also doesn’t satisfy the comfort of human. Therefore, the

time law s(t) must be changed smoothly. In this work, we use the concept of the Optimal

Motion to describe the time variation. The Optimal Motion is a motion with jerk, acceler-

ation and velocity constraints successively saturated [Herrera 05]. We use the velocity of

an Optimal Motion to represent the time variaiton. In this case, we are able to control the

time change by defining the maximum jerk Jmax, acceleration Amax and velocity Vmax. In

this study, we assumed that a robot should not increase its speed to react to environment

changes because it could cause some people anxiety. Thus s(t)max = 1.

5.3.2 Reactive Planning

Reactive path planning is mainly performed by the controlling node which basically inter-

acts with the path planning node and some critical nodes executing the global task, here

grouped in the ICARO stack13, such as the trajectory execution node. The reactive strategy

is depicted in Figure 5.6.

As part of the ICARO project, the SIEMENS company developed a reactive path plan-

ning package over the ROS middleware. This kws-ros-interface package (hereafter kws-

ros), is built on top of the SIEMENS software component. SIEMENS addresses all aspects

of motion processes including collision-free automated path planning. It includes the most

common motion types, such as joint motion, and features an advanced algorithm for de-

tecting collisions along a trajectory, which is both fast and exact, regardless of kinematical

complexity. SIEMENS developed a Trajectory Monitor to supervise the current robot mo-

tion and to check if future positions are in a collision state. From the task to realize and the

collision states, the Trajectory Monitor requests the path planning to produce a path, which

is transformed in a trajectory by the Trajectory Generator. As soon as a new trajectory is

computed, the trajectory controller switches to the new one.

5.3.3 Positioning of the outer shell

The outer shell needs to be firstly aligned so that its tracks will be aligned with the insertion

motion. We printed in 3D a part with a complementary shape of the internal shape of the

outer shell and we fasten it on a table. Simply inserting an outer shell on the part align it, as

shown in Figure 5.7. The orientation procedure is:

• Down: The robot starts at the position above the printed part and moves down until it

contact the part. The contact can be detected by a change in the vertical force.

13Packages in ROS are organized into ROS stacks. Whereas the goal of packages is to create minimal

collections of code for easy reuse, the goal of stacks is to simplify the process of code sharing. Stacks are the

primary mechanism in ROS for distributing software. Each stack has an associated version and can declare

dependencies on other stacks. These dependencies also declare a version number, which provides greater

stability in development.

Chapter 5 Reactive Trajectory Controller · 88

Trajectory

Monitor

Path

Planner

Collision

Checker

Trajectory

Generator

Trajectory

Controller

1) Future

poses

2) Incoming

collision

5) New path

6) New

trajectory

7) Current

trajectory

0) Robot positon

Human positon

4
)

N

e
w

c
o
l
l
i
s
i
o
n

m

a
p

3) Request

new path

8) Modified

trajectory

Figure 5.6: Reactive planning structure. The input and output of each component is detailed

in this figure. Trajectory Monitor supervises the current robot motion and checks if future

positions are in a collision state. In case of a coming collision, it requests a new path to the

path planner. The new path is directly sent to the trajectory generator and is converted into

a new trajectory. The trajectory controller merges the current trajectory with the new one to

obtain a smooth transition while avoiding the obstacles.

• Rotation: After the contact, the robot stops and starts maintaining a vertical force

until the outer shell goes down and the force decrease.

• Down: Continue going down to a fixed position.

• Release: Open the gripper to release the joint, which finish its alignment by gravity.

• Back Rotation: Rotate back to the aligned orientation.

• Grasp: Re-grasp the outer shell.

• Up: Go up to the initial position.

Figure 5.8 and Figure 5.9 shows the experimental results. Fz is the force along the Z

axis. In Figure 5.8 we can see that, at t = 10.5 s, the robot started to go down. At around

t = 12 s, Fz increased, which means the outer shell has contacted with 3D printed part. Then

the trajectory controller switched to the rotation movement to find the aligned position. The

vertical force was maintained at 23 N during this motion. From t = 14 s to t = 16 s, the

force Fz decreased smoothly to the initial value. It means the outer shell has aligned with

the 3D printed part. Then the robot continued to go down until it contacted the table at

around t = 19 s. Gripper was opened to release the joint and the last joint of the robot was

rotated back to the aligned orientation. Once the aligned task was successfully done, the

robot re-grasped the outer shell and the trajectory controller switched to the up motion and

89 · Trajectory Planning and Control for Robot Manipulation

executed it at last. Figure 5.9 depicts the forces along the X and Y axis and the torques on

each axis during the whole procedure.

Figure 5.7: Aligning the outer shell using the force detection and a 3D printed part.

0 5 10 15 20 25 30
0.32

0.33

0.34

0.35

0.36

0.37

Time (s)

P
o

s
it
io

n
 (

m
)

Position Z

0 5 10 15 20 25 30
−20

0

20

40

60

80

Time (s)

F
o

rc
e

 (
N

)

Fz

Figure 5.8: The position and force of the end-effector along the Z axis during the positioning

task.

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

Time (s)

F
o

rc
e

 (
N

)
/

T
o

rq
u

e
 (

N
/s

)

Fx

Fy

Tx

Ty

Tz

Figure 5.9: Force Fx, Fy, Torque Tx, Ty, Tz during the task. Measures are provided by the

FRI interface

Chapter 5 Reactive Trajectory Controller · 90

5.3.4 Ball Insertion Task

Inserting the six balls for the RZEPPA joint is a repeated and complex task, During the

insertion, the human operator has to apply large force and musculoskeletal disorders might

exist, so it is reasonable to employ robots in this job. Figure 5.10 shows a human operator

inserting balls into the RZEPPA joint with a mechanical tool. Firstly, the human fixes the

outer shell on the workbench and then places the cage and inner race inside the outer shell.

In the third step, the operator inserts one ball inside the outer shell to align the cage and

inner race with the outer shell. At last, the operator uses the tool to insert the other balls.

Figure 5.11 illustrates the ball insertion procedure. We take only the case of inserting one

ball, it is divided into 4 parts:

• Initial position: In this position, the cage and inner race are strictly aligned with the

outer shell.

• Open position: The outer shell rotates by some angle to make a gap between the cage

and the outer shell.

• Insertion Position: The operator places the ball in the gap.

• Closed Position: The outer shell rotates back to be closed. The ball is successfully

inserted.

(a) (b)

(c) (d)
Figure 5.10: A human operator inserts balls into the RZEPPA joint. In picture (d), the

human uses one hand to open the joint and the other hand to insert the ball.

91 · Trajectory Planning and Control for Robot Manipulation

Figure 5.11: Sub-task of the insertion task of one ball. (a): Initial position. (b): Open

position. (c): Insertion position. (d): Closed position.

This task is complex for robot because we must consider the force and torque pro-

duced during the insertion. The robot must be able to react to force changes and cannot

be rigid. Thus here we introduce a trajectory based impedance controller. Impedance con-

trol has been broadly used in the context of human-robot interaction in the previous works.

[Ikeura 95] has investigated the human characteristics and has shown that the damping pa-

rameters in the impedance model are the predominant coefficients that allow setting the ac-

celeration/deceleration features in the context of PHRI (Physical Human Robot Interaction).

[Duchaine 09] used a fixed virtual damping that can lead to an inefficient co-manipulation.

[Ikeura 02] adjusted on-line the damping parameters, in an optimal manner by minimiz-

ing a selected cost function. An online adjustment of this coefficient based on a real-time

estimation of the human arm stiffness was also proposed in [Tsumugiwa 02].

Robot

Online

Trajectory

Generator

Force/Torque

Monitoring

Coinserter

q
command

q
target

q
target

. Trajectory

Controller

traj

q
current

Force/TorqueForce/Torque

Kinematic

Constraints

q
current

. .
q

current

.

Figure 5.12: The structure of the Online Trajectory Generator based impedance controller.

In this work, we use a method that consists of an event controlled online trajectory gen-

erator associated to a control structure allowing a good tracking of the generated trajectory

with a desired impedance property. The structure is illustrated in Figure 5.12. The force

Chapter 5 Reactive Trajectory Controller · 92

applied to the end-effector is the only physically exchanged signal showing the robot how

to move. Coinserter is a ROS node developed by the ICARO partner LIRMM. This node

monitors the force and torque of the end-effector and computes the next target position and

velocity for each joint. This force gives the information about the desired displacement

direction of the end-effector. The Coinserter receives the Cartesian wrench provided by

the force/torque sensor implemented in the end-effector, so an inverse kinematics process is

required in this node to produce joint motions. In this case, the robot is still in position con-

trol mode, the target positions qtarget and velocities q̇target are generated in accordance with

the monitored force and torque if they are greater than a given threshold. Then the online

trajectory generator produces trajectories from the current state (qcurrent , q̇current ,q̈current) to

the target one. As the motion planner doesn’t provide the target accelerations, we set the

q̈target = 0 to compute the transition trajectories for simplicity.

Figure 5.13: The frames of the ICARO setup. Ft : the tool frame; Fe: the end-effector frame;

Fb: the robot base frame.

What to be noticed is, we apply an impedance controller using the wrench applied on

the effector but expressed in the tool frame Ft . The different frames are depicted in Figure

5.13. To change the wrench H from a end-effector frame Fe (provided by FRI) to frame Ft ,

we apply:

tHe =
tWe

eHe (5.1)

where tHe is the Cartesian wrench expressed in the tool frame, eHe represents the wrench in

the end-effector frame, which is directly get from the force/torque sensor in the robot. tWe

93 · Trajectory Planning and Control for Robot Manipulation

is the 6x6 transform matrix:

tWe =

[

tRe 0

[tTe]× tRe
tRe

]

(5.2)

where tRe is the rotation matrix from the end-effector frame to the tool frame. To transform

the wrench to the tool frame by simple rotation, we firstly transform it into the robot base

frame Fb. We simply apply the rotation from Fb to Fe (bRe), then make the rotation from Fe

to Ft :

tRe =
tRb

bRe (5.3)

with tRb is the 3x3 rotation matrix from the robot base frame to the tool frame. According

to Figure 5.13, Ft rotates by an angle θ about the Y axis, therefore the rotation matrix can

be represented as:

tRb =







cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)






(5.4)

At last, we put this rotation matrix in W (Equation 5.2) and derive tHe in Equation 5.1,

which is the one used by the impedance controller.

Figure 5.14 depicts the ball insertion procedure with ICARO setup. The frequency of

coinserter is 50 HZ while our trajectory controller runs at 100 HZ. Thus our trajectory con-

troller has 0.02 seconds to compute the trajectory from the current state Mcurrent to the target

state Mtarget and to execute it. Here we apply the Three-Segment method With Bounded

Jerk, which is presented in Chapter III to compute this short-term trajectory. The imposed

time is Timp = 0.02 s. Thus trajectories can be built by the function:

T =ComputeTra j(Mcurrent ,Mtarget ,qlimits,Timp) (5.5)

Where qlimits is the kinematic bounds of each joint.

Figure 5.15 illustrates the experimental results. As the insertion procedures for each

ball is quite the same, for simplicity, we inserted only two balls in this experiment. The

force along the axis FZ , the position Pz of the end-effector, the received target joint values

and the real joint positions were recorded respectively. From the top and middle figures

we can see that the movement of the end-effector is consistent with the force exerted on it.

while the figure on the bottom takes the position of joint 1 for example, showing that the

trajectory controller can generate the switching trajectories and send the commands to the

robot motors in real time.

Chapter 5 Reactive Trajectory Controller · 94

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.14: Real experiment of the ball insertion task with ICARO setup. (a): Initial

position. (b): The outer shell is aligned with the tool. (c): The robot moves to go to open

position. (d): The operator places a ball in the gap. (e): The outer shell can hold the ball

without the help of human. (f): The robot goes back to close the outer shell. It moves a

bigger angle than step (c) to guarantee that the ball is fully enfolded by the outer shell. (g):

The robot moves again to the aligned position and is ready to rotate for inserting the next

ball. (h): Once all 6 balls are inserted successfully, the robot returns to the initial position.

95 · Trajectory Planning and Control for Robot Manipulation

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

30

Time (s)

F
o

rc
e

 (
N

)

Fz

0 5 10 15 20 25 30 35 40 45 50

−0.82

−0.8

−0.78

−0.76

−0.74

Time (s)

P
o

s
it
io

n
 (

m
)

Position Z

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

P
o

s
it
io

n
 (

ra
d

)

Received Position J1

Real Position J1

Figure 5.15: Top: the force along the Z axis on the end-effector. Middle: the position of the

end-effector along the Z axis. Bottom: the received position and real position of joint 1.

5.3.5 Hands Monitoring

During the ball insertion task presented in the previous subsection, the human’s hands are

close to the outer shell, where the security risk exists, shown in Figure 5.16. The fingers

of the operator may be stuck in the gap between the out shell and the cage. Therefore,

for security reasons, the movement of human’s hands must be monitored during the ball

insertion procedure. A camera is used to follow the operator’s action, as shown in Figure

5.17. The radiuses of the different regions are defined from the distances to the center of

the outer shell. In the danger region, the robot is expected to keep static even it gets a

Validation gesture to move to the next step. In other words, the safety has a higher priority

than the gestures.

The integration of the monitoring of hands with the trajectory controller is done in a

similar way to the gesture tracking. We define two states, hand near and hand f ar, which

represent the danger and the safety areas. The commands are directly sent to the trajectory

Chapter 5 Reactive Trajectory Controller · 96

Figure 5.16: The hand of the human gets close to the outer shell when inserting a ball. If

the robot moves unexpectedly at this moment, the human fingers may be injured.

Figure 5.17: Hands monitoring for safety

controller. According to the different states, the robot executes the corresponding action,

such as continuing or stopping the task.

5.4 Conclusion

A reactive trajectory controller has been presented with some results relative to an industrial

project. The first results presented illustrate the versatility of the controllers based on online

trajectory generation. In the example shown here, the controller can be integrated with

different components, such as path planner, collision checker and robot controller. It is

able to switch between trajectories and suspend/recover the control task during the time the

human moves.

The trajectory controller proposed uses an online trajectory generator to build a trajec-

tory to join up the trajectory to follow. It is very simple to use and implement and gives an

97 · Trajectory Planning and Control for Robot Manipulation

efficient solution to follow trajectories and track moving objects in the HRI context. More

precisely, it can adapt kinematic limits to the changing state of the scene and switch between

trajectories and control modes.

We also extend the trajectory controller to an OTG-based impedance controller. This

approach mainly lies on the implementation of a specific event-based online trajectory gen-

erator, which produces trajectories to track when a force is exerted on the end-effector. The

proposed approach permitted to address the issue of maintaining the immobility of the robot

configuration when there is no interaction force.

The challenge is now to extend this type of trajectory controller and the concept of

control primitives to manage forces, to handle events based on force sensing and to control

dual arm manipulators.

6
Conclusion and perspectives

6.1 Conclusion

This work focuses on the development of online trajectory generation (OTG) for trajectory

control. The objective is to build robot easier to control, in particular when the robot in-

teracts with humans in an dynamic environment. Taking into account the time through the

definition of trajectories seems to complicate the control, but as we have seen some difficult

operations become simpler:

• Smoothing path: Introducing robot and task constraints to generate trajectories di-

rectly gives smooth trajectories.

• Switching between trajectories: Using the concept of online trajectory generation and

trajectory control primitives, the system can switch between the current trajectory and

the new one, simply by computing a connection trajectory in real time.

• Reactivity: The trajectory controller can easily switch between control modes and

input trajectories, which makes the robotic system reactive to deal with unforeseen

sensor events.

In a real industrial application, the high-level software on the robot plan the interaction

tasks and the motion to accomplish the tasks. The main contribution of this thesis is to

implement the methodologies to provide the robot with the ability to react to the sensory

99

Chapter 6 Conclusion and perspectives · 100

information and events: mainly the visual tracking and force events. Trajectory planning

and control is proposed as the center of this thesis. Some simulation and experimental

results show how OTG-based trajectory control can deal with unforeseen sensor events.

6.1.1 Trajectory Generation

This work proposes new solutions to generate smooth trajectories from paths. In particular

we proposed methodologies to produce trajectories from path defined by via-points. One

interesting result is the possibility to produce a smoothed trajectory which remains inside

a smoothing area defined by a parameter. The use of projection for constraints, also helps

us to synchronize axis trajectories. As these algorithms don’t use iteration, optimization or

random data, computations are direct and are able to be used online.

An algorithm using shortcuting heuristic is also presented to produce more natural-

looking trajectories which is bounded in jerk, acceleration and velocity. We also extend this

approach to be implemented on-line to smooth the trajectory during execution.

We also presented tools to simplify the approximation of trajectories. We compared

3rd , 4th, 5th polynomial functions to approximate any given geometrical trajectory. The 3rd

degree polynomial trajectories shows high performance and simplicity for service robot ap-

plications, which encourages us to develop tools to manipulate these trajectories for building

robot controllers and planners.

The proposed trajectory generation method could be compared to the learning approaches.

We take into account the Online Trajectory Generation concept when planning the trajec-

tories, thus the proposed method is able to used in real time, which made the robot more

reactive. Otherwise, the learning approaches will require large set of data to learn, and the

learned control policies may have problem to cope with a dynamic and unpredictable en-

vironment where a robot works (e.g. a service robot work at home, or an industrial robot

shares the workspace with the human operator).

6.1.2 Trajectory Based Control

For the trajectory based control, we give some examples of usage in the industrial project

ICARO. The proposed trajectory controller is capable to achieve complex tasks. The author

of this document argues that the trajectory generation based control is easier to implement

with different sensor systems, such as different vision systems, or when the perception is

obtained through the fusion of different sensors. Compared to visual servoing, another

advantage is that trajectory based system can be easier to integrate with a path planner.

In addition, the trajectory controller is also easy to communicate with other components,

such as the collision checker, robot controller and task/motion supervisor. Due to these

properties, with different Human-Robot Interaction specifications, stopping, slowing down,

and accelerating on a trajectory can be also achieved while the robot stays on the path,

guaranteeing collision free motion.

101 · Trajectory Planning and Control for Robot Manipulation

6.2 Perspectives

6.2.1 Trajectory Generation

6.2.1.1 NonConstant Kinematic Motion Constraints

Trajectory generation with nonconstant motion constraints is still an open problem. The

major limitation of the algorithms described in this thesis is that only constant kinematic

motion constraints can be applied to them, that is,

| jJ(t)| ≤ jJmax = constant

| jA(t)| ≤ jAmax = constant (6.1)

| jV (t)| ≤ jVmax = constant.

This algorithm may be confined in the event-based robot control system. The robot must

react instantaneously in the moment the event is detected, which may ask the robot follow

a trajectory in which one or more elements of the current state of motion exceed the value

of the motion constraints.

Vmax
-Vmax

Amax

-Amax

A'max

V'max

. .
M2

M1

?

A'max

-V'max

.
M3

?

.
.

..
Figure 6.1: Nonconstant motion constraints. The robot at the state M1 list in the red

constraints frame is going to transfer a new state. The states M2 and M3 locate in new

constraints frames which are denoted as green and blue. The kinematics motion bounds

(jJmax, jAmax, jVmax) are all changed.

Figure 6.1 illustrates two examples. The first one is that the robot has to move from

state M1 to state M2 due to some reasons, such as to avoid an obstacle. However, the

kinematic elements of M2 has exceeded the current motion constraints. The problem of

how to compute a trajectory to connect M1 and M2 within one control circle is expected to

be solved. The second example happens when the kinematic motion constraints decline, the

values of the current motion conditions are greater than the new boundaries. In this case,

the trajectory generator proposed in this thesis is not able to produce motions any more. As

Chapter 6 Conclusion and perspectives · 102

in our algorithms, this situation is treated as illegal.

Therefore, an extension to the proposed trajectory generator is necessary to deal with

nonconstant motion constraints in real time. The advantage of the nonconstant constraints

trajectory generation is that the values of the kinematic motion constraints can be abruptly

increased or decreased, such that motion trajectory parameters can be adapted online [Kroger 12a].

6.2.1.2 Considering Robot Dynamics

In this thesis, we only considered the kinematic model of the robot during the trajectory

planning procedure. The algorithms presented do not take into account dynamically chang-

ing acceleration capabilities based on maximum actuator forces/torques. Although it is

already sufficient for many field of applications, it is of a disadvantage in application that

requires high-performance robot motions. A large number of off-line trajectory generation

approaches consider the system dynamics. [Katzschmann 13] combines the online trajec-

tory generation concept with the robot dynamics to produce trajectories that will bring at

least one of the actuators into force/torque saturation are computed instantaneously in the

moment unforeseen sensor signals or events happen. As a result, robots can employ their

dynamic capabilities immediately and react instantaneously.

Thus in the future work, new OTG algorithms shall be developed to take the robot

dynamics and torque limits into consideration. If we consider the robot dynamics to extend

our OTG algorithms, the input kinematic constraints jAmax can no longer be considered as

constant [Kröger 10a]. The values are relative to the forces and torques of the actuators. So

this algorithms will have something in common with the one previously presented in section

C.5.2.1.

6.2.2 Flexible Controller

One of the advantages of trajectory generation based control is the ability to react to differ-

ent sensory events and informations. In this thesis, we have shown an example integrated

with a force/torque sensor. The challenge is to build a robot around trajectories, so trajecto-

ries are expected to be extended to various control systems, such as force tracking control,

impedance control, sensor-guided control and sensor guarded control. New methods shall

be investigated.

The whole body control of a mobile manipulator is another issue on which we are study-

ing. The motion planner plans path for a robot to follow, including the base and the arms.

While synchronized, the robot finishes complex tasks, such as navigation and manipula-

tion in the same time, while avoiding obstacles. The problem requires more study because

the navigation of the robot and the motion of the arms should slow down or stop to avoid

moving obstacles, and the two should be synchronized. But the dynamic and precision of

trajectory following of the robot base and arms are different, hence new strategies shall be

proposed to achieve manipulation during navigation.

A
Quaternions and Rotations

Quaternions gives a compact and effective representation for three dimentional rotations.

This annexe gives the basics of quaternion, its relations with several other common repre-

sentations and stops at the perturbations and time-derivatives of quaternions, which are used

in this thesis for 6D tracking of object.

A.1 Axis-Angle Representation

The axis-angle representation parametrizes the rotation of a rigid body in a three dimen-

tional space by two values: a unit vector u which defines the direction of rotation, and a

rotation angle φ the magnitude. Axis-angle is useful to interpolate rotations of rigid body

and easy to convert from and to quaternions.

A.2 Definition of Quaternion

Quaternions can be seen as the extension of the complex numbers. A quaternion q is written

as:

q = q0 +q1i+q2 j+q3k (A.1)

103

Appendix 1 Quaternions and Rotations · 104

φ

u

Figure A.1: Axis-Angle Representation

where q0,q1,q2,q3 ∈ R, and i, j,k are defined so that:

i2 = j2 = k2 =−1 (A.2)

i j = − ji = k

jk = −k j = i

ki = −ik = j

Quaternions can be written in vector representation, simply as:

q = q0 +
−→q = (q0,

−→q) (A.3)

In which −→q is the imaginary or vector part of quaternion. While complex numbers with

unit lengh, written as z = eiθ can encode rotations in the 2D plane, quaternions of unit

length encode rotations in 3D space, although the computation is not as straightforward as

for complex numbers. Given the rotation in vector-angle form, v = φu, a rotation of φ

rad along the axis given by the unit vector u = (ux,uy,uz), we have the unit quaternion to

represent the rotation:

q = (cos(φ/2),usin(φ/2)) (A.4)

And

φ = arctan(‖ q ‖,a) (A.5)

u = q/ ‖ q ‖ (A.6)

The multiplication of two quaternions is defined as:

q = q̃
⊗

q̄ = Q̃q̄ (A.7)

105 · Trajectory Planning and Control for Robot Manipulation

In which q̃ = [q̃1, q̃2, q̃3, q̃4], q̄ = [q̄1, q̄2, q̄3, q̄4], and Q̃ is the matrix:

Q̃ =













q̃1 −q̃2 −q̃3 −q̃4

q̃2 q̃1 −q̃4 q̃3

q̃3 q̃4 q̃1 −q̃2

q̃4 −q̃3 q̃2 q̃1













(A.8)

A.3 Rotation matrix

Rotation matrix is used commonly in numerical computation libraries. Given a rotation

vector v,

R= e[u]× (A.9)

where the operator [•]× is operator defined by:

[u]x ,







0 −uz uy

uz 0 −ux

−uy ux 0






(A.10)

Rotation matrix R is then given as:

R=







cos(θ)+u2
x(1− cosθ) uxuy(1− cosθ)−uzsinθ uxuz(1− cosθ)+uysinθ

uyux(1− cosθ)−uzsinθ cos(θ)+u2
y(1− cosθ) uyuz(1− cosθ)+uxsinθ

uzux(1− cosθ)−uysinθ uzuy(1− cosθ)+uxsinθ cos(θ)+u2
z (1− cosθ)







(A.11)

Which can be written as:

R= Icosθ + sinθ [u]×+(1− cosφ)u
⊙

u (A.12)

where
⊙

is the tensor product (which is often written as
⊗

, which being used to represent

quaternion product in this document), and defined as:

u

⊙

u=







u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z






(A.13)

A.4 Rotations and Compositions

Write a rotation in quaternion as q, and in rotation matrix as R. The rotation applied to a

vector x into a new vector x′ is given by:

x̄
′ = q

⊗

x̄

⊗

q∗ (A.14)

x
′ = Rx (A.15)

Appendix 1 Quaternions and Rotations · 106

with:

x̄= [0 x
T]T (A.16)

And q∗=(q0,−q1,−q2,−q3) is the conjugate quaternion. The composition of two rotations

are straigtforward with the definiton of multiplication of quaternions introduced above:

q = q̃
⊗

q̄ (A.17)

R = R̃R̄ (A.18)

Another useful representation is homogeneous transformation matrix, which is defined as:

T =













x

R3×3 y

z

0 0 0 1













(A.19)

For two frames, F2 is obtained by translation trans = [x,y,z] and rotation R from F1, then

the transformation matrix is written as above. If we write the pose of a point in a frame F1

as P1 = [Px,Py,Pz,1], then the pose of this point in frame F2 is given as:

P2 = T P1 (A.20)

And transformation matrix has the same composition rule:

T = T̃ T̄ (A.21)

A.5 Perturbations and Derivatives

When using quaternions to represent rotations and build a dynamic model for motion, one

important aspect is the computation of perturbations and time-derivatives. Given a quater-

nion q, and the perturbation written as ∆q, expressed in the local body frame. Then the new

quaternion can be written as:

q̃ = q
⊗

∆q (A.22)

The same for rotation matrix:

R̃ = R
⊗

∆R (A.23)

In the case the perturbation angle ∆θ is small (∆θ represents the rotation around an axis u),

then the perturbation quaternion and rotation matrix can be approximated by the first terms

107 · Trajectory Planning and Control for Robot Manipulation

of the Taylor expansion. Which means:

∆q =

[

1
1
2
∆θ

]

+O(|∆θ |2) (A.24)

∆R = I+[∆θ]×+O(|∆θ |2) (A.25)

where O(|∆θ |2) is the remainder of Taylor expansion. If at time t = kT , the rigid body

rotation is written as q = q(t), and q̃ = q(t +∆t), the derivative of q(t) given as:

dq(t)

dt
, lim

∆t→0

q(t +∆t)−q(t)

∆t
(A.26)

And writing the angular velocity as ω(t), expressed in local body frame. The development

of the derivative is given as:

q̇ , lim
∆t→0

q(t +∆t)−q(t)

∆t

= lim
∆t→0

q
⊗

∆q−q

∆t

= lim
∆t→0

Q(∆q)q−q

∆t

= lim
∆t→0

(I+ 1
2

[

0 −∆θ T

∆θ −[∆θ]×

]

q+O(|∆θ |2))q−q

∆t

= lim
∆t→0

1
2

[

0 −∆θ T

∆θ −[∆θ]×

]

q+O(|∆θ |2)

∆t

=
1

2

[

0 −ωT

ω −[ω]×

]

q (A.27)

(A.28)

The details of this matrix is given as:

Ω(ω),

[

0 −ωT

ω −[ω]×

]

=













0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0













(A.29)

Appendix 1 Quaternions and Rotations · 108

B
Computation of Approximations

B.1 Constraints type II

In this constraint type, we define a function f (X0,XF ,V0,VF ,A0,AF ,Timp) to compute the pa-

rameters. As two segments are needed for the trajectory construction, they can be expressed

as:

J1 = S1 ∗T1 + J0

A1 = S1 ∗T 2
1 /2+ J0 ∗T1 +A0

V1 = S1 ∗T 3
1 /6+ J0 ∗T 2

1 /2+A0 ∗T1 +V0

X1 = S1 ∗T 4
1 /24+ J0 ∗T 3

1 /6+A0 ∗T 2
1 /2+V0 ∗T1 +X0

J2 = S2 ∗T2 + J1

A2 = S2 ∗T 2
2 /2+ J1 ∗T2 +A1

V2 = S2 ∗T 3
2 /6+ J1 ∗T 2

2 /2+A1 ∗T2 +V1

X2 = S2 ∗T 4
2 /24+ J1 ∗T 3

2 /6+A1 ∗T 2
2 /2+V1 ∗T2 +X1

[S1,S2,T1,T2,J0] = f (XF = X2,VF =V2,AF = A2,T1 = Timp/2,T1 = T2)

109

Appendix 2 Computation of Approximations · 110

By solving the above equations, we can compute the following parameters to construct the

trajectories:

S1 =
192X0 −192XF

Timp4
+

108V0 +84VF

Timp3
+

22A0 −10AF

Timp2
(B.1)

S2 =
192XF −192X0

Timp4
− 84V0 +108VF

Timp3
+

22AF −10A0

Timp2
(B.2)

J2 =−48X0 +18XF

Timp3
− 30V0 +18VF

Timp2
+

2AF −8A0

Timp
(B.3)

B.2 Constraints type III

In the constraint type III, we use the same function f (X0,XF ,V0,VF ,A0,AF ,Timp) to compute

the parameters. The difference to the constraints type II is that one intermediate variable is

required during the expression of the trajectory segments.

J1 = S1 ∗T1 + J0

A1 = S1 ∗T 2
1 /2+ J0 ∗T1 +A0

V1 = S1 ∗T 3
1 /6+ J0 ∗T 2

1 /2+A0 ∗T1 +V0

X1 = S1 ∗T 4
1 /24+ J0 ∗T 3

1 /6+A0 ∗T 2
1 /2+V0 ∗T1 +X0

J2 = S2 ∗T2 + JnoCont

A2 = S2 ∗T 2
2 /2+ JnoCont ∗T2 +A1

V2 = S2 ∗T 3
2 /6+ JnoCont ∗T 2

2 /2+A1 ∗T2 +V1

X2 = S2 ∗T 4
2 /24+ JnoCont ∗T 3

2 /6+A1 ∗T 2
2 /2+V1 ∗T2 +X1

[S1,S2,T1,T2,J0,JnoCont] = f (XF = X2,VF =V2,AF = A2,T1 = Timp/2,T1 = T2)

JnoCont is the intermediate jerk which is a temporary variable during the computation.

Similarly as for constraints type II, we solve the associated system as:

S1 =
192X0 −192XF

Timp4
+

72V0 +120VF

Timp3
+

4A0 −28AF

Timp2
(B.4)

S2 =
192XF −192X0

Timp4
− 120V0 +72VF

Timp3
+

4AF −28A0

Timp2
(B.5)

J2 =−48X0 +48XF

Timp3
− 24V0 +24VF

Timp2
+

5AF −5A0

Timp
(B.6)

C
Résumé en Français

C.1 Introduction

C.1.1 Introduction

Les robots interactifs commencent à arriver sur les chaı̂nes d’assemblage et de produc-

tion. Ils constituent un progrès significatif par rapport à la première génération de robots

qui effectuaient des opérations répétitives de manière rapide et précise. L’industrie man-

ufacturière a acquis une grande expérience dans l’exploitation intensive des robots dans

des environnements relativement statiques. En raison de leurs avantages par rapport aux

opérateurs humains, les bras manipulateurs sont utilisés pour de nombreuses applications

industrielles telles que manutention, soudage, usinage, peinture, etc. Mais le développement

de cette robotique industrielle classique est confronté à la difficulté de la programmation et

au coût des protections destinées à isoler les humains des robots. L’introduction de robots

interactifs simplifie la conception des lignes de production et la programmation des robots.

La figure C.1 montre un scénario où un opérateur humain coopère avec un bras manipula-

teur KUKA-LWR pour réaliser une tâche d’assemblage.

C.1.2 Motivation

Pour expliquer la motivation de ce travail, nous proposons une analogie avec le cas de

deux opérateurs humains qui doivent réaliser l’assemblage d’un élément sur une ligne de

production. Le premier opérateur s’y focaliserait sur l’assemblage proprement dit, tandis

que le deuxième opérateur serait chargé de préparer le poste de travail, d’amener les outils

111

Appendix 3 Résumé en Français · 112

Figure C.1: Le robot manipulateur partage l’espace de travail avec un opérateur humain

pour réaliser l’assemblage collaboratif d’un joint Rzeppa. L’illustration provient du projet

ANR-ICARO.

au bon moment et de maintenir les pièces à assembler pendant l’assemblage.

Pour rester compétitives, les entreprises modernes sont contraintes de limiter le coût de

la main d’oeuvre. Dans ce contexte, l’extension des capacités des robots pour leur permettre

de travailler avec des humains et de les aider s’avère intéressante. Cette thèse propose de

développer un tel robot capable de travailler à coté des humains pour réaliser des tâches

en collaboration. Nous proposons notamment de construire un contrôleur plus flexible qui

permet de commuter entre plusieurs capteurs et plusieurs lois de contrôle afin d’améliorer

la réactivité du système. Pour cela nous proposons d’utiliser intensivement des trajectoires

pour échanger des informations entre les composants du robot :planificateur de mouvement,

détecteur de collision, système sensoriel (force et vision) et le contrôleur bas niveau du

robot.

C.1.3 Objectifs poursuivis

L’objectif de ce travail est d’améliorer l’interactivité des robots collaborants avec des hu-

mains par l’introduction d’un contrôleur de trajectoire à un niveau intermédiaire de la struc-

ture logicielle du contrôleur. Ainsi, le contrôleur doit fournir une méthode pour générer en

temps réel des trajectoires lisses et optimales en temps. Il doit aussi être capable de réagir

aux changements de l’environnement. Toutefois, l’algorithme de génération de trajectoire

113 · Trajectory Planning and Control for Robot Manipulation

doit rester simple et les trajectoires doivent prendre en compte les limitations physiques du

robot en bornant non seulement la vitesse, mais aussi l’accélération et le jerk.

Ce contrôleur de trajectoire devra accepter en entrée les trajectoires produites par les

planificateur de mouvement et pouvoir approximer tous types de trajectoires. Ceci permet

d’élargir le type de mouvements que le robot peut réaliser et ainsi réaliser des tâches plus

complexes. Le contrôleur de trajectoire proposé est basé sur le concept de Génération de

trajectoire en ligne (OTG : Online Trajectory Generation) qui permet de calculer des tra-

jectoires en temps réel. Cette approche basée sur les trajectoires facilite la communication

entre les différents composants du robot comme le planificateur de chemin, le générateur

de trajectoire, le détecteur de collision et le contrôleur. Ce type contrôleur permet aussi de

déformer localement une trajectoire ou de passer d’une trajectoire initiale à une nouvelle

trajectoire.

ROBOT

q

PTP
planner

lissage

TRs

Planificateur
de trajectoire

x

x

s(t)

Planificateur de taches / supervision

Controleur
de trajectoire

>
>

Planificateur
 de chemin

Donnees de capteur Controleur
de bas niveau

>

Actionneurs

Figure C.2: Le contrôleur de trajectoire se trouve à un niveau intermédiaire de l’architecture

du contrôleur, entre les contrôleurs rapides des axes du robots et le niveau planification plus

lent.

La figure C.2 illustre le niveau intermédiaire du contrôleur de trajectoire dans l’architecture

Appendix 3 Résumé en Français · 114

du contrôleur. Ce contrôleur intègre des informations provenant d’autres éléments du système

comme le raisonnement géométrique ou la planification de mouvements qui prennent en

compte la présence des humains. À partir des informations issues des capteurs, le plani-

ficateur de trajectoire peut générer des fonctions non-linéaires pour moduler le temps ou

replanifier la trajectoire pour réagir à une modification de l’environnement. Un avantage

de cette approche est de proposer des contrôleurs plus réactifs à l’évolution dynamique de

l’environnement. Un second avantage est La simplicité d’utilisation du contrôleur constitue

un deuxième avantage.

C.2 Génération de trajectoire

C.2.1 Introduction

L’introduction d’un générateur de trajectoire à l’intérieur du contrôleur permet au robot de

connaı̂tre à l’avance une description du proche avenir de ses mouvements. Ces trajectoires

permettent au robot d’anticiper différents événements comme les collisions. Cette antici-

pation donne un avantage important aux couches supérieures d’un contrôleur hiérarchique

en leur permettant notamment de mieux assurer la sécurité des êtres humains en interac-

tion. Dans ce chapitre, nous présentons des outils pour définir et manipuler des trajectoires

avec l’objectif de construire des contrôleurs de robot multi-niveaux. Nous aborderons plus

particulièrement deux types d’outils : les générateurs de trajectoires et l’approximation de

trajectoire.

C.2.2 Génération d’une trajectoire à partir d’un chemin

Nous nous intéressons ici à la conversion d’un chemin défini par une liste de points de pas-

sage en une trajectoire pouvant être réalisée directement par un robot. Le chemin d’entré

P est fourni par un planificateur de chemin qui peut, par exemple, être de type PRM (Prob-

abilistic Road Map) ou RRT (RApidly Exploring Random Tree).

La première étape de la génération consiste à calculer une trajectoire passant par tous

les points de passage du chemin P . Cette trajectoire, que nous appelons TPT P se compose

de mouvements linéaires point à point (Voir section 3.2.2.2) qui s’arrêtent à chaque point

de passage.

La méthode de limitation du jerk en ligne par synchronisation de phase que nous pro-

posons permet de résoudre de nombreux problèmes comme assurer la synchronisation de

phase, fournir un calcul rapidement compatible avec les applications temps réel, ne nécessite

pas de calcul itératif ou d’optimisation et prend en compte les contraintes A vérifier, j’ai

modifié. Dans les paragraphes suivants, nous prenons comme exemple le cas de la génération

de trajectoires articulaires pour détailler notre approche.

115 · Trajectory Planning and Control for Robot Manipulation

C.2.3 Trajectoires avec phases synchronisées

C.2.3.1 Génération de trajectoire et synchronisation

Notons C = R
n l’espace des configurations de dimension n, q0 ∈ C la position initiale

et q f ∈ C la position finale des articulations. Une fois la position finale q f choisie, la

trajectoire est générée en bornant les trois premières dérivées des positions articulaires :

|q̇| ≤Vmax

|q̈| ≤ Amax (C.1)

|...q | ≤ Jmax

où Jmax, Amax et Vmax sont des paramètres choisis par l’utilisateur pour limiter le jerk,

l’accélération et la vitesse. Ces limites sont choisies à partir d’études sur les mouvements

acceptables par les humains et les performances des axes contrôlés.

La génération des trajectoires monoaxiales est bien maı̂trisée, mais le cas des mouve-

ments multi-axiaux est plus complexe. Dans ce cas, la génération de trajectoires monoax-

iales de même durée n’est pas suffisante et il est nécessaire de synchroniser la phase tout

au long de la trajectoire afin de définir la forme du chemin. Par exemple, pour générer une

ligne droite, le rapport entre la vitesse de chaque axe doit rester constant.

Notre générateur de trajectoire prend en entré les valeurs [q0, q f , Vmax, Amax, Jmax]

et génère un profil de jerk bang-bang pour chaque axe
...
q (t). Ce profil de jerk est ensuite

intégré trois fois pour obtenir la trajectoire à suivre q(t).

Definition 2. La synchronisation de phase est la synchronisation en position, vitesse, accélération

et jerk. Elle correspond à une progression simultanée de toutes les variables qui, à un in-

stant donné, doivent avoir parcouru le même pourcentage de la trajectoire.

pour un mouvement linéaire dans un espace de dimension n, le mouvement vérifie :

iq(t)− iq(tI)

jq(t)− jq(tI)
=

iq(t)− iq0

jq(t)− jq0

= λ ∀i, j ∈ [1,n], t ∈ [t0, t f] (C.2)

où λ est une constante.

Le facteur λ est calculé simplement à partir des états initial et final :

λ =
iq(t f)− iq0

jq(t f)− jq0

=
iq f − iq0

jq f − jq0

(C.3)

C.2.4 Génération de trajectoires lisses

Les trajectoires polygonales Tpt p obtenues précédemment sont faisables, mais elles ne sont

pas satisfaisantes car au voisinage des points de passage la vitesse varie beaucoup pour

Appendix 3 Résumé en Français · 116

Accélération
Vitesse

Tv
c

T s
vc

T jn
a

T ac
a

T jp
a

T jn
b

T ac
b

T jp
b

Pi-1

Pi+1
Pi+2

TjpaTacaTjnaTvcTjnbTacb Tjpb

Pdebut

Tevc

P f
in

ddebut

d fin

Pi

Figure C.3: Influence du choix des points initiaux et finaux délimitant la zone lissée

s’annuler. Ces arrêts peuvent être évité en autorisant la trajectoire à dévier un peu des

points de passage, ce qui permet d’arrondir les angles pour adoucir la trajectoire au niveau

des points de changement de direction.

Sans perte de généralité, nous considérons trois points adjacents (Pi−1, Pi, Pi+1) pour

étudier le lissage de la trajectoire au niveau du point intermédiaire Pi. Nous calculons

d’abord la trajectoire polygonale constitué des deux segments TPi−1Pi
et TPiPi+1

.

Nous choisissons ensuite deux points (Pdebut , Pf in) à partir des distances ddebut et d f in

au point Pi. Ces deux points définissent la zone lissée qui est donc définie par les deux dis-

tances. Le choix de ces deux points est très large et conduit à des trajectoires très différentes,

voir figure C.3.

Comme nous souhaitons un mouvement en temps minimal, une première idée simple

consiste à conserver au maximum les segments parcourus à vitesse maximum et de lisser la

zone qui n’est pas parcourue à vitesse constante. Aussi nous choisissons les deux instants

Tevc et Tsvc qui limitent respectivement la fin du segment à vitesse constante TPi−1Pi
et le

début du segment à vitesse constante TPiPi+1
(voir figure C.3).

117 · Trajectory Planning and Control for Robot Manipulation

Dans ce cas, les points Pdebut et Pf in sont respectivement associés avec les états du mou-

vement Mstart = (Xevc, Vevc, Aevc) et Mend = (Xsvc, Vsvc, Asvc). Comme ces deux états ap-

partiennent chacun à un segment parcouru à vitesse constante, les accélérations Aevc et Asvc

sont nulles.

Nous calculons ensuite le temps de parcours minimal pour chaque axe indépendamment

entre Pdebut et Pf in en utilisant la méthode des sept segments proposée par Broquère dans

[Broquere 08]. Comme chaque variable est indépendante, le temps d’exécution minimum

Timp entre Mstart et Mend est déterminé par le temps mis par le mouvement de l’axe qui

prend le plus de temps. Ceci détermine un nouveau problème qui consiste à calculer un

mouvement qui dure ce même temps pour chacun des autres n−1 axes.

Nous définissons une fonction f qui calcule le temps optimal pour un axe en utilisant la

méthode des sept segments. À partir des états initial et final (Mstart et Mend) du mouvement

et des bornes cinématiques (Jmax, Amax et Vmax) pour un axe, la fonction f retourne le temps

de transit f (Mstart , Mend , Jmax, Amax, Vmax) Aussi,

Timp = max
j∈[1,n]

(f (jMstart , j Mend , j Jmax, j Amax, j Vmax)) (C.4)

Timp définit donc le temps nécessaire pour parcourir le mouvement associé à l’un des

axes. Pour chacun des autres axes j, le problème revient à construire un mouvement qui

dure le temps prédéfini Timp pour aller de l’état jMstart à l’état jMend . Il existe de nombreuses

solutions, chacune définit un lissage différent. Ici nous en retenons trois qui sont associés à

des paramètres de définition de la trajectoire différents.

C.2.4.1 Interpolation par trois segments

A partir des états du mouvement Mstart = (XI, VI, AI) et Mend = (XF , VF , AF) définis à

l’instant initial ti et à l’instant final t f . Une solution simple pour relier ces deux états consiste

à définir une séquence de trois segments de trajectoires à jerk constants qui durent Timp en

tout. Nous choisissons tris segments car nous souhaitons avoir un minimum de segments et

il n’existe généralement pas de solution avec un ou deux segments.

Le système à résoudre est défini par treize contraintes : les états initial et final (six

contraintes), la continuité en position, vitesse et accélération pour chacun des deux change-

ments de trajectoire et le temps total. Chaque segment de trajectoire est défini par quatre

paramètres et le temps. Si nous fixons la durée des trois segments T1 = T2 = T3 =
Timp

3
, nous

obtenons un système défini par treize paramètres où uniquement les trois jerks sont incon-

nus [Broquère 10]. Comme le contrôleur est périodique de période T , le temps Timp/3 doit

être un multiple de la période T . Dans cette étude nous choisissons Timp comme un multiple

de 3T .

Appendix 3 Résumé en Français · 118

C.2.4.2 Interpolation par trois segments avec jerk borné

L’interpolation par trois segments permet de générer une trajectoire en temps borné entre

deux états. Comme le temps Timp est plus long que le temps minimum nécessaire pour

relier les deux états, une solution au problème défini par trois segments existe généralement.

Toutefois les jerks obtenus ne sont pas toujours bornés. Nous introduisons ici une variante

à la méthode des trois segments en choisissant deux jerks à priori.

Comme nous l’avons vu, le problème est défini par treize contraintes et quinze variables.

Nous choisissons ici deux contraintes additionnelles de manière différente en fixant le jerk

des premier et dernier segments (|J1|= |J3|) à l’intérieur des limites cinématiques. Dans ce

cas, les inconnus sont le jerk J2 du segment intermédiaire et les durées des segments. Nous

obtenons ainsi un système de quatre équations à quatre inconnus (J2, T1, T2 et T3) :

AF = J3T3 +A2 (C.5)

VF = J3

T 2
3

2
+A2T3 +V2 (C.6)

XF = J3

T 3
3

6
+A2

T 2
3

2
+V2T3 +X2 (C.7)

Timp = T1 +T2 +T3 (C.8)

où

A2 =J2T2 + J1T1 +AI

V2 =J2
T 2

2

2
+(J1T1 +AI)T2 + J1

T 2
1

2
+AIT1 +VI

X2 =J2

T 3
2

6
+(J1T1 +AI)

T 2
2

2
+(J1

T 2
1

2
+AIT1 +VI)T2

+ J1

T 3
1

6
+AI

T 2
1

2
+VIT1 +XI

Pour choisir les valeurs imposées au jerk, nous regardons les vitesses VI et VF . Si VI −
VF > 0 nous choisissons J1 = −J3 = Jmax et si VI −VF < 0 nous choisissons J1 = −J3 =

−Jmax. Si VI −VF = 0 nous regardons de la même manière les valeurs des accélérations AI

et AF .

C.2.4.3 Interpolation avec jerk, accélération et vitesse bornés

Nous proposons maintenant une méthode pour borner à la fois le jerk, la vitesse et l’accélération.

La méthode décrite en C.2.4.2 permet de borner le jerk, mais nécessite de réajuster le jerk

pour limiter l’accélération et la vitesse. Lorsque nous calculons les temps minimum pour

chaque axe afin de choisir le temps Timp, le jerk, l’accélération ou la vitesse est saturé suivant

les segments. Aussi, on peut essayer d’augmenter la duré pour tous les axes à l’exception de

119 · Trajectory Planning and Control for Robot Manipulation

QI

(a) (b)

(c) (d)

(e) (f)

QF

QI

QI QI

QI

QF

QF

QF

QF QF

QI

Figure C.4: Algorithme de lissage par raccourci. (a) La ligne polygonale initiale. (b) Con-

version en une trajectoire qui s’arrête à chaque point de passage. (c) Une trajectoire plus

courte en collision. (d-e) Deux trajectoires plus courtes réussies. (f) la trajectoire finale.

celui associé au temps le plus long Timp en désaturant les éléments saturés tout en conservant

le nombre de segment N j pour chaque axe. Nous nommons cette méthode ralentissement

du déplacement.

C.2.5 Lissage par raccourci

Les trajectoires lissées obtenues dans les paragraphes précédents permet d’éviter les arrêts

au niveau des points e passage et de diminuer le temps de parcours. Ces méthodes sont

utilisées lorsque la trajectoire doit rester au voisinage du chemin initial défini par les points

de passage. Toutefois, il nous faut développer de nouvelles solutions pour construire des

trajectoires qui paraissent plus naturelles.

Appendix 3 Résumé en Français · 120

Pour produire des mouvements de robot imitant mieux les humains, nous introduisons

une variante de la méthode par raccourci couramment utilisé en robotique et en animation

graphique. Le procédé utilise d’abord une heuristique pour sélectionner deux points le long

de la trajectoire initiale. Ici, nous appliquons simplement une fonction aléatoire uniforme

pour sélectionner les deux points. Dans un deuxième temps, nous générons un segment de

trajectoire entre les états du mouvement au niveau des deux points. Ensuite, si le segment

généré est sans collision, le nouveau segment remplace la partie de la trajectoire initiale. La

figure C.4 illustre l’algorithme de lissage et présente quatre itérations de l’algorithme sur

un chemin polygonal. La première trajectoire proposée (figure C.4 c) ne satisfait pas au test

de collision. Après deux autres tentatives, l’algorithme fourni une solution possible.

C.2.6 Conclusions

Dans ce chapitre, nous avons présenté un générateur de trajectoire synchronisée à partir

d’un chemin. Nous avons aussi introduit deux algorithmes de lissage de trajectoires rapides

basés sur des fonctions polynomiales de degrés 3 pour des manipulateurs avec de nombreux

degrés de liberté. Les principales contributions sont :

1. La proposition d’un algorithme simple et rapide qui opère dans l’espace d’état des

configurations, vitesse et accélération.

2. Nous avons proposé une solution analytique optimale en temps qui borne la vitesse,

l’accélération et le jerk pour interpoler une trajectoire entre deux états définis par la

position, la vitesse et l’accélération. Pour un axe unique, l’interpolation en temps

optimal est obtenue sous forme fermée. Dans le cas multi-axes, le système détecte

l’axe associé au temps de parcours le plus long, puis interpole les axes restants pour

construire des trajectoires bornées en jerk, accélération et vitesse et de durée définie.

C.3 Approximation de trajectoire

C.3.1 Introduction

Un de nos objectifs est de construire des contrôleurs de robots simples et capables de réaliser

une grande variété de tâches et, en particulier, des tâches où hommes et robots collaborent.

Comme nous l’avons vu, beaucoup de tâches peuvent être décrite par une trajectoire

et une primitive de contrôle. De même, les possibilités mathématiques pour décrire des

trajectoires sont illimitées et les modèles obtenus ne sont pas toujours compatibles avec le

calcul en temps réel. Aussi des outils d’approximation sont nécessaire pour transformer ces

trajectoires en un type de trajectoire que le contrôleur peut accepter en entrée. L’objectif

de ce chapitre est de choisir un petit ensemble de modèle de trajectoire et de construire des

outils pour approximer tous les types de trajectoire à l’aide de ces modèles.

121 · Trajectory Planning and Control for Robot Manipulation

C.3.2 Différentes solutions d’approximation

Comme nous souhaitons des fonctions de classe C2, nous devons utiliser des polynômes

de degrés supérieur à 2. Un mouvement en temps imposé entre deux états définit sept

contraintes : trois conditions initiales (X0,A0,V0) , trois conditions finales (XF ,AF ,VF) et le

temps imposé Timp. Nous allons comparer des solutions d’approximations d’une trajectoire

basées sur des fonctions de degrés trois, quatre et cinq.

Comme chaque contrainte de continuité de classe C2 entre deux segments introduit trois

équations de contrainte, l’approximation par des segments de fonctions polynomiales cu-

biques nécessite au moins trois segments [Broquère 10]. Chaque segment de trajectoire

cubique est défini par 5 paramètres.

Fonctions cubiques:

X(t) =
J

6
(t −TI)

3 +
A

2
(t −TI)

2 +V (t −TI)+X0 (C.9)

Un segment de trajectoire polynomiale quartique est défini par six paramètres, aussi

deux segments de trajectoire quartiques sont suffisants pour représenter le mouvement.

Fonctions quartiques:

X(t) =
S

24
(t −TI)

4 +
J

6
(t −TI)

3 +
A

2
(t −TI)

2 +V (t −TI)+X0 (C.10)

Une seule fonction polynomiale de degré 5 est caractérisé par 7 paramètres qui sont

donc suffisant pour utiliser un seul segment.

Fonctions quintiques:

X(t) =
C

120
(t −TI)

5 +
S

24
(t −TI)

4 +
J

6
(t −TI)

3 +
A

2
(t −TI)

2 +V (t −TI)+X0 (C.11)

C.3.3 Conclusions

Dans ce chapitre, nous avons abordé le problème de l’approximation de trajectoire et la

possibilité de construire un générateur de trajectoire simple basé sur l’approximation de

trajectoire. Nous avons d’abord proposé trois solutions pour l’approximation de trajectoire

par des fonctions polynomiales de degré 3, 4 et 5. Dans chaque cas, nous avons calculé les

différents paramètres des trajectoires. L’approche globale peut être résumée comme suit :

• définir la trajectoire comme la somme de K segments de trajectoire.

• Définir chaque segment par une fonction polynomiale de degré k dont les coefficients

sont à calculer.

• Calculer ces coefficients à partir des contraintes du mouvement (vitesse, accélération,

limites cinématiques, etc.) et en minimisant un critère d’optimalité (erreur d’approximation,

nombre de segment, etc.).

Appendix 3 Résumé en Français · 122

• Une fois les coefficients de la trajectoire calculés, ils sont transporté dans l’espace

articulaire en utilisant la jacobienne et le modèle géométrique inverse.

C.4 Le contrôle de trajectoire pour le projet ICARO

C.4.1 Introduction

Das ce chapitre, nous avons présenté l’application d’un contrôleur de trajectoire dans un

contexte industriel proposé par un partenaire du projet ICARO. Ce scénario est idéal pour

le contrôle de trajectoire car un travailleur est au centre de la cellule assemblage où il est

nécessaire de contrôler les efforts et d’éviter les obstacle. Le contrôleur de trajectoire per-

met au robot de réaliser la tâche d’assemblage complète tout en assurant la sécurité de

l’opérateur.

C.4.2 Éléments du projet ICARO

C.4.2.1 Détection de gestes

L’objectif de ce module est de remplacer l’utilisation de boutons pour dialoguer avec le

robot par des gestes de l’opérateur. L’utilisation de gestes devrait aider l’opérateur a inter-

agir plus facilement avec le robot. Ce module utilise la bibliothèque OpenNI pour créer un

graphe de micro-noeuds pour transformer les données brutes en du capteur en un nuage de

points, des images de disparité et d’autres éléments utiles pour la visualisation et les calculs.

C.4.2.2 Planification réactive

La planification réactive intervient essentiellement au niveau du noeud de contrôle qui

interagit essentiellement avec le planificateur de chemin et les noeuds qui contrôlent la

tâche globale. Ces noeuds ROS et celui contrôlant la trajectoires sont regroupés dans la

pile ICARO. Le développement d’un module pour la planification réactive de chemin dans

l’environnement ROS constitue une contribution du groupe SIEMENS au projet ICARO. À

partir de la tâche à réaliser et de l’état des collisions, le moniteur de trajectoire demande au

module de planification de chemin de produire un chemin qui est transformé en trajectoire

par le générateur de trajectoire. Dès qu’une nouvelle trajectoire est produite, le contrôleur

de trajectoire commute vers la nouvelle trajectoire.

C.4.2.3 Positionnement de la fusée

La fusée doit d’abord être alignée pour que la direction de ses gorges soit alignées avec

la direction du mouvement d’insertion des billes. Nous utilisons pour cela une empreinte

imprimé en 3D qui a une forme complémentaire et sur laquelle le robot dépose la fusée

avant de la ressaisir dans la bonne orientation. La procédure d’orientation correspond à :

123 · Trajectory Planning and Control for Robot Manipulation

• Descente du robot à partir d’une position située au dessus de l’empreinte jusqu’au

contact avec celle-ci. Une variation de la force verticale permet de détecter le contact.

• Le robot fait ensuite tourner la fusée jusqu’à ce que la fusée soit orienté, c’est à dire

jusqu’à une diminution de la force verticale associée à une reprise du mouvement de

descente jusqu’à une position prédéfinie.

• Le robot ouvre alors la pince et la fusée termine son orientation par gravité.

• Le robot oriente la pince dans la bonne direction.

• le robot ressaisit la fusée.

• Le robot dégage la fusée vers le haut.

C.4.2.4 Tâche d’insertion des billes

L’insertion des six billes d’un joint RZEPPA est une tâche répétitive et complexe pour laque-

lle l’emploie d’un robot est logique. Comme il est nécessaire de contrôler les forces et les

moments durant l’insertion, cette tâche est délicate pour le robot. Le robot ne peut pas être

rigides pour pouvoir réagir aux modifications des forces. Aussi nous utilisons un contrôleur

de trajectoire basé sur le contrôleur par impédance. Pour ce travail, nous utilisons une

méthode qui utilise un générateur de trajectoire en ligne et un contrôleur d’évènement as-

sociés à une structure de contrôle qui permet un bon suivi des trajectoires générés et le

choix des propriétés d’impédance. Les forces appliqués à l’organe terminal constituent le

seul élément pris en compte avec la position pour assurer le contrôle. Le LIRMM, parte-

naire du projet ICARO, a développé le noeud ROS Coinserter qui surveille les forces et les

moments au niveau de l’organe terminal et calcule les consignes de position et vitesse. Ces

forces donnent des informations sur la direction de déplacement souhaité pour l’organe ter-

minal. Comme le noeud Coinserter travaille au niveau cartésien à partir du torseur d’effort

fourni par le contrôleur en impédance du bras Kuka, le modèle cinématique inverse est

nécessaire pour calculer les consignes au niveaux des axes du bras.

C.4.2.5 Surveillance des mains

Pendant la tâche d’insertion des billes présentée dans le paragraphe précédent, les mains de

l’opérateur sont proche de la fusée où des risques sérieux de blessure existent. En particulier

les doigts de l’opérateur peuvent se faire coincer dans les alvéoles destinées aux billes.

Aussi, pour des raisons de sécurité, le mouvement des mains est surveillé par vision durant

le mouvement d’insertion des billes. Le mouvement du robot n’est possible que si les doigts

de l’opérateur sont à une distance minimale de la fusée.

Appendix 3 Résumé en Français · 124

C.4.3 Conclusion

Nous avons présenté un contrôleur de trajectoire réactif ainsi que quelques résultats relatifs

à une application industrielle. Les premiers résultats présentés illustrent la polyvalence du

contrôleur basé sur la génération en temps réel de trajectoire. Dans l’exemple présenté,

le contrôleur de l’application intègre de nombreux composants comme un planificateur de

chemin, un détecteur de collision et un contrôleur de robot. Il est capable de passer d’une

trajectoire à une nouvelle et de suspendre puis reprendre le mouvement pour s’adapter à

l’activité de l’opérateur.

C.5 Conclusions et perspectives

C.5.1 Conclusions

Ce travail porte sur le développement de la génération de trajectoire en ligne (OTG) pour

le contrôle de trajectoire. L’objectif est de construire un robot plus facile à contrôler, en

particulier quand le robot interagit avec des humains dans un environnement dynamique.

La prise en compte du temps à travers l’utilisation de trajectoires semble complexifier le

contrôleur, mais en réalité de nombreuses opérations deviennent plus simples :

• Lissage des chemins : l’introduction des contraintes liées au robot et à la tâche pour

générer les trajectoires fournit directement des trajectoires lisse.

• Commutation entre deux trajectoire : l’utilisation du concept de contrôle de primitive

par génération de trajectoire en ligne permet de basculer de la trajectoire courante

à une nouvelle trajectoire en calculant simplement une trajectoire de connexion en

temps réel.

• Réactivité : le contrôleur de trajectoire peut facilement basculer entre les modes de

contrôle et changer de trajectoire d’entrée, ce qui rend le système robotique réactif en

lui permettant de faire face à des événements imprévus détecté par les capteurs.

C.5.2 Perspectives

C.5.2.1 Contraintes cinématiques variables

La génération de trajectoire avec des contraintes variables constitue encore un problème

ouvert. La principale limitation des algorithmes décrits dans cette thèse est qu’ils ne peuvent

être appliqués qu’à des systèmes associé à des contraintes cinématiques constantes telles

125 · Trajectory Planning and Control for Robot Manipulation

que :

| jJ(t)| ≤ jJmax = constant

| jA(t)| ≤ jAmax = constant (C.12)

| jV (t)| ≤ jVmax = constant.

Ces algorithmes sont utilisé dans la boucle de contrôle pour réagir aux évènements. Le

robot doit réagir instantanément à l’instant où l’évènement est détecté, ce qui peut conduire

le robot qui suit une trajectoire à avoir un état courant cinématique qui soit en dehors des

limites cinématiques.

C.5.2.2 Prise en compte de la dynamique du robot

Dans cette thèse, nous n’avons considéré que le modèle cinématique du robot pour plan-

ifier les trajectoires. Les algorithmes présentés ne tiennent pas compte de l’évolution des

capacités dynamiques et en particulier des forces et moments délivrés par les actionneurs

au niveau des axes. Même si de nombreuses applications peuvent être réalisées sans prise

en compte de la dynamique, elle est nécessaire pour obtenir des mouvements de robots très

performants. Dans le futur, le développement d’algorithme d’OTG prenant en compte la

dynamique du robot sera nécessaire.

C.5.2.3 Contrôleur flexible

L’ensemble du contrôle du corps d’un manipulateur mobile est une autre question sur laque-

lle nous étudions. Le planificateur de mouvement prévoit chemin pour un robot à suivre,

y compris la base et les bras. Bien synchronisée, le robot se termine tâches complexes,

telles que la navigation et la manipulation en même temps, tout en évitant les obstacles. Le

problème nécessite une étude plus approfondie, car la navigation du robot et le mouvement

des bras devrait ralentir ou d’arrêter pour éviter les obstacles en mouvement, et les deux

doivent être synchronisés. Mais la précision dynamique et de suivre la trajectoire de la base

du robot et les bras sont différents, donc de nouvelles stratégies doivent être proposées pour

atteindre la manipulation pendant la navigation.

C.5.2.4 Contrôleur flexible

Le contrôle du corps complet d’un robot manipulateur mobile constitue une autre question

intéressante. Les planificateurs de chemin savent produire des mouvements incluant la base

et les bras. Le robot devrait être capable de manipuler et naviguer de manière coordonnée

tout en évitant les obstacles. D’autres travaux sont nécessaires pour que la navigation du

robot et le mouvement des bras puissent être ralenti ou accéléré pour éviter un obstacle tout

en maintenant la coordination. Comme la dynamique et la précision de la trajectoire à suivre

Appendix 3 Résumé en Français · 126

sont différentes pour la base et les bras, de nouvelles stratégies doivent être développées

pour réussir à manipuler durant la navigation.

Bibliography

[Ahn 04] Kitak Ahn, Wan Kyun Chung & Youngil Yourn. Arbitrary states polynomial-

like trajectory (ASPOT) generation. In Industrial Electronics Society, 2004.

IECON 2004. 30th Annual Conference of IEEE, volume 1, pages 123–128

Vol. 1, Nov 2004. 16

[Alami 06] Rachid Alami, Raja Chatila, Aurelie Clodic, Sara Fleury, Matthieu Herrb,

Vincent Montreuil & Emrah Akin Sisbot. Towards Human-Aware Cognitive

Robots. In National Conference on Artificial Intelligence, 2006. 38

[Arai 10] T. Arai, R. Kato & M. Fujita. Assessment of operator stress induced by

robot collaboration in assembly. {CIRP} Annals - Manufacturing Technol-

ogy, vol. 59, no. 1, pages 5 – 8, 2010. 38

[Argall 09] Brenna D. Argall, Sonia Chernova, Manuela Veloso & Brett Browning. A

Survey of Robot Learning from Demonstration. Robot. Auton. Syst., vol. 57,

no. 5, pages 469–483, May 2009. 21, 25

[Bellman 03] Richard Ernest Bellman. Dynamic programming. Dover Publications, In-

corporated, 2003. 22

[Berchtold 94] S. Berchtold & B. Glavina. A scalable optimizer for automatically gener-

ated manipulator motions. In IEEE/RSJ Int. Conf. on Intel. Rob. And Sys.,

1994. 21

[Biagiotti 08] Luigi Biagiotti & Claudio Melchiorri. Trajectory planning for automatic

machines and robots. Springer Science & Business Media, 2008. XV, 13, 14,

34, 40

[Bobrow 85] J.E. Bobrow, S. Dubowsky & J.S. Gibson. Time-Optimal Control of Robotic

Manipulators Along Specified Paths. The International Journal of Robotics

Research, vol. 4, no. 3, pages 3–17, 1985. 16

[Bounab 08] B. Bounab, D. Sidobre & A. Zaatri. Central axis approach for computing

n-finger force-closure grasps. Robotics and Automation, 2008. ICRA 2008.

IEEE International Conference on, pages 1169–1174, May 2008. 28

127

Bibliography · 128

[Brady 82] M. Brady, J. Hollerbach, T. Johnson & T. Lozano-Perez. Robot motion, plan-

ning and control. The MIT Press, Cambridge, Massachusetts, 1982. 14, 16

[Broquere 08] Xavier Broquere, Daniel Sidobre & Ignacio Herrera-Aguilar. Soft motion

trajectory planner for service manipulator robot. Intelligent Robots and Sys-

tems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 2808–

2813, Sept. 2008. 17, 34, 39, 40, 47, 72, 76, 78, 80, 117

[Broquère 10] X. Broquère & D. Sidobre. From motion planning to trajectory control with

bounded jerk for service manipulator robots. In IEEE Int. Conf. Robot. And

Autom., 2010. 34, 40, 48, 67, 68, 117, 121

[Broquère 11] X. Broquère. Planification de trajectoire pour la manipulation d’objets

et l’interaction Homme-robot. PhD thesis, LAAS-CNRS and Université de

Toulouse, Paul Sabatier, 2011. 34, 39, 74

[Buttazzo 94] G Buttazzo, B. Allotta & F. Fanizza. Mousebuster: A robot for real-time

catching. IEEE Control Systems Magazine, vol. 14(1), 1994. 24

[Calinon 04] S. Calinon & A. Billard. Stochastic gesture production and recognition

model for a humanoid robot. In Intelligent Robots and Systems, 2004. (IROS

2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3,

pages 2769 – 2774 vol.3, sept.-2 oct. 2004. 25

[Calinon 07] S. Calinon & A. Billard. Incremental learning of gestures by imitation in a

humanoid robot. In Human-Robot Interaction (HRI), 2007 2nd ACM/IEEE

International Conference on, pages 255–262, March 2007. 21

[Cao 94] Bailin Cao & G.I. Dodds. Time-optimal and smooth joint path generation for

robot manipulators. In Control, 1994. Control ’94. International Conference

on, volume 2, pages 1122–1127 vol.2, March 1994. 16

[Cao 97] B. Cao, G.I. Dodds & G.W. Irwin. Constrained time-efficient and smooth

cubic spline trajectory generation for industrial robots. Control Theory and

Applications, IEE Proceedings -, vol. 144, no. 5, pages 467–475, Sep 1997.

51

[Cao 98] Bailin Cao, Gordon I. Dodds & George W. Irwin. A Practical Approach

to Near Time-Optimal Inspection-Task-Sequence Planning for Two Cooper-

ative Industrial Robot Arms. The International Journal of Robotics Research,

vol. 17, no. 8, pages 858–867, 1998. 16

[Castain 84] Ralph H. Castain & Richard P. Paul. An On-Line Dynamic Trajectory Gen-

erator. The International Journal of Robotics Research, vol. 3, no. 1, pages

68–72, 1984. 16

129 · Trajectory Planning and Control for Robot Manipulation

[Chaumentte 06] F. Chaumentte & S.A. Hutchinson. Visual servo control. Part I: Basic

approaches. IEEE Robotics and Automation Magazine, vol. 4(13), December

2006. 24

[Chaumentte 07] F. Chaumentte & S.A. Hutchinson. Visual servo control. Part II: Ad-

vanced approaches. IEEE Robotics and Automation Magazine, vol. 1(14),

March 2007. 24

[Chwa 05] Dongkyoung Chwa, Junho Kang & Jin-Young Choi. Online trajectory plan-

ning of robot arms for interception of fast maneuvering object under torque

and velocity constraints. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, vol. 35, no. 6, pages 831–843, Nov 2005. 16

[Constantinescu 00] D. Constantinescu & E. A. Croft. Smooth and time-optimal trajec-

tory planning for industrial manipulators along specified paths. Journal of

Robotic Systems, vol. 17, no. 5, pages 233–249, 2000. 16

[Dahl 90] O. Dahl & L. Nielsen. Torque-limited path following by online trajectory time

scaling. Robotics and Automation, IEEE Transactions on, vol. 6, no. 5, pages

554–561, Oct 1990. 16

[De Luca 08] A. De Luca & L. Ferrajoli. Exploiting robot redundancy in collision de-

tection and reaction. In Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on, pages 3299 –3305, sept. 2008. 29

[Duchaine 09] Vincent Duchaine & C. Gosselin. Safe, Stable and Intuitive Control for

Physical Human-Robot Interaction. In Robotics and Automation, 2009.

ICRA ’09. IEEE International Conference on, pages 3383–3388, May 2009.

91

[Farrokh 11] Janabi-Sharifi Farrokh, Deng Lingfeng & J.Wilson William. Comparison of

Basic Visual Servoing Methods. IEEE/ASME Transactions on Mechatronics,

vol. 16, no. 5, October 2011. 24

[Gerelli 10] O. Gerelli & C.G.L. Bianco. A discrete-time filter for the on-line generation

of trajectories with bounded velocity, acceleration, and jerk. In Robotics and

Automation (ICRA), 2010 IEEE International Conference on, pages 3989–

3994, May 2010. 40

[GmbH 08] KUKA Roboter GmbH. vol. Lightweight Robot 4 Operating Instructions,

2008. 58, 60

[Gosselin 93] G Gosselin, J. Cote & D Laurendeau. Inverse kinematic functions for ap-

proach and catching operations. IEEE Trans. Systems, Man, and Cybernet-

ics, vol. 23(3), 1993. 24

Bibliography · 130

[Haddadin 08] S. Haddadin, A. Albu-Schaffer, A. De Luca & G. Hirzinger. Collision

detection and reaction: A contribution to safe physical Human-Robot Inter-

action. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ In-

ternational Conference on, pages 3356–3363, Sept 2008. 38

[Hall 63] Edward T Hall. A system for the notation of proxemic behavior1. American

anthropologist, vol. 65, no. 5, pages 1003–1026, 1963. 18

[Haschke 08a] R. Haschke, E. Weitnauer & H. Ritter. On-line planning of time-optimal,

jerk-limited trajectories. In Intelligent Robots and Systems, 2008. IROS

2008. IEEE/RSJ International Conference on, pages 3248–3253, Sept 2008.

16

[Haschke 08b] R. Haschke, E. Weitnauer & H. Ritter. On-Line Planning of Time-Optimal,

Jerk-Limited Trajectories. In IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, 2008. IROS 2008, pages 3248–3253, 2008. 17,

40

[He 13a] Wuwei He. Reactive control and sensor fusion for mobile manipulators in

human robot interaction. Theses, Université Paul Sabatier - Toulouse III,

October 2013. 25

[He 13b] Wuwei He, Daniel Sidobre & Ran Zhao. A Reactive Trajectory Controller

for Object Manipulation in Human Robot Interaction. In Proceedings of

the 10th International Conference on Informatics in Control, Automation and

Robotics, pages 19–28, 2013. 29

[He 15] Wuwei He, Daniel Sidobre & Ran Zhao. A Reactive Controller Based on

Online Trajectory Generation for Object Manipulation. In Jean-Louis Ferrier,

Oleg Gusikhin, Kurosh Madani & Jurek Sasiadek, editeurs, Informatics in

Control, Automation and Robotics, volume 325 of Lecture Notes in Electrical

Engineering, pages 159–176. Springer International Publishing, 2015. XVI,

26, 27

[Herrera 05] I. Herrera & D. Sidobre. On-line trajectory planning of robot manipulators

end effector in cartesian space using quaternions. In 5th Int. Symposium on

Measurement and Control in Robotics, 2005. 87

[Hornung 13] Armin Hornung, KaiM. Wurm, Maren Bennewitz, Cyrill Stachniss & Wol-

fram Burgard. OctoMap: an efficient probabilistic 3D mapping framework

based on octrees. Autonomous Robots, vol. 34, no. 3, pages 189–206, 2013.

84

131 · Trajectory Planning and Control for Robot Manipulation

[Howard 09] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goerick &

Sethu Vijayakumar. A novel method for learning policies from variable con-

straint data. Autonomous Robots, vol. 27, no. 2, pages 105–121, 2009. 22

[Ikeura 95] R. Ikeura & H. Inooka. Variable impedance control of a robot for cooperation

with a human. In Robotics and Automation, 1995. Proceedings., 1995 IEEE

International Conference on, volume 3, pages 3097–3102 vol.3, May 1995.

91

[Ikeura 02] R. Ikeura, T. Moriguchi & K. Mizutani. Optimal variable impedance control

for a robot and its application to lifting an object with a human. In Robot

and Human Interactive Communication, 2002. Proceedings. 11th IEEE Inter-

national Workshop on, pages 500–505, 2002. 91

[Jaillet 10] L. Jaillet, J. Cortés & T. Siméon. Sampling-based path planning on

configuration-space costmaps. IEEE Transactions on Robotics, 2010. 20

[Jetchev 11] Nikolay Jetchev & Marc Toussaint. Task Space Retrieval Using Inverse Feed-

back Control. In (ICML 2011), 2011. 22

[Katzschmann 13] R. Katzschmann, T. Kroger, T. Asfour & O. Khatib. Towards online

trajectory generation considering robot dynamics and torque limits. In Intel-

ligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference

on, pages 5644–5651, Nov 2013. 102

[Kavraki 96] L.E. Kavraki, P. Svestka, J.-C. Latombe & M.H. Overmars. Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces.

Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pages 566–

580, Aug 1996. 33

[Kavraki 08] L.E. Kavraki & S.M. LaValle. Motion Planning In Springer Handbook of

Robotics, by B. Siciliano and O. Khatib. 2008. 20

[Khalil 99] W. Khalil & E Dombre. Modélisation identification et commande des robots,

volume 56. Hermes, 1999. 14, 16

[Kim 07] Joon-Young Kim, Dong-Hyeok Kim & Sung-Rak Kim. On-line minimum-

time trajectory planning for industrial manipulators. In Control, Automation

and Systems, 2007. ICCAS ’07. International Conference on, pages 36–40,

Oct 2007. 16

[Kober 13] J. Kober, J. Andrew (Drew) Bagnell & J. Peters. Reinforcement Learning in

Robotics: A Survey. International Journal of Robotics Research, July 2013. 3

Bibliography · 132

[Kröger 06] T. Kröger, A. Tomiczek & F.M. Wahl. Towards on-line trajectory computa-

tion. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, Beijing, China. Citeseer, 2006. 17

[Kröger 10a] T. Kröger. On-line trajectory generation in robotic systems, volume 58 of

Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, Ger-

many, first edition, jan 2010. 34, 102

[Kroger 10b] Torsten Kroger & Friedrich M Wahl. Online trajectory generation: basic

concepts for instantaneous reactions to unforeseen events. Robotics, IEEE

Transactions on, vol. 26, no. 1, pages 94–111, 2010. 14

[Kröger 11] Torsten Kröger, Bernd Finkemeyer & FriedrichM. Wahl. Manipulation prim-

itives: A universal interface between sensor-based motion control and robot

programming, volume 67 of Springer Tracts in Advanced Robotics. Springer

Berlin Heidelberg, 2011. 27

[Kroger 12a] T. Kroger. On-line trajectory generation: Nonconstant motion constraints.

In Robotics and Automation (ICRA), 2012 IEEE International Conference on,

pages 2048–2054, May 2012. 102

[Kröger 12b] T. Kröger & Jose Padial. Simple and Robust Visual Servo Control of Robot

Arms Using an On-Line Trajectory Generator. 2012 IEEE International Con-

ference on Robotics and Automation, 2012. 24

[Kyriakopoulos 88] K.J. Kyriakopoulos & G.N. Saridis. Minimum jerk path generation.

In Robotics and Automation, 1988. Proceedings., 1988 IEEE International

Conference on, pages 364–369 vol.1, Apr 1988. 16

[Lambrechts 04] Paul Lambrechts, M. Boerlage & M. Steinbuch. Trajectory planning

and feedforward design for high performance motion systems. In American

Control Conference, 2004. Proceedings of the 2004, volume 5, pages 4637–

4642 vol.5, June 2004. 16

[Larsen 99] E. Larsen, S. Gottschalk, M.C. Lin & D. Manocha. Fast proximity queries

with swept sphere volumes. 1999. 29

[Lasota 14] P.A. Lasota, G.F. Rossano & J.A. Shah. Toward safe close-proximity human-

robot interaction with standard industrial robots. In Automation Science and

Engineering (CASE), 2014 IEEE International Conference on, pages 339–

344, Aug 2014. 2

[LaValle 01a] S. M. LaValle & J. Kuffner. Rapidly-exploring random trees: Progress and

prospects. In Workshop on the Algorithmic Foundations of Robotics, 2001.

20

133 · Trajectory Planning and Control for Robot Manipulation

[LaValle 01b] Steven M. LaValle & James J. Kuffner. Randomized Kinodynamic Plan-

ning. The International Journal of Robotics Research, vol. 20, no. 5, pages

378–400, 2001. 11, 33

[LaValle 06] S.M. LaValle. Planning algorithms. Cambridge Univ Pr, 2006. 20

[Lecun 06] Yann Lecun, Sumit Chopra, Raia Hadsell, Fu J. Huang, G. Bakir, T. Hofman,

B. Schölkopf, A. Smola & B. Taskar Eds. A tutorial on energy-based learn-

ing. In Predicting Structured Data, 2006. 24

[Liu 02a] Steven Liu. An on-line reference-trajectory generator for smooth motion of

impulse-controlled industrial manipulators. In Advanced Motion Control,

2002. 7th International Workshop on, pages 365–370, 2002. 16

[Liu 02b] Steven Liu. An on-line reference-trajectory generator for smooth motion of

Impulse-Controlled Industrial Manipulators. In 7th International Workshop

on Advanced Motion Control, pages 365–370, 2002. 17

[Macfarlane 03] S. Macfarlane & E.A. Croft. Jerk-bounded manipulator trajectory plan-

ning: design for real-time applications. Robotics and Automation, IEEE

Transactions on, vol. 19, no. 1, pages 42–52, Feb 2003. 16

[Mainprice 10] Jim Mainprice, E Akin Sisbot, Thierry Siméon & Rachid Alami. Planning

Safe and Legible Hand-over Motions for Human-Robot Interaction. In IARP

workshop on technical challenges for dependable robots in human environ-

ments, volume 2, page 7, 2010. 11

[Mainprice 11] J. Mainprice, E.A. Sisbot, L. Jaillet, J Cortés, T. Siméon & R. Alami.

Planning Human-aware motions using a sampling-based costmap planner.

In IEEE Int. Conf. Robot. And Autom., 2011. 21

[Mainprice 13] J. Mainprice & D. Berenson. Human-robot collaborative manipulation

planning using early prediction of human motion. In Intelligent Robots and

Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 299–

306, Nov 2013. 38

[Mallet 10a] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan & F. Ingrand. GenoM3:

Building middleware-independent robotic components. In Robotics and Au-

tomation (ICRA), 2010 IEEE International Conference on, pages 4627–4632,

May 2010. 10, 58

[Mallet 10b] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaignan & Félix

Ingrand. GenoM3: Building middleware-independent robotic components. In

Robotics and Automation (ICRA), 2010 IEEE International Conference on,

pages 4627–4632. IEEE, 2010. 60, 78

Bibliography · 134

[Mallet 11] Anthony Mallet & Matthieu Herrb. Recent developments of the GenoM

robotic component generator. In 6th National Conference on Control Archi-

tectures of Robots, page 4 p., Grenoble, France, May 2011. INRIA Grenoble

Rhône-Alpes. 10

[M.E 71] Kahn M.E & Roth B. The Near-Minimum-Time Control Of Open-Loop Ar-

ticulated Kinematic Chains. Journal of Dynamic Systems, Measurement, and

Control, vol. 93, pages 164–172, 1971. 16

[Meisner 08] Eric Meisner, Volkan Isler & Jeff Trinkle. Controller design for human-robot

interaction. Autonomous Robots, vol. 24, no. 2, pages 123–134, 2008. 38

[Nikolaidis 13] S. Nikolaidis, P. Lasota, G. Rossano, C. Martinez, T. Fuhlbrigge & J. Shah.

Human-robot collaboration in manufacturing: Quantitative evaluation of pre-

dictable, convergent joint action. In Robotics (ISR), 2013 44th International

Symposium on, pages 1–6, Oct 2013. 38

[Owen 04] W.S. Owen, E.A. Croft & B. Benhabib. Real-time trajectory resolution for

dual robot machining. In Robotics and Automation, 2004. Proceedings. ICRA

’04. 2004 IEEE International Conference on, volume 5, pages 4332–4337

Vol.5, April 2004. 16

[Pan 12] Jia Pan, Liangjun Zhang & Dinesh Manocha. Collision-free and smooth tra-

jectory computation in cluttered environments. The International Journal of

Robotics Research, page 0278364912453186, 2012. 51

[PCL 10] PCL: Point Cloud Library. vol. www.pointclouds.org, 2010. 84

[Pomerleau 91] Dean A. Pomerleau. Efficient training of artificial neural networks for

autonomous navigation. Neural Computation, vol. 3, page 97, 1991. 21

[Quinlan 95] Sean Quinlan. Real-Time Modification of Collision-Free Paths. Rapport

technique, Stanford, CA, USA, 1995. 55

[Ratliff 06] Nathan D. Ratliff, J. Andrew Bagnell & Martin A. Zinkevich. Maximum

Margin Planning. In Proceedings of the 23rd International Conference on

Machine Learning, ICML ’06, pages 729–736, New York, NY, USA, 2006.

ACM. 23

[Russell 09] Stuart Russell & Peter Norvig. Artificial intelligence: A modern approach.

Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009. 22

[Rusu 11] R.B. Rusu & S. Cousins. 3D is here: Point Cloud Library (PCL). In Robotics

and Automation (ICRA), 2011 IEEE International Conference on, pages 1–4,

May 2011. 84

135 · Trajectory Planning and Control for Robot Manipulation

[Rybski 12] Paul Rybski, Peter Anderson-Sprecher, Daniel Huber, Christopher Niessl &

Reid Simmons . Sensor Fusion for Human Safety in Industrial Workcells. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), October 2012. 38

[Saut 12] Jean-Philippe Saut & Daniel Sidobre. Efficient Models for Grasp Planning

with a Multi-Fingered Hand. Robotics and Autonomous Systems, vol. 60,

March 2012. 28

[Schreiber 10] G. Schreiber, A. Stemmer & R. Bischoff. The Fast Research Interface for

the KUKA Lightweight Robot. In Proc. of the IEEE ICRA 2010 Workshop

on ICRA 2010 Workshop on Innovative Robot Control Architectures for De-

manding (Research) Applications - How to Modify and Enhance Commercial

Controllers, pages 15–21, 2010. 58

[Schwarzer 04] Fabian Schwarzer, Mitul Saha & Jean-Claude Latombe. Exact Collision

Checking of Robot Paths. In Jean-Daniel Boissonnat, Joel Burdick, Ken Gold-

berg & Seth Hutchinson, editeurs, Algorithmic Foundations of Robotics V,

volume 7 of Springer Tracts in Advanced Robotics, pages 25–41. Springer

Berlin Heidelberg, 2004. 55

[Shiller 94] Z. Shiller. Time-energy optimal control of articulated systems with geomet-

ric path constraints. In Robotics and Automation, 1994. Proceedings., 1994

IEEE International Conference on, pages 2680–2685 vol.4, May 1994. 16

[Siciliano 08a] B. Siciliano & O. Khatib. Springer Handbook of Robotics. 2008. 15

[Siciliano 08b] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani & Giuseppe Oriolo.

Robotics: Modelling, planning and control. Springer Publishing Company,

Incorporated, 1st edition, 2008. XV, 12

[Sidobre 12] D. Sidobre, X. Broquère, J. Mainprice, E. Burattini, A. Finzi, S. Rossi &

M. Staffa. Human–Robot Interaction. Advanced Bimanual Manipulation,

pages 123–172, 2012. 27, 34

[Sisbot 07a] E. A. Sisbot, L. F. Marin-Urias, R. Alami & T. Siméon. Spatial Reasoning for

Human-Robot Interaction. In IEEE/RSJ Int. Conf. on Intel. Rob. And Sys.,

San Diego, CA, USA, November 2007. 18

[Sisbot 07b] E.A. Sisbot, L.F. Marin-Urias, R. Alami & T. Simeon. A Human Aware Mo-

bile Robot Motion Planner. Robotics, IEEE Transactions on, vol. 23, no. 5,

pages 874–883, Oct 2007. 10, 38

Bibliography · 136

[Sisbot 10] EmrahAkin Sisbot, LuisF. Marin-Urias, Xavier Broquère, Daniel Sidobre &

Rachid Alami. Synthesizing Robot Motions Adapted to Human Presence. In-

ternational Journal of Social Robotics, vol. 2, no. 3, pages 329–343, 2010.

38

[Sisbot 11] E.Akin Sisbot, Raqual Ros & Rachid Alami. Situation Assessment for

Human-Robot Interactive Object Manipulation. 20th IEEE International

Symposium on Robot and Human Interactive Communication, July-August

2011. 26

[Şucan 12] Ioan A. Şucan, Mark Moll & Lydia E. Kavraki. The Open Motion Planning

Library. IEEE Robotics & Automation Magazine, vol. 19, no. 4, pages 72–82,

December 2012. http://ompl.kavrakilab.org. 84

[Tanaka 12] S. Tanaka, Young Min Baek, N. Sugita, T. Ueta, Y. Tamaki & M. Mitsu-

ishi. Minimum-jerk trajectory generation for master-slave robotic system. In

Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS

EMBS International Conference on, pages 811–816, June 2012. 52

[Tonietti 05] G. Tonietti, R. Schiavi & A. Bicchi. Design and Control of a Variable

Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction. In

Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on, pages 526–531, April 2005. 38

[Tsochantaridis 05] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann &

Yasemin Altun. Large Margin Methods for Structured and Interdependent

Output Variables. J. Mach. Learn. Res., vol. 6, pages 1453–1484, December

2005. 24

[Tsumugiwa 02] T. Tsumugiwa, R. Yokogawa & K. Hara. Variable impedance control

based on estimation of human arm stiffness for human-robot cooperative cal-

ligraphic task. In Robotics and Automation, 2002. Proceedings. ICRA ’02.

IEEE International Conference on, volume 1, pages 644–650 vol.1, 2002. 91

[Vakanski 12] A. Vakanski, I. Mantegh, A. Irish & F. Janabi-Sharifi. Trajectory Learning

for Robot Programming by Demonstration Using Hidden Markov Model and

Dynamic Time Warping. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, vol. 42, no. 4, pages 1039 –1052, aug. 2012. 25

[Whitney 69] D. Whitney. Resolved motion rate control of manipulators and human pros-

theses. IEEE Trans. Man-Machine Syst, vol. 10, pages 47–53, 1969. 79

[Wu 09] Wenxiang Wu, Shiqiang Zhu & Songguo Liu. Smooth joint trajectory plan-

ning for humanoid robots based on B-splines. In Robotics and Biomimetics

http://ompl.kavrakilab.org

137 · Trajectory Planning and Control for Robot Manipulation

(ROBIO), 2009 IEEE International Conference on, pages 475–479, Dec 2009.

52

[xiu Kong 13] Min xiu Kong, Chen Ji, Zheng sheng Chen & Rui feng Li. Smooth and

near time-optimal trajectory planning of robotic manipulator with smooth

constraint based on cubic B-spline. In Robotics and Biomimetics (ROBIO),

2013 IEEE International Conference on, pages 2328–2333, Dec 2013. 52

[Yang 04] Jingzhou Yang, R Timothy Marler, HyungJoo Kim, Jasbir Arora & Karim

Abdel-Malek. Multi-objective optimization for upper body posture predic-

tion. In 10th AIAA/ISSMO multidisciplinary analysis and optimization con-

ference, volume 30, 2004. 18

	Abstract
	Résumé
	Contents
	Introduction
	Introduction
	Motivation
	Research Objectives
	Outline of this Manuscript
	Publication, Software Development, and Research Projects

	Related Work and Background
	Introduction
	Software Architecture for Human Robot Interaction
	Trajectory Generation
	Trajectory Types
	Trajectory Generation Algorithms
	Planning-based Trajectory Generation
	Learning-based Trajectory Generation

	Robot Motion Control
	Trajectory Control
	Control primitives
	Reactive Trajectory Controller

	Conclusion

	Methodology: Trajectory Generation
	Introduction
	A Trajectory Model
	Basic Concepts of the Trajectory Generation
	One Dimensional Point to Point Trajectory Generation

	Trajectory Generation From a Given Path
	Phase-Synchronized Trajectory

	Smooth Trajectory Generation
	Three-Segment Interpolants
	Three-Segment Interpolants With Bounded Jerk
	Jerk, Acceleration, Velocity-Bounded Interpolants
	Managing the Error

	Comparison With B-Spline Trajectory Smoothing
	Shortcutting Smoothing
	Shortcutting Algorithms
	Trajectory Collision Checking
	Online Shortcutting

	Simulation and Experimental Results
	Smoothing Trajectory From a Given Path
	Shortcut Smoothing Method

	Conclusions

	Polynomial Trajectory Approximation
	Introduction
	Polynomial trajectory approximations
	Problem Formulation
	Approximation Possibilities
	3rd Degree Polynomial Functions
	4th Degree Polynomial Functions
	5th Degree Polynomial Functions

	Comparisons of different approximations
	Characteristics Definition
	Error of approximation for a trajectory
	Example of a circular trajectory:
	Comparison Demonstration

	Experimental Results
	Control Level

	Conclusions

	Reactive Trajectory Controller
	Introduction
	Introduction of ICARO project
	Applications in the ICARO Project
	Gesture Tracking
	Reactive Planning
	Positioning of the outer shell
	Ball Insertion Task
	Hands Monitoring

	Conclusion

	Conclusion and perspectives
	Conclusion
	Trajectory Generation
	Trajectory Based Control

	Perspectives
	Trajectory Generation
	Flexible Controller

	Quaternions and Rotations
	Axis-Angle Representation
	Definition of Quaternion
	Rotation matrix
	Rotations and Compositions
	Perturbations and Derivatives

	Computation of Approximations
	Constraints type II
	Constraints type III

	Résumé en Français
	Introduction
	Introduction
	Motivation
	Objectifs poursuivis

	Génération de trajectoire
	Introduction
	Génération d'une trajectoire à partir d'un chemin
	Trajectoires avec phases synchronisées
	Génération de trajectoires lisses
	Lissage par raccourci
	Conclusions

	Approximation de trajectoire
	Introduction
	Différentes solutions d'approximation
	Conclusions

	Le contrôle de trajectoire pour le projet ICARO
	Introduction
	Éléments du projet ICARO
	Conclusion

	Conclusions et perspectives
	Conclusions
	Perspectives

	Bibliography

