
THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 25/09/2014 par :
Hikmat FARHAT

Synthèse D’orchestrateur Pour La Composition De Services

JURY
Mr Jean-Paul Bodeveix Professeur -Université Paul

Sabatier
Président du Jury

Mme Olga Kouchnarenko Chargé de Recherche-Université
Franche-Comté

Rapportrice

Mr Jean-François Condotta Enseignant Chercheur-Université
d’Artois

Rapporteur

Mr Philipe Balbiani Chargé de Recherche-Université
Paul Sabatier

Directeur de thèse

Mr Guillaume Feuillade Maitre de Conference-Université
Paul Sabatier

Codirecteur de thèse

Mme Fahima Alili-Cheikh Maitre de Conference-Université
d’Artois

Membre du Jury

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse

Directeur(s) de Thèse :
Mr Philippe BALBIANI et Mr Guillaume FEUILLADE

Rapporteurs :
Mme Olga KOUCHNARENKO et Mr Jean-François CONDOTTA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en ligne de l'Université Toulouse III - Paul Sabatier

https://core.ac.uk/display/42968985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Composition of Services Behavior
via Orchestrator Synthesis

Thesis presented and defended by

Hikmat FARHAT

On the 25th of September 2014

To obtain the degree of
DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Delivered by: Université Toulouse III Paul Sabatier(UPS)
Speciality: Computer Science

Advisors

Philippe Balbiani Guillaume Feuillade
Chargé de Recherche Maitre de Conference

Université Paul Sabatier Université Paul Sabatier
Reviewers

Olga Kouchnarenko Jean-François Condotta
Chargé de Recherche Maitre de Conference

Université Franche-Comté Université d’Artois
Members of the Jury

Jean-Paul Bodeveix (President) Fahima Alili-Cheikh
Professeur Maitre de Conference

Université Paul Sabatier Université d’Artois

École doctorale:
Mathématiques Informatique Télécommunications de Toulouse (MITT)

Unité de recherche:
Institut de recherche en Informatique de Toulouse (IRIT)

Acknowledgement

First I would like to express my gratitude to my thesis advisor Philippe Balbiani for taking me
as a Doctorant in his group.

A big thank you for Guillaume Feuillade for all the time he spent in guiding me throughout my
thesis work. He was always patient, insightful, and enthusiastic. I wouldn’t have been able to
finish my thesis without his help.

I would like to extend my thanks to the Olga Kouchnarenko and Jean-François Condotta for tak-
ing the time to review my thesis. I would like also to thank Fahima Alili-Cheikh and Jean-Paul
Bodeveix for giving the honor of serving as jury members.

Finally, I thank my wife Samar for her support and encouragement.

3

Abstract

The behavior composition problem is an important aspect in many fields, especially in Service
Oriented Computing and in Multi-agent systems. The basic objective is to orchestrate the
behavior of the different available components, modelled as labelled transition systems (LTS),
in order to satisfy a given goal specification, also modelled as an LTS . A major concern has
been the large state space of typical situations which made existing approaches very compute
intensive. The aim of this thesis is to develop efficient methods to solve the behavior composition
problem.

First we study the case when all actions are observable. We develop a characterization of the
existence of a solution in term of existence of a relation between the different available compo-
nents, considered as a single system, on one hand and the goal specification on the other. Using
that characterization we develop an on-the-fly algorithm that finds a solution to the problem
when one exists. The algorithm is shown to be correct and has polynomial complexity with the
respect to the size of the components. We also show that the algorithm is robust with respect
to component failure.

Then we propose an abstraction method that reduces drastically the number of states. We
show that the non-existence of a solution in the abstracted systems implies the non-existence
of solution in the original system. Also the result of the abstraction is used as an input to the
above algorithm for use as a heuristic to speed up the search.

Finally, we develop a characterization of the behavior composition problem in the case of
partial observation by using the concept of controllability. We show that a solution to the
composition problem with partial observation exists if and only if the components are controllable
with respect to the goal specification. We also develop an on-the-fly algorithm to compute the
controllability of the system. The complexity of the algorithm is EXPTIME in the size of the
components.

5

Résumé

La composition de comportement est un aspet important dans beaucoup de domaines , surtout
dans la programmation orientèe service (Service Oriented Computing) et dans les systèmes Multi-
agents. L’objectif est d’orchestrer le comportement des différents modules, modelisés as labelled
transition systems (LTS), pour satisfaire une specification but, de même modelisé as an LTS.
Un problême majeur qu’on trouve dans la plupart des approches, est le nombre élevé d’états.
L’objectif de cette thèse est de développer des méthodes efficaces pour résoudre le problème de
composition de comportement.

D’abord on analyse le cas où toutes les actions sont observables. Nous developpons ensuite
une caractérisation de l’existence d’une solution en terme d’une relation entre les différentes
composantes d’une part et la specification but d’autre part. En utilisant cette caractérisation ,
nous développons un algorithme qui trouve à la volée une solution au problème si cette dernière
existe. Nous démontrons que l’algorithme est correct et sa complexité est polynomial part respect.
Nous prouvons également que l’algorithme est robuste par rapport à l’échec d’un des composants
.

Ensuite, nous proposons une méthode d’abstraction qui réduit considérablement le nombre
d’états. Cette abstraction est utilisée comme outil heuristique qui accélère la recherche.

Finalement, nous développons une caractérisation de l’existence d’une solution dans le cas
d’observation partielle. Cette caractérisation est elaborée en introduisant le concept de contra-
bilité. Nous démontrons qu’une solution existe si et seulement si les composantes sont controlables
par rapport au but. Nous developpons un algorithme pour trouver la relation de controlabilité à
la volée. La complexité de l’algorithme est EXPTIME en terme de la taille des composantes.

7

Contents

1 Introduction 1
1.1 Service Oriented Computing . 2
1.2 Our approach . 3
1.3 Thesis objectives and contributions . 3
1.4 Related work . 5

1.4.1 Work of Balbiani et. al. 5
1.4.2 Work of Bertoli et. al. 6
1.4.3 Work of De Giacomo et. al. 6
1.4.4 Work of Oster et. al. 8
1.4.5 Comparison with our work . 8

1.5 Organization of the thesis . 9

2 Framework and general results 11
2.1 Introduction . 12
2.2 A model of services . 13

2.2.1 Roman Model . 19
2.3 Composition with perfect information . 20

2.3.1 Service composition . 22
2.3.2 Controllability . 24
2.3.3 Relation to control theory . 32
2.3.4 Modal specifications . 33

2.4 Orchestrator with partial information . 37
2.4.1 Observation relations . 39

2.5 Communicating services . 44
2.5.1 Orchestrator with perfect information . 49
2.5.2 Orchestrator with partial information . 51

2.6 Conclusion . 52

3 Orchestration under perfect information 53
3.1 Introduction . 54

i

ii Table of contents

3.2 The Roman Model and fixpoint methods . 56
3.2.1 Roman Model . 56
3.2.2 Example 1 . 58
3.2.3 Fixpoint approach . 60

3.3 On-the-Fly algorithm for the Roman Model . 62
3.3.1 The algorithm . 62
3.3.2 Example 2 . 65

3.4 Correctness and complexity of the algorithm . 67
3.5 Handling service failure . 69
3.6 Abstraction of the composition problem . 71

3.6.1 Quotient services and state reduction . 72
3.6.2 Heuristic for orchestrator synthesis . 75

3.7 Algorithm for the general model . 76
3.8 Conclusion . 79

4 Orchestration under partial information 91
4.1 Introduction . 92

4.1.1 Motivation . 92
4.1.2 Example . 93
4.1.3 Definitions . 94

4.2 Fixpoint algorithm . 98
4.2.1 Algorithm . 98
4.2.2 Complexity . 100

4.3 On-the-Fly Algorithm . 103
4.3.1 Algorithm . 103
4.3.2 Correctness . 107
4.3.3 Complexity . 109

4.4 Conclusion . 110

5 Conclusion and future work 111
5.1 Conclusion . 112
5.2 Future work . 113

5.2.1 Implementation of the algorithms . 113
5.2.2 State reduction of LTS . 113
5.2.3 Partity games . 114
5.2.4 Quality of service and security . 114
5.2.5 Distributed orchestration . 114

Bibliography 117

Appendix 123

Table of contents iii

Résumé en Français 131

iv Table of contents

List of Figures

2.1 Two services S0 and S1 forming a community by their asynchronous product S0×S1 16
2.2 The orchestrated behavior of the community of Figure 2.1 when the orchestrator

disables all controllable actions except the ones with precondition α at the initial
state. 17

2.3 Example Composition . 23
2.4 Example controllability relation . 25
2.5 Example controllability Graph Corresponding to the controllability relation shown

in Figure 2.4 . 26
2.6 An example composition that admits more than one solution. 27
2.7 Example controllability relation corresponding to the example shown in Figure 2.6 28
2.8 controllability graph corresponding to the controllability relation shown in Figure

2.7 . 29
2.9 Before an a transition no b transition is permitted. After an a transition every

state must be able to make a b transition, until then no a transition is possible.
After a b transition a transitions are allowed again while b is not permitted . . . 33

2.10 Two modal specifications, τ top left and t top right are ”and” combined to produce
the modal specification in the bottom T . 36

2.11 Interaction of an Orchestrator with partial observation with a service 38
2.12 Orchestrator with partial observation realizing a target 41
2.13 Synchronous product of service with orchestrator realizing the target 42
2.14 Example setup: U and V are available services, E the environment and T the

target service. 45

3.1 Example setup: U and V are available services, E the environment and T the
target service. The letters s, b and p are shorthand for search, buy and pay
respectively. 58

3.2 Full state space of the community and the target service including solutions 1 and
2. The red nodes and transition denote two possible controllability relations. The
transitions search, pay, and buy are shortened to s,p, and b respectively. 81

v

vi Table of contents

3.3 Full state space of the community and the target service including solutions 3 and
4. The red nodes and transition denote two possible controllability relations. The
transitions search, pay, and buy are shortened to s,p, and b respectively. 82

3.4 A simple example to illustrate the algorithm . 83
3.5 The call stack for the simple example shown in Figure ?? 84
3.6 Example of a node processing problem . 85
3.7 Call stack for example in Figure ?? . 86
3.8 Continuation of call stack in Figure ?? . 87
3.9 Example services together with the solution to be abstracted 88
3.10 (A) is the original community with equivalence classes of the closure relation shown

as dashed ovals. (B) is the resulting abstraction. (C) is the abstraction of the
target. The relation R[] is a simulation relation 89

3.11 Used in proof of theorem ??. Ovals are the equivalence classes of branching bisim-
ulation for St and closure relation for S. R is the original controllability relation. 90

4.1 Two available services and a target service . 93
4.2 A simplified setup that admits a solution . 94
4.3 Full community space and the solution provided by the shown orchestrator . . . 95
4.4 One possible orchestrator and solution when all actions are observable 96
4.5 Observation relations graph relating the community state space in Figure ?? and

the target in Figure ?? . 97

List of Algorithms

1 function CONTROL for the Roman Model case 63
2 function MATCH for the Roman Model case . 64
3 Main routine for computing the controllability relation 66
4 function MATCH when abstraction is used . 75
5 function CONTROL for the general model . 77
6 function MATCH for the general model . 78

7 CLOSED returns true iff the input relation is closed with respect to uncontrollable
actions . 98

8 Computing Z1 . 99
9 On the fly algorithm . 103
10 Function CLOSURE . 104
11 Function CONTROL . 105
12 Function MATCH . 106
13 Function CHECK . 107

14 Main routine for computing the controllability relation 143
15 function CONTROL for the Roman Model case 144
16 function MATCH for the Roman Model case . 145
17 function MATCH when abstraction is used . 147
18 function CONTROL for the general model . 148
19 function MATCH for the general model . 149
20 CLOSED returns true iff the input relation is closed with respect to uncontrollable

actions . 151
21 Computing Z1 . 152
22 On the fly algorithm . 153
23 Function CLOSURE . 154
24 Function CONTROL . 154
25 Function MATCH . 155
26 Function CHECK . 155

vii

viii Table of contents

Chapter 1

Introduction

Contents
1.1 Service Oriented Computing . 2
1.2 Our approach . 3
1.3 Thesis objectives and contributions 3
1.4 Related work . 5

1.4.1 Work of Balbiani et. al. 5
1.4.2 Work of Bertoli et. al. 6
1.4.3 Work of De Giacomo et. al. 6
1.4.4 Work of Oster et. al. 8
1.4.5 Comparison with our work . 8

1.5 Organization of the thesis . 9

1

2 Introduction

1.1 Service Oriented Computing

Service Oriented Computing (SOC) [ACKM04] is a programming paradigm that uses individual
reusable components, called services, to support rapid development of distributed applications in
a heterogeneous environment. Since any application can be wrapped by an additional layer and
presented as a service, this paradigm promises a flexible computing architecture independent of
any specific technology. To enable this, a service should have an interface that is independent from
implementation. In addition to being self-contained, and platform-independent, SOC requires
services to be dynamically discoverable, invokable and composable. The latter property is what
interests us most in this thesis because, being composable, a collection of services can be combined
in such a way as to produce a result, none of the individual services can produce by itself.

Usually, there are two ways to compose web services: by orchestration or by choreography.
Orchestration requires a centralized process, in which an entity called an orchestrator, coordinates
the execution of different web services. The orchestrator sends and receives message from services
without each individual service being necessarily aware of the overall goal. The timing with which
a given service is invoked is decided on by the orchestrator. Choreography, on the other hand,
does not rely on an orchestrator, but it is a collaborative effort where each service knows exactly
what actions to perform and when to perform them. All services are aware of the overall goal and
they interact together to achieve that goal. In this thesis were are concerned with orchestration
and more specifically how to synthesize an orchestrator process, such that community of services
under the control of the orchestrator, satisfies a given goal. This orchestration synthesis task is
referred to as the behavior composition problem.

The behavior composition problem has been subject to intensive research. This fact can
be seen from the widely different approaches for the composition problem, ranging from model
checking [FVKR11], agent planning [DGS07], satisfiability solving [ZPG12], and theorem proving
[PF11] (see [RS05] for a survey). The framework we use in this paper, is similar to the one first
proposed in [BCG+03], usually referred to as the ”Roman Model”, and has been dealt with in
many related works [BCF08a][DGP10][BCGP08].

There are many different ways to define web services [ACKM04][RS05]. In practice each of the
available web services is described with the language WS-BPEL [oas07]. Then the composition
problem is:

given a set of available services and a target specification, synthesize an orchestrator that
combines the services in such a way as to meet the specification.

In order to tackle the problem of orchestration, researchers use a more formal and abstract
representation of web services than WS-BPEL documents. In most work on web service compo-
sition, services are represented as a finite state machines with a varying degree of sophistication.
Some approaches use state machines that can perform communication actions only [OAS+12],
internal action only [BCGP08], internal actions are unobservable [BPT10], internal and commu-
nication actions [BCDG+05a] or communication actions indirectly via an environment [GPS13].

Introduction 3

1.2 Our approach

Our approach consists of following components:

• A set of available services

• A target or goal service

• An environment

• An orchestrator

The available and target services as well as the environment are modelled as labelled tran-
sitions systems. The target service describes a certain behavior that one must satisfy using the
available services. In other words, the target plays the role of a specification. The environment
represent everything that is not modelled by the services themselves. Constraints on the actions
of services can be imposed using the environment. For example a service cannot make a certain
transition unless the environment is in particular set of states. The environment is also driven
by the services, it changes states depending on the actions of the services. This behavior of the
environment allows us to model the input and output of the services indirectly. In other words,
the services communicate via the environment. Each available service can be perform a set of
actions, some of them controllable and other are uncontrollable. The orchestrator communicates
with the available services and makes them peform actions. The behavior composition problem
is this

Given a set of available services, a target service and a description of the environment,
synthesize an orchestrator such that the synthesized action of the available services in the

presence of the environment is equivalent to the target service

The exact definition of ”behavior equivalence” can vary from one setting to another. In our
approach we use the behavior equivalence used in the Roman Model, namely that for any history
of the system the orchestrated service can perform any action that the target can perform. This
definition turns out to be the same as bisimulation equivalence. In terms of target specification,
we extended the Roman Model by using modal specifications for the target. The expressiveness
of modal specifications make them a real advantage especially when the target is given as a set of
specifications. Furthermore, other equivalences, such as bisimulation and simulation equivalences,
are special cases of modal specifications.

1.3 Thesis objectives and contributions

This thesis deals with the behavior composition problem. Even though we position our work in
the context web services, a behavior can describe the logic and interaction of any component,
such as devices or agents, in addition to web services. In fact part of this work was used to solve
the behavior problem in multi-agent setting [FF14].

4 Introduction

Usually synthesis is an automated construction of a system from scratch to conform to a
certain specification. In our case we want to synthesis from a set of already existing components,
which could be web services or agents.

When tackling the composition problem, a major concern has been the large state space of
typical situations which made existing approaches very compute intensive. The aim of this thesis
is to extend the expressive, or modeling, power of existing models as well as develop efficient
methods to solve the behavior composition problem. Our contributions in that regard are:

1. We formulated a model that takes into account uncontrollable actions by the services.
This model is studied for the case when the orchestrator had perfect or partial information.
In both cases we developed a necessary and sufficient condition for the existence of the
solution in terms of a controllability relation, for the case of perfect information, and a set
of observable relations, in the case of partial information. Such characterization allows us
to devise efficient algorithms for the orchestrator synthesis. We showed how an orchestrator
can be synthesised once the relations are found.

2. We went beyond existing approaches and used the very expressive modal specification to
model the target, or required, behavior. A goal for the composition expressed using modal
specification is essentially a set of acceptable behaviors.

3. We developed an on-the-fly algorithm for the case of perfect information to compute the
controllability relation. The importance of such an algorithm lies in the fact that it, unlike
other approaches, does not need to visit all the states of the system which are typically
prohibitively large. Another advantage, which is not present in other approaches, is the
possibility of using heuristic to reduce the search even further. We also proved that our
proposed algorithm is robust to component failure, in the sense that if a component fails the
re-computation does not need to restart from scratch, but reuses the information collected
before the failure.

4. We propose a heuristic to be used with the above mentioned algorithm, based on an ab-
straction method that reduces the size of the state space drastically. Such an abstraction
allow us to infer the non-existence of a solution to the original problem from the non-
existence of a solution to the much smaller abstracted problem. Furthermore, if a solution
to the abstracted problem exists it is used as an input to the on-the-fly algorithm to speed
up the search for a solution to the original problem.

5. We developed a on-the-fly algorithm for the case of partial information. Here the problem
would be 2EXPTIME. In other approaches one has to determinize the labelled transition
system before computing a solution, even if no solution exists. in our algorithm this deter-
minization is done on-the-fly while finding a solution. When a solution does not exist this
will speed up matters considerably

Introduction 5

1.4 Related work

As mentioned in the previous section, there are many widely different approaches to the compo-
sition problem. In this section we discuss the ones that are similar to ours.

1.4.1 Work of Balbiani et. al.

One approach that is closely related to, and inspired, our work is by Balbiani, Cheikh and
Feuillade [BCF08a][BCF09]. Their approach models the composition problem using the following
components:

• A client service that represents all the possible communications with a potential client.

• A goal service that communicate with the client service.

• A community of available services.

• An orchestrator (or mediator) service.

The above services are represented with communicating automata, where each automaton
has ports that can hold a finite number of messages. In this model the behavior composition
problem is this:

Synthesize an orchestrator such that the available services under orchestration is equivalent to
the target service.

The equivalence considered are trace, simulation or bisimulation equivalence. In [BCF08a]
they showed that their model is equivalent to the classical controller synthesis problem [RW89].
They proposed a method to solve it by reducing the problem to the satisfiability of a µ-calculus
formula. This reduction is then amenable to a solution using the method of Arnold. et. al.
[AVW03]. Another method to solve the case of asynchronous communication is via a filtration
technique [BCF10].

The aforementioned work deals with automata that communicate asynchronously. The work
of Balbiani, Alili, Héam, and Kouchnarenko [BAHK10], considered the problem of synchronous
communication. This means that a service cannot receive a message unless another is sending
and vice versa. Also in [BAHK10] conditional actions are considered where an action is executed
only if its precondition is satisfied.

It should be noted that in all the above work the services are considered to be partially con-
trollable and partially observable. The only controllable actions are the communication actions
between the orchestrator and the services. In this sense the controller can control the services
only by sending them messages. All other, internal, actions are uncontrollable.

6 Introduction

1.4.2 Work of Bertoli et. al.

An approach that is similar to ours is the work of Bertoli, Pistore, and Traverso, which started
in [PBB+04][TP04] and culminated in [BPT10]. This approach uses the planning via model-
checking approach developed in [PT01][BCPT03].

The authors reduce the web service composition problem to a planning problem where the
planning domain is the asynchronous product of available services. In this approach, web services
whose behavior is published as an BPEL specification, are converted to state transitions systems
(STS). This conversion entails the division of the STS actions into two groups: input/output
and internal actions. As the name suggests, the input/output actions are where the services can
communicate with external environment (i.e. controller) and the internal actions, all labelled
by τ , are considered as uncontrollable and unobservable actions. Then the service composition
problem is reduced to:

synthesize a controller that interacts with the asynchronous product of services in such a way
as to satisfy a goal formula.

To solve the composition problem a belief level system is constructed first. A belief state, first
introduced in [GB96], is basically the set of states that the system can possibly be in, following a
given set of observable actions. That it is not a single state is due to the fact that some actions are
not observable which means that the system could have evolved without the controller knowing
about it. Once this belief level system is constructed, and given a set of services and a logical
specification for the goal, they find a solution using an algorithm adapted from [CPRT03]. While
the algorithm they use is similar to a reachability game [dAHK07] they provide no analysis of
its computational complexity.

Beside the lack of complexity analysis their model is based on a few assumptions/simplifications
that reduce the power and generality of their model. This is especially true when the problem
to be solved is the general behavior composition and not just the composition of web services.
First internal transitions are assumed to be deterministic which means in any given state only
a single τ transition exists. Also they assume that the transition system that model services
contain no loops which means all histories are finite. It is worth mentioning that they developed
an on-the-fly approach to generate the belief state in [BPT06] but there is no complexity analysis
of the overall method.

1.4.3 Work of De Giacomo et. al.

Unlike the work of Bertoli et. al., the model of De Giaocomo, Patrizi, and Sardiña [GPS13]
considers internal actions as well as communication actions. This approach to the composition
problem started in [BCG+03] by Berardi et. al. and extended in [BCDG+05a] by introducing
data and communication capabilities. In this extension conditional automata represent OWL-S
documents. The resulting model, called COLOMBO, consist basically of the following compo-
nents:

Introduction 7

• A database

• Available services that share the database.

• A client service that can execute communication actions only.

• A goal service that represent the expected behavior from the client.

• An orchestrator or mediator service that represent the service composition.

Given the above components the composition problem is given as:

Synthesize a mediator (orchestrator) service such that the asynchronous product of the client
and goal service is isomorphic to the asynchronous product of the meditator with the available

services and the client service.

The above isomorphism is modulo the actions of communications. The problem is then solved by
reducing it to a satisfiability of a Propositional Dynamic Logic formula (PDL)[BCDG+05a][DGS07].
They also show that, with some constraints on the problem, an upper bound of double expo-
nential. At a later work a slightly simplified version of the problem is solved using the classical
concept of simulation where the services are considered as deterministic services [BCGP08]. The
formalism was later extended to non-deterministic services using the concept of Non-deterministic
simulation (ND-simulation) [SPD08]. A comprehensive summary of the approach is given in
[GPS13]. In this latest version the community of available services in the presence of an envi-
ronment is controlled by an orchestrator. The behavior composition is defined as:

Synthesize an orchestrator such that the behavior of the asynchronous product of services as
controlled by the orchestrator is behavior equivalent to the target service.

The equivalence of behavior means that for all possible histories of the community of service and
the target, any action performed by the target can also be performed by the community under
orchestration.

It should be noted that in this approach, which will be referred to henceforth as the Ro-
man Model, partial controllability is introduced via non-determinism only. Unlike the standard
approach to controller synthesis, in the Roman Model all actions are considered to be control-
lable. Therefore the behavior they simulate using non-determinism is more appropriately called
partially predictable rather than partially controllable.

In the above references the available services are considered as fully observable. Services
with partial observations were tackled in [GMP09]. The model in [GMP09] assigns observation
to states according to some observation function but, unlike the classical controller synthesis
problem, all actions are considered to be observable. Therefore one can distinguish between
two seemingly indistinguishable states by observing the sequence of actions executed to reach
them. Unless these two states can be reached by the same sequence of actions they will be
distinguishable.

8 Introduction

The case when the system is partially observable was studied in [GMP09] by reducing the
problem to a fully observable system using the concept of belief state [GB96]. Basically a belief
state is a set of all the states that the system could potentially be in. Once this reduction is
achieved the same method as in the case of full observation is used.

When the system is fully observable this group proposes different methods to synthesize
an orchestrator. Initially they showed[SPD08] that an orchestrator can be synthesized from a
variant of the simulation relation [Mil71] called non-deterministic simulation (ND-simulation).
The ND-simulation is obtained in the standard fashion as the largest fix-point of a function over
the relation space. Other approaches taken by the group was to reduce the problem to safety
games [DGP10] and Alternating Temporal Logic (ATL) model checking [DGF10].

1.4.4 Work of Oster et. al.

In the approach of Oster, Ali, Santhanam, Basu and Roop [OAS+12] the authors provide a uni-
fied framework for functional and non-funcitonal specification as well as behavior constraints.
They model the services by Labelled Transition Systems (LTS) that can perform input/output
actions only, without internal actions. Furthermore, a set of propositions is associated with each
state. They provide a comprehensive framework that can handle required and optional spec-
ifications. The required specification is further divided into functional requirements, meaning
what capabilities the orchestrated system should provide. These functional requirements are
specified as an AND-OR graph. This representation of the requirement has greater flexibility
since a requirement can be decomposed into different atomic requirements [OSB11]. The sec-
ond component of the required specification is called behavior constraint and handles how the
functionality is provided. These behavior constraint are specified using CTL. The user supplied
non-functional requirements are specified in language called Conditional Importance Networks
(CI-nets)[BEL09]. These networks define a sort of preorder over the preferences such that one
can quantify the statement ”one solution is preferable to another solution”.

In their model a composition is the synchronous product of all Labelled Transition Systems
where the output of one LTS is consumed by another. The behavior composition problem in this
case is:

Find a composition that satisfies the functional requirements and constraints such that it is
preferable to any other composition satisfying the requirements and constraints

1.4.5 Comparison with our work

The model we use in this thesis is very similar to the one by Balbiani et.al. and and De Giacomo
et. al. Our model is slightly less expressive than the Balbiani group but more expressive than
the De Giacomo group. In the approach Balbiani et. al. they deal explicitly with input/output
actions and handle them differently from internal actions. In our approach the input/output
actions are handled implicitly by embedding them in the environment as is done in the approach
of giacomo. Unlike the De Giacomo group we handle uncontrollable actions as well as controllable

Introduction 9

actions as done in the approach of the Balbiani group. Furthermore, the representation of the
goal in our case is similar to both groups but we go further by using modal specification for the
target. In fact our approach is inspired by and we regard it as a continuation of the work of both
groups.

The models of Oster et. al. [OAS+12] and and Bertoli et.al. [BPT10] are further away from
ours. First their goal is for the orchestrated system to satisfy a logical formula and not to be
equivalent to some target behavior as it is in our model. While formally the two approaches
are equivalent in practice the comparison between the two is much more difficult. Also in Oster
et. al. there are no internal transitions where as in our model internal actions are an essential
component. When one deals with behavior composing other than web services, for example
multi-agent systems, non-communication actions are essential. The model of Bertoli et. al. goes
a bit further by abstracting all internal actions as τ transitions which makes them unobservable.
In fact as far as the internal actions are concerned, Bertoli’s model becomes a special case of our
model (the case of partial information) by reducing the set of unobservable actions to one, τ .

Regardless of the model and especially in the case of partial information the behavior com-
position has high complexity as a function of the number of services, EXPTIME in the perfect
information case and 2EXPTIME in the partial information case. None of above approaches
deals with this high complexity, rather they rely on standard tools, mainly OBDD techniques,
to solve the problem. A novelty in our approach is the use of an on-the-fly algorithm both for
the case of perfect and partial information. The use of these algorithms in conjunction with the
proposed abstraction method as a heuristic offer a promising approach to a problem with such
high complexity.

1.5 Organization of the thesis

In chapter 2 we first present the model and the basic definitions. We show that our model extends
the Roman Model in two ways. First our model includes uncontrollable actions which are absent
from the Roman Model. Second we use modal specifications to model the target behavior. Modal
specifications are more general and less restrictive than target specification as used in the Roman
Model. Also in chapter 2 we prove that an orchestrator with perfect information exists if and
only if there is a controllability relation between the community of services and the target. This
result is also proved for the case when modal specification is used for the target. Similarly, we
prove that an orchestrator with partial information exists if and only if a set of relations, which
we call observation relations, exists between the community of services and the target. We also
extend the aforementioned results to the case when an environment is present. In chapter 3
we give a new on-the-fly algorithm to compute the observability relation in the case of perfect
information. The complexity and correctness of the algorithm is proven. We also introduce an
abstraction method that is used as a heuristic to speed up the algorithm. The general algorithm
which includes modal specification is also given. In chapter 4 the case of the orchestrator with
partial information is tackled. We present a new on-the-fly algorithm to compute the set of

10 Introduction

observation relations. This algorithm obviates the need for the pre-computation of the subset
construction. We prove the correctness and complexity of the algorithm. We conclude and give
future directions in chapter 5

Chapter 2

Framework and general results

Contents
2.1 Introduction . 12
2.2 A model of services . 13

2.2.1 Roman Model . 19
2.3 Composition with perfect information 20

2.3.1 Service composition . 22
2.3.2 Controllability . 24
2.3.3 Relation to control theory . 32
2.3.4 Modal specifications . 33

2.4 Orchestrator with partial information 37
2.4.1 Observation relations . 39

2.5 Communicating services . 44
2.5.1 Orchestrator with perfect information 49
2.5.2 Orchestrator with partial information 51

2.6 Conclusion . 52

11

12 Framework

2.1 Introduction

This chapter contains the necessary definitions and the formal setting of the behavior composition
problem. It also contains original results that are part of the contributions of this thesis to the
behavior composition problem.

Before stating the problem formally, it is useful to give an overview of the involved components
and how they fit in the framework. In this work we follow a line of reasoning similar to [GPS13],
a model originally proposed in [BCG+03], and [BCF08a]. The needed components include: a set
of available services, a target service, and an environment.

Each service in the set of available services, or community of available services, is a component
whose behavior is published by a service provide and performs certain tasks by communicating
with the client.

The target service is a service whose behavior we require. In another words it is a specification
of a behavior that one needs to satisfy.

The environment is a system shared by all the services, which allows them to maintain state
and communicate. The environment also serves as a vehicle to impose behavioral constraints
on the actions of some services. For example, in the case of one service needing the output of
another service to proceed this is modelled by allowing the transition only when the environment
is in a certain state.

Having introduced the components we can state the behavior composition problem informally
as: given a target service and a set of available services, find an orchestrator, if one exists, that
communicates with the services in such a way as to delegate requested actions to suitably chosen
available services, such that the system will have the same behavior as the target service.

First in section 2.2 we introduce the basic model for the services and service composition
that will be used throughout the thesis. In section 2.2.1 we show that the so called Roman
Model is a special case of our model. The case of composition with perfect information is
discussed in section 2.3. We use the concept of controllability relation, introduced in section
2.3, to present the first contribution of this thesis: we prove that an orchestrator with perfect
information exists if and only if a controllability relation exists between the community and the
target. Furthermore, in section 2.3.3 we explore the relation between the behavior composition
problem and control theory where we show that behavior equivalence is the same as bisimulation
equivalence. In section 2.3.4 we use the expressive and less restrictive modal specifications as
a behavior specification. To our knowledge modal specifications have not been studied in the
context of behavior composition before. We prove that in the case of modal specifications the
existence of an orchestrator depends on the existence of a controllability relation. Then the case
of composition with partial information is presented in section 2.4. In that section we introduce
the concept of a set of observation relations and use it to present another contribution of this
thesis: we prove that an orchestrator with partial information exists if and only if there exists a set
of observation relations between the community and the target. In both the perfect and partial
information case, we show how to construct the orchestrator from the controllability relation
and set of observation relations respectively. Since communicating services can be modelled by

Framework 13

an environment, the environment in introduced in section 2.5 where the same results obtained
without the presence of the environment are shown to be also valid in the presence of the
environment. The conclusion is given in 2.6.

2.2 A model of services

In our framework services are modelled as labelled transition systems (LTS). The transitions of
a given service can be divided into two categories: controllable and uncontrollable. The former
can be enabled/disabled by an orchestrator whereas the latter are ”spontaneous” transitions that
cannot be controlled. The system under study consists of three components:

1. A community of n available services.

2. A target or goal service whose behavior we need to mimic.

3. An orchestrator that communicates with the available services to ”realize” the behavior of
the target service.

The basic ideas is to find, or more accurately synthesize, an orchestrator that can modify the
behavior of the available services in such a way as to be satisfy the goal. Having introduced the
major components intuitively we give next a more precise and formal definitions. We start with
available services.

Definition 2.2.1 (Available Service). An available service Si is a tuple Si =
〈
Si,Σi, Comi, s

0
i , δi

〉
where

• Si is a finite set of states.

• Σi is a finite action alphabet.

• Comi is a finite set of communication messages.

• s0
i is the initial state.

• δi ⊆ Si × (Σi ∪ Comi × Σi)× Si is the transition relation.

For s, s′ ∈ Si and a ∈ Σi it is sometimes convenient to write (s, a, s′) ∈ δi as s a−→ s′. Similarly,
for m ∈ Comi, a ∈ Σi it is sometimes convenient to write (s, {m, a}, s′) as s m|a−−→ s′. Also, one
can use a functional notation for δi, such that δi(s, a) denote the set of states {s′ | s a−→ s′}.
An LTS is called deterministic if the set δi(s, α) has at most single state for all s ∈ Si and
α ∈ Σi ∪ Comi × Σi.

The conditional notation s m|a−−→ s′ means that the service performs action a only if it receives
a message m. More precisely, the action a is performed if it is enabled by the orchestrator. We
call such a transition a controllable transition because whether it happens or not depends on the

14 Framework

orchestrator. The uncontrollable actions are all the actions without a condition, e.g. of the form
s
a−→ s′ where a ∈ Σi.

This situation is similar to the case in control theory where some actions are controllable and
others are not. One can regard the present situation as dual to the classical control problem.
In the classical problem controllable actions can be performed unless explicitly disabled by the
controller. In our case the controllable actions are performed if they are enabled by the orches-
trator. Obviously the orchestrator can disable an action, say s m|a−−→ s′, like a classical controller
by not sending a message m.

The potential of behavior composition stems from the fact that there are many services or
components that can be orchestrated. Such a collection of services is referred to in this thesis
as a community of available services. It is essentially an asynchronous product of n available
services. The formal definition is given as:

Definition 2.2.2 (Community of Services). A community of n available services Si =
〈
Si,Σi, Comi, s

0
i , δi

〉
,

i = 1 . . . n, is the tuple S =
〈
S,Σu, Com, s

0, δu
〉

where

• S = S1 × . . .× Sn.

• s0 = (s0
1, . . . s

0
n).

• Σu = ∪iΣi

• Com = ∪iComi

• δu ⊆ S × (Σ ∪ Com× Σ)× S

The transition relation δu is the asynchronous product of all relations δi defined as

(〈s1, . . . , sn〉 , α,
〈
s′1, . . . , s

′
n

〉
) ∈ δu iff (sk, α, s′k) ∈ δk for some 1 ≤ k ≤ n

and for all i 6= k we have si = s′i

The functional notation δu defines the set of tuples:

δu(s1, . . . , sn, α) =
n⋃
i=1

⋃
s′i∈δk(si,α)

(s1, . . . , s
′
i, . . . , sn)

Since most of the time we will be discussing the evolution of the system as a whole we use
a single state s to mean the set of states of the n services, s = 〈s1, . . . , sn〉. When we need to
label a state of the whole community we use a superscript rather than a subscript which denotes
a particular service. For example, two different states of the whole community will be referred
to as s1 and s2 rather than s1 and s2 which refer to states for service one and two respectively.
Using this notation for n services, the initial state of service i would be written s0

i and the initial
state of the community would be written as s0 =

〈
s0

1, . . . , s
0
n

〉
.

Framework 15

The subscript u is short for unconstrained transition function. Its meaning will become
clear when we introduce the orchestrator. Basically it tells us how the system will evolve if
all the actions were enabled. It is useful to divide the unconstrained actions into two parts:
uncontrollable and controllable. Recall that controllable actions are conditional, i.e. always
prefixed with a message. Therefore when we write δu(s, a) we mean the set of states reached by
making an uncontrollable a-transition from state s. Similarly, δu(s,m |a) means the set of states
reached by making a controllable a-transition when the community receives message m or when
m is enabled.

Example 2.2.1. An example community of services composed of two simple services S0 and
S1 is shown in Figure 2.1 below. Note the asynchronous nature of the community. When in
state (s0

0, s
0
1) the system can make an uncontrollable c transition. Also from the initial state two

controllable transitions can be performed only if the community receives a message α. Note that
when a message α is received in state (s0

0, s
0
1) the community can make either an a or b transition.

We can use Figure 2.1 to give examples (non exhaustive) of the notation we have introduced:

• δu((s0
0, s

0
1), c) = {(s1

0, s
0
0)}

• δu((s0
0, s

0
1), a) = ∅

• δu((s0
0, s

0
1), α | a) = {(s2

0, s
0
1)}

• δu((s0
0, s

0
1), b) = ∅

• δu((s0
0, s

0
1), α | b) = {(s0

0, s
0
1)}

In order to explain how the community is controlled it is necessary to explain the role of the
orchestrator. But before giving the formal definition of an orchestrator it is useful to give an intu-
itive explanation how it modifies the behavior of the community. First, the orchestrator can en-
able/disable controllable transitions only. In example 2.2.1, the orchestrator can enable/disable,
for example, the (s0

0, s
0
1) α|a−−→ (s2

0, s
0
1) transition but cannot disable the (s0

0, s
0
1) c−→ (s1

0, s
0
1) tran-

sition. When an orchestrator interacts with the community we call the resulting behavior the
orchestrated behavior of the community or the behavior of the community under orchestration.
As an example, assume that the orchestrator enables α in the initial state and disables all other
(controllable) transitions. Then the resulting orchestrated behavior of the community would be
as shown in Figure 2.2 below. Note that the no transition of the orchestrated behavior have a
precondition anymore.

So far we have not given a precise definition of an orchestrator nor a precise mechanism in
which it interacts with the community. In the literature, and in this thesis, there are two types of
orchestrators that are usually considered: orchestrators having perfect or partial information. A
discussion of what type of information an orchestrator has access to will be left to later sections.
In this section we give a general, and therefore a bit vague, definition of an orchestrator.

16 Framework

s01

Service S1

s00

s10 s20

Service S0

s00, s
0
1

s10, s
0
1 s20, s

0
1

Community of services S0 × S1

α |b

α |b

α |b

α |b

c α |a

c
α |a

Figure 2.1: Two services S0 and S1 forming a community by their asynchronous product S0×S1

Definition 2.2.3 (Orchestrator). Given a community of n services S =
〈
S,Σu, Com, s

0, δu
〉
, an

orchestrator for that community is a function Ω : Com×D −→ {0, 1}. Where D is a domain of
information that at this point is left unspecified.

We will see later that D depends on what type of orchestrator we are considering. At this
point it is sufficient to say that the action of Ω depends on messages in Com. Therefore in this
section we will drop the dependence on D, which is in any case unspecified.

Let Ω(m), m ∈ Com, denote the action of the orchestrator. Then we can formalize the
orchestrated behavior (under Ω) of the community by introducing an orchestrated transition
function δΩ. Then δΩ(s, a) is interpreted as the set of states reached, under orchestration (by
orchestrator Ω), from state s when an a-transition is performed. Such an a-transition can be
either uncontrolled or a controlled that was enabled by the orchestrator. As mentioned before,
in this section the only input parameter for the orchestrator is the message. Also since all
uncontrollable actions are from Σu and all controllable action are of the form α |a with α ∈ Com
and a ∈ Σu then the orchestrated transition function, or the transition function of the orchestrated
community is written as:

δΩ(s, a) = δu(s, a)
⋃
m

δu(s,m | a)� Ω(m)

Note that in the above definition the term to the left of the union symbol represents the contribu-
tion of the uncontrollable transitions whereas the term to the right represents the contribution of

Framework 17

s00, s
0
1

s10, s
0
1 s20, s

0
1

b

c a

Figure 2.2: The orchestrated behavior of the community of Figure 2.1 when the orchestrator
disables all controllable actions except the ones with precondition α at the initial state.

the controllable transitions. The symbol � is a convenient notation to model the on/off behavior
of the orchestrator. This operation can be described by its effect as

δu(s,m |a)� Ω(m) =
{

∅ if Ω(m) = 0
δu(s,m |a) if Ω(m) = 1

It should be emphasized that the orchestrated community has no conditional transitions any
more, all transitions are labelled from the action alphabet Σ.

Example 2.2.2. We use Figures 2.1 and 2.2 to give a few examples of the formal notations we
just introduced. Since the orchestrator is ”on” only at the initial state and only for the message
α then we can write:

δΩ((s0
0, s

0
1), a) = δu((s0

0, s
0
1), a) ∪ δu((s0

0, s
0
1), α | a)� Ω(α)

= ∅ ∪ {(s2
0, s

0
1)}

= {(s2
0, s

0
1)}

In this example the orchestrator disables the transitions with α precondition in the state (s1
0, s

0
1)

therefore, as an example,

δΩ((s1
0, s

0
1), b) = δu((s1

0, s
0
1), b) ∪ δu((s1

0, s
0
1), α | b)� Ω(α)

= ∅ ∪ {(s1
0, s

0
1)} � 0

= ∅ ∪ ∅
= ∅

We will have more to say about the orchestrator when we define the different types. Since
the main objective of this thesis is to develop efficient methods for the behavior composition
problem. Such a problem entails finding a way to orchestrate the different available services so
that they have a behavior equivalent to some target behavior. In our model the target behavior

18 Framework

is represented as a target service. There are many ways to describe the behavior of two systems
as equivalent. If the behaviors are represented by transitions system then one can use classical
equivalences such as trace equivalence or, as is done in this thesis, behavior equivalence. We will
come back to behavior equivalence at a later stage, after we introduce all the necessary concepts.

Before proceeding any further we need to give a formal definition of the target service, which
we denote in this thesis by St.

Definition 2.2.4 (Target Service). A target service St is a tuple St =
〈
St,Σt, t

0, δt
〉

where

• St is a finite set of states.

• Σt is a finite action alphabet.

• t0 is the initial state.

• δt ⊆ St × Σ× St is the transition relation.

As seen from the above definition the target service is similar to available services with the
exception of being required to be a deterministic LTS. As explained before, the target being a
deterministic LTS means that for all a ∈ Σt and t ∈ St the set δt(t, a) can have at most one state.

To be able to compare the behavior of the orchestrated community and the target it is
important to describe how they both evolve over a sequence of actions. Also, it is convenient to
describe their behavior with reference to the same action set. For the orchestrated community
we define the extended function ∆Ω : S × Σ∗ → 2S , where Σ = Σu ∪ Σt. Let a ∈ Σ and x ∈ Σ∗
be an arbitrary action and sequence of actions respectively, s ∈ S be an arbitrary state of the
orchestrated community, then the function ∆ is defined recursively, with the help of the empty
sequence ε, as:

∆Ω(s, ε) = {s}
∆Ω(s, xa) =

⋃
s′∈∆Ω(s,x)

δΩ(s′, a)

We use the same symbol for the extended function for the target

∆t(t, ε) = {t}
∆t(t, xa) =

⋃
t′∈∆t(s,x)

δt(t′, a)

It should be noted that the target is deterministic so there is really no need for the union
symbol in the above definition but we keep it for consistency.

Framework 19

2.2.1 Roman Model

In this section we give a brief description of the so called Roman Model as used in [BCDG+05b][BCGP08][DGP10]
and compare it with the model we have presented in the previous section. In the Roman Model
the orchestrator delegates actions to the services. Given a trace x and action a the orches-
trator chooses a service k to performs the action. Formally each service can be represented
by the tuple Si =

〈
Si,Σi, s

0
i , δi

〉
where the alphabet is Σi. The orchestrator is a function

Ω : S × Σ∗ × {n} × Σ −→ {0, 1}, where {n} is the set of numbers from 1 to n. For exam-
ple Ω(s, x, ka) = 1 means in community state s and after performing the trace x the orchestrator
delegates the next action a to service k. It is easy to see that this model is a special case of
the more general model presented in the previous section. Below we give the translation from
our model to the special case of the Roman Model for the case of an orchestrator with perfect
information. The case with partial information is similar. Let s ∈ S be an arbitrary community
state and τ ∈ Σ∗ be a sequence of actions executed to reach s from the initial state s0. The
Roman Model is obtained from our general model as follows:

• Restrict the model by removing the uncontrollable evolution of the system. In this case
the single step evolution of the system, which was written as

δΩ(s, a) = δu(s, a) ∪
⋃

α∈Com
δu(s, α |a)� Ω(s, τ, α)

by removing the uncontrollable component becomes:

δΩ(s, a) =
⋃

α∈Com
δu(s, α |a)� Ω(s, τ, α)

• The possible set of messages that can be received by a service reduces to the form ka where
k is the service index and a ∈ Σ is the desired action. Thus the evolution of the system
becomes:

δΩ(s, a) =
⋃

i∈{1,...n}
δu(s, i |a)� Ω(s, τ, ia)

It is clear from the above that the basic Roman Model is too restrictive. First, all actions of
the services are assumed to be controllable which is not always the case. Furthermore, the
orchestrator has full control over the choice of action of the services without any side effects. In
our model, a message α sent by the orchestrator to the community can enable a desired action,
say a, but it can also unintentionally activate another action b. This is totally absent from the
Roman Model since the orchestrator can specify exactly which action to enable. Also in our model
the orchestrator does not specify which service to perform a given action. If the orchestrator
sends a message α to the community it has no control over which actual service reacts to the

20 Framework

message. An example from real life would be the case of a building having multiple elevators
and by pressing the button we don’t actually know which elevator responds. In summary, our
model is a much needed enhancement over the basic Roman Model.

In many other approaches to synthesis problems in different fields, two types of orchestra-
tors/controllers are considered: those having perfect information and those having partial infor-
mation. In this thesis we also study both types. When an orchestrator with perfect information
is considered we assume that it has full knowledge of which state the community is in and the
sequence of actions the community performed to reach that state. When an orchestrator with
partial information is considered we assume, as in control theory, that the actions of the commu-
nity are divided into observable (by the orchestrator) and non-observable actions. In our model,
unlike control theory, the set of controllable (uncontrollable) actions is the same as the set of
observable (unobservable) actions. The reason is that the orchestrator is aware only if its own
actions, which are the messages it sends to the community. In the next section we study the
composition when the orchestrator has perfect information and in section 2.4 we study the case
with partial information.

2.3 Composition with perfect information

In this section we study the behavior composition problem when the orchestrator has perfect
information. Having perfect information means that, at any point, the orchestrator knows the
state in which the community is in, and the sequence of action performed by the community to
reach that state. The orchestrator can then use that information to decide whether to enable or
disable certain controllable transitions.

Now we can refine definition 2.2.3 by identifying the domain D, which was left unspecified,
as S × Σ∗. The complete definition follows.

Definition 2.3.1 (Orchestrator with perfect information). Given a community of n services,
S =

〈
S,Σu, Com, s

0, δu
〉
, an orchestrator with perfect information is a function Ω : S × Σ∗ ×

Com −→ {0, 1}.

The values 1 and 0 denote the enabling/disabling of a particular message. For example, let
s ∈ S, w ∈ Σ∗ and α ∈ Com then Ω(s, w, α) = 1 means that if the community reached state s
after a sequence of actions w, the orchestrator enables all actions prefixed by the message α.

Note that Σ = Σu∪Σt. We could have use Σu only, but it is more convenient to use an action
set common to both the community and the target. Obviously the community cannot perform
actions in a ∈ Σ \ Σu so in that case for all s ∈ S we have δu(s, a) = ∅ and for all m ∈ Com,
δu(s,m | a) = ∅. Similarly for the target, for all a ∈ Σ \ Σt, δt(t, a) = ∅.

Having a more precise meaning of the orchestrator we refine the definition of the orchestrated
transition function

Framework 21

δΩ(s, a) = δu(s, a) ∪
[⋃
m∈Com

δu(s,m |a)� Ω(s, Tr(s),m)
]

(2.1)

Where Tr(s) ∈ Σ∗ is the sequence of actions performed by the community to reach state s.
Basically an orchestrator sends a message to services based on the current community state and
the sequence of actions (i.e. trace) executed to arrive at that state.

The above definition as presented poses some questions. First, a state can be reached by
many different paths therefore Tr(s) is not unique. As we will see later, only the sequence of
actions is needed and not the exact path taken. This is because the target service is deterministic
and for a given trace there is exactly one target path. In other words, ultimately the dependence
of the orchestrator will be on the community and target state: Ω = Ω(s, t,m) where t is some
target state. Second, as we will see later the expression Ω(s, Tr(s),m) is never used by itself but
occurs in a context of a history of actions and in that case the computation of Tr(s) is actually
unique. This value will be clearer once we define how the community evolves after a sequence of
actions.

Example 2.3.1. Using the example in Figure 2.1 we define the orchestrator’s values as

Ω((s0
0, s

0
1), ε,m) =

{
1 if m = α

0 otherwise

Note that in this case the sequence of actions executed to reach the starting state (s0
0, s

0
1) is the

empty sequence ε. The evolution of the community on action a would be:

δΩ((s0
0, s

0
1), a) = δu((s0

0, s
0
1), a) ∪

⋃
m∈Com

δu((s0, s0
1),m |a)� Ω((s0, s0

1), ε,m)

= ∅ ∪ δu((s0
0, s

0
1), α |a)

= ∅ ∪ {(s2
0, s

0
1)}

= {(s2
0, s

0
1)}

similarly for action b:

δΩ((s0
0, s

0
1, b) = δu((s0

0, s
0
1), b) ∪

⋃
m∈Com

δu((s0
0, s

0
1),m |b)� Ω((s0

0, s
0
1), ε,m)

= ∅ ∪ δu((s0
0, s

0
1), α |b)

= ∅ ∪ {(s0
0, s

0
1)}

= {(s0
0, s

0
1)}

It is important to realize that the orchestrator cannot enable the (s0
0, s

0
1) α|a−−→ actions without

enabling the (s0
0, s

0
1) α|b−−→ action. In this sense the orchestrator does not have full control even

22 Framework

on the controllable actions. One can consider the special case where the orchestrator’s decision
depends on the next action also, in our example Ω = Ω(s0, ε,m, a). This condition of total control
is assumed by the Roman Model.

The original community had conditional a and b transitions whereas the orchestrated commu-
nity has a and b transitions without conditions. The fact that δΩ((s0

0, s
0
1), a) = {(s2

0, s
0
1)} can be

also written as (s0
0, s

0
1) a−→ (s2

0, s
0
1), i.e. with no precondition. The above motivates the definition

of the formal definition of the orchestrated community.
Definition 2.3.2 (Orchestrated Community). Let S =

〈
S,Σu, Com, s

0, δu
〉

be a community of
n services, St =

〈
St,Σt, t

0, δt
〉

a target service and Ω be an orchestrator with perfect information
then the orchestrated community is defined as SΩ =

〈
S,Σ, s0, δΩ

〉
.

The dependence of δ on Ω in the above definition is essential since transitions of a given
state can change depending on how the state was reached as can be seen from the definition of
the orchestrated transition function in equation (2.1). We will defer the construction of SΩ to
a later stage. In fact, the construction of SΩ is not necessary as long as one can construct an
orchestrator that modifies the behavior of the community in such a ways as to satisfy the target
behavior.
Having described the single step evolution of the orchestrated community under perfect informa-
tion next we describe the evolution of the orchestrated community after a sequence of actions. As
before we will use the extended function over arbitrary sequences of actions, i.e. traces. For any
trace x ∈ Σ∗ and action a ∈ Σ the extended function ∆Ω : S × Σ∗ → 2S is defined recursively:

∆Ω(s, ε) = {s}

∆Ω(s, xa) =
⋃

s′∈∆Ω(s,x)
δu(s′, a) ∪

[⋃
m∈Com

δu(s,m |a)� Ω(s, x,m)
]

The above definition clarifies the exact meaning of Tr(s) term that was ambiguous when the
single step transition function was considered. Having described the evolution of the target and
the community, in the next section we present the behavior composition problem.

2.3.1 Service composition

The behavior composition problem is the ability of finding an orchestrator that controls or
delegates actions to different available services in such a way as to realize or mimic the behavior
of a target service. Formally,
Definition 2.3.3 (Behavior Composition With Perfect Information). Let St be a deterministic
target service and S be community of n available services. Let Ω be an orchestrator with perfect
information and denote by SΩ the orchestrated community. We say that SΩ is a behavior com-
position of St iff for all traces τ ∈ Σ∗ and all target states t ∈ ∆t(t0, τ) and for all s ∈ ∆Ω(s0, τ)
we have

∀a ∈ Σ, δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅

Framework 23

The above means that for any possible history of the target after performing a sequence of
actions τ , no matter in which state the community is in (due to non-determinism) if the target
service can make an a transition then the community, with the help of the orchestrator, will be
able to make the same transition regardless in which actual state the community is in. Since
the target is deterministic then after a sequence of actions τ there is a single possible state it
could be in, but we retain this general definition as it will be useful in later sections. As for
the community, because of its non-deterministic transition due to partial controllability it has
possibly different set of states it could be in after performing the sequence of actions τ . Then
the orchestrated community is a composition for the target if no matter in which state it ends up
in it will be able to perform any action that the target can perform. Note that the equivalence
symbol ⇔ means that any action not performed by the target should not be performed by the
community.

u0

u1 u2

u3 u4 u5

v0

t0

t1

t2

γ |c
α |a

α |a

α |b β |b
α |b

α |a

β |a

a

b

c

Figure 2.3: Example Composition

Example 2.3.2. An example composition is shown in Figure 2.3. There are two services U and
V and a target service T . To be able to discuss the fine points of the example solution we present
it in two parts. First, for an arbitrary trace x ∈ Σ∗ a solution to the above problem that deals
with the states (u0, v0), (u1, v0) and (u2, v0) involves the following assignments:

Ω((u0, v0), ε, α) = 1
Ω((u1, v0), xa, α) = 1
Ω((u2, v0), xa, β) = 1

First observe the effect of full observability on the orchestrator. The orchestrator can observe in
which state the community is in, if it is in state (u1, v0) and the required action is b (regardless

24 Framework

of history x) then it sends a message α (or enables action prefixed by α). By contrast if the
community is in state (u2, v0) then the message sent is β even though the action to be enabled
is the same, b. It is easy to see that there is no solution without complete observability since
sending message α for both states, leads from state u2 to the sink state u5.

The second part deals with the states (u3, v0) and (u4, v0). These states illustrate the depen-
dence of the orchestrator actions on the whole (or at least part of) history.

Ω((u3, v0), xb, α) = 0 Ω((u4, v0), xb, β) = 0
Ω((u3, v0), xb, γ) = 1 Ω((u4, v0), xb, γ) = 1
Ω((u3, v0), xc, α) = 1 Ω((u4, v0), xc, β) = 1
Ω((u3, v0), xc, γ) = 0 Ω((u3, v0), xc, γ) = 0

The above rules for the orchestrator are interpreted as follows. When in state (u3, v0) the
action c has to be performed before action a is performed. Due to the asynchronous nature of
the composite system it is possible to execute an ac or ca sequence and both would be valid if the
orchestrator decision depends on the current system state only. Inspecting the target execution,
however, informs us that a b transition should be followed by a c transition not an a transition.

This last observation gives us a hint on how to characterize the orchestrator by observing the
states of the target. If we go through the previous discussion by keeping track of the target state
we see that when in state (u3, v0) and the target is in state t0 then the orchestrator should enable
the a action whereas if the target is in the t2 state then orchestrator should enable the c action.
Since the target is deterministic then there is a one to one correspondence between the traces of
the target (and hence the community) and the states of the target. This correspondence allows
us to synthesis an orchestrator without ”remembering” all the traces, rather by inspecting the
target state. This key fact is used in control theory using the concept of controllability.

2.3.2 Controllability

In this section the concept of a controllability relation, or controllability for short, is given and
its relation to the behavior composition problem is discussed. The definition presented below is
an adaptation of the concept of controllability to the problems we tackle in this thesis.

Definition 2.3.4 (Controllability). Let St =
〈
St,Σt, s

0
t , δt

〉
be a target service and S =

〈
S,Σu, Com, s

0, δu
〉

a community of services. A relation R ⊆ St×S is said to be an controllability relation, if for all
(t, s) ∈ R and for all a ∈ Σ = Σu ∪ Σt:

1. If δu(s, a) 6= ∅ then ∃t′.t a−→ t′ and for all s′ ∈ δu(s, a) we have (t′, s′) ∈ R.

2. ∃E(s, t) ⊆ Com such that for all α ∈ E(s, t) we have s α|a−−→ s′ ⇒ ∃t′.t a−→ t′ ∧ (t′, s′) ∈ R.

3. If t a−→ t′ then:

Framework 25

u0, v0

u1, v0 u2, v0

u3, v0 u4, v0 u5, v0

t0

t1

t2

γ |c

γ |c γ |c

γ |c γ |c γ |c

α |a
α |a

α |b β |b
α |b

α |a

α |a

a

b

c

Figure 2.4: Example controllability relation

(a) Either δu(s, a) 6= ∅ and for all s′ ∈ δu(s, a) we have (t′, s′) ∈ R.
(b) Or ∃α ∈ E(s, t).δu(s, α |a) 6= ∅ and for all s′ ∈ δu(s, α |a) we have (t′, s′) ∈ R

What is important is to have controllability starting from the initial state.

Definition 2.3.5. A community of services, S =
〈
S,Σu, Com, s

0, δu
〉

is said to be controllable
with respect to a target service St =

〈
St,Σt, t

0, δt
〉

iff there exists a controllability relation R
between S and St such that (s0, t0) ∈ R.

The controllability relation corresponding to the solution of the example in Figure 2.3 is shown
in Figure 2.4. The dashed nodes in the community are related to t0, the double circled nodes are
related to t1 and the square nodes are related to t2. Note that some nodes (e.g. (u0, v0)) are both
dashed and squared and thus related to both t0 and t2. The properties of a controllability relation
allows one to build an orchestrator if the ”proofs” of the controllability relation are saved. For
example, (u0, v0) is related to t0 and the ”proof” is that the t0

a−→ t1 transition can be matched
by the orchestrator by enabling the transitions prefixed with α. If that information is saved and
at some point the target is in state t0, the community is in state (u0, v0) and the target makes an
a transition then the orchestrator can determine that it has to enable the actions prefixed by α
merely by looking it up in the precomputed controllability relation. This information is saved in
a graph representing the controllability and its ”proofs” where a node in the graph represents a
target state-community state pair and the transitions represent the ”proofs”. An example of such
graph for the controllability in Figure 2.4 is shown in Figure 2.5. It is important to note that
even though the orchestrator is related to the controllability graph, the orchestrator itself (for

26 Framework

(u0, v0), t0

(u1, v0), t1 (u2, v0), t1

(u3, v0), t2

(u3, v0), t0

(u4, v0), t2

(u4, v0), t0

α |a
α |a

α |b
β |b

α |a

γ |c γ |c

α |a

Figure 2.5: Example controllability Graph Corresponding to the controllability relation shown
in Figure 2.4

the case of perfect observation) cannot always be represented as an LTS. Rather the orchestrator
values can be extracted from the graph as follows:

• Let Ω = Ω(s, τ, α) be the orchestrator we are constructing for every value of the community
state s, a trace τ and a message α. We are interested in the values of (s, τ, α) in which
Ω(s, τ, α) = 1, all other values are implicitly assumed to be zero.

• Since the target is deterministic then every trace τ uniquely determines a target state
t = ∆(t0, τ). Then

• Ω(s, τ, α) = 1 iff the node of the controllability graph whose label is (s,∆(t0, τ)) has an
outgoing edge labeled α.

As an example, from Figure 2.5 one can deduce that Ω((u0, v0), ε, α) = 1 because ∆(t0, ε) = t0,
and the node whose label is ((u0, v0), t0) has an outgoing edge labelled α. The remaining non-zero
values of the orchestrator and the corresponding values in the graph are shown in table 2.1.

The previous example was used for its simplicity. Next we introduce a slightly more com-
plicated example to be able to illustrate the finer points of the problem. The second example
admits more than one solution. Figure 2.6 shows the same target service as before with two
slightly modified community services. The corresponding controllability relation is shown in Fig-
ure 2.7. One can see that there are 4 community states that can simulate all 3 target states
and they are shown as double rectangles with one of them dashed. The remaining two states of
the community can each simulate only two states of the target and they are shown with a single
dashed rectangle. What is shown in Figure 2.7 is actually the largest controllability between the

Framework 27

Orchestrator Values Nodes in graph
Ω((u0, v0), ε, α) = 1 (u0, v0, t0)
Ω((u1, v0), xa, α) = 1 (u1, v0, t1)
Ω((u3, v0), xb, γ) = 1 (u3, v0, t2)
Ω((u3, v0), xc, α) = 1 (u3, v0, t3)
Ω((u2, v0), xa, β) = 1 (u2, v0, t1)
Ω((u4, v0), xb, γ) = 1 (u4, v0, t2)
Ω((u4, v0), xc, α) = 1 (u4, v0, t0)

Table 2.1: Non-zero Orchestrator values and the corresponding controllability graph nodes.

community and the target. Since the union of two controllability is also an controllability then
the largest relation is the union of all controllability. In fact, in this example there are many
different (elementary) controllability, namely any relation between the states of the target and
the states of the community is a controllability as long as it contains one of the following two
relations:

R1 = {[u0, v0], t0), ([u1, v0], t1), ([u1, v1], t2), ([u1, v0], t0)}
R2 = {([u0, v0], t0), ([u1, v0], t1), ([u2, v0], t2), ([u2, v0], t0)}

u0

u1

u2

v0

v1

t0

t1

t2

γ |c

β |a

α |a

α |bα |a

θ |bγ |c

a

b

c

Figure 2.6: An example composition that admits more than one solution.

Not all the above mentioned relations are actually useful.
The reason is that any community state, except (u0, v1) and (u2, v1) can simulate all three

target states. Furthermore, the two remaining states can simulate the target states t0 and

28 Framework

u0, v0

u1, v0 u0, v1

u2, v0

u2, v1

u1, v1

t0

t1

t2

γ |c

γ |c
β |a

γ |c
β |a

α |a
θ |b

γ |c

θ |b

γ |c

γ |c
θ |b

α |a

α |b

α |a
α |a

α |b

a

b

c

Figure 2.7: Example controllability relation corresponding to the example shown in Figure 2.6

t2. Therefore the largest controllability which is the union of all controllability includes all
community states and such a relation has 16 pairs out of the 18 possible pairs one could get from
the Cartesian product of the community states with the target states. Such a relation is not useful
however because many of the states are unreachable as can be seen in Figure 2.8 which shows
the controllability graph. In the graph rectangular nodes are unreachable from the initial state
(u0, v0), t0 whereas the oval nodes are reachable. This example clearly shows that computing the
largest controllability relation is not necessary and sometimes contains redundant information.
Also, even though there a finite number of controllability relations, the number of orchestrators
is infinite. This can be readily seen from the controllability graph shown in Figure 2.8. Whenever
the system is in state (u1, v0), t1 it can make two different choices in response of a ”b” transition
by the target: either sends an α message and move to state (u2, v0), t2 or send an β message and
move to state (u1, v1), t2. Recall that the orchestrator values Ω(s, τ, α) are extracted from the
controllability graph. Since there are an infinite number of histories ending in ((u1, v0), t1) and
for each of them there are two choices then the number of possible orchestrators is also infinite.

This informal discussion that relates the existence of an controllability to the existence of an
orchestrator will be shown formally below.

To prove theorem 2.3.4 we need the following lemma.

Framework 29

(u0, v0), t2 (u0, v1), t2 (u0, v0), t1

(u0, v1), t0 (u1, v1), t0

(u1, v1), t1

(u2, v1), t2

(u1, v0), t2 (u2, v0), t1

(u2, v1), t0

(u0, v0), t0

(u1, v0), t1

(u2, v0), t2

(u2, v0), t0

(u1, v1), t2

(u1, v0), t0

α |a

α |b
α |a

γ |c γ |c

α |a

θ |b

γ |c
θ |c θ |b

α |a
β |b

α |b

γ |c θ |bγ |c

α |a

Figure 2.8: controllability graph corresponding to the controllability relation shown in Figure 2.7

Lemma 2.3.3. Let R be an controllability relation between a target St =
〈
St,Σt, t

0, δt
〉

and a
community S =

〈
S,Σu, Com, s

0, δu
〉
. Then there exists an orchestrator with perfect information

Ω such that for all (t, s) ∈ R, t ∈ St,s ∈ S, and for all a ∈ Σ = Σu ∪ Σt we have δt(t, a) 6= ∅ ⇔
δΩ(s, a) 6= ∅. Furthermore for all t′ ∈ δt(t, a) and s′ ∈ δΩ(s, a) we have (t′, s′) ∈ R.

Proof. Let (t, s) ∈ R where s ∈ ∆Ω(s0, τ) for some trace τ .
(⇒) Suppose that δt(t, a) 6= ∅. This means that ∃t′.t a−→ t′ and by the properties of R we have

• Either δu(s, a) 6= ∅ and for all s′ ∈ δu(s, a) we have (t′, s′) ∈ R. Therefore δΩ(s, a) ⊇
δu(s, a) 6= ∅ and for all t′ ∈ δt(t, a) and s′ ∈ δΩ(s, a) we have (t′, s′) ∈ R.

• Or ∃α ∈ E(s, t).δu(α | a) 6= ∅ and for all s′ ∈ δu(s, α |a) we have (t′, s′) ∈ R. Recall that

δΩ(s, a) = δu(s, a)
⋃
β

δu(s, β | a)� Ω(s, τ, β)

Thus if we choose Ω(s, τ, α) = 1 then δΩ(s, a) ⊇ δu(s, a | α) � Ω(s, τ, α) 6= ∅ and for all
s′ ∈ δΩ(s, a) we have (s′, t′) ∈ R.

30 Framework

In both cases above δt(t, a) 6= ∅ ⇒ δΩ(s, a) 6= ∅ and for all t′ ∈ δt(t, a) and s′ ∈ δΩ(s, a) we have
(t′, s′) ∈ R.

(⇐) Suppose that δΩ(s, a) 6= ∅. Let s′ ∈ δΩ(s, a) then by the definition of δΩ(s, a) we have

• Either s′ ∈ δu(s, a) then by the properties of R there exists t′.t a−→ t′ which means that
δt(t, a) 6= ∅. Furthermore, from R we have (t′, s′) ∈ R

• Or s′ ∈ δu(s, α | a) and Ω(s, τ, α) = 1 for some α ∈ Com. But according to our procedure
all the messages for which the orchestrator is enabled are in E(s, t) thus α ∈ E(s, t).
Therefore from the definition of R we know that ∃t′.t a−→ t′ which means that δt(t, a) 6= ∅.
Furthermore (t′, s′) ∈ R.

Therefore we have shown that if (t, s) ∈ R then for all a ∈ Σ we have

δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅

Furthermore for all t′ ∈ δt(t, a) and s′ ∈ δΩ(s, a) we have (t′, s′) ∈ R.

The above lemma will help us prove the following important theorem that characterizes the
existence of an orchestrator in terms of the existence of controllability relation between the
community and the target. Apart from the proposed model the following theorem is the first
contribution of this thesis to the behavior composition problem.

Theorem 2.3.4. Given a target service St =
〈
St,Σt, s

0
t , δt

〉
and a community of n available

services S =
〈
S,Σu, Com, s

0, δu
〉
, then an orchestrator with perfect information Ω exists such

that SΩ is a behavior composition of St iff S is controllable with respect to St.

Proof. (⇒) Suppose that S is controllable with respect to St then a controllability R rela-
tion exists between St and S. We need to prove that there exists an orchestrator Ω such
that for all traces τ ∈ Σ∗ and for all t ∈ ∆t(t0, τ), s ∈ ∆Ω(s0, τ) and for all a ∈ Σ we have
δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅. First, by lemma 2.3.3 an orchestrator Ω exists. Furthermore, Ω has
the properties given in lemma 2.3.3. We use induction on the length of the trace τ to show that
the orchestrated community SΩ is a composition of St.

Base case. Consider the empty trace ε. Then t ∈ ∆t(t0, ε) and s ∈ ∆Ω(s0, ε). Since (t0, s0) ∈ R
therefore by lemma 2.3.3, for all a ∈ Σ, δt(t0, a) 6= ∅ ⇔ δΩ(s0, a) 6= ∅. Also by lemma 2.3.3, for
all t ∈ δt(t0, a) and s ∈ δΩ(s0, a) we have (t, s) ∈ R. Therefore the base case is true.

Hypothesis: Assume that the above two properties are true for traces τ of length l − 1. This
implies that for arbitrary tl−1 ∈ ∆t(t0, τ), sl−1 ∈ ∆Ω(s0, τ), for all a ∈ Σ we have δt(tl−1, a) 6=
∅ ⇔ δΩ(sl−1, a) 6= ∅ . Moreover, for all a ∈ Σ, tl ∈ δt(tl−1, a), sl ∈ δΩ(sl−1, a) we have (tl, sl) ∈ R.

Framework 31

Induction step: Consider a trace τa of length l with tl ∈ ∆t(t0, τa) and sl ∈ ∆Ω(s0, τa). From the
defintion of the extended function ∆ we know that tl ∈ δt(tl−1, a) and sl ∈ δΩ(sl−1, a) for some
tl−1 ∈ ∆t(t0, τ) and sl−1 ∈ ∆Ω(s0, τ). Since τ is of length l− 1 then by the induction hypothesis
(tl, sl) ∈ R. It follows by lemma 2.3.3 that for all a ∈ Σ we have δt(tl, a) 6= ∅ ⇔ δΩ(sl, a) 6= ∅.

(⇐). Assume that a composition with orchestrator Ω exists. We need to show that an control-
lability relation between the target and the community exits.
Let τ ∈ Σ∗ be an arbitrary trace of the target. Define the relation R ⊆ St×S relating the states
of the target to the states of the community by

R = {(t, s) ∈ St × S | ∃τ ∈ Σ∗, s ∈ ∆Ω(s0, τ) ∧ t ∈ ∆t(t0, τ)}

Note that since the target is deterministic then ∆t(t0, τ) contains a single state t but we retain
the notation for generality. Next we show that R is a controllability relation.

Let (t, s) ∈ R and t a−→ t′ which means δt(t, a) 6= ∅. Since a composition exists then δΩ(s, a) 6=
∅. Recall that

δΩ(s, a) = δu(s, a)
⋃

α∈Com
δu(s, α | a)� Ω

Therefore the fact that δΩ(s, a) 6= ∅ implies that

• Either δu(s, a) 6= ∅. Furthermore, from the definition of ∆ we get that for all s′ ∈ δu(s, a) ⊆
δΩ(s, a) then s′ ∈ ∆Ω(s0, τa) and t′ ∈ ∆t(t0, τa), therefore (t′, s′) ∈ R.

• Or ∃α ∈ Com. δu(s, α |a) 6= ∅ ∧ Ω(s, τ, α) = 1. This means that ∃α, s′.s α|a−−→ s′ and since
s′ ∈ δu(s, α |a) ⊆ δΩ(s, a) then s′ ∈ ∆Ω(s0, τa) and therefore (t′, s′) ∈ R.

Furthermore, for all b ∈ Σ− {a} consider an arbitrary s′′ ∈ δu(s, α |b). Since Ω(s, τ, α) = 1
then δΩ(s, b) 6= ∅. But a composition exists then δt(t, b) 6= ∅ and ∃t′′.t b−→ t′′. Also
s′′ ∈ ∆Ω(s0, τb) and t′′ ∈ ∆t(t0, τb) therefore (t′′, s′′) ∈ R. This means that α is such that
for all s α|a−−→ s′ ⇒ ∃t′.t a−→ t′ ∧ (t′, s′) ∈ R. Therefore α ∈ E(s, t).

Conversely suppose that δu(s, a) 6= ∅. Then δΩ(s, a) ⊇ δu(s, a) 6= ∅ and since a composition
exists then δt(t, a) 6= ∅ and thus ∃t′.t a−→ t′. Let s′ ∈ δu(s, a) ⊆ δΩ(s, a) then from the definition
of ∆ we have s′ ∈ ∆t(s0, τa) and t′ ∈ ∆Ω(t0, τa) and therefore (t′, s′) ∈ R.

Combining the above partial results we get that R is a controllability relation.

32 Framework

2.3.3 Relation to control theory

So far we have formulated the behavior composition problem as done in [GPS13]. An alternative
definition, similar to the classical control theory, will be given in this section and the relationship
between the two is explored.

Theorem 2.3.5. Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of n services and St =
〈
St,Σt, t

0, δt
〉

be a target service. Also let Ω be an orchestrator and SΩ =
〈
S,Σ, s0, δΩ

〉
be the orchestrated com-

munity and denote bisimulation equivalence by ≡. Then SΩ is a behavior composition of St iff
SΩ ≡ St

Proof. Suppose that SΩ is a behavior composition of St. Let τ ∈ Σ∗ denote an arbitrary sequence
of actions. Define the relation R between SΩ and St as

R = {(s, t) ∈ S × St | ∃τ ∈ Σ∗, s ∈ ∆Ω(s0, τ) ∧ t ∈ ∆t(t0, τ)}

We show thatR is a bisimulation relation. Consider an arbitrary transition t a−→ t′ then δt(t, a) 6= ∅
and by definition 2.3.3 this implies δΩ(s, a) 6= ∅. Let s′ ∈ δΩ(s, a) then by the definition of ∆ we
have that t′ ∈ ∆t(t0, τa) and s′ ∈ ∆Ω(s0, τa) and thus (s′, t′) ∈ R. We have show that for all
t
a−→ t′ ∃s′.s a−→ s′ and (s′, t′) ∈ R. The reverse can be shown by symmetry and therefore R is

a bisimulation. Finally, since s0 ∈ ∆Ω(s0, ε) and t0 ∈ ∆Ω(t0, ε) then (s0, t0) ∈ R and therefore
SΩ ≡ St.

Conversely, assume that SΩ ≡ St and let R be the bisimulation relation. We need to show
that for all s ∈ ∆Ω(s0, τ), t ∈ ∆t(t0, τ) we have δΩ(s, a) 6= ∅ ⇔ δt(t, a) 6= ∅. This is done by
induction on the length of τ .

Base case: τ = ε. Since (s0, t0) ∈ R then for all a ∈ Σ, if t0 a−→ t1 then ∃s1.s0 a−→ s1, thus
δt(t0, a) 6= ∅ ⇒ δΩ(s0, a) 6= ∅. Furthermore, because R is a bismulation then (s1, t1) ∈ R. Simi-
larly, δ(s0, a) 6= ∅ ⇒ δ(t0, a) 6= ∅.

Hypothesis: Assume that the above is true for all traces,τ , of size l i.e.: s ∈ ∆Ω(s0, τ) ∧ t ∈
∆t(t0, τ)⇒ δΩ(s, a) 6= ∅ ⇔ δt(t, a) 6= ∅ and for all s′ ∈ δΩ(s, a), t′ ∈ δt(t, a) we have (s′, t′) ∈ R.

Induction step: Consider a trace, τa of size l + 1. Let s ∈ ∆Ω(s0, τa) and t ∈ ∆t(t0, τa).
From the definition of ∆, we know that ∃s′ ∈ ∆Ω(s0, τ), t′ ∈ ∆t(t0, τ) such that t ∈ δt(t′, a)
and s ∈ δΩ(s′, a). By the induction hypothesis (s, t) ∈ R and it follows from the definition of a
bisimulation that δΩ(s, a) 6= ∅ ⇔ δt(t, a) 6= ∅

One can define other equivalences between the orchestrated community and the target service.
For example, it is not hard to show that if in definition 2.3.3 one replaces ”⇔” by a simple
implication: δ(t, a) 6= ∅ ⇒ δ(s, a) 6= ∅ then the orchestrated community simulates the target, i.e.
SΩ v St where v is the simulation relation.

Framework 33

t0

t1

c,d

c,d

ab

Figure 2.9: Before an a transition no b transition is permitted. After an a transition every state
must be able to make a b transition, until then no a transition is possible. After a b transition a
transitions are allowed again while b is not permitted

2.3.4 Modal specifications

So far the aim of the behavior composition was to satisfy a single target behavior. We can
extend this aim by satisfying a set of target behaviors by using modal specifications. Modal
specifications have been introduced to model control problem objectives in [FP07]. The main
idea behind modal specifications is that some transitions while allowed are not strictly necessary
(called May transitions) while others are strictly necessary (called Must transitions). A simple
example of a modals specification is shown in Figure 2.9 below.

Definition 2.3.6 (Modal specification). A modal specification is a tuple St =
〈
St,Σt, t

0,May,Must
〉

where

• St is a set of finite states.

• t0 is the initial state.

• Σt is a finite set of actions.

• May ⊆ St × Σ× St is a deterministic transition relation of allowed transitions.

• Must ⊆May is a deterministic transition relation of necessary transitions.

A modal specification is said to be deterministic iff the May transition is deterministic. Having
defined the specification next we give the composition problem.

Definition 2.3.7 (Behavior composition with modal specification). Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of available services and St =
〈
St,Σt, t

0,May,Must
〉

be a modal specification.
Let Ω be an orchestrator and denote by SΩ =

〈
S,Σu, s

0, δΩ
〉

the orchestrated community. We say
that SΩ is a behavior composition of modal specification St iff there exists a relation ρ ⊆ S × St
such that for all (s, t) ∈ ρ and all a ∈ Σ = Σu ∪ Σt we have:

• (t, a, t′) ∈Must⇒ δΩ(s, a) 6= ∅ ∧ ∀s′ ∈ δΩ(s, a), (s′, t′) ∈ ρ

34 Framework

• δΩ(s, a) 6= ∅ ⇒ ∃t′.(t, a, t′) ∈May ∧ ∀s′ ∈ δΩ(s, a), (s′, t′) ∈ ρ

The characterization of the existence of a composition in the case of modal specification is
similar to previous cases and depends on the concept of controllability.

Definition 2.3.8 (Controllability with respect to modal specification). Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of available services and St =
〈
St,Σt, t

0,May,Must
〉

be a modal specification.
We say that S is controllable with respect to St iff there exists a relation R ⊆ S × St such that
(s0, t0) ∈ R and for all (s, t) ∈ R we have

• s a−→ s′ ⇒ ∃t′.(t, a, t′) ∈May ∧ (s′, t′) ∈ R

• ∃E(s, t) ⊆ Com such that for all α ∈ E, b ∈ Σ we have s α|b−−→ s′ ⇒ ∃t′.(t, b, t′) ∈ May ∧
(s′, t′) ∈ R

• (t, a, t′) ∈Must⇒

– Either δu(s, a) 6= ∅ and for all s′ ∈ δu(s, a) we have (s′, t′) ∈ R
– Or ∃α ∈ E(s, t) such that δu(s, α |a) 6= ∅.

The following theorem is a generalization of previous results.

Theorem 2.3.6. Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of available services and St =〈
St,Σt, t

0,May,Must
〉

be a modal specification. An orchestrator Ω exists such that the orches-
trated community SΩ =

〈
S,Σu, s

0, δΩ
〉

is a behavior composition of modal specification St iff S is
controllable with respect to St.

Proof. Assume that S is controllable with respect to St and let R be the controllability relation.
We construct Ω such that SΩ is composition with respect to St. To do so, we show how to
construct an orchestrator Ω such that the following relation

ρ = {(s, t) ∈ R | ∃τ ∈ Σ∗, s ∈ ∆Ω(s0, τ), t ∈ ∆t(t0, τ)}

has the properties given in definition 2.3.7. Choose an arbitrary (s, t) ∈ ρ with s ∈ ∆Ω(s0, τ),t ∈
∆t(t0, τ) for some τ ∈ Σ∗. We have:

• Suppose that (t, a, t′) ∈ Must. Since (s, t) ∈ R then by the properties of R in definition
2.3.8 we have:

– Either δu(s, a) 6= ∅ and for all s′ ∈ δu(s, a) we have (s′, t′) ∈ R. In this case δΩ(s, a) ⊇
δu(s, a) 6= ∅. Also, from the definition of ∆ we have s′ ∈ ∆Ω(s0, τa) and t′ ∈ ∆t(t0, τa)
therefore (s′, t′) ∈ ρ for all s′ ∈ δΩ(s, a).

– Or ∃α ∈ E(s, t) ⊆ Com, s′ ∈ S.s α|a−−→ s′∧(s′, t′) ∈ R. In this case choose Ω(s, τ, α) = 1
then δΩ(s, a) ⊇

⋃
α∈Com δu(s, α | a)�Ω(s, τ, α) 6= ∅ and for all s′ ∈ δΩ(s, a), (s′, t′) ∈ R.

Furthermore, s′ ∈ ∆Ω(s0, τa) and t′ ∈ ∆t(t0, τa) thus (t′, s′) ∈ ρ.

Framework 35

• Suppose that s′ ∈ δΩ(s, a) then

– Either s′ ∈ δu(s, a) then by the property of R, ∃t′.(t, a, t′) ∈ May and (s′, t′) ∈ R.
Again s′ ∈ ∆Ω(s0, τa) and t′ ∈ ∆t(t0, τa) thus (t′, s′) ∈ ρ.

– Or s′ ∈ δu(s, β | a) and Ω(s, t, β) = 1 for some β ∈ Com. Now by the above
construction Ω(s, t, β) is set to 1 only if β ∈ E(s, t). Then by the definition of E(s, t)
we have ∃t′.(t, a, t′) ∈ May and (s′, t′) ∈ R. Also s′ ∈ ∆Ω(s0, τa) and t′ ∈ ∆t(t0, τa)
thus (t′, s′) ∈ ρ.

Therefore SΩ is a behavior composition of St.
(⇐) Suppose that for some Ω, SΩ is a behavior composition of modal specification St. Let
ρ be the composition relation. Next we show that ρ is a controllability relation between S
and St. Let (s, t) ∈ ρ and a ∈ Σ an arbitrary action

– Suppose that (t, a, t′) ∈ Must. Because ρ is a composition relation it follows from
the first item in definition 2.3.7 that δΩ(s, a) 6= ∅ and for all s′ ∈ δΩ(s, a) we have
(s′, t′) ∈ ρ. From the definition of δΩ(s, a) we have two cases
∗ Either δu(s, a) 6= ∅ and for all s′ ∈ δu(s, a) we have (s′, t′) ∈ ρ.
∗ Or for some α, δu(s, α | a) 6= ∅ and for all s′ ∈ δu(s, α | a) we have (s′, t′) ∈ ρ.

Furthermore Ω(s, t, a) = 1 . We still need to show that α ∈ E(s, t). Let b ∈ Σ such
that δu(s, α |b) 6= ∅. Since Ω(s, t, α) = 1 then δΩ(s, b) 6= ∅. But ρ is a composition
relation then by the second item in definition 2.3.7, ∃t′.(t, b, t′) ∈May and for all
s′ ∈ δu(s, α |b) we have (s′, t′) ∈ ρ.

– Suppose that s a−→ s′, i.e. s′ ∈ δu(s, a), then by construction δΩ(s, a) 6= ∅. Because ρ is
a composition relation it follows from the second item in definition 2.3.7 ∃t′.(t, a, t′) ∈
May with (s′, t′) ∈ ρ.

The above result opens up many possibilities. First it is easy to seen that if Must = May
then requiring the orchestrated community SΩ to satisfy a modal specification St is the same as
requiring the two to be bisimilar. In the same manner one can show that the simulation relation
is also a special case of modal specification. This means that theorem 2.3.6 is a general result
that is applicable to many different settings.

The importance of modal specification goes beyond being a generalization. It is a natural
way to express a set of behavior goals. An important property of modal specification is their
underlying logic they correspond to. In [FP07] it was shown that modal specification correspond
to the conjunctive mu-calculus. This logic is a syntactic fragment of the modal mu-calculus
of [Koz83] limited to the operators: p,¬,∧, [], <> and greatest fix-point.

We don’t give the semantic of the logic in this thesis since we only use modal specifications.
However, the logical framework highlight the useful property that one can combine multiple
modal specifications with an and operator. For example given k modal specifications S1 . . .Sk

36 Framework

t0

t1

τ0

τ1

T 0

T 1 T 2

T 3

c,d

c,d

a,b,d

a,b,c

d

dc

c

a

a
b

ab
c

c

bc

Figure 2.10: Two modal specifications, τ top left and t top right are ”and” combined to produce
the modal specification in the bottom T .

one merges the starting state of all Si and performs a determinization procedure on the May
transition to obtain the resulting specification St which is equivalent to the and of all specifi-
cations. Obviously the determinization procedure brings an exponential blowup. However, this
also means that one can build a complex specification with a set of very concise combination of
specifications. An example of the above procedure is shown in Figure 2.10. Two specifications
τ to the top left of the figure, t to the top right of the figure are combined to produce the T
specification in the bottom of the figure. Specification τ says that after a c is executed no d is
possible. Specification t says that no b can be executed before an a is executed. Also once an a
is executed a b must be executed before any other a. It is easy to verify that the combination of
these specifications produces the T specification in the bottom of the figure.

Framework 37

2.4 Orchestrator with partial information

In this section we handle the case when some of the actions of the services are not observable.
This could be the case when the services and the orchestrator are from different providers then the
orchestrator does not necessarily have access to the services except through the communication
action.

The orchestrator can send messages, to the community of services, from a set Com and
”remembers” only the messages it has already sent. In other words, the orchestrator is assumed
to observe only its own transitions. We explain further with an example. In Figure 2.11 below we
show the community S, an orchestrator Ω, and the effect of the orchestrator on the community
(i.e. orchestrated community). Initially the orchestrator is in state Ω0, meaning it has not sent
any message yet which we denote by the special message ε. The community can be in any of the
states {s0, s1, s3, s4}. Then the observable of those states is the same and is equal to ε because all
of those states can be reached from the initial state by receiving the empty message ε. Similarly,
By sending a message α the controller can cause the state s0 to transition to state s2, and state
s4 to transition to state s6. All other states are unaffected. This means that if the orchestrator
sends α then the system can be in states {s2, s6}. The observable of these two states is α. In
reality the observable string is a property of the trace in addition to the state. In the example in
Figure 2.11 the two coincide because there is a single trace associated with each state. Formally,

Definition 2.4.1 (Message trace). The message trace is a function σ : S × Σ∗ −→ Com∗ that
associates with a state s ∈ S reached via a sequence of actions τ ∈ Σ∗ the sequence of messages
σ(s, τ) ∈ Com∗.

For example σ(s0, ε) = σ(s1, a) = σ(s4, aa) = ε, the empty string, whereas the message trace
to reach state s7 is σ(s7, aabc) = βα. Since the orchestrator is deterministic then the state of
an orchestrator can be represented by (not necessarily unique) message trace. For example Ω0 is
represented by the empty string, and Ω1 is represented by α. In what follows we use the function
Ω(x, y) where x ∈ Com∗ and y ∈ Com to mean an orchestrator transition from state represented
by string x on y. In Figure 2.11, Ω(ε, α) = 1 and all other values are 0. Let δu(s, a) represent the
transition of the community on action a then the evolution of the community is described as:

∆Ω(s0, τa) =
⋃

s∈∆(s0,τ)
δΩ(s, a)

where

δΩ(s, a) = δu(s, a)
⋃

α∈Com
δu(s, α |a)� Ω (σ(s, τ), α)

and

δu(s, α |a)� Ω(σ, α) =
{
∅ If Ω(σ, α) = 0
δu(s, α |a) If Ω(σ, α) = 1

38 Framework

S Ω× S

s0

s1 s2

s3 s4

s5 s6s7

s0

s1 s2

s3 s4

s6

Ω0

Ω1

a
α |c

b a

β |b
α |b

α |c

a c

b a

b

α

Figure 2.11: Interaction of an Orchestrator with partial observation with a service

This is the same formulation as before except the dependence of the orchestrator on the message
trace function σ. Note that the value of σ is in Com∗.

Definition 2.4.2 (Behavior composition with partial information). Let St be a target service
and S be a community of services. Let Ω be an orchestrator with partial information and denote
by SΩ the orchestrated community. We say that SΩ is a behavior composition of St with partial
information iff for all traces τ ∈ Σ∗ and all t ∈ ∆t(t0, τ), s ∈ ∆Ω(s0, τ) we have :

∀a ∈ Σ, δt(t, a) 6= ∅ ⇔ δΩ(s, a)

Again, with the exception of σ, this is the same definition as in definition 2.3.3. Similarly to
the case of perfect information, the existence of an orchestrator is characterized by the existence
of a set of relations instead of a single relation. Before giving the formal definition it helps to
present an example. Figure 2.12 shows an example community service that realizes the target
with the help of an orchestrator with partial observation. First note that service state s4 has
different ”observable” values depending on the path followed. The interaction of the orchestrator
with the community can be seen as a synchronous product of the two, written as S × Ω where

Framework 39

S and Ω are the LTSs of the community and the orchestrator respectively. Such synchronous
product is defined as: the community can make a ”spontaneous” transition whilst the orchestrator
is still, or the community can make a preconditioned transition in sync with the orchestrator if
the orchestrator can enable that precondition. This synchronous product is shown in Figure 2.13
together with the target. It is clear from the target that the resulting service realizes the target.

To be able to characterize the problem as we have done before it is useful to look at it from the
perspective of observability of states, i.e. combining states with the same observability together.
Using Figure 2.12 as a guide, when the orchestrator is in state Ω0, no action is performed, the
community can be in states{s0, s1} only. More precisely, the orchestrator cannot observe the
uncontrollable transition s0 a−→ s1. Each of those states is ”paired” with a target state to get
the set of pairs Π0 = {(s0, t0), (s1, t1)} with the property that for every pair (s, t) if s a−→ s′ then
∃t′.t a−→ t′ and (s′, t′) belong to the same set Π0. Now when the α action is enabled, i.e. the
orchestrator sends message α, then the service can be in states {s3, s0, s1, s4, s2}. This is because
α makes s1 transition to s3 and s0 to s2 but once in s3 or s2 the service can make unobserved
transitions from s3 to {s0, s1} and from s2 to s4. Each of those states is paired with the target
state to get the set Π1 = {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s4, t4)}. Subsequently any action α
will not change anything in the set of states of the service. Finally, when in set Π0 or Π1 and a
message γ is sent then the community could be in state {s4} (because both Π0 and Π1 contain
the state s1) which paired with t4 we get a new set Π2 = {(s4, t4)}. Let Z = {Π0,Π1,Π2} then
Z has the following property: for all Πi ∈ Z and for all (s, t) ∈ Πi if s a−→ s′ then ∃t′.t a−→ t′

and (s′, t′) ∈ Πi. Also for all (s, t) ∈ Πi if t a−→ t′ then either ∃s′.s a−→ s′ and (s′, t′) ∈ Πi or
∃s′, α.s α|a−−→ s′ and (s′, t′) ∈ Πj for some Πj ∈ Z. One can see that the sets Πi ∈ Z are just the
states of the orchestrator.

Another useful observation is the following. For each state s let θs be a regular expression,
describing the (infinite) set of observable strings for that state. For example in Figure 2.12,
θs0 = θs1 = α∗, θs2 = θs3 = α+ and θs4 = α+ ∪ α∗γ. The components of the regular expressions
are then used to label the sets of states. Again in Figure 2.12 the individual components are
{ε, α+, α∗γ}, we get Πα∗ = {(s0, t0), (s1, t1)}, Πα+ = {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s4, t4)},
Πα+∪α∗γ = {(s4, t4)}. Note that these three sets are exactly Π0,Π1,Π2 which constitutes the
states of the orchestrators. We call these sets the observation relations. In the next section we
give all the necessary formal definition to the concepts introduced in this section.

2.4.1 Observation relations

Before introducing the concept of observation relation we start with some needed definitions first.

Definition 2.4.3 (State regular expression). Given a community state s, then we associate a
regular expression. θs, with s defined by the language it generates: L(θs) = {x ∈ Com∗ | ∃τ ∈
Σ∗ with σ(s, τ) = x}.

That indeed a regular expression exists for every state, can be seen from the fact that all the
strings x obtained as σ(s, a1 . . . al) = x are the language of the finite automaton obtained from

40 Framework

the community LTS whose only accepting state is s. By the equivalence of NFA’s and regular
expressions we know that a regular expression exits.

Definition 2.4.4 (Observable sets). Let Θ be the set of all regular expressions of the community.
The observable sets, is a set of sets Z = {Rθ | θ ∈ Θ} where each Rθ is a set defined as:

Rθ = {(t, s) | ∀x ∈ L(θ)∃τ ∈ Σ∗.s ∈ ∆(s0, τ) ∧ t ∈ ∆(t0, τ)
∧σ(s, τ) = x}

Next we use the above to definitions to formalize the concept of observation relations. As we
have seen in the previous section, each relation in such a set is a pair of states (s, t) one in the
target and the other in the community. Given one observation relation R and a pair (s, t) ∈ R
then any uncontrollable transition s

a−→ s′ from some community state is matched by a target
transition t

a−→ t′. Furthermore, (s′, t′) ∈ R. Now if the target state makes a transition t
a−→ t′ it

has to be matched by community transition either controllable s α|a−−→ s′ or uncontrollable s a−→ s′.
There is an extra condition on the controllable transitions however. Since any enabling by the
orchestrator of an α transition can potentially enable other transitions, it has to be done in such
a way that all transitions end up in the same destination relation R′. Formally,

Definition 2.4.5 (Observation Relations). A set of relations Z ⊆ 2St×S is called a set of obser-
vation relations iff : for every R ∈ Z and for every (t, s) ∈ R we have the following

1. If t a−→ t′ then

(a) Either ∃s′.s a−→ s′ ∧ (t′, s′) ∈ R
(b) Or ∃s′, α ∈ Com,R′ ∈ Z with

s
α|a−−→ s′ ∧ (t′, s′) ∈ R′

∧

∀(u, v) ∈ R(v α|b−−→ v′ ⇒ ∃u′.u b−→ u′ ∧ (u′, v′) ∈ R′)

2. If s a−→ s′ then ∃t′.t a−→ t′ ∧ (t′, s′) ∈ R

This concept of a set of observation relations is similar to the concept of regions in Petri
Nets [BD98]. The set of observation relations just defined will be used to define the concept of
controllability under partial information.

Definition 2.4.6 (Controllability under partial onformation). A community of services S is said
to be controllable under partial information with respect to a target service St iff there exists a set
of observation relations Z between the states of S and St such that ∃R0 ∈ Z with (s0, t0) ∈ R0.

Framework 41

Community TargetOrchestrator

s0

s1 s2

s3 s4

t0

t1 t2

t3 t4

Ω0

Ω1 Ω2

α

a α |c

α |b
γ |a b

a

a c

b a b

a

α γ

γ

Figure 2.12: Orchestrator with partial observation realizing a target

The above definition allows us to characterize the existence of an orchestrator in a manner
similar to the case of perfect information.

Theorem 2.4.1. Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of services and St =
〈
St,Σt, t

0, δt
〉

be a target service. An orchestrator with partial information, Ω, exists such that SΩ is a compo-
sition of St iff S is controllable under partial information with respect to St.

Proof. (⇒). Suppose that S is controllable with respect to St then a set of relations Z having
the properties in definition 2.4.6, exists. We show by induction on the length of an arbitrary
trace τ that for all t ∈ ∆t(t0, τ) and s ∈ ∆Ω(s0, τ) we have:

δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅

Base case. Consider the empty trace ε then t0 ∈ ∆t(t0, ε) and s0 ∈ ∆Ω(s0, ε). Also (t0, s0) ∈ R
for some R ∈ Z. Let t = δt(t0, a) which means that t0 a−→ t then by the property of Z we have:

• Either ∃s such that s0 a−→ s and (t, s) ∈ R.

• Or ∃α ∈ Com, s such that s0 α|a−−→ s and (t, s) ∈ R′ for some R′ ∈ Z. Furthermore, for
all (u, v) ∈ R we have v

α|b−−→ v′ ⇒ u
b−→ u′ with (u′, v′) ∈ R′. In this case we choose

Ω(σ(s0, ε), α) = 1 then

δΩ(s0, a) ⊇ δu(s0, α | a)� Ω(σ(s0, ε), α) 6= ∅

We have shown that δt(t0, a) 6= ∅ ⇒ δ(s0, a) 6= ∅.
Now we consider the opposite direction. Suppose that s ∈ δΩ(s0, a) then there are two cases:

42 Framework

S × Ω Target

(s0,Ω0)

(s1,Ω0) (s2,Ω1)

(s3,Ω1)(s4,Ω2) (s4,Ω1)

(s0,Ω1)

(s1,Ω1)

t0

t1 t2

t3 t4

a c

ba
b

a

a

b
a

c

a c

b a b

a

Figure 2.13: Synchronous product of service with orchestrator realizing the target

• Either s0 a−→ s then by Z, ∃t with t0
a−→ t and (t, s) ∈ R.

• Or s0 α|a−−→ s and Ω(σ(s0, ε), α) = 1 for some α. Now Ω(s0, ε, α) = 1 means that α transitions
were enabled and this is done only to match some target transition t0 b−→ t′ by a community
transition s0 α|b−−→ s′. By the property of R we know that this is done in such that a way that
for all c ∈ Σ with s0 α|c−−→ v there exists u such that t0 c−→ u and (u, v) ∈ R′. In particular,
∃t.t0 a−→ t and (t, s) ∈ R′.

We have shown that δt(t0, a) 6= ∅ ⇔ δΩ(s0, a) 6= ∅. Moreover for all s ∈ δΩ(s0, a) and t ∈ δt(t0, a)
we have (t, s) ∈ R for some R ∈ Z.

Induction hypothesis. Assume that the above properties are true for all traces, τ , of length l− 1.
This means that for all s ∈ ∆Ω(s0, τ) and t = ∆t(t0, τ) we have δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅ and
furthermore (t, s) ∈ R for some R ∈ Z.

Induction step. Consider a trace, τb, of length l. Let tl ∈ ∆t(t0, τb) and sl ∈ ∆Ω(s0, τb). Suppose
that tl a−→ tl+1. From the definition of ∆ we know that tl ∈ δt(t, b) and sl ∈ δΩ(s, b) for some
s ∈ ∆Ω(s0, τ) and t ∈ ∆t(t0, τ). Since τ is of length l − 1 then by the induction hypothesis
(tl, sl) ∈ R and it follows that:

Framework 43

1. Either ∃sl+1 such that sl a−→ sl+1 and (tl+1, sl+1) ∈ R. This implies that δΩ(sl, a) 6= ∅.

2. Or ∃α. sl α|a−−→ sl+1 and (tl+1, sl+1) ∈ R′ for some R′ ∈ Z. Then we choose Ω(σ(sl, τb), α) =
1, hence δΩ(sl, a) ⊇ δu(sl, α | a)� Ω(σ(sl, τb), α) 6= ∅.

Now we check the reverse direction. Let δΩ(sl, a) 6= ∅. Then there are two cases:
1. Either ∃sl+1.sl

a−→ sl+1 then by the property of Z we have ∃tl+1.tl
a−→ tl+1, thus δt(tl, a) 6= ∅,

and (tl+1, sl+1) ∈ R.

2. Or ∃α, sl+1.sl
α|a−−→ sl+1 and Ω(σ(sl, τ), α) = 1. The orchestrator Ω(σ(sl), α) is set to 1 only

if ∃b ∈ Σ such that tl b−→ t′ and sl
α|b−−→ s′ with (t′, s′) ∈ R′ for some R′ ∈ Z. But from the

property of R we know that this is done in such a way that for all c ∈ Σ with sl
α|c−−→ v,

∃u.tl c−→ u ∧ (u, v) ∈ R. In particular sl α|a−−→ sl+1 ⇒ ∃tl+1.tl
a−→ tl+1 ∧ (tl+1, sl+1) ∈ R′, thus

δt(tl, a) 6= ∅.
Combining both results we obtain that for all traces τ ∈ Σ∗ δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅ for all
s ∈ ∆Ω(s0, τ) and tl ∈ ∆t(t0, τ).

(⇐) Let Z be the set of observable sets of the community. Recall that Z = {Rθ | θ ∈ Θ} and

Rθ = {(t, s) | ∀x ∈ L(θ)∃τ ∈ Σ∗.s ∈ ∆Ω(s0, τ) ∧ t ∈ ∆t(t0, τ)
∧σ(s, τ) = x}

Next we show that if for all traces τ ∈ Σ∗, s ∈ ∆Ω(s0, τ), t ∈ ∆t(t0, τ), we have δt(t, a) 6= ∅ ⇔
δΩ(s, a) 6= ∅ then it implies that S is controllable with respect to St. This is done by showing
that the set of relations Z has the properties of observation relations as given in definition 2.4.5.

Let (t, s) ∈ Rθ for some Rθ. Suppose that t a−→ t′ then δt(t, a) 6= ∅ and it follows by assumption
that δΩ(s, a) 6= ∅. Therefore ∃s′ with :

1. Either s a−→ s′. Using the fact that (t, s) ∈ Rθ we get that for all x ∈ L(θ) ∃τa such that

s′ ∈ ∆Ω(s0, τa) because s ∈ ∆Ω(s0, τ) ∧ s a−→ s′

t′ ∈ ∆t(t0, τa) because t ∈ ∆t(t0, τ) ∧ t a−→ t′

σ(s′, τa) = x because σ(s, τ) = x ∧ s a−→ s′

therefore (t′, s′) ∈ Rθ

2. Or ∃α ∈ Com such that δu(s, α |a) 6= ∅ and Ω(σ(s, τ), α) = 1. Then for all xα ∈ L(θα)∃τa:

s′ ∈ ∆Ω(s0, τa) because s ∈ ∆Ω(s0, τ) ∧ s α|a−−→ s′

t′ ∈ ∆t(t0, τa) because t ∈ ∆t(t0, τ) ∧ t a−→ t′

σ(s′, τa) = xα because σ(s, τ) = x ∧ s α|a−−→ s′

44 Framework

Therefore (t′, s′) ∈ Rθα.
Furthermore, let (u, v) ∈ Rθ with δu(u, α | b) 6= ∅ for some b ∈ Σ. By the definition of Rθ
we know that for all x ∈ L(θ) we have ∃b1 . . . bk.u ∈ ∆Ω(s0, b1 . . . bk) ∧ v ∈ ∆t(t0, b1 . . . bk)
and σ(s, b1 . . . bk) = x.
Now the fact that Ω(x, α) = 1 coupled with δu(u, α | b) 6= ∅ implies that δΩ(u, b) 6= ∅.
By the assumption of orchestrator existence it follows that δt(v, b) 6= ∅. Let u′ ∈ δΩ(u, b)
and t′ ∈ δt(t, b). From the definition of ∆ it follows that u′ ∈ ∆Ω(s0, b1 . . . bkb) and v′ ∈
∆t(t0, b1 . . . bkb). In addition σ(b1 . . . bk) = x and u

α|b−−→ u′ implies that σ(u′, b1 . . . bkb) =
xα. Collecting all these results we get that for all xα ∈ L(θα) ∃b1 . . . bkb.u′ ∈ ∆(s0, b1 . . . bkb)∧
v′ ∈ ∆(t0, b1 . . . bkb) ∧ σ(u′, b1 . . . bkb) = xα therefore (u′, v′) ∈ Rθα

From the above we deduce that Z is a set of observation relations and therefore S is control-
lable with respect to St.

2.5 Communicating services

Thus far all the services we have considered do not communicate with each other. Most interesting
applications of services, however, require some form of communication or at least some mechanism
whereby the result of one action by some services can be used as an input by some other service.
We extend our model with an additional LTS called an environment. The environment interacts
with all the services and thus allows them to communicate. An action by a service can change the
state of the environment. Conversely some actions of the services can depend on the state of the
environment, being able to be fired only in some specific environment state. The environment
not only represent an abstraction of the how the data is transferred but also it could represent
the physical world when one considers physical agents as service providers.

Before proceeding with the required formal definitions it would be helpful to illustrate the
aforementioned ideas using a simple example.

Example 2.5.1. The community involves two services where each can perform a search, buy
and pay actions. The search action is used to located books using appropriate keywords. The
service that performs the search action acts as an agent that searches through different online
bookstores and returns the result of the search. The buy action is a commitment by the user to
buy a book, say putting it in a chopping cart. For simplicity there is no option to remove a book
from the cart. Finally the pay action is to pay for the book and in case the cart is empty it just
terminates the transaction. The result of search action includes enough information so that a
given book could be located by one service and bought by some other service. Similarly we assume
that one can use the payment service of one service to pay for the chopping cart from another.
This is done by assuming that there is some hidden ”transfer cart content” action which allows
the content of the cart to be send from one service to another.

To be able to accomplish these tasks it is clear that the services should be able to communicate
or at least the results of one actions to be taken as input for other actions. Towards that end we

Framework 45

Service 2: V

Service 1: U Environment: E

Target Service: T

t0

t1

t2

e0

e1

e2

v0 v1

v2

u0 u1

u2

buy

pay

buy, pay

search

buy

search

pay

search

buy

buy e2, paye2, pay

search

buy buy

pay

Figure 2.14: Example setup: U and V are available services, E the environment and T the target
service.

introduce an environment where actions modify the state of the environment and results are also
stored in the environment.

The LTS of services U , V , the environment E and the target T shown in Figure 2.14. In this
model the evolution of any services is dictated or constrained by the environment. This is done
by forcing services and the environment to evolve in a synchronous manner. In the example in
Figure 2.14, the environment enforces the requirement that a search has to be done first. Also it
is used as a data box where results of search and buy are saved. The first service U can do all
three actions: search, buy and pay. Service U offers a kind of buy one and get one for half the
price service, therefore a client has to buy items in pairs before paying. The second service V can
search, buy, and pay for items. The service V forces at least one buy after a search because
the pay transition can be executed only if the environment is in state e2. To reach that state at
least one item needs to be bought. This is indicated by the label e2, pay in the pay transition,
meaning that this transition can be done only when the environment is in state e2, i.e. at least
one item was purchased. It should be mentioned that transitions not labelled explicitly with an
environment state are actually implicitly labelled by all states.

Having the above example in mind we define formally the environment as an LTS.

Definition 2.5.1. En environment E is a tuple E =
〈
E,Σ, e0, δE

〉
where

46 Framework

• E is a finite set of states.

• e0 is the initial state of the environment.

• Σ is the set of actions.

• δE ⊂ E × Σ× E is the transition relation.

As before we write (e1, a, e2) ∈ δE as e1
a−→ e2 and we define the set δE(e1, a) = {e2 | e1

a−→ e2}.

The environment imposes constraints on the behavior of services. For example some actions
by a given service can be performed only after it received a certain message or some other event
occured. This conditional action is modeled by the environment state. Next we give the formal
definition of services in the presence of the environment.

Definition 2.5.2. An available service Si over an environment E is a tuple Si =
〈
Si,Σi, Comi, s

0
i , Gi, δi

〉
where

• Si is a finite set of states.

• Σi is the action alphabet and Comi is the set of communication messages as before.

• s0
i is the initial state.

• Gi is a set of constraint functions of the form g : E → {true, false}.

• δi ⊆ Si ×G× (Σi ∪ Comi × Σi)× Si.

The above definition makes the allowed transitions of a service dependent on the environment
state. We write (s1, g, a, s2) ∈ δi as s1

g,a−−→ s2. As before it is convenient to use a functional
notation. The functional form of the transition is related to the transition relation as follows:
s′ ∈ δi(s, e, a) iff ∃g ∈ G such that (s, g, s′, a) ∈ δi and g(e) = true. Because of its convenience,
it is useful to give the formal definition of the functional notation.

δi(s, e, a) = {s′ ∈ Si | (s, g, a, s′) ∈ δi ∧ g(e) = true for some g ∈ Gi} (2.2)

As an example we define the service V introduced in Figure 2.14 using the general notation.

V = 〈{v0, v1, v2}, (Σi ∪ Comi × Σi), v0, G, δv〉

Where

• Σi = {search, buy, pay}, Comi = {1}.

• G = {True, isBought} where True(e) = true for all e ∈ E and isBought(e) = true iff
e = e2.

Framework 47

• And the transition relation δv is given by

δv = {(v0, T rue, search, v1), (v0, T rue, buy, v1),
(v1, T rue, buy, v0), (v0, isBought, pay, v2), (v1, isBought, pay, v2)}

Because both services have access to the environment where they can store and retrieve data,
it is possible for one service to search for books, store the results in the environment, and the
other service will read the result of the search from the environment to buy items. Similarly, it
is possible for one service to buy items and the other to pay for them. The following definition
are very similar to the case without an environment.

Definition 2.5.3 (Community of Services With Environment). A community of n available
services Si =

〈
Si,Σi, Comi, s

0
i , Gi, δi

〉
, i = 1 . . . n, is the tuple S =

〈
S,Σu, Com, s

0, G, δu
〉

where

• S = S1 × . . .× Sn.

• s0 = (s1
0, . . . s

n
0).

• Σu = ∪iΣi

• Com = ∪iComi

• G = ∪iGi

• δu ⊆ S × (Σ ∪ Com× Σ)× S

The transition relation δu is the asynchronous product of all relations δi defined as

(〈s1, . . . , sn〉 , α, g,
〈
s′1, . . . , s

′
n

〉
) ∈ δu iff (sk, α, g, s′k) ∈ δk for some 1 ≤ k ≤ n

and some g ∈ Gk
and for all i 6= k we have si = s′i

The functional notation δu remains as before, but it has an extra parameter, the environment
state:

δu(s1, . . . , sn, e, α) =
n⋃
i=1

⋃
s′i∈δk(si,e,α)

(s1, . . . , s
′
i, . . . , sn)

Similarly to the case without an environment the orchestrated transition function is defined
as

δΩ(s, e, a) = δu(s, e, a)
⋃

m∈Com
δu(s, e,m | a)� Ω(m)

48 Framework

Where s =
〈
s1, . . . , sn

〉
is a community state and the orchestrator Ω at this point is under

specified. But also , the environment restricts the transition of a service in two ways. The first
is by making the transition dependent on the environment state. This is taken care off in the
definition of the transition function, e.g. δi(s, e, a). The second is the condition that for action,
say a, to be performed by the service, the environment should also be able to perform an a
transition. We illustrate by using the example shown in Figure 2.14. Consider, as an example,
the case when service V is in state v0 and the environment is in state e0. Even though in
principle V can make transition v0

buy−−→ v1, it cannot actually do it because the environment has
no transition e0

buy−−→. Therefore the transition of the services in the presence of the environment
is basically the synchronous product of both transitions. We formalize the above by introducing
a new transition functions δ̂Ω : S × E × Σ −→ S × E and δt : St × E × Σ −→ St × E:

δ̂Ω(s, e, a) = δΩ(s, e, a)× δE(e, a)

Similarly the transition function of the target is is given by

δ̂t(t, e, a) = δt(t, e, a)× δE(e, a)

Finally, the multi-step transition function is defined, in a recursive manner, as in the case
without environment. Let τ ∈ Σ∗ then:

∆Ω(s0, e0, τa) =
⋃

(s,e)∈∆(s0,e0,τ)
δ̂Ω(s, e, a)

∆t(t0, e0, τa) =
⋃

(t,e)∈∆(t0,e0,τ)
δ̂t(t, e, a)

Before giving the formal composition characterization we mention a property that will be useful
later. Namely, that if the target starts initially from some environment state e0, and reaches,
after a sequence of transitions τ ∈ Σ∗, a set of environment states, then the community will reach
the same set of environment states if it starts from the same state e0 and performs the same
sequence of transitions τ . It is useful to formalize the previous statement with some notations.
Let A ⊆ St×E be a set of pairs (t, e) denoting a target state in the presence of an environment.
Similarly, B ⊆ S × E is a set of pairs (s, e) denoting a community state in the presence of an
environment. Define the function λ : Q × E → E by the operation λ(t, e) = e to extract the
environment state, where Q could refer to S or St. Below we show that if λ(A) = λ(B) then for
all a ∈ Σ we have λ(δ̂t(A, a)) = λ(δ̂Ω(B, b)).

Framework 49

λ(δ̂t(A, a)) = λ

 ⋃
(t,e)∈A

δ̂t(t, e, a)

= λ

 ⋃
(t,e)∈A

δt(t, e, a)× δE(e, a)

=

⋃
(t,e)∈A

λ (δt(t, e, a)× δE(e, a))

=
⋃

(t,e)∈A
δE(e, a) =

⋃
e∈λ(A)

δE(e, a)

=
⋃

e∈λ(B)
δE(e, a) because by assumption λ(A) = λ(B)

= λ(δ̂Ω(B, a)) (2.3)

In the above we have assume that δΩ(s, e, a) 6= ∅ and δt(t, e, a) 6= ∅. By using equation (2.3)
inductively we can easily show that for any arbitrary trace we have:

λ(∆Ω((s0, e0), τ)) = λ(∆t((t0, e0), τ))

2.5.1 Orchestrator with perfect information

The role of the orchestrator in the presence of the environment is the same as in its absence.
For any arbitrary history the community should be able to perform the same actions as the
target and only those actions. In this section we present the orchestrator in the case of perfect
information. As before we define the orchestrator formally.

Definition 2.5.4 (Orchestrator with perfect information in the presence of environment). Given
a community of n services, S =

〈
S,Σu, Com, s

0, G, δu
〉
, an orchestrator with perfect information

is a function Ω : Com× S × Σ∗ −→ {0, 1}.

Note that from the above definition, the orchestrator does not depend explicitly on the
environment.

Definition 2.5.5 (Behavior Composition With Perfect Information With Environment). Let St
be a deterministic target service and S be community of n available services in the presence of
environment. Let Ω be an orchestrator with perfect information and denote by SΩ the orchestrated
community. We say that SΩ is a behavior composition of St iff for all traces τ ∈ Σ∗ and all target
states (t, e) ∈ ∆t(t0, τ) and for all (s, e) ∈ ∆Ω(s0, τ) we have

∀a ∈ Σ, δ̂t(t, a) 6= ∅ ⇔ δ̂Ω(s, a) 6= ∅

50 Framework

First note that the condition δ̂t(t, e, a) 6= ∅ ⇔ δ̂Ω(s, e, a) 6= ∅ implies that δt(t, e, a) 6= ∅ ⇔
δΩ(s, e, a) 6= ∅. Second, in the above definition we always compare the target and the system in
the same environment state. This is possible because we have already shown that starting from
the same state e0 and performing the same sequence of transitions τ both the target and the
community will be in the same set of environment states.

The characterization of the problem in the presence of the environment is very similar to the
case when the environment was absent.

Definition 2.5.6. A relation R ⊆ St × E × S is said to be a controllability relation iff for all
(t, e, s) ∈ R and all actions a ∈ Σ

1. If t a−→ t′ and δE(e, a) 6= ∅ then

(a) Either ∃s′.s a−→ s′ ∧ (t′, e′, s′) ∈ R, ∀e′ ∈ δE(e, a)

(b) Or ∃α, s′ such that s α|a−−→ s′ and for all b ∈ Σ

(s α|b−−→ s′′ ∧ δE(e, b) 6= ∅)⇒
(
∃t′′.t b−→ t′′ ∧ (t′′, e′′, s′′) ∈ R for all e′′ ∈ δE(e, b)

)
2. If s a−→ s′ and δE(e, a) 6= ∅ then ∃t′.t a−→ t′ ∧ (t′, e′, s′) ∈ R for all e′ ∈ δE(e, a)

this is a straightforward generalization of the previous definition but including the environ-
ment. In the above definition, condition 1b takes care of ”side effects”, it makes sure that if
the orchestrator enables an ”a”-action via some message α, all other actions ”b” that are also
enabled by message α lead to states that are also in R. Before giving the theorem that relates
the existence of an orchestrator to that of an controllability we prove a useful lemma, similar to
lemma 2.3.3 in the case when the environment was absent.

Lemma 2.5.2. Let R ⊆ St × E × S be an controllability between a target St =
〈
St,Σt, t

0, δt
〉

and a community S =
〈
S,Σu, s

0, G, δu
〉

in the presence of environment E =
〈
E,Σ, e0, δE

〉
. Then

there exists an orchestrator with perfect information Ω such that for all (t, e, s) ∈ R, t ∈ St,s ∈ S,
e ∈ E, and for all a ∈ Σ = Σu ∪ Σt we have δ̂t(t, e, a) 6= ∅ ⇔ δ̂Ω(s, e, a) 6= ∅. Furthermore for all
t′ ∈ δt(t, e, a), s′ ∈ δΩ(s, e, a) and e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R.

Note that in the above lemma the possible states of the environment produces by δ̂t(t, e, a)
and δ̂Ω(s, e, a), is the same as we have shown previously.

Proof. The proof is similar to the proof of lemma 2.3.3. The detailed proof is given in the
appendix.

The next theorem links the existence of an orchestrator to the existence of an controllability
as in the case when the environment was absent.

Framework 51

Theorem 2.5.3. Given a target service St =
〈
St,Σt, s

0
t , G, δt

〉
and a community of n available

services S =
〈
S,Σu, Com, s

0, G, δu
〉
, then an orchestrator with perfect information Ω exists such

that SΩ is a composition iff S is controllable with respect to St.

Proof. Similar to the proof of theorem 2.3.4. The detailed proof is given in the appendix.

2.5.2 Orchestrator with partial information

In this section we develop the theory for the case of an orchestrator with partial information in the
presence of the environment (we use the shorthand i.t.p. for ”in the presence”). The concepts
and terminology are very similar to the case when the environment is absent as presented in
section 2.4. Also it differs from the previous section, the case with perfect information by the
information available to the orchestrator. In this case the orchestrator is a function of the
”message trace” of the state. This message trace is computed via the σ function introduced in
section 2.4. Then given a state of the community s reached from the initial state s0 after a
sequence τ of actions then the orchestrator is Ω(σ(s, τ), α) where α ∈ Com is a communication
message and the message trace function σ was defined in section 2.4. As in the case of perfect
information, the orchestrated transition function is given as:

δΩ(s, e, a) = δu(s, e, a)
⋃

α∈Com
δu(s, e, α |a)� Ω (σ(s, τ), α)

Note that the value all the definitions above are exactly the same as in the case of perfect
information presented in 2.5.1, except the dependence of the orchestrator Ω on the message trace
part of the trace.

The behavior composition problem is exactly as the perfect information case and given in
definition 2.5.5.

Also in this case the existence of an orchestrator is characterized by the existence of a set of
observation relations with the addition of the environment. Formally,

Definition 2.5.7 (Observation relations i.t.p. of environment). A set of relations Z ⊆ 2St×E×S
is called a set of observation relationsi.t.p. of environment E iff : for every R ∈ Z and for every
(t, e, s) ∈ R we have the following

1. If s g(e),a−−−→ s′ ∧ δE(e, a) 6= ∅ then ∃t′.t g(e),a−−−→ t′ ∧ (t′, e′, s′) ∈ R

2. If t g(e),a−−−→ t′ ∧ δE(e, a) 6= ∅ then

(a) Either ∃s′.s g(e),a−−−→ s′ ∧ (t′, e′, s′) ∈ R

52 Framework

(b) Or ∃s′, α ∈ Com,R′ ∈ Z with

s
g(e),α|a−−−−−→ s′ ∧ (t′, e′, s′) ∈ R′

∧

∀(u, v, w) ∈ R(w g(v),α|b−−−−−→ w′ ⇒ ∃u′.u g(v)|b−−−→ u′ ∧ (u′, v′, w′) ∈ R′)

Definition 2.5.8 (Controllability under partial information i.t.p. of environment). A community
of services S is said to be controllable under partial information with respect to a target service
St i.t.p of environment E iff there exists a set of observation relations Z ⊆ 2St×E×S such that
∃R0 ∈ Z with (t0, e0, s0) ∈ R0.

The above definition allows us to characterize the existence of an orchestrator in a manner
similar to the case of perfect information.

Theorem 2.5.4. Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of services, St =
〈
St,Σt, t

0, δt
〉

be a target service, and E =
〈
E,Σ, e0, δE

〉
be an environment. An orchestrator with partial

information, Ω, exists such that SΩ is a composition of St iff S is controllable under partial
information with respect to St i.t.p of environment E.

Proof. Similar to the proof of theorem 2.4.1. The detailed proof is given in the appendix.

2.6 Conclusion

In this chapter the basic framework for the behavior composition was presented. We have also
proved some general results that are part of this thesis contribution to the behavior composition
problem. The first result is the use of the concept of controllability relation to prove that for a
given community S and target St an orchestrator exists such that the orchestrated community SΩ
is a behavior composition if and only if S is controllable with respect to St. We also proved this
property for the case when the specification is expressed using the richer and less restrictive modal
specifications. We also introduced the concept of the set of observation relations and we proved
that an orchestrator with partial observation exists if and only if a set of observation relations
exists between the community and the target. It was also shown that behavior composition
problem is related to the classical control problem. Finally, a similar study was performed
for the case when an environment is present. This chapter related the existence of, and the
construction of, an orchestrator to the existence and construction of the controllability relation
(set of observation relations in the partial information case). The next chapters will use these
results and present methods to efficiently find the controllabilty relation, or the observation
relations in the case of partial information.

Chapter 3

Orchestration under perfect
information

Contents
3.1 Introduction . 54
3.2 The Roman Model and fixpoint methods 56

3.2.1 Roman Model . 56
3.2.2 Example 1 . 58
3.2.3 Fixpoint approach . 60

3.3 On-the-Fly algorithm for the Roman Model 62
3.3.1 The algorithm . 62
3.3.2 Example 2 . 65

3.4 Correctness and complexity of the algorithm 67
3.5 Handling service failure . 69
3.6 Abstraction of the composition problem 71

3.6.1 Quotient services and state reduction 72
3.6.2 Heuristic for orchestrator synthesis . 75

3.7 Algorithm for the general model . 76
3.8 Conclusion . 79

53

54 Chap. 3 – Orchestrator with perfect information

3.1 Introduction

In this chapter we study the composition problem when the orchestrator has perfect information.
This means that the orchestrator knows exactly in which state the community is in. This is done
by using the fact, proved in chapter 2 that an orchestrator exists if and only if a controllabil-
ity relation exists between the community and the target. We develop an efficient on-the-fly
algorithm to find a controllability relation when on exists.

Before proceeding any further, it is useful to recall some needed definitions from chapter
2. Let S =

〈
S,Σu, Com, s

0, δu
〉

and St =
〈
St,Σt, t

0, δt
〉

be the community and target service
respectively. Define the common action alphabet Σ = Σu ∪ Σt. Then the orchestrator under
perfect information is a function

Ω : S × Σ∗ × Com −→ {0, 1}

Recall that the orchestrated community, or the community controlled by Ω, is the tuple
SΩ =

〈
S,Σ, s0, δΩ

〉
where

δΩ(s, a) = δu(s, a)
⋃

α∈Com
δu(s, α)� Ω(s, τ, α) (3.1)

where τ ∈ Σ∗ is the sequence of actions performed to reach s from the initial state s0. Clearly
τ is not unique but the function δΩ is not used by itself. Rather is used as a short hand to compute
the states the community could be in, after a sequence of actions τ . This is done via the extended
function of the orchestrated community which is defined recursively:

∆Ω(s0, ε) = {s}
∆Ω(s0, τa) =

⋃
s′∈∆(s0,τ)

δΩ(s′, a)

Replacing the definition of δΩ in equation (3.1) in the above we get

∆Ω(s0, ε) = {s}

∆Ω(s0, τa) =
⋃

s′∈∆(s0,τ)

[
δu(s′, a)

⋃
α∈Com

δu(s′, α |a)� Ω(s, τ, α)
]

The above definition shows the context in which the sequence of actions τ is used in. In
this context there is no ambiguity in its usage. Intuitively SΩ is a composition of St, if after an
arbitrary sequence of actions τ , and regardless in which state the community is in, the community
should be able to perform any action that can be performed by the target and only those actions.
Now since the target is deterministic, and the composition can perform only the actions that the

Sect. 3.1 – Introduction 55

target can perform then there is a one-to-one correspondence between the sequences of actions
and the states of the target thus we can write:

Ω : S × St × Com −→ {0, 1}

According to the above we can write Ω = Ω(s, t, α) where t is the target state reached when
the target executes the sequence τ . Finally, in theorem 2.3.4 in chapter 2 we proved that the
existence of a composition is tied to the existence of a controllablility relation. We also showed
how to compute the values of the orchestrator from the controllability graph. In this chapter we
present a novel method, for the case of perfect information, to find the controllability relation, if
one exists, and therefore the orchestrator.

A special case of his problem has been solved by different methods including the use of Propo-
sitional Dynamic Logic [DGS07], the concept of simulation in the case of deterministic services,
and using the concept of ND-simulation in the case of non-deterministic services [SPD08]. The
main hurdle to overcome is that the worst-case complexity of the problem is known to be EX-
PTIME in the number of services [MW08]. Therefore it is important to find a heuristic or a
method that minimize this complexity in the average case. While the lower bound tell us this is
not possible in general it its possible in some cases using some heuristics.

The main aim of this chapter is to develop an efficients algorithm to compute the control-
lability relation. This is accomplished by developing a new on-the-fly algorithm that has two
advantages over existing methods: it searches part of the state space until it finds a solution,
if one exists. This is in contrast to fixpoint methods which consider the whole state space and
remove non-conforming states until a solution is found. Second the way the algorithm is con-
structed it is possible to use a heuristic as input to speed up the search. We actually develop
such a heuristic by using an abstraction method and we use it as input to the algorithm. While
the worst-case complexity of the proposed algorithm is also exponential in the number of services
(this is a lower bound, see [MW08]) we argue that in the average case it is much better.

This algorithm improves on previous approaches to the problem and advances the state of
the art in service composition by proposing an algorithm that: 1) visits states as needed, which
allows it to deal efficiently with systems containing a large number of complex services; 2) is
self-contained and can be easily incorporated in any other model; 3) is robust with respect to
service failure.

The service composition problem we consider here shares similarities with some occurrences
of the control problem and can be tackled by similar approaches (see [BCF08a] for example).
The service composition problem could also be transformed to be solved by powerful tools used
for software verification. However, we believe that service composition, although similar to other
problems, has some important specificities. In addition to the possibility of using a heuristic to
speed up the search one can add to the algorithm of this chapter considerations about quality of
service or quality of experience [EHMR10]: these information about services can be taken into
consideration when choosing from a candidate to perform a specific action to match a requirement
of the goal. This advocates for developing a specific algorithm that can be enhanced further to
account for the particularities of the service composition problem.

56 Chap. 3 – Orchestrator with perfect information

The remaining sections of this chapter can be divided into two parts. The first part includes
section 3.2 only, discusses existing approaches to the composition problem. The second part
includes all remaining sections and detail our contribution. More specifically in section 3.2 we
use the special case of the Roman Model to present a common approach in the literature for
solution the composition problem which we call the fixpoint approach. In section 3.3 we present
our on-the-fly algorithm and discuss its advantages over the fixpoint approach. In section 3.4
we show that our algorithm is correct and we compute its worst case complexity. In section 3.5
we show that our proposed algorithm is robust with respect to service failure. In section 3.6 we
present an abstraction method that reduces drastically the state space of the community and the
target. We prove that if no simulation relation exists between the abstracted community and
the abstracted target then no controllability relation exists between the original system. When
a simulation relation exists it is used as a heuristic to speed up the algorithm. In section 3.7 we
present the algorithm for our general model presented in chapter 2. The target for general model
is specified using modal specifications. We conclude with section 3.8.

3.2 The Roman Model and fixpoint methods

In order to make the case for the proposed on-the-fly algorithm it is important to contrast it
with current methods used to solve the composition problem. All current approaches need to do
full state space computation to reach a solution. In fact, most of them use a fixpoint approach:
start with the full state space and remove states using some operator that is method dependent,
until no more states can be removed, then the remaining states are the solution. In this section
we discuss one such approach in order to contrast it with our approach presented in the next
section.

The on-the-fly algorithm we are proposing can become unwieldy and a bit complicated.
Because of that and as a first step we introduce the algorithm to handle the special case of
the Roman Model. As we have seen in Chapter 2 the Roman Model is a special case of the
general model we are proposing. At a later stage the algorithm that handles our general model
is presented.

3.2.1 Roman Model

It is important to fix the terminology for the problem, which remains largely as presented in the
previous chapter, in the special case of the Roman Model. There are n available services Si in
the presence of an environment E . The target is modelled by target service St. It is convenient to
handle states of the community as a whole thus a state of the community s, where s = 〈s1, . . . sn〉
then service Si is in state si. Recall that the environment is a non deterministic LTS like the
services and imposes constraints on the transition of the services. For example, given a service
Si a transition si

g(e),a−−−→ s′i means that the service can move from si to s′i only if g(e) = true.
This has the effect that some transitions are allowable only in certain environment states. We

Sect. 3.2 – The Roman Model and fixpoint methods 57

also showed in section 2.5 that for a given history, the composition and the target will be in the
same environment state.

In the Roman Model all transitions are controllable therefore the transition function of the
community is written as

δΩ(s, e, a) =
⋃

m∈Com
δu(s, e,m |a)� Ω(s, x,m)

Again, x ∈ Σ∗ is the sequence of actions executed to reach state s and as explained in the
previous section it should cause no ambiguity when used in the context of the extended transition
function. Also, instead of having a set of communicating messages Com, each service can be
communicated with using its index. For example the message ka means ”instruct service k to
execute transition a”. Define {n} = {1, . . . , n} then Com = {n} × Σ. Furthermore, for a given
message ka one cannot have s ka|b−−→ s′ with a 6= b. Therefore in the Roman Model the community
of n services is a tuple S =

〈
S,Σu, {n}, s0, δu

〉
where it is understood that the set of messages

Com = {n} × Σ with the above restriction. The transition function of the community becomes:

δΩ(s, e, a) =
n⋃
k=1

δu(s, e, ka |a)� Ω(s, x, ka) (3.2)

But since the transition function of the community is the asynchronous product of the tran-
sition function of the available services then we can write:

δu(s, e, ka |a) =
⋃

s′
k
∈δk(s,e,ka|a)

〈
s1, . . . , s

′
k, . . . , sn

〉
Where δk is the transition function for service k. Recall also that for a given transition

s
g(e),a−−−→ s′ even if g(e) = true the community does not make the transition unless ∃e′ such that

e
a−→ e′. Basically the transition function of the community in the presence of an environment is

the synchronous product of the community transition in the absence of an environment and the
transition of the environment. Therefore the transition function of the orchestrated community,
in the presence of the environment is given as a modified transition function δ̂ defined by:

δ̂Ω(s, e, a) = δΩ(s, e, a)× δE(e, a)

Similarly the transition function of the target in the presence of the environment is given by

δ̂t(t, e, a) = δt(t, e, a)× δE(e, a)

Where × is the Cartesian product of two sets. The definition of the multistep transition for both
the community and target is unchanged and still given by

58 Chap. 3 – Orchestrator with perfect information

Service 2: V

Service 1: U Environment: E

Target Service: T

t0

t1

t2

e0

e1

e2

v0 v1

v2

u0 u1

u2

buy

pay

buy, pay

search

buy

search

pay

2s |search

2b |buy

2b |buy
e2, 2p |paye2, 2p |pay

1s |search

1b |buy 1b |buy
1p |pay

Figure 3.1: Example setup: U and V are available services, E the environment and T the target
service. The letters s, b and p are shorthand for search, buy and pay respectively.

∆Ω(s0, e0, τa) =
⋃

(s′,e′)∈∆S(s0,e0,τ)
δ̂Ω(s′, e′, a)

∆t(t0, e0, τa) =
⋃

(t′,e′)∈∆t(t0,e0,τ)
δ̂t(t′, e′, a)

Recall also that the orchestrator, Ω, we are seeking is the one that makes the orchestrated
community a composition of the target: for any arbitrary sequence of actions, τ and for all
(t, e) ∈ ∆t(t0, e0, τ), (s, e) ∈ ∆Ω(s0, e0, τ) we have, for all actions a ∈ Σ

δ̂t(t, e, a) 6= ∅ ⇔ δ̂Ω(s, e, a) 6= ∅

3.2.2 Example 1

Before presenting the formal setting it is useful to compare the two different approaches and
motivate the idea of an on-the-fly algorithm. This is done using the example taken from section

Sect. 3.2 – The Roman Model and fixpoint methods 59

2.5 and for convenience shown again in Figure 3.1. The actions supported by the two services
of the community are search, buy and pay which we can shorten by s, b and p respectively.
Both services are fully controllable with the first service, U , receiving messages from the set
{1s, 1b, 1p} and the second service, V , receiving messages from the set {2s, 2b, 2p}. Since we are
in the context of the Roman Model one can infer from the message the action and the service.
For example, by sending message 2p it is clear that only the ”pay” action of the second service
would be enabled.

The full state space and four possible solutions, together with the target, are shown in Figures
3.2 and 3.3. Note that in these figures the actions of the community, which can be inferred from
the messages, were omitted for readability. For example (u0, v0, e0) 1s−→ (u0, v1, e1) is a shorthand
for (u0, v0, e0) 1s|s−−→ (u0, v1, e1).

Given two controllability relations R1 and R2 we say that R1 is larger than R2 if R2 ⊆ R1. As
will be shown in section 3.2.3, a largest controllability relation exists. In this example, one can
see that in such a relation the dashed community states are related to the target state (t0, e0),
the community states with double ovals are related to the state (t1, e1), the community states
with ovals are related to (t1, e2) and all community states are related to (t2, e1) and (t2, e2) since
these two target states don’t have any transitions. Therefore the largest controllability relation
contains all tuples of the form (t1, e2, s) and (t2, e1, s) for all community states s.

On the other hand we show in red four different solutions to the problem. These solutions
are also controllability relations between the community and the target. Clearly there are others
and, as will be shown in section 3.2.3 the solution computed using the fixpoint approach (see
equation (3.5)), is the union of all those solutions. Since in a typical composition scenario what
is needed is just one solution, then computing the largest (i.e. all the solutions) is not necessary
and wasteful knowing that the problem is EXPTIME hard. In many, if not most, situations what
is needed is a single solution, for example one of the solutions shown in Figures 3.2 and 3.3.

The states labeled red in Figures 3.2 and 3.3 represent the controllability relation and the
red transitions are the composition, or the ”proof” that the relation is indeed a controllability
relation. If one starts with (u0, v0, e0) and at each step, and each target transition, tries to match
it with a community transition it is possible to obtain a controllability relation in a much smaller
number of computations than required to compute the largest controllability relation. One can
see that in this case a fraction of the state space is visited whereas any algorithm that computes
the largest controllability relation needs to visit all the state space, which includes testing all the
transitions.

The first solution shown in Figure 3.2, labelled solution1, can be obtained, for example, if the
user has a preference for service 1, which means that the community will always try to match
the target transition using service 1. One can see that there is no need for backtracking, i.e.
explore other branches of the state space, as long as the first choice is transition 1s not 2s. This
means that in this case there is one chance out of two that the procedure we are proposing will
not need any backtracking at all. In those cases the size of the solution is comparable to the size
of the target rather that the community which is exponential in the number of services.

60 Chap. 3 – Orchestrator with perfect information

Suppose that we have some a priori knowledge that the transition 2s does not lead to a
solution and therefore choose the transition 1s. In this case the proposed step-by-step method
or on-the-fly algorithm will do no backtracking at all. Such information can be obtained for
example from some kind of abstraction as will be shown later on in this chapter. Obviously all
the aforementioned techniques are heuristics and it is possible that such on-the-fly procedure
makes the ”worst” decision on every step. The question is: if the algorithm makes the ”worst”
case decision does it become less efficient than algorithms that compute the largest controllability
relation?

In section 3.3 we present an algorithm that implements the aforementioned idea, that builds a
controllability relation on the fly. It can take as input a heuristic obtained from, say, abstraction
or user preference as mentioned previously. Crucially, we will show that in the worst case, i.e.
when the algorithms always makes the ”worst” decision, its complexity is the same as algorithms
that compute the largest relation. Therefore in most situations a lot will be gained from using
an on-the-fly method.

Before closing this section it is important to contrast the above procedure with on-the-fly
algorithms for computing equivalence between two system, e.g. bisimulation [Par81]. In such
situations, the on-the-fly algorithm, even though it is incremental, eventually has to visit all
states, and tests all transitions, to determine if two system are equivalent [CS01]. Therefore
such methods don’t have a real advantage over algorithms that compute the largest relations. In
our case, one is trying to find some kind of equivalence between a target and a ”subgraph” or
a small portion of a very large, in fact exponential in the number of services, state space, so in
the best case the number of computations is proportional to the size of the target rather than
the community. When a solution is found there is no need to continue searching the remaining
space.

3.2.3 Fixpoint approach

In this section we give one so called fixpoint approach for computing the largest controllability
relation. It will allow us to contrast this class of approaches with our proposed algorithm.

As we have shown in theorem 2.5.3 in chapter 2 an orchestrator exists iff there is a control-
lability relation between the states of the target, the environment and the community. It is the
same in the case of the Roman Model except that the definition of an controllability relation is
simpler because messages are sent to specific services and they have no ”side effect” in the sense
that a message ka can only enable a-transitions in service k only, whereas in our general model a
message α can enable transitions other than a and services other than k. The formal definition
is given next.

Definition 3.2.1 (controllability for the Roman Model). Let St =
〈
St,Σt, s

0
t , δt

〉
be a target

service and S = 〈S,Σu, {n}, s0, δu〉 be the community of n services. A relation R ⊆ St×S is said
to be a controllability relation if for all (t, s) ∈ R and for all a ∈ Σ = Σt ∪ Σu:

• ∃{m}a ⊆ {n} such that for all k ∈ {m}a we have s
g(e),ka|a−−−−−→ s′ ⇒ ∃t′.t g(e),a−−−→ t′ and

Sect. 3.2 – The Roman Model and fixpoint methods 61

(t′, e′, s′) ∈ R. The subscript a in the set {m}a stresses the fact that it depends on a.

• t g(e),a−−−→ t′ ∧ e a−→ e′ ⇒ ∃k ∈ {m}a, s′.s
g(e),ka|a−−−−−→ s′ ∧ (t′, s′) ∈ R.

Clearly the above definition is much simpler than the general model. All is needed is that
for every target transition to be matched by a service that can make the same transition. The
only complication, so to speak, is to take care of the non-determinism of the chosen service. It
is convenient to write the above definition in a more compact form as:

t
g(e),a−−−→ t′ ∧ e a−→ e′ ⇒ (∃k, s′.s g(e),ka|a−−−−−→ s′∧

∀s′′ ∈ δu(s, e, ka |a) ∧ ∀e′′ ∈ δE(e, a), (t′, e′′, s′′) ∈ R) (3.3)

To proceed with the proposed solution it is important first to introduce what we have referred
to so far as the fixpoint approach, in order to contrast it to our solution. For that reason it is
useful to recast the definition of controllability relation as a fixpoint of a monotonic function.
Towards that end let R ⊆ St × E × S1 × . . .× Sn be an arbitrary relation between the states of
the target, environment and community. Let t, e and s be states of the target, environment and
community(i.e s = 〈s1, . . . , sn〉) respectively. Define the function F over the set of such relations
as follows:

F (R) =
{

(t, e, s) ∈ R | ∀a

t
g(e),a−−−→ t′ ∧ e a−→ e′ ⇒

[
∃k, s′.s g(e),ka|a−−−−−→ s′ ∧ (t′, e′, s′) ∈ R (3.4)

∧

∀s′′(s g(e),ka|a−−−−−→ s′′ ⇒ (t′, e′, s′′) ∈ R)
] }

The above definition of F means that every transition of the target (allowed by the environment),
can be matched by a community transition (again allowed by the environment). Also, when a
controlled transition is enabled through some message ka one needs to make sure to take care
of ”side effects”. Namely, that any other action enabled by ka should be matched by the target
also. This is taken care of in the last part of the expression.

Similarly to the standard preorder definitions it is easy to see that a relation R is an control-
lability relation iff R ⊆ F (R) [CS01]. Since F is also a monotonic function therefore by Tarski’s
fixpoint theorem a largest fixpoint exists and is given by:

∼=
⋃
{R | R ⊆ F (R)} (3.5)

Note that equality 3.5 implies that there could be many controllability relations and ∼ is the
union of all of them. In a sense ∼ contains all the solution of the problem. A typical procedure,

62 Chap. 3 – Orchestrator with perfect information

similar to the one for classical equivalences and preorders [CS01], for computing the largest
controllability relation ∼, as defined in equation (3.5), would be to define the set of relations:

∼0 = St × E × S1 × . . .× Sn
∼i+1 = F (∼i) (3.6)

Since the transitions systems under study are finite then there exists a j such that ∼j= F (∼j).
The largest fixpoint, ∼j , is the largest controllability relation one is seeking. Henceforth, this
procedure for computing the largest controllability relation is referred to as ”fixpoint approach”.
The important point to note is that one always starts with ∼0, which is, being the product of
all the states, exponential in the number of services. This means one always has to visit all the
states in ∼0, the full state space, and more importantly, process all transitions. Clearly this is
an expensive operation and, as will be shown later, unnecessary. In [GPS13], the authors use a
concept, called ND-simulation, similar to controllability for the special case of the Roman Model.
They show that after obtaining this non-deterministic simulation, or ND-simulation, one can
generate all compositions using what is called orchestrator generator. This not really necessary
since what is usually needed is one orchestrator. It is worth mentioning that other methods for
solving the composition problem, e.g. [SP09], without the use of the concept of ND-simulation
relation also start from the full state space and remove, one by one, non matching states to
obtain a solution. In this respect they also are considered ”fixpoint approach” algorithms.

3.3 On-the-Fly algorithm for the Roman Model

In the previous section we have presented one ”fixpoint” algorithm used to compute the control-
lability relation. This algorithm is representative of a class of similar approaches, where all start
with the full state space and then remove states until a fixpoint is reached.

In this section we present our first contribution in this chapter: an on-the-fly algorithm to
find a controllability relation, if one exists. As we have mentioned before, to make the discussion
simple we first present the algorithm for Roman Model which is a special case of our model. In
section 3.7 we present the algorithm for the general model.

3.3.1 The algorithm

Let S be the set of states of the community of available services , E be the set of environment
states and St the set of states of the target service. The algorithm maintains two relations A
and B, both initially empty.

The relation A ⊆ St × E × S, represents the controllability relation that the algorithm is
trying to find between the states of the community and the target. Note that there might be
more than one controllability relation.

During the execution of the algorithm tuples are added and removed from A. The second
relation, B ⊆ St×E×S represents the set of tuples that were found by the algorithm to be not

Sect. 3.3 – On-the-Fly algorithm for the Roman Model 63

in the controllability relation. Once a tuple is found to be not in the controllability relation it
cannot become in the controllability relation at some later stage because tuples are added to B
but never removed. The set B is maintained so that a given tuple is not processed more than
once. The algorithm is composed of two mutually recursive functions CONTROL and MATCH
that are described next.

Algorithm 1: function CONTROL for the Roman Model case
1 CONTROL(t, e, s)

2 if 〈t, e, s〉 ∈ B then
3 return false
4 if 〈t, e, s〉 ∈ A then
5 return true

/* Assume that (t,e,s) are in controllability relation */
6 A = A ∪ 〈t, e, s〉
7 res = true

/* Check if controller can send messages to match all the transitions of
the target */

8 foreach a ∈ Σ do
9 foreach t

g(e),a−−−→ t′ ∧ e a−→ e′ do
10 res=MATCH (s, e a−→ e′, t

a−→ t′)
11 if res = false then
12 Goto Exit
13 Exit:
14 if res=false then
15 B = B ∪ 〈t, e, s〉
16 A = A− 〈t, e, s〉
17 changed = true

18 return res

Function CONTROL. Given a target state (t, e), and a community state (s, e) the function
CONTROL(t, e, s) returns true iff the tuple 〈t, e, s〉 belongs to the controllability relation. Ba-
sically, CONTROL performs a depth-first search over the state space. When a tuple is visited
for the first time, i.e. not in A nor in B, it is assumed to be in the controllability relation, and
therefore added to A (lines 2-6). Then the tuple is processed by checking that every transition of
the target can be matched by a transition of the community (lines 8-12). It should be noted that
since all the community transitions are controllable by the orchestrator checking the reverse is not
necessary because any transition that is not enabled explicitly by the orchestrator is implicitly
disabled.

64 Chap. 3 – Orchestrator with perfect information

Algorithm 2: function MATCH for the Roman Model case
1 MATCH(s, e a−→ e′, t

a−→ t′)

/* si is the ith component of s,i.e. s = 〈s1, . . . , sn〉 similarly for s′ and s′′

*/
2 for i = 1 to n do
3 foreach si

g,a−−→ s′i ∧ gi(e) = true do
4 ENQUEUE (Q,i,s′i)
5 res = false
6 while Q 6= ∅ ∧ res = false do
7 s′k = DEQUEUE(Q)
8 res=CONTROL(t′, e′, s′)
9 if res=false then

10 Goto Label
11 else
12 foreach sk

a−→ s′′k do
13 res=CONTROL(t′, e′, s′′)
14 if res = false then
15 Goto Label
16 Label:
17 return res

After a tuple is processed, if it is found to be not in the controllability relation, then it is removed
from A and added to B (lines 14-17). Note that CONTROL visits (i.e. adds to A) tuples in
preorder and processes them in postorder. We will have more to say about this later.

Given a target state (t, e) and a community state (s, e), the function CONTROL tests
whether (t, e, s) is in the controllability relation. This is the case iff for every possible transition
of the target state (t, e) a−→ (t′, e′) the community can match it with an a-transition (s, e) a−→ (s′, e′)
such that (t′, e′, s′) is in the controllability relation (lines 8-12 in CONTROL).

Recall that a community state (s, e) is composed of the states of n services, i.e. s = 〈s1, . . . , sk, . . . , sn〉.
Then for a given transition (t, e) a−→ (t′, e′), the algorithm needs to satisfy clause (3.3) by finding
a service k such that:

1. (P1) There exists one s′k with sk
g,a−−→ s′k and g(e) = true for some g ∈ Gk such that

(t′, e′, s′) is in the controllability relation, where s′ = (s1, . . . , s
′
k, . . . , sn).

2. (P2) For every s′′k, such that sk
g,a−−→ s′′k, it is the case that (t′, e′, e′′) is in the controllability

relation, where s′′ = (s1, . . . , s
′′
k, . . . , sn)

Sect. 3.3 – On-the-Fly algorithm for the Roman Model 65

The above two conditions are implemented in function MATCH explained below.
Function MATCH. For every target transition, this function tries to find a community transi-
tion that matches it. Given a tuple 〈t, e, s〉, and a target transition (t, e) a−→ (t′, e′), MATCH(s, e a−→
e′, t

a−→ t′) tries to find a transition of the community such that property (P1) above is true. It
is possible that there could be multiple services that can make an a-transitions from the current
state of the community. The MATCH function needs to try them one by one until it finds a
match. To this end, MATCH maintains all potentially valid community transitions in a queue.
QUEUE. The algorithm maintains a queue that holds all potential transitions of the commu-
nity from state (s, e) that can potentially match a target transition (t, e) a−→ (t′, e′). Once it finds
that a transition does not match, it discards it and dequeue the next possible transition. The
algorithm keeps doing this until a matching transition is found or the queue becomes empty. If
the queue becomes empty then there is no match and the function MATCH returns false: no
matching service is found.

The use of a queue is not strictly necessary since one can iterate over all the possibilities
one by one. It is included because we envision the use of a priority queue where the priority
is assigned for a given service according to some user preference to implement non-functional
requirements, or as a quality of service weight. Also, if the algorithm uses a heuristic based on
some already obtained information that makes one transition more likely to succeed, it will be
given higher weight. Finally, the queue is defined in such a way that if there are, in a given service
k, many s′k such that sk

a−→ s′k then ENQUEUE(Q, k, s′) will add the first such s′k only. This
is because from the definition of the controllability relation if (t, e) a−→ (t′, e′) then it is enough
to find a single matching transition. The reverse, namely property (P2) is checked on lines 12-15.

3.3.2 Example 2

Even with the simplifications of using the special case of the Roman Model the algorithm is still
a little bit complicated to follow. To give an intuitive idea to the reader how the algorithm works
we use a very simple scenario without an environment shown in Figure 3.4 and go through the
algorithm step by step with the call stack shown in Figure 3.5 as a guide.

The first call is to the starting states (s0, t0) by calling CONTROL(s0, t0). Tuple (s0, t0)
is added to A (line 1 in the call stack in Figure 3.5). Then every possible transition of t0 is
matched. In the present example there is a single transition t0

a−→ t1 which is matched on line 2.
Once the function MATCH is called there are two possibilities: s0

1a|a−−→ s1 and s0
2a|a−−→ s2. Each

of these possibilities is tried in turn until one of them (or none) matches. The choice of the order
is unspecified. In this example, for illustration purposes, we choose the transition s0

1a|a−−→ s1 first
(line 3). As can be seen from lines 4-10 the call to CONTROL(s1, t1) returns false. Therefore the
second possibility is tried (line 11) by calling CONTROL(s2, t1) which returns true and therefore
CONTROL(s0, t0) returns true which means the community is controllable with respect to the
target and hence an orchestrator exists and can be synthesized from the controllability relation

66 Chap. 3 – Orchestrator with perfect information

Algorithm 3: Main routine for computing the controllability relation
1 MAIN
2 B ← ∅
3 while changed=true do
4 A← ∅
5 changed=false
6 CONTROL(t0, e0, s0)
7 return A

A.
The fact that the states are visited in a preorder traversal but processed in a postorder traversal
causes a problem that needs to be handled. This happens because once a pair (s, t) is removed
from A, the algorithm needs to check for other states that depend on (s, t) as ”proof” that these
states are in the controllability relation. We illustrate using the example shown in Figure 3.6. In
that example there is no orchestrator for the target and yet if we run the algorithm it will tell us
otherwise. Stepping through the algorithm as shown in Figure 3.7 and Figure 3.8 will identify
the cause of the problem.

Recall that in the algorithm nodes are added to A in a preorder traversal. Therefore initially
(s0, t0) is assumed to be in the controllability relation and added to A (line 1). Then the matching
process begin where one tries to find a match to all the transitions of t0. Since t0 has only an
single transition t0

a−→ t1 then MATCH(s0, t0
a−→ t1) is called (on line 2). The two possible a

transitions of s0 are tried in turn. The first one fails since the call to CONTROL(s1, t1) returns
false as it should, but has a side effect of adding (s2, t2) to A (see line 22 in Figure 3.7). The
reason this happened is that the call to CONTROL(s2, t2) (line 16 Figure 3.7) returns before
(s1, t1) was removed from A on line 22 .

At this point A = {(s0, t0), (s2, t2)} and the call to CONTROL(s4, t1) as seen in Figure 3.8
returns true. One can see by inspecting line 5 on Figure 3.8 that one of ”proofs” that (s4, t1) is in
the controllability relation is that there is a b-transition to a tuple in the controllability relation,
in this case (s2, t2) which is wrong.

For this reason the algorithm maintains a variable changed that is set to true every time a
tuple is removed from the set A. If after the algorithm finishes changed = true then there is a
possibility that the aforementioned case occurred and the algorithm should be run again:
Actually not every time a change occurs one needs to rerun the algorithms. Sometimes the
removed tuple does not affect the rest of the computation. But if we don’t rerun the algorithm
every time that change = true then one needs to keep track of the dependencies of each state
and rerun the algorithm on the dependencies which makes the algorithm much more complicated
than it already is. Therefore we opt for the simple process of rerunning the algorithms without
checking for dependencies. Note that this approach could make at most one redundant call to
the algorithm. Finally it should be mentioned that the presented algorithm computes one of

Sect. 3.4 – Correctness and complexity of the algorithm 67

the controllability relations between the target and the community if one exists. As we have
mentioned in chapter 2 one can compute the orchestrator generator by keeping track of the
transitions. In that case, the relation A becomes a graph where each node is a tuple (t, s) as
before and in addition the graph edges represent the transition ”proofs”.

Note that at the start of every run, or pass, the relation A is destroyed (i.e. set to ∅) whereas
the relation B that keeps track of all tuples that are not in the controllability relation is carried
from one pass to the other. As will be shown in the next section it is guaranteed that changed
will eventually be false and the algorithm will terminate.

3.4 Correctness and complexity of the algorithm

Let n be the number of available services, with each service having Ni states, Nt the number of
target service states, and Ne the number of environment states. Let N = Nt×Ne×N1× . . .×Nn.

Theorem 3.4.1. The algorithm CONTROL terminates in a finite number of steps and when
it does it returns true iff (t0, e0, s0) is the controllability relation.

Proof. First we prove the termination. Let CONTROLi be the ith iteration of CONTROL(t0, e0, s0)
and Bi the set of tuples that are not in the controllability relation after CONTROLi finishes. The
variable changed is set to true iff during the run ∃(t, e, s) /∈ Bi−1 and (t, e, s) ∈ Bi, meaning that
(t, e, s) was found to be not in the controllability relation during the execution of CONTROLi.
Recall that at no point in the algorithm, tuples are removed from B. But if no new state is
added to B then the algorithm stops. Therefore the set B is strictly increasing. On the other
hand, the total number of tuples N is finite. Then there is an iteration j such that the variable
change = false and at that point the algorithm terminates.

Next we show that it yields the correct result. Observe that in a given iteration i of the
algorithm, we have that if CONTROL(t, e, s) returns true it means that it has finished processing
the state 〈t, e, s〉 and that 〈t, e, s〉 ∈ A. Also, recall that it returns true iff for every a:

1. And for every transition t
a−→ t′ and for all e a−→ e′ there exists a community transition

s
ka|a−−→ s′ such that 〈t′, e′, s′〉 ∈ A.

2. And for every s′′ such that s ka|a−−→ s′′ it is the case that 〈t, e, s′′〉 ∈ A.

The above two conditions hold in every iteration when CONTROL returns. In particular, in
the final iteration, when changed = false and therefore no 〈t′, e′, s′〉 was removed from A, imply
that the above two conditions hold for all (t, e, s) ∈ A and therefore relation A is a controllability
relation.

68 Chap. 3 – Orchestrator with perfect information

Theorem 3.4.2. The algorithm CONTROL is polynomial in the number of states of a given
service and exponential in the number of services.

First recall that N = Nt ×Ne ×N1 ×N2 × . . . ×Nn is the number of possible states of the
community and target combined. Since we are doing a worst-case analysis, we assume that all
the above states are reachable.
We begin the complexity analysis by considering a single run of CONTROL(t0, e0, s0). In one
such run each state is considered once. This is because after the first visit it is either in A or in
B. On any subsequent call it will not be visited again (lines 2-5 in CONTROL). This means
that each call of CONTROL(t0, e0, s0) considers at most N states. Next we compute the cost
of visiting a single state. The loops in lines 8-12 have the following cost:

∑
a

|{δ(t, a)× δE(e, a)}| · |MATCH(s, e a−→ e′, t
a−→ t′) |

≤
∑
a

|{δ(t, a)× δE(e, a)}| · |{δ(s, a)}|

The last equality is true because for a given t a−→ t′ and e a−→ e′ the function MATCH will process
at most |{δ(s, a)}| transitions. Recall that one needs to match a community s state with a target
state t for every environment state e. In other words one cannot match a community state s in
environment state e1 with a target state t with a different community state e2. This is why the
δE(e, a) in the above is counted once, in the term related to the number of target states.

The above is the contribution of a single state. Because every state is visited at most once
the total cost of one iteration of CONTROL is

≤
∑
e

∑
t

∑
s

∑
a

|{δ(t, a)× δE(e, a)}| · |{δ(s, a)}|

≤
(∑

a

∑
t

|{δ(t, a)}|
)
·
(∑

a

∑
e

|{δE(e, a)}|
)
·
(∑

a

∑
s

|{(δ(s, a)}|
)

=|Lt | · |Le | · |Ls | (3.7)

Where |Lt |, |Le |, and |Ls | are the number of transitions of the target, environment and the
community respectively.

To get an idea about the complexity of the algorithm as a function of the number of services,
n, we note that for a given action a, if service i can make |Lai| transitions then the asynchronous
product can make

∏
i |Lia|. Therefore:

|Ls|=
∑
a

|L1a| · · · |Lan|

Sect. 3.5 – Handling service failure 69

In the worst-case every state has an a-transition to every other state. Thus |Lia|= O(N2
i), where

Ni is the number of states in service i. Using the same analysis for the target and environment
transitions we get that the complexity of processing a single iteration of CONTROL is

O(N2
t ·N2

e ·N2
1 · · ·N2

n)

Since CONTROL is called at most O(Nt ·Ne ·N1 · · ·Nn) times on (t0, e0, s0) (s0 =
〈
s0

1, . . . , s
0
n

〉
),

the total complexity is O(N3
t · N3

e · N3
1 · · ·N3

n). Therefore, the algorithm is polynomial in the
number of states of target, environment, or a given services. It is exponential in the number of
services. Considering that the problem is EXPTIME-hard [MW08], this is optimal.

3.5 Handling service failure

In complex systems it is possible for some of the available services to fail. This could be due
to the failure of the service itself, its underlying platform or the communication channel. One
advantage of having the largest solution, i.e. one that contains all possible solution, is that when
some services fail, one can switch to a solution that does not used the failed service. In this
section we argue that this is show that the proposed on-the-fly algorithm is also robust to service
failure.

Let s = (s1, . . . , sn) and suppose that the community is in state (t, e, s) and service Sk fails
for some reason so the orchestrator cannot delegate actions to it. If the target makes a transition
t
a−→ t′, then the largest solution, since it contains all possible solutions, can choose (if one exists)

an alternative service l, to make a s la|a−−→ s′′ transition instead of s ka|a−−→ s′. If the service failure
is of a very short duration, i.e. the service Sk becomes available again right after the transition,
this decision is done at no cost. In such a situation finding the largest solution, which contains
all possible solutions, has an advantage over the our proposed method.

But if the service failure is permanent or of a long duration the tuple (t′, e′, s′′) is not nec-
essarily in the controllability relation anymore and any method has to recompute the solution
again. It should be noted that term ”long duration” means the time it takes to make one extra
transition which is not long at all. While failure time cannot be quantified it is reasonable to
say that the vast majority of failures are classified as ”long duration”. In [GPS13] they show,
that when using a fixpoint algorithm, one does not need to recompute the controllability relation
from scratch, but can use information obtained before the failure.

In this section we show that the recomputation of the solution using the proposed algorithm
also does not have to start from scratch, but can make use of the results of the computation
before a service failure, to speed up the computation after a service failure. In particular the set
B, used in the algorithm, is kept because every state in B before failure will also be in B after
failure. This way the algorithm does not have to revisit, and process, those states again, which
results, depending on the size of B, in significant pruning of the state space.

The main idea centers around the following theorem.

70 Chap. 3 – Orchestrator with perfect information

Theorem 3.5.1. After the algorithm finds a solution if (t, e, s) ∈ B and service l fails then
(t, e, s) ∈ B after failure.

Proof. Let s = (s1, . . . , sn) and R be the largest controllability relation. From definition (3.6) we
have that (t, e, s) /∈ R implies that (t, e, s) /∈ Ri+1 ∧ (t, e, s) ∈ Ri for some i. Now (t, e, s) /∈ Ri+1
implies that

∃a, t′, e′.t a−→ t′ ∧ e a−→ e′ ∧
(
δ(s, e, a) = ∅ ∨ ∀k(∃s′.s ka|a−−→ s′ ∧ (t′, e′, s′) /∈ Ri)

)
(3.8)

The above clause is basically saying that: there is a target transition that cannot be matched by
a community transition. This mismatch can happen in two ways: either the community cannot
make an a-transition (δ(s, e, a) = ∅) or the community can make the transition but one of them
will lead to a non controllable states which means eventually the community cannot model the
target.

One can break the clause in (3.8) in two parts, one that applies for i = 0 and the other for
i > 0. Namely:

1. i = 0 then (t, e, s) 6∈ R1 implies ∃a, t′, e′.t a−→ t′ ∧ e a−→ e′ ∧ δ(s, e, a) = ∅.

2. i > 0 then (t, e, s) 6∈ Ri+1 implies

∃a, t′, e′.t a−→ t′ ∧ e a−→ e′ ∧ ∀k∃s′′.s ka|a−−→ s′′ ∧ (t′, e′, s′′) /∈ Ri

Remark 3.5.2. It is worth mentioning that the property in case (2) is different from the property:
∀s′ ∈ δ(s, e, a) we have (t′, e′, s′) /∈ Ri, which means that all the a-transitions will lead to tuples
not in R. What the definition is actually saying is that, for a given (t, e, s), there exists an
action a that can be performed by the target and environment, but no matter which service
one selects to delegate the action to, it will lead to at least one tuple (t′, e′, s′) which is not
in R. This happens because one does not have total control over the services due to non-
determinism. This uncontrollability is more accentuated in the general model where, in addition
to the non-determinism of individual services, there is an additional uncontrollability because
when a message α is sent it could force the community to make some b-transitions in addition
to the desired a-transition

We show by induction on the number of iterations i, that when a service fails, if (t, e, p) /∈ R
before failure then it remains so after the failure.
Base case: This case follows directly from case (1) above and it is true for all (t, e, s) /∈ R1.
The fact that (t, e, s) /∈ R1 means that there exists a transition t

a−→ t′ ∧ e a−→ e′ which cannot
be matched by any service k, δ(s, e, a) = ∅. Since the community is an asynchronous product
of all services, which means that δ(s, e, a) is the union of the a-transitions of all services then
clearly when a certain service is no more available we would still have δ(s, e, a) = ∅. Therefore if
(t, e, p) /∈ R1 before failures it remains /∈ R1 after failure.

Sect. 3.6 – Abstraction of the composition problem 71

Hypothesis: Assume that the property is true for iteration i: if (t′, e′, s′) /∈ Ri before failure
then (t′, e′, s′) /∈ Ri after failure.
Induction step: Consider (t, e, s) /∈ Ri+1 before failure. From the definition of not in Ri+1 we
have:

∃a, t′, e′.t a−→ t′ ∧ e a−→ e′ ∧ ∀k(∃s′′.s ka|a−−→ s′′ ∧ (t′, e′, s′′) /∈ Ri)

Suppose that service m fails then the above becomes:

∃a, t′, e′.t a−→ t′ ∧ e a−→ e′ ∧ ∀k, k 6= m(∃s′′.s ka|a−−→ s′′ ∧ (t′, e′, s′′) /∈ Ri)

On the other hand, by the induction hypothesis all (t′, e′, s′′) /∈ Ri after failure and thus (t, e, s) /∈
Ri+1 after failure.

As the above theorem shows, the algorithm we are proposing is robust in the case of failure. If
a service fails after the controllability relation (and consequently the orchestrator) is computed,
then computing the controllability relation again reuses information obtained before the failure.

3.6 Abstraction of the composition problem

One of the important advantages of the proposed on-the-fly algorithm over so called ”fixpoint
algorithms” is the ability to combine it with some heuristics which will allow it to prune the
search space and reduce its cost. Toward that end and as a proof of concept we develop in this
section an abstraction method, the results of which can be used by the proposed algorithm as a
heuristic. In fact the method does more than that. It also allows us to infer the non-existence
of an orchestrator for the problem under study from the non-existence of a particular relation
for a much smaller, abstracted community. While the subject of abstraction has been studied
extensively in the context of model checking[CGL94][CGJ+03] to our knowledge it has not been
applied to the case of service composition.

The main concern of this part is an abstraction technique that reduces the number of states of
the composition problem and therefore make the orchestrator synthesis more efficient. Basically,
an abstraction is a function that reduces the size of the original problem but preserves some of
the properties under study. When done properly, the abstraction allows one to infer properties
of the original community by studying the, much reduced, abstract community.

The abstraction proposed in this part allows one to infer the non-existence of an orchestrator
for the original community and target from the non-existence of a simulation relation between
the, much smaller, abstracted community and the abstracted target. More importantly, when
a simulation does exist between the abstracted community and the target, the result is used as
a branch-and-bound like heuristic for the on-the-fly algorithm to speed up the computation of
the controllability relation, and therefore the orchestrator, between the original community and
target. The abstraction method is presented in section 3.6.1 and its integration in the algorithm
is discussed in section 3.6.2.

72 Chap. 3 – Orchestrator with perfect information

3.6.1 Quotient services and state reduction

The sought abstraction reduces the number of states of the community by using the concept of
the quotient of a Labelled Transition System(LTS). Given an equivalence relation α on the states
of an LTS, the idea is to group all equivalent states into a single ”super” state.

Definition 3.6.1. Let S =
〈
S,Σ, s0, δ

〉
be an LTS and α an equivalence relation on the states

of S. An equivalence class of α, denoted by [p]α, is the set [p]α = {q ∈ S | (p, q) ∈ α} and the
quotient of S by α is an LTS defined as, S/α =

〈
[S]α,Σα, [s0], δα

〉
where

• Σα ⊆ Σ is a subset of the original action set, which will be fixed later.

• [S]α = {[s] | s ∈ S} is the set of equivalence classes of α.

• [s0] = {s ∈ S | (s, s0) ∈ α} is the equivalence class of the initial state.

• δα ⊆ [S]α × Σα × [S]α is the transition relation of the quotient defined as:

([p], a, [q]) ∈ δα iff ∃x ∈ [p], y ∈ [q].(x, a, y) ∈ δ

One important equivalence relation that can be used is bisimulation equivalence. Choosing
bisimulation equivalence has the distinct advantage of retaining all the properties of the original
system that one might care to study. However, state reduction by using bisimulation equivalence
is minimal [WHH+06] and a much coarser relation is need.

We don’t do a systematic study of different equivalence relation but rather show one equiva-
lence (actually a pair of) relation that works and at the same time offer a substantial reduction
in state space. According to the results in [WHH+06] branching bisimulation offers up to 4 orders
of magnitude of reduction in state space. Also one would expect even more impressive result
from the coarser (and therefore less restrictive) closure relation that will be introduced later.

To be able to reduce the systems under study the action alphabet Σ is divided into two parts:
Σ = Σa]Σc where transitions in Σa are to be ”abstracted away” and will become ”unobservable”
in the abstracted system. For the target service St =

〈
St,Σ, t0, δt

〉
, define the relation −→Σa=

{(t, t′) ∈ St × St | ∃a ∈ Σa with t
a−→ t′}. For the community S =

〈
S,Σ, {n}, s0, δu

〉
the same

notation is used for a similar relation −→Σa= {(s, s′) ∈ S×S | ∃k ∈ {n}, a ∈ Σa with s
ka|a−−→ s′}.

Let −→∗Σa be the reflexive, transitive closure of −→Σa . It will be inferred from context if −→∗Σa
refers to the target or the composition.

The target is abstracted using the largest branching bisimulation [vGW96].

Definition 3.6.2 (Branching bisimulation). Given a target LTS St =
〈
St,Σ, t0, δt

〉
with Σ =

Σa] Σc, a relation R ⊆ St × St is called a branching bisimulation on St if it is symmetric and
∀(p, q) ∈ R and ∀α ∈ Σ if p α−→ p′ then

• Either α ∈ Σa and (p′, q) ∈ R

Sect. 3.6 – Abstraction of the composition problem 73

• Or ∃q′, q′′ such that q −→∗Σa q
′ α−→ q′′ with (p, q′) ∈ R and (p′, q′′) ∈ R.

The quotient of the target by the branching bisimulation is denoted by S̄t =
〈
[St],Σc, [t0], δb

〉
,

where we have dropped the subscript b from [St] since only branching bisimulation will be used
to abstract the target. The transition relation δb is the transition relation between equivalence
classes of the branching bisimulation as given in definition 3.6.1.

The community is abstracted using the closure relation.

Definition 3.6.3 (Closure relation). Let S =
〈
S,Σ, {n}, s0, δu

〉
be the community of n available

services. We define the closure relation, C, as the reflexive, transitive closure of the relation
ρ = {(s, s′) ∈ S × S | ∃a ∈ Σa, k ∈ {n}, s

ka|a−−→ s′ or s′ ka|a−−→ s}.

The quotient of the community by the closure relation is S̄ =
〈
[S],Σc, {n}, [s0], δc

〉
where δc is

the transition between the equivalence classes and we have dropped the subscript from [S] since
only the closure relation is used to abstract the community.

Next we relate the abstracted target to the abstracted community using a variant of the
classical simulation relation [Mil71]. In fact, if there is a simulation relation, as defined below,
between the abstracted target and the abstracted community it means that there is an orches-
trator such that the orchestrated abstracted community simulates, in the classical sense, the
abstracted target.

Definition 3.6.4 (Simulation). Given an abstracted target service S̄t =
〈
[St],Σc, [t0], δb

〉
and an

abstracted community service S̄ =
〈
[S],Σc, {n}, [s0], δc

〉
a relation ρ ⊆ [St] × [S] is said to be a

simulation iff for all (t, s) ∈ ρ and all c ∈ Σc we have

• t c−→ t′ ⇒ ∃k ∈ {n}.s kc|c−−→ s′ and (t′, s′) ∈ ρ.

We say that S̄ simulates S̄t, and we write S̄t ≺ S̄ iff there exists a simulation ρ such that
([t0], [s0]) ∈ ρ.

Example 3.6.1. An example community and target are shown in Figure 3.9. The above abstrac-
tions are used on the example with the ”buy” transitions abstracted away, i.e. Σa = {buy} and
Σc = {search, pay, clear}. The result of the abstraction is shown in Figure 3.10. In part (A)
the dashed ovals denote the equivalence classes of the abstracted community. Also the actions
search, buy, pay and clear are shortened in part (A) to s, b, p and c respectively and the actions,
which can be inferred from the messages, are omitted for clarity.

The next theorem gives the main result of this section.

Theorem 3.6.2. Let St and S̄t, S and S̄ be the target and community LTS together with their
respective abstractions. If S is controllable with respect to St then S̄t ≺ S̄.

74 Chap. 3 – Orchestrator with perfect information

Proof. Let R be the controllability relation between St and S. Define the relation R[] between S̄t
and S̄ with R[] = {([x], [y]) | (x, y) ∈ R}. We prove that R[] is a simulation relation (see Figure
3.11).
Let ([x], [y]) ∈ R[] and [x] a−→ [u]. From the definition of the quotient LTS we get that ∃x1 ∈
[x], u1 ∈ [u] such that x1

a−→ u1. Since (x, x1) ∈ α and α is a branching bisimulation then
∃x2 ∈ [x], u2 ∈ [u] with x −→∗Σa x2

a−→ u2.

On the other hand (x, y) ∈ R therefore ∃y2, v1, k such that y −→∗Σa y2
ka|a−−→ v1 with y2 ∈ [y],

(x2, y2) ∈ R and (u2, v1) ∈ R. This implies that ∃[v] such that [y] ka|a−−→ [v] and ([u], [v]) ∈ R[].
Therefore R[] is a simulation relation.

It is worth mentioning that in the example shown in Figure 3.10that the abstracted commu-
nity is not controllable with respect to the abstracted target. For example, given the abstracted
pair (S1, T1) when T1

pay−−→ T2, the abstracted community has two possible pay transitions: one
to S2 with (T2, S2) ∈ R[], the second is S0 with (T2, S0) /∈ R[].

We are actually interested in the case when no simulation exists between the abstracted target
and abstracted community. The theorem below is obtained by combining theorem 2.3.4 which
links the existence of an orchestrator to the existence of a controllability relation and theorem
3.6.2.

Theorem 3.6.3. If no simulation relation exists between the abstracted target and the abstracted
community then no orchestrator Ω exists, such that the orchestrated community is a composition
of the target.

It should be emphasized that the abstracted community S̄ is independent of the target service
and therefore it is computed once, offline, and will be used for any target service. The choice
of which actions to abstract depends on the situation. For example, one can abstract away non
essential action. Another approach would be to abstract away the action that occur most and
thus obtain maximum reduction in transitions. Obviously the abstraction of the goal has to
be done for every request goal and which cannot be precomputed. But considering that the
intractability of the behavior composition problem comes from the available services and not
from the target this method is extremely promising.

There are two possible outcomes for the computation of a simulation between the abstracted
LTSs:

1. No simulation exists. Considering that the closure relation is coarser than branching bisim-
ulation which can reduce the original system by up to 4 orders of magnitude [WHH+06]
, this result guarantees, in much less computational steps, that no composition exists for
the original system.

2. A simulation exists. This does not guarantee the existence of an orchestrator for the original
system. But one can use this result as follows: the simulation that was computed for the

Sect. 3.6 – Abstraction of the composition problem 75

Algorithm 4: function MATCH when abstraction is used
1 MATCH(s, e a−→ e′, t

a−→ t′)

/* si is the ith component of s,i.e. s = 〈s1, . . . , sn〉. Similarly for s′ and s′′

*/
2 for i = 1 to n do
3 foreach si

g(e),a−−−→ s′i do
/* Determine the equivalence classes */

4 x = D[t′]
5 y = C[s′]

/* Consider a transition ONLY if the equivalence classes are similar
*/

6 if R[x][y] = 1 then
7 ENQUEUE (Q,i,s′i)
8 res = false
9 while Q 6= ∅ ∧ res = false do

10 s′k = DEQUEUE(Q)
11 res=CONTROL(t′, e′, s′)
12 if res=false then
13 Goto Label
14 else
15 foreach sk

a−→ s′′k do
16 res=CONTROL(t′, e′, s′′)
17 if res = false then
18 Goto Label
19 Label:
20 return res

abstracted LTSs is used as a guide for a heuristic to speed up the computation of the
controllability relation for the original problem as will be shown in the next section.

3.6.2 Heuristic for orchestrator synthesis

In this section we present a heuristic based on the abstraction result. To do so it is assumed that
S̄t ≺ S̄ and the result can be used as input to the on-the-fly algorithm in order to speed up its
execution. Now suppose that S̄t ≺ S̄ and that the simulation relation R[] between the states of
S̄ and S̄t, was already computed. The next step is to incorporate the information obtained from
R[] in the algorithm presented in Section 3.3. This is done by discarding some transitions that
are not compatible with the information obtained from R[] which will save the algorithm a lot of

76 Chap. 3 – Orchestrator with perfect information

backtracking.
Given a pair of target and community states 〈t, s〉 and an arbitrary target transition t

a−→ t′,
the algorithm needs to find a matching community transition s

ka|a−−→ s′. This means that 〈t′, s′〉
should belong to the controllability relation. On the other hand, the result of theorem 3.6.2
implies that we should have ([t′], [s′]) ∈ R[]. In other words, among the many possible transitions

s
ka|a−−→ s′′ the algorithm should try only the ones such that ([t′], [s′′]) ∈ R[]. This simple yet

powerful idea is incorporated in the MATCH function with the result shown in Algorithm 4.
To illustrate the heuristic we consider Figure 3.10 again. Note that all similarly labeled transitions
from the same source class to the same destination class are combined. The relation R[] is a
simulation between the abstracted target and abstracted community.

One can see how the heuristic improves the composition problem by considering the starting
states t0 and (u0, v0). From the initial target state, the target can make a search transition
t0

search−−−−→ t1. In the abstracted target it is a transition from T0 to T1. The community has two
possible search transitions: (u0, v0) 1search−−−−−→ (u1, v0) and (u0, v0) 2search−−−−−→ (u0, v1). From Figure
3.10 one can see that the first transition leads to class S0 and the second one to class S1. Since
(S1, T1) ∈ R[] then it is considered as a potential transition whereas (S0, T1) 6∈ R[] therefore it is
discarded because according to theorem 3.6.2 it cannot lead to a solution. Since the discarded
choice can represented a significant portion of the search space, this branch-and-bound like
heuristic can save a lot of search time.
To implement these rules we define three data structures. An associative array C, indexed by
the states of the community, stores the equivalence classes of S̄. Then, C[s] = k means that the
state s belongs to the equivalence class number k. Note that the array C depends only on the
available services and therefore it is precomputed offline and it is the same for all target services.
Similarly, an associative array D is used for the target such that D[t] = l means that target state
t is in equivalence class l. Array D is dependent on the goal service only. Finally, the relation R[]
is represented as a two dimensional array where R[D[t]][C[s]] = v, (v ∈ {0, 1}), means that the
equivalence classes D[t] and C[s], of the target and community, respectively, are similar when
v = 1 and not similar when v = 0. The relation R is computed for the abstracted system. If
R[D[t0]][C[s0]] = 0 then we know that there is no composition for the system. Otherwise, R is
used in the local search algorithm as shown in the MATCH function in Algorithm 4 on lines
4-6 . Note the minimal overhead incurred since an array access is O(1)

3.7 Algorithm for the general model

For simplicity of the presentation we have so far restricted ourselves to the special case of Roman
Model. In this section we present the extension of the on-the-fly algorithm given in Section 3.3
for the Roman Model to our more general model. Recall from Chapter 2 that for our more
general model the orchestrator (with perfect information) does not have full controllability over
the community. In other words, there are some community transitions that happen regardless

Sect. 3.7 – Algorithm for the general model 77

Algorithm 5: function CONTROL for the general model
1 CONTROL(t, e, s)

2 if 〈t, e, s〉 ∈ B then
3 return false
4 if 〈t, e, s〉 ∈ A then
5 return true

/* Assume that (t,e,s) are in controllability relation */
6 A = A ∪ 〈t, e, s〉
7 res = true
8 Θ← ∅

/* Check that all uncontrolled community transitions can be matched by a
May transition of the target */

9 foreach a ∈ Σ do
10 foreach s

g(e),a−−−→ s′ ∧ e a−→ e′ do
11 res = ∃t′.t g(e),a−−→ t′ ∧ CONTROL(t′, e′, s′)
12 if res = false then
13 Goto Exit
14 Θ← Θ ∪ {a}

/* Check if orchestrator can send messages to match the remaining Must
transitions of the target */

15 foreach a ∈ Σ−Θ do
16 foreach t

g(e),a−−−→ t′ ∧ e a−→ e′ do
17 res=MATCH (s, e a−→ e′, t

a−→ t′)
18 if res = false then
19 Goto Exit
20 Exit:
21 if res=false then
22 B = B ∪ 〈t, e, s〉
23 A = A− 〈t, e, s〉
24 changed = true

25 return res

of the action of the orchestrator. The remaining transition can be controlled by the orchestrator
by sending messages from a set Com. Unlike the Roman Model where a message ia can control
which service, in this case i, and which action to enable, in this case a, in our general model a
message α can enable different services and different actions at the same time. Also, we will use
modal specification for the target service. Recall that in modal specification the target service
is a tuple St =

〈
St,Σ, t0,Must,May,G

〉
where May ⊆ St × G × Σ × St is a set of transitions

78 Chap. 3 – Orchestrator with perfect information

Algorithm 6: function MATCH for the general model
1 MATCH((s, e a−→ e′, t

a−→ t′)

2 foreach α ∈ Com do
3 if s g(e),α|a−−−−−→ s′ ∧ CONTROL(t′, e′, s′) then

/* Found a match by using α. Now check it doesn’t cause "side
effects" */

4 foreach s
g(e),α|b−−−−−→ s′′ ∧ e b−→ e′′ do

5 res = ∃t′′.t g(e),b− → t′′ ∧ CONTROL(t′′, e′′, s′′)
6 if res = false then /*this α does not work, try another one*/
7 break;
8 return true

/* No α matched */
9 return false

(transition relation) that the community can, but is not forced to, match and Must ⊆May is a
set of transitions that the community must match. Note that we have added the effects of the
environment, through the set of constraints functions G, in this section. We use dashed and solid
arrows for the May and Must transitions respectively. If the environment is in state e and the
target is in state t we write t g(e),a−−→ t′ for ∃g ∈ G.(t, g(e), a, t′) ∈May∧g(e) = true and t g(e),a−−−→ t′

for ∃g ∈ G.(t, g(e), a, t′) ∈ Must ∧ g(e) = true. From a fixpoint perspective the equivalent of
(3.4) for the Roman Model is the following function over the set of relations:

F (R) =
{

(t, e, s) ∈ R | ∀a[
t
g(e),a−−−→ t′ ∧ δE(e, a) 6= ∅ ⇒ C

]
∧[

s
g(e),a−−−→ s′ ∧ δE(e, a) 6= ∅ ⇒ ∃t′.t g(e),a−−→ t′ ∧ ∀e′ ∈ δE(e, a), (t′, e′, s′) ∈ R

] }
where C is the expression defined by

∃s′.s g(e),a−−−→ s′ ∧ ∀e′ ∈ δE(e, a), (t′, e′, s′) ∈ R

∨
[
∃α, s′.s g(e),α|a−−−−−→ s′

∧ ∀b(s g(e),α|b−−−−−→ s′′ ∧ δE(e, b) 6= ∅ ⇒ ∃t′′.t g(e),b− → t′′ ∧ ∀e′′ ∈ δE(e, b), (t′′, e′′, s′′) ∈ R)
]

Sect. 3.8 – Conclusion 79

Using the function F defined above, a solution to the problem (i.e. finding a controllability
relation, R, between the target and the community) is found by iterating the function F , starting
from the full state space, until a fixpoint is reached. Formally,

R0 = St × E × S
Ri+1 = F (Ri)

As discussed in previous sections since St × E × S is finite then ∃j.F (Rj) = Rj and Rj is the
sought controllability relation.

Similarly to what we have done in Section 3.3, we developed an on-the-fly algorithm that uses
two mutually recursive functions CONTROL and MATCH which are shown in Algorithms 5
and 6.

Given a state (t, e, s), algorithm 5 returns true only if (t, e, s) is in the controllability relation.
The function CONTROL, first checks if the uncontrollable community transitions from state s
can be matched by a May target transitions (lines 9-14). Unlike the controllable transitions, if
a single uncontrollable transition cannot be matched by a May transition of the target (lines
11-13) then (t, e, s) cannot be in the controllability relation and therefore CONTROL returns
false.

Once the uncontrollable transitions are processed, and all of them are found to be matched
by May transitions of the target, the function CONTROL in 5 starts processing the Must
transitions of the target. But since Must ⊆May and the target is deterministic then all possible
Must transitions whose label is in Θ were already processed. Therefore the algorithm processes
only the remaining Must transitions of the target (line 15 processes (Σ−Θ)). This part is done
similarly to the case of the Roman Model except that the messages are arbitrarily drawn from a
set Com. This difference in messaging is taken care of in the new function MATCH shown in
algorithm 6. Given a Must of the target t g(e),a−−−→ t′ the MATCH function finds a message α that
the orchestrator can send to the community, which causes the community to transition to a new
state s′, after performing an action a, such that the (t′, e′, s′) is in the controllability relation.
But since sending message α can enable other actions of the community, the MATCH function
checks that those ”extra” actions are matched by May transitions of the target (lines 4-7).

3.8 Conclusion

We have proposed a new on-the-fly algorithm to compute the controllability relation for the be-
havior composition of partially controllable services. The worst-case complexity of the algorithm
matches the known lower bound for the problem. However, we believe that in practice it will
have better performance because it does not need to explore the full state space to find a solution.
Moreover, the algorithm doesn’t need to build a priori the composition state space which allows
it to handle larger system than solutions using fixpoint techniques. The algorithm is robust to

80 Chap. 3 – Orchestrator with perfect information

service failure in a sense that it will use the results obtained before failure to speed up the search
for a solution after failure.

We also presented an abstraction method that reduced considerably the state space of labelled
transition systems. From this abstraction one can infer the non-existence of an solution to the
problem from the non-existence of a simulation relation between the abstracted community and
the abstracted target. Deciding on the existence of a simulation relation for abstracted systems
can be very fast since the abstracted systems are orders of magnitudes smaller than the original
systems. Furthermore, when a simulation for the abstracted systems exists it is used to speed up
the search of the proposed algorithm. Finally, we presented a version of the on-the-fly algorithm
that can find the controllability relation when the target is specified using modal specifications.

Sect. 3.8 – Conclusion 81

t0, e0

Target

Solution 1

t1, e1

t2, e1 t1, e2

t2, e2

s

p
b

p

b

u0, v0, e0

u1, v0, e1

u0, v0, e2

u2, v0, e2

u1, v0, e2

u0, v0, e1 u0, v1, e1

u0, v2, e2

u0, v1, e2

u1, v1, e2

u2, v1, e2

(u1, v2, e2)

u2, v2, e2

2s

2b

2p

2b
2b

2p

1p

2p
2b

2b

1p

1b

1b

1s

2b
1b1p

2b

2p
1b

1b

2b

2p

1b 1b

2b

1p

2p

t0, e0

Target

t1, e1

t2, e1 t1, e2

t2, e2

s

p
b

p

b

Solution 2

u0, v0, e0

u1, v0, e1

u0, v0, e2

u2, v0, e2

u1, v0, e2

u0, v0, e1 u0, v1, e1

u0, v2, e2

u0, v1, e2

u1, v1, e2

u2, v1, e2

(u1, v2, e2)

u2, v2, e2

2s

2b

2p

2b
2b

2p

1p

2p
2b

2b

1p

1b

1b

1s

2b
1b1p

2b

2p
1b

1b

2b

2p

1b 1b

2b

1p

2p

Figure 3.2: Full state space of the community and the target service including solutions 1 and
2. The red nodes and transition denote two possible controllability relations. The transitions
search, pay, and buy are shortened to s,p, and b respectively.

82 Chap. 3 – Orchestrator with perfect information

t0, e0

Target

Solution 3

t1, e1

t2, e1 t1, e2

t2, e2

s

p
b

p

b

u0, v0, e0

u1, v0, e1

u0, v0, e2

u2, v0, e2

u1, v0, e2

u0, v0, e1 u0, v1, e1

u0, v2, e2

u0, v1, e2

u1, v1, e2

u2, v1, e2

u1, v2, e2

u2, v2, e2

2s

2b

2p

2b
2b

2p

1p

2p
2b

2b

1p

1b

1b

1s

2b
1b1p

2b

2p
1b

1b

2b

2p

1b 1b

2b

1p

2p

t0, e0

Target

t1, e1

t2, e1 t1, e2

t2, e2

s

p
b

p

b

Solution 4

u0, v0, e0

u1, v0, e1

u0, v0, e2

u2, v0, e2

u1, v0, e2

u0, v0, e1 u0, v1, e1

u0, v2, e2

u0, v1, e2

u1, v1, e2

u2, v1, e2

u1, v2, e2

u2, v2, e2

2s

2b

2p

2b
2b

2p

1p

2p
2b

2b

1p

1b

1b

1s

2b
1b1p

2b

2p
1b

1b

2b

2p

1b 1b

2b

1p

2p

Figure 3.3: Full state space of the community and the target service including solutions 3 and
4. The red nodes and transition denote two possible controllability relations. The transitions
search, pay, and buy are shortened to s,p, and b respectively.

Sect. 3.8 – Conclusion 83

S T

s0

s1 s3

s4

s2

1a |a
2a |a 2b |b

1b |b

t0

t1

t2

a

b

Figure 3.4: A simple example to illustrate the algorithm

84 Chap. 3 – Orchestrator with perfect information

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

CONTROL(s0,t0)

add (s0, t0) to A, A = {(s0, t0)}

Return true with A = {(s0, t0), (s2, t1), (s4, t2)}

MATCH(s0, t0
a−→ t1)

try s0
1a|a−−−→ s1

Return true

CONTROL(s1,t1)

add (s1, t1) to A, A = {(s0, t0), (s1, t1)}

Since MATCH(s1, t1
b−→ t2) failed (s1, t1) are not similar

(s1, t1) is removed from A and added to B
A = {(s0, t0)}

Return false

MATCH(s1, t1
b−→ t2)

s1 has no b transition MATCH fails

Return false

try s0
2a|a−−−→ s2

CONTROL(s2, t1)

add (s2, t1) to A, A = {(s0, t0), (s2, t1)}

Return true

MATCH(s2, t1
b−→ t2)

try s2
1b|b−−→ s4

Return true

CONTROL(s4, t2)

add (s4, t2) to A, A = {(s0, t0), (s2, t1), (s4, t2)}
t2 has no transitions so s4 is similar to it

Return true

Figure 3.5: The call stack for the simple example shown in Figure 3.4

Sect. 3.8 – Conclusion 85

S T

s0

s1

s2s3

s4

1a |a

1c |c 1d |d

2a |a

2c |c
2b |b

t0

t1

t2 t3

a

cc bd

Figure 3.6: Example of a node processing problem

86 Chap. 3 – Orchestrator with perfect information

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CONTROL(s0,t0)

add (s0, t0) to A, A = {(s0, t0)}

Return true

MATCH(s0, t0
a−→ t1)

try s0
1a|a−−−→ s1

Return true

CONTROL(s1,t1)

add (s1, t1) to A, A = {(s0, t0), (s1, t1)}

Since MATCH(s1, t1
b−→ t2) failed (s1, t1) are not similar

(s1, t1) is removed from A and added to B
A = {(s0, t0), (s2, t2)} (s2, t2) is still in A even though it depends on

(s1, t1) which was removed
Return false

MATCH(s1, t1
c−→ t2)

try s1
1c|c−−→ s2

CONTROL(s2,t2)

add (s2, t2) to A, A = {(s0, t0), (s1, t1), (s2, t2)
MATCH(s2, t2

d−→ t1)

try s2
1d|d−−→ s1

CONTROL(s1,t1)

(s1, t1) already in A

Return true

Return true

Return true

Return true

MATCH(s1, t1
b−→ t2)

s1 has no b transition

Return false

try s0
2a|a−−−→ s4

This part is expanded on next page

Figure 3.7: Call stack for example in Figure 3.6

Sect. 3.8 – Conclusion 87

1

2

3

4

5

6

7

8

9

10

11

12

13

14

CONTROL(s4,t1)

add (s4, t1) to A, A = {(s0, t0), (s2, t2), (s4, t1)}

Return true

MATCH(s4, t1
c−→ t2)

try s4
1c|c−−→ s2

Return true

CONTROL(s2,t2)

add (s2, t2) is already in A This what causes the problem

Return true

MATCH(s4, t1
b−→ t3)

try s4
1c|c−−→ s3

Return true

CONTROL(s3, t3)

add (s3, t3) to A, A = {(s0, t0), (s2, t2), (s4, t1), (s3, t3)}
t3 has no transitions so s3 matches vacuously

Return true

Figure 3.8: Continuation of call stack in Figure 3.7

88 Chap. 3 – Orchestrator with perfect information

Target Service

Service 1: U

Service 2: V

t0

t1

t2

search

pay

clear buy

Solution Service

u0v0

u0v1 u1v1

u0v2 u1v2

2search

1buy

1buy

2pay 2pay

2clear

2clear

u0 u1

v0 v1 v2

v3

buy

search

buy

search

buybuy

pay

pay

clear

Figure 3.9: Example services together with the solution to be abstracted

Sect. 3.8 – Conclusion 89

(A) (B) (C)

S0

S1

S2

T0

T1

T2

1search

1search

1search

2search 2pay

2pay2clear

search

pay

clear

R[]

R[]

R[]

(u0, v0)(u1, v0)

(u1, v1) (u0, v1)

(u1, v3) (u0, v3)

(u1, v2) (u0, v2)

1b, 1s

1b

2s

1b, 1s

1b

2s

2b
2b 2b

2b

1b

1b, 1s

1b

1b, 1s

2p2p

2p 2p

2c 2c

Figure 3.10: (A) is the original community with equivalence classes of the closure relation shown
as dashed ovals. (B) is the resulting abstraction. (C) is the abstraction of the target. The
relation R[] is a simulation relation

90 Chap. 3 – Orchestrator with perfect information

S̄t P̄

x

x1

u1

x2

u2

y

y2 y3

v1

v2

v3

v4

Σ∗
a Σ∗

a

a a
ka

ka
ka

ka

R

R

R
R

R

Figure 3.11: Used in proof of theorem 3.6.2. Ovals are the equivalence classes of branching
bisimulation for St and closure relation for S. R is the original controllability relation.

Chapter 4

Orchestration under partial
information

Contents
4.1 Introduction . 92

4.1.1 Motivation . 92
4.1.2 Example . 93
4.1.3 Definitions . 94

4.2 Fixpoint algorithm . 98
4.2.1 Algorithm . 98
4.2.2 Complexity . 100

4.3 On-the-Fly Algorithm . 103
4.3.1 Algorithm . 103
4.3.2 Correctness . 107
4.3.3 Complexity . 109

4.4 Conclusion . 110

91

92 Chap. 4 – Orchestrator with partial information

4.1 Introduction

4.1.1 Motivation

In this chapter the case of an orchestrator with partial observation is tackled. In such a situation
there are some actions which are uncontrollable similarly to the problem discussed in chapter 3.
In addition, the orchestrator does not know exactly in which state the community is in. Recall
that we proved in chapter 2 that an orchestrator with partial information exists if and only if a
set of observation relation exists. This chapter has two contributions to the behavior composition
problem. First we develop a fixpoint algorithm to compute the set of observation relations. We
also study the complexity of the algorithm. The second contribution is an on-the-fly algorithm
to compute the set of observation relations. The advantage of an on-the-fly algorithm in the
case of partial information is even more important than the case of perfect information. In most
methods that deal with partial information there is a preliminary first step that computes what
is called a belief state space for the system under study [GB96] where one keeps track of all states
the system could be possibly in after a sequence of actions. After the computation of the belief
state system, which is typically exponential in the number of services, a solution is obtained using
the same method used for systems with perfect information. This means that even if no solution
exists such an approach requires the computation of the whole belief state space. By contrast,
the on-the-fly algorithm proposed in this chapter, computes the belief states and seeks a solution
at the same time. This means that it could find a solution or determine that no solution exists
without computing the whole belief state.

As mentioned above, most of the approaches to the composition problem with partial in-
formation, such as [GMP09] and [BPT10], are based on the belief state concept [GB96]. Our
approach for the unobservable actions is similar to [BCF08b] but is different, and more general,
than the one discussed in [GMP09] and [BPT10]. First in [GMP09] all actions are taken as
observable and controllable while each state is assigned a observation value via a given function.
In such a model one can infer in which state(s) the community is in by observing what transitions
were made. This means that even if two states have the same observation (i.e. indistinguish-
able) the fact that the sequence of actions taken to reach each of them is observable, makes
them distinguishable. Therefore our model extends [GMP09] both in terms of observability and
controllability .

The model taken in [BPT10] is similar to ours in that some (internal) actions are not con-
trollable and not observable. The difference is that those actions are considered internal and
they don’t have to match the target actions whereas in our model these actions should match
the target action even if they are uncontrollable/unobservable.

In our model a subset of actions are unobservable and uncontrollable. This is a special case
of the controller synthesis problem [RW89], by assuming that the sets of unobservable and the
sets of uncontrollable actions are the same.

Sect. 4.1 – Introduction 93

4.1.2 Example

Service U Service V Target service T

u0

u1

u2

u3

v0

v2 v1

t0

t1 t2

t3 t4

t5

α |aβ |b

α |b

b
β |a β |a

b a

a b

b b

Figure 4.1: Two available services and a target service

The difference in modeling partial information discussed above, is best illustrated with an
example. In Figure 4.1 we show two available services U and V and the target service T . The
orchestrator can send messages to the community of services (in this case U and V), from a
set Com = {α, β}. Note that in this example when the community is in the state (u0, v0) and
the orchestrator sends a message β either service U makes a u0

β|b−−→ u3 transition or service
V makes a v0

β|a−−→ v2 transition. This is in contrast of the Roman Model [GPS13] where the
orchestrator has a finer control, it can direct each service individually on which action to make.
In the example of Figure 4.1 the Roman Model admits a solution whereas our model does not.
Also in the Roman Model all transitions are controllable. For example the transition v0

b−→ v1
can also be controlled (i.e. enabled or disabled) whereas in our model this transition cannot be
controlled. In summary, the orchestrator in our model ”remembers” only the messages it has
already sent. In other words, the orchestrator is assumed to observe only its own transitions.

We continue our discussion with a simplified model that admits a solution by removing the
u0

β|b−−→ u3 transition as shown in Figure 4.2. The community state space together with the
orchestrator and the solution are shown in Figure 4.3. Initially the orchestrator is in state Ωε,
meaning it has not sent any message yet. We use the special message ε to denote that no message
was sent. Initially the community can be in any of the states {(u0, v0) or (u0, v1)}. Then the
observable of those states is the same and is equal to ε. Similarly, by sending a message α the
controller can cause the state (u0, v0) to transition to state (u1, v0), and state (u0, v1) to transition
to state (u1, v1). All other states are unaffected. This means that if the orchestrator sends α
then the community can be in states {(u1, v1), (u1, v0)}. The observable of these two states is α.

On the other hand, in the model used in [GMP09], because it assumes full observation of

94 Chap. 4 – Orchestrator with partial information

Service U Service V Target service T

u0

u1

u2

v0

v2 v1

t0

t1 t2

t3 t4

t5

α |a

α |b

b
β |a β |a

b a

a b

b b

Figure 4.2: A simplified setup that admits a solution

all the actions, the orchestrator can observe the transition (u0, v0) b−→ (u0, v1) and therefore
distinguishes between them. In that model the two states (u0, v0) and (u0, v1) belong to different
belief states whereas in our model because the transition (u0, v0) b−→ (u0, v1) is unobservable (and
uncontrollable) the orchestrator cannot tell if the community is in state (u0, v0) or (u0, v1).

To compare the two different situations we show one of many possible solutions (i.e. or-
chestrators) when all the actions are observables in Figure 4.4. In the LTS representing the
orchestrator in Figure 4.4, the b transitions are uncontrollable but observable. This is why the
orchestrator changes state, for example Ω0

b−→ Ω1. Note that what is shown is the ”most gen-
eral” solution. For example two different orchestrators (among others) can be obtained from
the solution in Figure 4.4, one by removing the transition Ω1

β−→ another by removing Ω1
α−→

because both of them model the same behavior of the target. The important point to make in
this example is that because the transition (u0, v0) b−→ (u0, v1) is observable then the orchestrator
when in state Ω1 has the choice of sending either α or β. By contrast, in the case when the b
transition is unobservable, only the message α will work and that is why there is only a single
solution in that case. Finally, it should be noted that the solution in the unobservable case is
also a solution when all the transitions are observable. Thus in that sense it is more general.

4.1.3 Definitions

As in Chapter 2 the concept of observation is formalized as follows. Given a community of
available services S =

〈
S,Σu, Com, s

0, δu
〉

and a target service St =
〈
St,Σt, t

0, δt
〉

we defined
(see definition 2.4.1) the message trace function

σ : S × Σ∗ −→ Com∗

Sect. 4.1 – Introduction 95

Orchestrator

SolutionU × V

Ωǫ Ωα Ωαα

(u0, v0)

(u0, v1) (u1, v0)

(u1, v1) (u2, v0)

(u2, v1)

(u0, v0)

(u0, v1) (u1, v0) (u0, v2)

(u1, v1) (u2, v0) (u1, v2)

(u2, v1) (u2, v2)

b
α |a

β |a
β |a

α |a
b

α |b
β |a

α |a

α |b
β |a

b

β |a

β |a
α |b

α α

b
a

a b
b

b
b

Figure 4.3: Full community space and the solution provided by the shown orchestrator

that returns the observable string given a state in S and a trace in Σ∗ where Σ = Σu ∪
Σt. For example, in Figure 4.3, σ((u0, v0), ε) = σ((u0, v1), b) = ε , the empty string, whereas
σ((u1, v1), ba) = α and σ((u2, v1), bab) = αα. Each state of the orchestrator can be represented
by (not necessarily unique) string. For example, Ω0 is represented by the empty string, and Ω1
is represented by α.

Recall that the transition function for the community under orchestrator with partial infor-
mation is given by:

δΩ(s, a) = δu(s, a)
⋃

α∈Com
δu(s, α | a)� Ω(σ(s, τ), α)

Where the trace τ ∈ Σ∗ is determined from history of s as computed by the multi-step
transition which is defined recursively:

∆Ω(s0, ε) = {s0}

∆Ω(s0, τa) =
⋃

s∈∆Ω(s0,τ)

[
δu(s, a)

⋃
α∈Com

δu(s, α | a)� Ω(σ(s, τ), α)
]

The composition problem entails the synthesis of an orchestrator such that for any trace τ
and for any action a, if s ∈ ∆Ω(s0, τ) and t ∈ ∆t(t0, τ) then the following holds

δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅

96 Chap. 4 – Orchestrator with partial information

Ω0

Ω1 Ω2

Ω3 Ω4 Ω5

Ω6 Ω7

Ω8

Ω0, (u0, v0)

Ω1, (u0, v1) Ω2, (u1, v0)

Ω3, (u0, v0) Ω4, (u1, v1) Ω5, (u2, v0)

Ω6, (u0, v1) Ω7, (u2, v1)

Ω8, (u1, v1)

b α

β bα α

b α b α

b

a

b

a

b

b

b

a

b

b

Figure 4.4: One possible orchestrator and solution when all actions are observable

Recall from Chapter 2, theorem 2.4.1, an orchestrator with partial information existence iff there
exists a set of observation relations between the community and the target. Furthermore, when
such set of relations is obtained the orchestrator’s is represented by a labelled transitions system
whose states are the set of relations and the transitions are the same as the transition between
those relations.

It is convenient to recall explicitly the properties of a set of observation relations from defini-
tion 2.4.5. The set of relations Z ⊆ 2St×S , is called a set of observation relations iff every R ∈ Z
and every (t, s) ∈ R has the following two properties:

P1 If s a−→ s′ then ∃t′.t a−→ t′ ∧ (t′, s′) ∈ R

P2 If t a−→ t′ then

1. Either ∃s′.s a−→ s′ ∧ (t′, s′) ∈ R

2. Or ∃s′, α ∈ Com,R′ ∈ Z with

s
α|a−−→ s′ ∧ (t′, s′) ∈ R′

∧

∀(u, v) ∈ R(v α|b−−→ v′ ⇒ ∃u′.u b−→ u′ ∧ (u′, v′) ∈ R′)

To give a simple and intuitive example of such a set we use Figures 4.2 and 4.3 as a guide.

Sect. 4.1 – Introduction 97

The set of observation relations for the problem are:

R0 = {((u0, v0), t0), ((u0, v1), t1)}
R1 = {((u1, v1), t3), ((u1, v0), t2)}
R2 = {((u2, v0), t4), ((u2, v1), t5)}

R0

R1

R2

((u0, v0), t0)

((u0, v1), t1)

((u1, v0), t2)

((u1, v1), t3)

((u2, v0), t4)

((u2, v1), t5)

b

α | a
α | a

b

α | b

b

α | b

Figure 4.5: Observation relations graph relating the community state space in Figure 4.3 and
the target in Figure 4.1

The properties P1 and P2 of the observation relations can be explained with the help of
Figure 4.5. For property P1, one can see that for each relation, if the community makes an un-
controllable (and therefore unobservable) transition then the target can make the same transition
such that the community state and target state are also in the same relation. For example, in
Figure 4.5, consider ((u0, v0), t0) ∈ R0. The transition (u0, v0) b−→ (u0, v1) is matched by t0

b−→ t1
such that ((u0, v1), t1) ∈ R0, the same relation.

Now for property P2. When the target makes a transition then it is either matched by an
uncontrollable community transition, to the same relation as we saw in the example above with
the b transitions, or by a controllable transition. In this example the target makes an a-transition
that is not matched by an uncontrollable community transition. Therefore, the orchestrator needs
to find a controllable transition which it enables by sending the message α. Also it should be such

98 Chap. 4 – Orchestrator with partial information

that all the actions enabled by α transition to the same relation. In the above example, consider
((u0, v0), t0) ∈ R0 again. The t0

a−→ t2 transition has to be matched by a controllable transition.
From Figure 4.3 there are two possibilities and only one of them works (u0, v0) α|a−−→ (u1, v0).
But by enabling actions prefixed by α the orchestrator will enable also the (u0, v1) α|a−−→ (u1, v1)
transition. But this transition is matched by t1

a−→ t3 and both ((u1, v1), t3) and ((u1, v0), t2) are
in the same relation R1. Clearly the set {R0, R1, R2} has the properties of a set of observation
relations. Note that the relations represent the states of the orchestrator and it is easy to extract
the transitions of the orchestrator from the observation relation graph shown in Figure 4.5.

Having recalled the definition of the set of observation relations and how the orchestrator is
extracted from them, the remainder of this chapter is concerned with finding a set of observation
relations for a given problem.

First we present in section 4.2 a fixpoint algorithm to compute the set of observation relation.
Then an on-the-fly algorithm to compute the relations is given in section 4.3.

Algorithm 7: CLOSED returns true iff the input relation is closed with respect to uncon-
trollable actions
1 CLOSED(R)

2 foreach (s, t) ∈ R do
3 foreach s

a−→ s′ do
4 if t a−→ t′ then
5 if (s′, t′) /∈ R then
6 return false
7 else
8 return false
9 return true

4.2 Fixpoint algorithm

In this section we present a fixpoint algorithm to compute the largest set of observation relations
for a given target service and community of available services. The argument that a largest such
set exists follows directly from casting the problem as a fixpoint of some function as done in this
section. This is similar to the algorithm that was presented in the previous chapter for the case
of perfect information.

4.2.1 Algorithm

The fixpoint algorithm presented in this section depends on the concept of closed relations which
we introduce next.

Sect. 4.2 – Fixpoint algorithm 99

Definition 4.2.1. Let S =
〈
S,Σu, Com, s

0, δu
〉

be a community of available services and St =〈
St,Σt, t

0, δt
〉

be a target service. A relation R ⊆ S × St is said to be closed with respect to
uncontrollable actions iff:

∀(s, t) ∈ R,∀a ∈ Σu : s a−→ s′ ⇒ ∃t′.t a−→ t′ ∧ (s′, t′) ∈ R

The above definition basically takes care of the uncontrolled transitions. It should be noted
that any relation in the set of observation relations we are seeking should be closed. A simple
algorithm based on definition 4.2.1 to test whether a given relation is closed is given in algorithm
7. What remains is to synthesize an orchestrator to control the controllable actions. Toward this
end we use an iterative fixed point algorithm similar to the case of perfect information. This
algorithm belongs also to the category we called ”fixpoint” because the starting point is all the
set of all subsets of S × St.

Z0 = 2S×St

Next the set of all closed relations in Z0 is computed:

Z1 = {R ∈ Z0 | CLOSED(R)}

Algorithm 8: Computing Z1

1 Z1 ← ∅
2 foreach R ⊆ S × St do
3 if CLOSED (R) then
4 Z1 ← Z1 ∪ {R}
5 return Z1

The computation of the set Z1 is shown in algorithm 8. The braces in line 4 in the algorithm
are used to stress the fact that a closed relation R is an element of Z1. Clearly if Z1 = ∅ then no
set of observable relations exists and therefore the problem has no solution. Only when Z1 6= ∅
the method proceeds to find the set of observation relations. Any relation in R ∈ Z1 satisfies, by
construction, property P1 of the set of observation relation, namely that it is closed with respect
to uncontrollable actions. Define a function over the set of sets of relations as:

100 Chap. 4 – Orchestrator with partial information

F (Zi) = {R ∈ Zi | ∀(s, t) ∈ R :

t
a−→ t′ ⇒

(
∃s′.s a−→ s′ ∧ (s′, t′) ∈ R

)
(4.1a)

∨(
∃α ∈ Com, s′ ∈ S,R′ ∈ Zi.s

α|a−−→ s′ ∧ (s′, t′) ∈ R′ (4.1b)

∧

∀(u, v) ∈ R : u α|b−−→ u′ ⇒ v
b−→ v′ ∧ (u′, v′) ∈ R′

)
(4.1c)

To compute the set of observation relation the algorithm applies repeatedly function F start-
ing with the set of relations Z1. Therefore the algorithm computes the sequence:

Zi+1 = F (Zi)

It is clear from the definition of the function F that for any set of relations Zi, we have F (Zi) ⊆ Zi.
Therefore for a given iteration, relations are removed but never added. Since the algorithm’s
starting point is Z1, and by construction, all relations in Z1 satisfy property P1 then for any
iteration, any relation in F (Zi) satisfies property P1. This is why in the definition of the function
F there is no explicit check for the matching of uncontrollable community transitions by target
transition.

On the other hand Z0 and therefore Z1 is finite then the above procedure terminates after a
finite number of steps, say j. Then F (Zj) = Zj and the set of relations Zj has, by construction
of Z1 and F , the properties of a set of observation relations.

In this section we presented a fixpoint procedure to compute the set of observation relation.
In the next section we analyse the complexity of this algorithm.

4.2.2 Complexity

We compute an upper bound for the algorithm discussed in the previous section. First we
compute the cost of a single iteration Zi+1 = F (Zi). From equation (4.1) one can see that each
relation R ∈ Zi is processed to decide whether it will be kept in Zi+1. Let s (t) be a community
(target) state. The number of a transitions that s (t) can make is denoted by | s a−→| (| t a−→|).
Then the cost of processing a single relation R in Zi can be written as:

∑
(s,t)∈R

∑
a∈Σ

∑
α∈Com

| t a−→| ·

|s a−→| + | s α|a−−→| ·
∑

(u,v)∈R

∑
b∈Σ
| u α|b−−→|

Sect. 4.2 – Fixpoint algorithm 101

The above cost can be explained as follows. For every t a−→ transition, we need to find a matching
a transition for s either uncontrollable, s a−→, or controllable s α|a−−→. In the case of controllable
action with message α, one also needs to check all transitions in R enabled by that message,
hence the last sum in the above cost. Clearly the above cost is denominated by the double sum.
Keeping only the double sum and taking into consideration that the target is deterministic (i.e
for a given a, | t a−→|= 1) then the cost of processing a single relation R in the computation of
F (Zi) becomes:

∑
(s,t)∈R

∑
a∈Σ

∑
α∈Com

| s α|a−−→| ·
∑

(u,v)∈R

∑
b∈Σ
| u α|b−−→|

≤

 ∑
(s,t)∈R

∑
a∈Σ

∑
α∈Com

| s α|a−−→|

 ·
 ∑

(u,v)∈R

∑
β∈Com

∑
b∈Σ
| u β|b−−→|

=|LR |2

Where | LR | is the number of controllable transitions in R. Having computed the cost of
processing a single relation, the cost of iteration i of the algorithm is the sum over all relations
present at iteration i:

F (Zi) = O

∑
R∈Zi

|LR |2

The total cost of the algorithm is then

O

 j∑
i=1

∑
R∈Zi

|LR |2

Where j is the iteration in which we reach a fix point :Zj = F (Zj). First we give an upper
bound for |LR |. Let R be an arbitrary relation and (s, t) ∈ R an arbitrary element. For a given
α ∈ Com and a ∈ Σ, a pair (s, t) can connect at most to all other pairs in S × St. Therefore
|s α|a−−→|= O(|S × St |). This implies that |LR |= O(| R | · |S × St |) where | R | is the number of
elements in R. Then an upper bound for complexity of the algorithm would be

O

|S × St |2 j∑
i=1

∑
R∈Zi

|R |2

Let N =| Z1 |. Since F is monotone decreasing then Z1 ⊃ . . . ,⊃ Zj . The worst case for the
algorithm occurs when Zj = ∅, i.e. the problem has no solution. Furthermore, in the worst case
Zi and Zi+1 differ by only one set, i.e. |Zi |=|Zi+1 + 1 |. Adding these two properties we get that

102 Chap. 4 – Orchestrator with partial information

in the worst case it takes |Z1 | iterations for the algorithm to determine that there is no solution.
In addition Z1 ⊃ Zi for all i then the complexity becomes:

O

|S × St |2 |Z1|∑
i=1

∑
R∈Zi

|R |2

= O

|S × St |2 |Z1|∑
i=1

∑
R∈Z1

|R |2

= O

|S × St |2|Z1 |
∑
R∈Z1

|R |2

The expression
∑
R∈Z1 |R |

2 is the sum of the square of number of elements in all relations
in Z1. The above complexity depends on the size of Z1 which is at most equal to the size of
Z0 = 2S×St . Let Rk be a subset of S × St (i.e. an element of Z0) with size k. Clearly the range
of k is from zero for the empty set up to N =|S × St | for S × St itself. The number of subsets
of S × St of size k is given by the binomial coefficient

(N
k

)
. Therefore the sum can be written as∑

R∈Z1

|R |2 ≤
∑
R∈Z0

|R |2

=
N∑
k=0

k2
(
N

k

)
= (N +N2)2N−2

Finally the complexity of the fixpoint algorithm has the following upper bound

O
(
N4 · 22N

)

Of interest is the dependence of the complexity on the number of services. For n services the
numbers of states is S = S1 × S2 . . . Sn where Si is the set of states of service i. Recall that
N =| S × St | thus N = N1 · N2 . . . Nn · Nt where Nt is the number of states of the target
service. Since N is exponential in the number of services then the complexity of the above
algorithm is 2EXPTIME in the number of services. Obviously this is not a tight bound since
many assumptions were made. Also the number of iterations can be optimized as in the case of
the Paige-Tarjan algorithm [PT87] but the 2EXPTIME behavior would still be there.

In view of the large complexity of the global algorithm it is important to develop an algorithm
that is amenable to heuristics that could reduce its complexity. In particular, the case when no
orchestrator exists should be done faster than by the above algorithm. Toward that end an
on-the-fly algorithm, similar to the case of orchestrator with perfect information, is developed in
the next section.

Sect. 4.3 – On-the-Fly Algorithm 103

Algorithm 9: On the fly algorithm
1 clos← CLOSURE((∅, s0, t0))
2 if clos = ∅ then
3 return ∅
4

5 changed← true
6 while changed = true do
7 changed← false
8 Z ← ∅
9 res = CONTROL(clos)

10 if res = false then
11 break
12 return Z

4.3 On-the-Fly Algorithm

In this section we present an algorithm to construct incrementally a set of observation relation
by constructing the relations when needed. This incremental approach is more efficient than
computing all the subsets from the start.

4.3.1 Algorithm

The goal of the on-the-fly algorithm presented in this section is to compute a set of observation
relations, Z. Since a necessary condition for a relation R to belong to Z is that R is closed, we
define a procedure that computes the closure of a single pair. This allows us to determine if a
given pairs belongs to closed set or not. The closure operation is performed in the CLOSURE
procedure which is defined in an inductive manner and shown in Algorithm 10. It returns ∅ if
the pair (s, t) does not belong to a closed set, and the closure of (s, t) otherwise. Note that the
union of closed sets is also a closed set. The function CLOSURE basically checks if a pair (s, t)
belongs to a closed set as defined in definition 4.2.1.

The function CONTROL(R) returns true if the relation R belongs to the sought set of
relations Z, otherwise it returns false. As we have already seen, a necessary condition for a
relation R to be in Z is that R is closed. This way the relation passed as a parameter to
CONTROL is always closed. For this to be true the algorithm has to start with closure of the
initial state (s0, t0) where s0 is the initial state of the community and t0 is the initial state of the
target. After the initial call, the input to the function CONTROL is always a closed set because
CONTROL is called from MATCH (line 10) and passes it the set R′ as a parameter where R′,
if passed to CONTROL, is guaranteed to be closed by the function CHECK (see lines 6-10 in
function MATCH). The overall functioning of the algorithm is shown in Algorithm 9.

As in the case of perfect information the algorithm adds relations to Z in preorder and checks

104 Chap. 4 – Orchestrator with partial information

Algorithm 10: Function CLOSURE
1 CLOSURE(R,(s, t))
2 if (s, t) ∈ bad then
3 return ∅
4 if (s, t) ∈ R then
5 return R
6 R′ ← R ∪ {(s, t)}
7 foreach s

a−→ s′ do
8 if t a−→ t′ then
9 R′ ← CLOSURE(R′, (s′, t′))

10 if R′ = ∅ then
11 bad← bad ∪ {(s′, t′)}
12 return ∅
13 else
14 bad← bad ∪ {(s, t)}
15 return ∅
16 return R′

them in postorder fashion. As we have seen in chapter 3 this can cause a problem when a relation
R depends on another relation R′ and R′ is removed from Z after R was checked. Similar to
the case of perfect information we include a variable changed which is set to true whenever a
relation is removed from Z. The removal of a relation R′ from Z can affect the status of some
other relation R ∈ Z that depended on R′ and potentially invalidating the inclusion of R in
Z. This is why the algorithm is rerun every time, with Z empty, the value of changed is true.
Once changed is false we know that the algorithm has converged. Clearly when CONTROL
returns false no set of relations Z exists regardless of the value of changed. The aforementioned
algorithm assumes that (s0, t0) is closed, or alternatively clos 6= ∅ in the first line of the algorithm,
otherwise Z is empty and there is no set of observation relations between the community and the
target and thus the problem has no solution. Next we describe the working of each component
of the algorithm.

The function CONTROL takes a relation R as a parameter and returns true if for each
(s, t) in R and for each target transition it finds a matching community transition. A matching
transition for a target transition t

a−→ t′ is defined by equation (4.1). The actual matching is
done by function MATCH described later. In order not to enter in an infinite loop it keeps two
sets Y and Z. The set Z is the set of observation relations we are seeking. The set Y contains
all the relations that cannot be in Z. It should be noted that Z is set to ∅ for every iteration
of the algorithm whereas Y is not since a set R 6⊂ Z for some iteration cannot be R ⊂ Z in a
subsequent iteration.

As mentioned above the match of each target transition is done via the function MATCH.

Sect. 4.3 – On-the-Fly Algorithm 105

Algorithm 11: Function CONTROL
1 CONTROL(R)

2 if R ∈ Y then
3 return false
4 if R ∈ Z then
5 return true
6 Z ← Z ∪ {R}
7 foreach (s, t) ∈ R do
8 foreach t

a−→ t′ do
9 res = MATCH (R,s,t a−→ t′)

10 if res = false then
11 GOTO Exit
12 return true

13 Exit: Z ← Z −R
14 Y ← Y ∪R
15 changed← true
16 return false

By definition the set of relations Z satisfies F (Z) = Z where the function F is the iterative
procedure defined in equation (4.1). We rewrite the iterative function symbolically as

F (Zi) = {R ∈ Zi | ∀(s, t) ∈ R : MATCH(R, s, t a−→ t′)} (4.2)

Therefore the MATCH procedure checks, with the help of the CHECK auxiliary function,
for the first and second part of the disjunction in the iteration in equation (4.1). The first part,
i.e. (4.1a) of the disjunction is tested in lines 2-3 in MATCH. The second part in the disjunction,
i.e. parts (4.1b) and (4.1c), is tested in lines 4-12 in MATCH. The first part is straightforward
whereas the second part needs some explanation.

If the transition of the target t a−→ t′ is not matched by an uncontrollable community transition
then the orchestrator needs to find an appropriate message α ∈ Com to send to the community
such that:

1. The community can make an s α|a−−→ s′ transition such that (s′, t′) ∈ R′ for some closed set
R′.

2. Any potential transition caused by the message α should be to the same set R′ with the
condition that R′ is also a closed set hence the need for the auxiliary function CHECK.

3. Finally the resulting set R′, if it is non-empty then it is guaranteed by the CHECK
function to be closed, is passed to CONTROL to test whether it belongs to Z.

106 Chap. 4 – Orchestrator with partial information

Algorithm 12: Function MATCH
1 MATCH (R, s, t a−→ t′)
2 if s a−→ s′ then
3 return true
4 foreach α ∈ Com do
5 if s α|a−−→ s′ then

/* check to see if this α leads to a closed set */
6 R′ ←CHECK (R,α)
7 if R′ = ∅ then

/* try different α this one leads to non-closed set */
8 Continue
9 else

10 res =CONTROL (R′)
11 if res = true then
12 return true

/* tried all α’s. none worked */
13 return false

The first condition is the existence of α ∈ Com and s′ ∈ S such that s α|a−−→ s′. This part is
checked in line 5 in MATCH. The remaining conditions are checked by the CHECK function.
Namely, CHECK checks to see that by enabling transitions with α precondition, that for every
(u, v) in R if the community makes some transition u α|b−−→ u′ then the target can make it also. In
other words we don’t want to enable actions that can be performed by the community but not
by the target. If that is the case then the chosen message α is not correct.

The CHECK(R,α) function returns an empty set, ∅, if one of the conditions is true

1. Either some (u, v) ∈ R is such that u α|b−−→ u′ and @v′.v b−→ v′.

2. Or some (u, v) ∈ R is such that u α|b−−→ u′ ∧ v b−→ v′ but CLOSURE(u, v) = ∅.

Since the union of closed sets is also a closed set then the set returned by CHECK is either the
empty set, ∅ or if none of the above two situations exits then the return value of CHECK is

⋃
(u,v)∈R

u
α|b−−→ v′

CLOSURE(u, v)

Sect. 4.3 – On-the-Fly Algorithm 107

Algorithm 13: Function CHECK
1 CHECK (R,α)
2 R′ ← ∅
3 foreach (u, v) ∈ R do
4 if u α|b−−→ u′ then
5 if v b−→ v′ then
6 clos = CLOSURE(∅, u′, v′)
7 if clos = ∅ then
8 return ∅
9 else

10 R′ ← R′ ∪ clos
11 else
12 return ∅
13 return R′

4.3.2 Correctness

From Algorithm 11 we see that a relation R is added to the set Z iff the function CONTROL(R)
returns true. By inspecting the code for function CONTROL(R) one can see that it returns
true when R is found to have the properties:

∀(s, t) ∈ R,∀a ∈ Σ :
t
a−→ t′ ⇒MATCH(R, s, t a−→ t′)

Where the clause MATCH(R, s, t a−→ t′) means the function MATCH returned the value true.
We proceed by expanding the call to the MATCH function into its components:

∀(s, t) ∈ R,∀a ∈ Σ :

t
a−→ t′ ⇒

(
∃s′.s a−→ s′

)
∨(

∃α ∈ Com, s′ ∈ S.s α|a−−→ s′ ∧ (CHECK(R,α) 6= ∅) ∧ CONTROL(CHECK(R,α))
)

Because the relations passed as parameters to CONTROL and MATCH are closed relations
then the first part of the above disjunction: ∃s′.s a−→ s′ can be rewritten as

∃s′.s a−→ s′ ∧ (s′, t′) ∈ R

108 Chap. 4 – Orchestrator with partial information

Breaking down the above further by using the construction of the CHECK function and the
fact that CONTROL(R) returns true iff R ∈ Z we get:

∀(s, t) ∈ R,∀a ∈ Σ :

t
a−→ t′ ⇒

(
∃s′.s a−→ s′ ∧ (s′, t′) ∈ R

)
// line 2-3 in MATCH

∨{
∃α ∈ Com, s′ ∈ S.

[
s
α|a−−→ s′∧ // line 5 in MATCH

∀(u, v) ∈ R
(
u

α|b−−→ u′ ⇒ ∃v′.v b−→ v′ ∧ closure(u′, v′)
)

//CHECK on line 6 in MATCH

∧
⋃

(u,v)∈R

u
α|b−−→u′

v
b−→v′

closure(u′, v′) ∈ Z
]}

//CONTROL on line 10 in MATCH (4.3)

Define the relation R′ by

R′ =
⋃

(u,v)∈R

u
α|b−−→u′

v
b−→v′

closure(u′, v′)

Since each closure(u′, v′) is a closed relation and the union is also closed then R′ is a closed
relation which also from the construction of equation (4.3) is also in Z. Using the shorthand R′

in (4.3) we get that all relations R ∈ Z satisfy the following property:

∀(s, t) ∈ R,∀a ∈ Σ :

t
a−→ t′ ⇒

(
∃s′.s a−→ s′ ∧ (s′, t′) ∈ R

)
∨{
∃α ∈ Com, s′ ∈ S,R′ ∈ Z.

[
s
α|a−−→ s′ ∧ (s′, t′) ∈ R′ (4.4)

∀(u, v) ∈ R
(
u

α|b−−→ u′ ⇒ ∃v′.v b−→ v′ ∧ (u′, v′) ∈ R′
)

By comparing (4.4) and of (4.1) one can see that Z is a fixed point (not necessarily the largest)
of (4.1) and therefore the algorithm is correct. Clearly all the above depends on the fact that
once a given relation R is found to be in Z no R′ which R depends on as shown in equation (4.3)
is removed from Z. This is why it is essential that every time a relation R′ is removed from Z
the algorithm needs to be rerun again.

Sect. 4.3 – On-the-Fly Algorithm 109

4.3.3 Complexity

To compute the complexity of the algorithm we start with a single call to CONTROL. The
complexity for a single call to CONTROL(R) for a given relation R is∑

(s,t)∈R

∑
a∈Σ
| t a−→| · |MATCH(R, s, t a−→ t′) |

Because the target service is deterministic then | t a−→|≤ 1. Also the cost of the MATCH function
is dominated by the controllable transitions thus∑

(s,t)∈R

∑
a∈Σ

∑
α∈Com

| s α|a−−→| · | CHECK(R,α) |

taking into account the cost of the CHECK function we get∑
(s,t)∈R

∑
a∈Σ

∑
α∈Com

| s α|a−−→| ·
∑

(u,v)∈R

∑
b∈Σ
| u α|b−−→ u′ | · | v b−→ v′ | · | closure(∅, u′, v′) |

In general the value of closure(∅, u′, v′) is difficult to compute since it depends on the unknown
(u′, v′) but we can provide an upper bound. First note that the closure function visits a pair
once so at most it will visit all the pairs in S × St thus

| closure(∅, u′, v′) | ≤
∑

(u,v)∈S×St

∑
a∈Σ
| u a−→| ·v a−→ v′ |

≤| L |

Where L is the total number of uncontrollable transitions of the community which is independent
of the particular relation R and thus allow us to factor it out of the summation in the expression
for complexity. Replacing the cost of closure and taking account that because the target is
deterministic then | v b−→ v′ |≤ 1 we get for the cost of a single call of CONTROL(R) for a given
R.

≤| L |
∑

(s,t)∈R

∑
a∈Σ

∑
α∈Com

| s α|a−−→| ·
∑

(u,v)∈R

∑
b∈Σ
| u α|b−−→ u′ |

≤| L |

 ∑
(s,t)∈R

∑
a∈Σ

∑
α∈Com

| s α|a−−→|

2

=| L | · | LR |2

Where | LR | is the number of controllable transitions in R. Because the algorithm will visit
every relation R ∈ Z0 = 2S×St at most once the total cost of a single run of the algorithm is
therefore

|L | ·
∑
R∈Z0

|LR |2

110 Chap. 4 – Orchestrator with partial information

The value of |LR |2 was computed in section 4.2.2 and we obtained∑
R∈Z0

|LR |2 = N2 ·
∑
R∈Z0

|R |2

= N2 · (N +N2)2N−2

Where with N =|S × St |. The above is the cost of a single iteration of the algorithm which
as we have seen will be rerun until the variable change = false. An upper bound for the number
of the iterations of the algorithm is computed as follows. Referring to algorithm 11 we see that
change is set to true iff a relation R is removed from Z and added to the set Y . Also relations are
never removed from Y therefore the worst case occurs when initially Y = ∅ and at every iteration
a single relation R ∈ Z0 is added to Y until Y = Z0 at which point the algorithm terminates.
Therefore the number of iterations is at most |Z0 |. Finally, the total cost of the algorithm is

|L | ·2N ·N2 · (N +N2)2N−2

= O(|L | ·N4 · 2N)

Apart from the |L | term the above worst case complexity is the same as the one obtained for
the fixpoint algorithm in section 4.2.2.

4.4 Conclusion

In this chapter we developed methods to find a solution to the composition problem under
partial information. Since it was shown in chapter 2 that an orchestrator exists if and only if a
set of relations, called observation relations, exists the main focus of this chapter was to design
algorithms for finding the set of observation relations for a given community and target service.
Toward that end we developed two algorithms to compute a set of observation relations. One
algorithm is a fixpoint algorithm that computes the largest possible set of observation relations.
We showed that the algorithm is correct and its complexity is exponential in the size of the
components and double exponential in the number of services. Also, we developed an on-the-fly
algorithm to compute a set of observation relations for a given community and target. We also
proved the correctness of the algorithm and the complexity was found to be similar to the fixpoint
algorithm. Because of the elevated complexity of the problem, the on-the-fly algorithm is very
promising since it visits states and sets of states in an incremental fashion. The advantage of
the on-the-fly algorithm is that it does not need to compute a priori the whole belief state. It
actually computes the belief states and seeks a solution at the same time. This means that it
could find a solution or determine that no solution exists without computing the whole belief
state. Since the computation of the whole belief state space is exponential in the number of
services this is an important advantage of the on-the-fly algorithm over the fix-point approach.

Chapter 5

Conclusion and future work

111

112 Conclusion

5.1 Conclusion

In this thesis we have proposed a new model for the behavior composition problem and proposed
efficient solutions.

In Chapter 2 we provided a framework for modeling the behavior composition problem. This
was done by presenting a sufficiently rich model for the available services, the target service, the
orchestrator, and the environment. The equivalence of behavior between the community under
the partial control of the orchestrator, called the orchestrated community, and the target was
defined. It was shown that this equivalence of behavior has a direct link to the classical problem
of control theory. Our model extends the so called Roman Model in two ways. First, unlike
the Roman Model, actions that are uncontrollable by the orchestrator are allowed in our model.
Second, the target behavior can be specified using Modal specification which permits a much
richer set of specifications, at no additional cost.

Also in Chapter 2, the existence of an orchestrator for the case of perfect and partial infor-
mation was studied. First the existence of an orchestrator for the perfect information case was
linked to the existence of a relation between the community and the target called a control-
lability relation. We proved that an orchestrator with perfect information exists if and only if
a controllability relation between the community and the target exists. We proceeded to show
how the orchestrator can be extracted from the controllability graph. Second the case when the
orchestrator has partial information was studied. We proved that an orchestrator with partial
information exists if and only if a set of relations, called observation relations, exists between
the community and the target. The concept of observation relations is similar to the concept
of regions in Petri nets. We also showed that the same results can be obtained if the target is
specified using modal specification, and without any additional cost. Both cases, perfect and
partial information, were studied in the presence of an environment that can impose constraints
on the services.

After linking the existence of an orchestror to the existence of a controllability relation in
the pefect information case, and a set of observation relations in the partial information case, we
proposed algorithms for finding such relations.

In chapter 3 we proposed an on-the-fly algorithm to compute the controllability relation
for the case of perfect information. The advantage of this algorithm is that, unlike fixpoint
algorithms, it is not necessary that the algorithm visits the full state space of the community in
order to obtain a solution, if one exists. Since the state space of the community is exponential
in the number of services, this property could lead to significant improvement in practice. We
proved that in the worst case the algorithm is polynomial in the size of a given service and
exponential in the number of services, a complexity that matches the known lower bound. We
also showed that our algorithm is robust with respect to service failure. If a service fails, the
recomputation of the controllability relation does not start from scratch, but reuses information
that were obtained before the failure. Also in Chapter 3 we proposed an abstraction method
that reduces drastically the state space of the community and the target. We proved that if the
abstracted community cannot simulate the abstracted target then no orchestrator exists, such

Conclusion 113

that the orchestrated community is a behavior composition of the target. Considering that the
abstracted community could be up to 4 orders of magnitudes smaller that the original problem
this results in significant speed up when no solution exits. Furthermore, when a simulation
exists, it is used as a heuristic for the proposed on-the-fly algorithm to speed up the search for a
solution. The proposed algorithm was shown to work with the Roman Model as well as the our
extended model, including modal specification.

In chapter 4 we showed how the set of observation relations can be computed using a fixpoint
algorithm. The complexity of the algorithm was studied and it was shown to be 2EXPTIME
in the number of services. We also proposed an on-the-fly algorithm to compute the set of
observation relations. We proved that the on-the-fly algorithm has the same complexity as the
fixpoint algorithm. The importance of an on-the-fly algorithm for the partial information case
cannot be over estimated. This algorithm has the expected advantage of an on-the-fly algorithm
as in the perfect information case. Another big advantage of the proposed algorithm, is that
most other methods compute the so called belief state, a sort of determinization procedure,
before attempting to find a solution. The complexity of such a determinization procedure is
exponential in the number of services which has to be done, even if no solution exists. By way
of contrast, our proposed on the-fly-algorithm does the determinization on-the-fly and thus can
determine quickly if a the problem has no solution without the need to compute the whole belief
state space.

5.2 Future work

The work presented in this thesis can be extended in many directions. Below we discuss some of
the possibilities.

5.2.1 Implementation of the algorithms

It is important to implement the proposed algorithms and use them on real world examples. The
challenge is not the implementation but rather the translation of services into our model. For
example translating BPEL documents into labelled transition systems with preconditions. In
our model the services communicated via an environment. Even though intuitively one can see
how this work, building an environment that can simulate the communication between services
as specified in BPEL documents is a challenging task that will be attempted in the future.

5.2.2 State reduction of LTS

The abstraction technique we have proposed in chapter 3 is promising but it is somewhat ad-
hoc. We plan on performing a more systematic study of property preserving reduction of labelled
transition systems. One approach would be to use the rules proposed by Murata [Mur89] for
Petri nets and adapt them to our model. Another approach would be to consider the target as
logical formula and then use the standard abstraction and refinement technique used in model

114 Conclusion

checking [CGL94]. A complementary approach would be to use Ordered Binary Decision Di-
agrams (OBDD)[Bry92] to represent the services and the target. OBDDs provide an efficient
representation of labelled transitions systems. We already did some work in this direction [FF12],
but the main shortcoming is that OBDDs are used with fixpoint algorithms. Using OBDDs with
on-the-fly algorithm has not been tackled before and it would be an important approach to
pursue.

5.2.3 Partity games

There is a well known connection between parity games and controller synthesis [AVW03]. It
would be interesting to explore the connection with behavior composition. There is already
some work on the relation of behavior composition, in the special case of the Roman Model, with
safety games such as [GPS13]. The classical approach to solving parity games, e.g. [Zie98][VJ00],
involves what is called strategy iteration: starting with an initial strategy, these methods improve
the current strategy until they find a wining strategy, if one exists. This iterative procedure is
very similar to the fixpoint methods that we have discussed in this thesis. Recently, some
promising on-the-fly algorithms to compute wining strategies for parity games were proposed
[FL12]. In the future we plan to explore this connection further. In particular, we plan to
investigate the potential of using the local search algorithms proposed in [FL12] to solve the
behavior composition problem.

5.2.4 Quality of service and security

Most models of service composition, ours included, considers the services to be equivalent and
therefore if two services can provide the same action the choice of the service is arbitrary. In
many situations, however, the user or even the services have preferences. This is different from
the ”can/cannot perform action” paradigm that we have used. Given two services that can
perform a certain action, it is possible that the user has a preference on which service should
actually perform the action. This could be because of Quality of Service or for some security
requirement. For example, a service prefers to communicate with another service only if it uses
a specific authentication mechanism. In most approaches to QoS in service composition, e.g.
[OAS+12], a given composition is obtained then its degree of preference is computed. Therefore
any algorithm using such a procedure needs to compute all the solutions before deciding on
the preferred solution. Incorporating QoS and security constraints in our proposed on-the-fly
algorithms is a challenging task since these algorithms have ”local” view of the composition and
the ”optimal” local choice from a QoS perspective does not necessarily lead to the ”optimal”
overall choice.

5.2.5 Distributed orchestration

One last important goal is to handle distributed orchestration. In reality not all the services
belong to the same service provider. A useful approach for distributed orchestration would be to

Conclusion 115

divide the overall specification of the composition into sub-specifications that can be implemented
by each provider. One possibility is to divide the specification based on the actions available from
each service provider. Then each provider will have the task of synthesizing a sub-orchestrator
for a sub-specification composed solely of actions that can be performed by the provider. Once
all the sub-orchestrators are synthesized and collected an overall orchestrator is synthesized to
combine the sub-orchestrator in such a way as to satisfy the overall specification.

The main challenge in this approach is to provide a procedure to split the overall specification
according to some properties and give each service provider a goal for its own orchestration. The
difficulty come from the necessity to split the overall specification in a way that guarantees that
a meta-orchestrator exists whatever the implementation of every local specification is chosen.
A possible solution may come from work on component-based design as in [RBB+11]. The
computation of quotient formulae may prove to be a key concept for solving the distributed
orchestration problem.

116 Conclusion

Bibliography

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web services.
Springer Berlin Heidelberg, 2004.

[AVW03] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theor. Comput. Sci., 303(1):7–34, 2003.

[BAHK10] Philippe Balbiani, Fahima Cheikh Alili, Pierre-Cyrille Héam, and Olga
Kouchnarenko. Composition of services with constraints. Electr. Notes Theor.
Comput. Sci., 263:31–46, 2010.

[BCDG+05a] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and Mas-
simo Mecella. Automatic composition of transition-based semantic web services
with messaging. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 613–624. VLDB Endowment, 2005.

[BCDG+05b] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic service composition based on behavioral descriptions.
International Journal of Cooperative Information Systems, 14(04):333–376, 2005.

[BCF08a] P. Balbiani, F. Cheikh, and G. Feuillade. Composition of interactive web services
based on controller synthesis. Congress on Services - Part I, 2008. SERVICES
’08. IEEE, pages 521–528, July 2008.

[BCF08b] Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Composition of inter-
active web services based on controller synthesis. In SERVICES I, pages 521–528,
2008.

[BCF09] Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Algorithms and com-
plexity of automata synthesis by asynhcronous orchestration with applications
to web services composition. Electronic Notes in Theoretical Computer Science,
229(3):3 – 18, 2009. Proceedings of the First Interaction and Concurrency Expe-
riences Workshop (ICE 2008).

117

118 Bibiliography

[BCF10] Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Con-
troller/orchestrator synthesis via filtration. Electr. Notes Theor. Comput. Sci.,
262:33–48, 2010.

[BCG+03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic composition of e-services that export their behavior.
In ICSOC, pages 43–58, 2003.

[BCGP08] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio Patrizi. Auto-
matic service composition via simulation. Int. J. Found. Comput. Sci., 19(2):429–
451, 2008.

[BCPT03] Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, and Paolo Traverso. A
framework for planning with extended goals under partial observability. In ICAPS,
pages 215–225, 2003.

[BD98] Eric Badouel and Philippe Darondeau. Theory of regions. In Lectures on Petri
Nets I: Basic Models, pages 529–586. Springer Berlin Heidelberg, 1998.

[BEL09] Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. Conditional importance net-
works: A graphical language for representing ordinal, monotonic preferences over
sets of goods. In Proceedings of the 21st International Jont Conference on Artif-
ical Intelligence, IJCAI’09, pages 67–72, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

[BPT06] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated web service
composition by on-the-fly belief space search. In ICAPS, pages 358–361, 2006.

[BPT10] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated composition
of web services via planning in asynchronous domains. Artif. Intell., 174(3-4):316–
361, March 2010.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24:293–318, September 1992.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752–794, 2003.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[CPRT03] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checking. Artif. Intell., 147(1-2):35–84, July
2003.

Bibiliography 119

[CS01] R. Cleaveland and O. Sokolsky. Handbook of Process Algebra, chapter Equivalence
and Preorder Checking for Finite-State Systems, pages 391–424. Elsevier, 2001.

[dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reach-
ability games. Theor. Comput. Sci., 386(3):188–217, October 2007.

[DGF10] Giuseppe De Giacomo and Paolo Felli. Agent composition synthesis based on
atl. In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 499–506, Rich-
land, SC, 2010. International Foundation for Autonomous Agents and Multiagent
Systems.

[DGP10] Giuseppe De Giacomo and Fabio Patrizi. Automated composition of nondetermin-
istic stateful services. In Proceedings of the 6th international conference on Web
services and formal methods, WS-FM’09, pages 147–160, Berlin, Heidelberg, 2010.
Springer-Verlag.

[DGS07] Giuseppe De Giacomo and Sebastian Sardina. Automatic synthesis of new behav-
iors from a library of available behaviors. In Proceedings of the 20th international
joint conference on Artifical intelligence, IJCAI’07, pages 1866–1871, San Fran-
cisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[EHMR10] J. El Hadad, M. Manouvrier, and M. Rukoz. Tqos: Transactional and qos-aware
selection algorithm for automatic web service composition. Services Computing,
IEEE Transactions on, 3(1):73–85, 2010.

[FF12] H. Farhat and G. Feuillade. A symbolic method for the web service composi-
tion problem. In Advances in Computational Tools for Engineering Applications
(ACTEA), 2012 2nd International Conference on, pages 182–185, Dec 2012.

[FF14] Hikmat Farhat and Guillaume Feuillade. Modal Specifications for Composition of
Agent Behaviors. In International Conference on Agents and Artificial Intelligence
(ICAART), pages 437–444. SciTePress, mars 2014.

[FL12] Oliver Friedmann and Martin Lange. Two local strategy iteration schemes for
parity game solving. Int. J. Found. Comput. Sci., 23(3):669–685, 2012.

[FP07] Guillaume Feuillade and Sophie Pinchinat. Modal specifications for the control
theory of discrete event systems. Discrete Event Dynamic Systems, 17(2):211–232,
2007.

[FVKR11] Yuzhang Feng, A. Veeramani, R. Kanagasabai, and Seungmin Rho. Automatic
service composition via model checking. In Services Computing Conference (AP-
SCC), 2011 IEEE Asia-Pacific, pages 477–482, 2011.

120 Bibiliography

[GB96] Robert P. Goldman and Mark S. Boddy. Expressive planning and explicit knowl-
edge. In AIPS, pages 110–117, 1996.

[GMP09] Giuseppe De Giacomo, Riccardo De Masellis, and Fabio Patrizi. Composition of
partially observable services exporting their behaviour. In ICAPS, 2009.

[GPS13] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardiña. Automatic behavior
composition synthesis. Artif. Intell., 196:106–142, 2013.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci.,
27:333–354, 1983.

[Mil71] Robin Milner. An algebraic definition of simulation between programs. In Proceed-
ings of the 2Nd International Joint Conference on Artificial Intelligence, IJCAI’71,
pages 481–489, San Francisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, Apr 1989.

[MW08] Anca Muscholl and Igor Walukiewicz. A lower bound on web services composition.
Logical Methods in Computer Science, 4(2), 2008.

[oas07] OASIS WS-BPEL Technical Committee, Web Services Business Process Execution
Language Version 2.0, 2007.

[OAS+12] ZacharyJ. Oster, SyedAdeel Ali, GaneshRam Santhanam, Samik Basu, and
ParthaS. Roop. A service composition framework based on goal-oriented re-
quirements engineering, model checking, and qualitative preference analysis. In
Chengfei Liu, Heiko Ludwig, Farouk Toumani, and Qi Yu, editors, Service-
Oriented Computing, volume 7636 of Lecture Notes in Computer Science, pages
283–297. Springer Berlin Heidelberg, 2012.

[OSB11] Zachary J. Oster, Ganesh Ram Santhanam, and Samik Basu. Identifying optimal
composite services by decomposing the service composition problem. In Proceed-
ings of the 2011 IEEE International Conference on Web Services, ICWS ’11, pages
267–274, Washington, DC, USA, 2011. IEEE Computer Society.

[Par81] David Park. Concurrency and automata on infinite sequences. In Proceedings of
the 5th GI-Conference on Theoretical Computer Science, pages 167–183, London,
UK, UK, 1981. Springer-Verlag.

[PBB+04] Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, Dmitry Shaparau, and Paolo
Traverso. Planning and monitoring web service composition. In AIMSA, pages
106–115, 2004.

Bibiliography 121

[PF11] P. Papapanagiotou and J. Fleuriot. Formal verification of web services composition
using linear logic and the pi-calculus. In Web Services (ECOWS), 2011 Ninth IEEE
European Conference on, pages 31–38, 2011.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM
J. Comput., 16(6):973–989, December 1987.

[PT01] Marco Pistore and Paolo Traverso. Planning as model checking for extended goals
in non-deterministic domains. In IJCAI, pages 479–486, 2001.

[RBB+11] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone.
A modal interface theory for component-based design. Fundamenta Informaticae,
108(1-2):119–149, 2011.

[RS05] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition
methods. In Proceedings of the First international conference on Semantic Web
Services and Web Process Composition, SWSWPC’04, pages 43–54, Berlin, Hei-
delberg, 2005. Springer-Verlag.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77:81–98, 1989.

[SP09] Thomas Ströder and Maurice Pagnucco. Realising deterministic behavior from
multiple non-deterministic behaviors. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI’09, pages 936–941, 2009.

[SPD08] Sebastian Sardina, Fabio Patrizi, and Giuseppe De Giacomo. Behavior compo-
sition in the presence of failure. In Gerhard Brewka and Jerome Lang, editors,
Proceedings of Principles of Knowledge Representation and Reasoning (KR), pages
640–650. AAAI Press, 2008.

[TP04] Paolo Traverso and Marco Pistore. Automated composition of semantic web ser-
vices into executable processes. In International Semantic Web Conference, pages
380–394, 2004.

[vGW96] Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in
bisimulation semantics. J. ACM, 43:555–600, May 1996.

[VJ00] Jens Vöge and Marcin Jurdzinski. A discrete strategy improvement algorithm for
solving parity games. In CAV, pages 202–215, 2000.

[WHH+06] Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp, and Bernd
Becker. Sigref: a symbolic bisimulation tool box. In Proceedings of the 4th in-
ternational conference on Automated Technology for Verification and Analysis,
ATVA’06, pages 477–492. Springer-Verlag, 2006.

122 Bibiliography

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science, 200(1–2):135 – 183,
1998.

[ZPG12] E. Zahoor, Olivier Perrin, and Claude Godart. Web services composition ver-
ification using satisfiability solving. In Web Services (ICWS), 2012 IEEE 19th
International Conference on, pages 242–249, 2012.

Appendix

123

124 Appendix

The goal of this appendix is to prove lemma 2.5.2 and theorem 2.5.3. The proof of lemma
2.5.2 is given first.

Proof of 2.5.2. Assume that a controllability relation R exists. We need to show that there exists
an orchestrator with perfect information Ω such that for arbitrary (t, e, s) ∈ R and a ∈ Σ we
have

δ̂t(t, e, a) 6= ∅ ⇔ δ̂Ω(s, e, a) 6= ∅

Furthermore, for all t′ ∈ δt(t, e, a), s′ ∈ δΩ(s, e, a) and e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R.
Consider (t, e, s) ∈ R and assume that δ̂t(t, e, a) 6= ∅ then t

a−→ t′ ∧ δE(e, a) 6= ∅. Since R is a
controllability relation then

• Either δu(s, e, a) 6= ∅ and for all s′ ∈ δu(s, e, a), e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R. Recall
that δΩ(s, e, a) ⊇ δu(s, e, a) thus δΩ(s, e, a) 6= ∅. Finally, δ̂Ω(s, e, a) = δΩ(s, e, a)×δE(s, e) 6=
∅.

• Or ∃α ∈ E(t, s), δu(s, α | a) 6= ∅ and for all s′ ∈ δu(s, a) and e′ ∈ δE(e, a) we have (t′, e′, s′) ∈
R. In this case choose Ω(s, t, α) = 1 then δΩ(s, e, a) ⊇ δu(s, e, α | a) � Ω(s, t, α) 6= ∅.
Therefore, δ̂Ω(s, e, a) = δΩ(s, e, a)× δE(s, e) 6= ∅.

we have shown that δ̂t(t, e, a) 6= ∅ ⇒ δ̂Ω(s, e, a) 6= ∅.
Now assume that δ̂Ω(s, e, a) = δΩ(s, e, a) × δE(s, a) 6= ∅. Let τ be the sequence of actions

executed to reach s from the initial state s0. Since δΩ = δu(s, e, a)
⋃
α∈Com δu(s, e, α | a) �

Ω(s, τ, α) then there are two cases

• Either δu(s, e, a) 6= ∅ then by definition of the controllability relation we get ∃t′.t a−→ t′ and
(t′, e′, s′) ∈ R thus δ̂t = δt(t, e, a) × δE(e, a) 6= ∅. Furthermore, for all s′ ∈ δu(s, e, a) and
e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R.

• Or δu(s, α | a) 6= ∅ and Ω(s, τ, α) = 1 for some α ∈ Com. But from the construction in the
first part we know that Ω(s, τ, α) is set to 1 only if α ∈ E(s, t) therefore by the definition
of E(s, t) we have ∃t′.t a−→ t′ and thus δ̂t(t, e, a) = δt(t, e, a) × δE(e, a) 6= ∅. Furthermore,
for all s′ ∈ δu(s, e, α | a) and e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R.

We have shown that δ̂Ω(s, e, a) 6= ∅ ⇒ δ̂t(t, e, a) 6= ∅. Combining both results and the fact that
(t′, e′, s′) ∈ R proves the lemma

Proof of 2.5.3. (⇒) Assume that a controllability relation R exists. We need to show that there
exists an orchestrator with perfect information Ω such that for all τ ∈ Σ∗, (s, e) ∈ ∆Ω(s0, e0, τ),
(t, e) ∈ ∆(t0, e0, τ) we have

δ̂t(t, e, a)⇔ δ̂Ω(s, e, a)

Appendix 125

To do so we show a stronger version namely that in addition to the above we also have for all
(t′, e′) ∈ ∆(t0, e0, τa) and for all (s′, e′) ∈ ∆(s0, e0, τa) we have (t′, e′, s′) ∈ R.

The proof is by induction over the length of the trace.
Base case: The base case involves the empty string ε. We have (t0, e0) ∈ ∆t(t0, e0, ε) and
(s0, e0) ∈ ∆Ω(s0, e0, ε). Since (t0, e0, s0) ∈ R then from lemma 2.5.2 we know that for all a ∈ Σ
we have δ̂t(t0, e0, a) 6= ∅ ⇔ δ̂Ω(s0, e0, a) 6= ∅. Furthermore, for all(t1, e1) ∈ δ̂t(t0, e0, a) and
(s1, e1) ∈ δ̂Ω(s0, e0, a) we have (t1, e1, s1) ∈ R.
Hypothesis: Assume that the above properties are true for the case l−1. Namely, given a trace
τ of length l − 1 then for all (tl−1, el−1) ∈ ∆t(t0, e0, τ) and (sl−1, el−1) ∈ ∆Ω(s0, e0, τ) we have

δ̂t(tl−1, el−1, a) 6= ∅ ⇔ δ̂Ω(sl−1, el−1, a) 6= ∅

and for all (tl, el) ∈ δ̂t(tl−1, el−1, a), (sl, el) ∈ δ̂Ω(sl−1, el−1, a) we have (tl, el, sl) ∈ R.
Induction step: Consider a trace of length l, τa and let (tl, el) ∈ ∆t(t0, e0, τa) and (sl, el) ∈
∆Ω(s0, e0, τa). From the definition of ∆ we know that (tl, el) ∈ δ̂t(tl−1, el−1, a) and (sl, el) ∈
δ̂Ω(sl−1, el−1, a) for some (tl−1, el−1) ∈ ∆t(t0, e0, τ) and (sl−1, el−1) ∈ ∆Ω(s0, e0, τ). It follows
from the hypothesis that (tt, el, sl) ∈ R then by lemma 2.5.2 we finally get that for all a ∈ Σ:

δ̂t(tl, el, a) 6= ∅ ⇔ δ̂Ω(sl, el, a) 6= ∅

(⇐) Assume that an orchestrator exists and define the relation

R = {(t, e, s) | ∃τ.(t, e) ∈ ∆(t0, e0, τ), (s, e) ∈ ∆(s0, e0, τ)}

We show that R is a controllability relation.
Consider (t, e, s) ∈ R then from the construction of R we have (s, e) ∈ ∆(s0, e0, τ) and

(t, e) ∈ ∆(t0, e0, τ) for some τ ∈ Σ∗. Suppose that δ̂t(t, e, a) = δt(t, e, a) × δE(e, a) 6= ∅. Since
an orchestrator exists then δ̂Ω(s, e, a) = δΩ(s, e, a)× δE(s, e, a) 6= ∅. Because δE(e, a) is the same
for community and target it follows that δt(t, e, a) 6= ∅ ⇒ δΩ(s, e, a) 6= ∅. Furthermore, from the
definition of ∆ we have for all (t′, e′) ∈ δt(t, e, a) and (s′, e′) ∈ δΩ(s, e, a) that (t′, e′) ∈ ∆(t0, e0, τa)
and (s′, e′) ∈ ∆(s0, e0, τa) thus (t′, e′, s′) ∈ R. From the definition of δΩ(s, e, a) and the fact that
δΩ(s, e, a) 6= ∅ and for all (t′, e′) ∈ δt(t, e, a), (s′, e′, a) ∈ δΩ(s, e, a) we have (t′, e′, s′) ∈ R we
deduce that:

• Either δu(s, e, a) 6= ∅ and for all s′ ∈ δu(s, e, a) and e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R.

• Or δu(s, e, α | a) 6= ∅ and Ω(s, τ, a) = 1 for some α ∈ E(s, t) and and for all s′ ∈ δu(s, e, a)
and e′ ∈ δE(e, a) we have (t′, e′, s′) ∈ R.

Conversely, assume that δ̂Ω(s, e, a) 6= ∅ then δΩ(s, e, a) 6= ∅ and δE(e, a) 6= ∅. Because
an orchestrator exists we have δ̂t(t, e, a) 6= ∅. It follows that δt(t, e, a) 6= ∅. Furthermore,
consider and arbitrary (t′, e′) ∈ δ̂t(t, e, a) and (s′, e′) ∈ δΩ(s, e, a) then (t′, e′) ∈ ∆(t0, e0, τa) and
(s′, e′) ∈ ∆(s0, e0, τa) whence (t′, e′, s′) ∈ R and it follows that R is an controllability relation
according to definition 2.5.6.

126 Appendix

The final part of this appendix is a proof of theorem 2.5.3.

Proof of 2.5.3. (⇒). Suppose that a set of observation relations, Z, exists. We need to show
that one can construct an orchestrator with partial information Ω such that for any arbitrary
trace τ and for all (t, e) ∈ ∆(t0, e0, τ), (s, e) ∈ ∆(s0, e0, τ) we have the following:

δ̂t(t, e, a) 6= ∅ ⇔ δ̂Ω(s, e, a) 6= ∅

We proceed by induction on the length of τ .
Base case. By construction (t0, e0, s0) ∈ R for some R ∈ Z. Suppose that δ̂t(t0, e0, a) =

δt(t0, e0, a)× δE(e0, a) 6= ∅ then by the property of Z we have:

• Either δu(s0, e0, a) 6= ∅ and for all s′ ∈ δu(s0, e0, a),t′ ∈ δt(t0, e0, a), e′ ∈ δE(e0, a) we have
(t′, e′, s′) ∈ R. But δΩ(s0, e0, a) ⊇ δu(s0, e0, a) thus δ̂Ω(s0, e0, a) 6= ∅.

• Or ∃α ∈ Com such that δu(s0, e0, α | a) 6= ∅ and for all s′ ∈ δu(s0, e0, α | a),t′ ∈ δt(t0, e0, a)
and e′ ∈ δE(e0, a), (t′, e′, s′) ∈ R′ for some R′ ∈ Z. Furthermore, for all (u, v, w) ∈ R we
have w g(v),α|b−−−−−→ w′ ∧ v b−→ v′ ⇒ ∃u′.u g(v)|b−−−→ u′ with (u′, v′, w′) ∈ R′. In this case we choose
Ω(σ(s0, ε), α) = 1 then

δΩ(s0, e0, a) ⊇ δu(s0, e0, α | a)� Ω(σ(s0, ε), α) 6= ∅

Therefore δ̂Ω(s0, e0, a) = δΩ(s0, e0, a)× δE(e0, a) 6= ∅

We have shown that δ̂t(t0, e0, a) 6= ∅ ⇒ δ̂Ω(s0, e0, a) 6= ∅.
Now we consider the opposite direction. Suppose that δ̂Ω(s0, e0, a) = δΩ(s0, e0, a)× δE(e0, a) 6= ∅
then from the construction of δΩ(s0, e0, a) there are two cases:

• Either δu(s0, e0, a) 6= ∅ then by the properties of Z, δt(t0, e0, a) 6= ∅ and thus δ̂t(t0, e0, a) 6= ∅.
Furthermore, for all t′ ∈ δt(t0, e0, a),s′ ∈ δu(s0, e0, a) and e′ ∈ δE(e0, a) we have (t′, e′, t′) ∈
R.

• Or δu(s0, e0, α | a) 6= ∅ and Ω(σ(s0, ε), α) = 1 for some α. In the above construction Ω is
set to 1 only if for all (u, v, w) ∈ R we have w g(v),α|b−−−−−→ ∧v b−→ v′ ⇒ ∃u′.u g(v),b−−−→ u′ with
(u′, v′, w′) ∈ R′ for some R′ ∈ Z. In particular, ∃t′.t0 g(e0),a−−−−→ t′ therefore δ̂t(t0, e0, a) 6= ∅.
Furthermore, (t′, e′, s′) ∈ R′ for some R′ ∈ Z.

We have shown that given a set of observation relations Z one can construct an orchestrator
with partial information Ω such that δ̂t(t0, e0, a) 6= ∅ ⇔ δ̂Ω(s0, e0, a) 6= ∅. Moreover for all
e′ ∈ δE(e0, a),s′ ∈ δΩ(s0, e0, a), t′ ∈ δt(t0, e0, a) we have (t′, e′, s′) ∈ R for some R ∈ Z.

Induction hypothesis Assume that the above is true for traces τ of length l− 1. This means that
for all (sl−1, el−1) ∈ ∆Ω(s0, τ), (tl−1, el−1) ∈ ∆t(t0, τ) and for all a ∈ Σ we have δ̂t(tl−1, el−1, a) 6=

Appendix 127

∅ ⇔ δ̂Ω(sl−1, el−1, a) 6= ∅ and also for all tl ∈ δt(tl−1, el−1, a), sl ∈ δΩ(sl−1, el−1, a), el ∈ δE(el−1, a)
we have (tl, el, sl) ∈ R for some R ∈ Z.

Induction step. Consider an arbitrary trace, τb of length l, with (tl, el) ∈ ∆t(t0, e0, τb), (sl, el) ∈
∆(s0, e0, τb). Suppose that for an arbitrary a ∈ Σ we have δ̂t(tl, el, a) = δt(tl, el, a)×δE(el, a) 6= ∅.
From the definition of ∆ we know that (tl, el) ∈ δ̂t(tl−1, el−1, b), (sl, el) ∈ δ̂Ω(sl−1, el−1, b) for some
(tl−1, el−1) ∈ ∆t(t0, e0, τ), (sl−1, el−1 ∈ ∆Ω(s0, e0, τ). From the induction hypothesis this implies
that (tl, el, sl) ∈ R for some R ∈ Z. It follows from the properties of Z that

1. Either δu(sl, el, a) 6= ∅ and therefore δ̂Ω(sl, el, a) 6= ∅. Furthermore, for all sl+1 ∈ δu(sl, el, a),tl+1 ∈
δt(tl, el, a),el+1 ∈ δE(el, a) we have (tl+1, el+1, sl+1) ∈ R.

2. Or ∃α. δu(sl, el, α | a) 6= ∅ and (tl+1, el+1, sl+1) ∈ R′ for some R′ ∈ Z. Then choose
Ω(σ(sl, τ), α) = 1 hence δΩ(sl, el, a) ⊇ δu(sl, el, α | a) � Ω(σ(sl, τ), α) 6= ∅ and it follows
that δ̂Ω(sl, el, a) 6= ∅. Furthermore, α is chosen such that for all (u, v, w) ∈ R we have
w

g(v),α|b−−−−−→ w′ ∧ v b−→ v′ ⇒ ∃u′.u g(v)|b−−−→ u′ with (u′, v′, w′) ∈ R′.

Now we check the reverse direction. Let δ̂Ω(sl, el, a) = δΩ(sl, el, a)× δE(el, a) 6= ∅. There are two
cases:

1. Either ∃δu(sl, el, a) 6= ∅ then by the property of Z we have ∃tl+1.tl
g(el),a−−−−→ tl+1 and it follows

that δ̂t(tl, el, a) 6= ∅.

2. Or ∃α, δu(sl, el, a) 6= ∅ and Ω(σ(sl, τ), α) = 1. By the way α is chosen we know that
∃tl+1.tl

g(el)|a−−−−→ tl+1 and therefore δ̂t(tl, el, a) 6= ∅.
Therefore for all traces τ and for all (sl, el) ∈ ∆(s0, e0, τ) and (tl, el) ∈ ∆(t0, e0, τ) we have

δ̂t(tl, el, a) 6= ∅ ⇔ δ̂Ω(sl, el, a) 6= ∅

(⇐). As before we use the concept of the observable set of the community but this time we
add the environment to the mix. Let Z = {Rθ | θ ∈ Θ} be a set of sets of tuples defined as:

Rθ = {(t, e, s) | ∀x ∈ L(θ)∃τ.(s, e) ∈ ∆(s0, e0, τ)
∧(t, e) ∈ ∆(t0, e0, τ)

∧σ(s, τ) = x}

We need to show that if there exists an orchestrator with partial information, Ω, such
that for all traces τ and for all (s, e) ∈ ∆Ω(s0, e0, τ) and (t, e) ∈ ∆t(t0, e0, τ) if we have
δ̂t(t, e, a) 6= ∅ ⇔ δΩ(s, e, a) 6= ∅ then Z is a set of observation relations.

Consider an arbitrary Rθ and choose an arbitrary tuple (t, e, s) ∈ Rθ. Suppose that (t′, e′) ∈
δ̂t(t, e, a) then by assumption we have δ̂Ω(s, e, a) 6= ∅. Let (s′, e′) ∈ δ̂Ω(s, e, a) = δΩ(s, e, a) ×
δE(e, a) then there are two cases:

128 Appendix

1. Either s′ ∈ δu(s, e, a) which means s g(e),a−−−→ s′. Since (t, e, s) ∈ Rθ then for all x ∈ L(θ), ∃τa
such that

(s′, e′) ∈ ∆Ω(s0, e0, τa) because (s, e) ∈ ∆Ω(s0, e0, τ)

and s
g(e),a−−−→ s′

and e
a−→ e′

(t′, e′) ∈ ∆t(s0, e0, τa) because (t, e) ∈ ∆t(t0, e0, τ)

and t
g(e),a−−−→ t′

and e
a−→ e′

σ(s, τa) = x because σ(s, τ) = x

and s
g(e),a−−−→ s′

therefore (t′, e′, s′) ∈ Rθ.

2. Or ∃α ∈ Com such that s′ ∈ δu(s, e, α | a) 6= ∅ and Ω(σ(s, τ), α) = 1. This means that
s
g(e),α|a−−−−−→ s′. Then for all xα ∈ L(θα), ∃τa such that

(s′, e′) ∈ ∆Ω(s0, e0, τa) because (s, e) ∈ ∆Ω(s0, e0, τ)

and s
g(e),α|a−−−−−→ s′

and e
a−→ e′

(t′, e′) ∈ ∆t(s0, e0, τa) because (t, e) ∈ ∆t(t0, e0, τ)

and t
g(e),a−−−→ t′

and e
a−→ e′

σ(s, τa) = xα because σ(s, τ) = x

and s
g(e),α|a−−−−−→ s′

Therefore (t′, e′, s′) ∈ Rθα ∈ Z.

Furthermore, suppose that (u, v, w) ∈ Rθ and w
g(v),α|b−−−−−→ w′ ∧ v b−→ v′ for some b ∈ Σ.

From the definition of Rθ we know that for all x ∈ L(θ), ∃λ such that (u, v) ∈ ∆t(t0, e0, λ),
(w, v) ∈ ∆Ω(s0, e0, λ) and σ(w, λ) = x. Now since w g(v),α|b−−−−−→ w′∧v b−→ v′ and Ω(w, x, α) = 1
then δ̂Ω(w, v, b) 6= ∅ which by assumption implies that δ̂t(u, v, b) 6= ∅. Therefore for all

Appendix 129

xα ∈ L(θα), ∃λb such that

(w′, v′) ∈ ∆Ω(s0, e0, λb) because (w, v) ∈ ∆Ω(s0, e0, λ)

and w
g(v),α|b−−−−−→ w′

and v
b−→ v′

(u′, v′) ∈ ∆t(t0, e0, λb) because (u, v) ∈ ∆t(t0, e0, λ)

and u
g(e),b−−−→ u′ by assumption

and v
b−→ v′

σ(w′, λb) = xα because σ(w, λ) = x

and w
g(v),α|b−−−−−→ w′

thus (u′, v′, w′) ∈ Rθα and Z is a set of observation relations.

130

Résumé en Français

131

132

Chapitre 1: Introduction

Programmation orientée services

La programmation orientée service (Service Oriented Computing (SOC)) [ACKM04] est un
paradigme de programmation qui supporte le développement rapide d’applications distribuées
dans un environnement hétérogène en utilisant des composantes individuelles réutilisables, ap-
pelées des services. Ce fait peut être réalisé parce que les services peuvent être composés: les
services peut être combinés de manière à produire un résultat, dont aucun des services individuels
ne peut produire par lui-même.

Habituellement, il existe deux façons pour composer des services Web: par orchestration
ou par chorégraphie. Dans cette thèse, nous étudions l’orchestration. Plus précisément, com-
ment synthétiser un processus, appelé orchestrateur, de sorte que la communauté des services,
contrôlées par l’orchestrateur, satisfait un objectif donné. Cette tâche de synthèse d’orchestration
est appelée le problème de composition du comportement.

Le problème de composition du comportement a fait l’objet de recherche intensive. Ce fait
peut être vu à partir des différentes approches pour le problème de la composition, allant de
model checking [FVKR11], la planification des agents [DGS07], satisfiabilité [ZPG12], et la
démonstration de théorèmes [PF11] (voir [RS05]). Le cadre que nous utilisons dans le présent
document, est similaire à celui proposé en [BCG+03], habituellement appelé le ”Modèle Romain”,
et a été traité dans de nombreux ouvrages [BCF08a][DGP10][BCGP08].

Le problème de la composition est le suivant:

Étant donné un ensemble de services disponibles et une spécification du service but, est-ce que
l’on peut synthétiser un orchestrateur qui combine les services d’une manière à répondre à la

spécification.

Dans la plupart des travaux sur la composition des services Web, les services sont représentés
par des machine à états finis (automates). Certaines approches utilisent des automates qui
peuvent effectuer des actions de communication [OAS+12], des actions internes [BCGP08], des
actions internes non-observables [BPT10], des actions internes et de communication [BCDG+05a]
ou des actions de communication indirecte via un environnement [GPS13].

Notre approche

Notre approche consiste des composantes suivantes: un ensemble de services disponibles, un
service but , un environnement, et un orchestrateur.

Les services disponibles, le service but, ainsi que l’environnement sont modélisés en tant que
systèmes de transitions étiquetés. Le service but décrit un certain comportement que l’on doit
satisfaire en utilisant les services disponibles. En d’autres termes, le service but joue le rôle
d’une spécification. L’environnement représente tout ce qui n’est pas modelé par les services
eux-mêmes. En d’autres termes, les services communiquent via l’environnement. Chaque service
disponible peut effectuer un ensemble d’actions, certaines d’entre elles contrôlables et d’autres

133

sont incontrôlables. L’orchestrateur communique avec les services disponibles pour exécuter
certaines actions. Le problème de la composition de comportement est défini comme suit:

Étant donné un ensemble de services disponibles, un service but et un environment, est-ce que
l’on peut synthétiser un orchestrateur de telle sorte que le système composé des services

disponibles contrôler par l’orchestrateur, en présence de l’environment, est équivalent au service
but

Objectif et contributions de la thèse

Cette thèse aborde le problème de la composition de comportement. Même si nous positionnons
notre travail dans le contexte des services Web, un comportement peut décrire la logique et
l’interaction d’une composante, telles que des agents, en outre les services Web. En fait, une
partie de ce travail a été utilisée pour résoudre le problème de comportement des multi-agents
[FF14].

En abordant le problème de la composition, une préoccupation majeure a été le grand nombre
d’états qui rendent les approches existantes trÃ¨s couteuses en terme de calculs. L’objectif de cette
thèse est d’étendre l’expressivitÃ c© des modÃ¨les et des spÃ c©cifications tout en dÃ c©veloppant
des méthodes efficaces pour résoudre le problÃ¨me de composition de comportement. Nos contri-
butions à cet égard sont:

1. Formuler un modèle qui prend en compte les transitions incontrôlables. Ce modèle est
étudié dans le cas où l’orchestrateur a des informations parfaites ou partielles. Dans les deux
cas, on a proposÃ c© une condition nécessaire et suffisante pour l’existence d’une solution en
termes d’une relation de contrôlabilité, dans le cas d’informations parfaites, et un ensemble
de relations observables, dans le cas d’informations partielles. Cette caractérisation nous
permet de concevoir des algorithmes efficaces pour la synthèse de l’orchestrateur. Nous
avons montré comment un orchestrateur peut être synthétisé une fois que l’on a trouvé les
relations.

2. Nous sommes allés au-delà des approches existantes en utilisant la spécification modale, qui
est très expressive, pour modéliser le service but. Un service but modélisé en utilisant une
spécification modale est essentiellement un ensemble de comportements acceptables.

3. Nous avons développé un algorithme à la volée pour le cas d’informations parfaites pour
calculer la relation de contrôlabilité. L’importance d’un tel algorithme réside dans le fait
que, à la différence d’autres approches, il n’a pas besoin de visiter tous les états du système
qui sont généralement très nombreux. Un autre avantage qui n’est pas présent dans d’autres
approches, est la possibilité d’utiliser des heuristiques pour réduire le nombre d’états visités.
Nous avons également prouvé que notre algorithme proposé est robuste à la défaillance
d’une composante, dans le sens que si une composante faillit il n’est pas nécessaire de
redémarrer à partir de zéro, mais l’algorithme réutilise l’information recueillie avant l’échec.

134

4. Nous proposons une heuristique pour être utilisée avec l’algorithme mentionné ci-dessus,
basé sur une méthode d’abstraction qui permet de réduire le nombres d’états de façon
drastique. Une telle abstraction nous permet de déduire la non-existence d’une solution
pour le problème initial de la non-existence d’une solution pour le problème abstrait, qui est
plus petit. En outre, si une solution au problème abstrait existe, cette solution est utilisée
comme une entrée à l’algorithme pour accélérer la recherche d’une solution au probléme
original.

5. Nous avons développé un algorithme à la volée pour le cas d’informations partielles. Ici,
le problème serait 2EXPTIME. En d’autres approches il est necessaire de déterminiser le
système de transitions étiquetées avant le calcul d’une solution, même si aucune solution
n’existe. Dans notre algorithme cette déterminisation est faite à la volée tout en trouvant
une solution. Lorsqu’une solution n’existe pas cela accélérera considérablement les choses.

Organisation de la thèse

Dans le chapitre 2 nous présentons d’abord le modèle et les définitions de base. Nous montrons
que notre modèle étend le Modèle Romain en deux façons. Premièrement, notre modèle inclus
des actions incontrôlables qui sont absentes dans le Modèle Romain. Deuxièmement, nous util-
isons des spécifications modales pour modéliser le service but. Les spécifications modales sont
plus générales et moins restrictives pour la spécification du service but. Aussi dans le chapitre
2 nous prouvons qu’un orchestrateur avec informations parfaites existe si et seulement si une
relation de contrôlabilité existe entre la communauté de services et le service but. Ce résultat
est également prouvé pour le cas où la spécification modale est utilisée pour le but. De même,
nous prouvons qu’un orchestrateur avec des informations partielles existe si et seulement si un
ensemble de relations, que nous appelons relations d’observation, existe entre la communauté de
services et le service but. Nous étendons aussi les résultats mentionnés ci-dessus au cas où un
environnement est présent. Dans le chapitre 3, nous donnons un nouvel algorithme à la volée
pour calculer la relation de contrôlabilité dans le cas des informations parfaites. On démontre que
l’algorithme est correct et on calcule sa complexité. Nous avons également introduit une méthode
d’abstraction qui est utilisée comme une heuristique pour accélérer l’algorithme. L’algorithme
général qui comprend la spécification modale est également presenté. Dans le chapitre 4, le cas
de l’orchestrateur avec des informations partielles est abordé. Nous présentons un algorithme
pour calculer, à la volée, l’ensemble des relations observation. Cet algorithme permet d’éviter
la construction de tous les sous-ensembles. Nous prouvons que l’algorithme est correct et on en
calcule la complexité. Nous concluons et donnons les orientations futures dans le chapitre 5.

135

Chapitre 2: Résultats généraux

Ce chapitre contient les définitions nécessaires et le cadre formel du problème de la composition
de comportement. Il contient également des résultats originaux qui font partie des contributions
de cette thèse au problème de composition de comportement.

Un modèl de services

Dans cette thèse, les services sont modélisés comme des systèmes de transitions étiquetées (LTS).
Les transitions d’un service donné peuvent être divisées en deux catégories: contrôlables et
incontrôlables. Les premières peut être activées/ désactivées par un orchestrateur tandis que les
secondes sont des transitions ”spontanées” qui ne peuvent pas être contrôlées. Le systéme étudié
est constitué de trois composantes:

1. Une communauté de n services disponibles.

2. Un service but dont le comportement nous devons imiter.

3. Un orchestrateur qui communique avec les services disponibles et qui a pour objectif de
”réaliser” le comportement du service but.

Definition 5.2.1 (Service disponible). Un service disponible Si est un tuple Si =
〈
Si,Σi, Comi, s

0
i , δi

〉
où

• Si est un ensemble fini d’états.

• sigmai est un alphabet finie d’action.

• Comi est un ensemble fini de messages de communication.

• s0i est l’état initial.

• δi ⊆ Si × (σi ∪ Comi × σi)× Si est la relation de transition.

Le potentiel de composition de comportement réside dans le fait qu’il a de nombreux services
ou composantes qui peuvent être orchestrés. Un tel ensemble de services est appelé dans cette
thèse une communauté de services disponibles. C’est essentiellement le produit asynchrone de n
services disponibles. La définition formelle est donnée par:

Definition 5.2.2 (Communauté des services). Une communautÃ c© de n services disponibles
Si =

〈
Si, σi, Comi, s

0
i , δi

〉
, i = 1n . . .,

est le tuple S =
〈
S,Σu, Com, s

0, δu
〉

où u

• S = S1 × . . .× Sn.

• s0 = (s0
1, . . . s

0
n).

136

• Σu = ∪iΣi

• Com = ∪iComi

• δu ⊆ S × (Σ ∪ Com× Σ)× S

La relation de transition δu est le produit asynchrone de toutes les relations δi est défini
comme:

(〈s1, . . . , sn〉 , α,
〈
s′1, . . . , s

′
n

〉
) ∈ δu iff (sk, α, s′k) ∈ δk for some 1 ≤ k ≤ n

and for all i 6= k we have si = s′i

Definition 5.2.3 (Orchestrateur). Compte tenu d’une communauté de n services S =
〈
S,Σu, Com, s

0, δu
〉
,

un orchestrateur pour cette communautÃ c© est une fonction Ω : Com timesD −→ {0, 1}. Où D
est un domaine de l’information qui à ce point n’est pas spécifié.

Soit Ω(m), m ∈ Com, l’orchestrateur. Nous pouvons formaliser le comportement orchestrée
(par Ω) de la communauté de service par l’introduction d’une fonction de transition orchestré δΩ
défini par:

δΩ(s, a) = δu(s, a)
⋃
m

δu(s,m | a)� Ω(m)

Notez que dans la définition ci-dessus le terme à gauche du symbole de union représente la
contribution des transitions incontrôlables alors que le terme à la droite représente la contribution
des transitions contrôlables. Le symbole � est une notation pratique pour modéliser le on/off du
comportement de l’orchestrateur. Cette opération peut être qualifiée par son effet:

δu(s,m |a)� Ω(m) =
{

∅ if Ω(m) = 0
δu(s,m |a) if Ω(m) = 1

Maintenant, nous donnons la définition formelle du service but, que nous notons dans cette
thèse par St.

Definition 5.2.4 (Service but). Le service but St est le tuple St =
〈
St,Σt, t

0, δt
〉

où:

• St est un ensemble fini d’états.

• Σt est un alphabet finie d’action

• t0 est l’état initial.

• δt ⊆ St × Σ× St est la relation de transition.

137

Pour la communauté orchestrée , on défini la fonction ∆Ω : S × Σ∗ → 2S , où Σ = Σu ∪ Σt.
Soit a ∈ Σ et x ∈ Σ∗ des actions et sÃ c©quence d’actions, respectivement, et s ∈ S un état
arbitraire de la communauté orchestrée , alors la fonction ∆ est défini récursivement, avec l’aide
de la séquence vide epsilon, comme:

∆Ω(s, ε) = {s}
∆Ω(s, xa) =

⋃
s′∈∆Ω(s,x)

δΩ(s′, a)

On utilise le même symbole pour le service but

∆t(t, ε) = {t}
∆t(t, xa) =

⋃
t′∈∆t(s,x)

δt(t′, a)

Composition avec informations parfaites

Definition 5.2.5 (Orchestrateur avec information parfaite). Compte tenu d’une communauté
de nservices, S =

〈
S,Σu, Com, s

0, δu
〉
, un orchestrateur avec informations parfaites est une

fonction Ω : S × Σ∗ × Com −→ {0, 1}.

La définition de la fonction de transition orchestrée est alors:

δΩ(s, a) = δu(s, a) ∪
[⋃
m∈Com

δu(s,m |a)� Ω(s, Tr(s),m)
]

(5.1)

Où Tr(s) ∈ Σ∗ est la séquence d’actions réalisée par la communauté pour atteindre létat s.

Definition 5.2.6 (Communauté orchestrée). Soit S =
〈
S,Σu, Com, s

0, δu
〉

une communauté de
n services, St =

〈
ST ,Σt, t

0, δt
〉

un service but et Ω un orchestrateur avec information parfaite.
La communautÃ c© orchestrÃ c©e est dÃ c©finie comme SΩ =

〈
S,Σ, s0, δΩ

〉
.

L’v́olution de la communauté après une séquence d’ actions est décrite par une extention de la
relation de transition. Pour toute trace x ∈ Σ∗ et action a ∈ Σ la fonction ∆Ω : S ×Σ∗ → 2S est
définie d’une manière récursive:

∆Ω(s, ε) = {s}

∆Ω(s, xa) =
⋃

s∈∆Ω(s,x)
δu(s′, a) ∪

[⋃
m∈Com

δu(s,m |a)� Ω(s, x,m)
]

138

Composition de services

Le problème de la composition de comportement consiste à trouver un orchestrateur qui contrôle
ou délègue des actions à différents services disponibles de sorte que la communautée contrôlée
réalise (ou imite) le comportement d’un service but. Formellement,

Definition 5.2.7 (Composition de comportement avec information parfaite). Soit St un service
but, mathcalS une communauté de n de services disponibles. Soit Ω un orchestrateur ave infor-
mation parfaite et notons SΩ la communauté orchestré. Nous disons que SΩ est une composition
de comportement de St ssi pour toutes les traces τ ∈ Σ∗ et tout état du but t ∈ δt(t0, τ) et pour
tout s ∈ ∆Ω(s0, τ) on a:

∀a ∈ Σ, δt(t, a) 6= ∅ ↔ δΩ(s, a) 6= ∅

On peut caractériser l’orchestrateur en observant les états du service but. Cette correspon-
dance nous permet de synthétiser un orchestrateur sans ”se rappeler” de toutes les traces, plutôt
en inspectant l’état du service but. Cette idée est utilisée en théorie du contrôle en utilisant le
concept de contrôlabilité.

Controllability

Le concept d’une relation de contrôlabilité , ou contrôlabilité, est présenté ci-dessous.

Definition 5.2.8 (Controllabilité). Soit St =
〈
St,Σt, s

0
t , δt

〉
un service but et S =

〈
S,Σu, Com, s

0, δu
〉

une communautée de service. Une relation R ⊆ St × S est une controllability, si pour tous
(t, s) ∈ R, a ∈ Σ = Σu ∪ Σt on a:

1. Si δu(s, a) 6= ∅ alors ∃t′.t a−→ t′ et pour tous s′ ∈ δu(s, a) on a (t′, s′) ∈ R.

2. ∃E(s, t) ⊆ Com tel que pour tous α ∈ E(s, t) on a s α|a−−→ s′ ⇒ ∃t′.t a−→ t′ ∧ (t′, s′) ∈ R.

3. Si t a−→ t′ alors:

(a) Soit δu(s, a) 6= ∅ et pour tous s′ ∈ δu(s, a) on a (t′, s′) ∈ R.
(b) Ou ∃α ∈ E(s, t).δu(s, α |a) 6= ∅ et pour tous s′ ∈ δu(s, α |a) on a (t′, s′) ∈ R

Lemma 5.2.1. Soit R une relation controllability entre le service but St =
〈
St,Σt, t

0, δt
〉

et
la communautée S =

〈
S,Σu, Com, s

0, δu
〉
. Alors il existe un orchestrateur avec information

parfaite, Ω, tel que pour tous (t, s) ∈ R, t ∈ St,s ∈ S, et pour tous a ∈ Σ = Σu ∪ Σt on a
δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅. De plus, pour tous t′ ∈ δt(t, a) et s′ ∈ δΩ(s, a) on a (t′, s′) ∈ R.

Le lemme ci-dessus nous aidera à demontré le théorème important qui caractérise l’existence
d’un orchestrateur en termes de l’existence de la relation de contrôlabilité entre la communauté
et le service but. Outre le modèle proposé, le théorème suivant est la première contribution de
cette thèse au problème de composition de comportement.

139

Theorem 5.2.2. Soit un service but St =
〈
St,Σt, s

0
t , δt

〉
et une communautée de n services

disponibles S =
〈
S,Σu, Com, s

0, δu
〉
, alors un orchestrateur avec information parfaite, Ω, tel que

SΩ est une composition de St ssi S est controllable par St.

Spécifications modales

Jusqu’à présent, le but de la composition de comportement était de satisfaire un seul comporte-
ment but. Nous pouvons étendre ce but en satisfaisant un ensemble de comportements but en
utilisant les spécifications modales. Les spécifications modales ont été introduites pour modéliser
des objectifs pour les problèmes de contrôle [FP07].

Definition 5.2.9 (spécification modale). Une spécification modale est un tuple St =
〈
St,Σt, t

0,May,Must
〉

où

• St est un ensemble fini d’états.

• t0 est l’état initiale.

• Σt est un ensemble fini d’actions.

• May ⊆ St × Σ× St est la relation des transitions permis.

• Must ⊆May est la relation de transitions nécessaire.

Après avoir défini la spécification modale on présente le problème de la composition.

Definition 5.2.10 (Spécification modale pour la composition de comportement). Soit S =〈
S,Σu, Com, s

0, δu
〉

une communautée de services disponibles et St =
〈
St,Σt, t

0,May,Must
〉

une
spécification modale. Soit Ω un orchestrateur et on note par SΩ =

〈
S,Σu, s

0, δΩ
〉

la communautée
orchestrée. On dit que SΩ est une composition de comportement pour la spécification modale St
ssi il existe une relation ρ ⊆ S × St tel que pour tous (s, t) ∈ ρ et tous a ∈ Σ = Σu ∪ Σt on a:

• (t, a, t′) ∈Must⇒ δΩ(s, a) 6= ∅ ∧ ∀s′ ∈ δΩ(s, a), (s′, t′) ∈ ρ

• δΩ(s, a) 6= ∅ ⇒ ∃t′.(t, a, t′) ∈May ∧ ∀s′ ∈ δΩ(s, a), (s′, t′) ∈ ρ

La caractérisation de l’existence d’une composition dans le cas de la spécification modale est
similaire aux cas précédents et dépend du concept de contrôlabilité.

Definition 5.2.11 (Controllabilité par rapport à une spécification modale). Soit S =
〈
S,Σu, Com, s

0, δu
〉

une communautée de services disponibles et St =
〈
St,Σt, t

0,May,Must
〉

une spécification modale.
On dit que S est controllable par rapport à St ssi il existe une relation R ⊆ S × St tel que
(s0, t0) ∈ R et pour tous (s, t) ∈ R on a:

• s a−→ s′ ⇒ ∃t′.(t, a, t′) ∈May ∧ (s′, t′) ∈ R

140

• ∃E(s, t) ⊆ Com tel que tous α ∈ E, b ∈ Σ on a s α|b−−→ s′ ⇒ ∃t′.(t, b, t′) ∈May ∧ (s′, t′) ∈ R

• (t, a, t′) ∈Must⇒

– Soit δu(s, a) 6= ∅ et pour tous s′ ∈ δu(s, a) on a (s′, t′) ∈ R
– Ou ∃α ∈ E(s, t) tel que δu(s, α |a) 6= ∅.

Le théorème suivant est une généralisation des résultats précédents.

Theorem 5.2.3. Soit S =
〈
S,Σu, Com, s

0, δu
〉

une communautée de service disponible et St =〈
St,Σt, t

0,May,Must
〉

une spécification modale. Un orchestrateur Ω existe tel que communitée
orchestrée SΩ =

〈
S,Σu, s

0, δΩ
〉

est une composition de comportement pour la spécification modale
St ssi S est controllable par rapport à St.

Orchestrateur avec informations partielles

Dans certains cas, les actions des services ne sont pas observables. Cela pourrait être le cas
lorsque les services et l’orchestrateur sont de différents fournisseurs, alors l’orchestrateur n’a pas
nécessairement accès aux services, sauf grâce à l’action de communication.

L’orchestrateur peut envoyer des messages à la communauté de services, à partir d’un en-
semble Com et ”se souvient” seulement des messages qu’il a déjà transmis. En d’autres termes,
l’orchestrateur est supposé observer seulement ses propres transitions.

Definition 5.2.12 (Message trace). Une message trace est une fonction σ : S × Σ∗ −→ Com∗

qui associe avec chaque état s ∈ S, atteint par l’intermédiaire d’une séquence d’actions τ ∈ Σ∗,
la sequence des messages σ(s, τ) ∈ Com∗.

Dans ce cas la relation de transition devient:

∆Ω(s0, τa) =
⋃

s∈∆(s0,τ)
δΩ(s, a)

où

δΩ(s, a) = δu(s, a)
⋃

α∈Com
δu(s, α |a)� Ω (σ(s, τ), α)

et

δu(s, α |a)� Ω(σ, α) =
{
∅ If Ω(σ, α) = 0
δu(s, α |a) If Ω(σ, α) = 1

C’est la même formulation qu’avant sauf la dépendance de l’orchestrateur sur le message trace
σ. Notez que la valeur de σ est dans Com∗.

141

Definition 5.2.13 (Composition de comportement avec information partielle). Soit St un service
but et S une communautée de services. Soit Ω un orchestrateur avec information partielle et note
par SΩ la communautée orchestré. On dit que SΩ est une composition de comportement de St avec
information partielle ssi pour toutes traces τ ∈ Σ∗ et pour tous états t ∈ ∆t(t0, τ), s ∈ ∆Ω(s0, τ)
on a:

∀a ∈ Σ, δt(t, a) 6= ∅ ⇔ δΩ(s, a)

Encore une fois, à l’exception de σ, c’est la même définition que 5.2.7.
Comme dans le cas d’informations parfaites, l’existence d’un orchestrateur est caractérisée

par l’existence d’un ensemble de relations au lieu d’une seule relation.

Relations d’observation

Avant d’introduire le concept de relations d’observation on donne quelques définitions nécessaires.

Definition 5.2.14 (State regular expression). Soit un état s, on associe une regular expression,
θs, avec s defini par le language L(θs) = {x ∈ Com∗ | ∃τ ∈ Σ∗ with σ(s, τ) = x}.

Definition 5.2.15 (Ensemble des observables). Soit Θ l’ensemble de tous les regular expressions
de la communautée. L’ensemble des observables, est un ensemble Z = {Rθ | θ ∈ Θ} où chaque
Rθ est defini par

Rθ = {(t, s) | ∀x ∈ L(θ)∃τ ∈ Σ∗.s ∈ ∆(s0, τ) ∧ t ∈ ∆(t0, τ)
∧σ(s, τ) = x}

Definition 5.2.16 (Relation d’observation). Un ensemble de relations Z ⊆ 2St×S est dit rela-
tions d’observation ssi : pour chaque R ∈ Z et pour tout (t, s) ∈ R on a:

1. si t a−→ t′ alors

(a) Soit ∃s′.s a−→ s′ ∧ (t′, s′) ∈ R
(b) Ou ∃s′, α ∈ Com,R′ ∈ Z avec

s
α|a−−→ s′ ∧ (t′, s′) ∈ R′

∧

∀(u, v) ∈ R(v α|b−−→ v′ ⇒ ∃u′.u b−→ u′ ∧ (u′, v′) ∈ R′)

2. si s a−→ s′ alors ∃t′.t a−→ t′ ∧ (t′, s′) ∈ R

142

Definition 5.2.17 (Controllabilité avec information partielle). Une communautée S est con-
trollable avec information partielle par rapport a un service but St ssi il existe un ensemble de
relations d’observation Z entre les états de S et St tel que ∃R0 ∈ Z with (s0, t0) ∈ R0.

La définition ci-dessus nous permet de caractériser l’existence d’un orchestrateur d’une manière
similaire au cas des informations parfaites.

Theorem 5.2.4. Soit S =
〈
S,Σu, Com, s

0, δu
〉

une communautée de services disponibles et
St =

〈
St,Σt, t

0, δt
〉

un service but. Un orchestrateur avec information partielle, Ω, existe tel
que SΩ est une composition de service de St ssi S est controllable avec information partielle par
rapport a St.

Services communiquants

Jusqu’à présent, tous les services que nous avons examiné ne communiquent pas les uns avec les
autres. La plupart des applications intéressantes de services, cependant, requièrent une certaine
forme de communication ou au moins un mécanisme permettant le résultat d’une action de cer-
tains services d’être utilisé comme une entrée par un autre service. Nous avons étendu notre
modèle avec un LTS supplémentaire appelé environnement. L’environnement interagit avec tous
les services et leur permet ainsi de communiquer. Une action par un service peut changer l’état
de l’environnement. Inversement, certaines actions de services peuvent dépendre de l’état de
l’environnement. L’environnement non seulement représente une abstraction de la manière dont
les données sont transférées, mais aussi il pourrait représenter le monde physique. Nous avons de-
montré que tous les résultats précédent, que nous avons présenté en l’absence de l’environnement
sont également applicables en présence de l’environnement.

143

Chapitre 3: Orchestrateur avec informations parfaites

Dans ce chapitre, nous étudions le problème de la composition lorsque l’orchestrateur avec infor-
mation parfaite. Ceci est fait en utilisant le fait qu’un orchestrateur existe si et seulement si une
relation de contrôlabilité existe entre la communauté et le service but. Nous avons développé un
algorithme efficace a la volée pour trouver une relation de contrôlabilité lorsqu’une existe.

Algorithme à la volée pour le Modèle Romain

Pour rendre la discussion simple, nous présentons d’abord l’algorithme pour le Modèle Romain,
qui est un cas particulier de notre modèle. Dans une autre section, nous présentons l’algorithme
pour nôtre modèle.

Soit S l’ensemble des états de la communauté des services disponibles, E l’ensemble des
états de l’environnement et ST l’ensemble des états du service but. L’algorithme maintient deux
relations A et B, les deux initialement vide.

La relation A ⊆ ST × E × S, représente la relation de contrôlabilité que l’algorithme essaie
de trouver. Notez qu’il pourrait y avoir plus qu’une relation.

Pendant l’exécution de l’algorithme des tuples sont ajoutés et enlevés de la relation A.
B ⊆ ST × ES× représente l’ensemble des tuples qui ont été trouvés par l’algorithme qu’ils
n’appartient pas à la relation de contrôlabilité. A noter que les tuples sont ajoutés à B mais
jamais retirées. L’ensemble B est maintenu de sorte qu’un tuple donné ne est pas traité plus
d’une fois. L’algorithme se compose de deux fonctions mutuellement récursives CONTROLE et
MATCH.

Algorithm 14: Main routine for computing the controllability relation
1 MAIN
2 B ← ∅
3 while changed=true do
4 A← ∅
5 changed=false
6 CONTROL(t0, e0, s0)
7 return A

Notez que les tuples sont ajoutés à A par l’algorithme dans un (preorder traversal). Pour ça
l’algorithme maintient une variable changed qui est mis Ã vrai à chaque fois un tuple est retiré
de A. Si, quand l’ algorithme termine changed = true, alors l’algorithme doit être exécuté à
nouveau.

Notez que dès le début de chaque passe, la relation A est détruit (c’est à dire la valeur ∅) alors
que la relation B qui maintient tout les tuples qui ne sont pas dans la relation de contrôlabilité

144

Algorithm 15: function CONTROL for the Roman Model case
1 CONTROL(t, e, s)

2 if 〈t, e, s〉 ∈ B then
3 return false
4 if 〈t, e, s〉 ∈ A then
5 return true

/* Assume that (t,e,s) are in controllability relation */
6 A = A ∪ 〈t, e, s〉
7 res = true

/* Check if controller can send messages to match all the transitions of
the target */

8 foreach a ∈ Σ do
9 foreach t

g(e),a−−−→ t′ ∧ e a−→ e′ do
10 res=MATCH (s, e a−→ e′, t

a−→ t′)
11 if res = false then
12 Goto Exit
13 Exit:
14 if res=false then
15 B = B ∪ 〈t, e, s〉
16 A = A− 〈t, e, s〉
17 changed = true

18 return res

est maintenue d’une passe à l’ autre.

Theorem 5.2.5. L’algorithme CONTROLE se termine après un nombre fini d’étapes et lorsque
il le fait retourne true ssi (t0, e0, s0) est dans la relation de contrôlabilité.

Theorem 5.2.6. La complexité de l’algorithme CONTROL est polynomiale dans le nombre
d’états d’un service donné et exponentielle dans le nombre de services.

Robustesse par rapport a la faillite d’un service

Dans les systèmes complexes, il est possible pour certains des services disponibles de faillir. Cela
pourrait être dû à la défaillance du service lui-même, son platform ou le canal de communication.
Nous soutenons que l’ algorithme proposée est robuste par rapport à l’échec d’un service. Nous
montrons que le recalcul de la solution à l’aide de l’algorithme proposé n’a pas besoin de partir
de zéro, mais peut utiliser des résultats déjaà obtenu avant la faillite du service pour accélérer le

145

Algorithm 16: function MATCH for the Roman Model case
1 MATCH(s, e a−→ e′, t

a−→ t′)

/* si is the ith component of s,i.e. s = 〈s1, . . . , sn〉 similarly for s′ and s′′

*/
2 for i = 1 to n do
3 foreach si

g,a−−→ s′i ∧ gi(e) = true do
4 ENQUEUE (Q,i,s′i)
5 res = false
6 while Q 6= ∅ ∧ res = false do
7 s′k = DEQUEUE(Q)
8 res=CONTROL(t′, e′, s′)
9 if res=false then

10 Goto Label
11 else
12 foreach sk

a−→ s′′k do
13 res=CONTROL(t′, e′, s′′)
14 if res = false then
15 Goto Label
16 Label:
17 return res

calcul. En particulier la relation B est maintenu. De cette manière, l’algorithme n’a pas à visiter
les état dans B.

L’idée principale se articule autour le théorème suivant.

Theorem 5.2.7. Aprés que l’algorithme trouve une solution si (t, e, s) ∈ B et service l échoue,
alors (t, e, s) ∈ B après l’échec.

Comme le montre le théorème ci-dessus, l’algorithme que nous proposons est robuste dans
le cas de l’échec. Si un service échoue après que la relation de contrôlabilité (et par conséquent
l’orchestrateur) est calculé, le calcul après l’échec réutilise les informations obtenues avant l’échec.

Abstraction du problème de composition

L’un des avantages importants de l’algorithme proposé est la capacité de le combiner avec des
heuristiques qui lui permettront de réduire l’espace de recherche et en consequant de réduire son
coùt. Nous allons le faire en utilisant une technique d’abstraction qui réduit le nombre d’états
du problème et rend donc la synthèse plus efficace.

146

L’abstraction proposé dans cette partie permet de déduire la non-existence d’un orchestrateur
pour la communauté d’origine et le service but de la non-existence d’une relation de simulation
entre la communauté abstraite et le service but abstrait. Plus important encore, quand une
simulation existe entre la communauté abstraite et le service but abstrait , le résultat est utilisé
en tant que branch-and-bound heuristique pour l’algorithme pour accélérer le calcul de la relation
de contôlabilité, et donc la orchestrateur.

Le service but est abstrait en utilisant la branching bisimulation [vGW96]. La communauté
est abstraite utilisant la closure relation.

Theorem 5.2.8. Si aucune relation de simulation existe entre le service but abstrait et la com-
munauté abstraite alors aucun orchestrateur Ω n’existe, telle que la communauté orchestré par
Ω est une composition du service but.

Heuristique pour la synthèse de l’ orchestrateur

Nous construisons une heuristique basée sur l’abstraction. Pour ce faire, on suppose que S̄t ≺
S̄ et le résultat peut être utilisé comme entrée pour l’algorithme afin d’accélérer l’exécution.
Supposons maintenant que S̄t ≺ S̄ et que la relation de simulation R[] entre les états de S̄ et S̄t,
a été déjà calculés. L’étape suivante consiste à incorporer les informations obtenu à partir de R[]
dans l’algorithme. Ceci est réalisé en éliminant certaines transitions qui ne sont pas compatible
avec l’information obtenue à partir de R[] ce qui permettra l’algorithme de visiter beaucoup moin
d’états.

Cette idée simple mais puissante est incorporé dans le fonctionn MATCH avec le résultat
montré dans l’algorithme 17.

Algorithme pour le modèle général

Pour la simplicité de l’exposé nous avons jusqu’à prśent limités au cas particulier du Modèle
Romain. Dans cette section, nous présentons l’ extension de l’algorithme pour Ã notre modèle
qui est plus général. Dans notre modèle l’orchestrateur (avec information parfaite) n’a pas de
contrôlabilité complète sur la communauté. En d’autres termes, il ya des transitions de la com-
munauté qui se produisent indépendamment de l’action du orchestrateur. Les autres transition
peuevent être commandée par l’ orchestrateur en envoyant des messages dans l’ ensemble Com

Aussi, nous allons utiliser la spécification modale pour le service but. Nous utilisons des flèches
en pointillés et solides pour les transitions May et Must respectivement. Si l’environnement est
à l’état e et le service but est à l’état t nous écrivons t g(e),a−−→ t′ pour ∃g ∈ G.(t, g(e), a, t′) ∈
May ∧ g(e) = true and t

g(e),a−−−→ t′ for ∃g ∈ G.(t, g(e), a, t′) ∈Must ∧ g(e) = true.
De même à ce que nous avons fait dans précédemment pour le case du Modèle Romain, nous

avont développé un algorithme qui utilise deux fonctions mutuellement récursive CONTROLE
et MATCH qui sont représentés sur les algorithmes 18 and 19.

147

Algorithm 17: function MATCH when abstraction is used
1 MATCH(s, e a−→ e′, t

a−→ t′)

/* si is the ith component of s,i.e. s = 〈s1, . . . , sn〉. Similarly for s′ and s′′

*/
2 for i = 1 to n do
3 foreach si

g(e),a−−−→ s′i do
/* Determine the equivalence classes */

4 x = D[t′]
5 y = C[s′]

/* Consider a transition ONLY if the equivalence classes are similar
*/

6 if R[x][y] = 1 then
7 ENQUEUE (Q,i,s′i)
8 res = false
9 while Q 6= ∅ ∧ res = false do

10 s′k = DEQUEUE(Q)
11 res=CONTROL(t′, e′, s′)
12 if res=false then
13 Goto Label
14 else
15 foreach sk

a−→ s′′k do
16 res=CONTROL(t′, e′, s′′)
17 if res = false then
18 Goto Label
19 Label:
20 return res

148

Algorithm 18: function CONTROL for the general model
1 CONTROL(t, e, s)

2 if 〈t, e, s〉 ∈ B then
3 return false
4 if 〈t, e, s〉 ∈ A then
5 return true

/* Assume that (t,e,s) are in controllability relation */
6 A = A ∪ 〈t, e, s〉
7 res = true
8 Θ← ∅

/* Check that all uncontrolled community transitions can be matched by a
May transition of the target */

9 foreach a ∈ Σ do
10 foreach s

g(e),a−−−→ s′ ∧ e a−→ e′ do
11 res = ∃t′.t g(e),a−−→ t′ ∧ CONTROL(t′, e′, s′)
12 if res = false then
13 Goto Exit
14 Θ← Θ ∪ {a}

/* Check if orchestrator can send messages to match the remaining Must
transitions of the target */

15 foreach a ∈ Σ−Θ do
16 foreach t

g(e),a−−−→ t′ ∧ e a−→ e′ do
17 res=MATCH (s, e a−→ e′, t

a−→ t′)
18 if res = false then
19 Goto Exit
20 Exit:
21 if res=false then
22 B = B ∪ 〈t, e, s〉
23 A = A− 〈t, e, s〉
24 changed = true

25 return res

149

Algorithm 19: function MATCH for the general model
1 MATCH((s, e a−→ e′, t

a−→ t′)

2 foreach α ∈ Com do
3 if s g(e),α|a−−−−−→ s′ ∧ CONTROL(t′, e′, s′) then

/* Found a match by using α. Now check it doesn’t cause "side
effects" */

4 foreach s
g(e),α|b−−−−−→ s′′ ∧ e b−→ e′′ do

5 res = ∃t′′.t g(e),b− → t′′ ∧ CONTROL(t′′, e′′, s′′)
6 if res = false then /*this α does not work, try another one*/
7 break;
8 return true

/* No α matched */
9 return false

150

Chapitre 4: Orchestrateur avec informations partielles

Dans ce chapitre, le cas d’un orchestrateur avec observation partielle est abordée. Dans une
telle situation, il existe des actions qui sont incontrôlable. De plus, l’orchestrateur ne sait pas
exactement dans quel état est la communautée. Rappelons que nous avons prouvé au chapitre 2
qu’un orchestrateur avec informations partielles existe si et seulement si un ensemble de relations
d’observations existe. Dans ce chapitre nous abordons deux contributions au problème de com-
position de comportement. D’abord, nous développons un algorithme point-fixe pour calculer
l’ensemble des relations d’observation. Nous étudions également la complexité de l’ algorithme.
La deuxième contribution est un algorithme à la volée pour calculer l’ensemble des relations
d’observations.

Definitions

Le concept d’ observation est formalisé come suit. Soit S =
〈
S,Σu, Com, s

0, δu
〉

une commu-
nautée de services disponibles, et St =

〈
St,Σt, t

0, δt
〉

un service but don defini (see definition
2.4.1) la fonction message trace

σ : S × Σ∗ −→ Com∗

qui retourne la trace observable pour un état dans S et une trace dans Σ∗
Aussi la fonction de transition pour la communautée orchestré par un orchestrateur avec des

informations partielles est donné par:

δΩ(s, a) = δu(s, a)
⋃

α∈Com
δu(s, α | a)� Ω(σ(s, τ), α)

Où la trace τ ∈ Σ∗ est determiné par l’ history de s calculé par la fonction de transition qui
est defini recursivement:

∆Ω(s0, ε) = {s0}

∆Ω(s0, τa) =
⋃

s∈∆Ω(s0,τ)

[
δu(s, a)

⋃
α∈Com

δu(s, α | a)� Ω(σ(s, τ), α)
]

La composition doit satisfaire, pour toute trace τ et toute action a, si s ∈ ∆Ω(s0, τ) et
t ∈ ∆t(t0, τ) alors:

δt(t, a) 6= ∅ ⇔ δΩ(s, a) 6= ∅

On a deja demontrer(theorèm2.4.1), qu’un orchestrateur avec information partielle existe ssi
il existe un ensemble de relations d’ observation entre la communauté et le service but.

151

Algorithm 20: CLOSED returns true iff the input relation is closed with respect to un-
controllable actions
1 CLOSED(R)

2 foreach (s, t) ∈ R do
3 foreach s

a−→ s′ do
4 if t a−→ t′ then
5 if (s′, t′) /∈ R then
6 return false
7 else
8 return false
9 return true

Algorithme point-fixe

L’algorithme point-fixe presenté dans cette section depend du concept de relation fermée qui est
defini par:

Definition 5.2.18. Soit S =
〈
S,Σu, Com, s

0, δu
〉

une communautée de services disponibles et
St =

〈
St,Σt, t

0, δt
〉

le service but. Une relation R ⊆ S×St est dite fermée par rapport aux action
uncontrôlables ssi:

∀(s, t) ∈ R,∀a ∈ Σu : s a−→ s′ ⇒ ∃t′.t a−→ t′ ∧ (s′, t′) ∈ R

La définition ci-dessus prend essentiellement soins des transitions la incontrôlables. Ce qui
reste est de synthétiser un orchestrateur pour contrôler les actions contrôlables. À cette fin,
nous utilisont un algorithme point-fixe similaire au cas d’information parfaite. Cet algorithme
appartient également à la catégorie que nous avons appelé ”point fixe” parce que le point de
départ est tout l’ensemble de tous les sous-ensembles de S × ST .

Z0 = 2S×St

Aprés, l’ensemble de toutes les relations fermés dans Z0 est calculé:

Z1 = {R ∈ Z0 | CLOSED(R)}

Le calcul de l’ensemble Z1 est représentée dans l’algorithme 21. Les accolades dans la ligne 4
de l’algorithme sont utilisé pour insister sur le fait qu’une relation fermée R est un des élément
de Z1. Soit la fonction suivante:

152

Algorithm 21: Computing Z1

1 Z1 ← ∅
2 foreach R ⊆ S × St do
3 if CLOSED (R) then
4 Z1 ← Z1 ∪ {R}
5 return Z1

F (Zi) = {R ∈ Zi | ∀(s, t) ∈ R :

t
a−→ t′ ⇒

(
∃s′.s a−→ s′ ∧ (s′, t′) ∈ R

)
(5.2a)

∨(
∃α ∈ Com, s′ ∈ S,R′ ∈ Zi.s

α|a−−→ s′ ∧ (s′, t′) ∈ R′ (5.2b)

∧

∀(u, v) ∈ R : u α|b−−→ u′ ⇒ v
b−→ v′ ∧ (u′, v′) ∈ R′

)
(5.2c)

Pour calculer l’ensemble des relations d’observations l’algorithme applique plusieurs foit la
fonction F commena̧ant par l’ensemble des relations Z1. Par conséquent, l’algorithme calcule la
séquence:

Zi+1 = F (Zi)

la relation Z0 et donc Z1 est fini, alors le procédure ci-dessus se termine après un nombre fini
d’étapes, soit j, defini par F (Zj) = Zj . L’ensemble des relations Zj a, par la construction de Z1
et F , les propriétés d’un ensemble de relations d’observations.

Theorem 5.2.9. Soit N =|S × St | alors la complexité de l’algorithm point-fixe est

O
(
N4 · 22N

)

Un algorithme à la volée

Dans cette section, nous présentons un algorithme pour construire progressivement les relations
d’observations. Cet approche incrémentale est plus efficace que le calcul de toutes les sous-
ensembles.

153

Algorithm 22: On the fly algorithm
1 clos← CLOSURE((∅, s0, t0))
2 if clos = ∅ then
3 return ∅
4

5 changed← true
6 while changed = true do
7 changed← false
8 Z ← ∅
9 res = CONTROL(clos)

10 if res = false then
11 break
12 return Z

Le but de l’algorithme à la volée présenté dans cette section est de calculer un ensemble
de relations d’observations, Z. Une condition nécessaire pour une relation R d’appartenir à
Z est que R soit fermé. Nous définissons un procédure qui calcule la fermeture d’un tuple.
Cette opération de fermeture est effectuée le procédure CLOSURE qui est défini d’une manière
inductive et présenté dans l’algorithme 23.

La fonction CONTROL(R) retourne vrai si la relation R appartient à l’ensemble cherché des
relations Z, sinon elle retourne faux. Le fonctionnement generale de l’algorithme est représenté
dans l’algorithme 22.

La fonction CONTROL prend une relation R en tant que paramètre et retourne vrai si pour
chaque (s, t) dans R et pour chaque transition du service but on peut trouvé une transition cor-
respondante de la communautée. Cette correspdondance est effectuée par la fonction MATCH.
Le procédure MATCH, utilise un procédure auxiliaire CHECK

Exactitude et complexité

Theorem 5.2.10. Let L be the total number of uncontrollable transitions of the community and
N =|S×St | the on-the-fly algorithm computes the set of observation relations and its complexity
is

|L | ·2N ·N2 · (N +N2)2N−2

= O(|L | ·N4 · 2N)

154

Algorithm 23: Function CLOSURE
1 CLOSURE(R,(s, t))
2 if (s, t) ∈ bad then
3 return ∅
4 if (s, t) ∈ R then
5 return R
6 R′ ← R ∪ {(s, t)}
7 foreach s

a−→ s′ do
8 if t a−→ t′ then
9 R′ ← CLOSURE(R′, (s′, t′))

10 if R′ = ∅ then
11 bad← bad ∪ {(s′, t′)}
12 return ∅
13 else
14 bad← bad ∪ {(s, t)}
15 return ∅
16 return R′

Algorithm 24: Function CONTROL
1 CONTROL(R)

2 if R ∈ Y then
3 return false
4 if R ∈ Z then
5 return true
6 Z ← Z ∪ {R}
7 foreach (s, t) ∈ R do
8 foreach t

a−→ t′ do
9 res = MATCH (R,s,t a−→ t′)

10 if res = false then
11 GOTO Exit
12 return true

13 Exit: Z ← Z −R
14 Y ← Y ∪R
15 changed← true
16 return false

155

Algorithm 25: Function MATCH
1 MATCH (R, s, t a−→ t′)
2 if s a−→ s′ then
3 return true
4 foreach α ∈ Com do
5 if s α|a−−→ s′ then

/* check to see if this α leads to a closed set */
6 R′ ←CHECK (R,α)
7 if R′ = ∅ then

/* try different α this one leads to non-closed set */
8 Continue
9 else

10 res =CONTROL (R′)
11 if res = true then
12 return true

/* tried all α’s. none worked */
13 return false

Algorithm 26: Function CHECK
1 CHECK (R,α)
2 R′ ← ∅
3 foreach (u, v) ∈ R do
4 if u α|b−−→ u′ then
5 if v b−→ v′ then
6 clos = CLOSURE(∅, u′, v′)
7 if clos = ∅ then
8 return ∅
9 else

10 R′ ← R′ ∪ clos
11 else
12 return ∅
13 x
14 return R′

156

Chapitre 5:Conclusion

Dans cette thèse, nous avons proposé un nouveau modèle et des solutions efficaces pour le
problème de composition de comportement.

Dans chapitre 2 nous avons fourni un cadre pour la modélisation du problème de composition
de comportement. Cela a été fait en présentant un modèle suffisamment riche pour les services
disponibles, le service but, l’orchestrateur, et l’environnement. L’équivalence des comportement
entre la communauté sous le contrôle partiel par l’ orchestrateur, et le service but était défini.
On a montré que cette équivalence de comportement a un lien direct avec le problème classique
de la théorie du contrôle. Notre modèle étend le Modèle Romain de deux façons. Premièrement,
contrairement au Modèle Romain, nôtre modèle inclus des actions qui sont incontrôlables par
l’orchestrateur. Deuxièmement, le comportement du service but peut être spécifié en utilisant les
spécifications modales ce qui permet des spécifications plus expressives, sans coût supplémentaire.

Toujours dans chapitre 2, l’existence d’un orchestrateur pour le cas des informations par-
faites et partielles a été étudié. Tout d’abord l’existence d’un orchestrateur pour le cas des
informations parfaite a été lié à l’existence d’une relation entre la communauté et le service but
appelé contrôlabilité. Nous avons prouvé qu’un orchestrateur avec des informations parfaite ex-
iste si et seulement si une relations de contrôlabilité existe entre la communauté et le service but.
Nous avons aussi montré comment l’ orchestrateur peut être synthesisé à partir de la relation
de contrôlabilité. Le cas où l’orchestrateur a des information partielle a été aussi étudié. Nous
avons prouvé qu’un orchestrateur avec des informations partielles existe si et seulement si un
ensemble de relations, appelé relations d’observation, existe entre la communauté et le service
but. Le concept de relations d’observation est similaire à la notion de régions pour les réseaux
de Petri. Nous avons également montré que les mêmes résultats peuvent être obtenu si on utilise
les spécifications modales pour le service but, et sans aucun coût supplémentaire.

Nous avons aussi proposé des algorithmes pour trouver la relation de contrôlabilité, pour le cas
des information parfaites, et les relations d’observations dans le cas des informations partielles.

Dans chapitre 3 nous avons proposé un algorithme à la volée pour calculer la relations de
contrôlabilité pour le cas des informations parfaites. L’ avantage de cet algorithme est que,
contrairement à des algorithmes de point-fixe, il n’est pas nécessaire que l’algorithme visite tout
l’espace d ’état de la communauté afin d’obtenir une solution. Étant donné que l’espace d’état de
la communauté est exponentiel en nombre de services, cette propriété abouti à une amélioration
significative dans la pratique. Nous avons prouvé que, dans le pire des cas l’algorithme est
polynomial par rapport à la taille d’un service donné et exponentielle par rapport au nombre
de services, une complexité qui correspond à la limite inférieure connu. Nous avons également
montré que notre algorithme est robuste par rapport à l’échec d’un service. Si un service échoue,
le calcul de la relation de contrôlabilité ne démarre pas à partir de zéro, mais réutilise des
informations qui ont été obtenues avant l’échec. Toujours dans chapitre 3 nous avons proposé
une méthode d’abstraction qui réduit considérablement l’espace d’état de la communauté. Nous
avons prouvé que si la communauté abstraite ne simule pas le service but abstrait alors un
orchestrateur n’existe pas. En outre, quand une simulation existe, elle est utilisé comme une

157

heuristique pour l’algorithme à la volée pour accélérer la recherche pour une solution.
Dans chapitre 4 nous avons montré comment les relations d’observation peuvent être calculés

en utilisant un algorithme de point-fixe. La complexité de l’algorithme a été étudié et on a
démontré qu’il est 2EXPTIME par rapport au nombre de services. Nous avons également pro-
posé un algorithme à la volée pour calculer les relations d’observation. Nous avons prouvé que
l’algorithme à la volée a la même complexité que l’algorithme point-fixe. L’importance d’un al-
gorithme à la volée pour le cas des informations partielles est que la plupart des autres méthodes
doit calculer les belief states, une sorte de procédure de déterminisation, avant de tenter de trou-
ver une solution. La complexité d’une tel procédure de déterminisation est exponentielle par
rapport au nombre de services qui doit être fait, même si aucune solution n’existe pas. Par
contraste, notre algorithme à la volée fait la déterminisation à la volée et peut ainsi déterminer
rapidement si un problème n’a pas une solution sans pre-calculer les belief states.

Travaux futurs

Le travail présenté dans cette thèse peut être étendu dans de nombreux directions. Ci-dessous
nous discutons certaines possibilités.

Implementation des algorithmes

Il est important d’implementer les algorithmes proposés et les utiliser avec des exemples pratique.
Le défi est plutôt de transformer les services en automates . Par exemple la traduction de
documents BPEL dans les systèmes de transitions étiquetées avec conditions préalables. Dans
notre modèle, les services communiquent via un environnement. Même si intuitivement on peut
imaginer le principe général, créer un environnement qui permet de simuler la communication
entre services comme spécifié dans les documents BPEL est une tâche difficile qui sera tentée à
l’avenir.

Reduction d’états

La technique d’abstraction que nous avons proposée dans chapitre 3 est prometteuse, mais elle est
un peu ad-hoc. Nous prévoyons effectuer une étude plus systématique en utilisant la reduction
property preserving pour les systèmes de transitions étiquetées. Un approche serait d’utiliser
les règles proposé par Murata [Mur89] pour les réseaux de Petri et les adapter à notre modèle.
Un autre approche serait de considérer le service but comme formule logique et ensuite utiliser
l’abstraction et le raffinement technique utilisée dans la vérification de modèle [CGL94]. Une
approche complémentaire serait d’utiliser les (OBDD) [Bry92] pour représenter les services. Les
OBDDs fournissent une représentation efficace des systèmes a transitions étiquetées. Nous avons
déjà fait quelques travaux dans cette direction [FF12], mais le principal défaut est que les OBDDs
sont utilisés avec des algorithmes de point-fixe. Utilisation OBDDs avec des algorithmes à la volée
n’a pas été abordée auparavant et il serait une piste importante pour poursuivre.

158

Jeux de parité

Il ya un lien bien connu entre les jeux de parité et la synthèse d’un contrôleur [AVW03]. Il
serait intéressant d’explorer la connexion avec la composition de comportement. Il ya déjà
un certain travail sur la relation de la composition de comportement, dans le cas particulier
du Modèle Romain, avec les jeux de sécurité (Safety games) tels que [GPS13]. Les approches
classiques pour trouver une solution aux jeux de parité, par exemple [Zie98] [VJ00], utilisent
ce qu’on appelle la stratégie d’itération: commençant par une stratégie initiale, ces méthodes
améliorent la stratégie actuelle jusqu’à ce qu’ils trouvent une stratégie gagnante. Cette procédure
itérative est très similaire aux méthodes de point-fixe que nous avons discuté dans cette thèse.
Récemment, certains algorithmes prometteurs pour calculer des stratégies gagnantes, à la volée,
pour les jeux de parité ont été proposées [FL12]. Dans l’avenir, nous prévoyons explorer cette
connexion plus loin. En particulier, nous prévoyons d’étudier le potentiel de en utilisant les
algorithmes de recherche locale proposées dans [FL12] pour résoudre le problème de composition
de comportement.

Qualité de service (QoS) et sécurité

La plupart des modèles de composition de services, y compris le nôtre, considèrent les services
comme équivalents et donc si deux services peuvent fournir la même action le choix du service est
arbitraire. Dans de nombreuses situations, cependant, l’utilisateur ou même les services ont des
préférences. Étant donné que deux services peuvent effectuer une certaine action, il est possible
que l’utilisateur ait une préférence pour le service devrait en fait exécuter l’action. Cela pourrait
être en raison de la qualité de service ou pour une exigence de sécurité. Par exemple, un service
préfère communiquer avec un autre service s’il utilise un mécanisme spécifique d’authentification.
Dans la plupart des approches de QoS pour la composition de service, par exemple [OAS+12],
on obtient une composition donnée puis son degré de préférence est calculée. Par conséquent,
tout algorithme utilisant une telle procédure doit calculer toutes les solutions avant de décider
la solution préférée. Intégrer la QoS et les contraintes de sécurité dans nos algorithmes à la
volée est une tâche difficile car ces algorithmes ont une vue ”locale” de la composition et le choix
”optimal” du point de vue local ne conduit pas nécessairement à un choix ”optimal” global .

Distributed orchestration

Un dernier objectif important est de gérer l’orchestration distribué. En pratique, tous les services
n’appartient pas au même fournisseur de services. Un approche utile pour une orchestration
distribuée serait de diviser la spécification globale de la composition en sous-spécifications. Une
possibilité consiste à diviser la spécification basée sur les actions disponibles de chaque service
fournisseur. Puis chaque fournisseur aura la tâche de synthétiser un sous-orchestrateur pour une
sous-spécification composé uniquement d’actions qui peuvent être effectuées par le fournisseur.
Une fois que tous les sous-orchestrateurs sont synthétisés, un orchestrateur global est synthétisé
en combinant les sous-orchestrateurs de manière à satisfaire la spécification globale.

159

Le principal défi de cette approche est de fournir une procédure pour diviser la spécification
globale selon certaines propriétés et donner à chaque fournisseur de services un but pour sa
propre orchestration. La difficulté viendra de la nécessité de diviser la spécification globale d’une
manière qui garantit que un méta-orchestrateur existe. Une solution peut provenir des approche
(component-based design) [RBB+11]. Le calcul de formules de quotient peut s’avérer être un
concept clé pour résoudre le problème d’orchestration distribué.

	Abstract
	Résumé
	Contents
	List of Figures
	List of Algorithms
	Chapter 1 Introduction
	1.1 Service Oriented Computing
	1.2 Our approach
	1.3 Thesis objectives and contributions
	1.4 Related work
	1.4.1 Work of Balbiani et. al.
	1.4.2 Work of Bertoli et. al.
	1.4.3 Work of De Giacomo et. al.
	1.4.4 Work of Oster et. al.
	1.4.5 Comparison with our work

	1.5 Organization of the thesis

	Chapter 2 Framework and general results
	2.1 Introduction
	2.2 A model of services
	2.2.1 Roman Model

	2.3 Composition with perfect information
	2.3.1 Service composition
	2.3.2 Controllability
	2.3.3 Relation to control theory
	2.3.4 Modal specifications

	2.4 Orchestrator with partial information
	2.4.1 Observation relations

	2.5 Communicating services
	2.5.1 Orchestrator with perfect information
	2.5.2 Orchestrator with partial information

	2.6 Conclusion

	Chapter 3 Orchestration under perfect information
	3.1 Introduction
	3.2 The Roman Model and fixpoint methods
	3.2.1 Roman Model
	3.2.2 Example 1
	3.2.3 Fixpoint approach

	3.3 On-the-Fly algorithm for the Roman Model
	3.3.1 The algorithm
	3.3.2 Example 2

	3.4 Correctness and complexity of the algorithm
	3.5 Handling service failure
	3.6 Abstraction of the composition problem
	3.6.1 Quotient services and state reduction
	3.6.2 Heuristic for orchestrator synthesis

	3.7 Algorithm for the general model
	3.8 Conclusion

	Chapter 4 Orchestration under partial information
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Example
	4.1.3 Definitions

	4.2 Fixpoint algorithm
	4.2.1 Algorithm
	4.2.2 Complexity

	4.3 On-the-Fly Algorithm
	4.3.1 Algorithm
	4.3.2 Correctness
	4.3.3 Complexity

	4.4 Conclusion

	Chapter 5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work
	5.2.1 Implementation of the algorithms
	5.2.2 State reduction of LTS
	5.2.3 Partity games
	5.2.4 Quality of service and security
	5.2.5 Distributed orchestration

	Bibliography
	Appendix
	Résumé en Français

