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Introduction

Atom optics

The wave-particle duality is one of the keystones of quantum mechanics. While the
wave nature of light was recognized already in the 17th century by Huygens,the idea
of the wave nature of massive particles was first formulated much later in 1923 by
Louis de Broglie [1]. In his thesis, de Broglie proposed that all massive particles also
possess wave properties characterized by a wavelength

λDB =
h

mv
(1)

where h is the Planck constant and m and v are the particle mass and velocity.
The wave nature of particles was first confirmed in 1927 by Davisson and Germer

[2] with the observation of diffraction of electrons on a Nickel crystal.
Three Years later, the diffraction of Helium atoms from freshly cleaved NaCl and

LiF crystals was demonstrated by Immanuel Estermann and Otto Stern [3]. In this
experiment, the Helium atoms did not penetrate into the crystal and were diffracted
by the periodic structure of the surface. Diffraction was also observed with neutrons
in 1947 by Enrico Fermi and Leona Marshall [4].

These experiments set the beginning of atom optics i.e the possibility to treat
atoms as waves and to perform on atoms experiments that were previously restricted
to light, such as diffraction or and interferences.. Numerous experiments directly
inspired by optics have then been performed with thermal atomic beams; for exam-
ple, the diffraction of a thermal beam by a transmission grating in the group of D.R
Pritchards in 1988 [5] and the Young double-slit experiment realize with Helium in
1991 by O. Carnal and J. Mlynek [6]. These experiments were technically very diffi-
cult due to the lack of appropriate atom-optical elements to manipulate the atomic
beams and to the small de Broglie wavelength associated with the atoms. Indeed, at
a temperature T , the mean particle momentum is such that the thermal de Broglie
wavelength decreases as mass increases: λT = h/

√
2πmkBT so λT is approximately

0.5 Å for Helium atoms at room temperature.
The field of atom optics experienced a renewal with the development of the

laser cooling techniques and the manipulation of atoms through their interaction
with laser fields. These developments led to the attribution of the Nobel prize in
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Figure 1: First evidence of
diffraction of He atoms on
a NaCl crystal. Figure re-
produced from [3].

1997 awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips "for
development of methods to cool and trap atoms with laser light"[7, 8, 9]. By bringing
the temperature to the sub microkelvin regime, the de Broglie wavelength raises in
the range of 100 nm − 1 µm which makes it relatively easy to observe interferences
with atoms. Furthermore, many atom-optical elements have been realized leveraging
the use of the interaction between light and matter. Since light is often the most
convenient tool to manipulate atoms, the roles of matter and light can be strikingly
reversed, and therefore, many atom optics experiments are inspired directly by the
analogy with optics. This, in particular will be the case for the work presented in
this thesis.

New atomic sources: BEC and atom lasers

Combining laser cooling techniques and evaporative cooling, a new page of atom
optics opens up in 1995 with the achievement of the Bose condensation in dilute
atomic gases in the groups of E. A. Cornell and C. E. Wiemann with Rubidium
and W. Ketterle with Sodium [10, 11]. Based on works of Satyendra Nath Bose,
Albert Einstein predicted in 1925 that below a critical temperature, a macroscopic
proportion of atoms in a trap condense in the ground state. Within the Bose-Einstein
condensate, the individual de Broglie wavelengths of the atoms overlap, thus forming
a single coherent matter wave that extends across the system. Soon after the first
experimental realization of a Bose-Einstein condensate, these coherence properties
were demonstrated by allowing two separated condensates to overlap and interfere
[12].

There is an interesting similarity between a Bose-Einstein condensate and a laser
in the sense that all particles lie in the same quantum state. The origin of this
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Figure 2: Interference pat-
tern between two initially
separated Bose-Einstein
condensate. Figure repro-
duced from [12]

phenomenon, however, is quite different: in a laser, the key ingredients are the
stimulated emission phenomena and the feedback of light in a cavity, resulting in
the amplification of one optical mode of the cavity. The photons, however, do not
interact directly with each other and do not reach thermal equilibrium. In a Bose-
Einstein condensate the accumulation of particles in the ground state results from
the Bose statistics for particle of integer spin at thermal equilibrium. Recently, the
analogy was pushed further with the realization of a Bose-Einstein condensate of
light [13]. In this experiment, photons thermalized through the interaction with a
dye and the photon number was conserved using a micro optical cavity.

Following this analogy, atom lasers were developed. The aim was to produce a
quasi-continuous coherent matter wave that possesses similar coherence properties
as that of a continous optical laser. This is done by extracting atoms coherently
from a condensate. Several outcoupling mechanisms have been considered: using
a Radio frequency spin flip [14], Raman beams [15], or by lowering progressively
the depth of the trapping potential in one direction [16, 17]. Up to now, all atom
lasers operate in a pulsed mode limited by the depletion of the condensate. If the
extraction from the condensate is coherent, it is possible to produce an atom laser
whose temporal coherence is Fourier limited [18]. Strictly speaking, a Bose-Einstein
condensate that is simply released by switching off the trap constitutes the simplest
atom laser and is analogous to a Q-switch laser.
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Figure 3: Sketch of an atomic interferometer with separable arms using Bragg
diffraction on an optical lattice. Figure reproduced from [30].

Atom optics toolbox

To manipulate coherent matter waves, a wide variety of atom-optical elements have
been developed. For example, atomic mirrors can be realized using a repulsive
potentials produced by an evanescent optical wave [19, 20], a focused laser beam
[20] or a magnetic field [19] using the Stern-Gerlach force. An appropriate magnetic
field configuration creates an atomic lens [21]. One can also use the diffraction on
an optical lattice to realize an atomic lens [22, 23].

In this thesis, we focused on the study of the interaction of matter wave with a
periodic potential, which is in close analogy with dielectric optics.

In 1933, Kapitza and Dirac [24] predicted that an electron beam could be diffracted
by a standing wave light field. The first experiments were carried out with electrons
in 1965 onwards [25, 26] and later in 1983 with neutral atoms in the group of D.
E. Pritchard [27]. The use of optical lattices potentials yields many developments
in particular in atomic interferometry. In this case, the diffraction is associated
with the absorption of a photon in one mode of the field followed by the stimulated
emission in an other mode yielding a momentum change: ∆p = 2n~kL, where λL is
the light wavelength and n the diffraction order. By diffracting atoms in the Bragg
regime corresponding to a small lattice depth and a long interaction time [28], it
is possible to realize a superposition of only two spatially separated atomic beams.
In this regime, the diffraction probability is important if the incoming atomic beam
fulfills the Bragg condition [29]

2d sin Θ = nλDB, (2)

where Θ is the angle between the incoming atomic beam and the lattice (d being
the lattice spacing). The weights of the two diffraction orders can be controlled by
adjusting the lattice depth. The diffraction on an optical lattice is widely used for
example to realize atomic beam-splitters for atomic interferometers with separable
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arms [31, 32, 30]. In these setups, the incoming atomic beam impinges on a first
optical lattice at the Bragg angle. Two additional lattices first reflect each beam
and recombine them to form an Mach-Zehnder interferometer (see Fig. 3). Because
the two arms of the interferometers are spatially separated, it is possible to apply a
perturbation on only one path of the interferometer.

In such interferometers, it is advantageous to increase the enclosed area and the
propagation time in the arms. In this prospect, slow atoms are favorable since the
Bragg angle increases as the incident velocity decreases, and because for a given
propagation length, atoms can accumulate a phase for a longer time. In order to
maximize the interaction time and to prevent the atoms from falling under gravity,
is is then necessary to use an atomic waveguide realized by a potential that confines
atoms to one direction. This potential can be realized either magnetically [33] or by
a red detuned laser, or alternatively using a hollow-core optical fiber guide [34]. A
waveguide possesses two advantages: first by confining the atoms to one dimension, it
reduces the spreading of the wavepacket with time, which can be useful to propagate
a wavepacket for a long time. Second, if the waveguide is horizontal, it compensates
for the gravity and prevents the atoms from falling. In this way, as the atoms are
not accelerated, λDB can remain large in the course of the propagation.

Atomic beamsplitters in the guided configuration have been built in a Y and a X
configuration with thermal atomic beams [35, 36, 37, 38]. During the past years, our
group has also realized a beam splitter for guided atom lasers on a X configuration
[39]. During this thesis, we have designed new atom optics tools adapted to the
confined geometry. First, we have demonstrated the realization of a Bragg reflector
that is the exact analogous of a fiber Bragg grating [40] in optics. In this experiment,
the scattering of a matter wave on a finite size lattice realizes in particular different
types of velocity filter. Using the same finite size lattice, we studied the transposition
of Landau-Zener tunneling to position space. We have shown that this system
produces tunnel barrier that are to some extent equivalent to submicronic repulsive
barrier. Finally, we have studied the problem of scattering of a matter wave onto a
lattice whose depth is modulated with time. Because of this additionnal degree of
freedom, this system is very rich and allows to extend the notion of Bragg reflection
and to make the Bragg condition tunable. This scattering can be used to realize
performant tunable velocity filters in guided environment. Interestingly, this velocity
filter does not rely on any specific internal structure and can thus be used with any
atom.

Outline

• In the first chapter, I report in detail an experimental development on a sepa-
rate setup. It consists in the design and realization of a Zeeman Slower whose
magnetic field is produced using permanent magnets. I describe two succes-
sive magnet configurations and their performances. This work was published
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in Review of Scientific Instrument in 2011 [41]. This Zeeman slower is the
first step to the realization of a second cold atom experiment in Toulouse.
After the realization of this independent project, I moved onto the older setup
experiment.

• In the second chapter, I detail the experimental setup that allows us to produce
Rubidium Bose-Einstein condensates.

• In the third, I present the setup of the attractive finite size optical lattice that is
at the heart of the performed experiments. I also present the characterization
of the lattice using Kapitza-Dirac diffraction.

• In the fourth chapter, I present theoretical tools useful to describe the motion
of a particle in a periodic potential. I present the well known Bloch band
structure, the Bloch states and their extension through the Mathieu equation
to the case where the energy lies in a gap of the band structure.

• In the fifth chapter, I present the experimental realization of a Bragg mirror
for guided matter wave. A propagating matter-wave impinges on the finite size
lattice that acts in certain regions of parameter as a Bragg mirror in confined
environment. These results have been published in Physical Review Letters in
2011 [42]

• In the sixth chapter, I present the realization of a Bragg cavity for atoms
trapped in the center of the lattice between two Bragg-mirrors. Interestingly,
this system allows to realize a tunnel barrier in real space which is to some
extent equivalent to a sub micrometric repulsive tunnel barrier. This work has
been recently submitted to Physical Review Letters and is available on arXiv
[43].

• In the last chapter, I describe a scattering experiment on a time-modulated
lattice. In this experiment, we use the modulation with time as a new degree
of freedom which allows to perform complex momentum engineering on the
impinging wavepacket. One important feature of the method is that it does
not imply internal degrees of freedom. As a consequence, it is of very general
use and is applicable to any atom. This work was published in Physical Review
A in 2013 [44].

• Finally, I present a summary of the thesis in French.
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1.1 Introduction

Many atomic physics experiments on quantum degenerate gases require a large initial
sample of cold atoms, usually captured in a Magneto-Optical Trap (MOT). The
MOT can be loaded directly from a hot atomic vapor, however, this technique limits
the quality of the vacuum that can be achieved since only the slowest atoms are
captured by the MOT. In order to load efficiently a MOT, it is useful to send a
slow atomic beam (typically less than a few tenth of m/s) onto the MOT. A wide
variety of experimental techniques have been developed for slowing atomic beam
such as chirped slowers [45] or 2D-MOTs [46, 47]. In particular, since their first
realisation [48], the Zeeman slowers (ZSs) have become very popular for loading
MOTs. ZSs require a specific inhomogeneous magnetic field, which is generated in
most cases using currents running in wires wound around the atomic beam. Recently,
several Zeeman slowers using permanent magnets have been built for Sr atoms by
Y. Ovchinnikov [49] and more recently by G. Reinaudi and colleagues [50]. The
advantage of this method is to simplify the construction and the functioning of
the ZS. In this chapter, we will present two successive realisations of permanent
magnets ZSs for 87Rb, the dipole and the Halbach configuration. Both demonstrated
fully satisfactory operation and have important advantages compared to wire-wound
setups. We will first present the basics of the theoretical framework and explain
the choice of the different parameters. Then, we will present the two designs, the
experimental realizations and their performances.

1.2 Theoretical framework

1.2.1 Principle

A Zeeman slower uses the radiation pressure from a resonant laser propagating back-
ward from the atomic beam. Each time a photon is absorbed, the atom velocity along
the beam axis decreases by vR = ~k/m = 5.9 mm/s for 87Rb (k denotes the laser
wavevector and m the atomic mass). The photon is then re-emitted spontaneously
in a random direction. The spontaneous emission generates a random walk in the
velocity space with a vanishing average and with a finite dispersion. To slow atoms
by ∆v = 300 m/s, about N = m∆v/~k ≃ 50000 absorption-emission cycles are
necessary. However, as the atoms are slowed down, the Doppler effect shifts the
laser frequency away from the atomic transition, the Doppler shift reads:

δω = −k · v, (1.1)
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where v is the atom velocity. An atom can then be slowed efficiently by only
∆v > Γ/k ∼ 5 m/s, (Γ being the transition linewidth), which is largely insufficient.
To keep atoms on resonance, the change in the Doppler shift is compensated for by
an opposite change of the Zeeman shift induced by a magnetic field B inhomogeneous
along the direction of propagation z.

1.2.2 Simple model, magnetic field shape

In a two-level atom, the mean radiation pressure force resulting from the absorption-
emission cycles reads:

F =
~kΓ

2
I/I0

1 + 4δ2/Γ2 + I/I0
, (1.2)

where the detuning δ takes into accounts the Doppler and Zeeman shifts

δ = ωL − ωA = δ0 − k · v − µB

~
, (1.3)

where δ0 is the shift-free laser detuning from the transition. I0 and µ are respec-
tively the saturation intensity and the magnetic moment associated with the cooling
transition. In practice, one shapes the magnetic field such that the Zeeman shift
compensates for the Doppler shift at all times (then δ is constant). To compute the
corresponding field, one usually choose first the capture velocity vc. This velocity
corresponds to the maximum speed above which an an atom cannot be brought to
rest. We now suppose that an atom initially at vc experiences a constant decel-
eration. We calculate the corresponding trajectory and deduce in a self consistent
manner the magnetic field that keeps the transition on resonance.

An atom can experience a maximum acceleration a0 = Γ~k/(2m) = 1.1 ×
105 m/s2 reached for a detuning δ = 0 and a saturated transition s0 = I/I0 ≫ 1. To
keep a safety margin, the magnetic field is calculated for only a fraction η of a0 in
the ZS design. The atom trajectory thus reads: v(z) =

√

v2
c + 2az. Ideally, the atom

velocity must be close to zero when the atom leaves the ZS. The apparatus length
ℓ is then dictated by the capture velocity and the deceleration: ℓ = v2

c/(2ηa0). The
condition δ = cte implies that the magnetic field takes the following form:1

B(z) = Bb + ∆B
(

1 −
√

1 − z/ℓ
)

. (1.4)

The inhomogeneous part compensates for the Doppler shift. In practice, for multi-
level atoms, a uniform bias field Bb may be superimposed to avoid level crossings
as we shall see in Sec. 1.2.4 with the case of 87Rb.

The atomic motion can be elegantly described representing the acceleration in

1This shape allows for the most compact ZS, however any field that fulfills the condition 1.8 is
valid.
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Figure 1.1: (a) Acceleration divided by the maximum acceleration in phase space.
(b) Simulation of a few trajectories. Atoms with an initial velocity vi < vc are slowed
down following the resonance condition.

the phase space (z, v) (see Fig. 1.1 (a)). We see that in phase space there is a thin
line where an atom is slowed that corresponds to the resonance condition. Changing
the slowing laser detuning δ0 shifts this line up and down. Figure 1.1 (b) depicts a
few trajectories for various initial velocities. An atom initially out of resonance is
not slowed down, therefore, its trajectory is an horizontal straight line. If the atom
initial velocity vi < vc, its trajectory reaches the resonance line at a position z inside
the slower. The atom then starts to be decelerated. If the magnetic field variation is
small enough (see Sec. 1.2.3 for an accurate definition), the trajectory then follows
the resonance condition

δ0 + kv − µB(z)
~

= cte. (1.5)

Atoms with initial velocities vi > vc are never slowed. At the ZS output, the atoms
go abruptly out of resonance and propagate with a constant velocity.

Role of the parameters

Figure 1.2 shows how the slowing process depends on the magnetic field and the laser
parameters. The capture velocity is related to the total magnetic field variation
through ∆B = ~kvc/µ. The bias field together with the laser detuning to the
transition at rest δ0 are related to the final output velocity through

vf = −1
k

(

δ0 − µBb

~

)

. (1.6)

1.2.3 The adiabatic following condition

When an atom reaches the resonance line, the atom trajectory clings to it and the
atom is slowed under a specific condition. For a given laser intensity, the maximum
acceleration experienced by an atom, reached for δ = 0 reads: amax = a0/(1 +
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detuning at rest δ0 must almost compensate for the Zeeman shift at the ZS output
µBf = µ(Bb + ∆B). The difference between the two provides a non-zero output
velocity.

I0/I). It is necessary that the acceleration chosen to determine the magnetic field
parameters is smaller than amax: a < amax, which implies the following condition on
the laser intensity:2

I/I0 > η/(1 − η). (1.7)

Besides, by taking the derivative of the resonance condition (1.5), we see that the
velocity of an atom that follows the resonance condition must respects dv/dz =
(µ/~k)dB/dz. For a given laser intensity, the acceleration cannot exceed the on-
resonance acceleration a = vdv/dz < amax. This leads to the adiabatic following
condition on the magnetic field gradient:

∣

∣

∣

∣

∣

µ
dB
dz

∣

∣

∣

∣

∣

< a0
~k

v

s0

1 + s0

, (1.8)

that sets a limit on the level of admissible imperfections (that cause sudden variations
of B).

1.2.4 Atomic structure

Let us now determine quantitatively the field parameters. First, we need to remind
the main lines of interest in the 87Rb atomic structure. The ground state 5S1/2 is
composed of two hyperfine states F = 1 and F = 2 separated by 6.8 GHz. There

2We see here the importance of taking η < 1.
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Figure 1.3: Hyperfine structure of 87Rb. We use the transition F = 2 → F ′ = 3 as
cooling transition. Figure reproduced from reference [51].

is a fine structure in the first excited levels 5P1/2 and 5P3/2 at 795 and 780 nm
respectively. In the following, we are only interested by the 5P3/2 manifold that
comprises four hyperfine states (see Fig. 1.3).

In the presence of an external magnetic field, the different magnetic levels are
split and the transitions are shifted by the Zeeman effect (see Fig. 1.4). The cooling
transition must be a closed transition so atoms perform a great number of cycles
without being pumped into an uncoupled state. In the case of 87Rb, two choices
ara available: mF = 2 → mF ′ = 3 and mF = −2 → mF ′ = −3 that are associated
respectively with a decreasing or increasing magnetic field.3 Even though the first ZS
used a decreasing field [48], this choice is in general less favorable and makes it hard

3These are also the only transitions that have a linear Zeeman shift at all fields.
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Figure 1.4: Hyperfine structures in an external magnetic field: ground levels 52S1/2

(left pannel) and excited levels 52P3/2 (right pannel). We use the transition mF =
−2 → mF ′ = −3 as cooling transition. Figure reproduced from reference [51].

to obtain low output velocity [52].4 We thus set the slowing laser on the transition
mF = −2 → mF ′ = −3 that has a magnetic moment µ = −µB. This transition
corresponds to an angular momentum variation ∆m = −1. As a consequence, we
need to use σ− polarized light.

In addition, we observe in Fig. 1.4 that crossings between different hyperfine
states occur at about 100 G. These crossings must be avoided to prevent depumping
to the F = 1 ground state; this is achieved by adding a bias magnetic field Bb.

The following table remind some relevant physical constant for 87Rb.

m 1.44 × 10−25 kg
µ −h · 1.4 MHz/G
Γ 2π · 6.1 MHz
I0 1.6 mW/cm2

1.2.5 Choice of the magnetic field parameters

The magnetic field shape has two free parameters, ∆B and Bb. The field variation
is related to the capture velocity through ∆B = ~kvc/µ. In order to capture an
important fraction of the thermal beam, the capture velocity must be on the same
order of magnitude as the typical thermal velocity (vth ∼ 300 m/s for an effusive
beam of Rb at 130◦ C) of the unslowed atomic beam. We thus choose vc = 330 m/s,
this implies that ∆B = 300 G. Furthermore, the bias field Bb must be high enough
to avoid the level crossings around 100 G. We chose Bb = 200 G (the field at
the output of the ZS is thus Bf = 500 G). The length of the ZS is set at 1 m,

4In a decreasing field ZS, the output velocity varies sharply as a function of the detuning for
low output velocity. It then becomes difficult to outcouple atoms a velocity small enough to load
a MOT.
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Figure 1.5: (a) Conventional configuration of a wired wound ZS. The field is longi-
tudinal, and the light polarization is circular. (b) ZS using permanent magnets and
a transverse field. In this configuration, the field is transverse. We choose a polar-
ization orthogonal to the quantization axis that can be decomposed into two circular
polarization. A repumper beam is then necessary.

which corresponds to an acceleration about half of the maximum acceleration. The
following table presents the different field parameters.

∆B 300 G
Bb 200 G
ℓ 1 m
vc 330 m/s
η 0.48

1.2.6 Longitudinal or transverse magnetic field

In the conventional realisation of ZSs, the magnetic field is generated by currents
running in a solenoid wrapped around the atomic beam. The magnetic field is
then collinear with the light wave vector k. In this longitudinal configuration, it
is possible to produce light in any polarization state (we define the polarization in
regard to the quantization axis fixed by the magnetic field direction). However, as
we shall see, in our case, the magnetic field is orthogonal to k. Thus, any incoming
polarization possesses a priori π and σ± components: it is not possible to create
a pure σ− polarization state (see Fig. 1.5 and Ref. [53]). As a consequence, even
if the light with the wrong polarization is out of resonance, the σ+ and especially
π components excite atoms to the mF ′ = −2 and −1 states respectively. From
these states, they can fall into the F = 1 ground state. Repumping light is thus
necessary between the F = 1 and F = 2 manifolds.5 The detrimental effect of the
unwanted polarization components is minimized when the incoming polarization is
perpendicular to the magnetic field, because there is no π contribution in that case.
However, we should emphasize that if the magnetic field is transverse, half of the
light necessarily has the wrong polarization and is lost.

5In a conventional longitudinal ZS, a repumper is often added to increase the atomic flux but
is not mandatory.
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1.3 The dipole configuration

We will now present configurations of magnets that produce the desired magnetic
field. The first configuration, that we call the dipole configuration, is inspired by
reference [49].

1.3.1 Choice and modelization of the permanent magnets

Let us first describe the magnetic materials. Since the years 1980, rare earth magnets
NdFeB have become progressively compact and cheap and are now of common use
in industry for their excellent magnetic properties: a residual magnetic field Br on
the order of 10 kG and a coercive field Hci ≃ 1, 1 kA/mm. Specifically, we used the
grade NE35 from HKCM that has a higher maximum operation temperature than
other grades. Such rare earth material is very hard from a magnetic point of view
so that, despite demagnetizing fields that can be as high as Hdem = −0.75 kA/mm
(see Apendix), the magnetization is hardly affected. Therefore, field calculations
are particularly simple and reliable because the contributions of each magnet can
be added independently.

Modelization of the magnets

It is possible to model the magnets by simple current distributions. Indeed, the
vector potential A(x) produced by the distribution of magnetization M(x′) reads

A(r) =
µ0

4π

∫

V

M(r′) × (r − r′)
|r − r′|3 d3r′. (1.9)

This can be rewritten as

A(r) =
µ0

4π

∫

V
∇ ×

(

M(r′)

|r − r′|

)

+
∇ × M(r′)

|r − r′| d3r′. (1.10)

The second term cancels out because the magnetization is homogeneous and the
first term can be replaced by the surface integral

A(r) =
µ0

4π

∫

S
n × M(r′)

|r − r′|dS, (1.11)

where we recognize the vector potential produced by a surface current Js running
around the magnet (see Fig. 1.6).

To generate with a single coil the same magnetic field as the one produced by
a 5 mm thick magnet, one would need a current as high as 5000 A.

From now on, we will consider the field produced by the equivalent solenoid in
the calculations. We use cuboid magnets with the magnetization along the y axis,
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Figure 1.6: A rectangular magnet is equivalent to a sheet of current orthogonal to
the magnetization.

and note their size 2a × 2b × 2c. Integrating the Biot and Savart’s law on one coil
and then along the axis y, we find for the field produced by a rectangular solenoid:

Bsol(x, y, z) = µ0Js

1
∑

n,p,q=0

(−1)n+p+q
B (x− (−1)na, y − (−1)pb, z − (−1)qc) , (1.12)

where B is a vectorial field whose components reads:

Bx(X, Y, Z) =
1
2

ln

(√
X2 + Y 2 + Z2 − Z√
X2 + Y 2 + Z2 + Z

)

By(X, Y, Z) = − arctan

(

Y
√
X2 + Y 2 + Z2

X Z

)

Bz(X, Y, Z) = Bx(Z, Y,X).

We used this formula in all the calculations on the dipole configuration.

1.3.2 Position of the magnets

In the proposal from Y. B. Ovchinnikov [49], the magnets are disposed in two rows on
each side of the central pipe. The magnetization is directed toward the axis and the
size and position of each magnet is adjustable (see Fig. 1.5 (b)). We used a similar
geometry in our first prototype with a major improvement. In the Ovchinnikov
proposal, the magnets have a cylindrical shape (they can be roughly considered as
point-like dipoles) and are close to the atomic beam. As a consequence, the magnetic
field varies on a cross section by up to 100 G on a section of CF-16 pipe.

In our configuration, we used elongated magnets (100×20×5 mm) and we placed
them further away from the pipe to guarantee a better transverse homogeneity.
However, we then need to use a larger of amount of magnets to compensate for the
field decay with the distance from the axis. We fixed a tolerance threshold of 12 G
on the transverse homogeneity.6 In practice, the magnets then have to be placed at
about 10 cm from the axis.

6This corresponds to the order of magnitude of the width of the atomic transition.
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Figure 1.7: Thickness and position of the magnets in the final configuration. The
pipe is depicted as the central black line.
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In order to keep the machining as simple as possible, we chose a support in one
piece, and the magnets were all positioned at about 10 cm from the axes. To obtain
the desired longitudinal variation, we varied essentially the magnets thickness (by
stacking them) and only changed the distance to axis to obtain a fine adjustment. We
used a 3D numerical calculation relying on the Eq. (1.12) to optimize the magnets
thicknesses and positions. In the end, we used 240 of our elongated magnets whose
positions are given in Fig. 1.7.

Figure 1.8 (a) depicts the ideal and calculated fields on the axis. The transverse
inhomogeneity increases near the Slower output. At the end of the ZS, the transverse
inhomogeneity is below 12 G (see Fig. 1.8 (b)). To hold the magnets, we built two
structures in aluminum in which we drilled gaps every three cm at different depths
corresponding to the magnets distances to the axis. The magnets were inserted in
the gaps and held by plexiglass protections. The distance to axes can be adjusted
by adding plexiglass slices under the magnets (see Fig. 1.9).
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Figure 1.9: Photo of the dipole configuration ZS: [A] Aluminum structure, [s] gaps
with variable depth, [p] plexiglass protections, [R] reinforcing plates. Dimensions
are in mm.
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1.3.3 Measured magnetic field

We measured the magnetic field on the axes with a Hall probe and compared it
with the calculated field. We found that the actual field is 12 % larger than the
simulated one, probably because we underestimated the value of the magnetization
in the calculations. The capture velocity is then slightly increased, and it does not
cause further problems. Apart from this global factor, the standard deviation to the
simulation is 8.4 G, which represents 2.4% of the mean magnetic field (see Fig. 1.10).
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Figure 1.11: Left: measured field in a transverse section. Right: ratio of the measured
to calculated field.

Similarly, we measured the field on a transverse section located at 5 cm from the
output (see Fig. 1.11). The deviation from the simulation is below 4 G. We thus
expect that the slowing process occurs efficiently on the whole section of the Slower.

Magnetic shielding

Since we use an important volume of magnets at a relatively large distance from
the axis, the magnetic field decays on ∼ 10 cm after the output of the Slower (see
Fig. 1.10). This stray magnetic field can perturb the MOT downstream the ZS;
to circumvent this limitation, we use a magnetic shielding. As a matter of fact, a
magnetic shielding is particularly efficient when it forms a small angle with the field
lines. We thus built a soft iron shielding whose shape has been optimized to form an
angle of approximately 15◦ with the field lines (see Fig. 1.12 (a)). To further reduce
the stray field on the MOT chamber side, we installed two additional plates with 1 cm
between them at the output of the ZS. The residual stray field is the consequence of
the unavoidable hole needed for the pipe in the shielding. Thanks to the shielding,
we measured an important decrease of the magnetic field at the chamber position
that falls at a few G level (see Fig. 1.12 (b)). The shielding also increases the
field inside the Slower. This can be simply understood using the method of image
charges. For a magnetic shield with an infinite magnetic permeability, the field lines
are parallel to the shielding. Such field lines can also be produced by sources of
magnetic field symmetric with respect to the shielding. The magnetic field is then
the same as the one that would be produced by the ZS itself and its images in every
direction. The fields produced by all images add up in the central region.
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1.4 Slowed atomic beam

In this section, we present the experimental performances obtained with the dipole
configuration.

1.4.1 Experimental setup

Vacuum system

Figure 1.13 presents a sketch of the setup. At one end, the MOT chamber is a
spherical octagon from Kimball physics (MCF600-SO200800). It has two horizontal
CF-100 windows and eight CF-40 ports. It is pumped by a 20 L/s ion pump.
One CF-40 port is connected to the 1200 mm-long CF-16 pipe around which the
Zeeman slower is set. At the other end, one finds a first six-way cross, used to
connect a 40 L/s ion pump, a thermoelectrically cooled cold finger and six-way cross
that holds another cold finger, an angle valve for initial evacuation of the chamber
and a stepper-motor-actuated beam shutter. Finally, the in-line port holds the
recirculating oven (see Appendix E).

Slowing lasers

As outlined in the section 1.2.4, the Zeeman slower operates on the closed transition
σ−, F = 2, mF = −2 → F ′ = 3, mF ′ = −3. However, as the magnetic field is here
perpendicular to the propagation axes, the incoming polarization state possesses
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Figure 1.13: Sketch of the overall experimental setup. [RO] recirculating oven, [BS]
beam shutter, [CF] cold finger, [ZS] Zeeman slower, [MOT] MOT chamber, [ZB]
Zeeman cycling and repumping beams, [PB] θ = 56◦ probe beam. 45◦ and 90◦ probe
beams are sent through the horizontal windows depicted on the MOT chamber. Di-
mensions in mm, not rigorously to scale.

also a π component that populates the mF ′ = −2 state from which spontaneous
emission populates F = 1 ground state. Repumping light is thus necessary between
the F = 1 and F ′ = 2 manifolds. The detuning of the cycling light below the
transition corresponding to our field parameters is δ0 ≃ −800 MHz. Such rather
large detunings are realized by sending a master laser through two 200 MHz AOM’s
in a double pass configuration before locking on a resonance line using saturation
spectroscopy. The repumper is simply locked on the red-detuned side of the broad
Doppler absorption profile. The two master lasers are free-running diodes with a
low ∼ 5 MHz linewidth (Sanyo DL7140-201S). Beams are recombined on a cube and
pass through a polarizer. Then they are sent with the same polarization into a 1W
Tapered Amplifier. A total power of more than 250 mW is available on the atoms
after fiber coupling. The beam is expanded to about 23 mm (full width at 1/e2) and
focused in the vicinity of the oven output aperture for better transverse collimation
of the atomic beam.

Probe beam

Probe beams on the F = 2 → F ′ = 3 transition can be sent in the chamber
through the different windows and absorption is measured in this way at 45◦ or 90◦

from the atomic beam (see Fig. 1.13). Probing the beam with an angle makes the
absorption or fluorescence velocity-dependent. Thus, by scanning the detuning to
the transition ∆ of the probe, we measure the velocity distribution of the atomic
beam. The correspondence being

v =
∆

√
2

k
. (1.13)

The fluorescence is collected through a CF-40 port by a large aperture condenser
lens and focused on a 1 cm2 PIN photodiode. Photocurrent is measured with a
homemade transimpedance amplifier (typically 10 MΩ) and a low noise amplifier
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Figure 1.14: (a) Typical fluorescence signal. The peak corresponding to the slowed
atoms is split by Zeeman effect because of the stray field in the chamber. (b) Flux as
a function of the output velocity. At 30 m/s, the output flux is Φ ∼ 4 × 1010 at/s.

(Stanford Research Systems SR560) used with a moderate gain (G = 5) and a 3 kHz
low-pass filter. Absorption is collected on a standard photodiode. A frequency scan
without atoms is recorded and subtracted to the absorption signal. The frequency
scans are averaged for 8-16 runs. During the measurements, the repumper beam on
the F = 1 → F ′ = 2 transition may be turned on.

1.4.2 Slowed beam velocity distribution

Figure 1.14 shows a typical fluorescence signal. A narrow peak appears at vm =
30 m/s that has a velocity spread δv = ±10 m/s hardly distinguishable from the
natural width of the transition. The smaller peak corresponds to the transition
F = 2 → F ′ = 2. Note that the main peak is split into two peaks separated by a
few MHz. This splitting is due to the stray residual magnetic field from the Slower
in the MOT chamber. Adding a compensation coil parallel to the large window of
the vacuum chamber, we can merge the two peaks and estimate that the stray field
is about 3 G.

In order to extract a quantitative estimate of the atomic flux, we use the ab-
sorption signal rather than the fluorescence. In this way we eliminate all geometric
errors. From the absorption signal A(v), we extract the maximum absorption Amax,
the mean velocity v̄ and velocity spread δv. The atom flux then reads (see Appendix
D)

Φ = C sin θ cos θD
Amaxv̄δv

λΓσ0

, (1.14)

where C is a geometrical dimensionless parameter close to one and D is the atomic
beam diameter.
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Figure 1.15: Concatenated fluorescence signals as we vary the detuning of the slowing
light δ0. The output velocity varies linearly with δ0. Beyond 100 m/s, a wider peak
appears due to a premature outcoupling.

1.4.3 Flux as a function of the detuning

We measured the output velocity for different detuning of the cycling light. The out-
put velocity varies roughly linearly with the detuning with a slope α = 0, 95 m.s−1/MHz
(see Fig. 1.15). This slope does not fit with the naive model presented in the first
section that predicts a slope α = 0, 75 m.s−1/MHz. In Appendix B, we present
further theoretical work to explain this difference.

For large output velocities, a wider peak appears, this is probably the conse-
quence of the magnetic field imperfections. Indeed equation (1.8) shows that out-
coupling can occur because of a bump of the magnetic field and that this effect is
amplified at high velocity.

Finally, we calculate the total atomic flux using Eq. (1.14). The flux is roughly
constant for output velocity vout > 40 m/s and decreases at low velocity because the
beam becomes divergent and atoms make collisions with the walls (see Fig. 1.14
(b)). Φ ∼ 4 × 1010 at/s at 30 m/s which is sufficient to load a MOT very efficiently.

The dipole configuration ZS produces very satisfactory atom flux. In this magnet
configuration, a good transverse homogeneity is obtained at the expense of a large
distance of the magnets to the axis. Therefore, a large amount of magnets (Vmag =
2.4 L) is necessary which increases the size of the ZS and makes it hard to cancel
out the stray magnetic field. In the next section, we thus present a more elegant
configuration where the magnetic material is distributed all around the atomic beam.
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1.5 The Halbach configuration

1.5.1 The principle

The way to get a homogeneous magnetic field in a transverse cross section is to
distribute the magnetic material all around the atomic beam to make a so-called
Halbach cylinder. In the context of atom physics, fields with a linear or quadratic
dependence have been used to realize refractive atom-optical components [54]. For
a ZS, a highly uniform field is required. Following [55], we consider a magnetized
rim such that the magnetization M at an angle θ from the y-axis makes an angle
2θ with respect to the same axis (Fig. 1.16 (a)). Using such ideal configuration, the
magnetic field is homogeneous inside the rim and cancels out outside. It reads (see
Appendix F):

BHal(r) =











0 for r > Rext,

BR ln
(

Rext

Rint

)

ŷ for r < Rint,

Numerical investigations (see next section) indicate that a 8-pole Halbach-like
configuration as depicted in Fig. 1.16 (b) is able to produce fields on the order of
600 G with a homogeneity better than 1 G over a 16 mm cross section. Higher field
strength and/or beam diameters are easy to achieve if necessary.

More detailed studies demonstrate that deviations on a typical 600 G magnetic
field stay below the ±1 G limit for ±0.2 mm mispositioning of the magnets which
is a common requirement on machining. Likewise, the same variations are observed
for ±2.5% dispersion in the strength of the magnets. A rough statistical analysis on
a sample of 20 − 30 magnets convinced us that it is the right order of magnitude.

1.5.2 Field calculations

Magnets modeling

The whole setup is based on elongated 6 × 6 × 148 mm3 NdFeB magnets (HKCM,
part number: Q148x06x06Zn-30SH) with the magnetization orthogonal to the long
axes. Because these magnets have a square cross section (2a × 2a), it is possible
to use a dipole approximation. The long magnets can be decomposed in a set of
cubic magnets. Then, one easily checks numerically that when the distance to the
magnet is larger that twice the side, the field of the associated dipole is an accurate
approximation of that of the actual magnet to better than 2%.7 This approximation
makes the calculations very fast on a conventional personal computer.

7Convergence can be much slower for cuboids with different aspect ratios. In particular this
approximation is not verified for the magnets used in the dipole configuration.



1.5 The Halbach configuration 29

Figure 1.16: (a) Notations for Halbach cylinder. (b) Transverse cross section show-
ing a 8-pole approximation of the Halbach configuration.

1.5.3 Magnets layout

In principle, the field magnitude can be adjusted varying the amount, the density
and/or the position of the magnetic material. The availability of very elongated
magnets (c/a ≈ 25) directed us toward a simple layout. We vary only the distance
to the axis d(z). At first approximation the elongated magnets can be considered as
infinite. This is equivalent to an infinite array of magnetic dipoles. The magnetic
field strength then decreases as the inverse of the distance to the magnet squared.
Thus, to produce the field B(z) a good ansatz for d(z) is:

d(z) = d(ℓ)

√

√

√

√

B(ℓ)
B(z)

. (1.15)

As a matter of fact, this guess turns out to be both very efficient and close to a
linear function. Numerical calculations show (see Fig. 1.17) that a linear approxi-
mation of Eq. ( 1.15) can be optimized to give a field within ±3 G from the ideal
one over the most part of the slower. Such deviations are completely irrelevant con-
cerning the longitudinal motion. Magnets are then positioned on the generatrices of
a cone and the mechanics is then straightforward (Sec. 1.6.1).

Naturally, the agreement is not so good at both ends where the ideal profile has
sharp edges while the actual field spreads out and vanishes on distances comparable
to the diameter on which magnets are distributed. The actual ∆B is reduced which
lowers the capture velocity and thus the beam flux. We made additional sections
of eight extra cubic magnets in Halbach configuration designed to provide localized
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Figure 1.17: Ideal (red) and calculated profiles, without (black) and with (blue) end
caps.

improvement on the field profile at both ends (‘end caps’). As seen on Fig. 1.17,
matching to the ideal profile is enhanced, especially at the high field side where the
ideal profile exhibits a marked increase.

1.6 Mechanics and field measurements

1.6.1 Mechanical design

The Zeeman slower consists in 9 mounts supporting 8 U-shaped aluminum profiles
(see Fig. 1.18). The U-shaped profiles go through the mounts by means of square
holes evenly spaced on a circle whose diameter decreases from mount to mount
according to Eq. (1.4) and Eq. (1.15). Magnets are then inserted one after the other
in the U-shaped profiles and clamped by a small plastic wedge. End caps are filled
with the suitable block magnets and screwed together with their spacer in the first
and last mount. The whole setup is then very rigid and all parts tightly positioned.
Indeed, as said before, calculations are very reliable and Zeeman slower operation
is known to be robust so there is no need for adjustment. This setup can even
be simplified by removing some mounts: the Zeeman slower we use now has only
three mounts. Mounts are made of two parts screwed together. The Zeeman slower
can then be assembled around the CF-16 pipe without vacuum breaking e.g. after
baking out the UHV setup.

1.6.2 Shielding

The 8-pole configuration produces very little field outside (see Fig. 1.20 (a)), except
of course, at both ends. However, to lower stray fields even further, we have made
a rectangular single-layer shield from a 1 mm-thick soft iron sheet wrapped around
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(b) (c)

Figure 1.18: (a) Picture of the Zeeman slower: [M] mounts, [EC] output end cap
screwed in last mount, [U] U-shaped profiles, [S] half part of the shield, [sp] 5 mm
spacer between end cap and shield side. (b) Individual mount; [T] threading to screw
the two parts of the mount together, [P] central square milling in which CF-16 pipe
goes through. (c) detail of a square hole to show U-shaped profiles insertion, magnets
[m] and plastic wedge [W]. Dimensions in mm.

the mounts. In this way, mechanical properties and protection are improved. As
seen on Fig. 1.19 (a), the inner field is almost unaffected. On the contrary, the
outer magnetic field falls down much quicker all the more since the plateau around
0.5 G in Fig. 1.19 (b) is probably an artifact associated with the probe. In practice,
no disturbance is detected neither on the MOT nor on optical molasses 125 mm
downstream.
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Figure 1.19: Calculated (red) and measured (black) magnetic field profiles. (a) Scan
along the beam axis. (b) Close up of the output region. In the calculation the shield
is not taken into account. Dotted and dashed lines indicate the Zeeman slower and
the shield physical ends. Log scale below break.

1.6.3 Field parameters and measurement

The length of the Zeeman slower is ℓ = 1184 mm corresponding to eight sections of
148 mm-long magnets. The capture velocity is then vc ≈ 450 m/s and ∆B = 388 G.
A bias field Bbias = 200 G is added to avoid low-field level crossings around 120 G.
These field parameters together with the magnet size and properties determine the
distance and angle to the axis of the magnets. In our case, the best choice was
a slope of −15.9 mm/m corresponding to d(0) = 49.5 mm and d(ℓ) = 30.7 mm.
Entrance and output end caps are both made of 10 mm-side cubic magnets of N35
grade (BR = 11.7 kG). They are located on circles whose diameters are 94.0 mm
and 66.0 mm respectively.

Figure 1.19 displays a longitudinal scan of the magnetic field on the axis of the
Zeeman slower with end caps and shield. It can be first noticed that the longitudi-
nal profile is intrinsically very smooth as the magnets make a uniform magnetized
medium throughout the Zeeman slower. After calibration of the magnetic mate-
rial actual remanent field, deviations from the calculated profile are less than a few
Gauss. Besides, one usually observes only localized mismatches at the junction be-
tween two magnets attributed to the dispersion in the magnetization of the magnets.
The shield input and output sides flatten the inner field at both ends. Of course
the effect decreases when they get further apart but the Zeeman slower should not
be lengthened too much. A 5 mm spacer (tag [sp] in Fig. 1.18) is a good trade
off. Then, the actual magnetic field measured parameters are Bbias = 200 G and
∆B = 350 G only slightly smaller than the calculated value.

Figure 1.20 depicts a transverse cut of the magnetic field. It is realized along the
u-direction of Fig. 1.16 near the middle of the Zeeman slower (z ∼ 460 mm). The
shield was removed to allow the probe to go through. It exhibits the two expected
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Figure 1.20: (a) Measured magnetic field without shield across the beam axis at
z ∼ 460 mm along the u-direction of Fig. 1.16. (b) Close up of the central region.
Dashed lines indicate the atom beam extension and a 1 G magnetic field span. Log
scale below break. The shield was removed to allow the probe to go through. With
the shield, the inner field is almost unaffected and the outer field is below the probe
sensitivity.

features: (i) little outer field (ii) highly homogeneous inner field. In the vicinity of
the axis, the measured profile is however less flat than expected. This is mainly
due to the finite size of the probe. Anyway, magnetic field deviations stay within a
Gauss or so in the region of interest. With the shield, the outer field is below probe
sensitivity.

1.7 Performances

The laser system for the slowing and detection is the same as for the dipole con-
figuration. The velocity distribution presents here a simple peak (no splitting) (see
Fig. 1.21), which is consistent with the sub-Gauss stray field. We also measure the
velocity distribution in the absence of slowing light to observe the thermal distri-
bution. By integrating the thermal and slowed distribution, we determine that the
capture rate is 75%. When we vary the detuning, the output velocity vary linearly
with δ0 (see Fig. 1.22 (a)). We find in the same way as in the dipole configuration
that the flux is constant for output velocities over 40 m/s (see Fig. 1.22 (b)). We
do not observe a broader peak at large output velocity (see Fig. 1.23). This is
consistent with the fact that the field homogeneity is better in the Halbach than in
the dipole configuration.
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Figure 1.21: Red: thermal beam fluorescence signal. Black: absorption and flu-
orescence signals of the slowed beam. Inset: temperature dependence of the atom
flux.
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Figure 1.22: (a) Output velocity as a function of the detuning δ0, we observe a linear
relation with a slope α = 0, 95 m.s−1/MHz. (b) Atomic flux as a function of the
output velocity.

1.7.1 Needed laser powers

Because we use a tapered amplifier we have a lot of power available in the cycling
and repumper beams. Figure 1.24 depicts the output flux as a function of cycling
and repumping power. Unexpectedly, it turned out that several tenth of milliwatts
of repumping light are necessary to obtain the maximum flux. A total power of
100 mW of cycling and repumper light is necessary to get a non-critical operation of
the Zeeman slower at its best flux and a final velocity of 30 m/s. The corresponding
intensity, 24 mW/cm2 is much larger than the saturation intensity of the repumping
transition. However, as we shall see now, a lot of power can be saved with more
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Figure 1.23: Concatenated fluorescence signals as we vary the detuning of the slowing
light δ0. In contrast with the dipole configuration case, there is no large peak at high
velocity (compare with Fig. 1.15).
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Figure 1.24: Color online. (a) Atom flux as function of cycling and repumper beams
powers. (b) Cross section along the white dotted line corresponding to a total avail-
able power of 100 mW. Power ratio is measured with a scanning Fabry-Perot inter-
ferometer.

elaborated strategies.

1.7.2 Repumper

To understand why we need so much repumping light, we study the efficiency of the
ZS as a function of the repumper frequency and polarization. The polarization can
be chosen either parallel (π polarized) or orthogonal to the magnetic field (combi-
nation of σ+ and σ−). When the repumper frequency is varied as in Fig. 1.25 (a)
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Figure 1.25: Color online. (a) Atom flux as a function of repumper frequency. ∆f
is the beat note frequency of the repumper with an auxiliary laser locked on the
F = 2 → F ′ = 3 resonance line; red circles/black squares: repumper polarization
perpendicular/parallel to the magnetic field. (b) Atom flux as a function of repumper
power (log scale) when its frequency is fixed (black) or swept (red) across the full
spectrum of left panel.

very different spectra for the two configurations are observed. Efficient repump-
ing occurs with well defined peaks spread over about 2 GHz and roughly centered
around the F = 1 → F ′ = 2 transition. This non trivial structure means that sev-
eral depumping/repumping pathways are involved, probably occurring at localized
positions along the Zeeman slower.

It is not easy to get a simple picture of what is happening: a complete ab-

initio simulation of the internal dynamics is not simple due to the large number of
Zeeman sublevels (24 in total), the multiple level crossings occurring in the 50–200 G
range, and high light intensities. However, one can overcome this intricate internal
dynamics by sweeping quickly (typically around 8 kHz) the repumper frequency
over all the observed peaks. With a low-pass filter, the central frequency remains
locked on the side of the Doppler profile. Doing so, we get a slightly higher flux for
significantly less repumper power, typically 10 mW (see Fig. 1.25 (b)).

1.7.3 MOT loading

A final demonstration of the Zeeman slower efficiency is given by monitoring the
loading of a MOT. It is made from 3 retroreflected beams 28 mm in diameter (FW
at 1/e2). We use 10 − 20 mW and 1 − 3 mW of cycling and repumper light per
beam and MOT magnetic field gradients on the order 15-20 G/cm. When the
Zeeman slower is switched on with a final velocity of 30 m/s, a quasi exponential
loading is observed with characteristic time τ ∼ 320 ms. After one second or so,
the cloud growth is complete. From absorption spectroscopy at a variable detuning
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Figure 1.26: Typical absorption image of the MOT. The frequency of the probe beam
is set out of resonance by 2Γ.

[56], we deduce a density n = 1.4 × 1010 atoms/cm3. We also perform absorption
imaging8 with a probe set out of resonance by 2Γ so that the optical density is not
too important (see Fig. 1.26). The number of atoms is typically NMOT ∼ 3 × 1010

and the temperature measured after a time-of-flight phase TMOT = 150 µK. The
temperature is reduced to 15 µK if we perform an optical mollasse by switching the
coils off while keeping the cooling lasers for a few milliseconds. These figures are
consistent with the above measurements of an atom flux of several 1010 atoms/s and
nearly unity capture efficiency. As expected, thanks to the high magnetic field in
the slower, the Zeeman beams do not disturb the MOT.

1.8 Conclusion

In this chapter, we have presented the realization of two Zeeman Slowers with per-
manent magnets. Both ZSs offer state of the art performances. We obtain an atomic
flux at ∼ 30 m/s of up to 5 × 1010 at/s that allows to load a large MOT in less than
one second. In contrast to the previous designs by Ovchinnikov, we have paid special
attention to the transverse homogeneity of the magnetic field, a problem elegantly
solved using the Halbach configuration. In this latter configuration, using a simple
magnetic shielding, the stray field is smaller than the earth magnetic field.

Compared to a wired-wound Zeeman Slower, our system provides several inter-
esting advantages:

• no electric power consumption nor water cooling,

8The reader not familiar with absorption imaging can find more details in chapter 2.
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• easy to assemble and disassemble without vacuum breaking, e.g., for high-
temperature baking out,

• simple machining and construction, compact, and light,

• very smooth longitudinal profile and low stray magnetic fields,

• no perturbation associated with the heating of the ZS coils.
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2.1 Introduction

Bose-Einstein condensation was first observed with dilute gases in 1995 for magnet-
ically trapped 87Rb and 23Na [10, 11] and has now been achieved for a wide variety
of atomic species. The condensation occurs when the phase space density ρ = nλ3

T,
where n is the atomic density and λT = ~(2π/mkBT )1/2 the thermal de Broglie
wavelength, is on the order of 1. To reach the condensation, it is thus necessary
to increase the density (while keeping the atoms in a gaseous phase) and decrease
the temperature as much as possible. The usual passway to achieve Bose-Einstein
condensation is the following:

1. Preparation of a pre-cooled atomic sample in a Magneto-Optical Trap (MOT).
A MOT relies on the radiation pressure, i.e on a succession of absorption and
spontaneous emission cycles. The radiation pressure depends on the atomic
velocity via the Doppler shift, which is used to produce a net cooling of the
atoms. When adding a gradient of magnetic field, the radiation pressure also
depends on the position (Zeeman effect), which is used to trap the atoms.

The minimum temperature achievable using Doppler cooling is limited as a
result of the random nature of the absorption-emission cycles. For a two-level
atom, the minimum temperature is TDC ∼ ~Γ/2kB, where Γ is the cooling tran-
sition linewidth. For Rubidium, TDC ∼ 150 µK [57]. In practice, sub-Doppler
cooling mechanisms due to the multilevel structure of the atomic ground state
are at work and lower temperature can be obtained. The temperature in small
MOTs is then typically on the order of 50−100 µK and can be further reduced
by an optical molasses phase. The density n in a MOT is typically on the order
1010atoms/cm3 and thus, the phase space density ρ ∼ 10−7.

2. Atoms are then transferred in a conservative trap in order to implement the
evaporative cooling technique. This trap can be a magnetic trap [58] or can
rely on the dipole force exerted by high intensity out of resonance light as in
our setup. One can also combine the two techniques. In our setup, we use a
direct loading to a crossed dipole trap: the dipole beams are already present
during the MOT stage. The density in the trap is increased by two orders of
magnitude compared to the density in the MOT. This is important because
it increases the phase space density by the same amount but also because an
important density is essential to obtain an large collision rate in the evaporative
cooling stage.

3. Forced evaporation of the atomic sample. Let us remind the main features:
after an elastic collision between two atoms, one of the interacting atoms can
get an energy larger than the trap depth. This atom then leaves the trap
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with an energy larger than the mean energy (related to the temperature),
hence reducing the mean energy of the remaining sample. As a result of the
subsequent thermalization, the cloud reaches a new equilibrium state at a lower
temperature. As the temperature decreases, fewer atoms get enough energy
to leave the trap and the process slows down. In practice, the temperature
generally stabilizes at a fraction η of the trap depth U , η = U/T ∼ 6 − 8. It is
thus necessary to decrease the trap depth with time to pursue the evaporation.

In our setup (see Fig. 2.1), we use a 2D magneto optical trap (2D-MOT) loaded
by a slow atomic beam obtained at the output of a Zeeman Slower (ZS). A dipole
trap resulting from the focalisation of a laser beam (the horizontal beam) at 1064 nm
in the horizontal plane is present during the MOT loading stage. We call this first
trap the horizontal guide in the following. After a dark MOT stage (see sect 2.5.5),
the atoms are pumped into the F = 1 ground state and the MOT is switched off. A
fraction of the atoms from the MOT are then captured in the guide. The evaporation
is then performed by decreasing the intensity of the horizontal guide beam. If we
only use one beam, the trap is very elongated in the direction of propagation of the
laser and the trapping frequency in this direction can be as small as a few Herz. The
density is then small which results in a slow thermalization. In order to increase
the trap frequency in the longitudinal direction, we use a second beam at 1064 nm
(called the vertical beam) that crosses the horizontal beam at its waist [59]. The
power of this second beam is kept constant in our experiment.

The setup has been relocated from Paris to Toulouse in 2009 and has been re-
constructed almost identically. The presentation of the experiment can therefore be
found in detail in the thesis of Antoine Couvert and Charlotte Fabre [60, 61]. When
I began to work on this setup, most of the setup was installed and we observed the
first BECs. One of the dipole beam (the horizontal one) was changed in 2011 and
we will present here the last version of the existing setup.

In this chapter, we will first remind some key features on Bose-Einstein condensa-
tion. Then, we will detail the MOT, the Zeeman slower and the imaging system. We
will then present the loading of the dipole trap, the evaporation and the characteri-
zation of the condensates. Finally we will introduce the spin distillation technique,
implemented in the course of the evaporation cooling stage, that allows to select the
magnetic state of the condensate.

2.2 Condensation in an harmonic trap

We remind here some theoretical results on Bose condensation in an harmonic trap.
The Bose-Einstein condensation is a remarkable phase transition because the con-
densation of a macroscopic number of atoms in the ground state results only from
quantum statistical effects. The effect of interactions on the thermodynamical prop-
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Figure 2.1: Sketch of the pre-cooled atomic source: Zeeman, MOT and the probe
beam.

erties yields small corrections because of the diluteness of the sample. We describe
the ideal Bose gas in the grand canonical ensemble where the formalism is simple
(see for example the reference [62]). In the grand canonical ensemble, the number
of particle N and the energy E are fluctuants and the chemical potential µ and the
temperature T are parameters. The average occupation numbers in a one-particle
state i of energy ǫi follows the Bose statistics

n̄i(T, µ) =
1

exp (β(ǫi − µ)) − 1
, (2.1)

where β = 1/kBT . Only the values of µ < ǫ0, where ǫ0 is the ground state energy
have a physical meaning. Let us write the total number of atoms N =

∑

n̄i as

N = N0 +NT , (2.2)

where N0 is the number of atoms in the ground state and

NT (T, µ) =
∑

i6=0

n̄i(T, µ) (2.3)

is the number of particles out of the condensate commonly called thermal component.
In 3D,1 for a fixed temperature, NT is an increasing function of µ which has a
maximum for µ = ǫ0 Nc(T ) = NT(T, ǫ0), and N0 is always very small except when
µ → ǫ0 where it diverges. If Nc(T ) is smaller than the total number of atoms N ,

1The situation turns out to be very different in lower dimensions.
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there is necessarily a macroscopic number of atoms in the condensate in order to
satisfy the normalization condition (2.2). The temperature at which Nc(T ) = N is
the critical temperature Tc. If T < Tc, N0 cannot be neglected. In the same time,
the thermal component saturates at NT = Nc(T ).

The characteristics of the trap are taken into account in the distribution of energy
levels ǫi. For an harmonic trapping with angular frequencies ωx, ωy, ωz,

ǫi = ǫnx,ny,nz
=
(

nx +
1
2

)

~ωx +
(

ny +
1
2

)

~ωy +
(

nz +
1
2

)

~ωz, (2.4)

where nx, ny, nz are positive integers. It is then possible to calculate explicitly the
function Nc(T ) by replacing the sum in the equation (2.3) by an integral over the
different states. This is justified if the occupation numbers vary slowly as a function
of the energies ǫi, i.e if the temperature is much larger than the energy spacing
between energy levels. We then find:

Nc(T ) =
∫

dnxdnydnz
1

exp (β~(ωxnx + ωyny + ωznz)) − 1
. (2.5)

Using Eq.(2.5) and the normalisation condition (2.2), one finds the critical temper-
ature:

kBTc = ~ω̄

(

N

ζ(3)

)1/3

= 0.94~ω̄N1/3, (2.6)

where ω̄ =
√
ωxωyωz is the geometric average of the trapping frequencies, and ζ(n)

is the Riemann function. We verify that for a macroscopic number of atoms, kBTc ≫
~ω̄ which is necessary to establish the relation (2.5). The condensation phenomena
is thus very different from the trivial effect of freezing of the degrees of motion. We
also deduce the condensed fraction when T < Tc

N0

N
= 1 −

(

T

Tc

)3

. (2.7)

To gain some insight in Eq. (2.6), it is interesting to evaluate the phase space density
at Tc. The density of a classical gas at a temperature T in an isotropic trap with
trapping frequencies ω̄ is

n(x) =
N

(2π)3/2∆x3
e−x2/2∆x2

, (2.8)

where x is the distance to the trap center and the size of the cloud is determined
by the temperature ∆x = (kBT/ω̄

2m)1/2. Using the definition of the phase space
density and the relation (2.6), we find that, at the critical temperature, the phase
space density at the center of the trap is equal to one. This means that the size of
a wave packet in phase space is on the order of ~ and becomes Heisenberg-limited.
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2.3 Pre-cooled atomic source

2.3.1 Oven and Zeeman Slower

In order to efficiently load the MOT, a slow atomic beam with a typical velocity
v ∼ 20−30 m/s is needed. We produce a hot beam using a recirculating oven heated
at 130 ◦C (see Thierry Lahaye thesis [63] or our more recent publication [41]). At
the output of the oven the atoms have a typical thermal velocity of 300 m/s. They
are subsequently slowed down to 20 m/s by an increasing field Zeeman Slower (ZS)
[48].2 On our BEC setup, the ZS is a standard wire wound Zeeman Slower with the
following parameters (see chapter 1):

∆B 300 G
Bb 200 G
ℓ 1 m
vc 330 m/s

We recall that ∆B is the amplitude of variation of the magnetic field, Bb, the bias
field, ℓ the length of the Slower and vc the capture velocity. It delivers an atomic
flux of ∼ 2×1011 at/s at 20 m/s. The laser system for the cycling and the repumper
light is similar to the one described in chapter 1.

2.3.2 The 2D-MOT

In order to capture as much atoms as possible in the horizontal trap, it is advan-
tageous to optimize the mode matching between the MOT and the dipole guide
potential. This is the reason why we have chosen a 2D magnetic configuration to
create a six beams 2D-MOT [64]. The magnetic field is generated by four elongated
coils (instead of two in a conventional MOT) that produce a 2D quadrupole field
with a continuous line of zero field in the vicinity of the z axis (see Fig. 2.1). The
field close to the axis reads

B2D(x, y) = b′









−x
y

0









(2.9)

The six beams are issued from a 2 W tapered amplifier3 injected by a narrow
bandwidth laser diode.4 The laser diode frequency is actively stabilized using satu-
rated absorptions in a rubidium cell. After the tapered amplifier, the beam is split
into four independent beams. Each of them passes through an AOM that controls its

2The ZS functioning is described in a slightly different context in chapter 1.
3SACHER- S353.
4Sanyo DL7140-201S.
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power, they are then sent on the main table by mean of four polarization maintaining
optical fibers (2 beams are subsequently split on the main table). The power of each
beam is locked: after each fiber, a small part of the beam is sent on a photodiode
with a beamsplitter. A feedback loop made of a simple electronic integrator acts on
a radio frequency attenuator,5 that control the radio frequency power injected into
the AOM until the photodiode signal reaches the consign. The repumper beam, set
on the F = 1 → F ′ = 2 transition is superimposed with the Zeeman slower beams.
The repumper power is not locked. After a loading of 2 s, we obtain a MOT of
about 5 × 109 atoms at T ≃ 120 µK with a lifetime of ∼ 25 s. The typical phase
space density in the MOT, ρ ∼ 10−7 is still far from the Bose-Einstein condensation
threshold.

2.4 Imaging system

2.4.1 Absorption imaging

For all measurements on the atomic cloud, we use the absorption imaging technique.
The principle is to shine a resonant collimated beam at 780 nm on the atoms. The
atoms absorb the probe light very efficiently; the shadow of the atomic cloud is
then imaged on a CCD camera. More precisely, consider the case of a collimated
beam whose direction of propagation is z and that is absorbed by a cloud of atoms
of density n(x, y, z). It is convenient to define the column density nc(x, y) as the
density integrated along the z axis,

nc(x, y) =
∫

n(x, y, z)dz. (2.10)

The Beer-Lamber law, valid for a low intensity probe, gives the relation between the
beam intensities before and after the cloud:

Iout(x, y) = Iin(x, y)e−σ0nc(x,y), (2.11)

where σ0 is the absorption cross section. The optical density is defined by

OD(x, y) ≡ ln

(

Iin(x, y)
Iout(x, y)

)

. (2.12)

Because the beam intensity is generally not homogeneous (there is some speckle),
we take two images: one with the atoms and one once the atoms have fallen and
are not in the probe beam anymore (respective intensity noted Iwat and Iwoat) and
we deduce the column density from Eq. (2.11). We actually take a third picture in
the absence of probe light to substract the background light (intensity Ibkg). The

5minicircuit PAS-3.
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exposure time tsnap = 80 µs is chosen so that atoms move of less than one pixel
during the snapshot. Finally, we deduce the column density from:

σ0nc = ln

(

Iwat(x, y) − Ibkg(x, y)
Iwoat(x, y) − Ibkg(x, y)

)

, (2.13)

2.4.2 Setup

In the experiment, it is necessary to measure two kinds of objects that have a fairly
different size: the MOT, which is a few centimeters long and, later, cold atoms and
BECs of a few hundred micrometers. To have in both case a good resolution and
a good field of view, we alternate between two imaging systems (see Fig. 2.2): the
"MOT mode" and the "BEC mode" that have different magnifications. To switch
between the two modes, we use magnetic mounts that allow to remove and replace a
mirror with a reproducibility on the order of a microradian. In both cases, the probe
beam is sent at 45◦ from the horizontal guide (see Fig. 2.1). This angle makes the
imaging a little more complicated to analyze, since the displacements along the guide
axis appear with a factor

√
2 on the CCD camera. The CCD camera is a Basler

A100f Series that has 1392 × 1040 square pixels with an edge size c = 6.45 µm.

2.4.3 MOT mode

The size of the incoming beam should match the desired field of view. In the MOT
mode, it is 3 cm wide. After the chamber, we use a three lenses achromat L1 that
correct for spherical and coma aberrations, and a spherical lens L2 of respective focal
lengths f1 = 150 mm and f2 = 50 mm with a 40 mm spacing between them. The
achromat L1 is also used in BEC mode. This optical system has been chosen to form
the image of atoms located 190 mm before L1 at 46 mm after L2 with a magnification
γMOT = 0.26. One pixel on the camera then corresponds to 25 µm on the atoms.
The magnification in this mode is calibrated more precisely by monitoring the free
fall of a cold cloud and fit the trajectory by a parabola with known acceleration g.
The camera is installed on a translation stage to finely tune the focusing.

2.4.4 BEC mode

In the BEC mode, we take the lens L2 out, the image of the atoms is then formed
at 710 mm from L1 with a magnification γBEC = 3.75. The calculated pixel size
pixBEC = 1.7 µm is measured as before by monitoring the free fall of a cold cloud
and later on by analyzing the diffraction pattern produced by a flashed lattice as we
shall see in the next chapter. Because the magnification is much larger than in the
MOT case (and correlatively, the field of view is much smaller), a lot of the light
is actually casted outside of the CCD camera (see Fig. 2.2). This is not an issue
for the image formation, however, it reduces the intensity on the camera. In order
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Figure 2.2: Sketch of the two imaging
systems, the magnifications are respec-
tively γMOT = 0.26 and γBEC = 3.75.
We use a 3 cm wide beam in the MOT
mode and reduce the size to 3 mm in
the BEC mode in order to get more in-
tensity on the camera and remain close
to the saturation of the CCD camera.

to get nonetheless an intensity just below the saturation of the CCD camer (which
increases the signal to noise ratio), we use a 3 mm wide beam. We switch between
the two beams using a mirror installed on a magnetic mount. As in the MOT mode,
the camera is set on a translation stage for the fine tuning of the focusing.

The optical resolution is limited by the optics. In our setup, it is not possible
to place lenses very close to the atoms, the lens L1 is located at 190 mm from the
atoms and has a 15 mm radius.

The numerical aperture, limited by the size of L1 is N.A = 0.07. The Rayleigh
criterion for the optical resolution given by

R = 0.61
λ

N.A
, (2.14)

yields an optical resolution of about R = 7 µm. This was verified by taking
an image of a very small object (a BEC before time-of-flight for example).

2.4.5 Quantitative measurements

From the absorption images, it is possible to deduce the number of atoms and the
temperature of a cloud of atoms. To measure the total number of atoms, we use
the relation (2.13) and integrate it over the plane. In order to be accurate, the
optical density must remain moderate (typically O.D < 2). Most of the time, it is
necessary to perform a time-of-flight stage of up to 20 ms before taking the imaging to
reduce the density. During this stage, all trapping potentials are switched off, atoms
fall under gravity and each atom quickly evolves according to a ballistic trajectory
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determined by its initial velocity vi: x(t) = x0 + vitTOF. The size of a cloud after
a sufficiently long time-of-flight is directly related to the velocity distribution and
hence, to the temperature of the cloud. Thanks to the equipartition theorem (not
valid for condensates), if the initial size of the cloud is negligible after a given time-
of-flight tTOF, the temperature reads

T =
m

kB

〈∆x2〉
tTOF

. (2.15)

2.5 The horizontal dipole guide

It is necessary, to increase the phase space density, to transfer the atoms from the
MOT to a conservative potential and to perform the evaporative cooling.

2.5.1 Dipole potential

In the case of an optical trap, the potential originates from the interaction between
the electric field of a far detuned laser beam and the induced electric dipole of the
atom. It is also known as the dynamic Stark effect [65]. The dipole potential is
proportional to the light intensity I(r):

Udip(r) = ζI(r), (2.16)

where ζ depends on the polarization and wavelength of the laser and on the atomic
structure. In the case of 87Rb:

ζ =
ΓD2

λ3
D2

16π2c

[( 1
∆1

+
1

∆1 + 2ωL

)

(1 − qgFmF ) +
( 1

∆2
+

1
∆2 + 2ωL

)

(2 + qgFmF )
]

,

(2.17)
where ∆1 (∆2) is the detuning from the D1 (D2) line, q corresponds to the polar-
ization of the light: q = 0 for π polarized light and q = ±1 for σ+(−) polarized light.
ΓD2

is the lifetime of the P3/2 excited state and λ2 the corresponding transition
wavelength. ωL is the pulsation of the incoming light, gF is the Lande factor and
mF the magnetic moment.
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We can see that far from any resonance, ζ decreases as 1/∆. Beside, when the
detuning is negative (red-detuned laser) the potential is attractive whereas it
is repulsive for a positive detuning (blue-detuned).
For an atom in the ground state and a linearly polarized light (q = 0), we give
here the ζ factor for a few common wavelengths:

λ (nm) ζ (J/(W/m2))
1064 −2.10 · 10−36

840 −7.71 · 10−36

785 −3.98 · 10−35

532 8.12 · 10−37

To perform the evaporation efficiently, the probability to diffuse a photon reso-
nantly must remain low during all the evaporation. When the detuning is important
compared to the hyperfine structure, the diffusion rate reads:

Γdiff ≃ I
Γ2

D2
λ3

D2

16π2c~

1
∆2

12

with
1

∆12
≡
(

2
∆2

2

+
1

∆2
1

)

. (2.18)

After each diffusive event, the energy is modified by up to mv2
rec/2 where vrec =

~kres/m ≃ 5.9 mm/s is the recoil velocity. We can then evaluate the corresponding
heating rate

dT
dt

= Γdiff
mv2

rec

2kB
≃ I

Γ2
D2
~λD2

8ckBm

1
∆2

12

. (2.19)

The heating rate varies as 1/∆2
12 while the depth of the potential varies as 1/∆12. It

is thus possible to get both a deep potential and a negligible heating rate provided
that the light is sufficiently out of resonance.

During the evaporation, the potential depth U0 is generally related to the
temperature by : U0/kB ∼ ηT where η ∼ 6 − 8. For a laser at 1064 nm the
heating rate then reads

dT
dt

∼ T × 2 · 10−2 s−1. (2.20)

In our setup the evaporation ramps lasts less than 5 s, the heating by photon
diffusion is thus negligible.

2.5.2 The spatial mode

Ideally the horizontal guide beam has a Gaussian mode TEM00:

I(x, y, z) =
2P

πw2(z)
exp

(

−2(x2 + y2)
w(z)2

)

, (2.21)
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Figure 2.3: Intensity profile of a TEM00 Gaussian beam. The Rayleigh length
is defined by w(zR) =

√
2w0.

where P is the power of the laser. The radius at 1/e2 depends on the longitudinal
coordinate z :

w(z) = w0

√

1 +
(

z

zR

)2

, (2.22)

where w0 is the waist of the beam. The Rayleigh length depends on the waist and
the wavelength via

zR = π
w2

0

λ
. (2.23)

Figure 2.3 shows a typical intensity profile and introduces the different notations.

At 1064 nm and for a waist w0 = 50 µm, the Rayleigh length is zR = 7.4 mm.
As a result, the trapping potential is very elongated.

2.5.3 Setting up of the horizontal beam

When I began working on the BEC experiment, the horizontal and vertical beams
where issued from the same laser. We used a 300 W fibered laser at 1064 nm
from IPG photonics with a large bandwith of a few nm.6 However, with time
the spatial mode at the output of the fiber degraded (see Fig. 2.4). We sent it
back to IPG for reparation in October 2010, the origin of the degradation stayed
unknown but the spatial mode was fine when the laser came back. Six month
later, the spatial mode was degraded again. At some point, this prevented us from
reaching the condensation. We thus bought a new 100 W laser with similar spectral
characteristics that is used only for the horizontal beam (the waist of the vertical
beam being larger, the degradation of the mode is less visible). The setting up of
the beams is presented in Fig. 2.5. A telescope adjusts the size of the beam so as

6The corresponding coherence length 500 µm smaller than the path difference between the
beams so that in principle there is no interference between the two dipole beams. However the
spectrum is actually made up of a frequency comb so that each component could interfere. We
thus set a detuning of 80 MHz between the two beams.
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(a)

Laser spatial mode for various powers

03/01/2011

(b)

29/06/2011

20 % 40 % 20 % 40 %

60 % 80 % 100 % 60 % 80 %

Figure 2.4: Spatial mode of the 300 W laser for different output power. (As a
percentage of the maximum power) after it came back from IPG for reparation
and six months later. The degradation is more important for high power but
progressively, rings appeared also at low setpoint.

to pass through an AOM that controls the power.7 The beam is then sent on an
upper table, the beam size is adjusted using an other telescope in order to obtain
the desired waist on the atoms. Finally a lens with a focal length f ′ = 811 mm
focuses the beam into the vacuum chamber. The relation between the waist of the
beams before and after a lens of focal length f ′ is:

w′
0 =

λf ′

πw0
. (2.24)

For a target waist w0 = 50 µm and a focal length f ′ = 800 mm, the beam
waist on the lens must be w′

0 = 5.5 mm. The corresponding Rayleigh length
zR = 90 m can then be considered as infinite.

The last lens is set on a servo-controlled translation stage that permits to adjust the
waist position. Two mirrors placed after the focusing lens control the beam position
and angle.

2.5.4 Power issues

The Ytterbium laser was typically used at an output power P = 40 W, this high
power implies that we take some precautions when manipulating the beam. We

7Diffraction efficiency of 85 %
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Figure 2.5: Optical setup to control the power and the size of the two dipole
beams. The numbers associated with the lenses are their focal length in mm.
The green lines represent λ/2 waveplates and the numbers their reference angle.
The horizontal beam is focused down with a waist wh = 50 µm and the vertical
beam with a waist wv = 100 µm.
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Photodiode

Light trap

Dust spots

Figure 2.6: Left: picture of the light trap located after the vacuum chamber on
the horizontal beam. The photodiode measures a small fraction of the power of
the horizontal beam by gathering the light diffused out of the light trap. Right:
Lens before cleaning, spots of dust have appeared at the location of the beam.
The spots can degrade the spatial mode, reduce the beam power and eventually
absorb enough light to trigger the burning the coating.

wear protection glasses every time the laser is switched on and security switches
have been installed in the room. All optics must be high intensity optics that are
generally more expensive. In particular, we have to use silica crystals AOMs that are
more resistant to high intensities than TeO2 crystal. However their compressibility
is lower and we need to use 15 W of RF power (instead of typically 2 W). It is then
necessary to water-cool the AOM. After each AOM, a water cooled beam block was
installed to absorb the zero-th order.

The dipole force which is used for manipulating atoms is actually capable of
trapping dust as well. This is visible on each lens, the dust is guided by the dipole
beam and deposits on the optics. After some time, spots of dust appear at the exact
location of the beam (see Fig. 2.6) and we have to clean them every month. Another
problem concerns the power measurement: to measure the total power of a beam,
we can use a high intensity power-meter. However, since it relies on thermal effects
the response time is on the order of a second. One solution is to use the light that
leaks back from a mirror. If the reflectivity is R ∼ 99, 9% there are still dozens of
milliwatts to be measured. The problem of this technique is that the transmission
on Bragg mirrors is highly sensitive to the polarization so that it does not provide
a reliable information on the total intensity and is very sensitive to polarization
fluctuations. Finally our solution was to use the diffused light from water-cooled
light traps8 (see Fig. 2.6). The power is then actively stabilized using a retroactive

8The light traps are water cooled hollow cones. When the light enters in the trap, it is diffused
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loop that consists only of an integrator with tunable gain.

2.5.5 Experimental sequence

Figure 2.7 presents the experimental loading sequence:

1. Loading of the 2D-MOT: during this stage, the Zeeman Slower, MOT and
repumper lights are on. The magnetic field of the MOT is also switched on.
This stage lasts typically 2-3 s.

2. Temporal dark MOT: The MOT dynamics is in a regime where the reabsorp-
tion of scattered photon is important. This means that the density is such
that when an atom emits a photon, there is an important probability that it
get reabsorbed by a neighbor atom, resulting in an effective repulsive force
between atoms. This limits the atomic density in the MOT and, following,
the number of atoms captured in the guide. In order to increase the density
we decrease the repumper intensity producing a commonly-called dark MOT.
The atoms then spend more time in the F = 1 hyperfine state where they do
not scatter any photons, therefore reducing the repulsion between atoms. If
we switch off the repumper completely, atoms are no longer trapped and get
lost. There is a trade-off for which we can approximatively double the number
of captured atoms compared to the sequence without dark MOT stage.

3. Pumping stage: The repumper is completely switched off. The atoms then
progressively accumulate the F = 1 state. This is necessary to avoid inelastic
collisions between atoms in different internal states during the evaporation.

4. Holding time or evaporation: The MOT coils and beams are switched off and
only the dipole beams remain. Atoms that are not captured in the dipole trap
fall under gravity.

We fix a reference point at a holding time thold = 100 ms that we use to compare
the number of atoms in the guide from day to day. With a total power in the
horizontal beam P = 30 W, we capture typically 3 × 107 atoms at T = 120 µK.
This correspond to a parameter η = U0/kBT = 8.3 and a phase space density
ρ = 8 × 10−6. If we use a higher power, the cloud is heated up but the number of
atoms stays the same. If we use a smaller power, the temperature and the number
of atoms decrease.

2.5.6 Lifetime

Once the atom are trapped in the horizontal guide, we study the lifetime for different
guide powers by holding the atoms in the guide for a variable time thold before

a great number of times before leaving the trap in a random direction. The quantity of diffused
light is directly proportional to the incoming light and independent of the polarization.
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Figure 2.7: Typical experimental sequence realized to load the atoms in the
MOT and transfer them into the F = 1 state in the guide, followed by either
a holding time or an evaporation.

measuring the number of remaining atoms. To measure the number of trapped
atoms, we need to wait that all the atoms that were not captured in the dipole trap
fall by gravity. In practice, it is not possible to measure anything at times prior to
50 ms. We observe (see Fig. 2.8) two distinct characteristic times, the first time is
very short and thus hard to measure precisely because atoms of the MOT are still
in the image. We think that it corresponds to the initial natural evaporation. The
second characteristic time strongly depends on the light intensity. To measure it,
we take only the points after 500 ms and we fit the atom number by a decreasing
exponential. For Ph = 14, 24 and 48 W, the lifetimes are respectively τlong = 2.7, 1.5
and 1 s. This dependency indicates that the lifetime is not limited by collisions with
the background gas but rather by inelastic collisions.

Inelastic collisions between atoms in different ground states can occur if some
atoms are still in the F = 2 state despite the pumping stage. In the reference [66],
where the same kind of spectrally large laser is used, the authors are able to identify
a light induced pumping in the F = 2 state and explain it by a 2-photons Raman
process. This is possible if one remembers that the dipole laser spectrum is made of
a frequency comb with frequency components separated by about 200 MHz. Thus,
two spectral components can be separated by the hyperfine sructure constant ans
can induce a Raman process. This process could explain the losses observed in our
trap. Anomalous heating and losses can also be explained by fluctuations of the
position or intensity of the trap at the trap frequency or twice the trap frequency
respectively. In our setup however, light-induced losses are dominants.
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Figure 2.8: Left: Atom number in the horizontal guide as a function of the
holding time. Two typical times are visible, they both depend on the guide
intensity. Right: logarithm of the atom number for thold ≥ 500 ms. The
lifetimes for Ph = 14 W, 24 W and 48 W are τlong = 2.7 s, 1.5 s and 1 s.

2.6 Crossed dipole trap and evaporation

2.6.1 Evaporation constraints

To perform the evaporation, we decrease the trap depth by lowering the horizon-
tal beam power Ph(t). The typical decreasing time τevap must ideally satisfy two
conditions at all times:

• It must be smaller than the typical time of losses due to inelastic collisions or
collisions with the background gas.

• It must remain large compared to the thermalization time. Indeed, in order
to cool efficiently while loosing few atoms, only the atoms in the high energy
tail of the thermal distribution should leave the trap. In order to replenish
the tail of the distribution, the thermalization time must be smaller than the
evaporation ramp time. The thermalization time depends on the density, the
temperature and the trap frequencies.

If one is able to get few losses and high trap frequencies, it is possible to find an
evaporation trajectory Ph(t) that satisfies

τlosses ≫ τevap ≫ τtherm. (2.25)

If we perform the evaporation with the horizontal beam only, the frequency in the
longitudinal direction is much smaller than in the other directions. This limits the
atomic density and hence, the collision rate. At some point, the thermalization time
becomes so important that the temperature does not decrease anymore. To increase
the trapping frequency in the longitudinal direction, we add a second beam (the
vertical beam) that crosses the horizontal beam at its waist [59].
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Figure 2.9: Sketch of the crossed dipole beams and the MOT coils. One of
the MOT coil (either the Top or the Horizontal) is also used to perform spin
distillation during the evaporation stage

The vertical beam originates from the "old" 300 W Ytterbium laser. It actually
forms an angle 45◦ with the horizontal beam (see Fig. 2.9). Its waist is wv = 100 µm.
The power and beam size are controlled in the same way as for the horizontal guide
(see Fig. 2.5). When the two beams originated from the same laser their frequencies
where detuned by 80 MHz to avoid interference effects. We kept this in the latter
setup. A mirror is set on a three axes piezo-controlled mount to adjust the crossing
between the two dipole beams. In practice, crossing the beams can be a delicate
operation. We first load the atoms in the guide and begin the evaporation until we
reach a temperature of a few µK. If we are far from the crossing, there is no sign
of the vertical beam and we have to slowly move it until a dimple appears at the
crossing. To optimize the crossing, we then move the vertical beam to get as much
atoms as possible in the dimple.

The question of the optimisation of the evaporation ramp has been widely studied
(see [67] for example). However, it strongly depends on the parameters of each setup
and, in practice, one has to try different trajectories to optimize Ph(t). We use

Ph(t) = P0 (1 + t/τevap)−4 , (2.26)

with τevap = 1300 ms which turns out to be a good choice for us. At the beginning
of the evaporation ramp, the intensity is decreased quickly because the losses are
important. As the horizontal power decreases, so do the trap frequencies.9 This is
not compensated by an increase of the density (i.e we are not in the runaway regime).
As a consequence, the thermalization time increases during the evaporation and we

9This is to be contrasted with the case of a magnetic trap.
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Figure 2.10: Trapping potential in tem-
perature units U(x, z)/kB µK at dif-
ferent stages of the evaporation. (a):
Ph = 30 W, (b): Ph = 3 W, (c):
Ph = 300 mW. At high power, the trap
is very elongated and the eigenaxes are
along x, y and z. When Ph decreases,
the trap becomes more isotropic and the
eigenaxes tend to be in the direction of
the vertical beam (and orthogonal to it).

need to decrease the power more slowly as the evaporation progresses. Small changes
of τevap around τevap = 1300 ms do not alter significantly the result as long as the
condition (2.25) is met.

2.6.2 Characteristics of the crossed potential

The power of the vertical beam is constant during the evaporation. If we neglect
the variation of the waists in the region of interest, the total potential experienced
by the atoms is:

Ucross(x, y, z) = Uh(x, y, z) + Uv(x, y, z) +mgx (2.27)

= −Uh exp

(

−2
x2 + y2

w2
h

)

− Uv exp

(

−2
y2 + (x− z)2/2

w2
v

)

+mgx. (2.28)

A theoretical study of the eigenfrequencies and eigenaxes of the crossed trap
can be found in Antoine Couvert thesis [60]. We will only recall here the main
features with our parameters (see Fig. 2.10). It is always possible to calculate the
eigenfrequencies and eigenaxes of the trap during the evaporation (see Fig. 2.11).
We typically begin the evaporation at Ph = 30 W and Pv = 3 W. At the beginning
of the evaporation, the potential induced by the vertical beam is negligible and
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Figure 2.11: Upper panel: Eigenfrequencies of the trap. Even in the presence
of the vertical beam, the frequencies along x and y axes are generally much
larger than the frequency in the z direction. Lower panel: angle θ between the
eigenaxes and the x, z directions. At the beginning of the evaporation, the trap
axes are aligned with the horizontal beam. They tend to align with the vertical
beam at the end of the evaporation ramp.

the trap is very elongated. In this configuration, the trap depth and frequencies
along the axes x and y are approximatively the same and are much larger than the
frequency along the z-axis, νx ≃ νy ≫ νz. When the temperature reaches a few µK,
the atoms get localized mainly in the dimple. At this point, the eigenaxes also begin
to change and tend to be at 45◦ from the original directions. The trap depth is then
much smaller in the direction of the vertical beam, and the atoms evaporate in the
vertical beam under the effect of gravity (see Fig. 2.10).

2.6.3 Evaporation trajectory

We can see in Fig. 2.12 a typical evaporation trajectory measured at the beginning
of my Ph.D representing the number of atoms as a function of the temperature
during the evaporation. We take 4 points every 100 ms until 2700 ms. During the
evaporation, the number of atoms decreases by 2 orders of magnitude, the temper-
ature by 3 orders of magnitude and the mean trapping frequency by less than one
order of magnitude. Since the phase space density scales as Nω̄/T 3, it is increased
by 6 orders of magnitudes during the evaporation. The last points thus correspond
to condensed clouds.
There are two signatures of the Bose-Einstein transition:

• Because a macroscopic number of atoms are in the ground state of the trap
which has the lowest momentum dispersion, after a time-of-flight, the cloud
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Figure 2.12: Evaporation trajectory N(T ), the evaporation can be roughly di-
vided into two phases. At the beginning of the evaporation, atoms are mainly
localized in the horizontal guide. Between 1 and 10 µK, the atoms progressively
localize in the dimple. The last points correspond to condensed clouds.

profile exhibits two components (see Fig. 7.15): the condensed part, which
is very sharp, and a larger thermal cloud. We can determine the condensed
fraction and the temperature by fitting the cloud by a bimodal Gaussian.10

The temperature is inferred from the width of the large thermal cloud while
the condensed fraction is calculated by comparing the integrals of the two
Gaussians.

• Another clear signature of the transition is the anisotropy of the condensed
cloud observed after a long time-of-flight. In a thermal cloud, the momentum
spread depends only on the temperature while in the ground state of a trap,
it reflects the trap characteristics. If the trap is tighter in one direction, the
wave function momentum spread will be larger (Heisenberg principle). As a
consequence, if the trap is anisotropic, this will be reflected in the cloud shape
after a time-of-flight.

We fit the density by the following bimodal function:

B(u) = Ac exp

(

−(u− u0)2

2∆uc
2

)

+ Ath exp

(

−(u− u0)2

2∆u2
th

)

, (2.29)

10The condensate momentum distribution is a priori not Gaussian but rather, in the Thomas-
Fermi regime, the Fourier transform of an inverse parabola [62]. However this fit is sufficient if one
only wants qualitative measurement.
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Figure 2.13: Upper panel: atomic density after 15 ms of time-of-flight for
different evaporation time through the Bose-Einstein transition, we see that
a sharp peak arises above the thermal cloud. Lower panel: integration of the
density along one direction, we fit the column density by a bimodal Gaussian.
The spread of the larger Gaussian is related to the temperature of the cloud.

the condensed fraction is then:

Ac∆u2
c

Ac∆u2
c + Ath∆u2

th

. (2.30)

With this method, we can check the relation (2.7) between the condensate frac-
tion and the temperature. It is challeging to measure the thermal fraction and the
temperature when the condensed fraction is too important because the thermal part
is by definition more dilute than the condensate. In the same way, by fitting by a
bimodal Gaussian, the result of the fit always displays a non-zero condensed part
even at high temperature. We can nevertheless estimate the critical temperature
by fitting with the relation (2.7) (see Fig. 2.14). We find Tc,exp = 165 nK. Using
relation (2.6) and the calculated trap parameters, we estimate Tc,th = 230 nK

2.6.4 Spin distillation

As outlined before, one advantage of far detuned optical traps is that the dipole
potential is the same for all magnetic sublevels.11 As a consequence, one creates a
spinor condensate with equipartition in all Zeeman states. However, in the following
experiments, it is necessary to condense in a single state. To measure the number

11For a linear polarization.
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Figure 2.14: Condensed fraction as a function of the temperature measured
by fitting the cloud by a bimodal Gaussian distribution. We fit by the relation
(2.6) and estimate Tc = 165 nK.

of atoms in each Zeeman state, we perform a Stern and Gerlach experiment12 by
switching on a MOT coil during the time-of-flight. We use the spin distillation
described in [16, 60] to get rid of the non-desired states. The principle is to super-
impose a magnetic field gradient during the evaporation so that atoms in different
magnetic states do not experience the same trapping potential. For atoms in F = 1,
the potential is shifted by mF |B|µB/2 for mF = ±1 and remains roughly the same
for the state mF = 0 since the Zeeman effect is then only quadratic. The trap depth
then depends on the magnetic state, some atoms experience a shallower trap and
are evaporated preferentially, the magnetic state that experience the deepest trap
remain. This technique is not simply a filtering but a combination of evaporation
and sympathetic cooling by the species that experience a shallower trap. We obtain
comparable total number of atoms using spin distillation or not.

We use two kinds of distillation: the horizontal distillation, to condense atoms
in mF = 0 and the vertical distillation to condense in mF = +1. In both cases,
we add a current in one of the MOT coils. For the horizontal distillation, we inject
typically 160 A in one of the "Horizontal" coil (see Fig. 2.9) that produces near the
center of the trap a magnetic field of the form

Bhd =









−b′x/2
b0 + b′y

−b′z/2









(2.31)

Close to the trap center (x, y, z ≪ B0/b
′), the amplitude of the field simply reads at

12We split the time of flight into two phases. A magnetic field gradient of ∆B = is applied
during a first stage of 5 ms to separate the species, and is switched off a few milliseconds before
the image is taken so that there is no remanent field when we take the picture.



2.6 Crossed dipole trap and evaporation 63

(a) (b)

U U

xy

Figure 2.15: Trapping potential for different Zeeman sublevels. Left: potential
along the y axis, the trapping depth in this direction is lowered for the states
mF = ±1. Right: potential along the vertical axis, the magnetic field gradient
partially compensates for the gravity for the high field seekers.

the first order
|Bhd| ≃ b0 + b′y. (2.32)

The effect is to bend the potential in the y direction. In Fig. 2.15, we see the
modified potentials in the y direction. Because of the magnetic shift, the trap
depth is smaller for the mF = +1 state. They get evaporated preferentially and it is
possible to end up with only atoms in mF = 0. We also use the horizontal distillation
to easily optimize the crossing. As a matter a fact, it is possible to compensate for
the magnetic shift by desaligning the vertical beam on one side of the crossing, in
this configuration, it is possible to obtain a condensate of atoms in mF = +1 only.
This method is not very stable, if one wants to condense into mF = +1, it is better
to use the vertical distillation. However, we use this effect as a protocol to optimize
the crossing, when the distillation is not complete, the three species can coexist with
different weights, by moving the vertical beam it is possible to favor one or another.
The crossing is optimized when the populations in mF = −1 and mF = 1 are equal.

For the vertical distillation, we use the Top coil (see Fig. 2.9), the field produced
near the center reads

Bhd =









−b′x/2
−b′y/2
b0 + b′z/2









(2.33)

and at the first order in x, y, z

|Bhd| ≃ b0 + b′z. (2.34)

This introduces a distortion along z that partially compensates for the gravity for
high field seekers (see Fig. 2.15). The other species experience a much lower trap
depth and evaporate before the mF = +1 specie. It is important to outline here
that the distillation in a magnetic state is here only possible because of gravity.
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2.7 Conclusion

In this chapter, we have presented our setup to produce rubidium Bose-Einstein
condensates using evaporative cooling in a dipole trap. The production of BECs by
mean of only optical traps offer some advantages compared to magnetic traps [68]:

• the possibility to decrease the depth of the trap very easily,

• a generally shorter cycle time,

• the possibility to condense in any magnetic state (or a superposition),

• the possibility to condense atoms without magnetic structure, which is partic-
ularly interesting for metrology,

and also some drawbacks:

• generally smaller BEC,

• more day to day work to align the beams, clean the optics and so on.

In our case it also offer the important advantage of providing the waveguide used in
the scattering experiments.
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3.1 Introduction

By crossing two coherent beams in a region of space, one creates a standing wave
pattern. If the laser light is detuned from the atomic transition, the standing wave
results in a periodic dipole potential varying on a fraction of the optical wavelength.
These commonly-called optical lattices have a wide range of applications in the field
of cold atoms due to their great flexibility:

• In terms of dimensionality: by adding standing waves along orthogonal direc-
tions, one can produce a periodic potential in 1, 2 or 3 dimensions. If the trap
is deep enough in one direction, it is then possible to reduce the dimensionality
of the atomic motion.

• The geometry can be tuned by engineering for example the directions, inten-
sities or phases of the lasers or by superimposing two lattices with different
spacings [69, 70]
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• The potential properties can be easily tuned in time.

These nice properties have been extensively used to study many-body physics
and quantum phase transitions. Indeed, there is a strong analogy with condensed
matter problems where atoms play the role of the electrons in a solid while the lattice
potential plays the role of the potential produced by the static ions. The tunability
of the lattice parameters and atomic interactions have allowed for example to study
the Mott insulator-superfluid transition [71] and problems of quantum magnetism
[72, 73].

Optical lattice can also be used to study one-body physics. Moving molasses
realized by introducing a frequency difference between the two beams are used for
instance in atomic clocks [74]. Diffraction in the regime of shallow lattice i.e Bragg
diffraction is commonly used as a beam splitter in atomic interferometers. Moreover,
fundamental quantum transport questions such as the Anderson localisation [75, 76],
the study of atomic ratchets [77] or dynamical tunneling [78] can also be addressed.

In this chapter, we present the setup of our 1D lattice and the calibration of its
depth. To calibrate the lattice depth, we perform Kapitza-Dirac diffraction on a
condensate. The basic idea is that atoms can redistribute photons between the two
interfering laser beams. In this process, the momentum of the atom is modified by
a quantified quantity. After a time-of-flight, the different momentum components
separate and produce a diffraction pattern from which one can infer the lattice depth.
We will first describe the experimental setup, then we will detail the calibration of
the lattice depth.

3.2 Setup of the optical lattice

3.2.1 Potential and notations

To perform the scattering experiments, we need to produce a periodic potential
with a finite size envelope. This is realized by intersecting two laser beams of finite
extent at a non-zero angle. We use two identical Gaussian laser beams at 850 nm
(red-detuned from the transitions) focused to the same waist w = 110 µm. The
two beams cross at their waist positions with an angle θ = 81◦. The beams are
both polarized in the vertical direction y. Because the Rayleigh length is very large
(zR = 4.5 cm), we can neglect the variation of the radius of curvature and of the
Gouy phase in the calculation of the electric field. The field produced by one laser
then reads:

E1,2 = E0 exp

(

ik1,2r −
d2

1,2

2w2

)

y, (3.1)

where k1,2 are the wave vectors of the two beams, d1,2 the radial distances to the
beams axis and E0 the maximum amplitude. The electric field can be expanded on
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Figure 3.1: Sketch of the lattice potential and notations.

the axes related to the horizontal guide (z being the direction of the guide):

E1,2 = E0 exp

(

−2(sin(θ/2)x± cos(θ/2)z)2

w2

)

exp (ik(± sin(θ/2)z + cos(θ/2)x)) y.

(3.2)
Close to the guide axis, (x, y ≪ w), the potential produced by the two interfering
beams thus reads

U = ζ |E1 + E2|2 = ζ2I0 exp

(

z2

2w̃2

)

(1 + cos(kLz)) , (3.3)

where ζ = −7.7 · 10−36 J.W−1.m−2 is the light shift coefficient at 850 nm, w̃ =
w/ cos2(θ/2), the waist of the lattice envelope in the guide direction, I0, the maxi-
mum intensity of one beam and kL = 2k sin(θ/2), the wave vector associated with
the lattice periodicity. The lattice spacing is then d = 2π/kL = 650 nm. We also
define a velocity scale vL = h/md = ~kL/m associated with the periodicity, an en-
ergy scale1 EL = ~

2k2
L/2m = mv2

L/2 and a frequency scale νL = EL/h. Figure. 3.1
shows a sketch of the potential experienced by the atoms along with the notations.
The trapping frequency at the bottom of one lattice site scales as the square root of
the lattice depth U0: νs = νL

√

U0/EL

d 650 nm
vL 7.1 mm/s

3.6 · 10−30 J
EL kB · 262 nK

h · 5.4 kHz

1Note that we use here a notation different from the one more commonly used ER = ~
2k2/2m

that represents the recoil energy transferred when an atom absorbs a photon of wavevector k
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3.2.2 Experimental setup

The 850 nm laser along with an AOM that permits to control the intensity of the
lattice beams are set on an independent table, the laser is then transferred to the
main table by means of a polarization maintaining fiber. The separation and the
shaping of the beams are managed on the main table (see Fig. 3.2).

We use a 850 nm single mode laser from Toptica Photonics. A master laser in a
cavity injects a tapered amplifier followed by an integrated optical isolator. At the
output, we get a typical power of 550 mW. We check the monochromaticity and
the frequency of the laser by sending a small portion of the master oscillator into a
Fabry-Pérot cavity and a commercial lambdameter. The frequency is quite stable
and we do not need to lock it. The laser is then sent through a 100 MHz AOM with
a 72% efficiency in the first order that allows us to control the intensity. The power
of one of the lattice beam is monitored on a 100 MHz bandwidth photodiode placed
after the vacuum chamber. The power is actively stabilized using an integrator
feedback loop. On the main table, a telescope adjusts the beam size in order to get
the desired waist on the atoms w = 110 µm, the beam is then split into two arms
with equal intensities using a λ/2 waveplate and a polarizing beamsplitter. We focus
the two beams at the center of the vacuum chamber using two additional 1000 mm
focal length lenses. Typically, we obtain a maximum power of 50 mW per arm on the
atoms. The corresponding potential (non interfering) has a depth Uarm/kB = 1.5 µK
per arm. The beams are polarized vertically using λ/2 waveplates and a polarizers
in order to obtain a 100% contrast interference pattern.

The crossing of the two beams is critical in the experiments. However, our limited
optical access forced us to set the last mirror quite far from the vacuum chamber at
about 1 m. When changing the angle of the mirror, the spot position changes with
a sensitivity of ∼ 2 cm per degree. To move a lattice beam from less than its waist,
we thus need a precision better than 100 µrad. In practice, we are limited by the
mechanical hysteresis of the optical mount screws. In order to benefit from a more
accurate control over the beam positions, we add on each arm thick glass plates that
deflect the beams after the focusing lenses.

A plane wave incoming on a plate of thickness e and index n with a relative angle
i (see Fig. 3.3 (a)) is displaced by a distance

l(i) = e
cos(i− r)

cos r
= e

sin(i− arcsin[sin(i)/n])
cos(arcsin[sin(i)/n])

. (3.4)

Figure 3.3 (b) shows the resulting displacement sensitivity when changing the angle
i. Compared to changing the mirror angle, the sensitivity is reduced by two orders
of magnitudes. In practice, we first use the mirror to cross approximately the lattice
beams then we use the thick plates to accurately tune the spot positions. Our thick
waveplates are cheaper and less cumbersome than piezomounted mirrors. However,
with this choice, we do not have the possibility to actively stabilize the lattice beam
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Figure 3.2: Sketch of the setup of the lattice beams. Table 1 contains the laser and
the power control. The splitting of the beam and the shaping are performed on the
main table.
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Figure 3.3: (a) Sketch of the deviating beam device. (b) Sensitivity of the light
deviation l.

positions.

3.2.3 Method to cross the lattice beams

Obviously, the power of the lattice beams is limited, in particular, we do not dispose
of enough power to capture directly atoms from the MOT into one of the lattice
beam. Consequently, it is not possible to image in situ the positions of the lattice
beams. In order to cross them, we first temporarily replace the fiber of the 850 nm
laser by one issued from a laser at 780 nm set on the depumping transition F =
2 → F ′ = 2. We then start a typical experimental sequence with a different imaging
sequence. First, the repumping beam is turned on during 1 ms to repump all atoms
in F = 2. We then shine the depumping beam which is superimposed to the lattice
beams for another ms. Atoms located at the lattice beam positions are locally
pumped into the F = 1 state. We do not use the repumper during the snapshot
to image only atoms in F = 2. In this way, the lattice beams appear as holes in
the dipole trap. Figure 3.4 shows the holes produced by the two lattice beams (not
crossed here) on the horizontal guide. Once the lattice beams are roughly crossed,
we go back to the 850 nm laser. As outlined before, the maximum depth we can
achieve with all the power in one arm is about Ulat ∼ 3 µK. In order to accumulate
atoms in the dimple produced by the intersection of the horizontal guide and one
of the lattice beams, the temperature has to be decreased first using evaporative
cooling in the guide only. We optimize the crossing by maximizing the number of
atoms in the dimple produced by the crossing of the guide and one arm of the lattice.

3.3 Calibration

The actual depth of the optical lattice is very sensitive to different defects of the
experimental setup, among them are: a defect in polarization, a different size of the
beam waists or an imperfect crossing. Therefore, it is essential to calibrate the depth
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Figure 3.4: Absorption image of atoms in the horizontal traps. Before taking the
image, we shine during 1 ms a resonant depumping laser superimposed with the
lattice beams. We do not use a repumper during the imaging so that atoms that have
been locally pumped into the F = 1 ground state are not visible. Here the two lattice
beams are not yet crossed in the final position.

of the lattice in situ with a measurement on the atoms. There are different methods
of calibration, the most commonly used rely either on Landau-Zener transitions
or on Kapitza-Dirac diffraction; we use the latter method. It consists in shining
the optical lattice for a brief amount of time τ on the condensate and observe the
resulting diffraction pattern after a time-of-flight.

3.3.1 Kapitza-Dirac diffraction

To begin with, let us consider the Raman-Nath limit of small interaction times [79].
If the interaction time is much smaller than the inverse of the trapping frequency
νs = νL

√

U0/EL, we can consider that atoms do not have enough time to move during
the interaction with the lattice, which amounts to neglecting the kinetic energy term
in the Hamiltonian. The resolution of the dynamics is then straightforward using
the evolution operator. The BEC wavefunction at a time τ reads:

ψ(z, τ) = e−iHτ/~ψ(z, 0) ≃ e−iU(z)τ/~ψ(z, 0). (3.5)

In this limit, the application of the optical lattice potential amounts to a phase
imprinting. The phase of the wavefunction is modulated at the period d. Quantita-
tively, the evolution operator can be expanded as a sum of Bessel functions:

e−iU0[1+cos(kLz)]τ/2~ = e−iU0τ/2~
n=+∞
∑

n=−∞

(−1)nJn

(

U0τ

2~

)

einkLz, (3.6)

where Jn is the n-th order Bessel function. The global phase term in front of the
sum is irrelevant and we will forget about it. The wave function at the time τ now
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Figure 3.5: Diffraction patterns with 48 mW per lattice arm. (a) Concatenated
patterns for a variable interaction time τ . (b) and (c) Diffraction patterns at τ = 9
and 15 µs respectively.

reads:

ψ(z, τ) =
n=+∞
∑

n=−∞

(−1)nJn

(

U0τ

2~

)

einkLzψ(z, 0). (3.7)

Let us take the fourier transform of ψ to calculate the wavefunction in momentum
space ϕ:

ϕ(κ, τ) =
n=+∞
∑

n=−∞

(−1)nJn

(

U0τ

2~

)

δ(κ− nkL) ∗ ϕ(κ, 0). (3.8)

The wavefunction after interaction is noting but the initial wavefunction convoluted
with a comb at the lattice frequency. The weights of the diffraction orders are
set by the values of the successive Bessel functions at the time τ . If the initial
momentum dispersion is smaller than kL, the diffraction orders can be well separated
and measured after a time-of-flight.

3.3.2 Experimental realization

We first produce a condensate using the method described in the previous chapter.
At the end of the evaporation, we switch off the trap beams and turn on the lattice
beam in less than 150 ns with 48 mW per arm for a variable interaction time τ . We
then perform a 10 ms time-of-flight before taking an image. Figure 3.5 shows typical
diffraction patterns concatenated for interaction times varying from 0 to 100 µs. We
see that the initial condensate is diffracted in several orders separated in impulsion
space by ~kL.2 From the images, we extract the populations in each order and

2We also use the distance between the diffraction peaks to calibrate the magnification of the
imaging system.
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Figure 3.6: Percentage of the total population in the different orders as a function
of τ . Red squares are the experimental data, the green dashed line are the Bessel
functions with U0 = 17EL. The agreement is only good in the Raman-Nath regime
i.e at times much shorter than the oscillation period ∼ 44µs. The blue line is the
result of the numerical integration of the Schrödinger equation with the same lattice
depth. The first cancelation of the zero-th order occurs at τ = 9 µs and the first
revival at τ = 27 µs

compare them to the result of the calculations. The calculated maximum depth is
U0 = 18.4EL. Figure 3.6 (red squares) shows the populations in the orders from 0 to
2 as a function of τ . The dashed lines are the result of the Raman-Nath calculation
(i.e the square of the Bessel functions) with U0 = 17EL. The agreement is good at
small times but is very bad for times τ > 15 µs. This is because we are no longer
in the Raman-Nath regime [80]. Indeed, for this lattice depth, 1/νs = 44 µs. We
will see in the next section how we can understand the long interaction time regime.
It is interesting to consider the time at which the zero-th order vanishes (with our
parameters, we are still in the RN regime). This correspond to the annulation of
the first Bessel function, which implies that

U0τ/2~ = 2.405 (3.9)

We can then deduce the depth of the lattice potential using only the time of first
annulation of the zero-th order τfa:3

U0

EL
=

2.405
πνLτfa

. (3.10)

We find experimentally τfa = 9 µs, which implies that U0/EL = 15.7

3.3.3 Beyond the Raman-Nath regime

For interacting times that are not small compared to the trapping frequency, there
is no simple analytical relation to calculate the diffraction orders weights and it

3The rule of the thumb is, for τfa in µs: U0/EL = 141/τfa
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Figure 3.7: (blue) Interference pattern
produced by two beams misaligned by
δz = 75 µm normalized by the max-
imum intensity for a perfect crossing.
(red) local mean intensity Ī(z).

is necessary to solve numerically the Schrödinger equation with the kinetic energy
term. However, it is possible to understand some features qualitatively [80, 28]. In
particular, we observe revivals of the population in the zero-th order at long time
while the first Bessel function quickly vanishes. This phenomena can be understood
by projecting the initial wavefunction on the eigenstates of the system. With a deep
enough lattice (U0/EL ≫ 1) and in the harmonic limit, each lattice site yields eigen-
states separated in energy by hνs, and successively symmetric and antisymmetric.
Let us consider an initial state with a zero mean momentum, because the initial
wavefunction is symmetric, it has a projection on even parity states only. As a con-
sequence, the populated eigenstates are separated in energy by 2hνs. This leads to
revivals: all states rephase at times τrev = 1/(2νs). At those particular times, the
wavefunction goes back to its original form i.e without any diffraction. We observe
indeed partial revivals of the zero-th order at 25 and 43 µs, however, the revivals
are not complete because of the anharmonicity of the potential. In order to make
the most of our measurements, we also use the datas outside of the Raman-Nath
regime. We solve numerically the Schrödinger equation with different U0 and deter-
mine the depth for which the simulation provides the best fit of the data. We find
U0 = 17 ± 1EL which is 7% below the calculated value.

3.4 Robustness against misalignments

Because we cross the lattice beams with a non-zero angle, the crossing procedure
is complicated and we expect that, despite our efforts, the two beams can be sig-
nificantly misaligned. In this case, the interfering patterns can have a complicated
shape. As an example, Fig. 3.7 shows the interference pattern if the centers of the
two beams are separated by δz = 75 µm. In this picture, the calibration of the lattice
depth by Kapitza-Dirac diffraction is a measurement of the local visibility. Because
we optimized the position of the condensate in the lattice, we can consider that we
measure the maximum visibility V̄max of the interference pattern. The question is:
how different is the real potential from an ideal lattice with a Gaussian envelope
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Figure 3.8: (a) Reduction of the visibility as a function of the misalignment between
the two lattice beams. (b) Difference between the real potential and an ideal Gaussian
lattice as defined by Eq. (3.11).

and the measured maximum visibility? To get a quantitative answer, we calculate,
for a misaligned potential, the local visibility V̄ (z) and local mean intensity Ī(z).
For perfectly crossed beams, the potential is such that the visibility is equal to twice
the mean intensity everywhere: V̄ (z) = 2Ī(z). We thus define the error due to a
misalignment by

εm(δz) = max(V̄ (z)/2 − Ī(z))/max(Ī(z)). (3.11)

Figure 3.8 (a) shows the reduction of the maximum visibility as the two beams
are misscrossed. Interestingly, the reduction of visibility remains moderate: the
visibility is only reduced by 10% as the centers of the beams are separated by half
their waist. Using the ratio between the measured visibility and the calculated one,
we thus estimate that in the experiment, the misalignment δz < 50 µm. Figure
3.8 (b) shows the error defined by Eq. (3.11) as a function of δz, we see that for
δz < 50 µm, the error is small εm < 5%. This ensures that despite a complicated
crossing procedure, the potential experienced by the atoms is very close to a lattice
with a Gaussian envelope and a maximum visibility taken equal to the visibility
measured by Kapitza-Dirac diffraction

3.5 Conclusion

In this chapter, we have presented our experimental setup to engineer a 1D optical
lattice with a finite size envelope. We have described how we calibrate the depth
of the lattice in situ using Kapitza-Dirac diffraction in the Raman-Nath regime and
beyond, and give an argument about the robustness of this method. In the next
chapter, we will recall some theoretical tools useful to describe the dynamics of a
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particle in a periodic potential.
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4.1 Introduction

In this chapter, we recall some theoretical tools of general use when dealing with
quantum problems in the presence of a periodic potential. We present the con-
struction of the band energy diagram using Bloch theorem and the closely related
solutions of the Mathieu equation. As we will see, these solutions are an extension
of Bloch states to the case where the energy lies in a gap of the band structure.
They turn out to be very useful when considering scattering problems. We use these
solutions to analyze the problem of the scattering of a particle on a semi-infinite
lattice.
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4.2 Bloch band structure

4.2.1 Bloch theorem

Let us consider a particle in a 1D periodic potential of period d:

U(z + d) = U(z). (4.1)

The stationary Schrödinger equation that describes the dynamics reads:

Hψ(z) =

(

p2

2m
+ U(z)

)

ψ(z) = Eψ(z). (4.2)

The Bloch theorem then states [81] that the eigenstates of a periodic hamiltonian
may be written as the product of a plane wave envelope function with a wavevector
k and a function un,k(z) that has the same periodicity as the potential U :

ψn,k(z) = eikzun,k(z) with un,k(z + d) = un,k(z). (4.3)

n is an integer that denotes the band index. Except for k = 0, these Bloch states are
propagating states. By injecting this form into Eq. (4.2), we see that the functions
un,k are the eigenstates of a modified Hamiltonian that depends on k:

Hk =
(p+ ~k)2

2m
+ U(z) (4.4)

Using this eigenvalue equation and the boundary condition un,k(z) = un,k(z + d),
the signification of the band index becomes clear. En(k) are the eigenvalues of a
modified hamiltonian in a box with periodic boundary conditions. As such, we
expect a quantification of the energies that correspond to the discrete band index n.
Because of the periodicity of the Bloch functions un,k, we can limit ourselves to the
first Brillouin zone, that is to say to k ∈ [−kL/2, kL/2] (kL = 2π/d). We can then
expand the periodic Bloch functions un,k as Fourier series.

ψn,k(z) = eikzun,k(z) =
∑

l

ale
i(k+lkL)z. (4.5)

For a given k, working out the Bloch state ψn,k(z) thus amounts to finding the
coefficients al.

4.2.2 Computation of the band structure

Because the potential U is periodic, we shall expand it as a Fourier serie too:

U(z) =
∑

p

Upe
ipkLz. (4.6)
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Figure 4.1: (a) Band structure for U0 = −2EL. (b) first eigenstates with k = 0.
n=1: blue, n=2: green, n=3: red. Similarly as for a particle in a symmetric trap,
the eigenstates are successively symmetric and antisymmetric.

By injecting Eq. (4.5) and (4.6) into the Schrödinger equation and identifying each
term in ei(k+lkL)z, we obtain a matrix equation that reads:

~
2

2m
(k + lkL)2 al +

∑

p

Upap−l = Eal. (4.7)

For example, let us take the potential produced by an infinite attractive lattice:
U(z) = −U0/2(cos(kLz) + 1), Eq. (4.7) can be represented by:





















b−N u

u b−N+1 u
. . . . . . . . .

u bN−1 u

u bN





















×





















a−N

a−N+1

...
aN−1

aN





















= E





















a−N

a−N+1

...
aN−1

aN





















, (4.8)

where

u =
U0

4
et bl = EL (k/kL + l)2 − U0

2
. (4.9)

For a more complicated potential, as the potential gets more Fourier components,
the matrix gets more off-diagonal elements. This system is easily solved using a stan-
dard diagonalization algorithm.1 To describe correctly a Bloch state, it is necessary
to consider a large enough number of Fourier components N . The number of rele-
vant Fourier components generally scales as the band index. In the calculations, we
choose N equal to three time the maximum considered band index. The different
eigenvalues are the energies for a given pseudo-impulsion k but different band index.
Figure 4.1 (a) shows the energies En(k) for U0 = 2EL. The energies are grouped in

1It is also possible to solve the Schrödinger equation in the position space, however the eigenvalue
problem does not display a diagonal matrix so that the computation is much less efficient.
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bands separated by gaps. The size of the gap generally decreases as the band index
increases. Figure 4.1 (b) shows the corresponding Bloch states with k = 0 and a
band index n = 1, 2 and 3. Just like a particle in a symmetric trap, the eigenstates
are successively symmetric and antisymmetric. This is to be related with the tight
binding method to construct the band structure. In this method, one starts from
states localized in a single well. If the lattice site is symmetric, the eigenstates are
always successively symmetric and antisymmetric. One then couple the different
lattice sites with a tunneling rate that lifts the degeneracy between the energies
associated with each site. The band structure is then reconstructed progressively
by coupling an infinite number of lattice sites. Each band is then associated with
one state of a single lattice site and this is reflected in the symmetries of the Bloch
states.

4.3 Mathieu equation

In the case of scattering experiments on a finite size lattice, the eigenstates are
not the only interesting solutions of the time-dependent Schrödinger equation. Let
us suppose nonetheless that we can always write the solution of the Schrödinger
equation as a function of the position only plus a time-dependent phase of the form:

ψ(x, t) = e−iEt/~φ(x). (4.10)

If we inject this form into the Schrödinger equation, one find exactly the time-
independent equation. However, E corresponds here to a boundary condition (the
energy of the incident particle in a scattering experiment) and is not the solution of
an eigenvalue problem. The function φ can be diverging so that ψ does not always
represent an eigenstate of the Hamiltonian.

The stationary Schrödinger equation can then be set into the form of a Mathieu
equation:2

d2φ

dz̃2
+ (a− 2q cos(2z̃))φ = 0, (4.11)

where we introduce z̃ = πz/d and make the following correspondence:

{

a = 4E/EL + 2U0/EL,

q = U0/EL.
(4.12)

This equation was originally studied to study the vibrational modes of an elliptic
membrane [82] and has been widely studied since. It also appears in trapped ion
physics where a Mathieu equation describes the motion of a single ion in a Paul

2The Mathieu equation is a restriction of the Hill’s equation d2φ
dz2 + (a − O(z)) φ = 0 where O is

a periodic function.
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trap.

4.3.1 Stability regions

Floquet theorem states that the solution of the Mathieu equation (4.11) is a linear
superposition of two independent functions

f1(z) = eikzp1(z) and f2(z) = e−ikzp2(z), (4.13)

where p1 and p2 are periodic functions. In this context, k is also called the Mathieu
characteristic exponent. Note that in contrast with the Bloch theorem approach,
k is not necessarily real. Depending on the couple of parameters (a, q) or (E,U0),
there are two classes of solutions:

• Solutions with k real: these solutions are bounded and are strictly equivalent
to the Bloch states.

• Solutions where k has an imaginary part: in this case, the solution are not
bounded and correspond to evanescent waves. The value of the imaginary
part of k sets a length scale over which the solution tends to zero.

In the parameter spaces (a, q) or (U0, E), regions of bounded solution are called
stable regions. They correspond to the existence of a Bloch state at the energy E.
Regions of unbounded solutions are unstable regions. In this case, the energy lies
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in a gap of the corresponding band diagram.3 The frontiers between stable and
unstable regions yield two transcendental function, the Mathieu angular functions
an(q) and bn(q). They correspond in the set of parameters (U0, E) respectively to
the bottom and top of the Bloch bands. Figure 4.2 shows the different regions as a
function of the parameters (a, q) and (U0, E).

4.3.2 Computation of the characteristic exponent

We will now describe the method to compute the characteristic exponent k. Whit-
taker was able to found an elegant analytical method to calculate k [83]. We recall
here the demonstration, following the references [84, 85] and adapting it to our no-
tations. We start from the Eq. (4.8), we pass the energy term on the left and divide
each line by the diagonal term, thus obtaining the system:

A(k;E,U0)ψ =





















1 ξ−N

ξ−N+1 1 ξ−N+1

. . . . . . . . .
ξN−1 1 ξN−1

ξN 1





















ψ = 0, (4.14)

where

ξl =
U0/4EL

(k/kL + l)2 − κ
and κ =

U0/2 + E

EL
. (4.15)

This system has non trivial solutions if ∆(k) = det(A) = 0. In the limit where
N → ∞, it is obvious that ∆(k) is periodic with period kL. We can thus restrict
ourselves to 0 ≤ k ≤ kL i.e to the first Brillouin zone. Besides, because ∆ is a
determinant and each one of the ξl(k) appear only in one line, ∆ is a sum of product
of the ξl(k). Disregarding their poles, ξl are analytical function; ∆ is thus analytical
except at k/kL =

√
κ − l. Each function ξl appears only once in ∆ so that all the

3In a quadrupole mass spectrometer, the dynamics of a charged particle is governed by a Mathieu
equation where a and q correspond respectively to the static and radio-frequency fields. Unstable
solutions then correspond to unbounded trajectories. The particle is then rejected.
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poles of ∆(k) at k/kL =
√
κ− l are simple.

The key ingredient in Whittaker solution is to consider the analytical function

D(k) =
1

cos(2πk/kL) − cos(2π
√
κ)

(4.16)

that has exactly the same poles as ∆. It it thus possible to choose a function C(k)
such that the function

Θ(k) = ∆(k) − C(k) ·D(k) (4.17)

has no singularities. ∆ has only one pole in the interval [0, kL], as a consequence,
the function C can be chosen constant and equal to the ratio between the residuals
of the functions ∆ and D at the unique pole.

Using this proper choosing of C, the function Θ is analytical on the whole com-
plex plane and has no pole. It must then be a constant. Let us now take the limit
k → +i∞. All the off diagonal coefficients of the matrix A(k;E,U0) vanish so that

lim
k→+i∞

∆(k) = 1. (4.18)

Besides, lim
k→+i∞

D(k) = 0, hence Θ(k) = 1. It follows that

C =
∆(k) − 1
D(k)

. (4.19)

In the case k = 0, D(0) = 1/(1 − cos(π
√
κ)), we can then calculate the value of C

C = (∆(0) − 1) · (1 − cos(π
√
κ)). (4.20)

Injecting C in Eq (4.19), and setting ∆(k) = 0 (non-trivial solution), one finds an
analytical solution of k:

cos(2πk/kL) = 1 − ∆(0)(1 − cos(2π
√
κ)). (4.21)

Figure 4.3 shows the real and imaginary part of k for U0 = −2EL. In the unstable
regions (Im(k) 6= 0), the real part of k/kL is fixed at 0 or 0.5 i.e at the center or
the edge of the Brillouin zone. Between these regions, Re(k) varies smoothly while
Im(k) = 0.

4.4 Interpretation of a scattering experiment

Let us consider the case of an incoming planewave with energy E that impinges on
a semi-infinite optical lattice (see Fig. 4.4). On the left part, the wavefunction is
described by an incoming planewave with wave vector k1 plus a reflected one with
a reflection coefficient r. Inside the lattice, the wavefunction is described by the
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eikiz + re−ikiz teikzp(z)

Figure 4.4: Sketch of the scattering of a planewave on a semi-infinite lattice.

solution of the Mathieu equation with a characteristic exponent k and a transmission
coefficient t. We must now connect the wavefunction at the interface (set at z = 0).
Because the boundary condition must be valid at all time, the energies in free space
and in the lattice are equal. It follows that k is univocally determined by the energy
of the incoming planewave. Two cases arise: if the incoming energy falls into a gap
of the lattice band structure, k is imaginary. The wavefunction inside the lattice is
then an evanescent wave that vanishes over a distance 1/Im(k). In this case, the
transmission through the semi-infinite lattice is null and the reflection R = |r|2 = 1.
If the incident energy lies in an allowed band, k is real and the solutions of the
Mathieu equation correspond to Bloch states. In this case it is possible to compute
the function p(z) that appears in Eq. (4.13). The conditions for continuity of the
wavefunction and of the atomic flux yield a closed set of equations:

{

1 + r = tp(0)
1 − r = t (p(0)k/ki + p′(0)/iki) .

(4.22)

We then deduce the transmission probability:

T = |t|2 =
4

|p(0)|2
1

|1 + k/ki − ip′(0)/(p(0)ki)|2
. (4.23)

Figure 4.5 shows the transmission T as a function of the incident velocity and the
lattice depth. We observe large bands of total reflection that correspond to the
unstable regions of the Mathieu equation (compare with Fig. 4.2 (b)). The lower
part of this diagram, corresponding to shallow lattices, yields reflection at very
precise velocity v/vL = n/2 with the integer n. This corresponds to the classical
Bragg’s condition 2d = nλ sin Θ, where λ = h/mv is the de Broglie wavelength, and
Θ = π/2, since we consider the case of a normal incidence.

We also observe reflection inside the stable regions at low incoming velocity.
These reflection are due to quantum reflection on the firsts wells of the lattice.
The shape of the quantum reflection regions is strongly dependent on the phase
of the lattice potential at the interface with free space. The quantum reflection is
minimized if the interface is set on the edge of a lattice site (the potential has no
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Figure 4.5: Transmission coefficient T through a semi-infinite lattice as a function
of the incident velocity and the lattice depth according to Eq. (4.23). (a) The
interface is set on the edge of a lattice site, the potential has no discontinuity. (b)
The interface is set at the center of a site so that the discontinuity is maximum. In
the latter case, quantum reflection is more important

discontinuity) and the largest when the interface lies in the middle of a site where
the discontinuity is maximal.

4.5 Conclusion

We have presented the energy band structure of the eigenstates in a periodic po-
tential using Bloch theorem and the solutions of the Mathieu equation. Using these
solutions, we extend the concept of Bloch waves to cases where the energy lies in
a gap of the band structure. We have presented a powerful mathematical method
to infer the exponent Mathieu exponent k. In this case, k sets a length scale over
which the wave vanishes inside the lattice. By calculating the Bloch state, it is also
possible to describe analytically quantum reflection on the first wells.
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5.1 Introduction

The scattering of light on structures having a periodic refractive index profile is
ubiquitous in photonics. Applications range from simple antireflection coatings to
the fabrication of dielectric mirrors with ultra-high reflectivities, used for instance
in high-finesse cavities, and to semi-conductor laser technology with the example of
VCSELs, and DFB or DBR lasers. In the field of guided optics, fiber Bragg gratings
[40] are essential components for the telecommunication industry, as well as for the
realization of outcoupling mirrors in highpower fiber lasers. In this chapter, we
demonstrate, following the proposals of Refs. [86, 87, 88, 89], a Bragg reflector for
guided Bose-Einstein condensate propagating in an optical waveguide, i.e. the exact
atom-optics counterpart of a photonic fiber Bragg grating. One major difference with
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the reflection on a semi-infinite lattice presented in the previous chapter originates
from the finite size envelope of the lattice which is more relevant experimentally. In
particular, the transmission properties are radically changed by the smooth variation
of the lattice depth.

5.2 Effect of the envelope

5.2.1 Naive picture

Using the considerations on the transmission through a semi-infinite lattice presented
in the previous chapter, it is possible to understand simply the transmission through
a smooth envelope lattice. The basic idea being that for a given incident velocity, the
incoming particle can experience all lattice depths from 0 to the depth at the center
of the lattice U0. As the particle penetrates inside the lattice, it will experience an
increasing lattice depth. Thus, if at some position inside the lattice, the particle
enters into an unstable region of the Mathieu equation, that corresponds to a depth
U

(1)
0 , it can get reflected at this particular position. When U0 = U

(1)
0 the reflection

condition is fulfilled at the center of the lattice i.e, at z = 0. Then, when U0

increases, there are some locations ±xlr, on both sides of the lattice center, for
which U(±xlr) = U

(1)
0 and where reflection occurs. In this very simple picture, the

main effect of the envelope is to extend upwards the regions of reflection of Fig. 5.1
(a). This produces a sawtooth shape transmission diagram (see Fig. 5.1 (b)) where,
for a given incident velocity, transmission is only possible below a critical lattice
depth. In contrast with the square envelope case, there are no resurgences at high
lattice depth.

However, this picture is valid only in the case of a very large envelope where the
local depth of the lattice does not change appreciably over a great number of sites.

5.2.2 Contributions of the Landau-Zener transitions

Figure 5.2 (a) shows the transmission coefficient of a plane wave through a square
envelope lattice with N = 800 sites solved by integrating directly the stationary
Schrödinger equation. Expectedly, the transmission looks very much like the one
through a semi-infinite lattice presented in the previous chapter (white arrows depict
the Bragg condition and quantum reflection is observed at low incoming velocity).
Due to the finite size of the lattice, however, the energy bands are not strictly
continuous and resolve into N separate states. This gives rise to thin resonances
observable at low incoming velocity. Each resonance corresponds to the appearance
of a bound state in the lattice (the undersampling gives rise in the figure to the foamy
aspect). Figure 5.2 (b) shows the result of the same calculation for a Gaussian
envelope lattice with a waist w = 150 µm. We recognize the sawtooth structure
predicted by our naive approach. Note that in this case, the quantum reflection
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Figure 5.1: (a) Stable (red) and unstable (blue) regions of the Mathieu equation.
Naive extension of the stability regions in the case of a large, smooth envelope lattice.

regions are no longer distinguishable from the local Bragg-type reflections so that
the second effect dominates. However, large regions of transmission that are washed
out in the naive model subsist.

To understand the increase of the transmission regions, we use the slowly varying
envelope approximation d ≪ w and the solutions of the Mathieu equation. Because
we can define a local depth in the lattice, it is possible to work out locally the
Mathieu exponent (k being imaginary when the incident energy lies in a gap). Here,
because of the smooth envelope, the band gaps become position-dependent and have
a finite extent. In this case, the gaps of the system are called spatial gaps. If the
solution of the Mathieu equation does not decrease significantly over the extent of
the spatial gap, a particle can then tunnel through it and get transmitted. This
corresponds to a Landau-Zener tunneling to a different band [90]. In the context
of Fig. 5.2, this means that, for a given incoming velocity, the thinnest reflection
lines should not be expanded upwards because a particle can tunnel through the
gap. Quantitatively, in the slowly varying envelope approximation regime (d ≪ w),
the probability of transmission through a spatial gap reads [91]:

T (E) = exp
(∫

−2Im[k(z, E)]dz
)

. (5.1)

Using this formula, we compute the transmission through the Gaussian envelope
lattice (see Fig. 5.3). We see that it reproduces very well the figure 5.2 (b) except
for large lattice depths where the slowly varying envelope approximation is poorly
verified. Indeed, we see in Fig. 5.2 (a) that for a maximum lattice depth U0 ∼ 10EL a
particle with a velocity v ∼ 1.5−2vL must cross several very small spatial gaps whose
spatial extent is on the order of the lattice spacing. Besides, the small resonances
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Figure 5.2: Transmission coefficient of a plane matter wave impinging on an optical
lattice as a function of the incident velocity and the lattice depth computed by solving
the stationary Schrödinger equation. (a) Square envelope lattice case. (b) Gaussian
envelope case, U0 denotes here the maximum depth of the lattice. LP, HP and N
denote the regions of parameters for which the lattice acts respectively as a low-pass,
high-pass or notch filter.

of the Fabry-Perot type resulting from the finite size effects cannot be reproduced
with this model.1

5.3 Preparation of the wavepacket

We will now describe the scattering experiment itself. In order to probe the trans-
mission across the lattice, it is advantageous to start with a source that contains as
much atoms as possible per velocity class.

5.3.1 Outcoupling of the condensate

To optimize the brilliance, we start from a condensate trapped at the crossing of
the two dipole beams, we then turn off the vertical beam in two steps. In the first
step, we reduce its power adiabatically in order to reduce as much as possible the
chemical potential. We then switch off suddenly the vertical beam to release the
condensate in the horizontal guide.

At the end of the evaporation ramp, our condensate is well in the Thomas-Fermi
regime, that is to say that the kinetic energy is negligible compared to the interaction
energy. If we switch off suddenly the confinement along the guide direction, the

1The phase of the incoming wavepacket is not taken into account in Eq. (5.1).
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Figure 5.3: Transmission coefficient of a
plane matter wave computed by using the lo-
cal solutions of Mathieu equation and Eq.
(5.1). This model is in good agreement with
Fig. 5.2 (b) except at large depths for which
the slowly varying envelope approximation is
poorly verified.

interaction energy is transferred into kinetic energy, so that the interactions set the
velocity dispersion of the wavepacket after the outcoupling [92]. In the Thomas-
Fermi limit, the chemical potential of the trapped condensate reads: [62]

µTF =
~

2
ω̄6/5

(

15Na
√

m

~

)2/5

, (5.2)

where a is the scattering length, N the total number of atoms and ω̄ = (ωxωyωz)1/3,
the geometric average of the trapping angular frequencies. Because µTF ∼ ω̄6/5, it
is possible to reduce the chemical potential without loosing atoms by decreasing the
trap frequencies. In our experiment, we reduce the trapping frequencies by decreas-
ing the power of the vertical beam only, which reduces essentially the confinement
in the longitudinal direction z. The chemical potential then scales as µTF ∼ ω2/5

z .

In order to decrease the trap frequency while keeping the occupancies of the
quantum states, the process must be slow enough to be adiabatic. The adiabaticity
condition reads here:

dωz

dt
1
ω2

z

= −Cad ≪ 1. (5.3)

We chose to decrease the power of the vertical beam so as to keep the adiabaticity
criterium constant and equal to Cad = 0.1. This leads to a power that decreases as

P (t) =
Pi

(

1 + C ′
√
Pit
)2 , (5.4)

where Pi is the power at the end of the evaporation ramp and C ′ depends on C and
the initial longitudinal trapping frequency. Following Eq. (5.4), we decrease the
power of the vertical beam by a factor 20 in 78 ms. This leads to a moderate reduc-
tion of the chemical potential by a factor 1.8. At the end, the longitudinal angular
frequency ωz ∼ 8 Hz is very small. As a consequence, if we try to further decompress
the trap, some atoms are outcouled in the guide. This sets an experimental limit to
our decompression.
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Figure 5.4: Sketch of the experimental setup.

At this point, we switch off suddenly the vertical beam and let the resulting
wavepacket propagate freely in the guide. To measure the velocity distribution of
the wavepacket, we let it propagate for a variable time in the guide. From linear
fits of the mean position and position width as a function of the propagation time,
we deduce the mean velocity v̄ and the velocity spread ∆v. At the end, we obtain
typically velocity spreads ∆v ∼ 1.3 − 1.7 mm/s. We also measure, with a second
order polynomial fit, the residual acceleration (that could be caused by a tilting
of the horizontal beam, or a residual magnetic field). The residual acceleration is
compatible with zero with an upper bound of g/1000. It can thus be forgotten in
the analysis.

5.3.2 Acceleration of the wavepacket

Up to now, the mean velocity v̄ is close to zero.2 In order to study the scattering
on the optical lattice, we accelerate the wavepacket to velocities on the order of the
velocity scale vL = h/md = 7.1 mm/s associated with the lattice periodicity. This
is done by using a magnetic field gradient pulse. To realize this gradient we use an
additional acceleration coil set in the guide axis (see Fig. 5.4). The coil produces a
field at the center of the chamber:

B(0) = 0.35 G/A and

∣

∣

∣

∣

∣

dB

dz

∣

∣

∣

∣

∣

= 0.1 G.A−1/cm. (5.5)

2A small residual mean velocity on the order of 0.1 mm/s can result from the outcoupling
process.
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In this experiment, we used the horizontal spin distillation technique (see chapter
2) that produces a condensate in the state mF = 0. Atoms in mF = 0 are high field
seeker at the second order in B, the Zeeman shit in this state reads:

∆E = −µ2
BB

2

∆Ehfs
, (5.6)

where ∆Ehfs is the separation between the hyperfine states. The atoms are thus set
into motion towards the acceleration coil with an acceleration

amF=0 =
2µ2

BB

m∆Ehfs

dB
dz

(5.7)

Because atoms in mF = 0 are only sensitive to the magnetic field at the second order,
it is necessary to realize strong magnetic fields. We use two current generators in
parallel to inject currents up to 400 A. In the experiment, we chose to switch on
the acceleration coil with 320 A during 15 ms to reach the desired velocity. The
theoretical final velocity is then vth = 14 mm/s. Experimentally, we measure a
smaller velocity v̄ ≃ 11 mm/s. This discrepancy is explained by the finite ramping
time of the current in the coils as was checked by measuring the actual current with
a clamp meter. Finally, we obtain a wavepacket whose characteristics are:

v̄ = 1.5vL = 11 mm/s and ∆v = 1.3 mm/s. (5.8)

The characteristics of the wavepacket are depicted by the shaded area in Fig. 5.2 (b)

5.4 Scattering on the lattice

5.5 Experimental sequence

Figure 5.4 shows a sketch of the experiment. First, we have to calibrate the lattice
depth by Kapitza-Dirac diffraction. To do so, we move the BEC (by moving the
vertical beam) to superimpose it with the lattice. Because, the lattice beams can
slightly move from day to day, it is important to carry out the calibration the same
day as the experiment. Once the calibration has been done, we move the conden-
sate 350 Âµm away from the lattice. During the next sequences, we outcouple the
condensate, accelerate it towards the lattice, and then let the wavepacket propagate
and interact with the lattice for a time tprop before taking an image.

5.5.1 Time-resolved scattering

In the first set of experiments, we set the lattice depth at U0 = 11EL and let the
wavepacket propagate for a variable time. The atomic density is then measured
after a 10 ms time-of-flight. As the wavepacket spreads during the propagation,
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Figure 5.5: Atomic density as a function of the position and the propagation time
for a lattice depth U0 = 11EL. The white dashed line depicts the lattice center.

it becomes quickly very diluted. As a consequence, the interatomic interactions no
longer play a role in the dynamics. Figure 5.5 shows the atomic density as a function
of the propagation time. During the first 20 ms, the wavepacket propagates towards
the lattice. The interaction with the lattice occurs mainly for propagation times
20 < tprop < 40 ms. After the interaction, the wavepacket is split into a transmitted
and a reflected part. This is in agreement with the numerical simulations of Fig. 5.2
where we see that for U0 = 11EL and the incident velocity distribution, the fastest
atoms are transmitted and the slowest are reflected. The reflection of the low velocity
component is exactly the analogue of Bragg reflection on dielectric mirrors in optics.

We observe some additional effects:

• After the interaction with the lattice, at tprop > 40 ms, the wavepacket presents
slight oscillations. This is due to the excitation of transverse modes of the
guide. The excitation of the transverse modes could be due to an imperfect
crossing of one of the lattice beams that breaks the symmetry of the potential
and couple the longitudinal and transverse degrees of freedom [93].

• For 65 < tprop < 75 ms, a second packet appears in the transmitted part behind
the main part. For U0 = 11EL, this was not predicted by the theory. However,
this kind of structure is expected for slightly smaller lattice depth as we will
see in detail in the next section. We thus believe that thermal fluctuations
in the room induced a variation of the crossing of the lattice beams. The
depth of the lattice would thus be reduced compared to the depth calibrated
by Kapitza-Dirac diffraction in the preliminary experiment.

5.5.2 Probing of the transmission diagram

In this section, we describe how we probe the transmission diagram. We now let the
atoms propagate for a long propagation time tprop = 100 ms, all atoms have then left
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Figure 5.6: (a) Experiment and (b) Numerical simulation of the atomic density as
a function of position and lattice depth for a propagation time of 100 ms. Each
horizontal line is the average of eight shots integrated in the transverse direction.
The white dashed line depicts the lattice center.

the region of interaction with the lattice. The depth of the lattice is varied from 0
to 13EL. For each lattice depth, we integrate the images in the transverse direction,
repeat the experiment 8 times and take the average of the experimental runs to
reduce the noise by a factor of approximately 3. Figure 5.6 (a) shows the result of
these measures, each of the 55 horizontal line corresponds to a given lattice depth.
The wavepacket initially propagates towards the right side of this plot. The white
dashed line depicts the position of the lattice center, the right part of the plot thus
corresponds to transmitted atoms, while the left part corresponds to reflected ones.
For sake of comparison, Fig. 5.6 (b) shows the result of a simulation that solves the
Schrödinger equation using the split Fourier method [94] with the experimentally
measured lattice and wavepacket characteristics. It is in very good agreement with
the experiment.

Let us concentrate on the transmitted part of the wavepacket. If there were no
lattice, the propagation time is long enough so that the initial size of the wavepacket
is negligible with respect to its size after propagation. The spatial distribution of
the wavepacket would then be a direct mapping of its initial velocity distribution
f(v): n(z, tprop) = f [(z − z0)/tprop]. If we suppose that the delays induced by the
interaction with the lattice are negligible, then, the density in the transmitted part
is nothing but the transmission diagram of the Fig. 5.2 integrated over the initial
velocity distribution (shaded area). This explains why we observe the same sawtooth
appearance which is a fingerprint of the band structure. Noticeably, for U0/EL ≃ 9.5,
the density distribution presents a hole in the transmitted part that corresponds to
the reflection of a narrow class of velocity between two transmitted classes of velocity
and was observed incidentally in the time-resolved experiment. The reflected part
propagates backwards and is thus located at a symmetric position, it is then the
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complementary part of the transmitted packet.
The effect of the lattice potential is not limited to its sinusoidal component.

The averaged part of the potential also accelerates transiently the atoms during the
propagation. This is observable by looking closely at the front of the wavepacket.
We can see that it is in advance for the larger lattice depths because the transient
acceleration is then more important. The white dotted line in Fig. 5.6 (b) shows
the final position of a classical particle starting with the velocity v̄ and interacting
with the spatially averaged lattice. It reproduces well the curvature of the front of
the wavepacket.

Beside being used as a mirror, this experiment shows that this system can be
used for more complex momentum engineering. Indeed, depending on the lattice
depth and on the incoming velocity distribution, this system realizes a high pass
filter, a notch filter and even at low velocity and small lattice depth a low pass filter
(see Fig. 5.2). In this prospect, this system offers more flexibility than a repulsive
barrier that can only act as a high-pass filter. In the chapter 7, we will show how
we can further add some tunability to this momentum engineering.

5.6 Cavity effects

In the local reflection picture presented, here, the reflection condition is always
met at two symmetric positions around the lattice center. The main features of
the transmission diagram can be interpreted considering the reflection on the first
Bragg mirror only. Yet, the presence of two mirrors yields cavity effects. The
narrow resonances observed in the simulation can be interpreted as Fabry-Perot
resonances in the cavity produced by the two Bragg mirrors. These resonances are
far too narrow to be observed in our experiment,3 it should be possible nonetheless
to observe some oscillations inside this Bragg cavity. Figure 5.7 shows a simulation
corresponding to our time-resolved experiment with increased contrast. We observe
that a small number of atoms perform oscillations between two symmetric positions
around the lattice center. Each time the atoms reach one of these positions, a small
proportion of the atoms leaks out of the cavity. These effects could not be observed
in the scattering experiment described in this chapter because of the low number of
involved atoms. We will see in the next chapter how it is possible to observe these
cavity effects with a similar setup.

5.7 Conclusion

In this chapter, we have presented the scattering of a Bose-Einstein condensate on
a Gaussian envelope lattice. The scattering can be considered as a way to probe a

3The free spectral range between two resonances is on the order of ∆vFSR ∼ vLd/L where
L ∼ 100 µm is the length of the cavity. Thus ∆vFSR ∼ vL/800.
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Figure 5.7: Numerical integration of the atomic density as a function of position
and propagation time for a lattice depth U0 = 11EL. The saturation as been greatly
increased to observe oscillations between two symmetric positions.

system. In our case, we probe directly the band structure of the lattice. There are
few experiments where a matter wave is used as a probe. An example is provided by
reference [95] where cold atoms are scattered by target atoms confined in an optical
lattice in a Mott insulator phase.

This system can be used to engineer the momentum distribution of the incoming
wavepacket. The interaction with the lattice can be used as a low-pass, high-pass
or notch filter depending on the explored region of parameters. In chapter 7, we
will show how we can improve the characteristics of this filter using an amplitude-
modulated lattice.

One open question that is currently under investigation is the effect of interatomic
interaction. With repulsive interaction, in this kind of scattering experiment, the
sample gets quickly too diluted. However, with attractive interaction (or with a
negative effective mass [96]), one can produce a solitary matter wave that does not
spreads over time. The scattering properties of these object are highly non trivial
(there is a possibility to produce mesoscopics Schrödinger cats [97]) and attract
recently much interest both theoretically and experimentally [98, 99].
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Chapter 6

Realization of tunnel barriers for

matter waves using spatial gaps

6.1 Introduction

The tunneling effect is a cornerstone of quantum mechanics according to which
a particle can penetrate and even pass through a classically impenetrable barrier.
This behavior results from the wave nature of particles and is at work in many
domains of physics including nuclear desintegration [100, 101], quantum electronics
[102, 103], scanning tunneling microscope [104], tunnel ionization [105, 106] and in
various superconducting devices [107, 108].

In the cold atom field, realizing a thin enough single barrier enabling one to
investigate the dynamics induced by the atomic tunneling through it remains very
challenging. This has been realized so far in at least three different ways to study,
for instance, the ac and dc atomic Josephson effect using (i) the combination of
an optical lattice and a harmonic potential [109], (ii) a strongly focussed far-off
resonance blue-detuned laser [110] and (iii) RF-dressed potentials [111].

The concept of the tunnel effect has also been generalized to other kinds of space.
The Landau-Zener transition between the energy bands of a lattice can be seen as
a tunnel effect in quasi-momentum space [112], and dynamical tunneling has been
introduced to describe the tunneling between classically trapped region in a regular
phase space [113].

In this chapter, we study the Bragg cavity briefly presented in the previous
chapter and resulting from the smooth envelope of the optical lattice [114, 115, 88,
91]. By loading atoms at the center of the lattice, we are able to directly observe
oscillations of a wavepacket along with single tunneling events whenever the packet
bounces off one of these effective mirrors. The outcoupling of matter wave through a
tunnel event is especially interesting since it provides a novel type of tunnel barrier
in real space.
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Figure 6.1: Real and imaginary part of the Mathieu exponent k with U0/EL = 2.5.
Regions where Im(k) 6= 0 are spatial gaps corresponding to evanescent waves. The
roman numbers indicate the band index. The white dashed line depicts the initial
energy distribution (95 % of the atoms).

6.2 Local band structure model

In this section, we present a simple local band structure model that allows to un-
derstand very simply the dynamics of the atoms in the Bragg cavity as well as the
tunneling out.

6.2.1 Position-dependent band structure

We place ourselves in the slowly varying envelope approximation d ≪ w. In this
case, we can associate with each position an equivalent infinite potential with a
depth:

U0(z) = U0 exp(−2z2/w2). (6.1)

We then work out the corresponding Mathieu exponent as a function of position and
energy. Figure 6.1 shows such local band structure with a maximum lattice depth
U0 = 2.5EL. It corresponds to an extended position-dependent band structure of the
lattice. We choose to represent this plot as a function of the square root of the energy
so that far from the lattice, we simply represent k as a function of the velocity. The
regions where Im(k) 6= 0 are the spatial gaps that separate different allowed bands.
If the width of the spatial gap is small enough, a particle can tunnel through it and
get outcoupled from the cavity. According to this picture, the reflection on a gap
corresponds to a Bragg reflection, while tunneling through the barrier is analogous
to a Landau-Zener transition to a different band transposed into the position space.
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The symmetry of the band structure originates from the symmetry of the Gaussian
envelope. Note that we have represented the band structure for positive energies only
(relatively to the continuum) so that any reflection in this context has no classical
counterpart. In the spatial gaps, the real part of k is set at one of the band edges.
Note that far from the lattice center, the spatial gaps are located at energies fulfilling
the Bragg condition

√

2E/m = nvL/2,1 where n is an integer.
We see that for these lattice parameters, there is a region in the center of the

lattice that is surrounded by two spatial gaps that define a Bragg cavity. In order to
observe the cavity effects with a maximum number of atoms, we should start with
an atomic wavepacket in this particular region, that corresponds to the third and
fourth band.

6.2.2 Transmission probabilities

As described in the previous chapter, the transmission of a monochromatic wave
with energy E through a single spatial gap can be readily calculated by integrating
the imaginary part of k over the forbidden region:

T (E) = exp
(∫

−2Im[k(z, E)]dz
)

. (6.2)

In Fig. 6.2 (b), the blue solid line represents this transmission probability through
half of the lattice for the same lattice depth as in Fig. 6.1 U0 = 2.5EL. At low
velocity, where the spatial gaps are wide, the transmission vanishes. As the energy
increases, the barrier becomes thinner and the transmission increases. It saturates
to T = 1 at energies

√

2E/m ∼ 7 mm/s where there is no gap at all. The presence
of the spatial gap between the third and the fourth band yields an other drop of
transmission for 7.2 <

√

2E/m < 8.5 mm/s. At higher velocities, there are no more
significant band gaps. In the experiment, we initially load the atoms at the center of
the lattice with an energy distribution that spreads over the third and fourth bands.
By energy conservation, the "trajectory" of an atom with a given energy remains an
horizontal line in the diagram of Fig. 6.1 and may be split on the spatial gaps as a
consequence of a partial tunneling.

Atoms at the bottom of the third band experience wide gaps and are reflected
with a probability close to one. We expect them to bounce back and forth quasi-
indefinitely. Atoms loaded at the top of the band see essentially no gap and leave
immediately the lattice. Between these two extreme cases, atoms have an intermedi-
ate tunneling rate and can leave the trap after one or several oscillations. The green
dashed line of Fig. 6.2 (b) thus represents the probability T2 = T (E)(1 − T (E)) to
bounce back on the first spatial gap then tunnel out of the cavity at the symmet-
ric position (see Fig. 6.2 (a)). Expectedly, it presents peaks denoted α and β at
energies corresponding to simple tunneling probabilities T ∼ 0.5 and saturates at

1vL = h/md
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Figure 6.2: (a) Schematic of the evolution of
the wavepacket inside the lattice and defini-
tion of T and T2. (b) Transmission probabil-
ities. Solid blue line: Transmission through
half of the lattice, the regions of reflection
correspond to wide band gaps. Red dotted
line: Transmission probability through a re-
pulsive Gaussian barrier of variance σ =
387 nm. Green dashed line: probability to
tunnel out of the lattice after one oscillation.

T2 = 0.25. Because the concerned classes of energy have been reflected once, we can
attribute unambiguously the outcoupling at the symmetric position as a tunneling
event. Moreover, because the atoms that do not see any gap leave the lattice region
on the other side, those that have performed one oscillation are spatially separated.

6.2.3 Comparison with a repulsive barrier

The projection of the band gaps into position space realizes a novel type of tunnel
barrier in real space. It is instructive to compare it with a repulsive tunnel bar-
rier. One way to characterize a tunnel barrier is to consider the transmission as a
function of the incident energy. In the classic regime corresponding to a very wide
repulsive barrier, it presents a sharp step at an energy equal to the barrier height.
As the barrier gets thinner, the step widens; the region where it passes from 0 to 1
corresponds to tunneling and quantum reflection. The width of the steps-like trans-
mission is thus a characteristic of the tunnel barrier, the larger the step the easier it
is to observe tunneling. The transmission curve in out case is more complicated but
also presents a step-like structure. In Fig. 6.2 (red dotted line), we fit the first step
(corresponding to the spatial gap β) by the transmission probability obtained from
a repulsive Gaussian barrier with adjustable width. We find the best agreement for
a standard deviation of the repulsive barrier σ = 387 nm. It would be quite chal-
lenging to realize such a barrier by optical means since it requires a blue-detuned
laser of waist w = 2σ = 775 nm close to its diffraction limit.2 The tunnel barrier
realized by a spatial gap can thus provide a good alternative to repulsive barriers.

2For example with a laser at 532 nm, this would require a numerical aperture N.A ∼ 0.5
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6.3 Experiment

We now present the experiment itself. The setup is essentially the same as in the
previous chapter.

6.3.1 Preparation of the initial wavepacket

In contrast with the scattering experiment presented in the previous chapter, in this
case we need to prepare the Bose-Einstein condensate at the same position as the
lattice. We then outcouple the condensate into the guide using the decompression
technique. The next step is to load adiabatically the wavepacket into the third and
fourth band. The adiabatic loading of atoms in an optical lattice is ubiquitous in
the cold atoms community but is usually realized with atoms at rest that are thus
loaded into the first band of the lattice. The principle of any adiabatic loading is
that during the process, the quantum state occupancies are conserved. In the case
of the loading into a lattice, it corresponds to the conservation of the band index
and the pseudo-momentum. To load the atoms in the third and fourth band of the
lattice with U0/EL = 2.5, we thus need to start with a wavepacket that spreads over
the third and fourth bands in the energy diagram of a lattice with vanishing depth.
In this case, the band diagram is nothing but a wrapped parabola, the n-th band
spreads over velocities:

(n− 1)/2 < v/vL < n/2. (6.3)

In contrast with the scattering experiments (see chapter 5 and 7), it is very
important that the wavepacket do not spread significantly compared to the size of
the lattice envelope during the acceleration stage. This is why we use this time
atoms in the mF = +1 state that are sensitive to a magnetic field gradient to the
first order so that we can accelerate them in a smaller amount of time. To produce
a condensate in this state, we used the vertical spin distillation presented in chapter
2. In the mF = +1 state, the Zeeman shift reads:

∆E = −µB

2
B. (6.4)

For our acceleration coil, this Zeeman shift yields an acceleration:

amF =+1 = − µB

2m
dB
dz

= 3.2 · 10−2 m.s−2/A. (6.5)

Experimentally, we choose to accelerate the wavepacket during 4 ms to the final mean
velocity v̄ = 9.4 mm/s using the magnetic gradient produced by the acceleration coil.
This choice corresponds to a mean3 magnetic gradient of 7.5 G/cm. The relatively
small acceleration time ensures that the wavepacket spreads by less than 10 µm

3Because of the final ramping time of the current in the acceleration coil, the acceleration is not
constant.
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Figure 6.3: Initial energy distribution after
the adiabatic loading. The distribution is
calculated by assuming the conservation of
the band index and pseudo-momentum dur-
ing the loading into the lattice. The energy
distribution spreads over the third and fourth
band essentially. This corresponds to the
white dashed line in Fig. 6.1

during this stage which is much smaller than the width of the lattice envelope. We
can then consider that the atoms still start at the center of the lattice. After the
acceleration stage, we immediately ramp up the lattice intensity adiabatically, i.e

such that [116, 117].

dU0

dt
≪ EL

~
∆E2

k/E
2
L, (6.6)

where ∆Ek is the energy difference between the initial state |n, k〉 and the first
excitable state |n′, k〉 on the adjacent band. Because EL/~ = 2π · 5.4 kHz, the
adiabaticity condition is easily fulfilled on submillisecond timescales except at the
band edges where ∆Ek vanishes.

We chose to ramp up the lattice linearly in 1 ms to the final lattice depth U0/EL =
2.5. We checked experimentally that the process is indeed adiabatic by ramping up
and down the lattice. The wavepacket after this procedure is unchanged which is a
good indication of the adiabaticity.

Finally, the whole procedure produces a wavepacket whose energy distribution
and initial position correspond to the dashed white line in Fig. 6.1 (95 % of the
atoms). The theoretical energy distribution (see Fig. 6.3) is not trivial and result
from the adiabatic loading into the lattice. To work it out, we start from the exper-
imentally measured initial distribution in free space and assume the conservation of
the band index and pseudo-momentum.

6.3.2 Propagation inside the lattice

We now let the wavepacket propagate for a variable time tprop before imaging the
atoms in situ. Figure 6.4 (a) shows the measured atomic density along the guide
during the propagation. Each horizontal line is the average of four images integrated
along the transverse direction. For sake of comparison, Fig. 6.4 (b) is the result
of the numerical integration of the Schrödinger equation with a wavepacket whose
characteristics match the experimental ones without any adjustable parameters. In
this experiment, all atoms are initially launched toward the right side of the lattice.
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Figure 6.4: (a) Measured density distribution of the wavepacket for different prop-
agation time. Each horizontal line is the average of 4 images integrated along the
transverse direction. (b) Direct numerical integration of the Schrödinger equation
for a wavepacket whose velocity distribution matches the experimental one.

Three effects can be noticed:

• A part of the wavepacket immediately leaves the lattice, it corresponds to
velocity classes (6.7 . v . 7.2 and v & 9.5 mm/s) that do not encounter a
significant band gap.

• A periodic oscillations inside the lattice can be clearly observed. The oscil-
lations have a spine shape that corresponds to caustics resulting from the
addition in these regions of the trajectories associated with different veloci-
ties. They have a period of approximatively 50 ms and are washed out after a
few oscillations, once again as a result of the dephasing between the different
energy components. We will describe these effects in detail in the section 6.4.

• In the direction opposite to the initial velocity we observe the emission from
the left side of the lattice of two atomic packets α and β. They leave the lattice
by tunneling through a spatial gap, and then propagate freely. These packets
are nothing but the atoms that have bounced back on the first spatial gap
and tunneled out of the cavity at the symmetric position. Their transmission
probabilities have been represented in Fig. 6.2(b). In Fig. 6.5, we also plot
the measured and theoretical proportion of atoms on the left side of the lattice
(at more than 150 µm from the center) as a function of time. It displays two
steps well reproduced by the simulation that represent each about 3 % of the
total number of atoms and correspond to the two tunneling events.
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Figure 6.5: Proportion of atoms on the left
side of the lattice. Experimental results (blue
solid line) and numerical integration without
any adjustable parameters (red dashed line).

6.3.3 Properties of the tunneled packets

Let us now focus on the properties of the two packets that tunnel out on the left
side of the lattice.

Mean velocities and interpretation

Using the data presented in Fig. 6.4 (a), we measure the mean position of the
two tunneled packets as a function of the propagation time to determine the mean
velocity (see Fig. 6.6 (b)). We find:

v̄α = 7.9 ± 0.1 mm/s and v̄β = 5.9 ± 0.1 mm/s. (6.7)

Figure 6.6 (a) presents the theoretical velocity distribution of the emitted packets
determined in two ways:

• By integrating the probability T2(E) over the initial energy distribution de-
picted in Fig. 6.3.

• By using the full resolution of the Schrödinger equation corresponding to
Fig. 6.4 (b).

The two methods yield similar results and predict two peaks centered at 5.9 and
8.3 mm/s using the band model calculation and 6.1 and 8.1 mm/s using the numeri-
cal integration, in good agreement with the measured values. We can thus attribute
the first packet (α) to a short oscillation of atoms initially on the fourth band, and
the second packet (β) to a longer oscillation of atoms initially on the third band.

Velocity dispersion

From the local-band model 6.3.3, we expect these packets to have a velocity disper-
sion on the order of ∆v ∼ 250 µm/s. This selectivity is as high as the one provided
by velocity-selective Raman transitions [118, 119] and does not requires any specific



6.4 Dephasing between energy components 107

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

0.1

0.12

20 30 40 50 60 70 80
100

200

300

400

500

600

v (mm/s) tprop (ms)

f
(v
)
(a
rb
.u
n
it
s)

P

o

s

i

t

i

o

n

(

µ
m

)

(a) (b)

αβ

Figure 6.6: (a) Calculated velocity distribution of atoms that leave the lattice after
one oscillation using the local band model (green dashed line) and the full numerical
integration (blue solid line). (b) Experimental measure of the positions od the tun-
neled packets as a function of tprop. Linear fits result in measured mean velocities
v̄α = 7.9 ± 0.1 and v̄β = 5.9 ± 0.1 mm/s.

internal state configuration. The maximum transmission probability of T2 being,
however, smaller than 1.

Surprisingly, the two packets do not seem to expand over several tenth of ms
while after 50 ms of propagation, while according to their velocity dispersion, we
could naively expect an increase of the width by more than 10 µm which should
be visible. Actually, the simulation indicates that the wavepackets are focused at a
finite time (at tprop ≃ 70 ms for the packet α). This is a consequence of the fact
that different velocity classes are outcoupled at different times. The most energetic
atoms travel faster in the cavity, however, they see a larger effective cavity (see
Fig. 6.1). As we will see, it turns out that the second effect is more important
so that the oscillation period increases with the energy. Concerning the tunneled
packet, this results in an chirped pulse with the high frequencies at the back. High
velocities then catch up with the slow ones at a finite time. This effect hinders a
direct measurement of the velocity dispersion.

6.4 Dephasing between energy components

In this section, we describe more precisely the dephasing between the different energy
components and propose a way to cancel it.

6.4.1 Semi-classical trajectories

To understand quantitatively the effect of dispersion between the different energy
components, we developed a semi-classical simulation that enables one to isolate
the dynamics of the different energy components. It contains two ingredients. The



108 Realization of tunnel barriers for matter waves using spatial gaps

first one is the description of the particle motion on a given Bloch band n through
the combined evolution of the wavepacket position and mean pseudo-momentum k

(in this sense it is a semi-classical simulation). The corresponding set of coupled
equation reads

ż =
1
~

∂En

∂k
and k̇ = −1

~

∂En

∂z
. (6.8)

The first equation defines the group velocity of the wavepacket associated with the
slope of the Bloch band, while the second results from the energy conservation
condition dEn(k, z)/dt = 0 [81].

The second ingredient consists in taking into account the possibility for a particle
to undergo a Landau-Zener transition to an other band when it reaches the edge or
the center of the Brillouin zone where it reaches a gap. In our case, the approximation
of a local two-level situation is valid and therefore, the probability to change the band
index is P = e−2πγ with

γ =
∆E2

4~

∣

∣

∣

∣

∣

d
dt

(En −En±1)

∣

∣

∣

∣

∣

−1

(6.9)

where ∆E is the size of the gap [90].
In practice, we evolve the particle according to Eqs. (6.8) and we evaluate the

energy difference to lower or upper bands at each time step. When this quantity
reaches a minimum (at the center of the edge of the Brillouin zone), we compute
the corresponding Landau-Zener probability and transfer or not the particle to the
next band according to this probability.

In order to validate this semi-classical trajectory method, we compare it with the
full resolution of the corresponding 1D Schrödinger equation. To perform this com-
parison, we have simulated the semi-classical trajectories of 1200 incoming velocities
about the mean velocity of the packet in the following range 5.6 < v < 13.2 mm/s.
In this way, we sample 95 % of the initial distribution (see Fig. 6.3). Furthermore,
we perform 8 shots for each incoming velocity to improve the statistics of our Monte
Carlo simulation. For each velocity class, we get the density from the positions of
the different shots weighted by the initial wavepacket velocity distribution density.
Figure 6.7 (a) shows the result of such simulation with the same parameters as
in the experiment. We find a good agreement with Fig. 6.4 which validates the
semi-classical simulation.

The interest of this simulation lies in the possibility to isolate different trajec-
tories. In Fig. 6.7 (b), we have selected some trajectories for particles initially on
the third band. We see that the spine structure observed in the experiments corre-
sponds to the caustics indicated by the arrows. We also observe the increase of the
oscillation period with the energy, indeed, the trajectories that travel the furthest
away from the center (that correspond to more energetic atoms) bounce back at a
larger time. This results here in the chirp of the tunneled wavepacket β which is
visible in the fact that the two trajectories associated with the tunneled packet move
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Figure 6.7: (a) Density distribution for different propagation time reconstructed by
simulating the semi-classical trajectories for the whole initial velocity distribution.
(b) Examples of trajectories of particles initially on the third band. We observe the
building up of the caustics and the dependency of the oscillation period with energy.

towards each other.

6.4.2 Optimization of the envelope shape

The dephasing of the different energy components may appear as a limitation of
the Bragg cavity device, it enlarges the initial width of the tunnel packet which
increases the width of the steps observed in Fig. 6.5 and reduces the number of
visible oscillations. Nevertheless, it is possible to circumvent this limitation by
keeping the different energy components in phase with a proper shaping of the
envelope.

This shaping consists in adjusting the effective size of the cavity for each velocity
class to compensate exactly for the change in group velocity. As outlined before, in
the case of a Gaussian envelope, as the energy increases, the corresponding increase
of cavity length overcompensate the increase of the group velocity. In order to keep
the different energy components in phase, we should thus reduce the dependency of
the cavity length as a function of the energy. This means that the "walls" of the
cavity as presented in Fig. 6.1 should be steeper. In the following, we demonstrate
the optimization of the envelope shape using the simple ansatz :

U(z) = −U0 exp(−2z2/w2)

(

1 +
z2

D2

)

, (6.10)

where D is a free parameter. Such an envelope could be realized for example by
using holographic plates. This ansatz keeps the symmetry of the Gaussian envelope
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but has steeper spatial gaps if D > 0. The simplicity of the ansatz also ensures that
the result of the optimization possesses a relatively simple shape.

Because of the caustic effect, it is difficult to define an oscillation period using the
full numerical integration. Thereby, we have performed this optimization using the
semi-classical model. We simulate the trajectories of particles with nearby energies,
measure the variation of the oscillation period and change D in order to cancel out
the first order variation of the oscillation period with energy.4 For our parameters, we
find D = 0.75w = 112 µm, the new envelope is very smooth and has a flat top. We
then check with the full numerical integration that the optimized envelope reduces
effectively the dephasing. In Fig. 6.8, we compare the results for a packet of velocity
dispersion ∆v = 1.2 mm/s for the semi-classical approach and the full numerical
integration with and without the optimization. The blurring of the oscillations
is greatly reduced and therefore all velocity components tunnel at the same time
generating a train of matter wave pulses with an identical and well-defined velocity
dispersion and no chirp.

6.5 Conclusion

We have demonstrated that spatial gaps resulting from an inhomogeneous envelope
of a lattice produce barriers with a probability transmission equivalent to thin real
barriers of a few hundreds of nm. They open new perspectives for single tunnel
barrier physics including time-modulated tunnel barrier, many-body wavefunctions
(such as solitons) tunneling [120, 121, 122], Josephson-like experiments [111, 110].
This system is also of interest for multiple barriers configurations including cavity
or Anderson localization investigation in real space [123, 75]. It can be readily
generalized to higher dimensions and may be used as a test bed for semi-classical
approaches of tunneling in 2D [124].

4It is possible to extend the ansatz to higher order to cancel out the second derivative of the
oscillation period, however the resulting potentials have a much more complicated shape that would
not be relevant experimentally.
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7.1 Introduction

Cold atoms interacting with time-modulated optical lattices display a wide variety of
quantum and classical dynamics. These include the observations of dynamical local-
ization [125, 126], chaos-assisted tunneling [78, 119], the Anderson metal-insulator
transition in momentum space [127], dynamically controlled tunneling [128, 129, 130]
and matter wave engineering [131, 132, 133, 134]. In this chapter, we study the prob-
lem of matter wave scattering on a time-modulated lattice.

In chapter 5, we have demonstrated the possibility to perform momentum engi-
neering using the scattering of a matter-wave on a static lattice. However, in this
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case, the Bragg reflection condition is directly related to the lattice spacing and
therefore, cannot be easily tuned over a large range. In contrast with a scattering
experiment in optics, we are able to control easily the potential strength in time
which offers a new degree of freedom. As we shall see, the interaction of the matter
wave with an amplitude-modulated lattice yields new reflection conditions that offer
much more flexibility and render possible the realization of a tunable Bragg reflector
in confined geometry.

In this chapter, we first present the experimental protocol and the results of
the scattering experiment. We then analyze these results using a very simple ap-
proach based on interband transitions. Next, we propose an analysis relying on the
semi-classical model presented in chapter 6 in combination with the Floquet-Bloch
framework. This allows to get a deep insight into the physics at play in this system.

7.2 The experiment

7.2.1 Protocol

The protocol of this experiment is very similar to the one presented in chapter 5. We
start with a cooled atomic packet at 500 µm from the lattice center. Here we do not
use a Bose-Einstein condensate but rather a thermal cloud of typically 105 atoms at
500 nK in order to probe the modulated lattice for a wide range of incoming velocity
in a single shot. The atoms are prepared in the state mF = 0 using the horizontal
spin distillation. We then switch off the dimple beam (without decompression) and
release a packet of resulting longitudinal velocity dispersion ∆v ≃ 6 mm/s. Atoms
are subsequently accelerated in tacc = 15 ms to a mean velocity v̄ = 10 mm/s by
an inhomogeneous magnetic field pulse. The atoms then propagate towards the
modulated lattice and interact with it for a time tprop before imaging.

The lattice amplitude is modulated at a frequency ν in the kHz range, the time-
dependent potential experienced by the atoms reads:

U(z, t) = −U0(t)e−2z2/w2

(1 + cos(kLz)), (7.1)

with
U0(t) = U0(1 + η cos(2πνt)), (7.2)

where η is the modulation amplitude. η can be quite large in the experiment and is
often taken equal to 30%. In the following experiments, the mean lattice depth and
modulation amplitude are kept constant and we vary the modulation frequency.

7.2.2 Control of the intensity

In order to accurately control the mean depth U0 and the modulation amplitude η,
we use a "double" feedback scheme whose principle is diagrammatically represented
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Figure 7.1: Sketch of the feedback system to lock both the DC and AC component of
the lattice beams intensity. The amplitude of the AC component is measured using a
lock-in amplifier. Symbols: X: multiplier (AD633),
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gain, Cd: electronic command of the lattice depth or modulation amplitude, Low-
Pass: 100 Hz low-pass filter.

in Fig. 7.1. The power in the lattice beams is controlled via a single AOM prior
to the beam separation. A photodiode with a 100 MHz bandwidth measures the
intensity of the lattice beams and is set on one arm after the vacuum chamber.
The lower part of the diagram 7.1 concerns the DC component and is simply made
of a pure integrator. The timescale of this integrator is such that it averages the
AC component. The AC modulation is injected after the integrator, its amplitude
is locked using the upper part of the diagram. In the upper part, the photodiode
signal is multiplied by a signal at the modulation frequency and subsequently filtered
to realize a lock-in amplifier. The error signal resulting from the substraction of
the command is then multiplied with the reference modulation and injected to the
command of the AOM.

7.2.3 Experimental results

Figure 7.2 (b) shows the atomic density after a propagation time tprop = 78 ms as
a function of the modulation frequency ν with a mean lattice depth U0 = 2EL and
a modulation amplitude η = 30 %. Each horizontal line is obtained by averaging 8
images integrated along the transverse direction to improve the signal to noise ratio.
Atoms are launched at z = 0 towards the lattice, located 500 µm downwards and
depicted by the dashed line. Atoms on the right side of the plot (z > 500 µm) are
transmitted. In this complicated transmitted part, we observe two kinds of density
dips:

• dips whose positions do not depend on the modulation frequency (vertical
depletion lines) and that correspond to velocity classes fulfilling the Bragg
reflection condition on the static lattice as presented in chapter 5.
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Figure 7.2: (a) Sketch of a
propagating atomic packet im-
pinging onto an optical lattice
whose amplitude is modulated.
(b) Measured longitudinal density
n(z, tacc + tprop) after a propa-
gation time tprop = 78 ms for
a variable lattice modulation fre-
quency ν (lattice depth U0 =
2EL. The modulation depth is
η = 30%, and the lattice posi-
tion is depicted by the dotted line.
(c) Numerical simulations convo-
luted with a 10 µm wide Gaussian
to match the experimental reso-
lution. Frequency-dependent dips
are observed in the transmitted
distribution. Dotted, dot-dashed
and dashed lines in (c) show the
linear dependence of the dip posi-
tion with ν.
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• Dips whose positions depend on the frequency. As we shall discuss below,
some dips of the latter category have their counterpart in the reflected packet
and correspond to reflected class of velocity while others are due to slowing
down or acceleration effects.

For sake of comparison, Fig. 7.2 (c) is the result of a numerical simulation of
the atomic packet dynamics using the one-dimensional Schrödinger equation with
a wave packet whose initial momentum and position distributions match the mea-
sured experimental values. We find a very nice agreement between simulations and
experiment. However, the elementary mechanisms at work cannot be inferred from
such an approach.

Except for the zones very close to the depletion lines in the transmitted part in
Fig. 7.2, each position downward the lattice can be mapped onto a well defined class
of incident velocity z ≃ v0(tacc + tprop) +K where K is a constant.1

Let us characterize the different depletion lines. Using the correspondence be-
tween x and v0: the main depletion line (white dashed line) in Fig. 7.2 (c) has a
slope dν/dv0 = (660 nm)−1 ≃ 1/d. We also observe directly the corresponding re-
flected atoms in the region x < 0. The red upper dashed line of depleted atoms is
parallel to the main line but has no counterpart in the reflected region. The white
dot-dashed and dotted lines, have slopes respectively twice and three times as large
as the one of the dashed white and red depletion lines. In this experiment, the lat-
tice spacing d is one of the two relevant distances (the other one being the envelope
waist). It is thus not surprising to find that the slopes of the depletion lines have
simple relations with d. However, the absence of numerical factor in the relation of
the type dν/dv0 = n/d with n integer may seem astonishing.

7.3 Interband transitions in the vanishing depth

limit

In this section, we present a very simple model based on interband transitions that
allows to reproduce the slopes and relative positions of the depletion lines.

Let us consider the case of a vanishing depth lattice and consider an incident
quasi-monochromatic wave packet of velocity v0. In the vanishing depth limit, the
band structure is constructed by the superposition of parabolic energy spectra cen-
tered around all reciprocal points En(k) = ~

2(k − nkL)2/2m, where n is an integer.
For instance, bands 2 and 3 are constructed from the parabolas centered at ±~kL

(see Fig. 7.3). The incoming velocity v0 dictates the band in which the incom-
ing atom enters. For instance, if 3vL/2 < v0 < 2vL the atom will be on band 4.
According to this figure, there are two possibilities symmetric around k = 0. We

1If a denotes the acceleration experienced by the atoms during the magnetic pulse, one finds
K = atacc(tacc/2 − tprop).
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of the parabola from which the corresponding
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always choose the side where the group velocity of the wavepacket is positive, that
corresponds to a positive slope of the band diagram.

Let us now assume that the modulation of the lattice can drive interband transi-
tion between two distinct parabolas n and n′. The time-dependent coupling poten-
tial possesses the simple form V ∼ cos(kLz). The probability of transmission from
a Bloch state ψp,k to a state on a different band ψp′,k′ is then be proportional to

|〈ψp′,k′|V |ψp,k〉|2 =
∫

e2i(k−k′)z cos(kLz)u
∗
p′,k′(z)up,k(z)dz. (7.3)

This matrix element vanishes as soon as k 6= k′, because of the symmetry of the
modulation potential and the periodicity of the Bloch functions up,k(z). The mod-
ulation can thus only drive vertical transitions that leave the pseudo-momentum
unchanged.

The interband transition frequency that promote an atom from a band p corre-
sponding to the n-th parabola to a band p′ (n’-th parabola) are given by:

±νn→n′ = (En −En′)/h. (7.4)

The sign + (−) corresponds to a transition to a lower (upper) band. By energy
conservation, we have

1
2
mv2

0 = En(κ). (7.5)
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tions.

Combining Eqs. (7.4) and (7.5), we get

±νn→n′ =
En − En′

h
= −(n − n′)2νL +

n′ − n

d
v0, (7.6)

where we remind that νL = EL/h. According to Eq. (7.6), the interband transition
resonance frequency varies linearly with the incident velocity with a slope (n′ −n)/d,
where n′ − n is an integer. It is thus very tempting to associate each depletion line
with an interband transition. Let us precise this correspondence.

In Fig. 7.4, we have represented different resonance frequency associated with
the transitions from the initial parabola n to the parabola n′ using Eq. 7.6 as a
function of the incident velocity. For each line, we have also indicated two numbers:
the first corresponds to the band on which atoms initially lie according to their
incident energy E = mv2

0/2 while the second corresponds to the band on which
atoms are resonantly transferred by the modulation. As an example, let us consider
the green dotted depletion line in Fig. 7.4. In the incident velocity domain 3vL/2 <
v0 < 2vL, it corresponds to a resonant transition between bands 4 and 3. In the
domain 2vL < v0 < 5vL/2, it corresponds to a transition between the band 5 and 2
(see Fig. 7.5). Figure 7.5 shows the correspondance between interband transitions
and transitions between different parabolas in the case of the (green) transition
n = −2 → n′ = 1 and (black) n = −1 → n′ = 0. We see that the succession on
the same line of different interband transitions is merely due to the folding of the
parabolas in the first Brillouin zone.

The following table shows the equations associated with the represented transi-
tions:

red n = 0, n′ = −1 ν = νL + v0/d

black n = −1, n′ = 0 ν = −νL + v0/d

blue n = −1, n′ = 1 ν = −4νL + 2v0/d

darkgreen n = −2, n′ = 1 ν = −9νL + 3v0/d
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Figure 7.5: Illustration of the correspondance between a transition from two parabolas
and two bands. (a) Transition (green) n = −2 → n′ = 1. (b) Transition (black)
n = −1 → n′ = 0.

The four transitions represented here correspond very accurately to each one of
the depletion line in terms of the slopes of the depletion lines but also of their relative
positions (The offset between the two parallel dashed lines in the experimental figure
7.2 is in particular equal to 2νL ≃ 10.8 kHz.). The transition n = 0 → n′ = −1
matches the red dashed depletion line, n = −1 → n′ = 0, the main depletion (white
dashed line), n = −1 → n′ = 1 and n = −2 → n′ = 1 the dot-dashed and dotted
lines respectively. This constitute a very strong evidence that interband transitions
are at the heart of the reflection process.

To get a better understanding of the width of the depletion lines, their inter-
pretation in terms of elementary processes, the timescale on which the reflections
occur and the role played by the Gaussian envelope of the lattice potential, we intro-
duce now a more elaborated analysis based on the local Floquet-Bloch framework
[81, 135].

7.4 The Floquet-Bloch framework

7.4.1 Principle

This approach is not restricted to small modulation depths and is thus well-adapted
to analyze the experimental situation. For a potential periodic in both space and
time, the Bloch theorem can be extended to the time domain. The solutions of
the time-dependent Schrödinger equation then possess the form of a Floquet-Bloch
state:

ψn,k(z, t) = ei(kz−εn(k)t/~)un,k(z, t), (7.7)
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where εn(k) are the quasi-energies. The functions un,k(z, t) are biperiodic in space
and time and therefore can be Fourier expanded:

un,k(z, t) = un,k(z + d, t) = un,k(z, t+ T )

=
∑

l

∑

nF

φnF ,lei(lkLz−nF ωt), (7.8)

where ω = ν/2π. In the following, we restrict ourselves to nF ∈ {−1, 0, 1} i.e to
situations in which only one Floquet photon can be absorbed or emitted.2 As in the
static lattice case, we can build a band diagram described by a band index and a
pseudo-momentum. At zero modulation depth, the Floquet-Bloch band diagram is
nothing but the superposition of static lattice Bloch diagrams shifted by nF~ω.

7.4.2 Computation of the Floquet-Bloch band diagram

To compute the Floquet-Bloch states and quasi-energies, we insert the developments
(7.7) and (7.8) into the Schrödinger equation and expand the potential on the Fourier
basis. The details of the development can be found in appendix G. The coefficients
φnF,l obey the following eigenvalue equation:

[

nFζ + q/2 + (k/kL + l)2
]

φnF,l + ηq/4(φnF+1,l + φnF−1,l) − q/4(φnF,l+1 + φnF,l−1)

−q/8(φnF+1,l+1 + φnF+1,l−1 + φnF−1,l+1 + φnF−1,l−1) = εφnF,l,

(7.9)

where q = U0/EL and ζ = ~ω/EL are the normalized lattice depth and modulation
frequency. This system can be decomposed into a block matrix eigenvalue problem:









A− ζ C 0
C A C

0 C A+ ζ









×









φ−1

φ0

φ1









=
ε

EL









φ−1

φ0

φ1









(7.10)

where

φnF =









φnF,−N

...
φnF,N









(7.11)

2This assumption suffices to capture all observed phenomena on the experiment. The extension
to larger Floquet excitations is straightforward.
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Figure 7.6: (a) Floquet-Bloch band diagram with a depth U0 = 2EL and modulation
frequency ν = 11 kHz. Band color code: green −0.5 < 〈nF 〉 < 0.5, red 〈nF 〉 >
0.5 and blue 〈nF 〉 < −0.5. (b) Probability of reflection obtained from a numerical
simulation of a 1D wavepacket with an incident velocity dispersion ∆v = 0.2 mm/s
with a finite square-envelope lattice as a function of the incident energy and ν. The
horizontal white dashed line shows the case ν = 11 kHz that corresponds to the
diagram (a). The horizontal dashed (dotted) lines denotes open gap (degenerate)
anticrossings. Only open gap anticrossings yield reflection.

is the part of the eigenstate with nF Floquet excitations.

A =





















b−N u

u b−N+1 u
. . . . . . . . .

u bN−1 u

u bN





















(7.12)

with u = q/4 and bl = (k/kL + l)2 − q/2. The matrix A is the same as in the static
case. The matrix C that couple the different domains reads:

C = ηq/4

















1 −1/2

−1/2
. . . . . .
. . . . . . −1/2

−1/2 1

















(7.13)

In the absence of modulation, C = 0, the problem is separable and the band dia-
gram is simply the superposition of static Bloch diagrams shifted by nFζ . As the
modulation increases, the matrix C couples the different diagrams, at each crossing
between the initially independent band diagrams, an anticrossing appears.
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Figure 7.6 (a) shows such Floquet-Bloch diagram with U0 = 2EL, ν = 11 kHz and
η = 30%. The different colors correspond to the mean number of Floquet excitation
〈nF〉 = −|φ−1|2 + |φ1|2 of the corresponding eingenstate.

The band color code is the following: green −0.5 < 〈nF〉 < 0.5, red 〈nF〉 > 0.5
and blue 〈nF〉 < −0.5.

7.4.3 Reflection on a square envelope lattice

In the Floquet-Bloch band diagram, two kinds of anticrossings can be identified:
those yielding open gaps (horizontal dashed line in Fig. 7.6) and those without gaps
for which two states with the same quasi-energy are available (horizontal dotted
line in Fig. 7.6).3 To identify the role of the different types of anticrossings on
the incident matter wave packet, we have performed a 1D simulation that solves the
corresponding time-dependent Schrödinger equation in the case of a square envelope
lattice with 80 lattice sites, a depth U0 = 2EL and a modulation η = 30%. Figure
7.6(b) depicts the reflection coefficient as a function of the incident energy E0 and
the modulation frequency ν calculated by simulating the dynamics of wavepackets
with a narrow velocity dispersion ∆v = 0.2 mm/s. Two types of reflection can
be clearly identified: (i) those due to Bragg reflection onto the static lattice (no
dependence on ν) and (ii) those that correspond to open gap anticrossings and
whose positions depend on ν. The interpretation is clear: when the incident energy
falls in an open gap anticrossing, no propagating state is available and the particle
is reflected. The degenerate anticrossings do not induce reflection in the square-
envelope case. However, as we discuss below, they turn out to play an important
role in the dynamics of the experimentally relevant case in which the lattice has a
slowly varying envelope.

7.5 Trajectories in the semi-classical model

In this latter case, the situation turns out to be radically different since the system
can follow adiabatically a quasi-energy band during its time evolution. To describe
this propagation, we use the semi-classical model presented in the previous chapter
and apply it to describe the motion of a fictitious particle in the Floquet-Bloch band
diagram. We remind that the semi-classical simulation contains two ingredients. The
description of the particle on a given local Floquet-Bloch band through the evolution
of the wavepacket position and pseudo-momentum via the semi-classical equation:

ẋ =
1
~

∂εn

∂k
and k̇ = −1

~

∂εn

∂x
. (7.14)

3A third state far from the anticrossing and corresponding to a well-defined number of Floquet
excitation can be present but do not alter the physics.
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The second ingredient consists in taking into account the possibility to undergo a
Landau-Zener transition to a different band with the probability P = e−2πγ with:

γ =
∆E2

4~

∣

∣

∣

∣

∣

d
dt

(εn − εn±1)

∣

∣

∣

∣

∣

−1

(7.15)

7.5.1 Validation of the semiclassical model

To validate the semiclassical trajectory method in the Floquet-Bloch frame, we com-
pare it with the full resolution of the Schrödinger equation. In this case, we have
simulated the semiclassical trajectories of 1700 incoming velocities about the mean
velocity of the packet in the following range −4.5 mm/s < v0 < 24.5 mm/s. In this
way, we sample 98 % of the initial distribution. Furthermore, we perform 35 shots
for each incoming velocity to improve the statistics of our Monte Carlo simulation.

For each velocity class v0, we get the density from the final positions of the
different shots weighted by the initial wavepacket velocity distibution at v0. Figure
7.7 provides an example of such a comparison for ν = 20 kHz. The key features
are very well captured by the semiclassical simulation and the three depletion lines
in the transmission are clearly visible. The arrows indicate the interband transition
associated with each of these depletion. This comparison thus validates the semi-
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shown in Fig. 7.2. (b) Local Floquet-Bloch diagram. Arrows denote the trajectories
followed by the fictitious particles. (1) Reflection on an open gap v = 10.3 mm/s, ν =
8 kHz.(2) Reflection on an anticrossing without gap v = 15.8 mm/s, ν = 20 kHz.
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classical approach in this case.

7.5.2 Analysis of the reflection mechanism

We can now use the semiclassical model to analyze the different mechanisms yielding
to depletion bands as observed in Fig. 7.2. For this purpose, we follow determinis-
tically the branch for which the Landau-Zener transition probability is above 1/2 at
an avoided crossing. This select the most probable trajectory. To illustrate the wide
variety of possibilities, we shall choose three generic and different set of parameters
(vi, ν) yielding to dips in the output density distribution (see labels 1, 2 and 3 in
Fig. 7.2(c)).

In Fig. 7.8(a), we plot the velocity along with the mean Floquet excitation num-
ber for each case and for the main trajectory given by the Monte-Carlo simulation.
In Fig. 7.8(b) we show the corresponding Floquet-Bloch diagrams in the region of
interest. When a particle is moving toward the center, all quasi energies decrease
since the amplitude of the attractive lattice increases. As a result, the particle state
moves up relatively to the band diagram. In the same way, if the particle is moving
backward, it will go down the hills of the diagram. With these simple pictures in
mind trajectories can be readily interpreted.
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Figure 7.9: (a) position of the fictitious particle as a function of the propagation
time for the trajectory (1) of Fig. 7.8. (b) Illustration of the particle motion, this
particular trajectory is highly non trivial.

In each case, the key phenomenon is the absorption or stimulated emission of a
Floquet photon by adiabatic following of the Floquet-Bloch band denoted by α in
Fig. 7.8.

• In case (1), the particle emits a Floquet photon at tprop ≃ 40 ms, which
changes the sign of the group velocity. The particle is thus moving away from
the lattice center. It then performs a reflection (denoted β) when reaching the
bottom of the band (the sign of the group velocity is switched back again).
When reaching the same position as for the first emission α, the particle then
absorbs a Floquet photon (α′) before leaving the lattice. In position space, the
trajectory is thus also highly non-trivial (see Fig. 7.9).

• The case (2) is very similar except that the first emission only slows down the
particle which is then Bragg reflected and subsequently accelerated by Floquet
photon absorption. Note that in this case the anticrossing is closed (there are
always two degenerate states) so that such anticrossing does not induce any
reflection in the square envelope case.

• In case (3), the particle is not reflected. It is only transiently accelerated in
the lattice by a Floquet photon absorption-emission cycle. For a much longer
time, the dip observed in Fig. 7.2 would thus be refiled.

Other features of the experimental and numerical diagrams of Fig. 7.2 can be
readily explained thanks to our semiclassical model. For instance, the density bump
above the white dashed line corresponds to atoms that have been slowed down.

For a given incident kinetic energy E0, a large size of the envelope and/or a large
modulation depth increases the efficiency of the process since it favors an adiabatic
following of the anticrossings. A less intuitive feature concerns the lattice depth.
Indeed, a small lattice depth (U0 < E0) increases the selectivity of the class of
incident velocities that are affected by the modulation. Indeed, the selectivity is
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Figure 7.10: (a) Density distribution for the scattering on a two-frequency modulated
optical lattice (same conditions as in Fig. 7.2) for a fixed frequency ν1 = 16 kHz
and a scanned frequency ν2. A narrow slice of transmitted atoms is produced (see
arrow). (b) Number of atoms and velocity dispersion associated with these narrow
slices of transmitted atoms as a function of ν2. Inset: mean velocity of the slice of
atoms as a function of ν2.

determined by the variation of the position of the anticrossing along the lattice. As
the depth of the lattice increases, all quasi-energies decrease by a quantity that is
roughly equal in a first approximation to the mean potential U(z)/2.4 A particle
with an energy larger than the anticrossing energy thus cannot absorb a Floquet
photon. A particle with an energy smaller than the anticrossing energy can absorb
a Floquet photon if in the course of the propagation, its trajectory reaches the
anticrossing which is possible only if the difference of energy is smaller than U0/2.
The width of the depletion line thus decreases with a small lattice depth.

7.6 Application:velocity filter

The narrowest velocity filters used in the cold atom community rely on velocity
selective Raman transitions on atoms in free space. This technique involves a com-
bined change of internal and external states. The achievable velocity width are in
the range of 200-300 µm/s [118, 119, 136]. Using the scattering on amplitude mod-
ulated optical lattice we demonstrate hereafter a new technique to realize a velocity
filter with a width slightly larger than the state of the art with velocity selective Ra-
man transitions. Our technique uses only the external degrees of freedom and thus
does not require any specific internal configuration. In addition it is well adapted
for guided matter waves.

We turn our device into a tunable momentum filter by combining different mod-
ulation frequencies. We use here the main reflection line (white dashed line in

4This is particulary true if the typical kinetic energy is large compared to the lattice depth.
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Fig. 7.2) that acts as a notch filter in momentum space. For this purpose, we mod-
ulate the lattice with two different frequencies to create a transmitted band between
two rejected ones: U0(t) = U0(1 + η cos(2πν1t) + η cos(2πν2t)). Strictly speaking,
the detailed dynamics of a wave packet submitted to this two frequency and non
perturbative modulation cannot be inferred directly from the single frequency dy-
namics. However, the simple picture according to which nearly independent dips
can be drilled into the velocity distribution with two frequencies is quite robust.
We observe that the reflection spectrum is roughly the product of the two indepen-
dent spectra (see Fig. 7.10). The mean velocity of the slice of atoms is therefore
governed by d(ν1 + ν2)/2 while its width is controlled by the frequency difference
|ν2 − ν1|. In our set of experiments, ν1 is fixed at 16 kHz and ν2 is varied from 16
to 20 kHz. Between the two reflection lines, atoms in a narrow class of velocity are
transmitted (arrow in Fig. 7.10). The slice contains about 1000 atoms and has a
mean velocity on the order of 15 mm/s (inset of Fig. 7.10). The minimum velocity
dispersion of the velocity filter that we have designed is on the order of 450 µm/s
for our parameters

7.7 Conclusion

The matter wave engineering presented here does not have any fundamental limit. It
is easily tunable by changing the modulation frequencies and complex transmission
spectra can be designed by using a multifrequency modulation. A further improve-
ment of velocity selection could be achieved using a smaller depth lattice which
would realize a narrower filter combined with a larger waist size to conserve a max-
imum reflection probability on the order of 1. One fundamental advantage of this
technique over filtering using Raman velocity selection lies int the fact that it does
not rely on a specific internat level configuration. This technique can thus be trans-
posed easily to other species. By construction, it is well adapted to 1D geometry
and therefore enhances the toolbox of guided atom optics.



Conclusion

In this thesis, we have described two separate studies: the realization of Zeeman
Slowers using permanent magnets and the scattering of matter waves on complex
potentials provided by an optical lattice with a finite size envelope.

• In the first project we have studied two different configurations: the dipole

configuration were two arrays of dipole-like magnets are distributed on each
side of the atomic beam, and the Halbach configuration were the magnets
are distributed all around the atomic beam. The magnets configuration then
realizes an approximation of the ideal Halbach cylinder which produces highly
homogeneous magnetic field. Both slowers offer state of the art performances
i.e an atomic flux at ∼ 30 m/s of 1 − 5 × 1010 at/s that allows to load a
large MOT in less than 1 s. An important difference compared to wire-wound
Zeeman slowers is that in this case the magnetic field is transverse. The main
effect being that the addition of a repumping beam is mandatory (while it is
optional in a conventional ZS). Permanent magnets based slowers offer several
interesting advantages compared to conventional Zeeman slowers: it does not
require high currents nor water cooling, is easy to assemble without vacuum
breaking, which is useful for high-temperature baking and is very easy to build.
We believe that wherever the necessity of an additional repumping beam is not
an important issue, this configuration is superior to the common wire-wound
Zeeman Slower.

• The second project is about the scattering of a cold atom matter wave on
a complex potential realized by a finite size lattice. We have first presented
the experimental setup that allows us to produce Bose-Einstein condensate
in a crossed dipole trap. We typically obtain rather small condensates of
about 5×104 atoms in a well defined magnetic state using the spin distillation
technique. We then described the setup of the finite size optical lattice and
the calibration of its depth using Kapitza-Dirac diffraction. The next chap-
ter presents some theoretical tools useful to describe particles in a periodic
potentials and to study the scattering on such potentials. In particular, we in-
troduced the solutions of the Mathieu equation that allow to extend the notion
of Bloch state to the case where the energy lies in a gap of the band structure.

In the next chapter, we presented the experimental study of the scattering of
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a guided matterwave on a finite length optical lattice. We have presented the
outcoupling of the condensate in the guide in order to minimize the velocity
dispersion. Then we described a time-resolved scattering experiment and the
measurement of the transmission spectrum by varying the lattice depth. The
whole lattice can be seen as a Bragg reflector. The properties of the Bragg
mirror are described within the slowly varying envelope limit. Because of
the rich structure of the transmission spectra, depending on the lattice and
wavepackets parameters, the Bragg reflector can be used as a low-pass, band-
pass or high-pass filter.

Next, we have studied in detail the cavity effects associated with the presence
at two symmetric positions of two Bragg mirrors. In this experiment, we
load initially the atoms at the center of the lattice on a high band of the
lattice energy structure (the third band essentially). The atoms then see two
semitransparent mirrors with an energy-dependent transmissivity. We let the
atoms propagate in the lattice, and observe oscillations of the wavepacket
inside the cavity as well as localized tunneling events when the wave packet
reaches one of the two Bragg mirrors. We analyze quantitatively the tunneling
out of a fraction of the atoms using the notion of finite extent spatial gaps:
because of the smooth envelope of the lattice, the band gaps are transposed
into position space. This allows us to characterize the transmissivity of the
Bragg mirrors. We show that the transmissivity of the mirrors is to some
extent equivalent to the one from a repulsive tunnel barrier of submicronic
size. Because it is experimentally challenging to realize such a small barrier
for example by optical means, our method can provide a good alternative to
introduce a tunnel barrier in an experiment.

In the Bragg cavity, all velocity components do not generally keep up with
each other, so that the oscillations inside the cavity are washed out after a few
oscillations. This constitutes a limitation, both to observe the oscillations and
to analyze the tunneled packets. We showed theoretically, however, that it is
possible to maintain the different components in phase with an appropriate
shaping of the envelope.

It is possible to pursue these studies in several directions. First if one dis-
poses of a of high numerical aperture optics, it would be possible to drastically
reduce the length of the envelope and to generate a lattice with only a few
sites. One could then tailor almost arbitrarily the matterwave filter response
by using for example holographic plates. In a different direction, it would be
appealing to study the effect of interatomic interactions on the propagation of
the wavepacket and particularly on the dynamics inside the Bragg cavity. This
regime could be reached by using much larger transverse frequency or, by using
a Feshbach resonance (this would require to work with an other atom). The use
of a Feschbach resonance would also render possible the study of the scatter-
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ing of a matter wave bright soliton on this periodic structure. The question of
the scattering of these objects that possess both quantum and classical prop-
erties attracted much attention recently to produce for example mesoscopic
Schrödinger cats [99, 137]. This question will be investigated theoretically in
Francois Damon thesis.

Finally, we have studied the problem of scattering on a lattice whose depth
is modulated. We have studied the transmission spectra when varying the
frequency of the modulation. The modulation gives rise to several drops in the
transmission whose positions in term of the incident velocity depend directly
of the modulation frequency. In this sense, this constitutes a tunable Bragg
reflector. We have analyzed the scattering using first a simple model based
on interband transitions in the case of a vanishing depth lattice. This model
predicts correctly the positions and slopes of the observed depletion lines.
We have then analysed the dynamics using a semi-classical model based on
the Floquet-Bloch formalism that describes the particles dynamics on a given
Bloch band as well as the Landau-Zener tunneling to a different band. This
allows to analyze the dynamics in the experimentally relevant case of a finite
depth lattice and to get much more insight into the complicated atomic motion.
We found that the reflections can be explained by the combination of adiabatic
absorption/emissions of Floquet photons and of Bragg reflections on the edge
of the Brillouin zone. Finally, we demonstrate the use of this technique with
a bichromatic modulation to design a tunable sub-recoil velocity filter. The
selectivity of this filter, on the order of 450µm/s is comparable to the one
obtained with Raman velocity selection. Interestingly, such a filter can be
transposed to all species since it does not rely on a specific internal level
configuration. A possible extension of this work would be to combine the
Bragg cavity with the modulation of the lattice depth which could act as a
controlled outcoupling mechanism.
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Résumé de la thèse

Conception et réalisation d’un ralentisseur Zeeman

à aimants permanents

Le piège magnéto-optique (PMO) constitue une source d’atomes pre-refroidis util-
isée comme point de départ dans la plupart des expériences sur les gaz quantiques
dégénérés. Pour charger efficacement un PMO, il est nécessaire de l’alimenter avec
un jet d’atomes ralentis à des vitesses de l’ordre de la dizaine de m/s. Le ralentis-
seur à effet Zeeman constitue l’un des dispositifs les plus utilisés pour fournir une
telle source en ralentissant des jets thermiques. Ce type de ralentisseur nécessite
la génération d’un champ magnétique inhomogène le long de l’axe de propagation
du jet atomique. Le champ magnétique est habituellement produit par un courant
circulant dans une bobine d’épaisseur variable qui enserre le jet atomique. Grâce
à l’apparition des aimants NdFeB, il est aujourd’hui possible de générer le champ
magnétique avec des aimants permanents de faÃ§on à simplifier le dispositif. Ce
chapitre décrit la conception et la réalisation de deux ralentisseurs à effet Zeeman
utilisant différentes configurations d’aimants.

Principe et caractéristiques du ralentisseur

Un ralentisseur à effet Zeeman utilise la pression de radiation exercée par un faisceau
laser contrapropageant dont la fréquence est proche d’une résonance atomique. A
résonance, l’accélération subie par un atome peut être très importante amax = 1.1 ×
105 m/s pour le 87Rb. Elle permet d’amener au repos sur des distances inférieures
au mètre des atomes initialement à des vitesses thermiques. Cependant, à cause
de l’effet Doppler, la fréquence apparente de la transition atomique varie à mesure
que l’atome est ralenti de sorte que le laser sort rapidement de résonance. Dans un
ralentisseur à effet Zeeman, un champ magnétique inhomogène est ajouté de manière
à ce que le décalage Zeeman compense partout le décalage Doppler.

Le champ magnétique inhomogène idéal a la forme suivante:

B(z) = Bb + ∆B
(

1 −
√

1 − z/ℓ
)

. (7.16)

Les atomes dont la vitesse initiale est inférieure à la vitesse de capture vc = µ∆B/(~k)



134

sont ralentis jusqu’à une vitesse proche de zero. Un champ uniforme Bb peut être
rajouté afin d’éviter des croisements de niveaux qui se situent autour de 100 G pour
le 87Rb. Nous utilisons pour générer la pression de radiation la transition cyclante
F = 2, mF = −2 → F ′ = 3, mF ′ = −3, qui correspond au choix d’un champ magné-
tique croissant et d’une lumière polarisée σ−. Les paramètres du ralentisseur sont
récapitulés dans le tableau suivant:

∆B 300 G
Bb 200 G
ℓ 1 m
vc 330 m/s

Configuration dipole

La première configuration d’aimants dite dipole est directement inspirée de la référence
[49]. Deux rangées d’aimants dont la magnétisation est orthogonale au jet atomique
sont placées symétriquement de part et d’autre du tube du ralentisseur. Contraire-
ment à la proposition d’Ovchninnikov, nous avons pris soin de minimiser la déviation
du champ magnétique sur une section transverse du ralentisseur. Pour cela, il est
favorable à la fois de ne pas placer les aimants trop près de l’axe du ralentisseur et
d’utiliser des aimants allongés dans la direction transverse. En conséquence, nous
utilisons des aimants de taille 100 × 20 × 5 mm3, placés à environs 10 cm de l’axe
du ralentisseur. Plusieurs aimants peuvent être empilés afin d’augmenter le vol-
ume d’un élément de la rangée. Pour obtenir le profil de champ désiré, le nombre
d’aimants empilés augmente progressivement le long du ralentisseur. Les éléments
de la rangée sont séparés de 3 cm, le nombre d’aimants empilés étant discret, nous
ajustons finement le champ en faisant varier faiblement la distance à l’axe de chaque
élément. Une optimisation basée sur des calculs de champ 3D permet de fixer les
positions et volumes de chaque élément de faÃ§on à approcher au mieux du champ
ideal (7.16). Dans cette configuration, le champ magnétique varie de moins de 12 G
sur une section de tube CF16.

D’un point de vue mécanique, nous avons construit une structure en aluminium
de 1100×100×50 mm3 dans laquelle des sillons de 20 mm de largeur ont été fraisés à
des profondeurs correspondant aux distances à l’axe de chaque élément. Les aimants
sont insérés un à un dans ces sillons, puis bloqués sur les cotés et le dessus par des
plaques de plexiglass vissées dans l’aluminium (voir Fig. 7.11). Afin que le champ
magnétique du ralentisseur ne perturbe pas le PMO situé à sa sortie, un blindage
magnétique est installé autour du ralentisseur Zeeman. Ce blindage réduit le champ
résiduel au niveau du G dans la chambre PMO et augmente également le champ
magnétique dans le ralentisseur Zeeman d’environ 100 G.
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Figure 7.11: Photo de la configuration dipole: [A] structure en aluminium, [s] sil-
lons de profondeur variable, [p] protections en plexiglass, [R] plaques de renfort.
Dimensions en mm.

Caractérisation du jet atomique ralenti

Le jet atomique de rubidium est issu d’un four à recirculation chauffé à 130◦ C qui
produit un jet effusif. Le jet est ensuite ralenti dans le ralentisseur Zeeman et détecté
dans la chambre du PMO. La distribution des vitesses du jet ralenti est mesurée par
fluorescence et par absorption à l’aide d’une sonde à 45◦ C du jet atomique. Grâce à
cet angle, l’absorption et la fluorescence dépendent de la vitesse du jet. En balayant
la fréquence de la sonde, on obtient ainsi la distribution des vitesses du jet. Dans
cette configuration d’aimants, nous obtenons un simple pic dont la vitesse peut être
ajustée en variant la fréquence du faisceau ralentisseur. Nous obtenons des flux
atomiques Φ = 4 × 1010 atomes/s à 30 m/s, ce qui est largement suffisant pour
charger efficacement un PMO.

Cette configuration d’aimants, satisfaisante en terme de flux atomique présente
néanmoins le défaut d’être relativement encombrante. De plus, à cause de la nature
transverse du champ magnétique, il est difficile d’annuler totalement le champ de
fuite au niveau du PMO. Nous avons donc développé une deuxième configuration
plus élégante qui permet d’utiliser un volume d’aimant plus faible.

Configuration Halbach

Afin d’obtenir une bonne homogénéité transverse à moindre coÃ»t (sans utiliser des
aimants très éloignés de l’axe), nous utilisons une configuration dite de Halbach dans
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Figure 7.12: (a) Notations du cylindre de Halbach. (b) Section transverse montrant
l’approximation octupolaire de la configuration de Halbach.

laquelle les aimants sont positionnés tout autour de l’axe. Le cas idéal du cylindre
de Halbach correspond à un anneau infini dans la direction z et où, en un point de
l’anneau qui fait un angle θ avec l’axe y, la magnétisation M forme un angle 2θ
(voir Fig. 7.12 (a)). Le champ produit est alors transverse et homogène à l’intérieur
de l’anneau et nul en dehors avec:

BHal(r) =











0 for r > Rext,

BR ln
(

Rext

Rint

)

ŷ for r < Rint,

où BR est le champ rémanent du matériau magnétique, et Rint et Rext sont les
dimensions du cylindre de Halbach.

Notre configuration correspond à une approximation octupolaire du cylindre de
Halbach constitué de 8 aimants positionnés sur un cercle de rayon variable d autour
du jet atomique et dont l’axe tourne conformément à la prescription de Halbach(voir
Fig. 7.12 (b)). Nous utilisons des aimants allongés 6×6×148 mm3 dont la magnéti-
sation est orthogonale au grand axe. Afin de varier longitudinalement l’amplitude du
champ magnétique, la distance à l’axe d diminue progressivement. Pour garder une
construction très simple, nous avons choisi de faire varier la distance à l’axe linéaire-
ment. Il est alors possible de trouver un pente qui produit un champ magnétique
très proche du profil idéal.

Le montage mécanique est le suivant: (voir Fig. 7.13) les aimants sont insérés
dans 8 longs profils en aluminium en forme de U, chaque profil glisse dans un des
trous disposés en cercle de neuf montures ayant un rayon du cercle décroissant.
Chaque monture peut être séparée en deux pour être montée autour du tube du
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(b) (c)

Figure 7.13: (a) Photo de la configuration Halbach: [M] montures, [EC]
"end cap" vissés dans la dernière monture, [U] profils en U, [S] blindage
magnétique. (b) monture individuelle; [T] trou taraudé pour monter les
deux parties ensembles, [P] trou central pour le tube du ralentisseur. (c)
details dans lesquels les profils en U sont insérés., aimants [m] et cale en
plastique [W]. Dimensions en mm.

ralentisseur. Le résultat est à la fois robuste et léger.

Un blindage magnétique est ajouté autour de la structure pour réduire le champ
de fuite, comme le champ à l’extérieur d’un cylindre de Halbach est nul, le blindage
magnétique a cette fois très peu d’effet sur le profil de champ à l’intérieur du ralen-
tisseur.

La mesure du champ magnétique produit montre que celui-ci varie de moins de
1 G sur une section transverse et est très lisse longitudinalement. Le champ résiduel
au niveau de la chambre du PMO est trop faible pout être mesurable avec notre
sonde à effet Hall.
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Performances et puissances laser

Ce ralentisseur offre des performances très similaires au premier,i.e, un flux atomique
Φ = 3 × 1010 atomes/s à 30 m/s.

Une différence importante des ralentisseurs présentés ici par rapport aux ralen-
tisseurs Zeeman conventionnels est que le champ magnétique est orthogonal au jet
atomique. La polarisation de la lumière de refroidissement possède alors nécessaire-
ment une composante σ+ dont l’effet est de dépomper les atomes vers l’état fonda-
mental F = 1. Il est donc indispensable d’utiliser un deuxième laser repompeur sur
la transition F = 1 → F ′ = 2.

On peut néanmoins s’attendre à avoir besoin d’une puissance très limitée, or
plusieurs dizaines de mW de puissance repompeur, correspondant à une intensité
de 24 mW/cm2 bien supérieure à l’intensité de saturation de la transition repom-
peur, sont nécessaires pour obtenir un flux maximal. Pour en comprendre l’origine,
nous avons étudié l’efficacité du ralentisseur en fonction de la fréquence et de la
polarisation du laser repompeur. Nous observons en fonction de la polarisation du
repompeur différents spectres faisant apparaître plusieurs résonances. Ceci signifie
que plusieurs chemin de dépompage sont impliqués, probablement à différentes po-
sitions dans le ralentisseur. A cause du grand nombre d’états internes impliqués (24
au total), il n’est pas aisé d’avoir une description simple des mécanismes de dépom-
page. Néanmoins, en balayant rapidement la fréquence du repompeur autour de la
transition F = 1 → F ′ = 2, il est possible d’obtenir un flux atomique légèrement
plus important qu’avec une fréquence fixe en utilisant moins de 10 mW de puissance
repompeur.

Finalement, nous démontrons l’efficacité du ralentisseur en chargeant un PMO
d’environ 3 × 1010 atomes en moins d’une seconde.

Ce ralentisseur à effet Zeeman possède un certain nombre d’avantages comparé
à un ralentisseur conventionnel:

• il ne nécessite pas de courant électrique ni de refroidissement à eau,

• il est facile à assembler sans ouvrir l’enceinte à vide,

• il est léger et facile à construire,

• il produit un champ très lisse sans champ de fuite.

Production de condensats de Rubidium

La condensation de Bose-Einstein se produit lorsque les longueurs d’onde de de
Broglie des différents atomes d’un gaz se recouvrent. Ceci correspond à une densité
dans l’espace des phases ρ = nλ3

T de l’ordre de 1. Pour atteindre la condensation, il
est donc nécessaire d’augmenter la densité et de réduire la température du gaz atom-
ique. Un nuage de Rubidium est d’abord capturé dans un piège magnéto-optique; la
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Figure 7.14: Schéma du piège dipolaire croisé et des faisceaux PMO. Une des bobines
du PMO (la bobine "Top" ou la bobine "Horizontal") est aussi utilisée pour effectuer
la distillation de spin.

température dans le PMO est typiquement de l’ordre de la centaine de µK, et la den-
sité, limitée par la diffusion multiple des photons est de l’ordre de 1010 atomes/cm3.
La densité dans l’espace des phases est alors de l’ordre de ρ ∼ 10−7, loin de la lim-
ite de condensation. Le nuage est ensuite transféré dans un piège dipolaire croisé
produit par deux faisceaux lasers désacordés vers le rouge à 1064 nm, un faisceau
guide horizontal et un faisceau dit vertical à 45◦ (voir Fig. 7.14). L’augmentation
de la densité dans le piège conservatif amène la densité dans l’espace des phase dans
le domaine ρ ∼ 10−3. Pour gagner les trois ordres de grandeur qui séparent de la
condensation, le nuage atomique est refroidi par évaporation forcée: la profondeur
du piège est réduite progressivement en diminuant l’intensité du faisceau dipolaire
guide.

Piege dipolaire et évaporation

L’allure du piège croisé varie au cours de l’évaporation. Initialement, le faisceau
horizontal domine, le piège, et donc le nuage atomique sont très allongé dans la
direction du guide. En l’absence de faisceau vertical, la fréquence du piège selon
l’axe du guide est très faible et ne permet pas de mener l’évaporation à terme.
A mesure que l’évaporation progresse, la contribution du faisceau vertical devient
de plus en plus importante et, la température diminuant, les atomes sont piégés à
l’intersection des deux faisceaux. Le nuage est alors beaucoup plus isotrope. A la fin
de l’évaporation, les fréquences du piège sont de l’ordre de 100 Hz dans la direction
du faisceau vertical et 200 Hz dans les deux autres directions.

Afin de réaliser l’évaporation forcée de manière efficace, il convient de réduire la
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Figure 7.15: Haut: densité atomique après un temps de vol de 15 ms pour
différents temps d’évaporation autour de la condensation; un pic étroit apparaît
à la limite de condensation. Bas: densité intégrée selon une direction, le profil
de densité est ajusté par une double Gaussienne. La largeur de la Gaussienne
la plus large est une mesure de la température du gaz tandis que le poids relatif
des Gaussiennes indique la fraction condensée.

profondeur du puits de potentiel suffisamment lentement par rapport au temps de
thermalisation du gaz mais suffisamment rapidement par rapport au temps carac-
téristique des pertes atomiques. Dans notre piège, les pertes sont dominées par des
pertes assistées par la lumière qui sont donc plus importantes en début d’évaporation
lorsque l’intensité des faisceaux dipolaires est la plus importante. Le temps de vie
dans le piège varie selon l’intensité de une seconde au début de l’évaporation à une
dizaine de secondes à la fin de la rampe d’évaporation. Nous diminuons donc initiale-
ment rapidement la profondeur du piège pour éviter des pertes trop importantes,
puis moins rapidement à la fin de l’évaporation afin de bénéficier d’une meilleure
thermalisation. La puissance du faisceau guide est ainsi diminuée de la manière
suivante:

Ph(t) = P0 (1 + t/τevap)−4 , (7.17)

avec un temps caractéristique τevap = 1300 ms. Après environ 3.5 s d’évaporation,
un condensat apparaît pour des températures de l’ordre de 150 nK.

Condensation

La condensation de Bose-Einstein est facilement identifiable par deux signaux carac-
téristiques. (i) La dispersion des vitesses du nuage possède une double structure; la
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fraction d’atomes condensée forme un pic étroit entouré d’un nuage thermique plus
large. (ii) La partie condensée subit une inversion d’ellipticité lors d’un temps de
vol. En effet, la distribution des vitesses de la partie condensée dépend directement
des caractéristiques du piège et reflète ici son anisotropie.

Le piège dipolaire n’étant pas sensible à l’état magnétique, les condensats obtenus
sont a priori des condensats de spineurs. Pour pouvoir choisir l’état magnétique dans
lequel les atomes condensent, nous utilisons la technique de distillation de spin qui
consiste à ajouter un gradient de champ magnétique à l’aide d’une bobine du PMO.
La forme du piège dépend alors du sous-état Zeeman, les atomes qui ressentent un
puits de potentiel moins profond sont évaporés préférentiellement. En thermalisant
avec les autres atomes, le gaz est refroidi par refroidissement sympathique. Il est
alors possible d’obtenir des condensats presque purs de typiquement 50000 atomes
dans un état de spin arbitraire.

Mise en place et caractérisation du réseau optique

Un réseau optique est formé par le croisement dans une région de l’espace de deux
faisceaux optique cohérents. Si les lasers utilisés sont désaccordés par rapport à une
transition atomique, l’onde stationnaire qui en résulte produit un potentiel dipolaire
qui varie sur des distances de l’ordre de la longueur d’onde optique. Les réseaux op-
tiques sont largement utilisés dans la communauté des atomes froids. Ils permettent
de créer des potentiels très flexibles:

• En terme de dimensionnalité : en superposant des ondes stationnaires selon
différentes directions de l’espace, il est possible de créer des réseaux à 1, 2 ou
3 dimensions. La dimensionnalité d’un problème peut alors être réduite si le
mouvement atomique est gelé selon une direction.

• La géométrie est également modifiable en faisant varier la direction, l’intensité
ou la phase des faisceaux qui interfèrent.

• Les potentiels dipolaire sont modulables dans le temps rapidement et facile-
ment.

Les réseaux optiques sont utilisés d’une part dans des expériences visant à simuler
des problèmes de matière condensée, la périodicité du potentiel reproduit alors le
potentiel périodique produit par les ions d’un cristal, et d’autre part pour étudier
des questions de transport quantique comme dans notre cas.

Mise en place

Le réseau optique est issue d’un laser à 850 nm installé sur une table indépendante
sur laquelle la puissance du faisceau est controllé. Le faisceau est ensuite divisé
en deux et mis en forme sur la table principale. Les deux faisceaux sont croisés



142

Figure 7.16: Image par absorption des atomes dans le piège dipolaire. Avant de
prendre une image, un faisceau dépompeur, superposé aux bras du réseau, est allumé
pendant 1 ms pour dépomper localement les atomes. Les bras du réseau apparaissent
alors comme des trous dans la distribution atomique.

au niveau du nuage atomique avec un angle de 80◦. Le profil d’intensité obtenue
correspond à un potentiel périodique de période d = 650 nm dans la direction du
guide et qui possède une envelope Gaussienne ayant un waist de 150 µm. Afin de
bénéficier d’un contrôle fin sur le croisement des deux faisceaux, nous avons installé
après les lentilles de collimation, des lames de verre épaisses qui dévient légèrement
chaque faisceau d’une distance qui dépend de l’angle entre le faisceau incident et la
lame. La précision obtenue par cette méthode est plus importante d’un facteur cent
par rapport à la précision obtenue en faisant varier l’angle du dernier miroir.

Lors de la procédure de croisement, nous utilisons une séquence d’imagerie par-
ticulière afin de visualiser la position des faisceaux. Un faisceau résonant à 780 nm
est superposé aux faisceaux du réseau, sa fréquence est stabilisée sur une transition
dépompeur F = 2 → F ′ = 2. Nous lanÃ§ons une séquence d’évaporation typique en
l’arrêtant très tôt à 100 ms d’évaporation. Le nuage atomique est alors très allongé
et marque la position du guide. Le laser dépompeur superposé au bras du réseau est
allumé pendant 1 ms pour dépomper localement les atomes juste avant de prendre
une image par absorption. La position des bras du réseau apparaît alors sur l’image
par absorption comme un trou dans le nuage atomique (voir Fig. 7.16). Ceci permet
de croiser précisément les deux bras du réseau avec le guide.

Calibration

Il est important de calibrer la profondeur du réseau obtenue grâce à une mesure di-
recte sur les atomes. Nous utilisons pour cela la technique de diffraction de Kapitza-
Dirac. Cette technique consiste à allumer pendant un temps très court le réseau
optique sur le nuage atomique. Les atomes redistribuent alors les photons entre
les deux modes laser par des processus d’absoprtion/emission stimulé. Ce faisant,
l’impulsion est modifiée d’une quantité liée à la périodicité du réseau. La figure de
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Figure 7.17: Motifs de diffraction avec 48 mW par bras du réseau. (a) Motifs de
diffraction concaténés pour différents temps d’interaction τ . (b) et (c) Motifs de
diffraction à τ = 9 et 15 µs respectivement.

diffraction qui en résulte renseigne directement sur la profondeur du réseau optique
(voir Fig. 7.17).

Dans le régime de temps d’interaction court dit de Raman-Nath, il est possible
de calculer exactement le poids des différents ordres de diffraction en fonction de
la profondeur du réseau et du temps d’interaction. Les poids relatifs correspondent
aux carrés des fonctions de Bessel successives. En mesurant en fonction du temps
d’interaction, le poids relatif des ordres de diffraction, il est alors possible de déduire
précisément la profondeur du réseau optique.

Nous parvenons ainsi à réaliser et à calibrer des réseaux optique d’une profondeur
maximale U0 = 17EL, limitée par la puissance disponible du laser à 850 nm.

Outils théoriques pour les réseaux

Ce chapitre rappelle quelques outils utiles pour décrire le comportement d’une par-
ticule quantique dans un potentiel périodique: le théorème de Bloch et les résultats
sur l’équation de Mathieu. Les solutions de l’équation de Mathieu sont ensuite
utilisées pour analyser la diffusion d’une particule sur un réseau semi-infini.

Théorème de Bloch

Le théorème de Bloch donne la forme des solutions de l’équation de Schrödinger
stationnaire pour un potentiel périodique. Les solutions peuvent être écrites comme
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le produit d’une onde plane et d’une fonction périodique

ψn,k(x) = eikzun,k(z) avec un,k(z + d) = un,k(z), (7.18)

où n est l’indice de bande et k la pseudo-impulsion. Les énergies sont regroupées
en bandes indexées par n. Entre chaque bande, un gap est ouvert. La périodicité
du potentiel et des fonctions de Bloch un,k(z) rend la recherche des états et éner-
gies propres facile. En développant, pour chaque pseudo-impulsion, l’équation de
Schrödinger sur la base de Fourier, l’équation de Schrödinger se réécrit comme un
problème d’inversion d’une matrice diagonale facile à résoudre numériquement. La
détermination des états propres associés à chaque bande montre que ceux-ci sont
reliés aux états liés dans un site isolé du réseau.

Equation de Mathieu

Le théorème de Bloch ne s’intéresse qu’aux états propres de l’Hamiltonien péri-
odique. Cependant, ces états ne sont pas les seuls états utiles pour décrire par
exemple les problèmes de diffusion sur un réseau. Considérons des solutions de
l’équation de Schrödinger dépendante du temps du type

ψ(x, t) = e−iEt/~φ(x), (7.19)

où E est une énergie choisie (qui correspond à l’énergie d’une particule incidente
dans le cas d’une diffusion). La fonction φ n’est ici pas nécessairement normée de
sorte que ψ ne représente pas toujours un état propre de l’Hamiltonien. En injectant
ces solutions dans l’équation de Schrödinger, on retrouve l’équation stationnaire,
cependant celle-ci a un sens différent. Ce n’est plus une équation aux valeurs propres
mais une simple équation différentielle où E correspond à une condition aux limites.
Cette équation peut être mise sous la forme d’une équation de Mathieu

d2φ

dz̃2
+ (a− 2q cos(2z̃))φ = 0, (7.20)

dont les solutions sont bien connues et s’écrivent comme une superposition linéaire
de deux états du type

f(z) = eikzp(z), (7.21)

où p(z) est une fonction périodique et où l’exposant caractéristique k est éventuelle-
ment imaginaire (alors que k est toujours réel dans le cadre du théorème de Bloch).

Les solutions de l’équation de Mathieu sont de deux types, les solutions sta-
bles pour lesquelles k est réel et qui correspondent exactement aux états de Bloch,
et les solutions instables pour lesquelles k a une partie imaginaire. Les solutions
sont stables (instables) si l’énergie choisie se situe dans une bande autorisée (un
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Figure 7.18: Diagramme de stabilité de l’équation de Mathieu. Les régions stables
(instables) sont indiquées en rouge (bleu). (a) diagramme en fonction des paramètres
canoniques de l’équation de Mathieu. (b) Diagramme en fonction des paramètres
pertinents dans l’équation de Schrödinger dans un réseau.

gap) du diagramme de bande. Les solutions instables sont des ondes évanescentes
qui s’atténuent sur une distance fixée par la partie imaginaire de k. La figure
7.18 présente les régions de stabilité en fonction des paramètres (a, q) et (E,U0)
qui interviennent respectivement dans l’équation de Mathieu et dans l’équation de
Schrödinger.

Il est possible de trouver une solution analytique de l’exposant caractéristique en
utilisant une méthode développé par Whittaker et s’appuyant sur l’analyse complexe.
On trouve pour un réseau sinusoidal de profondeur U0:

cos(2πk/kL) = 1 − ∆(0)(1 − cos(2π
√
κ)), (7.22)

où κ = (U0/2 + E)/EL.

Interprétation pour une expérience de diffusion

Considérons le cas d’une particule qui diffuse sur un réseau semi-infini de profondeur
homogène. Dans l’espace libre, les états propres sont des ondes planes, dans le réseau
les solutions de l’équation de Schrödinger sont les solutions de Mathieu. Pour con-
necter les fonctions d’onde à l’interface, les énergie dans le réseau et l’espace libre
doivent être égales. L’exposant caractéristique de Mathieu est alors déterminé de
manière univoque par l’énergie incidente. Si l’exposant de Mathieu possède une par-
tie imaginaire non nulle, les solutions sont des ondes évanescentes et la transmission
est nulle. Une onde plane ne peut se propager que si l’énergie incidente est dans une
bande autorisée. Lorsque k est réel, les solutions de Mathieu sont les états propres
de l’Hamiltonien périodique. Les conditions de continuité de la fonction d’onde et
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Figure 7.19: Coefficient de transmission T à travers un réseau semi-infini. (a)
L’interface est situé sur le bord d’un site du réseau, le potentiel n’a pas de disconti-
nuité. (b) L’interface est situé au centre d’un site du réseau, le potentiel a alors une
dicontinuité maximale. La réflection quantique est plus importante dans ce cas.

de sa dérivé permettent alors de calculer un taux de transmission. Ici une réflection
peut se produire essentiellement à cause de la réflection quantique sur les premiers
puits. Le diagramme de transmission dépend donc fortement de la phase du réseau
périodique à l’interface (voir Fig. 7.19).

Réflection de Bragg sur un réseau de taille fini

La réflection sur des structures diélectriques périodiques est un ingrédient om-
niprésent en optique. Elle permet par exemple la fabrication de miroirs de très
haute réflectivité ou la fabrication de lasers en cavité étendue. En optique guidée,
les réseaux de Bragg intégrés dans des fibres optiques servent à réaliser par exemple
des multiplexeurs dans l’industrie des télécommunications ainsi que des coupleurs de
sortie pour lasers à fibre de haute puissance. En analogie avec l’optique, ce chapitre
décrit la réalisation d’un réflecteur de Bragg pour atomes en environnement guidé
réalisé en envoyant des ondes de matière sur un réseau optique ayant une enveloppe
Gaussienne.

Effet de l’enveloppe

A cause de l’enveloppe finie du réseau, lors de sa propagation, un atome d’énergie
incidente E ressent des potentiels périodiques dont la profondeur varie de 0 loin du
réseau à la profondeur maximale U0 au centre. Il est possible d’analyser simplement
la réflection; si à une certaine position dans le réseau, un atome pénètre dans une
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Figure 7.20: Coefficient de transmission d’une onde plane à travers le réseau optique
obtenue en intégrant l’équation de Schrödinger stationnaire. (a) Cas d’une enveloppe
carrée. (b) Cas d’une enveloppe Gaussienne, U0 est la profondeur maximale du
réseau.LP, HP et N indiquent les régions de paramètres pour lesquelles le réseau
agit comme un filtre respectivement passe-bas (LP), passe-haut (HP) et passe-bande
(N).

région instable de l’équation de Mathieu, il sera réfléchi à cette position particulière
qui constitue un miroir de Bragg. En utilisant cet argument, le diagramme de
transmission en fonction de la vitesse incidente et de la profondeur du réseau se
déduit facilement du diagramme de stabilité de l’équation de Mathieu. Un atome
est réfléchie si, pour une énergie donnée, il existe une profondeur inférieure à U0 qui
correspond à une région instable. Les domaines de réflection s’obtiennent alors en
étendant vers le haut les régions instables du diagramme de stabilité. Dans cette
image simple, le diagramme de transmission a alors une allure en dents de scie.

Le calcul du diagramme de transmission en intégrant l’équation de Schrödinger
stationnaire confirme partiellement cette image. La transmission présente bien une
structure en dents de scie, cependant, les zones de transmissions sont plus étendues
que prévu (voir Fig. 7.20). Ceci est la conséquence de la taille finie de l’enveloppe du
réseau, les régions instables de l’équation de Mathieu ont une extension spatiale finie;
si la taille de ce gap est plus petite que la distance sur laquelle l’onde évanescente de
Mathieu s’atténue, un atome peut traverser la zone interdite. La taille des zones de
transmission augmente alors dans les régions de vitesse incidente élevé pour lesquelles
un particule rencontre des zones interdites petites.
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Figure 7.21: Schéma du dispositif expérimental.

Preparation du paquet d’onde

La première étape de l’expérience consiste à découpler un condensat de Bose-Einstein
dans le guide et à l’accélérer jusqu’à la vitesse désirée. Afin de minimiser la disper-
sion des vitesses, de l’onde de matière produite, nous effectuons une décompression
adiabatique du piège en diminuant progressivement l’intensité du faisceau vertical.
Ceci permet de réduire le potentiel chimique du condensat qui est à l’origine de
l’essentiel de la dispersion des vitesses de l’onde de matière. Cette technique a des
limites, en effet en dessous d’une certaine intensité, des atomes quittent le piège et
se propagent dans le guide. Le découplage est donc divisé en deux étapes, pendant
80 ms, l’intensité du faisceau verticale est diminuée de manière adiabatique puis, le
faisceau est coupé instantanément pour libérer les atomes dans le guide. Avec cette
technique, des dispersions de vitesses ∆v ∼ 1.3 − 1.7 mm/s sont obtenues.

Les atomes sont ensuite accélérés en utilisant un gradient de champ magnétique.
Dans cette expérience, nous utilisons des condensats dans l’état F = 1, mF = 0 qui
ne sont sensibles au champ magnétique qu’au deuxième ordre. Nous avons donc
besoin d’utiliser des courants assez élevés de 320 A pendant 15 ms dans une bobine
dont l’axe coincide avec l’axe du guide (voir Fig. 7.21). De cette manière, le paquet
d’onde a une vitesse moyenne v̄ = 11 mm/s

Résultats expérimentaux

L’onde de matière est préparée à 500 µm du réseau et se propage vers celui-ci. En
prenant des images à des temps variables et pour une profondeur de réseau fixé U0 =
11EL, on observe une séparation du paquet en deux parties, une partie transmise
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Figure 7.22: (a) Expérience et (b) simulation numérique de la densité atomique en
fonction de la position et de la profondeur du réseau après un temps de propagation
de 100 ms. La ligne blanche indique la position du centre du réseau.

qui correspond aux classes de vitesse les plus élevées, et une partie réfléchie. Afin
de sonder le diagramme de transmission, nous laissons maintenant les atomes se
propager pendant un temps long tprop = 100 ms pour lequel tous les atomes ont fini
d’interagir avec le réseau, et nous faisons varier la profondeur du réseau. Pour chaque
profondeur, l’image est moyennée dans la direction transverse et les profils pour
chaque profondeur sont ensuite regroupés. Le diagramme ainsi obtenu est séparé en
une partie transmise (à droite) et une partie réfléchie (à gauche) (voir Fig. 7.22).
La partie transmise présente un structure en dents de scie, et la partie réfléchie est
son complémentaire. Ceci peut se comprendre facilement, en effet, pour un temps de
propagation long, et en supposant que l’on peut négliger les effets de retard associés
à la diffusion, il est possible d’associer chaque position dans la partie transmise du
diagramme à une classe de vitesse de l’onde de matière initiale. La densité observée
est alors la convolution de la transmission à travers le réseau par la distribution des
vitesses initiale représentée en gris sur la figure 7.20. Selon les paramètres du réseau
et du paquet d’onde initial, ce système peut donc réaliser différents types de filtres
en vitesse, passe-haut, passe-bas ou passe-bande (voir Fig. 7.20).

Effets cavité

Pour expliquer l’essentiel des effets présentés ici, il n’est nécessaire de considérer
qu’un miroir de Bragg. Cependant comme l’enveloppe du réseau est symétrique, il
existe toujours deux miroirs de Bragg à des positions symétriques autour du centre
du réseau. Ces miroirs peuvent alors former alors une cavité de Bragg. Les effets
associés à cette cavité ne sont pas visibles dans l’expérience de diffusion. Cependant
il est possible d’observer grâce aux simulations que lors d’une diffusion, un faible
nombre d’atomes effectue des oscillations entre deux positions symétriques corre-
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Figure 7.23: Parties réelle et imaginaire de k avec U0/EL = 2.5. Les régions où
Im(k) 6= 0 sont les gaps spatiaux qui correspondent à des solutions évanescentes.
Les chiffres romains indiquent l’indice de bande. La ligne blanche représente la
distribution initiale d’énergie (95 % des atomes).

spondants aux miroirs de Bragg. A chaque réflection sur un des miroirs, une portion
des atomes traverse le miroir et est découplée.

Réalisation d’une barrière tunnel à l’aide de gaps

spatiaux

Structure de bande locale

Afin de comprendre la dynamique dans la cavité de Bragg, il est utile de présenter la
structure de bande locale du réseau. A chaque position est associée une profondeur
locale du réseau. L’exposant caractéristique des solutions de Mathieu dépend alors
de l’énergie et de la position dans le réseau (voir Fig. 7.23). Cette structure fait
apparaître des régions symétriques autour du centre du réseau où la partie imaginaire
de l’exposant caractéristique est non nulle. Ces gaps spatiaux de taille finie séparent
les différentes bandes autorisées. Certaines régions autorisées de ce diagramme sont
entourées de deux gaps spatiaux et constituent alors des cavités de Bragg. Pour
le diagramme présenté ici (U0 = 2.5EL), ces régions correspondent aux bas de la
troisième et de la quatrième bande.

A l’aide du modèle de gaps spatiaux, il est possible de calculer la probabilité de
transmission à travers un gap d’une particule d’énergie E en intégrant l’exposant
caractéristique:

T (E) = exp
(∫

−2Im[k(z, E)]dz
)

. (7.23)
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Figure 7.24: (a) Schéma de l’évolution d’un
paquet d’onde à l’intérieur du réseau et défi-
nition de T et T2. (b) Probabilités de trans-
mission. Ligne bleue continue: transmission
à travers la moitié du réseau, les régions de
réflection correspondent à des gaps spatiaux
larges. Ligne rouge pointillé: Transmission à
travers une barrière Gaussienne de variance
σ = 387 nm. Tirets verts: probabilité de tra-
verser par effet tunnel après une oscillation.

La probabilité de transmission à travers la moitié du réseau présente en fonction de
l’énergie une allure en forme de dents (voir Fig. 7.24). La transmission diminue
lorsqu’un nouveau gap apparaît au centre du réseau. Il est aussi possible de calculer
la probabilité pour une particule d’être réfléchie par un miroir de Bragg puis de
traverser le miroir symétrique, T2 = T (E)(1−T (E)). Cette probabilité présente des
pics à chacune des marches de la transmission simple.

Il est intéressant de comparer les barrières tunnel obtenues grâce aux gaps spa-
tiaux avec des barrières tunnel répulsives. Pour cela, on peut comparer la largeur
des marches de transmission qui caractérise l’effet tunnel. Ici, la largeur de la pre-
mière marche est équivalente à celle produites par une barrière répulsive de déviation
standard σ = 387 nm. Une barrière si petite est complexe à mettre en place ex-
périmentalement par exemple par des moyens optiques. Une barrière tunnel dans
l’espace des position qui résulte d’une variation de l’enveloppe du réseau peut donc
fournir une bonne alternative aux barrières répulsives.

Expérience

Afin d’obtenir un paquet d’onde initial dans un cavité de Bragg, il est nécessaire de
charger les atomes sur une bande élevée du réseau. Pour la profondeur de réseau
choisie U0 = 2.5EL, les atomes doivent être chargés dans la troisième et la quatrième
bande. Le condensat est préparé à la position du centre du réseau dans l’état
magnétique mF = +1. Les atomes sont ensuite découplés puis accélérés en 4 ms dans
le guide jusqu’à v̄ = 9.4 mm/s en l’absence de réseau. Puis, le réseau est allumé
adiabatiquement de faÃ§on à conserver l’indice de bande et la pseudo-impulsion.
Les atomes se propagent ensuite pendant un temps variable.

La figure 7.25 montre la densité atomique le long du guide en fonction du temps
de propagation. Les atomes sont dirigés initialement vers la droite du réseau. Une



152

(a) (b)

α

β

D

e

n

s

i

t

y

(

a

r

b

.

u

n

i

t

s

)

t p
ro
p
(m

s)

z(µm) z(µm)
0

0.5

1

-500 0 500

0

20

40

60

80

-500 0 500

Figure 7.25: (a) Profil de densité mesuré en fonction du temps de propagation.
Chaque ligne est la moyenne de 4 images intégrées selon la direction transverse. (b)
Intégration numérique de l’équation de Schrödinger pour les paramètres expérimen-
taux.

partie des atomes, ceux qui ne rencontrent jamais de gap, quittent immédiatement
le réseau. A l’intérieur du réseau, on observe ensuite des oscillations en forme
"d’épines". Après quelques cycles, ces oscillations sont brouillées. Des paquets d’un
petit nombre d’atomes correspondant à des classes de vitesse bien déterminées sont
émis à chaque fois que les atomes sont réfléchis sur un miroir de Bragg. Deux pa-
quets α et β qui correspondent à des atomes initialement sur la quatrième et la
troisième bande respectivement sont successivement découplés.

Les paquets d’atomes découplés correspondent aux atomes qui ont été réfléchis
par le premier miroir de Bragg puis sont passés par effet tunnel à travers le second.
Les vitesses mesurées de ces paquets correspondent aux pics de la probabilité T2

prédits par le modèle de bandes locales (voir Fig. 7.24).

Déphasage des différentes composantes de vitesse

Les différentes composantes de vitesse ne se déplacent pas à la même vitesse à
l’intérieur du réseau, les composantes d’énergie plus élevés se propageant plus vite.
De plus, la taille de la cavité de Bragg augmente avec l’énergie. Pour une envelope
Gaussienne, le second effet est plus important, de sorte que la période d’oscillation
augmente avec l’énergie. Cet effet dispersif limite le nombre d’oscillations visibles.
Comme les deux effets sont opposés, il est néanmoins théoriquement possible de
modifier l’envelope du réseau de faÃ§on à ce que la variation avec l’énergie de la
taille de la cavité compense exactement la variation de vitesse de groupe. Une
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envelope modifiée du type:

U(z) = −U0 exp(−2z2/w2)

(

1 +
z2

D2

)

, (7.24)

avec D = 112 µm, permet ainsi d’annuler les effets de dispersion au premier ordre.
Une telle envelope peut être obtenue par exemple grâce à des plaques holographiques.
Ceci permettraient d’observer plus d’oscillations à l’intérieur de la cavité et de mieux
localiser les paquets d’onde émis.

Diffusion sur un réseau modulé en amplitude

La diffusion d’ondes de matière sur un réseau optique permet de réaliser différents
types de filtres en vitesse. Cependant, les caractéristiques de ces filtres sont directe-
ment liées à la taille d’un site du réseau, et sont donc peu modifiables. Nous allons
voir qu’il est possible d’apporter beaucoup de flexibilité en modulant l’amplitude du
réseau.

L’expérience

De faÃ§on similaire à l’expérience de la section 7.7, les atomes sont accélérés vers
un réseau d’envelope Gaussienne. L’amplitude du réseau est cette fois modulée à
des fréquences de l’ordre de la dizaine de kHz. Nous étudions ici la transmission à
travers le réseau en fonction de la fréquence de modulation, pour une profondeur
moyenne fixée U0 = 2EL. De nouveau, le temps de propagation, tprop = 78 ms est tel
que tous les atomes ont fini d’interagir avec le réseau et qu’il est possible d’associer
position finale et vitesse initiale. La figure 7.26 présente les profils de densité obtenus
en fonction de la fréquence de modulation.

On observe dans la partie transmise différentes déplétions dont la position varie
en fonction de la fréquence de modulation. Certaines de ces lignes de déplétion ont
un symétrique dans la partie réfléchie et correspondent à la réflection de certaines
classes de vitesse. La ligne rouge (voir Fig. 7.26) n’as pas de symétrique, elle
correspond à des classes de vitesse accélérées par la modulation.

Modèle de transitions interbandes

Afin de comprendre l’origine des lignes de déplétion, nous présentons d’abord un
modèle simple basé sur des transitions interbandes dans la limite d’un réseau d’amplitude
nulle. Une particule incidente entre sur une bande donnée avec une pseudo-impulsion
fixée par son énergie. Supposons maintenant que la modulation d’amplitude provoque
des transitions interbandes. A cause des symétries du potentiel périodique, ces tran-
sitions conservent la pseudo-impulsion et sont donc verticales dans le diagramme de
bande. Dans la limite de profondeur nulle, la structure de bande n’est rien d’autre
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Figure 7.26: (a) Schéma de
l’expérience. (b) Profils de den-
sité mesurés n(z, tacc+tprop) après
un temps de propagation tprop =
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qu’une parabole repliée, il est alors aisé de calculer la différence d’énergie entre la
bande initiale et les différentes bandes sur lesquelles la particule peut être transférée.
Les fréquences associées aux différentes transitions dépendent de la vitesse incidente
v0:

±νn→n′ =
En − En′

h
= −(n − n′)2νL +

n′ − n

d
v0, (7.25)

où n et n′ sont des entiers. Les fréquences des différentes transitions interbandes
varient linéairement avec la vitesse incidente, leurs pentes et positions correspondent
précisément aux lignes de déplétion observées dans l’expérience. Chaque réflection
induite par la modulation correspond donc à une transition interbande. Pour avoir
une compréhension plus complète des phénomènes en terme de processus élémen-
taires, nous utilisons ci-après le formalisme de Floquet-Bloch.

Analyse à l’aide des états de Floquet-Bloch

Dans le cas d’un Hamiltonien périodique à la fois en espace et en temps, il est
possible d’étendre le théorème de Bloch. Les solutions de l’équation de Schrödinger
ont alors la forme d’un état de Floquet-Bloch:

ψn,k(z, t) = ei(kz−εn(k)t/~)un,k(z, t), (7.26)

où εn(k) sont les quasi-énergies et les fonctions un,k sont bi-périodiques. A l’aide
de ces états, nous construisons un nouveau diagramme de bande. Ce diagramme
est la superposition de diagrammes de Bloch décalés de multiples de la fréquence
de modulation. A chaque croisement entre deux diagrammes de Bloch, le couplage
introduit par la modulation produit un anticroisement.

La trajectoire d’une particule dans le diagramme de Floquet-Bloch peut alors
être simulée par un modèle semi-classique. Ce modèle décrit la trajectoire d’une
particule sur une bande donnée via l’évolution couplée de sa position et de sa pseudo-
impulsion, et prend en compte la possibilité de changer de bande via une transition
Landau-Zener. Le modèle semi-classique reproduit bien les résultats expérimentaux
et permet d’analyser la dynamique d’une particle isolée. La figure 7.27 présente les
trajectoires de particules correspondants à certaines lignes de déplétion observées
dans l’expérience notées 1, 2 et 3 (voir Fig. 7.26).

Dans chaque cas, le phénomène clef est l’absorption adiabatique d’une excitation
du réseau. La particule subit ensuite une réflection de Bragg en bord de la zone de
Brillouin. Les trajectoires dans l’espace réel peuvent alors être très complexe comme
par exemple dans le cas de la trajectoire (1) où la vitesse de la particule change trois
fois de signe.
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Figure 7.27: (a) Vitesse et nombre moyen d’excitations de Floquet 〈nF 〉 en fonc-
tion du temps de propagation pour des paramètres correspondant à trois lignes de
déplétion différentes (voir Fig. 7.26). (b) Diagramme de Floquet-Bloch à la po-
sition pertinente. Les fléches indiquent les trajectoires des particules dans le di-
agramme de bande. (1) Réflection sur un gap ouvert par la modulation, v =
10.3 mm/s, ν = 8 kHz. (2) Réflection sur un anticroisement suivi d’une réflection
de Bragg. (3) accélération transitoire par absorption d’une excitation de Floquet. α
indique l’absorption ou émission d’une excitation de Floquet et β une réflection de
type Bragg.
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Application: filtre en vitesse

Il est possible d’utiliser simultanément différentes fréquences de modulation afin
de créer un filtre en vitesse accordable. Par exemple, en combinant les déplétions
induites par deux fréquences de modulation proches l’une de l’autre, nous pouvons
créer entre des classes de vitesse rejetées un filtre passe-bande. Nous parvenons
ainsi à filtrer une classe de vitesse de dispersion ∆v ≃ 450 µm/s. Cette technique
à l’avantage de ne pas reposer sur une structure interne particulière et est donc
transposable à tous les types d’atomes.
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Appendix A

Published papers

This appendix presents the papers written during this thesis along with the ab-
stracts.

A.1 Zeeman slowers made simple with permanent

magnets in a Halbach configuration

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermer-

sch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, &

R. Mathevet

Review of Scientific Instruments, 82, 063115 (2011)

We describe a simple Zeeman slower design using permanent magnets. Contrary
to common wire-wound setups no electric power and water cooling are required.
In addition, the whole system can be assembled and disassembled at will. The
magnetic field is however transverse to the atomic motion and an extra repumper
laser is necessary. A Halbach configuration of the magnets produces a high quality
magnetic field and no further adjustment is needed. After optimization of the laser
parameters, the apparatus produces an intense beam of slow and cold 87Rb atoms.
With typical fluxes of 1 to 5 × 1010 atoms at 30 m/s, our apparatus efficiently loads
a large magneto-optical trap with more than 1010 atoms in one second, which is an
ideal starting point for degenerate quantum gases experiments.

A.2 Realization of a distributed Bragg reflector

for propagating guided matter waves

C. M. Fabre, P. Cheiney, G. L. Gattobigio, F. Vermersch, S. Faure, R.

Mathevet, T. Lahaye & D. Guéry-Odelin

Phys. Rev. Lett., 107, 230401 (2011)
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We report on the experimental realization of a Bragg reflector for guided matter
waves. A Bose-Einstein condensate with controlled velocity distribution impinges
onto an attractive optical lattice of finite length and directly probes its band struc-
ture. We study the dynamics of the scattering by this potential and compare the
results with simple one-dimensional models. We emphasize the importance of taking
into account the gaussian envelope of the optical lattice which gives rise to Bragg
cavity effects. Our results are a further step towards integrated atom optics setups
for quasi-cw matter waves.

A.3 Guided atom laser: transverse mode quality

and longitudinal momentum distribution

F. Vermersch, C. M. Fabre, P. Cheiney, G. L. Gattobigio, R. Mathevet

& D. Guéry-Odelin.

Phys. Rev. A, 84, 043618 (2011)

We analyze the outcoupling of a matter wave into a guide by a time-dependent
spilling of the atoms from an initially trapped Bose-Einstein condensate. This pro-
cess yields intrinsically a breakdown of the adiabatic condition that triggers the
outcoupling of the wave function. Our analysis of the time-dependent engineering
and manipulation of condensates in momentum space in this context enables to
work out the limits due to interactions in the mode quality of a guided atom laser.
This study is consistent with recent experimental observations of low transverse ex-
citations of guided atom lasers and suggests (i) an optimal strategy to realize such
quasi-monomode guided atom lasers with, in addition, the lowest possible longitu-
dinal velocity dispersion, or alternatively (ii) a strategy for engineering the atomic
flux of the atom laser.

A.4 Matter wave scattering on an amplitude-modulated

optical lattice

P. Cheiney, C. M. Fabre, F. Vermersch, G. L. Gattobigio, R. Math-

evet, T. Lahaye & D. Guéry-Odelin.

Phys. Rev. A, 87, 013623 (2013)

We experimentally study the scattering of guided matter waves on an amplitude-
modulated optical lattice. We observe different types of frequency-dependent dips
in the asymptotic output density distribution. Their positions are compared quan-
titatively with numerical simulations. A semiclassical model that combines local



A.5 Realization of tunnel barriers for matter waves using spatial gaps163

Floquet-Bloch bands analysis and Landau-Zener transitions provides a simple pic-
ture of the observed phenomena in terms of elementary Floquet photon absorp-
tion/emission processes and envelope-induced reflections. Finally, we propose and
demonstrate the use of this technique with a bichromatic modulation to design a
tunable sub-recoil velocity filter. Such a filter can be transposed to all species since
it does not rely on a specific internal level configuration of the atoms.

A.5 Realization of tunnel barriers for matter waves

using spatial gaps

P. Cheiney, F. Damon, G. Condon, B. Georgeot & D. Guéry-Odelin

EPL (Europhysics. Letters) 103, 50006 (2013)

We experimentally demonstrate the trapping of a propagating Bose-Einstein
Condensate in a Bragg cavity produced by an attractive optical lattice with a
smooth envelope. As a consequence of the envelope, the band gaps become position-
dependent and act as mirrors of finite and velocity-dependent reflectivity. We di-
rectly observe both the oscillations of the wave packet bouncing in the cavity pro-
vided by these spatial gaps and the tunneling out for narrow classes of velocity.
Synchronization of different classes of velocity can be achieved by proper shaping of
the envelope. This technique can generate single or multiple tunnel barriers for mat-
ter waves with a tunable transmission probability, equivalent to a standard barrier
of submicron size.
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Appendix B

More on the outcoupling dynamics

In this appendix, we wish to adress a few questions motivated by the experimental
observations. In particular, the output velocity does not vary as a function of the
laser detuning as expected by the naive model presented at the beginning of chapter
1. A linear relation with dvf/dδ0 = −0.78 m.s−1/MHz is expected, while, a slope
close to 1 m.s−1/MHz is observed experimentally. This discrepancy is related to
some questions: under which conditions does the atom follow the resonance condition
during the slowing? What happens during the extraction of the atoms at the output
of the ZS?

Approximations to the equation of motion

The acceleration resulting from the radiation pressure (1.2) reads:

a = −a0
s0

1 + 4 (δ0 + kv(z) − µB(z)/~)2 /Γ2 + s0

. (B.1)

This equation cannot be solved analytically because of the non-linear terms in v

and z. It is instructive, however, to develope the equation of motion around the
resonance condition ideally followed by the atoms. Let us therefore define v′ = v−vR

where vR = vc

√

1 − z/ℓ, is the velocity of an atom that is constantly decelerated at
a = −ηa0 (η < 1), and is at rest at the output of the ZS. For a given trajectory, the
acceleration is a = vdv/dz. The change of variables permits to cancel out the terms
that depend on z in the detuning. The equation of motion becomes:

(v′ + vR)
d(v′ + vR)

dz
= −a0

s0

1 + s0 + 4(δ′
0 + kv′)2/Γ2

, (B.2)

where δ′
0 = δ0 −µBb/~. If v′ ≪ vR, (i.e we are close from the expected trajectory), it

is possible to solve equation (B.2) at different orders in v′/vR. At the zero-th order,
we obtain:

a0

(

s0

1 + s0 + 4(δ′
0 + kv′)2/Γ2

− η

)

= 0. (B.3)
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Figure B.1: (a) An atom reaches an equilibrium velocity v′
eq for which the acceleration

is a = ηa0. Blue: direct numerical integration of the non-linear equation of motion.
Green (violet): solution at the zero-th (first) order in v′/vR. (b) At the output of the
ZS, the acceleration increases until it reaches a0, the atoms are then outcoupled.

The atom reaches in the decelerated frame a stationary velocity such that the de-
tuning stay constant but non zero:1

kvstat = −δ′
0 − Γ

2

√

√

√

√

(

1 − η

η

)

s0 − 1. (B.4)

The atom trajectory is then set on one edge of the resonance profile. The trajectory
gets closer to the center of the resonance profile as η gets closer to 1. Figure B.1 (a)
shows the velocity in the decelerated frame calculated by integrating numerically
the Eq. B.2 along with the calculated stationary velocity, we see that inside the ZS,
the atom, clings to the expected stationary velocity.

Besides being slowed down, the atomic beam is also cooled. Indeed, at the first
order in v′/vR, the equation (B.2) becomes:

dv′

dz
=

−a0

vR

(

s0

1 + s0 + 4(δ′
0 + kv′)2/Γ2

− η

)

+
v2

c

lv′
. (B.5)

It is then possible to expand the terms on the right around the stationary velocity
vstat. We see then that the difference to the stationary velocity v′ − vstat is damped
(d(v′ − v′

eq)/dz = −γ(v′ − v′
eq)), with a damping

γ =
8γDη

2

s0

√

√

√

√

(

1 − η

η
− 1

)

, (B.6)

where we introduced the parameter γD = ~k2/4m that corresponds to the maximum
damping for a two-level atom. The cooling of the atomic beam in a ZS and in an
optical molasse have the same origin (without considering the internal structure),
however, in practice, the velocity dispersion in a ZS is generally much higher than

1The solution with the + sign is unstable.
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in a molasse because it is ultimately dictated by the outcoupling mechanism at the
output of the ZS.2

Outcoupling

The condition v′ ≪ vR is not fulfilled when:

• v′ is too high, this occurs at the entrance of the ZS, when the atom has not
yet reached the resonance condition.

• vR tends to zero at the output.

In these two cases, it is necessary to integrate numerically the Eq. (B.2). In the first
case, we see that v′ reaches its equilibrium value in an overdamped regime without
oscillation (see Fig. B.1 (a)). The second case is more interesting and explain
the fact that the output velocity does not vary with the detuning δ0 as simply as
suggested by the naive model. The magnetic field has been calculated to induce a
constant acceleration. However, this is not necessarily fulfilled everywhere inside the
ZS even in the case of the ideal magnetic field. Indeed, if we take the derivative of
the resonance condition

kv − µB/~ = cst, (B.7)

we find that the acceleration is not constant and equal to

a = −ηa0



1 − δ′
0

µ∆B/~
√

1 − z/ℓ



 . (B.8)

The acceleration is strictly constant only if δ′
0 = 0, i.e if the atoms are extracted

exactly at rest. This is not possible experimentally since the atomic beam would
then become very divergent. In all other cases, because of the term 1/

√

1 − z/ℓ,
the acceleration required to follow the resonance condition will eventually become
larger than the maximum acceleration before the output of the ZS. At this location,
the atom is outcoupled and will not fully benefit from the slowing in the last part
of the ZS.

The atoms are outcoupled when a becomes larger than a0s0/(1 + s0), it occurs
at a location:

zout = ℓ



1 −
(

~δ
′

0

µ∆B
(1 + s0)

)2


 (B.9)

In normal conditions of operation, ~δ
′

0 ≪ µ∆B), therefore, the outcoupling position
is located only a few millimeters before the end of the ZS. This does not compromise
the working out of the ZS, however, it has an important effect on the output velocity.

Using Eqs. (B.4) and (B.9), and assuming that the atoms are not decelerated
anymore after the outcoupling, it is now possible to compute the variation of the

2An important transverse inhomogeneity can also result in an increase of the velocity dispersion.
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Figure B.2: Output velocity as a function of the detuning: experimental (circle), with
the naive model (Dash-dotted line), the model with premature outcoupling (dashed
line) and using a full numerical resolution (plain line).

final velocity. The final velocity does not vary as a function of the detuning as simply
as expected using a simple approach.

kvf = −δ′
0



1 +
1 + s0

s0

(

1−η
η

)

− 1



− Γ
2

√

√

√

√

(

1 − η

η

)

s0 − 1. (B.10)

Figure B.2 presents the measured final velocity as a function of the detuning along
with the result from the three calculations: the naive model presented in the begin-
ning of the chapter, the calculation in which we take into account the outcoupling
position, and the result of the numerical integration of the dynamics. The output
velocity roughly varies linearly with the detuning. As outlined before, the slope pre-
dicted by the naive model (dash-dotted line) is too small. On the contrary, the slope
obtained with our second model (dashed line) is too large and does not reproduce
the experimental results. This means that atoms are still significantly slowed even
after the outcoupling. The complete numerical integration (plain line) that takes
this effect into account provides the best agreement.



Appendix C

Magnetic material characterization

Because in our magnet configurations, magnets are going to be close to one another,
it is important to know to which extent their contributions to the total magnetic
field can be added independently. Besides, the geometry of a magnetic material has
a priori an influence on its magnetization. The values of magnetization found in
the datasheet are measured on materials in a torus geometry. It is important to
know if the magnetization changes significantly for our cuboid magnets. To answer
these questions, we use the material characteristic M(H) (see Fig. C.1). For "hard"
magnetic materials, the characteristics has the shape of a large rectangle. Schemat-
ically, we can consider that the magnetization switches between to values ±Msat.
The half-width of the rectangle is the intrinsic coercive field Hci ≃ 1, 1 kA/mm for
our magnets. It represents the external magnetic field one has to apply to reverse
the polarity of the magnet. The total magnetic field experienced by a magnet is the
sum of the field produced by the other magnets and of its own magnetic field also
called demagnetizing field Hdem. Computing the demagnetizing field is in general a
very complex task and strongly depends on the geometry of the magnet. However,
there is a simple solution if we suppose that the magnetization is homogeneous. In
this case, thanks to the linearity of Maxwell’s equations, the demagnetizing field is
proportional to the magnetization Hdem = −NdM , where Nd is the demagnetizing
factor that depends only on the geometry. In the two realizations, the magnet ge-
ometries are such that Nd ∼ 0.75 and 0.5 respectively. This leads to quite strong
demagnetizing fields Hdem = −0.75 kA/mm and −0.5 kA/mm (see Fig. C.1). How-
ever, thanks to the high flatness of the characteristic, these effect remain very small
in our case. The magnetization is reduced in the two setups of 2% and 0.5% re-
spectively. This effect was not taken into account in the following where we suppose
that the magnetization is constant and equals to M = Msat = 0.95 kA/mm. The
field produced by the other magnets, on the order of Hext ∼ 25 A/mm is very small
compared to the demagnetization field. As a consequence, it is completely negligible.
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Hd

Msat

Mcorr

Figure C.1: The caracteristic M(H) has a rectangular shape, correlatively B(H) is
almost a straight line. The coercive field for the N35 grade is Hci ≃ 1, 1 kA/mm and
the residual induction Br = 12 kG (Msat = Br/µ0 = 0.95 kA/mm). The demagne-
tizing field though important only leads to 0.5 and 2 % changes in the magnetization.



Appendix D

Atomic flux from absorption

measurements

In this appendix, we develop the calculations to extract the atomic flux from the
absorption measurements.

Let us assume that the atomic beam has a cylindrical symmetry and that the
probe is small compared to the size of the atomic beam. Let n(ρ) denote the beam
density at a distance ρ from the center and f(v) the atomic velocity distribution.
The atom flux is:

Φ =
∫ +∞

0
2πρdρ n(ρ)

∫ +∞

0
dv vf(v). (D.1)

For a probe beam at an angle θ from the atomic beam, the absorption signal A(∆)
is:

A(∆) =
∫ +∞

−∞

dρ
sin θ

n(r)
∫ +∞

0
dv f(v)σ(v,∆), (D.2)

where σ(v,∆) = σ0/(1 + 4∆′2/Γ2) with ∆′ = ∆ + kv cos θ is the absorption cross
section. In the limit where the Doppler broadening is much larger than the natural
linewidth, k δv cos θ ≪ Γ, we can approximate the absorption cross section by a

θ

ρ

Atomi beam

Probe

Figure D.1: Sketch of the atomic beam detection scheme by an absorption probe.
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δ-function:

σ(v,∆) ≈ 2
π
σ0δ

(

∆
Γ

− v cos θ
λΓ

)

.

In that case Eq. (D.2) simplifies:

A(∆) =
2
π
σ0

λΓ
cos θ

f

(

λ∆
cos θ

)

∫ +∞

−∞

dρ
sin θ

n(ρ)

and Eq. (D.1) is

Φ = C D
λ tan θ
σ0Γ

∫ +∞

−∞
d∆ ∆A(∆), (D.3)

where D is the typical atom beam diameter and C a constant near unity defined
according to:

C =
π

2
1
D

∫+∞
0 2πρdρ n(ρ)
∫+∞

−∞ dρ n(ρ)
.

For a homogeneous cylindrical beam C = π2/8. The atom flux is thus measured
from the absorption signal by numerical integration following Eq. (D.3).



Appendix E

Recirculating oven

The atomic beam is created by an effusive oven loaded with 15 g of rubidium. In
order to maximise the oven lifetime, we use a recirculating design. As compared
to the so-called ‘candlestick’ designs,[138, 139] our oven, inspired in part by [140] is
very simple and easy to operate. We have built several versions of the oven over the
last five years, with minor variations between them, and observed comparable per-
formances. The same design has been used also for a sodium BEC setup producing
extremely large condensates [141] but no detailed description is given there.

A general view of the oven, made of standard CF-16 and CF-40 ultra-high vac-
uum fittings, is shown on Fig. E.1. A first chamber contains, at the bottom, molten
rubidium kept at temperature T1, in equilibrium with rubidium vapor, which ef-
fuses through a circular aperture of diameter d1 = 8 mm drilled in the center
of a blank CF-16 copper gasket. The other parts of the chamber are kept at
T2 = T3 = T4 ∼ T1 + 30 K in order to avoid the accumulation of rubidium on
a cold spot and possible clogging of the oven aperture. The temperatures T1 to T4

are actively stabilized by means of four PID controllers, thermocouples as temper-
ature sensors, and heating bands as actuators. The recirculation tube may also be
heated just above the melting temperature of Rubidium to prevent it to be from

Liquid rubidium

Recirculation tube

Rubidium
vapor

Glass ampule
initially containing
solid rubidium

Collimated beam

High-current feedthrough

To thermo-electric cooler

Copper cold finger
T1

T2

T3

T5

T4

d1 d2

UHV rotating
feedthrough

Beam shutter

Figure E.1: Sketch of the recirculating oven. Hatched rectangles represent heaters.
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being blocked by solid Rubidium. To achieve a good thermal insulation, the oven is
covered with two layers of alkaline earth silicate wool and an external foil of metal
coated Mylar. In steady state, the average power consumption is a few tens of watts.
A second chamber (made of a conical CF-16 to CF-40 adapter) is used to collimate
the beam by means of a second aperture (diameter d2 = 4 mm) located 80 mm
downstream.

The rubidium not used in the collimated beam accumulates into this chamber.
Liquid rubidium at temperature T5 < T1 flows back by gravity to the first chamber
through a 6 mm inner diameter stainless steel tube. A piece of gold-plated stainless
steel mesh (Alfa-Aeser ref. 42011) covers the inside of the recirculating chamber to
ease the accumulation of rubidium in its lower part.1

The loading of the oven is made in a very simple way: we cool down the rubidium
ampule(s) in liquid nitrogen, break the glass with pliers, and insert the ampules
upside down into the first oven chamber. We then close this chamber with a blank
CF-16 flange, and pump down the oven to ∼ 10−6 mbar with a turbomolecular
pump. When heating the oven, the rubidium melts and drips to the bottom of the
first chamber.

1In some versions of the oven we rolled a small quantity of this mesh into a ‘wick’ that was
inserted into the recirculation tube, in order to help recirculation by capillary action. However the
ovens without this wick showed similar performance and the presence of the mesh is probably not
necessary at all.



Appendix F

Ideal Halbach cylinder

In this appendix, we develop the magnetic field calculations produced by magnets
in the ideal Halbach cylinder configuration depicted in Fig. F.1. Using polar coor-
dinate, the magnetization reads:

M = M0(cos θur + sin θuθ) (F.1)

Let us show that the resulting magnetic field B:

• vanishes for r > Rext,

• is uniform for r < Rint,

with inside the rim:

B = µ0M0 ln
Rext

Rint
uy. (F.2)

The magnetization distribution is equivalent to the following distribution of (i)
surface current js = M × n, (ii) volume current j = ∇ × M .

• internal surface r = Rint: js = M0 sin θuz.

• external surface r = Rext: js = −M0 sin θuz.

• volume current: j = M0

r
(∂r(r sin θ) − ∂θ cos θ) uz = 2M0 sin θ/ruz.

Let us first work out the contribution of the surface currents. To do that, let
us remark that the current distribution js = js0

sin θuz is equivalent to the volume
current distribution of two plain cylindrical conductors with radius r and current
in opposite direction shifted in the x direction by a small distance ε (see Fig. F.2).
The magnetic field produced at the point M by one cylindrical conductor is well
known and reads B(Mint) = µ0j

2
uz × OiM . It follows by linerarity of the Maxwell

equation that the magnetic field produced by the surface current distribution reads:

B(M) =
µ0j

2
uz × (O2M − O2M) =

µ0jε

2
uz × ux (F.3)
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Figure F.1: Ideal Halbach cylinder
magnetic configuration, the magnetiza-
tion at an angle θ from the y axis form
an angle 2θ with the same axis.

y
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εε
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Figure F.2: Equivalence between a surface current of the type js = js0
sin θ and two

plain conductor shifted by a small distance ε and carrying currents j = ±js0
/ε.

B(M) =
µ0

2
js0

uy (F.4)

interestingly, this does not depend on the radius of the cylinder that support the
surface current. The contributions of the internal and external surfaces thus com-
pensate each other.

Let us now work out the contribution of the volume currents. Because the
problem is in two dimensions, it is useful here to use the following complex notations:

z = x+ iy = reiϕ, (F.5)

and
B = Bx + iBy. (F.6)

With these notation, the magnetic field produced at location z0 generated by a
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current filament I infinite in the z direction, at location z reads:

B =
µ0I

2iπ
1

z0 − z
. (F.7)

We can now integrate the contributions of the elementary volume current j. The
total magnetic field reads:

B =
µ0

2iπ

∫∫

j

z0 − z
rdrdϕ. (F.8)

let us use the Taylor expansion of the term 1/(z0 − z), inside the rim (|z0| < |z|):

1
z0 − z

= −
∞
∑

n=1

z0
n−1

zn
(F.9)

In this way, we easily express the magnetic field as a Taylor expansion too:

B =
∞
∑

n=0

bn, (F.10)

with

bn = − µ0

2iπ

∫∫ je−i(n+1)ϕ

rn
drdϕ. (F.11)

In our case, the volume current is j = 2 cos ϕ
r
M0 = eiϕ+e−iϕ

r
M0. Because of the

angular integral, the multipolar development (F.11) is exactly zero for n 6= 0. The
magnetic field inside the rim is thus homogeneous and

B = b0 = − µ0

2iπ

∫∫

M0

r
drdϕ, (F.12)

B = iµ0M0 ln
Rext

Rint
. (F.13)

The magnetic field is homogeneous and along the direction y. Let us remark that if
one chooses a magnetization that makes an angle 2Nθ with the y axis, a different
term of the multipolar development (F.11) is priviledged so that this recipe can be
used to obtain ideal multipolar fields.

Outside the magnetic rim (|z0| > |z|), the Taylor expansion of 1/(z0−z) becomes:

1
z0 − z

=
−∞
∑

n=0

z0
n−1

zn
(F.14)

In this case, all terms of the sum are identically zero and the field outside of the rim
vanishes.
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Appendix G

Development of the Floquet-Bloch

band eigenvalue problem

We start with the hamiltonian:

H = − ~
2

2m
d2

dz2
+
U0

2
(1 + η cos(ωt))(1 + cos(kLx)) (G.1)

The Floquet-Bloch states can be written:

ψn,k(z, t) = ei(kz−εn(k)t/~)un,k(z, t), (G.2)

where εn(k) are the quasi-energies and the functions un,k(z, t) are biperiodic in space
and time and therefore can be Fourier expanded:

un,k(z, t) = un,k(z + d, t) = un,k(z, t+ T )

=
∑

l

∑

nF

φnF ,lei(lkLz−nF ωt). (G.3)

Let us expand each term of the Schrödinger equation on the Fourier basis:

i~
∂ψ

∂t
= i~

∑

nF

(inFω − iεn(k)t/~) exp (i(nFωt− εn(k)t/~))
∑

l

φnF,l (G.4)

The kinetic energy term shall be expanded:

− ~
2

2m
d2ψ

dz2
=
∑

l

∑

nF

~
2

2m
(k+lkL)2φnF,l exp [i((k + lkL)z − (nFω + εn(k)/~)t)] . (G.5)

The time-dependent potential is expanded

U(z, t) =
U0

2

(

1 + η
eiωt + e−iωt

2

)(

1 +
eikLz + e−ikLz

2

)

. (G.6)
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U(z, t)ψ =
U0

2

∑

l

∑

nF

((φnF,l +
1
2

(φnF,l+1 + φnF,l−1) +
η

2
(φnF+1,l + φnF−1,l)

+
η

4
(φnF+1,l+1 + φnF+1,l−1 + φnF−1,l+1 + φnF−1,l−1))

(G.7)

combining Eqs. (G.4) to (G.7) into the Schrödinger equation and identifying
each term of the Fourier expansion, one gets the following development:
[

nFζ + q/2 + (k/kL + l)2
]

φnF,l + ηq/4(φnF+1,l + φnF−1,l) − q/4(φnF,l+1 + φnF,l−1)

−q/8(φnF+1,l+1 + φnF+1,l−1 + φnF−1,l+1 + φnF−1,l−1) = εφnF,l.

(G.8)

where q = U0/EL and ζ = ~ω/EL are the normalized lattice depth and modulation
frequency.
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1RésuméLa première partie de ette thèse présente le développement d'un nouveau type de ralen-tisseur à e�et Zeeman à aimants permanents qui possède ertains avantages par rapportà la réalisation onventionnelle. Les performanes des es dispositifs sont disutées pourdeux on�gurations d'aimants: dipole et Halbah.La deuxième partie porte sur des expérienes de di�usion d'onde de matière guidéessur des potentiels omplexes. Après avoir dérit le système expérimental qui permet laprodution de ondensats de Bose-Einstein dans un piège dipolaire roisé, trois expérienessont suessivement présentées.La première dérit la di�usion d'une onde de matière sur un réseau optique de taille�nie qui réalise un miroir de Bragg. Les proessus à l'÷uvre sont disutés et la transmissionà travers le miroir est aratérisée. Nous démontrons ensuite le piégeage d'un ondensat àl'intérieur d'une avité de Bragg fournie par l'envelope du reseau optique. Nous observonsdes osillations dans la avité ainsi que la sortie de la avité par e�et tunnel de ertaineslasses de vitesse. Cette tehnique permet de aratériser des barrières tunnel dans l'espaedes position équivalentes à une barrière repulsive submironique. Finalement, nous présen-tons la di�usion d'une onde de matière sur un réseau modulé en amplitude et étudionsla transmission à travers ette struture en fontion de la fréquene de la modulation.La dynamique omplexe en jeu est dérite grâe au formalisme de Floquet-Bloh. Cettetehnique permet de réaliser un nouveau type de �ltre aordable en vitesse. Ce �ltre àl'avantage de ne pas dépendre d'une struture interne spéi�que.AbstratThe �rst part of this thesis onerns the development of a novel type of Zeeman slower(ZS) that is based on permanent magnets and has several advantages over the onventionalZS. We present the performanes of the apparatus for two di�erent magnet on�gurations:the dipole and Halbah on�gurations.The seond part is about sattering experiments of guided matter waves on a omplexpotential. After desribing the experimental setup that produes Bose-Einstein ondensatesin a rossed dipole trap, we report on three experiments.The �rst experiment studies the sattering of a matter wave on a �nite size optiallattie that forms a Bragg re�etor. We disuss the proesses involved in the satteringand we study in detail the transmissivity aross the Bragg mirror. We then demonstrate thetrapping of a propagating Bose-Einstein ondensate in a Bragg avity that originates fromthe envelope of the lattie. We observe osillations inside the avity and partial tunnelingout of the avity for narrow lasses of veloity. This tehnique allows to haraterizenew types of tunnel barriers in position spae equivalent to submironi repulsive barriers.Finally, we study the sattering of matter waves on an amplitude-modulated optial lattie,and analyse the transmissivity aross this struture when varying the modulation frequeny.We desribe the omplex dynamis at play within the Floquet-Bloh framework and theuse of this tehnique to realize a new type of tunable veloity �lter. This �lter does notrely on any spei� internal state on�guration.
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