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Chapter 1

Introduction

1.1 Thesis’s motivation

A wide variety of real-world optimization problems can be modeled as weighted constraint
satisfaction problems (WCSPs). A WCSP or a cost function network (CFN) consists of a
set of variables and a set of cost functions where the costs are associated to assignments to
the variables, expressing preferences between solutions. The goal is to find an assignment
to the variables which minimizes the combined costs. This kind of problem has applications
in resource allocation [Cabon et al., 1999], combinatorial auctions, bioinformatics [Traoré
et al., 2013]. . .

WCSPs, as many optimization problems, can be solved by Depth First Branch-and-Bound
Search. This method allows to keep a reasonable space complexity but requires good
(strong and cheap) lower-bounds on the minimum cost of a node to be efficient. The
quality of lower-bounds should be put into balance with their computational time in order
to accelerate the search.

In the last years, increasingly better lower-bounds have been designed by enforcing soft con-
sistencies in WCSPs. Soft consistencies aim at simplifying WCSPs by defining properties
on the cost of values or assignments of values that must be satisfied. Soft consistencies are
enforced by iteratively applying so-called Equivalence Preserving Transformations (EPTs,
[Cooper and Schiex, 2004]). EPTs extend the traditional local consistency operations used
in classical CSPs by moving costs between cost functions of different arities while keeping
the problem equivalent. By ultimately moving cost to a constant function with empty
scope, they are able to provide a lower-bound on the optimum cost which can be incre-
mentally maintained during Branch-and-Bound search.

Among the proposed soft consistencies for WCSPs, soft arc consistencies such as AC*,
DAC*, FDAC* or EDAC* [Larrosa et al., 2005], extended from the classical AC used in
classical CSPs, require a small enforcing time but do not always provide tight lower-bounds
that lead to massive pruning. They are enforced by applying, in an arbitrary order, specific
EPTs, called Soft Arc Consistency (SAC) operations, which shift costs between values and
cost functions of arity either greater than 1 or equal to 0 (defining the lower-bound).
Optimal Soft Arc Consistency (OSAC) can provide optimal lower-bounds (in the sense
that applying any sequence of SAC operations cannot result in a better lower-bound) but
is too expensive for general use. Instead, Virtual Arc Consistency (VAC [Cooper et al.,
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2 Chapter 1. Introduction

2008, 2010]) is cheaper than OSAC while providing lower-bounds stronger than other soft
arc consistencies.This is obtained by using a planned sequence of SAC operations defined
from the result of enforcing classical AC on a classical constraint network which forbids
combinations of values with non zero costs.

Beyond arc consistencies, up to now, only few high order consistencies have been pro-
posed for WCSPs such as complete k-consistency [Cooper, 2005] extended from hard
k-consistency, Tuple Consistency [Dehani et al., 2013] considered soft arc consistencies
applied to tuples (combinations of values) instead of values, . . .

Indeed, this thesis is motivated by two questions. First, is it possible to improve the
efficiency of enforcing for existing soft consistencies? Second, can we propose new soft
consistencies for WCSPs that provide strong lower-bounds but have a reasonable time
complexity?

We realized that VAC can be accelerated by exploiting its iterative behavior. Indeed, each
iteration of VAC requires to enforce classical AC on the hardened version of the current
network. But this network is just the result of the incremental modifications done by EPTs
applied in the previous iterations. Similarly, maintaining VAC during search requires to
enforce classical AC on the hardened version of the current network which are slightly
modified due to branch operations. This situation, where AC is repeatedly enforced on
incrementally modified versions of a constraint network, has been previously considered
in Dynamic Arc Consistency algorithms [Barták and Surynek, 2005; Bessière, 1991] for
Dynamic CSPs [Dechter and Dechter, 1988]. Thus, integrating Dynamic Arc Consistency
into VAC is a potential approach for improving the enforcing time of VAC by inheriting
the work done in previous iterations of VAC or in parent nodes.

Soft consistencies can be extended from hard consistencies by replacing the notion of com-
patibility in classical CSPs by the notion of zero-cost in WCSPs. For example, hard arc
consistency in binary CSPs requires that any value of any variable has a compatible value,
called an (hard) arc support, in every adjacent domain. Soft arc consistencies redefine
this feature by replacing the compatibility of the supporting values by the requirement of
zero-cost between values and their supporting values.

Based on this principle, we can create strong consistencies for WCSPs by extending (hard)
high order consistencies (HOCs). Among hard HOCs, we are interested in the group of
triangle-based consistencies consisting of RPC, PIC, maxRPC because of two reasons: (1)
these are domain-based consistencies; (2) they have a strong pruning power while having a
reasonable time complexity. Thus, extending these potential hard consistencies to WCSPs
would lead to strong soft consistencies, as desired.

In summary, the objective of this thesis is to focus on soft consistencies for efficiently solving
WCSPs. We would like to improve the enforcing time of VAC by using Dynamic Arc
Consistency for maintaining classical Arc Consistency in the hardened version of WCSPs.
In addition, we would like to investigate soft high order consistencies by extending hard
triangle-based consistencies to WCSPs in order to provide strong lower-bounds for Branch-
and-Bound search.
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1.2 Thesis’s organization and contributions

Organization

This thesis consists of three chapters. A background survey in the domain of (Weighted)
Constraint Satisfaction Problems is introduced in the first chapter while the thesis contri-
butions are presented in the two last chapters.

Chapter 2 outlines in the first section background knowledge on classical CSPs and hard
consistencies. Then, it reviews Weighted CSPs, operations of shifting costs, basic soft
consistencies and algorithms enforcing them.

In Chapter 3, we propose Dynamic Virtual Arc Consistency, an improved version of Virtual
Arc Consistency for WCSPs. An enforcing algorithm and the properties of the algorithm
are also discussed in this chapter.

In the last chapter, we propose soft high order consistencies extended from hard RPC, PIC
and maxRPC. A general comparison on the performance of soft domain-based consistencies
is also proposed in this chapter. The enforcing algrorithms and experimental results of soft
high order consistencies will be presented.

Contributions

This thesis has two main contributions for efficiently solving WCSPs: improving the ef-
ficiency of enforcing VAC and proposing high order consistencies. An outline of these
contributions is presented below.

Dynamic virtual arc consistency

By integrating Dynamic Arc Consistency inside VAC algorithm to maintain hard Arc
Consistency in the hardened version of WCSPs P , called Bool(P ), we can dynamically
maintain VAC during iterations of VAC and during search. This new algorithm is named
Dynamic Virtual Arc Consistency (DynVAC). We have proposed two variants of DynVAC,
called normal and full DynVAC when maintained during search.

• Normal DynVAC maintains arc consistency in Bool(P ) inside each search node,
i.e. during iterations of VAC, and rebuilds Bool(P ) from scratch when the search
branches out.

• Full DynVAC maintains arc consistency in Bool(P ) both inside nodes and during
search.

We have given an implementation for two variants of DynVAC in the solver toulbar2.
Domain-based revision order heuristics are also implemented inside each variant of Dyn-
VAC.
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Soft high order consistencies

We have proposed 18 soft high order consistencies extended from hard RPC, PIC, and
maxRPC, with six variants for each one. The six soft consistencies based on hard RPC are
simple RPC, directional RPC, full directional RPC, existential RPC, existential directional
RPC and virtual RPC. This is the same for the cases of hard PIC and hard maxRPC.

Two “stronger” relations for comparing soft domain-based consistencies have also been
proposed in this thesis. Based on these relations, we have given a general comparison of
our soft high order consistencies and soft arc consistencies.

We have designed algorithms for enforcing soft high order consistencies extended from hard
PIC and maxRPC. These algorithms have been characterized in terms of termination, time
and space complexities.

Finally, an implementation of soft RPCs and soft maxRPCs in toulbar2 has been done
and experimental results are presented. The impact of our consistencies on the search has
also been analyzed.



Chapter 2

Background

2.1 Constraint satisfaction and hard consistencies

2.1.1 Constraint satisfaction problems

Definition 2.1 (Constraint satisfaction problem) A constraint satisfaction problem
(CSP) or constraint network (CN) is a tuple P = (X,D,C). X is a finite set of variables.
Each variable xi ∈X has a finite domain D(xi) ∈D. C is a finite set of constraints. Each
constraint cS ∈ C is a relation defined on a subset of variables S ⊆ X that specifies the
allowed combinations of values for variables on S. S and ∣S∣ are called the scope and the
arity of the constraint.

Many academic and real problems can be formulated as CSPs. For example, the N -queens
problem can be modeled as a CSP with N variables X = (x1, . . . , xN) where xi is defined
for the queen placed in the column i. The value of xi represents its line number and the
domain of xi is a set of integersD(xi) = {1..N}. The constraints on non-sharing of lines and
diagonals by 2 queens xi and xj are respectively represented as xi ≠ xj and ∣xi−xj ∣ ≠ ∣i−j∣.

Definition 2.2 (Normalized CSP) A CSP is normalized iff there does not exist any two
constraints defined on the same scope.

A constraint defined over a scope of k variable is called k-ary. The notation ci and cij
denote the unary and binary constraint on variable xi and on variables xi, xj respectively.
A binary CSP has only unary and binary constraints and a non-binary CSP has also
non-binary constraints.

Definition 2.3 (Instantiation and Solution) Given a CSP P = (X,D,C).

• An instantiation τS on a set of variables S ⊆X is an assignment of values for variables
in S: τS ∈ `(S). S is called the scope of τ .

• τS is a partial instantiation if S ⊂X or a complete instantiation if S =X.

• An instantiation τS is locally consistent if it satisfies all constraints cT such that
T ⊆ S.

• A solution of the CSP is a complete instantiation which is locally consistent. The set
of solutions of P is denoted by sol(P ).

5
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• An instantiation τS is globally consistent if it is locally consistent and can be extended
to a solution.

An instantiation is also called a tuple. For a tuple τS , a variable x ∈ S and a subset W ⊂ S,
τ[x] and τ[W ] denote respectively the value of x in τS and the projection of τS on W
which is the set of values assigned by τS for the variables of W . For a constraint cS and a
tuple τS , we denote by τS ∈ cS the fact that τS is an allowed instantiation of cS and τS /∈ cS
the fact that τS is forbidden. When the variable x is assigned to a value a ∈ D(x), this
is denoted by (x, a) or xa. For a given CSP, the notations n, d, e respectively denote the
number of variables, the maximum domain size and the number of constraints of the CSP.

The task of a CSP is to find a complete instantiation of values which satisfies all the
constraints of the problem. If there does not exists any such solution, the problem is
unsatisfiable, inconsistent or unfeasible. Otherwise, the problem is satisfiable, consistent
or feasible. Deciding consistency is a NP-complete problem.

There are three main approaches for solving constraint satisfaction problems: backtrack-
ing search [van Beek, 2006], local search [Hoos and Tsang, 2006], and dynamic program-
ming [Dechter, 2006]. Backtracking search as well as the technique “constraint propagation”
for improving its efficiency will be recalled in this thesis.

2.1.2 Backtracking search

Backtracking search [Golomb and Baumert, 1965] is the simplest method for solving CSP
problems that was first proposed by. It is a modified depth-first search of a tree. The idea
is to search in a tree of variable assignments in which each intermediate node is a partial
variable assignment and each leaf is a complete variable assignment. As we move down in
the tree, we may assign (or restrict the domain of) a variable and a new node is created.
Then, the partial variable assignment of that node will be checked for local consistency to
determine whether the node can be extended to a solution or not. If the node cannot lead
to a solution, it is a dead-end and the search backtracks to the parent node. Otherwise, an
unassigned variable will be chosen to be assigned or restricted and the search will continue
at the deeper level. A leaf satisfying all the constraints is a solution of the problem.

In the literature, there exists many backtracking search algorithms that are distinguished
by the way constraints at a node are checked and by the way the search backtracks. For
example, the naive backtracking search only checks constraints with no unassigned variable
at a node while the forward checking algorithm [McGregor, 1979; Haralick and Elliot, 1980]
only checks constraints with one assigned variable and one unassigned variable. In the
naive backtracking search, the root of the search tree is an empty variable assignment.
The partial assignment on the path to each node is checked to determine whether it is
locally consistent or not. If a constraint check fails, the search stops its depth moves and
the next value in the domain will be assigned to the current variable. If no value is left,
the search will backtrack up to the most recently assigned variable.

2.1.3 Constraint propagation

Constraint propagation is a technique for improving the efficiency of backtracking search. It
focuses on search space reduction by early elimination of locally inconsistent instantiations.
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The idea is to maintain a necessary property, called a local consistency, that values or
instantiations of values need to satisfy to belong to solutions. It requires for each scope S of
a given size that each locally consistent instantiation τS can be extended to an instantiation
τS′ on a larger scope: S ⊂ S′ and τS′[S] = τS . The simplest consistency for CSPs is node
consistency which requires that each domain value must satisfy all unary constraints defined
for the variable.

Definition 2.4 (Node consistency) A variable x is node consistent iff for every value
v ∈ D(x), for every unary constraint cx, v ∈ cx. A CSP is node consistent if every of its
variables is node consistent.

For a local consistency, a value (or instantiation) is said to be locally consistent if it
satisfies the given local consistency and is called locally inconsistent otherwise. The locally
inconsistent values (instantiations) cannot belong to any solution of the problem. They can
therefore be removed from the problem without removing solutions. A problem is called
locally consistent w.r.t a local consistency property if all its values (or instantiations) are
locally consistent. Local consistencies are grouped in two classes: “domain-based” for
the ones which define conditions on values and “constraint-based” for those which define
conditions on instantiations of arity higher or equal to 2.

Every local consistency can be enforced by a transformation, called constraint propagation
or filtering, which iteratively removes locally inconsistent values (instantiations) until no
such value (instantiation) exists. This transformation changes the problem while preserving
its equivalence in terms of the set of solutions. The strength of constraint propagation
comes from the fact that the removal of locally inconsistent values (instantiations) can
make other values (instantiations) no longer able to locally satisfy the related constraints,
and thus also locally inconsistent.

The final result of constraint propagation for a consistency Φ on a CSP P is called the
Φ−closure of P , denoted as Φ(P ). The Φ−closure of P is a problem which satisfies the
property Φ and which is equivalent to P (having the same set of solutions). The Φ−closure
is unique for a given P if Φ is a domain-based property stable under the union operation in
the sense that the union of two problems Φ−consistent defined on the same set of variables
and constraints is also Φ−consistent: (X,D1,C) ∪ (X,D2,C) = (X,D1 ∪D2,C) [Bessiere,
2006].

2.1.4 Arc consistency

Every CSP can be viewed as a network of constraints, where each variable is represented
by a node and each binary (non binary) constraint is represented by an arc/edge (hyper
arc/edge). Arc consistency defines the consistency of arcs in such a way that for a constraint
and an involved variable, every value of the variable can be extensible to a consistent
instantiation of the variables of the (hyper)-arc.

Definition 2.5 (Arc consistency) A constraint cS is arc consistent iff for every variable
x ∈ S and every value v ∈ D(x), there exists a tuple τS such that τS[x] = v and τS ∈ cS.
Such a tuple is called a support for the value (x, v) on c. A CSP is arc consistent iff all its
constraints are arc consistent.

Example 2.1 Consider the binary CSP in Figure 2.1(a). It has 3 variables x1, x2, x3

with 3 values 1,2,3 in each domain, and 2 constraints c12, c23 respectively defined as (x1 =
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Figure 2.1: Enforcing arc consistency

x2 − 1), (x2 = x3). Each value is represented by a vertex. An arc between two values means
that the corresponding pair of values are authorized. Checking constraint c12 detects the
arc inconsistent value 3 in D(x1) because there is no value in D(x2) compatible with it. In
other words, there is no support in D(x2) for (x1,3) and this value will be removed. Value
(x2,1) also can be removed because of c12. The removal of value (x2,1) makes value (x3,1)
arc inconsistent and (x3,1) will be removed. Now, every remaining value has a support on
every constraint, and the resulting problem is arc consistent (Figure 2.1(b)).

Arc consistency is also called generalized arc consistency (GAC) in many documents when
the authors want to emphasise the fact that AC is used on non-binary CSPs. In this case,
AC is specialized for binary CSPs.

An arc consistent CSP is not necessarily satisfiable. The coloring problem in Figure 2.2
is an example. It has 3 variables with 2 colors for each one and 3 constraints c12(x1 ≠
x2), c23(x2 ≠ x3), c13(x1 ≠ x3). This problem is arc consistent but it is unsatisfiable since
it is impossible to color a 3-clique with 2 colors only.

Figure 2.2: Example of an unsatisfiable CSP which is AC

2.1.5 Arc consistency algorithms

Many algorithms have been proposed for enforcing AC in order to improve the efficiency
of enforcing. Bessiere gives two important reasons for studying AC algorithms in [Bessiere,
2006]: AC is the basic mechanism used in all solvers and each technique to improve AC
can be applied for other consistency algorithms. AC enforcing algorithms are grouped in
2 classes: coarse-grained and fine-grained, where the former ones propagate the changes in
the variable domains while the second ones propagate the value removals.
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AC3

AC3 is one of the first efficient algorithms for enforcing arc consistency, proposed by Mack-
worth [1977]. As a coarse-grained algorithm, it propagates changes in the domain of vari-
ables to neighbor variables by using a propagation list that contains arcs, variables, or
constraints related to the reduced domains.

There are three variants for AC3 implementation: arc-oriented [Mackworth, 1977], variable-
oriented [McGregor, 1979] and constraint-oriented [Boussemart et al., 2004a] In the first
variant, the propagation list contains arcs where each arc is composed of a constraint and
a variable involved in the constraint that needs to be revised. The second variant stores
in the propagation list the variables with reduced domains and the last one stores the
constraints involving at least a variable to be revised.

AC3 does not store any additional information, thus it can make many unnecessary con-
straint checks. Precisely, when revising a variable in a constraint, it has to check all values
of the variable regardless of whether these values have lost their support or not. In binary
CSPs, AC3 has a complexity in O(ed3) in time and O(e) in space where e is the number
of constraints and d is the maximum domain size.

AC4

In order to improve AC3, Mohr and Henderson [1986] proposed the AC4 algorithm that
memorizes a maximum amount of information. It maintains the number of supports for
each value on each constraint in a counter. Whenever the counter of a value decreases to
0, the value will be removed and the counters of all its neighbor values will be decreased
by 1. Thanks to the counter system, no constraint check is performed during the run of
AC4 algorithm. Constraints are only checked once at start-up. Furthermore, AC4 stores
the list of values supported by each value. When a value is removed, only values that have
been supported by the removed value need to be verified. This list allows AC4 to avoid
considering unnecessary values which have not been supported by the removed values.
Compared to AC3, AC4 has a better time complexity in O(ed2) but needs more space in
O(ed2).

AC6

AC4 spends a lot of time to compute and update the “counters” as well as the lists of
supported values whereas the search for all supports is not necessary for consistent values.
Therefore, Bessière [1994] proposed AC6 in order to avoid such unnecessary computation of
AC4. Instead of keeping the complete support sets and counters, AC6 remembers only one
support for each value. AC6 cancels the “counter” information and stores for each value the
list of values that are currently supported by it. When a value is removed, AC6 will search
for a new support for the values that were supported by the removed value. Thanks to the
order of values in domains, the search for a new support always starts from the current
support to the end of the domain, until the next support is found. All the values before the
current support of the considered value were verified as incompatible with it. Thus, AC6
can avoid redoing constraint checks despite of the unknown number of supports. AC6 has
the same time complexity in O(ed2) as AC4 but it reduces the space complexity to O(ed).



10 Chapter 2. Background

AC2001 & AC3.1

Both AC4 and AC6 are fine-grained algorithms. The disadvantage of these algorithms is
that the value-oriented propagation queue is expensive to maintain. Therefore, Bessière
and Régin [2001] proposed a coarse-grain algorithm AC-2001 which keeps the optimal time
complexity of AC6, by memorizing only the current support for each value in order to avoid
redundant constraint checks. This idea is also used in [Zhang, 2001] in an algorithm named
AC3.1. AC2001 uses a pointer to store the first support for every value on each constraint.
On the one hand, this data structure is easier to implement and maintain than the lists of
supported values used in AC6. On the other hand, similarly to the lists of supported values
used in AC6, it allows AC2001 to stop the search for supports as soon as possible. The
search for a new support for a value on a constraint does not check again values before the
current support which were previously proved as incompatible with the considered value.
In spite of the fact that AC2011 has the same asymptotic time and space complexity as
AC6, it can provide speed-ups in practical experiments because of its simplicity.

2.1.6 Restricted arc consistencies

In order to reduce the computational cost of arc consistency when being maintained during
the backtracking search, many domain-based consistencies which are weaker than AC in
terms of pruning power but have a cheaper computational cost have been proposed. The
usual idea of these consistencies is to weaken AC by reducing the work AC does, i.e.,
reducing either the number of calls to constraint checks or the amount of work inside each
constraint check. The former checks AC for only some of constraints while the last checks
AC for some of domain values (e.g.; the minimum and the maximum values of domains
in the case of consistencies on bound). In summary, these restricted consistencies of AC
enforce arc consistency in an incomplete way by skipping some values or some constraints.

Directional arc consistency

Directional arc consistency (DAC [Dechter and Pearl, 1988]) tries to reduce the number of
constraint checks by defining an order “<” among variables and enforcing AC only on arcs
directed along this order. A variable i is directed arc consistent iff it is arc consistent for all
constraints cij such that i < j. A variable must be consistent with all variables greater than
it, regardless of smaller ones. Thus, each variable needs to be checked for arc consistency
with respect to greater variables and the removal of a value from the domain of a variable
cannot make greater variables directed arc inconsistent. Thanks to this property, DAC
does not need to use a propagation queue, just a loop processing variables w.r.t the DAC
order from the greatest to the smallest one.

2.1.7 Strong consistencies

Path consistency

Path consistency, proposed by Montanari [1974], is the most studied constraint-based local
consistency. In binary CSPs, path consistency is simply an extension of arc consistency
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which consists in extending the pairs of variables, instead of singleton variables, on every
other variable. A pair of variables is path-consistent with respect to a third variable iff for
every consistent pair of values, there exists a value of the third variable compatible with
this pair in such a way that the 3-values tuple satisfies all the binary constraints.

Definition 2.6 (Path consistency (PC)) A CSP is path consistent iff for every pair of
variables (xi, xj), for every consistent pair of values (vi, vj) ∈ D(xi) × D(xj), for every
third variable xk connected with xi, xj by cik, cjk, there exists a value vk ∈D(xk) such that
(vi, vk) ∈ cik and (vj , vk) ∈ cjk.

Many algorithms have been proposed to enforce path consistency, that differ each other by
the data structures and by the enforcing efficiency. The first one, PC−1, is a naive algorithm
that has time complexity in O(n5d5) [Montanari, 1974]. PC−2 [Mackworth, 1977] and
PC−3 [Mohr and Henderson, 1986] respectively improve this complexity to O(n3d5) and
O(n3d3) by using the idea of AC3 and AC4 to reduce the number a triple of variables
is checked. However, Han and Lee [1988] proved that PC−3 is not correct. When a pair
of values has no compatible value on a third variable, PC−3 remove the two values of
the pair instead of forbidding the pair. Thus, they proposed a correct version, PC−4,
that has a same complexity O(n3d3) in time and space. Then, PC−5 [Singh, 1995] and
PC−6 [Chmeiss, 1996] were independently proposed to improve the average time complexity
of PC−4 to O(n3d2) by basing on AC6 instead of AC4. PC−7 [Assef Chmeiss, 1996] has a
smaller time complexity in O(n2d2).

k−consistency

Based on the idea of node and arc consistencies which respectively consist in consis-
tently extending zero and one variable on every another one, [Freuder, 1978] introduced
k−consistency for consistently extending k − 1 variables to every extra one. It guarantees
that for each consistent instantiation of k − 1 variables, there exists a value for every k−th
variable such that the k−values instantiation satisfies all constraints among them.

Definition 2.7 (k-consistency) A CSP is k-consistent iff for every set of k−1 variables
Y , for every consistent instantiation τY , for every k-th variable xk, there exists a value
vk ∈ D(xk) such that τY ∪ (xk, vk) is consistent. The CSP is strongly k-consistent iff it is
j-consistent for every j ≤ k.

Figure 2.3: A 4-inconsistent CSP

Example 2.2 Consider the CSP in Figure 2.3. It has 4 variables with 2 values for
each one, 3 binary constraints (x1 = x2), (x2 = x3), (x1 = x3) and a 4-ary constraint
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c1234(x1, x2, x3, x4) = {(1,2,1,1), (2,1,2,2}. Allowed pairs of values for binary constraints
are represented by continuous black lines, while allowed tuples for the four-ary constraint
are represented by dashed lines. Each allowed tuple uses a different color. This problem is
3-consistency but is not 4-consistency because the locally consistent instantiations (1,1,1)
and (2,2,2, ) on (x1, x2, x3) cannot be consistently extended to x4.

For normalized binary CSPs (where there is are two constraints with the same scope), NC,
AC and PC respectively correspond to 1,2,3-consistency. If we enforce all NC, AC, PC,
we will obtain the level of strong 3-consistency. In non-binary CSPs, PC is not equivalent
to 3-consistency because 3-consistency considers ternary constraints whereas PC does not.
In non-normalized CSPs, AC is not equivalent to 2-consistency because there exists cases
in which 2 variables are connected by more than 2 binary constraints, each one is AC but
no pair of values satisfies all constraints.

Restricted path consistency

Restricted path consistency (RPC), proposed by Berlandier [1995], is half-way between AC
and PC. It removes more inconsistent values than AC while avoiding some disadvantages
of PC. PC checks the consistency of all pairs of values, even those of two independent
variables, on any third variable. This is very expensive and can create new constraints.
Thus, RPC checks only pairs of values which, if they are removed, will make a value arc
inconsistent. So in addition to AC, RPC checks path consistency for pairs of values which
define the unique support for an involved value. If such a unique support is inconsistent,
it could be removed and this potential removal leads to the removal of the previously
supported value.

Definition 2.8 (Restricted path consistency - RPC) A binary CSP is restricted path
consistent iff it is AC and for all xi, for all value vi ∈ D(xi), for all cij on which vi has
a unique support vj ∈ D(xj), for all xk linked to both xi, xj by binary constraints cik, cjk,
there exists a value vk ∈ D(xk) such that (vi, vk) ∈ cik and (vj , vk) ∈ cjk. vk is called a
witness for the support (ia, jb) of (i, a) on k.

Example 2.3 Let’s consider the problem in Figure 2.4(a). Please notice that here, edges
indicate forbidden pairs. It is AC but not RPC. Value (xi,1) has only one support (1,2)
in cij but this support cannot be extended on xk. It will be removed by RPC.
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Figure 2.4: Some examples for comparing AC, RPC, PIC, maxRPC [Bessiere, 2006]. a)A
CSP which is AC but is not RPC. b) A CSP which is RPC but is not PIC. c) A CSP which
is PIC but is not maxRPC.
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RPC can prune more values than AC. In addition to the arc inconsistent values, RPC also
removes the values for which their unique support is path inconsistent in some constraint.

Several algorithms have been proposed for enforcing RPC. Algorithm RPC1, proposed
by Berlandier [1995], is based on AC4. It also counts the number of supports for each value
in each constraint, and stores the list of values supported by each value. A value needs to be
checked for PC whenever its number of supports decreases to 1, and is removed whenever
this number decreases to 0. RPC1 uses 2 propagation queues. The first one contains
removed values, used for the AC propagation, as in AC4. The second one, used for the PC
propagation, contains 3-tuples (value, constraint, triangle) for which the unique support
of the value needs to be checked for PC on the triangle. RPC1 has a space complexity in
O(end) and a time complexity in O(ed2) on binary CSPs.

Then, Debruyne and Bessière [1997a] proposed RPC2 which is based on the idea of AC6.
RPC2 only stores the two first supports for each value in each constraint, instead of counting
all supports and storing the lists of supported values as in RPC1. Whenever a value has lost
supports, RPC2 will try to search next supports such that the total number of supports,
including the available stored ones, does not exceed 2. RPC2 will remove a value, revise
for PC or do nothing if this value has no, one or at least 2 supports respectively. Moreover,
RPC2 stores current witnesses for each value on each constraint in each triangle while
RPC1 does not. Thus, when checking PC, RPC2 does nothing if the current witnesses for
unique supports are still available. The search for next support as well as witness is efficient
because it always starts from the previous last found one. RPC2 has a time complexity in
O(ed2 + cd2) and space complexity in O(ed+ cd) where c is the number of triangles (clique
of three binary constraints) in the problem.

Path inverse consistency

Freuder [1985] introduced k−inverse consistency in order to provide a domain-based con-
sistency stronger than AC. The idea of k-inverse consistency is to extend each variable to
every k−1 extra variables. In fact, 2-inverse consistency (arc inverse consistency) is the
same as 2-consistency (arc consistency). 3-inverse consistency (also called path inverse
consistency) is the simplest inverse consistency that has a pruning power stronger than
AC.

Definition 2.9 (Path inverse consistency - PIC) A binary CSP is path inverse con-
sistent iff it is AC and for all xi, for all value vi ∈D(xi), for all xj , xk linked to each other
by cjk and linked both to xi by cij , cik, there exists a value vj ∈ D(xj), a value vk ∈ D(xk)
such that (vi, vj) ∈ cij , (vi, vk) ∈ cik and (vj , vk) ∈ cjk.

PIC can prune more locally inconsistent values than RPC. The problem in Figure 2.4(b)
is an example: it is RPC but not PIC. Consider value (xi,1). It is of course RPC because
it has 2 supports in every constraint cij , cik. However, none of its support in cij , cik
can be extended on xk, xj respectively. As a result, (xi,1) cannot be extended on triple
(xi, xj , xk). Thus, this value is not PIC and will be removed by PIC.

PIC algorithms The first algorithm for enforcing PIC, called PIC1, was proposed
by Freuder and Elfe [1996]. PIC1 does not use any special technique or data structure.
It only uses a propagation queue containing variables which need to be checked for PIC.
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When revising a variable popped up from the propagation queue, it considers every triangle
involving that variable and deletes values which are not extensible on that triangle. If the
domain of the revised variable has been reduced, all neighbor variables are pushed into the
propagation queue. The algorithm stops when this queue is empty. The time and space
complexity of PIC1 are O(en2d4) and O(n) respectively.

R.Debruyne [2000] proposed an enhanced algorithm for enforcing PIC, named PIC2, which
stores additional information to avoid useless constraint checks. Firstly, PIC2 stores the
list of values and the list of pairs of values currently supported by each value. When a
value is removed, PIC2 only considers values and pairs of values in the lists of the removed
value to check for AC and PC respectively. If no witness is found for a pair of values,
PIC2 tries to search for a new PC support for the involved value by checking next pairs
of values. The search for a new support and for a new witness always starts from the old
one. Secondly, PIC2 uses a lexicographic order to arrange values in domains and to define
an order among pairs of values. Based on AC7 [Bessiere et al., 1999], PIC2 stores the last
value checked to find an AC support for each value in each constraint. Thanks to this
data, each pair of values and each 3-values tuple are checked at most once for the search
for supports and for witnesses respectively. The propagation queue used in PIC2 contains
removed values while PIC1 store variables which needs to be checked for PC in this queue.
The time and space complexity of PIC2 are O(en+ ed2 + cd3) and O(ed+ cd) respectively.

max-restricted path consistency

Proposed by Debruyne and Bessière [1997a], maxRPC is an extension of RPC. It checks
the existence of a path consistent support for each value in each constraint, whatever the
number of supports the value may have. maxRPC is an intermediate between RPC and
PC. RPC and PC respectively guarantee path consistency for the unique support and for
every support while maxRPC guarantees path consistency for one support of each value
in each constraint. The idea of maxRPC is to remove all values which have no AC or PC
support in some constraint, where a PC support is an AC support which is path consistent.
For binary CSPs, a value is max-restricted path consistent if it has a PC support in every
constraint.

Definition 2.10 (max-restricted path consistency) A binary constraint network is
max-restricted path consistent iff it is AC and for all xi, for all value vi ∈ D(xi), for
all cij , vi has a support vj ∈D(xj) such that for all xk linked to both xi, xj by a constraint,
there exists a value vk ∈D(xk) such that (vi, vk) ∈ cik and (vj , vk) ∈ cjk.

In the case of non-binary CSPs, maxRPC requires AC for non-binary constraints and
maxRPC as defined above for binary constraints.

maxRPC prunes more values than PIC. The CSP in Figure 2.4(c) is PIC but is not maxRPC
due to the value (xi,1). It has 2 AC supports on cik. The support (1,1) on (xi, xk) can be
consistently extended on xj but cannot on xl. Conversely, the support (1,2) on (xi, xk) can
be consistently extended on xl but cannot on xj . In summary, (xi,1) has no AC support
that can be consistently extended on xj and xl at the same time.

maxRPC algorithms The first algorithm for enforcing maxRPC is a fine-grained one,
named maxRPC1, which was proposed by Debruyne and Bessière [1997a] for binary CSPs.
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It is built based on RPC2 by using the same data structures and memorizing the same
information as in RPC2. maxRPC1 also stores the list of values supported by each value
and the list of pairs of values witnessed by each value. The difference between RPC2 and
maxRPC1 is that maxRPC1 memorizes the first PC support instead of the 2 first AC
supports for each value in each constraint. When a value is removed, maxRPC1 will search
for a new PC support for all values currently supported by it and search for a new witness
for all pairs of values currently witnessed by it. If no witness is found for a pair of values,
maxRPC1 will search for a new PC support by considering next pairs of values. maxRPC1
has a space and time complexity in O(ed + cd) and O(en + ed2 + cd3) respectively. This
time complexity is known as being optimal for enforcing maxRPC.

maxRpc2 [F. and G., 2003] is a coarse-grained maxRPC algorithm which has the same
complexity as maxRPC1 but takes a smaller space complexity in O(ed). Based on AC2001,
maxRPC2 uses a pointer to store the last PC support for each value in each constraint.
However, maxRPC2 does not store witnesses of PC supports. Thus, maxRPC2 combines
the procedure for checking PC witness loss into the procedure for checking PC support
loss. Each time a variable with reduced domain is popped up from the propagation queue,
maxRPC2 will verify whether neighboring values have lost their current PC supports or
not, stored in the “pointer” data structure. If a value has lost its PC supports, maxRPC2
will consider values after the last PC support to find a new one. Conversely, if the PC
support of a value is still available, maxRPC2 will check whether this support has lost
witnesses on some third variable or not. If yes, maxRPC2 will search for a new witness for
this support by trying all the values in the domain of that third variable. As usual, if no
witness is found, a new PC support will be searched for the value.

Vion and Debruyne [2000] proposed a coarse-grained maxRPC algorithm called
maxRPCrm. It uses a propagation queue which contains variables having reduced do-
mains rather than containing removed values as in maxRPC1. Based on AC3rm [Lecoutre
et al., 2007] and residues [Likitvivatanavong et al., 2004] maxRPCrm stores the current
first PC support and PC witness for each value on in constraint and each triangle. When
a reduced variable j is popped up from the propagation queue, maxRPCrm will search for
a new PC support for neighboring values (i, a) whose current support has been removed.
At the same time, maxRPCrm will search for a new witness for every current support
((i, a), (k, c)) of (i, a) whose current witness on j has been removed. If no witness is found
for such supports, a new PC support will be searched.

Moreover, Vion and Debruyne also proposed 2 relaxed versions of maxRPCrm which en-
force 2 approximate levels of maxRPC [Vion and Debruyne, 2000]. The first one is “One
pass maxRPC”, denoted as O-maxRPCrm, which only searches for PC supports and wit-
nesses once for each value in each constraint and each triangle at the initialization step.
If variable x is processed before its neighboring variable y in the initialization and some
inconsistent values of y are removed when revising maxRPC, O-maxRPCrm does not check
for PC support loss or witness loss for values of x. In summary, O-maxRPCrm skips the
propagation step: the removal of values or the change in domains are not propagated.

The second relaxed algorithm of maxRPCrm, “Light maxRPC” or L-maxRPCrm, enforces
an approximation of maxRPC stronger than O-maxRPCrm. It does the same initialization
work as O-maxRPCrm while keeping a propagation step. However, the propagation is
done in an incomplete way. L-maxRPCrm only searches for new supports in the case of
PC-support loss but it does not maintain witnesses for PC supports. In the case of PC
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witness loss, L-maxRPCrm does nothing. The witness data is only defined once in the
initialization step. Indeed, because of the high time complexity of maxRPC, enforcing the
approximations of maxRPC by O-maxRPCrm and L-maxRPCrm, can be an alternative
approach for maintaining maxRPC in search with time complexity in O(eg + ed2 + cd3).

Balafoutis et al. [2011] proposed another coarse-grained maxRPC algorithm, named max-
RPC3, which is also based on AC3rm and maxRPCrm. Differently from maxRPCrm,
maxRPC3 separates AC supports from PC supports. For each value and each constraint,
it stores 2 supports: the smallest AC and the smallest PC supports. Thus, when there is a
domain reduction, maxRPC3 has to check for AC support, PC support and PC witness loss
for neighboring values. The specificity of maxRPC3 is the use of a heuristic for choosing
values when searching PC support and PC witness. To search for a PC support for a value
(i, a) in a constraint cij , maxRPC3 always checks first the AC support of (i, a) in cij . If this
AC support is not path consistent, it will check other values which are ordered after both
the AC and PC support of (i, a) in cij . Similarly, to search for a PC witness for a support
((i, a), (j, b) of (i, a) on k, maxRPC3 always checks first the AC support of (i, a) in cik
and then that of (j, b) in cjk. If none is compatible with the pair of values, maxRPC3 will
check other values of k. During the search for supports and witnesses, the AC supports are
also updated if necessary in such a way that they are always the first/smallest available AC
supports for the checked value. This heuristic helps maxRPC3 to avoid traversing values in
domains when searching for supports and witnesses, and stop the constraint checks as soon
as possible. The number of cases where an AC support is also a PC support is trivially
determined in practice. Thus, this heuristic helps maxRPC3 to have a good experimental
time complexity for solving many CSPs.

In [Balafoutis et al., 2011], Thanasis et al. also proposed a variant of maxRPC3, named
maxRPC3rm. In maxRPC3rm, the stored AC supports, PC supports and PC witnesses are
not guaranteed to be the first available ones. Thus, the search for a new AC support, for
a new PC support as well as for a new PC witnesses always have to restart from scratch
by considering values from the beginning of domains. During the search for supports and
for witnesses, if an AC support is found for a value in a constraint, maxRPC3rm will
immediately update the AC support for this value regardless of whether it is the smallest
AC support or not.

[Balafoutis et al., 2011] also proposed two light versions of maxRPC3 and maxRPC3rm,
denoted by lmaxRPC3 and lmaxRPC3rm respectively, which enforce an approximation
of maxRPC. Similarly to L-maxRPCrm, lmaxRPC3 and lmaxRPC3rm do not maintain
witnesses for PC supports. PC witnesses are only searched once in the initialization. The
domain reduction only activates the search for new supports, but does not activate the
search for new witnesses.

2.1.8 Comparison between consistencies

In order to compare the pruning efficiency of the domain-based consistencies, Debruyne
and Bessière [1997b] proposed a transitive relation, the “stronger than” relation. A local
consistency A is said to be stronger than B if, in any CSP in which A holds, B holds too.
This means that A deletes at least all the inconsistent values removed by B. A is strictly
stronger than B if A is stronger than B and there exists a CSP in which B holds but A
does not. In other words, there is at least a CSP for which A deletes more inconsistent
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values than B.

[Bessiere, 2006] gives an overview on the comparison among some domain-based consisten-
cies. It shows that “maxRPC Ð→ PIC Ð→ RPC Ð→ AC”, where the arrows go from the
stronger consistencies to the weaker ones.

The relation among the maxRPC, PIC, RPC and AC consistencies is also in the following
paper [Debruyne and Bessiere, 2001]: maxRPC is stronger than PIC and both are stronger
than RPC. If a value (xi, a) has no support in cij , the three consistencies will remove it.
If it has only a support in cij , the consistencies are identical: they will remove (xi, a) if
the unique support is path inconsistent. If (xi, a) has more than two supports in cij , RPC
holds of course for this value while PIC will remove it if it has no support in cij extensible
on some third variable. In other words, PIC does not hold for (xi, a) if all its supports in
cij are path inconsistent because of the same third variable. In the case that for each third
variable, there exists a support in cij extensible to that variable but this support is path
inconsistent because of a different third variable, (x, a) is PIC but it will be removed by
maxRPC.

2.1.9 Revision ordering heuristics

Revision ordering heuristics are techniques for improving the efficiency of constraint prop-
agation by appropriately ordering the arcs, variables, or constraints in the revision list in
such a way that (1) the inconsistent parts of the problem are pruned early and (2) the con-
straint propagation converges to the locally consistent closure of the problem after a small
number of constraint checks. To do this, heuristics are based on the features concerning
the structure of problems such as: the current variable domain size (dom), the proportion
of removed values in variable domains, the satisfiability ratio of constraints (sat) defined
by the fraction of acceptable pairs of values in the constraints, the variable degree (deg) de-
fined by the number of constraints involving the variable in the initial problem, the current
variable degree (ddeg). . . The most satisfied elements in the revision list are first chosen to
be checked. The simplest and the most naive heuristics are “lexico” where variables are
ordered lexicographically and “fifo” where the revision list is implemented as a queue.

Wallace and E.C.Freuder [1992] proposed the first heuristics used for the arc-oriented
variant of AC3. These heuristics select first an arc in the revision list with:

• dom: the smallest current variable domain size of the variable involved in the arc. It
is argued that a small domain is more potential to become wiped-out than a large
one.

• sat: the smallest constraint satisfiability. If the constraint contains a number of
acceptable pairs of values smaller than the domain size of the considered variable,
the variable has at least one value unsupported in the constraint.

• rel sat: the smallest constraint rational satisfiability, that is the constraint satisfia-
bility divided by the domain size. This heuristic is based on the mean number of
supports per value in the constraint. If this mean number is smaller than 1, the
considered variable has at least one value unsupported in the constraint.

• deg: the greatest variable degree. A variable related to more constraints is more
likely to have values unsupported in one of its constraints.
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Boussemart and al. [Boussemart et al., 2004a] adapted these heuristics for the constraint-
oriented and variable-oriented variants of AC3, and proposed new ones.

• For the variable-oriented variant, they have proposed the heuristic named remv which
selects first the variable having the greatest proportion of removed values in its do-
main.

• Concerning the arc-oriented variant, they proposed

– domc: the smallest constraint size defined by the Cartesian product of the cur-
rent domain of the variables involved in the constraint.

– remc: the greatest proportion of the removed pairs of values. This is the com-
plementary of the constraint size.

– domc/domv: the smallest constraint satisfiability, similarly to the satisfiability
in [Wallace and E.C.Freuder, 1992].

– domc○ domv: the smallest current domain size and then the greatest current
degree in the case of equivalence.

Boussemart et al. [2004a] shows that “dom” is the most efficient heuristic for every variant
of AC3 (in the sense of the number of constraint checks as well as the number of additions
to the revision list) but is not always the fastest. The naive heuristic “fifo” is in general
the fastest for arc and constraint-oriented algorithms.

Balafoutis and Stergiou [2008a,b] proposed a new heuristics exploiting the conflict-driven
weighted degree heuristics (wdeg, dom/wdeg) used for variable selection in search [Bousse-
mart et al., 2004b]. During search, these conflict-driven heuristics maintain the number of
times each constraint causes a domain wipe-out during constraint propagation. This num-
ber is associated to the constraint. The weighted degree of a variable is then the sum of
the weights of the constraints involving it and at least one other unassigned variable. The
heuristics wdeg and dom/wdeg respectively select the variable having the greatest weight
and the smallest ratio between the current domain size over the current weight. Used at
the same time for constraint propagation and for search branching, the new heuristics allow
us to reduce not only the number of constraint checks but also the explored search space.

2.1.10 Dynamic arc consistency

The traditional static CSPs are not sufficient for solving many real-life applications de-
signed in dynamically changing environments whose set of constraints may evolve. To give
only one example, in course scheduling, the teachers can incrementally propose changes in
the number and the time of courses and each change requires to reformulate the problem.
In order to solve this kind of problem, static CSPs have been extended to so-called dy-
namic CSPs [Dechter and Dechter, 1988] which facilitate the problem reformulation after
additions (restrictions) or retractions (relaxations) of constraints from the problem. Unlike
static CSP problems, a dynamic CSP is dynamically designed by adding and retracting
constraints one by one in the problem.

Definition 2.11 A dynamic CSP is a sequence P0, . . . , Pi, Pi+1, . . . of CSPs where each
Pi+1 is a CSP resulting from the addition or retraction of a constraint in Pi.

Dynamic arc consistency algorithms (DnAC) aim at maintaining arc consistency in the
sequence of problems Pi. AC enforcing is naturally incremental for restriction because
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adding new constraints means pruning newly arc inconsistent values: it is sufficient to use
AC algorithms after adding a new constraint to the problem.

Conversely, AC is not naturally incremental for relaxation (constraint retraction). This
last case needs therefore to be handled specifically: values that have been deleted directly
or indirectly because of the retracted constraint need to be restored, but only if there is
no other reason to delete them. The existing algorithms for filtering DCSPs cope with
the retraction of constraints in three phases: restorations of the values that were directly
deleted by the retracted constraint; propagation of value restorations to other domains; and
removal of wrongly restored values. Historically, the first algorithm proposed for DnAC is
DnAC-4 [Bessière, 1991] which relies on a fine-grain AC-4 algorithm.

In addition to the data structure proposed by AC-4, DnAC-4 uses an additional data
structure as justification for value deletions during the AC domain pruning in order to
improve the efficiency of constraint retraction by decreasing the number of wrongly restored
values. However, DnAC-4 inherits the main disadvantages of AC-4 with a large space
complexity in O(ed2). This was later improved in DnAC-6 [Debruyne, 1996] using the
more space efficient AC6 algorithm rather than AC-4 for filtering. DnAC-6 handles the
retraction of constraints in the same way as DnAC-4, using the same justification data.
DnAC-6 is known, so far, as the fastest algorithm but it still has the disadvantage of
fine-grained algorithms characterized by a large space complexity.

In order to keep low memory consumption, Berlandier and Neveu [1994] proposed AC∣DC,
a simplified approach relying on the AC3 algorithm and requiring essentially no persistent
data-structure.

However, AC∣DC does not store any information during pruning and restoring values and
thus wrongly restores more inconsistent values than AC-4 and AC-6. It only uses two lists
of values called “Propagable” and “Restorable”. “Propagable” contains values candidate for
restoration and “Restorable” contains the restored values that are waiting for being revised
for AC. The procedure for adding constraints in AC∣DC is simply the standard AC3. As
any existing DnAC algorithm, upon retraction of the constraint cij , AC/DC goes through
three stages:

• Initialization: the deleted values in the domains of i and j that have no support in
cij are candidate for restoration and marked as “Propagable”.

• Propagation: each of the propagable values is propagated to neighbor variables to
check if they offer a new valid support for deleted values (which also will be marked
as “Propagable”). When a value has been propagated to all neighbor variables, it is
marked as “Restorable” and will be restored.

• Filtering: all restored values need to be checked again for arc consistency. This can
be done using plain AC enforcing provided the queue QAC is initialized to enforce
the revision of domains of variables with restored values.

The second stage guarantees that no arc consistent value is missed in the resulting problem
while the last stage guarantees that every remaining restored value is arc consistent. This
guarantees again an equivalent arc consistent problem in the final result.

AC∣DC can be improved by (1) improving the efficiency of enforcing AC by replacing
AC3 by AC2001 that results in a time and space complexity comparable to DnAC-6. (2)
improving the efficiency of retracting constraints, like AC∣DC-2 does [Surynek and Barták,
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2004; Barták and Surynek, 2005], by introducing persistent data-structures in order to
define more precisely the values to be restored.

AC∣DC−2 uses an array justif_var[i, a] for remembering the constraint that has been re-
sponsible for the deletion of (i, a) and justif_time [i, a]1 for remembering the moment that
(i, a) is deleted during pruning. For synchronizing the time, AC∣DC−2 uses a global in-
cremental counter gtime that increases whenever a value is deleted. The procedure for
adding a constraint is simply the standard AC3 but does extra work, i.e. memorizes value
deletions in justif_var, justif_time. Similarly to any existing DnAC algorithm, AC∣DC−2
handles the constraint retraction in three stages as described in Algorithm 2.1.

• Initialization: performed by Procedure “initialize” at line 7. Only values which have
been deleted because of the retracted constraint cij (line 10, 11) are considered to be
restored (line 12). This can be tested in the justification array. D0(i) denotes the
initial domain of variable i. All restored values of variable i are stored in restored_i
and time_i memorizes the earliest time that these restored values are deleted.

• Propagation: performed by Procedure propagate-acdc2 at line 17. Domain extensions
are propagated to the forward neighborhood. A variable i having restored values can
check neighboring values (j, b) for restorability just if (1) they have been removed due
to the loss of support on the constraint cji, known through justification, (line 24) (2)
they were deleted before at least a restored value of i (line 25). (j, b) will be restored
if there exists a support for it among restored values of i (line 26). In comparison to
AC/DC, AC/DC-2 restores fewer values and hence fewer values need to be checked
in the filtering phase thanks to these criteria. When i has been extended, restored
values of i need to be rechecked for AC and this will be done in the last stage by
adding all constraints involving i into QAC - the propagation queue of value deletions.

• Filtering: this last stage is unchanged that is performed by the AC3 procedure
propagate-ac3 at line 6 with an initial propagation queue QAC established in the second
phase.

AC∣DC-2 keeps a low space complexity and at the same time has a good practical time
complexity.

2.2 Weighted CSP and soft consistencies

In this section, we present an existing extension of the CSP framework which associates
costs to tuples of constraints to express a violation degree of tuples and therefore preferences
between solutions. The goal of these problems is to find a solution for which the combined
cost is minimal. These kinds of problem are called Valued CSPs [Schiex et al., 1995]
(and are related to semi-ring CSPs [Bistarelli et al., 1997]) and their constraints are called
soft constraints or cost functions. In this document, we consider only problems with a
totally ordered scale of costs, thus valued CSPs. Filtering techniques, soft consistencies
and enforcing algorithms for solving this kind of problem will also be presented in this
section.

1The authors of AC/DC−2 have acknowledged that justif_time is actually subsumed by the justif_var
data-structure (Private communication).



2.2. Weighted CSP and soft consistencies 21

Algorithme 2.1 : AC∥DC − 2 algorithm
1 Procedure retract-constraint-acdc2(cij)
2 (i, time_i, restored_i)← initialize(i, j);
3 (j, time_j, restored_j)← initialize(j, i);
4 C ← C/{cij};
5 QAC ← propagate-acdc2 ({(i, time_i, restored_i), (j, time_j, restored_j)};
6 propagate-ac3 (QAC);
7 Procedure initialize(i, j)
8 restored_i← ∅;
9 time_i←∞ ;

10 foreach a ∈D0(i)/D(i) do
11 if justif_var[i, a] = j then
12 add a into D(i);
13 justif_var[i, a]← nil;
14 restored_i← restored_i ∪ {a};
15 time_i←min{time_i, justif_time[i, a]} ;

16 return (i, time_i, restored_i);
17 Procedure propagate−ac∣dc2(restore)
18 QAC ← ∅;
19 while restore ≠ ∅ do
20 (i, time_i, restored_i)← restore.pop();
21 foreach cij ∈ C do
22 restored_j ← ∅;
23 foreach b ∈D0(j)/D(j) do
24 if justif_var[j, b] = i then
25 if justif_time[j, b] > time_i then
26 if b has a support in restored_i then
27 add b into D(j);
28 justif_var[j, b]← nil;
29 restored_j ← restored_j ∪ {b};
30 time_j ←min{timej , justif_time[j, b]};

31 restore ← restore ∪{(j, time_j, restored_j};
32 QAC ← QAC ∪ {e∣e ∈ C, i ∈ e};
33 rerun QAC ;
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2.2.1 Weighted constraint satisfaction problems

Definition 2.12 (Weighted CSP [Schiex, 2000]) A weighted CSP (WCSP) or cost func-
tion network (CFN) is defined by a tuple (X,D,C,m) where X is a set of n variables. Each
variable x ∈ X has a domain D(x) ∈ D. C is a set of cost functions. Each cost function
cS ∈ C defined over a set S of variables assigns costs to assignments of variables in S i.e.
cS ∶ `(S) → [0..m] where m ∈ {1, . . . ,+∞}, where `(S) denotes the set of tuples over S.
cS(τS) is the cost attributed to tuple τS on S by cS. S and ∣S∣ are the scope and the arity
of c.

The addition and subtraction of costs are bounded operations, defined respectively as
follow:

• a +m b = min(a + b,m)

• a −m b = a − b if a <m and m otherwise

For simplicity, +m and −m can be briefly denoted by + and − in this document. The cost
of a tuple τS of a WCSP P is simply the sum of costs:

V alP (τS) = ∑(cS′∈C)∧(S′⊆S) cS′(τS[S′])

A tuple τS is inconsistent if V alP (τS) =m and feasible (consistent) otherwise. A complete
tuple τX ∈ `(X) is a solution of the problem if it is feasible and has the smallest evaluation
among all tuples in `(X).

A WCSP has no solution if every complete assignment τX of values is inconsistent. Oth-
erwise, the problem has solutions. If the cost of solutions is zero, the problem is totally
satisfied.

It is supposed that in every WCSP, there exists a nullary cost function, noted c∅. Since all
costs are non negative in CFNs, this constant cost defines a lower bound on the valuation
of every solution. This value is very important for the search of solutions that helps to
prune sub-problems which have a lower bound greater than the best solution found so far.
Thus, improving this value is the central goal of enforcing soft consistencies.

Please notice that if m = 1, then WCSPs express crisp constraints where 0 corresponds to
authorized and 1 corresponds to forbidden. Thus, WCSPs with m = 1 reduce to classical
CSPs.

2.2.2 Branch-and-Bound search

WCSPs as well as optimization problems can be solved by Branch-and-Bound search [Land
and Doig, 1960] [Lawler and Wood, 1966] that is a variant of backtracking search. It
memorizes the cost of the best solution found during the search. This value is used as the
upper-bound on the cost of solutions (but any other upper-bound can be used). At each
node, it computes a lower-bound on the cost of the best solution that lies in the sub-tree
below. This lower-bound can be, for example, the nullary cost function c∅ of WCSPs. It
will be compared with the current upper-bound of the search. If the lower-bound is higher
than or equal to the lower-bound, there does not exists any solution in the sub tree below
the node better than the upper bound. In this case, the sub-tree below the node will be
pruned, and the search will branch on the next value in the domain of the current variable
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associated to the node. If no value is left, the search will backtrack up to the most currently
assigned variable, as in the backtrack search.

If the lower-bound is not tight, i.e., significantly smaller than the cost of the best solution
inside the sub-tree of the node, the search may need to backtrack a lot from a partial
solution. The efficiency of Branch-and-Bound search depends on the quality of this lower
bound. The higher the lower bound, the more parts of the search are skipped. In the
next section, we will introduce a technique for improving the lower-bound provided to
Branch-and-Bound search.

2.2.3 Equivalent Preserving Transformations

Equivalent Preserving Transformations are operations that transform WCSPs into equiv-
alent problems in terms of the valuation of complete instantiations. Two WCSPs are
equivalent iff every complete instantiation has the same valuation in both WCSPs.

Definition 2.13 Two WCSPs P = (X,D,C,m) and P ′ = (X,D,C ′,m) are equivalent iff
for every complete assignment of values τX , ValP (τX) = ValP ′(τX)

Example 2.4 Consider the four binary WCSPs in Figure 2.5. Each WCSP has 2 variables
i, j and a cost function cij. All variables have 2 values a, b. Contrary to CSPs, an arc in
a graph WCSP is used to indicate a tuple of positive cost. Numbers beside values and arcs
represent respectively positive unary and binary costs while zero costs edges are not shown.
These 4 problems are equivalent because they have the same valuation for every pair of
values (a, b) ∈D(i) ×D(j) computed as cij(a, b) + ci(a) + cj(b) + c∅
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Figure 2.5: Four equivalent WCSPs. An arrow from a WCSP A to a WCSP B means that
B can be transformed from A by applying the EPT indicated above the arrow. Pr, Ex and
UPr are respectively the cost projection, cost extension and unary cost projection on c∅.

Any operation that transforms a WCSP into an equivalent WCSP is called an Equiva-
lence Preserving Transformation (EPT). The operation Shift(τS , cS′ , α) presented in Algo-
rithm 2.2 is such an EPT. It moves an amount of cost α between a cost function cS′ and
a tuple τS such that S is a subset of S′ and α can be negative or positive. Costs must
satisfy the last two conditions in order to guarantee that the operation will not create any
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negative cost in the problem. It is noticed that the second condition is always satisfied if
α > 0 and the third condition is always satisfied otherwise.

When α > 0, Shift sends costs to tuple τS by adding a positive amount of cost α to cS(τS).
This increase of cost will be compensated by subtracting the same amount of cost α from
every cS′(τ ′S′) of tuple τ ′S′ containing τS . In this case, Shift corresponds to a projection of
costs from a cost function of greater arity to a smaller one. When line 2 sets cS(τS) to m
(as cS(τS) + α reaches m), inconsistent tuples over scope S are detected.

Conversely, when α < 0, Shift sends costs in the reverse direction, from τS to cS′ . It adds a
positive amount of cost −α to every cS′(τ ′S′) and compensates this by subtracting −α from
cS(τS) (or adding α to cS(τS)). In this case, Shift corresponds to an extension of costs
from a cost function of smaller arity to a greater one. when line 4 sets cS′(τ ′S′) to m (as
cS′(τ ′S′)−α reaches m), this allows to detect inconsistent tuples over scope S′. Notice that
here, we understand cS′(τ ′S′) − α as cS′(τ ′S′) + α′ where α′ is the, non negative, opposite
value of α.

Algorithme 2.2 : Operation for shifting costs in WCSPs
1 Procedure Shift(τS , cS′ , α)

// precondition:;
1)S ⊂ S′;
2)cS(τS) + α ≥ 0;
3)cS′(τ ′S′) ≥ α ∶ ∀τ ′S′ ∈ `(S′), τ ′S′[S] = τS;

2 cS(τS)←Ð cS(τS) + α ;
3 foreach τ ′S′ ∈ `(S′), τ ′S′[S] = τS do
4 cS′(τ ′S′)←Ð cS′(τ ′S′) − α;

Using the Shift operation, Cooper and Schiex [2004] proposed 3 Soft Arc Consistency (SAC)
operations as follows:

• Project(cS , i, a, α) is equal to Shift((i, a), cS , α) where α > 0. It projects costs from a
cost function cS into a value (i, a).

• Extend(i, a, cS , α) is equal to Shift((i, a), cS ,−α) where α > 0. It extends costs from a
value (i, a) onto a cost function on scope S.

• Finally, UnaryProject(i, α) is Shift(∅, ci, α) where α > 0. This operation is specified for
sending costs from a unary cost function ci to the nullary c∅.

Example 2.5 Consider the equivalent WCSPs in Figure 2.5(b). Each one can be trans-
formed to another next to it by applying the Soft Arc Consistency operation indicated on
the arrow between them. Let’s consider the binary WCSP in Figure 2.5(b). If we project
a cost of 1 from the binary cost function to value (j, b), we will obtain WCSP(a) with the
same c∅. No unary cost can be projected to c∅ in this WCSP. However, if we project a
cost of 1 from cij to value (i, b) in WCSP(b), we will obtain WCSP(c). In WCSP(c), i can
send a cost of 1 to c∅ that gives as a result WCSP(d). Observe that WCSP(a),(c) can be
converted to WCSP(b) by moving the same amount of cost, but in the reverse direction, as
the cost transformation from WCSP(b) to WCSPs(a),(c) respectively.
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The application of the Shift operation, as well as the three SAC EPTs, to a WCSP P
produces a valid equivalent WCSP without negative costs [Schiex, 2000]. This important
property will be used to enforce all soft consistencies.

2.2.4 Soft consistencies

Similarly to hard consistencies which aim at facilitating the backtracking search by making
CSPs simpler, soft consistencies are a family of techniques that can improve Branch-and-
Bound search by strengthening the lower bound c∅ and pruning inconsistent values (having
cost = m). The soft consistencies define features for the costs in WCSPs that must be
satisfied to simplify the problem. The simplest soft consistency is node consistency which
defines a property of unary costs. It requires that every domain value be consistent and
that there exists at least one completely consistent value for each domain.

Definition 2.14 ([Larrosa, 2002]) A variable i is node consistent (NC) iff ∀a ∈D(i), ci(a)+
c∅ <m and there exists a value a ∈D(i) such that ci(a) = 0. a is the node support for i. A
WCSP is node consistent iff each of its variables is node consistent.

Algorithme 2.3 : Algorithm enforcing NC
1 Procedure EnforceNC()
2 foreach i ∈X do UnaryProject(i);
3 PruneVars();

4 Procedure PruneVars()
5 foreach i ∈X do
6 foreach vi ∈D(i) do
7 if ci(vi) + c∅ =m then
8 remove vi from D(i);
9 change ← true;

// for further consistency enforcement (AC)
10 if change then
11 Q← Q ∪ {i};

12 Procedure UnaryProject(i)
13 α ← minvi∈D(i)ci(vi);
14 UnaryProject(i, α)

Example 2.6 The WCSP in Figure 2.5(c) is node inconsistent because no value in D(i)
has a zero unary cost. Clearly, a positive cost can be sent from such node inconsistent
variable to c∅ and this will result in WCSP (d) which is node consistent.

If a variable i is not node consistent, this means that some values in D(i) are inconsistent
or all values have positive costs. Thus, whenever NC is violated, a value can be deleted or
c∅ can be increased. NC can be enforced by Procedure EnforceNC in Algorithm 2.3 where
UnaryProject(i) moves a maximum cost from ci to c∅ in order to create a node support for
i, and PruneVars() removes inconsistent values. The time complexity of NC is O(nd).

Definition 2.15 (Consistent and inconsistent with a soft consistency) Given a soft
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consistency. A value or a tuple is called consistent if it satisfies the consistency, or incon-
sistent otherwise.

2.2.5 Soft arc consistencies

Arc consistencies define features for pairs of a variable and a cost function involving the
variable. They are based on the notion of simple and full support which are distinguished
by the fact that unary costs can be taken into account in the valuation of supports or not.

Definition 2.16 (Simple and full arc support) Given a variable i, a value a ∈ D(i)
and a cost function cS such that i ∈ S.

• A simple arc support of (i, a) in cS is a tuple τS such that τS[i] = a and cS(τS) = 0.

• A full arc support of (i, a) in cS is a tuple τS such that τ[i] = a and cS(τS) +
∑j∈S,j≠i cj(b) = 0.

The simplest form of arc consistency is based on simple supports and is called arc consis-
tency. Arc consistency is also called generalized arc consistent (GAC) when we want to
emphasize the fact that is applied to non-binary WCSPs. There exists different definitions
for arc consistency. In this document, I will use the definition in [Larrosa and Schiex,
2004] which simplifies the definition in [Cooper and Schiex, 2004] by not considering the
propagation of completely inconsistent tuples. A value is arc consistent if it has a simple
AC support in every cost function.

Definition 2.17 (GAC) A WCSP P is generalized arc consistent iff for every of its vari-
ables i, for every value a ∈ D(i) and for every cost function cS with ∣S > 1∣, there exists a
simple arc support for (i, a) in cS. P is GAC∗ if it is GAC and NC.

Example 2.7 Consider the binary problem in Figure 2.5(b). It is arc inconsistent because
value (i, b) has no arc support in cij. Applying Project(cij , i, a,1) results in Problem (c)
which is arc consistent but node inconsistent. Applying UnaryProject(i,1) in Problem (c) to
enforce NC will increase c∅ by 1 and result in an AC∗ problem (d).

Enforcing GAC can break NC. When a value (i, a) is arc inconsistent in cS , every tuple τS
such that τS[i] = a has a positive cost cS(τS) > 0. Using Project operation to move costs
from cS to (i, a) allows to (1) create a simple support for (i, a) and (2) increase the unary
cost ci(a), that possibly reaches m.

We observe that both WCSPs in Figure 2.5(a),(d) are AC−closures of the WCSP in Fig-
ure 2.5(b). The soft AC−closure of a WCSP is not unique as in classic CSPs. The quality of
a closure, represented by the associated value of c∅, may depend on the order of application
of the EPTs. Finding the best order for EPT application (in terms of the increase in c∅)
under the condition that costs remain integer to enforce AC is NP-complete [Cooper and
Schiex, 2004]. Beyond general cost functions, Lee and Leung [2012] presents an algorithm
enforcing GAC∗ for global constraints (non binary cost functions with specific semantics).
For simplicity, we restrict ourselves to binary WCSPs. It is shown in [Larrosa and Schiex,
2004] that every binary WCSP can be transformed into an equivalent AC∗ one in time
O(ed3).

Procedure EnforceAC() described in Algorithm 2.4 enforces AC∗. Notice that this procedure
can be adapted in the implementation. For example, in the solver toulbar2, unary costs
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Algorithme 2.4 : Algorithm enforcing AC
1 Procedure EnforceAC()
2 Q←X;
3 AC();

4 Procedure AC()
5 while Q ≠ ∅ do
6 j ← Q.pop();
7 foreach cij do
8 if FindSupport(i, cij ) then

// for further consistency enforcement (DAC, EAC)
9 P ← P ∪ {i};

10 S ← S ∪ {i};

11 PruneVars();

12 Procedure FindSupport(i, cij)
13 flag ← false;
14 foreach vi ∈D(i) do
15 α ← minvj∈D(j){cij(vi, vj)};
16 if α > 0 then
17 if ci(vi) = 0 then flag ← true; ;
18 Project(cij , i, vi, α);

19 UnaryProject(i);
20 return flag;

are organized in buckets to avoid rechecking NC on all values when c0 increases. This
procedure is based on AC3. It uses a propagation queue Q to contain variables whose
domain has been reduced. At each iteration, a variable j is popped out from Q. Values in
neighbors of j may have lost AC support in D(j) and thus need to be checked for AC using
Procedure FindSupport(i, cij)(line 8). This Procedure forces simple AC supports for values
of i which have no arc support in cij (line 16) by moving costs from cij to ci (line 18).
This projection of costs on ci can make i node inconsistent and thus a new node support
needs to be enforced for i by UnaryProject to move cost from ci to c∅ (line 19). In addition,
Procedure PruneVars is used to remove new inconsistent values (line 11). Whenever a value
is removed in PruneVars, the corresponding variable will be pushed into Q for further AC
propagation. The Boolean value returned by FindSupport and queue P and S will be used
for further consistencies.

In Procedure AC, each constraint cij is checked for AC by FindSupport at most 2d times
because each variable is pushed into Q at most d times. Because FindSupport(i, cij) takes
O(d2) time, the time complexity of AC as well as EnforceAC is O(ed3).

Directional arc consistency

An intuitively appealing stronger arc consistency for WCSPs is full arc consistency (FAC)
which would be based on the notion of full AC support [Zlomek and Bartak, 2005]. FAC
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requires full AC supports, on both sides, for each cost function. Unfortunately, FAC is
not a practical property because it cannot be always satisfied [Larrosa et al., 2005] (see
Figure 2.6). This motivated the introduction of weaker than FAC properties. The first
proposed one is directional arc consistency (DAC) [Cooper, 2003]. The purpose of DAC is
to still offer full arc supports as in FAC while guaranteeing the existence of an equivalent
locally consistent problem, by restricting the search for full AC supports to one side for
each cost function according to a defined order “<” of variables.

For simplicity, in this section, we restrict ourselves to binary WCSPs. The definitions
and algorithms for enforcing soft arc consistencies in non-binary WCSPs are introduced
in [Cooper and Schiex, 2004; Lee and Leung, 2009, 2012]. For binary WCSPs, a value (i, a)
is directional arc consistent if it has a full AC support in every cost function cij such that
i < j.
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Figure 2.6: The non existence of a FAC problem among all equivalent WCSPs [Larrosa
et al., 2005]

Definition 2.18 (DAC [Larrosa and Schiex, 2003]) A binary WCSP P is directional
arc consistent (DAC) with respect to an order < of variables iff for every variable i, for
every value a ∈ D(i), for every cost function cij such that i < j, there exists a full arc
support for (i, a) in cij. P is DAC∗ if it is DAC and NC.

DAC and DAC∗ can be enforced for binary WCSPs in time O(ed2) and in space O(ed).

Example 2.8 Consider the WCSP in Figure 2.5(a). Suppose that i < j. (i, b) has no
full AC support in cij despite the fact that (j, b) is a simple AC support for it. Thus the
problem is not directional arc consistent. Conversely, WCSP in Figure 2.5(d) is directional
arc consistent whatever the order between i and j.

Procedure EnforceDAC() in Algorithm 2.5 enforces DAC∗. The propagation queue P con-
tains variables with values that have increased costs from 0. This queue is only useful
when DAC is enforced with other local consistencies. Variables in P are arranged with
respect to the “<” order and processed from the greatest to the smallest in the queue in
order to minimize the number of constraint checks. At each iteration of Procedure DAC(),
a variable j is popped out from P . Some values in lower variables may have lost full AC
support due to new positive unary costs in D(j). Thus, a new full AC support needs to be
sought for such values by Procedure FindFullSupport(i, cij) (line 8). This procedure enforces
full AC supports for values of i in cij such that i < j by extending a cost E[b] from every
value (j, b) to cij (line 20) and then projecting a cost P [a] from cij to every value (i, a)
(line 19). These amounts of cost E[b], P [a] are computed in such a way that maximum
costs can be projected on ci while not creating any negative cost and ensuring simple AC
supports for values of j (line 15, 18). Node consistency of i can be broken due to cost
projections in i and thus Procedure UnaryProject(i) will be used to enforce a NC support
for i. If a value increases cost from 0, the procedure returns true ( line16). In this case,
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Algorithme 2.5 : Algorithm enforcing DAC
1 Procedure EnforceDAC()
2 P ←X;
3 DAC ();

4 Procedure DAC()
5 while P ≠ ∅ do
6 j ← P.popmax();
7 foreach cij such that i < j do
8 if FindFullSupport(i, cij ) then
9 P ← P ∪ {i};

10 S ← S ∪ {i}; // for further consistency enforcement (EAC)

11 PruneVars();

12 Procedure FindFullSupport(i, cij)
13 flag ← false;
14 foreach vi ∈D(i) do
15 P [vi]← minvj∈D(j){cij(vi, vj) + cj(vj)};
16 if ci(vi) = 0 and P [vi] > 0 then flag ← true ;

17 foreach vj ∈D(j) do
18 E[vj]← maxvi∈D(i){P [vi] − cij(vi, vj)} ;

19 foreach vi ∈D(i) do Project(cij , i, vi, P [vi]) ;
20 foreach vj ∈D(j) do Project(j, vj , cij ,E[vj]) ;
21 UnaryProject(i);
22 return flag;

neighboring values of i also may have lost full support and thus, i will be pushed into P
for further propagation (line 9).

When a variable j is popped out from P , all variables before (greater than) j have been
processed. Only variables smaller than i can have lost full support and can increase cost by
FindFullSupport. Thus, j as well as greater variables than j will never be pushed again into
P . Each variable j is pushed into P at most once and the while loop in Procedure DAC()
traverses P once. As a result, each constraint cij is enforced for DAC by FindFullSupport()
at most once. Since the complexity of FindFullSupport is O(d2), the time complexity of DAC
and EnforceDAC() is O(ed2). The space complexity of DAC() and EnforceDAC() is O(ed)

Full directional arc consistency

Full directional arc consistency ensures DAC on one side of each cost function and AC on
the other side. For binary WCSPs, a value (i, a) is full directional arc consistent iff it has
a full AC support on every cost function cij such that i < j and a simple AC support on
every cik such that i > k.

Definition 2.19 (FDAC [Larrosa and Schiex, 2003]) A WCSP P is full directional
arc consistent (FDAC) with respect to an order < of variables if it is arc consistent and
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directional arc consistent with respect to <. P is FDAC∗ if it is FDAC and NC.

Algorithme 2.6 : Algorithm enforcing FDAC
1 Procedure EnforceFDAC()
2 P ← Q←X;
3 while Q ≠ ∅ or P ≠ ∅ do
4 AC ();
5 DAC () ;

It is shown in [Larrosa and Schiex, 2003] that every WCSP can be transformed into an
equivalent FDAC∗ one in time (end3). Indeed, FDAC∗ can be enforced simply by enforcing
AC∗ and DAC∗ simultaneously as in Procedure EnforceFDAC. Enforcing AC empties Q but
can add variables into P while enforcing DAC empties P but can add variables into Q.
As previously mentioned, enforcing singleton AC only uses Q and DAC only uses P . The
procedure only terminates when both queues are empty.

The maximum number of value removals, caused by both DAC() and AC(), is nd. The
number of times executing line 8 (for enforcing AC for a constraint) and line 9 (for adding
variables into P ) in Procedure AC() of Algorithm 2.4 is O(nd). Thus, line 5 of EnforceFDAC
takes (ed3) in times similarly to AC(), and line 4 of EnforceFDAC takes O(nd)×f(DAC()) =
O(end3). The total time complexity of EnforceFDAC is O(end3).

Existential arc consistency

In previous arc consistencies, every domain value must satisfy a given property which is
weaker than FAC. Instead, Existential arc consistency requires the existence of a specific
value in each domain which satisfies a property stronger than FAC [Larrosa et al., 2005]. A
variable is existential arc consistent if there exists a value of zero unary cost in its domain
such that this value has a full AC support in every soft function involving the variable. It
is noticed that if a variable i is not existential arc consistent, for every value (i, a) such
that c(i) = 0, there exists a cost function cS such that ia has no full AC support in cS .
Enforcing full AC support in such cost functions will move cost to (i, a) and break node
consistency of the variable. Enforcing NC for this variable will increase c∅.

Definition 2.20 (EAC [Larrosa et al., 2005]) A binary WCSP is existential arc con-
sistent (EAC) iff for every variable i, there exists a value a ∈D(i) such that ci(a) = 0 and
for every cost function cij, there exists b ∈ D(j) such that cij(a, b) + cj(b) = 0. Value a is
called the existential arc consistent support for variable i. P is EAC∗ if it is EAC and NC.

Example 2.9 Consider the WCSP in Figure 2.7. Value (j, a) has no full arc support in
cij while value (j, b) has no full arc support in cjk. Therefore variable j has no existential
arc support.

EAC is enforced by Procedure EnforceEAC(). It uses a propagation queue R containing
variables that need to be checked for EAC. Each iteration of Procedure EAC() considers a
variable i popped out from R (line 6). Procedure FindEACSupport(i) enforces EAC supports
for variable i. The condition at line 14 is used to check whether the variable i is still
existential arc consistent or not. If not (line 15), full arc supports will be enforced for
values of i in every cost function. The procedure returns true if at least a value in D(i)
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Figure 2.7: An existential arc inconsistent WCSP

Algorithme 2.7 : Algorithm enforcing EAC
1 Procedure EnforceEAC
2 R ←X;
3 EAC();

4 Procedure EAC()
5 while R ≠ ∅ do
6 i← R.pop();
7 if FindEACSupport(i) then
8 P ← P ∪ {i};
9 foreach cij s.t j > i // for further consistency enforcement (EDAC)

10 do R ← R ∪ {j} ;

11 PruneVars();

12 Procedure FindEACSupport(i)
13 flag ← false;
14 α ←mina∈D(i){ci(a) +∑cij ,i>jminb∈D(j){cij(a, b) + cj(b)}};
15 if α > 0 then
16 foreach cij s.t i > j do
17 flag ← flag ∨ FindFullSupport(i, cij);

18 UnaryProject(i);
19 return flag;

has increased cost from 0 during FindFullSupport(i, cij) (line 17). In this case, neighbor
variables j of i may have lost full AC support in D(i) due to new positive unary costs
in D(i) and thus j may have lost EAC support. Therefore, all neighboring variables of i
will be added into R to be checked for EAC later (line 10). Ignore for the moment the
conditions marked in gray. They will be used later.

It is noticed that whenever EAC is violated, c∅ will increase at least by 1. EAC cannot
be violated more than m times because the procedure will stop when c∅ reaches m. As
a result, line 10 cannot be executed more than m times. The total number of times that
variables are pushed again into R is less than m. In addition to the initialization phase,
the maximum size of queue R is n +m. Procedure FindEACSupport() takes time O(gd2),
where g is the maximum variable degree. Globally, EAC() and EnforceEAC() have a time
complexity in O(n +m)gd2 = O(max(ed2,mgd2)).
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Existential directional arc consistency

Existential directional arc consistency gets closer to FAC by using both FDAC and EAC
properties [Larrosa et al., 2005]. It requires every domain value to be full directional arc
consistent and at least a value per domain is existential arc consistent.

A variable is existential directional arc consistent if every value in its domain is fully
supported in one direction and simply supported in other direction while at least one value
is fully supported in every direction.

Definition 2.21 ( [Larrosa et al., 2005]) A normalized binary WCSP P is existential
directional arc consistent (EDAC) with respect to an order < of variables iff it is existential
arc consistent and full directional arc consistent with respect to <. P is EDAC∗ if it is
EDAC and NC.

EDGAC∗ can oscillate with constraints sharing more than one variable [Lee and Leung,
2010], where enforcing FDGAC∗ breaks EAC∗ and vice versa. In the case of binary WCSPs,
the problems must therefore be normalized to apply EDAC∗. In general, in order to avoid
this oscillation, [Lee and Leung, 2010] proposed a weak variant of EGDAC by modifying
the definition of EAC support. The idea of the weak EAC support is to distribute unary
costs to each value domain D(i) in such a way that each unary cost cj is taken into account
exactly once via a cost function cS : {i, j} ⊂ S. Suppose that j is a variable shared by two
cost functions cS , cS′ related to i. cj is taken into account in the full arc support of i on
either cS or cS′ , rather than on both, as in EAC.

Precisely, weak EAC groups variables adjacent to each variable i in k sets, where k is
the number of cost functions related to i, in such a way that no two sets share the same
variables. Each cost function cS of i is associated to a subset of variables of S, denoted by
Bi,cS . Only unary costs of the variables in this set are taken into account in the definition
of the weak full arc support for i on cS . A weak full support for a value (i, a) on cS is a
tuple τS ∈ `(S) such that τS[i] = a and cS(t) +∑j∈Bi,cS

cj(t[j]) = 0. A value (i, a) is weak
EGAC iff it has a weak full arc support on every cost function. A WCSP is weak EDAC
if it is FDGAC∗ and EGAC.

EDAC∗ can be enforced in binary normalized WCSPs in time O(max{nd,m}ed2) [Larrosa
et al., 2005] by Procedure EnforceEDAC.

Algorithme 2.8 : Algorithm enforcing EDAC
1 Procedure EnforceEDAC
2 Q← P ← S ←X;
3 while Q ≠ or P ≠ or S ≠ do
4 R ← S ∪ {i ∣ j ∈ S, cij ∈ C, i > j} ; S ← ∅ ;
5 EAC();
6 DAC();
7 AC();

This procedure enforces EDAC by simply enforcing EAC, DAC and AC simultaneously.
It uses 3 propagation queues S,P,Q where P,Q have been previously introduced, in Al-
gorithm 2.4 and 2.5. Queue S contains variables for which some values have their cost
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increased from 0 during AC() and DAC() (line 10 of Algorithm 2.4 and line 10 of Algo-
rithm 2.5). S is a supplementary queue to effectively build queue R which is used for
EAC() and which contains variables that need to be checked for EAC. If j ∈ S, one of the
removed values in D(j) could be the EAC support of j and thus j needs to be checked for
EAC. At the same time, values of variables i adjacent to j may have lost full supports in
D(j) and thus also need to be checked for EAC. Globally, variables in S and their neigh-
bors need to be checked for EAC and thus are pushed into R (line 4). Each iteration of the
procedure enforces EAC, DAC and then AC. EAC() empties S but can add variables into
P . DAC() empties P but can add variables into S. AC() empties Q but can add variables
into S,P . PruneVars() can add variables into Q. The procedure only terminates when all
three queues are empty.

2.2.6 High order consistencies

Complete k-consistency

Complete k-consistency is a strong consistency for WCSPs that was proposed by Cooper
[2005] based on (i, j)-consistency for CSPs Freuder [1985], where i+j = k. This consistency
guarantees the consistency for any sub-problem of k variables in such a way that each partial
tuple of size smaller than k can be extended without extra cost on a tuple of k variables.

The extra cost for extending a tuple τI ∈ `(I) to τ ′J ∈ `(J) such that I ⊂ J, τ ′J compatible
to τI (i.e. τ ′J[I] = τI) is computed as the sum ∑S⊂J,∣S∣>∣I ∣ cS(τ ′J[S]). The extra cost for
extending τI to the set J of variables is the minimum among the extra costs for extending τI
to compatible tuples in `(J). Complete k-consistency requires for any set J of k variables,
for any subset I such that ∅ ⊆ I ⊂ J , for any tuple τI over I, that the extra cost for
extending τI to J is zero.

Definition 2.22 (Complete k-consistency)

• Given a set J of k variables, a subset I of variables: ∅ ⊆ I ⊂ J . A tuple τI of `(I)
is complete k-consistent on J iff there exists a tuple τ ′J in `(J) compatible with τI
(τ ′J[I] = τI) such that ∑S⊂J,∣S∣>∣I ∣ cS(t′[S]) = 0. Such a tuple τ ′J is called the complete
k-consistency support for τI on J .

• τI is complete k-consistent iff it is complete k-consistent on every set of k variables.

• A subset I of variables is complete k-consistent iff every tuple of `(I) is complete
k-consistent.

• A WCSP is complete k-consistent iff every subset of less than k variables is complete
k-consistent.

The complete k-consistency support of a tuple τI ∈ `(I) on J takes into account all costs
associated to cost functions of arities greater than ∣I ∣. When ∣I ∣ = 0, i.e., I = ∅, complete
k-consistency means that there exists at least an instantiation for any set of k variables
such that the combined cost, including unary, binary, . . . , k-ary costs, is zero. When
∣I ∣ = 1, complete k-consistency means that for any value of any variable, for any set of
k variables including the variable, there exists at least an instantiation such that the
combined cost including binary, . . . , k-ary costs, is zero. In general, the property that
complete k-consistency defines for each size ∣I ∣ corresponds to (∣I ∣, k − ∣I ∣)-consistency in
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CSPs in the sense of the extensibility of ∣I ∣ variables on k − ∣I ∣ extra variables. ∣I ∣ = 0 is a
special case because (0, k)−consistency has not been defined for CSPs but it is the same
idea. In summary, complete k-consistency corresponds to the full set of {(0, k), (1, k −
1), . . . , (k − 1,1)-consistencies}.

In binary WCSPs, complete 2-consistency is related to simple arc consistency: the prop-
erty it defines for values is exactly simple arc consistency. By considering the fact that
consistency in CSPs is equivalent to a zero cost in WCSPs, we notice that in binary CSPs
(1) complete 3-consistency corresponds to hard PIC because of the property it defines for
values (∣I ∣ = 1) and (2) complete 3-consistency is related to hard PC because of the property
it defines for pairs of values (∣I ∣ = 2).

In order to enforce complete k-consistency supports for a tuple of `(I) in a set of k variables,
[Cooper, 2005] performs a process of two steps.

• The first step extends costs from all cost function cS such that ∅ ⊆ S ⊂ J and ∣S∣ > ∣I ∣
to cJ . If ∣J ∣ = ∣I ∣ + 1, this step is skipped. This steps allows to empty every cost of
arities greater than ∣I ∣ and smaller than ∣J ∣ = k. However it can create a new cost
function on scope J in the case that cJ does not exist.

• The second step projects costs from J to I. This step allows to create k-ary instan-
tiations of zero cost. The combined cost of such instantiations, including costs of
arities ∈ (∣I ∣, ∣J ∣], is zero because the associated costs of arities ∈ (∣I ∣, ∣J ∣] have been
emptied in the first step. Thus, these instantiations become complete k-consistent
supports.

Tuple consistency

Tuple consistency, proposed by Dehani et al. [2013], is an extension of simple arc consis-
tency. Instead of defining a property on the cost (variable, cost function) pairs, it defines
it on pairs of (scope, cost function), where scope is a subset of variables inside the scope
of the cost function. In other words, simple arc consistency guarantees the extensibility of
values on cost functions while tuple consistency guarantees the extensibility of tuples on
cost functions. For a cost function cS , it requires that any partial tuple over scope S′ ⊂ S
must be extended on a tuple over S that has zero-cost in cS .

Definition 2.23 (Tuple consistency) Given a cost function cS and a scope S′ ⊂ S.
A tuple τ ′S′ ∈ `(S′) is tuple consistent (TC) iff there exist a tuple τS ∈ `(S) such that
τS[S′] = τ ′S′ and cS(t) = 0. Such a tuple τS is called a tuple consistency support for τ ′S′ on
cS. The scope S′ is tuple consistent iff every tuple of `(S′) is tuple consistent. A WCSP
is tuple consistent iff every subset of variables is tuple consistent.

Notice that k-consistency handles sub-problems of k variables, for a fixed integer k, regard-
less whether k variables of the sub-problems are connected to each other by a k-ary cost
function or not. Conversely, tuple consistency handles sub-problems of variables that are
connected to each other by a cost function. These sub-problems have a size that changes
according to the arity of the cost functions.

Indeed, TC support can be called simple arc support for tuples that are values. The
property TC defined for scopes of size 1 i.e., variables, is exactly simple AC. Thus, in
binary WCSP, TC becomes simple AC, and both are related to 2-complete consistency as
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analyzed in the previous section. In ternary WCSPs, we have 3-complete consistency >
TC > simple AC, where > means the stronger relation. TC is stronger than simple AC
because the property it defines for scopes of size 1 is already simple AC. TC is weaker
than complete 3-consistency because complete 3-consistency takes into account unary and
binary costs in the support for c∅ (empty scope) and binary costs in the support for values
(tuples of size 1) but TC does not, despite both consistencies define the same features for
pairs of values (tuples of size 2).

In order to enforce TC supports, Dehani et al. [2013] use an Equivalent Preserving Trans-
formation which projects costs from cost functions cS to tuples of smaller scopes S′ ⊂ S.
This transformation can create new cost functions over scopes S′. In WCSPs having cost
functions of large arities, TC can create cost functions for all subset of variables and thus
TC is not practical. Therefore, a limited variant of TC, denoted as TCr, has been also
proposed by guaranteeing TC only for tuples of size smaller than r. A WCSP is TCr iff
every scope S′ such that ∣S′∣ < r is TC. TC1 is simple AC.

Cyclic consistency

Cyclic consistency [Cooper, 2004] is a limited version of Optimal soft arc consistency [Cooper
et al., 2007] that relaxes the traditional SAC operations used in soft arc consistencies by
allowing negative costs. A cyclic consistency operation is a set of relaxed SAC operations
used for a cycle of variables (i1, i2, . . . , ir) where i1 < i2 < . . . < ir < i1. It transforms WCSPs
into valid WCSPs without negative costs. Relaxed SAC operations are only applied on two
consecutive variables in the cycle. Each variable can receive costs from the previous and
send costs to the next one in the cycle. The amount of shifted costs in each individual
relaxed SAC operation can be negative but no negative cost is created after applying all
the relaxed SAC operations of the cyclic consistency operation.

A variable i is cyclic consistent if there is no cyclic consistency operation that can increase
the unary cost of all values a ∈ D(i) such that ci(a) = 0. A WCSP is cyclic consistent if
every variable is consistent. Cyclic consistency is optimal in the sense that when a WCSP
is cyclic consistent, there is no set of traditional SAC operations when applied on cycles of
variables that can increase the lower bound c∅.

Enhanced arc consistencies for ternary WCSPs

In order to avoid the oscillation of EDAC in ternary WCSPs, [Sánchez et al., 2008] re-
defined the full arc supports for ternary cost functions by using not only unary but also
binary costs. The definition of the simple arc support (for both binary and ternary cost
functions) as well as the full arc support for binary cost functions are not changed.

Definition 2.24 (full arc support) For a ternary cost function cijk, a pair of values
(j, b), (k, c) is a full arc support of a value (i, a) iff cijk(a, b, c)+cij(a, b)+cik(a, c)+cjk(b, c)+
cj(b) + ck(c) = 0

Hereafter, the newly defined full support is called enhanced full arc support to distinguish
from the original one [Lee and Leung, 2012]. At the same time, we use notation + to denote
soft arc consistencies which use the enhanced full arc support instead of the original one,
that is DAC+, FDAC+, EAC+, EDAC+.
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A ternary WCSP P is DAC+ w.r.t an order “<” of variables iff every value of every variable
has a full support in every binary cost function cij such that j > i and in every ternary cost
function cijk such that j > i, k > i. P is FDAC+ if every variable is DAC+ on cost functions
cij , cijk such that i < j, i < k and AC on the other ones. P is EAC+ if there exists at least
one value per variable that has full support on every cost function. P is EDAC+ if it is
FDAC+ and EAC+.

Example 2.10 Consider the WCSP in 2.8(a). It is FDAC but not EAC because of variable
x2. Sub-figures 2.8(b),(c) demonstrate the enforcement of full arc support for value (x2, a)
in c12 in order to enforce P for EAC. The extension of unary cost c1(a) on c12 during this
enforcement makes (x2, b) fully supported by (x1, a) in the ternary cost function c123 (Sub-
figure(c)). The resulting problem is thus EAC but it is now not FDAC because of variable
x1 in the cost function c12. Enforcing FDAC converts the problem back to the original
problem in Sub-figure 2.8(a). Therefore, enforcing EDAC oscillates. However, the problem
in Sub-figure 2.8(c) is not EAC+ because (x2, b) has no enhanced full support in c123 due
to the presence of the binary cost c12(a, b). As shown in the next example, enforcing EAC+

in P will lead to a problem EDAC+ with an increased lower bound.

Figure 2.8: Enforcing enhanced EDAC

Sánchez et al. [2008] proposed an algorithm to enforce enhanced full arc supports for ternary
cost functions. The idea is to extend unary and ternary costs (respectively on binary and
ternary cost functions) involved in the scope of ternary cost functions in such a way that
a maximum projection can be performed on inconsistent values. Precisely it computes
for each value (i, a) in each cost function cijk the maximum amount of cost that can be
projected on (i, a). In order to archive this cost projection, it firstly extends unary costs
from cj and ck respectively on cij and cik and then extends binary costs to cijk. These
extensions are properly computed in the sense that weaker extensions cannot lead to the
maximum projection on ci while stronger cannot lead to a larger projection on ci. This
enforcement does not break arc consistency at binary and ternary level.

Example 2.11 Consider again the example 2.10. Enforcing EAC+ requires to enforce
enhanced full supports. Enforcing enhanced full support for (x2, b) in c123 requires firstly
to extend the binary cost c12(a, b) on c123 an amount of cost 1 (Sub-figure 2.8(d)) and then
to project from c123 on (x2, b) an amount of cost 1. Finally, enforcing NC for x2 allows to
increase c∅ by 1 (Sub-figure 2.8(e)).
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2.2.7 Virtual arc consistency

The common feature of all soft arc consistencies introduced in previous section such as
AC, DAC, FDAC, EDAC, is that the consistency enforcement is performed by applying
a chaotic sequence of EPTs until a fixpoint i.e., a corresponding arc consistency closure,
is established. In this section, we will present a consistency enforced in a different way.
Virtual arc consistency, proposed in [Cooper et al., 2008, 2010], is enforced in WCSP P
by applying a planned sequence of EPTs which is defined through a classical CSP, called
Bool(P ). The application of each such sequence of EPTs will always lead to an increase of
the lower bound c∅ when the problem is not virtual arc consistent.

Definition 2.25 Given a CFN P = (X,D,C,m), the CSP Bool(P ) = (X,D,C,1) is such
that ∃cS ∈ C iff ∃cS ∈ C, S ≠ ∅ and cS(τS) = 1⇔ cS(τS) ≠ 0.

Bool(P ) is therefore a CSP whose solutions are exactly all complete tuples having cost c∅
in P .

Definition 2.26 A CFN P is virtual arc consistent (VAC) iff the arc consistent closure
of the CSP Bool(P ) is non-empty.

If P is not VAC, i.e., the arc consistency closure of Bool(P ) is non-empty, enforcing AC
on Bool(P ) will lead to a domain wipe-out. In this case, it has been shown and proved
in [Cooper et al., 2008, 2010] that there exists a sequence of EPTs which leads to an increase
of c∅ when applied on P . To exploit this property, VAC enforcing uses an iterative process.
Each iteration consists of 3 phases. Phase 1 is an instrumented AC enforcing in Bool(P )
in order to determine whether the WCSP P is VAC or not. If P is VAC, i.e., no wipe-out
occurs, the algorithm stops. Otherwise, it proceeds to Phase 2. Phase 2 aims at defining
the minimal set of necessary value deletions that lead to the wipe-out. At the same time,
it computes the minimal sequence of EPTs and the amount of cost that can be moved to
c∅ via the wiped-out variable. Phase 3 applies EPTs defined in Phase 2 to increase c∅.

Algorithm enforcing VAC

Phase 1 For enforcing AC in CSP Bool(P ), Phase 1 may use a coarse grained algorithm
such as AC3 or AC2001 with an extra maintained data-structure during the enforcing, as
described in Algorithm 2.9. The instrumented version records every deletion in a dedicated
data-structure denoted as killer. When a value (i, a) lacks a valid support on a cost function
cS , we set killer((i,a)) = S and we delete the value (line 5, 6). This deleted value is also stored
in queue Q that will be used in Phase 2. The revise propagation queue QAC , initialized to
contain all variables X, contains variables having reduced domains (their neighbors need
to be rechecked for AC).

If no domain wipe-out occurs, P is VAC and we stop. Otherwise, when a wipe-out is
detected in variable i0, it is important to realize that the resulting problem is not yet the
arc consistent closure of Bool(P ). There may still be values which have no valid support
and are not deleted because the corresponding domain has not been revised. These “pending
for revision” domains are still represented in the propagation queue QAC . The remaining
values either have a valid support or have been deleted and have a non empty associated
killer. Such a problem will be called a justified partial AC−closure of Bool(P ). It cannot
have larger domains than Bool(P ) and all deletions are properly justified by their killer.
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Algorithme 2.9 : VAC iteration - Phase 1: Instrumented AC
1 Procedure Revise(i, S)
2 change ← false;
3 foreach a ∈D(i) do
4 if /∃ τ ∈ `(S) s.t. (τ[i] = a) ∧ (τ ∈ cS) then
5 delete a from D(i);
6 killer[i, a]← S;
7 Q.push(i, a);
8 change ← true;

9 return change;

10 Procedure Instrumented-AC()
11 QAC ← {(i, S)∣cS ∈ C, i ∈ S};
12 while QAC ≠ ∅ do
13 (i, S)← P.pop();
14 if Revise(i, S) then
15 if D(i) = ∅ then return i;
16 else QAC ← QAC ∪ {(j, S′)∣cS′ ∈ C,S′ ≠ S,{i, j} ⊆ S′, j ≠ i};

17 return 0;

Phase 2 The second phase of VAC is described in Algorithm 2.10. It first identifies the
subset of EPTs that are necessary to produce the wipe-out. This is achieved by tracing
back the propagation history defined by killer and the list of deleted values Q, in reverse
order, from the wiped-out variable up to non-zero costs (line 9). For a deleted value, the
Boolean M(i, a) = true means that the deletion of (i, a) is needed to explain the wipe-out.
All the deleted values which are necessary to explain the final wipe-out are stored in reverse
chronological order in a queue R that will be used in Phase 3 later (line 13). Phase 2 then
computes the maximum possible increase achievable in c∅, denoted as λ, and the set of
EPTs to apply to P in order to achieve this increase. As shown in [Cooper et al., 2010],
all these EPTs move an amount of cost which is a multiple of λ. These amounts are stored
in two arrays of integers: k(j, b) and kS(j, b) store the number of quantum λ that needs
to be respectively projected on (j, b) and extended from (j, b) to cS . The integer k(S, t)
stores the total number of quanta λ requested on a tuple having a positive cost cS(τ) ≠ 0.
It is important to note that these cost moves follow a simple law of conservation (similar to
flow algorithms). For any value (j, b) which is not a source of cost (cj(b) = 0), the amount
of cost that arrives in (j, b) by Project is exactly the amount of cost that leaves (j, b) by
Extend (See [Cooper et al., 2010, page 465]).

∀(j, b) s.t. cj(b) = 0, k(j, b) = ∑
cij∈C

kij(j, b) (2.1)

Each value (i, a) deleted by cS that is necessary for the wipe-out (line 11) will get costs from
cS via all tuples τS involving a (line 14), where tuples of positive costs use directly their
costs to feed (i, a) (hence λ and kS are immediately updated, line 16, 17) while tuples of zero
costs have to, recursively, get costs from an involved invalid value (j, τ[j]) to feed (i, a).
If the actually defined amount of cost kS(j, τ[j]) that (j, τ[j]) will extend on cS , hence
on τ , is still not enough for (i, a) (line 20), this amount needs to be recomputed (line 22).
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Algorithme 2.10 : VAC iteration - Phase 2 and 3: Computing λ and Applying
EPTs
1 Procedure Phase2
2 initialize all k, kS to 0, λ to ∞;
3 i0 ← Instrumented-AC ();
4 if i0 = 0 then return;
5 foreach a ∈Di0 do
6 k(i0, a)← 1,M(i0, a)← true;
7 if ci0(a) ≠ 0 then
8 M(i0, a)← false, λ←min{λ, ci0(a)};

9 while Q ≠ ∅ do
10 (i, a)← Q. pop();
11 if M(i, a) then
12 S ← killer[i, a];
13 R.push(i, a);
14 foreach τ ∈ `(S) s.t τ[i] = a do
15 if cS(τ) ≠ 0 then
16 k(S, t)← k(S, t) + k(i, a);
17 λ←min{λ, cS(τ)

k(S,t)};
18 else
19 Let j ∈ S, j ≠ i, j be a variable that invalidates τ in Bool(P );
20 if k(i, a) > kS(j, τ[j]) then
21 k(j, τ[j])← k(j, τ[j]) + k(i, a) − kS(j, τ[j]);
22 kS(j, τ[j])← k(i, a);
23 if cj(τ[j]) = 0 then M(j, τ[j])← true ;
24 else λ←min{λ, cj(τ[j])k(j,τ[j])} ;

25 Procedure Phase3
26 while R ≠ ∅ do
27 (j, b)← R.pop();
28 S ← killer[j, b];
29 foreach i ∈ S, i ≠ j, a ∈D(i) s.t kS(i, a) ≠ 0 do
30 Extend(i, a, S, λ × kS(i, a));
31 kS(i, a)← 0;

32 Project(S, j, b, λ × k(j, b));
33 UnaryProject (i0, λ);
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This also means that the total cost extended from value (j, τ[j]) changes (line 21). The
value (j, τ[j]) in turn either needs costs from somewhere if it has an empty cost (line 23)
or uses its cost otherwise (line 24). λ is computed as the minimum of all ratios between
the positive costs that will be used and the numbers of demands requested to these costs
(line 8, 17, 24). This computation ensures that there will be no negative cost when applying
EPTs in Phase 3.

Phase 3 The last phase of VAC is described in detail in Algorithm 2.10. It modifies the
original CFN by applying the EPTs defined by the data-structures k and kS identified in
the previous phase on all the deleted values that have been stored in R. A value (j, b)
deleted by cS will receive a cost of k(j, b) × λ by Project from cS (line 32). This requires
to first extend a cost kS(i, a) × λ from the invalid supports (i, a) to cS so that tuple τ has
positive cost to provide to (j, b) (line 30). The result of this phase is a new problem P ′,
equivalent to P but with an increased lower-bound c∅ (line 33).

Example

Consider the WCSP presented in the leftmost sub-figure in Figure 2.9(a). This problem
has a positive unary cost c1(a) = 1 represented by the number 1 beside the vertex (1, a)
and three positive binary costs c12(b, b) = c13(b, a) = c23(a, b) = 1 represented as edges
connecting the two corresponding values. The problem Bool(P ) can be represented as
a WCSP with m = 1, where zero costs represent consistent elements (values and pair of
values) while non-zero costs represent inconsistent elements. Thus, Bool(P ) has the same
representation as P , by the leftmost sub-figure. In such a representation, propagating
inconsistencies means adding “virtual’ numbers beside vertex and edges. During enforcing
arc consistency, as described in the middle sub-figure, the inconsistency of (i, a) is firstly
propagated to binary cost functions c12, c23 and then to values (2, b), (3, a). Next, the
inconsistency of value (3, a) is propagated to c23 and then to value (2, a) (right-hand sub-
figure in Figure 2.9(a)). A wipe-out is created in the domain of variable 3 and this means
that the problem is not VAC.

Every step in Phase 2 is described in (Figure 2.9(b)). The task of Phase 2 is to determine
which positive costs to be used in order to move an amount of cost λ to c∅ via the wiped-
out variable 2 (first sub-figure). Value (2, a) needs a cost of λ from c23 (because of which it
was deleted) and (2, b) needs the same amount of cost from c12 (second sub-figure). Pairs
of values ((1, b), (2, b)) and ((3, b), (2, a)) have already positive binary costs in the WCSP
P for providing to (2, b) and (2, a) respectively. Conversely, having an empty binary cost,
pairs of values ((1, a), (2, b)) and ((3, a), (2, a)) respectively have to get a cost of λ from
values (1, a) and (3, a) (third sub-figure) where value (1, a) is available to be used because
of its positive unary cost while value (3, a) has no cost so needs to get costs from its killer
c31 (fourth sub-figure). In c13, the pair of value ((1, a), (3, a)) has no cost and needs an
amount of cost λ from (1, a). Globally, value (1, a) requires 2 demands of costs of λ while
pairs of values ((1, b), (2, b)) and ((3, b), (2, a)) only one (last sub-figure). The value of λ
cannot exceed min{1/2,1/1,1/1} = 1/2 and this means that we can increase c∅ by 1/2. Such
a fractional amount of cost could be managed using a decimal or rational representation
of costs.

Phase 3 modifies the WCSP problem by moving costs between cost functions as defined in
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Figure 2.9: An example of establishing VAC in a WCSP [Cooper et al., 2010]

Phase 2. First, value (1, a) extends a cost of 1/2 to c12 and then c12 projects a cost of λ
on (2, b). Similarly, value (1, a) extends a cost of 1/2 to c13 and then c13 projects a cost of
λ on (3, a) (middle sub-figure in Figure 2.9(c)). Next, value (3, a) extends a costs of 1/2
to c23 and then c23 projects the same amount of cost on (2, a). Both values of variable
2 have a unary cost equal to 1/2 and we can move a cost of 1/2 from this variable to c∅
(right-hand sub-figure in Figure 2.9(c)).

VAC is stronger than EDAC in the sense that if a WCSP is virtual arc consistent then
establishing EDAC cannot increase the lower bound because no sequence of EPTs can
increase c∅. This is exemplified in the previous example. The resulting WCSP (right-hand
sub-figure in Figure 2.9(c)) is VAC and also EDAC.
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Chapter 3

Dynamic virtual arc consistency

3.1 Introduction

Among soft arc consistencies for WCSPs, VAC is an attractive choice for Branch-and-Bound
search because it can provide good lower bounds for search and it has an acceptable time
complexity compared with optimal soft arc consistency (OSAC [Cooper et al., 2007, 2010]).
More precisely, VAC is stronger than simple soft arc consistencies such as AC, DAC, FDAC,
EDAC while it is experimentally faster than OSAC. However, the time complexity of VAC
is still expensive compared with simple soft arc consistencies. Therefore, improving the
efficiency in time of VAC is one of our targets.

VAC is characterized by its iterative behavior where each iteration incrementally modifies
the WCSP P and therefore the classic CSP Bool(P ) which is derived from P by forbidding
values and tuples that have costs greater or equal to zero (or any given threshold). The
next iteration of VAC will enforce once again classical AC on a slightly restricted version of
Bool(P ). This situation, where AC is iteratively enforced on incrementally modified ver-
sions of a constraint network, has been previously considered in Dynamic Arc Consistency
algorithms [Bessière, 1991; Barták and Surynek, 2005; Mouhoub, 2003; Quéva et al., 2010]
for Dynamic CSPs [Dechter and Dechter, 1988]. Suitably integrating the idea of DnAC
into VAC can improve the efficiency of enforcing AC in Phase 1 and therefore the global
efficiency of VAC

Moreover, the efficiency of maintaining VAC during search, just like its iterative behavior,
can be accelerated by exploiting the incrementality of the changes because of branching
operations. Indeed, whether an iteration of VAC has just been executed or a decision
has been taken by Branch-and-Bound search, maintaining VAC requires to repeatedly
enforce standard AC on the hardened version of an incrementally modified version of the
problem. As a result, DnAC also can be integrated into VAC for efficiently handling the
kind of changes caused by branching operations during search. Similarly to enforcing arc
consistency in CSPs, revising heuristics can be introduced within Phase 1 of VAC in order
to improve practical efficiency of enforcing VAC.

From this, a new method to enforce VAC has been proposed by integrating DnAC into VAC.
Instead of rebuilding the CSP Bool(P ) from scratch at each new iteration during enforcing
VAC or at each new node during search, the new method only handles a part of Bool(P )
that is modified according to the changes in P . This allows to save enforcing effort done in
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previous iterations or parent nodes. Inside each iteration of VAC, Bool(P ) is maintained
incrementally but when the search makes a branching operation, it is either maintained
incrementally or rebuilt from scratch. The former method is called “full dynamic VAC”
while the latter is called “normal dynamic VAC”.

This chapter consists of 3 main sections. Section 3.2 focuses on the integration of DnAC
into VAC for handling incremental changes in WCSP P caused by EPTs during successive
iterations of VAC. We first characterize modifications in Bool(P ) that can happen between
two successive iterations of VAC. Then, we propose an algorithm enforcing VAC which
only modifies Phase 1 of VAC by using DnAC for updating Bool(P ). The new method
still executes Phase 2, 3 in the same way as the static VAC. Finally, we will prove the
correctness of our algorithm and analyze its space and time complexity.

The next section aims at integrating DnVAC into VAC for handling incremental changes
between the problems considered at adjacent nodes in the search tree. We also characterize
modifications in Bool(P ) according to such changes in P caused by branching operations.
Then, an algorithm for updating Bool(P ) in this situation will be introduced. Moreover,
this section introduces some revising heuristics that can be applied within Phase 1 of VAC,
in order to accelerate the enforcement of VAC.

In Section , our experimentation of static and dynamic VAC will be presented. We will
compare the efficiency of static VAC and the two versions of dynamic VAC, normal and
full dynamic VAC, when being maintained during search. From the obtained experimental
results, the main criteria that influences the performance of dynamic VAC will be indicated.

3.2 Maintaining VAC dynamically during successive itera-
tions

3.2.1 Specification of changes in Bool(P )

In traditional Dynamic CSPs, DnAC algorithms are applied after each constraint removal or
addition. In the case of VAC, the situation is more complex because a series of modifications
of Bool(P ) occurs during Phase 3 through applications of different EPTs where each EPT
leads to both increase and decrease of costs in P and as a result can lead to both removal
and restoration of values and tuples in the CSP Bool(P ).

A simple call to Project(cij , i, a, α) can be decomposed in 1) an increase of cost of the unary
cost function ci(a) and 2) a decrease of costs in the binary cost function cij . If a previously
zero cost ci(a) becomes non-zero, the associated value (i, a) is removed from Bool(P ) and
this corresponds to a restriction. Conversely, if the non-zero cost of a pair (a, b) reaches
zero, this previously forbidden pair in cij becomes authorized and this corresponds to a
relaxation.

Similarly, a simple call to Extend(cij , i, a, α) can be decomposed in 1) a decrease of cost of
the unary cost function ci(a) and 2) an increase of costs in the binary cost function cij . If
a previously non-zero cost ci(a) reaches zero, the previously forbidden value (i, a) becomes
authorized in Bool(P ) and this corresponds to a relaxation. Conversely, if the zero cost
of a previously authorized pair (a, b) becomes non-zero, this pair becomes forbidden in cij
and this corresponds to a restriction.
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Therefore, instead of applying a DnAC algorithm inside each Project, Extend and
UnaryProject operation, a better approach consists in applying DnAC principles only af-
ter Phase 3 to avoid useless restorations/deletions of values by DnAC.

Each iteration of VAC transforms the current CFN P into a modified problem P ′ with
cost functions c′i and c

′

ij . After Phase 2, it is already possible to compute the values of c′i
and c′ij because they are defined by a known sequence of applications of Project, Extend and
UnaryProject on ci and cij . For example, if i is not the wiped-out variable, we have for any
value a:

c′i(a) = ci(a) + k(i, a).λ− ∑
cij∈C

kij(i, a).λ

A similar computation can be done for any value a of the wiped-out variable for which a
cost of λ shifted to c∅ must be taken into account.

c′i(a) = ci(a) + k(i, a).λ− ∑
cij∈C

(kij(i, a).λ) − λ

For a pair of values ((i, a), (j, b)), if one of the two values is not deleted or the deletion of
one value is not necessary for the wipe-out, cij is not changed. Otherwise, we have:

c′ij = cij + (kij(i, a) + kij(j, b) − k(ij, ab)).λ

where k(ij, ab) and kij(j, b) are the simplified notations for k(S, τ) and kS(j, b) in the case
of binary cost functions S = {i, j}, τ = (a, b) ∈ Di ×Dj which respectively store the total
number of quantum λ that the pair of values (ia, jb) receive from every where and from
value (i, b).

We now show that the global effect of all EPTs on Bool(P ) in Phase 3 is a set of relaxations
only, at the unary and binary levels.

Property 1 Following Phase 2, we know that:

a) ∀(i, a): c′i(a) ≤ ci(a).

b) ∀(i, a) and (j, b): if c′ij(a, b) ≠ cij(a, b) then (i, a) or (j, b) is deleted in the current
justified partial AC−closure of Bool(P ).

Proof 1 a) In VAC, the only operation that may increase unary costs is the Project
operation. However, according to equation 2.1 in subsection 2.2.7, any value (i, a)
that receives cost by Project will later Extend the same amount of cost (to other binary
cost functions or to c∅). Hence, unary costs cannot increase.

b) The only way for a binary cost cij(a, b) to change is by a Project from cij or an Extend
onto it. However, Phase 3 of VAC applies Project and Extend to values extracted from
the queue R of deleted values (built by Phase 2). Therefore when the cost of a pair
(a, b) changes, either (i, a) or (j, b) must have been deleted.

Corollary 1 The EPTs applied in Phase 3 of VAC, transforming Bool(P ) into Bool(P ′),
generate only the following types of relaxations:

a) values (i, a) that become authorized (ci(a) > c′i(a) = 0).
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b) pairs ((i, a), (j, b) that become authorized (cij(a, b) > c′ij(a, b) = 0).

Proof 2 a) From Property 1(a), we know that unary costs may only decrease. Some
may therefore go from a non-zero cost to a zero cost. Therefore the corresponding
value re-appears in Bool(P ′). This can be considered as the retraction of a unary
constraint.

b) From Property 1(b), the costs of pairs may either increase or decrease. If a binary
cost (a, b) increases from zero to non-zero, this cannot destroy a valid support because
either of the 2 values is deleted in the current partial closure. The support cannot be
valid. If the cost of (a, b) decreases however, it may create a new support for a or b.

3.2.2 Algorithm

During successive iterations of VAC, no restriction can be created in Bool(P ). Therefore,
the DnAC algorithm used can be specialized for relaxations, as described in Algorithm 3.1.
This procedure is performed right after Phase 2, before Phase 3, in order to update Bool(P )
according to the changes in P that will occur in Phase 3 because of EPTs. Since Bool(P )
is maintained after Phase 3 of each iteration, so D(i) mentioned in the following represents
the domain of variable i in the final justified partial AC−closure obtained after Phase 1.
The restoration protocol consists of 3 stages: initialization, propagation, filtering as in
AC/DC−2. It is executed based on killer which is equivalent to the justification system
used in AC/DC−2. Similarly to AC/DC, for each variable i, it uses a list restored[i] to
store values that have just been restored in Bool(P ) and are waiting for being propagated.

The initialization stage scans all the deleted values in the queue R to identify which
values should be restored (line 2). Note that each value in R was deleted due to the
loss of support on some constraint and its deletion is necessary for the wipe-out. Thus,
the wiped-out variable i0 is processed separately because some values in D(i0) could be
deleted by itself because of its previous unary cost (line 7). As Corollary 1 shows, there
are 2 possible cases: (1) when a value (i, a) becomes authorized ci(a) > c′i(a) = 0, it will
be restored (line 5), (2) when a new valid support appears for a value (j, b) by satisfying
(cij(a, b) + ci(a)) > (c′ij(a, b) + c′i(a)) = 0 and killer (j, b) = i, (j, b) will be restored (line 6).
The restoration of values is executed by Procedure Restore at line 8. When a value (i, a)
is restored, it is stored in array restored[i] and variable i is kept in a list RL for future
propagation.

The propagation stage (line 12) propagates value restorations to direct neighbors of the
variables whose domain has been extended, as in AC/DC−2. The propagation queue RL
contains variables having extended domains. Each such variable i can restore a value (j, b)
in a neighbor variable j if it was deleted due to cij (line 16) and is now supported by
a restored value in i (line 17). After propagating all restored values, the restored list is
emptied (line 19) to avoid re-propagating values which have been already propagated.

The filtering stage must eliminate the restored values (i, a) which are not arc consistent
on some constraint cij and properly set the associated killer (i, a) to j. This is precisely what
is achieved by the Phase 1 of VAC. Hence, we integrated this stage into Phase 1 by adding
the neighbor variables of variables having restored values into the revision propagation
queue QAC used in Phase 1 of VAC (line 20).
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In summary, in order to maintain VAC dynamically, the DynVAC algorithm performs
Phase 1, 2, 3 in the same way as the static VAC algorithm, except for the extra work,
done by Algorithm 3.1, that is inserted between Phase 2 and Phase 3 of VAC for updating
Bool(P ).

Algorithme 3.1 : Algorithm updating Bool(P ) during successive iterations of VAC
1 Procedure Initialization
2 foreach (j, b) ∈ R do
3 i ←Ð killer [j, b] ;
4 foreach a ∈D(i) −D(i) do
5 if (ci(a) > 0) ∧ (c′i(a) = 0) then Restore(i, a) ;
6 if b ∉D(j) ∧ c′i(a) = 0 ∧ c′ij(a, b) = 0 then Restore(j, b) ;

7 foreach a ∈Di0 s.t. ci0(a) > 0 ∧ c′i0(a) = 0 do Restore(i0, a) ;

8 Procedure Restore(i, a)
9 add a into D(i) and restored[i];

10 add i into RL;
11 killer [i, a] ← nil;

12 Procedure Relax−Propagation
13 while RL ≠ ∅ do
14 i← RL.pop();
15 foreach cij ∈ C do
16 foreach b ∈D(j) −D(j) s.t. killer [j, b]= i do
17 if ∃a ∈ restored[i] s.t. c′ij(a, b) = 0 then
18 Restore(j, b);

19 restored[i] ← ∅;
20 QAC ← QAC ∪ {j ∣ cij ∈ C};

3.2.3 Example

The essential gain of DynVAC compared to VAC lies in the fact that the list of variables
to revise during Phase 1 is not reset to the full set of variables X at each iteration but is
instead maintained along all iterations, avoiding useless repeated filtering. We illustrate
this on a small example.

Consider the binary CFN in Figure 3.1(a). Each variable has two values a and b repre-
sented as vertices. Non-zero unary costs are displayed beside values. An edge between two
vertices indicates that the corresponding pair has a non-zero binary cost. Zero costs are
not represented. In Bool(P ) (Figure 3.1(b)), forbidden values are shown as crossed-out
and edges represent forbidden pairs.

Suppose that the revision order in Phase 1 is (c13, c34, c12, c24). After revising c13, c34, c12,
(3, a), (4, b) and (2, b) have been deleted from Bool(P ) respectively. Phase 1 stops because
variable 2 has wiped-out (Figure 3.1(c)). The gray arrows represent the state of the killer
data-structure for removed values, pointing to the variable that offered no valid support.
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A removed value without any justification arrow means that the value is deleted because
of its own positive unary cost.
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In Phase 2 (Figure 3.1(d)), the deletion of (2, b) alone is sufficient for the wipe-out. It uses
the non-zero costs c12(b, b) and c1(a) to provide c∅ with a maximal amount of cost λ = 1.
The numbers in italic associated with gray arrows precisely indicate the corresponding
value of k(i, a). Applying identified EPTs, Phase 3 (Figure 3.1(e)) transforms P into an
equivalent problem P ′ with c′

∅
= 1. Extended costs are shown in bold.

VAC enforcing continues because P ′ is still not VAC. To update Bool(P ) in Figure 3.1(c),
we consider ((1, a), (2, a), (2, b)) for restoration because only c12 has been modified by
EPTs in Phase 3. Only (2, b) is restored because it has a zero cost and a support (b, b) on
c12. This restoration does not lead to further restorations. The constraints of the updated
Bool(P ) are directly defined by P ′. In fact, the updated result in Figure 3.2(a) is already a
justified partial AC−closure of Bool(P ′) with two extra deleted values (3, a) and (4, b) and
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the associated killer. The next Phase 1 starts from this updated Bool(P ). (4, a) is removed
after revising c24 and variable 4 wipes out (Figure 3.2(b)). Phase 2 and Phase 3 perform
as in the previous iteration. The final problem (Figure 3.2(d)) with c′′

∅
= 2 is VAC.

3.2.4 Correctness of the algorithm

In this section, we use dedicated notations: given two CSPs P = (X,D,C,1) and P ′ =
(X,D′,C,1), we write P ⊆ P ′ if every domain D(i) ∈ D is included in the corresponding
domain D′(i) ∈ D′. We will say that (i, a) ∈ P if a is present in D(i) in P , and that
(i, a) ∉ P otherwise.

The DynVAC algorithm is correct if the result it provides to the next iteration (t+1) of VAC
is a justified partial AC−closure of Bool(P t+1), where P t and P t+1 (with cost functions ct

and ct+1) are respectively the initial WCSPs on which VAC is enforced at the iterations
t and t + 1. This result is entirely defined by 1) the values restored by the relaxation
initialization and propagation, 2) the contents of the killer data-structure and of the QAC
queue given to Phase 1.

We denote by BoolJPAC(P t) the justified partial AC−closure of Bool(P t) obtained at
the end of the phase 1 of iteration t and by Bool

Dyn
(P t) the CSP obtained after value

restoration by DynVAC in the new Phase 3, with the constraints of Bool(P t+1). These
different WCSPs and CSPs are represented in Figure 3.3.

P t

?

phase 32.

P t+1

�� ��Bool(P t) -
phase 1

1.

�� ��Bool(P
t+1

)

�� ��Bool
JPAC

(P t)

?

update
phase3.�� ��Bool

Dyn
(P t)

Figure 3.3: The different CFNs and CSPs built in one iteration of DynVAC

In order for DynVAC to be correct, the problem Bool
Dyn

(P t) and the associated killer
data-structure must satisfy the following property to be a justified partial AC−closure of
Bool(P t+1):

(1) Bool
Dyn

(P t) ⊆ Bool(P t+1). Indeed, Bool
Dyn

(P t) should not authorize any value
which is not authorized in Bool(P t+1).

(2) ∀(i, a) s.t. (i, a) ∈ Bool(P t+1) and (i, a) ∉ Bool
Dyn

(P t), (i, a) can be deleted by
enforcing AC in Bool(P t+1) using the sequence of EPTs represented by the associated
killer structure in Bool

Dyn
(P t).

(3) For any other value (i, a) in Bool
Dyn

(P t), either it is arc consistent in Bool
Dyn

(P t)
or all variables neighboring to i in QAC will be revised.

Proof 3 (1) By definition of Bool(P ), (i, a) ∉ Bool(P t+1)⇔ ct+1(i, a) > 0. By Corollary 1,
this means that ct(i, a) > 0 and (i, a) ∉ Bool(P t). Since AC enforcing can only delete values,
(i, a) ∉ BoolJPAC(P t). Then (i, a) cannot be restored because of its strictly positive cost.
Thus, (i, a) is absent from Bool

Dyn
(P t).



50 Chapter 3. Dynamic virtual arc consistency

(2) A value (i, a) ∉ Bool
Dyn

(P t) must have been deleted in BoolJPAC(P t) with
killer(i, a) = j and is not restorable. Either it is a direct deletion because (i, a) had no
valid support in Bool(P t), i.e. ∀b ∈ D(j), ctj(b) + ctij(a, b) > 0. Since (i, a) has not been
restored, this means that ∀b ∈ D(j), ct+1

j (b) + ct+1
ij (a, b) > 0 and (i, a) can be deleted imme-

diately in Bool(P t+1) by revising for AC for i w.r.t j. Otherwise, (i, a) has valid supports
in Bool(P t) but they have been previously deleted in Phase 1 and not restored. Therefore,
the same argument as above applies inductively. Since AC is a sequential process and the
number of values is finite, ultimately the previous case must apply and the value (i, a) can
therefore be deleted in Bool(P t+1) too by enforcing AC in it.

(3) Any other value (i, a), i.e. (i, a) ∈ Bool
Dyn

(P t), is either restored by DynVAC (by
Procedure Restore at line 8, Algorithm 3.1) and in this case QAC has been updated to enforce
revision of i (line 20 ) or else it was present in BoolJPAC(P t), a justified partial AC−closure
of Bool(P t). Then (i, a) had all neighbors in QAC and still has them. Else, it has valid
supports on all constraints. By Corollary 1, these valid supports are preserved.

3.2.5 Complexity

DynVAC uses an additional data structure restored in comparison to static VAC. The
maximum total size of this data structure is nd because each value is restored at most
once. DynVAC has therefore the same space complexity as VAC, in O(ed + nd) or O(ed).

The update initialization stage has a O(nd) time complexity because there are at most
n × d values to be restored (line 5,6 Algorithm 3.1). The worse-case time complexity of
the propagation stage is O(ed2) because each restored value is propagated exactly once
and each pair of values involved in a constraint is thus tested at most once (line 16,17
Algorithm 3.1). So, the time complexity to update Bool(P ) is O(ed2), which does not
modify the complexity of Phase 3 of VAC.

An iteration of DynVAC has therefore a O(ed2) time complexity, similarly to VAC, as long
as an optimal AC algorithm is used in Phase 1. Although DynVAC does not have an
improved asymptotic complexity compared to VAC, experimental tests presented in the
next section will show important speedups in practice.

3.3 Maintaining VAC dynamically during search

3.3.1 Specification of changes in Bool(P )

The standard way to maintain VAC during search is to rebuild the CN Bool(P ) at each
new node and then use this new Bool(P ) to enforce VAC in the CFN P . If DynVAC has
been shown to enhance VAC efficiency for pre-processing CFNs at the root node, DynVAC
has never been maintained during search.

Similarly, the simplest way to maintain Dynamic VAC during search consists in enforcing
Dynamic VAC at each node. However, maintaining Dynamic VAC during search offers new
opportunities for incrementality. In this section, we show that VAC can be incrementally
maintained not only between successive iterations of VAC inside a node, but also during
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search between nodes, by incrementally maintaining an AC−closure of Bool(P ) between
search nodes.

Between two consecutive nodes, the CN Bool(P ) is only modified according to the changes
in P caused by branching operations. The branches out of a node can be the assignment of
a variable (i = a) or a domain restriction (i ≠ a), (i < a) or (i > a) that respectively remove
value a, values before and after a from the domain D(i). We denote all these different cases
as P∣i. We expect that maintaining AC with a Dynamic AC algorithm in such a slightly
modified Bool(P ) will be beneficial compared to a cold restart. Suppose that branching
operations transform the current CFN P into P∣i=a, P∣i≠a, P∣i>a or P∣i<a. After a branching
operation, P∣i will have modified domains and also possibly modified cost functions. These
will be respectively denoted as D′ and c′i or c

′

ij . To enforce VAC incrementally between
nodes, we need to compute the AC−closure of Bool(P∣i) from the AC−closure of Bool(P )
using only the modification from P to P∣i.

Figure 3.4: All possible situations that can happen after a variable assignment

When a variable domain D(i) is restricted by a branching operation of the form (i ≠ a),
(i < a) or (i > a) that does not reduce the domain to a singleton, the removal of values
leads to a new domain D′(i) and thus a new domain, denoted as D′(i), in the currently
computed AC−closure of Bool(P∣i). Some values of the neighboring variables j may have
lost their support on c′ij in Bool(P∣i) and thus need to be checked for AC. Similarly to
the case of constraint restriction, this can be naturally achieved by DnAC by (1) adding
the neighbor variables of i in the propagation queue QAC and (2) restarting propagation
to remove all values which are arc inconsistent in Bool(P∣i) due to this domain restriction.

When instead, an assignment is performed (or equivalently the domain is reduced to a
singleton), solvers exploit this very specific situation to directly eliminate the variable i
from the problem. Therefore, the modifications caused by a variable assignment (i = a) are
more complex than for other domain reductions. Indeed, when the domain of a variable i
is restricted to a single value a, the unary cost ci(a) of (i, a) is immediately projected on
c∅. Then binary costs cij(a, b) also are projected on neighboring values (j, b) of i and the
binary cost functions c′ij are removed from the CFN P∣i=a.

Property 2 The CFN P∣i=a = (X,D′,C ′,m) which is obtained from P = (X,D,C,m) by
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a variable assignment (i = a) satisfies the following properties:

a) c′i(a) = 0.

b) for every variable j, there is no cost function c′ij connecting i and j.

c) for every value (j, b) such that ∃cij in P , we have c′j(b) = cj(b) + cij(a, b).

Figure 3.4 lists all the situations that can happen after a variable assignment (i = a) for the
values (j, b) of a neighbor variable j. It shows that, except for the two cases that will be
considered later in Corollary 3, the deleted/non deleted status of (j, b) remains unchanged
in Bool(P∣i=a). To show this, we first prove the following Corollary of Property 2:

Corollary 2 The CN Bool(P∣i=a) satisfies the following properties:

a) for every variable j ≠ i, j is arc consistent with i.

b) (i, a) is an arc consistent value in Bool(P∣i=a).

Proof 4 a) The constraints of Bool(P∣i=a) are directly defined from the cost functions
of P∣i=a. From Property 2b), we know that there does not exist any c′ij in P∣i=a where
j ≠ i. Therefore, there also does not exist any constraint c′ij in Bool(P∣i=a). As a
result, j is arc consistent with variable i.

b) In Bool(P∣i=a), (i, a) cannot be deleted because of its positive cost since c′i(a) = 0
according to Property 2a). Moreover, (i, a) cannot be killed by any other variable j
because no constraint links i to other variables in Bool(P∣i=a).

Considering the various cases where the status of (j, b) does not change, most are straight-
forward. The only non obvious case is when c′j(b) = cj(b) = 0 and (j, b) is arc consistent
in Bool(P ). This implies that (j, b) is arc consistent with every variable k ≠ i in Bool(P ).
Because the variable assignment does not change cost functions cjk, (j, b) will still be arc
consistent with k in Bool(P∣i=a). In addition, Corollary 2a) indicates that (j, b) is also arc
consistent with i in Bool(P∣i=a). Therefore, being arc consistent with every variable and
having a zero unary cost, (j, b) is an arc consistent value in Bool(P∣i=a) (and it has the
same status as in Bool(P )).

Then, as shown in Figure 3.4, there are two cases where the status of values may change
compared to the status in Bool(P ), requiring to update Bool(P∣i=a). This is proved in
Corollary 3. In all other cases, as we saw, the status of values in Bool(P∣i=a) remains the
same as in Bool(P ).

Corollary 3 Each variable assignment (i = a) in P can generate both:

a) the removal of values (j, b) in Bool(P∣i=a) such that there exists cij in P and c′j(b) >
cj(b) = 0.

b) the restoration of values (j, b) in Bool(P∣i=a) which were deleted in Bool(P ) by cij
and such that c′j(b) = 0.

Proof 5 a) From Property 2c), unary costs of values (j, b) that are neighbor with i in P
may only increase or remain unchanged in P∣i=a. Some may therefore go from a zero
to a non-zero cost. In this case, the corresponding values are deleted in Bool(P∣i=a).
From the dynamic AC point of view, this can be considered as a restriction, with the
addition of a unary constraint on j (i.e., domain restriction).
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b) If (j, b) is a value removed in Bool(P ) because of cij ( killer(j, b)= i), this implies that
cj(b) = 0 (otherwise, we would have killer(j, b)= j). According to Property 2c), the
unary cost of (j, b) in P∣i=a can remain unchanged, i.e., c′j(b) = 0, if cij(a, b) = 0. Such
a value with zero cost cannot be killed by itself in Bool(P∣i=a). Furthermore, i is no
longer a reason to delete (j, b) because as Corollary 2a) states, (j, b) is arc consistent
with i. Hence, (j, b) can become viable in Bool(P∣i=a). From the dynamic AC point of
view, this corresponds to the relaxation of a unary constraint on j (domain relaxation)
and (j, b) needs to be considered as restorable.

In summary, the change in a cost function network P caused by variable assignments can
lead to both the restoration and the removal of values in the CN Bool(P ), while domain
restrictions only lead to the removal of values. For these two cases of branching operations
during search, DnAC can be used for maintaining a justified partial AC−closure of such
modified Bool(P ). This will be showed in an algorithm presented in the next section.

3.3.2 Algorithm

Algorithme 3.2 : Algorithm updating Bool(P ) w.r.t branching operations during
search
1 Procedure restrict(i, a, operation)
2 switch operation do
3 case operation is “>”
4 remove values smaller or equal to a from D(i) and D(i)
5 case operation is “<”
6 remove values greater or equal to a from D(i) and D(i)
7 otherwise remove a from D(i) and D(i);
8 QAC ← {i};
9 Instrumented-AC();

10 Procedure assign(i, a)
11 D(i) =D(i) = {a};
12 UnaryProject(i);
13 foreach cij do
14 foreach b ∈D(j) do
15 if cj(b) = 0 and cj(b) + cij(a, b) > 0 then
16 remove b from D(j);
17 add j into QAC ;

18 cj(b)← cj(b) + cij(a, b);
19 if cj(b) = 0 and killer(j, b) = i then
20 restore(j, b);

21 remove cij and cij ;

22 Relax−Propagation() ;
23 Instrumented-AC();

Branching operations in search can provoke two processes of DnAC: restriction (value
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removals) and relaxation (value restorations). Therefore, DnAC needs to use two dedicated
queues QAC and RL, the former for propagating value removals and the second for value
restorations. Algorithm 3.2 presents two procedures: “restrict” and “assign” for handling
respectively the domain restriction and the variable assignment in D(i).

Procedure restrict(i, a, operation) at line 1 is used to update P and Bool(P ) when restrict-
ing the domain D(i) except for the restriction to a singleton value which is considered as
a variable assignment. As analyzed in the previous section, there is only value removal for
this case. Variables neighbor to i can loose supports in D(i) and thus need to be revised
for AC. This naturally can be done by an instrumented arc enforcing procedure (line 9)
with an initial propagation queue QAC containing i - the variable with reduced domain
(line 8).

Procedure assign(i, a) at line 10 is used to update P and Bool(P ) when assigning (i = a).
The unary cost of (i, a) is projected on c∅ (line 12). For every variable j neighbor to i,
binary costs of pairs of values ((i, a), (j, b)) are projected on cj(b) (line 18). New values
of non-zero cost (line 15) will be removed from Bool(P ) (line 16). The removal of (j, b)
can further lead to the removal of other values. Thus, j is pushed into queue QAC for
the future revision for AC (line 17). Conversely, if (j, b) has been removed by i and still
has a zero cost (line 19), it is restorable and will be restored (line 20). After defining all
values to be removed and restored because of the value assignment for i, the algorithm
will do the propagation for value restorations and then for value removals (lines 22 and 23
respectively). Note that the propagation for value restorations is performed by Procedure
Relax−Propagation() defined in Algorithm 3.1 where the condition c′ij(a, b) = 0 at line 17
is replaced by cij(a, b) = 0. The reason for this replacement is that the new CSP P
after branching operations have been redefined before launching the propagation of value
restorations. We can thus use directly new costs w of the newly defined problem P .

When the search backtracks, the AC−closure of Bool(P ) can be simply rebuilt via the
restoration of the justification system “killer” through trailing. Indeed, if killer(i, a) = nil,
this means that (i, a) was consistent in the old Bool(P ). In this case, (i, a) will be set as
an available value in D(i). Conversely, if killer(i, a) = j or i, this means that (i, a) was
removed because of constraint cij or ci. In this case, (i, a) will be removed from D(i).

3.3.3 Example

Consider the CFN P in Figure 3.5(a) Suppose that P is the CFN obtained at some node
of the tree search and is therefore virtual arc consistent. The AC−closure of Bool(P ) for
this node is represented in Figure 3.5(b). Both P and Bool(P ) are represented in the same
way as in Figure 3.1 in Example 3.2.3. Now we will show how Bool(P ) is updated in two
cases: a domain restriction (i ≠ a) and a variable assignment (i = a).

Domain restriction. In the case (i ≠ a), DynVAC will propagate the domain reduction
of i to neighbor variables k, l. We observe that (i, a) was also deleted in Bool(P ) of the
parent node. It did not support any value. Thus, the removal of (i, a) does not lead to
any support loss. The propagation procedure stops here. We obtain a new Bool(P ), which
is identical to the old one in Figure 3.5(b). In this favorable case, DynVAC has almost
nothing to do to construct Bool(P∣i≠a).
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Figure 3.5: Updating Bool(P ) in the case of a variable assignment

Variable assignment. Consider now the case of a variable assignment (i = a). Only the
pair ((i, a), (l, c)) has positive cost and this binary cost will be projected to (l, c) ∶ c′l(c) = 1.
Then cost functions cik, cil are removed from P . The network of P∣i=a is presented in
Figure 3.5(c). Similarly, following assignment, values (i, b), (i, c) and constraint cik, cil
will be removed from Bool(P ) and value (i, a) will be set as consistent in Bool(P∣i=a)
(Figure 3.5(d)). In the neighborhood of i, only value (k, c) is restorable because it was
removed due to cij but cij has just been removed from Bool(P ). Thus, (k, c) is restored
(Figure 3.5(e)). The restoration of (k, c) does not make any other value restorable. At the
same time, in the neighborhood of i, only value (l, c) has an increased unary cost. (l, c)
will be deleted in Bool(P∣i=a) because of its positive cost (Figure 3.5(f)). The domain of l
becomes empty and VAC can project unary costs of 1 to c∅. We observe that the result
of enforcing AC on the sub-problem of Bool(P ) defined by variables j, k, l (for constraints
cjl, cjk, ckl) is preserved and that a variable wipe-out is detected early.

3.3.4 Revision heuristics

One of the possible methods for improving the efficiency of enforcing AC in classical CSPs
is to use revision heuristics and this idea can be applied in Phase 1 of VAC in order to
improve the efficiency of DynVAC. Phase 1 of VAC terminates as soon as a variable domain
in Bool(P ) is wiped-out if the problem is not virtual arc consistent or all variables in the
propagation queue QAC have been revised otherwise. We observe that:

• In general, there are more chances for variables of small domain size than those of
large domain size to become wiped-out when being enforced for AC. Thus, revising
such variables of small domain size first may lead a wipe-out earlier.

• When processing a variable j popped out from the propagation queue QAC , all neigh-
bors of j have to be checked for AC w.r.t j and one of these neighbors can become
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wiped-out. Processing variables having more neighbors, i.e. large degree; has more
chances to lead to a wipe-out.

• In Phase 3 of VAC, a variable j provides its unary costs for a variable i that is
neighbor to j if some values in i were deleted because of i in Phase 1 and these
deletions are necessary for the wipe-out. The larger unary costs in D(i) are, the
larger costs can be moved to the neighbors of i. According to this rule, we hope that
more costs can be moved to the wiped-out variable i0 and thus to c∅.

From the observations above, we have proposed to use revision heuristics during enforcing
AC in Phase 1 as follow:

• domain size (domsize): this heuristic selects first in QAC the variable having the
smallest current domain size in Bool(P ). Then, constraints are processed in ascending
order of the domain sizes of the opposite variables.

• maximum unary cost (maxcost): this heuristic selects first in QAC the variable having
the greatest maximum unary cost in its domain. Then, constraints are processed in
descending order of the maximum unary cost in the domain of the opposite variables.

• degree: this heuristic selects first in QAC the variable having most neighbors and then
constraints are processed in descending order of the number of neighbors (known as
the size of the neighborhood) of the opposite variables.

3.4 Experimentation

3.4.1 VAC implementation

In this section, we will compare the efficiency of VAC when maintained during search in
three different ways:

• Static VAC (VAC): Bool(P ) is always rebuilt from scratch whenever a new iteration
of VAC or a branching operation is performed.

• Normal Dynamic VAC (norDVAC): Bool(P ) is maintained incrementally inside each
node of the search (between VAC iterations) but it is rebuilt from scratch when the
search makes a branching operation.

• Full DynVAC (fulDVAC): Bool(P ) is incrementally maintained both inside each node
of the search and when a branching operation is performed.

As described in [Cooper et al., 2010], we remind the reader that when VAC is enforced in
practice, iterations are stopped when the increase of the lower bound c∅ becomes less than
a threshold ε. This is called VACε. Furthermore, to accelerate VAC enforcing, [Cooper
et al., 2010] suggest to try to collect largest costs first by using relaxations of Bool(P )
that only forbids tuples with sufficiently large costs, above a threshold θ. This is denoted
as Bool(P )θ. The set of all non-zero binary costs cij of the problem are sorted in a fixed
number k of groups. The smallest costs of each group define a sequence of thresholds
(θ1, θ2, . . . , θk). Starting from θ1, VAC iterations are performed at a fixed threshold until
there is no more wipe-out. Then the algorithm is performed at the next threshold θi+1 in
the sequence. After the last θk, a geometric strategy, defined by θi+1 = θi/2, is used such
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that the algorithm stops when θi is smaller than a given value T . The value T used at
the root node is ε while during search, a large value εs is used. This aims to maximally
increase c∅ at the root and to avoid taking too much time to collect very small costs for
c∅ during search.

In VAC and Normal DynVAC, when the search makes a branching operation (i.e., goes
down in the search tree) or when the search backtracks, θ is reinitialized to θ1 in order to
rebuild Bool(P ) from scratch. In Full DynVAC however, in order to incrementally maintain
DynVAC during search between nodes, θ is incrementally updated when the search makes a
branching operation and is restored by “trailing” when the search backtracks. It is noticed
that after branching operations, new large costs may appear and this may again allow to
increase c∅ by a large amount of cost. However, the θ inherited from the parent node may
be too small to collect large costs to c∅ first. Costs can be split and this lead to too many
iterations of VAC that each only increases c∅ by a small amount of costs. In order to avoid
this problem, in our implementation of Full DynVAC, when the lower bound cannot be
improved by more than εs for 5 first successive iterations after a branching operation, θ
will be reinitialized to θ1; i.e., Bool(P ) is rebuilt.

3.4.2 Set of benchmarks

In order to evaluate the efficiency of VAC algorithms when maintained during search, we
use a large set of benchmarks that are collected from different resources (all in WCSP
format):

• MaxCSP, planning, celar (Radio Link Frequency Assignment problems Cabon et al.
[1999]), tag08 (bioinformatics Tag-SNP identification problems Sanchez et al. [2009]),
warehouse (uncapacited warehouse location problems Kratica et al. [2001]), bep and
ProteinDesign are extracted from the Cost Function Library (CFLib)1

• GeomSurf-7 are collected from the Computer Vision and Pattern Recognition (CVPR)
OpenGM2 benchmark2

• Coloring consists of unsatisfiable binary CN instances with constraints defined in
extension representing graph coloring problems.

• ImageAlignment and ProteinFolding are taken from the 2011 Probabilistic Inference
Challenge.

• CPD are instances of computational protein design problems [Traoré et al., 2013;
Allouche et al., 2014a].

Following the result of previous DynVAC experimentations for pre-processing in [Nguyen
et al., 2013] that showed that DynVAC does not improve VAC on problems with Boolean
domains, we excluded problems with only Boolean variables. The resulting very wide set of
benchmarks represents a total of more than 1,000 instances coming from various application
areas.

In our experiments, we set ε = 1, εs = 1000 for problems with very large optimums
([106 . . .1012]) such as tag08, warehouse, CPD, GeomSurf-7, and ε = 1, εs = 100 for prob-

1https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib
2http://hci.iwr.uni-heidelberg.de/opengm2
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lems with large optimums ([104 . . .106]) such as ImageAlignment, ProteinDesign, Protein-
Folding. For the remaining problems, we use ε = 0.0001, εs = 0.1. The same thresholds are
used in all algorithms. All experiments are executed on the same hardware using AMD
Opteron(tm) 6176 processors.

3.4.3 Experimental results

Table 3.6 reports the mean run-time (in seconds) for solving the above different categories
of benchmarks by enforcing static VAC, normal DynVAC and full DynVAC. Each line
corresponds to a category of benchmarks where the number of instances (#inst) and the
mean values of problem size (n: number of variables, d: domain size, e: number of cost
functions) are given. We also report the mean graph densities per category (dens). The
graph density of an instance is defined as the ratio of its number of cost functions with the
number of edges in a complete graph.

The three following columns reports results for our three algorithms. Each box here con-
tains two numbers. The italic number in the bottom represents the number of instances
solved by the algorithm in less than one hour while the number in the top represents the
mean value of the run-time. This mean is computed only over problems that are solved
in less than 1 hour by all three variants of VAC. The best results are in bold. The 10th
and 11th columns give the speedups obtained by full DynVAC compared respectively to
normal DynVAC and VAC.

Comparing VAC and normal DynVAC

First, we compare the efficiency of normal DynVAC and VAC. The 12th column of the
result table shows that normal DynVAC outperforms VAC on only 3 of 13 categories of
benchmarks while it gets slower otherwise. It provides small speed-ups by a factor of 1.73,
1.22 and 1.08 on categories planning, bep and celar respectively where it solves one instance
less than VAC on celar. This result means that normal DynVAC has not significantly
improved performance over VAC, as expected.

To explain this behavior, we need to know the similarity as well as the difference between
normal DynVAC and VAC. After each branching operation, both normal DynVAC and
VAC have to restart from scratch with a reinitialized Bool(P ). Bool(P ) must be AC-
filtered with all possible thresholds from θ1 in both variants. After branching operations,
there may be few or no new large costs to increase c∅. In other words, almost all nodes
are virtual arc consistent, as their parent nodes. In such nodes, each iteration of normal
DynVAC and of VAC do the same Phase 1 in the sense that all variables in Bool(P ) have
to be checked for AC. In this case, normal DynVAC has no benefit over VAC, it can even
get slower because of the maintenance of the particular data structures of Bool(P ) used in
normal DynVAC such as value domains, arc supports,. . .

Comparing normal DynVAC and full DynVAC

Fortunately, normal DynVAC can be improved by full DynVAC. The 14th column of the
result table shows that full DynVAC outperforms normal DynVAC on all categories of
benchmarks and is more efficient than VAC in most cases.
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Compared to normal DynVAC, Full DynVAC shows very significant speed-ups on the cat-
egories GeomSur-7, ImageAlignment and warehouse (speed-ups of 8.7, 7.4 and 3.2 re-
spectively). For the other categories (coloring, maxcsp, planning, matching, celar, tag08,
ProteinFolding), the speed-up of full DynVAC goes from a factor 1.91 to a factor 1.15.
Finally, it has almost the same efficiency on three categories (Protein Design, CPD and
bep).

To explain these differences, we have to remember what makes full DynVAC different from
normal DynVAC. The difference between full DynVAC and normal DynVAC comes from
the way they update Bool(P ) after a branching operation. In full DynVAC, only the
variables of Bool(P ) that are directly linked to the branching variable (its neighborhood)
are modified and restorations are propagated to the other variables before arc consistency is
rechecked on the modified variables. In normal DynVAC, the whole arc consistency process
is redone from scratch on the reinitialized Bool(P ). It is therefore expected that the graph
density of the instance solved will have a strong impact on efficiency. If the graph density
is low, very few variables will appear in the neighborhood of the modified variable and full
DynVAC should save a lot of work compared to normal Dyn VAC.

Another factor for efficiency is the domain size. If we restore a few values incrementally in
a domain that was initially large, the cost of re-propagating AC can be much lower than if
resetting the whole domain from scratch. If we restore a few values in a domain that was
initially small, AC will not be significantly faster than if resetting the whole initial domain.

Overall, it is therefore expected that the greatest savings will be obtained by full DynVAC
on problems with low graph densities and large domains. If we analyze the characteristics
of the categories of problems on which full DynVAC behaves very well, we effectively
observe that GeomSur-7 has a very low graph density (0,011 –lowest density of the set of
benchmarks), ImageAlignment has a low density (0.123) and a large domain size (70), and
warehouse has a medium density (0.237) but is characterized by a large domain size (78).
Along the same line, by observing the categories on which full DynVAC is only slightly
faster than normal DynVAC, we see that they are characterized by a high graph density
(0.527 for CPD and 0.5 for bep).

This impact of density and domain size on the performance of full DynVAC seems to be
confirmed on the other categories of problems. Coloring, for instance, has a very low
density (0.112), and we would expect a very good performance of full DynVAC. However,
the moderately improved performance of full DynVAC on this coloring category (only 1.4
times faster than normal DynVAC) can be explained by the very small mean domain size
(4).

Comparing full DynVAC and VAC

We now compare the efficiency of full DynVAC to the efficiency of static VAC. We observe
that full DynVAC is better than static VAC on 7 of the 13 categories. The categories
GeomSur-7, ImageAlignment and warehouse, where full DynVAC was significantly better
than normal DynVAC, remain very favorable to full DynVAC when compared to static
VAC. This tends to show that the criteria of density and domain size remain true when
comparing to static VAC. We also observe that category planning is another example where
full DynVAC is significantly faster than static VAC (by a factor 2.11).
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Overall, if we compare the efficiency of the two variants of DynVAC to static VAC we
observe that when normal DynVAC is faster than static VAC then full DynVAC is even
faster. This however happens for only two categories: planning and bep, whereas full
DynVAC is faster on 7 categories.

In summary, full DynVAC has a performance stronger than normal DynVAC when main-
tained in search. It can outperform static VAC on many problems that are not dense and
having large domain size.

Using heuristics inside variants of DynVAC

In this section, we would use the domain-based revision heuristic inside two variants of
DynVAC. The motivation for the usage of this heuristic is that it has been proved to be
the best for CSPs [Wallace and E.C.Freuder, 1992] and [Boussemart et al., 2004a]. We
denote by DomNor and DomFul the normal and full DynVAC when using this heuristic.
The corresponding results are presented in the 10th, 11th columns of the result table. The
last two columns of the table give the speed-ups obtained when using the heuristic.

From these last two columns, we observe that the heuristics allows to improve the perfor-
mance of two variants of DynVAC on only 3 or 4 of 13 categories of benchmarks respectively
while it slows down them on almost cases.

Precisely, the heuristic provides speed-ups of factors 3.65, 2.17, 1.12 to normal DynVAC
and speed-ups of factors 1.92, 1.84, 1.08 to full DynVAC on categories Matching, tag08 and
warehouse. Moreover, full DynVAC gets 1.18 time faster thanks to the heuristic. Among
these categories, it is observed that two variants of DynVAC are slower than VAC on
Matching and tag08, and the usage of heuristic lead to performances comparable to VAC
on such categories.

For other cases, using the domain-based heuristic makes both two variants of DynVAC
slower on 6 of 13 categories (coloring, GeomSur7, maxcsp, planning, celar and Protein-
Folding). This can be explained by the computation of the ordering heuristic that is not
useful inside nodes of the search tree when they are virtual arc consistent.

In summary, incrementally maintaining DynVAC during search is in general very beneficial
in comparison with restarting from scratch after each branching operation and graph den-
sity and domain size are the main criteria that have a visible impact on the performance
of full DynVAC. Moreover, full DynVAC can outperform static VAC on more than haft
of the set of benchmarks. The domain-based revision heuristic seems not appropriate for
two variants of DynVAC in the sense that it allows to accelerate them on only a few of
problems while it slows them down in most cases.

3.5 Conclusions

In this chapter, we have introduced Dynamic VAC, an incremental approach for enforcing
VAC in CFNs. It combines the idea of dynamic arc consistency algorithms with the iterative
VAC algorithm in order to efficiently maintain arc consistency in the CSP Bool(P ) during
VAC enforcing. By correctly specifying the incremental modifications in the CSP Bool(P )
caused by EPTs during successive iterations of VAC, the new method can easily maintain
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arc consistency in Bool(P ) by dynamic arc consistency and at the same time can save the
work of enforcing arc consistency in Bool(P ) done in previous iterations.

Then we show that Dynamic VAC can be also maintained during search in two ways: either
Dynamic VAC can be just maintained at each node of the search tree or the incrementality
of Dynamic VAC can be exploited also to account for the small problem changes that occur
following branching operations in the search tree. The former method has to rebuild the
CSP Bool(P ) from scratch for each new node as done in the static VAC, while the second
one uses again the idea of dynamic arc consistency to maintain arc consistency in Bool(P ).

By exploiting both incremental changes caused by branching operations as well as incre-
mental changes of EPTs during successive iterations of VAC, the new fully incremental
method outperforms both the direct application of dynamic VAC and the usual mainte-
nance of static VAC on a variety of problems. This is especially true for problems having
small graph densities and large domains.

The incompletely incremental method which ignores the incremental changes caused by
branching operations can outperform the static VAC on a small set of problems. This
method does not save the work done in parent nodes and thus has a performance weaker
than the fully incremental method. The application of the domain-based revision heuristic
for enforcing AC in the CSP Bool(P ) does not significantly improve the performance of
two methods maintaining dynamic VAC in search.

There are still more opportunities to accelerate algorithms maintaining VAC during search.
Indeed, VAC does not require to enforce AC on Bool(P ) but only to detect if the AC−closure
is empty or not. Therefore, it is sufficient to identify a single viable value in each do-
main to conclude. This simplified problem has been solved using so-called Lazy AC algo-
rithms [Schiex et al., 1996] that could also be injected in VAC algorithms to increase their
efficiency.



Chapter 4

Soft high order consistencies

4.1 Introduction

The efficiency of Branch-and-Bound search when applying a local consistency depends on
two factors: pruning power and time complexity of enforcing the consistency, where the
pruning power is directly correlated to the quality of the lower bound provided by the
consistency. The total time of the search for solutions is the combination of the time for
enforcing the local consistency (defined by the enforcing time complexity) and the time for
visiting the search space (defined by the pruning power). The enforcing time complexity
should be put into balance with pruning power. Therefore, studying soft domain-based
consistencies which are stronger than soft arc consistencies in terms of pruning power is a
possible approach to speed up the search.

Indeed, strong soft consistencies can be defined for WCSPs by extending hard high order
consistencies used for CSPs such as RPC, PIC, maxRPC, NIC, SAC, k-inverse consistency,. . .
Among them, the group of triangle-based consistencies consisting of RPC, PIC, maxRPC
are most interesting because they have a pruning power strong enough and their compu-
tational cost is much cheaper than the others by only dealing with subnetworks of three
variables.

From hard arc consistency, many soft variants have been proposed for WCSPs such as
(simple) AC, DAC, FDAC, FAC, EAC, EDAC, VAC. These consistencies are distinguished
by the fact that (1) unary costs can be taken into account in the evaluation of arc supports
and (2) consistencies are applied to either all domain values or only a value per domain.
Based on the idea of extending hard arc consistency to soft arc consistencies, 6 soft variants
for each hard consistency RPC, PIC, maxRPC have been proposed: the simple, directional,
full directional, existential, existential directional and virtual one.

In addition to arc consistencies, soft RPCs, PICs, maxRPCs guarantee the extensibility
without extra cost of arc supports on third variables, at values called “witnesses”. The
extensibility of a value to a triangle of variables is evaluated by the combined cost involving
binary and ternary costs. By using or ignoring unary costs in this evaluation of extensibility,
we have proposed 2 levels, called “simple” and “full” witnesses, similarly to simple and full
arc supports. The simple, directional, full directional, existential, existential directional
variants of RPC, PIC, maxRPC are based on the notion of simple and full supports and
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witnesses, while the virtual variant is based on the satisfaction of hard RPC, PIC, maxRPC
in CSPs Bool(P ) of WCSPs P .

Soft RPCs, PICs, maxRPCs allow to improve the lower bound c∅ compared to soft arc
consistencies by exploiting the combined costs involving unary, binary and ternary terms
inside triangles of variables. To do this, beside soft arc consistency operations used in
soft arc consistencies, soft RPCs, PICs, maxRPCs need extra operations for shifting costs
inside triangles of variables.

The new consistencies keep the same property of corresponding hard RPC, PIC, maxRPC
consistencies in terms of the pruning power which is represented by the quality of lower
bound and by the capacity of increasing unary costs. The stronger relation among hard
AC, PRC, PIC, maxRPC [Debruyne and Bessière, 1997b] is preserved for soft ACs, RPCs,
PICs, maxRPCs. For each softness level, the soft maxRPC consistency is the strongest and
the soft AC is the weakest. The advantage of the new consistencies is to provide strong
lower-bounds for Branch-and-Bound search. However, enforcing these consistencies can
create new ternary cost functions connecting variables of triangles and this will change the
network structure of WCSPs.

This chapter consists of 4 sections. Section 4.2 presents the definitions of new soft RPCs,
PICs, maxRPCs. The next section focus on comparing these consistencies in terms of the
pruning power. In this section, a method for comparing soft consistencies is proposed by
extending the “stronger relation” used for hard consistencies. A global relation between
soft consistencies will be generalized. Section 4.4 will show how costs are shifted between
cost functions to enforce the new consistencies and then introduce some algorithms for
enforcing them. In Section 4.5 some experimental results of PIC, maxRPC obtained when
used for pre-processing and for search will be introduced.

4.2 Definitions of soft high order consistencies

Based on the six soft arc consistencies AC, DAC, FDAC, EAC, EDAC, VAC extended from
hard arc consistency, we have generalized 6 so-called “softness” levels for extending each
hard domain based consistency to soft consistencies. A soft consistency at:

• “Non-directional” or “simple” level defines a property A for every domain value (i, a)
in every sub-problem involving i. For example, the property A defined by soft arc
consistency for every value in every cost function (i.e., sub-problem containing the
variables of the cost function) is that “having simple support”.

• “Directional” level defines a property B stronger than A for every domain value (i, a)
in every sub-problem involving i w.r.t an order < on the variables. For example, the
property B defined by directional arc consistency for every value (i, a) in every cost
function cS such that i is the smallest variable in S is that “having full support”.

• “Full directional” level defines the property B for every domain value in every sub-
problem involving i w.r.t <; and the property A in other sub-problems.

• “Existential” level defines a property C (stronger or equal to B) for only a value per
domain in every sub-problem involving i.

• “Existential directional” level combines the properties defined by the “existential”
level and by the “full directional” one.

• “Virtual” level define a property WCSPs P via the hard consistency in CSPs Bool(P ).
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In this section, 6 soft consistencies defined at 6 softness levels above for each hard RPC,
PIC, maxRPC consistency are presented. These new consistencies are based on the notion
of simple and full arc supports that are used in soft arc consistencies. Moreover, they are
also based on the notion of “simple and full” witnesses to express the extensibility of pairs
of values on third variables. A pair of values is called simply extensible on a variable if
there exists a value on that variable such that the 3-values tuple has a zero combined cost,
consisting of only binary and ternary costs, not unary costs. A pair of values is called fully
extensible on a variable if there exists a value on that variable such that the 3-values tuple
has an zero combined cost, consisting of unary, binary and ternary costs. Such values are
called respectively the simple and full witnesses of the pair of values on the third variable.

From this section, if we say that a variable i is linked to a variable j, this means that there
exists a binary cost function cij between them.

Definition 4.1 (Witness and extensibility on a variable) For a value (i, a), a pair
of values (ia, jb) and a variable k linked both to i and j.

• A simple witness of (ia, jb) on k is a value c ∈ D(k) such that cik(a, c) + cjk(b, c) +
cijk(a, b, c) = 0.

• A full witness of (ia, jb) on k is a value c ∈D(k) such that ck(c)+cik(a, c)+cjk(b, c)+
cijk(a, b, c) = 0.

• (ia, jb) is simply extensible on variable k if there exists a simple witness on k for
(ia, jb).

• (ia, jb) is fully extensible on variable k if there exists a full witness on k for (ia, jb).

In all the examples of this chapter, WCSPs are represented by graphs where (1) arcs
between two vertices indicate that the corresponding pairs of values have non-zero binary
costs and (2) vertices surrounded by a red circle mean that the corresponding values are
inconsistent with a given soft consistency.

Example 4.1 Consider the WCSP(a) in Figure 4.1. (k2, b) is a simple witness for the
pair of values (ia, ja) on k2 but it is not a full witness. Thus, (ia, ja) is simply extensible
but is not full extensible on k2. Moreover, (ia, ja) is neither simply nor fully extensible on
k1.

Definition 4.2 (Extensibility) For a pair of values (ia, jb) and an order < on the vari-
ables. (ia, jb) is:

• simply extensible if it is simply extensible on every variable k linked both to i and j.
• fully extensible if it is fully extensible on every variable k linked both to i and j.
• directionally-fully extensible if it is fully extensible on every k > i linked both to i and
j.

• semi-fully extensible if it is simply extensible on every variable k < i and is fully
extensible on every k > i such that k is linked both to i and j.

Notice that full extensibility implies semi-full extensibility. Semi-full extensibility implies
directional-full and simple extensibility. Conversely, both directional-full and simple exten-
sibility do not imply any other extensibility. Consider the example in Figure 4.1 to better
understand the different extensibility of pairs of values.

If a pair of values (ia, jb) is not extensible, there exists a variable k such that for every
c ∈ D(k), the combined cost (involving binary and ternary costs with or without unary
costs) of tuple (ia, jb, kc) is positive.
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Figure 4.1: Example of different extensibilities of the pair of values (ia, ja). k1 < i < j <
k2. In WCSP(a), (ia, ja) is not simply extensible on k1. In WCSP(b), (ia, ja) is simply
extensible (on both k1, k2) but is not directionally-fully extensible (because it is not fully
extensible on k2). In WCSP(c), (ia, ja) is directionally-fully extensible (w.r.t k2) but is
not semi-fully extensible (because it is not simply extensible on k1). In WCSP(d), (ia, ja)
is semi-fully extensible (fully extensible on k1 and simply extensible on k2) but is not fully
extensible (because it is not fully extensible on k1). In WCSP(e), (ia, ja) is fully extensible
(on both k1, k2).

Let α be the smallest among the combined costs of all tuples (ia, jb, kc). The sub-problem
over 3 variables {i, j, k} is equivalent to a WCSP in which the binary cost cij(a, b) is
increased by α while the combined cost, excluding cij , of every tuple (ia, jb, kc) is decreased
by α. This means that there exists an equivalence preserving transformation to increase the
binary cost cij(a, b) and this can possibly break soft arc consistencies of cij . This property
will be used in every soft RPC, PIC, maxRPC consistency. The notations ACs, RPCs,
PICs, maxRPCs are used to briefly indicate all AC, RPC, PIC, maxRPC consistencies.

4.2.1 Soft restricted path consistencies

In addition to soft arc consistencies, soft RPC consistencies check the extensibility only for
pairs of values which will make a value soft arc inconsistent if their binary cost increases.
The idea of soft restricted path consistencies is to guarantee that every unique (simple or
full) arc support of every value in every binary cost function is (simply, directionally-fully,
semi-fully, fully) extensible on every third variables. If a value (i, a) has only one simple
support (j, b∗) in a binary cost function cij and this support (ia, jb∗) is not extensible on
some third variable k, this means that every 3-values tuple over {i, j, k}, involving (ia, j∗b ),
has a positive combined cost. Because (j, b∗) is the unique arc support of (i, a), every
complete tuple involving (i, a) has a positive cost evaluation. Thus, the unary cost ci(a)
can be increased by an EPT.

Definition 4.3 (RPC) A WCSP is restricted path consistent (RPC) if it is arc consistent
and ∀i,∀a ∈D(i),∀cij on which (i, a) has only one simple arc support b ∈D(j), (ia, jb) is
simply extensible.

Example 4.2 Consider the WCSP in Figure 4.1(a). This problem is EDAC but not RPC
because of value (i, a). The unique support (ia, ja) of this value on cij is not simply ex-
tensible on k1. Conversely, the problem in Figure 4.1(b) is RPC. Both (ia, ja) (the unique
simple arc support of (i, a), (j, a) in cij) and (ib, jb) (the unique simple arc support of
(i, b), (j, b) in cij) are simply extensible on k1 and k2 at simple witnesses (k1, b) and (k2, b)
respectively.
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RPC is also called non-directional RPC. RPC guarantees the simple extensibility for every
binary arc support which is the unique simple arc support for the corresponding values and
this property is applied for both sides of binary cost functions. The following consistency,
called directional RPC, guarantees the directional-full extensibility for every binary arc
support which is the unique full arc support for the corresponding values. This property
is applied for only one side of each binary cost function.

Definition 4.4 (DRPC) A WCSP is directional restricted path consistent (DRPC) with
respect to an order “<” on the variables if it is directional arc consistent with respect to <,
and ∀i,∀a ∈D(i),∀cij such that i < j on which (i, a) has only one full arc support b ∈D(j),
(ia, jb) is directionally-fully extensible.

Example 4.3 Consider the WCSP(b) in Figure 4.1. It is not DRPC because (i, a) has only
one full arc support (ia, ja) in cij but (ia, ja) is not fully extensible in k2 > i. Conversely,
the WCSP(c) in Figure 4.1 is DRPC because both (ia, ja) (the unique full arc support of
(i, a) in cij) and (ib, jb) (the unique full arc support of (i, b) in cij) are fully extensible on
k2 > i at (k2, b). Variable k1 < i is not concerned by DRPC for i.

Definition 4.5 (FDRPC) A WCSP is full directional restricted path consistent (FDRPC)
with respect to an order “<” on the variables if it is full directional arc consistent with re-
spect to <, and ∀i,∀a ∈ D(i),∀cij such that if i > j and (i, a) has only one simple arc
support b ∈ D(j) then (ia, jb) is simply extensible, or if i < j and (i, a) has only one full
arc support b ∈D(j) then (ia, jb) is semi-fully extensible.

Indeed, FDRPC ensures DRPC on one side of each binary cost function and RPC on the
other side.

Example 4.4 Consider the WCSP(c) in Figure 4.1. It is not FDRPC because of value
(i, a). Its unique full support (ia, ja) is not simply extensible on k1. Conversely, the
WCSP(d) in Figure 4.1 is FDRPC.

ERPC has been proposed based on the idea of EAC which requires the existence of a
special value per domain that satisfies a property stronger than FDAC. While RPC, DRPC,
FDRPC require that every domain value must satisfy a same property, ERPC requires that
each domain has at least a value which has full arc supports in every cost function such
that every unique full binary support is fully extensible.

Definition 4.6 (ERPC) A WCSP is existential restricted path consistent (ERPC) if for
every variable i, there exists a value a ∈D(i) such that

• ci(a) = 0
• ia has a full arc support in every cost function and
• for every cost function cij on which (i, a) has only one full arc support b ∈ D(j),

(ia, jb) is fully extensible. Such a value (i, a) is the ERPC support for i.

Example 4.5 Consider the WCSP(d) in Figure(d) in Figure 4.1. It is ERPC where (i, b),
(j, b), (k1, a), (k2, a) are ERPC supports for variables i, j, k1 and k2.

EDRPC guarantees (1) the property of FDRPC for every domain value and (2) the exis-
tence of an ERPC support per domain.

Definition 4.7 (EDRPC) A WCSP is existential directional restricted path consistent
(FDRPC) with respect to an order “<” on the variables if it is existential restricted path
consistent and full directional restricted path consistent with respect to <.
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Example 4.6 Consider the WCSP(d) in Figure 4.1. This problem is EDRPC because it
is ERPC (example 4.5) and FDRPC (example 4.4).

Similarly to the idea of VAC, the virtual RPC exploits the relation between WCSPs P
and their CSPs Bool(P ) in such a way that virtual RPC is established in P via the
establishment of hard RPC in Bool(P ).

Definition 4.8 (VRPC) A WCSP P is virtual restricted path consistent (VRPC) if the
restricted path consistency closure of the CSP Bool(P ) is non-empty.

The definition below expresses the relation between all soft consistencies above with hard
RPC.

Definition 4.9 (Soft consistencies associated with hard RPC) The soft RPC, DRPC,
FDRPC, ERPC, EDRPC and VRPC are soft consistencies associated with hard RPC.

4.2.2 Soft path inverse consistencies

In addition to arc consistencies, soft path inverse consistencies guarantee the extensibility
of domain values on triangles of variables. For all triangles (i, j, k) sharing two variables
i, j with constraint cij , PIC requires that for each k, one of the arc supports of (i, a) in
cij is extensible on k. The arc supports of (i, a) that are extensible on different k can be
different.

Definition 4.10 (PIC) A WCSP is path inverse consistent (PIC) if it is arc consistent
and ∀i,∀a ∈D(i),∀cij ,∀k linked both to i and j, there exists a simple arc support b ∈D(j)
such that (ia, jb) is simply extensible on k.

Definition 4.11 (DPIC) A WCSP is directional path inverse consistent (DPIC) with
respect to an order “<” on the variables if it is directional arc consistent with respect to <,
and ∀i,∀a ∈D(i),∀cij such that i < j,∀k linked both to i and j such that i < k, there exists
a full arc support b ∈D(j) such that (ia, jb) is fully extensible on k.

Definition 4.12 (FDPIC) A WCSP is full directional path inverse consistent (FDPIC)
with respect to an order “<” on the variables if it is full directional arc consistent with
respect to <, and ∀i,∀a ∈D(i),∀cij ,∀k linked both to i and j, if i > j or i > k, there exists
a simple arc support b ∈D(j) such that (ia, jb) is simple extensible on k; otherwise if i < j
and i < k, there exists a full arc support b ∈D(j) such that (ia, jb) is fully extensible on k.

Definition 4.13 (EPIC) A WCSP is existential path inverse consistent (EPIC) if for
every variable i, there exists a value a ∈D(i) such that

• ci(a) = 0
• ia has a full arc support in every cost function and
• for every cost function cij, for every k linked both to i and j, there exists a full arc
support b ∈D(j) such that (ia, jb) is fully extensible on k.

Definition 4.14 (EDPIC) A WCSP is existential directional path inverse consistent (ED-
PIC) with respect to an order “<” on the variables if it is existential path inverse consistent
and full directional path inverse consistent with respect to <.

Consider WCSPs in Figure 4.2 to distinguish the soft variants of PIC.
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Definition 4.15 (VPIC) A WCSP is virtual path inverse consistent (VPIC) if the path
inverse consistent closure of the CSP Bool(P ) is non-empty.

Definition 4.16 (Soft consistencies associated with hard PIC) The soft PIC, DPIC,
FDPIC, EPIC, EDPIC and VPIC are soft consistencies associated with hard PIC.
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Figure 4.2: Example of soft PIC consistencies. k1 < i < k2 < j and ∃ cij , cik1 , cik2 , cjk1 , cjk2.
The WCSP(a) is not PIC because value (i, b) is not simply extensible to triangle (i, j, k1).
The WCSP(b) is PIC but is not DPIC because value (i, b) is not fully extensible to triangle
(i, j, k2) with i < j, i < k2. The WCSP(c) is DPIC (because every value in D(i) can be fully
extended to (i, j, k2) only which is concerned by DPIC for i) but it is not FDPIC (because
value (i, b) is not simply extensible to triangle (i, j, k1)). The WCSP(d) is FDPIC where
every variable is simply extensible to 2 triangles and i is fully extensible to (i, j, k2). The
WCSP(d) is also EPIC where (i, a), (j, a), (k1, a), (k2, a) are respectively EPIC supports of
i, j, k1, k2.

4.2.3 Soft max-restricted path consistencies

The idea of soft max-restricted path consistencies (soft maxRPCs) is to check the existence
of an extensible arc support for each value in each binary cost function whatever the number
of arc supports the value has. In constrast to soft PICs, maxRPCs require the extensibility
of the same arc support for each value in each binary cost function at the same time on
all third variables. If a value (i, a) has no such extensible arc support in some binary cost
function cij , the binary cost of every arc support of (i, a) in cij can increase by equivalence
preserving transformations and then (i, a) will no longer be arc consistent.

As usual, the simplest version of soft max-restricted path consistencies is soft maxRPC,
which checks the simple extensibility for simple arc supports.

Definition 4.17 (maxRPC) A WCSP is max-restricted path consistent (maxRPC) if it
is arc consistent and ∀i,∀a ∈D(i),∀cij there exists a simple arc support b ∈D(j) such that
(ia, jb) is simply extensible.

Example 4.7 Consider the WCSP(a) in Figure 4.3 which is exactly the WCSP(d) in
Figure 4.2 that has been proved EDPIC. This problem is not maxRPC because of value
(i, b). This value has 2 arc supports (j, a) and (j, c) in cij, but none is simply extensible
on both k1, k2 ((ib, ja) is not simply extensible on k2 while (ib, jc) is not simply extensible
on k1). Consider the WCSP(b) in Figure 4.3. This problem is maxRPC, (i, b) has an arc
support in cij, (ib, ja), which is simply extensible on both k1 and k2 at respectively (k1, c)
and (k2, b)).
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Figure 4.3: Example of soft maxRPCs. k1 < i < k2 < j and ∃ cij , cik1 , cik2 , cjk1 , cjk2.
The WCSP(a) is not maxRPC because value (i, b) has no arc support in cij (between (ib, ja)
and (ib, jc)) that is simply extensible on both k1, k2. The WCSP(b) is maxRPC but is not
DmaxRPC because value (i, b) has no full arc support in cij (between (ib, ja) and (ib, jc))
that is fully extensible to k2. The WCSP(c) is DmaxRPC (because every value in D(i)
has full arc support in cij , cik2 that is respectively fully extensible on k2 and j. Triangle
(i, j, k1) is not concerned by DmaxRPC for i). The WCSP(c) is not FDmaxRPC because
value (i, b) has no full support in cij (between (ib, ja) and (ib, jc)) that is simply extensible
on k1. The WCSP(d) is both FDmaxRPC and EmaxRPC where (i, a), (k1, a), (j, a), (k2, a)
are respectively EPIC supports of variables i, k1, k2, j.

Definition 4.18 (DmaxRPC) A WCSP is directional max-restricted path consistent
(DmaxRPC) with respect to an order “<” on the variables if it is directional arc consis-
tent with respect to <, and ∀i,∀a ∈D(i),∀cij such that i < j, there exists a full arc support
b ∈D(j) such that (ia, jb) is directionally-fully extensible.

Example 4.8 Consider the WCSP(b) in Figure 4.3. It is not DmaxRPC because of value
(i, b). Both full arc supports (ib, ja) and (ib, jc) of (i, b) in cij are not fully extensible in
k2. Conversely, the WCSP(c) in Figure 4.3 is DmaxRPC where only triangle (i, j, k) of i
is concerned by DmaxRPC because k1 < i < k2 < j.

Definition 4.19 (FDmaxRPC) A WCSP is full directional max-restricted path consis-
tent (FDmaxRPC) with respect to an order “<” on the variables if it is full directional arc
consistent with respect to <, and ∀i,∀a ∈ D(i),∀cij (1) if i > j, there exists a simple arc
support b ∈ D(j) such that (ia, jb) is simply extensible. (2) otherwise, if i < j, there exists
a full arc support b ∈D(j) such that (ia, jb) is semi-fully extensible.

FDmaxRPC ensures DmaxRPC on one side of each binary cost function and maxRPC on
the other side.

Example 4.9 Consider the WCSP(c) in Figure 4.3. It is not FDmaxRPC because value
(i, b) has no arc support in cij that is simply extensible on k1. Conversely, the WCSP(d)
in Figure 4.3 is FDmaxRPC where the full supports (ia, ja) of (i, a) and (ib, ja) of (i, b)
cij are fully extensible (on both k1, k2).

Definition 4.20 (EmaxRPC) A WCSP is existential max-restricted path consistent
(EmaxRPC) if for every variable i, there exists a value a ∈D(i) such that

• ci(a) = 0
• ia has a full arc support in every cost function and
• for every cost function cij there exists a full arc support b ∈D(j) such that (ia, jb) is
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fully extensible.

Example 4.10 Consider the WCSP(a) in Figure 4.3. This problem is EmaxRPC (despite
the fact that it is not maxRPC) where values (i, a), (j, a), (k1, a), (k2, a) are respectively the
EmaxRPC supports of variables i, j, k1 and k2. Similarly, the WCSP(d) in Figure 4.3 is
also EmaxRPC.

Definition 4.21 (EDmaxRPC) A WCSP is existential directional max-restricted path
consistent (EDmaxRPC) with respect to an order < on the variables if it is existential max-
restricted path consistent and full directional max-restricted path consistent with respect to
<.

Definition 4.22 (VmaxRPC) A WCSP P is virtual max-restricted path consistent
(VmaxRPC) if the max-restricted path consistency closure of the CSP Bool(P ) is non-
empty

Definition 4.23 (Soft consistencies associated with hard maxRPC) The soft con-
sistencies maxRPC, DmaxRPC, FDmaxRPC, EmaxRPC, EDmaxRPC and VmaxRPC are
said to be associated with hard maxRPC.

4.3 Comparison between soft domain consistencies

Similarly to hard consistencies, soft consistencies can be classified in soft domain-based
consistencies and soft constraint-based consistencies. The former defines properties for
unary costs and the latter for k-ary costs with k ≥ 2. The virtual consistencies such as
VAC, VRPC, VPIC and VmaxRPC are not classified in either of these two forms because
they defines properties for all costs of WCSPs P via the classical CSPs Bool(P ). All
ACs, RPCs, PICs and maxRPCs except for the virtual consistencies are soft domain-
based consistencies (also briefly called domain consistencies). In this document, we are
only interested in soft domain based consistencies and virtual consistencies of hard domain
based consistencies.

In classic CSPs, hard consistencies are enforced by eliminating inconsistent elements: values
for domain-filtering consistencies and tuples for constraint-filtering ones. The efficiency of
a hard consistency is represented by its pruning power: the more values and tuples are
pruned, the more powerful the consistency is. In WCSPs, soft consistencies are enforced
by shifting costs between cost functions of different arities in order to (1) increase the
lower bound c∅ (e,g,. VAC) or (2) move costs from cost functions of higher arity to cost
functions of lower arity, that is, from a cost function of scope S to a cost function of scope
S′ ⊂ S, where ∣S′∣ = 1 for soft domain consistencies. The final result of cost movements
is to remove elements (values for soft domain consistencies and tuples for soft constraint
consistencies) that become too costly or to increase the lower bound c∅. Thus, the power
of virtual consistencies is evaluated by the quality of the lower bound c∅ and the power of
soft domain consistencies is further evaluated by the capacity of increasing unary costs.

4.3.1 Stronger relation

To compare the efficiency of soft domain consistencies and virtual consistencies, we define
two relations: “stronger” ≥ and “stronger in terms of lower bounds” ≥c∅ , based on the idea
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of the stronger relation used for hard domain consistencies [Debruyne and Bessière, 1997b].
A soft consistency A is called stronger than a soft consistency B if for every problem which
already satisfies A, the weaker consistency B cannot improve it in terms of increasing unary
costs and c∅. For a given WCSP P and a soft consistency A, let c∅[P ] denote the lower
bound of P and A(P ) a problem (which is not necessarily unique) obtained after enforcing
A in P .

Definition 4.24 (Stronger relation) Given two soft consistencies A and B,

• A is stronger than B, noted by A ≥ B, iff for every WCSP P that satisfies A, B(P ) =
P .

• A is stronger than B in terms of lower bound, noted by A ≥c∅ B, iff for every WCSP
P that satisfies A, c∅[B(P )] = c∅[P ]

The relation ≥ means that if a WCSP P satisfies A and A ≥ B, then P also satisfies B.
The relation ≥c∅ means that if a WCSP P satisfies A and A ≥c∅ B, then B cannot increase
c∅ of P . Enhancing the lower bound is only one effect of soft consistency enforcement
beside increasing unary costs (domain based consistencies), binary costs (higher order
consistencies), etc. Thus, the relation ≥ subsumes ≥c∅ . Indeed, ≥c∅ is a relaxation of ≥.
The relation ≥ is used on two soft domain consistencies while ≥c∅ is used on two virtual
consistencies or for a virtual consistency and a soft domain consistency.

Proposition 4.1 Given two soft consistencies A and B. If A ≥ B then A ≥c∅ B.

Proof 6 The proof is trivial. Because A ≥ B, B(P ) = P for every P that satisfies A. So
we have c∅[B(P )] = c∅[P ] and thus A ≥c∅ B.

Based on the stronger relation, the strictly stronger relation has been proposed to express
the strict dominance of the stronger consistency in the sense that (1) the weaker consistency
cannot do better than the stronger one in WCSPs which already satisfy the stronger, (2)
while the stronger consistency does better than the weaker one for at least one WCSP
which already satisfies the weaker consistency.

Definition 4.25 (Strictly stronger relation) Given two soft consistencies A and B.

• A is strictly stronger than B, noted A > B, iff A ≥ B and ∃ a WCSP P such that P
satisfies B and A(P ) ≠ P

• A is strictly stronger than B in terms of lower bound, noted A >c∅ B, iff A ≥c∅ B
and ∃ a WCSP P such that P satisfies B and c∅[A(P )] > c∅[P ]

To show that a soft consistency A is not stronger or not stronger in terms of lower bounds
than B, it is enough to show that there exists a WCSP P in which A holds and B does
better than A. This means that B still can modify (i.e., increase unary costs or the lower
bound) some problem which is already A. Two consistencies A and B are incomparable iff
A is not stronger than B and B is not stronger than A.

Definition 4.26 (Incomparable relation) Given two soft consistencies A and B,

• A and B are incomparable, noted A /≍ B, iff A /≥ B and B /≥ A
• A and B are incomparable in terms of lower bound, noted A /≍c∅ B, if A /≥c∅ B and
A /≥c∅ B

Proposition 4.2 Given two soft consistencies A and B. If A /≍c∅ B then A /≍ B.
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Proof 7 Suppose that A /≍c∅ B, we have A /≥c∅ B and B /≥c∅ A. Because ≥ implies ≥c∅, so
/≥c∅ implies /≥. Thus, we have A /≥ B and B /≥ A. This means that A /≍ B.

Similarly to the stronger and strictly stronger relations for hard consistencies, our relations
for soft consistencies also have the transitivity property.

Property 3 (Transitivity) Given three soft consistencies A,B,C.

a. If A ≥ B and B ≥ C then A ≥ C.
b. If A > B and B > C then A > C.
c. If A ≥ B and B ≥c∅ C then A ≥c∅ C

Proof 8 a. Let P be a WCSP that satisfies A. Because A ≥ B and P satisfies A,
B(P ) = P , i.e., P also satisfies B. Because B ≥ C and P satisfies B, C(P ) = P .
Thus, for every WCSP P which satisfies A, C(P ) = P , i.e., A ≥ C.

b. Because > implies ≥, we have A ≥ B and B ≥ C. So A ≥ C from the property (a). On
the other hand, because A > B, there exists a WCSP P ∗ such that P ∗ satisfies B and
A(P ∗) ≠ P ∗. Because P ∗ satisfies B and B ≥ C, C(P ∗) = P , i.e., P ∗ also satisfies
C. Thus there exists P ∗ which is C and A(P ∗) ≠ P ∗. So A > C.

c. Let P be a WCSP that satisfies A. Because A ≥ B and P satisfies A, B(P ) = P , i.e.,
P also satisfies B. Because B ≥c∅ C and P satisfies B, c∅[C(P )] = c∅[P ]. Thus,
for every WCSP P which satisfies A, c∅[C(P )] = c∅[P ]. i.e., A ≥c∅ C.

4.3.2 Relation graph

The graph 4.4 summarizes the strictly stronger relations among all variants of soft ACs,
RPCs, PICs and maxRPCs where continuous arrows present the > relation and dashed
arrows present the >c∅ relation. The soft consistencies presented in the same row are soft
consistencies associated with a same hard consistency while the soft consistencies in the
same column are called soft consistencies of the same “softness” level, e,g,. DAC, DRPC,
DPIC, DmaxRPC are soft directional consistencies. If there exists a directed path from a
consistency A to B in the graph, consisting of continuous arrows, it means that A > B.
This presents the transitive property of the strictly stronger relation. If there exists a
directed path from A to B, consisting of continuous and dashed arrows, it means that
A >c∅ B. Conversely, if there does not exist any directed path between A and B, they are
incomparable.

First, we consider the relation between virtual consistencies and other soft consistencies.
This relation is indicated by the following theorems. Let A be a hard consistency and VA
is the soft virtual consistency defined via A in CSPs Bool(P ). The following theorem will
give a relation between virtual consistencies VA and soft consistencies A associated to hard
consistencies A.

Theorem 4.1 Given a hard consistency A ∈ {AC,RPC,PIC,maxRPC}, the virtual con-
sistency VA and a soft consistency A ≠ VA associated with A. VA >c∅ A

Proof 9 First, to prove that VA ≥c∅ A, we will use a proof by contradiction. Suppose that
there exists a WCSP P which P is VA and A still can increase the lower bound of P from a
variable x∅. All values and tuples whose costs have been necessary for increasing the lower
bound c∅ by A are also forbidden when enforcing A in the classic CSP Bool(P ). So, if we
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eliminate these values and tuples in the same order that costs are moved by A in P , x∅
will be wiped-out in Bool(P ). Thus P is not VA and the supposition is false. This means
that for every P which satisfies VA, A cannot increase the lower bound of P : VA ≥c∅ A.
Secondly, Figure 4.12 shows a problem which satisfies every soft consistency associated with
hard AC, RPC, PIC, maxRPC, but does not satisfy VAC,VRPC,VPIC and VmaxRPC. In
summary, VA > A for every associated hard consistency A ∈ { AC,RPC,PIC,maxRPC}

Virtual consistencies can be compared through the comparison of associated hard consis-
tencies. The following theorem will show that the stronger relation of hard consistencies
is preserved in the case of virtual soft consistencies: the stronger the hard consistency is,
the stronger its virtual soft version is.

AC DAC

FDAC EAC

EDAC
V AC

RPC DRPC

FDRPC ERPC

EDRPC
V RPC

PIC DPIC

FDPIC EPIC

EDPIC
V PIC

maxRPC DmaxRPC

FDmaxRPC EmaxRPC

EDmaxRPC
VmaxRPC

Figure 4.4: Hasse diagram of relations between soft consistencies
A B : A > B
A B : A >c∅ B
A B C implies A C

A B C implies A C

Theorem 4.2 Given two hard consistencies A, B ∈ {AC,RPC,PIC,maxRPC} and two
virtual consistencies VA,VB respectively associated with A, B. If A > B then

a. VA > VB
b. VA >c∅ B for every soft consistency B ≠ VB associated with B.

Proof 10

a. Firstly, we prove that VA ≥ V B. Let P be a WCSP which is VA. The A−closure of
Bool(P ) is not empty. Because A ≥ B, the B−closure of Bool(P ) will be not empty.
Thus, P also satisfies VB, i.e. VB(P ) = P . Now we prove that VA > V B. Because
hard maxRPC > hard PIC > hard RPC > hard AC, we have to prove that VmaxRPC
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> VPIC > VRPC > VAC. Figure 4.5 shows a WCSP P which satisfies VAC but not
VRPC (because the CSP Bool(P ) is AC but not RPC with a wipe-out at j): VRPC
can increase c∅ by 1, i.e., can modify P . Figure 4.6 shows a WCSP P which satisfies
VRPC but not VPIC (because the CSP Bool(P ) is RPC but not PIC with a wipe-out
at i): PIC can increase c∅ by 1, i.e., can modify P . Figure 4.7 shows a WCSP P
which satisfies VPIC but not VmaxRPC (because the CSP Bool(P ) is PIC but not
maxRPC with wipe-out at i): maxRPC can increase c∅ by 1, i.e., can modify P .

b. From Theorem 4.2(a), we have VA > VB. From Theorem 4.1, we have V B >c∅ B
which implies that VB ≥c∅ B. From Property 3(c), we have V A ≥c∅ B. Now, we will
prove that VA >c∅ B. Because VB >c∅ B, there exists a WCSP P such that P is B
and V B can still increase the lower bound c∅[P ]. This means that the B−closure of
Bool(P ) is empty. Because A > B, the A−closure of Bool(P ) is also empty. Thus,
c∅[VA(P )] > c∅[P ] and P satisfies B.

Theorem 4.2(a) is reformulated as VmaxRPC > VPIC > VRPC > VAC.

Now, the relation between soft domain consistencies sharing the same column and then
the same row is considered.

Vertical comparison

Each column in Graph 4.4 consists of 4 soft consistencies at the same softness level asso-
ciated with hard consistencies AC, RPC, PIC, maxRPC. The following theorem will show
that at each “softness” level, the soft maxRPC is strictly stronger than the soft PIC,the
soft PIC is strictly stronger than the soft RPC,and the soft RPC is strictly stronger than
the soft AC.

Theorem 4.3 (Vertical comparison)

a. maxRPC > PIC > RPC > AC.
b. DmaxRPC > DPIC > DRPC > DAC.
c. FDmaxRPC > FDPIC > FDRPC > FDAC.
d. EmaxRPC > EPIC > ERPC > EAC.
e. EDmaxRPC > EDPIC > EDRPC > EDAC.

Proof 11 Firstly, we will prove the stronger relation ≥ between consistencies. According
to the definition of soft RPCs, PICs and maxRPCs at non-directional level, maxRPC im-
plies PIC, PIC implies RPC and RPC implies AC. Therefore maxRPC ≥ PIC ≥ RPC ≥
AC. The proof is the same for other softness level, except for virtual consistencies. Ac-
cording to Theorem 4.2, we have VmaxRPC ≥ VPIC ≥ VRPC ≥ VAC. Now, to prove the
strictly stronger relation between consistencies, we will show a WCSP in which the weaker
consistency is satisfied while the stronger is not.

a. Figure 4.5 shows a WCSP which satisfies AC but does not satisfy RPC. Figure 4.6
shows a WCSP which satisfies RPC but does not satisfy PIC. Figure 4.7 shows a
WCSP which satisfies PIC but does not satisfy maxRPC. Thus maxRPC > PIC >
RPC > AC.

b-e. The proof is similar to that for (a) by using Figures 4.5, 4.6 and 4.7.
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Horizontal comparison

Each row in Graph 4.4 consists of six soft consistencies associated with a same hard con-
sistency where the virtual consistency is strictly stronger in terms of lower bound than
every one (according to Theorem 4.1). The following theorem will show that for the five
remaining soft consistencies associated with every hard consistency:

• The existential directional consistency is strictly stronger than both the existential
and the full directional ones

• The full directional consistency is strictly stronger than both the non-directional and
the directional ones

• Other pairs of consistencies whose relationship is not implied by transitivity are
incomparable: in general, every directional consistency is incomparable with every
non-directional one, every existential consistency is incomparable with every non-
directional, directional and full directional one.

Theorem 4.4 (Horizontal comparison) Consider 2 hard consistencies X,Y ∈ { AC,
RPC, PIC, maxRPC }. Let X,DX,FDX,EX,EDX be the non-directional, directional,
full directional, existential, existential directional consistency of X, and Y,DY,FDY be the
non-directional, directional, full directional consistency of Y .

a. (column 2-1): X /≍DY
b. (column 3-1): FDX >X
c. (column 3-2): FDX >DX
d. (column 4-1,2,3): EX /≍ Y,DY,FDY
e. (column 5-3): EDX > FDX
f. (column 5-4): EDX > EX

Proof 12

a. (column 2-1): X /≍ DY . Figure 4.8 shows a problem which satisfies AC, RPC, PIC
and maxRPC, but does not satisfy DAC, DRPC, DPIC and DmaxRPC because of
ia. Conversely, Figure 4.9 shows a WCSP which satisfies DAC, DRPC, DPIC and
DmaxRPC, but does not satisfy AC, RPC, PIC and maxRPC. Thus, every non-
directional consistency is incomparable with every directional consistency.

b (column 3-1): FDX > X. We have that FDmaxRPC ≥ maxRPC, FDPIC ≥ PIC,
FDRPC ≥ RPC, FDAC ≥ AC from the definition of these full directional consis-
tencies. Figure 4.8 shows a problem which is maxRPC, PIC, RPC, AC but is not
FDmaxRPC, FDPIC, FDRPC, FDAC. Thus, FDmaxRPC > maxRPC, FDPIC >
PIC, FDRPC > RPC, FDAC > AC.

c (column 3-2): FDX > DX. We have that FDmaxRPC ≥ DmaxRPC, FDPIC ≥
DPIC, FDRPC ≥ DRPC, FDAC ≥ DAC from the definition of these full directional
consistencies. Figure 4.9 shows a problem which is DmaxRPC, DPIC, DRPC, DAC
but is not FDmaxRPC, FDPIC, FDRPC, FDAC. Thus, FDmaxRPC > maxRPC,
FDPIC > PIC, FDRPC > RPC, FDAC > AC.

d. (column 4-3,2,1): EX /≍ Y,DY,FDY . Figure 4.10 shows a problem which satis-
fies the full directional AC/RPC/PIC/maxRPC, but does not satisfy the existential
ones. Conversely, the problem in figure 4.11 satisfies the existential AC/RPC/PIC/-
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maxRPC but does not satisfy the non-directional, directional and full directional ones.
Thus, every existential consistency is incomparable with every non-directional, direc-
tional and full directional one.

e,f. (column 5-3, 5-4): EDX > FDX and EDX > EX. The proof is trivial based on the
definitions.

Diagonal comparison

Now, we will show that for any other pair of consistencies which is not covered by Theo-
rem 4.3 or 4.4, the consistencies are incomparable. To prove that two consistencies A and
B are incomparable, it is enough to show 2 WCSPs such that one satisfies A but not B,
and the other satisfies B but not A.

• FDAC /≍ RPC,PIC,maxRPC, DRPC,DPIC,DmaxRPC.
– Figure 4.5: FDAC holds but RPC,PIC,maxRPC, DRPC,DPIC,DmaxRPC do

not.
– Figure 4.8: RPC,PIC,maxRPC hold but FDAC does not.
– Figure 4.9: DRPC,DPIC,DmaxRPC hold but FDAC does not.

• FDRPC /≍ PIC,maxRPC, DPIC,DmaxRPC.
– Figure 4.6: FDRPC holds but PIC,maxRPC, DPIC,DmaxRPC do not
– Figure 4.8: PIC,maxRPC hold but FDRPC does not.
– Figure 4.9: DPIC,DmaxRPC hold but FDRPC does not.

• FDPIC /≍ maxRPC, DmaxRPC.
– Figure 4.7: FDPIC holds but maxRPC, DmaxRPC do not
– Figure 4.8: PIC,maxRPC hold but FDRPC does not
– Figure 4.9: DPIC,DmaxRPC hold but FDRPC does not

• EDAC /≍ (E/FD/D/-)(RPC/PIC/maxRPC)
– Figure 4.5: is EDAC but is not (E/FD/D/-)(RPC/PIC/maxRPC)
– Figure 4.10: is not EDAC but is (FD/D/-)(RPC/PIC/maxRPC)
– Figure 4.11: is not EDAC but is E(RPC/PIC/maxRPC)

• EDRPC /≍ EPIC,EmaxRPC, FDPIC,FDmaxRPC, DPIC,DmaxRPC, PIC,maxRPC.
– Figure 4.6: is EDRPC but is not EPIC,EmaxRPC, FDPIC, FDmaxRPC, DPIC,

DmaxRPC, PIC, maxRPC.
– Figure 4.10: is not EDRPC but is FDPIC,FDmaxRPC, DPIC,DmaxRPC, PIC,maxRPC
– Figure 4.11: is not EDRPC but is EPIC,EmaxRPC.

• EDPIC /≍ EmaxRPC, FDmaxRPC, DmaxRPC, maxRPC.
– Figure 4.7: is EDPIC but is not EmaxRPC, FDmaxRPC, DmaxRPC, maxRPC.
– Figure 4.10: is not EDPIC but is FDmaxRPC, DmaxRPC, maxRPC.
– Figure 4.11: is not EDPIC but is EmaxRPC but is not EDPIC.

• VAC /≍c∅ (ED/E/FD/D/-)(RPC/PIC/maxRPC)
– Figure 4.5: is VAC but is not (ED/E/FD/D/-)(RPC/PIC/maxRPC).
– Figure 4.12: is not VAC but is (ED/E/FD/D/-)(RPC/PIC/maxRPC).

• VRPC /≍c∅ (ED/E/FD/D/-)(PIC/maxRPC)
– Figure 4.6: is VRPC but is not (ED/E/FD/D/-)(PIC/maxRPC).
– Figure 4.12: is not VRPC but is (ED/E/FD/D/-)(PIC/maxRPC).

• VPIC /≍c∅ (ED/E/FD/D/-)maxRPC
– Figure 4.7: is VPIC but is not (ED/E/FD/D/-)maxRPC
– Figure 4.12: is not VPIC but is (ED/E/FD/D/-)maxRPC
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Figure 4.5: A WCSP which satisfies all arc consistencies but does not satisfy any soft RPC
(hence does not satisfy any soft PIC, maxRPC). j < k < i < l. The problem does not satisfy
any soft RPC because of variable j (the unique support (ja, ka) of (j, a) in cjk is not simply
extensible on i and the unique support (jb, kb) of (j, b) is not simply extensible on l.)
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Figure 4.6: A WCSP which satisfies all RPC consistencies but does not satisfy any PIC
consistency. i < j < k < l < m. Every value of i satisfies RPC consistencies because it
has more than 2 full (hence simple) arc supports in cik, cij , cil, cim. The problem does not
satisfy any PIC consistency because of variable i (value (i, a) is not normally (hence not
fully) extensible to triangle ∆ilm while (i, b) is not simply (hence not fully) extensible to
triangle ∆ijk)
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Figure 4.7: A WCSP which satisfies all PIC consistencies but does not satisfy any maxRPC
consistency. i < j1 < j2 < j3 < j4 < j5 < j6. There are only zero unary costs in this problem,
thus simple and full supports (or witnesses) are identical. The problem is EDPIC since both
(i, a), (i, b) can be fully extended to all 4 triangles. However, the problem does not satisfy
any maxRPC consistency because of variable i (no arc support of value (i, a) in cij1 can
simultaneously be extended on ∆ij1j2 and ∆ij1j3; this is the same for value (i, b) in cij4).

RPC DRPC FDRPC ERPC EDRPC VRPC
PIC PIC FDPIC EPIC EDPIC VPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC VmaxRPC

a

b

a

b

a

b

i j

k

1

Figure 4.8: A WCSP which is non-directional consistent but is not directional consistent.
i < j < k. The problem is not DAC because value (i, a) has no full arc support in cik. There-
fore, it does not satisfy FDAC, EDAC, FDRPC, EDRPC, FDPIC, EDPIC, FDmaxRPC,
EDmaxRPC. However, the problem is maxRPC (hence PIC, RPC) because it is AC and
every domain value is normally extensible to the triangle.

AC DAC FDAC - EDAC
RPC DRPC FDRPC - EDRPC
PIC DPIC FDPIC - EDPIC

maxRPC DmaxRPC FDmaxRPC - EDmaxRPC
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Figure 4.9: A WCSP which is directional consistent (i > j > k) but is non-directional
inconsistent. The problem is not AC because (i, a) has no arc support in cij. However, the
problem is DAC because every value of j and k has full arc support in cji, cki. Moreover,
the problem is DmaxRPC (hence DPIC, DRPC) because every value of j and k can be fully
extended on the triangle (in the triangle ∆ijk, only the smallest variable k and cki, ckj are
interested by high order directional consistencies).
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Figure 4.10: A WCSP which is full directional consistent but is existential inconsistent
(l < j < k < i). The problem is not EAC (hence not ERPC, EPIC, EmaxRPC) because
of value i (ia has no full support in cij while ib has no full support in cil). However, the
problem is FDmaxRPC (hence FDPIC, FDRPC) because it is FDAC and every value of
i, k can be normally extended to both 2 triangles and every value of j, l can be fully extended
to ∆jik and ∆lik respectively.
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Figure 4.11: A WCSP which is existential consistent but is not full directional consistent.
i > j > k. The problem is not AC (hence is not RPC, PIC, maxRPC) because of value
(i, a) (has no arc support in cij) and is not DAC (hence is not DRPC, DPIC, DmaxRPC)
because of value (j, b) (has no full arc support in cij). However, the problem is EmaxRPC
(hence EPIC, ERPC, EAC) where (i, b), (j, a), (k, a) are respectively EmaxRPC supports
of i, j, k.
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Figure 4.12: A WCSP which is existential directional but is not virtual consistent l < i <
j < k < m. The problem is not VAC (hence not VRPC, VPIC, VmaxRPC) because AC
makes Bool(P) wiped-out at j or k. Conversly, the problem is EDmaxRPC where variables
j,m, k are FDmaxRPC in ∆ijk and ib, ja, ka, lb,ma are EmaxRPC supports of variables.
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PIC DPIC FDPIC EPIC EDPIC VPIC

maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC VmaxRPC



82 Chapter 4. Soft high order consistencies

4.4 Enforcing algorithms

Two algorithms enforcing EDPIC and EDmaxRPC will be introduced in this thesis. RPCs
have not been implemented because of the costly maintainance of the number of arc sup-
ports per value in each cost function in WCSPs. This number can both increase and
decrease during enforcing RPCs because moving costs between cost functions of different
arities can iteratively break or create arc supports for values.

High order consistencies are only enforced inside triangles of variables that are connected
two-by-two by binary cost functions regardless of whether or not variables are connected by
ternary cost functions. A triangle over three variables i, j, k, is noted ∆ijk. The notations
∆ijk,∆ikj ,∆jki,∆jik,∆kij ,∆kji represent the same triangle over i, j, k. The common idea
for enforcing supports and witnesses is to move costs of triangles ∆ijk (consisting of binary
costs cij , cik, cjk, ternary costs if cijk exists, and possibly unary costs cj , ck) to inconsistent
values of i. The two following notations express such a combined cost of triangles.

• ∆ijk(a, b, c) = cij(a, b) + cjk(b, c) + cik(a, c) + cijk(a, b, c): denotes the sum of binary
and ternary costs involved in the instantiation (ia, jb, kc), where cijk(a, b, c) = 0 if cijk
does not exist.

• Λijk(a, b, c) = cik(a, c) + cjk(b, c) + cijk(a, b, c): denotes the same amount of cost as
∆ijk(a, b, c) but excluding cij(a, b).

4.4.1 Equivalence Preserving Tranformations

In order to move costs from a triangle ∆ijk to a unary cost function ci, binary costs involved
in the triangle are firstly extended to the ternary cost function cijk and then ternary costs
are projected to ci. Thus, beside soft arc consistency operations defined for enforcing
arc consistencies, we need extra EPTs for shifting cost between ternary and binary cost
functions as well as between ternary and unary cost functions. We have renamed SAC
operations to better distinguish them from the new operations. Algorithm 4.1 presents all
the basic operations that will be used in our algorithms enforcing EDPIC and EDmaxRPC.

• Extend2To3(i, a, j, b, cijk, α) extends an amount of cost α from a pair of values (ia, jb)
to a ternary cost function cijk.

• Project3To2(cijk, i, a, j, b, α) projects an amount of cost α from cijk on a pair of values
(ia, jb).

• Project3To1(cijk, i, a, α) projects an amount of cost α from cijk on a value (i, a).

• Extend1To2(i, a, cij , α) extends an amount of cost α from a value (i, a) to a binary
cost function cij .

• Project2To1(cij , i, a, α) projects an amount of cost α from cij on a value (i, a)

SAC operations Extend1To2 and Project2To1 are renamed and represented here because they
need to store extra information (queues of variables P,S). The queues of variables P,S,T
will be used in our algorithms enforcing high order consistencies. They will be explained
later and thus can be ignored for the moment.
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Algorithme 4.1 : Elementary operations
1 Procedure Extend1To2(i, a, cij , α)
2 // precondition: ci(a) ≥ α
3 foreach b ∈D(j) do cij(a, b)← cij(a, b) + α;
4 ci(a)← ci(a) − α;
5 T ← T ∪ {cij};

6 Procedure Extend2To3(i, a, j, b, cijk, α)
7 // precondition: cij(a, b) ≥ α
8 foreach c ∈D(k) do cijk(a, b, c)← cijk(a, b, c) + α;
9 cij(a, b)← cij(a, b) − α

10 Procedure Project3To1(cijk, i, a, α)
11 // precondition: ∀b ∈D(j), c ∈D(k), cijk(a, b, c) ≥ α
12 foreach b ∈D(j), c ∈D(k) do cijk(a, b, c)← cijk(a, b, c) − α;
13 if ci(a) = 0 ∧ α > 0 then
14 P ← P ∪ {i};
15 S ← S ∪ {i};
16 ci(a)← ci(a) + α;

17 Procedure Project3To2(cijk, i, a, j, b, α)
18 // precondition: ∀c ∈D(k), cijk(a, b, c) ≥ α
19 foreach c ∈D(k) do cijk(a, b, c)← cijk(a, b, c) − α;
20 cij(a, b)← cij(a, b) + α;

21 Procedure Project2To1(cij , i, a, α)
22 // precondition: ∀b ∈D(j), cij(a, b) ≥ α
23 foreach b ∈D(j) do cij(a, b)← cij(a, b) − α;
24 if ci(a) = 0 ∧ α > 0 then
25 P ← P ∪ {i};
26 S ← S ∪ {i};
27 ci(a)← ci(a) + α;

28 Procedure isSmallest(i,∆ijk)
29 return ((i < j) ∧ (i < k));
30 Procedure PruneVars()
31 foreach a ∈D(i) do
32 if ci(a) + c∅ ≥m then
33 D(i)←D(i) − {a};
34 Q← Q ∪ {i};
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4.4.2 Enforcing soft path inverse consistencies

Enforcing PIC supports

RPCs and maxRPCs are defined for variables i in triangles sharing a same pair of variables
(involving i and another variable) while PIC consistencies are simply defined for variables
i in triangles involving i. Thus, PIC consistencies are symmetric w.r.t triangles: supports
and witnesses are considered equal and will be combined. A PIC support of a value ia on
a triangle ∆ijk is a pair of values (jb, kc) such that ∆ijk(a, b, c) = 0. A full PIC support of
ia on ∆ijk is a pair of values (jb, kc) such that ∆ijk(a, b, c) + cj(b) + ck(c) = 0.

The enforcement for PIC supports is based on the idea of enforcing EDAC for ternary cost
functions proposed in [Sánchez et al., 2008]. Unary and binary costs are taken into account
in the definition of full arc supports. Thus, a full arc support is exactly a full PIC support
when the three variables are connected by a ternary cost function, and one-by-one by a
binary cost function. Full arc supports are enforced by:

(1) extending non-zero unary costs to binary cost functions involved in the ternary cost
function,

(2) extending non-zero binary costs to the ternary cost function and

(3) projecting ternary costs to values of the variable to be enforced.

Based on this principle, we proposed algorithms for enforcing PIC supports.

Enforcing simple PIC supports Simple PIC supports are enforced by Procedure find-
PICSupport in Algorithm 4.2. To create a simple PIC support for a value ia on ∆ijk, binary
and ternary costs involved in ∆ijk are moved to ia in such a way that there is an instantia-
tion (ia, jb, kc) whose ternary and binary costs decrease to 0. The order in which costs are
moved between cost functions to enforce simple PIC support is presented in Figure 4.13.
Firstly, binary costs cij , cik, cjk are extended on ternary cost function cijk by the proce-
dure Extend2To3 (line 10−12). Then, ternary costs cijk are projected on ia by Procedure
Project3To1 (line 10). The maximum possible cost projected on each value a ∈D(i), stored
in Pi[a], is computed based on available binary and ternary costs (line 3). Binary cost
extensions Eij ,Eik,Ejk are computed based on Pi[a], the ternary and binary costs on two
other sides of the triangle (line 5−9). Each extension is strong enough in the sense that a
stronger extension cannot lead to a projection on ia greater than Pi[a]. This extension is
also minimum in the sense that a weaker extension would result in negative costs. The last
condition guarantees that for each binary cost extension Eij(a, b),Eik(a, c) or Ejk(b, c),
there exists a value in the remaining variable kc, jb or ia respectively such that the final
resulting ternary cost cijk(a, b, c) + Eij(a, b) + Eik(a, c) + Ejk(b, c) − Pi[a] = 0. Therefore,
binary cost extensions on ternary functions do not lead to the loss of ternary AC supports.
Moreover, binary cost extensions do not lead to the loss of PIC supports because PIC
supports involve only zero binary costs which cannot be used for extension.

Enforcing full PIC supports Full PIC supports are enforced by Procedure
findFullPICSupport in Algorithm 4.2 in a way similar to Procedure findPICSupport. The dif-
ference is that unary costs of j, k are extended on binary functions cij and cik respec-
tively, by Procedure Extend1To2, in order to create full PIC supports with zero unary costs
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Figure 4.13: The order of cost movements for enforcing simple or full PIC supports, where
unary cost extensions are not included in the enforcement of simple PIC supports.

(line 22, 23). After that, binary and ternary costs are moved to ia in the same way as for
enforcing simple PIC supports (line 24). The order in which costs are moved to enforce full
PIC supports is also described in Figure 4.13. The unary costs of j, k are taken into account
for the computation of Pi[a] as well as for the computation of unary cost extensions Ej ,Ek
(line 17,19,21). Similarly to binary cost extensions, unary cost extensions are strong enough
to lead to a cost projection Pi[a] without creating negative costs. This condition ensures
that for any unary cost extension Ej[b],Ek[c], there exists a value a ∈ D(i) such that the
final resulting binary costs cij(a, b) +Ej(b) −Eij(a, b) and cik(a, c) +Ek(c) −Eik(a, c) are
equal to 0. Therefore, unary cost extensions on binary functions cannot lead to the loss
of binary AC supports. However, unary cost extensions on binary functions can lead to
the loss of simple PIC supports, thus modified binary functions are stored in the list T for
enforcing PIC supports for related values later.

Example 4.11 Consider the Problem in Figure 4.14(a) with 4 variables i, j, l, k and 5
binary cost functions cij , cik, cil, cjk, cjl such that i < j < k < l. Each variable has 2 values
a, b. Binary costs are represented by edges (red continuous line) and ternary costs are
represented by hyper edges (blue dashed lines for cijk and green dashed lines for cijl). The
absence of (hyper)edges indicates a zero cost. The number beside values, edges and hyper-
edges present the corresponding unary, binary and ternary costs respectively. The initial
problem is FDAC but not FDPIC because value (i, a) cannot be fully extended on ∆ijk.
Now, consider enforcing full PIC supports for the values of variable i.

Procedure findFullPICSupport(i, j, k) computes the amounts of cost for projections/exten-
sions: Pi[a] = Ej[b] = 1. Other projection/extension costs are zero. After extending a cost
of 1 from jb on cij, it will call Procedure findPICSupport(i, j, k) and compute the amounts
of cost projections/extensions as follows:

Pi[a] = Eij[a, b] = Eik[a, a] = Ejk[a, b] = 1.

The resulting problem, presented in the sub-figure 4.14(d) is still not FDPIC because value
(i, b) cannot be fully extended on triangle ∆ijl. Then Procedure findFullPICSupport(i, j, l)
computes the following projection/extension costs:

Pi[b] = Eij[b, b] = Eil[b, a] = Ejl[a, b] = 1.

The final problem, presented in the sub-figure 4.14(g) is FDPIC.

Notice that enforcing both simple and full PIC supports can create new ternary functions
among 3 variables of triangles due to binary extensions, e.g., ternary cost functions cijk, cijl
are created during enforcing. If a binary cost needs to be extended to a ternary cost function
cijk and if cijk does not exist, cijk will be created and initialized with empty costs for every
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Figure 4.14: Cost evolution in a WCSP during the enforcement of full PIC supports (a)
original problem with 5 binary cost functions cij , cik, cil, cjk, cjl, i < j < k < l}. It is FDAC
but not FDPIC because of variable i where (i, a) and (i, b) cannot be fully extended on ∆ijk

and ∆ijl respectively. (b) extending a cost of 1 from jb on cij with Ej[b] = 1. (c) extending a
cost of 1 from (ia, jb), (ia, ka) and (ja, kb) on cijk with Eij[a, b] = Eik[a, a] = Ejk[a, b] = 1.
(d) projecting a cost of 1 from cijk on ia with Pi[a] = 1. (e) extending a cost of 1 from
(ib, jb), (ib, la) and (ja, lb) on cijk with Eij[b, b] = Eil[b, a] = Ejl[a, b] = 1. (f) projecting a
cost of 1 from cijk on ib with Pi[b] = 1 and then enforcing NC by projecting a cost of 1
from ci on c∅. The resulting problem is FDPIC.
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tuples over (i, j, k). Therefore, enforcing PIC consistencies can change the structure of the
network by adding new ternary cost functions. This is a difference between enforcing soft
PIC consistencies and hard PIC.

Enforcing EDPIC

EDPIC can be enforced in binary and ternary WCSPs by Procedure enforceEDPIC in Algo-
rithm 4.3. This procedure makes the use of 4 propagation queues Q,P,S and T for storing
variables which have had some change in value domain or in unary cost function.

• If i ∈ Q, it means that some value of D(i) has been deleted (Algorithm 4.1, Procedure
PruneVars, line 34). Neighbors of i may have lost their simple PIC support and need
to be revised for PIC consistency.

• If i ∈ P , it means that some value ofD(i) has increased its cost from 0 (Algorithm 4.1,
Procedure Project3To1 at line 14 and Project2To1 at line 25). Neighbor variables lower
than i may have lost their full PIC support and need to be checked for DPIC.

• With the same content as P , the queue S is used to efficiently build the propagation
queue R that will be used for enforcing EPIC i.e., for propagating the loss of EPIC
supports. S contains variables i such that the unary cost of some value in D(i) has
been increased from 0 (Algorithm 4.1, Procedure Project3To1 at line 15 and Procedure
Project2To1 at line 26), while R contains variables that need to be checked for EPIC.
If i ∈ S, the value in D(i) that has increased its unary cost may be the existential
support of i and thus i needs to be checked for EPIC. On the other hand, the EPIC
support of neighboring variables j may be fully supported by this value. Thus,
neighboring variables j also need to be checked for EPIC. In summary, all variables
of S and their neighbors are pushed into R to be checked for EPIC (Algorithm 4.3,
Procedure enforceEDPIC line 4).

• If cij ∈ T , it means the binary cost function cij has been modified because of an unary
cost extension from a greater variable between i and j to cij , where some binary cost
of cij may have increased from 0 (Procedure Extend1To2, Algorithm 4.1, line 5). So,
i, j and their common neighbors may have lost simple PIC support and need to be
revised for PIC. Note that this modification in binary costs does not lead to the loss
of full PIC supports because full PIC supports only contain values of zero costs from
which unary cost extensions to binary cost function cannot occur. Thus, DPIC and
EPIC are preserved and do not need to be rechecked after this modification in binary
costs.

EDPIC can be enforced by simply enforcing EPIC, DPIC and PIC simultaneously. Proce-
dure enforceEDPIC consists of four inner-while loops and one for-loop to enforce respectively
EPIC, DPIC, PIC and NC.

• The first while-loop (line 5-7) aims to enforce EPIC. It firstly puts in R all variables
that need to be checked for EPIC based on the auxiliary queue S (line 4). EPIC
supports of variables i ∈ R are enforced by Procedure findEPICSupport (line 7). When
enforcing the existential support for i, it does not care about triangles in which i is
not the smallest, because DPIC takes care of them. In other words, EPIC is only
responsible for triangles on which the considered variable is not the smallest. That’s
why the property of EPIC is only checked for such triangles (Algorithm 4.2, line 26).
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Algorithme 4.2 : Algorithms enforcing PIC supports
1 Procedure findPICSupport(i,∆ijk)
2 foreach a ∈D(i) do
3 Pi[a]← minb∈D(j),c∈D(k)∆ijk(a, b, c);
4 foreach a ∈D(i), b ∈D(j) do
5 Eij[a, b]← maxc∈D(k){Pi[a] − cijk(a, b, c) − cik(a, c) − cjk(b, c)};
6 foreach a ∈D(i), c ∈D(k) do
7 Eik[a, c]← maxb∈D(j){Pi[a] − cijk(a, b, c) − cjk(b, c) −Eij(a, b)};
8 foreach b ∈D(j), c ∈D(k) do
9 Ejk[b, c]← maxa∈D(i){Pi[a] − cijk(a, b, c) −Eij(a, b) −Eik(a, c)};

10 foreach a ∈D(i), b ∈D(j) do Extend2To3(i, a, j, b, cijk,Eij[a, b]);
11 foreach a ∈D(i), c ∈D(k) do Extend2To3(i, a, k, c, cijk,Eik[a, c]);
12 foreach b ∈D(j), c ∈D(k) do Extend2To3(j, b, k, c, cijk,Ejk[b, c]);
13 foreach a ∈D(i) do Project3To1(cijk, i, a,Pi[a]);
14 ProjectUnary(i);

15 Procedure findFullPICSupport(i,∆ijk)
16 foreach a ∈D(i) do
17 Pi[a]← minb∈D(j),c∈D(k){∆ijk(a, b, c) + cj(b) + ck(c)};
18 foreach b ∈D(j) do
19 Ej[b]← maxa∈D(i),c∈D(k){Pi[a] −∆ijk(a, b, c) − ck(c)};
20 foreach c ∈D(k) do
21 Ek[c]← maxa∈D(i),b∈D(j){Pi[a] − cijk(a, b, c) −Ej[b]};
22 foreach b ∈D(j) do Extend1To2(j, b, cji,Ej[b]) ;
23 foreach c ∈D(k) do Extend1To2(k, c, cki,Ek[c]) ;
24 findPICSupport(i,∆ijk);

25 Procedure findEPICSupport(i)
26 α ← min

a∈D(i)
{ci(a) + ∑

∆ijk,i>j or i>k
min

b∈D(j),c∈D(k)
{∆ijk(a, b, c) + cj(b) + ck(c)}} ;

27 if α > 0 then
28 foreach ∆ijk do
29 if ¬isSmallest(i,∆ijk) then findFullPICSupport(i,∆ijk);
30 R ← R ∪⋃∆ijk

{j, k};
31 UnaryProject(i, α);



4.4. Enforcing algorithms 89

Algorithme 4.3 : Algorithm enforcing EDPIC
1 Procedure enforceEDPIC()
2 S ← P ← Q←X; T ← ∅;
3 while Q ≠ ∅ or P ≠ ∅ or S ≠ ∅ or T ≠ ∅ do
4 R ← S ∪⋃i∈S,∆ijk

{j, k};
5 while R ≠ ∅ do
6 i← R.popmin();
7 findEPICSupport(i);

8 while P ≠ ∅ do
9 j ← P .popmax();

10 foreach ∆ijk do
11 if isSmallest(i,∆ijk) then findFullPICSupport(i,∆ijk);
12 if isSmallest(k,∆ijk) then findFullPICSupport(k,∆ijk);

13 while Q ≠ ∅ do
14 j ← Q.popmin();
15 foreach ∆ijk do
16 if ¬isSmallest(i,∆ijk) then findPICSupport(i,∆ijk);
17 if ¬isSmallest(k,∆ijk) then findPICSupport(k,∆ijk);

18 while T ≠ ∅ do
19 cij ← T .pop();
20 foreach ∆ijk do
21 if ¬isSmallest(i,∆ijk) then findPICSupport(i,∆ijk);
22 if ¬isSmallest(j,∆ijk) then findPICSupport(j,∆ijk);
23 if ¬isSmallest(k,∆ijk) then findPICSupport(k,∆ijk);

24 PruneVars()
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If i has no fully supported value (i.e., α > 0) such a value can be created by enforcing
full PIC supports for every value of i on every triangles in which i is not the smallest
variable (Algorithm 4.2, line 29). The EPIC supports of neighboring variables of i
can also be destroyed due to new values of non-zero cost made by the enforcement of
full PIC supports on i. Thus, all neighbors of i are pushed back to R to be checked
for EPIC later (Algorithm 4.2, line 30).

• DPIC is enforced by the second while-loop at line 8. For a variable j ∈ P , only
its neighboring variables that are connected to j by a triangle ∆ijk (line 10) and is
smallest variable among i, j, k (line 11, 12) are considered for checking for DPIC. This
condition guarantees that the enforcement for DPIC is performed in one direction
w.r.t the DAC order in such a way that unary costs are only extended from greater
variables to smaller ones. Moreover, this condition ensures the termination of the
algorithm (proved later).

• PIC is enforced by two while-loops at lines 13 and 18. For a variable j ∈ Q, every
neighboring variable of i is checked for PIC. For a pair of variables (i, j) ∈ T , i, j and
every variable connected to both i and j are checked for PIC. Simple PIC supports
are enforced in the reverse direction of the DAC order (line 16 − 17, line 21− 23),
i.e., simple PIC supports are only enforced for a variable in a triangle in which the
variable is not the smallest one.

Enforcing other PIC consistencies

By reducing Algorithm 4.3 which enforces EPIC, we can obtain 4 algorithms for enforcing
other consistencies EPIC, FDPIC, DPIC and PIC.

• EPIC: the algorithm enforcing EPIC keeps only the first while-loop of Algorithm 4.3
(lines 4− 7). However, to search for a PIC support for a variable i, Procedure findE-
PICSupport in Algorithm 4.2 is now responsible for all triangles involving i, regardless
of whether i is the smallest variable among 3 variables of triangles or not. The con-
dition ¬isSmallest at line 26 (for computing the EPIC property, i.e., α) and at line 29
must be removed from this procedure.

• FDPIC: the algorithm enforcing FDPIC removes the first loop concerning EPIC at
line 5 from Algorithm 4.3 and keeps the rest.

• DPIC: the algorithm enforcing DPIC only keeps the while-loop at line 8 of Algo-
rithm 4.3.

• PIC: the algorithm enforcing PIC only keeps the while-loop at line 13 of Algo-
rithm 4.3. It does not use the while-loop at line 18 because the extensions of unary
costs on binary cost functions never occur when enforcing simple PIC supports, i.e
with PIC.

Each of these algorithms also use Procedure PruneVars at line 24 of Algorithm 4.3 to enforce
NC. Notice that the while-loop at line 18 of Algorithm 4.3, that propagates the increase in
binary costs, is only used for FDPIC and EDPIC. The reason is that the increase of binary
costs caused by unary cost extensions can only lead to the loss of simple PIC supports but
cannot lead to the loss of full PIC supports, because full PIC supports only involve zero
unary costs which cannot be used for extensions. Because simple PIC supports are used by
PIC, FDPIC and EDPIC, these consistencies must be revised after the increase in binary
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costs caused by unary cost extensions. However unary cost extensions do not occur with
PIC, only FDPIC and EDPIC have to be revised.

Complexity

In this section, we analyze the complexity of the algorithms enforcing PIC, DPIC and
EPIC, and prove the termination of the algorithms enforcing FDPIC and EDPIC.

Algorithm enforcing PIC

In the PIC algorithm (corresponding to the loop at line 13 of Algorithm 4.3), a triangle
∆ijk is processed whenever i, j or k are in Q. A variable is pushed into Q only when one
of its values have been removed. Thus, each variable is pushed into Q at most d times
and each triangle is processed at most 3d times. A call to findPICSupport takes O(d3) in
time, the total time complexity of the PIC algorithm is O(cd4) where c is the number of
triangles.

Algorithm enforcing DPIC

P is a priority queue in which variables are arranged with respect to the DAC order. When
a variable j is popped out from P , all variables before (greater than) it have been processed.
Only variables smaller than j are processed and can increase its unary costs. Thus, j and
bigger variables are never pushed into P again. In other words, each variable is pushed
into P once and the algorithm DPIC (corresponding to the loop at line 8, Algorithm 4.3)
traverses P once. A triangle ∆ijk with i < j, i < k is processed at most 2 times when
one of the two bigger variables j or k is popped from P . Because the time for processing
a triangle, done by findFullPICSupport, is O(d3), the DPIC algorithm has a complexity of
O(cd3).

Algorithm enforcing FDPIC

In order to prove the termination of our algorithm enforcing FDPIC, we will compute an
upper bound on its time complexity based on the features of domain consistencies as well
as those of full directional algorithms. For a domain consistency, every algorithm enforcing
it stops when all the values are consistent. Whenever there is an inconsistent value (not
satisfying the consistency), an unary cost projection on this value will be created and the
enforcing procedure will continue to revise its neighbors. Thus, the time complexity of a
domain consistency can be computed by the total number of unary cost projections created
during the enforcement process. FDPIC is a domain consistency, so we will compute this
number of unary cost projections.

In a full directional consistency, values can both receive or send costs via unary cost
projections and extensions respectively, where the maximum total cost that a value can
extend cannot exceed the sum of cost that the value owns and receives. Unary costs can be
extended to either c∅ or functions of higher arities where the second extensions are caused
only by the directional consistency. To simplify the computation of unary cost projections
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which depends on unary cost extensions, in the first time, we do not take into account the
costs extended to c∅ and then we will take into account this amount of costs in the total
number of unary cost projections. Let Prij(a),Exik(a) the accumulated sum of costs that
a value (i, a) gets from j and sends to a smaller variable k until the enforcing procedure
stops. The final cost of (i, a) is ci(a) +∑j Prij(a) −∑k,k<iExik(a). If the cost of (i, a)
reaches the totally inconsistent cost m, it will be deleted. Thus, we have:

ci(a) +∑
j

Prij(a) − ∑
k,k<i

Exik(a) <m (4.1)

Exik(a) is the amount of cost that cki lacks to project an amount of costs Pki(b) on every
value (k, b) of k (from binary cki or from some ternary function ckij). We have:

Exik(a) ≤maxb∈D(k){Prki(b)} (4.2)

From (4.1) and (4.2), we have:

∑
j

Prij(a) <m + ∑
k,k<i

Exik(a) <m + ∑
k,k<i

maxb∈D(k){Prki(b)} (4.3)

Now, we will prove by contradiction that for every variable i and every value (i, a):
∑j Prij(a) < 2i−1m by analyzing variables from the smallest to the highest ones. Con-
sider the smallest variable 1: it does not extend its costs since unary costs only can be
extended to smaller variables. Thus ∑k,k<1 Ex1k(a) = 0 and we have:

∑
j

Pr1j(a) <m + 0 = 20m (4.4)

Suppose that for variable i − 1, we have:

∑
j

Pr(i−1)j(a) < 2i−2m (4.5)

Consider variable i, from (4.3) we have ∑j Prij(a) <m+∑k,k<imaxb∈D(k){Prki(b)}. More-
over, we have:

Pr1i(b) < ∑j Pr1j(b) < 20m from (4.3), thus Pr1i(b) < 20m

. . .

Pr(i−1)i(b) < ∑j Pr(i−1)j(b) < 2i−2m from (4.3), thus Pr(i−1)i(b) < 2i−2m

Thus, we have:

∑
j

Prij(a) <m + 20m + 21m + . . . + 2i−2m = 2i−1m (4.6)

In conclusion, for every variable i and every value (i, a): ∑j Prij(a) < 2i−1m. The sum of
unary cost projections, denoted by Pr is:

Pr = ∑
i,j,a∈D(i)

Prij(a) < d.(20 + 21 + . . .2n−1)m < (2n − 1)dm (4.7)
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Now, we need take into account the amount of costs projected on c∅. Extending a cost of
1 from a variable to c∅ consumes an amount of cost d in the sum of unary costs of this
variable. But c∅ cannot increase by more than m. Thus, the maximum amount of unary
costs extended to c∅ is dm. From (4.7), we have:

Pr < (2n − 1)dm + dm = 2ndm (4.8)

Every cost extension (from unary to binary and from binary to ternary) is always associated
to/followed by unary cost projections and all are performed in Procedure findPICSupport or
findFullPICSupport. Each projection operation and its associated cost extensions take O(d3)
time. Thus the time complexity of our FDPIC algorithm is in O(2nd4m) and it terminates.
It is likely that this asymptotic bound is not tight.

Algorithm enforcing EPIC

Similarly to queue P used for DPIC, queue R is also a priority queue in which variables
are arranged with respect to the DAC order, from the smallest one. When a variable i is
popped out from R, all variables j before i (i.e., smaller than i) and all triangles involving
i have been processed. Enforcing EPIC support for i can increase some unary costs in ci
but this increase does not lead to the loss of EPIC supports of variables j smaller than i.
Suppose that (j, b) is the EPIC support of j that was found when revising EPIC for j, and
(ia, kc) is the full PIC support of (j, b) in ∆ijk. Because (j, b) is the EPIC support of j,
i.e., cj(b) = 0, (jb, kc) is also a full PIC support of (i, a). Thus, Procedure findFullPICSupport
(called from Procedure findEPICSupport Algorithm 4.2) does not project any cost on (i, a).
This means that enforcing EPIC support for i cannot increase the unary cost of values in
D(i) by which the EPIC support of smaller variables is fully supported. In other words,
variables smaller than i are still EPIC and never pushed into R again. Thus, each variable
is pushed into R at most once. Moreover, it is noticed that whenever EPIC is violated
(i.e., α > 0 at line 27 in Algorithm 4.2), c∅ will increase. Because EPIC cannot be violated
more than m times, line 29 in Algorithm 4.2 cannot be performed more than m times. In
summary, line 29 in Algorithm 4.2 is performed at most O(max(n,m)) times. The time
complexity for enforcing EPIC is thus O(max(n,m)c′d3) = O(max{cd3,mc′d3}) where c′

is the maximum number of triangles for each variable and c is the total number of triangles
in the problem.

Algorithm enforcing EDPIC

(a) The EDPIC algorithm iteratively performs EPIC and FDPIC code blocks corresponding
to the loop at line 5 and the loops at lines 8, 13, 18 (Algorithm 4.3) until there is no more
cost movement. Whenever EPIC is violated due to a variable i, c∅ increases and i will be
pushed into P that activates the FDPIC blocks. Thus FDPIC blocks cannot be activated
more than O(m) times. The total number of unary cost projections created by the FDPIC
part cannot exceed O(m × 2ndm) = O(2ndm2). The time complexity of the FDPIC part
cannot exceed O(2nd4m2).

(b) In a single EPIC loop, each variable is never pushed into R twice because variables
are enforced for EPIC w.r.t the DAC order from the smallest ones. When a variable i
is processed, only variables greater than i can be pushed into R. Thus, each variable is
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enforced for EPIC at most once, leading to the fact that each triangle is checked for EPIC
at most once. Because findEPICSupport takes O(c′d3) in time, the time complexity of a
single EPIC loop is O(cd3). The EPIC loop is activated whenever there has been a unary
cost projection from 0. Thus, the total of time that EPIC loop is activated by FDPIC blocks
cannot exceed the number of unary cost projections caused by FDPIC, that is O(2ndm2).
In summary, the time complexity of the EPIC part cannot exceed O(2ncd4m2).

From (a) and (b), we conclude that the time complexity of the whole EDPIC algorithm
cannot exceed O(2ncd4m2). Thus, this proves that EDPIC algorithm terminates. This
bound is likely not tight.

4.4.3 Enforcing soft max-restricted path consistencies

Enforcing maxRPC supports and witnesses

In contrast to PICs that are enforced on triangles sharing a variable, maxRPCs are enforced
on triangles sharing two variables of a binary cost function. The extensible arc support of a
value (i, a) in a binary cost function cij is stored in maxRPCSupport[i, a, j] and the witness
for this support on a variable k is stored in maxRPCWitness[i, a, j, k]. In our algorithm
enforcing EDmaxRPC, we use a parameter named fullLevel, where fullLevel = false
indicates the semi-fully extensible arc supports (used by FDmaxRPC) and fullLevel =
true the fully extensible ones (used by EmaxRPC). We will use the following functions,
as described in Algorithm 4.4:

• ⋏kij(a, b,wit): searches for a witness in D(k) for a pair of values (ia, jb), and returns
the combined cost, consisting of cik, cjk, of the tuple involving this witness and the
pair of values. This combined cost presents the maximum cost that can be projected
on the pair of values from the binary cost functions cik, cjk of the triangle ∆ijk.

• ⋏̈kij(a, b,wit,fullLevel): does the same work as ⋏, but takes into account the unary
cost ck of witnesses in the case of (1) fully extensible arc supports (fullLevel=true)
or (2) semi-fully extensible arc supports on triangles w.r.t DAC order (i < k).

• �ij(a, b): computes the maximum sum of costs that can be projected on the pair of
values (ia, jb) from all triangles ∆ijk sharing i, j.

• �̈ij(a, b,fullLevel): does the same work as �, but takes into account the unary
costs of witnesses ck on extra variables k according to fullLevel and the order
between i and k as mentioned in ⋏̈kij .

Simple maxRPC supports are enforced by Procedure findmaxRPCSupport in Algo-
rithm 4.5. The main idea to enforce a simple maxRPC support for a value (i, a) on
cij is to move costs from 2 sides cik, cjk of all triangles ∆ijk to cij via cijk (line 23 − 25)
and finally project costs from cij to (i, a) (line 26) in such a way that there exists a value
b ∈ D(j) and a value c ∈ D(k) for each triangle ∆ijk such that the binary and ternary
costs involved in the tuple (ia, jb, kc) decrease to 0. The maximum cost that a pair of
values (ia, jb) can receive from all triangles sharing cij is computed by Function �ij . The
cost that pairs of values (ia, jb), ∀b ∈ D(j), can receive plus their available binary cost
will define the maximum cost Pi that can be projected to (i, a) (line 14). This allows to
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Algorithme 4.4 : Elementary functions used for enforcing maxRPC supports
1 Function �ij(a, b)
2 var wit;
3 return ∑k{⋏kij(a, b,wit)};

4 Function �̈ij(a, b,fullLevel)
5 // only called when fullLevel = true or i < j
6 var wit;

7 return ∑k{⋏̈
k
ij(a, b,wit,fullLevel)};

8 Function ⋏kij(a, b,wit)
9 wit ← argminc∈D(k){Λijk(a, b, c)};

10 return Λijk(a, b,wit);

11 Function ⋏̈kij(a, b,wit,fullLevel)
12 if fullLevel or i < k then
13 wit ← argminc∈D(k){Λijk(a, b, c) + ck(c)};
14 return Λijk(a, b,wit) + ck(wit);
15 else
16 wit ← argminc∈D(k){Λijk(a, b, c)};
17 return Λijk(a, b,wit);

compute the amount of cost that needs to be projected on each pair (ia, jb) for such a
projection to be achieved on ia.

The real cost Pij[a, b] that a triangle ∆ijk provides to (ia, jb) is the minimum of what is
needed for this pair of values Pi−cij(a, b) and what can be provided for it by ∆ijk (line 18).
This condition guarantees that cij has enough costs to make a unary cost projection Pi on
ia without resulting in negative costs. Moreover, if more costs are projected on cij , this
cannot lead to a unary cost projection greater than Pi. In order to project a cost of Pij[a, b]
from cijk to (ia, jb) (line 25), each side (ia, kc) and (jb, kc) has to extend an amount of
cost Eik[a, c] and Ejk[b, c] to cijk (line 24, 23). These binary cost extensions Eik[a, c],
Ejk[b, c] are also the minimum of the available cost cik(a, c), cjk(b, c) that (ia, kc), (jb, kc)
have and the cost that they need to provide to cijk (line 20, 22).

Full maxRPC supports According to the definition of FDmaxRPC and EmaxRPC,
there are two levels for full maxRPC supports. The full support used for EmaxRPC is
defined for every value (i, a) in every cost function cij and on every triangle ∆ijk regardless
whether i < j or i > j, i < k or i > k. This support exploits the unary cost of the supporting
and witnessing values in all cases.

Conversely, the full maxRPC support used for FDmaxRPC is weaker. It is defined for every
value (i, a) in only cost functions cij such that i < j and on every triangle ∆ijk regardless
whether i < k or i > k. This support always exploits the unary cost of the supporting values
and only exploits the unary cost of the witnessing values in the case that i < k.
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Algorithme 4.5 : Algorithms to enforce maxRPC supports
1 Procedure findFullmaxRPCSupport(i, a, j,fullLevel)
2 // condition: i < j or fullLevel = true
3 Pi ← minb∈D(j){cj[b] + cij(a, b) + �̈ij(a, b,fullLevel)};
4 foreach b ∈D(j) do
5 Ej ← Pi − �̈ij(a, b,fullLevel) − cij(a, b);
6 Extend1To2(j, b, cij ,Ej);
7 foreach ∆ijk s.t(fullLevel ∧ ¬isSmallest(i,∆ijk))
8 or (¬fullLevel ∧ (i < k)) do
9 foreach c ∈D(k) do

10 Ek ←min(ck[c],maxb∈D(j){Pi −∆ijk(a, b, c)});
11 Extend1To2(k, c, cik,Ek);

12 findmaxRPCSupport(i, a, j);

13 Procedure findmaxRPCSupport(i, a, j)
14 Pi ← minb∈D(j){cij(a, b) +�ij(a, b)} ;
15 var wit[][];
16 foreach ∆ijk do
17 foreach b ∈D(j) do
18 Pij[a, b]←min{Pi − cij(a, b), ⋏kij(a, b,wit[b][k])} ;

19 foreach c ∈D(k) do
20 Eik[a, c]←min{cik(a, c), max

b∈D(j)
{Pi − cijk(a, b, c) − cij(a, b) − cjk(, b, c)}} ;

21 foreach b ∈D(j), c ∈D(k) do
22 Ejk[b, c]←min{cjk(b, c), Pi − cijk(a, b, c) − cij(a, b) −Eik[a, c]} ;

23 foreach b ∈D(j), c ∈D(k) do Extend2To3(j, b, k, c, cijk,Ejk[b, c]) ;
24 foreach c ∈D(k) do Extend2To3(i, a, k, c, cijk,Eik[a, c]) ;
25 foreach b ∈D(j) do Project3To2(cijk, i, a, j, b, Pij[a, b]) ;

26 Project2To1(cij , i, a,Pi);
27 ProjectUnary(i);
28 maxRPCSupport[i, a, j]←argmin{Pi};
29 foreach ∆ijk do maxRPCWitness[i, a, j, k]← wit[k];

30 Procedure findEmaxRPCSupport (i)
31 fullLevel← true;
32 α ← min

a∈D(i)
{ci(a) + ∑

cij
min
b∈D(j)

{cij(a, b) + �̈ij(a, b,fullLevel)}};

33 if α > 0 then
34 foreach cij do
35 foreach a ∈D(i) do
36 findFullmaxRPCSupport(i, a, j,fullLevel);
37 R ← R ∪⋃cij{j};
38 UnaryProject(i, α) ;
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The parameter fullLevel allows to design a same procedure (findFullmaxRPCSupport in
Algorithm 4.5) for enforcing these two levels of full supports, where fullLevel = true
for the full supports used in FDmaxRPC and fullLevel = false for the full supports
used in EmaxRPC. The unary cost of witnesses in D(k) is taken into account either in
the full support of EmaxRPC (fullLevel = true) or in the full support of FDmaxRPC
(fullLevel = false) when i < k. This explains the condition at line 12 in Procedure ⋏̈
of Algorithm 4.4 and the condition at line 8 in Procedure findFullmaxRPCSupport of Algo-
rithm 4.5.

Figure 4.15: The order of cost movements for enforcing full maxRPC supports

In Procedure findFullmaxRPCSupport, the idea to enforce a full maxRPC support for value
(i, a) in a cost function cij is to extend unary costs from j to cij (line 6) and from third
variables k to cik (line 11). Then, costs are moved in the same way as enforcing simple
maxRPC support in Procedure findmaxRPCSupport (line 12). The maximum cost Pi that
can be projected on ia is recomputed by taking into account the unary cost cj of supporting
values and the unary costs ck of witnessing values via �̈ (line 3). In order to achieve this
unary projection, each value jb, kc needs to extend respectively on cij and cik a amount of
cost Ej , Ek (line 5 and 10).

The order in which costs are moved when enforcing full maxRPC supports is described in
Figure 4.15 where the flows indicate the direction of cost movements and the numbers under
the flows indicate the order in which the corresponding cost movements are performed. The
flow of moving costs for enforcing simple maxRPC supports is similar to Figure 4.15 by
removing the unary cost extensions.

Example 4.12 Consider the problem in Figure 4.16(a) which is presented in the same way
as the Figure 4.11 in the example 4.14. This problem is FDPIC but not FDmaxRPC because
ia has no full AC support in cij which can be extended on both ∆ijk and ∆ijl: (ia, ja) can be
extended on ∆ijl but not on ∆ijk while (ia, jc) can be extended on ∆ijk but not on ∆ijl. The
positive projection/extension costs computed by Procedure findFullmaxRPCSupport(i, a, j)
are: Pi = 2,Ej[b] = 1. The procedure extends a cost of 1 from jb on cij and then
calls findmaxRPCSupport(i, a, j) which computes the following positive projections/exten-
sion costs:

Pi = Ejk[a, b] = Pij[a, a] = Ejl[c, b] = Ejl[c, b] = Pij[a, a] = 2.
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Figure 4.16: Cost evolution in a WCSP during the enforcing of full maxRPC supports
(a) original problem with 5 binary cost functions cij , cik, cil, cjk, cjl and 2 ternary functions
cijk, cijl, i < {j, k, l}. It is FDPIC but not FDmaxRPC due to ia (no full maxRPC support
in cij) (b) extending a cost of 1 from jb on cij with Ej[b] = 1 (c) extending a cost of 2
from (ja, kb) on cijk with Ejk[a, b] = 2 (d) projecting a cost of 2 from cijk on (ia, ja) with
Pij[a, a] = 2 (e) extending a cost of 2 from (jc, lb) on cijk with Ejl[c, b] = 2 (f) projecting a
cost of 2 from cijk on (ia, jc) with Pij[a, a] = 2 (g) projecting a cost of 2 from cij on ia with
Pi = 2 and then making NC by projecting a cost of 2 from i to c∅. The resulting problem is
FDmaxRPC.
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The final problem presented in the sub-figure (g) is FDmaxRPC.

Enforcing maxRPC witnesses Let j be a variable whose domain has been reduced or
such that some unary cost projections occurred on values of zero costs in D(j). This can
break the witnesses for simple or full maxRPC supports of adjacent variables i in some cij .
The check and search for new witnesses is performed by Algorithm 4.6.

Procedure findWitness_remove (i, k, j) handles the case of domain reduction of D(j). The
procedure checks first whether or not the current support of a value ia on cik is still
available (line 16). If not, a new support for ai needs to be searched for. Depending on
the relation between i and k, the procedure will search for a simple or a full maxRPC
support (line 25, 26). Conversely, if the current support of ia in cij is still available but the
current witness of ia in cij on ∆ijk is not available (line 18), the procedure tries to search
for another witness (line 19). If there does not exist any witness for the current support of
ia in cik, another simple or full support for ia needs to be searched for according to i > k
(line 22) or i < k respectively (line 23).

Procedure findWitness_project (i, k, j) handles the case that some unary costs cj have in-
creased from 0. The search for witnesses is performed in the same way as done in
findWitness_remove except for the fact that unary costs are taken into account to check
the availability of supports and witnesses (lines 4, 6) and to check whether there exists or
not another witness for replacing the current unavailable one (by Procedure ⋏̈kij at line 7).

The parameter “fullLevel” used in the call to ⋏̈kij and in the call to findFullmaxRPCSupport
is set to semiLevel, because Procedure findWitness_project is only activated by DmaxRPC,
i.e., only called in the while-loop enforcing DmaxRPC at line 7 of Algorithm 4.7.

Enforcing EDmaxRPC

EDmaxRPC is enforced by Procedure enforceEDmaxRPC in Algorithm 4.7. It consists of 4
inner-while loops that handle the same propagation queues S,P,Q,T used in the EDPIC
enforcement algorithm.

• The inner while at line 14 enforces maxRPC by propagating domain reductions stored
in the queue Q. For a variable j ∈ Q, some values of the neighboring variables greater
than j ∈ Q may have lost their simple maxRPC support and thus a new simple
support needs to be searched for for such values (line 17- 19). Moreover, the deleted
values in j could have been the witness for:

– the simple witnesses for simple maxRPC supports of neighboring values ia in
cik (of course i > k).

– the full witnesses for full maxRPC supports of neighboring values ia in cik (of
course i < k) in the case that i > j.

In summary, the support of neighboring values ia in cik may have lost their witness
on j if i > k or i > j (line 20) and thus a new witness need to be search for for such
supports (line 21).

• The inner while loop at line 7 processes the propagation P to enforce DmaxRPC.
A variable j is added in P if some value in D(j) has increased cost from 0. The
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Algorithme 4.6 : Algorithms to enforce maxRPC witness
1 Procedure findWitness_project (i, k, j)

// condition: i < j, i < k
// evoked by a cost projection on a value of zero cost in D(j),

used to search for a full witness in D(j) for the full supports
of values of i in the cost function cij

2 foreach a ∈D(i) do
3 s← maxRPCSupport[i, a, k];
4 if s ∈D(k) and ck(s) + cik(a, s) = 0 then
5 w ← maxRPCWitness[i, a, k, j];
6 if w ∉D(j) or cj(w) > 0 or ∆ikj(a, s,w) > 0 then
7 if ⋏̈jik(a, s,wit, semiLevel) = 0 then
8 maxRPCWitness[i, a, k, j]← wit;

9 else
10 findFullmaxRPCSupport(i, a, k, semiLevel);

11 else
12 findFullmaxRPCSupport(i, a, k, semiLevel);

13 Procedure findWitness_remove (i, k, j)
// condition: i > j or i > k
// evoked by the reduction of domain D(j), used to search for a

witness in D(j) for the support of values of i in the cost
function cij

14 foreach a ∈D(i) do
15 s← maxRPCSupport[i, a, k];
16 if s ∈D(k) and cik(a, s) = 0 then
17 w ← maxRPCWitness[i, a, k, j];
18 if w ∉D(j) or ∆ikj(a, s,w) > 0 then
19 if (i > k and ⋏jik(a, s,wit) = 0) or (i < k and ⋏̈jik(a, s,wit) = 0) then
20 maxRPCWitness[i, a, k, j]← wit;

21 else
22 if i > k then findmaxRPCSupport(i, a, k);
23 else findFullmaxRPCSupport(i, a, k, semiLevel);

24 else
25 if i > k then findmaxRPCSupport(i, a, k);
26 else findFullmaxRPCSupport(i, a, k, semiLevel);
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change in unary costs only can break full supports and the witness of full supports.
Neighboring variables i smaller than j (line 9) can have lost full supports in cij and
thus new full supports need to be searched for for values of i (line 11). Moreover,
the full supports in cik, i < k (line 12) can have lost full witnesses on j if i < j (line 9)
and thus need to be searched for new witnesses (line 13).

• The while-inner loop at line 4 enforces EmaxRPC by processing the propagation
queue R built on S. Similarly to P , S contains variables in which there have been
some unary cost increases from 0. A variable j ∈ S may have lost its EmaxRPC
support. At the same time, the EmaxRPC support of adjacent variables i may have
lost the full maxRPC support in cij . Thus, all variables in S and their neighbors
which need to be checked for EPIC are pushed into R (line 3). The queue S allows to
avoid adding all the adjacent variables. A unary cost projection is performed inside
Project2To1 and Project3To1.

Procedure findEmaxRPCSupport(i) in Algorithm 4.5 searches for a EmaxRPC support
for the variable i. It first checks the EmaxRPC property at line 32. If there does not
exist any EmaxRPC support (line 33), the procedure will search for full maxRPC
supports for any value of i in any cost function cij by calling findFullmaxRPCSupport
with the option fullLevel = true (line 31). EmaxRPC does not need to take care of
the triangles ∆ijk in which i is not the smallest variable, because DPIC takes care of
such triangles. In other words, the search for full maxRPC supports for EmaxRPC
consistency with fullLevel = true is only performed on triangles for which the
considered variable has the smaller DAC order (findFullmaxRPCSupport, line 8).

• The while-inner loop at line 22 enforce maxRPC by processing the propagation queue
T . This queue contains the binary cost functions cij which have been modified by
unary cost extensions from the greater variable between i and j on cij . Let i∗ and j∗

be respectively the greater and the smaller variable between i and j. The modification
in binary cost cij :

– cannot break the full maxRPC supports of the smaller variable j∗ because the
full supporting values for values of j∗ in D(i∗) have zero cost and of course,
these full supporting values cannot extend cost on cij .

– can break the simple maxRPC supports for the values of the greater variable i∗

in cij and thus new supports need to be searched for for such values (line 27).

– can break the witnesses for maxRPC supports in cik (line 29, 31) or in cjk
(line 30, 32).

An algorithm enforcing FDmaxRPC can be obtained from the EDmaxRPC algorithm by
removing the loop processing EPIC at line 4. Similarly, the algorithms enforcing a single
consistency maxRPC, DmaxRPC and EmaxRPC remove the global while loop at line 2 and
keep only a while-loop at line 14, 7 or 4 that processes maxRPC, DmaxRPC or EmaxRPC
respectively.

Complexity

The algorithm for enforcing each consistency, maxRPC, DmaxRPC, FDmaxRPC and
EmaxRPC can be inferred from Algorithm 4.7 for enforcing EDmaxRPC. Enforcing maxRPC
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Algorithme 4.7 : Algorithm enforcing EDmaxRPC
1 Procedure enforceEDmaxRPC()
2 while S ≠ ∅ or P ≠ ∅ Q ≠ ∅ or T ≠ ∅ do
3 R ← S ∪⋃i∈S,cij{j};
4 while R ≠ ∅ do
5 j ← R.popmin();
6 findEmaxRPCSupport(j);

7 while P ≠ ∅ do
8 j ← P.popmax();
9 foreach cij , i < j do

10 foreach a ∈D(i) do
11 findFullmaxRPCSupport(i, a, j, semiLevel);
12 foreach ∆ikj , i < k do
13 findWitness_project (i, k, j);

14 while Q ≠ ∅ do
15 j ← Q.popmin();
16 foreach cij do
17 if i > j then
18 foreach a ∈D(i) do
19 findmaxRPCSupport(i, a, j);

20 foreach ∆ikj s.t. i > j or i > k do
21 findWitness_remove (i, k, j);

22 while T ≠ ∅ do
23 cij ← T.pop();
24 i∗ ←max{i, j};
25 j∗ ←min{i, j};
26 foreach a ∈D(i∗) do
27 findmaxRPCSupport(i∗, a, j∗);
28 foreach ∆ijk do
29 findWitness_remove (i, k, j);
30 findWitness_remove (k, i, j);
31 findWitness_remove (j, k, i);
32 findWitness_remove (k, j, i);
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contains only the loop at line 14 because there is no unary cost extension caused by
maxRPC. Enforcing DmaxRPC contains only the loop at line 7. Enforcing FDmaxRPC
contains three loops at lines 7, 14 and 22. We will discuss the complexity of algorithms
enforcing maxRPC, DmaxRPC and EmaxRPC and prove the termination of FDmaxRPC,
EDmaxRPC.

Functions �ij() and �̈ij() have a time complexity in O(c′d) where c′ is the maximum
number of triangles sharing a binary cost function.

Thus, a constraint check for a value, done by findmaxRPCSupport(i, a, j) and by
findFullmaxRPCSupport(i, a, j) takes O(c′d3) time. A constraint check takes O(c′d4) time.

Procedure findWitness_project (i, k, j) and findWitness_remove (i, k, j) have the best time
complexity in O(d2) when every current support of variable i in cik have a witness on
k. They have the worst time complexity in O(c′d4) when the current support of every
value of i in cik has no witness on j. In this case, a new maxRPC support in cik needs
to be searched for for every value of i. This is exactly the work of a constraint check for
cik. Thus, in order to compute the time complexity of our maxRPC algorithms, we are
only interested in the number of constraint checks caused by the search for supports or for
witnesses (find(Full)maxRPCSupport or findWitness_remove(project)).

maxRPC A binary function cij is checked for maxRPC at most 2d times because each
variable is pushed into Q at most d times. The total time to check for maxRPC for all the
constraints is O(ed × c′d4) = O(cd5).

DmaxRPC Similarly to the DPIC algorithm, the variables in P are arranged with re-
spect to the DAC order. When a variable j is popped out of P , only variables smaller
than it are considered for checking DmaxRPC (algorithm 4.7, line 9) and can increase
their unary costs. Thus, j and greater variables are never pushed into P again. Each
variable j is pushed into P at most once and thus each binary function cij is checked for
DmaxRPC at most once (if i < j). A constraint check for DmaxRPC takes the same time
as a constraint check for maxRPC in O(c′d4). Thus, the total time of DmaxRPC algorithm
is O(e × c′d4) = O(cd4).

FDmaxRPC In FDmaxRPC, costs are only moved inside Procedure find(Full)maxRPCSupport
where every cost movement is always accompanied by unary cost projections. Each unary
cost projection and associated cost movements take O(c′d4) in time. From the equation 4.8,
we have that O(2ndm) is an upper bound on the number of unary cost projections in any
algorithm enforcing a full directional consistency. Thus, the total time complexity of our
FDmaxRPC algorithm cannot exceed O(2ndm × c′d4) = O(2nc′d5m) or O(2ncd5m). This
means that the algorithm terminates. This bound is likely not tight.

EDmaxRPC Similarly to EDPIC, in an algorithm of EmaxRPC, the property EmaxRPC
cannot be violated more than m times because each time EmaxRPC is violated, c∅ in-
creases. Thus, the FDmaxRPC block (consisting of 3 inner-while loops at line 7, 14, 22 in al-
gorithm 4.7) is activated by EmaxRPC less thanm times. The number of unary cost projec-
tions created by FDmaxRPC part is also smaller than O(m×2ndm) = O(2ndm2). The total
time complexity of the FDmaxRPC part is smaller than O(2ndm2 × c′d4) = O(2nc′d5m2).
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The EmaxRPC loop at line 4 is activated whenever S ≠ ∅ which means that there has been
a unary cost projection from 0 created in the FDmaxRPC part. So, the EmaxRPC loop
cannot be activated more than the number of unary cost projections and this is smaller than
O(2ndm2). In a single EmaxRPC loop, each variable is enforced for EmaxRPC at most
once because it is never pushed into R twice (see the explication for EDPIC). Because the
time complexity of findEmaxRPCSupport is O(c′d4), the time complexity of the EmaxRPC
part cannot exceed O(c′d4 × 2ndm2) = O(2nc′d5m2) or O(2ncd5m2). In summary, the
time complexity of the whole EDmaxRPC algorithm cannot exceed O(2ncd5m2) and it
terminates. This bound is likely not tight.

4.5 Experimentation

4.5.1 Benchmarks and experiments

In order to evaluate the practical interest of establishing high order consistencies (HOCs),
we compared it to the default local consistency enforced in toulbar2: EDAC. Indeed,
EDAC is still the state-of-the-art for WCSP solving (VAC being mostly useful for some
very hard or specific problems). We use a set of benchmarks which have been used in the
experimentation of EDAC in [Allouche et al., 2014b] for comparing the performance of the
toulbar2 solver with other solvers. This set of benchmarks is large and heterogeneous
enough to facilitate the identification of favorable and unfavorable cases for the application
of high order consistencies. It consists of benchmarks that are collected from different
resources and that have been transformed to the WCSP format. This set of benchmarks
includes cost function networks (CFN), Max-CSP, Weighted partial Max-SAT (WPMS)
and Markov Random Field (MRF) problems that are grouped in classes as follows:

• CFN: contains cost function networks extracted from the Cost Function Library1,
including Combinatorial Auctions [Larrosa et al., 2008], Radio Link Frequency As-
signment problems [Cabon et al., 1999], Mendelian error correction problems on
complex pedigree [Sánchez et al., 2008], Computational Protein Design problems
[Allouche et al., 2012], SPOT5 satellite scheduling problems [Bensana et al., 1999]
and uncapacited warehouse location problems [Kratica et al., 2001].

• MRF: consists of Markov Random Field problems that are collected from the Prob-
abilistic Inference Challenge 20112 and Genetic Linkage Analysis problems[Favier
et al., 2011].

• WPMS: contains Max-SAT problems that are collected from the Max-SAT Evalua-
tion3,

• Max-CSPs: contains unsatisfiable binary CSP problems with constraints defined in
extension, including BlackHole, Langford, QCP Quasi-group Completion Problem,
Graph Coloring, random Composed, random 3-SAT EHI, and random Geometric.

• CVPR: contains MRF instances from the Computer Vision and Pattern Recognition
(CVPR) OpenGM2 benchmark4

1
https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib

2
http://www.cs.huji.ac.il/project/PASCAL/realBoard.php

3
http://maxsat.ia.udl.cat:81/13/benchmarks/

4
http://hci.iwr.uni-heidelberg.de/opengm2
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The set of benchmarks is described in Table 4.1. Each line corresponds to a category of
benchmarks where the number of instances (#inst) and the mean values of problem size
are also given. We report also the mean triangle density per category in the last column.
The triangle density of an instance is defined as the ratio of its number of triangles (c)
with the number of triangles in a complete graph (n × (n − 1) × (n − 2)/6 where n is the
number of its variables), i.e. (6 × c)/(n × (n − 1) × (n − 2)).

In this thesis, we have considered three experiments of enforcing high order consistencies.
First, we use HOCs during pre-processing and EDAC during search in order to know the
impact of HOCs on the search via the initial quality of the lower bound: how and in which
cases they can accelerate the search. Second, we define a restricted version of HOCs and
enforce it during pre-processing together with EDAC during search. This experiment aims
at decreasing the pre-processing time of HOCs while still providing good lower bounds for
accelerating the search. Finally, we use the restricted HOCs during both pre-processing and
search in order to determine whether they can accelerate the search when being maintained
during search or not. We do not maintain non restricted HOCs in search because they are
too costly when maintained during search.

4.5.2 Pre-processing by PICs and maxRPCs

In order to evaluate the performance of HOCs for pre-processing, in our first experiments,
we enforce HOCs during pre-processing and maintain EDAC during search. Notice that in
pre-processing, HOCs are enforced after WCSPs are enforced for EDAC. We will compare
the efficiency (in terms of the number of solved problems, the running-time, the number
of backtracks, the lower bound obtained after pre-processing) of HOCs in this experiment
and EDAC enforced during both pre-processing and search. These experiments are imple-
mented in the toulbar2 solver, using the same parameters as in [Allouche et al., 2014b]
-dee=1, -l=1.

Number of solved problems

Table 4.2 reports the number of instances solved using either EDAC (third columns) or
EDAC combined with HOCs (eight following columns) for pre-processing together with
maintaining EDAC during search. Each line corresponds to a category of benchmarks.
The green line gives a global evaluation on the overall set of benchmarks. It shows that in
general HOCs solve less instances than EDAC but on some special categories of benchmarks
such as CVPR, HOCs can solve more instances than EDAC where the stronger HOCs are,
the better they are.

While EDAC cannot solve any ChineseChars instance (the same for all the other solvers
reported in [Allouche et al., 2014b]) every HOC can solve a certain number of instances (at
least 8 by PIC and at most 16 by EDmaxRPC). We also have tried VAC to solve the Chi-
neseChars benchmarks but no instance can be solved by VAC in the limited time. Similarly
to ChineseChars, HOCs solve up to 5% instances more than EDAC on CVPR/GeomSurf-7.
Matching is the unique case of CVPR where HOCs can solve less instances than EDAC.
For other categories of CVPR, HOCs solve the same number of instances as EDAC. These
problems have a small triangle density and this is not sufficient to make HOCs sufficiently
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Categories #inst n d e r c c′ dens
CVPR 1453
ChineseChars 100 9147 2 276677 2 86557 86557 1,14E-06
ColorSeg 21 108910 9 474745 2 131805 32998 2,73E-09
GeomSurf-3 300 505 3 2140 3 8 8 4,46E-07
GeomSurf-7 300 505 7 2140 3 1366 1265 0,00018
InPainting 4 14400 4 57121 2 17732 17732 3,56E-08
Matching 4 19 19 166 2 701 0 0,679
MatchingStereo 2 138407 18 414477 2 8 8 2,70E-14
ObjectSeg 5 68160 6 203947 2 31 31 5,91E-13
PhotoMontage 2 469856 6 1408134 2 521 521 4,03E-14
SceneDecomp 715 183 8 672 2 48 42 4,80E-05
MaxCSP 503
BlackHole 37 114 27 657 2 5375 38 0,01
Coloring 22 120 4 1323 2 1227 277 0,024
Composed 80 58 10 517 2 791 0 0,079
EHI 200 306 7 4549 2 13604 475 0,0029
Geometric 100 50 20 471 2 1694 0 0,086
Langford 4 25 22 352 2 2722 0 0,736
QCP 60 159 7 1384 2 2671 108 0,0057
MaxSAT 427
Haplotyping 100 150428 2 534105 483 61646 61646 2,39E-10
MaxClique 62 484 2 50093 2 1070886 2019 0,079
MIPLib 12 10523 2 45991 20 104 104 5,92E-07
PackupWeighted 99 9492 2 23731 61 9236 9236 6,87E-07
PlanningWithPre 29 14991 2 111259 64 8026 8026 1,76E-06
TimeTabling 25 128243 2 785222 21 40052 40052 1,58E-09
Upgradeability 100 18169 2 105097 77 1884 1884 1,88E-09
UAI 211
Grid 21 3143 2 9379 2 2 2 3,74E-08
ImageAlignment 10 191 70 1819 2 6218 37 0,0058
Linkage 22 917 5 1560 4 13 13 2,23E-07
ObjectDetection 37 60 17 1830 2 34220 0 1
ProteinFolding 21 486 267 2291 2 4698 273 0,52
Segmentation 100 229 12 851 2 315 185 0,00016
WCSP 226
Auction 170 140 2 3593 2 47707 57 0,0869
CELAR 16 126 44 641 2 837 46 0,228
Pedigree 10 1758 11 3247 3 70 70 3,96E-06
ProteinDesign 10 13 123 97 2 311 0 0,966
SPOT5 20 385 4 6603 3 35976 2900 0,0055

Table 4.1: The set of benchmarks for high order consistencies (#inst: number of instances,
n: mean number of variables, mean d: mean domain size, mean e: mean number of cost
functions, mean r: mean arity of cost functions, mean c: mean number of triangles, mean
c′: mean number of triangles used by restricted high order consistencies at the root of the
search tree, and mean dens: mean triangle density.)
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summary 2820 2053 1972 1980 1979 1979 1967 1982 1980 1981
CVPR 1453 1301 1308 1315 1315 1318 1309 1321 1318 1327
ChineseChars 100 0 8 8 10 10 10 9 10 16
GeomSurf-7 300 281 280 287 285 288 281 292 292 295
ColorSeg 21 0 0 0 0 0 0 0 0 0
GeomSurf-3 300 300 300 300 300 300 300 300 300 300
InPainting 4 1 1 1 1 1 1 1 1 1
Matching 4 4 4 4 4 4 2 4 0 0
MatchingStereo 2 0 0 0 0 0 0 0 0 0
ObjectSeg 5 0 0 0 0 0 0 0 0 0
PhotoMontage 2 0 0 0 0 0 0 0 0 0
SceneDecomp 715 715 715 715 715 715 715 715 715 715
MaxCSP 503 214 212 211 210 209 211 211 210 210
Coloring 22 17 18 18 17 17 18 18 18 18
QCP 60 14 14 14 14 14 14 14 14 14
BlackHole 37 10 10 10 10 10 10 10 10 10
Composed 80 80 80 80 80 80 80 80 80 80
EHI 200 0 0 0 0 0 0 0 0 0
Geometric 100 91 88 87 87 86 87 87 86 86
Langford 4 2 2 2 2 2 2 2 2 2
MaxSAT 427 195 173 171 172 169 170 169 171 168
Haplotyping 100 1 1 1 1 1 1 2 2 1
MaxClique 62 33 15 14 15 14 13 12 14 13
MIPLib 12 3 3 3 3 3 3 3 3 3
PackupWeighted 99 52 48 47 47 47 47 46 47 47
PlanningWithPre 29 6 6 6 6 6 6 6 6 6
TimeTabling 25 0 0 0 0 0 0 0 0 0
Upgradeability 100 100 100 100 100 98 100 100 99 98
UAI 211 142 130 132 130 131 130 130 130 130
ImageAlignment 10 10 7 9 7 7 6 7 5 5
Linkage 22 13 13 13 13 14 14 13 15 15
ObjectDetection 37 0 0 0 0 0 0 0 0 0
ProteinFolding 21 19 10 10 10 10 10 10 10 10
Segmentation 100 100 100 100 100 100 100 100 100 100
Grid 21 0 0 0 0 0 0 0 0 0
WCSP 226 201 149 151 152 152 147 151 151 146
Auction 170 166 126 128 130 129 125 129 129 125
CELAR 16 12 4 4 3 3 3 3 3 3
ProteinDesign 10 9 5 5 5 5 5 5 5 4
SPOT5 20 4 4 4 4 5 4 4 4 4
Pedigree 10 10 10 10 10 10 10 10 10 10

Table 4.2: The number of instances per category solved in less 1 hour for CVPR group and
1200 seconds for other cases. The best results are in bold except for the cases where every
consistency give the same result.
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different from EDAC. Among them, the categories GeomSurf-3, MatchingStereo, Object-
Seg and SceneDecomp have too few triangles of variables (8, 8, 31, 48 respectively). As
we will discuss later, on these problems, HOCs provide exactly the same lower bounds as
EDAC.

HOCs do not make any improvement for every category of benchmarks in the group
MaxCSP of binary and Boolean problems. The tiny problems are solved by all nine consis-
tencies while the difficult ones either cannot be solved by anyone or can be solved only by
EDAC. Similarly, HOCs do not improve EDAC on the groups of categories MaxSAT, UAI
and WCSP. A decrease in the number of solved instances is observed on categories Max-
Clique, PackupWeighted, ImageAlignment, ProteinFolding, Auction, CELAR, ProteinDe-
sign. These problems have a large triangle density and the problems ImageAlignment,
ProteinFolding, Auction, CELAR and ProteinDesign have a large domain size (70, 267,
44, 123 respectively). These two factors are the reason of the drastic increase in the time
complexity of HOCs over EDAC and thus HOCs solve less instances than EDAC.

In summary, the favorable cases for the application of HOCs during pre-processing are
ChineseChars and GeomSurf-7 problems. Problems having large domain sizes and large
triangle densities are unfavorable cases for HOCs.

Lower bound

Table 4.3 reports the mean lower bounds per category of benchmarks obtained by using
EDAC and HOCs for pre-processing. We use the ratio LB/LB0 − 1, where LB and LB0

are respectively the lower bounds obtained by HOCs and by EDAC, to present the increase
in the lower bounds of HOCs over EDAC. Note that this representation is relative because
lower bounds vary significantly from problem to problem, i.e., from 0 to 1014. These
mean increases and the accumulated mean increases are presented by Sub-figures 4.17(b)
and 4.17(a). As expected, both Table 4.3 and Figure 4.17 show important contribution of
HOCs to the lower bound. They also show that the increase in lower bounds is in general
consistent with the strength of the HOCs.

More precisely, the largest increases in lower bounds, up to 37%, can be observed on Max-
Clique, 25,24% on Auction, 32,23% on SPOT5, and 5% on Upgradeability, ProteinFolding,
CELAR. These problems are characterized by a very large triangle density (except for
Upgradeability) that makes more opportunities for HOCs to increase lower bounds. A
significant improvement is also observed on CVPR benchmarks such as ChineseChars,
GeomSurf-7 (despite the fact that GeomSurf-7 has a medium triangle density, HOCs still
can improve lower bounds thanks to the special characteristics of these problems).

However, HOCs do not improve EDAC lower bounds for many categories of benchmarks
such as all categories of MaxCSP, GeomSurf-3, MatchingStereo, ObjectSeg of CVPR, MI-
PLib, PlanningWithPre, TimeTabling of MaxSAT, DBN, Linkage of UAI, Pedigree and
Warehouse of WCSP. This can be explained by the excessively small number of triangles for
categories GeomSurf-3, MatchingStereo and ObjectSeg (having only 8, 8 and 31 triangles
respectively) whereas, in the case of GeomSurf-3, EDAC already provides lower bounds
equal to optimums for 293/300 instances.

However, the quality of lower bounds are not always consistent with the strength of con-
sistencies because locally consistent closures are not unique in WCSPs. Each enforcing
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Figure 4.17: The increase in lower bounds obtained by high order consistencies over EDAC
when being used for pre-processing. This increase is evaluated by the ratio LB

LB0
− 1 where

LB and LB0 are respectively the lower bounds obtained by a high order consistency and
EDAC.
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order, defined by the propagation queue, can lead to a different closure with a different
lower bound. This is visible in Table 4.3 where EDmaxRPC can provide lower bounds
smaller than FDmaxRPC (for example for WCSP/Auction: LBEDmaxRPC = 56527 <
LBFDmaxRPC = 59919), or FDmaxRPC can provide smaller lower bounds than DmaxRPC
and maxRPC (for WCSP/CELAR LBFDmaxRPC = 2697 < LBmaxRPC = 2720), and this is
also observed for PIC (LBFDPIC = 2678 < LBDPIC = 2690).

In summary, HOCs can improve EDAC lower bounds on a variety of problems, especially
on graphs having sufficiently large triangle densities.

Pre-processing, searching and solving time

We consider 3 kinds of time measures : pre-processing, searching and solving times. The
former is the time used for pre-processing problems, the second for searching for solu-
tions, and the last for solving problems computed as the sum of the pre-processing and
the searching time. Figure 4.19 shows the mean time per category of benchmarks and Fig-
ure 4.18 shows the accumulated mean time for these three kinds of time measures. They
show that high order consistencies are slower than EDAC as expected and the slow-downs
are consistent with the strength of high order consistencies where the magnitude of slow-
downs in search time is much smaller than that in pre-processing time because the search
is accelerated thanks to the increase in lower bounds.

Pre-processing time Compared to EDAC, HOCs slow down by a factor of 1690, 371,
241, 195, 101, 50, 34 respectively on categories ProteinDesign, ImageAlignment, Max-
Clique, CELAR, Auction, SPOT5, BlackHole (Sub-figure 4.19(a)). These categories
have a large mean triangle density where the categories in bold also have a large mean
domain size. Moreover, a large slow-down by a factor up to 198 is created on CVPR/Chi-
neseChars (absent from Sub-figure 4.19(a)) where HOCs use 945 seconds compared to 4.85
seconds used by EDAC for pre-processing.

Solving time Despite the fact that HOCs are always slower than EDAC in pre-processing,
Sub-figure 4.19(b),(c) shows that they can outperform EDAC in search and in total solving
time on many problems. A mean speed-ups by a factor of 2 and 6 respectively is observed
for EDPIC and EDmaxRPC on category GeomSurf-7 in Sub-figure 4.19(c). Even more
impressive speed-ups on GeomSurf-7 and ChineseChars problems can be observed in Ta-
ble 4.4: many instances cannot be solved in 1 hour by EDAC but can be solved by HOCs
in less than 100s. The other speed-ups of 1.9, 3.3, 1.3 and 7.8 observed respectively on
Haplotyping, MaxClique, MIPLib and ProteinFolding are not the result of a general su-
periority because (1) only one among 100 Haplotyping instances and 3 among 12 MIPLib
instances are solved by all 9 consistencies and (2) on MaxClique, ProteinFolding, HOCs
are always slower than EDAC except for one difficult instance.

On other categories of benchmarks, especially unfavorable cases, HOCs are still slower than
EDAC in search (as in pre-processing) and thus slower in terms of the total solving time.
Precisely, we can observe very large slow-downs by a factor up to 4 on MaxClique, 332 on
ImageAlignment, 3 on Segmentation, 3 on Auction, 109 on CELAR, 1471 on ProteinDesign
and 5 on SPOT5. These slow-downs are explained by the dramaticaly increased enforcing
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Figure 4.18: The accumulated mean time for pre-processing, searching and solving cate-
gories of benchmarks. Only instances solved by all consistencies are taken into account to
compute the mean time of each category. Each sub-figure corresponds to a type of time
measure whereas each line corresponds to a consistency. Axis X represents the categories
while Axis Y represents the time in seconds. For each sub-figure, benchmarks categories
are arranged by increasing order in the mean time of EDAC.
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Figure 4.19: The mean time for pre-processing, searching and solving categories of bench-
marks. The mean pre-processing time per category is computed over only instances pre-
processed by all consistencies. Conversely, the mean search and solving time is computed
over only instances solved by all consistencies. Axis X represents benchmarks categories
and Axis Y represents the time in seconds.
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ChineseChars
TST_0012_88_103 - 195 575 34 41 21 119 27 44
TST_0020_96_94 - - 2647 249 260 363 1709 158 158
TST_0024_88_126 - - - - - - - - 662
TST_0027_88_109 - - - - - - - - 865
TST_0041_88_96 - - - 3149 1569 269 - 760 114
TST_0047_112_121 - 215 83 23 49 18 26 28 64
TST_0052_96_107 - 1230 3564 1842 154 77 690 183 46
TST_0059_104_73 - 130 93 37 32 11 28 20 33
TST_0067_96_121 - 201 590 117 143 47 151 41 76
TST_0070_88_96 - 460 2194 392 158 56 210 99 73
TST_0084_120_115 - - - - - - - - 416
TST_0087_88_124 - - - - - - - - 1910
TST_0089_72_92 - - - - - - - - 1148
TST_0099_72_105 - 502 2012 112 101 30 347 65 75
TST_0100_80_102 - 1199 - 591 532 227 1577 402 78
GeomSurf-7
gm113 1487 - 349 254 486 678 166 95 138
gm125 - - 1877 2938 - - 344 274 2516
gm126 - - 2135 - - - 1196 119 201
gm144 - - - - 2806 - 2770 1461 1481
gm157 - - 1914 2173 - - 403 438 262
gm169 - - - - 3146 - 2108 2971 962
gm179 - 1431 366 806 137 - 74 72 67
gm186 - - - - 1674 - 951 842 223
gm187 - - 2206 365 281 - 685 600 182
gm189 - - - - - - - - 2961
gm223 - - 2383 - 922 - 477 426 1473
gm246 - - - - - - - - 1744
gm256 - - - - - - - - 2291
gm25 1490 - 1387 - 653 2880 279 171 395
gm269 - - - 1656 452 - 1046 2948 1182
gm275 - - - - - - 1180 2664 568

Table 4.4: The solving time (in seconds) for a subset of benchmarks. This subset contains
only ChineseChars and GeomSurf-7 instances which respectively can and cannot be solved
by one of consistencies in 1 hour. “−” means that the problem cannot be solved. Best results
are in bold.



4.5. Experimentation 115

time of EDAC during search because a very large number of new ternary cost functions that
have been created by HOCs during pre-processing. Moreover, they combine the slow-downs
in pre-processing time of HOCs over EDAC on categories MaxClique, ImageAlignment,
CELAR.

Summary HOCs are always slower than EDAC in pre-processing but they can outper-
form EDAC in terms of the final solving time on favorable problems such as ChineseChars,
GeomSurf-7. On problems having large densities, they get significantly slower than EDAC.

Number of backtracks

Figure 4.20: The (accumulated) mean number of backtracks used during search. These
means are computed only over problems that are solved by all consistencies.

The mean numbers of backtracks during search per category of benchmarks is presented
in Sub-figure 4.20(b). The accumulated value for these mean numbers of backtracks is
presented in Sub-figure 4.20(a). They show that HOCs in general use less backtracks than
EDAC as expected, where a reduction of 40% in the total number of backtracks is observed
for both EDmaxRPC and EDPIC.

Sub-figure(b) shows that this reduction happens for both favorable and unfavorable cases.
Precisely, HOCs reduce the number of backtracks by a factor up to 2604 respectively on
ProteinFolding, 11.5 on GeomSurf-7, 8 on Auction, 5.3 on Segmentation, 3.7 on MaxClique,
5.8 on Composed, 2.5 on SPOT5, 3.9 on CELAR, 1.4 for Upgradeability.
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ProteinFolding problems become nearly backtrack-free in search where EDmaxRPC and
EDAC respectively use 0.5 and 1302 backtracks on average. Moreover, HOCs make prob-
lems ProteinDesign backtrack-free in search but of course very slow while EDAC does
not.

Indeed, as analyzed in the previous section, HOCs can significantly improve lower bounds
on these problems and this is the reason for such reduction in the number of backtracks.

Conclusion

High order consistencies have a good behavior on specific categories of benchmarks such as
ChineseChars and GeomSurf-7. On such categories, they can solve more instances in less
mean time and use less nodes and backtracks than EDAC. However, they are much slower
than EDAC on problems having large triangle densities and as a result solve less instances.
In both two cases, they can significantly improve lower bounds and therefore use less nodes
and backtracks than EDAC. Especially, some problems can be solved backtrack-free by
high order consistencies.

4.5.3 Pre-processing by a restricted version of PICs and maxRPCs

Restricted high order consistencies

In this section, we present a restricted version of high order consistencies by limiting the
number of triangles to be checked for the consistencies. The goal of this limitation is to
reduce the enforcing time complexity of high order consistencies and therefore to improve
the number of solved problems, especially for problems having large triangle densities. For
favorable categories of benchmarks, we would process all triangles in order to profit as much
as possible from the advantage of high-order consistencies. Conversely, for unfavorable
cases, we would enforce high order consistencies on only a subset of triangles because
processing all triangles is too costly for such problems.

In order to define a threshold on the number of triangles, we have considered the relation-
ship between the behavior of high order consistencies in the first experimentation and the
characteristics of problems. We observed that unfavorable categories of benchmarks such
as Matching, Geometric, MaxClique, ImageAlignment, ObjectDetection, ProteinFolding,
Auction, CELAR, ProteinDesign,. . . have a triangle density larger than 10−4, i.e., have
more than c∗ = n(n − 1)(n − 2)/6.104 triangles. Conversely, the favorable categories of
benchmarks have less than c∗ triangles. From these observations, we propose a restricted
version for high order consistencies which processes at most c∗ triangles. A value of c∗ < 10
is considered too small to make a difference between restricted high order consistencies and
EDAC. In this case, restricted consistencies will be replaced by EDAC and the number of
triangles used by restricted consistencies c′ is set to 0. Conversely, there will be two possible
cases. If c ≤ c∗, all triangles will be used by restricted high order consistencies, i.e. c′ = c.
Otherwise, only c∗ triangles are used for restricted consistencies, i.e. c′ = c∗. In the second
case, triangles are evaluated and classified according to the mean binary cost of triangles.
The c∗ stronger triangles are selected for enforcing HOCs. The mean cost of a binary cost
function cij is computed by (∑a∈D(i),b∈D(j) cij(a, b))/(∣D(i)∣ × ∣D(j)∣). The mean binary
cost of a triangle ∆ijk is the sum of the mean cost of three binary cost functions.
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In summary, compared to HOCs, the restricted HOCs are unchanged for problems having
more than 10 triangles and less than c∗ triangles; or become weaker otherwise. They also
can be considered as adaptive parameterized consistencies [Balafrej et al., 2013] with a
parameter c′/c ∈ [0..1] where c′ is automatically defined for each problem based on the
maximum number of triangles in the corresponding complete graph. The restricted HOCs
are therefore intermediate between HOCs and EDAC. We denote by HOCsrs, PICsr and
maxRPCsr the restricted version of HOCs, PICs and maxRPCs respectively.

The mean number of triangles (per category of benchmarks) used by restricted HOCs at
the root of the search tree is represented in the last column (c′) of Table 4.1. c′ = 0 means
that HOCsrs are equivalent to EDAC. c′ = c means that HOCsrs are equivalent to HOCs.
In this table, HOCsrs are identical to HOCs for most categories of CVPR and MaxCSP
while they are reduced to EDAC for categories Matching, Composed, Geometric, Langford,
ObjectDetection.

Table 4.5: The number of instances solved in less than 1200 seconds (1 hour for CVPR
group) by enforcing EDAC, original and restricted HOCs during pre-processing. Each block
of one or two lines corresponds to a category of benchmarks whose name and size are given
in the two first columns. A white block corresponds to a single category of benchmarks where
a white block with the name in italic and having only one line means that HOCsrs gives the
same result as HOCs. A yellow block corresponds to the group of categories presented below
it in the table. The green block represents the summary on the complete set of benchmarks.
Each box in the third column contains the number of instances per category of benchmarks
solved by EDAC while each box of the last eight columns contains either one number (the
same number of instances solved by the original and restricted HOCs) or two numbers: the
top number represents the number of instances solved by original HOCs and the bottom
number those solved by restricted consistencies.
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summary 2820 2053 1972 1980 1979 1979 1967 1982 1980 1981
2051 2055 2060 2058 2059 2069 2072 2074

CVPR 1301 1308 1315 1315 1318 1309 1321 1318 1327
1309 1311 1317 1320 1314 1322 1325 1329

ChineseChars 100 0 8 8 10 10 10 9 10 16
9 7 9 10 14 10 13 15

GeomSurf-7 300 281 280 287 285 288 281 292 292 295
280 284 288 290 280 292 292 294

Matching 4 4 4 4 4 4 2 4 0 0
4 4 4 4 4 4 4 4

ColorSeg 21 0 0 0 0 0 0 0 0 0
MaxCSP 503 214 212 211 210 209 211 211 210 210

214 214 214 214 214 214 214 214
Coloring 22 17 18 18 17 17 18 18 18 18

17 17 17 17 17 17 17 17
QCP 60 14 14 14 14 14 14 14 14 14
BlackHole 37 10 10 10 10 10 10 10 10 10
EHI 200 0 0 0 0 0 0 0 0 0

Continued on next page
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Table 4.5 – Continued from previous page
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Langford 4 2 2 2 2 2 2 2 2 2
MaxSAT 427 195 173 171 172 169 170 169 171 168

182 185 184 178 185 186 186 185
Haplotyping 100 1 1 1 1 1 1 2 2 1

1 1 1 1 2 2 2 2
MaxClique 62 33 15 14 15 14 13 12 14 13

28 29 30 29 29 29 30 30
PackupWeighted 99 52 48 47 47 47 47 46 47 47

48 46 48 47 48 47 47 47
Upgradeability 100 100 100 100 100 98 100 100 99 98

96 100 96 92 97 99 98 97
MIPLib 12 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3
UAI 211 142 130 132 130 131 130 130 130 130

143 143 144 144 143 143 145 145
ImageAlignment 10 10 7 9 7 7 6 7 5 5

10 10 10 10 10 10 10 10
Linkage 22 13 13 13 13 14 14 13 15 15

14 13 14 14 14 14 15 15
ProteinFolding 21 19 10 10 10 10 10 10 10 10

20 20 20 20 20 20 20 20
Segmentation 100 100 100 100 100 100 100 100 100 100

99 100 100 100 99 99 100 100
WCSP 226 201 149 151 152 152 147 151 151 146

202 202 200 201 202 202 202 200
Auction 170 166 126 128 130 129 125 129 129 125

167 167 166 167 167 167 167 165
CELAR 16 12 4 4 3 3 3 3 3 3

12 12 11 11 12 12 12 12
SPOT5 20 4 4 4 4 5 4 4 4 4

4 4 4 4 4 4 4 4 4

Experimental results

In order to improve the efficiency of HOCs for pre-processing, we consider a second exper-
iment which enforces HOCsrs instead of HOCs during pre-processing and EDAC during
search as done in the first experimentation. The mean number of instances (per category)
solved by HOCsrs is also introduced in Table 4.5, represented by the bottom number in
boxes. Please notice that when c′ = c, HOCsrs in general give the same result as HOCs, but
they also can give a different result because HOCsr rearrange the triangles list, according
to the mean binary cost of triangles, and thus revise triangles in a different order. This
table does not report the result for categories of benchmarks on which either HOCsrs are
replaced by EDAC (c′ = 0) or HOCsrs are identical to HOCs (c′ = c) and give the same
results as HOCs.

The green block in the table shows that in total HOCsrs can solve up to 95 instances more
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than HOCs. Except for PIC, HOCsr also can solve more instances than EDAC (up to 23
instances). As we will analyze immediately later, this result is the combination of (1) an
improvement of HOCsr over HOCs on unfavorable categories of benchmarks and (2) the
same results on favorable cases.

As expected, HOCsrs outperform HOCs on unfavorable categories of benchmarks such as
MaxClique, ImageAlignment, ProteinFolding, Auction, CELAR which have large triangle
densities and their number of triangles have been significantly reduced. HOCsrs can solve
a number of instances comparable to EDAC, i.e., larger than HOCs. This is also presented
in Table 4.7 which reports in the 4th and 5th columns respectively the mean solving time
(per category of benchmarks) taken by the HOCs and HOCsrs. HOCsr outperform HOCs
by a factor going from 10 to 30 on MaxClique, 16 and 145 on ImageAlignment, 7.8 and 13.9
on Auction, 3.4 and 49 on Celar. ProteinFolding is a case special. Despite the fact that
HOCsrs are slower than HOCs on the 10 tiniest instances of the category (Table 4.7), they
outperform HOCs on 10 other hard instances and thus can solve them in less than 1200
seconds while HOCs cannot (Table 4.5). For unfavorable categories of benchmarks where
the number of triangles reduces to 0 (c′ = 0) such as Matching, Geometric, ProteinDesign,
HOCsrs of course give the same result as EDAC, i.e. better than HOCs.

When HOCsr are identical to HOCs in the sense of the number of triangles, HOCsr give
a result similar to HOCs on almost all cases, except for ChineseChars and Upgradeability.
Table 4.5 shows that HOCsr can solve slightly more or slightly less instances than HOCs on
ChineseChars and less instances on Upgradeability. Table 4.7 shows speed-ups by factors
up to 2 of HOCsrs over HOCs on ChineseChars and slow-downs by factors up to 10 on
Upgradeability. This shows the impact of the revising order of triangles as analyzed above.

In the case of favorable problems, HOCsrs still keep the advantage not only on Chi-
neseChars but also on GeomSurf-7. The number of triangles of GeomSurf-7 problems
insignificantly decreases and this is not sufficient to make HOCsrs sufficiently different
from HOCs.

In summary, pre-processing by HOCsr allows to solve more instances in less time than
HOCs on unfavorable categories of benchmarks while HOCsrs still behave well on favorable
categories of benchmarks similarly to HOCs and better than EDAC. On unfavorable cases,
HOCsr can solve a number of instances comparable to EDAC.

4.5.4 Maintaining PICsr and maxRPCr during search

In our third experiments, we will enforce HOCsrs not only during pre-processing but also
during search. This experimentation is motivated by the good behavior of HOCsrs on the
overall set of benchmarks when used for pre-processing. It is expected that HOCsrs when
enforced during search will be more beneficial on favorable problems while providing results
comparable to EDAC, i.e., better than HOCsrs when enforced during pre-processing, on
unfavorable cases. We decided to not maintain HOCs during search because this is too
costly, especially on unfavorable problems on which the solving time of HOCs will increase
by a factor related to the number of nodes.

Thus, three approaches for using HOCs implemented in this thesis are:

• first approach: enforcing HOCs during preprocessing and EDAC during search.
• second approach: enforcing HOCsrs during preprocessing and EDAC during search.
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• third approach: enforcing HOCsrs during both preprocessing and search.

Now, we will evaluate the practical interest of maintaining HOCsrs during search by com-
paring them to HOCsrs when used for pre-processing.

Number of solved problems

In addition to Table 4.5, Table 4.6 reports at the third lines of boxes the numbers of
instances per category of benchmarks solved by maintaining HOCsrs during search. This
table does not report the result for categories of benchmarks on which either HOCsrs are
replaced by EDAC (c′ = 0) or HOCsrs are identical to HOCs (c′ = c) and the 3 approaches
enforcing HOCs give the same results.

The block of 3 green lines shows that in general, HOCsrs when maintained during search
has a better behavior than HOCs but worse than EDAC as well as HOCsrs when enforced
only during pre-processing. Precisely, when maintaining HOCsrs, the total number of
solved instances of the set of benchmarks decreases by a factor 1.95% compared to EDAC,
decreases by a factor going from 1.17% to 3.86% compared to pre-processing by HOCsrs
but increases by a factor going from 0.61% to 2.58% compared to pre-processing by HOCs.

Compared to HOCsrs used for pre-processing, the reduction in the number of solved in-
stances when maintaining HOCsrs during search occurs on both favorable and unfavorable
categories of benchmarks, especially on the unfavorable cases. A slight reduction up to
4% is observed on GeomSurf-7 while larger reductions are observed on unfavorable and
neutral categories of benchmarks, up to 26.67% on MaxClique, 13% on Auction, 17% on
PackupWeighted, 8% on Upgradeability, 40% on Linkage.

Conversely, compared to HOCs used for pre-processing, the number of solved instances
increases by a factor up to 93% on MaxClique and 22% on Auction and decrease by
a factor up to 17% on PackupWeighted, 11% on Upgradeability, 40% on Linkage. Notice
that the number of triangles used by HOCsrs reduces on the two first categories MaxClique
and Auction and remain unchanged on the three last cases. This means that we should
not maintain HOCs (HOCsrs when exploiting all triangles of problems) during search. For
unfavorable benchmarks having large triangle densities, maintaining HOCsr behaves better
than pre-processing HOCs and worse than pre-processing HOCsr.

Compared to EDAC, HOCsrs maintained in search still behave better on ChineseChars, and
can behave better or worse on GeomSur7. For other cases, the number of solved instances
is either unchanged or decreases (MaxClique, PackupWeighted, Linkage, Auction).

Solving time

Figure 4.21 presents the accumulated solving time of HOCs when enforced in the three
ways. Each sub-figure corresponds to a consistency and each line corresponds to an en-
forcing method. We observe that:

• HOCsr used for pre-processing is the fastest and HOCsr used for both pre-processing
and search is the slowest.

• The difference in solving time of 3 methods are consistent with the strength of con-
sistencies.
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Precisely, compared to HOCs (first approach):

• the total average time of HOCsr when used for pre-processing (second approach) de-
creases by a factor going from 1.4 to 2.1 (PICrs) or from from 1.7 to 3.1 (maxRPCrs).

• the total average time of HOCsr when used for both pre-processing and search (third
approach) decreases (except for PIC, DPIC, FDPIC, FDmaxRPC which create very
large speed-ups on hard instances ChineseChars).

Consider the last column in Table 4.7 to compare the solving time of HOCsrs when enforced
during pre-processing and when enforced during both pre-processing and search. It is
observed that HOCsrs get slower when maintained during search by a factor going from
1.18 to 3.97 on ChineseChars (except for PICr and DPICr that are respectively 1.23 and
3.17 times faster), from 1.02 to 9.37 on GeomSurf-7 (except for DPICr that is faster 1.18
times faster)

On the categories of benchmarks having c′ = 0, there is no significant difference in the
solving time between the second and the third approaches enforcing HOCsr. For the rest
of the set of benchmarks, HOCsr, especially maxRPCsr, get slower when maintained during
search by a factor up to 20 on Linkage, MaxClique, PlanningWithPre, PackupWeighted;
up to 10 on CELAR, Segmentation, Haplotyping, Coloring; or up to 5 on SPOT5, Auction,
ProteinFolding, Langford, Composed,. . .

In summary, HOCsrs, especially maxRPCsr, when maintained during search have a reduced
performance in terms of the number of solved instances as well as the mean solving time
compared to themselves when enforced only during pre-processing. This behavior occurs
on both favorable and unfavorable problems.

Table 4.6: The number of instances per category solved in less than 1200 seconds (1 hour
for CVPR group). Each block of three lines corresponds to a category of benchmarks where
the two first lines present the same results as in Table 4.5 and the third line gives the
number of instances solved by HOCs when enforced during pre-processing and search. The
blocks presented in only one line with name in italic means that HOCs give the same results
in three cases: (1) HOCs for pre-processing, (2) restricted HOCs for pre-processing and (3)
restricted HOCs for pre-processing and search.
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summary 2820 2053 1972 1980 1979 1979 1967 1982 1980 1981
2051 2055 2060 2058 2059 2069 2072 2074
2013 2031 2030 2018 1993 2010 1992 1998

CVPR 1301 1308 1315 1315 1318 1309 1321 1318 1327
1309 1311 1317 1320 1314 1322 1325 1329
1307 1312 1319 1317 1304 1315 1313 1313

ChineseChars 100 0 8 8 10 10 10 9 10 16
9 7 9 10 14 10 13 15
9 9 10 10 11 10 12 11

GeomSurf-7 300 281 280 287 285 288 281 292 292 295
280 284 288 290 280 292 292 294
278 283 289 287 273 285 281 282

Continued on next page



122 Chapter 4. Soft high order consistencies

Table 4.6 – Continued from previous page
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Matching 4 4 4 4 4 4 2 4 0 0
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4

MaxCSP 503 214 212 211 210 209 211 211 210 210
214 214 214 214 214 214 214 214
213 213 212 208 209 208 209 208

Coloring 22 17 18 18 17 17 18 18 18 18
17 17 17 17 17 17 17 17
17 17 16 16 17 16 16 16

QCP 60 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14
14 14 14 14 13 13 13 14

BlackHole 37 10 10 10 10 10 10 10 10 10
EHI 200 0 0 0 0 0 0 0 0 0
MaxSAT 427 195 173 171 172 169 170 169 171 168

182 185 184 178 185 186 186 185
166 175 169 167 162 167 164 162

Haplotyping 100 1 1 1 1 1 1 2 2 1
1 1 1 1 2 2 2 2
1 1 1 1 1 1 1 1

MaxClique 62 33 15 14 15 14 13 12 14 13
28 29 30 29 29 29 30 30
24 27 24 26 23 23 22 22

PackupWeighted 99 52 48 47 47 47 47 46 47 47
48 46 48 47 48 47 47 47
41 39 42 40 41 39 40 40

Upgradeability 100 100 100 100 100 98 100 100 99 98
96 100 96 92 97 99 98 97
92 100 94 92 89 96 93 91

MIPLib 12 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2

UAI 211 142 130 132 130 131 130 130 130 130
143 143 144 144 143 143 145 145
139 140 140 138 137 140 137 137

ImageAlignment 10 10 7 9 7 7 6 7 5 5
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10

Linkage 22 13 13 13 13 14 14 13 15 15
14 13 14 14 14 14 15 15
11 10 11 10 9 10 10 9

ProteinFolding 21 19 10 10 10 10 10 10 10 10
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20

Segmentation 100 100 100 100 100 100 100 100 100 100
99 100 100 100 99 99 100 100
98 100 99 98 98 100 98 98

WCSP 226 201 149 151 152 152 147 151 151 146
Continued on next page
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202 202 200 201 202 202 202 200
188 191 190 188 181 180 180 178

Auction 170 166 126 128 130 129 125 129 129 125
167 167 166 167 167 167 167 165
154 156 156 154 147 146 146 144

CELAR 16 12 4 4 3 3 3 3 3 3
12 12 11 11 12 12 12 12
11 12 11 11 11 11 11 11

SPOT5 20 4 4 4 4 5 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

Table 4.7: The mean solving time per category of benchmarks taken by HOCs for three cases.
“Option1”: HOCs for pre-processing and EDAC for search. “Option2”: restricted HOCs for
pre-processing and EDAC for search. “Option3”: restricted HOCs for both pre-processing
and search. Each block of 8 lines corresponds to a category of benchmarks where each
line corresponds to a HOC whose name is represented in the second column. The three
following columns report the mean solving time (in seconds) per category of benchmarks
taken by each HOC in each case. For a HOC, only instances solved in all three cases are
taken into account to compute the mean time of HOC for each case. The second last column
presents the speed-ups of restricted HOCs over HOCs when they are used for pre-processing.
The last column presents the speed-ups of restricted HOCs enforced in both pre-processing
and searching over enforced in only pre-processing.

problems consistency option1 option2 option3 option2
option1

option3
option2

PIC 516,56 596,88 486,55 1,16 0,82
DPIC 924,57 964,91 304,52 1,04 0,32
FDPIC 699,55 331,11 391 0,47 1,18

CVPR/ EDPIC 303,86 246,23 976,83 0,81 3,97
ChineseChars maxRPC 111,74 55,34 144,05 0,5 2,6

DmaxRPC 539,5 274,37 455,96 0,51 1,66
FdmaxRPC 178,28 90,34 149,42 0,51 1,65
EdmaxRPC 129,39 84,62 240,92 0,65 2,85
PIC 51,64 71,53 80,06 1,39 1,12
DPIC 27,33 45,47 38,4 1,66 0,84
FDPIC 48,42 40,13 50,51 0,83 1,26

CVPR/ EDPIC 51,86 57,58 58,67 1,11 1,02
GeomSurf-7 maxRPC 51,54 30,46 92,57 0,59 3,04

DmaxRPC 23,86 17,9 93,68 0,75 5,23
FdmaxRPC 15,75 20,58 106,31 1,31 5,17
EdmaxRPC 24,21 11,6 108,65 0,48 9,37
PIC 0,03 0,03 0,03 1,02 1
DPIC 0,03 0,03 0,03 0,97 1,07
FDPIC 0,03 0,03 0,03 1,05 0,99

CVPR/ EDPIC 0,03 0,03 0,03 0,97 1,1
GeomSurf-3 maxRPC 0,03 0,03 0,04 1,02 1,05

Continued on next page
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Table 4.7 – Continued from previous page
problems consistency option1 option2 option3 option2

option1
option3
option2

DmaxRPC 0,03 0,03 0,04 1,01 1,1
FdmaxRPC 0,03 0,03 0,04 0,98 1,15
EdmaxRPC 0,03 0,03 0,04 1,01 1,08
PIC 1,48 1,65 4,43 1,11 2,68
DPIC 1,63 1,64 7,74 1,01 4,72
FDPIC 1,86 2,32 8,36 1,25 3,6

CVPR/ EDPIC 1,72 1,66 4,35 0,97 2,62
InPainting maxRPC 1,96 1,78 3,17 0,91 1,78

DmaxRPC 1,71 1,78 10,29 1,04 5,78
FdmaxRPC 2,48 1,87 8,05 0,75 4,3
EdmaxRPC 1,96 1,82 15,88 0,93 8,73
PIC 0,02 0,03 0,03 1,13 1,01
DPIC 0,02 0,03 0,03 1,07 1,05
FDPIC 0,03 0,03 0,03 1,09 1,04

CVPR/ EDPIC 0,02 0,03 0,03 1,08 1,09
SceneDecomp maxRPC 0,03 0,03 0,03 1,08 1,21

DmaxRPC 0,02 0,03 0,03 1,11 1,15
FdmaxRPC 0,03 0,03 0,03 1,09 1,16
EdmaxRPC 0,03 0,03 0,03 1,1 1,18
PIC 10,43 9,3 31,72 0,89 3,41
DPIC 10,31 9,4 34,26 0,91 3,65
FDPIC 10,45 9,69 41,35 0,93 4,27

MaxCSP/ EDPIC 10,23 9,39 28,37 0,92 3,02
Coloring maxRPC 10,22 9,3 73,18 0,91 7,87

DmaxRPC 10,31 9,46 68,69 0,92 7,26
FdmaxRPC 10,57 9,51 62,61 0,9 6,59
EdmaxRPC 10,41 9,47 68,49 0,91 7,23
PIC 77,34 52,57 53,14 0,68 1,01
DPIC 71,06 52,4 52,63 0,74 1
FDPIC 76,64 52,07 52,24 0,68 1

MaxCSP/ EDPIC 75,2 51,46 46,66 0,68 0,91
QCP maxRPC 64,91 46,7 115,52 0,72 2,47

DmaxRPC 66,65 45,79 119,01 0,69 2,6
FdmaxRPC 65,77 47,07 121,63 0,72 2,58
EdmaxRPC 73,09 53,78 107,54 0,74 2
PIC 0,09 0,07 0,07 0,77 1,04
DPIC 0,09 0,07 0,08 0,77 1,11
FDPIC 0,09 0,07 0,08 0,75 1,07

MaxCSP/ EDPIC 0,1 0,07 0,08 0,72 1,1
BlackHole-7 maxRPC 0,1 0,07 0,12 0,72 1,69

DmaxRPC 0,09 0,07 0,13 0,78 1,77
FdmaxRPC 0,1 0,07 0,13 0,71 1,8
EdmaxRPC 0,1 0,07 0,13 0,72 1,84
PIC 52,8 49,23 209,42 0,93 4,25
DPIC 52,74 48,75 178,07 0,92 3,65
FDPIC 70,07 51,71 215,93 0,74 4,18

MaxSAT/ EDPIC 54,19 53,66 411,59 0,99 7,67
Haplotyping maxRPC 58,08 51,62 331,36 0,89 6,42

DmaxRPC 54,04 48,86 319,66 0,9 6,54
FdmaxRPC 54,15 52,52 231,41 0,97 4,41
EdmaxRPC 64,76 52,84 416,67 0,82 7,89
PIC 203,38 11,55 10,63 0,06 0,92

Continued on next page
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Table 4.7 – Continued from previous page
problems consistency option1 option2 option3 option2

option1
option3
option2

DPIC 168,79 13,71 15,15 0,08 1,11
FDPIC 187,82 17,66 12,75 0,09 0,72

MaxSAT/ EDPIC 128,72 12,74 27,89 0,1 2,19
MaxClique maxRPC 130,14 4,4 89,52 0,03 20,36

DmaxRPC 103,34 6,75 10,56 0,07 1,56
FdmaxRPC 179,55 10,49 24,03 0,06 2,29
EdmaxRPC 107,71 4,34 77,57 0,04 17,86
PIC 21,51 15,45 18,74 0,72 1,21
DPIC 1,59 1,18 1,6 0,74 1,36
FDPIC 2,89 3,88 27,47 1,34 7,07

MaxSAT/ EDPIC 1,19 1,43 8,75 1,21 6,1
PackupWeighted maxRPC 1,29 1,26 21,86 0,98 17,33

DmaxRPC 1,6 1,26 2,88 0,79 2,29
FdmaxRPC 1,26 1,31 19,03 1,04 14,52
EdmaxRPC 1,27 1,26 11,73 0,99 9,3
PIC 9,72 44,25 50,76 4,55 1,15
DPIC 2,96 2,98 3,81 1,01 1,28
FDPIC 10,77 52,16 41,9 4,84 0,8

MaxSAT/ EDPIC 3,07 15,54 27,65 5,06 1,78
Upgradeability maxRPC 3,29 33,4 64,47 10,14 1,93

DmaxRPC 3,26 42,39 68,24 12,98 1,61
FdmaxRPC 26,72 49,98 73,01 1,87 1,46
EdmaxRPC 15,38 49,47 81,31 3,22 1,64
PIC 0,13 0,09 0,1 0,68 1,12
DPIC 0,12 0,09 0,12 0,71 1,41
FDPIC 0,11 0,1 0,11 0,9 1,11

MaxSAT/ EDPIC 0,09 0,1 0,13 1,06 1,32
MIPLib maxRPC 0,09 0,09 0,23 1 2,56

DmaxRPC 0,11 0,09 0,18 0,77 2,12
FdmaxRPC 0,11 0,1 0,19 0,9 1,95
EdmaxRPC 0,1 0,08 0,17 0,8 2,06
PIC 3,56 3,12 27,66 0,88 8,86
DPIC 4,16 3,7 24,71 0,89 6,69
FDPIC 3,43 3,53 25,48 1,03 7,22

MaxSAT/ EDPIC 4,58 3,82 34,63 0,83 9,06
PlanningWithPre maxRPC 3,98 3,8 57,78 0,95 15,22

DmaxRPC 5,84 3,4 53,64 0,58 15,77
FdmaxRPC 4,29 4,08 64,18 0,95 15,74
EdmaxRPC 4,52 3,88 72,4 0,86 18,66
PIC 109,53 4,23 6,17 0,04 1,46
DPIC 68,88 4,27 6,57 0,06 1,54
FDPIC 106,51 4,52 6,61 0,04 1,46

UAI/ EDPIC 103,66 4,52 7,12 0,04 1,57
ImageAlignment maxRPC 299,96 3,27 6,97 0,01 2,13

DmaxRPC 188,71 2,67 5,9 0,01 2,21
FdmaxRPC 218,33 1,62 2,98 0,01 1,84
EdmaxRPC 228,42 1,57 2,91 0,01 1,85
PIC 9,95 10,21 130,14 1,03 12,74
DPIC 7,28 8,64 82,73 1,19 9,58
FDPIC 10,58 9,74 155,9 0,92 16

UAI/ EDPIC 8,08 8,26 28,62 1,02 3,47
Linkage maxRPC 7,18 9,36 97,89 1,3 10,46

Continued on next page
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Table 4.7 – Continued from previous page
problems consistency option1 option2 option3 option2

option1
option3
option2

DmaxRPC 4,22 9,32 102,21 2,21 10,97
FdmaxRPC 7,48 8,64 185,03 1,16 21,4
EdmaxRPC 7,21 7,16 54,35 0,99 7,59
PIC 3,61 6,86 23,32 1,9 3,4
DPIC 4,65 9,2 21,89 1,98 2,38
FDPIC 3,45 12,65 20,84 3,67 1,65

UAI/ EDPIC 3,05 9,95 48,3 3,26 4,85
ProteinFolding maxRPC 5,08 9,45 46,19 1,86 4,89

DmaxRPC 4,53 10 39,35 2,21 3,93
FdmaxRPC 5,63 4,88 10,65 0,87 2,18
EdmaxRPC 7,78 17,6 62,61 2,26 3,56
PIC 2,45 2,46 6,8 1 2,76
DPIC 10,63 13,04 12,55 1,23 0,96
FDPIC 6,22 3,5 14,26 0,56 4,07

UAI/ EDPIC 2,25 4,51 8,74 2 1,94
Segmentation maxRPC 2,4 2,4 16,63 1 6,93

DmaxRPC 4,9 3,42 18,78 0,7 5,49
FdmaxRPC 2,37 2,55 16,83 1,08 6,6
EdmaxRPC 2,64 2,74 23,55 1,04 8,6
PIC 154,57 12,12 30,09 0,08 2,48
DPIC 123,61 15,86 48,09 0,13 3,03
FDPIC 129,39 15,93 46,97 0,12 2,95

WCSP/ EDPIC 138,14 13,73 46,84 0,1 3,41
Auction maxRPC 120,18 12,53 61,13 0,1 4,88

DmaxRPC 152,85 11,01 47,35 0,07 4,3
FdmaxRPC 125,61 11,36 56,38 0,09 4,96
EdmaxRPC 114,03 9,16 49,41 0,08 5,39
PIC 33,51 8,16 20,93 0,24 2,57
DPIC 281,73 5,74 5,81 0,02 1,01
FDPIC 29,77 7,04 18,65 0,24 2,65

WCSP/ EDPIC 27,73 8,09 20,69 0,29 2,56
CELAR maxRPC 99,93 15,19 94,59 0,15 6,23

DmaxRPC 40,53 8,75 37,08 0,22 4,24
FdmaxRPC 238,89 22,36 159,32 0,09 7,13
EdmaxRPC 273,48 19,75 195,31 0,07 9,89
PIC 10,93 8,91 12,61 0,82 1,42
DPIC 8,51 9,28 14,20 1,09 1,53
FDPIC 10,52 7,66 13,86 0,73 1,81

WCSP/ EDPIC 9,34 9,66 18,63 1,03 1,93
Pedigree maxRPC 15,17 7,63 16,46 0,50 2,16

DmaxRPC 10,13 9,48 17,27 0,94 1,82
FdmaxRPC 13,51 8,34 24,99 0,62 3,00
EdmaxRPC 13,07 7,69 17,10 0,59 2,22
PIC 42,69 35,63 49,40 0,83 1,39
DPIC 61,27 38,27 37,85 0,62 0,99
FDPIC 64,39 36,18 39,91 0,56 1,10

WCSP/ EDPIC 27,01 35,01 77,12 1,30 2,20
SPOT5 maxRPC 50,86 35,83 49,76 0,70 1,39

DmaxRPC 42,68 31,28 186,36 0,73 5,96
FdmaxRPC 119,92 41,33 84,76 0,34 2,05
EdmaxRPC 33,01 33,45 104,88 1,01 3,14
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Figure 4.21: Accumulated mean solving time taken by variants of high order consistencies.
Each sub-figure corresponds to a high order consistency and the three lines in it correspond
to three ways of applying the corresponding high order consistency. Blue lines (option 1)
mean that high order consistencies are enforced during pre-processing and EDAC during
search; red lines (option 2) for restricted high order consistencies during pre-processing and
EDAC during search; and yellow lines (option 3) for restricted high order consistencies dur-
ing both pre-processing and search. Axis X represents the categories and Axis Y represents
the solving time (in seconds) that is accumulated on each category of benchmarks. For each
consistency (i.e., each sub-figure), categories of benchmarks are arranged w.r.t the solving
time of option 1.
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4.5.5 Conclusion

The experimental results show that high order consistencies are efficient for specific grid
graphs that have a small triangle density but the are much more slower than EDAC for
graphs of large triangle density. Using restricted high order consistencies for pre-processing
can handle this problem in the sense that they outperform original ones on unfavorable
problems and give results comparable to EDAC while they are still efficient on favorable
problems. Restricted consistencies get significantly slower when maintained during search
on the overall set of benchmarks.

4.6 Conclusions

In this section, we have proposed a group of new soft consistencies, called high order
consistencies, that are an extension of hard RPC, PIC and maxRPC to WCSPs. The new
consistencies are strictly stronger than EDAC in the sense that they provide lower bounds
much better than EDAC. This is also shown in our experimental results. The improvement
in lower bounds may allow to accelerate the search despite their costly time complexity.
The experimental results show that high order consistencies, especially EDmaxRPC, are
efficient on grid graphs such as ChineseChars, GeomSurf-7 which contain a lot of significant
information inside triples of variables. For such kinds of problems, the improvement in lower
bounds dominates the costly time complexity of high order consistencies in search. Using
high order consistencies for pre-processing allows to solve more instances in less time on
average than EDAC

However, high order consistencies have not a good behavior on graphs having a large trian-
gle density. On such problems, the time complexity of high order consistencies, especially
maxRPCs, dramatically increase. On the one hand, enforcing high order consistencies for
all triangles is too costly. On the other hand, maintaining high order consistencies during
search is also too costly. The best approach for solving WCSPs seems to be to use a re-
stricted version of high order consistencies during pre-processing. By limiting the number
of triangles to be processed, the restricted versions still have a good behavior on favorable
problems while providing a result better than the original ones and comparable to EDAC
on unfavorable cases.



Chapter 5

Conclusions and perspectives

This thesis focused on two directions for efficiently solving Weighted Constraint Satisfaction
Problems: 1) improving the efficiency of enforcing the existing soft consistencies in terms
of time and 2) proposing new soft consistencies that can provide strong lower-bounds for
Branch-and-Bound search. In the first direction, we chose to improve the efficiency of the
algorithm enforcing Virtual Arc Consistency and proposed a consistency named Dynamic
Virtual Arc Consistency. In the last direction, we used the idea of hard triangle-based
consistencies such as RPC, PIC, maxRPC to create new soft high order consistencies for
WCSPs.

5.1 Dynamic Virtual Arc Consistency

5.1.1 Conclusions

By integrating the idea of dynamic arc consistency algorithms with the iterative VAC
algorithm for dynamically enforcing classic arc consistency in the harden version of WCSPs,
the hybrid method, named Dynamic VAC, can efficiently maintain VAC during iterations
of VAC as well as during branching operations in the tree search.

There are two approaches for maintaining Dynamic VAC during search:

• Dynamic VAC is just maintained at each node of the search tree. When the search
branches out, VAC is enforced from scratch.

• Dynamic VAC is maintained both inside nodes and during the search tree. When the
search branches out, VAC is incrementally enforced from the virtual arc consistent
problem of the parent node.

By exploiting both incremental changes caused by branching operations as well as incre-
mental changes of EPTs during successive iterations of VAC, the new fully incremental
method outperforms both the direct application of dynamic VAC and the usual mainte-
nance of static VAC on a variety of problems. This is especially true for problems having
small graph densities and large domains.

The incompletely incremental method which ignores the incremental changes caused by
branching operations can outperform the static VAC on a small set of problems. This
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method does not save the work done in parent nodes and thus has a performance weaker
than the fully incremental method. The application of the domain-based revision heuristic
for enforcing AC in the CSP Bool(P ) does not significantly improve the performance of
two methods maintaining dynamic VAC in search.

This work on Dynamic Virtual Arc Consistency, has been published in proceedings of
international peer-reviewed conferences.

• H. Nguyen, T. Schiex, and C. Bessiere, Dynamic virtual arc consistency, in
Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM,
2013, pp. 98– 103.

• H. Nguyen, T. Schiex, C. Bessiere, S. de Givry, Maintaining Virtual Arc Consis-
tency Dynamically During Search, in Proc. of ICTAI’2014, Limassol, Cyprus.

5.1.2 Perspectives

There are still more opportunities to accelerate algorithms maintaining VAC during search.
Indeed, VAC does not require to enforce AC on Bool(P ) but only to detect if the AC−closure
is empty or not. Therefore, it is sufficient to identify a single viable value in each do-
main to conclude. This simplified problem has been solved using so-called Lazy AC algo-
rithms [Schiex et al., 1996] that could also be injected in VAC algorithms to increase their
efficiency.

5.2 Soft high order consistencies

5.2.1 Conclusions

In this thesis, we have proposed 18 soft high order consistencies for WCSPs based on the
idea of hard RPC, PIC, and maxRPC used in classical CSPs. Corresponding to each hard
consistency, 6 soft variants are defined for WCSPs including the simple, directional, full
directional, existential, existential directional and virtual consistency.

In addition to soft arc consistencies, the new consistencies ensure the extensibility of domain
values on two extra variables. They can provide lower-bounds stronger than soft arc
consistencies by exploiting the combined costs involving unary, binary and ternary terms
inside triangles of variables. However, enforcing soft high order consistencies can create
new ternary cost functions.

As expected, the experimental results show that in general, high order consistencies provide
stronger lower-bounds than soft arc consistencies but enforcing them takes longer than
enforcing soft arc consistencies. The quality of lower-bounds are in general consistent with
the strength of consistencies. Fortunately, high order consistencies significantly speed up
soft arc consistencies on some specific problems. The unfavorable cases for the application
of high order consistencies are problems having large triangle densities and large domain
size.

This work on high order consistencies remains to be published.
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5.2.2 Perspectives

We have three perspectives related to high order consistencies. It is to implement (1) VPIC
and VmaxRPC; (2) RPCs; (3) new restricted high order consistencies.

Implementation of VPIC and VmaxRPC

Firstly, we would like to implement in the toulbar2 solver VPIC and VmaxRPC because
they are respectively the strongest form of soft PICs and maxRPCs. These potential
consistencies will be more benificial on the favorable problems of Computer Vision and
Pattern Recognition. The idea for enforcing VPIC and VmaxRPC is based on the algorithm
enforcing VAC, that is an iterative process of three phases.

• Phase 1: enforces hard PIC and maxRPC in the hardened version of WCSPs P . It
deletes all values that have no AC/PIC/maxRPC supports in some binary constraints
and pairs of values that have no witnesses on some third variables. All the values
and pairs of values deleted during the enforcement are stored. The reasons of these
deletions are also stored in the killer system.

– killer[i, a] = j if (i, a) has no (AC/PIC/maxRPC) support in the binary cost
function cij .

– killer[i, a] = (j, k) if (i, a) has no AC support in the ternary cost function cijk.

– killer[ia, jb] = k if (ia, jb) has no witness on k.

The procedure stops whenever a domain is wiped-out. In this case, there exists a
sequence of EPTs when applied in WCSPs increasing the lower-bound. This sequence
will be defined in the next phase.

• Phase 2: identifies all the deleted values and pairs of values that are necessary for
the wipe-out by tracing back the propagation history defined by the killer system and
the queue of deleted elements (values and pairs of values). Similary to VAC, this
phase computes (1) the maximum possible increase λ achievable in the lower bound
and (2) the costs to be moved in WCSPs for archiving this increase. They are:

– Ki(a): the number of λ that is projected on (i, a) from killer[i, a].

– Kij(a, b): the number of λ that is projected on (ia, jb) from killer[ia, jb].

– Kij(i, a): the number of λ that (i, a) extends to cij

– Kijk(i, a, j, b): the number of λ that (ia, jb) extends to cijk.

• Phase 3: applies EPTs defined in Phase 2 to modify WCSPs by extending and pro-
jecting amounts of costs defined by K at deleted values and pairs of values that are
necessary for the wipe-out.

Implementation of RPCs

Secondly, Soft Restricted Path Consistencies will be also implemented in order to solve
problems having large triangle density better than the stronger consistencies, that are
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PICs, maxRPCs. The number of arc supports per value in binary cost functions can be
maintained whenever there is an unary cost projection or extension.

• An unary cost projection from cij to a value (i, a) is decomposed in 1) an increase
in the unary cost ci(a) and 2) a decrease in the binary cost function cij a. Every
adjacent value (k, c), k < i, that are fully supported by (i, a) decreases its number of
full supports by 1. If the binary cost cij(a, b) of a pair of values (ia, jb) decreases to
0, the number of simple arc supports of (i, a), (j, b) will increase by 1.

• An unary cost extension from (i, a) to cij is decomposed in 1) a decrease in the unary
cost ci(a) and 2) an increase in the binary cost function cij . If ci(a) decreases to
0, the number of full supports of every adjacent values (k, c) such that k < c and
cik(a, c) = 0, will increase by 1. If the binary cost cij(a, b) of a pair of values (ia, jb)
increases from 0, the number of simple arc supports of (i, a), (j, b) will decrease by
1.

The maitenance of the number of support seems to be expensive but it is expected that
RPCs process less triangles than PICs, maxRPCs and have a much smaller time complexity
on problems having large triangle density.

The procedure for searching for RPC supports and witnesses is similar to Procedures
find(Full)maxRPCSupport, findWitness_project and findWitness_project used for maxRPC, except
for the check for the number of arc supports.

Implementation of new restricted high order consistencies

Finally, we would like to implement other restricted versions of high order consistencies.
In this thesis, a restricted version of high order consistencies has been proposed. These
restricted consistencies select to process only a limited number of triangles based on the
mean binary cost inside triangles. We can define other restricted versions by using other
heuristics for arranging and selecting triangles of variables as well as by defining another
threshold on the number of used triangles.

The first heuristic is based on domain size: the triangle of variables that has the smallest
sum of the three variable domain sizes is the most preferred. The second heuristic is based
on the sum of unary costs in three variable domains of triangles: the most preferred triangle
has the largest such sum of costs. It is expected that a domain of small size or a domain
containing less values of zero-cost have more potential to be node inconsistent (i.e. every
value in the domain has a non-zero cost) after enforcing soft consistencies.
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Résumé

Cette thèse se focalise sur l’étude de cohérences locales fortes afin de résoudre des problèmes
d’optimisation sur des réseaux de fonctions de coûts (ou réseaux de contraintes pondérées).
Ces méthodes fournissent le minorant nécessaire pour des approches de type "Séparation-
Evaluation". Nous étudions dans un premier temps la cohérence d’Arc virtuelle (VAC),
une des plus fortes cohérences d’arcs du domaine, qui est établie via l’établissement de la
cohérence d’arc dure dans une séquence de réseaux de contraintes classiques. L’algorithme
itératif pour établir VAC est amélioré via l’introduction d’une incrémentalité accrue, ex-
ploitant la cohérence d’arc dynamique. La nouvelle méthode est aussi capable de maintenir
VAC efficacement pendant la recherche lorsque les réseaux de contraintes pondérées sont
dynamiquement modifiés par les opérations de branchement. Dans une seconde partie,
nous nous intéressons à des cohérences de domaines plus fortes, inspirées de cohérences
similaires dans les réseaux de contraintes classiques (cohérence de chemin inverse, réduite
ou Max-réduite). Pour chaque cohérence dure, plusieurs cohérences souples ont été pro-
posées pour les réseaux de contraintes pondérées. Les nouvelles cohérences fournissent un
minorant plus fort que celui des cohérences d’arc souples en traitant les triplets de vari-
ables connectées deux à deux par des fonctions de coûts binaires. Dans cette thèse, nous
étudions les propriétés des nouvelles cohérences, les implémentons et les testons sur une
variété de problèmes.

Mots clés: CSP pondéré • Réseaux de fonctions de coûts • Cohérences locales fortes •
Cohérence d’arc dynamique • Cohérence d’arc virtuelle •

Abstract

This thesis focuses on strong local consistencies for solving optimization problems in cost
function networks (or weighted constraint networks). These methods provide the lower
bound necessary for Branch-and-Bound search. We first study the Virtual arc consistency,
one of the strongest soft arc consistencies, which is enforced by iteratively establishing hard
arc consistency in a sequence of classical Constraint Networks. The algorithm enforcing
VAC is improved by integrating the dynamic arc consistency to exploit its incremental
behavior. The dynamic arc consistency also allows to improve VAC when maintained VAC
during search by efficiently exploiting the changes caused by branching operations. Sec-
ondly, we are interested in stronger domain-based soft consistencies, inspired from similar
consistencies in hard constraint networks (path inverse consistency, restricted or Max-
restricted path consistencies). From each of these hard consistencies, many soft variants
have been proposed for weighted constraint networks. The new consistencies provide lower
bounds stronger than soft arc consistencies by processing triplets of variables connected
two-by-two by binary cost functions. We have studied the properties of these new consis-
tencies, implemented and tested them on a variety of problems.

Keywords: Weighted CSP • Cost Function Networks • Strong local consistencies • High
order consistencies • Dynamic arc consistency • Virtual arc consistency •
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