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Chapter I

Introduction

The physics of condensed matter systems has attracted huge interest along its
history. These systems, where the low energy properties are investigated, present an
important amount of spectacular phenomena which defy physical intuition and there-
fore constitute an excellent playground for fundamental investigations, both experi-
mentally and theoretically, such as superfluidity, superconductivity or Bose-Einstein
condensation [1, 2]. The low energy regimes became accessible at the beginning of
the 20th century as the technological advances allowed lower and lower temperatures
to be probed. In this regime, the quantum effects become important and give rise
to new physics never before seen in experiments, which needed to be explained by
theory. It was soon realized that many-body effects were responsible for some of
these amazing features, i.e. interactions play a huge role and cannot be neglected.
This is also true for some classical systems.

At the same time, disorder, i.e. impurities, is intrinsic to any realistic system.
Although the theories developed at first completely neglected the effects of disorder
they are inevitable in the experiments and they were found to give rise to new
phenomena such as Anderson localization [3–5] among others. It is known that non-
interacting electrons get localized by arbitrarily weak disorder in dimensions one
and two but repulsive interactions can stabilize a delocalized state in 2D [5, 6]. The
interplay between interactions and disorder received a great deal of attention in the
following years.

The question of interacting disordered bosons was brought to day by experiments
on superfluid Helium in porous media [7]. The loss of superfluidity in these systems
raised new theoretical questions. A series of theoretical studies followed [6, 8–12]
discovering that the quantum (T = 0) onset of superfluidity in random media has to
be treated as a fluctuation-driven quantum phase transition between a delocalized
superfluid and a localized Bose glass phase, the Bose-Hubbard model becoming the
paradigmatic model to study the interplay of interactions and disorder. Huge the-
oretical and experimental efforts have been put in determining the phase diagram
of this model in one, two and three dimensions. In 2D, it was shown that bosons
with repulsive interactions present superfluidity which is robust to weak disorder [6].
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2 Chapter I. Introduction

The remaining of this introductory chapter will present some of the most important
results obtained for the Superfluid - Bose glass (or superfluid - insulator) transition
both experimentally and theoretically.

1 Experimental realizations of the transition

In this section we present a number of experimental realizations of the Superfluid-
Bose glass transition, starting with the first that presented a transition to an insulat-
ing state and motivated the study of the interplay between disorder and interactions,
namely Helium adsorbed on porous media. We will also present the superfluid to
insulator transition in disordered superconducting thin films, cold atoms on opti-
cal lattices and magnetic insulators under a magnetic field. The list of results and
methods is not meant to be exhaustive.

1.1 He4 in porous media
The study of superfluid helium in porous media has a long standing history,

beginning at the time of the discovery of superfluidity itself. As a matter of fact, one
of the first demonstrations of superfluidity was Allen and Jones’s “fountain effect”
experiment where they showed a frictionless flow of helium through the fine channels
of a packed powder [13]. Of more relevance were the studies of the superfluid fraction
in experiments of He4 adsorbed on Vycor glass [14, 15], or on aerogel glass [7, 16–18],
where the disorder is quenched (i.e. fixed in time) and varying the helium coverage
is equivalent to changing the chemical potential [6]. Vycor is prepared in two steps:
first, phase separation is induced in a borosilicate glass through heat treatment. Then
the boron-rich phase is removed by a leaching process and the remainder is a complex
sponge of material rich in silica where open pores “occupy” some 30% of the total
volume. Levitz et al. [19] showed that Vycor glass has no hierarchical structure and
a narrow distribution of pore sizes. In contrast, aerogel glasses have low densities and
are created through a sol-gel process followed by a hypercritical drying. The porous
structure occupies as little as 1% of the volume. Some groups studied aerogels via
small-angle scattering and found they have a fractal-like structure with self-similar
structures with length scales ranging from a few to hundreds of nanometers [20, 21].
For low enough coverages, the system can be considered as quasi-2D.

The superfluid density in such experiments is measured by a torsional oscillator
technique [22], which gives access to the resonant period of the oscillator and is pro-
portional to the moment of inertia of the oscillator + the helium. Two measures are
carried out for each sample, one with the Helium giving a period Pf , and another one
for the empty cell Pe. The difference in the two periods Pf −Pe is then proportional
to the helium moment of inertia. At high temperatures T > Tc, the resonant period
of the filled cell is roughly a constant (P̄ ) with temperature when all the helium

2



1. Experimental realizations of the transition 3

Figure I.1: Period shift extrapolated to zero temperature ∆P (0) as a function of
coverage near the critical coverage for the onset of superfluidity for He adsorbed on
Vycor. Superfluidity emerges following a power law near the critical coverage as
predicted for localized bosons by Fisher et al. [6], cf. eq.(I.1). Taken from Ref. [16].

mass is in the normal state[7, 16], hence subtracting this value gives the period shift
∆P (T ) = Pf −Pe− P̄ which is proportional to the superfluid density [16]. The data
for ∆P (T ) can be extrapolated to zero temperature and plotted against the coverage
of the pores as shown in figure I.1.

Building on the zero-temperature findings for boson localization in the disordered
Bose-Hubbard model (cf. section 2), Fisher et al. extended the hyperscaling rela-
tions to predict the behaviour of the zero temperature superfluid density with the
distance to the critical chemical potential µc at which superfluidity emerges [6]. In
the experiments of adsorbed He4 in porous media, this distance is proportional to
the distance to the critical coverage of the pores nc [6, 18], yielding:

ρsf(T = 0) ∼ (µ− µc)ζ ∼ (n− nc)ζ , ζ = ν(d+ z − 2), (I.1)

where d is the spatial dimension and z the dynamical exponent and ν the correlation
length exponent. The localized bosons scenario of Fisher et al. predicts such a
power-law dependence and explains the experimental results indicating that He in
porous media is indeed a realization of the bosonic Superfluid-Insulator transition.
Indeed, for coverages n < nc the He4 bosons are localized due to repulsive interactions
and the random media, but upon increasing n the substrate potential is smoothed
by the adsorbed bosons in the pores which form layers. Once the critical coverage is
reached delocalized states appear and superfluidity is present [7].

3



4 Chapter I. Introduction

1.2 Disordered superconducting thin films
Disordered superconducting thin films present a transition from a superconduct-

ing to an insulating phase at low temperatures. There are various kinds of such
films among which we find amorphous indium oxyde films (InO) [23–25], polycrys-
talline titanium nitride films (TiN) , niobium titanium nitride films (NbTiN) [26]
and niobium nitride (NbN) films [27–30]. Polycrystalline TiN films are produced by
magnetron sputtering of a target from pure titanium Ti in a nitrogen plasma. On
the other hand, InOx films are prepared by using electron-beam evaporation of high-
purity (∼99.998%) In2O3 onto SiO2 in an O2 background and disorder is controlled
by the film thickness and a low temperature annealing [31].

These systems present a wealth of striking phenomena such as activated behaviour
of resistivity in the insulating phase [23, 32–35], nonmonotonic magnetic field depen-
dence of the activation temperature and the voltage threshold behaviour [34, 36–
38] and nonmonotonic temperature and magnetic field dependence of the resis-
tance [23, 33, 39, 40]. These features have been explained by disorder-induced spatial
inhomogeneities in the superconducting order parameter [8, 25, 30, 38, 41], but sev-
eral other questions remain open. The mechanism of the destruction of superfluidity
is an example. If the mechanism is fermionic, the Cooper pairs are destroyed by
disorder before the electrons localize hence the system passes through a badly con-
ducting metallic phase before becoming an insulator at higher disorder [42]. The
bosonic mechanism is accomplished if the Copper pairs remain bound through the
transition and superfluidity is destroyed by the pairs themselves becoming localized,
the system having a direct superfluid to insulator transition [43].

The existence of Cooper pairs at short length scales can be directly revealed by
the observation of a superconducting gap in the density of states (DOS) [44, 45]
using scanning tunnelling microscopy (STM) [46]. Sacépé et al. [25] studied two
disordered InOx films with thicknesses 150 and 300 Å, at different temperatures.
Their results are shown in figure I.2: the least disordered sample (panels a and c)
has the opening of a gap in the DOS at its critical temperature Tc signalling the
appearance of bound Cooper pairs. When cooled further down coherence peaks
develop at exactly the gap value ±∆ indicating a global superconducting state [25].
These peaks grow as the temperature is lowered. The strongly disordered sample
(panels b and d in figure I.2) presents the same opening of a gap in the DOS at Tc,
so Cooper pairs are indeed present in the sample but no coherence peaks appear to
the lowest probed temperatures. Therefore, the Copper pairs do not condense to a
delocalized state and are localized, making the sample insulating [25]. This proves
that for these disordered superconducting films the destruction of superconductivity
is brought about by the localization of bosonic Cooper pairs.

4



1. Experimental realizations of the transition 5

Figure I.2: Evolution of the local tunnelling conductance G with temperature T and
bias voltage V at two different locations of the disordered sample. Panels a-c: Low
disorder sample with spectral gap ∆ = 560µeV . A gap ∆ near V = 0 opens exactly
at T ≤ Tc indicating Copper are present in the sample, and distinct coherence peaks
develop at V = ±∆, growing for lower temperatures, the sample is then supercon-
ducting. Panels b-d: Highly disordered sample with spectral gap ∆ = 500µeV . A
similar gap opens in exactly the same way as for the low disorder sample but no
coherence peaks develop, indicating the presence of localized preformed Cooper pairs
in the insulating film. Taken from Ref. [25].

As a side note, it is worth noting that disordered bosonic models has been pointed
out as relevant in the study of High-Tc superconducting cuprates via a mapping of
vortex trajectories onto bosonic world lines [47, 48], although the pairing mechanism
in such systems has not been determined and there is an ongoing debate on whether
it is a bosonic or a fermionic one (see for example Ref. [49]). The link is further
enphasized by the fact that a peudo-gap in the density of states even above the
superconducting transition temperature Tc is a well known property of under-doped

5



6 Chapter I. Introduction

high-Tc superconductors [29, 50], also present for the superconducting films discussed
here (cf. figure I.2) [25].

1.3 Cold atoms in optical lattices

Cold atoms constitute a somewhat recent and rapidly evolving field of physics
which make it possible to produce Bose [51, 52] and Fermi gases [53, 54] and manip-
ulate them with incredible tunability and measurement possibilities [55–57]. They
already have allowed for the first observations of Bose-Einstein condensation [58,
59], which are described by the Gross-Pitaevskii equation in the weak coupling
regime [60, 61], and other condensed matter physics phenomena like Anderson lo-
calization of matter waves [62–65] and the transition from a Superfluid to a Mott
Insulator phase [66–71] proving that they can be accurate quantum simulators [66]
of the many-body physics [72].

Since cold atoms in optical lattices can be described by the Bose Hubbard model [73]
it is then natural to use them as quantum simulators for the interplay between dis-
order and interactions. The latter can be fine tuned via Feshbach resonances [74, 75]
while disorder can be included in the optical lattice by speckle potentials [76–83],
two-colored superlattices [84–88], or different atomic species mimicking random im-
purities [89–91].

It is worth noting that the harmonic confinement in the experiments results in
finite-size inhomogeneous systems and changes the nature of the problem, trans-
forming the quantum phase transitions into crossovers and leading to a coexistence
of different phases in the system [88]. Therefore, the experimental system is always
compressible which makes it impossible for such experiments to distinguish between
the Bose glass and Mott Insulating phases.

D’Errico et al. studied a quasi-1D cold gas of 39K atoms in a quasi periodic
optical lattice superimposed by a second one, the depth of which fixes the disorder
strength ∆ and studied the effect of disorder and interactions on its coherence and
transport properties [88]. They measured the coherence of the gas by the root-
mean-square width of the momentum distribution Γ obtained through absorption
imaging after a free flight. A low Γ means a high coherence and its dependence
on disorder and interaction strengths is plotted in panel a of figure I.3. A coherent
phase (blue region) and another region with low coherence are visible. The mobility
of the system is measured via the momentum δp accumulated in a fixed time by the
sudden application of a finite shift of the harmonic confinement (figure I.3 panel b).
In the clean case (black triangles) the mobility is high for small U and smoothly
decreases as U increases reaching a Mott insulating state for strong interactions.
Disorder turns the weakly interacting regime from conducting to insulating (squares
and circles) but at intermediate interaction strengths the mobility is high again, the

6



1. Experimental realizations of the transition 7

U/J U/J

Figure I.3: Panel a) Map of the width of the momentum distribution Γ as a function
of disorder strength ∆/J and interaction strength U/J , built with 94 data points
(white crosses) having standard deviations from 2% to 5%. A MI is present only to
the right of the dashed line (cf. text) and the dashed-dotted line follows ∆−2J = nU ,
where n is the density. The SF phase corresponds to the blue region. Panel b)
Momentum transferred to the system by an impulse as a function of interaction
strength for three different disorder strengths ∆ = 0 (black triangles), ∆ = 6.2J
(blue squares) and ∆ = 8.8J (red circles). Full symbols depict data obtained at a
temperature kBT = 3.1(4)J and open symbols at kBT = 4.5(7)J . Error bars are the
std of five measurements. Taken from Ref. [88].

system becomes conducting again before going to a strongly interacting insulating
state. These measurements confirm the insulating nature of the incoherent regions.

The shape of the phase diagram agrees with the theoretical picture of a weakly
interacting Bose glass phase at small U/J values going through a phase transition to
a Superfluid phase at intermediate interaction and disorder strengths. Finally, there
is a strongly interacting Mott insulating phase present at commensurate densities, to
the right of the dashed line in fig I.3 a, as calculated by DMRG for the same model
at T = 0 [92]. The other insulating region is then a Bose glass phase, as confirmed
by further measurements by D’Errico et al. [88], which we do not show here for lack
of space.

7



8 Chapter I. Introduction

1.4 Magnetic insulators in the presence of an external mag-
netic field

Magnetic insulators are great new materials to test condensed matter physics
phenomena. Gapped quantum magnets with non-magnetic ground-states have been
proven to show a field-induced phase transition to a Bose-Einstein condensed phase of
magnetic triplon excitations [93, 94] (for a review cf. [95, 96]). In particular, organic
transition metal halogenides have been showed to be disorder-free realizations of
quantum spin models [97–100], their magnetic energy scales making them much more
accessible to experimental realizations than the historic oxide systems. If randomness
is present, disordered quantum magnets have shown a wide range of interesting
phenomena such as the the order-by-disorder mechanism induced by impurities in
spin-gap compounds [101–103], the random-singlet phase [104, 105], and non-trivial
excitations [106–111] and transport [112, 113] properties.

Disorder is introduced in these systems via doping of the parent compound, i.e.
by a low concentration chemical modification of the parent compound, as illustrated
in figure I.4 for DTN where Cl− anions are replaced by Br− ones in the crystalline
structure, yielding a modified coupling between the Ni2+ cations. Transition metal
halogenides with organic ligands with very different structures, geometries and di-
mensionalities, on which such dopings are possible have been discovered. Among
these there are spin chains [115–120], spin ladders [121–126], 2D [99, 127–131] and
3D [132] spin networks, and even geometrically frustrated systems [133], making

Figure I.4: Panel a): Body-centered tetragonal arrangement of S = 1-carrying
Ni2+ and the Cl− ions connecting them in DTN. Panel b) Doping of DTN by Br−
ions which randomly replace Cl− ions, creating an random effective coupling J ′

c 6= Jc
between the Ni2+ ions . Taken from Ref. [114] .
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1. Experimental realizations of the transition 9

magnetic insulators very powerful and versatile quantum simulators of disordered
physics. Furthermore, one distinct advantage of magnetic insulators is that cold
neutron scattering studies [134] can be performed on them giving direct access to
the complex BEC order parameter, in particular its square modulus which is pro-
portional to the antiferromagnetic Bragg peaks [114].

Three organic materials where a magnetic Bose glass phase has been observed are
(CH3)2CHNH3CuCl3 (IPACuCl3), (C4H12N2)Cu2Cl6 (PHCC) and NiCl2·4SC(NH2)2
(DTN). IPACuCl3 is a system of weakly coupled strung-rung spin ladders [126] with
a critical magnetic field for long-range magnetic ordering Hc ∼ 10T [135] and triclinic
symmetry. It has been studied by electron spin resonance (ESR) [136], thermody-
namic measurements [135], neutron diffraction [137] and neutron spectroscopy [138].
Its triclinic symmetry makes it potentially subject to a U(1) symmetry-breaking
anisotropy which could make it impossible to see a magnetically long-range ordered
state [139]. DTN, on the other hand, is a S = 1 system with large easy-plane single-
ion anisotropy with tetragonal crystalline structure so the axial U(1) symmetry is
preserved when the magnetic field is applied along the c axis, cf. figure I.4.

There are evidences of a magnetic Bose glass phase in Br doped IPACuCl3 [140,
141] and DTN [142, 143]. This Bose glass phase has no magnetic long-range order
(equivalent to an insulating phase) and finite magnetic susceptibility (equivalent to
a finite compressibility). Figure I.5 shows the magnetization and magnetic suscep-
tibility as a function of the applied magnetic field (panel a) at 500mK for the clean
IPACuCl3 (solid lines) and the Br-doped IPACuCl3 with doping parameter x = 0.05
(symbols). The antiferromagnetic Bragg peak intensity vs. the magnetic field at
600mK for the same systems is shown in panel b with the same graphical conven-
tions. The clean IPACuCl3 susceptibility is vanishing (or very small) for magnetic
fields up to Hc = 9.8 T, and jumps abruptly to a finite value for larger magnetic
fields. The appearance of the Bragg peak happens at exactly the same magnetic
fiield H = Hc. There is then a gapped phase with no transverse long-range order
for fields H < Hc, equivalent to a Mott Insulating phase. For higher fields H > Hc

a long-range ordered phase with finite susceptibility i.e. a BEC phase is present.
The situation is not the same for the Br-doped IPACuCl3: for low fields there is
an almost vanishing susceptibility up to H = Hc, but it smoothly increases up to a
saturation value at H = H ′ = 11 T, while no Bragg peak develops in the interval
H ∈ [Hc;H ′]. For higher magnetic fields, an antiferromagnetic Bragg peak with
intensity growing in the same way as for the clean IPACuCl3 is present and there is
a finite magnetic susceptibility: the system is in the BEC phase. Coming back to
the system for intermediate fields Hc < H < H ′, there is a finite susceptibility, i.e. a
finite compressibility, and no transverse long-range order: the system is in the Bose
glass phase.

9



10 Chapter I. Introduction

a)

b)

Figure I.5: Panel a): Field dependence of magnetization (Boson den-
sity), in blue, and susceptibility (compressibility of the Bose gas), in or-
ange, as measured in the clean (CH3)2CHNH3CuCl3 (solid lines) and the doped
(CH3)2CHNH3Cu(Cl(1−x)Brx)3, x = 0.05 (symbols) magnetic insulators. Panel b)
Field dependencies of intensity of the antiferromagnetic Bragg peaks (square of the
BEC order parameter) in the two respective materials. Data obtained in Ref. [140].
The figure is taken from Ref. [114].

2 Theoretical results

In this section we will explore some of the main theoretical considerations, predic-
tions and findings that followed the discovery of the Superfluid - Insulator transition
discovery in 2D as reported in the previous section. First, we will briefly introduce
the paradigmatic model capturing the effects of interactions in clean bosonic sys-
tems, namely the Bose Hubbard model. Following this, we will explain the different
questions relative to the inclusion of disorder in the model, yielding the disordered
Bose-Hubbard model. It is worth mentioning that some of the results presented have

10



2. Theoretical results 11

been obtained with two related models. One is the Quantum Rotors model which
is the equivalent of the Bose-Hubbard model in the limit of very large integer fill-
ings [144]. The second one is hard-core Bose-Hubbard model, i.e. the limit of infinite
on-site repulsion between the bosons (V → ∞ in (I.2)), which we will actually use
in our study of the SF-BG transition in the subsequent chapters of this thesis work.

2.1 Bose-Hubbard model phase diagram in the clean system
The clean Bose-Hubbard model describes the physics of interacting bosons in a

lattice. It has two competing ingredients: (i) the kinetic energy, which tends to
delocalize the bosons and is characterised by a hopping parameter J . It tends to
stabilise the superfluid phase. (ii) Interactions, in the form of on-site interactions
characterized by a parameter V . They tend to localize the bosons on each site stabi-
lizing a Mott insulating phase at strong interactions. We stress the very important
fact that interactions are short-ranged in this model (on-site repulsion), the case of
Coulomb interactions (long-range) is in a different universality class [6, 145, 146].
Following Fisher et al. [6], we can write the model by the Hamiltonian:

HBH = −
∑
i

(µ+ δµi)ni + V

2
∑
i

ni(ni − 1)− J

2
∑
<i,j>

(
b†ibj + b†jbi

)
, (I.2)

where bi (b†i ) is the bosonic annihilation (creation) operator on site i, ni = b†ibi is
the bosonic number operator on site i, and the chemical potential has an average µ
fixing the average occupation and a random component δµi for each site i modelling
disorder. In the clean system δµi = 0. Disorder is introduced by δµi uniformly
distributed in [−∆; ∆], the parameter ∆ controlling the disorder strength (i.e. the
impurity concentration in an experiment).

Fisher et al. established the phase diagram of the clean Bose-Hubbard model (I.2)
finding two different phases. A compressible and delocalized superfluid phase for
dominant kinetic energy regimes (large J/V ) and a series of localized incompressible
Mott insulating phases with integer fillings at large interaction values. The phase
diagram they find is shown in panel a of figure I.6. The successive Mott lobes with
fixed ni = 1, 2, 3, . . . (controlled by the average chemical potential µ) for low enough
J/V are visible. If the system has sites with N bosons and others with N + 1, N
being an integer number, the “excess” particles (i.e. on sites with N + 1 bosons) can
hop around in the lattice without energy cost, regardless of the strength of J so at
T = 0 those particles (or holes) will Bose condense and be in the superfluid state.
This happens at chemical potentials such as µ/V = N and the SF phase exists for
arbitrary J at this values of µ/V . Similarly, the excitations in the Nth Mott lobe
are the addition of a particle (hole) to the system by increasing (decreasing) µ/V ,
and for a given J > 0 the kinetic energy gained by delocalizing an extra particle
above the insulating background with N bosons per site will eventually exceed the

11



12 Chapter I. Introduction

a) b)

Figure I.6: Panel a: Qualitative phase diagram of the clean Bose-Hubbard
model (I.2) in the µ − J plane . Panel b: Most likely qualitative phase diagram
of the disordered Bose-Hubbard model with with disorder on the chemical poten-
tial µ + δµi, with µ the average chemical potential and δµi uniformly distributed
in [−∆; ∆]. Taken From Fisher et al. [6].

associated potential energy cost. This will occur more rapidly (i.e. a smaller increase
in µ/V ) as J is bigger and hence the lobe form of the Mott Insulating phases and the
presence of a a finite energy gap for particle (hole) excitations in the Mott lobe which
decreases with increasing J and vanishes at the tip of the lobe. This also means that
the phase transition between the MI and the SF states occurs at continuous density
variations.

2.2 Direct Superfluid - Mott Insulator transition in presence
of disorder?

In their seminal paper Fisher et al. [6] also depicted some qualitative features
of the disordered Bose-Hubbard model. They showed that the bounded disorder
δµi ∈ [−∆; ∆] only reduces the spread of the ideal Mott lobes at J = 0 from
[N − 1;N ] to [N − 1 + ∆

V
;N − ∆

V
] for the Nth lobe. Another insulating phase

(because everything is localized at J = 0), namely the Bose glass [11] fills-in the
phase diagram and extends also for small hoppings. As a consequence, in the case
of strong enough disorder ∆ > V/2 the Mott phase completely disappears at J = 0
and there is only a transition from Bose glass to superfluid as J/V increases. It is
worth mentioning that V/2 is the half-width of the energy gap of the disorder-free
Mott Insulator at J = 0, Eg/2(J = 0). The strong disorder regime for J > 0 is such
that ∆ > Eg/2(J) which decreases with J (cf. section 2.1).

12



2. Theoretical results 13

In the case of weak disorder ∆ < Eg/2(J), the possibility of a direct Mott Insu-
lator – Superfluid transition is not ruled out. At the boundary of the Mott lobe the
discussion for the clean case in section 2.1 still holds and there still is a finite energy
gap for particle-hole excitations and so the superfluid correlations decay exponen-
tially at the boundary too. Just outside the boundary the excess bosons (holes) have
very low densities and are spaced by more than the superfluid correlation length of
the background (of density N) and do not interact though it, occupying only low
lying excited states which are localized by the disorder. This means the transition is
to a localized Bose glass phase.

Nevertheless, there remains the question of the vicinity of the tip of the Mott
lobes which are multi-critical points. At exactly the tip of the lobes the particle-hole
excitations gap vanishes and just outside the tip these excitations could create a
superfluid state, although Fisher et al. claim this is very unlikely leaving the most
likely scenario of an intervening Bose glass phase even for weak disorders , as shown
in panel b of figure I.6.

These qualitative results called for more quantitative studies to check the rele-
vance of weak disorder (in the renormalization-group sense) for the pure Mott in-
sulator – Superfluid transition. A number of teams carried out such studies using
real space renormalization-group schemes and found that strong disorder is rele-
vant [147, 148] in agreement with Fisher et al. [6]. In the decade following the
appearance of Ref. [6] a big controversy around the possibility of a direct MI-SF
transition developed with many studies observing a direct transition via numeri-
cal results such as QMC [149, 150] and DMRG [151], and via approximative meth-
ods [147, 148, 152–154]. Another number of teams observed an absence of direct tran-
sition by strong coupling expansions [155], analytical dual theory studies [156, 157],
renormalization-group analysis [158], QMC simulations [159–164] and double ε ex-
pansions [165]. It was argued that the observation of a direct transition in QMC
simulations come from the finite-size of the systems considered which are too small
to be able to capture rare regions effects.

This debate was settled by Pollet et al. in 2009, exactly one decade after Fisher
et al. original work. In their paper [166] they demonstrated the existence of the
so called “Theorem of inclusions” which states that for any disorder-driven phase
transition between phase A at weak disorder and phase B at strong disorder, de-
pending on the bound and the distribution function of disorder, there are always
arbitrarily large (although exponentially rare) regions of phase A in phase B and
vice versa, hence the name of theorem of inclusions. The main supposition of the
theorem, based on the existence of Lifshitz regions [167] near the transition, is that
the position of the critical disorder depends on the distribution of disorder [168],
characterized by a generic parameter λ (e.g. one of its cumulants, like the variance
or its spatial correlations). Inside the strong disorder phase B, there are local regions
were disorder is smaller than the bound and will locally be in phase A, these regions
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14 Chapter I. Introduction

are exponentially rare and exponentially large [167]. The fact that the location of the
transition point depends on λ ensures that close to the transition but inside phase
A, it is always possible to define a model with slightly different disorder distribution
(i.e. a different λ′) such that the transition point is shifted towards lower values
(∆c(λ

′) < ∆c(λ)) and the system is locally in phase B for the new model. As a
consequence, if the phase A is gapless, phase B will be gapless as well since it has
exponentially large regions inside of it that are in the gapless phase A. This rules
out the possibility of a transition between the gapless superfluid and the gapped
Mott Insulator even for an arbitrarily weak disorder. The Bose glass phase always
intervenes and the qualitative phase diagram by Fisher et al. in figure I.6 b is the
correct one.

It is worth noting that the theorem of inclusions forbids transitions between
gapped and gapless phases, so it would seem that the transition from Bose glass to
Mott Insulator is not possible. This apparent contradiction is lifted by the fact that
this transition does not fulfil the main supposition of the theorem and hence the
latter does not apply in this case [166, 168]. The MI-BG has to be [166, 168] of the
Griffiths’ type [169, 170], as originally conjectured by Fisher et al. [6], and there are
evidences that it should happen for a disorder strength ∆ = Eg/2(J, V ) [166, 168],
which does not depend on the disorder distribution. The fact that the transition is
of the Griffiths type necessarily means that macroscopically large systems have to be
studied by definition of the Griffith’s regions, which makes it impossible for present
day simulations and experiments to observe the MI-BG transition [168, 171].

2.3 Critical exponents for the SF-BG transition

In their seminal work, Fisher et al. extended the Josephson relations [172] for
classical phase transitions driven by thermal fluctuations to get a hyperscaling rela-
tion for quantum (T = 0) phase transitions where quantum fluctuations drive the
system from one phase to the other, yielding:

2β = (d+ z − 2 + η)ν (I.3)

with β the order parameter exponent, z the dynamical exponent, d the dimension-
ality, η the anomalous exponent and ν the correlation length exponent. It is worth
noting that compared with classical Josephson relations [172], the dimensionality d
is replaced by d + z here [6]. Some bounds for the critical exponents of the SF-BG
transition were derived and this section will briefly present their arguments using the
notations in Ref. [6]. In particular, δ will denote the distance to the critical point.

14



2. Theoretical results 15

2.3.1 Correlation length exponent ν and anomalous exponent η

i) The Correlation length exponent ν

The correlation length exponent is defined by the power law divergence near the
critical point of the correlation length:

ξ ∼ δ−ν . (I.4)

An important question addressed by Harris in the seventies is to know whether
the inclusion of disorder will induce a smearing of the transition, instead of the sharp
well-behaved transition for the pure system [173]. Let us consider a disordered system
at a distance δ from its critical point. This fixes the correlation length of the system
as in equation (I.4), and the system can be thought of as independent subsystems
of volume ξd (provided interactions are short-ranged and correlations decay faster
than a power-law), each having a critical parameter, say a critical temperature T ic .
By virtue of the central limit theorem, the spread of such critical temperatures ∆Tc
scales as ∆Tc ∼ ξ−d/2. Now, for the system to have a sharp phase transition, it is
required that the spread of critical temperatures ∆Tc goes to zero faster than δ when
approaching the transition, i.e. :

lim
δ→0

∆Tc
δ

= 0⇔ lim
ξ→∞

∆Tc
δ

= 0. (I.5)

Since
∆Tc
δ
∼ ξ−d/2

ξ−1/ν = ξ−d/2+1/ν , (I.6)

is required to vanish as ξ → ∞ the exponent has to be negative: −d/2 + 1/ν < 0,
which yields a lower bound for the correlation length exponent

ν ≥ 2
d
. (I.7)

This inequality is known as the Harris criterion [173]. This criterion was later ex-
tended to the case of quantum phase transitions and shown to hold as well by Chayes
et al. [174] for any system with independent bond or site disorder.

In a more recent work, Pázmándi et al. note that this criterion actually concerns
the finite size scaling exponent νFS related to a new diverging length scale. This
length scales is introduced by the standard averaging procedure which produces a
noise and νFS may be unrelated to the intrinsic exponent ν of the system under
investigation. They claim that when ν > 2/d the standard procedure can access
the intrinsic ν and when the intrinsic ν < 2/d, typically νFS = 2/d and there is a
break-down of self-averaging [175].
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16 Chapter I. Introduction

ii) Concerning the anomalous exponent η

The anomalous exponent is defined by the power in the power law divergence at
criticality of the order-parameter susceptibility

χ̄(r, τ) ≡ 〈TτΦr(τ)Φ†0(0)〉 − 〈Φr(τ)〉〈Φ0(0)〉, (I.8)

where Φr(τ) is the order-parameter field at point r and imaginary time τ , 〈O〉 is

the ground-state expectation value of operator O and the overbar denotes average
over disorder. This susceptibility scales at criticality, for long distances r →∞ and
long times τ →∞, as:

χ̄(r, τ) ∼ r−(d+z−2+η)g(r/ξ, τ/ξz) (I.9)

with g a universal scaling function. The following analysis is based on the behaviour
of the single-particle density of states at energy ε, ρ1(ε) which related to the imaginary
time Green’s function by a Laplace transform [6]. It can then be shown that in the
entire Bose glass phase ρ1(ε = 0) is a constant implying that for long imaginary times
on-site imaginary times Green’s function decays as G(r = 0, τ →∞) ∼ ρ1(0)/τ , and
finally:

ρ1(ε = 0) ∼ ξ2−d−η. (I.10)

Similarly, at the critical point the single-particle density of states follows the
scaling [6]:

ρ1(ε) ∼ ε−(2−d−η)/z. (I.11)
Moreover, in the Superfluid phase the long-time behaviour of the imaginary time
on-site Green’s function reads G(r = 0, τ → ∞) = M2, where M = 〈Φ〉 is the
ground-state expectation value of the order parameter (which scales as M ∼ δβ).
This can be shown to bring about that in the Superfluid phase the single-particle
density of states has a zero-energy contribution [6]:

ρ1(ε) ∼M2δ(ε). (I.12)

Finally, combining eqs. I.10, I.11 and I.12, one can state on physical grounds that
starting from the BG phase, ρ1(0) grows as the transition is approached owing to
precursor superfluid fluctuations and diverges at the critical point to finally satisfy
the δ-peak behaviour in the SF phase. This constraints the power in eq. I.11 to be
negative and finally:

η ≤ 2− d. (I.13)
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2.3.2 Dynamical exponent z

Concerning the dynamical exponent, the original work by Fisher finds an ex-
act equality based on the free energy excess by applying a twist to the boundary
conditions in both the real space and imaginary time directions. We will present
their arguments following the reformulation by Weichman and Mukhopadhyay [176].
Upon a twist on the boundary conditions in the real space direction, the free energy
density is changed as:

∆f~x = Υ
2βV

∫ β

0
dτ
∫
ddx|∇φ(~x, τ)|2 (I.14)

defining the helicity modulus Υ (proportional to the superfluid density [177]), where
V is the volume in d dimensions, β is the inverse temperature and φ is the phase
of the order parameter. Since the gradient of φ is an inverse length, it should then
scale as the inverse correlation length, i.e. as ξ−1 ∼ δν . The quantum hyperscaling
relation (I.3) (where d is replaced by d+z) implies [6] that by definition, the diverging
part of the free energy density fs scales as fs ∼ δν(d+z). Hence, ∆f~x has to follow
the same scaling law and the helicity modulus forcefully, in order for this scaling to
be fulfilled, scales as:

Υ ∼ δ(d+z)ν−2ν = δν(d+z−2). (I.15)

Similarly, the compressibility κ = −∂2f
∂µ2 quantifies the response to a change in

the chemical potential µ. The Josephson relation connects the changes in chem-
ical potential to the imaginary time derivative of the order parameter [6], so the
compressibility κ can be understood as the helicity modulus in the imaginary time
direction and will be related to the change in free energy density along this direction
by:

∆fτ = κ

2βV

∫ β

0
dτ
∫
ddx(∂τΦ(~x, τ))2. (I.16)

Now the time derivative of Φ has the dimensions of an inverse imaginary time and
hence should scale as the inverse correlation length on imaginary time, i.e. as
ξ−1
τ ξ−z ∼ δzν by the definition of the dynamical exponent z. If this change in free en-
ergy density is included in its singular part, which scales as ν(d+z), one immediately
recovers, by the exact same arguments as for the helicity modulus, that:

κ ∼ δ(d+z)ν−2zν = δν(d−z). (I.17)

The fact that the both Superfluid and Bose glass phases have finite compressibility
leads to [6] the critical point also having a finite compressibility on physical grounds.
This means that the scaling exponent for κ in (I.17) is identically vanishing, and
finally:

z = d. (I.18)
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Although this predictions were believed to be correct for a long time, with several
studies comforting them [6, 157, 178–180] for d = 1,2 and 3, there were some studies
which found results in violation of the equality (I.18) [160, 181, 182]. This motivated
Weichman and Mukhopadhyay [176] to reconsider the above mentioned theoretical
arguments. They noted that for a twist in the boundary conditions to generate a
change in free energy ∆f (associated to a helicity modulus) big enough to produce a
non-zero helicity modulus, i.e. for ∆f to be singular, the twisted boundary conditions
needs to break a fundamental symmetry of the model. In this case the twist will
create relevant terms (in the sense of the renormalization-group) associated with a
new diverging scaling variable in the singular part of the free energy density which
dominates all the other contributions to ∆f . However, if no symmetry is broken there
is no new diverging scaling variable and the only effect of the twist will be shifting the
already present parameters. The associated helicity modulus is not singular and will
be therefore dominated by the analytic part of the free energy density, the singular
part giving a contribution which vanishes at the critical point.

Following this analysis, the twist to the boundary conditions in real space breaks
the translational symmetry (which is restored in average for a disordered system)
and the scaling for the helicity modulus (I.15) is valid. Nevertheless, in the case of
a twist to the imaginary time boundary conditions, the presence of a non-vanishing
chemical potential already breaks the time reversal symmetry and the twist does not
break any symmetry. This means that the scaling law for the associated helicity
modulus, i.e. the compressibility κ in eq. (I.17) does not hold and the singular part
of the free energy density gives a vanishing contribution to κ at criticality. This
implies that the exponent in (I.17) is positive and the equality z = d turns into the
inequality

z < d, (I.19)

in agreement with the 2D results of Refs. [160, 181, 182].

2.4 The nature of the Bose glass phase and physical scenario
for the transition

In section 2.2, we presented the theorem of inclusions [166] which applies to the
Superfluid - Bose glass transition for generic dimension d. It establishes the absence
of a direct Superfluid - Mott Insulator transition in presence of an arbitrary bounded
disorder. It states that near the transition in one phase there are always arbitrarily
large, though exponentially rare, regions of the competing phase. Such a description
of the critical region of the transition naturally gives rise to a description of the
Bose glass phase as consisting in disconnected superfluid clusters in an insulating
background. The superfluid clusters confer the Bose glass its compressible nature
and the lack of global phase coherence between the clusters explains the insulating
behaviour.
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Furthermore, the transition to the superfluid regime is described often as a per-
colation transition where the onset of superfluidity at criticality is given by the ap-
pearance of a percolating superfluid cluster allowing for macroscopic phase coherence
and superfluid transport properties [183]. Such a description has been used in sev-
eral theoretical [171, 184–187] and experimental [83, 91, 188] studies which find that
superfluidity disappears exactly at the percolation threshold. Other studies have put
forward a quantum percolation scenario where even when no percolating superfluid
cluster is present in the system, quantum tunnelling between disconnected clusters
allows for an effective density to be above the threshold and percolate through the
system [189–193].

The experimental analysis of Krinner et al. [83] in a system of ultracold unitary
Fermi gas of 6Li confined along one direction at the middle of the cloud to form a
quasi-2D channel linking two particle reservoirs (the channel length is small compared
to the cloud which keeps the chemical potential fixed). They introduce disorder by
using speckle potentials with average disorder strength V̄ and a correlation energy
Eσ = ~2/mσ2, where σ is the disorder correlation length. The experimental values
of the parameters are such that there is no Anderson localization of individual atoms
at weak disorder and the binding energy of pairs Eb = 2.4Eσ so that pairing is
affected by disorder. This is to check whether a bosonic or fermioninc mechanism of
destruction of superfluidity is in action.

They measure the ratio of absolute resistances r = RSIF/RWIF, of the strongly
interacting (where pairing is important) and weakly interacting (no pairing) Fermi
gases in the exact same setup and realization of disorder. This quantity measures
the effect of pairing and hence of superfluidity as compared to the ideal Fermi gas.
They report, as shown in figure I.7, that for the lowest disordered the absolute re-
sistance of the paired gas RSIF is unmeasurably low, confirming the superfluid state.
Upon increasing disorder they see that r rapidly grows until V̄ /µ ∼ 0.7. Such a fast
increase is incompatible with simple diffusion and indicates a superfluid flow [62, 82].
Cranking up disorder even more induces a more slow increase of r and it seems to
saturate to a value very close to one. This indicates that in the strongly disordered
regime transport is dominated by single atom physics and superfluidity has been de-
stroyed [62, 82]. The offset of superfluidity, corresponding to the change in behaviour
in r, happens very close to the theoretical percolation threshold for the potential felt
by the tightly bound point-like pairs V̄perc = 0.95µ [54]. These observations lead
to a picture where a percolation process drives the localizaion of pairs, destroying
superfluidity before disorder unbinds the pairs. The in-situ density profiles show frag-
mentation at exactly the same disorder strength, i.e. at the percolation threshold
further confirming this picture for the transition [83].
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r

Figure I.7: Evolution of the ratio of absolute resistances of the strongly and weakly
interacting Fermi gas r = RSIF/RWIF with disorder strength in units of the chemical
potential V̄ /µ. The dashed-dotted red line shows that r ≈ 1 in the strongly disordered
regime V̄ > µ. The dashed black line shows the theoretical percolation threshold for
the potential felt by the tightly bound point-like pairs V̄perc = 0.95µ. Taken from
Ref. [83].

2.5 Order parameter distribution in disordered supercon-
ductors

While the order-parameter for the Superfluid - Insulator transition (SIT) and
the critical exponents governing it have been extensively studied, the local order-
parameter distribution (OPD) is another important and very interesting feature of
the SIT having received much less attention. On the theoretical side, the SIT of
disordered superconducting films has been predicted to present glassy behaviour of
the superconducting state close to the SIT [194, 195] by the cavity Mean-Field ap-
proach. The emergence of a universal power-law decay of the probability distribution
of the local order-parameter is hence brought about by the glassy physics. However,
these results on the infinite-dimensionnal Cayley tree may not translate to finite di-
mensions. On the experimental side, Scanning Tunneling Spectroscopy (STS) is a
technique allowing for the measurement of the local density of states at atomic-scale
resolutions [196, 197]. It has recently been used to scan the local order-parameter
in homogeneously disordered supreconductors [28, 198–200] giving acces to its dis-
tribution, but no quantitative connection between theory and experiment was found
at that point, despite some efforts [198, 201].
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Figure I.8: Panel a: Evolution of the typical local order-parameter Styp and of the
distribution width σS with increasing disorder (or decreasing Styp) obtained by 2D
cavity Mean-Field, 2D Mean-Field and cavity Mean-Field on the bosonic model and by
two types of Bogolyubov-de Gennes theory for the fermionic model. For comparison,
the experimental points of the three NbN films of figure I.9 are shown as blue left
triangles. Panel b: Distribution of the rescaled variable RS of equation (I.20) obtained
by the same methods. A perfect collapse of the data for all 2D models is found and the
universal distribution is very well fitted by a Tracy-Widom distribution TW(−RS)
(blue dashed line). Taken from Ref. [30].

A breakthrough came with the work of Lemarié et al. [30], who investigate
theoretically the 2D SIT in both its fermionic and bosonic scenarios by prototype
models and compare their results to STS mesarements on three disordered samples of
NiN films. The fermionic model is studied using the Bogolyubov - de Gennes (BDG)
Mean-Field theory [202–204] which does not describe the SIT but already captures
several features of strongly disordered superconductors [203] The bosonic model is
studied by the 2D cavity Mean-Field approach [205]. The local order-parameter for
the fermionic model in BDG theory is connected to the local pairing amplitude ∆i

while in the 2D cavity Mean-Field of the bosonic model it is proportional to the local
transverse fields Bi of the equivalent XY model [30, 205]. Let us call the normalized
local order parameter in both cases Si. The main result of their work is that in both
fermionic and bosonic models the numerically obtained distributions of Si (i.e. the
OPD) can be universally rescaled by considering the rescaled variable

RS = lnS − lnStyp

σS
, (I.20)
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where S is the local order-parameter, Styp = exp(lnS) is the typical local order-
parameter with S denoting the average of S, and σ2

S = ln2 S − lnS2 is the variance
of lnS which characterizes the width of the distribution of S. The distributions
of this new variable collapse into a universal form describing both the fermionic
and the bosonic 2D results as shown in panel b of figure I.8. The universal law is
very well fitted by a Tracy-Widom distribution [206] with opposite asymmetry, i.e.
TW(−RS) [30] as evidenced by the blue dashed curve. The fact that the simulations
were carried out for a low value of the pairing interaction in the fermionic model
and that the fermionic data collapses onto the same behaviour as the bosonic one
supports the bosonic scenario of the SIT for which Cooper pairs get localized at the
SIT and not destroyed before that and electrons get localized afterwards.

Experimental STS measurements at 500 mK on three different different disordered
NbN films of thickness ∼ 50nm with critical temperatures Tc ∼ 1.65, 2.9 and 6.5 K
are also performed. For these systems, the measured local order parameter is the
average height of the coherence peaks at positive and negative bias over the normal
state conductance, denoted by hi [30]. The corresponding normalized experimental
local order-parameter is

Sexp
i ≡ hi

Max[h] , (I.21)

and the rescaled variable is defined as in equation (I.20).

Figure I.9: Panel a: Distribution of the normalized local order-parameter of three
disordered NbN films with critical temperatures Tc ∼1.65, 2.9 and 6.5 K. Panel b:
The same data for the NbN films plotted in terms of the rescale variable RS (I.20). A
very convincing collapse of the data onto the Tracy-Widom distribution with opposite
asymmetry (orange curve) is found. Taken from Ref. [30].
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Panel (a) of figure I.9 shows the distributions of the normalized local order-
parameter P (S) for the three disordered NbN films. As expected, the weight of
S ≈ 0 increases with increasing disorder as Tc is smaller [199]. The distributions of
the rescaled variables P (RS) are plotted in panel (b) of figure I.9. They all collapse
into a single curve that is very well fitted by the same opposite-asymmetry Tracy-
Widom distribution as the numerical data, as shown by the orange curve. This
proves that such a rescaling of the (OPD) describes both the experimental and the
theoretical data. The universal distribution has relevance in the insulating side of
the transition as well, as discussed in Refs. [205, 207].

3 Objectives of this work
This thesis focuses on the Superfluid - Bose glass transition in two dimensions

trying to answer some of the open questions raised in this introductory chapter. We
will concentrate our efforts on the transition for hard-core bosons in 2D, i.e. the
Bose-Hubbard model in the limit of diverging repulsive interactions U →∞. Three
different theoretical approaches will be used, namely a classical self-consistent Mean-
Field approach, a semi-classical approach where the classical solution is used as a
starting point to include quantum fluctuations in the form of non-interacting spin-
waves and finally the use of extensive Quantum Monte Carlo simulations using the
Stochastic Series expansion method. Each method has its degree of approximation
and presents some advantages compared to one another, allowing for a comprehensive
study of the properties of the Superfluid - Bose glass transition in 2D.
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26 Chapter II. Mean-Field theory of the SF-BG transition

This chapter presents a purely classical approach to the “dirty-boson” problem in
two dimensions on the square lattice. Although some early seminal studies by Ma et
al. showed that there is no destruction of long range order, i.e. no phase transition
to an insulting state at the Mean-Field level [8, 9], this study enables us to test our
method for calculating the classical quantities of interest, namely the superfluid and
the condensate densities, by comparing our findings to known results. In addition,
we present a new numerical way to compute the classical superfluid stiffness as a
random resistor network calculation. This is a very important step specially because
the semi-classical approach developed in chapter III uses these Mean-Field results
as a starting point. The Mean-Field theory for the disordered system developed
in this chapter goes beyond the first “naive” one consisting in extrapolating the
disorder-free Mean-Field solution to the disordered case and treats the problem self-
consistently. There are multiple ways to solve the resulting problem. We will use two
distinct ones to treat first, the Heisenberg model in the case of random couplings
and in presence of site dilution. The equivalence between the two used methods,
namely a first one where spin operators are simply viewed as 3D classical vectors
~S and a second one where spins are treated as two level systems (quantum spins)
but a Mean-Field decoupling is introduced and an iterative solution is found, will
be proven. Then the actual 2D hard-core boson problem will be tackled with with
random on-site chemical potentials taken from three different distributions, namely
a bimodal disorder distribution, a uniform disorder distribution centered around zero
and a uniform distribution entered around 0 but with a zero weight in 0,i.e. a zero
probability to find a vanishing local chemical potential, modelling disorder in the
system. The results for the superfluid stiffness and the BEC density are presented
in each case. Finally, a brief presentation on another more sophisticated Mean-Field
method possible for the treatment of the “dirty-boson” problem, the cavity Mean-
Field method, will be given despite its not being used in this Ph. D work.

1 Preliminary Studies
This first section presents the calculations of the superfluid stiffness with our two

Mean-Field approaches in the case of the two-dimensional Heisenberg model which
has been extensively studied both in the clean [208–215] and the disordered [216, 217]
cases for its connection to cuprates and high-Tc superconductivity [212] and for which
results are known. Two different types of randomness are studied in order to compare
our classical results to the known studies using Quantum Monte Carlo simulations.
The motivations behind this study are two-fold: on the one hand, the comparison
of our findings with known results in an ideal test for our method. On the other
hand, the computation of the classical superfluid stiffness ρsf which has not been
done before.

Bond randomness is first studied and then site dilution, linked to the percolation
problem, is investigated. In the case of bond disorder with singular distribution exact
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1. Preliminary Studies 27

QMC results by Laflorencie et al. show that there is no destruction of the long range
order [217] and the stiffness is exponentially suppressed by the bond randomness.
In the case of site dilution exact QMC results by Sandvik prove that the superfluid
stiffness vanishes exactly at the percolation threshold in the thermodynamic limit
with the classical percolation exponents governing the transition [216], though this
has been greatly debated [218, 219]. Now, we provide the first Mean-Field calculation
of the superfluid stiffness.

1.1 Heisenberg model with random exchange couplings
In this section we study the antiferromagnetic Heisenberg model with random

positive couplings on a square lattice of size N = L×L, defined by the Hamiltonian:

Hr =
∑
〈i,j〉

JijŜiŜj (II.1)

where 〈i, j〉 denotes a couple of nearest-neighbour sites and the couplings Jij are
chosen randomly from the singular distribution:

P (J) = δ−1

J (1− 1
δ

)
θ(J)θ(1− J) (II.2)

with θ(J) is the Heaviside distribution and δ the disorder parameter.
The appropriate way to compute the superfluid stiffness is by calculating the

helicity modulus in the presence of a twist to the boundary conditions [177] along
the x axis. It is the second derivative of the ground-state energy with respect to the
twist Φ in the boundary conditions:

ρsf = 3
2
∂2E0(Φ)
∂Φ2

∣∣∣∣∣
Φ=0

. (II.3)

This derivative is computed numerically using a small angle twist Φ and hence:

ρsf = 3E0(Φ)− E0(Φ = 0)
Φ2 = 3∆E0(Φ)

Φ2 . (II.4)

The inhomogeneity makes the problem quite difficult since the global twist angle Φ
will be distributed inequally along the disordered bonds, unlike the clean case for
which each of the L bonds along the twisted direction is twisted by an angle Φ/L.
Let us introduce now the two Mean-field methods used to solve this problem.

1.1.1 Spin operators as classical vectors

This method consists in replacing the spin-1
2 operators Ŝ by classical 3D vectors:

~Si = 1
2

sin θi cosϕi
sin θi sinϕi

cos θi

 . (II.5)
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28 Chapter II. Mean-Field theory of the SF-BG transition

Since the twist is applied on the transverse direction to the quantization axis z, the
energy difference does not involve the z component and one can safely neglect them
for the computation of the superfluid stiffness. The next step is noting that there is
rotational invariance along the z axis and in the case of no twist, one can fix all the
angles ϕi = 0. The initial antiferromagnetic problem Jij > 0 can be mapped to a
ferromagnetic one Jij < 0 by a rotating by an angle of π every other spin. We shall
now study this case. The Hamiltonian (II.1) is then simply written:

Hr(Φ = 0) = −
∑
〈i,j〉

JijS
x
i S

x
j = −

∑
〈i,j〉

Jij
4 sin θi sin θj, (II.6)

it immediately follows that θi = π
2 minimizes the Hamiltonian (II.6) and the

Mean-Field ground-state energy in the case of periodic boundary conditions is given
by:

E0(Φ = 0) = −
∑
〈i,j〉

Jij
4 . (II.7)

Let us note at this point that If the minimization of this classical energy in terms
of the angles θi is not trivial (as will be the case for the hard-core bosons model
considered in section 2) it has to be computed numerically. We can do so by means
of the Newton-Raphson method using the mnewt subroutine of Ref. [220].

In the presence of a twist to the boundary conditions, the rotation invariance
with respect to the axis z is broken and ϕi 6= 0. The Hamiltonian (II.1) becomes in
this case:

Hr(Φ) = −
∑
〈i,j〉

Jij(Sxi Sxj + Syi S
y
j ) = −

∑
〈i,j〉

Jij
4 sin θi sin θj cos(ϕi − ϕj), (II.8)

In order to compute superfluid stiffness, we write the energy difference induced
by the twist Φ:

∆E0(Φ) = E0(Φ)− E0(Φ = 0) = −
∑
〈i,j〉

Jij
4 sin θi sin θj(cos(ϕi − ϕj)− 1), (II.9)

which in the limit of vanishing twist is approximated by:

∆E0(Φ) ≈
∑
〈i,j〉

Jij
8 sin θi sin θj(ϕi − ϕj)2. (II.10)

This energy difference has to be minimal in the ground-state. Paramekanti, Trivedi
and Randeria [221] showed that the problem of minimizing the energy cost of ap-
plying a twist to the boundaries of the system with disordered links is analogous
to calculating the energy dissipated by Joules effect by a network of random ohmic
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conductors of resistance Rij = 1
sin θi sin θj . In this picture, the global twist Φ corre-

sponds to the potential difference between the two edges of the system. The global
superfluid stiffness is then the equivalent network conductance. The global twist
being very small, it is natural to assume that the angles {ϕi} and their differences
are also very small, and applying such a twist does not change the angles θi to first
approximation.

Minimizing with respect to the set of angles {ϕi} (i.e. allowing for phase relax-
ation) yields the set of N coupled equations:

∀i,
∑
〈j〉i

Jij sin θi sin θj(ϕi − ϕj) = 0, (II.11)

where the sum runs over all sites j that are nearest-neighbours with i. These equa-
tions are then solved by calculating the LU decomposition of the corresponding ma-
trix and hence inverting the system. This is done with the help of subroutines taken
from Ref. [220] and we get the set of angles {ϕi}. Now we can compute ∆E0(Φ) and
extract the superfluid stiffness by virtue of equation (II.4).

1.1.2 Iterative Mean-Field

In this section we will introduce the iterative Mean-Field solution for the Heisen-
berg model with random couplings (II.1). When no twist is present, the Mean-Field
solution given by equation (II.7) still holds and will be used to compute the energy
cost of applying the global twist to the boundary conditions, which is equivalent
to having complex couplings along the twisted direction keeping periodic boundary
conditions (cf. section 2 of appendix B). We will hence work with the Hamiltonian:

Hr, 2 =−
∑
i

Jii+ŷ(Sxi Sxi+ŷ + Syi+ŷS
y
i )−

∑
i

Jii+x̂ cos(Φ
L

)(Sxi Sxi+x̂ + Syi S
y
i+x̂)

−
∑
i

Jii+x̂ sin(Φ
L

)(Syi Sxi+x̂ − Sxi S
y
i+x̂)

(II.12)

To calculate the Mean-Field energy of the twisted ground-state, the starting point
of this method is to perform the usual Mean-Field decoupling for the operators:

S
x/y
i S

x/y
j = S

x/y
i 〈S

x/y
j 〉+ 〈Sx/yi 〉S

x/y
j − 〈Sx/yi 〉〈S

x/y
j 〉 (II.13)

This method treats the spin operators as two level systems (cf. appendix A). Ap-
plying this decoupling one gets after a few steps (cf. appendix A):

Hr, 2 =
∑
i

hi

+
∑
i

{
〈Sxi 〉

[
Ji+ŷ〈Sxi+ŷ〉+ Ji+x̂ cos(Φ

L
)〈Sxi+x̂〉 − Ji+x̂ sin(Φ

L
)〈Syi+x̂〉

]

+〈Syi 〉
[
Ji+ŷ〈Syi+ŷ〉+ Ji+x̂ cos(Φ

L
)〈Syi+x̂〉+ Ji+x̂ sin(Φ

L
)〈Sxi+x̂〉

]} (II.14)
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where we have defined:

∀i, hi = −Bx
i S

x
i −B

y
i S

y
i (II.15)

and



Bx
i =

[
Jii+ŷ〈Sxi+ŷ〉+ Jii−ŷ〈Sxi−ŷ〉+ cos(Φ

L
)(Jii+x̂〈Sxi+x̂〉+ Jii−x̂〈Sxi−x̂〉)

+ sin(Φ
L

)(Jii−x̂〈Syi−x̂〉 − Jii+x̂〈S
y
i+x̂〉)

]

By
i =

[
Jii+ŷ〈Syi+ŷ〉+ Jii−ŷ〈Syi−ŷ〉+ cos(Φ

L
)(Jii+x̂〈Syi+x̂〉+ Jii−x̂〈Syi−x̂〉)

+ sin(Φ
L

)(Jii+x̂〈Sxi+x̂〉 − Jii−x̂〈S
y
i−x̂〉)

]
.

(II.16)

After a few steps (cf. appendix A) we get the ground-state Mean-Field expecta-
tion value:

〈Hr, 2〉 =−
∑
i

√
Bx
i

2 +By
i

2

2 +
∑
i

 Bx
i

4
√
Bx
i

2 +By
i

2

 Jii+ŷB
x
i+ŷ√

Bx
i+ŷ

2 +By
i+ŷ

2

+ cos(Φ
L

) Jii+x̂B
x
i+x̂√

Bx
i+x̂

2 +By
i+x̂

2
− sin(Φ

L
) Jii+x̂B

y
i+x̂√

Bx
i+x̂

2 +By
i+x̂

2


+ By

i

4
√
Bx
i

2 +By
i

2

 Jii+ŷB
y
i+ŷ√

Bx
i+ŷ

2 +By
i+ŷ

2
+ cos(Φ

L
) Jii+x̂B

y
i+x̂√

Bx
i+x̂

2 +By
i+x̂

2

+ sin(Φ
L

) Jii+x̂B
x
i+x̂√

Bx
i+x̂

2 +By
i+x̂

2

 ,

(II.17)

and the self-consistency equations for the Bx/y
i :
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Bx
i =

Jii+ŷB
x
i+ŷ

2
√
Bx
i+ŷ

2 +By
i+ŷ

2
+

Jii−ŷB
x
i−ŷ

2
√
Bx
i−ŷ

2 +By
i−ŷ

2

+ cos(Φ
L

)
 Jii+x̂B

x
i+x̂

2
√
Bx
i+x̂

2 +By
i+x̂

2
+ Jii−x̂B

x
i−x̂

2
√
Bx
i−x̂

2 +By
i−x̂

2


+ sin(Φ

L
)
 Jii−x̂B

y
i−x̂

2
√
Bx
i−x̂

2 +By
i−x̂

2
−

Jii+x̂B
y
i+x̂

2
√
Bx
i+x̂

2 +By
i+x̂

2


By
i =

Jii+ŷB
y
i+ŷ

2
√
Bx
i+ŷ

2 +By
i+ŷ

2
+

Jii−ŷB
y
i−ŷ

2
√
Bx
i−ŷ

2 +By
i−ŷ

2

+ cos(Φ
L

)
 Jii+x̂B

y
i+x̂

2
√
Bx
i+x̂

2 +By
i+x̂

2
+ Jii−x̂B

y
i−x̂

2
√
Bx
i−x̂

2 +By
i−x̂

2


+ sin(Φ

L
)
 Jii+x̂B

x
i+x̂

2
√
Bx
i+x̂

2 +By
i+x̂

2
−

Jii−x̂B
x
i−x̂

2
√
Bx
i−x̂

2 +By
i−x̂

2



(II.18)

The self-consistency equations (II.18) can be solved iteratively to get the ground-
state values of the fields Bx/y

i , plug them into the expression for the ground-state
energy in the presence of the twist (II.17) and compute the energy cost of applying
the twist as well as the superfluid stiffness using equations (II.7) and (II.4). Note
that this explicitly allows for phase relaxation, a key ingredient of the calculation.

1.1.3 Results

Let us now present the results obtained for the superfluid stiffness of the Heisen-
berg model with random couplings taken from the distribution (II.2) using the direct
solution of the system of N -coupled equations for system sizes ranging from L = 10
to L = 32, and the iterative Mean-Field solution for system sizes ranging from
L = 24 to L = 128. It is worth stressing that the maximal system size the method
of considering spins as classical vectors can attain is L = 32 since it involves the
inversion of a N × N matrix. On the other hand, the iterative solution can reach
much bigger sizes and is much more efficient since it only involves iteratively solving
the self-consistency equations (II.18) which is much less costly in computational re-
sources. We deliberately chose to use both methods for the intermediate sizes L = 24
and L = 32 as a way to verify that both methods are equivalent, which is indeed
the case as can be seen in figure II.1, where the curves for these two sizes from the
two different methods are identical, numerically confirming their equivalency which
is proven in section 1 of appendix B . Figure II.1 shows the evolution of the super-
fluid stiffness, obtained by averaging over 2000 disorder realizations for every system
size, renormalized by its value in the clean case, as a function of increasing disorder
strength δ. The superfluid stiffness is exponentially suppressed and the data seem
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Figure II.1: Evolution of the superfluid stiffness of the Heisenberg model with ran-
dom exchange couplings (II.1) renormalized by its disorder-free value with disorder
strength δ as defined in eq. II.2. For the smallest system sizes the direct solving
method was used (L = 10 . . . 20). For the biggest sizes the iterative method was used
(L = 64 . . . 128) and for comparison the sizes L = 24 and L = 32 were solved using
both methods with identical results. The stiffness decreases exponentially as shown
by the fit (thick dashed line) to a form exp (−csδ) with cs = 0.680(5). The results
are in qualitative agreement with the QMC results by Laflorencie et al. in Ref. [217]
which follows a similar form but with coefficient cQMC

s = 1.60(2) as illustrated by the
thin black dashed line. The inset shows the distribution of the random bonds J (II.2)
for δ = 2 and δ = 5.

converged in size for L > 20. The data for δ > 2 is very well fitted by an exponential
decay of the form ρsf ∼ exp(−csδ) with cs = 0.680(5) which signifies that there is no
critical point for this model, as the stiffness will only vanish in the limit of infinite
disorder δ →∞.

Exact Quantum Monte Carlo simulations on the same model by Laflorencie et
al. [217], show the same exponential suppression of the superfluid stiffness with a
decay rate of cQMC

s = 1.60(2), as shown in figure II.1 by the thin black dashed line.
As expected, the Mean-Field treatments overestimate the XY order as the ignored
quantum fluctuations are known to destroy order. Our methods for calculating the
classical superfluid stiffness gives good qualitative and quantitative results and can
hence be reliably exploited for the purpose of the studies carried out in this thesis.
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1.2 Percolation and dilution in the Heisenberg model
We now focus our attention on the problem of site dilution in the Heisenberg

model (II.1). As noted in the introductory chapter, a percolation scenario for the
Superfluid - Bose glass transition has been put forward by several authors. This
motivated us to study the classical percolation problem associated to the model (II.1).
This problem was studied very precisely by Quantum Monte Carlo simulations by
Sandvik [216], who found that the quantum system is driven to an insulating state
at the percolation threshold x∗ = 0.4072538 [222, 223], with the critical exponents
of the classical percolation problem. Let us now solve this problem classically.

The two Mean-Field methods presented in sections 1.1.1 and 1.1.2 apply formally
in exactly the same way for this case, we just have to note that all bonds have the
same strength except for the 4 bonds linking a site that has been taken away from
the lattice to its neighbours, which are 0. We employ the iterative Mean-Field
resolution for system sizes up to L = 128. Averages over 1000 disorder realizations
were performed for system size L = 24, down to 400 disordered samples were used
for L = 128. We plot the superfluid stiffness rescaled by its disorder-free value
in figure II.2 in order to compare our classical results (for which in the clean case
ρsf = 0.25) and the QMC results by Sandvik (for the quantum clean case ρsf ≈
0.18). We can see the same behavior in both cases, with a linear decrease of the
superfluid stiffness for small dilutions, and an average stiffness that vanishes exactly
at the percolation threshold (vertical dashed line) at the thermodynamic limit. Some
small finite-size effects are present but the vanishing at the percolation threshold is
found beyond any doubt. The classical and quantum systems loose superfluidity
qualitatively and almost quantitatively in the same way. There is then a Superfluid -
Insulator transition for the Heisenberg model with site dilution driven by geometric
effectsfor both the quantum and classical cases [216].

The classical diluted Heisenberg model was studied by Harris et al. and they
found that its stiffness scales in the same way as the conductivity of a random
resistor network [224]. Furthermore, the scaling exponent t should be the one of the
percolation [224]. Hence near the percolation threshold [216, 222, 224–228],

ρsf(x∗ − x) ∼ (x∗ − x)t. (II.19)

The conductivity exponent for percolation is estimated to t = 1.310(1) [228]. In
order to check if our data is consistent with such a scaling, and whether the analogy
to the random resistor network holds, we plot the average stiffness renormalized
by its disorder-free value as a function of the distance to the percolation threshold
x∗−x) in log-log scale. This is shown in the inset of figure II.2 along with the scaling
form (II.19) (dashed-dotted black line) using the estimate of Ref. [228]. There are
some finite-size effects but as L grows the data comes closer to the predicted scaling
suggesting that it holds in the thermodynamic limit. However, the diluted quantum
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Figure II.2: Evolution of the superfluid stiffness of the Heisenberg model with site
dilution with the dilution factor x, using the iterative method. The stiffness decreases
linearly for small dilution factors and vanishes at exactly the percolation x = x∗

(indicated by the vertical dashed line). The black dots are the exact QMC results by
Sandvik taken from Ref. [216]. Inset: Log-log representation of the same stiffness
data near the percolation threshold. The X axis has been rescaled to x∗ − x. The
dashed-dotted line gives the scaling behaviour of the conductivity of a 2D percolating
resistor network near the percolation threshold ρsf ∼ (x∗−x)t with t = 1.310(1). The
data at the thermodynamic limit should be in good agreement with such a scaling.

Heisenberg model results by Sandvik extrapolated to the thermodynamic limit taken
from Ref. [216] do not scale as predicted and the analogy to the resistor network
breaks down as was already found in Ref. [216].

2 Hard-core bosons on the 2D square lattice

In this section we turn to the model of hard-core bosons on a square lattice of
size N = L× L, which represents the limit of infinite on-site repulsion of the Bose-
Hubbard model. This model has been shown to have a superfluid-insulator transition
by Quantum Monte Carlo studies [179]. The main goal of this section is to see
if our Mean-Field resolution can capture the Bose glass physics with two different
distributions of disorder, namely a box distribution and a bimodal distribution. This
model is governed by the Hamiltonian:
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H = −t
∑
〈i,j〉

(
b†ibj + b†jbi

)
−
∑
i

µini (II.20)

where ∑〈i,j〉 denotes the sum over all nearest neighbour pairs, t is the hopping am-
plitude between neighbouring sites, µi is the chemical potential on the site i, b†i and
bi are, respectively, the bosonic creation and annihilation operators on the ith site
and ni = b†ibi is the number operator, which follows the hard-core constraint ni = 0
or 1. The chemical potentials µi are quenched random variables taken from a given
distribution.

Since the hard-core nature of the bosons constraints the number of bosons per site
to either 0 or 1, this Hamiltonian can be mapped to a spin-1

2 Hamiltonian, which also
has only two possible states per site, by the Matsubara-Matsuda transformation [229]:


S+
i = b†i
S−i = bi

Szi = ni −
1
2 ,

(II.21)

which yields the XY Hamiltonian:

HXY = −1
2
∑
i

µi − 2t
∑
〈i,j〉

(Sxi Sxj + Syj S
y
i )−

∑
i

µiS
z
i . (II.22)

This will be the starting point for all our calculations. The order parameter in
the spin language is the XY magnetization mXY which is linked to the bosonic order
parameter, the Bose-Einstein condensate density by ρ0 = m2

XY . The presence of the
coherent Bose-Einstein condensate is translated to the spin language by spontaneous
long-range order in the XY plane.

2.1 Bimodal on-site disordered XY model
The Hamiltonian (II.22) can be solved at the Mean-Field level by the same meth-

ods introduced in sections 1.1.1 and 1.1.2, but the equations have to be rewritten.
Treating the spin operators as classical vectors again (see equation (II.5)), we get the
classical Hamiltonian for the non twisted case (i.e. the spins lie on the XZ plain):

Hclass = −1
2
∑
i

µi −
t

2
∑
〈i,j〉

sin θi sin θj −
∑
i

µi
2 cos θi. (II.23)

The minimization of this energy with respect to the set of angles {θi} yields the
set of N equations:
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36 Chapter II. Mean-Field theory of the SF-BG transition

− t cos θi
∑
〈j〉i

sin θj + µi sin θi = 0. (II.24)

with ∑〈j〉i the sum over all sites j nearest-neighbours of site i. The solution is given
straightforwardly in the case of the bimodal distributed disorder, for which µi = εiW
with εi = ±1 with probability 1

2 , by:

∀i,


cos θi =µi4t = εiW

4t

sin θi =
√

1− W 2

16t2

, (II.25)

if W < 4t. At this level of approximation, for the bimodal disorder distribution, the
system is divided in two disorder-free randomly spaced sub-lattices, one with µi = W
for all its sites and the other with µi = −W . This can be seen in equation (II.25),
where the sin θi do not depend on the index i. Hence, the solution is exactly the
same that the one of the disorder-free case [230]. Applying a twist to the boundary
conditions in order to calculate the superfluid density, is exactly the same as described
in section 1.1.1 with the only difference of a missing factor 3 here because of the U(1)
symmetry of the problem.The calculation steps are similar and we end up with the
energy in the presence of a twist:

Hclass(Φ) = −1
2
∑
i

µi −
t

2
∑
〈i,j〉

sin θi sin θj cos(ϕi − ϕj)−
∑
i

µi
2 cos θi, (II.26)

and the energy cost of the small twist Φ (i.e. the differences ϕi−ϕj are small too):

∆E(Φ) ≈ t

4
∑
〈i,j〉

sin θi sin θj(ϕi − ϕj)2 (II.27)

and the set of N coupled equations:

∀i, t
∑
〈j〉i

sin θi sin θj(ϕi − ϕj) = 0. (II.28)

We solve this as for the Heisenberg model and obtain the superfluid density.

The Bose-Einstein condensate fraction then reads:

ρ0 = 1
N
〈b†k=0bk=0〉 = 1

N2

∑
i,j

b†ibj = 1
4N2

∑
i,j

sin θi sin θj = 1
4

(
1− W 2

16t2

)
. (II.29)
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Figure II.3: Evolution of superfluid and Bose condensed densities vs. disorder
strength W/t for a bimodal disorder on the chemical potential µ. There are no finite
size effects so only one size is shown. The superfluid and condensate densities are
equal and both decrease from their disorder-free value of 0.25 and vanish at a disorder
strength equal to the band-width W/t = 4. A gapped insulator is present for higher
disorder strengths.

The superfluid and BEC densities turn out to be equal at this level of approxima-
tion as can be seen in figure II.3. They decrease from 0.25 in the clean case W = 0
and vanish exactly at the band edge W = 4t. For stronger values of disorder the
system is in a disordered insulating state with cos θi = ±1 and the spins completely
polarized along the z axis. These results are shown in figure II.3, where the two
phases present in the phase diagram are visible: the superfluid and the disordered
gapped insulator. It is worth noting that no finite-size effects are present at this level
of approximation, so only one system size is shown. This is a direct consequence of
the fact that there is an analytical solution (cf. equation (II.29)). Figure II.3 also
shows the gap ∆ in units of t which is actually calculated at the linear spin wave level,
beyond the scope of the treatment discussed here. We decided to show it to stress
the fact that the high disorder phase is indeed a gapped insulator. Nevertheless, it
is important to say that this level of approximation does not capture the Bose glass
physics.
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38 Chapter II. Mean-Field theory of the SF-BG transition

2.2 Iterative Mean-Field method: box disorder

2.2.1 Computation the superfluid density

When considering the uniform disorder distribution µi ∈ [−W ;W ], there is no
analytical solution like for the bimodal distribution. The minimization of the clas-
sical energy has to be done numerically. In the absence of a twist to the boundary
conditions, the classical energy (II.23) can be minimized using a Newton-Raphson
algorithm [220] in order to get the {θi} angles by iteratively solving the set of N
equations given by minimizing the energy with respect to each angle θi, starting
from the naive solution given by equation (II.25), until the zeros are found.

However, the most efficient way to compute the ground-state energy is applying
the iterative Mean-Field solution described in section 1.1.2. In this case, for the
model (II.22) under consideration with periodic boundary conditions and no twist,
the self-consistency equations read (cf. section 1.1 of appendix A)

Bi = t
∑
〈j〉i

Bj√
µ2
j +B2

j

, (II.30)

and the ground-state energy:

〈H(φ = 0)〉 = −
∑
i

√
µ2
i +B2

i

2 + t

2
∑
〈i,j〉

BiBj√
(µ2

i +B2
i )(µ2

j +B2
j )
. (II.31)

Applying a twist Φ to the boundary conditions is the analog of applying a mag-
netic field along the same direction to the charged hard-core bosons, rendering the
hoppings along said direction complex and keeping periodic boundary conditions (cf.
section 1 of appendix B). The corresponding Hamiltonian is:

H = −∑i
µi
2 −

∑
i µiS

z
i − 2t∑i(Sxi Sxi+ŷ + Syi+ŷS

y
i )

−2t cos(Φ
L

)∑i(Sxi Sxi+x̂ + Syi S
y
i+x̂)− 2t sin(Φ

L
)∑i(Syi Sxi+x̂ − Sxi S

y
i+x̂). (II.32)

Following the same calculation steps for the iterative Mean-Field solution applied to
this Hamiltonian yields the self-consistency equations (cf. section 1.3 appendix A):
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Bx
i = t

 Bx
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
Bx
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
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+ cos(Φ
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)
 Bx
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2
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µ2
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(II.33)

and a ground-state expectation value of the energy:

〈H(Φ)〉 = −∑i

√
µ2
i+B

x
i

2+Byi
2

2 + t
2
∑
i

 Bxi√
µ2
i+B

x
i

2+Byi
2

 Bxi+ŷ√
µ2
i+ŷ+Bxi+ŷ

2+Byi+ŷ
2

+ cos(Φ
L

) Bxi+x̂√
µ2
i+x̂+Bxi+x̂

2+Byi+x̂
2
− sin(Φ

L
) Byi+x̂√

µ2
i+x̂+Bxi+x̂

2+Byi+x̂
2


+ Byi√

µ2
i+B

x
i

2+Byi
2

 Byi+ŷ√
µ2
i+ŷ+Bxi+ŷ

2+Byi+ŷ
2

+ cos(Φ
L

) Byi+x̂√
µ2
i+x̂+Bxi+x̂

2+Byi+x̂
2

+ sin(Φ
L

) Bxi+x̂√
µ2
i+x̂+Bxi+x̂

2+Byi+x̂
2

 . (II.34)

Putting together equations (II.34) (II.31) and (II.4) we can now compute the
superfluid density.

2.2.2 Global thermodynamic quantities - Absence of transition

The equivalency between the two Mean-Field approaches is treated in detail in
section 1 of appendix B. One of its results is that the expectation value of Sxi when
no twist is applied is given by:

〈Sxi 〉 = Bi

2
√
µ2
i +B2

i

= 1
2 sin θi. (II.35)
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We can use this relation between the classical angles {θi} and the iterative fields Bi

to write the Bose-Einstein condensate density in terms of the iterative fields:

ρ0 = 1
4N2

∑
i,j

sin θi sin θj = 1
4N2

∑
i,j

BiBj√
µ2
i +B2

i

√
µ2
j +B2

j

. (II.36)

We can now compute both the superfluid and BEC densities as a function of
the disorder strength, averaging over several hundreds of disorder realizations for
each disorder strength. The results are shown in figure II.4 for system sizes ranging
from L = 8 to L = 36. When no disorder is present both densities are equal to
0.25. However, upon including disorder, the superfluid density becomes smaller than
the BEC density, ρsf < ρ0 even at the Mean-Field level. This shows the different
nature of these two quantities: while the BEC is a static property of the system, the
superfluid fraction is a response to an external perturbation (the twist Φ) therefore
a dynamic property of the system. The fact that such a distinction is found at the
Mean-Field level is a consequence of the phase relaxation.
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Figure II.4: Evolution of superfluid (ρsf) and Bose condensed (ρ0) densities vs. dis-
order strength in units of the hopping parameter W/t for the uniform disorder distri-
bution µi ∈ [−W ;W ]. Even at the MF level the two densities are different: ρsf < ρ0.
Both densities show a linear dependence on disorder in either log-log or log-normal
(not shown) scales: the data is compatible with both an exponential and a power-law
decrease. Hence, both quantities only vanish in the limit of infinite disorder W →∞
indicating no transition to a Bose glass phase at this level of approximation.
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Furthermore, the data for both quantities can be fitted equally well by expo-
nential or power-law decays, in the considered parameter range. Even though we
cannot exactly determine the form in which superfluidity and BEC are suppressed
by disorder in this MF level, it is clear that both densities will only vanish in the
limit of infinite disorder strength W → ∞ indicating that the Bose glass physics
cannot be captured by such a Mean-Field treatment: therefore, we conclude that
quantum fluctuations are a key ingredient for the Superfluid - Bose glass transition
to occur. This result is in agreement with the prediction by Ma et al. [9]. However,
the fact that the superfluid stiffness vanishes in the case of the bimodal disorder only
when the system is trivially in its insulating state, i.e. when all sites have chemical
potentials lying outside the band (W > 4t), disagrees with their conclusion that the
important feature for the MF stiffness to vanish at a finite disorder strength (i.e. for
Mean-Field theory not to break-down) is that the disorder distribution has a zero
weight at 0, P (0) = 0. The bimodal distribution being the most extreme case of
such a distribution, their argument seems to fail. We will further explore this in
section 2.3.

2.2.3 Current distributions

Even though there is no transition to an insulating state at the Mean-Field level,
we explore the classical transport properties in order to extract the most information
as possible. We therefore compute the classical currents induced by applying a twist
Φ to the boundary conditions, or equivalently by applying a fraction of the twist Φ/L
on each of the L bonds along the direction and allowing for phase relaxation. The
hopping parameter along those bonds bond undergoes the transformation t 7→ te±

Φ
L

and the corresponding Hamiltonian is the one given in equation (II.32). Therefore,
there are two types of currents: the ones in the X direction (with complex hopping)
and the ones along the Y direction (with real hopping).

Along the Y direction the transverse current operator is defined by:
Jyi→i+ŷ = −ı〈bib†i+ŷ − b

†
ibi+ŷ〉 = −ı〈S−i S+

i+ŷ − S+
i S
−
i+ŷ〉 = 2(Sxi S

y
i+ŷ − S

y
i S

x
i+ŷ) (II.37)

which finally yields:

Jyi→i+ŷ = 1
2 sin θi sin θi+ŷ sin(ϕi+ŷ − ϕi). (II.38)

Along the X direction, the current is:
Jxi→i+x̂ =− ı〈eıΦL bib†i+x̂ − e−ı

Φ
L b†ibi+x̂〉 = −ı〈eıΦLS−i S+

i+x̂ − e−ı
Φ
LS+

i S
−
i+x̂〉

Jxi→i+x̂ =2 sin(Φ
L

)(Sxi Sxi+x̂ + Syi S
y
i+x̂) + 2 cos(Φ

L
)(Sxi S

y
i+x̂ − S

y
i S

x
i+x̂)

(II.39)

and finally:

Jxi→i+x̂ = 1
2 sin(Φ

L
)〈sin θi sin θi+x̂ cos(ϕi+x̂−ϕi)〉+

1
2 cos(Φ

L
)〈sin θi sin θi+x̂ sin(ϕi+x̂−ϕi)〉.

(II.40)
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Figure II.5: Distribution of the longitudinal (J‖) and transverse (J⊥) currents for a
system of size L = 32 and different disorder strengths W in the case of a uniform
disorder distribution [−W ;W ]. The longitudinal currents are smaller for growing
disorder strengths. At low disorder, the transport is mainly longitudinal while at
strong disorder (W ≥ 10t) it becomes isotropic with longitudinal and transverse
currents of the same order of magnitude both presenting distributions with exponential
tails, a classical manifestation of the underlying Bose glass physics (see text) .

One should notice that for the current Jxi→i−x̂ the circulation of the magnetic field
is then negative and one should do the replacement Φ 7→ −Φ, recovering the fact
that Jx/yi→i+x̂ = −Jx/yi+x̂→i.

The distributions of the longitudinal J‖ and transverse J⊥ currents obtained for
800 disordered samples of a system of size N = 32×32 at different disorder strengths
are plotted in log-normal scale in figure II.5. For small disorders, the transport is
mainly longitudinal with J‖ larger than J⊥ by nearly two orders of magnitude. Crank-
ing the disorder strength gradually reduces J‖ and increases J⊥. Finally, forW ≥ 10t
both current distributions are of the same order of magnitude and develop exponen-
tial tails as demonstrated by the straight line tails in the log-normal scale. The
transport at strong disorders becomes exponentially suppressed and isotropic, which
we interpret as a classical precursor of the glassy physics even when no transition is
found at the Mean-Field level.
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In order to show this effect in a more quantitative way, we compute the disorder
averaged local currents as a function of disorder strength, renormalized by the clean
case local current Jclean = 1

2ρsf
Φ
L
, where ρsf is the average value of the superfluid

stiffness at the given disorder strength. The results are illustrated in the top panel
of figure II.6. For low disorders, the mean longitudinal current 〈J‖〉 is two orders of
magnitude larger than the mean transverse current 〈J⊥〉. Cranking up the disorder
strength reduces the longitudinal mean value and increases the transverse ones. Fur-
ther increasing the disorder strength reduces both mean values which become of the
same order of magnitude for strong disorders W ≥ 10t.

We have represented in the bottom panel of figure II.6 the standard deviation of
the currents divided by their mean value as a function of disorder strength. Although
at low disorders the relative spread of the longitudinal currents is almost zero it in-
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Figure II.6: Top: Disorder averaged longitudinal (J‖) and transverse (J⊥) currents
for a system of size L = 32 vs. disorder strengthW/t in the case of a uniform disorder
distribution [−W ;W ], renormalized by the clean value of the current J̄clean = 1

2 ρ̄sf
Φ
L
.

At low disorder, the longitudinal transport is several orders of magnitude more im-
portant than transverse transport while at strong disorder (W ≥ 10t) longitudinal
and transverse currents are of the same order of magnitude. Error bars are smaller
than the symbols. Bottom: Standard deviation of longitudinal and transverse cur-
rents σJ divided by their mean value 〈J〉 as a function of disorder. The transverse
currents have a wider relative spread at low disorders but it becomes equivalent to the
longitudinal current spread at strong disorders W > 10t.
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creases with disorder strength becoming equivalent to that of the transverse currents
at strong disorders. Indeed, the transverse currents have a finite relative spread at
low disorders which grows monotonically with disorder strength but at a smaller pace
than the longitudinal disorders. Summing up, figure II.6 shows quantitatively that
at strong disorders W > 10t, the classical transport is isotropic despite the fact that
the cause of transport (the twist Φ or equivalently the gauge field flux Φ/L) is along
one direction only. Accompanied by the fact that the currents are exponentially
suppressed at those high disorders, we recover the transport properties of the glassy
insulating phase at strong disorders even when no phase transition is observed at the
Mean-Field level. The change of behaviour seems to happen at a disorder strength
close to W = 10t. Indeed, the disorder strength W ≈ 10t is the critical threshold
for the Superfluid - Bose glass transition for this model given both by the linear spin
wave approach developed in chapter III (cf. figure III.4) and the Quantum Monte
Carlo simulations of chapter IV (cf. table IV.2), which further justifies our inter-
pretation of these features being a classical precursor of the underlying Bose glass
physics.

2.3 Iterative Mean-Field method: disorder distribution with
P (0) = 0

A seminal work by Ma, Halperin and Lee back in 1986 [9] showed that the Mean-
Field theory breaks down for the Superfluid - Insulator transition since it results in
a superfluid density that only vanishes for infinitely large disorder, when considering
the box distribution, while experiments on superfluid Helium 4 adsorbed on porous
media showed otherwise [7]. They claimed that the key ingredient for such a break-
down is the fact that the disorder distribution has a non-zero weight at 0, meaning
that there are always almost disorder-free sites which can be tilted in the XY plane
with little energy cost, i.e. it is energetically favourable for coherence (or XY order)
to be established at these sites which then act as nucleation centers for macroscopic
coherence (long-range XY order). Our results for both the bimodal and the box
distribution are in full agreement with such a scenario (cf. figures II.3 and II.4 sec-
tions 2.1 and 2.2) since for the bimodal disorder, with P (0) = 0, the system is in an
insulating state as soon as the disorder bound lies outside the band-width (W > 4t)
and for the box disorder (with P (0) 6= 0) the superfluid density and the BEC density
(i.e. the XY order parameter) only vanish for infinite disorder.

In order to check if the P (0) 6= 0 condition holds in other cases, we study the
case of a uniform disorder distribution with zero weight around zero, i.e. a uniform
distribution for values in [−W ;−α] and [α;W ]. This can be done with the same
expressions as for the box distribution for the consistency equations (II.33) and
the ground-state energy both with and without the twist (cf. section 2.2). The
distribution is still symmetric with respect to 0, meaning that we are still studying
the physics at half-filling. The results for the superfluid and BEC densities as a
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Figure II.7: Evolution of the Bose-Einstein condensate and superfluid densities as a
function of disorder for the uniform disorder distribution in [−W ;−α]⋃[α;W ] for
two different values of α = 0.1 and 0.5, and system sizes ranging from L = 8 to
L = 48. Disorder averages were performed over 3000 for the smallest sizes and 700
samples for L = 48. For both values of α the behaviour is very similar to that of the
box disorder α = 0: ρsf < ρ0 and both quantities drop with disorder strength W as
either a power-law or an exponential form. There is no critical disorder strength.

function of the disorder bound W for three values of α = 0.1, 0.5 are shown in
figure II.7, for system sizes up to N = 48 × 48. Disorder averages were performed
over 3000 samples for L = 8 down to 700 samples for L = 48 . For both values of
α the behavior is very similar to the one of the box disordered case with no hole.
Indeed, we find again that even at the Mean-Field level ρsf < ρ0. Once again, the
data is well fitted either by a power-law or an exponential form, indicating that the
XY order will only vanish in the limit of infinite disorder strength W →∞ .

As a conclusion, the energetic argument by Ma et al. seems to be valid also
for disorder distributions with P (0) = 0. In other words, it is still energetically
favourable to tilt a site which has small local filed (or chemical potential) onto theXY
plane and it being a nucleation center for long-range order if the disorder distribution
allows for such small local fields. It would be very interesting, nonetheless, to carry
out a more thorough study of the effect of the α parameter to see if this effect remains
for all values of α inside the band-width. We can already predict that if α is larger
than the the band-width the scenario will be identical to the bimodal disorder case
studied in section 2.1 for which there is a disordered insulating phase in competition
with the superfluid phase.
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46 Chapter II. Mean-Field theory of the SF-BG transition

3 Alternative Mean-Field approach: The cavity
mean-field

We have presented in the previous sections of this chapter the results of two
different fairly simple Mean-Field methods which do not capture the phase transi-
tion from the Superfluid to the Bose glass although they do provide some interest-
ing information concerning the transport properties. However, more sophisticated
Mean-Field approaches exist. One example is the cavity Mean-Field approach. First
developed to study classical frustrated spin systems, i.e. spin glasses [231], it is a
Mean-Filed theory that solved the fully connected Sherrington-Kirkpatrick model of
spin glasses [232] in a much more transparent way than the previously found Replica
Symmetry Breaking ansatz in the replica approach by Parisi [233–235]. It uses a
probabilistic approach based on three assumptions: ultrametricity [236], the exis-
tence of many pure states [237, 238] and the exponential distribution of their free
energies [239].

This method can be extended to the quantum cavity-method and be used in the
context of quantum phase transitions in quantum disordered systems [194, 195]. In
the following we will briefly present this method treated in detail in Ref. [240]. To
make things more concrete, let us consider the random transverse-field ferromagnet
described by the Hamiltonian on the Bethe lattice with connectivity z = K + 1, at
an inverse temperature β:

HRTFIM = −
∑
i

ξiσ
z
i −

∑
(ij)

Jijσ
x
i σ

x
j (II.41)

where σx/z are the Pauli matrices, the second sum runs over all bonds (ij), and
Jij is the couplings on bond ()ij. Using the Suzuki-Trotter representation with M
imaginary time steps we can describe the system by the classical time trajectory of
each spin.

The resolution in the Replica Symmetric case for this problem is exactly the
same as for the classical method with the only difference of treating spin trajectories
instead of Ising spins [240, 241]. The natural order parameter for this problem is
a distribution of distributions, a very complicated object, and this resolution is too
numerically costly.

At this point, the necessity of developing an approximate version of this exact
mapping becomes evident. One possible approximation, called the projected cavity
mapping, can be thought of as studying the properties of a spin 0 in the Bethe lattice
where one of its neighbours has been deleted from the graph. Under a few assump-
tions, the local Hamiltonian describing the system of spin 0 and its K neighbours
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is [240]:

H0 = −ξ0σ
z
0 −

K∑
i=1

(ξiσzi +Biσ
x
i + J0iσ

x
0σ

x
i ) . (II.42)

where Bi is a variable that parametrizes the problem. This 2K+1×2K+1 Hamiltonian
can be diagonalized so as to compute the magnetisation of spin 0. This projected
cavity mapping uses a single number Bi to describe the trajectory distribution and
gives a self-consistent equation for the distribution of the Bi.

However, this resolution is also very costly numerically for it involves diagonaliz-
ing a 2K+1×2K+1 matrix at each iteration step. One further approximation allowing
to obtain an explicit mapping [194, 195] similar to that of the classical problem [231],
is a Mean-Field approximation to compute the magnetisation m0 from the cavity
Hamiltonian (II.42). This is the cavity mean-field approximation consisting in writ-
ing the cavity Hamiltonian acting on spin 0 by

Hcav−MF
0 = −ξ0σ

z
0 − σx0

K∑
i=1

J0i〈σxi 〉. (II.43)

And a recursion relation between the Bi field follows:

B0 =
K∑
i=1

J0i
Bi√

ξ2
i +B2

i

tanh
(
β
√
ξ2
i +B2

i

)
(II.44)

Finally, a self-consistent equation for the distribution of theB fields P (B) is obtained.
By solving it one has access to the order parameter for the quantum phase transition
from a ferromagnetic to a paramagnetic phase [240] since in the paramagnetic phase
P (B) = δ(B) and the distribution is non trivial in the ferromagnetic phase.

It is capital to notice that the cavity mean-field approach does not neglect
quantum fluctuations. Therefore, an adapted version of this method to the two-
dimensional case [205] of the square lattice with the same Hamiltonian enabled
Lemarié et al. to study a Superfluid - Insulator transition and find a transition
even at the Mean-Field level [30], as discussed in section 2.5 of chapter I.

To conclude, the cavity Mean-Field is a much more sophisticated and power-
ful method than the Mean-Field approaches used in this chapter. However, since
quantum fluctuations are already present in its framework, including them by linear
spin-wave theory (LSWT) is unnecessary. On the contrary, the simpler Mean-Field
approaches previously developed in this chapter, which neglect quantum fluctuations,
are perfectly suited for the LSWT formalism as will be shown in the next chapter.
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50 Chapter III. Beyond Mean-Field: Semi-classical approach

In this chapter, we will present a semi-classical approach to the Superfluid -
Bose glass transition for hard-core bosons in the presence of disorder on the two-
dimensional square lattice. Starting from the classical Mean-Field results presented
in chapter II, we will add the quantum fluctuations that were completely neglected
at the Mean-Field level by means of Linear Spin-Wave Theory (LSWT) in real space.
This theory is exact in the limit of infinite spin value S →∞ and it has proven very
useful in the studies of diluted quantum Heisenberg antiferromagnets in different
geometries such as diluted two-dimensional lattices [242, 243], the Penrose tiling [244]
and two dimensional quasi-crystals [245]. It has also been used with great success in
the study of hard-core bosons in two dimensions in the disorder-free case [230, 246]
even if the corresponding spin XXZ problem obtained via the Matsubara-Matsuda
transformation [229] (cf. equation (II.21) in section 2 of chapter II) gives spins with
S = 1

2 , in the opposite limit were the theory is justified. In spite of this, Linear Spin-
Wave theory for hard-core bosons in the clean case actually gives results in qualitative
and quantitative agreement with exact QMC simulations [246] which motivates us
to use it in the disordered case as well.

We will see that contrary to the Mean-Field classical techniques used in the pre-
vious chapter, this semi-classical approach does find a transition from the Superfluid
state at low disorder to a Bose glass phase at strong disorder with a finite value of the
critical disorder for both bimodal and box disorder distributions. We will see that
the critical disorder strength in the case of a box distributed disorder is in remark-
able good agreement with the critical values given by both the 2D cavity Mean-Field
method [30] and exact the QMC simulations presented in chapter IV [247]. Secondly,
the values of the critical exponents are then estimated at the spin-wave level, first
in a simple fashion and then in a more detailed way by means of a bootstrap analy-
sis. Finally, the properties of spin-wave excitations and finite frequency physics are
explored. The presence of a mobility-edge above which excitations are localized is
discussed for our non-interacting spin-wave bosonic excitations.

1 Linear spin-wave theory in real space

This section introduces the main concepts of Linear Spin-Wave Theory (LSWT)
written for our hard-core bosons model in its equivalent spin-1

2 XXZ model (II.22)
representation. This theory includes quantum fluctuations on top of a purely clas-
sical resolution and gives corrections to the different observables to 1/S order. Fur-
thermore, it gives access to eigenvalues and eigenvectors of the Hamiltonian under
consideration, enabling one to study the excitation properties as well as ground-state
properties of the system. The usual steps of the LSWT calculation are the following:

1. Consider the spin operators as 3D classical vectors ~Si.
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1. Linear spin-wave theory in real space 51

2. Perform a (local) rotation of the axis in order to align the spins with the
quantification axis.

3. Apply the Holstein-Primakoff (HP) transformation, in its linearized version, to
describe the bosonic spin-waves.

4. The terms linear in HP bosons vanish giving the exact same equations that
those for the minimization of the classical MF energy.

5. Keep only the quadratic terms in HP bosons to be at the level of approximation
of non-interacting HP bosons.

6. Diagonalize the resulting Hamiltonian.

7. Compute the 1/S-corrected expectation values of physical observables.

In the following we will apply these steps to our model for the Superfluid - Bose
glass transition of hard-core bosons in the 2D square lattice of size N = L× L.

1.1 Linear Spin-Wave Theory for Hard-core bosons
We start from the spin-1

2 XXZ Hamiltonian (II.22) and apply the steps described
above. When periodic boundary conditions are taken, we can write the spin operators
in the MF approximation as classical 3D vectors of the form (II.5) with all spins in
the XZ plane due to rotational invariance around the z-axis (i.e. ϕ = 0). Applying
a local rotation so as to align each spin with the quantization axis we obtain the
relation between the spins in the new rotated frame ~S ′

i and the old frame spins ~Si:
Sxi = cos θiS

′x
i + sin θiS

′z
i

Syi = S
′y
i

Szi = − sin θiS
′x
i + cos θiS

′z
i .

(III.1)

Inserting this into the Hamiltonian (II.22) yields:

H =−
∑
i

µi
2 +

∑
i

µi sin θiS
′x
i −

∑
i

µi cos θiS
′z
i

+
∑
〈i,j〉

{
−2t cos θi cos θjS

′x
i S

′x
j − 2t sin θi sin θjS

′z
i S

′z
j − 2tS

′y
i S

′y
j

−2t cos θi sin θjS
′x
i S

′z
j − 2t sin θi cos θjS

′z
i S

′x
j

}
.

(III.2)

where 〈i, j〉 denotes a summation over pairs of nearest-neighbour sites i and j. Next,
we have to apply the Holstein-Primakoff transformation [248] for our spins S = 1

2 in
its linearized version so as to include quantum fluctuations around the classical MF
solution:
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∀i,



S
′+
i =

√
2S
(

1− a†iai
2S

)1/2

ai ≈ ai

S
′−
i =

√
2Sa†i

(
1− a†iai

2S

)1/2

≈ a†i

S
′z
i = S − a†iai = 1

2 − a
†
iai

(III.3)

where the Holstein-Primakoff operators ai and a†i follow bosonic commutation re-
lations. Replacing the spins in the rotated frame by their expressions in terms of
Holstein-Primakoff (HP) bosons in the Hamiltonian (III.2) leads, after a few steps
where terms of third order and higher in HP bosons have been neglected, to:

H =−
∑
i

µi
2 −

∑
i

µi
2 cos θi −

t

2
∑
〈i,j〉

sin θi sin θj

+
∑
i

µi
2 cos θia†iai + t

∑
〈i,j〉

sin θi sin θj(a†iai + a†jaj)

+
∑
〈i,j〉

{
− t2(1 + cos θi cos θj)(a†iaj + aia

†
j) + t

2(1− cos θi cos θj)(aiaj + a†ia
†
j)
}

+
∑
i

µi
2 sin θi(ai + a†i )− t

∑
〈i,j〉

cos θi sin θj(ai + a†i ).

(III.4)

The following step is to take out the terms linear in HP bosons which vanish giving
the set of N equations:

− t cos θi
∑
〈j〉i

sin θj + µi sin θi = 0 (III.5)

with ∑
〈j〉i the sum over sites j nearest-neighbours of site i. These are the same

equations for minimizing the classical mean-field energy (II.24). Finally, the systems
Hamiltonian can be written in the form:

H = Hclass +H(2)

where Hclass is the Mean-Field Hamiltonian (II.23) and H(2) includes only the terms
quadratic in the Holstein-Primakoff operators:

H2 =
∑
〈i,j〉
{tij(aia†j + a†iaj) + t̄ij(aiaj + a†ia

†
j)} −

∑
i

εini, (III.6)
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and we have defined the coefficients:

tij =− t

2(1 + cos θi cos θj)

t̄ij = t

2(1− cos θi cos θj)

εi =− µi cos θi − t sin θi(
∑
〈j〉i

sin θj).

(III.7)

The classical Hamiltonian Hclass is independent from HP bosonic operators, hence
it is diagonal in the HP basis. However, the quadratic Hamiltonian H(2) has an
off-diagonal part depending on the coefficients tij and t̄ij. It is then necessary to
diagonalize it in order to obtain the energies and associated eigenvectors of the spin-
wave excitations. This next step will be discussed in the next section.

1.2 Real space diagonalization
We are interested in the disordered XXZ Hamiltonian, with disorder in the

chemical potential i.e. in the local transverse magnetic field for spins with S = 1
2 .

The presence of disorder breaks the translational symmetry, therefore taking the
Fourier transform to be in the basis of wave-vectors ~k is not a good strategy since
the k are not good quantum numbers and the HP Hamiltonian H(2) (III.6) will not
be diagonalized after a Bogolyubov transformation from the ~k basis, like in the clean
case [230, 246]. Instead, we will have to perform the diagonalization in real space.
We will do so by following the real space diagonalization procedure [242–245] now
described.

Let X be the column vector X = (a1, a2, ...., aN , a
†
1, ....., a

†
N). The HP non-

diagonal part of the Hamiltonian H(2) can be written as:

H(2) = X†H2X +
∑
i

εi
2 (III.8)

Where H2 is a 2N ×2N sparse matrix with eight non-zero elements per line, directly
given by tij/2, t̄ij/2 and εi/2. For each site i ∈ [1;N ] with nearest-neighbour sites j,
we have:

H2(i, i) = H2(i+N, i+N) = −εi/2
H2(i, j) = H2(j, i) = tij/2

H2(i, j +N) = H2(j +N, i) = t̄ij/2
H2(i+N, j) = t̄ij/2

H2(i+N, j +N) = tij/2.

(III.9)

We now need to diagonalize H2. The procedure consists in diagonalizing ΛH2
where Λ is a 2N × 2N diagonal matrix with 1 in the first N elements and −1 in
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the last N . Let Ŝ be the transformation from the {ai} basis to the {αi} basis where
both ΛH2 and H2 are diagonal. Enforcing bosonic commutation relations for the
{αi} yields:

ŜΛŜ† = Λ (III.10)
Since H2 is diagonalized by Ŝ, we also have, with Ω a diagonal matrix obtained by
diagonalizing ΛH2 with the subroutine DGEEV of the LAPACK© library [249], that:

Ŝ†H2S = Ω. (III.11)
Combining these relations we finally get:

ΛH2 = ŜΛΩŜ−1. (III.12)

On the other hand, there is also the relation

(X ′)†Ω(X ′) = 2
∑
p

Ωpα
†
pαp +

∑
p

Ωp (III.13)

where Ωp are the eigenvalues of H2, i.e. the elements of the diagonal 2N×2N matrix
Ω. It is worth noting that the Ωp come by pairs such as there are only N different
eigenvalues (corresponding to the energies of excitations of the system) and in matrix
Ω they are present as ±Ωp. In the end, the hamiltonian is:

H = Hclass + 2
N∑
p=1

Ωp(α†pαp + 1
2) +

∑
i

εi
2 (III.14)

with only the N positive Ωp entering the sum.

The ground state expectation value corresponds to the vacuum of Bogoliubov
quasi-particles 〈α†pαp〉 = 0:

E1/S = E0 +
∑
p

Ωp +
∑
i

εi
2 (III.15)

which is indeed lower than E0 (ground-state expectation value of Hclass) because∑
p Ωp + ∑

i εi/2 < 0, which we have checked numerically in every simulation here
forth presented. This is the linear spin wave ground-state energy with corrections to
order 1/S.

2 Derivation of observables
Now that the principles of LSWT have been exposed and the way to compute

the corrected ground-state energy is obtained, we have to concentrate in deriving
the estimates of other physical observables of interest in the LSWT framework. We
will focus on the order parameter for the Superfluid - Bose glass transition, the BEC
density ρ0 and the superfluid density ρsf corrected to order 1/S.
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2.1 Superfluid density
The way to compute the superfluid density was already discussed in section 1 of

chapter II. In a nutshell, the superfluid density is proportional to the helicity modulus
Υsf of the system when a twist Φ is applied to the periodic boundary conditions [177],
in our case:

ρsf = m∗

~
Υsf = 1

2tΥsf = 1
2t
∂2E(Φ)
∂Φ2 = 1

t

E(Φ)− E(Φ = 0)
Φ2 . (III.16)

Notice the absence of the factor 3 in this U(1) symmetric case with respect to the
Heisenberg case, which is SU(2) symmetric, given in equation (II.4). We have once
again replaced the derivative by a numerical derivative taking advantage of the fact
that ∂E(Φ)/∂Φ = 0. The numerical derivative is then computed using a small value
of the twist Φ = 10−2. Such a definition works both in the classical case, where we
use the classical ground-state expectation values with and without a twist, and in the
LSWT case: we just need to take the 1/S corrected energies with and without the
twist. In the absence of a twist the 1/S corrected ground-state energy was already
derived in equation (III.15). We now need to compute the corrected energy in the
presence of the twist using the steps described in section 1. In this case the rotation
in order to align the classical spins (II.5) with the quantization axis is:

Sxi = cos θi cosϕiS
′x
i − sinϕiS

′y
i + sin θi cosϕiS

′z
i

Syi = cos θi sinϕiS
′x
i + cosϕiS

′y
i + sin θi sinϕiS

′z
i

Szi = − sin θiS
′x
i + cos θiS

′z
i

(III.17)

Plugging these expressions in the Hamiltonian in the presence of a the twist
Φ (II.26) leads to:

H(Φ) =−
∑
i

µi
2 +

∑
i

µi sin θiS
′x
i −

∑
i

µi cos θiS
′z
i

+
∑
〈i,j〉

{
−2t cos θi cos θj cos(ϕi − ϕj)S

′x
i S

′x
j − 2t cos(ϕi − ϕj)S

′y
i S

′y
j

− 2t sin θi sin θj cos(ϕi − ϕj)S
′z
i S

′z
j − 2t sin θi sin(ϕi − ϕj)S

′z
i S

′y
j

− 2t cos θi sin(ϕi − ϕj)S
′x
i S

′y
j + 2t cos θj sin(ϕi − ϕj)S

′y
i S

′x
j

+ 2t sin θj sin(ϕi − ϕj)S
′y
i S

′z
j − 2t cos θi sin θj cos(ϕi − ϕj)S

′x
i S

′z
j

−2t sin θi cos θj cos(ϕi − ϕj)S
′z
i S

′x
j

}
.

(III.18)

In the previous equation, the twist angle Φ does not appear explicitly, but is implicitly
present since for a site on the right boundary (i.e. on the Lth column) iL, its right
neighbour is the virtual site iL+1 which has ϕiL+1 = ϕi1 + Φ, where site i1 is the
site on the left boundary of the system in the same line as site iL. Therefore,
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ϕL − ϕiL+1 = ϕL − ϕ1 − Φ due to the twisted boundary conditions. Similarly, for a
site on the left boundary (i.e. on the first column) its left neighbour is the virtual
site i0 that has ϕi0 = ϕiL − Φ, and hence ϕi1 − ϕi0 = ϕi1 − ϕiL + Φ.

As usual, we apply the Holstein-Primakoff transformation (III.3), the linear terms
in the Holstein-Primakoff bosonic operators vanish and we get the twisted boundary
conditions Hamiltonian:

H = Hclass(Φ) +
∑
〈i,j〉
{tij(Φ)(aia†j + h.c.) + t̄ij(Φ)(aiaj + h.c.)} −

∑
i

εi(Φ)ni (III.19)

where Hclass(Φ) is the classical Hamiltonian in the presence of a twist (II.26).

This is formally the same as the non-twisted spin-wave Hamiltonian (III.6) but
with different coefficients implicitly depending on the global twist angle Φ as is the
case for the Hamiltonian (III.18):

tij(Φ) =− t

2 cos(ϕi − ϕj)(1 + cos θi cos θj)+

t̄ij(Φ) = t

2 cos(ϕi − ϕj)(1− cos θi cos θj)

εi(Φ) =− µi cos θi − t sin θi(
∑
〈j〉i

sin θj cos(ϕi − ϕj)).

(III.20)

One should notice that putting Φ = 0 in these expressions (i.e. ∀i, ϕi = 0)
we get back the same coefficients that for the periodic boundary conditions case
(III.7). Since it is formally the same, the same real space diagonalization scheme of
section 1.2 can be applied and finally we get:

E1/S(Φ) = E0(Φ) +
∑
p

Ωp(Φ) +
∑
i

εi(Φ)
2 . (III.21)

Finally we can compute the superfluid density corrected to order 1/S using equa-
tions (III.16), (III.15) and (III.21):

ρ
1/S
sf = ρ0

sf + 1
Φ2

∑
p

(Ωp(Φ)− Ωp(Φ = 0)) + 1
Φ2

∑
i

εi(Φ)− εi(Φ = 0)
2 . (III.22)

with ρ0
sf the classical Mean-field value of the stiffness (i.e. the stiffness computed

with corrections to “0th” order).

2.2 Bose-Einstein condensate density
The true order parameter for the transition is the XY order parameter in spin

language or, equivalently, the Bose-Einstein condensate density. The appropriate
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way to compute the 1/S corrections to such observables was introduced by Coletta
et al. [246]. Basically, one can either evaluate the expectation value of the BEC
density in the 1/S-corrected ground-state wave-function which is very difficult to
compute in our disordered case, or one can add a small symmetry-breaking term to
the Hamiltonian which couples to the XY order parameter and compute the 1/S-
corrected energy in the presence of the field and take the derivative with respect to
the field in the limit where it vanishes.

For the condensate density, one needs to add the symmetry breaking term coupled
to the XY order which, when periodic boundary conditions are taken (Syi = 0), it
takes the simple form −Γ∑i S

x
i . This gives the Hamiltonian:

H = −1
2
∑
i

µi − 2t
∑
〈i,j〉

Sxi S
x
j −

∑
i

µiS
z
i − Γ

∑
i

Sxi (III.23)

and hence:

mxy = 1
N

∑
i

〈Sxi 〉 = − 1
N

∂〈H〉
∂Γ

∣∣∣∣∣
Γ=0

= −〈H(Γ)〉 − 〈H(Γ = 0)〉
NΓ . (III.24)

Applying the steps of LSWT described in section 1, we can compute the 1/S-
corrected ground-state energy in the presence of the small field Γ. The calculation
is very similar to the ones discussed before for the superfluid density in the presence
of a twist. The final result takes the similar form:

H = Hclass(Γ) +
∑
〈i,j〉
{tij(Γ)(aia†j + h.c.) + t̄ij(Γ)(aiaj + h.c.)} −

∑
i

εi(Γ) (III.25)

were we have defined the coefficients:

tij(Γ) =− t

2(1 + cos θi cos θj)

t̄ij(Γ) = t

2(1− cos θi cos θj)

εi(Γ) =− µi cos θi − t sin θi(
∑
〈j〉i

sin θj)− Γ sin θi.

(III.26)

Once again, Hclass(Γ) is the classical Mean-Field Hamiltonian in the presence
of the field Γ which can be minimzed with any of the two methods described in
section 1 of chapter II so as to obtain its ground-state expectation value E0(Γ). The
total Hamiltonian (III.25) is formally the same as in the previous cases and can be
diagonalized with the real space diagonalization method described in section 1.2,
which yields:
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58 Chapter III. Beyond Mean-Field: Semi-classical approach

E1/S(Γ) = E0(Γ) +
∑
p

Ωp(Γ) +
∑
i

εi(Γ)
2 . (III.27)

The spin-wave correctedmxy can now be computed using equations (III.15) and (III.27):

m(1/S)
xy =m(0)

xy + 1
NΓ

∑
p

(Ωp(Γ)− Ωp(Γ = 0)) + 1
NΓ

∑
i

εi(Γ)− εi(Γ = 0)
2

=m(0)
xy + δm(1/S)

xy .

(III.28)

The corrected condensed density to order 1/S is then:

ρ
(1/S)
0 = ( lim

L→∞
m1/S
xy )2. (III.29)

One should be careful when taking the square of 〈mxy〉1/S since this brings about
the inclusion of correction terms of order higher than 1/S. Indeed, taking the square
means we are including a term

(
δm(1/S)

xy

)2
which is actually of order 1/S2. We are

thus over-estimating the corrected BEC density by doing so. Therefore, the numerical
values of the condensate density are not correct to order 1/S but we are properly
estimating the true order parameter for XY order, and the transverse magnetization
m(1/S)
xy and ρ0 defined as in equation (III.29) vanish at the same point.

3 Ground-state critical properties
Now that the generalities of the LSWT and how to compute the expectation

values to order 1/S in its framework have been presented, we focus on the results
obtained for the two disorder distributions treated in with Mean-Field theory in
chapter II, namely the bimodal distribution and the box distribution. We will see
that quantum fluctuations are indeed able to capture the Bose glass physics of the
problem in both cases.

3.1 Bimodal disorder
We have applied the LSWT scheme and computed the 1/S-corrected superfluid

and Bose condensed densities for systems of sizes ranging from N = 8 × 8 to N =
32×32 and performed averages over several hundreds of disordered samples for each
system size and disorder strength W , in the case of a bimodal disorder distribution
of the on-site chemical potential µi = εiW with εi = ±1 with probability 1/2.
For this case, the Holstein-Primakoff Hamiltonian describing the spin-wave quantum
fluctuations (III.6) takes the simplified form:

H2 = −1
2
∑
〈ij〉

[
(tija†ia

†
j + t̄ija

†
ia
†
j) + h.c.

]
+ ν

∑
i

ni, (III.30)
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with the coefficients 

tij =t[1 + εiεj(ν̄/4t)2]
tij =t[εiεj(ν̄/4t)2 − 1]
ν =max(W, 4t)
ν̄ =min(W, 4t).

(III.31)

The diagonalization of this Hamiltonian yields:

H2 = 2
N∑
p=1

[
Ωp(α†pαp + 1

2)− ν

4

]
. (III.32)

The ground-state energy corrected to order 1/S corresponds by the vacuum of
Bogolyubov quasi-particles 〈α†pαp〉 = 0 and hence:

E(1/S) = E0 +
∑
p

Ωp −
Nν

2 . (III.33)

The extrapolations to the thermodynamic limit L→∞ of the spin-wave corrected
superfluid (blue squares) and Bose condensed (green diamonds) densities are plotted
against disorder strength in figure III.1 along with their Mean-Field (MF) estimates
obtained in chapter II (black small circles) and the spin-wave gap in the spectrum
(red circles). The Bose-Einstein condensate is depleted by quantum fluctuations
with respect to its MF value by a factor surrounding 25% in the clean case W = 0,
in agreement with previous estimations [230, 246]. The addition of disorder further
reduces the BEC density which vanishes at a disorder strength W0 < 4t which
will be carefully determined further along. The superfluid density is enhanced by
quantum fluctuations at weak disorder and our numerical estimate for the clean case
is in agreement with the analytical previous results [230, 246]. It is monotonically
reduced by disorder and vanishes at a disorder strengthWsf < 4t. The spin-wave gap
∆ is exactly zero for all disorder strengths inside the band-width W < 4t and opens
up exactly at W = 4t. This means that a gapless (compressible) insulating phase
intervenes between the superfluid and the insulating phases for disorder strengths
Wsf < W < 4t, i.e. a Bose glass phase is stabilized by quantum fluctuations at order
1/S. The spin-wave gap will be studied in more detail in section 5.1.

Let us now determine the vanishing points of the spin-wave corrected superfluid
and BEC densities. In order to do so, we first use the finite-size scaling theory
described in the chapter I section 2.3.2. This is illustrated in figure III.2 where we
have plotted in panel (a) the crossing of the disorder averaged corrected superfluid
density curves as a function of disorder strength for different system sizes when they
are multiplied by Lz with z the dynamical exponent. The best crossings are obtained
for z = 2.0(1) in agreement with the equality z = d [6]. Panel (b) of figure III.2 shows
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Figure III.1: Evolution of the thermodynamic limit extrapolations of the Superfluid
stiffness ρsf, Bose-Einstein condensate density ρ0 and the gap of the excitation spec-
trum ∆ with disorder strength W/t. The classical densities (•) are equal and vanish
at the edge of the band-width W = 4t. The spin-wave corrected quantities ρ(sw)

sf (�)
and ρ(sw)

0 (�) vanish at different points W0 < Wsf < 4t, leaving a finite window for an
intervening gapless Bose glass before the gapped insulator present for W > 4t. Insets
show superfluid and insulating phases in the pseudo-spin representation. Disorder
average was performed over several hundreds of disordered samples. The green line
is a guide to the eyes.

the disorder averaged spin-wave estimate of the transverse magnetizationmxy = 〈Sx〉
plotted against the inverse system size 1/N for different disorder strengths. When
the quantum corrections become bigger than the classical value yielding a negative
magnetization we interpret this as a vanishing real magnetization. The extrapolation
to the thermodynamic limitN →∞ becomes negative for a value of disorder strength
W0/t = 3.55(5), hence XY order disappears at this disorder strength.

At the 1/S level, we find a small window of disorder strengthsW0 < W < Wsf for
which a condensate-free superfluid phase is stable. Although such a phase has been
shown to be possible in frustrated systems like BaCuSi2O6 [250–252], it is relevant
to ask whether this window survives upon the inclusion of higher order quantum
fluctuations. Anyhow, there is a small finite window of disorder Wsf < W < 4t
where both densities vanish and the system is compressible, i.e. the system is in the
Bose glass phase. The inclusion of quantum fluctuations allows for the capture of
the Bose glass physics that the Mean-Field treatment failed to capture.
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Figure III.2: Panel a: Crossing of the curves of ρsf × Lz for system sizes L = 12 to
L = 32. The dynamical exponent used to find a very good crossing is z = 2.0(1) and
the crossing point is estimated to Wsf/t = 3.738(1). Full lines are polynomial fits
of degree 2. Panel b: Finite-size scaling of the spin-wave transverse magnetization
mxy = 〈Sx〉 for different disorder strengths. Negative infinite size extrapolations
are interpreted as zero. The XY order parameter vanishes at a disorder strength
W0/t = 3.55(5).

3.2 Box distributed disorder
We now present in this section the results obtained by applying the LSWT to

the system with box distributed disorder on the chemical potential µi ∈ [−W ;W ].
Unlike the case of the bimodal disorder distribution, in this case no simplification or
analytical solution are available. Therefore the relevant equations are exactly those
presented in section 1. However, as discussed in section 2.2.1, it is convenient to
treat the computation of the superfluid density not by applying a global twist Φ to
the boundary conditions but equivalently keeping periodic boundary conditions and
having a complex hopping along the direction the twist would have been applied. The
starting point for the LSWT is taken to be the Hamiltonian (II.32). The computation
steps of LSWT already described lead to the Hamiltonian:

H = Hclass(Φ)−
∑
i

εi(Φ)ni +
∑
i

{(tii+ŷ(Φ)a†iai+ŷ + h.c.) + (t̄ii+ŷ(Φ)aiaj + h.c.)}

+
∑
i

{(tii+x̂(Φ)a†iai+x̂ + h.c.) + (t̄ii+x̂(Φ)aiai+x̂ + h.c.)}

(III.34)
where Hclass(Φ) is the classical ground-state expectation value of the energy in the
presence of the complex hoppings (II.34) and we have defined the complex coefficients:

61



62 Chapter III. Beyond Mean-Field: Semi-classical approach



tii+ŷ(Φ) =− t

2 [cos(ϕi − ϕi+ŷ)(1 + cos θi cos θi+ŷ) + i sin(ϕi − ϕi+ŷ)(cos θi + cos θi+ŷ)]

tii−ŷ(Φ) =− t

2 [cos(ϕi−ŷ − ϕi)(1 + cos θi cos θi−ŷ)− i sin(ϕi−ŷ − ϕi)(cos θi + cos θi−ŷ)]

t̄ii+ŷ(Φ) = t

2 [cos(ϕi − ϕi+ŷ)(1− cos θi cos θi+ŷ) + i sin(ϕi − ϕi+ŷ)(cos θi − cos θi+ŷ)]

t̄ii−ŷ(Φ) = t

2 [cos(ϕi−ŷ − ϕi)(1− cos θi cos θi−ŷ) + i sin(ϕi−ŷ − ϕi)(cos θi−ŷ − cos θi)]

εi(Φ) = −µi cos θi − t sin θi

∑
〈j〉y

sin θj cos(ϕi − ϕj)+

sin θi+x̂ cos(Φ
L
− (ϕi − ϕi+x̂)) + sin θi−x̂ cos(Φ

L
− (ϕi−x̂ − ϕi))

)
,

(III.35)

and: 

tii+x̂(Φ) =− t

2

[
cos(Φ

L
− (ϕi − ϕi+x̂))(1 + cos θi cos θi+x̂)

−i sin(Φ
L
− (ϕi − ϕi+x̂))(cos θi + cos θi+x̂)

]

tii−x̂(Φ) =− t

2

[
cos(Φ

L
− (ϕi−x̂ − ϕi))(1 + cos θi cos θi−x̂)

+i sin(Φ
L
− (ϕi−x̂ − ϕi))(cos θi + cos θi−x̂)

]

t̄ii+x̂(Φ) = t

2

[
cos(Φ

L
− (ϕi − ϕi+x̂))(1− cos θi cos θi+x̂)

−i sin(Φ
L
− (ϕi − ϕi+x̂))(cos θi − cos θi+x̂)

]

t̄ii−x̂(Φ) = t

2

[
cos(Φ

L
− (ϕi−x̂ − ϕi))(1− cos θi cos θi−x̂)

−i sin(Φ
L
− (ϕi−x̂ − ϕi))(cos θi−x̂ − cos θi)

]
.

(III.36)

This complex Hamiltonian is formally the same as all the Holstein-Primakoff
Hamiltonians encountered in this thesis work. It can be numerically diagonalized
by the same procedure described in section 1.2 with similar results, with the only
difference that since it has complex coefficients we have to use the subroutine ZGEEV
of the Lapack© library [249].
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Figure III.3: Evolution of the superfluid density ρsf extrapolated to the thermody-
namic limit N → ∞ against disorder strength for the box disorder distribution
µi ∈ [−W ;W ]. The black circles are the Mean-Field classical results which only
vanish in the limit of infinite disorder W → ∞. The red squares are the spin-wave
corrected estimates to order 1/S which vanish for a finite critical disorder strength
Wc ≈ 10t.

We performed simulations for square lattices of sizes ranging from N = 8 × 8
to N = 64 × 64 and several hundreds of disordered samples were used for disorder
averaging. The results extrapolated to the thermodynamic limit N →∞ obtained by
Mean-Field theory along with the 1/S corrected ones are shown in figure III.3. While
the MF result (black circles) only vanishes for infinite disorder strength W → ∞
(cf. figure II.4 in section 2.2.2 of chapter II) the spin-wave corrected to order 1/S
stiffness (red squares) is enhanced with respect to the classical value at low disorders.
Quantum fluctuations and disorder start to cooperate reducing the superfluid density
which vanishes at a finite critical disorder strength Wc ≈ 10t. The 1/S-corrected
superfluid density remains zero for all higher disorder strengths W > Wc, indicating
the presence of a Bose glass phase at high disorders.

We determine more precisely the value of the critical disorder Wc by performing
further simulations at disorder values very close to W = 10t by steps of 0.05t. The
results are illustrated in panel a) of figure III.4 as the value of the spin-wave corrected
stiffness ρsf vs. inverse linear system size 1/L for the various disorder strengths in log-
log scale. For the range of system sizes considered (again up to L = 64 for disorders
closest to W = 10t and up to L = 48 for the others) the data for W = 10t are well
described by a power-law fit of the form ρsf ∼ L−z (following the finite-size scaling
at criticality described in section 2.3.2 of the chapter I) with a dynamical exponent
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Figure III.4: Panel a: Spin-wave corrected superfluid density ρsf vs. inverse system
size for different disorder strengths. The red dashed line is a power-law fit to the form
ρsf ∼ L−z with z = 1.43 describing the data at W = 10t. Data for other disorder
strengths seem to follow a similar scaling for small system sizes but clearly deviate
from it as bigger sizes are included, except for W/t = 9.95 and W/t = 10.05. Panel
b: Crossing of the curves of ρsf × Lz for system sizes from L = 24 to L = 48. The
dynamical exponent used to find a very good crossing is z = 1.43(1) and the crossing
point is estimated to Wc/t = 10.00(5). Full lines are polynomial fits of third degree.

z = 1.43(1), while the curves for W = 9.95t and W = 10.05t seem to deviate at large
sizes from the power-law behaviour. Testing this value of the dynamical exponent by
plotting the curves of ρsf×Lz using z = 1.43 again disorder strength for L = 24, 32,
40 and 48 in panel b) of figure III.4 yields a pretty convincing crossing at W = 10t
thus confirming the estimate for the dynamical exponent. Summing up, we find for
the box distributed disorder that a Bose glass phase is stabilised by the quantum
corrections to order 1/S. The phase transition takes place at a critical disorder of
Wc/t = 10.00(5) and a dynamical exponent z = 1.43(1) governs it.

As a matter of fact, the estimated critical disorder at the spin-wave level is in
fair numerical agreement with the corresponding value found by QMC simulations
in chapter IV, for which WQMC

c /t ≈ 4.8/0.5 = 9.6, and the result obtained by
the 2D cavity Mean-Field by Lemarié et al. [30] gc ≈ 0.22 which corresponds to
Wc/t = 2/gc ≈ 9.1. The found estimate for the dynamical exponent is in flagrant
disagreement with both the estimate for the bimodal case and the equality z = d = 2
by Fisher et al. [6] as well as with the estimate from our QMC simulations zQMC =
1.85(15).
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It is worth mentioning that we did not compute the corrections to order 1/S of
the Bose-Einstein condensate fraction and instead decided to leave that study be
carried out by exact state-of-the art Quantum Monte Carlo simulations of the same
model which will be presented in chapter IV, which will also serve to confront the
estimate for z.

4 Detailed finite-size scaling analysis
The previous section showed that the inclusion of quantum fluctuations above the

Mean-Field solution allows us to study the Superfluid - Bose glass quantum phase
transition for 2D hard-core bosons. We extracted some estimates for the dynamical
exponent as well as for the critical threshold. However, using a much more careful
finite-size scaling analysis of the available data we can obtain estimates and proper
uncertainties not only for the same critical parameters but also for the correlation
length exponent ν. We will use the finite-size scaling theory developed in section 2.3
of chapter I and we remind here only the main results.

In the vicinity of the 2D quantum critical point, the finite-size scaling of the SF
density is:

ρsf(L) = L−z Gsf [L1/ν(W −Wc)], (III.37)

where z is the dynamical critical exponent, ν the correlation length exponent, Wc

the critical disorder, and Gsf a universal function. We will use this scaling form in
the analysis scheme described in detail in section 3.1 of chapter IV so as to extract
estimates of the three critical parameters available to us, namely the critical disorder
Wc, the correlation length exponent ν and the dynamical exponent z.

One should already notice that there is no strong argument for the estimates
obtained at the level of approximation of LSWT to be the ones describing the real
Superfluid - Bose glass transition. Indeed, the spin-waves are only controlled on the
ordered side of the transition and when quantum fluctuations become equal to the
classical order-parameter is when we consider the ordered phase to be destabilized.
The spin-wave corrected superfluid density thus vanishes in an uncontrolled fashion,
making the critical exponents uncontrolled as well. We will however, for the sake of
completeness, carry out this study.

4.1 Bimodal disorder
In the case of the bimodal distribution, we found that the spin-wave corrected

superfluid density vanishes at a disorder strength Wsf/t = 3.738(1). We will only
perform the scaling analysis on the superfluid stiffness since, as discussed in sec-
tion 3.1, the spin-wave corrected Bose-Einstein condensate fraction is overestimated
in our calculation. We performed fits of the superfluid density data near Wsf shown
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66 Chapter III. Beyond Mean-Field: Semi-classical approach

in panel (a) of figure III.2 to the scaling form (III.37), the scaling function Gsf is
approximated by a third degree polynomial. Since the spin-wave data is well con-
trolled only on the ordered side of the transition, we will perform the fits in windows
of disorder strength [3.73;Wmax] including the system sizes in [Lmin; 32], and vary
Wmax and Lmin. The quality of the fit is estimated by the probability (IV.41) which
is explained in detail in section 3.1.1 of chapter IV and Ref. [253]. We also estimate
the error on the fit estimates by gaussian resampling of the data and a bootstrap
analysis with 500 bootstrap samples.

Q (×100)
Lmin \ Wmax 3.735 3.736 3.737 3.738 3.739 3.74 3.741
12 12.93 17.46 18.97 30.22 41.04 42.45 41.74
16 23.78 21.43 24.57 37.73 45.34 50.84 51.73

Table III.1: Quality of the fits Q, as defined in equation (IV.41), of the critical
parameters from the spin-wave corrected superfluid density for the bimodal disor-
der distribution corresponding to the parameters shown in figure III.5, for different
windows of disorder [3.73;Wmax] and of system size [Lmin; 32].

The results for Wc, z and ν for different Wmax and Lmin = 12 and 16 are shown
in figure III.5. The corresponding qualities of fit are listed in table III.1. We can see
that the qualities are systematically higher for the largest Wmax. This comes from
the fact that including more data points further constrains the fit which become
more stable, as is also confirmed by the fact that the bootstrap obtained error-bars
decrease with increasing Wmax for all the parameters, as shown in figure III.5. The
estimates of the critical disorder strength seem to converge towards the same value as
determined in section 3.1, Wc/t = Wsf/t = 3.738(2) (indicated by the black dashed
line). The estimates for the dynamical exponent are also consistent with z = 2.0(2)
(black dashed line) in agreement with the equality z = d as was determined in
section 3.1.

Concerning the correlation length exponent ν, the best estimate we can extract
is ν = 0.5(2) which clearly violates the Harris criterion ν ≥ 2/d = 1 [173–175]. The
spin-wave corrected superfluid density data having quite large error bars, the fits are
not constrained enough. This added to the aforementioned possibility uncontrolled
vanishing of the superfluid density may explain this. Future Quantum Monte Carlo
simulations of this model will allow to clarify this issue, as well as corroborating the
estimates for the critical disorder strength and the dynamical exponent.
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Figure III.5: Bootstrap estimates of the critical exponents for different windows of
disorder [3.73;Wmax] and system size [Lmin; 32] with Lmin = 12 and 16. The black
dashed lines represent the estimates obtained in section 3.1, z = 2.0(1) and Wc/t =
3.738(1). The new estimates are in good agreement with these previous estimates.
The correlation length exponent ν estimate converges to 0.50(5) in clear violation of
the Harris criterion.

4.2 Box disorder

Let us now use the same procedure used in the previous section to extract the
ground-state critical parameters from the spin-wave corrected superfluid density data
for the problem with the uniform disorder distribution. We focus on the data close
to the critical disorder found in section 3.2 and shown in panel (b) of figure III.4.
We once again approximate the scaling function of the scaling form (III.37) Gsf by a
third degree polynomial. The error-bars on the estimates are obtained by a bootstrap
analysis with gaussian resampling of the data. 500 bootstrap samples were used.

The results of the fits performed over the windows of disorder [9.6;Wmax] and
included system sizes L in [Lmin; 48] are shown in figure III.6 and the corresponding
qualities of fit Q are listed in table III.2. The first remark one can make is that,
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given that the included system sizes are only 4 (for Lmin = 24) or 5 (for Lmin = 16),
i.e. one less than for the bimodal distribution of disorder, and the error-bars are
quite large, the fits are not constrained enough and in particular for Lmin = 24 and
Wmax < 10 they do not converge. In addition, when they do converge, the qualities
of the fit are always big even for fits yielding unphysical results. This leads us to
disregard the results for Lmin = 24, which we show here for the sake of completeness.

The estimate for the critical disorder seems to converge towards Wc = 9.89(1)t
in surprisingly good agreement with our QMC estimate WQMC

c /t = 9.6(1) (cf. chap-
ter IV), but disagrees with our previous spin-wave estimate of section 3.2 Wc/t =
10.05t. The correlation length exponent is estimated to ν = 1.07(3), satisfying the
Harris criterion.
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Figure III.6: Bootstrap estimates of the critical exponents for different windows of
disorder [3.73;Wmax] and system size [Lmin; 32] with Lmin = 16 and 24. The black
dashed lines represent the estimates obtained in section 3.1, z = 2.0(1) and Wc/t =
3.738(1). The new estimates are in good agreement with these previous estimates.
The correlation length exponent ν estimate converges to 0.50(5) in clear violation of
the Harris criterion.

68



5. Excitation properties 69

Q (×100)
Lmin \ Wmax 9.85 9.9 9.95 10 10.05 10.1 10.15 10.2
16 74.1 44.39 46.7 60.4 66.14 81.74 79.47 63.11
24 30 40.43 56.1 57.48 70.18

Table III.2: Quality of the fits Q, as defined in equation (IV.41), of the critical
parameters from the spin-wave corrected superfluid density for the box disorder dis-
tribution corresponding to the parameters shown in figure III.6, for different windows
of disorder [9.6;Wmax] and of system size [Lmin; 48].

The case of the dynamical exponent is more delicate. The estimate seems to
converge towards z = 1.14(4) which is very far from the equality z = d on the
one hand, and from our previous spin-wave estimate z = 1.43(1) in section 3.2 (cf.
figure III.4) on the other hand.

It becomes clear at this point that the determination of the ground-state crit-
ical parameters needs the use of QMC simulations so as to properly constrain the
fits. This is what will be discussed in chapter IV in the case of the box disorder
distribution.

5 Excitation properties
Ground-state properties are important but it is also of great interest to explore

the properties of the excitations above the ground-state since they are intimately
related to transport properties. Linear Spin-Wave theory allows for the computation
of some of these since the subroutines used in the diagonalization of the full Hamil-
tonian describing the Holstein-Primakoff bosons gives access to the corresponding
eigenfunctions as well. In this respect, LSWT presents a distinct advantage to Quan-
tum Monte Carlo simulations which give essentially exact results for static quantities
but are much less efficient for dynamical and excitation properties. Therefore, we
now study the properties of the spin-wave one-particle excitation spectrum starting
with the energy gap between the ground-state and the first excited state. Then we
will focus our attention on the full spectrum and its localization properties in the
case of a bimodal distribution.

5.1 Spin-wave gap: First excited state
The energy gap between the ground-state and the first excited state is directly

linked to the compressibility of the system: if the system at the thermodynamic
limit has a gap in its excitation spectrum, it is in an incompressible phase while a
vanishing gap is indicative of a compressible phase. The energy gap extrapolated
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70 Chapter III. Beyond Mean-Field: Semi-classical approach

to the thermodynamic limit was presented in the case of a bimodal distribution of
disorder in figures II.3 and III.1. We see that the state remains gapless as long as
the disorder bound W is in the band-width W < 4t. Let us first study the finite-size
gap in the gapless phases and turn our attention to the gapped phase in a second
time.

5.1.1 Finite-size gap in the gapless phases

The way the finite size gap vanishes approaching the thermodynamic limit gives
access to the sound velocity of the one-particle spin-wave excitations so we plot in
panel a of figure III.7 the value of the finite-size spin-wave gap in units of the hopping
parameter ∆SW(L)/t against the inverse linear system size 1/L for different disorder
strengths inside the band W < 4t. ∆SW(L)/t tends to zero for increasing system
sizes, as expected for the compressible phases present in this disorder range (i.e. the
superfluid and the Bose glass). Quadratic polynomial fits in the inverse system size
of the form ∆SW(L)/t = 2πv/L+b/L2 are shown in full straight lines. The Extracted
sound velocity v renormalized by its clean case value v0 = 2t [246] is plotted against
disorder strength along with its estimate obtained using the hydrodynamic relation
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Figure III.7: Left panel: Spin-wave gap as a function of inverse system size for
different disorder strengths in the compressible regime W < 4t. Full straight lines
are fits to the form ∆SW(L)/t = 2πv/L + b/L2. Right panel: The spin-wave sound
velocity v extracted from the fit of the spin-wave gap and renormalized by its value
in the disorder-free case v0 = 2t plotted against disorder strength. Even inside the
Bose glass phase W > Wsf the sound-velocity is very little affected by disorder. The
value of sound velocity obtained with the hydrodynamic relation (III.38) is in excellent
agreement with the estimate from finite-size gap. The straight blue line is a fit to the
power-law (4t−W )0.085.
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v =
√

Υsf

κ
=
√

2tρsf

κ
, (III.38)

with Υsf the classical Mean-Field superfluid helicity modulus and κ the classical
compressibility. Both estimates are in remarkable good agreement and are not very
much affected by disorder. Indeed, even inside the Bose glass phase W > Wsf and
very close to the insulating phase (W = 3.99t) the sound velocity has only decreased
by some 40% with respect to the clean value v0, indicating that the first excited
state remains delocalized (phonon-like) throughout the entire superfluid and Bose
glass phases. This is in agreement with recent studies of Anderson localization of
phonons in disordered solids by Monthus and Garel [254] and Amir et al. [255].

We can actually fit the behaviour of v/v0 near its vanishing point W = 4t by
a power-law v/v0 ∼ (4t − W )0.085, i.e. the sound velocity has an extremely slow
evolution towards zero as W → 4t. A scenario where the sound velocity jumps from
a finite the large value for W = 3.99t to 0 at W = 4t is not in agreement with the
data since the power-law fit is very good. Nevertheless, the very low exponent of
0.085 does not rule out possible logarithmic corrections.

5.1.2 Finite-size gap in the Gapped insulator

Let us now focus on the gap in the spectrum on the classical gapped insulator side
of the phase diagram. The spin-wave gap extrapolated to the thermodynamic limit
shown in figure II.3 opens when the disorder bound is exactly equal to the band edge
W = 4t. Furthermore, it is known to open up linearly with the chemical potential
µ in the classical insulating phase for the disorder-free case, which translates in our
disordered case to:

∆clean = W − 4t. (III.39)

Figure III.8 shows the spin-wave gap extrapolated to the thermodynamic limit
∆SW plotted against disorder strength inside the insulating regime W > 4t in log-
log scale. The red circles are the spin-wave gap data which are very well described
by a power-law with exponent very close to 1/2 in the vicinity of the critical point
W = 4t. Hence, the spin-wave gap opens as the square of the distance to the critical
point

√
W − 4t, a faster growth than for the clean case (III.39). In addition, there

is a transient behaviour at intermediate disorder strengths 4.5 < W < 5 for which
the spin-wave gap deviates from its square root dependance near its opening point.
Interestingly enough, ∆SW adopts the linear behaviour of the clean case for very
strong disorders.

It is possible that the square-root behaviour is a finite-size effect since one ex-
pects rather that the average gap opens in the same way as the clean case following
equation (III.39). This is due to the fact that in the thermodynamic limit, there are
arbitrarily large clusters (though exponentially rare) that look like the clean system
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Figure III.8: Evolution of the spin-wave gap extrapolated to the thermodynamic limit
∆SW(L→∞) = ∆SW (red circles) with disorder strength inside the gapped disordered
insulator W > 4t in logarithmic scale. The straight red line is a fit of the data close
to W = 4t to a power law (W − 4t)0.496 with an exponent 0.496 ≈ 0.5. The black
dashed line is the result in the clean case ∆clean given by equation (III.39) which
seems to describe the data at strong disorders.

with all its sites having chemical potentials equal to W (or equivalently to −W ).
The energy cost of creating an excitation (spin-flip) in the system is that of creating
it in this cluster hence, that of the clean case, i.e. it is equal to W . From percolation
theory, we know that beyond the percolation threshold (like in our case since we
have 50% of sites with µi = W and 50% with µi = −W ) the number of such clusters
with s sites inside a system of total size N scales as Nclusters(s) ∼ Ne−b

√
s with b a

constant [222]. Since the biggest gain in energy by delocalizing the spin-flip inside
such a cluster is obviously obtained in the largest cluster, this is where the excitation
will take place. There is only one largest cluster Ncluster(smax) = 1 which yields

Ne−b
√
smax = 1 ⇒ smax ∼ (lnN)2. (III.40)

The gap in the largest (clean-like) cluster is given by

∆ = W − 2t
(

cos
(

2π
√
sxmax

)
+ cos

(
2π√
symax

))
≈ W − 4t

(
1− π2

sxmax
− π2

symax

)
,

(III.41)
and finally, since the linear sizes of the cluster in both directions scale in the same
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way with N according to (III.40):

∆− (W − 4t) ∼ 1
smax

∼ 1
ln2N

(III.42)

which very slowly tends to zero in the infinite size limit and hence, the gap of the
infinite size system should also follow equation (III.39).

5.2 Study of the excitation spectrum
We present in this section the study of the full spin-wave excitation spectrum

and in particular its localization properties. This is relevant for understanding the
transport properties of the system as has been demonstrated in the case of Anderson
localization [3, 5]. Indeed, a fully localized spectrum is tantamount to an insulat-
ing phase. By studying the spectrum given by Linear Spin-Wave theory, we are
investigating the one-particle non-interacting excitation properties of the system.

Following the work of Monthus and Garel with Anderson localization of phonons [254],
as well as the work of the Castellani group in Rome [256], we carry out this study
by computing the Inverse Participation Ratios (IPR) at a given energy or frequency
Ω. The energy dependent IPRs are defined for a normalized state |p〉 = ∑

i a
p
i |i〉 as

IPRp =
N∑
i=1
|api |4. (III.43)

They are very well suited to study the localization of the excited states since they
behave as for the Anderson localization transition [4, 254]:

IPR ∼ 1
N
, if the state is delocalized

IPR ∼ 1
LD2

, at the localization-delocalization transition

IPR ∼ 1
ξ2 , if the state is localized with a localization length ξ

(III.44)

which defines the multifractal exponentD2 and the localization length ξ of a localized
state. Given the fact that the spin-wave excitation spectra are discrete for finite-size
systems, and especially so at low energies, and that for each disordered sample with
the same disorder strength W/t the numerically determined excitation energies are
close to one another but not identical, the strategy we chose to study the energy
dependent IPRs at a given frequency Ω is to take the IPRs as averages over all
disorder realizations at a given disorder bound W/t over a finite slice of frequencies
centered around Ω such that

IPR(Ω) =
∑
p Θ(Ωp,Ω± δΩ)IPRp∑

p Θ(Ωp,Ω± δΩ) , (III.45)

where Θ(Ωp,Ω±δΩ) = 1 if Ω−δΩ ≤ Ωp ≤ Ω+δΩ, and 0 otherwise. In the following,
we will always use δΩ/v0 = 1/20 steps in frequency.

73



74 Chapter III. Beyond Mean-Field: Semi-classical approach

5.2.1 Localization properties of excitations in the superfluid phase

In order to illustrate the IPRs’ behaviour of equation (III.44), we plot in fig-
ure III.9 the averaged IPR multiplied by system size N plotted against system size
for three different disorder strengths: W = t inside the weakly disordered SF phase,
W = 3.4t in the strongly disordered SF phase and W = 3.9t inside the BG phase.
Completely localized states have an IPR×N which scales with N (red dashed line)
whereas delocalized states have an IPR×N which scales independently on N . The
scaling at the localization-delocalization transition is given by the full black line using
the value for the multifractal exponent D2 determined further along this section. For
low disorders W = t (and this is the case for all W < 2t) all excited states appear
extended. Much richer finite frequency physics emerge in the strongly disordered
superfluid phase as can be seen in panel b of figure III.9. Indeed, for W = 3.4t the
low energy excitations are delocalized but there is a finite mobility edge Ωc above
which the excitations are localized. The situation inside the Bose glass phase is very
similar but with a much smaller mobility-edge since almost all excited states seem
to be localized. It is worth mentioning that the ground-state Ω0 represented by
black full circles is completely delocalized throughout the compressible phases with
an IPR0 = 1/N .
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Figure III.9: Evolution with system size of the averaged Inverse Participation Ra-
tios multiplied by system size N for the N excitation energies at different disorder
strengths W = t and W = 3.4t in the superfluid phase, and W = 3.9t in the Bose
glass phase. Completely delocalised states have an IPR×N which scales as N (dashed
red line) and the expected behaviour at the localization-delocalization transition is in-
dicated by the full black line with D2 = 1.48 (see text).
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Let us now determine the single-particle mobility edge Ωc and the multifractal
exponent D2. According to equation (III.44), at Ωc, the IPRs vs. Ω curves for
different system sizes multiplied by LD2 should intersect in a single point. This is
illustrated in figure III.10 where a very good crossing of such curves for a disor-
der strength of W = 3.4t is found using the value for the multifractal exponent
D2 = 1.48 < 2, yielding a mobility edge at this disorder strength Ωc/v0 ≈ 1.15 (cf.
also panel b in figure III.9). In order to check whether this value of the multifrac-
tal exponent D2 = 1.48 is not dependent on the value of disorder strength W/t we
plot the crossings of the same curves using this value of D2 for two other disorder
strengths W = 3.1t and W = 3.6t inside the superfluid phase in figure III.11. Con-
vincing crossings are found at a mobility edge that decreases with increasing disorder
strength. There is, however, a small drift in the crossing point which gives rise to
an uncertainty in the determination of Ωc. We can still conclude that the value for
the multifractal exponent of D2 is consistent and independent on disorder strength
inside the Superfluid phase.
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Figure III.10: Crossings of the Inverse Participation Ratio curves for different
system sizes L = 16, . . . , 64 multiplied by LD2 with a multifractal exponent D2 = 1.48
at a disorder strength W = 3.4t inside the superfluid phase. A pretty convincing
crossing at a finite frequency Ωc/v0 ≈ 1.15 separating low energy delocalized states
for Ω < Ωc and high energy localized states for Ω > Ωc is found. Error bars are
shown but are of size comparable to that of the symbols.
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Figure III.11: Crossings of the Inverse Participation Ratio curves for different system
sizes L = 16, . . . , 64 multiplied by the LD2 with a multifractal exponent D2 = 1.48
at disorder strengths W = 3.1t (left) and W = 3.6t (right) inside the superfluid
phase. Error bars are shown but are of size comparable to that of the symbols. Good
crossings are found in both cases although a small drift is present, particularly at the
strongest disorder, which yields an uncertainty in the determination of the mobility
edge Ωc: Ωc(W = 3.1t)/v0 ' 1.5 and Ωc(W = 3.6t)/v0 ' 0.9.

5.2.2 Localization properties of excitations inside the Bose glass phase

Moving on to the Bose glass phase, we could already see in the left panel of
figure III.7 that in this regime finite-size effects become stronger and stronger ap-
proaching W = 4t. This is also the case for the study of the IPRs in this regime.
Figure III.12 shows the curves for IPR×ND2/2 for system sizes ranging from N = 256
to N = 4096 plotted against the energy Ω/v0 at disorder strength W = 3.9t inside
the Bose glass phase, using once again the same estimate for the multifractal expo-
nent D2 = 1.48. The crossing point displays a very important drift towards smaller
frequencies as the system size increases. This suggests that the mobility edge inside
the Bose glass is indeed vanishing.

One way to quantify this is to compute the successive crossing points Ω? for
each successive couple of system sizes L1 and L2 and monitor its evolution when
increasing the considered systems. In order to do so we define the crossing points
Ω?(L?) at system size L? = (L1 + L2)/2 and plot it against 1/L? as shown in the
inset of figure III.12. The crossing points are less and less well defined as the curves
for different (big) sizes overlap and therefore big error bars on Ω? can be seen.
Nevertheless, a general trend of Ω? going to zero as L? tends to infinity can be
extracted, as emphasized by the dashed red line. This strongly suggests that the
mobility edge Ωc vanishes for W = 3.9t and the only extended state is the ground-
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Figure III.12: Crossings of the Inverse Participation Ratio curves for different
system sizes L = 16, . . . , 64 multiplied by the LD2 with a multifractal exponent D2 =
1.48 at a disorder strength of W = 3.9t inside the Bose glass phase. A big drift
in the crossing points is present. The inset shows the successive Ω∗ crossing points
for a couple of adjacent system sizes L1 and L2 as a function of the inverse of
L∗ = (L1 + L2)/2. Ω∗ drops to zero as L∗ tends to infinity signalling a vanishing
mobility edge Ωc = 0.

state (cf. panel c of figure III.9). For W = 3.8t, we have checked that although the
dropping to zero of the crossing points Ω? is less clear, it is still compatible with our
data.

5.2.3 Resulting phase diagram and discussion

Let us now summarize the results presented in the two previous sections. We
have performed the determination of the mobility edge using the crossing of the
IPR×ND2/2 curves with the same multifractal exponent D2 = 1.48 for all our values
of disorder 3t < W < 4t. The results are represented in the energy vs. disorder
phase diagram plotted in figure III.13. We can see how the mobility edge Ωc (yellow
diamonds) separating extended states at Ω < Ωc from localized states at Ω > Ωc has
finite, quite large values in the Superfluid phase and continuously drops down as the
Bose glass phase is approached, the localization-delocalization transition boundary
(shaded area) has large error bars. The mobility edge presumably vanishes at the
Superfluid - Bose glass transition evidenced by the blue asterisk in the phase dia-
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gram III.13. All states except the ground-state are localized inside the Bose glass in
contrast with the findings by Feigel’man, Ioffe and Mézard on the one hand [194, 195]
and by Markus Müller on the other hand [257]. Inside the gapped insulator (W > 4t)
there are no states below the gap ∆ (red circles) and all states are localized above
it.

However, these results need to be taken with a pinch of salt. As a matter of fact,
Gabriel Lemarié has recently studied the spin-wave excitation spectrum of exactly
the same model on the 2D square lattice using a transfer matrix approach allowing
him to reach much bigger system sizes [258], and though he has not reached a firm
conclusion yet, his results indicate that the mobility edge may vanish also inside the
Superfluid phase. The localization length being exponentially large might explain
why when only the small sizes are used the states appear delocalized. In addition, all
states remain localized in the Bose glass phase, in agreement with our conclusions.
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Figure III.13: Spin-wave excitation energy rescaled by v0 = 2t plotted against disor-
der stength W/t. The excited states are delocalized below the mobility edge Ωc (yellow
diamonds) and localized above it. Ωc, which determines the boundary of localized and
delocalized states (shaded area) with quite large error bars close to the superfluid -
Bose glass transition (blue asterisk), is expected to vanish at the SF-BG transition
point Wsf/t = 3.738(1) and all states are localized in the BG phase. The gapped
insulator presents no states below the gap ∆ (red circles) and only localized states
above it.
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This emerging scenario is consistent with Anderson localization of non-interacting
electrons in two dimensions [4, 259] and of 2D phonons [254, 259]. Our spin-wave
excitations are non-interacting Holstein-Primakoff bosons but have a linear dispersion
at small energies in the clean system [230, 246], like phonons but contrary to the
quadratic dispersion at low energies for clean non-interacting electrons. Note however
that above the Bose-condensed ground-state (present for W < Wc) we expect an
Anderson tower of states [260, 261] that is not captured by our SW analysis since
the continuous U(1) symmetry is already broken on our finite systems. That may
be a crucial ingredient to include in the analysis of the localization properties of
the excitations above the Bose-condensed ground-state, which is beyond the present
scope.
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This chapter presents the study of various aspects of the quantum phase transition
from the Superfluid to the Bose glass phases by Quantum Monte Carlo simulations
using the so-called Stochastic Series Expansion (SSE). This method, developed by
Anders Sandvik during the decade of 1990s and the early 2000s, has the advantage of
being applicable to any Hamiltonian on a lattice as long as there is no sign problem,
or it is weak; unlike some of the other Quantum Monte Carlo algorithms that exist
like the world line loop algorithm which was specially conceived for the Heisenberg
Hamiltonian. Furthermore, the SSE algorithm out-performs the world line loop al-
gorithm which suffers from critical slowdown [262].

The SSE method is based on the expansion of the partition function in powers of
the inverse temperature β and is intrinsically free of projection or discretisation errors
(like Trotter errors). In this approach, two kinds of movements in the configuration
space are allowed: the local or diagonal update [215, 263, 264], and the loop operator
update [262, 265] which performs non-local movements. This chapter aims at giving a
brief presentation of the SSE method applied to the 2D hard-core bosons with on-site
disorder Hamiltonian, in order to investigate the Superfluid - Bose glass transition
in two dimensions. For a more detailed and thorough understanding of the SSE
with directed loops algorithm, we refer the interested reader to the original work
on this method [215, 262–266] as well as references [267–269], from which we took
great inspiration. We will first describe the algorithm and the possible movements
in the configuration space with particular emphasis on the non-local movements.
Secondly, we will show how to measure physical observables, both diagonal and off-
diagonal, within this framework. Then, we will explain some special cautions and
considerations to properly simulate this quantum disordered problem, like the β-
doubling scheme to access equilibrated samples and reliable measurements, among
others. The last three parts of this chapter will address the new results obtained for
the SF - BG transition in two dimensions: i) the critical point at which the transition
takes place and the critical exponents governing the transition for both average
and typical quantities, which have been greatly debated [6, 157, 160, 176, 178–
182, 270, 271] ii) The distributions of the logarithm of the stiffness ln(ρsf) across
the phase transition which yields a self-averaging superfluid phase and a non self-
averaging Bose glass phase, in agreement with recent results [272]. iii) The study
of the microscopic features of the BG phase such as the local density indicating a
lack of a percolation scenario at the transition in contradiction with a number of
discussions [187, 188].
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1. Quantum Monte Carlo SSE with Directed Loops 83

1 QuantumMonte Carlo SSE with Directed Loops
We are going to apply an exact quantum mechanical approach to treat the two

dimensional hard-core bosons problem with on-site disorder on the chemical potential
on the square L× L = N sites lattice. Let us first describe the Hamiltonian we are
interested in. The original bosonic Hamiltonian is:

H = −t
∑
〈ij〉

(
b†ibj + b†jbi

)
−
∑
i

µib
†
ibi, (IV.1)

where hopping between nearest neighbours is fixed to t = 1/2, and the random
chemical potential µi is drawn from a uniform distribution [−W,W ], i.e. half-filling
is statistically achieved, on average [164]. It can be mapped, as seen before (cf.
section 2 of chapter II) to a spin-1

2 XY Hamiltonian with transverse magnetic field
along the z-axis (cf. (II.22)). It can be re-written as the sum of diagonal and
off-diagonal terms:

HXY = −t
Nb∑
b=1

[H1,b −H2,b]−Nbε, (IV.2)

where b defines the bond connecting the pair of interacting spins (i(b), j(b)), Nb = 2N
is the number of bonds and ε is a constant added to the diagonal term of the original
Hamiltonian. This constant shifts the zero energy so as to make all matrix elements
positive or vanishing. This is necessary for the stochasticity (ergodicity) of the ran-
dom walk in the configuration space to be fulfilled, and hence for a reliable evaluation
of physical quantities. Its effect will be studied further along the chapter in section
2.1.

The diagonal part of (IV.2) reads:

H1,b = ε+ hb(Szi(b) + Szj(b)), (IV.3)

where hb is the magnetic filed defined on bond b. The off-diagonal part is given by:

H2,b = 1
2
[
S+
i(b)S

−
(j(b)) + S−i(b)S

+
(j(b))

]
. (IV.4)

Now that we have defined the Hamiltonian to be treated for the rest of the chapter, we
will describe the method used in this quantum mechanical approach: the Quantum
Monte Carlo Stochastic Series Expansion with Directed Loops.

1.1 Stochastic Series Expansion of the partition function
The quantisation axis of this problem is given by the transverse magnetic field

along the z-axis, therefore, the Hilbert space of the Hamiltonian (IV.2) has a natural
work basis:

{|α〉} = {|Sz1 , Sz2 , Sz3 , . . . , SzN−1, S
z
N〉}. (IV.5)
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84 Chapter IV. Quantum Monte Carlo study

We will work with basis (IV.5) in all of the following calculations and derivations.

1.1.1 Taylor expansion of the partition function

A central quantity in Quantum Monte Carlo simulations is the partition function.
From it we can derive other observables, like shown in section 1.3, although it is never
itself actually evaluated. The SSE method is based on the Taylor expansion of the
exponential in the partition function in powers of the inverse temperature β as:

Z = Tr [exp(−βHXY )] =
∞∑
n=0

(−β)n
n! Tr [Hn

XY ] . (IV.6)

The powers of the Hamiltonian can be rewritten as all possible products of all the
terms in the Hamiltonian (two kinds in our case), every product of n terms is rep-
resented by a sequence Sn of n indexes i1 . . . in and each index can be either 1 or
2, meaning it is a diagonal (if the index is 1) or an off-diagonal (if the index is 2)
term in the Hamiltonian (IV.2). The partition function is then the sum over n of all
possible sequences Sn of size n [263]:

Z =
∞∑
n=0

∑
Sn

βn

n! Tr
 n∏
p=1

Hip

 . (IV.7)

At this point it is worth noticing that if the trace in (IV.7) can be computed an-
alytically, one can access expectation values of physical observables by performing
a Monte Carlo sampling in the space of sequences Sn, which is true for the spin1

2
Heisenberg Hamiltonian (this is the Handscomb method [273]). However the SSE
method is more general and the evaluation of physical quantities is achieved by using
a complete basis of the Hilbert space [263, 264] so that the partition function reads:

Z =
∑
α

∞∑
n=0

∑
Sn

βn

n! 〈α|
n∏
p=1

Hip|α〉. (IV.8)

Now it becomes clear that a Monte Carlo configuration for a given value of the length
n of the sequence Sn is determined by a value of α and a sequence Sn. In addition,
the weight of such a configuration is straightforwardly defined by:

W (α, Sn) = βn

n! 〈α|
n∏
p=1

Hip|α〉, (IV.9)

where the order of the product of Hip is given by the sequence Sn. The ergodicity of
the algorithm requires all the weights (IV.9) to be positive, if this is the case, we can
perform the stochastic computation of this partition function via the allowed move-
ments in the space {α, Sn, n = 0 . . .∞} verifying the detailed balance on the weights.
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1. Quantum Monte Carlo SSE with Directed Loops 85

In principle, the Taylor expansion in powers of β has to be taken to all powers
up to infinity. However, when n→∞, the length of the sequence Sn goes to infinity
as well, meaning that the number of operators in Sn goes to infinity too. This
cannot be computed in a real-life computer with finite memory, however, the fact
that the simulated system has a finite-size L× L = N and the temperature is finite
brings about that only sequences Sn of finite-size n give significative contributions
to the trace in the partition function. Taking this into account, it becomes realistic
to impose a maximal value M of the sequence lengths n. We can then work at
fixed sequence lengthM knowing that sequences of length n >M give a negligible
contribution to the trace. The way to determine this cut-off dynamically during the
thermalisation part of the simulations will be further explained in section 2.2.1. The
sequences of lengths n < M are artificially enlarged to be of length M by adding
M−n identity operators to it, thus n becomes the number of non-identity operators
inside the operator string SM. There are CM−nM ways to add these identity operators
to the sequence, which finally yields for the partition function:

Z =
∑
α

∑
SM

βn(M− n)!
M! 〈α|

n∏
p=1

Hip|α〉. (IV.10)

Let us now look deeper in to the details of the operator string ∏n
p=1 Hip and its

representation, before getting to the description of the possible movements allowed
in the SSE algorithm.

1.1.2 The operator string representation

In what follows we will use the notations and definitions from Anders Sandvik’s
original work [263]. The action of the so called operator string ∏n

p=1Hip on a given
initial state of the system |α〉 can be interpreted as the propagation of this initial
state along the operator string itself. We can define a propagated state |α(l)〉 as the
state obtained by the action of the first l operators in the operator string on the
initial state |α(0)〉 = |α〉 as:

|α(l)〉 =
l∏

p=1
Hip|α〉. (IV.11)

The cyclicality of the trace imposes that if the sequence length isM , then |α(M)〉 =
|α(0)〉. Recursively, we can get every propagated state |α(l)〉 by applying the l-the
operator in the operator string on the previous state |α(l − 1)〉.

There are three types of operators in the operator string SM, namely the identity
operators of type 0, the diagonal operators of type 1 and the off-diagonal operators
of type 2. In the base (IV.5) we can then write the operator string as [265]:

SM = [a1, b1], [a2, b2], . . . , [al, bl], . . . , [aM, bM], (IV.12)
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Figure IV.1: Example of the graphical representation of the string operator SM=10
for a chain of 4 1

2-spins. The full (dashed) line represents a spin up (down) and
the operator acting at propagation indexx p on a bond is represented by a curly line
with the type of the operator on top (see text). The added identity operators are not
represented. Taken from reference [267].

where al is the type of the l-th operator in SM (0, 1 or 2) and bl is the bond on which
it acts (bl = 0 if the operator is of type 0). Within this notation, the string operator
can be graphically represented as showed in figure IV.1.

1.2 The SSE with Directed Loops algorithm

The SSE algorithm starts from an initial random state |α〉i and a sequence of
lengthM with only identity operators in it SiM = [0, 0]1, . . . , [0, 0]M. There are two
possible movements for the random walk in the configuration space. First, the di-
agonal update which tries with some probability to exchange identity operators with
diagonal operators one after the other in the order of propagation along the sequence
SM: [0, 0] ↔ [1, b]. Secondly, a more complex, non-local loop operator update that
proposes exchanging diagonal and off-diagonal operators: [1, b]↔ [2, b] by construct-
ing a loop of operators [265]. Let us remind the reader that the simulation takes
place at a temperature T = 1/β.
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1. Quantum Monte Carlo SSE with Directed Loops 87

1.2.1 Diagonal update

This simpler of the two movements looks at what type of operator acts on ev-
ery propagation index p in the sequence SM. If the operator if of type 2 it does
nothing at that index of propagation. If the operator is of type 0 (identity operator)
it proposes the exchange [0, 0]p → [1, b]p: a diagonal operator acting on a bond b,
randomly chosen among the Nb possible bonds, is put in the sequence at the propa-
gation index p with a given probability which will be specified a little further down.
If the encountered operator is of type 1 (diagonal operator), the algorithm proposes
to change it by an identity operator [1, b]p → [0, 0]p.

The probabilities involved in these exchanges have to verify the detailed balance
condition. Taking these probabilities to be proportional to the weight of the config-
uration that results from the exchange ensures that the detailed balance condition
is satisfied [265]:

P ([0, 0]p → [1, b]p)
P ([1, b]p → [0, 0]p)

= NbW (α, Sn+1)
W (α, Sn) , (IV.13)

the Nb factor coming from there being Nb possible bonds on which the diagonal
operator that’s being included in the sequence can act. The Metropolis probabilities
fulfil this condition [263, 274] and we have:

P ([0, 0]p → [1, b]p) = min
(

1, Nbβ〈αp|H1,b|α(p)〉
M− n

)
(IV.14)

and
P ([1, b]p → [0, 0]p) = min

(
1, M− n+ 1
Nbβ〈αp|H1,b|α(p)〉

)
. (IV.15)

Since at the same time that these diagonal updates are attempted the state of the
configuration |α〉 is updated to |α(p)〉, we have all the information required to cal-
culate the probabilities (IV.14) and (IV.15) whenever needed.

It is worthwhile noticing that during this update, the number n of non-identity
operators in SM changes. This may cause some problems with the equilibration of
the configuration since the infrared cut-off to the expansion M could be too small
and errors to the measurements carried out may emerge. It is then really important
to dynamically adjust M during the thermalization of the configuration as will be
discussed in more detail in section 2.2.1.

1.2.2 Loop operator update

We will now describe the more complex movement in configuration space. Why
does it have to be more complicated? This is due to the fact that a simple substi-
tution of a diagonal operator by an off-diagonal one will give a configuration non-
contributing to the partition function because an off-diagonal element [2, b]p in SM
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88 Chapter IV. Quantum Monte Carlo study

will change the propagated state |α(p)〉 6= |α(p − 1)〉 (since it involves the spins
of bond b being flipped). Then, if only one such a substitution is performed, the
condition |α(M)〉 = |α(0)〉 will be violated. What’s more, since our basis (IV.5) is
orthogonal, the associated matrix element 〈α(p − 1)|H2,b|α(p)〉 will vanish and the
resulting configuration does not contribute to the trace in the partition function. To
overcome this problem, Sandvik devised an efficient non-local loop algorithm, the
loop operator update [265]. Let us now describe how the loop is constructed.

Since the update only involves non-identity operators, it works at fixed n and
we can forget about the identity operators in the sequence SM and work with the
original Sn sequences. Let us now introduce the two-spin states (or reduced states)
for a given bond bp in the propagated state |α(p)〉:

|αbp(p)〉 = |Szi(bp)(p), Szj(bp)(p)〉, (IV.16)

the weights of equation (IV.9) read, in terms of these new states:

W (α, Sn) = β!
n!

n∏
p=1
〈αbp(p)|Hbp|αbp(p− 1)〉. (IV.17)

The only nonzero two-spin matrix elements are:

〈↓↓ |Hb| ↓↓〉 = ε,
〈↑↑ |Hb| ↑↑〉 = 2hb + ε,
〈↓↑ |Hb| ↓↑〉 = 〈↑↓ |Hb| ↑↓〉 = hb + ε,
〈↓↑ |Hb| ↑↓〉 = 〈↑↓ |Hb| ↓↑〉 = 1/2.

(IV.18)

It is easier to continue the discussion in the vertex representation of the con-
figuration space. As a matter of fact, the matrix element product in the weights
IV.17 can be represented as a network of n 4-legged vertices, with the two spins
Szi (p − 1), Szj (p − 1) entering the p-th vertex and Szi (p), Szj (p) exiting. The allowed
vertices are those corresponding to the nonzero matrix elements IV.18. The next
step is to create a linked list of the vertices such that for each of the four legs on
each vertex there is a spin state and a link to the following or previous (increasing or
decreasing direction of the propagation index p) vertex leg at the same site. The exit
leg is linked to a leg which is taken as the entrance leg to the next vertex. One must
be careful to take into account the periodic boundary condition on the propagated
states imposed by the cyclicality of the trace: if the loop goes through the boundary,
the state |αb(0)〉 = |αb(M)〉 will be changed too.

The way an operator loop is constructed is the following, first one of the 4n
vertex legs is randomly chosen as the initial entrance leg. (growing or decreasing
propagation index p) is also randomly chosen. An exit leg on the same vertex has
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Figure IV.2: Graphical representation of the four possible movements the loop op-
erator updates can perform for the construction of the loops. The conventions are
identical to those in figure IV.1. Taken from reference [267].

to be chosen according to some probability law: four spins define the considered
vertex and an entrance leg was chosen, the probability of going out of the vertex by
a given leg (which has a given spin) is proportional to the matrix element in (IV.18)
corresponding to the vertex obtained after flipping both the entrance and exit spins.
This probability law ensures that only allowed vertices (nonzero matrix element) are
generated and that the detailed balance condition is met [265]. This procedure is
repeated until the the starting point is reached again, then all the spins that the loop
touches are flipped.

We have seen that for a given entrance leg, there are four types of movements
the loop can follow, each one corresponding to one of the four vertex legs being the
exit one. These movements are represented in the figure IV.2. Let us detail each
movement:

• the bounce movement: the exit and entrance legs are the same. It is not very
useful since it means that the loop being constructed goes back a step and it
can be avoided if all nonzero matrix elements are the same (this will depend
on the choice of the value of ε in our case). Since the two spins to be flipped
are actually the same, it is flipped twice which amounts to no flipping at all.
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90 Chapter IV. Quantum Monte Carlo study

This movement does not exchange the operator type acting on the considered
bond bp.

• the straight movement: the exit and the entrance legs are on the same side
of the vertex. In this case both the entrance and exit legs correspond to the
spin on the same site but at different propagation indexes. Since the action of
this movement is on a single site, it involves no exchange of the operator type
acting on the considered bond bp.

• the turn movement: the entrance and exit legs are spins on different sites and
the construction direction of the loop is changed. Since this movement involves
two spins on different sites the change in the vertex corresponds to a change of
the type of the operator.

• the jump movement: the entrance and exit legs are on different sites (sides of
the vertex) but the construction direction of the loop remains the same. As
well as the turn movement, the jump movement will change the type of the
operator.

If there is only one possible way to construct the loop (i.e. only one type of
movement has a nonzero probability), we talk about a deterministic loop and no
random choice of exit leg is required. The construction of the loop inserts off-diagonal
operators coherently and allowed the sampling of both the operator string and the
states in the basis (IV.5), hence all the possible values of n, all the possible operator
strings SM and states |α〉 are accessible to the algorithm: it is an ergodic algorithm.

1.2.3 Summary: a Monte Carlo Step in the SSE method

For the sake of completeness, we describe how the entire first Monte Carlo step
unfolds in the SSE framework in the case of a 6 spin-1

2 chain. The SSE Monte Carlo
step then follows the procedure represented graphically on figure IV.3:

• At first, the spin configuration is chosen randomly and the initial state in
this example is |α(0)〉 = | ↓↑↓↓↑↓〉 and the operator string is initialised to
length M = 4 with only identity operators in it (empty operator string),
SM=4 = [0, 0], [0, 0], [0, 0], [0, 0].

• a) The diagonal update is performed: diagonal operators of type 1 are inserted
to the operator string. The number of non-identity operators n varies and one
should adjust the cut-off limit of the expansionM as described in section 2.1.

• b) Perform the loop operator update described in section 1.2.2. All the loops
are constructed, in this example three loops are constructed. During the con-
struction of each loop, some off-diagonal observables can be measured, as will
be described on section 1.3.2. In some cases, a loop can take very long times
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Figure IV.3: Example of the different stages of a Monte Carlo step on a chain of 6
spins-1

2 with periodic boundary conditions. The spin configuration ↑ is represented by
• and ↓ by ◦, hence, the initial state (top-left corner) is |α(0)〉 = | ↓↑↓↓↑↓〉. See text
for details on the different stages a), b) and c). The final configuration (bottom-letf)
is |α〉 = | ↑↓↑↓↑↓〉. Figure taken from reference [268].

before closing. We impose a maximum loop length such that loops with length
exceeding this limit are thrown away and another loop is constructed. You can
also fix the number of loops that will be constructed, Nl. For all the simulations
used in the results sections 3, 4 and 5 of this manuscript, we used Nl = 10.

• c) Flip the loops. In this case, only the red loop is flipped and all the spins
touched by the red loop are flipped and all the operators are changed 1 ↔ 2.
The new configuration is |α〉 = | ↑↓↑↓↑↓〉 and the operator string has become
S(M)=4 = [2, 1], [2, 1], [1, 2], [1, 4].

• Eventually perform the desired measurements. (Depends on whether it is an
equilibration or a measurement step, details on this are given in section 2.2.2).

Now that the SSE algorithm has been explained in detail, let us now describe the
different physical measures that it can efficiently perform.
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92 Chapter IV. Quantum Monte Carlo study

1.3 Measurement of physical observables

Now that we have explained how the SSE algorithm works, we turn our attention
to the expectation values of some of the physical observables of interest that can be
measured during the SSE simulations. The SSE algorithm aims at good stochastic
sampling of the partition function which will allow accessing good expectation values
of several physical observables. As a preliminary note, we would like to point out
that the identity operators added to the bond operator string are non relevant for the
measurements and can be disregarded since they bear no true physical meaning, their
roll is to “enlarge” the operator string to size M. There are two kinds of physical
observables the SSE mechanism can compute, the diagonal and the off-diagonal
observables. We will note the statistical mean over the Monte Carlo configurations
of operator O by 〈O〉. In this section, the equivalence between the hard-core bosons
and the spins-1

2 given by the Matsbura-Matsuda transformation [229] (see eq. (II.21))
becomes apparent since the physical observables measured can be named using either
the bosonic or spin vocabularies.

1.3.1 Diagonal observables

The efficient estimators for many static observables in the SSE method were
derived by Sandvik et al. [275]. Some of these are addressed in this section.

i) Energy and Specific Heat

All operators constituting an elementary interaction of the Hamiltonian Ĥ can be
measured by simply counting how many vertices corresponding to that interaction are
present in the operator string SM. By summing over all the elementary interactions
of the Hamiltonian, we can access the energy:

E = −∂ lnZ
∂β

= − 1
β
〈n〉 −Nbε, (IV.19)

where n is the average number of non-identity operators in the operator string SM.
The specific heat can be derived from this equality as the fluctuations of n:

Cv = ∂E

∂T
= β2∂

2 lnZ
∂β2 = 〈n2〉 − 〈n〉2 − 〈n〉. (IV.20)

ii) Density

The density of bosons in the system is linked to the z-component of the spins by
the Matsubara-Matsuda transformation (II.21), the expectation value of the bosonic
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density is then related to the average magnetization per site:

〈ρ〉 = 1
2 + 〈Sz〉 = 1

2 + 1
N

〈
〈α(0)

∣∣∣∣∣
(

N∑
i

Szi

)∣∣∣∣∣α(0)〉
〉
, (IV.21)

where
〈
.

〉
denotes the average over all Monte Carlo configurations. A related quan-

tity is the local density of bosons:

〈ρi〉 = 1
2 + 〈Szi 〉 = 1

2 +
〈
〈α(0)

∣∣∣∣∣Szi
∣∣∣∣∣α(0)〉

〉
, (IV.22)

and the total density is given by the average of the local densities: 〈ρ〉 = 1
N

∑N
i 〈ρi〉.

iii) Compressibility and diagonal susceptibilities

The compressibility of a bosonic system is defined as the second derivative of the
energy with respect to the chemical potential κ = −∂2E

∂µ2 . Its equivalent in the spin
vocabulary is the uniform static susceptibility χ = −∂2E

∂B2 , because the equivalent
of the external magnetic field B for the spins is the bosonic chemical potential µ.
Finally, in the SSE QMC formalism the compressibility reads:

κ ≡ χ = β

N

〈( N∑
i=1

Szi

)2〉
−
〈(

N∑
i=1

Szi

)〉2
 . (IV.23)

More generally, the susceptibility between two diagonal operators O1 and O2
defined by:

χO1O2 =
∫ β

0
〈O1(τ)O2(0)〉dτ , (IV.24)

is computed in a SSE simulation as:

χO1O2 =β
〈

1
n(n− 1)

n−1∑
p=0
O1(p)

n−1∑
p=0
O2(p)


+ 1

(n+ 1)2

n∑
p=0
O1(p)O2(p)

〉
,

(IV.25)

where we have defined O(p) = 〈α(p)|O|α(p)〉.

iv) Superfluid density

The equivalent of the bosonic superfluid density in the spin language is the spin
stiffness, defined as the second derivative of the ground-state energy with respect to
a twist Φ in the boundary conditions around one of the axis perpendicular to the
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94 Chapter IV. Quantum Monte Carlo study

direction of the broken symmetry, which in the thermodynamic limit is the z-axis
chosen as the axis of quantisation of the spins.

ρsf = ∂2E0(Φ)
∂Φ2

∣∣∣∣∣
Φ=0

. (IV.26)

Sandvik derived an efficient estimator for the stiffness, depending only on the ground-
state at Φ = 0 [215]. To access it an expansion to second order in Φ of the Hamilto-
nian in presence of the twist is made:

H(Φ)−H(0) = −1
2
∑
<i,j>

[
Φ2(Sxi Sxj + Syi S

y
j ) + ıΦ(S+

i S
−
j − S−i S+

j )
]

(IV.27)

The first term is proportional to H(0) and the second term is proportional to the
spin current operator:

js = ı

2
∑
<i,j>

(S+
i S
−
j − S−i S+

j ). (IV.28)

It can be shown [215] that if we define the current-current correlation function at
Matsubara frequency ωm = 2πmT by

Λs(ωm) = 1
L2

∫ β

0
dτ exp−ıωmτ 〈js(τ)js(0)〉, (IV.29)

then the stiffness reads [215]

ρsf = −[13E + Λs(0)], (IV.30)

where E is the ground-state energy per spin, given by eq. (IV.19). Finally, the spin
stiffness is given by [215]:

ρsf = 1
2β 〈w

2
x + w2

y〉, (IV.31)

where we defined the winding number in direction α as:

wα = N+
α −N−α
L

, (IV.32)

withN+
α andN−α respectively the number of operators S+

i S
−
j and S−i S+

j , with< i, j >
a bond in the α direction, that appear in the operator string SM [215].

1.3.2 Off-diagonal observables

In the original works by Sandvik et al. only efficient estimators for static observ-
ables were derived in the SSE frame. The system’s dynamics were not accessible at
the time. Dorneich and Troyer devised an efficient algorithm to calculate a system’s
dynamic properties by calculating the system’s Green’s functions within the QMC
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2. Specificities of the SSE simulations for disordered systems 95

SSE formalism [262]. The measurement of such Green’s functions requires insert-
ing local changes on world lines, for instance removing a particle at a propagation
level p1 on a world line w1 and reinserting it at the propagation level p2 on another
world line w2, while respecting detailed balance during such a process. Furthermore,
this process has to sample all distances between world lines (e.g. between sites)
r = w2 − w1 as well as all the distances in propagation direction ∆p = p2 − p1. All
these requirements are met by the loop update steps which inserts and moves local
changes on the vertex network (i.e. in the world line network), hence the Green’s
functions G(r,∆p) can be computed during the construction of the loop update. For
the details on this algorithm we refer the interested reader to the original paper by
Dorneich and Troyer [262]. Here we will focus on the estimation of the Bose Einstein
condensate density, defined as:

〈ρ0〉 = 1
N
〈b†k=0bk=0〉 = 1

N2

N∑
i,j

〈b†ibj〉 = 1
N2

N∑
i,j

〈G+−(i, j)〉. (IV.33)

with 〈G+−(i, j)〉 = 〈b†ibj〉 being the plus-minus Green’s functions averaged over all
Monte Carlo configurations.

2 Specificities of the SSE simulations for disor-
dered systems

In the previous section, we presented the general features of the Stochastic Se-
ries Expansion Quantum Monte Carlo simulations. However, in order to study the
Superfluid - Bose glass transition, some subtleties and special considerations have to
be taken into account. As a matter of fact, the simulation of quantum disordered
systems is very delicate and can suffer from errors coming from different sources like
temperature effects as well as statistical Monte Carlo and disorder fluctuations. The
issue of computational resources is also very important. The energy shift affects the
simulation times and the total computing time can grow very fast with the inverse
temperature β, the number of disorder realizations Ns, the number of measurement
Monte Carlo steps Nm and the system size N = L× L as

τcpu ∝ L2 × β ×Nm ×Ns. (IV.34)

This greatly limits the accessible system sizes. In our simulations the biggest avail-
able size is L = 32. This section addresses how to find the best strategy to optimize
the final precision of the results while dealing with finite cpu time and what values
have to be used for the parameters β, Nm and Ns so as to obtain the most reliable
results for the study of the Superfluid - Bose glass transition in 2D.

95



96 Chapter IV. Quantum Monte Carlo study

2.1 Effect of the energy shift
As stated during the presentation of the SSE algorithm in section 1, a way to avoid

the dreaded “sign problem” in Quantum Monte Carlo SSE simulations, and hence
perform a true ergodic simulation in order to stochastically determine the partition
function, is to introduce an energy shift to the diagonal part of the Hamiltonian (see
eqs. (IV.2) and (IV.18)).

This shift ensures that all diagonal matrix elements are positive or vanishing.
What’s more, the shift ε has been shown to reduce the probability of a bounce
movement happening [266], allowing for longer loops to be formed and we have seen
that a bigger value of ε helps closing the loops. One might then be tempted to choose
a large value of the energy shift ε. However, it also appears in the expectation value
of the energy as seen in equation (IV.19), hence the average expansion order has a
contribution εβNb which means that the bigger ε is, the bigger the average number
of non-identity operators in the operator string is and therefore the bigger the cut-off
M will be (cf. fig. IV.5). In the end, the bigger the energy shift ε is the longer the
simulation time. There is then a compromise to be found.

Figure IV.4 shows the convergence to the ground-state value of the superfluid
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Figure IV.4: Temperature dependance of the superfluid density for different values
of the energy shift ε for a system of size L = 24 at a disorder strength of W =
4.75. All values of the energy shift considered give the same expectation values at all
temperatures T . The chosen shift for the simulations is ε = 10 (see text).
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density of a system of size N = 24× 24 at disorder strength W = 4.75 for different
values of the energy shift ε. The data for the biggest values of ε have bigger error bars
because the number of realizations of disorder is lower because every simulation takes
a longer time. We check that the value of the shift does not affect the expectation
value of the physical observable being measured for our range of ε, this means that
our lowest value ε = 5 is already big enough to ensure the stochasticity of the
simulation. In all the simulations that will be discussed in the following sections of
this manuscript, we chose the intermediate shift of ε = 10 so as to help the closing
of the loops but not be penalized by too long simulation times.

2.2 β-doubling scheme and convergence to the ground-state

2.2.1 Equilibration and thermalization

A QMC SSE simulation involves a cut-off in the Taylor expansion of the partition
function, as described in the previous section. It is of paramount importance to assure
that this cut-off M is high enough for the neglected terms of higher order in the
expansion effectively do not contribute to the trace in the partition function (IV.7).
If this condition is met, the corresponding Monte Carlo configuration is said to be
equilibrated and physical observables will be reliably measured. At the same time,
the cut-offM is the length of the operator string SM and the bigger it is, the longer
the simulation will be. The need to find an appropriate value forM becomes evident
since it has to be big but not too much so. During the diagonal update, the number
of non-identity operators n in the operator string SM is changed. This quantity can

MC step

Figure IV.5: Evolution of the number of non-identity operators n (full line) and the
cut-offM (dashed line) as a function of the number of Monte Carlo steps for a clean
XXX chain of spins 1

2 of length L = 100 at the an inverse temperature of β = 100.
Taken from reference [268].
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be used to dynamically adjust the the cut-off M as follows. The initial Minit is a
small number and at first ninit = 0 because we start from an empty operator string.
One appropriate way to ensure that during the simulation M is high enough is to
fix the criterion that if n > 0.8 ×M, the cut-off is dynamically readjusted to the
new valueM→ 1.25× n. An equilibrated configuration is obtained when the cut-ff
M reaches a saturation value after a certain number of Monte Carlo steps. This
procedure is illustrated in figure IV.5 where both M and n are plotted versus the
number of Monte Carlo steps. It is then convenient to do a number of equilibration
Monte Carlo stepsNeq where no measurement is made before the actual measurement
steps. In the example illustrated in figure IV.5 some Neq = 100 steps are sufficient
for the equilibration of the configuration.

2.2.2 Description of the β-doubling scheme

The Superfluid - Bose glass transition is a quantum (T = 0) phase transition.
We have to ensure we are simulating the ground-state of our system. However, the
SSE algorithm works at finite inverse temprature β. The β-doubling scheme was
first introduced by Sanvik [216] for the study of the ground-state properties of the
site diluted Heisenberg model. It is a very powerful technique allows us to reach
extremely low temperatures fairly quickly and at the same time reduce the necessary
equilibration steps.

The β-doubling scheme starts by simulating a random disordered sample at high
temperature β1 = 21 = 2. Neq equilibration steps followed (if necessary) by the Nm
measurement steps are performed, after what the final Monte Carlo configuration
at the inverse temperature β1 is given by a state |α〉 and an operator string SM =
[a1, b1], · · · , [aM, bM]. Next, the inverse temperature is doubled so β = β2 = 22 = 4.
Let us now note that since the average number of non-identity operators in the string
scales as 〈n〉 ∼ βN , the operator string at β2 will approximatively be twice as long as
the one at β1. Hence, a very good starting point for the operator string at β2 = 2β1
is obtained by doubling and inverting the equilibrated string at β1:

S2M = [a1, b1], · · · , [aM, bM], [aM, bM], · · · , [a1, b1] (IV.35)

This procedure is repeated until a high inverse temperature βhmax = 2hmax is reached
for every disordered sample. During the cooling, the Monte Carlo configuration
becomes increasingly equilibrated since the number of equilibration steps taken at a
given βh is effectively Neq(h) = h(Neq +Nm).

Figure IV.6 shows the convergence to the ground-state expectation value of the
superfluid and Bose condensed densities calculated for our model (IV.1) for various
system sizes at two different disorder strengths (the extremal ones). It is clear that
the average expectation values are converged within error bars at different inverse
temperatures depending on the system size and the disorder strength. This enables
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Figure IV.6: Convergence of the superfluid and Bose condensed densities to the
ground-state during the β-doubling procedure for different system sizes and two dif-
ferent disorder strengths. The full red circles in the right panels (L = 16,W = 5) are
data for a Nm = 104 measurement Monte Carlo steps, all the other data was obtained
with Nm103 measurement steps and are in perfect agreement regardless of the number
of steps. The dashed lines indicate the β-converged values of the superfluid and BEC
densities for every system size and disorder strength.

us to chose our inverse temperature for the production runs, namely βt = 27 for
L = 12 and up to βt = 29 for L = 32. The same inverse temperatures are enough for
all considered disorder strengths for each system size. The best strategy to simulate
our model (IV.1) consists then in performing the β-doubling scheme with no mea-
surement steps up to the inverse temperature that ensures ground-state convergence
for the given system size and disorder strength and an equilibrated Monte Carlo con-
figuration with Neq = 200 equilibration steps and a dynamically adjusted number of
measurement steps Nm, as will be explained in more detail in section 2.4.

2.2.3 Actual ground-state convergence

The issue of ground-state convergence is actually a very subtle one. Contributions
from low energy excited states strongly depends on the measured physical observable,
therefore the actual convergence temperature can be different for different physical
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quantities. Furthermore, the convergence to the ground-state achieved with the β-
doubling scheme is a an average convergence. As a matter of fact, it is practically
impossible to ensure that every individual disordered sample is effectively in its
ground-state, i.e. the temperature is below the sample’s finite-size gap. This comes
from the fact that some samples present a finite-size gap smaller than the average one,
and actually there can be some samples with extremely low finite-size gaps, meaning
that the corresponding temperature for this sample to be in its ground-state is also
extremely low.

Figures IV.7 and IV.8 show the evolution of the average compressibility κ, the
superfluid density ρsf and the condensate density ρ0 during the β-doubling procedure
for a disorder strength of W = 5 and two different system sizes L = 8 and L = 16.
The compressibility in figure IV.7 follows the expected Curie law at high temperature,
saturates to finite value at an inverse temperature of βt = 4 for both system sizes
L = 8 and L = 16 and only starts to reach its ground-state value of zero (because the
finite-size gap renders incompressible the finite-size sample) for very low temperatures
around βt ≥ 128 for L = 8 and βt ≥ 512 for L = 16. The average compressibility is
still not strictly vanishing and there are still samples that are not in their ground-
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Figure IV.7: Compressibility of the system as a function of the inverse temperature,
during the β-doubling scheme, for two system sizes L = 8 and L = 16 at disorder
strength W = 5, inside the Bose glass phase. The data is well described by the Curie
law (linear growth in βt) and saturates to finite value of ≈ 0.095 before dropping
down to its vanishing ground-state value at low temperatures due to finite-size effects
(see text).
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state. On another hand, the superfluid and Bose condensed densities in fig. IV.8
saturate to their ground-state values at a much lower temperature βt = 128.

The total number of bosons Nbosons = 〈∑i ni〉 = 〈Nρ〉 being a good quantum
number,it is conserved and can only take integer values in the ground-state. It is
then a good observable for determining if a sample effectively is in its ground-state.
The right panel of figure IV.8 shows the histogram of Nbosons for a system of size
L = 8 at disorder strength W = 5 (BG). We can see that the peaks around the
integer values of bossing occupation are rounded, a purely thermal effect. The inset
shows the fraction of N -locked samples as a function of the inverse temperature,
which is only around 30% for βt = 128, which amounts to at least some 70% of the
samples not being in their ground-state while the average ρsf and ρ0 densities appear
converged to their ground-state values at that temperature.

Summing up, reaching the actual ground-state for all the disordered samples re-
quires extremely low temperatures (βt ≥ 1024), but fortunately the average estimates
of ρ0 and ρsf converge to their ground-state values at much higher temperatures and
can safely be interpreted as T = 0 ones for the temperatures chosen by the β-doubling
scheme for studying the quantum Superfluid - Bose glass transition.
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Figure IV.8: Left panel: Convergence of the superfluid (◦) and Bose condensed (�)
average densities to the GS for a system of size N = 8 × 8 at disorder strength
W = 5 for different number of measurement steps Nm, using Ns ∼ O(103) disordered
samples. It is clear that the number of measurement steps Nm has no effect and
the smallest one can be used. Right panel: Distribution of the number of bosons
for different inverse temperatures βt. Inset: Fraction of samples actually in their
ground-state.
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2.3 Estimation of errors: Disorder and Monte Carlo error
bars

Any Monte Carlo expectation value is by definition an average of measurements
over Monte Carlo configurations and hence inherently presents statistical errors.
They can be reduced by generating longer Markov chains, i.e. by performing a larger
number of measurement steps Nm and an exact result would be found in the limit of
infinite Monte Carlo measurement steps Nm → ∞. In addition, disordered sample-
to-sample fluctuations are another source of statistical errors. Adding more disorder
realizations (bigger Ns) is the only way to reduce them. However, the computational
time at our disposition is finite meaning that an optimized strategy to obtain the
smaller possible final uncertainties needs to be set in action. We already discussed
how to choose the proper temperatures in an optimized fashion and this section will
address the determination of the dominant source of uncertainties between Monte
Carlo and disorder statistical errors and how to achieve the best possible precision
in our final results.

2.3.1 Monte Carlo fluctuations vs disorder fluctuations

We try to determine a hierarchy between Monte Carlo and disorder statistical
fluctuations to gain more insight on this problem, which means we need to quantify
both of them. In order to do so, we take 10 representative disordered samples of
a system of size N = 16 × 16 at a disorder strength of W = 4.6 inside the SF
phase and perform the β-doubling scheme to reduce equilibration times, using Neq
steps. 10 independent bins of measurement using Nm measurement steps are carried
out for each sample, and we use three different values of Nm = 102, 103 and 104,
keeping a constant ratio Nm/Neq = 5. The results for the superfluid stiffness ρsf
and the BEC density ρ0 are plotted in figure IV.9. On one hand, for Nm = 100
(black circles) the estimates from a bin of measurement to another one (i.e. the
Monte Carlo fluctuations) have a spread of the same order of magnitude as the
spread of the estimates for different samples. On the other hand, for a number of
measurement steps Nm ≥ 1000, the Monte Carlo fluctuations are smaller than the
disorder fluctuations.

We can partially conclude that at least 1000 measurement steps are needed to
make the fluctuations due to the Monte Carlo sampling to be negligible as compared
to disorder fluctuations. In order to check if 1000 indeed are enough we plot in fig-
ure IV.10, for a system of size L = 16 and a disorder strength W = 5 inside the Bose
glass phase, the full distribution of the logarithm of the superfluid response ln(ρsf)
using Ns ≈ 20000 independent disorder realizations together with the distributions
of the same quantity for 5 representative samples using Nm = 1000. For each one of
these samples around 300−400 independent Monte Carlo estimates with Nm = 1000
were carried out. The full distribution over disordered samples was multiplied by a
factor of 20 for graphical reasons. The distribution for different Monte Carlo mea-
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Figure IV.9: Superfluid and Bose condensed densities for a system of size N =
16 × 16 at disorder strength W = 4.6. The estimates for 10 independent disordered
samples are presented. For each one of them, the β-doubling procedure using Neq
equilibration steps was used, followed by 10 independent bins of measurement, each
with Nm measurement steps, performed only at the lowest temperature βt = 28. The
10 computed expectation values for a given sample and number of measurement steps
is represented by a data point.

surements with 1000 steps inside a single disorder realization is clearly much narrower
than the full distribution, specially so for the samples exhibiting big values of the
stiffness. At most, the spread over Monte Carlo measurements is around one third
of the spread of the disorder distribution (red distribution in figure IV.10). This
corresponds to the samples with the lowest superfluid response, for which a larger
number of measurement steps may be necessary since autocorrelation times for ρsf
are the longest precisely for these samples (cf. section 2.4).

As a conclusion, the fluctuations are vastly dominated by the disorder fluctuations
and the best strategy to reduce the overall uncertainty of our results is to perform a
large amount of disorder realizations using at least 1000 measurement steps, which
usually are much larger than the autocorrelation times for the observables of interest,
namely the superfluid stiffness ρsf and the BEC condensate ρ0. As a matter of
fact, there are some samples that present very large autocorrelation times for the
superfluid stiffness ρsf, and 1000 measurement steps are not enough in this case.
This issue will be addressed further along in section 2.4.
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Figure IV.10: Distribution of ln(ρsf) for a system of size N = 16 × 16 at disorder
strength W = 5, inside the Bose glass phase. The black circles curve is the full dis-
tribution over ≈ 20000 disordered samples, multiplied by a factor of 20 for graphical
reasons. The colored lines are the histograms of ∼ 300 − 400 MC measurements
made using Nm = 103 steps, shown for 5 representative disordered samples. The
spread of the MC measurements distributions is clearly much smaller than the spread
stemming from disordered samples.

2.3.2 Obtaining disorder-converged estimates

Now that we have determined that disorder fluctuations are dominant in our
problem, we have to tackle how to reduce them. As stated before, the only way to do
so is by adding more disordered samples, keeping in mind that the total computation
time grows with the number of disorder realizations (see eq. (IV.34)). In figure IV.10
it can be seen that the distributions of ln(ρsf) are very wide and need a very large
number of disorder realizations to be properly sampled so, a large enough number
of samples is needed. In addition, Lin et al. found that, for the superfluid-insulator
transition in the related model of quantum rotors, around 1000 samples do not give
converged estimates [276]. So we may need to use the biggest possible number
of samples as possible, without it being too large. To find a good compromise
between these two constraints we plotted in figure IV.11 the cumulative averages of
the superfluid stiffness ρsf and the BEC density ρ0 upon increasing the number of
included disorder realizations for two different system sizes L = 16 and L = 32 and
several disorder strengths. The averages drift slowly towards their converged value
and it becomes apparent that for the smaller size at least Ns ∼ 104 disorder samples
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Figure IV.11: Estimated averages of the superfluid stiffness ρsf and the Bose con-
densed density ρ0 as a function of the number of disordered samples Ns for different
system sizes (N = 16 × 16, 32 × 32) and disorder strengths. A very large number
of samples (Ns � 1000) is needed to achieve disorder-converged averages, like in the
discussion for a related model [276].

are needed to achieve a converged estimate and at least Ns ≈ 5000 for the bigger
size. Since the distributions of ln(ρsf) are very wide (as will be discussed in details in
section 4) we choose an even bigger number of samples: for the smaller sizes L ≤ 22,
Ns ∼ 20000 and for the bigger sizes L ≤ 24, Ns ∼ 10000.

2.4 Large autocorrelation times
In section 2.3.1 we determined our best strategy to simulate the Superfluid -

Bose glass transition to be using a relatively small number of measurement MC
steps Nm = 103 and a big number of disorder realizations. While Nm = 103 is usu-
ally much larger than the autocorrelation times for both the superfluid stiffness ρsf
and the Bose Einstein condensate density ρ0, there are some disordered samples for
which the autocorrelation time of ρsf can reach a few hundreds or even thousands of
steps. These samples correspond to the ones with the smallest superfluid densities.
A consequence of such long autocorrelation times is that for these samples, the mea-
sured stiffness,which is calculated in SSE by the fluctuations of the winding numbers
of worldlines (see equation (IV.31)) the change from the zero winding number sector
to nonzero winding numbers requires more Monte Carlo steps and using only 1000
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Figure IV.12: a) Distribution of ln(ρsf) for a system of size N = 24 × 24 at disor-
der strength W = 4.6 (SF phase)) with 1000 measurement steps (red) and with the
dynamical adjustment of the measurement steps (black). b) Distribution of the same
quantity for the same size inside the Bose glass phase (W = 5). The dynamical ad-
justment procedure allows for the measurement of much smaller superfluid densities,
specially inside the Bose glass phase. c) Distribution of the number of Monte Carlo
measurement steps Nm needed for the two disorder strengths in panels a) and b).
In the superfluid phase only 10% of the disordered samples required more than 103

measurement steps, this goes up to around 30% inside the Bose glass phase.

measurement steps will yield a zero estimate for ρsf. As a matter of fact, a vanishing
superfluid response is a physically impossible result for a finite-size system even in the
Bose glass phase (we remind the reader that in the BG phase the superfluid response
vanishes only at the thermodynamic limit N →∞). It is hence necessary to perform
more Monte Carlo measurement steps for these samples, but only for them so as to
optimize the computing time. We decide to dynamically adjust, for these cases, the
number of measurement steps by performing additional blocks of 1000 Monte Carlo
steps until the autocorrelation time is much lower than the simulation time and the
computed ρsf estimate is reliable. This is actually a dynamical adjustment of the
stiffness Markov chain length.

We set a maximum limit of Nm = 105 measurement steps for obvious computa-
tional time reasons. There are still some rare disorder realizations that need even
more steps to leave the zero winding number sector and their superfluid response will
be wrongly evaluated to zero. These samples cannot be included for the evaluation of
distributions of ln(ρsf) nor the typical stiffness. They may or may not be included for
the evaluation of the average stiffness though, and this should be done with caution
since a bias may be added in both cases! A careful discussion on this subject will be
held in section 3.1.2.
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To illustrate the effect of our dynamic Markov chain length adjustment method,
figure IV.12 shows the distributions of ln(ρsf) for a system of size L = 24 at two
different disorder strengths, one inside the superfluid phaseW = 4.6 (panel a) and the
other in the Bose glass phase W = 5 (panel b), with a fixed number of measurement
steps Nm = 103 (in red) and with the dynamic adjustment method (in black). The
fact that for W = 4.6 the system is in the superfluid phase and for W = 5 in the
Bose glass phase will become clear in section 3.1.4. A low cut-off in the measured
superfluid response is present when only 1000 steps are used and the implementation
of our dynamic adjustment method clearly shifts this cut-off to lower stiffness values,
specially in the BG regime. This is of paramount importance for the qualitative and
quantitative studies of these distributions (cf. section 4) since they could not have
been properly sampled.

In order to quantify the incidence of need of our method, we show in panel c)
of figure IV.12 the distribution of the number of measurement steps Nm required
to obtain the distributions in panels a and b. In the SF phase around 5% of the
disorder realizations used more than 1000 measurement steps and O(104) seems to
be the largest number of steps that were needed. In the BG phase around 33% of the
realizations used more than 1000 steps and our maximal limit of 105 measurement
steps was reached, although very few samples did.

Now that the technical details of our simulations have been presented, we can
proceed to the presentation of our results for the superfluid - Bose glass transition.

3 Critical exponents of the SF-BG phase transi-
tion

The ground-breaking work of Fisher et al. [6], extended the Josephson rela-
tions [172] for classical phase transitions driven by thermal fluctuations to get a
hyperscaling relation for quantum (T = 0) phase transitions where quantum fluctu-
ations drive the system from one phase to the other. Some bounds for the critical
exponents were derived [6](see first line in table IV.2) and have ever since been
tested but no general consensus has been reached, particularly over the equality
z = d [6, 157, 160, 176, 178–182, 270, 271]. This section shows how we extracted
estimates for these critical exponents from the Quantum Monte Carlo simulations
described in the previous sections using finite-size scaling analysis and bootstraping
for evaluation of errors.

3.1 Critical exponents for average quantities
We focus our attention on the scaling properties of the average superfluid response

ρsf and the Bose Einstein condensate density ρ0 with system size in order to extract
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the critical exponents and critical disorder strength for the Superfluid - Bose glass
transition with our model (IV.1).

3.1.1 Finite size scaling analysis

The derivation of the scalings with system size was treated in section 2.3.2 of the
Introduction chapter I, here we just remind the important results.

The superfluid response is shown to scale, for simulations on a finite lattice of
size L, as [6]:

ρsf(L) = L−(d+z−2) Gsf [L1/ν(W −Wc)], (IV.36)
where z is the dynamical critical exponent, ν the correlation length exponent,Wc the
critical disorder, and Gsf a universal function. So in the vicinity of the 2D quantum
critical point, the finite-size scaling of the SF density is:

ρsf(L) = L−z Gsf [L1/ν(W −Wc)]. (IV.37)

The actual order parameter for the transition is the Bose Einstein condensate
density which displays a critical scaling:

ρ0(L) = L−(d+z+η−2) G0[L1/ν(W −Wc)], (IV.38)

with η the anomalous exponent. In our 2D case this yields the scaling:

ρ0(L) = L−(z+η) G0[L1/ν(W −Wc)]. (IV.39)

Before performing the scaling analysis, we need to correctly compute the estimate
of the average with its error bar for each system size and disorder strength. While
the estimate of the average is simply given by the average over disorder realizations
of the Monte Carlo averages, the error bar estimation is more complex. In fact, since
the distributions have special shapes the central limit theorem estimate of the error
bar as σsf|0/

√
Ns is not reliable. The best way to estimate the error bars is then to

perform a bootstrap analysis [253]. For this, we generate a set of bootstrap samples
by randomly selecting a subset {iBS} from the Ns realizations with replacement
(i.e. we select in total Ns realizations from the total data set with the possibility to
choose the same data point several times) which we then average over {iBS}. This is
repeated approximatively 1000 times and the standard deviation of such calculated
averages is indeed an accurate estimator of the error bar [253].

We can now do the scaling analysis by fitting our average estimates of ρsf and
ρ0 (with their respective error bars) to the scaling forms (IV.37) and (IV.39) re-
spectively, where we have Taylor expanded the scaling functions Gsf and G0 to an
order high enough so that the qualities of the fit are acceptable (see table IV.1 and
equation (IV.41) ), namely to third order in L1/ν(W − Wc). We get the best es-
timates of the critical disorder strength Wc and the critical exponents z, ν and η.
To extract error bars on our best estimates of the critical parameters we perform a

108



3. Critical exponents of the SF-BG phase transition 109

gaussian resampling of our data for ρsf and ρ0 within the error bars determined by
the bootstrap analysis and perform the same scaling fits multiple times, typically
100 times are enough since the uncertainties for each window of size and disorder
strength is very small compared to the ones coming from different windows, specially
in system size (cf. figure IV.14). The standard deviation of such fit results represent
the statistical error of the final results.

As a means for quantifying the quality of our fits, we calculate the sum of squared
residuals

χ2 =
∑
i

(
(ρisf|0 − fit(Wi, L))/σi

)2
(IV.40)

and the probability Q of finding a χ2 greater or equal than this value given the fit
by

Q = 1
Γ(ndof/2)

∫ ∞
χ2/2

dyyndof/2−1e−y, (IV.41)

following Young [253].
In order to take into account possible systematic effects, we apply this procedure

for different windows of system size and disorder strengths. Our final estimates and
their error bars are determined by the total fluctuations of all the fit results which
will be presented further along in section 3.1.4 (see figure IV.14).

3.1.2 Inclusion of samples with long autocorrelation times

As discussed in section 2.4, our dynamical adjustment of the Markov chain length
so as to properly estimate very low stiffness values, was imposed a maximum number
of measurement steps of 105 for computational time reasons and the rare realizations
of disorder which needed more steps are evaluated to zero stiffness. This result is not
possible for a finite-size system, even inside the Bose glass phase. However, plainly
neglecting such samples for our analysis may introduce a bias. It is worth noting that
our analysis leads us to speculate that these samples have actually been simulated
out of their ground-state at too high a temperature. We will now discuss how to
include them in a careful way that does not also induce a systematic bias.

First, simply adding these samples to the analysis explained in section 3.1.1
would necessarily introduce a bias since the added values are not physical. This
would amount to approximating the distribution of ρsf by a distribution with a cut-
off (i.e. the lowest measured stiffness for each system size and disorder strength)
and a δ-peak in zero. This is obviously wrong because the real distribution vanishes
at zero stiffness and the delta peak due to not long enough simulations at too high
temperatures.

Another way consists try to extrapolate the distribution of ln(ρsf) for each couple
(L,W ) to zero by a power law tail, which seems justified. However, its most negative
part is the least properly sampled one, therefore a good reliable extrapolation cannot
be obtained. In other words, any extrapolation one could try would not be justified.
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110 Chapter IV. Quantum Monte Carlo study

A third solution, consists in replacing the non physical zero values by half the
value of the cut-off (i.e. the minimal computed stiffness for every couple (L,W ))
and adding them to the data set. This is equivalent to approximating the real
distribution by a distribution with a cut-off (the same as for the first possibility) and
a box distribution below it which is only justified by the fact that the approximated
part of the distribution has a very small weight. We chose this solution and performed
the data analysis procedure to check for the stability of our results. We find that
the inclusion of these samples does not change our final results. This is illustrated in
figure IV.14 in section 3.1.4, along with all the estimates of the critical parameters.

3.1.3 Correction of systematic errors

Despite our efforts for reducing the source of uncertainty (see section 2), some
systematic errors may still be present. Two of them are known and expected to have
low influence in the final results (see section 2), namely, problems in convergence
to the ground-state (i.e. thermal errors) and the fluctuations of the Monte Carlo
statistical estimates. We will now describe how to deal with errors.

i) Thermal errors

In spite of the fact that our careful β-doubling procedure was carried out to
ensure the convergence to the ground-state (see section 2.2.2), it cannot be ensured
that all samples are effectively in their ground-state (see section 2.2.3). Hence one
should still pay attention to potential systematic bias that may be introduced by the
rare disorder realizations that may have not fully converged to their ground-state
values for ρsf and ρ0. To do so, we fit the β-doubling curves of ρsf|0 as a function of
temperature to the following form

ρsf|0(β) = ρsf|0(β →∞)− Asf|0 exp
(
−β/βsf|0

)
, (IV.42)

which turns out to describe quite well our results near the convergence inverse tem-
perature with the following fitting parameters

Asf ≈
2
L2 ,

A0 ≈
1
L2 ,

βsf =β0 ≈ 0.1L2,

(IV.43)

as shown in figure IV.13 three different system sizes (L = 16, 24, 32) at disorder
strength W = 5. The fits (thick dashed curves) are particularly good near the
convergence which justifies using them to correct the systematic thermal errors.

The phenomenological law (IV.42), allows us to estimate the corrected average
stiffness and Bose condensate densities estimates to get the the ground-state con-
verged values and then perform the full scaling analysis for a comparison of the
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Figure IV.13: β-doubling curves for the average superfluid response ρsf and the Bose
condensed density ρ0 for three different system sizes N = 256, 576 and 1024 at
disorder strength W = 5. The fits to the phenomenological law (IV.42) using the
parameters (IV.43), represented by the thick dashed color lines, describe the curves
particularly well near the convergence.

results and provide a check of their stability (see figure IV.14 in section 3.1.4) and
conclude that their inclusion does not change our final estimates.

ii) Monte Carlo fluctuations

In section 2.3.1 we showed how Monte Carlo fluctuations are much smaller than
those brought about by different independent disorder realizations (see figures IV.10
and IV.9), however completely neglecting them could induce some systematic bias.
In order to take this contribution into account in the calculation of the error bars for
each system size and disorder strength, we add one step to the bootstrap analysis,
namely, we dram a Gaussian random number distributed according to

p(x) = 1√
2πσMC

e−(x−ρ)2/(2σ2
MC) (IV.44)

around the Monte Carlo estimate , with standard deviation equal to the standard
deviation of the Monte Carlo configurations σMC for each selected sample, which
we then average over {iB}. The final estimates for the critical parameters remain
unchanged when adding such corrections as can be seen in figure IV.14.
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3.1.4 Critical parameter estimates

The previous sections described the simulation details and the data analysis
scheme for our model for the superfluid - Bose glass transition. We now discuss
the estimates we get by applying said schemes, including all the subtleties and cor-
rections described earlier. Figure IV.14 shows the best estimates for the four critical
parameters (the critical threshold Wc, the dynamical exponent z, the correlation
length exponent ν and the order parameter exponent η) for different windows of size
[Lmin; 32] and different included disorder strengths (different colors). The estimates
obtained by the scaling of the Bose condensed density ρ0 are represented by circles
and those obtained via the superfluid stiffness ρsf by squares. Full symbols depict
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Figure IV.14: Bootstrap estimates of the critical exponents for different disorder and
system size windows. Different colors represent the estimates for different windows
of disorder. Circles depict estimates obtained with the scaling of the BEC density ρ0
and squares those obtained via the superfluid density ρsf. Full symbols correspond to
critical parameter estimates when no systematic error correction is added and open
symbols estimates where both the Monte Carlo and temperature systematic error cor-
rections are included. Orange-filled squares are the estimates when the samples with
too long auto-correlation times for the stiffness are included (cf. section 3.1.2). The
dashed line gives the final best estimates and the shaded area the final uncertainties.
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the final bootstrap results when the systematic errors from temperature and Monte
Carlo fluctuations are completely neglected while open symbols are the results with
the inclusion of corrections to these errors as discussed in section 3.1.3. Finally,
orange-filled squares correspond to estimates obtained via the stiffness when includ-
ing the rare samples with too long auto-correlation times as discussed in section 3.1.2.
Clearly, the estimates and their error bars are not affected by the inclusion of long
auto-correlation times samples and corrections to thermal effects and Monte Carlo
fluctuations. Hence, we decided to neglect all these effects. It is worth noticing that
neglecting the zero stiffness samples allows us to treat on equal footing the typical
and average stiffness. Despite our best efforts, some systematic size effects are still
present, as can be seen from the fact that estimates have strong fluctuations when
changing the fit window in size, which translates to quite big error bars on the final
estimates.

Q0 (×100) Qsf (×100)
Lmin [4.6; 5] [4.65; 5] [4.7; 5] [4.6; 5] [4.65; 5] [4.7; 5]
12 8.7 13.3 16.2 4.5 4.25 11
16 7 15.2 13.5 4 5 9.2
20 21.3 39.75 33.8 37.5 39.25 39.5

Table IV.1: Quality of the fits of the critical parameters from the Bose condensed
density (Q0) and from the superfluid density (Qsf), corresponding to the parameters
shown in figure IV.14 for different windows of disorder and of system size [Lmin; 32],
neglecting corrections due to thermal effects and Monte Carlo fluctuations as well as
the zero stiffness samples.

Table IV.1 shows the qualities of fit for all windows in system size and disorder
strength where all systematic corrections have been neglected. We see that the
qualities for the the window [Lmin; 32] are systematically higher, as expected since
reducing the number of system sizes included in the analysis while keeping the bigger
sizes means that there is less size dynamics, hence the fact that no drift term is
included in the fits becomes more justified. Secondly, the bigger system sizes have
slightly bigger relative error bars so the corresponding χ2 is smaller and the quality
of fit Q larger as these two quantities are very sensible to the error bars.

Our final estimates with their (quite large) error bars are shown in table IV.2 along
with the estimates from previous works for the SF-BG transition in 2D, with different
models. We stress the fact that the superfluid stiffness and the BEC condensate
vanish at exactly the same critical point Wc = 4.80(5), which was not clear from
semi-classical results (cf. section 3.1 of chapter III and Ref. [271]). Our results are
in agreement within error bars with the estimates of Ref. [179] for the same model
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z ν η Wc Reference
2 ≥ 1 ≤ 0 Fisher et al. [6]
1.7 1.4 n.a. n.a. Zhang et al. [181]
2.0(1) 0.9(1) n.a. n.a. Sørensen et al. [178]
0.5(1) 2.2(2) n.a. 2.5 Makivić et al. [160]
2.0(4) 0.90(13) n.a. 4.95(20) Zhang et al. [179]
1.93 1.38 n.a. n.a. Herbut [157]
1.40(2) 1.10(4) −0.22(6) 4.42(2) Priyadarshee et al. [182]
1.80(5) 1.15(3) −0.3(1) n.a. Meier et al. [270]
1.88(8) 0.99(3) −0.16(8) 4.79(3) Ng and Sørensen [277]
1.85(15) 1.20(12) −0.40(15) 4.80(5) Álvarez Zúñiga et al. [247]

Table IV.2: Various estimates of critical exponents and disorder strength Wc for the
Superfluid–Bose glass transition of different models in 2D. The results are shown in
chronological order. n.a. = not available.

although much more precise due to the fact that the system sizes available to us
were much larger. There is also a very good agreement with the results of Ref. [277]
also on the same model, and the estimates of Ref. [270] for the closely linked model
of quantum rotors [144]. The results of references [160] and [182] most probably
suffer from small system sizes, finite temperature effects or not sufficient disorder
averaging.

Concerning the boundaries predicted by Fisher et al. [6] (cf. first line of ta-
ble IV.2), our best estimates satisfy both the Harris criterion ν ≥ 2/d = 1 [173–175]
and the boundary for the anomalous exponent η ≤ 0. As for the dynamical expo-
nent, the much debated equality z = d = 2 is still compatible within our error bars
but our best estimate is lower, indicating that z < d, in agreement with Ref. [270]
and the theoretical arguments in Ref. [176].

In order to show that our data is very well described by the scaling relations (IV.37)
and (IV.39), we plot in figure IV.15 the curves of ρsf×Lz and ρ0×Lz+η for all system
sizes L as function of disorder strength with our best estimates for the shown window
in sizes [12; 32] and disorder strengths W ∈ [4.6; 5], z ' 1.85, W sf

c ' 4.8, W 0
c ' 4.79,

z + η ' 1.42, νsf ' 1.1, ν0 ' 1.2, and the Taylor expansion of the universal scaling
functions Gsf|0 is to third order polynomial in L1/ν(W −Wc). An excellent crossing
with no sizeable drift is achieved with the critical parameters for this window. Ir-
relevant corrections to scaling are practically absent, contrary to the scaling of the
typical stiffness (cf. figure IV.16 in section 3.2). The insets show the same curves
vs. the rescaled length L/ξ = L|W −Wc|ν where an almost perfect collapse of the
data further justifies our scaling forms and results.
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Figure IV.15: Example of the scaling analysis of the SF ρsf (top) and BEC ρ0 (bottom)
densities including all system sizes L ∈ [12; 32] and disorder strengths W ∈ [4.6; 5].
Solid lines depict the best fits to the universal scaling functions eqs. (IV.37) and
(IV.39) yielding z ' 1.85, W sf

c ' 4.8, W 0
c ' 4.79, z + η ' 1.42, νsf ' 1.1, ν0 ' 1.2,

and Gsf|0 3rd order polynomials. The final estimate of the critical point Wc = 4.80(5)
is shown by the grey areas. Insets: data collapse when rescaling the system size L by
1/ξ = |W −Wc|ν with ν = 1.2 and Wc = 4.8. The collapse is almost perfect.

3.2 Critical exponents for the typical stiffness

The distinction between the typical and average quantities can be very important.
While the former refers to the most likely value of a physical quantity, the latter is
just an ensemble average. Some early studies on the random bond model made the
confusion between the two [278], making the comparison to, for instance, neutron
scattering experiments which can only access average quantities, impossible. The
typical and average behaviours of the order parameter or other interesting quantities
have been found in some cases to be very different. For example, in a very meticulous
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study of the random transverse-field Ising chains by real-space strong disorder renor-
malization group, Daniel Fisher found that the critical exponent of the correlation
length for typical and mean spin-spin correlations are different, namely νtyp = 1 and
νavg = 2 [279]. It is then worthwhile investigating also the typical stiffness defined
by

ρtyp
sf = exp(ln(ρsf)) (IV.45)

where (.) denotes the average over disorder realizations, so as to compare its scaling
with the average one. We stress the fact that only the typical stiffness will be
considered since the BEC density ρ0 as defined in SSE (cf. equations (IV.33)) is the
average over the entire sample of the plus-minus Green’s functions. Therefore, the
typical BEC density is cannot be accessed in this framework.

The typical stiffness can be described by a similar scaling hypothesis than the
average one, eventually including irrelevant corrections, such that [280, 281]

ρtyp
sf (L) = L−z

(
Gtyp

sf [L1/ν(W −Wc)] + cL−y
)
. (IV.46)

When performing the same data analysis procedure than with the average stiffness
using a Taylor expansion of the universal scaling function Gtyp

sf up to third order, the
fits are very unstable due to the irrelevant corrections. A way to check if the scaling
for the typical stiffness is the same as for the average one consists in fixing the
parameters to our best estimates for the average quantities, ztyp = 1.85, νtyp = 1.2
and W typ

c = 4.8, and extract the remaining irrelevant parameters with our data
analysis scheme. This is represented in panel a) in figure IV.16 where a sizeable drift
to the critical point is visible, well described in that window of disorder by the scaling
function with irrelevant corrections in eq. (IV.46) with parameters c = 1.13(8) and
y = 0.97(4).

Perhaps, a more convincing way to check whether the critical exponents are
really the same for the typical and the average stiffness is to divide ρtyp

sf by its
value at Wc, in order to cancel out the irrelevant corrections ∼ L−y, and plot it
against the system size L rescaled by the correlation length ξ = |W −Wc|−ν with
ν = 1.2 and Wc = 4.8 (estimated from the average stiffness). This is shown in
figure IV.16 (b) for 4.0 ≤ W ≤ 5.5 and all available system sizes 12 ≤ L ≤ 32,
where an almost perfect collapse without any additional adjustable parameters is
achieved. This demonstrates that the quantum critical behaviours of average and
typical superfluid densities are similar, specially their critical exponents zavg = ztyp =
1.85(15), a smaller value than d = 2 although still compatible within error bars; and
νtyp = νavg = 1.20(12) which fulfils the Harris criterion ν ≥ 2/d = 1 [173–175].

In addition, the study of the distributions of ln(ρsf) at criticality shows that
for different system sizes the distributions are similar up to a shift z ln(L), further
verifying that typical and average superfluid densities have the same critical scalings
(cf. figures IV.18 and IV.19 in section 4).
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Figure IV.16: Panel a) Scaling of the typical SF density plotted as ρtyp
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disorder strength with fixed Wc = 4.8, ν = 1.2 and z = 1.85. The scaling form
(IV.46) yields an estimated irrelevant exponent y = 0.97(4). Panel b): ρtyp

sf /ρ
typ,Wc

sf
plotted against L|W −Wc|ν, with fixed ν = 1.2. The data exhibit an almost perfect
collapse for 4 ≤ W ≤ 5.5 and 12 ≤ L ≤ 32 with no additional parameters.

4 Distributions of the superfluid response

The issue of self-averaging is closely linked to fluctuations in the considered ther-
modynamic phase, a self-averaging phase having its fluctuations governed by the cen-
tral limit theorem. If this is not the case there is a breakdown of self-averaging which
necessarily means that any physical quantity has a finite variance in the thermody-
namic limit, as shown by Aharony and Harris [282]. Hence, the broadening (or lack
thereof) of the finite-size distributions with growing system sizes is a distinct charac-
ter of the lack of (or presence of) self-averaging. Motivated by the fact that the study
of the inhomogeneous properties of the different present phases via the distributions
of the order-parameter or of relevant energy scales has improved the understanding
of the microscopic nature of the concerned thermodynamical phases, e.g. for 3D
dilute Ising models [283], random transverse-field Ising spin chains (1D) [279, 284]
and strongly disordered superconductors [25, 30]; and that the Bose glass phase has
been predicted to break self-averaging [272, 285] but never studied using exact nu-
merical methods, we carry out such a study. It will be presented in this section first
qualitatively then in a more quantitative manner.
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4.1 The issue of self averaging: qualitative results
The relevant quantity for this study is the natural logarithm of the superfluid

response ln(ρsf), since at the thermodynamic limit, ρsf vanishes exactly at the critical
point W = 4.80(5)(cf. table IV.2 in section 3.1.4), separating the superfluid phase
where ρsf is finite and the Bose glass phase with ρsf = 0. However, another test for
self-averaging is comparing the average and typical superfluid stiffness. Indeed, in a
self-averaging phase these two quantities are identical at the thermodynamic limit
N →∞ whereas they will be different if self-averaging breaks down. In figure IV.17
we plotted the ratio of these two quantities R = ρavg

sf /ρ
typ
sf vs. system size in both

the SF (a) and BG (b) phase as well as at the QCP (c). Deep inside the SF phase
we recover the known result that the SF phase is self-averaging, because the ratio R
tends to one with increasing system size. Self-averaging breaks down at the quantum
critical point (QCP) and inside the BG phase: while the ratio R increases with
system size in both cases, it saturates to a finite value larger than one value at the
transition.

It is worth noticing that R is always bigger than one, which translates to ρtyp
sf <

ρavg
sf , meaning that the distributions of ln(ρsf) are asymmetric with more weight on

the lower values of ln(ρsf) as can be seen in figures IV.18, IV.10 or IV.12. On the
one hand, when R decreases with system size like in the SF phase (cf. fig. IV.17
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Figure IV.17: Evolution of R = ρavg
sf /ρ

typ
sf with system size L inside the different

phases and at criticality. Panel a: In the SF phaseW = 4, R tends to 1 for increasing
system size L, signalling a self-averaging SF phase. Panel b: Inside the BG phase
(W = 4.95) R increases with system size indicating a lack of self-averaging. Panel
c: At criticality, the ratio R seems to saturate for big system sizes to a finite value
> 1, i.e. the critical point is not self-averaging but has different nature than the BG
phase.
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a), the typical stiffness is closer and closer to the average one as L increases and
the distributions of ln(ρsf) are becoming more and more symmetric. On the other
hand, if R increases with L, like in the BG phase, the typical stiffness gets smaller
and smaller compared to the average one with increasing L and the distributions of
ln(ρsf) get more and more asymmetric towards the most negative values of ln(ρsf),
signalling a break-down in self-averaging.

Figure IV.18 complements this analysis by showing the distributions of ln(ρsf)
which clearly shrink with increasing system size in the SF phase (panel a) confirming
that it is self-averaging (as expected for a global quantity). In the Bose glass phase
(panel b) these distributions broaden with increasing L undoubtably stating the lack
of self-averaging in the BG phase. As far as the QCP is concerned, the distributions
broaden until L = 20 and then appear identical to one another but shifted, which

P
(l

n
�
sf

)
P

(l
n
�
sf

)

P
(l

n
�
sf

)
P

(l
n
�
sf

+
z

ln
L

)

ln �sf + z lnLln �sf

ln �sf ln �sf

L = 12

L = 16

L = 20

L = 22

L = 24

L = 28

L = 32

LL

L

RR

R

(b) W = 4.95

(BG)

(c) W = 4.8

(QCP)

(d) W = 4.8

(QCP)

(a) W = 4

(SF)

Figure IV.18: Distribution of ln(ρsf) for all available system sizes at three different
disorder strengths inside the SF phase (a), the BG phase (b) and at criticality (c−d).
In the SF phase (panel a W = 4) the distributions shrink with increasing system size
L, indicating self-averaging. In the BG phase (panel b W = 4.95) they broaden as
L grows, a clear signature of lack of self-averaging. At criticality (panel c W = 4.8)
the distributions are similar to one another specially for L ≥ 20, and an excellent
collapse is achieved by shifting them by z ln(L) using z = 1.85 (panel d).
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means that the fluctuations of ln(ρsf) at the thermodynamic limit is finite, i.e. self-
averaging breaks down at criticality. The distributions can be shifted by z ln(L) (as
plotted in panel d) to obtain a very convincing collapse specially for L ≥ 20, using
our best estimate for the dynamical exponent z = 1.85. Such a collapse of the full
distributions using the best estimate for the average stiffness further confirms the
fact that the critical scalings of typical and average stiffness are the same, and the
irrelevant corrections to the scaling, cf. eq. (IV.46), are responsible for the transient
broadening for the smallest sizes, as already discussed in section 3.2 (see figure IV.16).

4.2 Variance of ln(ρsf)
In order to further investigate the inhomogeneous properties of our model (IV.1)

and specially in the Bose glass phase a more quantitative study of the broadening
(shrinking) of the distributions of ln(ρsf) is necessary. It is worth mentioning that the
dynamical adjustment of the number of measurement steps described in section 2.4
(cf. figure IV.12) reveals crucial for the quantitative study of the broadening of the
distributions in the Bose glass phase. As a matter of fact, this method allows us to
properly sample the full distribution specially inside the Bose glass phase, where the
broadening of the distributions of ln(ρsf) would not have been seen even qualitatively
as in figure IV.18.

Noting that self-averaging was shown to imply a finite variance of any physi-
cal thermodynamic quantity [282], a natural quantity to observe is the standard
deviation of ln(ρsf). However, the presence of irrelevant corrections to scalings is re-
sponsible for the transient broadening of distributions at criticality (cf. figure IV.18
in section 4.1). As a means of eliminating such effects, we compute the corrected
standard deviation of ln(ρsf) for each system size L defined by:

σ̃ln ρsf(W,L) = σln ρsf(W,L)− σc(L), (IV.47)

where σc(L) = σln ρsf(Wc, L) is the standard deviation of ln ρsf at the critical point
Wc = 4.8 which saturates to a value σc for L ≥ 20 (see figure IV.18 in section 4.1).

We plot σ̃ln ρsf against the system size in units of the localization length L/ξ =
L|W −Wc|ν with our best estimate ν = 1.2 in figure IV.19. A very good collapse of
the data is found once again confirming that our estimate for the correlation length
exponent is consistent with our data. Inside the superfluid phase the corrected
standard deviation decreases and tends to −σc as 1/

√
N meaning that the standard

deviation goes to zero as 1/
√
N . The fluctuations are then dominated by the central

limit theorem confirming the self-averaging nature of the superfluid phase, which
was expected for the superfluid stiffness as defined and computed in SSE is a global
quantity.

Inside the Bose glass phase (W > 4.8) the corrected standard deviation grows
with system size and the data is very well described by a power law growth of the form
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Figure IV.19: Evolution of the corrected standard deviation σ̃ln ρsf of eq. (IV.47) with
system size rescaled by the correlation length L/ξ = L|W −Wc|ν, with ν = 1.2, for
all disorder strengths from W = 4.0 to W = 5.5. In the SF phase (W < 4.8) it drops
down to −σc as 1/

√
N (black dashed line), a consequence of self-averaging. In the

BG phase (W > 4.8) it increases as (L/ξ)ω with ω = 0.5(2) (full black line). The
inset shows a zoom in the BG phase parameter region.

(L/ξ)ω with an exponent ω = 0.5(2). This confirms the break-down of self-averaging
inside the Bose glass phase.

The physical scenario we extract from this is the following. First, the Bose glass
phase was predicted to bear a partial analogy with the disordered (paramagnetic)
phase of the transverse-field Ising model (TFIM) [30, 195, 279], as supported by
recent 1D results with a strong disorder renormalisation-group approach [286]. Ad-
ditionally, such a paramagnetic phase in the TFIM was shown to follow directed
polymer physics in dimension D = (d−1) by Monthus and Garel [207]. In our d = 2
case this means 1D directed polymer physics for which it is known that the distribu-
tions of local quantities broaden with size as Lω with ω = 1/3 [287] in agreement with
our estimate. Furthermore, Seibold et al. showed that the stiffness is dominated by
quasi 1D percolating paths at strong disorder [204], i.e. in the BG phase the global
superfluid response of the system can be seen as a purely local quantity.
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5 Absence of percolation in the SF-BG phase tran-
sition

Throughout the years, the understanding of the Bose glass phase has evolved
and developed as the interplay of disorder and interactions became subject of an
increasing interest. The theorem of inclusions [166] put an end to the controversy
of whether the Bose glass phase always intervenes between the Superfluid and Mott
Insulating phases, which it does. This theorem rules out any transition driven by
disorder between a gapped and a gapless phase, unless it is driven by rare region
effects (cf. section 2.2 in the Introduction chapter I). A rather widely spread descrip-
tion of the critical region of the SF-BG transition states the existence of superfluid
regions inside the BG phase, where the local order parameter is almost uniform.
Hence the emerging picture of the Bose glass as consisting in disconnected superfluid
droplets (or clusters), with coherent inter-droplet tunneling inhibited by Anderson
localization (hence the insulating nature) while the exchange of bosons between dif-
ferent droplets is costless (explaining the finite compressibility). Then, the onset
of superfluidity at criticality is realized with the appearance of a SF cluster perco-
lating through the system, yielding a percolation scenario for the SF-BG transition
[83, 171, 185, 187, 188].

While discussing the break-down of self-averaging inside the BG phase (cf. sec-
tion 4.2) we pointed out the existing analogy of the BG phase in our XY model
with the paramagnetic phase of the transverse-field Ising model (TFIM). The criti-
cal regime of the TFIM was extensively studied and was shown to be of the Griffiths
type with exponentially large rare regions of the ordered phase inside the disordered
phase [279]. However, Yu and Müller showed that upon approaching the critical
regime the analogy breaks down [111] as could be inferred by the completely differ-
ent nature of the critical points for the XY model and the TFIM. Indeed, Fisher
showed that the critical point of the TFIM is an infinite randomness fixed point with
a formally infinite dynamical exponent z = ∞ [279], while we have shown that our
XY model has a conventional fixed point with z = 1.85(15). Another difference is
the breaking of the continuous U(1) symmetry in the TFIM and its conservation
for the XY model. As a consequence, the ordering transition can only happen at
the thermodynamic limit and never in a finite-size sample, hence the locally ordered
regions inside the disordered phase cannot exist. This can be explained by a simple
argument: we have seen that for finite-size systems at T = 0 the compressibility
vanishes because of the finite-size gap (cf. fig. IV.7 of section 2.2.3) and the system
has no particle number fluctuations ∆N = 0, hence its conjugate operator, the phase
operator, has diverging fluctuations in virtue of Heisenberg’s uncertainty principle
and the spins in the XY plane cannot be ordered (i.e. have zero phase fluctua-
tions). In the thermodynamic limit the particle number operator has non vanishing
fluctuations (κ 6= 0 when N →∞) and ordering is then possible.
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5. Absence of percolation in the SF-BG phase transition 123

The percolation scenario of the transition is then worth questioning. In order to
do so, we perform QMC simulations to compute the local density profiles of systems
of relatively small sizes N = 64 and 256. To ensure ground-state properties are being
investigated, the simulations are carried out at very low temperatures βt = 29, for
which the number of bosons does not fluctuate (cf. figure IV.8 in section 2.2.3). We
compute, inside the BG (W = 5) the local densities ρi = 〈b†ibi〉 (cf. equation IV.22
for its expression in SSE), which requires a much bigger number of MC steps than the
average superfluid stiffness or BEC density, namely Nmc = 105, for being properly
estimated (so that the directed loops visit all sites). Such values for Nmc and βt
make the simulations much longer (cf. equation IV.34), limiting the available sizes.
Furthermore, we restrict the number of disorder realizations to Ns = 150, since for
L = 16 we already have 162 ∗ 150 = 38400 values of ρi.
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Figure IV.20: Effective local density Min(ρi, 1 − ρi) inside the BG phase (W = 5)
as a function of the local chemical potential |µi| for a system of size L = 16 (small
crosses). NS = 150 disorder realizations were simulated at βt = 1024 using Nmc =
105 MC steps. The average density over windows in chemical potential [µ̄−0.1; µ̄+0.1]
are represented by red (blue) data points for N = 256 (N = 64). The black dashed
line is the result for the disorder-free system (taken from Ref. [246]).
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The obtained results are represented in figure IV.20 as the effective local density
Min(ρi, 1 − ρi) (we remind the reader that if ρi < 1/2 the bosons are superfluid
and if ρi > 1/2 the holes with density 1 − ρi are superfluid owing to time reversal
symmetry) vs. the local chemical potential |µi| for L = 16. The symmetry between
positive and negative local chemical potentials for the effective local densities is clear
i.e. half-filling is indeed restored on average [164]. The averages over windows of
local chemical potential µ̄ − 0.1 ≤ µi ≤ µ̄ + 0.1 are also plotted as red squares.
For comparison the average data for L = 8 is also shown as blue diamonds, but
the effective local densities are not shown for this size for graphical reasons. The
dashed black line represents the average density of the clean system W = 0 obtained
in Ref. [246], which vanishes for chemical potentials outside the band |µi| ≥ 2,
indicating an incompressible behavior. In contrast, the average behavior is always
compressible inside the BG even for outside the band |µi| ≥ 2.

Figure IV.21 shows the distribution of the local densities for the two previously
considered system sizes using different number of MC steps Nmc = 104 and 105 (panel
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Figure IV.21: Panel a: Distribution of the local density ρi for two system sizes L = 8
and L = 16, and different number of Monte Carlo steps Nmc in the simulations with
Ns = 150 disordered samples at βt = 29. The weight of the peaks at ρi = 0 and 1
diminishes as Nmc grows. Panel b: Evolution of the fraction of incompressible sites
xinc with increasing number of Monte Carlo steps Nmc for the same system sizes.
The fraction drastically drops as Nmc increases and presumably vanishes at the exact
limit Nmc →∞. Error bars are represented but are smaller than the symbol size.
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a) and xinc the corresponding fraction of incompressible sites presenting ρi = 0 or 1
as a function of Nmc (panel b). Qualitatively, the distribution P (ρi) has two peaks
at 0 and 1 but their weight decreases as Nmc is cranked up. More quantitatively, the
fraction of incompressible sites xinc is reduced by at least one order of magnitude
upon increasing the number of MC steps in the simulations and it is already well
below the percolation threshold. In addition, xinc seems to vanish at the exact limit
of infinite MC steps, yielding the fact that all sites are compressible inside the BG
phase. Hence, the scenario of the BG phase as disconnected SF clusters inside an
insulating background is wrong for the insulating background is never realized: there
is always a percolation through compressible sites ruling out a percolation-related
scenario of the SF-BG transition.

This is further justified by the fact that according to percolation theory, the
superfluid density should vanish close to the critical point as a power-law on the
distance to the critical point (cf. equation (II.19)) [216, 222, 224–228], with an
exponent t = 1.310(1) [228]. However, we have shown that close to the critical point
the superfluid density vanishes as:

ρsf ∼ L−z ∼
W→Wc

ξ−z ∼ |W −Wc|zν , (IV.48)

and our best estimates for the critical parameters yield zν ≈ 1.85(15) × 1.20(12) =
2.2(4) 6= 1.31, so that a percolation scenario for the superfluid – Bose glass transition
is definitely ruled out.
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Chapter V

Conclusion and perspectives

The Superfluid - Insulator transition remains one of the most active fields of
research in condensed matter physics, even a quarter of a century after its discov-
ery. In particular, the Superfluid - Bose glass transition keeps puzzling theoreticians
and experimentalists alike. This manuscript tackled this transition in the somewhat
special case of two dimensional hard-core bosons with on-site disordered chemical
potentials. This model, though quite simple, is able to capture the essential ele-
ments of the physics and is pertinent in the context of superconductors, spin dimers
and cold atoms. The bimodal distribution and the box distribution of disorder were
considered throughout this work. After presenting some of the different theoreti-
cal and experimental results obtained thus far, a purely classical approach to the
transition was developed in chapter II. There we provide the first calculations of
the classical superfluid density (thus far only the order-parameter, i.e. the Bose-
Einstein condensate fraction had been considered), which we priorly tested on the
Heisenberg model to ascertain the validity of our method. The importance of phase
relaxation was evidenced and the complete neglecting of the quantum fluctuations in
our Mean-Field approach led it to fail to capture the glassy physics of the problem,
despite some precursor effects on classical transport properties. In addition, we give
compelling arguments disproving the long-standing findings of Ma et al. concerning
the break-down of the Mean-Field theory for the considered transition.

In chapter III, quantum fluctuations were introduced by means of Linear Spin-
Wave Theory which we showed to capture the Superfluid – Bose glass transition.
The ground-state critical parameters of the transition were estimated for the two
different disorder distributions, with different estimates for the dynamical exponent,
one in agreement with the predicted z = d equality (bimodal distribution) and one
that clearly violates it (box distribution). Furthermore, the excitation spectrum
in the case of the bimodal disorder distribution presents a very rich physics with a
localization transition of the one-particle spin-wave excited states at a finite mobility
edge inside the Superfluid phase, and a vanishing mobility edge inside the Bose glass,
although some more recent results by Lemarié would indicate otherwise.
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Finally, chapter IV focused on the large-scale Quantum Monte Carlo simulations
of the hard-core bosons with on-site box disorder model, extracting by a careful
procedure the ground-state critical properties. The critical disorder strength for the
transition into the Bose glass from the superfluid phase is in good numerical agree-
ment with our spin-wave estimate, the 2D cavity Mean-Field estimate of Lemarié et
al. and the QMC estimate of Ng and Sørensen for the same model. The extracted
dynamical exponent is different than the spin-wave one and though it is smaller than
the dimensionality, z = d cannot be ruled out for sure. We also provide estimates for
the correlation length exponent ν and the anomalous exponent η in agreement with
their theoretical bounds and other recent estimates. The inhomogeneous properties
of the system were also discussed. The absence of self-averaging inside the Bose glass
phase was demonstrated and the percolation scenario for the transition was shown to
not be relevant, in contradiction with a well spread idea given by previous theoretical
and experimental findings.

These results call for further investigations. The study of the inhomogeneous local
properties of the system for both distributions of disorder on the one hand, as well
as that of the excitation properties in the case of the box distributed disorder and
and how it is affected by an external magnetic field in both cases on the other hand,
are perfectly suited to be carried out by Linear Spin-Wave theory. The Quantum
Monte Carlo simulations of the model with bimodal disorder so as to extract precise
estimates of the its ground-state critical properties and compare them with the spin-
wave ones constitute another direction to follow. Performing similar studies on the
infinite dimensional Bethe lattice to see the effects of dimensionality, considering the
Ising model instead of the XY model for hard-core bosons or including temperature
effects are all possible lines of work to be tackled in the future.
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Appendix A

Iterative Mean-Field

1 Hard-core bosons on the square lattice

1.1 Periodic boundary conditions
The Iterative Mean-Field approach treats the spin-1

2 as a quantum spin with two
levels, contrary the Mean-Field approach consisting in replacing the spin-1

2 operators
classical spins with a minimization of the energy. Mean-Field theory is included by
applying the common Mean-Field decoupling to the Hamiltonian (A.1). Starting
from the XY Hamiltonian with periodic boundary conditions which by rotational
symmetry around the z-axis can be simplified to restrict the spins to the XZ plane:

Hclass = −
∑
i

µiS
z
i − 2t

∑
〈i,j〉

Sxi S
x
j , (A.1)

with µi the local disordered chemical potential and 〈i, j〉 a couple of nearest-neighbour
sites. Applying the standard Mean-Field decoupling to the kinetic term

Sxi S
x
j = Sxi 〈Sxj 〉+ 〈Sxi 〉Sxj − 〈Sxi 〉〈Sxj 〉, (A.2)

we obtain for the Hamiltonian

Hclass = −
∑
i

[µiSzi + 2tSxi
∑
〈j〉i

〈Sxj 〉] + 2t
∑
〈i,j〉
〈Sxi 〉〈Sxj 〉. (A.3)

The sum ∑
〈j〉i runs over all sites j that are nearest-neighbours of site i. This Hamil-

tonian can be rewritten as

Hclass =
∑
i

hi + 2t
∑
〈i,j〉
〈Sxi 〉〈Sxj 〉 (A.4)

where we have defined the local Mean-Field Hamiltonian on each site i:

hi = −µiSzi − 2tSxi
∑
〈j〉i

〈Sxj 〉 = −µiSzi −BiS
x
i . (A.5)
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This last step of calculation allows us to define the local fields Bi as

Bi = 2t
∑
〈j〉i

〈Sxj 〉. (A.6)

The local Mean-Field Hamiltonians (A.5) can be expressed in matrix notation
using the Pauli matrices so that, in the {| ↑ 〉, | ↓〉} basis representation the hi are
written:

hi =
(
−µi

2
Bi
2

Bi
2

µi
2

)
, (A.7)

which has the eigenvalues λi = ±1
2

√
µ2
i +B2

i . The ground-state wave-function, i.e.
the eigenvector corresponding to the lowest eigenvalue λi = −1

2

√
µ2
i +B2

i , is straight-
forwardly obtained in the {| ↑ 〉, | ↓〉} basis:

|Ψi 〉 = xi
Bi


Bi√

µ2
i +B2

i − µi

 , (A.8)

and the xi coefficient is a real number constrained so as to make the wave-function
normalized, which yields:

x2
i = B2

i

2
√
µ2
i +B2

i (
√
µ2
i +B2

i − µi)
. (A.9)

Finally, one can calculate the ground-state expectation values of Sxi , Szi and therefore
hi: 

〈Sxi 〉 = 〈Ψi|Sxi |Ψi〉 = Bi

2
√
µ2
i +B2

i

〈Szi 〉 = 〈Ψi|Syi |Ψi〉 = µi

2
√
µ2
i +B2

i

〈hi〉 = 〈Ψi|hi|Ψi〉 = −

√
µ2
i +B2

i

2 .

(A.10)

Replacing the expectation values (A.10) into the definition of the local fields (A.6)
one obtains the self-consistency relation for the fields

Bi = t
∑
〈j〉i

Bj√
µ2
j +B2

j

. (A.11)

Doing the same for the ground-state expectation value of the full Hamiltonian (A.4)
one gets the ground-state energy:

〈Hclass〉 = −
∑
i

√
µ2
i +B2

i

2 + t

2
∑
〈i,j〉

BiBj√
(µ2

i +B2
i )(µ2

j +B2
j )
. (A.12)
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1.2 Twisted boundary conditions
When a twist Φ is applied to the boundary conditions, the spins are no longer re-

stricted to the XZ plane and a y component is inevitable. The starting Hamiltonian
is under such conditions

Hclass(Φ) = −
∑
i

µiS
z
i − 2t

∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
. (A.13)

The standard Mean-Field decoupling has now to be applied on both parts of the
kinetic term such that

S
x/y
i S

x/y
j = S

x/y
i 〈S

x/y
j 〉+ 〈Sx/yi 〉S

x/y
j − 〈Sx/yi 〉〈S

x/y
j 〉. (A.14)

Under such a decoupling, the Hamiltonian becomes

Hclass(Φ) = −∑i[µiSzi + 2tSxi
∑
〈j〉i〈Sxj 〉+ 2tSyi

∑
〈j〉i〈S

y
j 〉] +

2t∑〈i,j〉 {〈Sxi 〉〈Sxj 〉+ 〈Syi 〉〈S
y
j 〉
}

= ∑
i hi + 2t∑〈i,j〉 {〈Sxi 〉〈Sxj 〉+ 〈Syi 〉〈S

y
j 〉
}

(A.15)

where we have once again defined the local Mean-Field Hamiltonians:

hi = −µiSzi − 2tSxi
∑
〈j〉i

〈Sxj 〉 − 2tSyi
∑
〈j〉i

〈Syj 〉 = −µiSzi −Bx
i S

x
i −B

y
i S

y
i . (A.16)

The sum ∑
〈j〉i runs over sites j that are nearest-neighbours with site i. The last step

in equation (A.16) allows us to define the local fields:

B
x/y
i = 2t

∑
〈j〉i

〈Sx/yj 〉. (A.17)

Using the Pauli matrices again, we can write, in the {| ↑ 〉, | ↓〉} basis representa-
tion, the hi as the matrix:

hi =
 −µi

2
−Bxi +ıByi

2
−Bxi −ıB

y
i

2
µi
2

 , (A.18)

which has the eigenstates λi = ±1
2

√
µ2
i +Bx

i
2 +By

i
2. The ground-state wave-function,

i.e. the eigenvector corresponding to the lowest eigenvalue which in this case is
λi = −1

2

√
µ2
i +Bx

i
2 +By

i
2, is in the {| ↑ 〉, | ↓〉} basis

|Ψi 〉 = ai| ↑ 〉+ bi| ↓〉. (A.19)

Solving the eigenvalue problem yields for the ground-state yields the relation:

bi = ai
Bx
i − ıB

y
i

(√
µ2
i +Bx

i
2 +By

i
2 − µi

)
. (A.20)

133



134 Appendix A. Iterative Mean-Field

Hence, the ground-state eigenvector reads:

|Ψi 〉 = ai
Bx
i − ıB

y
i


Bx
i − ıB

y
i√

µ2
i +Bx

i
2 +By

i
2 − µi

 , (A.21)

and enforcing the normalization condition on the ground-state eigenvector gives the
constraint:

|ai|2 = Bx
i

2 +By
i

2

2
√
µ2
i +Bx

i
2 +By

i
2
(√

µ2
i +Bx

i
2 +By

i
2 − µi

) . (A.22)

Finally, one can calculate the ground-state expectation values of Sxi , S
y
i , Szi and

therefore that of the local Mean-Field Hamiltonian hi:

〈Sxi 〉 = 〈Ψi|Sxi |Ψi〉 = Bx
i

2
√
µ2
i +Bx

i
2 +By

i
2

〈Syi 〉 = 〈Ψi|Syi |Ψi〉 = By
i

2
√
µ2
i +Bx

i
2 +By

i
2

〈Szi 〉 = 〈Ψi|Szi |Ψi〉 = µi

2
√
µ2
i +Bx

i
2 +By

i
2

〈hi〉 = −

√
µ2
i +Bx

i
2 +By

i
2

2

(A.23)

Replacing the expectation values (A.23) into the definition of the local fields (A.17)
gives the self-consistency equations of the fields:

Bx
i = t

∑
〈j〉i

Bx
j√

µ2
j +Bx

j
2 +By

j
2

By
i = t

∑
〈j〉i

By
j√

µ2
j +Bx

j
2 +By

j
2
.

(A.24)

Doing the same for the ground-state expectation value of the full Hamiltonian (A.15)
we obtain

〈Hclass(Φ)〉 = −
∑
i

√
µ2
i +Bx

i
2 +By

i
2

2 + t

2
∑
〈i,j〉

Bx
i B

x
j +By

i B
y
j√

(µ2
i +Bx

i
2 +By

i .
2)(µ2

j +Bx
j

2 +By
j

2)
.

(A.25)
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1.3 Periodic boundary conditions with complex hopppings
As will be shown in section 2 of appendix B, the calculation of the superfluid

density can be carried out either by applying a twist Φ to the boundary conditions
or by distributing the twist along the bonds. The Iterative Mean-Field approach for
the former was discussed in section 1.2 and now we turn to the latter.

Starting from the Hamiltonian in this case

Hclass(Φ) =−
∑
i

µi
2 −

∑
i

µiS
z
i − 2t

∑
i

(Sxi Sxi+ŷ + Syi+ŷS
y
i )

− 2t cos(Φ
L

)
∑
i

(Sxi Sxi+x̂ + Syi S
y
i+x̂)

− 2t sin(Φ
L

)
∑
i

(Syi Sxi+x̂ − Sxi S
y
i+x̂),

(A.26)

we apply the standard Mean-Field decoupling (A.14) to all the terms in the Hamil-
tonian, which then becomes:

Hclass(Φ) =−
∑
i

{
µiS

z
i + 2tSxi

[
〈Sxi+ŷ〉+ 〈Sxi−ŷ〉+ cos(Φ

L
)(〈Sxi+x̂〉+ 〈Sxi−x̂〉)

+ sin(Φ
L

)(〈Syi−x̂〉 − 〈S
y
i+x̂〉)

]

+ 2tSyi
[
〈Syi+ŷ〉+ 〈Syi−ŷ〉+ cos(Φ

L
)(〈Syi+x̂〉+ 〈Syi−x̂〉)

+ sin(Φ
L

)(〈Sxi+x̂〉 − 〈S
y
i−x̂〉)

]}

+ 2t
∑
i

{
〈Sxi 〉

[
〈Sxi+ŷ〉+ cos(Φ

L
)〈Sxi+x̂〉 − sin(Φ

L
)〈Syi+x̂〉

]

+〈Syi 〉
[
〈Syi+ŷ〉+ cos(Φ

L
)〈Syi+x̂〉+ sin(Φ

L
)〈Sxi+x̂〉

]}
.

(A.27)

This Hamiltonian can be rewritten into the form

Hclass(Φ) =
∑
i

hi + 2t
∑
i

{
〈Sxi 〉

[
〈Sxi+ŷ〉+ cos(Φ

L
)〈Sxi+x̂〉 − sin(Φ

L
)〈Syi+x̂〉

]

+〈Syi 〉
[
〈Syi+ŷ〉+ cos(Φ

L
)〈Syi+x̂〉+ sin(Φ

L
)〈Sxi+x̂〉

]} (A.28)
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by defining the local Mean-Field Hamiltonians:

∀i, hi = −µiSzi −Bx
i S

x
i −B

y
i S

y
i , (A.29)

and the local fields


Bx
i = 2t

[
〈Sxi+ŷ〉+ 〈Sxi−ŷ〉+ cos(Φ

L
)(〈Sxi+x̂〉+ 〈Sxi−x̂〉) + sin(Φ

L
)(〈Syi−x̂〉 − 〈S

y
i+x̂〉)

]

By
i = 2t

[
〈Syi+ŷ〉+ 〈Syi−ŷ〉+ cos(Φ

L
)(〈Syi+x̂〉+ 〈Syi−x̂〉) + sin(Φ

L
)(〈Sxi+x̂〉 − 〈S

y
i−x̂〉)

]
.

(A.30)

At this point, we note that though the definitions of the local fields are different,
the expression of the local Mean-Field Hamiltonian hi is formally the same as that
of iterative Mean-Field approach for the twisted boundary conditions problem with
real hoppings studied in section 1.2. Therefore, the expressions of the ground-state
wave-function (A.21) and its normalization constraint (A.22) are also the same and
we end up with the same expressions for the expectation values of Sxi , S

y
i , Szi and

hi, namely:



〈Sxi 〉 = Bx
i

2
√
µ2
i +Bx

i
2 +By

i
2

〈Syi 〉 = By
i

2
√
µ2
i +Bx

i
2 +By

i
2

〈Szi 〉 = µi

2
√
µ2
i +Bx

i
2 +By

i
2

〈hi〉 = −

√
µ2
i +Bx

i
2 +By

i
2

2 .

(A.31)

Entering these expectation values into the ground-state expectation value of the
full Hamiltonian (A.28) yields the ground-state energy:
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〈Hclass(Φ)〉 =−
∑
i

√
µ2
i +Bx

i
2 +By

i
2

2

+ t

2
∑
i

 Bx
i√

µ2
i +Bx

i
2 +By

i
2

 Bx
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+ cos(Φ
L

) Bx
i+x̂√

µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2
− sin(Φ

L
) By

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2


+ By

i√
µ2
i +Bx

i
2 +By

i
2

 By
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+ cos(Φ
L

) By
i+x̂√

µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ sin(Φ
L

) Bx
i+x̂√

µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

 .
(A.32)

Despite the fact that the resolution is identical to that of the real hopping under
twisted boundary conditions problem, this energy is different from the one in that
case (A.25). Similarly, plugging the expectation values (A.31) into the definitions of
the local fields (A.30) one ends up with the different self-consistency equations:



Bx
i = t

 Bx
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
Bx
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
2

+ cos(Φ
L

)
 Bx

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ Bx
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2


+ sin(Φ

L
)
 By

i−x̂√
µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2
−

By
i+x̂√

µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2


By
i = t

 By
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
By
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
2

+ cos(Φ
L

)
 By

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ By
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2


+ sin(Φ

L
)
 Bx

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2
−

Bx
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2

 .

(A.33)
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2 Heisenberg model on the square lattice
The second model considered in this thesis is the Heisenberg model with either

random exchange couplings or site dilution. In both cases the equations are the same
since the only difference is the numerical values of the exchange couplings which can
be taken from a probability distribution in the former case, or be either 0 or 1 in the
site dilution case. Hence, there is only one formulation of the Iterative Mean-Field
approach which we develop in the following.

The starting point is the Heisenberg Hamiltonian:

Hr =
∑
〈i,j〉

JijŜiŜj. (A.34)

As seen in chapter II, we are interested in computing the superfluid stiffness and in
order to do so, a twist to the boundary conditions along the x direction is applied,
the relevant quantity to compute being the energy cost carried about by this twist.
Since the twist only couples to the XY part of the Hamiltonian at the Mean-Field
level, the z component is not affected by it and it generates no energy cost. In this
sense, it is natural to neglect the z components of the spin operators in the following,
leaving the Hamiltonian:

H =
∑
〈i,j〉

Jij(Sxi Sxj + Syi S
y
j ). (A.35)

At this point, this XY Hamiltonian is equivalent to the spin-XY Hamiltonian
obtained by applying the Matsubara-Matsuda transformation to the hard-core boson
Hamiltonian, i.e. to the one in equation (A.1), with the correspondence between the
two given by: {

2t←→ Jij

µi ←→ 0.
(A.36)

This means that the ground-state expectation value of the energy and the self-
consistency equations both in the presence of a twist or under periodic boundary
conditions, are deduced from those of the hard-core bosons model discussed in sec-
tion 1 by applying the transformation (A.36).
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Equivalencies of diverse methods

1 Equivalency between Mean-Field approaches

In chapter (II) we used two classical Mean-Field approaches that a priori seem
completely different. On the one hand, we have the replacement of the spin-1

2 oper-
ators by 3D classical vectors such that:

~Si = 1
2

sin θi cosϕi
sin θi sinϕi

cos θi

 . (B.1)

On the other hand, we have the iterative Mean-Field solution described in detail
in Appendix A for which a set of self-consistency equations is solved iteratively in
order to get the local fields in terms of which we can compute the physical observables
of interest. Here we will see that they are in fact equivalent in the sense that they
both try to solve the same equations of minimization of the classical energy, with
the only difference that the problem is formulated in a different way. We will start
from the minimization of the classical energy in terms of the classical angles defined
in equation (B.1), in the case of an applied magnetic field along the x direction, and
derive the self-consistency equations (II.33).

The Hamiltonian obtained by replacing spin operators by classical vectors in the
hard-core boson Hamiltonian reads:

Hclass(Φ) = −∑i
µi
2 −

∑
i
µi
2 cos θi − t

2
∑
i sin θi sin θi+ŷ cos(ϕi − ϕi+ŷ)

− t
2 cos(Φ

L
)∑i sin θi sin θi+x̂ cos(ϕi − ϕi+x̂)

− t
2 sin(Φ

L
)∑i sin θi sin θi+x̂ sin(ϕi − ϕi+x̂), (B.2)

where µi is the local chemical potential on site i through which disorder is put in the
system. Deriving the Hamiltonian with respect to the θi angles we get some relations
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that need to be respected for the ground-state angles:

∂Hclass(Φ)
∂θi

=µi sin θi − t cos θi sin θi+ŷ cosϕi cosϕi+ŷ − t cos θi sin θi+ŷ sinϕi sinϕi+ŷ

− t cos θi sin θi−ŷ cosϕi cosϕi−ŷ − t cos θi sin θi−ŷ sinϕi sinϕi−ŷ

− t cos(Φ
L

) cos θi sin θi+x̂ cosϕi cosϕi+x̂ − t cos(Φ
L

) cos θi sin θi+x̂ sinϕi sinϕi+x̂

− t sin(Φ
L

) cos θi sin θi+x̂ sinϕi cosϕi+x̂ + t sin(Φ
L

) cos θi sin θi+x̂ cosϕi sinϕi+x̂

− t cos(Φ
L

) cos θi sin θi−x̂ cosϕi cosϕi−x̂ − t cos(Φ
L

) cos θi sin θi−x̂ sinϕi sinϕi−x̂

− t sin(Φ
L

) cos θi sin θi−x̂ cosϕi sinϕi−x̂ + t sin(Φ
L

) cos θi sin θi−x̂ sinϕi cosϕi−x̂
= 0

which can be rearranged to take the form:

µi tan θi =t cosϕi [sin θi+ŷ cosϕi+ŷ + sin θi−ŷ cosϕi−ŷ

+ cos(Φ
L

) (sin θi+x̂ cosϕi+x̂ + sin θi−x̂ cosϕi−x̂)

+ sin(Φ
L

) (− sin θi+x̂ sinϕi+x̂ + sin θi−x̂ sinϕi−x̂)
]

+ t sinϕi [sin θi+ŷ sinϕi+ŷ + sin θi−ŷ sinϕi−ŷ

+ cos(Φ
L

) (sin θi+x̂ sinϕi+x̂ + sin θi−x̂ sinϕi−x̂)

+ sin(Φ
L

) (sin θi+x̂ cosϕi+x̂ − sin θi−x̂ cosϕi−x̂)
]
.

(B.3)

Both Mean-Field approaches give an estimate of the ground-state expectation
values of the spin operators. These are straightforwardly given in the case of classical
vectors by the vector components themselves (B.1), while for the iterative resolution
they are non-trivial but determined by the local fields Bx/y

i via the expressions in
equation (A.23). These expectation values have to be equal for the to methods to
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be equivalent, so:



〈Sxi 〉 = Bx
i

2
√
µ2
i +Bx

i
2 +By

i
2

= 1
2 sin θi cosϕi

〈Syi 〉 = By
i

2
√
µ2
i +Bx

i
2 +By

i
2

= 1
2 sin θi sinϕi

〈Szi 〉 = µi

2
√
µ2
i +Bx

i
2 +By

i
2

= 1
2 cos θi

(B.4)

and we get a direct link between the classical angles of the 3D vectors {θi, ϕi} and
the local fields Bx/y

i on each site i.



tan θi =

√
Bx
i

2 +By
i

2

µi

cosϕi = Bx
i√

Bx
i

2 +By
i

2

sinϕi = By
i√

Bx
i

2 +By
i

2
.

(B.5)

Now, we can rewrite the expression obtained by the minimization of the Hamilto-
nian written in terms of the classical vectors angles of equation (B.3) in terms of the
local fields of the iterative Mean-Field approach framework. We will see that upon
a simple definition the self-consistency relations which determine the local fields are
recovered.

Replacing the expressions (B.5) in equation (B.3) we obtain after a few simple
manipulations
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Bx
i

2 +By
i

2 =Bx
i t

 Bx
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
Bx
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
2

+ cos(Φ
L

)
 Bx

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ Bx
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2


+ sin(Φ

L
)
 By

i−x̂√
µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2
−

By
i+x̂√

µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2


+By

i t

 By
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
By
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
2

+ cos(Φ
L

)
 By

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ By
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2


+ sin(Φ

L
)
 Bx

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2
−

Bx
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2

 ,
(B.6)

from which we can deduce for the local fields on site i that

Bx
i = t

 Bx
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
Bx
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
2

+ cos(Φ
L

)
 Bx

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ Bx
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2


+ sin(Φ

L
)
 By

i−x̂√
µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2
−

By
i+x̂√

µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2


By
i = t

 By
i+ŷ√

µ2
i+ŷ +Bx

i+ŷ
2 +By

i+ŷ
2

+
By
i−ŷ√

µ2
i−ŷ +Bx

i−ŷ
2 +By

i−ŷ
2

+ cos(Φ
L

)
 By

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2

+ By
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2


+ sin(Φ

L
)
 Bx

i+x̂√
µ2
i+x̂ +Bx

i+x̂
2 +By

i+x̂
2
−

Bx
i−x̂√

µ2
i−x̂ +Bx

i−x̂
2 +By

i−x̂
2

 ,

(B.7)

which are none other than the self-consistency equations of the Iterative Mean-Field
approach for the starting Hamiltonian (B.2), given in equation (II.33).

It is worth mentioning that a similar calculation can be carried out with all the
starting Hamiltonians considered in this thesis, be it the Heisenberg model, the hard-
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core boson Hamiltonian or its XY counterpart in the presence of a twist Φ to the
boundary conditions and real hoppings, or with periodic boundary conditions. In
all cases, the minimization of the classical energy with respect to the set of angles
{θi} can be rearranged so that by using the relations (B.5) one finally deduces the
self-consistency equations for the iterative solution.

2 Equivalency between Twisted boundary condi-
tions with real hoppings and periodic ones with
complex hoppings

We will show the equivalency between the two approaches to compute the 1/S-
corrected superfluid density, namely by simply adding a small twist Φ to the bound-
ary conditions, or by keeping periodic boundary conditions and adding a magnetic
field, with circulation along a bond Φ/L, along the twist direction which translates
the replacement t 7→ te−ı

Φ
L . In order to do so, we will show that for the clean system

(no disorder, W = 0) the Holstein-Primakoff Hamiltonian to be diagonalized is ex-
actly the same. We restrict to the clean case because it is the only one where we can
derive analytical expressions for the diagonalized Holstein-Primakoff Hamiltonian,
since we know the basis which diagonalizes it is the momentum {k}.

We start from the part to be diagonalized in the Holstein-Primakoff Hamilto-
nian (III.34) for the complex hopping and periodic boundary conditions problem:

H2 =−
∑
i

εi(Φ)ni +
∑
i

{(tii+ŷ(Φ)a†iai+ŷ + h.c.) + (tii+ŷ(Φ)aiaj + h.c.)}

+
∑
i

{(tii+x̂(Φ)a†iai+x̂ + h.c.) + (tii+x̂(Φ)aiai+x̂ + h.c.)}
(B.8)

with the same coefficients given by equations (III.35) and (III.36). In the absence of
disorder, i.e. that ∀i, ϕi = 0, cos θi = cos θ and µi = µ, these coefficients simplify to:



tii+ŷ(Φ) =tii−ŷ(Φ) = − t2
[
1 + cos2 θ

]
= ty

tii+ŷ(Φ) =tii−ŷ(Φ) = t

2
[
1− cos2 θ

]
= ty

tii+x̂(Φ) =tii+x̂(Φ) = − t2 cos
(

Φ
L

) [
1 + cos2 θ

]
= tx = ty cos

(
Φ
L

)

tii+x̂(Φ) =tii−x̂(Φ) = t

2 cos(Φ
L

)
[
1− cos2 θ

]
= tx = ty cos

(
Φ
L

)

εi(Φ) =− µ cos θ − 2t sin2 θ

(
1 + cos(Φ

L
)
)

= ε.

(B.9)
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Let us diagonalize this Hamiltonian by applying the Fourier Transform defined
as


bi = 1√

N

∑
k
eıRi.kbk

b†i = 1√
N

∑
k
e−ıRi.kb†k,

(B.10)

on each part of the Hamiltonian separately, for clarity issues. In the curse of the
calculations here forth described, the equality

∑
i

e−ı(k−k′)Ri = Nδ(k− k′). (B.11)

will be used several times. Let us begin by the diagonal part of Hamiltonian (B.8):

∑
i

ε(Φ)ni = 1
N

∑
k

∑
k′
εb†kbk′

∑
i

e−ı(k−k′)Ri =
∑

k
εb†kbk =

∑
k

ε

2(b†kbk + b†−kb−k).

(B.12)
where we have used the equality (B.11).

Moving on to the off-diagonal part of the Holstein-Primakoff Hamiltonian (B.8).
The two sums in it are formally the same, but with different coefficients tx and ty

defined in (B.9) accounting for the twist (or magnetic field) being applied only along
the x direction. The r index can be either r = x or r = y. The off-diagonal part
reads:

∑
〈ij〉r

(trija
†
iaij + h.c.) = 1

2N tr
∑

k

∑
k′

{
b†kbk′

(
eıkr

∑
i

e−ı(k−k′)Ri + e−ıkr
∑
i

e−ı(k−k′)Ri

)

+bkb
†
k′

(
eıkr

∑
i

eı(k−k′)Ri + e−ıkr
∑
i

eı(k−k′)Ri

)}

+ 1
2N tr

∑
k

∑
k′

{
b†kb
†
k′

(
eıkr

∑
i

eı(k+k′)Ri + e−ıkr
∑
i

eı(k+k′)Ri

)

+bkbk′

(
eıkr

∑
i

e−ı(k+k′)Ri + e−ıkr
∑
i

e−ı(k+k′)Ri

)}

= tr

2N
∑

k

{
2N cos(kr)b†kbk + 2N cos(kr)b†−kb−k

}
+ tr

2N
∑

k

{
2N cos(kr)b†kb

†
−k + 2N cos(kr)bkb−k

}
.

(B.13)
Now, putting together the results of equations (B.12) and (B.13), we obtain the
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Fourier space-diagonalized Holstein-Primakoff Hamiltonian:

H2 =ty
∑

k
(cos ky + cos(Φ

L
) cos kx)(b†kbk + b†−kb−k)

+ ty
∑

k
(cos ky + cos(Φ

L
) cos kx)(b†kb

†
−k + bkb−k)

− ε

2
∑

k
b†kbk + b†−kb−k,

(B.14)

which can be finally contracted as

H2 =
∑

k

[
Ak(b†kbk + b†−kb−k) +Bk(b†kb

†
−k + bkb−k)

]
(B.15)

where we have defined the k-dependent coefficients
Ak =− t

2(1 + cos2 θ)(cos ky + cos(Φ
L

) cos kx) + µ

2 cos θ + t sin2 θ(1 + cos(Φ
L

))

Bk = t

2 sin2 θ(cos ky + cos(Φ
L

) cos kx).
(B.16)

This can be further simplified by using the minimization of the classical energy (B.2),
which in the clean case gives the equation

µ

2 sin θ − t cos θ sin θ − t cos θ sin θ cos(Φ
L

) = 0 (B.17)

which yields for the angle θ:

⇒


cos θ = µ

2t(1 + cos(Φ
L

))

sin θ =±
√√√√1− µ2

4t2(1 + cos(Φ
L

))2 .

(B.18)

We end up with the diagonal Holstein-Primakoff Hamiltonian (B.15) with the
coefficients

Ak =− t

2(1 + cos2 θ)(cos ky + cos(Φ
L

) cos kx) + t(1 + cos(Φ
L

))

Bk = t

2 sin2 θ(cos ky + cos(Φ
L

) cos kx).
(B.19)

These expressions are similar to those obtained by Coletta et al. [246] for the
diagonalized Holstein-Primakoff Hamiltonian for the same model of hard-core bosons
in the presence of a twist to the boundary conditions with the difference that in
their case they have put the twist in both x and y directions and our result is for the
complex hoppings along the x direction alone, but if we applied the magnetic field
along the y direction as well we would obtain identical results.
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Resumé

1 Introduction

La physique des systèmes de matière condensée a attiré un grand intérêt tout
au long de son histoire. Ces systèmes, où les propriétés de basse énergie sont
étudiées, présentent une quantité importante de phénomènes spectaculaires qui dé-
fient l’intuition physique et constituent donc un excellent terrain pour les recherches
fondamentales, à la fois expérimentalement et théoriquement, comme la superfluid-
ité, supraconductivité ou la condensation de Bose-Einstein [1, 2]. Les régimes à basse
énergie sont devenus accessibles au début du 20ème siècle, les progrès technologiques
ayant permis l’exploration des températures de plus en plus basses. Dans ce régime,
les effets quantiques deviennent importants et donnent lieu à une nouvelle physique
jamais vue dans les expériences, qui devait être expliquée par la théorie. Il a vite été
compris que les effets à plusieurs corps étaient responsables de certaines de ces éton-
nantes caractéristiques, c’est-à-dire que les interactions jouent un rôle énorme et ne
peuvent être négligées. Ceci est également le cas pour certains systèmes classiques.

En même temps, le désordre, c’est-à-dire les impuretés, est intrinsèque à tout sys-
tème réaliste. Bien que les premières théories développées négligeaient complètement
les effets du désordre, ceux-ci sont inévitables dans les expériences et donnent lieu
à de nouveaux phénomènes tels que la localisation d’Anderson [3–5] parmi d’autres.
Il est connu que les électrons qui n’interagissent pas sont localisés par un désordre
arbitrairement faible à une et deux dimensions, mais des interactions répulsives peu-
vent stabiliser un état délocaliséen deux dimensions [5, 6]. Les effets conjoints des
interactions et du désordre ont reçu beaucoup d’attention dans les années suivantes.

La question de bosons désordonnés interagissants a été portée au premier plan
par des expériences sur l’hélium superfluide dans les milieux poreux [7]. La perte
de la superfluidité dans ces systèmes a soulevé de nouvelles questions théoriques.
Une série d’études théoriques suivi [6, 8–12], découvrant que l’apparition quantique
(T = 0) de la superfluidité dans les milieux aléatoires doit être traitée comme une
transition de phase quantique régie par les fluctuations entre un superfluide délo-
calisé et une phase de verre Bose localisée. Le modèle de Bose-Hubbard est ainsi
devenu le modèle paradigmatique pour étudier les effets conjoints des interactions et
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du désordre. D’énormes efforts théoriques et expérimentaux ont été effectués pour
déterminer le diagramme de phases de ce modèle à une, deux et trois dimensions. À
deux dimensions, a été montré que les bosons avec interactions répulsives présentent
une superfluidité robuste au désordre faible [6].

La transition de phases quantique entre le superfluide et le verre de Bose à deux
dimensions est étudiée dans ce manuscrit à l’aide de trois approches différentes. En
premier lieu, on montre comment les fractions superfluide et du condensat de Bose-
Einstein sont affectées par le désordre dans une approximation de Champ Moyen
qui, bien qu’incapable de capturer la transition, donne accès à des caractéristiques
qualitatives intéressantes. En se basant sur cette solution Champ Moyen, on in-
troduit les fluctuations quantiques à travers une théorie d’ondes de spin linéaires
dans l’espace réel qui capture la transition et dévoile un comportement non trivial
du spectre d’excitations. Finalement, on explore minutieusement la région critique
quantique par des simulations de Monte Carlo Quantique à l’état de l’art, menant à
une évaluation précise des exposants critiques et à une surprenante absence d’auto-
moyennation dans le régime du verre de Bose.

2 Théorie de ChampMoyen pour la transition SF-
VB

On étudie la transition Superfluide – Verre de Bose des bosons de coeur-dur sur
réseau carré à deux dimensions de taille N = L × L. Le système est décrit par le
Hamiltonien:

H = −t
∑
〈i,j〉

(
b†ibj + b†jbi

)
−
∑
i

µini, (1)

où ∑
〈i,j〉 représente la somme sur toutes les paires de plus proches voisins, t est

l’amplitude de saut entre sites voisins, µi est potentiel chimique sur le site i, b†i and
bi sont, respectivement, les opérateurs bosoniques de création et annihilation sur le
ième site et ni = b†ibi est l’opérateur de nombre, qui suit la contrainte de coeur-dur
ni = 0 ou 1. Ce Hamiltonien est équivalent, par la transformation de Matsubara-
Matsuda [229] (cf. éq. (II.21)), au Hamiltonien XY :

HXY = −1
2
∑
i

µi − 2t
∑
〈i,j〉

(Sxi Sxj + Syj S
y
i )−

∑
i

µiS
z
i . (2)

Le paramètre d’ordre pour la transition est l’aimantation dans le plan XY mXY qui
est liée à la densité du condensat de Bose-Einstein dans le langage bosonique par
ρ0 = m2

XY , et est calculé par l’expression (II.29). On peut résoudre le problème
par deux méthodes de Champ Moyen équivalentes: d’une part, considérer les opéra-
teurs de spin comme des vecteurs 3D (cf. éq (II.5)) et minimiser numériquement
le Hamiltonien (II.23) qui en résulte (ce qui permet la relaxation de la phase), et
d’autre part introduire le découplage Champ Moyen (II.13) et résoudre les équations
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d’auto-cohérence (II.30) qui en résultent de façon itérative pour calculer l’énergie.
On peut utiliser les deux méthodes dans le cas de conditions au bords périodiques
et dans le cas de conditions au bords en présence d’un twist, pour calculer la densité
superfluide (II.4).

2.1 Modèle XY avec désordre bimodal
Dans le cas d’un désordre bimodal le potentiel chimique sur un site i vaut

µi = ±W , avecW la force du désordre. Dans ce cas le problème avec conditions péri-
odiques a une solution analytique donnée par les équations (II.25) et (II.29). Pour
calculer la densité superfluide on applique un “twist” aux conditions aux bords et
on calcule la différence en énergie que cela entraine. Elle est minimale à dans l’état
fondamental ce qui donne finalement les équations couplées décrivant la relaxation
de la phase:

∀i, t
∑
〈j〉i

sin θi sin θj(ϕi − ϕj) = 0. (3)

Ce système est résolu à l’aide de subroutines de la Réf. [220]. On reporte les résultats
pour les densités superfluide et condensée sur la figure 1 où l’on voit que les deux
densités sont identiques et ne s’annulent que quand le désordre est en dehors de la
bande de conduction W/t ≥ 4 et le système est dans une phase isolante et gappée.
Il n’y a pas de phase de verre de Bose à ce niveau d’approximation.

0 1 2 3 4 5

W/t
0

0.5

1

1.5

Δ

Δ

0

0.05

0.1

0.15

0.2

0.25

ρ sf

ρ
0
= ρsf

P (✏)

✏�1 1

Superfluid

Gapped

Insulator

W/t

�/t⇢
sf

⇢sf = ⇢0 �/t

Figure 1: Evolution des densités superfluide et condensés vs. la force du désordre
W/t pour une distribution bimodale du désordre. Une seule taille du système est
représentée puisqu’il n’y a pas d’effets de taille finie. Les deux densités sont égales et
diminuent avec le désordre de leur valeur dans le cas pur 0.25 s’annulant pour une
force du désordre égale à la largeur de bande W/t = 4. Pour des désordres plus forts
le système est dans une phase isolante et gappée.
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2.2 Modèle XY avec désordre boite
Dans le cas d’un désordre uniforme µi ∈ [−W ;W ] il n’y a pas de solution

analytique et la minimisation doit se faire par la méthode du découplage Champ
Moyen (II.13) suivit d’une résolution itérative des équations d’auto-cohérence (qui
incluent implicitement la relaxation de la phase) avec conditions aux bords péri-
odiques (cf. éq. (II.30)) ainsi que “twistées” (cf. éq. (II.33)).

2.2.1 Absence de transition de phases SF – VB

Dans le formalisme Champ Moyen itératif, la densité condensée est donnée en
fonction des champs locauxBi obtenus de façon auto-cohérente, par l’expression (II.36).
On reporte les résultats pour les densités superfluide et condensée en fonction du dé-
sordre pour des systèmes de taille L = 8, . . . , 36 sur la figure 2. Bien que différentes
(ρsf < ρ0), les deux densités sont compatibles à fort désordre avec une diminution
soit exponentielle, soit en loi de puissance, ce qui indique qu’elles ne s’annulent qu’à
la limite du désordre infini W → ∞, c’est-à-dire qu’il n’y a pas de phase verre de
Bose présente, au niveau Champ Moyen.
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Figure 2: Evolution des densités superfluide (ρsf) et Bose condensée (ρ0) vs. la
force du désordre en unités du paramètre de saut W/t pour la distribution de dé-
sordre uniforme µi ∈ [−W ;W ]. Même au niveau Champ Moyen les deux densités
sont différentes: ρsf < ρ0. Les deux densités montrent une dépendance linéaire avec
le désordre en échelle Log-Log ou log-normale (non représenté): les données sont
compatibles à la fois avec une diminution en loi exponentielle et en loi de puis-
sance. De ce fait, les deux quantités ne s’annulent qu’à la limite du désordre infini
W → ∞ indiquant une absence de transition vers une phase de verre Bose à ce
niveau d’approximation.
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2.2.2 Distributions des courants

Les propriétés de transport du système sont étudiées à travers les courants lo-
caux induits par le “twist” aux conditions de bord Φ. Celui-ci est appliqué selon la
direction X seulement. L’on peut donc définir les courants transverses (selon Y ) et
longitudinaux (selon X) par

Jyi→i+ŷ = 2(Sxi S
y
i+ŷ − S

y
i S

x
i+ŷ) (4)

et
Jxi→i+x̂ = 2 sin(Φ

L
)(Sxi Sxi+x̂ + Syi S

y
i+x̂) + 2 cos(Φ

L
)(Sxi S

y
i+x̂ − S

y
i S

x
i+x̂). (5)

Le panneau du haut de la figure 3 illustre l’évolution avec le désordre de la valeur
moyenne de ces courants divisée par le courant moyen dans le cas pur pour un système
de taille L = 32, et le panneau du bas montre l’écart-type de ces courants divisé par
leur valeur moyenne en fonction du désordre. Il est clair que le transport passe d’être
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Figure 3: Haut: Courants longitudinal (J‖) et transverse (J⊥) pour un système de
taille L = 32 vs. la force du désordre W/t pour la distribution du désordre uniforme
µi ∈ [−W ;W ], renormalisés par la valeur du courant dans le pur J̄clean = 1

2 ρ̄sf
Φ
L
. À

faible désordre, le transport longitudinal est plusieurs ordres de grandeur plus grand
quel le transport transverse. À fort désordre (W ≥ 10t) les courrants longitudinal
et transverse sont du même ordre de grandeur. Les barres d’erreur sont plus petites
que les symboles. Bas: Écart-type des courrants longitudinal et transverse divisé par
leur valeur moyenne, en fonction du désordre. The transverse currents have a wider
relative spread at low disorders but it becomes equivalent to the longitudinal current
spread at strong disorders W > 10t.
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unidirectionnel à faible désordre à être isotrope à fort désordre, un effet précurseur
de la transition vers le verre de Bose, et ce malgré l’absence de transition à ce niveau
d’approximation.

3 Au-delà du Champ Moyen: Approche
semi-classique

On développe un approche semi-classique à travers la théorie des ondes de spin
linéaires. Cette théorie se base sur le résultat Champ Moyen et y ajoute les fluc-
tuations quantiques décrites par des bosons selon la transformation de Holstein-
Primakoff (III.3) [248] linéarisée. Pour un spin S ceci permet d’obtenir les quantités
corrigés à l’ordre 1/S après la diagonalisation dans l’espace réel du Hamiltonien en
termes des bosons de Holstein-Primakoff (III.6) qui en résulte pour notre problème
désordonné.

3.1 Propriétés critiques de l’état fondamental

3.1.1 Désordre bimodal

On a calculé la densité superfluide ρsf et la fraction du condensat de Bose-Einstein
ρ0 corrigées à l’ordre 1/S, ainsi que le gap dans le spectre des excitations pour des
systèmes de taille L = 12, . . . , 32 et une distribution du désordre bimodale µi =
±W . Les extrapolations à la limite thermodynamique L→∞ de ces quantités sont
tracées sur la figure 4. Dans le cas pur, la densité superfluide est augmentée par les
fluctuations quantiques pendant que la densité du BEC est réduite. En augmentant
la force du désordre les deux quantités diminuent jusqu’à s’annuler à deux points
différents W0 < Wsf < 4t. L’extrapolation à la limite thermodynamique du gap dans
le spectre d’excitations ∆ est nulle jusqu’au bord de bande et devient finie pour
W ≥ 4t.

Il existe donc une fenêtre finie du désordre, W0 < W < Wsf, dans laquelle le
système est dans une phase superfluide sans fraction condensée. Bien que ceci est
possible dans des systèmes frustrées tels que BaCuSi2O6 [250–252], il est possible que
cette fenêtre ne survive pas aux fluctuations quantiques d’ordre supérieur, ce qui est
serait résolu à l’aide de simulations QMC dans le futur. Dans tous les cas, il reste
une fenêtre finie de désordreWsf < W < 4t pour laquelle une phase isolante (ρsf = 0)
et gapless (∆ = 0) est stable, c’est-à-dire, une phase de verre de Bose est stabilisée
par les fluctuations quantiques à l’ordre 1/S.

Pour déterminer la valeur pour laquelle la densité superfluide s’annule, on utilise
la théorie de taille finie décrite dans la section 2.3.2 du chapitre I du manuscrit.
Selon celle-ci, les courbes en fonction du désordre de ρsf × Lz, où z est l’exposant
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Figure 4: Evolution des extrapolations à la limite thermodynamique de la densité su-
perfluide ρsf, la densité du condensat de Bose-Einstein ρ0 et le gap dans le spectre des
excitations ∆ aver la force du désordre W/t. Les densities classiques (•) sont égales
et s’annulent au bord de la bande W = 4t. Les quantités corrigées par les ondes de
spin ρ

(sw)
sf (�) et ρ(sw)

0 (�) s’annulent à des points différents W0 < Wsf < 4t, lais-
sant place à une phase gapless verre de Bose (BG) sur une fenêtre finie du désordre,
avant l’apparition de l’isolant gappé pour W > 4t. Les vignettes montrent les phases
superfluide et isolantes dans la représentation des pseudo-spins. Les moyennes sur le
désordre ont été faites sur plusieurs centaines d’échantillons désordonnés. La ligne
verte est un guide visuel.

dynamique décrivant la transition, pour différentes tailles du système L doivent se
croiser au point critique. Ceci est visible sur le panneau (a) de la figure 5 où un
très bon croisement est obtenu pour des tailles de système L = 12, . . . , 32 avec
une valeur de l’exposant dynamique z = 2.0(1) en bon accord avec la prédiction
théorique de Fisher et al. [6] z = d = 2. Le point critique correspondant est estimé
à Wsf/t = 3.738(1).

Le cas de la densité du condensant de Bose-Einstein est un peu différent. En
effet la présence d’une cohérence macroscopique dans le langage bosonique (i.e. d’un
condensat) est liée à la présence d’un ordre transverse dans le plan XY dans le
langage des spins par ρ0 = m2

xy, avec mxy = 〈Sx〉 l’aimantation transverse. L’analyse
de taille finie de mxy est présentée dans le panneau (b) de la figure 5 où l’on voit
que l’extrapolation à taille infinie du paramètre d’ordre XY devient négative, ce qui
est interprété comme un ordre XY nul. Ceci arrive pour une valeur de la force du
désordre W0/t = 3.55(5).
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Figure 5: Panneau a: Croisement des courbes de ρsf×Lz pour des systèmes de tailles
allant de L = 12 à L = 32. Un très bon croisement best obtenu aver un exponent
dynamique z = 2.0(1) et le point de croisement est estimé à Wsf/t = 3.738(1).
Les traits pleins montrent des fits de degré 2. Panneau b: Analyse de taille finie de
l’aimantation transverse corrigée par ondes de spin mxy = 〈Sx〉 à différentes forces du
désordre. Les extrapolations à taille infinie négatives sont interprétées comme étant
nulles. Le paramètre d’ordre XY s’annule à une force du désordre W0/t = 3.55(5).

3.1.2 Désordre uniforme

On calcule de façon similaire la densité superfluide corrigée à l’ordre 1/S pour le
cas d’une distribution du désordre uniforme sur le potentiel chimique µi ∈ [−W ;W ].
Dans le cas pur les résultats sont en accord avec les résultats analytiques de Coletta
et al. [246]: les fluctuations quantiques augmentent la superfluidité par rapport au
résultat classique (Champ Moyen). Le désordre fait diminuer la densité superfluide
ρsf corrigée par les ondes de spin de façon monotone jusqu’à ce qu’elle s’annule pour
une force du désordre avoisinant W = 10t.

Pour évaluer avec précision le point critique et l’exposant dynamique z qui gou-
verne la transition de phases vers le verre de Bose on utilise le fait que la densité
superfluide doit suivre la forme ρsf ∼ L−z. On trace donc sur le panneau (a) de la
figure 6 en échelle log-log la densité superfluide corrigée à l’ordre 1/S en fonction de
l’inverse de la taille du système 1/L pour différentes valeurs du désordre autour de
W = 10t. On trouve un point critique Wc/t = 10.00(5) et un exposant dynamique
z = 1.43(1) en désaccord avec l’égalité z = d = 2 de Fisher et al. [6]. Le panneau
(b) de la figure 6 montre le croisement des courbes de ρsf×Lz pour différentes taille
du système L = 24, . . . , 48 obtenu en utilisant la valeur de z = 1.43(1) trouvée par
l’analyse précédente. En effet, un très bon croisement apparait pour une valeur du
désordre critique Wc/t = 10.00(5), ce qui confirme l’estimation pour z.
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Figure 6: Panneau a: Densité superfluide corrigée par les ones de spin ρsf vs.
l’inverse de la taille du sytème pour différentes valeur du désordre. La ligne pointillée
rouge est un fit en loi de puissance de la forme ρsf ∼ L−z avec z = 1.43, qui decrypt
les données à W = 10t. Les données pour les autres valeurs du désordre suivent un
loi similaire pour les petites tailles mais l’inclusion des tailles les plus grandes les
fait dévier de ce comportement, sauf pour W/t = 9.95 et W/t = 10.05. Panneau
b: Croisement des courbes de ρsf × Lz pour des systèmes de taille allant de L = 24
à L = 48. U|n très bon croisement est obtenu avec la valeur de l’exposant critique
de z = 1.43(1) et le point de croisement est à Wc/t = 10.00(5). Les traits pleins
montrent des fits polynomiaux au troisième ordre.

3.2 Propriétés du spectre des excitations

On étudie le spectre des excitations à une particule produites par les ondes de
spin dans le cas d’un désordre bimodal. On a vu sur la figure 4 qu’il y a trois phases
dans le diagramme de phases dans ce cas: un phase superfluide à faible désordre, une
phase verre de Bose pour Wsf < W < 4t, et un isolant gappé pour W > 4t. Les deux
premières sont gapless et l’on étudie les propriétés de localization de ces transitions
à travers les Inverse Participation Ratios (IPR) des états propres du Hamiltonien,
en suivant les travaux de Monthus et Garel [254] et de l’équipe de Castellani à
Rome [256]. Les IPRs à une fréquence donnée Ω sont définis, pour un état propre
normalisé et indexé par p, par:

IPRp =
N∑
i=1
|api |4. (6)

9



Les IPRs se comportent comme pour la transition de Anderson [4, 254]:

IPR ∼ 1
N
, si l’état est délocalisé

IPR ∼ 1
LD2

, à la transition de localisation-délocalisation

IPR ∼ 1
ξ2 , si l’état est localisé avec une longueur de localisation ξ

(7)

ce qui définit l’exposant multifractal D2. Comme les spectres onde de spin sont
discrets pour des systèmes de taille finie et que pour chaque échantillon désordonné
les énergies propres sont proches mais pas identiques, on étudie les IPRs moyennés
sur des tranches de fréquences de largeur δΩ/v0 = 1/20 (avec v0 = 2t la vitesse des
ondes de spin dans le cas pur). D’après l’équation (7), les courbes des IPR×LD2 en
fonction de la fréquence pour différentes tailles du système doivent se croiser au seuil
de mobilité Ωc, et ce pour chaque valeur du désordre. On obtient en effet un très
bon croisement pour W = 3.4t (dans la phase superfluide) en utilisant un exposant
multifractal D2 = 1.48 comme l’illustre la figure 7. Le même exposant multifractal
donne des bons croisements à d’autres valeurs du désordre, surtout dans la phase
superfluide.
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Figure 7: Croisement des courbes des Inverse Participation Ratio pour des systèmes
de taille L = 16, . . . , 64 et multipliés par LD2 avec un exposant multifractal D2 = 1.48
pour use force du désordre de W = 3.4t dans la phase superfluide. Un croisement
convaincant best obtenu à use fréquence fine Ωc/v0 ≈ 1.15 séparant des états delo-
calisés à fable énergie (Ω < Ωc) et des états localizés à haute énergie (Ω > Ωc). Les
barres d’erreur sont représentées mais sont plus petites que la taille des symboles.
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Figure 8: Croisement des courbes des Inverse Participation Ratio pour des systèmes
de taille L = 16, . . . , 64 et multipliés par LD2 avec un exposant multifractal D2 =
1.48 pour use force du désordre de W = 3.4t dans la phase verse de Bose. Une
grande dérive des points de croisement est présente . La vignette montre les points
de croisement successifs Ω∗ entre une paire de tailles de système successives L1 and
L2 en fonction de l’inverse de L∗ = (L1 + L2)/2. Ω∗ tend vers zéro lorsque L∗ tend
vers l’infini, indiquant que le seuil de mobilité Ωc = 0.

Dans la phase verre de Bose, les points de croisement des courbes de tailles
successives L1 et L2 dérivent vers des fréquences de plus en plus faibles, comme
illustré dans la figure 8 pour une force du désordre de W = 3.9t. La vignette montre
les valeurs des points de croisement successifs Ω∗ en fonction de l’inverse de la taille
L∗ = (L1 +L2)/2. Le point de croisement s’annule à la limite où L∗ tend vers l’infini,
ce qui signale un seuil de mobilité nul.

En faisant la même étude pour toutes les valeurs du désordre, on peut dresser
le diagramme de phases de la figure 9 qui montre l’évolution du seuil de mobilité
en fonction du désordre. Le seuil de mobilité (losanges jaunes) est fini et a des bar-
res d’erreur plutôt grandes dans la phase superfluide. Le seuil décroit et les barres
d’erreur augmentent avec le désordre, et finalement le seuil semble s’annuler exacte-
ment à la transition entre le superfluide et le verre de Bose (indiqué par l’astérique
bleu), c’est-à-dire que dans le verre de Bose toutes les excitations sont localisées.

Cependant, ces résultats sont contraires à des résultats récents de Lemarié [258]
pour le même modèle à deux dimensions sur réseau carré et utilisant aussi les ondes
de spin, avec des tailles de système beaucoup plus grandes qui sembleraient indiquer
que le seuil de mobilité est nul même dans la phase superfluide. Cette étude nécessite
donc de résultats supplémentaires pour permettre de conclure.
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Figure 9: Spectre des excitations ondes de spin renormalisé par v0 = 2t et tracé en
fonction de la force du désordre W/t. Les états excités sont délocalisés en dessous
du seuil de mobilité Ωc (losanges jaunes) et localisés au dessus. Ωc, qui détermine la
frontière entre états localisés et delocalisés (zone grisée) aver des barres d’erreur assez
grandes proche de la transition superfluide - verre de Bose (astérisque bleu), semble
s’annuler au point de transition Wsf/t = 3.738(1) et tous les états sont localisés dans
la phase verre de Bose. L’isolant gappé ne présente aucun état en dessous du gap ∆
(cercles rouges) tous les états sont localisés en dessus du gap.

4 Étude avec le Monte Carlo Quantique

On fait l’étude des propriétés critiques de notre modèle de bosons de coeur-dur sur
réseau carré bidimensionel avec désordre sur site suivant une distribution uniforme
µi ∈ [−W ;W ] à travers le Monte Carlo Quantique (QMC) à l’état de l’art, plus pré-
cisément avec la technique dite Stochastic Series Expansion (SSE). Celle-ci travaille
à température inverse β finie et l’étude de la transition de phases quantique (i.e.
à T = 0) nécessite d’une température inverse assez grande pour que la simulation
concerne seulement la physique de l’état fondamental. Cependant, pour optimiser
le temps de simulation, on utilise la technique dite de β-doubling dans laquelle pour
chaque échantillon désordonné une augmentation progressive de la température in-
verse est utilisée en prenant comme point de départ la configuration Monte Carlo
convergée pour la température précédente. Ceci réduit le temps de d’équilibration
de la simulation QMC et on augmente la température jusqu’à ce que la quantité
que l’on veut mesurer n’évolue plus quand on change β, i.e. l’observable mesurée a
atteint sa valeur dans l’état fondamental. Un exemple de cette procédure est montré
pour les densités superfluide et du condensat de Bose-Einstein pour différentes tailles
et différentes valeurs du désordre dans la figure 10.
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Figure 10: Convergence des densités superfluide et du condensed de Bose-Einstein
vers leurs valeur à l’état fondamental pendant la procedure de β-doubling differences
tails du système et deux forces du désordre. Les cercles remplis dans les panneaux
de droite (L = 16,W = 5) sont les données pour Nm = 104pas de mesure Monte
Carlo, toutes les autres données étant obtenues avec Nm103 pas de mesure sont en
parfait accord avec celles obtenues avec plus de pas. Les lignes pointillées indiquent
les valeurs convergées en β des densités superfluide et du BEC pour chaque taille et
chaque valeur du désordre.

En plus de la température, le nombre de pas Monte Carlo utilisés pour faire les
mesures est très important. Il faut qu’il soit assez grand pour s’assurer de minimiser
les erreurs statistiques intrinsèques à la méthode Monte Carlo. On a vérifié que 1000
pas de mesures étaient suffisants dans la plupart des échantillons, néanmoins une
fraction des échantillons ont des temps d’autocorrélation plus longs et nécessitent
plus de pas de mesure, à défaut de quoi on mesure une densité superfluide nulle,
ce qui est impossible pour un système de taille finie. On traite ces échantillons en
ajustant dynamiquement le nombre de pas, i.e. en ajoutant 1000 pas supplémentaires
et vérifiant que les résultats sont fiables et le temps d’autocorrélation beaucoup plus
petit que le temps total de simulation. On fixe une limite maximale de 105 pas pour
des raisons de temps de calcul fini.

Un grand nombre d’échantillons est aussi nécessaire pour atteindre une moyenne
sur le désordre convergée et donc fiable. On utilise ∼ 20000 échantillons pour les
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plus petites tailles L ≤ 22 et ∼ 10000 pour les plus grandes afin de s’assurer que
les moyennes sont convergées tout en gardant des temps de simulation accessibles.
Les barres d’erreur sont estimées à l’aide d’une procédure de bootstrap accolée à
un rééchantillonage suivant une gaussienne des données pour chaque taille et chaque
force du désordre. Présentons maintenant les résultats obtenus.

4.1 Exposants critiques de a transition SF–VB

4.1.1 Quantités moyennées

Pour extraire les exposants critiques de le désordre critique pour la transition sur
les données moyennées, on utilise les formes de loi d’échelle que doivent suivre la
densité superfluide et la fraction condensée:

ρsf(L) = L−(z) Gsf [L1/ν(W −Wc)] (8)

et
ρ0(L) = L−(z+η) G0[L1/ν(W −Wc)]. (9)

avec z l’exposant dynamique, ν l’exposant critique de la longueur de corrélation,
Wc le désordre critique, η l’exposant anormal et G0 et Gsf des fonctions universelles
qui sont approchées par un polynôme du troisième degré. On effectue donc des fits
des données QMC sur ces formes sur différentes fenêtres du désordre et de tailles
du système incluses. Nous vérifions aussi la stabilité de notre analyse si l’on corrige
des possibles effets de température finie ou en incluant les échantillons qui donnent
des densités superfluides nulles. Nos résultats finaux prennent en compte toutes ces

z ν η Wc Reference
2 ≥ 1 ≤ 0 Fisher et al. [6]
1.7 1.4 n.d. n.d. Zhang et al. [181]
2.0(1) 0.9(1) n.d. n.d. Sörensen et al. [178]
0.5(1) 2.2(2) n.d. 2.5 Makivić et al. [160]
2.0(4) 0.90(13) n.d. 4.95(20) Zhang et al. [179]
1.93 1.38 n.d. n.d. Herbut [157]
1.40(2) 1.10(4) −0.22(6) 4.42(2) Priyadarshee et al. [182]
1.80(5) 1.15(3) −0.3(1) n.d. Meier et al. [270]
1.88(8) 0.99(3) −0.16(8) 4.79(3) Ng et al. [277]
1.85(15) 1.20(12) −0.40(15) 4.80(5) Álvarez Zúñiga et al. [247]

Table 1: Différentes estimations des exposants critiques et du désordre critique Wc

de la transition Superfluide–verre de Bose sur différents modèles à deux dimensions.
Les résultats sont montrés dans l’ordre chronologique. n.d. = non disponible.
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Figure 11: Exemple de l’analyse de scaling des densités SF ρsf (haut) et du BEC
ρ0 (bas) en incluant toutes les tailles de système L ∈ [12; 32] et toutes les forces
du désordre W ∈ [4.6; 5]. Les traits pleins montrent les meilleurs fits aux formes
universelles des éqs. (8) et (9) qui donnent z ' 1.85, W sf

c ' 4.8, W 0
c ' 4.79, z+ η '

1.42, νsf ' 1.1, ν0 ' 1.2, et Gsf|0 des polynômes du 3ème ordre. L’estimation finale du
point critique Wc = 4.80(5) best montrée par les zones grisées. Vignettes: Collapse
des données obtenu en renormalisant la taille du système L par 1/ξ = |W −Wc|ν
avec ν = 1.2 et Wc = 4.8. Le collapse est presque parfait.

sources d’erreur et donnent donc des barres d’erreur finales assez grandes. Ces résul-
tats sont consignés avec différentes estimations de la littérature dans le tableau 1. Un
exemple des fits obtenus sur la fenêtre du désordre W ∈ [4.6; 5] et en incluant toutes
les tailles (L ∈ [12; 32]) est montré sur la figure 11 pour les densités superfluide et
condensée. Un excellent croisement est obtenu, ainsi que qu’un collapse des données
presque parfait lorsqu’on renormalise la taille du système par la longueur de corréla-
tion L 7→ L/ξ, où ξ = |W −Wc|−ν avec Wc = 4.8 et ν = 1.2, ce qui confirme nos
meilleures estimations. Celles-ci respectent les bornes théoriques pour ν et η, mais
notre meilleure estimation pour l’exposant dynamique z = 1.85(15) est légèrement
inférieure à d = 2 bien que l’égalité reste dans la barre d’erreur.
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4.1.2 Densité superfluide typique

Les propriétés critiques de la densité superfluide typique et moyenne ne sont pas
forcément les mêmes [279]. La densité typique est définie par:

ρtyp
sf = exp(ln(ρsf)) (10)

avec (.) la moyenne sur les échantillons désordonnés. On se concentre sur la den-
sité superfluide typique puisque en SSE la densité condensée est calculée comme la
moyenne des densités condensées locales et la densité condensée typique ne peut
donc pas être obtenue en SSE. La densité SF typique suit une loi d’échelle simi-
laire à celle de la densité moyenne, et peut contenir aussi des corrections non perti-
nentes [280, 281]:

ρtyp
sf (L) = L−z

(
Gtyp

sf [L1/ν(W −Wc)] + cL−y
)
. (11)

Bien que l’analyse identique à celle sur la densité moyenne n’est pas stable lorsqu’utilisée
pour la densité typique, on peut vérifier que les résultats obtenus pour la moyenne
sont compatibles avec la densité typique en fixant les paramètres aux valeurs de
nos meilleures estimations: ztyp = 1.85, νtyp = 1.2 et W typ

c = 4.8. On obtient
ainsi un croisement avec une dérive grande du point de croisement décrite par les
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Figure 12: Panneau a) Analyse de la densité SF typique tracée comme ρtyp
sf × Lz en

fonction du désordre, en fixant Wc = 4.8, ν = 1.2 et z = 1.85. La from universelle
de l’éq. (11) donne un exposant non pertinent y = 0.97(4). Panneau b): ρtyp

sf /ρ
typ,Wc

sf
en fonction de L|W −Wc|ν, en fixant ν = 1.2. Les données collapse parfaitement sur
toute la plage de désordre 4 ≤ W ≤ 5.5 et taille 12 ≤ L ≤ 32 sans aucun paramètre
supplémentaire.
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paramètres non pertinents dans l’éq (11) c = 1.13(8) et y = 0.97(4), comme le
montre la figure 12 panneau (a). Si on divise la densité typique par sa valeur au
point critique ρtyp

sf /ρ
typ,Wc

sf pour éliminer les corrections non pertinentes, lorsqu’on
effectue une renormalisation de la taille du système par la longueur de corrélation
L 7→ L/ξ = L|W−Wc|ν , en fixant les paramètres critiques aux meilleures estimations
pour la densité moyenne, un collapse presque parfait des données est obtenu sans
aucun autre paramètre ajustable, ce qui confirme que la densité superfluide typique
a la mêmes propriétés critiques que la densité moyenne.

4.2 Distribution du logarithme de la réponse superfluide

Pour étudier les propriétés d’auto-moyennation des phases superfluide et verre de
Bose (i.e. des fluctuations dans les phases considérées), on étudie les distributions
pour différentes tailles du système du logarithme de la réponse superfluide. La fig-
ure 13 montre ces distributions pour trois valeurs de la force du désordre: W = 4t
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Figure 13: Distribution de ln(ρsf) pour toutes les tailles du système à trois forces
du désordre différentes, une dans la phase SF (a), autre dans le verre de Bose (b)
et au point critique (c− d). Dans la phase SF (panneau a W = 4) les distributions
rétrécissent lorsque la taille augmente L, un signe d’auto-moyennation. Dans le
verre de Bose (panel b W = 4.95) elles s’élargissent lorsque L croît, un indice clair
du manque d’auto-moyennation dans le verre de Bose. Au point critique (panneau
c W = 4.8) les distributions se ressemblent, particulièrement pour L ≥ 20, et un
excellent collapse est obtenu en les décalant par z ln(L) avec z = 1.85 (panneau d).
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dans la phase superfluide, W = 4.95t dans la phase verre de Bose et W = 4.8t = Wc

au point critique. Dans la phase superfluide les distributions de ln(ρsf) sont de moins
en moins larges pour des tailles de plus en plus grandes, ce qui indique que la phase
superfluide est auto-moyennante, comme il était déjà connu. Dans la phase verre
de Bose les distributions s’élargissent avec taille croissante, indiquant une absence
d’auto-moyennation dans cette phase, en accord avec Réfs. [272, 285]. Au point
critique W = Wc = 4.8t, les distributions sont similaires pour toutes les tailles, spé-
cialement pour L ≥ 20, et un excellent collapse est obtenu en les décalant par z ln(L)
avec z = 1.85, ce qui confirme une fois de plus nos meilleures estimations pour z et
Wc.

On peut étudier ceci de façon plus quantitative en utilisant la variance de ln(ρsf) [282].
On peut éliminer les corrections non pertinentes responsables de l’élargissement tran-
sitoire des distributions au point critique pour les petites tailles en calculant l’écart-
type corrigé σ̃ln ρsf(W,L) = σln ρsf(W,L) − σc(L), avec σc(L) = σln ρsf(Wc, L) l’écart-
type au point critique. Sur la figure 14 on trace les résultats de σ̃ln ρsf(W,L) pour
différentes forces du désordre en fonction de la taille renormalisée L/ξ = L|W−Wc|ν ,
et on obtient un très bon collapse des données. Dans la phase superfluide (W <
4.8t), l’écart-type tend vers −σc comme 1/

√
N , comme attendu pour la phase auto-
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Figure 14: Evolution de l’écart-type corrigé σ̃ln ρsf avec la taille du système renor-
malisée par la longueur de corrélation L/ξ = L|W −Wc|ν, avec ν = 1.2, pour routes
les forces du désordre de W = 4.0 à W = 5.5. Dans la phase SF (W < 4.8) il
diminue et tend vers −σc comme 1/

√
N (ligne pointillée noire), une conséquence de

l’auto-moyennation. Dans la phase verre de Bose (W > 4.8) il augmente suivant
(L/ξ)ω avec ω = 0.5(2) (trait plein noir). La vignette montre un zoom de la région
de paramètres dans le verre de Bose.
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moyennante. Dans le verre de Bose (W > 4.8t), l’écart-type corrigé augmente suiv-
ant (L/ξ)ω avec un exposant ω = 0.5(2), en accord avec les prédictions que la phase
verre de Bose est gouvernée par une physique de polymères dirigés à dimension
1+1 [30, 195, 207, 279, 286], ce qui donne ω = 1/3 [287], et la réponse superfluide
globale se comporte comme une quantité purement locale dans cette phase, en accord
avec Seibold et al. [204].

4.3 Absence d’un scénario de percolation
Dans la littérature, la phase de verre de Bose est souvent décrite comme étant

composée de régions superfluides déconnectées incrustées dans un fond isolant. La
transition vers la phase superfluide correspond dans ce contexte à la percolation de
la plus grande de ces régions à travers tout le système [83, 171, 185, 187, 188].

On se propose de vérifier si la transition SF–VB suit bien un scénario de percola-
tion. Pour ce faire, on réalise des simulations QMC à très haute température inverse
βt = 1024 avec un très grand nombre de pas de mesure Monte Carlo Nmc = 105 sur
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Figure 15: Densité locale effective Min(ρi, 1 − ρi) dans la phase verse de Bose
(W = 5) en fonction du potentiel chimique local |µi| pour un système de taille L = 16
(croix). Des simulations de NS = 150 échantillons désordonnés ont été effectuées à
βt = 1024 avec Nmc = 105 pas de mesure Monte Carlo. La densité moyennée sur des
fenêtres du potential chimique [µ̄− 0.1; µ̄+ 0.1] est représentée par les points rouges.
Le trait pointillé noir est le résultat de la densité moyenne dans le cas pur (extrait
de la Réf. [246]). La vignette montre comment la fraction de sites incompressibles
tombe à zéro quand le nombre de pas de mesure augmente.
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un système de tailleN = 16×16, et on calcule la densité locale effective Min(ρi, 1−ρi)
à l’intérieur de la phase verre de Bose (W = 5t). Les résultats des densités locales
efficaces en fonction du potentiel chimique local sont présentés sur la figure 15 par
les étoiles de couleurs. La symétrie particule-trou est bien évidente puisque les ré-
sultats sont symétriques par rapport à l’axe µ = 0. On effectue des moyennes sur
des tranches de potentiel chimique [µ̄− 0.1; µ̄ + 0.1] (carrés rouges) et le comporte-
ment moyen est toujours compressible, même en dehors de la bande de conduction
(|µi| > 2t), contrairement au cas pur (ligne noire pointillée). En vignette on voit
la fraction de sites incompressibles (i.e. qui ont ρi = 0 ou 1) xinc en fonction du
nombre de pas de mesure Monte Carlo utilisés, et il est clair que dans la limite
exacte du nombre de pas infini la fraction de sites incompressibles qui forment le
fond isolant tend vers zéro. Ceci montre qu’il y a toujours percolation de sites com-
pressibles même à l’intérieur de la phase verre de Bose et un scénario de percolation
pour la transition n’est donc pas pertinent. De plus, la théorie de percolation dit
que la densité superfluide devrait s’annuler proche du seuil de percolation x∗ comme
ρsf ∼ |x − x∗|t avec t = 1.310(1) [222], mais dans notre cas elle s’annule comme
ρsf ∼ L−z qui proche de la transition peut s’écrire ρsf ∼ ξ−z ∼ |W −Wc|zν . Or on
trouve que zν ≈ 1.85× 1.2 ≈ 2.2. Tout ceci nous sert à conclure que le scénario de
transition de percolation ne s’applique pas pour la transition de phases superfluide
– verre de Bose.

4.4 Conclusion

La transition Superfluide – Isolant reste un des domaines de recherche en physique
de la matière condensée les plus actifs, même un quart de siècle après sa découverte.
On a ici étudié la transition de phases Superfluide – verre de Bose à deux dimensions
à travers trois approches différentes. La première est purement classique et donne
le premier calcul de la densité superfluide classique, d’abord testée sur le modèle de
Heisenberg. L’importance de la relaxation de phase ainsi que celle des fluctuations
quantiques pour pouvoir décrire la transition ont été mises en évidence. En suite, une
approche semi-classique a permis d’introduire les fluctuations quantiques à travers la
théorie des ondes de spins linéaires, permettant d’observer la transition SF–VB. On
a déterminé l’exposant critique z pour deux modèles différents du désordre, trouvant
deux résultats différents, l’un en accord et l’autre en désaccord avec la prédiction
z = d. D’autre part, pour le désordre bimodal, une très riche physique du spectre
des excitation est trouvée, avec une transition de localisation des états excités à un
seuil de mobilité non-nul dans la phase superfluide qui s’annule à la transition vers
le verre de Bose. Ces derniers résultats ont été récemment mis en question par une
étude de Lemarié.

Finalement, on a employé des simulations de Monte Carlo Quantique dans le
cas du désordre uniforme et extrait les propriétés critiques de l’état fondamental.
L’estimation du point critique est en accord avec celle obtenue par les ondes spin et
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le cavity Mean-Field. L’exposant dynamique obtenu est légèrement plus petit que d
mais l’égalité ne peut être exclue. On obtient aussi des estimations des exposants cri-
tiques de la longueur de corrélation ν et l’exposant anormal η qui sont en accord avec
les bornes théoriques et d’autres estimations récentes. On a montré aussi l’absence
d’auto-moyennation dans la phase verre de Bose, ainsi que le fait qu’un scénario liant
la transition de phase SF–VB à une transition de percolation n’est pas pertinent, en
désaccord avec certains résultats théoriques et expérimentaux précédents.
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“Music gives a soul to the universe, wings to the mind, flight to the imagination
and life to everything. ”

Plato





“I have a friend who’s an artist and has sometimes taken a view which I don’t
agree with very well. He’ll hold up a flower and say "look how beautiful it is," and
I’ll agree. Then he says "I as an artist can see how beautiful this is but you as a
scientist take this all apart and it becomes a dull thing," and I think that he’s kind
of nutty. First of all, the beauty that he sees is available to other people and to me
too, I believe. Although I may not be quite as refined aesthetically as he is ... I can
appreciate the beauty of a flower. At the same time, I see much more about the flower
than he sees. I could imagine the cells in there, the complicated actions inside, which
also have a beauty. I mean it’s not just beauty at this dimension, at one centimeter;
there’s also beauty at smaller dimensions, the inner structure, also the processes.
The fact that the colors in the flower evolved in order to attract insects to pollinate
it is interesting; it means that insects can see the color. It adds a question: does
this aesthetic sense also exist in the lower forms? Why is it aesthetic? All kinds of
interesting questions which the science knowledge only adds to the excitement, the
mystery and the awe of a flower. It only adds. I don’t understand how it subtracts.”

Richard P. Feynman



Analytical and numerical study of the Superfluid - Bose glass transition in two
dimensions

The interplay of disorder (i.e. impurities) and interactions is one of the most fundamental
questions in Condensed Matter Physics that has received a lot attention in the past couple of
decades. The quantum phase transition from Superfluid to Bose glass driven by disorder has puzzled
theoreticians and experimentalists alike, leaving unresolved questions despite their best efforts. The
work presented in this thesis addresses some of these questions for two models of disordered hard-
core bosons in two dimensions. In particular, the values of the critical exponents governing the
transition, the inhomogeneous properties of the competing phases, the physical scenario at criticality
and the bosonic excitations’ localization properties are investigated. Three different approaches to
the transition are used to explore this problem. We first show how Bose-condensate and superfluid
fractions are affected by disorder in a Mean-Field approximation, which is unable to capture a
transition, but reveals interesting qualitative features. Building on such a Mean-Field solution,
quantum fluctuations are then introduced using a linear spin-wave theory in real space which does
capture the transition and furthermore unveils a non-trivial behavior for the excitation spectrum.
Finally, the quantum criticality is explored in great detail using state-of-the-art Quantum Monte
Carlo simulations, leading to a precise evaluation of the critical exponents and a surprising absence
of self-averaging in the Bose glass regime.

Keywords: Disorder, interactions, Bose glass, superfluid, hard-core bosons

Étude analytique et numérique de la transition Superfluide - verre de Bose à deux
dimensions

Les effets conjoints du désordre (i.e. des impuretés) et des interactions constituent une des
questions les plus fondamentales de la Physique de la Matière Condensée qui a reçu énormément
d’attention dans les dernières décennies. La transition de phase quantique du Superfluide vers le
verre de Bose déclenchée par le désordre s’est révélée énigmatique tant pour les théoriciens que pour
les expérimentateurs et des questions restent ouvertes malgré tous leurs efforts. Les travaux présen-
tés dans ce manuscrit abordent certaines de ces questions pour deux modèles de bosons de coeur
dur désordonnés à deux dimensions : valeurs des exposants critiques qui gouvernent la transition ;
propriétés inhomogènes des phases en compétition ; scénario physique au point critique ; propriétés
de localisation des excitations bosoniques. On utilise trois approches différentes pour la transition
afin d’explorer ce problème. En premier lieu, on montre comment les fractions superfluide et du
condensat de Bose-Einstein sont affectées par le désordre dans une approximation de Champ Moyen
qui, bien qu’incapable de capturer la transition, donne accès à des caractéristiques qualitatives in-
téressantes. En se basant sur cette solution Champ Moyen, on introduit les fluctuations quantiques
à travers une théorie d’ondes de spin linéaires dans l’espace réel qui capture la transition et dévoile
un comportement non trivial du spectre d’excitations. Finalement, on explore minutieusement la
région critique quantique par des simulations de Monte Carlo Quantique à l’état de l’art, menant
à une évaluation précise des exposants critiques et à une surprenante absence d’auto-moyennation
dans le régime du verre de Bose.

Mots-Clés : Désordre, interactions, verre de Bose, superfluide, bosons de coeur dur
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