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Summary

Nonsmooth optimization is an active branch of modern nonlinear programming,
where objective and constraints are continuous but not necessarily differentiable
functions. Generalized subgradients are available as a substitute for the missing
derivative information, and are used within the framework of descent algorithms to
approximate local optimal solutions. Under practically realistic hypotheses we prove
convergence certificates to local optima or critical points from an arbitrary starting
point.

In this thesis we develop especially nonsmooth optimization techniques of bundle
type, where the challenge is to prove convergence certificates without convexity
hypotheses. Satisfactory results are obtained for two important classes of nonsmooth
functions in applications, lower- and upper-C! functions.

Our methods are applied to design problems in control system theory and in
unilateral contact mechanics and in particular, in destructive mechanical testing for
delamination of composite materials. We show how these fields lead to typical non-
smooth optimization problems, and we develop bundle algorithms suited to address
these problems successfully.

Keywords. Nonconvex and nonsmooth optimization - bundle method - Hankel
norm - optimal control - eigenstructure assignment - delamination problem.






Tém tat

T6i wu khong tron 1a mot linh vige nang dong ctia quy hoach phi tuyén hien dai,
trong d6 cdc ham muc tiéu va rang buoc lién tuc nhung khong nhat thiét kha vi.
Dé thay thé cho nhitng thong tin dao ham con thiéu, duéi gradient suy rong da
xuat hien va duge st dung trong khuon kho céc thuat toan gidam nham xap xi cac
nghiém tdi wu dia phuong. V6i nhiing gid thiét thyc té trong van dung, ching toi
chiing minh sy hoi tu ctia thuat toan dén céc diém t6i uwu dia phuong hoiic t6i han
tit mot diém khéi tao bat ki.

Trong luan an nay, ching toi tap trung phét trién nhitng k¥ thuat t6i wu khong
tron dang b6 véi yéu cau dit ra la ching minh sy hoi tu khong st dung tinh 16i.
Nhitng két qué théa dung dat dugc cho hai 16p ham khong tron quan trong trong
ting dung, d6 14 cdc ham C'-duéi va C'-trén.

Cac phuong phap ctia ching toi duge 4p dung cho nhiing bai toan thiét ké trong
Iy thuyét he théng diéu khién va co hoc tiép xtc mot phia, dic biet 1a trong thit
nghiém co hoc phé hity cho su tach 16p vat lieu composite. Ching t6i chuyén céc van
dé nay vé nhitng bai toan t6i wu khong tron dién hinh rdi phat trién nhimg thuat
toan bé phit hop dé giai quyét ching mot cach hieu qua.

T khéa. Téi wu khong tron khong 16i - thuat toan bo - chuan Hankel - diéu khién
t6i wu - gan cau tric riéng - bai toan tach 16p.
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Résumé

L’optimisation non lisse est une branche active de programmation non linéaire
moderne, ou 'objectif et les contraintes sont des fonctions continues mais pas né-
cessairement différentiables. Les sous-gradients généralisés sont disponibles comme
un substitut a 'information dérivée manquante, et sont utilisés dans le cadre des
algorithmes de descente pour se rapprocher des solutions optimales locales. Sous des
hypothéses réalistes en pratique, nous prouvons des certificats de convergence vers
les points optimums locaux ou critiques a partir d’un point de départ arbitraire.

Dans cette thése, nous développons plus particuliérement des techniques d’op-
timisation non lisse de type faisceaux, ou le défi consiste a prouver des certificats
de convergence sans hypothése de convexité. Des résultats satisfaisants sont obte-
nus pour les deux classes importantes de fonctions non lisses dans des applications,
fonctions C'-inférieurement et C''-supérieurement.

Nos méthodes sont appliquées & des problémes de design dans la théorie du
systéme de controle et dans la mécanique de contact unilatéral et en particulier,
dans les essais mécaniques destructifs pour la délaminage des matériaux composites.
Nous montrons comment ces domaines conduisent a des problémes d’optimisation
non lisse typiques, et nous développons des algorithmes de faisceaux appropriés pour
traiter ces problémes avec succes.

Mots-clés. Optimisation non lisse et non convexe - méthode de faisceaux - norme de
Hankel - controle optimal - placement de structure propre - probléme de délaminage.
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Introduction

Optimization is a key technique in various fields of science and engineering such
as mathematics [4], mechanics [I5], physics [6], economics [16], optimal control [13],
computational chemistry and biology [5]. Most optimization problems in real-life
applications do not have explicit solutions and numerical optimization techniques
have to be developed to approximate local optimal solutions numerically. We ex-
pect such an iterative procedure to converge to a local solution when started at an
arbitrary initial guess.

Mathematically, a general optimization problem involves minimizing a function,
possibly subject to constraints imposed on the variables of the function. It may be
formulated as
(1) minimize  f(z)

subject to z € C

where the objective function f : R™ — R is continuous, and the constraint set (also
called the feasible set) C'is closed in R". Notice that maximization problems can be
transformed to minimization problems by reversing the sign of the objective function.
If C = R" then (1)) is called an unconstrained optimization problem. Otherwise, (1)
is called a constrained optimization problem, where the constraint set C' could for
instance be given by linear and nonlinear inequalities, such as Ax < b, h(zx) < 0
with A,b given matrix and vector, and h : R® — R a nonlinear function. Here
boundary constraints are included in linear inequalities and equality constraints
may be regarded as inequalities.

In this work we are particularly interested in nonsmooth optimization, where the
objective function or the constraints are no longer differentiable, but have weaker
properties like local Lipschitz continuity. This allows to replace the missing deriva-
tive information by generalized subgradients in the sense of Clarke, and to use these
elements in a descent algorithm. Following [3| Theorem 1|, a necessary condition
for x to be a solution of is that

(2) 0 € df(x)+ Ne(z),

where 0f(x) denotes the Clarke subdifferential of f at x, and No(z) stands for the
(generalized) normal cone to C' at z. For unconstrained optimization problems, the

1



2 INTRODUCTION

optimality condition ({2) is reduced to 0 € df(x). It is reasonable to seek for points z*
satisfying , called critical points. The purpose of numerical methods is therefore
to approximate the solution of problem by generating a sequence z7 of estimates
converging to a critical point z* in a suitable sense. Starting with an initial guess
for the solution, numerical methods for solving problem usually provide a search
direction and a step size at each iteration in order to move the approximate point
from the current position 27 to a new position 27*!. Basically, these methods can
be classified in two main groups, namely, subgradient methods [I8, [I] and bundle
methods [12] @, I3]. While the first ones require only one arbitrary subgradient
of the objective function at each iteration, the latter ones approximate the whole
subdifferential and involve a quadratic subproblem for finding search directions and
step sizes.

At the current time, bundle methods and their variations are known to be among
the most efficient optimization methods for nonsmooth problems. Initially proposed
by Lemaréchal [I1] and Wolfe [20], these methods accumulate subgradients from
past iterations into a bundle in order to perform a quadratic tangent program based
on the stored information for generating a trial step which is then a serious step
if the function value is improved or a null step otherwise. Subsequently, based on
the classical cutting plane methods due to Cheney and Goldstein [2] and to Kelley
[8], Kiwiel [9] introduced an approach to the bundle methods which builds a convex
piecewise linear approximation of the objective function using the linearizations en-
gendered by subgradients. In his work, Kiwiel also used subgradient selection and
aggregation techniques to restrict the number of cumulated subgradients. Neverthe-
less, cutting plane methods [2, 8] and their inherited bundle methods [9, 10} 211 [7]
both use cutting planes to form the lower approximation of the objective function,
and this is only guaranteed in the convex case.

Expanding on the nonconvex case, Mifflin [14] presented a bundle method using
the so-called downshift technique to solve the nonsmooth optimization problem

minimize  f(x)
subject to h(z) <0

where the functions f and h are real-valued locally Lipschitz but not necessarily
convex on R™. Developing this problem in the direction of adding linear constraints,
Mikeld and Neittaanméki [13] proposed a proximal bundle method dealing with the
constraints due to the improvement function

F(y,r) = max{f(y) — f(x), h(y)}.

As these approaches rely on line search techniques, they only provide weak conver-
gence certificates where at best one of the accumulation points of the sequence a2’
of serious iterates is critical.

In this thesis we strive at better certificates in the sense that every accumulation
point z* of the sequence 27 is critical. To achieve this, we use a nonconvex bun-
dle technique in tandem with proximity control as a backtracking mechanism We
consider a more general constrained optimization problem of the form

minimize  f(z)
(3) subject to h(xz) <0
reC



Introduction 3

where the functions f and h are real-valued locally Lipschitz but not necessarily
smooth or convex on R", and the set C is closed convex in R". Note that this
formulation also covers the case of multiple constraints h;(z) < 0,7 =1,...,m by
simply taking h(z) as the pointwise maximum of the h;(z). Typically, additional
linear constraints can be included in C due to the convexity of their solution set.
To solve this problem, we suggest a nonconvex bundle method using downshifted
tangents and a proximity control management, which gives a strong convergence
certificate for both nonsmoothness classes of lower-C! and upper-C* types in the
sense of [19, [I7].

Our methods are applied to design problems in control system theory and in
unilateral contact mechanics and in particular, in destructive mechanical testing for
delamination of composite materials. We show how these fields lead to typical non-
smooth optimization problems, and we develop bundle algorithms suited to address
these problems successfully.

The rest of the thesis contains five chapters that correspond to the following five
contributions.

I. M. N. Dao, Bundle method for nonconvexr nonsmooth constrained optimiza-

tion.
We develop a nonconvex bundle method based on the downshift mecha-
nism and a proximity control management technique to solve nonconvex
nonsmooth constrained optimization problems. The global convergence of
the algorithm in the sense of subsequences is proved for both classes of
lower-C' and upper-C*! functions.

II. M. N. Dao and D. Noll, Minimizing memory effects of a system.
Given a stable linear time-invariant system with tunable parameters, we
present a method to tune these parameters in such a way that undesirable
responses of the system to past excitations, known as system ringing, are
avoided or reduced. This problem is addressed by minimizing the Hankel
norm of the system, which quantifies the influence of past inputs on future
outputs. We indicate by way of examples that minimizing the Hankel norm
has a wide scope for possible applications. We show that the Hankel norm
minimization program may be cast as an eigenvalue optimization problem,
which we solve by a nonsmooth bundle algorithm with a local convergence
certificate. Numerical experiments are used to demonstrate the efficiency
of our approach.

ITI. M. N. Dao and D. Noll, Simultaneous plant and controller optimization
based on nonsmooth techniques.
We present an approach to simultaneous design optimization of a plant and
its controller. This is based on a bundling technique for solving nonsmooth
optimization problems under nonlinear and linear constraints. In the ab-
sence of convexity, a substitute for the convex cutting plane mechanism is
proposed. The method is illustrated on a problem of steady flow in a graph
and in robust feedback control design of a mass-spring-damper system.

IV. M. N. Dao, D. Noll, and P. Apkarian, Robust eigenstructure clustering by
nonsmooth optimization.
We extend classical eigenstructure assignment to more realistic problems
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where additional performance and robustness specifications arise. Our aim
is to combine time-domain constraints, as reflected by pole location and
eigenvector structure, with frequency-domain objectives such as the Hs,
H,, or Hankel norms. Using pole clustering, we allow poles to move in
polydisks of prescribed size around their nominal values, driven by opti-
mization. Eigenelements, that is poles and eigenvectors, are allowed to
move simultaneously and serve as decision variables in a specialized non-
smooth optimization technique. Two aerospace applications illustrate the
power of the new method.

V. M. N. Dao, J. Gwinner, D. Noll, and N. Ovcharova, Nonconvexr bundle
method with application to a delamination problem.
Delamination is a typical failure mode of composite materials caused by
weak bonding. It arises when a crack initiates and propagates under a
destructive loading. Given the physical law characterizing the properties of
the interlayer adhesive between the bonded bodies, we consider the problem
of computing the propagation of the crack front and the stress field along the
contact boundary. This leads to a hemivariational inequality, which after
discretization by finite elements we solve by a nonconvex bundle method,
where upper-C! criteria have to be minimized. As this is in contrast with
other classes of mechanical problems with non-monotone friction laws and
in other applied fields, where criteria are typically lower-C!, we propose
a bundle method suited for both types of nonsmoothness. We prove its
global convergence in the sense of subsequences and test it on a typical
delamination problem of material sciences.
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Bundle method for nonconvex nonsmooth constrained
optimization]

Minh Ngoc Dao

Abstract. The paper develops a nonconvex bundle method based on the down-
shift mechanism and a proximity control management technique to solve non-
convex nonsmooth constrained optimization problems. We prove its global con-
vergence in the sense of subsequences for both classes of lower-C! and upper-C*!
functions.

Keywords. Nonsmooth optimization - constrained optimization - bundle method
- lower-C" function- upper-C! function.

1. Introduction

Nonsmooth optimization problems appear frequently in practical applications
such as economics, mechanics, and control theory. There are several methods for
solving nonsmooth optimization problems, and they can be divided into two main
groups: subgradient methods and bundle methods. We want to mention the latter
ones because of their proven efficiency in solving relevant problems. Bundle methods
were first introduced by Lemaréchal [12] and have been developed over the years
based on subsequent works of Kiwiel [9], Lemaréchal, Nemirovskii, and Nesterov
[13]. The main idea of bundle methods is to estimate the Clarke subdifferential
[3] of the objective function by accumulating subgradients from past iterations into
a bundle, and then to generate a trial step by a quadratic tangent program using
information stored in the bundle.

Extending Lemarechal’s algorithm to the nonconvex case, Mifflin [I6] gives a
bundle algorithm using the so-called downshift mechanism for the nonsmooth min-
imization problem

minimize  f(z)
subject to h(z) <0

“Paper submitted for publication.



8 I. BUNDLE METHOD FOR NONSMOOTH OPTIMIZATION

where f and h are real-valued locally Lipschitz but potentially nonconvex functions
on R™. Subsequently, Mékeld and Neittaanméki [I4] present a proximal bundle
method for the above problem adding linear constraints. This method uses the
improvement function

F(y,z) = max{f(y) — f(x),h(y)}

for the handling of the constraints. While these works use a line search procedure
which admits only weak convergence certificates in the sense that at least one of the
accumulation points of the sequence of serious iterates is critical, we are interested
in using a proximity control mechanism along with a suitable backtracking strategy.
This brings to stronger convergence certificates, where every accumulation point of
the sequence of serious iterates is critical. Recently, Gabarrou, Alazard and Noll
[7] showed a strong convergence for the case where f and h are lower-C' functions
in the sense of |23, 22]. However, a convergence proof for upper-C' functions still
remains open.

In present framework we consider a more general constrained optimization prob-
lem of the form

minimize  f(z)
(1) subject to h(z) <0
reC

where f and h are real-valued locally Lipschitz but potentially nonsmooth and non-
convex functions, and where C is a closed convex set of R”. For solving this problem,
we propose a nonconvex bundle method based on downshifted tangents and a prox-
imity control management mechanism, in which a strong convergence certificate is
valid for both classes of lower-C! and upper-C! functions.

The motivation of this paper rises from the fact that many application problems
are addressed by minimizing lower-C* functions. For instance, some problems in
the context of automatic control are quite successfully solved in [19] 17, 18, [7, 5] by
applying bundling techniques to lower-C* functions. In particular, the problem of
maximizing the memory of a system [5] can be reformulated as minimizing upper-C*
functions.

The rest of the paper is organized as follows. Sections present elements
of the proximity control algorithm. In section [6] we introduce a theoretical tool
in the convergence proof which is referred to as the upper envelope model. Some
preparatory information on semismooth, lower-C! and upper-C* functions is given
in section [/} The central sections [§] [J] prove global convergence of the algorithm.

2. Progress function

Following an idea of Polak in |21, Section 2.2.2], to solve problem we use the
progress function

F(y,z) = max{f(y) — f(z) — ph(x)4, h(y) — h(z)+},

with g > 0 a fixed parameter and h(z), = max{h(z),0}. Here x represents the
current iterate, and y is the next iterate or a candidate for the next iterate.
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Let O0f(x) denote the Clarke subdifferential of f at z. For functions of two
variables, the notation 0; stands for the Clarke subdifferential with respect to the
first variable. We first remark that F'(z,x) = 0. Moreover, F(-,z) is also locally
Lipschitz, and by [4, Proposition 2.3.12] (see also [2, Proposition 9]),

O F(x,x) =0f(x) if h(x) <0,
(2) O F(z,x) C conv{df(z) UOh(z)} if h(x) =0,
O F(x,z) = Oh(x) if h(z) > 0,

where conv signifies convex hull, and where equality holds if f and h are regular
at y in the sense of Clarke [3]. Recall that the indicator function of a convex set

C C R" defined by
. 0 it x € C,
ic(z) =

oo otherwise,
we have ic(+) is a convex function, and Jic(z) is the normal cone to C at z,
Ne(z) ={g€R":g"(y —x) <0 forall y € C},
if x € C, and the empty set otherwise. It is worth to notice that if C is a polyhedral
set having the form
C={rcR":q/z<b,i=1,...,m},
where a; and b; are respectively given vectors and scalars, then
dic(z) = Ne(z) = {har + -+ + A - N = 0,0 = 0 if o] 2 < b;}

for all z € C (see |22, Theorem 6.46]). Motivated by [Il Lemma 5.1] and [2, Theorem
1], we now establish the following result.

Lemma 2.1. Let f and h be locally Lipschitz functions, then the following state-
ments hold.

(i) If =* is a local minimum of problem , it 1s also a local minimum of
F(-,z*) in C, and then 0 € 0,F(z*,2*) + Oic(z*). Furthermore, if x* is
a F. John critical point of (1)) then 0 € O, F(z*, x*) + Oic(z*) in the case
where f and h are regular at x*.
(ii) Conversely, if 0 € O\ F(x*,x*) + Jic(x*) for some z* € C then only one of
the following situations occurs.
(a) h(z*) > 0, in which case x* is a critical point of h in C, called a critical
point of constraint violation.
(b) h(z*) < 0, in which case x* is a F. John critical point of (1). In
addition, we have either h(z*) =0 and 0 € Oh(z*) + Dic(x*), or x* is
a Karush-Kuhn-Tucker point of .

Proof. (i) Let 2* be a local minimum of problem (]}, then h(z*) < 0,2 € C, which
gives h(z*); = 0, and so

F(y,2") = max{f(y) — f(z"), h(y)}.
Moreover, there exists a neighborhood U of x* such that f(y) > f(z*) for all y €

U NC satisfying h(y) < 0. We will show that F(y,2*) > F(a*,2*) forall y € UNC.
Indeed, if A(y) > 0 then

F(y,z") > h(y) > 0= F(z", x").
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If h(y) < 0 then f(y) > f(«*), and therefore
Fy,") 2 f(y) — f(a") 2 0= F(a",27).
This means that z* is a local minimum of F(-,z*) in C, which implies 0 €
O F (2%, 2*) + Oic(x*).
Now assume that z* is a F. John critical point of , i.e., there exist constants

Ao, A1 such that

0 € X0f(z*) + M Oh(z™) 4 Dic(z"),

Ao = 0,A01 20, Ao+ A =1,
Then if h(z*) < 0, we have \; =0, Ao = 1, and by using ([2)), o, F(z*,2*) = 0 f (x*),

which implies 0 € 0, F(z*, 2*) + Oic(x*). In the case where f and h are regular at
x*, if h(z*) = 0 then 0, F(z*, 2*) = conv{df(z*) U Oh(z*)}, and thus

0e )\08.]0(.1)*) + Alah(l’*) + alc(l’*) C 81F(SL’*,I*) + (920(95*)

(ii) Suppose that 0 € 9, F(z*, 2*) + dic(z*) for some z* € C. Then by (Z2)), there
exist constants Ao, A\; such that

0 € 2df(x") + MOh(z") + Dic(z"),
A()>O7A1 2()’ )\0+A1:1

If h(z*) > 0 then Oy F(z*,2*) = Oh(z*), and so 0 € Oh(z*) 4 Jic(x*), that is, z*
is a critical point of A in C.

If h(z*) < 0 then 0, F(z*,2*) = Of(x*), which gives A; = 0, and therefore z* is
a Karush-Kuhn-Tucker point and also a F. John critical point of .

In the case of h(z*) = 0, we see immediately that z* is a F. John critical point
of . If z* fails to be a Karush-Kuhn-Tucker point then Ay = 0 and we get
0 € Oh(z*) 4 dic(z*). The lemma is proved completely. O

3. Tangent program and acceptance test

In accordance with Lemma [2.1] it is reasonable to seek for points x* satisfying
0 € O F(z* a*) 4+ dic(z*). We present our nonconvex bundle method for finding
solutions of problem , which generates a sequence 27 of estimates converging to
a solution x* in the sense of subsequence.

Denote the current iterate of the outer loop by z, or 27 if the outer loop counter
j is used. When a new iterate of the outer loop is found, it will be denoted by =™,
or /1. At the current iterate x, we build first-order working models ¢y(, z), which
approximates F'(-,z) in a neighborhood of x. Those are updated iteratively during
the inner loop, and have to satisfy the following properties at all times k:

e ¢(-,x) is convex;
o Op(x,z) = F(z,xz) =0 and O1¢x(z,x) C 01 F(z, x).
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The latter is ensured when the so-called exactness plane mg(-,z) = g(z)" (- — )
with g(x) € 0, F(z,x) is an affine minorant of ¢ (-, ). Note that due to (2)) we can
choose g(x) € Of () if h(x) <0, and g(z) € Oh(x) if h(x) > 0.

Once the first-order working model ¢ (-, x) has been decided on, we define an
associated second-order working model

Dl ) = () 5 (= ) Q) — ),

where Q(z) is a symmetric matrix depending only on the current iterate z. Now we
find a new trial step 3* via the tangent program

) minimize Oy (y, z) + 2|y — z|?
subject to y € C

where 7, > 0 is called the proximity control parameter. Note that this program is
strictly convex and has a unique solution as soon as we assure Q(z) + 7,1 > 0.

In the sequel, we write 0;(¢(y,z) + ic(y)) for the Clarke subdifferential of
é(y, x) +ic(y) with respect to the first variable at y. Let us note that 01 (¢(y, z) +
ic(y)) C 019y, x) + Dic(y), and that equality need not hold. The necessary opti-
mality condition for tangent program gives

0 € d(ow(y*,z) +ic(y") + (Qz) + ) (y¥* — x).

Therefore, if y* = x then 0 € d,¢x(z,x) + dic(x), and so 0 € 9, F(z,x) + dic(x)
due to the fact that 01¢x(x,x) C O1F(x,x). The consequence of this argument is
that once 0 € 0, F(x, x) + dic(x), the trial step y* will always bring something new.
From this time forth we suppose that 0 € 0, F(x,z) + dic(z). Then y* # x is the
solution of the tangent program, so @4 (y*, ) + % |[y* — z|* < ®y(x, x), which gives
O (y*, x) < ®p(z,2) = 0. In other words, there is always a progress predicted by
the working model ®(-,z), unless z is already a critical point of in the sense
that 0 € 01 F(z, x) + Oic(x).

Following standard terminology, y* is called a serious step if it is accepted as the
new iterate, and a null step otherwise. In order to decide whether y* is accepted or
not, we compute the test quotient

F(y*, x)
Pk = F % .\
q)k(y ,l‘)

which measures the agreement between F(-,x) and ®(-,z) at y*. If the current
model ®;, represents F' precisely at y*, it is awaited that p, ~ 1. Fixing a constant
0 < v < 1, we accept the trial step y* already as the new serious step z 7 if p, > 7.
Here the inner loop ends. Otherwise y* is rejected and the inner loop continues.

Remark 3.1. If the current iterate x is feasible then the serious step x™ is strictly
feasible and f(z7) < f(z). Indeed, we have F(z",z) = max{f(z") — f(x),h(z™)}
due to the feasibility of z. Assume that the serious step xt is accepted at inner
loop counter k, which means * = y* € C with p, > v > 0. Since 27 = ¢* # x
is the optimal solution of , Pp(xt, ) + Zljat — z|* < Pp(x,2) = 0, and so
@y (xt,x) < 0. This combined with py > 0 gives F(z",2z) < 0, which implies that
f(zT) < f(x) and h(z™) < 0.
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4. Working model update

Suppose that y* is a null step, we will improve the next model ¢y, (-, z). Notice
that the exactness plane is always kept in first-order working models. To make
Or1(-, ) better than ¢p(-,z), we need two more elements, referred to as cutting
and aggregate planes. Let us first look at the cutting plane generation.

The cutting plane my(-,x) is a basic element in bundle methods which cuts
away the unsuccessful trial step y*. The idea is to construct my(-,z) in the way
that y* is no longer solution of the new tangent program as soon as my(-, z) is an
affine minorant of ¢y, (-,z). For each subgradient g, € 9,F(y*,z), the tangent
th() = F(y*, 2) + gf (- —9*) to F(-,z) at y* is used as a cutting plane in the case
where F'(-,x) is convex. Without convexity, tangent planes may be useless, and a
substitute has to be found. We exploit a mechanism first described in [16], which
consists in shifting the tangent down until it becomes useful for ¢, 1 (-, ). Fixing a
parameter ¢ > 0 once and for all, we define the downshift as sy = [t.(z)+c||y*—z|*] 4,
and introduce the cutting plane

mi(, @) = te(-) = s = ar + g (- — @),
with a;, = min{tz(x), —c||y* — z||*} < —c||y* — z||> < 0 by the fact that y* # x.
Remark 4.1. Let ¢p1(-,x) = max{m;(-,x) : 1 =0,...,k}, then ¢p1(-, z) is convex,
and ¢pi1(z,2) = F(z,2) = 0, O1¢p+1(x,2) C 01F(x,x). Indeed, since ¢pi1(-, )
is a maximum of affine planes, and m;(z,z) = a; < 0 = mg(x,z) for i > 1, we

get convexity of ¢pi1(-,2), and also @py1(z,x) = 0, hdpsi(z,2) = dimo(x, x) =
{9(z)} C O F (2, ).

Next we see that the optimality condition for can be written as
4 Q) +ml)(w —y*) = gi + Iy, for gi € Dign(y",x), Iy € Dic(y").

If ¢1(-,x) = max{m;(-,z) : i =0,...,r} then there exist Ao, ..., A, are non-negative
and sum up to 1 such that

G = Z Nigi, o(y*,x) = Z Ximi(y", ).
i=0 =0

We call g; the aggregate subgradient as traditional, and build the aggregate plane
mi(x) = a; +g;' (- —2)

with aj = > Na; = or(yF, ) + g;7(x — y¥). Then ¢x(v*,z) = mj(y*,z) <
dri1(y®, o) if we require that mj(-,z) is an affine minorant of ¢z1(-, ). To avoid
overflow, when generating the new working model ¢, (-, z), we may replace all
older planes corresponding to A; > 0 by the aggregate plane. This construction
follows the original lines as proposed in [9]. It does not change the conclusion of
Remark nor the definition of aggregate planes.

Remark 4.2. Typically, the new working model ¢11(-, ) can be given by

¢k+1<'7 37) = maX{m0<'7 37), mk('? 33), ml:(a SL‘)},

which satisfies the required properties of a first-order working model.
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As we pass from x to a new serious step x 7, the planes m(-,z) =a+g" (- — z)
from previous serious steps may become useless at 7+ since we have no guarantee
that m(2t,2) < F(z™,2%) = 0. But we can recycle the old planes by using again
the downshift mechanism as

m(_’er) = m(,x) - S+7 S+ = [m($+7‘x) + CHx+ - tz}Jr'

For more details, we refer to [17].

5. Proximity control management

The management of the proximity control parameter 7 is a major difference be-
tween the convex and nonconvex bundle methods. In the convex case, the proximity
control can remain unchanged during the inner loop. In the absence of convexity,
the parameter 7; has to follow certain basic rules to assure convergence of the algo-
rithm. The central rule which we have to respect is that during the inner loop, the
parameter may only increase infinitely often due to the strong discrepancy between
the current working model ¢, and the best possible working model. Assuming the
trial step 3* is a null step, as a means to decide when to increase 73, or not, we
compute the secondary test
_ Mk(yka I)

B (I)k(yka ;E) 7

where Mj(-, z) = max{mq(-, ), my(-,2)} + 5(- — ) TQ(x)(- — x) with mg(-,z) the
exactness plane at the current iterate z, and my(-,z) the cutting plane at = and
y*. If pr ~ 1 which indicates that little to no progress is achieved by adding the
cutting plane, the proximity control must be increased to force smaller steps. In
the case where p is too far from 1, we hope that the situation will be improved
without having to increase the proximity control. Fixing parameters 7 and 6 with
0<v<y<1<6< oo, we make the following decision

- o Tk lfﬁk<"~)/,
T ) om, if e > 7.

Pk

Let us next consider the management of the proximity parameter between serious
steps * — a7, respectively, 7 — 277!, To do this we use a memory element T]@,
which is computed as soon as a serious step is made. Suppose that the serious step
27t is achieved at inner loop counter k;, that is z7+! = y* with p,, > ~. We

consider the test ,
F(y",a7) 2

= W) S
pkg ®k] (ykj , m_])

where 0 < v < I' < 1 is fixed throughout. If p;, < I' then we memorize the last
parameter used, that means T}jﬂ = T, On the other hand, if py, > I' then we may
trust the model and store Tﬁrl = 6‘1Tk]. < Ty,. At the first inner loop of the jth
outer loop, the memory element Tjt-i serves to initialize 7 = maX{Tf, —Amin(Q;) + K}
or 71 =T > q+ K with Apin(+) the minimum eigenvalue of a symmetric matrix, and
0 < k < 1 fixed, which assures always that @Q; + 7/ > 0 during the jth outer loop.

Figure [1] shows a flowchart of the algorithm, while the detailed statement is
presented as Algorithm
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Algorithm 1. Proximity control algorithm with downshifted tangents

Parameters: 0 <7 <9< 1,0<y<I'<],1<0<0,0<k<k]1,0<q< o0,
qg+r <T < o0.

> Step 1 (Outer loop initializatiomn). Choose initial feasible guess z!, fix

memory control parameter Tlﬁ , and put outer loop counter j = 1.

o Step 2 (Stopping test). At outer loop counter j, stop the algorithm if 0 €
O F (27, 27)+0ic(a?). Otherwise, take a symmetric matrix @); respecting —gl <
Q; = qI, and goto inner loop.

> Step 3 (Inner loop initializatiom). Put inner loop counter £ = 1 and
initialize control parameter 7, = max{Tf, —Amin(Q;) + £}, where Apin(+) denotes
the minimum eigenvalue of a symmetric matrix. Reset 4 = T if ; > T, and
choose initial working model ¢, (-, z7) using the exactness plane mq(-,2’) and
possibly recycling some planes from previous loop.

> Step 4 (Tangent program). At inner loop counter k, let
q)k('axj) = (bk(’?xj) + 5( - xJ>TQj<' - xj>

and find solution y* (trial step) of the tangent program

minimize  ®y(y, z) + %y — z|?
subject to y € C.

o Step 5 (Acceptance test). Compute the quotient
_ Py,
- By(yk,ad)

If pr > v (serious step), put 2t = yk, compute new memory element

4 Tk if Pr < F,
Ti+1 =

Pk

9717';€ if Pk = I,

and quit inner loop. Increase outer loop counter j and loop back to step 2. If
pr <7 (null step), continue inner loop with step 6.

> Step 6 (Working model update). Generate a cutting plane my(-,z7) at null
step y* and counter k using downshifted tangents. Compute aggregate plane
mj(-,27) at y*, and then build a new working model ¢ (-, 27) by adding the
new cutting plane, keeping the exactness plane and using aggregation to avoid
overflow.

o Step 7 (Proximity control management). Compute secondary control pa-

rameter ‘
My(y"*, 27)

oyt a)
with My (-, 27) = max{mo(-,27), my(-,27)} + 3(- —27) TQ;(- — 27), and then put

{m if < 7,
Tk+1 =

Pk

Or i pr = 7.

Increase inner loop counter £ and loop back to step 4.
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initialize *, 7

put j =1

start———

outer loop

yes
stopping test

— initialize Q;, T, put k =1 :
E]El [ initialize working model ‘i oy

[ tangent program

yes a

no yes
cutting and aggregate plane o
update working model

FiGURE 1. Flowchart of proximity control algorithm. Inner loop is
shown in the lower right box

| e———

\__/

Tt1 := 0Tk

Tkl = Tk

6. Upper envelope model

To analyse the convergence of the algorithm, we adapt a notion from [I7, [18]
for the progress function F. At the current iterate x of the outer loop, the upper
envelope model is defined as

ng(y,ZE) - Sup{my+7g(yux) : y+ € B(va)ag € alF(y+7x)}7

where B(x, M) is a fixed ball large enough to contain all possible trial steps during
the inner loop, and where m,+ ,(-, ) is the cutting plane at serious iterate x and
trial step y* with subgradient g € 9, F(y*,z). We see immediately that ¢'(-,x) is
well-defined due to boundedness of B(x, M) and boundedness of all possible trial
steps during the inner loop which will be proved without using the notion ¢! in
Lemma [8.1f1) and Lemma [8.2(i). Furthermore, we have the following result.

Lemma 6.1. Let f and h be locally Lipschitz functions, then the following state-
ments hold.

(i) ¢'(-, ) is a convex function and ¢p(-,x) < ¢T(-, ) for all counters k.
(ii) ¢'(z,z) =0 and 019" (x,x) = O, F(z, x).

(iii) @' is jointly upper semi-continuous.

Proof. (i) The first statement is followed from the definition of ¢'(-,z) and the
construction of ¢ (-, ).

(ii) By construction, my+ 4(z,z) < 0 and my 4(z, ) = 0, which implies ¢'(z, z) =
0.

We now take an arbitrary g € 0,¢'(z, z) and the tangent plane m(-,z) = g' (-—x)
to the graph of ¢'(-,z) at x associated with g. Since ¢'(-,z) is a convex function,
m(-,z) < ¢'(-,z). Fixing a vector v € R", for each ¢t > 0, by definition of ¢'(-, ),
there exists a cutting plane at trial step y, with subgradient g, € 9, F(y;, z) such
that ¢'(z + tv,x) < my, 4, (z + tv,x) + t*. Note that m,, 4 (-,x) can be represented
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as myugt('a "L‘) = mytvgt(l‘7x) + gtT( - JZ) and mytvgt('x? JZ) < _C”yt - wHQ This giVGS
tg' v =m(z+tv,r) < ¢ (r+tv, 1) < my, 5 (v +tv, 1)+ < —c|lys —||* +tg v+t

Let t — 07, we get y; — x. By passing to a subsequence and using the upper
semi-continuity of the Clarke subdifferential, we may assume that g, — g for some
g € 01F(x, 7). In addition, the above estimate also gives g'v < g/v+t for all t > 0,
which infers g"v < ¢'v, and so

g v<max{g'v:g € F(z,z)}.

The expression on the right is the Clarke directional derivative of F(-,z) at x in
direction v. Since this relation holds true for every v € R", g € 0;F(x,z). Hence,
0Pl (x,x) C O1F(z,x).

It only remain to show 0, F(z,z) C 01¢'(z,x). In order to do this, we consider
the limit set

%F(SL’, r) = {khm ViF(y*, z) :y* — 2, F(-,z) is differentiable at y"}.
—00

Here V, F(y*, x) denote the subgradient of F(-,z) at y* in the case where F(-, ) is
differentiable at 3*. We use the symbol Q> for the limit set, following Hiriart-Urruty

[8]. By [2, Proposition 5] (see also [4, Theorem 2.5.1]), 01 F (z,z) = conv((lF(m, x)).
We will prove that iF(m,x) C 010" (z,z). Indeed, take g € ﬁF(m,x), there exist
y* — x and g, = Vi F(y*, ) € 0,F(y*,z) such that g, — g. Let my(-,z) be
the cutting plane drawn at y* with subgradient g, then my(y,z) < ¢'(y,z) for all
y € R™ and

mi(,2) = ap + gy (- — ), ar =min{ty(z), —clly* — [},

where tx(z) = F(y*,z) + g{ (z — v*). From ¢* — z, g — g and F(z,z) = 0,
it follows that a;, — 0, and so my(y,x) — g' (y — x), which implies ¢ (y — z) <
@' (y,x) for all y. This together with ¢'(z,z) = 0 gives g € 014" (x,z). We obtain
%F(I,l‘) C 01¢"(x,x) and then O, F(z, 1) = CODV(%F(I,J])) C 019" (x, x) due to
the convexity of 9,¢'(z, z).

(iii) Let (y/,27) — (y,x), we have to prove that limsup ¢'(y’, 27) < ¢'(y, ).
Pick a sequence £; — 0T, by the definition of ¢!, there exist cutting planes
Mg, (- @?) = t(-) — s; at serious iterate x7, drawn at 2/ € B(2?, M) with
g; € O1F (27, 27) such that

¢T(yj7 Ij) < Myig, (yjaxj) + &5,
where t.;(-) = F(27,27) + g/ (- — 27) and s; = [t;(27) + ¢]|2/ — 27||°] .. Since 27 — x
and 27/ € B(x/, M), the sequence 2’ is bounded. Passing to a subsequence, we
may assume without loss that 2/ — z € B(z, M) and g; — g € 01F(z,z) by the
upper semi-continuity of the Clarke subdifferential. This gives ¢.;(-) — t,(-) =
F(z,z)+g" (- —2), and so s; — s = [t.(z) + c||z — z|*]+. It follows that
Marg, (1 27) =t () = 55 = 1) — 5 = may (-, )
as 1 — 0o, and then also

Myig, (ijrj) =1y (yj> —S; — tz(y> — 8= mz,g<y7$)7
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where uniformity comes from boundedness of the g;. Therefore,

lim sup (bT(yj, :L’j) <My, z) < ¢T<y7$)-

Jj—00

7. Lower-C' and upper-C! functions

According to Mifflin [15], a function f : R™ — R is semismooth at © € R™ if f
is Lipschitz on a ball about x, and for d € R™, {t,} C Ry, {6} C R™, {gx} C R"
satisfying ¢, | 0, 0y /tx, — 0 € R™, g € Of (x+1txd+0}), the sequence g, d has exactly
one accumulation point. The following lemma can be seen as a generalization of [15]
Lemma 2|.

Lemma 7.1. A function f : R® — R Lipschitz near = is semismooth at x if and
only if for any {dp} C R™, {tx} C Ry, {gx} C R™ satisfying dp, — d € R", t; | 0,
g € Of (x + trdy), we have

lim g} dy, = f'(z;d).
k—o0

Proof. Assume that f is semismooth at x. Taking sz | 0, by Lebourg’s mean value
theorem established in [I0, Theorem 2.1] and proved in [II, Theorem 1.7|, there
exist ¢ € (0,s;) and g; € Of (x + t;dy) such that

[z + spdy) — f(x) = g spdy.

Then t; | 0, z + t;dr, — x, and by [22] Theorem 9.13|, the sequence g; is bounded,
which gives g;"(dr, — d) — 0. Observing that g; € df(x + tid + 0;) with 0 =
ti(dy — d), 0/t; = dj, — d — 0, due to semismoothness of f, the sequence g;'d has
exactly one accumulation point, and so does g;'dy = g;'d + g " (dp — d). On the
other hand,

flz+spdy) — f(x)  flz+skd) — f(z)  flz+spdy) — f(x + sxd)

* 1
g dp = = + .
Sk Sk Sk

The second term tends to 0 as k — oo since f is Lipschitz near x and dj, — d. This
implies that limy,_,., g5’ dp = f'(2;d). Now for any sequence t;, | 0, gr € Of (x+txpdy),
then 9k € 8f(x + tkd -+ ek) with ek = tk(dk - d), Qk/tk = dk —d— 0. By merging
sequences {tx} and {t;}, {gx} and {g;} and using again semismoothness of f, we
must have limy, o g di, = limy_so0 g5 di, = f(z;d). Conversely, writing td + 05 =
tr (d+ 0y /ty) with dy, = d + 0/t — d, we complete the proof of the lemma. O

Corollary 7.2. Let f : R" — R be semismooth at x € R™. Then for any y* — z,
gr € Of(y*) and for e > 0,

g (@ = y*) < flo) = f(y*) +ella — o]
for infinitely many k.

Proof. Let y* — x and g, € Of(y*). Passing to a subsequence, we may assume
without loss of generality that dj = HZ:—:iH — d as k — oo. Set t = ||y* — x|, then
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y* = x + tpdy and by Lemma

T,k
tm WD) _ gy
Iyt =]

We have also

FWr) = flx)  fla+bde) — f(z)  flo+td) — f(x)+f(:c + tpdi) — f(@ + tpd)

ly* —al| th ty ty
converges to f'(x;d) as k — oo due to Lipschitzness of f near x. Hence,
gr (z —y*)  flz) = f@")

[l — "l el
as k — oo, which completes the proof. O

—0

We recall here the notion of lower-C' and upper-C" functions introduced in [23]
and [22]. A function f : R" — R is lower-C' at (or around) zy € R", if there
are a compact set S, a neighborhood U of z(, and a jointly continuous function
g : U xS — R whose partial derivative with respect to the first variable is also
jointly continuous, such that

f(a) = maxg(z, s)
for all x € U. The function f is upper-C' at xq if —f is lower-C' at z,. For the

following, we collect some facts on lower-C! and upper-C! functions.

Remark 7.3. According to Proposition 2.4 and Theorem 3.9 in [23], if f is lower-C*
at xo then f is regular and semismooth at zy, but the converse need not be true.

Lemma 7.4. Let f : R" — R be locally Lipschitz. For all xo € R", the following
statements are equivalent.

(i) f is lower-Ct at x.
(ii) Of is strictly submonotone at xo in the sense that

_ T(p
lim inf (92 gy) (z—y)
A P

T,Yy—T()

whenever g, € 0f(x), g, € 0f(y).

(iii) For every e > 0 and x,y close enough to xy,

gy (x—y) < f(z) = fly) +elz -y,
whenever g, € 0f(y).

> 0,

Proof. The equivalence of (i) and (ii) is already established in [23, Theorem 3.9].
We will show that (ii) and (iii) are equivalent.

* (ii) = (iii). For any distinct x, y, by Lebourg’s mean value theorem, there exist
A€ (0,1) and g, € Of(2) with 2 = Az + (1 — \)y such that f(x) — f(y) = g (x — ).
Take arbitrary g, € 0f(y) and note that z —y = A\(z — y), we can write

(gz - gy)T(Z - y) ||

@)= 1) =9y (@=9) +(9: =) (2 =y) = gy (w—y) + =2

x—yl|.
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Assume that Jf is strictly submonotone. Then, for fixed o € R™ and £ > 0, there
exists 0 > 0 such that for any distinct z,y € B(zg,0),

(9: —9,)" (2 =)
|z =yl

Now for every z,y € B(z,9), x # y, we also have z,y € B(xg,0), z # y, and thus
(iii) holds due to the above expression and estimate.

= —€.

* (iii) = (ii). Let 2o € R™ and € > 0 be fixed. If (iii) holds true, we can pick
2,1y in a neighborhood of x4 such that

9, (x =) < f(@) = f) + Sl =yl
and also -
01y —2) < f(y) — F@) + Sy - all.

After adding these inequalities, reversing the sign and taking limit inferior, we get
(ii). O

By applying Lemma [7.4] to function — f, we obtain immediately the following

Corollary 7.5. Let f : R™ — R be locally Lipschitz. Then f is upper-C' at o € R
if and only if for every ¢ > 0 and x,y close enough to x,

9. (x —y) < f(2) = f(y) +ellz =yl
whenever g, € 0f(x).

8. Analysis of the inner loop

In this section we show that the inner loop terminates with a serious iterate after
a finite number of steps. The current iterate z is fixed, and so is ) := Q(z). Assume
that the inner loop at serious iterate x turns infinitely, then either 7, is increased
infinitely often, or 7 is frozen from some counter ky onwards. These two scenarios
will be analyzed in Lemmas [8.I] and 8.2 Denote by F the feasible set of problem
{1, i.e., F ={z € C: h(z) < 0}, we have the following results.

Lemma 8.1. Let f and h be locally Lipschitz on R™ such that at every point of F,
f is semismooth or upper-C*, and h is semismooth. Suppose that the inner loop
at serious iterate x produces an infinite sequence of null step y* and the prozimity
control parameter is increased infinitely often. Then the following statements hold.

(i) v* — 2 and Op(y*,2) = F(x,2) =0 as k — oo.
(i) 0 € 01 F(z,x) + Dic(x).

Proof. (1) We see that the proximity parameter 7 is never decreased in the inner
loop, which combines with the assumption on 75, implies that 7, — co. Since 3" is
the optimal solution of the tangent program ,

T(z — y") € 0(Pr(y*, ) +ic(y")).
Using the subgradient inequality and noting that ®;(x,z) = 0,7 € C,y* € C, we
get
illz = |1 < Pulz, ) +ic(x) — Bi(y®, v) —ic(y®) = —Br(y", v),
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which implies
Tk
0< S lle~ V1P < =yt a) — S (e = y") 1 (Q + ) (z — ¢)

—ou(y",2) < llg(@)lllle — *|l.

Here we recall that Q + 7,1 = 0 and mg(-, z) < ¢(-, z) with mg(-,2) = g(z)" (- — z)
the exactness plane at z. It thus follows 73|z — v*|| < 2||g(z)||. This gives y* — z
since 7, — oo. Using again the above estimate, we have ¢ (y*,2) — 0, and so
O (y*, z) — 0.

(ii) Let

DN | =

gr = (Q+ ) (x — y*) € uen(y",2) +ic(y")),

then the sequence gj is bounded since ||g}|| is proportional to 74|z — || < 2||g(=)]|
for k£ large enough. Passing to a subsequence if necessary, we may assume without
loss that g — g* for some g*. We claim that g* € 0,F(z,z) + Jic(x). For all
y € R", the subgradient inequality gives

gr' (v — ") < duly, 2) +icly) — oy @) —ic(y")
< ¢T(y>m) - ¢k(yk7 Z’) + ZC(y)
due to Lemma and the fact that ic(y*) = 0. Passing to the limit in the above
estimate and using the results in part (i), we get
g (y—2) < ' (y,2) +ic(y)
for all y € R". This together with ¢"(x, z) = 0 and ic(z) = 0 gives g* € 91 (¢'(x, z)+
ic(x)). Using again Lemma [6.1] it implies that g* € 0, F(z, ) + Jic(z).

We now prove g* = 0. Since the inner loop at serious iterate x turns infinitely,
pr < 7y for all k. Moreover, the proximity parameter 7, is increased infinitely, so
there is an infinity of counters k& where py > 7. Therefore
F(y*,x) — My(y"*, )

— Py, (yk’ .73)
It has already been shown in part (i) that —®(y*, z) > 7.||z—"||?. Fixing0 < § < 1
and using 7, — 0o we have

(5) Y= <pPr—pp=

lgill < (1+8)mellz — ¢,
and then
6 — O (y*
(6) W) 2

for k large enough. Next we estimate the difference F(y*, z) — My (y*, z). By con-
struction,

—lsklllz ="l

%(yk —2)" Q" — x)

with my (-, 7) = tp(-) — [te(z) +c||y* — z|%]+, where t,(-) = F(y*, x) —|—g,;r(- —y¥) and
gr € O1F(y*, z). This gives
_(y _

Fy" o) = Mi(y", ) < [tu(2) + elly® = =[] = 3 ) QY — ).

Observing that the algorithm assures the feasibility of x, we first consider the case
when f and h are semismooth at x. Then F(-,x) is semismooth at z due to [15]

Mi(y*, ) = my(y*, ) +

Lo
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Theorem 6]. For each ¢ > 0, using y* — 2 and Corollary and passing to a
subsequence, we find k(e) such that for k£ > k(e),

g (& —y") < Flz,2) = F(y*, ) +elle — ],
which implies

to(z) = F(y*, 2) + g (& — y*) <ellw — ¥,
and then for k large enough,

(7) F(y",x) = My(y*, @) < (1 +0)ella — ¢

In the case where f is upper-C! and h is semismooth at z, notice that

P(y*, x) = max{f(y*) — f(z), h(y")}.

If f(y*) — f(z) < h(y") then F(y*,x) = h(y*), 01 F (y*, z) = Oh(y*), and so ty(z) =
h(y*) + gl (x — y*) with g, € Oh(y*). Using again Corollary for k large enough,
te(x) < h(z) +ellz — y*[| < ellz — o)),
which yields (7). On the other hand, noting that the exactness plane mg(-,z) =
g(z)T (- — z) is based on g(z) € df(x) since h(z) < 0, and then applying Corollary

75} we get

—f(@) + f(y") —ellz —y"|

(y") then F(y*,2) = f(y) ~ f(z), and
> mo(y"* )+§(y — ) Q" —x).

mo(y*, x) = g(z)" (y* — x)

=
for k large enough. Now if f(y*) — f(x) > h
. ) holds true due to the fact that M (y*, z)

From (5), (6) and (7)), we obtain
(1 + §)?
g
gl < ~=— S
for k large enough. This holds for all € > 0, so g* = 0, and the lemma is proved. [

€

Lemma 8.2. Let f and h be locally Lipschitz functions. Suppose that the inner loop
at serious iterate x produces an infinite sequence of null step y* and the prozimity
control parameter is increased finitely often. Then the following statements hold.

(i) v* — 2 and Op(v*,2) = F(x,7) =0 as k — oo.
(i) 0 € 01 F(x,x) + Dic(x).

Proof. (i) Since the control parameter 7 is increased finitely often, it remains un-
changed from counter ky, onwards, i.e., 7, = 7y, := 7 for all kK > ky. This means that
pr < v and pr <  for all £ > ky. We consider the objective function of tangent
program (3)) for & > ko,

T 1
iy, ) = Duly, @)+ Zlly — 7l* = ouly @) + Slly — ol

where || - ||o+-r denote the Euclidean norm derived from the positive definite matrix
Q + 7I. Then

1
Vi1 (y,7) = dpya(y, ) + §Hy — |5 rs
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It follows from the construction of ¢p1(-, z) that ¢r1(y, x) = m;(y, ) with mj (-, z)
the aggregate plane at null step y*. For y € C, we have

mi(y, ) = ¢(y", ) + g5 (y — )

_ k k1T K «T k

= (v 2) + [(Q+7)(x —y")] (y—y") —hi (y—y")

> oy 2) + (@ = ") (Q+ D)y — "),
by using (4) and noting that h}" (y—4*) <ic(y) —ic(y*) = 0 due to the subgradient
inequality. In addition,

ly = 2lZirr = 16 = ) + (v = ¥ G4r1
= 1" = @ll}rs + 1y = ¥ G4rr — 202 = y*)(Q + D) (y — ),
using the fact that (z —y)"(Q +71)(y — ¥*) = (y — v*) " (Q + 7I)(x — y). Hence,
for y € C,
1 1 1

\Ijk-l-l(yax) 2 ¢k(yk7'T>+5||yk_xH2Q+TI+§”y_kaZQ—l—TI = \I]k<yk7x)+§”y_yk‘|22+’rl

1 1

Substituting y = y**! and remarking that y**! is the minimizer of W, (y, z), we

have

1
Wk(:yk?x) + §||yk+1 - yk||2Q+TI < \Ijk+1(yk+17‘r) < \Pk-i-l(I?x) = q)k+1($,l’> = 0.

This shows that the sequence W (y*, x) is monotonically increasing and bounded
above by 0, so Wy (y*, 1) — U* as k — oo for some ¥* < 0. Letting k — oo in the
above inequality, we obtain 3 ||y*™ — *||2_ ; — 0, which implies

(8) |yt — ¥ = 0 as k — oo.

On the other hand, proceeding as in the proof of Lemma 8.1, we have
Tlle =¥ <2llg@)ll, & = ko,
which proves that the sequence of trial steps 3* is bounded. By combining with ,
1y =2l B =1y =Gy = W =y ) (Q+ Dy —2)+(y —2)] — 0 as k — oo.

Recalling that ¢ (y, z) = Uiy, x) — |y — z[|3,; and using the above convergence
results, we get

(9) ¢k+1(yk+lv l‘) - ¢k(yk7m) =
1
Upa (" ) = i(y*, x) — 5 (" = 2llGarr = 19* = 2llE40r)

converges to 0 as k — oo.

We now claim that ¢ 1(v*, 2) — éu(y*,2) — 0, and then also ®pyq(y*, x) —
P (y*, 2) — 0 as k — oo. By the construction of the model ¢y, (-, ), there exists
a cutting plane m;, (-, x) = a;, + g4 (- — 2) at null step y*, 4, € {1,... &k}, with
gi, € O1F (y* x) such that ¢y, (y*, z) = m;, (y*,x). Then

Or(YF ) = my, (y,2) — 9. (y — ) < desa(y,2) — g (y — ¥")
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for all y. Therefore,
0 < drar (v, 2) — oy, v)
< G (U, 1) — (", @) + [lg 19" = o]

and this term converges to 0 due to (§), (9) and boundedness of g;,. Here bound-
edness of the g; € 01F(y'*,z) follows from boundedness of the subdifferential of
F(-,z) on the bounded set of trial steps y* (cf. [22, Theorem 9.13]). We obtain

i1 (yF, ) — dr(yF, ) — 0, and so
(10) O (v, 2) — @p(v*, 1) = 0 as k — 0.

We next show that @ (y*,z) — F(z,x) = 0, of course also ¢x(y*,z) — 0,
and then y* — 2 as K — oo. Assume this is not the case, then n :=

lim sup,_,.. Px(¥*,2) < 0. Choose £ > 0 such that 0 < e < —(1 — 7)n. Thanks to
(L0)), there exists k1 > ko such that

1 (v, 1) < Py, z) + ¢
for all k > k;. Since pp < 7 for all k > ky > ko and @, (y*, 2) < $p(x,2) = 0,
’?(I)k(yk,l‘) g Mk(ykax) g (I)k+1<y ,.CL') g ék(y ,l’) +57

using My (-, z) < ®r11(+, ) by construction. Passing to the limit, we get 4n < n+e,
which contradicts the choice of €. That gives n = 0, as claimed.

By the definitions of ®; and y* we have
Oy (y*, @) + IIy —a? = Uy(y", 2) < Uy(z,2) = Py(z,2) = 0.

This together with <I>k(y ,x) — F(x,x) =0 gives y* — 1 as k — oo.

(ii) We observe that by the necessary optimality condition for and the sub-
gradient inequality,

(2 =y (@Q+7I)(y — ") < duly,2) +ic(y) — duly",2) —ic(y")
< o'y ) +icly) — on(y* ) —ic(y")
for all y. Passing to the limit and noting that ¢'(z,2) = ¢(z,2) = 0, ic(y*) =
ic(z) = 0, we obtain
0 < '(y,2) +ic(y) — ¢' (z,7) —ic(@),

which implies 0 € 9,(¢"(x,z) + ic(z)), and since d,¢'(z,x) = 0, F(x,z), we are
done. O

We end this section with the following conclusion.

Proposition 8.3. Let f and h be locally Lipschitz on R™ such that at every point
of F, [ is semismooth or upper-C', and h is semismooth. Then the inner loop finds
a serious iterate after a finite number of trial steps.

Proof. Suppose that the inner loop at serious iterate x turns infinitely. Then, as

proved in Lemmas([8.1]and[8.2] we must have 0 € 9, F(z, )+0ic(x). This contradicts
the fact that the inner loop is only entered when 0 & 0, F (z,z) + Jic(z). O
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9. Convergence of the outer loop

We show in this section a strong convergence of our algorithm under the assump-
tion that at every point of the feasible set F, f is lower-C* or upper-C!, and h is
lower-C'!. By Proposition and Remark this assumption on f and h assures
that the inner loop always terminates finitely.

Theorem 9.1. Assume f and h in problem are locally Lipschitz on R™ such that
at every point of the feasible set F, f is lower-C* or upper-C*, and h is lower-C!.
Let {x € F: f(z) < f(z')} be bounded, and let x7 be the sequence of serious iterates
generated by Algorithm . Then 27 is a sequence of feasible points for , and one
of the following two statements holds.

(i) The sequence ¥’ ends finitely at a F. John critical point 27" of . In the
case j* > 1, 27 is even a Karush-Kuhn-Tucker point.

(ii) The sequence 27 is bounded infinite, and every accumulation point x* is a
F. John critical point of . In other words, x* is either a critical point of
constraint violation, or a Karush-Kuhn-Tucker point.

We see immediately that feasibility of sequence 27 follows from feasibility of z?
and Remark [3.1] Tf the sequence 27 is finite, then the first statement of the theorem
holds due to the stopping test of Algorithm [I] and Lemma In the sequel, we
focus on the case where the sequence 27 is infinite, and suppose that in the jth outer
loop, the serious step is accepted at inner loop counter k;, that is, 27t! = Yk At
the jth outer loop and the kth inner loop, we denote more precisely the proximity
control parameter as 7j, and write 7, for Tlﬁj. We also write Q; := Q(a?) for the

matrix of the second-order model, which depends on the serious iterates z7.

Lemma 9.2. Let f and h be locally Lipschitz functions such that {x € F : f(z) <
f(zh)} is bounded. Then the sequence of serious iterates x is bounded. In addition,
F(27,27) = 0, 7, [|27 — 277 = 0 and |27 — 27M[3, ., ; — 0 as j — oo,

J

Proof. Following Remark [3.1] feasibility of 2! gives f(27*!) < f(27) and h(27*!) < 0
for all j. Thus, 27 is feasible for all j, and sequence f(z7) is decreased. This yields
{27 :j=1,2,...} C{x € F: f(z) < f(x')}, and so the sequence 27 is bounded.

Now for every accumulation point z* of the sequence 27, the local Lipschitz
continuity of f implies that f(z*) is an accumulation point of the sequence f(z7),
and then f(z7) — f(2*) due to the monotone sequence theorem. Therefore,

liminf F (27t 27) > lim (f(27™') — f(27)) = 0.

Jj—00 Jj—o0

This together with F(27/™! 27) < 0 gives F (27, 27) — 0 as j — oo.

Since x/*! = y*i is the optimal solution of tangent program ,

(Q; + T, 1) (27 — 27F1) € 0y (g, (7, 27) +ic(a/T)).
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Using the subgradient inequality, we obtain
(27 — 27T Q; + iy D) (27 — 27™) < gy, (27, 27) +ic(27) — oy, (271, 27) — ic(a?™)
— _Qbkj (:L,j+1’ :L‘j)
) ) 1 . . ) )
= =By (a7 27) + (0 — ) Qe — 7).

By noting that @Q; + 73,1 = 0, this implies
1 . 112 1 - i+1112 +1 ]
Lo = U s 2l — T <~y 0,
Moreover, —y®y, (/1! 27) < —F(2/t', 27) due to the acceptance test and the fact

that @ (27t 27) < 0. Hence,

R T L a!
Combining with F'(27!, 27) — 0, we complete the proof. O

Lemma 9.3. Let f and h be locally Lipschitz functions such that {x € F : f(z) <
f(x')} is bounded. Suppose there exists an infinite subset J C N such that 7 — z*,
jeJ. Letg;=(Q;+ i, 1) (@7 — 27%1) be the aggregate subgradient belonging to
27 in the jth outer loop. Then if the sequence (8)jes has a subsequence which
converges to 0 we have that 0 € O\ F(z*, 2*) + Jic(z*).

Proof. Assume that there exists an infinite subset J' of J such that g7 — 0, j € J'.
Since g5 € Oi(¢x, (7™, 27) +ic(2/t)), for any y € R”, the subgradient inequality
gives
g (y— 27 < o, (v, 27) +icly) — o, (@71 27) —ic(2/)
1

= 0k, (y,07) = B, (71, 27) + S (7T =) Qi (7 — ) +ic(y)

, . 1 . ,

< ¢k’]’ (y,l’]) - (I)kj ($]+17$]) + 5”55] - $]+1H22j+7'kjl + Zc(y)
. 1 . 1 , ,

< oMy, 27) — ;F(mﬂﬂy a7 + 5||ggJ — “”HIHéjij +ic(y).

Here the last estimate is obtained by Lemma [6.1] and the acceptance test of the
algorithm. By passing to the limit and using the hypothesis g7 — 0 and the results

from Lemmas [6.1{iii) and we get
0< ¢y, 27) +ic(y).

It follows that 0 € 0;(¢'(z*,2*) + ic(x*)) since ¢'(z*,2*) = 0 and ic(z*) = 0.
Together with 9;¢"(x*, 2*) = 0, F(x*, z*), this ends the proof of the lemma. O

Lemma 9.4. Under the hypotheses of Lemma if lgjll = ¢ for some ¢ >0 and
every j € J then the following statements hold.

(i) 7, o0 asjeJ, j— oc.

(ii) There exists an infinite subset J* of J such thatl the T-parameter was in-
creased at least once during the jth outer loop for all j € J*. Suppose this
happened for the last time at stage r; for some rj. Then 2/ —y"i — 0 and
Gr, (Y7, 27) = 0 as j € J*, j = oc.
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(iii) If at every point of F, [ is lower-C* or upper-C*, and h is lower-C', then
0 € O F(z*, x*) + Oic(z*).

Proof. (i) Suppose on the contrary that the sequence (7x,);es has a bounded subse-
quence, then by passing to a subsequence, we may assume without loss of generality
that (7%,);es is bounded. By combining with boundedness of the @; and bounded-
ness of the serious steps 27 shown in Lemma [9.2] there exists an infinite subset .J' of
J such that 7, — 7, Q; — Q and 7 — 7™ — Az as j € J',j — oco. It follows that
g, — (Q+7I)Ax with [|(Q+7I)Az| > ¢ > 0and g} (27 —27 %) — AzT(Q+71)Ax.
According to Lemma , gl (2 — a7t = ||ad — a;j+1||éj+7kjl — 0, which implies
Az"(Q + 7I)Az = 0. Since Q + 71 is positive semidefinite symmetric, we deduce
(Q + 7I)Az = 0, that contradicts ||(Q + 71)Az| > ¢ > 0. Hence, 7, — 00 as
Jj — o0.

(ii) For each outer loop counter j € J, either 7, > 7l or Tk, = m with 7/ < T <
oo by the algorithm. But 7, =+ oo as j — o0, j€ J,set J-={jecJ:n, = Tf}
therefore must be finite, which implies the infinity of set J* = {j € J : 7, > 7{}.
Suppose that for each j € J*, the 7-parameter was increased for the last time at
counter r;, then r; € {1,...,k; — 1} since at inner loop counter k; the serious step
is accepted. That is

Tk]' - Tkjfl == TT‘j+1 = 97—7‘]"

Conforming to the update proximity control parameter of the algorithm, the increase
at stage r; is due to the fact that

(11) pr; <7 and pr, 2 7.

Noting that 7., = 0’177%. — 00 (j € JT) and y'7 is the optimal solution of tangent
program ({3)), we have

7y (@) = y7) € 0a(®, (¥, &) +ic(y™))-
By the subgradient inequality and the fact that ®, (27, 27) = 0,ic(27) = ic(y’7) = 0,
(12) T lla? =y P < = (v, 2).
It follows that
0<TTJ' J Til|2 < Tl 1 A (27 Tj
< olad — 5 < =6, (,0%) = (0 — ) (@, + 7, D — )
< =0y, 27) < lg(@)|[l2? =y |,
where my(-, #7) = g(27) (- — 27) is the exactness plane at 2/. This implies 7, [|z7 —
v < 2||g(z7)]|. Remark that the sequence g(x7) is bounded due to [22, Theorem

9.13], and then 2/ — "7 — 0 since 7,, — oo. The term —¢, (y"7,27) therefore
is squeezed in between two convergent terms with the same limit 0, which gives

ngTj(yTj,xj) — 0.
(iii) We now consider
g = (Q; +7,0) (2 —y") € 0u(6r,(y7,27) +ic(y™)),

then as 7,, — oo and the @Q; are bounded, ||g;|| behaves asymptotically like constant
times 7, [|z7 — y"7|| < 2||g(27)||, which implies boundedness of the sequence g;.
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Therefore, possibly passing to a subsequence, we have g; — g for some g. By using
the subgradient inequality and Lemma and noting that ic(y™) = 0,

g/ (y—y") < o, (y,27) +ic(y) — o, (¥, 27) —ic(y™)
< o'y, 27) +icly) — o, (v, 7).
for all y € R™. Passing to the limit and using the results in part (ii), we obtain
g'(y— ") <9y, 2") +icly),

which implies g € 0)(¢"(z*, 2*) + ic(x*)) since ¢'(z*,2*) = 0 and ic(z*) = 0. By
Lemma [6.1} we deduce that g € 0, F(x*, z*) + Qic(z”).
Let us next show g = 0. Fix 0 < ¢ < 1, it follows from 7, — oo that for j large
enough,
185l < (14 0)7, ll2? — w9 ],
which combined with gives
—®, (y"i,x7)
(13) 185l < (1 +0)7———"—
’ 27 =y

On the other hand, from we have

(14) Y=< Pr; = Pr; =
Remarking that
My () 3 m, () + 5= )T Qy( =),
where m, (-, 27) = t,,(-) = [t,; (27) +-clly” —27|]*]4, and ¢, (-) = F(y",27) +g, (-—y")
with g, € 1 F(y"7,a7), we get
F(y,09) = My, (3%, 9) < [t () + lly™ — 2Py — 507 — ) Q5007 — o).
For € > 0 fixed, we distinguish the following two cases.

Case I. The both functions f and h are lower-C' at z*, so is F(-,27). By the
assumption that z/ — z* and the fact that 27 — ™ — 0 proved in part (ii), thanks
to Lemma there exists j(¢) such that

9. (@ —y") S F(a?,27) = F(y"s,27) +e||a’ — 9|
for every j > j(e¢). This implies

tr(27) = F(y", %) + g (27 —y") <ella? =y,
and thus for j large enough,

(15) Fy",a?) = My, (y7,27) < (L+0)e]a? — 7.

Case 1I. The function f is upper-C! and the function h is lower-C! at z*. By the
feasibility of 27, if f(y™7) — f(27) < h(y"™7) then

F(y",a7) = max{f(y") — f(27), h(y”)} = h(y"”), 0. F (y"”,2’) = Oh(y"),
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and therefore the tangent ¢, (-) = h(y") + g, (- — y") with g,, € Oh(y"). The
estimate holds based on the inequality

b, (27) < h(2?) + ]|z’ — y'i|| < el|a? — y'9||, for j large enough,
using Lemma [7.4] Conversely, if f(y"7) — f(27) = h(y"7) then F(y",27) = f(y") —

f(27), and by recalling the exactness plane mq(-, 27) = g(29)7 (- — :I;J) with g(27) €
df(x7), we have

My (y"7, %) = 5 (4" =) Qi (Y —7) = mo(y", 7)) = —f(2?) + f(y") —ella? —y" |
due to Corollary [7.5] This gives (L5).

Now it follows from , and (15)) that
(1 + 6)

18l <
'Y

for j large enough. Since ¢ > 0 is arbltrary, we conclude that g = 0, meaning
0 € O F(z*, x*) + dic(x*). O

Proof of Theorem[9.1] As discussed just after the statement of the theorem, the
sequence 27 consists of feasible points for and verifies statement (i) when it is
finite. Suppose that the sequence 2/ is infinite, then it is bounded by Lemma
Let * be an accumulation point of the sequence z7, we have h(z*) < 0,2* € C due
to feasibility of 27 for all j, continuity of h(-) and closed convexity of C. It follows
from Lemmas[9.3|and [0.4]that 0 € 9, F(z*, 2*) + 0ic(z*). This together with Lemma
gives the last statement of the theorem. O

In practice, a challenge is the lack of convexity, by which it is difficult to guarantee
convergence to a single critical point. Some satisfactory results can nevertheless be
obtained from the following corollaries.

Corollary 9.5. Under the hypotheses of Theorem for every € > 0 there exists
an index jo(e) € N such that every j = jo(e), a’ is within e-distance of the set

L={z"e€C:0€ 0, F(z",z") + Dic(x™)}.

Proof. Suppose there exists € > 0 and an infinite subsequence 27, j € J, such that
|29 — 2*|] > € for all j € J and all z* € L. Since the sequence z’, j € J, is
bounded, it has an accumulation point x*, and by Theorem r* € L. That is a
contradiction. O

Corollary 9.6. Under the hypotheses of Theorem[9.1], if the set L in Corollary[9.5
is totally disconnected [6, Definition 9.4.1|, then the sequence x7 converges to a single
point x* € C with 0 € 0, F(z*, 2*) + dic(x*).

Proof. Recall that ||z7 — xﬂ‘+1”2Qj+Tij — 0 as j — oo due to Lemma . In each
outer loop counter j, since T' > ¢+ Kk = —Auin(Q;) + K, 0O

Tkj 2 T1 2 _)\min(Qj) + K,
and therefore A\min(Q; + 7%,1) > &, which implies that

127 = 277G, 1 1 = rill2? — 27T
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It follows that |27 — 2771||? — 0, and also 27 — 27! — 0 as j — oo. By Ostrowski’s
theorem [20, Theorem 26.1], the set K of accumulation points of the sequence 27 is
either singleton or a compact continuum. Theorem gives K C L, and so K must
be singleton thanks to the hypothesis of L. 0

In the case where subgradients are inexact, working with the approximate sub-
differential
O f(x) =0f(z) +eB,
where 0 is the exact Clarke subdifferential, and B the unit ball in some fixed Eu-
clidean norm, we have the following

Corollary 9.7. Let f and h in problem be locally Lipschitz on R™ such that
at every point of F, f is lower-C' or upper-C*, and h is lower-C*. Suppose that
{z € F: f(z) < f(a')} is bounded, and subgradients are drawn from O5F(y,x),
whereas function values are exact. Then the sequence of serious iterates a7 is a
bounded sequence of feasible points for , and every accumulation point x* of the 27

satisfies h(z*) < 0,2* € C and 0 € O F(x*, *)+0%c(x*), where € = (1+(7—7)1)e.

Proof. Noting that in this case 0,¢'(x,z) = 9F(x,z), we proceed as in proof of
Theorem and have just to replace and (15]) by the following estimates for
every ¢ > 0,

F(y*, 2) — My(y", 2) < (1 + 8)(¢' + ¢)||x — y¥| for k large enough,
F(y,27) — M, (y7,27) < (1+6)(¢' +¢)||a’ — y'9]| for j large enough.

For a detailed proof in the case of unconstrained optimization, we refer to [18]. O

10. Conclusion

We have presented a nonconvex bundle method using downshifted tangents and
the management of proximity control, which is adapted for nonconvex nonsmooth
constrained optimization problems with lower-C! and upper-C* functions. A global
convergence of the algorithm was proved in the sense that every accumulation point
of the sequence of serious iterates is critical. Some satisfactory convergence results
for practical purpose have been given as corollaries.
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Minimizing memory effects of a system][]

Minh Ngoc Dao and Dominikus Noll

Abstract. Given a stable linear time-invariant system with tunable parameters,
we present a method to tune these parameters in such a way that undesirable re-
sponses of the system to past excitations, known as system ringing, are avoided or
reduced. This problem is addressed by minimizing the Hankel norm of the system,
which quantifies the influence of past inputs on future outputs. We indicate by
way of examples that minimizing the Hankel norm has a wide scope for possible
applications. We show that the Hankel norm minimization program may be cast
as an eigenvalue optimization problem, which we solve by a nonsmooth bundle
algorithm with a local convergence certificate. Numerical experiments are used to
demonstrate the efficiency of our approach.

Keywords. System ringing - system memory - Hankel norm - system reduction -
controller design - system with tunable parameters.

1. Introduction

Ringing generally designates undesired responses of a system to past excitations.
In electronic systems, ringing arises under various forms of noise, such as gate ringing
in converters, undesired oscillations in digital controllers, or input ring back in clock
signals. In mechanical systems, ringing effects, when combined with resonance, may
accelerate breakdown. In audio systems, ringing may cause echoes to occur before
transients.

In more abstract terms, ringing may be understood as a tendency of the system
to store energy, which is retrieved later to produce undesired effects. One way to
quantify this capacity uses the Hankel norm of a system, which measures the effects
of past inputs on future outputs.

This paper focuses on the problem of minimizing system ringing by casting it
as a Hankel norm minimization program. This leads to an eigenvalue optimization

*Paper published in Math. Control Signals Syst., doi: 10.1007/s00498-014-0135-9. Conference
version published in Proc. Asian Control Conf. (ASCC), Istanbul, June 2013.
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32 II. MINIMIZING MEMORY EFFECTS OF A SYSTEM

problem, for which we propose a nonsmooth bundle algorithm which assures con-
vergence to a critical point from an arbitrary starting point. We demonstrate that a
variety of problems such as Hankel synthesis, maximizing the memory of a system,
and control of flow in a graph, can be interpreted as Hankel norm minimization
programs and solved efficiently using the proposed algorithm.

There is a considerable body of literature dedicated to Hankel norm system
reduction, the original contribution being [I2]. Our present approach is complemen-
tary to this classical line, as we focus on Hankel norm optimization problems which
cannot be solved by linear algebra techniques. This makes our method closer in
spirit to Hy- or H.-controller or filter design [26].

The structure of the paper is as follows. After presenting the problem in abstract
form in Sect. 2] we show in Sect. [3] how it can be cast as a nonconvex eigenvalue
optimization program. Section [4] describes how Clarke subgradients of a Hankel
norm objective can be computed. In Sect. [5| we extend the Hankel norm to systems
with direct transmission in a physically meaningful way. Sections [0} [7] present typical
applications for the purpose of motivation of the Hankel minimization problem.
Section [§| discusses a proximal bundle algorithm used to solve the Hankel norm
minimization program. We propose a smooth relaxation of the Hankel norm in
Sect. [0] Experiments with typical applications are given in Sect. [L0]

Notation

Terminology in nonsmooth optimization is covered by [8], system theory by [26].
Following the latter reference, given a transfer matrix function G(s) = C(sI —
A)7'B + D, we use the standard notations

Gls) = {%‘%} or G = (A, B,C, D)

e t = Az + Bw
"1 2 =Cx+ Dw
is a state-space realization of z(s) = G(s)w(s). Similar notations apply to discrete
time systems.

to indicate that

We shall work in the set of rectangular matrices with the corresponding scalar
product (M, N) = Tr(M"N) = Tr(N " M), where M " and Tr(M) are transpose and
trace of a matrix. For symmetric matrices, M > 0 means positive definite, M > 0
positive semidefinite.

2. Hankel norm minimization

Consider a linear time-invariant system

| # =Azx+ Bw
G { z =Cx
with state x € R™, input w € R™, and output z € RP. Suppose G is internally

stable in the sense that all eigenvalues of A have negative real part. If we think
of w(t) as an excitation at the input which acts over the time period 0 < ¢t < T



3. Representation of the Hankel norm 33

with dynamics started at z(0) = 0, then the ring of the system after the excitation
has stopped at time T is z(t) for ¢ > T. If signals are measured in the energy
norm, this leads to the definition of the Hankel norm of an internally stable system
G = (A, B,C) with input w and output z = Gw as

e 1/2 T
||G||H:SUP{(/ szdt) :/ wwdt < 1, w(t) :0fort>T}.
T>0 T 0

For the discrete time case, the Hankel norm of an internally stable system

fox(t+1) = Ax(t) + Bw(t)
G { A1) = Cut)

is given by

o) 1/2 T
HGHH:% (Zzwz(t)> > w(t)"w(t) < Lw(t)=0fort>T

t=T t=0

where now internally stable means that all eigenvalues of A have magnitude < 1,
and where it is again understood that z = Gw. A formula which works in both
cases 1s

(M G = sup {Izllzro0) * wllzor < 1w € L0, T, w(t) = 0,6 > T}
>

Note that the system G in the above definition has no direct transmission D. This
accounts for the fact, proved in Lemma in Sect. o] that D causes no memory
effects, and is therefore not seen by the Hankel norm . In consequence, on the
space of systems G = (A, B, C, D) with direct transmission, |-|| g is only a semi-norm
and not a norm.

By definition, the Hankel norm can be interpreted as a measure of the effects of
past inputs, that is, the memory of the system, on the states and future outputs.
Here, we are interested in systems GG(x) with tunable parameters x € R"™, where the
matrices A(x), B(x), C'(x) depend smoothly on a design parameter x varying in R™
or in some constrained subset of R™. Our goal is to tune x such that system ringing
is avoided or reduced while internal stability of the system is guaranteed. This leads
to the following Hankel norm minimization program

minimize ||G(X)| g
(2) subject to G(x) internally stable
x € R".

We will discuss various instances, where program may be of interest. Then,
we present a nonsmooth optimization method based on techniques from eigenvalue
optimization to solve , and discuss a smooth relaxation motivated by a result of
Nesterov in [15].

3. Representation of the Hankel norm

A representation of the Hankel norm ||- ||y amenable to computations is obtained
through the observability and controllability Gramians, defined in [26], Section 3.8|.
Based on the results in |12, Section 2.3|, see also [206, Theorem 8.1], we have the
following
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Lemma 3.1. Let G = (A, B, C) be an internally stable linear time-invariant system
with input w and output z, and let Tg : L*(—00,0] — L%[0,00) be the Hankel
operator associated with G, defined by

(Cqw)(t) = /0 Cert=) Bw(r)dr, t > 0.

—00

Then, the following definitions are equivalent:

) 1Glzr = suprso {12l rc0) * lwllz oz < 1w € L2[0 T],w(t) =0,t > T}.
(ii) |Gl = ITall = sup {[Towllzo.00) * [Iwl2,(-c00) < 1,w € L*(—00,0]}.
(iii) [|Gllg = V/M(XY), where Ay denotes the mazimum eigenvalue of a matriz,
and X, Y are the controllability and observability Gramians of the system.

Proof. We assume z(—o0) = 0 for the Hankel operator I'g and obtain

¢
z(t):/ Ce M=) Bw(T)dr.

—00
If we now focus on input signals w_ that live for times ¢ < 0 and vanish for ¢ > 0,
then the output restricted to ¢t > 0 is

0
z+(t):/ CeA" ) Bw_(1)dr =Tqw_, t > 0.

— 00

Assuming 2(0) = 0 in (i), it now follows from the time-invariance that

[Zll2m00) B ||Z||2[o %)
sup —_— = sup = sup _—
T>0 HUJHQ,[O,T} T>0 HU}HZ[—T,O] 0#£weL2(—co \ —00,0]

0#weL?[0,T] 0AweL?[~T,0] w(t)=0, t>0
w(t)=0,t>T w(t)=0,t>0

HZ+H2 0,00)

= sup = [ITell-

0#w_ €L2(—00,0] |w- ||2( 00,0]
This gives the equivalence of (i) and (ii). Next, we have

(W, TE2) £2(—000) = (TG, 2) 12[0,00)

oo 0
= / ( w(T)TBTeAT(t_T)CTdT) z(t)dt
0

0 o)
= / w(r)T ( / BTeAW—T)cTz(t)dt) dr,
—00 0

(Tez)(r) = / BTeAT(t_T)CTz(t)dt, 7 < 0.
0
Note that the operator norm of I'¢ is equal to its maximum singular value. Therefore,

to complete the proof, we show that 0?(T'¢) = \;(XY), where o;(-) and )\;(-) denote,
respectively, the i¢th singular value and ith eigenvalue of an operator or matrix.
Suppose o is a nonzero singular value of ', and w is an eigenvector corresponding
to the eigenvalue 02 of [T, i.e., Tglgw = o?w. Setting z(t) = (Cqw)(t) = CeMxy
with zq = ff)oo e~4" Bw(7)dr, and noting by |26, Lemma 3.18] that

X:/ eMBBTeA e, Y:/ eATCT CeMdt,
0 0

which implies
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we have

cPw=Tkz = BTe_ATT/ eATtCTz(t)dt
0
= BTe_ATT/ eATtC’TC'eAtxodt = BTe_ATTYxO.
0
It follows that
0 0 -

ol :/ e Bo*w(r)dr :/ e "BBTe™ "Yiodr = XY .
Moreover, zo # 0 since otherwise o?w = 0, which is impossible. Thus, ¢? is an
eigenvalue of XY. Conversely, if 0% # 0 is an eigenvalue and zy # 0 is a corre-

sponding eigenvector of XY, i.e., XYz, = 0%z, then by setting w = BTe 4"V x,
we obtain w # 0 and T ew = o?w. Hence, 6(T'¢) = M(XY), and so

ITa|l = 01(Fg) = VA (XY).

The lemma is proved. 0

Lemma shows that the Hankel norm can be considered as a measure of
controllability and observability of the system, and that it does not depend on the
state-space representation of the system. It is now clear that problem may be
cast as an eigenvalue optimization program. In the sequel, we examine how this
problem can be solved algorithmically.

4. Subgradients of the Hankel norm

In this section, we compute Clarke subgradients [8, Section 2.1] of the nonconvex
composite function f(x) = ||G(x)||%. This is a fundamental tool for our optimization
method.

Let G(x) be a linear time-invariant system with state-space realization
(A(x), B(x),C(x)) depending smoothly on a design parameter x € R". Let
X (x),Y(x) be the controllability and observability Gramians. Suppose the maxi-
mum eigenvalue \; (Z(x)) of the matrix Z(x) = X (x)2Y (x)X (x)z has multiplicity
r(x), and let R = R(x) be a matrix whose columns form an orthonormal basis
of the eigenspace associated with A\, (Z(x)). For any matrix function M (x), put

1 1
My(x) = 2459 and write Mg for (M=), k=1,...,n. We have the following

OxXp

Proposition 4.1. The function f(x) = ||G(x)||% is well defined and locally Lipschitz
on the set S = {x € R" : A(x) stable}. In addition, for every x in the set Sy =
{x € §: (A(x), B(x)) controllable} the Clarke subgradients of f at x have the form

(3) gv = [Te(URTZ{(x)R) ... Tr(UR'Z,(x)R)]",

where U is symmetric of size r x v, U = 0, Tr(U) = 1, and where the partial
derivatives Z(x),k = 1,...,n are given by

(4) Zu(x) = X2 ()Y X? + XY, (x)XE + XPY X2 (x).
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Here, Xj(x), Yi(x) and Xk% (x) are the solutions of the following Lyapunov equations
(5)  AXp(x)+ Xp(x)AT = —Ap(x)X — XAp(x)" — B(x)B" — BB(x)",

(6) ATYk(X> -+ Yk(X)A = —Ak(X)TY — YAk(X) — Ok(X)TC — CTCk<X),

(1) XX+ X ()X

ol

= Xk X).

Proof. (1) By Lemma
fx) = 1G5 = M(XX)Y (),

where the Gramians X (x) and Y (x) depend on the tunable parameters x
and are the solutions of the Lyapunov equations

(8) AX)X + XAx)" + B(x)B(x)"

= O’
(9) AX)TY + YA(x) + Cx)"C(x) = 0.
Note that despite the symmetry of X and Y the product XY is not nec-
essarily symmetric, but stability of A(x) guarantees X = 0, Y = 0 in (§),
(@), so that we can write

AM(XY) = A\ (X2YX3) =\ (Y2XY3),

which brings us back to the realm of eigenvalue theory of symmetric matri-
ces. By positive semidefiniteness of X (x) and Y (x), the function f is now
well defined on S.

(2) Let us next prove that f is locally Lipschitz on S. Using the Kronecker
product [3], Eq. can be written as

(I ® A(x) + A(x) ® I)vee(X (x)) = —vec(B(x)B(x)"),

where [ is a conformable identity matrix, and where vec(-) vectorizes a
matrix by stacking its columns in order. Since A(x) is smooth in x and
M(x) = (I ® A(x) + A(x) ® I) is invertible by the stability of A(x),
M (x)~! is also smooth in x, and since B(x) depends smoothly on x, then so
does vec(X (x)) = —M(x) 'vec (B(x)B(x)"). A similar argument shows
smooth dependence of Y (x) on x. This can also be justified based on the
explicit formulas

X(X) = /O ez‘\(x)tB()()B()()TeA(x)Ttdt7 Y(X) _ /0 €A(X)TtC(X)TC(X)eA(X)tdt

(see e.g., |26, Lemmas 2.7 and 3.18]), where uniform convergence of these
integrals on any bounded set of x gives differentiability in x. We infer that
the coefficients of the characteristic polynomial of X (x)Y'(x) also depend
smoothly on x. Since this characteristic polynomial is hyperbolic, that is,
has only real roots, we may invoke the multi-parameter version of Bron-
stein’s theorem [6], for which an elegant proof is given in [19, Theorem 2|,
to conclude that f(x) = A\ (X (x)Y (x)) is locally Lipschitz on S.
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(3) Let us finally establish formula for the subdifferential 0f(x) at points
x € &p. By the above argument, f(x) = A\ (Z(x)). Observe that con-
trollability of (A(x), B(x)) implies that X (x) is positive definite |26 The-
orem 3.1], and since the operator X — X3 is smooth on the set of ma-
trices X > 0, the chain rule gives smoothness of x — X%(X), and so of
Z(x) = X2Y X2, on S,

Applying [18, Theorem 3|, the Clarke subgradients of f at x are of the

form gy = [gl gn}T, where
g = (U, R" Zy(x)R) = Tr(UR" Z,(x)R)
for U symmetric of size r x r, U = 0, Tr(U) = 1. It now remains to

calculate Zi(x),k = 1,...,n. We first have (4) by the definition of Z.
Taking derivatives with respect to x on both sides of (8)—(9)), we get (5)-

, and then also Xj(x), Yi(x). Finally, to compute X2 (x), we use ({7,

which is obtained by differentiating X X2 = X. Altogether, we obtain
Clarke subgradients of f at each x due to (3)—(9).

O

Remark 1. Formula also holds if controllability of (A(x), B(x)) is replaced by
observability of (A(x),C(x)) (cf. [26, Definition 3.4]). Here, we work with Z =

Y2XY?2 instead.
Remark 2. In the discrete time case, the Gramians X (x) and Y (x) are the solutions
of the discrete Lyapunov equations

AX)XAX)" - X + B(x)B(x)" =0,
AX)TYAX) - Y +O(x)"O(x) =0,
so that X (x) and Yj(x) are solutions, respectively, of the following equations
AXp(X)AT = Xp(x) = —Ap(x) X AT — AXAp(x)" — Bp(x)B" — BB(x)",
ATYi(X)A = Yi(x) = —Ap(x) YA - ATY Ay (x) — Cp(x)TC — CTCk(x).

Remark 3. Subgradients of f at x € S\ Sy are no longer represented by (3), since
the solution of need not exist, as only Xz = 0is guaranteed. Nonetheless, by
Clarke subdifferentiability at points x € S \ Sy proved above, we can be sure that
for every sequence x; € Sy converging to x € S\ Sy and g € 0f(x;) computed via
, the gy stay bounded and each of their accumulation points ¢ is an element of
J0f(x). This guarantees stability of our numerical procedure even when iterates get
close to the set S\ Sp.

Remark 4. Practical parametrizations G(x) use elementary computable operations,
which can be expressed in mathematical terms by assuming that A(x), B(x), C(x)
are smooth definable functions of x in the sense of [25) Chap. 1, Sect. 5.3|. In that
case, one can say a little more about the behavior of f at points x € §. Namely, it
then follows from [21, Theorem 4.12] that for every smooth definable curve x(t) € S
the eigenvalues \;(t) = X\ (X (x(¢))Y (x(t))) are smooth functions of ¢, so that f(x(t))
is a finite maximum of smooth functions of . On &, this property is a consequence
of symmetric eigenvalue theory, which is true without the definability hypothesis.
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Note that this does not mean that f is a finite maximum of smooth functions of
x € R™, but it nonetheless indicates a favorable structure.

5. An extension of the Hankel norm

Lemma [3.1] shows why the Hankel norm is only a semi-norm on the space of
internally stable systems G. It does not see a direct transmission D from w to z,
as the latter does not create memory transmitted from the past to the future. This
rises the question how to assess a direct transmission block in the context of
or (2). Namely, in some applications, attributing no cost to a block D(x) which is
free to vary with the tunable parameters x bears the risk that optimization favors
a solution with a high energy direct transmission.

It is well known that |G|z < ||G||e in the case D = 0 (See e.g., [5, Sect. 5.5]),
and this may guide us to define an extension. Note first that

Lemma 5.1. ||(A, B,C)||lg < ||(A,B,C,D)|| for every internally stable system
G = (A,B,C,D).

Proof. Let G° = (A, B,C) be the system where the direct transmission is ignored.
Consider an input w with w(t) = 0 for t > T, and let 2° = G, z = Gw. Then,
2(t) = 2°(t) for t > T, because the direct transmission creates no memory, and since
w(t) = 0 for ¢ > T, its influence on the output ends at 7. Combining this with

[wll2o,ry = [lwll2 and |[z]|2,i7,00) < [|2][2, we obtain
< ()
[AB O = sup gy, Ll
T>0 Hw 2,[0,T >0 H’LUHz
0#weL?[0,T] 0£weL?[0,T)
w(t)=0,t>T w(t)=0,t>T
[12]l2
= ||(A7B707D)||00
= wio [[wllz
0
This suggests the following extension of Hankel norm || - ||z to systems G =

(A, B,C, D) with direct transmission D.

Definition 5.2. Let G = (A, B,C, D) be an internally stable linear time-invariant
system. Then,

(10) |Gl = max {[|(A, B, C)||a,01(D)}
is called the extended Hankel norm of the system. Here, o1 denotes the maximum
singular value of a matrix. ([l

This definition agrees with the usual Hankel norm for a system without direct
transmission, and also preserves the inequality |G|z < |G|/, since the term o4(D)
is part of the maximum |G|/, = max, 01 (G(jw)) at w = co.

As the proof of Lemma/5.1|shows, a direct transmission does not change the value
of || - ||z defined according to (I)). In the sequel, we therefore adopt the convention
that in the case D # 0, ||(A4, B,C)||g is the usual Hankel norm, where the direct
transmission is ignored, while [|(A, B, C, D)|| g is the extended Hankel norm.
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An advantage of is that the new function is still a maximum eigenvalue

function. Namely, stability of G' implies positive semidefiniteness of the Gramians
X and Y, and so

(11) 1GIlE = max{)\l(X%YX%)’)\l(DTD)} ~ {XQYXQ 0 }

0 D'D|"
Proceeding as in the proof of Proposition [4.1] we get immediately the following

Corollary 5.3. Let G(x) be a linear time-invariant system depending smoothly on
x € S with S = {x € R": A(x) stable}. Suppose the mazimum eigenvalue \i(Z(x))
of the matrix
X (x)2Y (%)X (x)2 0
2(x) = { 0 D(x)TD(x)
has multiplicity r = r(x), and R = R(x) is a matriz whose columns form an or-
thonormal basis of the eigenspace associated with \(Z(x)). With the notations of

Proposition[d.1], the function f(x) = ||G(x)||% is locally Lipschitz on S and its Clarke
subgradients on S = {x € S : (A(x), B(x)) controllable} have the form

g = [Te(URTZ,(x)R) ... Tr(URTZ,(x)R)]",

for U symmetric of size v x v, U = 0, Tr(U) = 1, where the partial derivatives
Zi(x),k=1,...,n are given by

_ [Z(x) 0
2e) =170 Dyx)TD(x) + D(x) T Dy(x)
and the Zy(x) are defined in Proposition [4.1] O

To justify the use of rigorously, we consider the extended Hankel norm
minimization program (2)) based on (10)), and compare it to the following constraint
program

minimize A(x C )Ny
(12) subject to hg ; HE(( () ))( )77 Gl

For the following, recall from [I3] that x* € R™ is called a Fritz John critical point
of the constraint program min{ f(x) : ( ) < n} if there exist multipliers \j > 0,
A7 = 0, not both zero, such that

0.€ A0f(X) + A10h(X"),  h(X") <n, AL (A(XT) —n) = 0.

If in addition A\j > 0, then x* is called a Karush-Kuhn-Tucker point. Remember
that every local minimum x* of the constraint program is automatically a Fritz
John critical point, while it will in general only be a Karush-Kuhn-Tucker point if
an additional constraint qualification is satisfied [I3, Chapter 7]. For later on, we
call x* a critical point of constraint violation if 0 € Oh(x*) and h(x*) > 7.

With these preparations, we have the following

Proposition 5.4. Let x* be a critical point of the extended Hankel norm minimiza-
tion program with . Then, x* is a Fritz John critical point of program (12)
for a suitable choice of n. More precisely, x* is either a Karush—Kuhn-Tucker point

of [12), or a critical point of h(x) = o1(D(x)) alone.
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Proof. Note that ||G(x)||g = max{f(x),h(x)}. Now, if x* is a critical point of
|G(x)||, then we have three possibilities, f(x*) > h(x*), f(x*) = h(x*), or f(x*) <
h(x*). In the first case, x* is a critical point of f alone, hence also a Karush—
Kuhn—Tucker point of . The third case corresponds to a critical point of A
alone. In the case of equality, the situation is more complex. There exist multipliers
Ay = 0, AT > 0, not both zero, such that 0 € \0f(x*) + A\jOh(x*). If \f = 0
then A\ # 0 and 0 € Oh(x*), so x* is a critical point of h. In case A\ # 0, we
have 0 € Of (x*) + (Af/A\§)Oh(x*). This is the first part of the Karush-KKuhn—Tucker
conditions. If we put n = f(x*), then we also get the second half. That completes
the argument. 0

Remark 5. Suppose we solve program min{ f(x) : h(x) < n} starting at an infeasible
point h(x') > 7, then we will usually try to minimize h alone to find a feasible
iterate. Suppose a descent method used to minimize h runs into a local minimum
x* of h satisfying h(x*) > 7. Such a local minimum of constraint violation indicates
a failure, since nothing better will be found in a neighborhood of x* due to local
optimality, so that the search for a feasible point has to be stared anew elsewhere;
cf. |20, Section 2.2] for this theme complex.

By Proposition we can now interpret minimization of the extended Han-
kel norm (2) with as a trade-off between minimizing the memory effects of
(A(x), B(x),C(x)), subject to a constraint o1(D(x)) < 7, or dually, as of minimiz-
ing 01(D(x)) subject to a constraint on the memory effects of G(x). Since f(x) is
a valid measure of the memory or ringing effects of G(x), such an interpretation is
physically meaningful.

We conclude this section by showing that the Hankel norm is amenable to op-
timization techniques, as this will be needed later. According to Spingarn [24] a
function f : U — R, where U is an open set in R, is lower-C* on U, if for each
Xg € U, there are a compact space K, a neighborhood V' of x4, and a jointly con-
tinuous function F' : V x K — R whose partial derivative D, F' with respect to x
exists and is jointly continuous, such that f(x) = max,cx F(x,2) for all x € V.

Proposition 5.5. Let G(x) = (A(x), B(x),C(x), D(x)) be a linear time-invariant
system depending smoothly on the set Sy of all x € R™ such that A(x) is stable and
(A(x), B(x)) is controllable or (A(x),C(x)) is observable. Then, f(x) = |G(x)|%
is lower-C' on Sy.

Proof. For each x € &y, according to and using the Rayleigh quotient,
f(x) = M(Z2(x)) = max z' Z(x)z,

llzl|=1
where Z is symmetric and depends smoothly on x. Set K = {z € R : ||z|| = 1}
and F(x,z) = z' Z(x)z, then K is compact, f(x) = max,cx F(x,2z), and both F
and its partial derivatives Fy are jointly continuous on Sy x K and smooth in x.
Therefore, f is lower-C' on S,. O

6. Hankel synthesis

The first application of program we consider is output feedback controller
synthesis, where performance is assessed by the Hankel norm. Consider a linear
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time-invariant plant in standard form

T A Bl BQ Xz
(13) P(S)Z Z| = 01 D11 D12 wi ,
Y Co Dy Dy U

where z € R™ is the state, u € R™2 the control, w € R™! the vector of exogenous
inputs, y € RP? the measurements, and z € RP! the controlled or performance vector,

PO = 1) bate) = b 01 =47 B B+ B D).

Without loss of generality, it is assumed that Doy = 0. Let u(s) = K(s)y(s) be an
output feedback controller for the open-loop plant (13)), with

K - Ty o Ax Bgk| |zk
’ u o CK DK Yy ’
where i € R¥ is the state of K. The closed-loop transfer function of the perfor-
mance channel w — z is obtained as

T (K, 5) = Pi1(8) + Pia(s)K(s)(I — Pa(s)K(s)) ' Py (s).

Our aim is to find an optimal controller K which stabilizes the system in closed-
loop such that ||T,_.(K)| g is minimized among all stabilizing K. By substituting
u = Ky into , the state-space representation of the closed-loop performance

channel w — z is (6] TAK) B(K)] [¢
Tys(K) H = [C(K) D(K>] [w]

where £ = (z,xx) and
A + BQDKCQ BQCK Bl + BQDKD21
A K = y B K - 3
(&) BrC, Ax (K) [ Bg Dy ]
C(K) = [Ci + D12DgCy D1Ck], D(K) = Di1 + D1;DgDy.

This problem is now a specific instance of , where in agreement with our general
theme we try to minimize the memory of a specific channel w — z within the plant
P. If we allow structured control laws K (x) in the sense of [I], then we obtain the
following optimization program

minimize  ||T.(K)||n
(14) subject to K stabilizes internally
K = K(x),x € R™.

Erample 1. Typical examples of structured controllers are, for instance, PIDs or
observer-based controllers, which in state-space have the form

0 0 | r
l A+ By + K;Cy | K
Kpa®)= | 0 =7 |1 |, Kops(x)= R R
1 1 |dg ¢

For a PID, the tunable parameters are x = (r;, 4, dx, 7), while for observer-based
controllers Kps(x) the vector x gathers the elements of K., Ky. Other examples are
decentralized, fixed reduced order controllers, and more generally, control architec-
tures combining basic building blocks such as PIDs with filters, feed-forward blocks,
and much else (see [1]).
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Remark 6. The norm in program is the usual Hankel norm (1)) if D(K) = 0,
which is the case e.g., under standard assumption as in H,-synthesis, where Dy; =0
and either Doy = 0 or D1 = 0 or K strictly proper. In contrast, if D(K) # 0, then
we should use the extended Hankel norm , or likewise, the constraint program
, to control the direct transmission. It is also possible to neglect the direct
transmission term D(K) and optimize the semi-norm ||(A(K), B(K),C(K))||n. We
then exercise caution by monitoring the term o (D(K)) during optimization to check
whether a large direct transmission gain o;(D(K)) is favored. If that is the case,
switching to the extended Hankel norm becomes mandatory.

In the sequel of this section, we discuss two particular cases of the Hankel syn-
thesis problem ([14]).

6.1. System reduction. System reduction is the most widely known application
of the Hankel norm minimization problem. Given a stable system

a T = Ax + Bw
"l 2z =Cz+ Dw

of order n,, we wish to find a stable system

1 2 =Crx+ Duw

of reduced order k < n, with input—output behavior as close as possible to the
original system G. If the model matching error e = (G — Gy)w is measured in the
Hankel norm, then the program

minimize |G — G(X)|| 5

(15) subject to G — Gk (x) internally stable
x = (Ag, By, Cy)
is a particular case of (L4)), where we define plant and controller as
AlB 0
(16) P:|C|D —T|, K:{é’“%],
0|1 0 F

the tunable parameters x being the elements of Ay, By and Cj.

G

Gred

Due to the seminal work of Glover [12], program has an explicit solution based
on linear algebra, at least when no additional structural constraints on the matrices
Ag, By, Cy are imposed. This allows us to implement a blind testing of Algorithm
in Sect. [8, which is applied to , considered as a particular case of using
(L6). The value obtained by Algorithm [1]is then compared to the theoretical value
obtained by an explicit Hankel system reduction.
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6.2. Maximizing the memory of a system. Within the present framework, it
is also possible to maximize the memory effects of a system G via feedback if a
reference system G, with desirable memory properties is used. In other words,
while minimizing ||G(x)|| g leads to a system which is the least biased, we now bias
GG(x) as much as possible by bringing it as close as possible to G, and we achieve
this by making G(x) — G, as less biased as possible.

Example 2. As a motivating example, we consider a 2-DOF synthesis scheme of the
following form

F v Z9

—I-eKui G +

i

where the decentralized controller structure was chosen to challenge our method in
a typical situation in practice.

‘ g

Gref Yref

Assuming that G, has desirable memory features which do not lead to ringing,
the idea is to tune the parameters in feed-forward filter /' and controller K in
such a way that G in closed-loop follows G, independently of the input w. That
is, the undesirable part of the memory of GG, which contributes to the mismatch
21 = Y — Yret, is reduced by minimizing ||T,_., (F, K)||gz. It may be beneficial to
arrange this by adding a constraint [|za]|a < 12 or ||22]/cc < Moo, Where 2o = u+ v, to
avoid exceedingly large controller actions. This problem can be cast as a particular
case of program if the following plant and decentralized controller structures
are used

A0 0 B B
0 Aot | Bt 0 0 Ap 0 |Bp 0

.| C —Cu| Dt D D K. |0 Ac| 0 By

1o o o I I |’ | Cr 0 [Dr O
—C 0 I -D -D 0 Cx| 0 Dg
0 0 I 0 0

Notice that

F- :i‘F :AFZEF—i-BFw K i’K ZAKZL’K+BK6
' (% :CFC(IF—f—DFUJ ’ ’ u :C'KxK—f—DKe

can be further structured if we wish. In our experiment, we will use this example
with F' a reduced-order filter, and K a PID.

7. Control of flow in a graph

We consider the flow in a directed graph ¢ = (¥, &) with interior nodes, sources
and sinks, ¥ = Fay U #in U Yout, and not excluding self-arcs. For nodes ¢,7 € 7
connected by an arc (i,j) € o/ the transition probability ¢ — j quantifies the ten-
dency of flow going from node ¢ towards node j. As an example consider for instance
a large fairground with separated entrances and exits, with itineraries represented
by the graph. By acting on the transition probabilities between nodes connected by
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arcs, we expect to guide the crowd in such a way that a steady flow is assured, and
a safe evacuation is possible.

Assume that an individual at interior node j € %, decides with probability
aj = 0 to proceed to a neighboring node j' € ¥4y, where neighboring means
(4,4") € &, or with probability a;; > 0 to move to a neighboring exit node k € %,
where (j,k) € o/. The case (j,j) € o/ of deciding to stay at stand j € ¥y is
not excluded. Similarly, an individual entering at ¢ € %, proceeds to a neighboring
interior node j € ¥4ay with probability b;; > 0, where (i,5) € o/. We suppose for
simplicity that there is no direct transmission from entrances to exits. Then,

(19) Z ajjr + Z a =1,

j’e%tay:(j7j’)6§/ ke%ut:(j7k)e‘(7'/

for every j € ¥ay, and

je%tay:(iyj)ed

for every i € #,. Let z;(t) denote the number of people present at interior node
J € Ysay and time ¢, and w; () the number of people entering the fairground through
entry ¢ € 7, at time ¢. Then, the number of people present at interior node j € ¥4ay
and time t + 1 is

t+1) = > ayrpO+ > byw(b),

G EVstay: (5 ,5) €A 1€¥n:(1,)) €A

while the number of people leaving the fairground at time ¢ through exit k € ¥
is Zje%my:(j,k)eﬂ ajrr;(t). To assess the evacuation pattern, we quantify the total
number of people still inside the fairground at time ¢ via the weighted sum

2At)= Y cy(t),

jeni/stay

where ¢; > 0 are fixed weights, and where ¢; = 1 would correspond to simply
counting the number of people inside the fairground. We let x regroup the pa-

rameters a;j, a;i, b;j, so that the discrete linear time-invariant system has the form
G(x) = (A(x), B(x),C), where C' is the row vector of ¢;’s.

Let us now consider an evacuation scenario, where at time 7' the inflow w(t)
through the entrance gates is stopped by closing the gates, and the time until the
fairground is evacuated is assessed by measuring the evacuation pattern z(t), t > T
This corresponds to computing the Hankel norm ||G(x)|| g, which identifies the worst
case evacuation scenario. Minimizing ||z||2,ir,00)/||w||2,(0,r) may then be understood
as enhancing overall safety of the network by orienting the crowd in such a way
that the worst case evacuation time is minimized. This leads to the optimization
program

minimize ||G(x)||x
(21) subject to G(x) internally stable

Qs > O,Cljk = 07bij 2 O’ ’

which is a discrete version of (2)) including linear constraints. Notice that these linear
constraints are readily added in our algorithmic approach. In an extended model,
one might consider measuring the number of people y at some selected nodes i €
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Vatay U Your, and use this to react via feedback v = Ky at the entry gates. This leads
to a problem where controller and parts of the plant are optimized simultaneously.
Other variants include cases, where some of the probabilities a;;/, b;; are imposed
and cannot be modified by the designer.

8. Proximal bundle algorithm

In this section, we present our main algorithm to solve programs and .
Let us consider an abstract constrained optimization program of the form

minimize  f(x)

(22) subject to h(x) <0

where x € R" is the decision variable, and f and h are locally Lipschitz but poten-
tially nonsmooth and nonconvex functions, representing objective and constraints.
To find solutions of the constraint program , using an idea inspired by Polak
[20, Section 2.2.2|, we introduce the progress function

Fy,x) = max{f(y) — f(x) — vh(x)s, h(y) — h(x)+ },

where h(x); = max{h(x),0}, and v > 0 is some fixed parameter (with v = 1 a
typical value). One can think of x as the current iterate, and y as the next iterate
or as a candidate to become the next iterate. We need to collect a few facts about
F. Note first that F'(x,x) = 0. For the subdifferential, we have the useful

Lemma 8.1. Suppose f and h are lower-C* functions. Then, the Clarke subdiffer-
ential of the progress function F with respect to the first variable is obtained as

Of (x) if h(x) <0,
01 F(x,x) = < conv{df(x) UOdh(x)} if h(x) =0,
Oh(x) if h(x) > 0.

Proof. Applying the formula for the Clarke subdifferential of a maximum [8, Proposi-
tion 2.3.12| we readily get 0, F(x,x) = 9f(x) if h(x) < 0, 01 F(x,x) C conv{df(x)U
Oh(x)} if h(x) = 0, and 0, F(x,x) = Oh(x) if h(x) > 0. But since f and g are lower-
C', according to |24, Proposition 2.4, Theorem 3.9|, they are Clarke regular, so we
have equality in the second case h(x) = 0. O

Lemma 8.2. Suppose x* is a local minimum of program , then it is also a local
minimum of F(-,x*), and 0 € 01 F(x*,x*). Conversely, if 0 € 0,F(x*,x*) then
x* is either a Karush—Kuhn—Tucker point of , or a critical point of constraint
violation.

Proof. Since x* is a local minimum of (22)), we have feasibility h(x*) < 0, and so
h(x*); = 0, which implies F'(y,x*) = max{f(y) — f(x*),h(y)}. Now, there exists
a neighborhood U of x* such that f(y) > f(x*) for every y € U with h(y) < 0.
We argue that F(y,x*) > F(x*,x*) for every y € U. Namely, if h(y) > 0, then
F(y,x*) > h(y) > 0 = F(x*,x*). On the other hand, if h(y) < 0, then y is
feasible, and we have f(y) > f(x*) by what was said before. But then F(y,x*) >
fly)— f(x*) > 0 = F(x*,x*). This proves x* is a local minimum of F'(-,x*), and so
0 € O F(x*, x*).
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Next, suppose 0 € 0;F(x*,x*), then by Lemma [8.1] there exist non-negative
constants \j, A} summing up to 1 such that 0 € \{Of(x*) + A\jOh(x*). If h(x*) > 0,
we have 01 F(x*,x*) = 0h(x*), and then 0 € Jh(x*), meaning that x* is a critical
point of h. If h(x*) < 0 then 0, F(x*,x*) = 0f(x*), so A] = 0 and x* is a Karush—
Kuhn-Tucker point of (22). Assume that h(x*) = 0 but x* fails to meet the Karush—
Kuhn-Tucker conditions, we then obtain A\§ = 0 and 0 € 0h(x*). This completes
the proof of the lemma. ([l

The consequence of this argument is that we should seek points x* with 0 €
01 F(x*,x*). We now present our method for computing solutions of program (22)),
which is based on this rationale. It generates a sequence x’ of estimates which
converges to a solution x* in the sense of subsequences. At the current iterate x,
the inner loop of the algorithm constructs first-order working models ¢(-,x) and
the corresponding second-order working models

Dily.x) = duly.x) + 5 (y )T Q)(y — %),
updated with counter k. The @, (-, x) are approximations of F(-,x) around x, where
Q(x) is symmetric, depends only on the current iterate x, and may reflect second-
order information of F' around x. The first-order working model ¢ (-, x) has to
satisfy ¢(x,x) = F(x,x) = 0 and 0,¢x(x,x) C 01 F(x,x) at all instants k. This is
guaranteed when m.(-,x) = g(x) " (- —x) with g(x) € 9, F(x,x) is an affine minorant
of ¢r(-,x) at all times k. We refer to m.(-,x) as the exactness plane at x.

For a given working model, we solve the tangent program
) Tk 2
) x)+ —|ly —x
min K %) + S lly =]

with the so-called proximity control parameter 7, > 0. We require Q(x) + 7,/ > 0,
which assures that the tangent program is strictly convex and has a unique solution
y*, called the trial step. According to standard terminology, y* is called a serious
step if it is accepted as the new iterate y* = x*, and a null step otherwise. Suppose
y* is a null step, then we will have to make sure that the next working model
Or+1(+,x) improves over ¢ (+,x). This is achieved by adding cutting and aggregate
planes. Let us first look at aggregation. The optimality condition for the tangent
program implies

gr = (Qx) + 1) (x — y*) € 1on(y", x).

We call my(-,x) = op(y", x) + gi" (- —¥") = aj + gi" (- — %) with aj = ¢, (y",x) +
g;"(x — y*) the aggregate plane. By assuring that mj}(-,x) is an affine minorant of
¢k+1('7x)7 we have ¢k+1(ykax) P m]:(ykax) = ¢k(yk7x)

A central element in bundle methods is the cutting plane whose role is to cut
away the unsuccessful trial step y*. TFor each subgradient g, € 0,F(y*,x), the
affine function #,(-) = F(y*,x) + g} (- — y*) is a tangent to F(-,x) at y*. Without
convexity, we cannot use t;(-) directly as a cutting plane. Instead, we use a technique
first analyzed in [I4], which shifts the tangent down. Fixing a parameter ¢ > 0, we
define the cutting plane as

(23) mi(, %) = () — s = ax + g (- — %),
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where a; = min{t,(x), —c|ly* — x||?}, and where s = [t;(x) + c||y* — x||!]; is the
downshift. The detailed statement is described as Algorithm [I} while a flowchart of
the algorithm is shown in Fig. [l For more details we refer to |17, Section 3|, [16]
Section 4] for unconstrained optimization case, and [2, Section 5|, [I1}, Section 3| for
the constrained case.

Algorithm 1. Proximal bundle algorithm with downshifted tangents

Parameters: 0 < 7<7<I'<1,0<0<<1,0<qg<T < .

> Step 1 (Initialize outer loop). Choose initial feasible guess x', fix mem-

ory control parameter Tf , and put outer loop counter 57 = 1.

o Step 2 (Stopping test). At outer loop counter j, stop if 0 € 9, F(x?,x7).
Otherwise, take a symmetric matrix ); respecting —g/ = Q); = ¢I, and goto
inner loop.

> Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize
control parameter 7, = maX{T}, —Amin(Q;) + 0}, where Ain(-) denotes the
minimum eigenvalue of a symmetric matrix. Choose initial working model
P1(-,x7) = g(x?) T (- — x7) with g(x/) € O, F(x7,x7).

> Step 4 (Tangent program). At inner loop counter k, let Oy, x)) =
or(y,x?) + Ly — x%)TQ;(y — x?) and find solution y* (trial step) of the

2
tangent program

. i Tk e
Oy, x7) + Ly — x|
min iy, x7) + o [ly — |

o Step 5 (Acceptance test). Compute the quotient
F(y*,x7)

PE= By )

If pr > v (serious step), put x/t! = y* and update memory element T}jﬂ as
T if pr < T, and %Tk otherwise. Reset T}jﬂ =T if T]@H > T, increase outer loop
counter j and loop back to step 2. If pp < v (null step), continue inner loop
with step 6.
> Step 6 (Update working model). Generate a cutting plane my(-,x7) at null
step y* and counter k using downshifted tangents. Compute aggregate plane
m}(-,x?) at y*, and then build new working model ¢;,(-,x?) by adding the
new cutting plane, keeping the exactness plane and using aggregation to avoid
overflow.
o Step 7 (Update control parameter). Compute secondary control parameter
~_ M(y*, x7)
T By )
with Mi(y,x?) = mp(y,x?) + 3(y — xI)"Q;(y — x7). If pp < 7 then keep
Tp11 = Tk, Otherwise step up 7411 = 27%. Increase inner loop counter £ and loop
back to step 4.

Next, we establish the following result on the convergence of Algorithm [T}
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initialize x, 7}
put j =1

]+1 —Tk/Qi_‘/—lﬂLl'_’ —>ex1t

yes

start————— outer loop

o 1111L1ah/e Qj, 71, put k= 1

inner loop
uutmhzc working model !

11
Tjy1 = Tk

: A
c o

WV

ﬂ

update Qj+1
yes
recycle planes m«— Thtl i= 2Tk

yes

cutting and aggregate plane 0o
update working model

FiGURE 1. Flowchart of proximal bundle algorithm. Inner loop is
shown in the lower right box

Theorem 8.3. Suppose that f and h in are lower-C' functions, and let {x €
R : f(x) < f(x})} be bounded. Then, every accumulatwn point x* of the sequence
of serious iterates x? generated by Algorithm I satisfies 0 € 01 F(x*,x*). In other
words, X* is either a critical point of constraint violation, or a Karush—Kuhn—Tucker

point of (22)).

Proof. We will adapt the proof of Theorem 6.6 and Corollary 6.7 in [17] to our needs.
For that let us recall a notion from [I7, Definitions 2.1 and 6.1], which we apply here
to the progress function F. We call ¢ : R” x § — R a strict first-order model of F'
on the set S C R™ if for every x € S the function ¢(-,x) is convex and the following
axioms hold:

(M) ¢(x,x) = F(x,x) =0 and 019(x,x) C 01 F(x,x).

(M\Q) If y; - x and x; — x then there exists ¢; — 0% such that F(y;,x;) —
Oy, x5) < gjlly; — x5l

(Ms3) ¢ is jointly upper semicontinuous on R" x S, ie., if (y;,%x;) = (¥,x) then
lim sup é(y;, x;) < o(y, %)

J]—00

Representing the cutting plane in as my+(-,x) = a+g' (- —x) with g €
O F(y*,x) and a = min{ty+ (x), —clly* —x|*}, ty+ () = F(y*,x) + g" (- —y"), we
define
gb(y,X) = sup{my+ (y,X) : y+ € B(X7 T)}a

where B(x,7) is a fixed ball large enough to contain all possible trial steps, and
where the supremum is over all possible cases of mgy+(-,x). It then follows that
¢ is a strict model of F' in the sense of the above definition. This can be shown
as in [16, Lemmas 7-9]. Axiom (M) relies on the fact that F(-,x) is lower-C"!
by the assumptions on f and h. Furthermore, the construction of ¢ and ¢ also
guarantees that the working models ¢, are lower approximations of ¢ satisfying
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orp(x,x) = o(x,x) = F(x,x) = 0, 01¢k(x,x) C 010(x,x) and ¢ (-, x) < o(+,x).
The difference with [I7] is that here the cutting planes my(-,x) are not directly
tangents of ¢, but we shall argue that the essential link between ¢, and ¢ rests the
same.

The proof now follows essentially [I7, Theorem 6.6, Corollary 6.7], which assures
that every accumulation point x* of the iterates x/ satisfies 0 € 9, F(x*,x*). Note
that f(x?) and f(y*) used in [I7] have to be replaced by F(x?,x’) = 0 and F(y*,x).
The fact that ®(y**!) in the definition of p in [17] is changed to M (y*,x) can be
treated using the property that if y; — x and x; — x then there exists ¢; — 07 such
that F'(y;,x;) — my,(y;,%;) < &5lly; — x5, as follows from [I6, Lemma 8|, using
again crucially that F(-,x) is lower-C'. The equality ¢p1(y*,x) = o(y" ™, x)
used in the proof of [I7, Lemma 4.2] is now replaced by ¢ 1(y*, x) = mi(y*,x).
Finally, Lemma completes the last statement of the theorem. O

9. A smooth relaxation of the Hankel norm

Here, we introduce a smooth relaxation of the Hankel norm based on a result
of Nesterov in [I5]. He provides a fine analysis of the convex bundle method in
situations where the objective f(x) has the specific structure of a max-function,
including the case of a convex maximum eigenvalue function. These findings indicate
that for a given precision, such programs may be solved with lower algorithmic
complexity using smooth relaxations. While these results are a priori limited to
the convex case, it may be interesting to apply Nesterov’s idea as a heuristic in the
nonconvex situation. This leads to the following

Proposition 9.1. Let Z be a symmetric matrix of order m depending smoothly on
a parameter x € R™ with eigenvalues \{(Z2) = -+ = A\p(Z). Then, for a tolerance
parameter i > 0, the function

en fulx) = i (i €Mz<xm>

is a uniform smooth approzimation of the nonsmooth function f(x) = M\ (Z(x)) in
the sense that f,(x) converges uniformly to f(x) as p — 0.

Proof. Following [15], Section 4], f, is smooth in Z and

m -1
Vi(Z2)= (Z eMZ)/u) Z i@ gl
=1 i=1

where ¢; is the ith column of the orthogonal matrix Q(Z) from the eigendecom-
position of the symmetric matrix Z = Q(Z)D(Z)Q(Z)". This implies that f, is
smooth at x with the gradient given by
.
V1) = [THVAEE)TZEX) . TV A(E) Zax)]
On the other hand, we have the estimate
f(x) < fu(®¥) < f(x) + plom,

which says that f,(x) is a uniform approximation of the function f(x). O
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Now, we can try to solve problem (2 and on replacing the function f(x) =
A (Z(x)) by its smooth approximation f,(x) in (24). Due to the estimate in the
above proof, to find an e-solution x of problem (2)) and , we have to find an
5-solution of the smooth problem

(25) min f, (x) : h(x) <0}

with p = 55—. Here, we use a local solution of to initialize the nonsmooth
Algorithm . The smooth problem can be solved using standard NLP software.

10. Numerical experiments

In this section, we apply our approach to a variety of problems. Let us start by
commenting on practical ways to implement the stopping test 0 € 9, F(x/,x’) in
step 2 of the algorithm. In practice, this is delegated to the inner loop. If the inner
loop at x? finds a new feasible serious iterate x/*! satisfying

[f) = f()
1+ [f()|

then we accept x’*! as optimal. This corresponds to stopping the algorithm in step
2 of the (j + 1)st outer loop. In our experiments, we have used tol; = 107%.

(26)

< tOll,

On the other hand, if the inner loop has difficulties finding a serious step and
provides three unsuccessful trial steps satisfying

I’ — ¥l

27 -
27) T[]

< tOlg,

then we interpret this in the sense that x/ is already optimal. This corresponds to
stopping the algorithm in step 2 of the jth outer loop. Here, we have used toly =
107", Theoretically, both tests are based on the observation that 0 € 9; F(x’,x7) if
and only if y* = x7 is solution of the tangent program in the trial step generation
(see [L1] for theoretical results).

In general, our stopping strategy is similar to recommendations in smooth op-
timization, see e.g., [I0, Chapter 7|, where the goal is to obtain scale independent
choices of the tolerances tol; and tol,. Nonetheless, one has to accept that a non-
smooth algorithm converges very slowly at the final stages, which makes stopping a
delicate task.

Before applying Algorithm (1| to solve examples of , note that internal stability
is not a constraint in the usual sense of mathematical programming since the set
S = {x € R" : G(x) internally stable} is open. The stability of the system can
be formulated as a constraint a (A(x)) < —e using the spectral abscissa a(A) =
max{Re(\) : A eigenvalue of A} in the continuous time case, and as p (A(x)) < 1—¢
using the spectral radius p(A) = max{|A| : A eigenvalue of A} in the discrete time
case, for £ > 0 some small threshold. Theoretical properties of the spectral abscissa
and the spectral radius have been studied in [7]. In general, before optimization can
start, one has, indeed, to find a stabilizing x. Using the method in [4], this can be
achieved by an initial phase where o (A(x)) is minimized until an iterate x' with
a(A(x')) < —¢ is found.
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10.1. Hankel feedback synthesis. We introduce an application of program (14
to a classical 1-DOF control system design, using an example from [5, Section 2.4].
The open-loop system G, exogenous input w and regulated output z, are given by

d
10 — s Y
G: —_—m pu— p— p .
s2(10 + s)’ v ﬂ;}’ 2 {u]

The corresponding plant is

A| B By ]
P Cl 0 D12 y

02 D21 0 ]

where i
—-10 0 O 1 00 1
A= 1 0 0 Bi=10 0 0 By =10
0 1 0 00 O_ 0
0 —1 10 0
Cr= 0 0 0 Dz = |y

Co=1[0 1 —10] Dy=[0 -1 1].
Inspired by a manually tuned controller
219.6s5% + 1973.95s + 724.5
s3 +19.15s% + 105.83s + 965.95’

proposed in 5], Section 2.4], we compute the optimal Hankel controller Ky with the
same proposed structure and compare it to K} and also to the optimal H,.-controller
K, of that same structure

b:

-m —-n —pll
as® 4+ bs + ¢ 1 0 010
K = —=
(x) s*+ms?+ns+p 0O 1 010}
a b c \O

where x = [m,n,p,a,b,c|" regroups the unknown tunable parameters. Using the
Matlab function hinfstruct based on [I], we obtain

7941.9s% + 13028.4s + 3611.6
53 4 3206.252 4 12528.35 + 11078.3°
The interest in this example is also to show that parametrizations x may arise
naturally in the frequency domain. Note also that the closed-loop has no direct
transmission term since Dy; = 0 and K is strictly proper. To compute Kpy, we

solve with the standard Hankel norm and start Algorithm [I| at an initial
stabilizing controller

x! = [2.1460, 12.7448, 7.4208, 1.2271,1.8013,0.3517] "

with f(x!) = 455.2874, using the stability constraint h(x) = a(A(x))+¢ < 0 with a
typical value € = 1078, The stopping tests were and . The algorithm came
to a halt due to and returned the optimal solution

x* = [77.0614, 255.2324, 74.6195, 188.0709, 133.9333, 22.2401]

oo T
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with f(x*) = 10.8419, meaning ||Ty—.(P, Kg)||lz = 3.2927 and

77.06145% + 255.2324s + 74.6195
83+ 188.0709s2 + 133.9333s + 22.2401°

The objective and the stability contraint Step size
500 : ; ; ; 10 : :
objective
400 stability contraint 8
300 6
200 4
100 2 \/\
0 : - - . 0 : :
0 10 20 30 40 50 0 10 20 30 40 50
Outer loop iterations Outer loop iterations
Number of iterations in each inner loop Memory control parameter
10
8
6
4 4
’ ANJ \_/\J
0 L L L L L L L L
0 10 20 30 40 50 0 10 20 30 40 50

Outer loop iterations Outer loop iterations

FI1GURE 2. Hankel feedback synthesis. Bearing of the algorithm. Top
left shows j — f(x?) and j — a(A(x?)) + 1078, Top right shows
j = ||Ix! = 7t Lower left shows j +— kj, lower right shows j — 7°

J 2
the evolution of the memory control parameter at serious steps

The algorithm needed 50 serious iterates with 2.3 s CPU to reach the local min-
imum Kpy. Bearing of the algorithm is shown in Fig. The improvement of
| Tw—s- (P, Kgp)||lg = 3.2927 over ||Ty—.(P, K& )||g = 3.3265 is moderate, while the
improvement over ||T,_.(P, Kp)||g = 109.52 is plain. Step responses and magni-
tude plots of the controllers K}, Ky and K are shown in Fig. [3| Posterior testing
displays ringing effects caused by various input signals w, including w = unit step,
white noise and sinc, shown in Fig. As can be seen e.g., in Fig. [ middle
image, for a truncated white noise function wr = wx7), with T' = 3, compari-
son of the responses zg = Ty (Ky)wr and zy = Ty, (K )wr, while confirming
optimality ||zeo||cc = 0.5413 < [|zg||oc = 0.5498, reveals that the bulk of energy in
%o has a wider spread over time, and ||zg||2,j7,00) = 1.1626 < ||20|2,[700) = 1.1878
corroborating that the memory effects in Ky are reduced by the use of program

).
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FIGURE 3. Hankel feedback synthesis. Step responses (left), impulse
responses (middle), magnitude plot (right) for controllers K, (dotted),
K (dashed), and Ky (solid)
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FIGURE 4. Hankel feedback synthesis. Ringing for controllers K
(dotted), K (dashed), and Kp (solid). Inputs: Unit step signal

(left), white noise signal (middle), sinc signal (right)

10.2. Hankel system reduction. In this section, we solve program ([15)) with the
usual Hankel norm, where our tests use the 15th order Rolls-Royce Spey gas turbine
engine model described in [23] Chapter 11|, with data available for download on
I. Postlethwaites’s homepage as aero0.mat. The goal of this study is to use the
theoretical values to perform a blind testing of our algorithm. For £ =1,2,...,14,
using Algorithm [I] we computed Hankel reduced-order systems Gy of order k, and
compared the achieved objective f(x*) = |G — Gr(x*)||g of with the theoret-
ically known optimal Hankel norm approximation errors |G — Gy||g = oks1, the
(k + 1)st Hankel singular value of G. As can be seen in columns 2 and 3 of Table
this error is within the limits of numerical precision.

In each run, the algorithm was started from a random initial guess, and no
information as to the specific structure of problem (15)) was provided. On average,
the algorithm needed about 103 serious steps to reach the optimal objective function
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TABLE 1. Hankel system reduction. Comparison of optimal values
|G — Gi(x*)||z with theoretical values o4

k Okt1 |G — Gredlln No of iterations Time
1 4.046418 4.046418 26 3.5
2 2.754623 2.754624 71 21.0
3 1.763527 1.763529 124 47.3
4 1.296531 1.299542 151 101.5
5 0.629640 0.629640 &8 118.0
6 0.166886 0.166887 183 197.3
7 0.093407 0.093408 93 185.8
8 0.022193 0.022201 76 132.4
9 0.015669 0.015675 162 203.7
10 0.013621 0.013624 175 191.3
11 0.003997 0.003997 140 380.0
12 0.001179 0.001179 57 488.4
13 0.000324 0.000324 24 224.2
14 0.000033 0.000033 68 372.5

value within a tolerance of < 1071, See Table[l|for number of iterations and running
times in seconds.

Remark 7. The results show no clear relation between running times and the order
of the reduced system, as one might have expected. This is due to the fact that
local optimization techniques depend very sensibly on the initial guess, which in
this comparison was chosen randomly.

Remark 8. In [9], we have used the same example to give a comparison between
Hankel system reduction and H.-system reduction, which is compared to the H..-
bound (see [12]).

10.3. Maximizing the memory of a system. We use here an illustrative exam-
ple for (18)), where G and Gyt are defined as

1 11.11
G(s) = Grop = .
(5) T 2 6s+ 1111

s—1’
The filter F' is chosen of order 2,

Fls)=———"2=| 1 0 |0

a52+bs+c_ —d —€ 1
2
s*tdste b—ad c—ae‘a

which leads to 5 tunable parameters, whereas K is a PID

L L 0 0 ki

; 5 1 kg

K(s\=k +2 4" _ |0 —5| —7%

(S> P+ s T S+1 Ty Tfk; )
/ L1 [k + gt

adding another 4 unknowns. We have added a low-pass filter W;(s) = % to

the output z; to asses the tracking error y — y,¢ in low-frequency, and a high-pass
filter Wh(s) = TTooor on the control output 2z, to reduce high-frequency components
of the control signal u + v.
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Due to the choice of the performance channel w — z = (W2, Waz23), the closed-
loop has a non-vanishing direct transmission term. We therefore solve problem ([14)
for the setup using the extended Hankel program with , and also using
the constraint program . Running Algorithm [1| from the same starting point,
these two methods give Hankel controllers (F.py, K.g) and (F.y, K.g) with

—3.477852—13.99965—0.0546 3.6689 1.0924

Fen(s) = s211.92025+0.0001  ° Ken(s) = 6.3078 + 2222 — 0.4739511°
_ —3.655252—13.6987s—0.0522 _ 3.8435  _ 0.7121

Fen(s) = s2+1.95885+0.0001  ° Ken(s) = 6.1959 + =5 0.3644s+1°

where we used the constraint oy(D) < n with n = 1. For comparison, we also syn-
thesized the usual Hankel norm controller, where the direct transmission is ignored,

and the H.-controller, both with the same architecture:

_ —2.237652—1.9738s—2.4161 _ 0.7883 0.8023
Fi(s) = 52+0.005451+0.9836 Kp(s) =2.4482 + =2 + 0.7817s+1"

_ —9.936652—1.5077s—0.0349 _ 0.2673 _ _ 0.5507
Foo(s) = s2+0.9969s+0.0273  ° Koo(s) = 11.5131 + =5 T.0117s41°

Figure [5| compares step responses y and step reference responses y¢ for these con-
trollers. The evolution of the optimization method for the three Hankel controllers

can be traced in Fig. [f] The achieved Hankel norms are

| Twes>(Ferr, Ke) ||l = 0.8767 < || Ty (Ferr, Kerr) ||z = 0.8862
< NTwese (Fry Kyl = 1.0160 < | Toy—s» (Fooy Koo) || g = 1.0277.

This example is again interesting in so far as the parametrization of F' and K arises
naturally in the frequency domain.

Step Response Step Response
From:r To:y — yref

From:r To:y

b
T
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T

Amplitude
o
o
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Amplitude
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ko # kg w4

3 — % - reference model
0.2 % syn. with H_—norm a

syn. with H_—norm

syn. with monitoring
syn. with constraint o, (D)

syn. with ext. Hankel norm

F syn. with monitoring
He syn. with constraint 01(D)
syn. with ext. Hankel norm

2 10

o 2 a4 6 a 6
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FIGURE 5. Maximizing memory. Comparison between step responses
y and 1y for H-controller and Hankel controllers computed by pro-
grams with monitoring (dotted), (dashed) and with
(solid)

10.4. Control of flow in a graph. Here, we give an application of program
[1). Let %y = {1,2,... .00}, % = {1,2,...,m}, ¥ = {1,2,...,p}. Let x
regroup the unknown tunable parameters a;;/, b;; and set A(x) = [a;;]} .., B(x) =
[bij]—l— C = [Cl, . 7Cnm], Where Cljj/ = 0 1f (],j/) ¢ ,Q{, bij = 0 1f (Z,j) ¢ ,Q{ We

mxmng’
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FIGURE 6. Maximizing memory. Comparison between standard Han-
kel program (2)) with monitoring (left), constraint program (mid-
dle), and extended Hankel program with (right).  While
with and give comparable results, minimization of
(A, B,C)| g alone (left) gives a large direct transmission

have a discrete linear time-invariant system

6+ {

z(t+1) = A(x)z(t) + B(x)w(t)

2(t)

= Cuz(t).

Remark that the linear constraint conditions in can be transferred to the form
AeqX = beq, x = 0, which are added in each trial step generation of Algorithm

We now take the following graph ¢ = (¥, &) with n, = 24,m =4 and p = 4.

Let z(t) be the total number of people on the fairground, which corresponds to the

weights ¢; = - --

= ¢,, = 1. We start Algorithm [l| at the uniform distribution x!,

where f(x') = 714.8634, and ||G(x")||z = 26.7369. After 2469 serious iterates with
8768 s CPU, our algorithm returns the optimal x* with f(x*) = 8.6056, meaning
|G(x*)||z = 2.9335. For comparison, with the Matlab function fmincon started at
x!, we obtain x' with f(x') = 12.5994 > f(x*) = 8.6056. However, if we take x' as
initial for Algorithm [l the result is f(x*) = 8.6056, meaning ||G(x*)||z = 2.9335,
which is achieved very fast (29 serious iterates, 87 s CPU).
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Unit step signal Unit step signal Unit step signal Unit step signal
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FIGURE 7. Ringing effects of three systems G(x!) (dotted), G(x')
(dashed) and G(x*) (solid) for the first graph. Input: Unit step signal
(top) and white noise signal (bottom)

We next consider an example using the second graph with n, = 36, m = 2 and p = 2.
Let z(t) quantify the number of people on the fairground, where the 6 central nodes
are counted twice. In this example, we will directly compare our nonsmooth method
to the heuristic in Sect. [0} Optimization starts again at the uniform distribution
x'. Minimizing smooth function f,(x) in with initial x! leads to x', where
f(x) = 21.7291, || G(x") ||z = 4.6614, while f(x!) = 578.6875, |G(x!) ||z = 24.0559.
We now use x' to initialize the nonsmooth Algorithm [} After 44 serious steps with
168 s CPU, our algorithm returns the optimal x* with f(x*) = 14.8353, meaning

|G(x*)||z = 3.8517.

For the two displayed graphs, Figs. [7 and [§] compare ringing effects in unit step
and white noise responses truncated at 7' = 30 for the three systems G(x!), G(x")
and G(x*). We can see that ringing for G(x') and G(x*) is substantially reduced.

Tables [2| and |3| show a simulated study, where we compare the effects of the
transition probability distributions x!, x!,x* by recording the evacuation of people
from the fairground. We simulate crowd entering through the gates 1,...,4 for
different scenarios w. We then close the entrance gates at time 7" = 15, when in the
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Unit step signal Unit step signal
From: In(1) From: In(2)
20 - 20
15 15
10 10
5 5
0 0
0 20 40 60 80 0 20 40 60 80
Time (seconds) Time (seconds)
White noise signal White noise signal
From: In(1) From: In(2)
10 10
8 8
6 6
4 4
2 2
0 0
0 20 40 60 80 0 20 40 60 80
Time (seconds) Time (seconds)

FIGURE 8. Ringing effects of three systems G(x!) (dotted), G(x')
(dashed) and G(x*) (solid) for the second graph. Input: Unit step
signal (top) and white noise signal (bottom)

TABLE 2. First graph, three distributions x!, xf, x*. Times when
90% of crowd in fairground has been evacuated

Input signal People 2Y(T) G(x') (T G (T) Gx)
Entering Remain Evac. time Remain Evac. time Remain Evac. time

[wy; we; ws; 0] 6994 4680 78 1478 18 1141 17

[wy; we; 0;ws] 6994 4375 75 1293 18 941 17

[wy; 0; we; w3] 6994 4367 75 1306 18 941 17

[0; wy; wo; w3 6994 4367 75 1374 18 941 17

Entry gates are closed at T'= 15

TABLE 3. Second graph, three distributions. Times when 90% of
crowd in the fairground has been evacuated

Input signal People 2Y(T) G(x!) A(T) G 2(T)  G(x¥)
Entering Remain Evac. time Remain Evac. time Remain Evac. time

[w1; wo) 4994 3794 63 1530 20 1216 19

[wy; ws] 5200 3901 63 1546 20 1227 19

[wa; ws) 3794 2704 63 1034 20 804 20

Entry gates are closed at T'= 15

first study 6994 people have entered the ground, and record the time which passes
until 90% of the crowd has been evacuated. In our tests w; is a step signal, w, is
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a sine wave, and ws is a square wave. A similar approach is chosen in the second
graph.

Column 2!(T') gives the number of people still present on the fairground at time
T when distribution x! is used, and column G(x!) gives the time which then elapses
until this crowd is reduced below 10% of the total number 6994. Columns 5-8 are
analogous. As compared to x!, the optimal strategy x* reduces the evacuation time
to close to 1/5 in the first graph, and to close to 1/3 in the second graph.

11. Conclusion

We have proposed a new methodology to reduce unwanted ringing effects in a
tunable linear time-invariant system. The problem was addressed by minimizing the
Hankel norm of the system, a problem which leads to an eigenvalue optimization
program for the associated Hankel operator. A proximal bundle algorithm was
presented to solve a variety of test problems successfully, and a smooth heuristic,
based on work of Nesterov [I5], was added and used to initialize the algorithm with
a favorable initial seed.

Acknowledgements

The authors acknowledge helpful discussions with Dr. Armin Rainer (University
of Vienna).

References

1. P. Apkarian and D. Noll, Nonsmooth H, synthesis, IEEE Trans. Automat. Control 51 (2006),
no. 1, 71-86.

2. P. Apkarian, D. Noll, and A. Rondepierre, Mized Hy/H, control via nonsmooth optimization,
SIAM J. Control Optim. 47 (2008), no. 3, 1516-1546.

3. R. Bellman, Kronecker products and the second method of Lyapunov, Math Nachr 20 (1959),
17-19.

4. V. Bompart, P. Apkarian, and D. Noll, Non-smooth techniques for stabilizing linear systems,
Proc. American Control Conf. (New York), July 2007, pp. 1245-1250.

5. S. Boyd and C. Barratt, Linear controller design: Limits of performance, Prentice Hall, New
York, 1991.

6. M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat.
Zh. 20 (1979), no. 3, 493-501, 690, English transl. in Siberian Math. J. 20 (1980), 347-352.

7. J. V. Burke and M. L. Overton, Differential properties of the spectral abscissa and the spectral
radius for analytic matriz-valued mappings, Nonlinear Anal. 23 (1994), no. 4, 467—488.

8. F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv.
Texts, John Wiley & Sons, Inc., New York, 1983.

9. M. N. Dao and D. Noll, Minimizing the memory of a system, Proc. Asian Control Conf.
(Istanbul), June 2013.

10. J. E. Dennis, Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and
nonlinear equations, Prentice Hall, New Jersey, 1983.

11. M. Gabarrou, D. Alazard, and D. Noll, Design of a flight control architecture using a non-
convex bundle method, Math. Control Signals Syst. 25 (2013), no. 2, 257-290.

12. K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their
L -error bounds, Internat. J. Control 39 (1984), no. 6, 1115-1193.

13. O. L. Mangasarian, Nonlinear programming, McGraw-Hill Book Co., New York-London-
Sydney, 1969.



60

14.

15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

26.

II. MINIMIZING MEMORY EFFECTS OF A SYSTEM

R. Mifflin, A modification and extension of Lemarechal’s algorithm for nonsmooth minimiza-
tion, Nondifferential and Variational Techniques in Optimization (D. C. Sorensen and R. J.-B.
Wets, eds.), Math. Programming Stud., vol. 17, North-Holland Publishing Co., Amsterdam,
1982, pp. 77-90.

Y. Nesterov, Smoothing technique and its applications in semidefinite optimization, Math.
Program., Ser. A 110 (2007), no. 2, 245-259.

D. Noll, Cutting plane oracles to minimize non-smooth non-convez functions, Set-Valued Var.
Anal. 18 (2010), no. 3-4, 531-568.

D. Noll, O. Prot, and A. Rondepierre, A prozimity control algorithm to minimize nonsmooth
and nonconvex functions, Pac. J. Optim. 4 (2008), no. 3, 571-604.

M. L. Overton, Large-scale optimization of eigenvalues, STAM J. Optim. 2 (1992), no. 1, 88—
120.

A. Parusiniski and A. Rainer, A new proof of Bronshtein’s theorem, (2014), arXiv:1309.2150v2.
E. Polak, Optimization: Algorithms and consistent approximations, Appl. Math. Sci., vol. 124,
Springer-Verlag, New York, 1997.

A. Rainer, Smooth roots of hyperbolic polynomials with definable coefficients, Israel J. Math.
184 (2011), 157-182.

R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Springer-Verlag, Berlin, 1998.

S. Skogestad and I. Postlethwaite, Multivariable feedback control: Analysis and design, John
Wiley & Sons, Chichester, 2005.

J. E. Spingarn, Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math. Soc.
264 (1981), no. 1, 77-89.

L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Note
Ser., vol. 248, Cambridge University Press, Cambridge, 1998.

K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control, Prentice Hall, New Jersey,
1996.



IT1

Simultaneous plant and controller optimization based on
nonsmooth techniques]

Minh Ngoc Dao and Dominikus Noll

Abstract. We present an approach to simultaneous design optimization of a plant
and its controller. This is based on a bundling technique for solving nonsmooth
optimization problems under nonlinear and linear constraints. In the absence of
convexity, a substitute for the convex cutting plane mechanism is proposed. The
method is illustrated on a problem of steady flow in a graph and in robust feedback
control design of a mass-spring-damper system.

Keywords. Robust control - Hankel norm - system with tunable parameters -
nonlinear optimization - steady flow.

1. Introduction

In modern control system, desirable closed-loop characteristics include stability,
speed, accuracy, and robustness and depend on both structural and control spec-
ifications. Traditionally, structural design with its drive elements precedes and is
disconnected from controller synthesis, which may result in a sub-optimal system.
In contrast, optimizing plant structure and controller simultaneously may lead to a
truly optimal solution. We therefore propose design methods which allow to opti-
mize various elements such as system structure, actuators, sensors, and the controller
simultaneously.

Here we focus on simultaneous optimization of certain plant and controller pa-
rameters to achieve the best performance for a closed-loop system with constraints.
This leads to a complex nonlinear optimization problem involving nonsmooth and
nonconvex objectives and constraints. Suitable optimization methods are discussed
to address such problems.

“Paper published in Lecture Notes in Engineering and Computer Science: Proc. World Con-
gress Eng. Comp. Sci. (WCECS), vol. II, San Francisco, 2013, pp. 855-861.
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Consider a stable LTI state-space control system

G 0r = Ax + Bu
"ly=Cxz+ Du

where dx represents z(t) for continuous-time systems and z(t 4 1) for discrete-time
systems, and where x € R™ is the state vector, u € R™ the control input vector,
and y € R? the output vector. Our interest is the case in which system G is placed
in a control system containing actuators, sensors and a feedback controller K, and
matrices A, B,C, D and controller K depend smoothly on a design parameter x
varying in R" or in some constrained subset of R™. Denoting by T,,_,.(x) the closed-
loop performance channel w — z, this brings to the optimization program

minimize  ||7,-,(x)]|
(1) subject to x € R",
K = K(x) assures closed-loop stability

Here standard choices of || - || include the Ho,-norm || - ||oo, the Ho-norm || - [, or
the Hankel norm || - ||z which is discussed in more detail in the sections [3] and [6]
Solving leads to nonsmooth optimization problems.

2. A proximity control algorithm

Bundle methods are currently among the most effective approachs to solve non-
smooth optimization problems. In these methods, subgradients from past iterations
are accumulated in a bundle, and a trial step is obtained by a quadratic tangent
program based on information stored in the bundle. In the absence of convexity,
tangent planes can no longer be used as cutting planes, and a substitute has to
be found. A sophisticated management of the proximity control mechanism is also
required to obtain a satisfactory convergence theory. We will show in which way
these elements can be assembled into a successful algorithm.

For the purpose of solving the problem , we present here a nonsmooth algo-
rithm for general constrained optimization programs of the form

minimize  f(x)
(2) subject to ¢(x) <0
Ax <b

where x € R” is the decision variable, and f and c are potentially nonsmooth and
nonconvex, and where the linear constraints are gathered in Ax < b and handled
directly.

Expanding on an idea in [I5, Section 2.2.2|, we use a progress function at the
current iterate x,

F(,x) = max{f(-) = f(x) = ve(x)y,c(-) = e(x)+},
where ¢(x); = max{c(x),0}, and v > 0 is a fixed parameter. It is easy to see that
F(x,x) = 0, where either the left branch f(-) — f(x) — ve(x)+ or the right branch
¢(+) — ¢(x)4 in the expression of F'(-,x) is active at x, i.e., attains the maximum,
depending on whether x is feasible for the non-linear constraint or not.
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Setting P = {x € R" : Ax < b}, it follows from [I6] Theorem 6.46| that the
normal cone to P at x is given by

Np(x)={ATn:n>0,n"(Ax —b) = 0}.

We remark therefore that if x* is a local minimum of program , it is also a local
minimum of F(-,x*) on P, and then 0 € 9, F(x*,x*)+ A" n* for some multiplier n* >
0 with n*T(Ax* — b) = 0. The symbol 9; here stands for the Clarke subdifferential
with respect to the first variable. Indeed, if x* is a local minimum of then
x* € P,c(x*) < 0, and so for y in a neighborhood of x* in P we have F(y,x*) =
max{f(y) — f(x*),c(y)} > f(y) — f(x*) > 0 = F(x*,x*) if y is feasible, and
F(y,x*) = c(y) > 0 otherwise. This implies that x* is a local minimum of F'(-,x*)
on P, and therefore 0 € 0,F(x*,x*) + Np(x*). We now present the following
algorithm for computing solutions of program .

Convergence theory of Algorithm [1] is discussed in [7, 0] and based on these
results, we can prove the following theorem.

Theorem 2.1. Suppose f and c in program (@ are lower-C* functions such that
the following conditions hold:

(a) f is weakly coercive on constraint set Q = {x € R : ¢(x) < 0, Ax < b},
i.e., if x) € Q, ||x/|| = oo, then f(x?) is not monotonically decreasing.

(b) ¢ is weakly coercive on P, i.e., if x) € P, ||x/|| — oo, then c(x?) is not
monotonically decreasing.

Then the sequence of serious iterates x? € P generated by Algorithm |1 is bounded,
and every accumulation point X* of the x’ satisfies x* € P and 0 € 0, F(x*,x*) +
ATn* for some multiplier n* > 0 with n*T (Ax* — b) = 0. OJ

An immediate consequence of Theorem is the following

Corollary 2.2. Under the hypotheses of the theorem, every accumulation point of
the sequence of serious iterates generated by Algorithm[1] is either a critical point of
constraint violation, or a Karush-Kuhn-Tucker point of program (@

Proof. Suppose x* is an accumulation point of the sequence of serious iterates gener-
ated by Algorithm (1} According to Theorem [2.1| we have 0 € 0, F(x*, x*) + Np(x*).
By using [4, Proposition 9] (see also [5, Proposition 2.3.12]), there exist constants
Ao, A1 such that

0e )\Oaf<X*) + AlaC(X*) + NP(X*),

)\0207>\1 207 )\O_I_Al = 1.
If ¢(x*) > 0 then 0, F(x*,x*) = dc(x*), and therefore 0 € Jc(x*) + Np(x*), which
means that x* is a critical point of constraint violation. In the case of ¢(x*) < 0,
if x* fails to be a Karush-Kuhn-Tucker point of , then \g must equal 0, and so

0 € Jc(x*) + Np(x*). We obtain that x* is either a critical point of constraint
violation, or a Karush-Kuhn-Tucker point of program . 0

In the absence of convexity, proving convergence to a single Karush-Kuhn-Tucker
point is generally out of reach, but the following result gives nonetheless a satisfac-
tory answer for stopping of the algorithm.
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Algorithm 1. Proximity control with downshift

Parameters: 0 < 7 <7 < 1,0 < v < T < 1,0 < g < 0,0 < ¢ < o0,
q<T < 0.

> Step 1 (Initialize outer loop). Choose initial iterate x* with Ax' < band
matrix Q; = Q] with —g/ < Q; < ¢l. Initialize memory element Tf such that
Q1+ 71 = 0. Put j = 1.

o Step 2 (Stopping test). At outer loop counter j, stop the algorithm if 0 €
O F(x?,x7) + AT, for a multiplier 7/ > 0 with 777 (Ax7 — b) = 0. Otherwise,
goto inner loop.

> Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize
T = Tf. Build initial working model

(%)) = gy = )+ 5= %) TQ; (- =),
where go; € O F(x7,x7).

> Step 4 (Trial step generation). At inner loop counter k find solution y*
of the tangent program

minimize  Fi(y,x?) + 2|y — x7|?
subject to Ay < b,y € R™.

o Step 5 (Acceptance test). If

~ F(y*,x7)

= Py %) =7,

put xT1 = y* (serious step), quit inner loop and goto step 8. Otherwise (null

step), continue inner loop with step 6.

Pk

> Step 6 (Update working model). Generate a cutting plane my (-, x7) = a;, +
gy (- —x7) at null step y* and counter k using downshifted tangents. Compute
aggregate plane m}(-,x7) = a +g;' (- —x’) at y*, and then build new working
model Fj (-, x7).

o Step 7 (Update proximity control parameter). Compute secondary con-
trol parameter

. Fea(yh, )
" TRy )

Tk if ﬁk < ?7
T = ~ -
bl 27’k if Pk 2 .

and put

Increase inner loop counter £ and loop back to step 4.

o Step 8 (Update (); and memory element). Update (); — ;41 respecting
Qjr1= Q) and —¢I < Q;11 =< ¢I. Then store new memory element

4 Tk if Pr < I,
T =
g1 %Tk if Pk 2 I.
Increase 7'}1“ if necessary to ensure Q1 + T}HI = 0. If T}iﬂ > T then re-set

f

1 = T'. Increase outer loop counter j and loop back to step 2.
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Corollary 2.3. Under the hypotheses of the theorem, for every ¢ > 0 there exists
an indez jo(g) € N such that for every j > jo(€), x? is within e-distance of the set
L of critical points x* in the sense of the theorem.

Proof. By the fact that our algorithm assures always x/ —x/™! — 0 and Ostrowski’s
theorem [I3, Theorem 26.1], the set of limit point L of the sequence x’ is either
singleton or a compact continuum. Our construction then assures convergence of
x/ to the limiting set L in the sense of the Hausdorff distance. See [I1] for the
details. 0J

3. Hankel norm

Given a stable L'TT system
T = Ax + Bw
G:
{z =Cx

with state x € R™, input w € R™, and output z € RP, if we think of w(t) as an
excitation at the input which acts over the time period 0 < ¢ < 7', then the ring of
the system after the excitation has stopped at time T is z(t) for ¢ > T. If signals
are measured in the energy norm, this leads to that the Hankel norm of the system
G is defined as

Gl = sup { (/TOO 2(t) " 2(t) dt) " :

T
/ w(t) " wt)dt <1, w(t)=0fort>T 2= Gw} .
0

For the discrete-time case, the Hankel norm of GG is given by

o 1/2
1G]l = sup (ZZ(t)TZ(t)) :

>0 | \ =

Zw(t)Tw(t) <Lw(t)=0fort>T 2= Gw} .

t=0

The Hankel norm can be understood as measuring the tendency of a system
to store energy, which is later retrieved to produce undesired noise effects known
as system ring. Minimizing the Hankel norm therefore reduces the ringing in the
system. It is worth to note that in both continuous-time and discrete-time cases we
have the following

Proposition 3.1. If X and Y are the controllability and observability Gramians of

the stable system G, then
1Glla = v M(XY),

where A1 denotes the mazimum eigenvalue of a symmetric or Hermitian matrix.

Proof. See [6] and also [8, Section 2.3]. O
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4. Steady flow in a graph

Here we consider the problem of steady flow in a directed graph ¥ = (¥, &)
with sources, sinks, and interior nodes, ¥ = ¥y U %0 U Yout, and not excluding self-
arcs. For nodes i,j € ¥ connected by an arc (i,j) € < the transition probability
i — j quantifies the tendency of flow going from node ¢ towards node j. As an
example we may for instance consider a large fairground with separated entrances
and exits, where itineraries between stands, entrances and exits are represented by
the graph. By acting on the transition probabilities between nodes connected by
arcs, we expect to guide the crowd in such a way that a steady flow is assured, and
a safe evacuation is possible in case of an emergency.

Assume that an individual at interior node j € ¥4,y decides with probability
aj = 0 to proceed to a neighboring node j' € ¥4y, where neighboring means
(4,j") € <, or with probability a;z > 0 to proceed to a neighboring exit node
k € You, where (j, k) € of. The case (j,j) € o of deciding to stay at stand
J € Vsay is not excluded. Similarly, an individual entering at ¢ € ¥, proceeds to a
neighboring interior node j € ¥,y with probability b;; > 0, where (i,j) € &/. We
assume for simplicity that there is no direct transmission from entrances to exits.
Then

(3) >, ayt ), ax=1

jIG%tay:(j,j/)GQ/ ke%uti(j,k)eﬂ

for every j € Yay, and

(4) bij =1

jeni/stay:(i:j)eyj

for every i € 7#;,. Let x;(t) denote the number of people present at interior node
J € Yitay and time ¢, and w;(¢) the number of people entering the fairground through
entry ¢ € %, at time ¢. Then the number of people present at interior node j € Y4y
and time t 4+ 1 is

Gt+) = Y aprpt)+ Y bywi(h).

J' €Ystay:(3',5) €A 1€%n:(1,5) e

We quantify the total number of individuals still inside the fairground via the
weighted sum

)= Y euy(t)

je%tay

at time ¢, where ¢; > 0 are fixed weights. We assess the performance of the network
by using the Lo-norm to quantify input and output flows w, z. This attributes a
high cost to a strong concentration of people at a single spot. Take x to regroup
the parameters a;;/,ajx, b;j, the discrete LTI system above has the form G(x) =
(A(x), B(x),C,0), where C' is the row vector of ¢;’'s. The Hankel norm ||G(x)| g
may then be interpreted as computing the worst-case of all scenarios where the
inflow w is stopped at some time T, and the outflow is measured via the pattern
z(t), t > T, with which the fairground is emptied. Minimizing ||z ||2,7,00)/||w||2, (0,17
may then be understood as enhancing overall safety of the network. It leads to the
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optimization program

minimize ||G(x)||n
(5) subject to G(x) internally stable
a_jj/ 2 07ajk 2 OJ bz_] 2 07 7
which is a version of ().

FIGURE 1. Control architecture in the fairground.

In an extended model one might consider measuring the number of people at
some selected nodes j € Yoy U Pour, and use this to react via a feedback controller
at the entry gates as in Figure [l With this controller, we can regulate the number
of people in the fairground. More accurately, the feedback controller K = K (k) in-
cludes admission rates k; at entry gate i, and the number of people entering may be
restricted based on the total weighted number of people inside the fairground. Let-
ting T, (x, k) denote the closed-loop transfer function of the performance channel
mapping w into z, this leads to the following problem where controller and parts of
the plant are optimized simultaneously.

minimize || Ty (X, &) || 0
(6) subject to K = K (k) assures closed-loop stability,
ajj’ 2 O,ajk 2 O, bij 2 Oaﬁi 2 07 7

5. Robust control of a mass-spring-damper system

In this section we discuss a 1DOF mass-spring-damper system with mass m,
spring stiffness k and damping coefficient c. The values can be in any consistent
system of units, for example, in ST units, m in kilograms, k in newtons per meter,
and c in newton-seconds per meter or kilograms per second. The system is of second
order, since it has a mass which can contain both kinetic and potential energy. The
force F' is considered as input u, and the displacement p of the mass from the
equilibrium position is considered as output y of this system. By Hooke’s law, the
force exerted by the spring is

Fy = —kp.
Let v be the velocity of the mass, then the damping force Fy is expressed as
dp
F = — = —C— = —C]
P cv c i cp

due to d’Alembert’s principle. Using Newton’s second law, we have

2

d“p .
F+FS+Fd:mﬁ:mp,
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which gives
mp + cp + kp = u.

A possible selection of state variables is the displacement p and the velocity v. The
linear model of the mass-spring-damper is then described by

G:{:i::Ax—i-Bu
y="Cz

where

FIGURE 2. Structure of mass-spring-damper control system.

The design objective for the mass-spring-damper system with a disturbance is
to find an output feedback control law u = Ky which stabilizes the closed-loop
system while minimizing worst-case energy of output z = [y u]" in order to avoid
the disturbance input w to affect the system. In realistic systems, the physical
parameters k and c are not known exactly but can be enclosed in intervals. Assuming
the controller is parameterized as K (k), taking x to regroup the tunable parameters
k,c and k, and denoting by T,,_,,(x) the closed-loop performance channel w — z,
this leads to the optimization problem

minimize  ||T,_,(x)||

subject to x = (k,c,k) € R",
K = K (k) assures closed-loop stability,
k and c are in some intervals

(7)
where choices of || - || include the H,,-norm || - || or the Hankel norm || - || .

6. Clarke subdifferential of the Hankel norm

In order to apply nonlinear and nonsmooth optimization techniques to programs
of the form (5), (6) and it is necessary to provide derivative information of the
objective function

Fx) = IGE)E = M(XX)Y(x)),
where X (x) and Y (x) are the controllability and observability Gramians. In the
discrete-time case, X (x) and Y (x) can be obtained from the Lyapunov equations

(8) AX)XAT(x) - X + B(x)B'(x) =0,
9) AT(X)YAX) - Y +CT(x)C(x) = 0.
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Remark that despite the symmetry of X and Y the product XY need not be sym-
metric, but stability of A(x) guarantees X = 0, Y > 0 in (§), (9)., so that we can
write

AM(XY) = A\ (X2YX3) =\ (Y2XY7),
which brings us back in the realm of eigenvalue theory of symmetric matrices.
Recalling the definition of the spectral radius of a matrix

p(M) = max{|\| : \ eigenvalue of M},

we can address programs and () in the following program

(10) minimize  f(x) := [|G(X)||%
subject to  ¢(x) == p(A(x)) =14+ <0
for some fixed small € > 0. Notice that f = || ||% o G(-) is a composite function of a

semi-norm and a smooth mapping x — G(x), which implies that it is lower-C? and
therefore also lower-C? in the sense of |16, Definition 10.29]. Theoretical properties
of the spectral radius ¢(x), used in the constraint, have been studied in [3]. We also
have X (x) = 0 and Y (x) = 0 on the feasible set C = {x : ¢(x) < 0}, so that f is
well-defined and locally Lipschitz on C.

Let M, ,,, be the space of n x m matrices, equipped with the corresponding scalar
product (X,Y) = Tr(X"Y), where X' and Tr(X) are respectively the transpose
and the trace of matrix X. We denote by B,, the set of m x m symmetric positive
semidefinite matrices with trace 1. Set Z := X:Y X2 and pick @ to be a matrix
whose columns form an orthonormal basis of the v-dimensional eigenspace associated
with A(Z). By [14, Theorem 3|, the Clarke subdifferential of f at x consists of all
subgradients gy of the form

g = (Te(Z1(x)"QUQT), ..., Tr(Z,(x) ' QUQ ™))",

where U € B,, and where M;(x) := 8?}5"),1' = 1,...,n for any matrix M (x).We
next have

(11) Zi(x) = vi(x)Y X2 + X2Y;(x) X2 + X2V yi(x),
where x;(x) := Ma—i(x). It follows from and @ that

AX)Xi(x)AT(x) — X;(x) = —A;(x) X AT (x)

(12) — A(X)X[Ai(x)]" — Bi(x)B' (x) — B(x)[B;i(x)] ",
AT(X)Y;(x)A(x) = Yi(x) = —[4;(x)] 'V A(x)

(13) — AT(X)YAi(X) — [Ci(X)]TC(X) — CT(X)CZ'(X).

Since X2X? = X,

(14) X2yi(x) + vi(x) X2 = Xi(x).

Altogether, we obtain Algorithm [2| to compute elements of the subdifferential of

f(x).
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Algorithm 2. Computing subgradients

Input: x € R". Output: g € Jf(x).

> Step 1. Compute A;(x) = agf:‘),Bi(x) = 85—)5’(), Ci(x) = 909 ;i =1,....n
and X, Y solutions of , @D, respectively.

> Step 2. Compute X2 and Z = X2Y X2,

> Step 3. For i = 1,...,n compute X;(x) and Y;(x) solutions of and ([13),
respectively.

> Step 4. For i =1,...,n compute y;(x) solution of (14) and Z;(x) using (11)).

> Step 5. Determine a matrix () whose columns form an orthonormal basis of
the v-dimensional eigenspace associated with (7).

> Step 6. Pick U € B,, and return
(Tr(Z:(x)'QUQ"). ... Tr(Z,(x) ' QUQ)) T,

a subgradient of f at x.

Remark 1. In the continuous-time case, the Gramians X (x) and Y (x) can be ob-
tained from the continuous Lyapunov equations

(15) AX)X + XAT(x) + B(x)B" (x) =0,
(16) AT(x)Y +YA(x) +CT(x)C(x) =0,

Therefore, X;(x) and Y;(x) are solutions respectively of the following equations

AX)Xi(x) + Xi(x)A'(x) = —A4;(x) X — X[Ai(x)]

(17) - Bi(x)B' (x) — B(x)[Bi(x)] ",
A'X)Yi(x) + Yi(x0)A(x) = —[Ai(x)] Y = YV Ai(x)
(18) — [CGi(x)]"Cle) = CT(x)Cilx).

In addition, let us note that for this case, the stability constraint in program is
c(x) = a(A(x))+¢e < 0, where a(-) denotes the spectral abscissa of a square matrix,
i.e., the maximum of the real parts of its eigenvalues. U

We now introduce a smooth relaxation of Hankel norm. It is based on a result
established by Y. Nesterov in [9], which gives a fine analysis of the convex bun-
dle method in situations where the objective f(x) has the specific structure of a
max-function, including the case of a convex maximum eigenvalue function. These
findings indicate that for a given precision, such programs may be solved with lower
algorithmic complexity using smooth relaxations. While these results are a prior:
limited to the convex case, it may be interesting to apply this idea as a heuristic in
the nonconvex situation. More precisely, we can try to solve problem (10), by
replacing the function f(x) = A;(Z(x)) by its smooth approximation

(19) f,u(x) — /th (TLZJ: ez\i(Z(X))/ﬂ> ,
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where 1 > 0 is a tolerance parameter, n, the order of matrix Z, and where )\;
denotes the ith eigenvalue of a symmetric or Hermitian matrix. Then

Ng -1 Ny
ViulZ) = (Z eAi(Z)/“> Z 6/\1(Z)/“%(Z)Qi(Z)T7
i=1 i=1

with ¢;(Z) the ith column of the orthogonal matrix Q(Z) from the eigendecompo-
sition of symmetric matrix Z = Q(Z)D(Z)Q(Z)". This yields
Vfulx) = (Tr(Z1(x) 'V fu(2)), ..., Te(Za(x) 'V £u(2)))
Let us note that
f(x) < fu(x) < f(x) + plnn,.
Therefore, to find an e-solution of problem , we have to find an $-solution of the
smooth problem
minimize  f,(x)
(20) subject to ¢(x) <0
Ax <b
with p = 577~ This smoothed problem can be solved using standard NLP software.
We have initialized the nonsmooth Algorithm [I| with the solution of problem (20]).

7. Numerical experiments

7.1. Steady flow in a graph. We give an illustration of programs and ().
Let Yoy = {1,2,....0}, % = {1,2,...,m} and ¥, = {1,2,...,p}. Taking x
to regroup the unknown tunable parameters a;;, b;; and setting A(x) = [a;;],})

Ng XNy

B(X) = [bij]—r C= [Cl, ce ,an], where A = 0 if (j,j,) g W,bij =0if (ij) g %7

MXNg?

we have a discrete LTT system

Jx(t+1)= Ax)z(t) + B(x)w(t)
Gx) {z(t) = Ca(t).

Note that the linear constraint conditions in as well as @ can be transferred to
the form

AeqX = beg,

x > 0.

We now take the graph ¥ = (¥, 4/) with n, = 36, m = 2 and p = 2 as in
Figure Let z(t) be the total number of individuals inside the fairground with

FIGURE 3. Model of the fairground
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doubled weights at 6 nodes in the center that form a hexagon as compared to the
other nodes. We start with the case without controller and initialize at the uniform
distribution x', where f(x') = 528.7672 and ||G(x")||z = 22.9949. In order to
save time, we use the minimizer of the relaxation f,(x) in (19) with initial x' to
initialize the nonsmooth Algorithm . Our algorithm then returns the optimal xT
with f(x') = 16.5817, meaning |G (x")|z = 4.0721.

In the case with controller K = K(k), k = [k1 ... K], as shown in Figure
we have

) z(t+1)= A(x)z(t) + B(x)e(t)
Tualx, ) {z(t) = Cxz(t).
Here e(t) = w(t) — Kz(t) = w(t) — KCxz(t), which gives

| A(x) — B(x)K(k)C | B(x)
Twsr(X, k) = [ C 0

Initializing at (x, k) = (x',0) with remarking that T,,_,.(x,0) = G(x) and proceed-
ing as in the previous case, we obtain the optimal (x*, k*) with f(x*, £*) = 2.0001,
meaning || 7. (x*, k*)||g = 1.4142. Step responses and ringing effects in unit step
and white noise responses truncated at T = 30 for the three systems G(x') =
Tws-(x4,0), G(x) and T,,_,.(x*, k*) are compared in Figure |4 and Figure

Step Response

From: In(1) From: In(2)
35 T T T T T T T
“““““ initial
........................................................ = = = without controller | |
""" with controller
30
25
8 20f
2
=
£
<
151
0F ¢
5F - -
Il 1
! !
1 1
0 i i i i i i i i i i i i
0 20 40 60 80 100 120 140 0O 20 40 60 80 100 120 140

Time (seconds)

FIGURE 4. Experiment 1. Step responses of three systems G(x')
(dotted), G(x') (dashed) and T,,_,.(x*, k*) (solid)

7.2. Robust control of a mass-spring-damper system. Here we apply Algo-
rithm I]to solve problem (7)), where the mass-spring-damper plant with a disturbance
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Unit step signal Unit step signal
From: In(1) From: In(2)
25 - 25
20 20
15 15
0f 10
5 5
0 . 0 .
-5 -5
0 20 40 60 80 0 20 40 60 80
Time (seconds) Time (seconds)
White noise signal White noise signal
From: In(1) From: In(2)
15 15
A initial
without controller
10 : 10 with controller
5 5
-5 -5
0 20 40 60 80 0 20 40 60 80
Time (seconds) Time (seconds)

FIGURE 5. Experiment 1. Ringing effects of three systems G(x!)
(dotted), G(xT) (dashed) and T,,_,.(x*,x*) (solid). Input: Unit step
signal (top) and white noise signal (bottom)

is given by
T A|B B T
P:lz| =] Ci| 0 Dy wi,
Y C1|0 0 U
with

A:|:O£ 10 s BlzB:|:(1):|

170 0
01:[0 o}’ DIQZM and C = [1 0].
The controller K is chosen of order 2, namely

K152 + KaS + Kg
82 + K4S + R5

—K4 Ry 1
S A I P )
| K2 — Kika K3 — Kiks | Ky KEE

K(k) =

73

Then, the closed-loop transfer function of the performance channel channel w — z

has the state-space representation
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where £ = v 2x|", z the state of K, and where

_ [A+BDxC BCx
Ay = |41 20KC B,

_ |B1+ BDgDy
B<X) - |: BKD21 :| )

C(X) = [Cl + D12DKC DlZCK} .

Assume that mass m = 4, and spring stiffness k& and damping coefficient ¢ be-
long to the intervals [4,12] and [0.5, 1.5], respectively. Using the Matlab function
hinfstruct based on [I], we optimized H.,-norm and obtained k = 12,¢ =1 and
B —6.09275% — 0.3981s — 5.1816
T s2+19.0834s +1.1708
In the Hankel norm synthesis case, our Algorithm (1| returned k£ = 12,¢ = 1.5 and

P —6.19755% — 2.18285 — 4.2523
B $21719.32615 + 3.9198

Figure [6] compares step responses and white noise responses in two synthesis cases.
Bearing of the algorithm is shown in Figure [7]

Step response White noise response
0.2

o
[
a1

Displacement
o
S

0.05 RNV

0 10 20 30

0.3
0.2
0.1
>
£ 0
i)
S -0.1
-0.2
— — —H_-synthesis
-0.3 ° .
Hankel norm synthesis
-0.4
10 20 30 0 10 20 30
Time (seconds) Time (seconds)

FIGURE 6. Experiment 2. Step responses (left) and white noise re-
sponses (right) in two synthesis cases

8. Conclusion

We have shown that it is possible to optimize plant and controller simultaneously
if the idea of a structured control law introduced in [I] is applied. Our approach was
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The objective and the contraint Step size
0 1
—f
"""" €li-005 08
""" -01 06
= x
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0 5 10 15 20 0 5 10 15 20
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FIGURE 7. Experiment 2. Bearing of the algorithm

illustrated for Hankel norm synthesis as well as for H..-synthesis, and for a contin-
uous and a discrete system. Due to inherent nonsmoothness of the cost functions,
nonsmooth optimization was applied, and in particular, a nonconvex bundle method
was presented. For eigenvalue optimization, as required for Hankel norm synthesis,
a relaxation developed by Nesterov for the convex case was successfully used as a
heuristic in the nonconvex case to initialize the bundle method.
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Robust eigenstructure clustering by nonsmooth optimization[]

Minh Ngoc Dao, Dominikus Noll, and Pierre Apkarian

Abstract. We extend classical eigenstructure assignment to more realistic prob-
lems where additional performance and robustness specifications arise. Our aim
is to combine time-domain constraints, as reflected by pole location and eigenvec-
tor structure, with frequency-domain objectives such as the Hs, H,, or Hankel
norms. Using pole clustering, we allow poles to move in polydisks of prescribed
size around their nominal values, driven by optimization. Eigenelements, that
is poles and eigenvectors, are allowed to move simultaneously and serve as deci-
sion variables in a specialized nonsmooth optimization technique. Two aerospace
applications illustrate the power of the new method.

Keywords. Structured feedback control - eigenstructure assignment - modal
shaping - nonsmooth optimization - frequency-domain - robust design

1. Introduction

Since its introduction by Wonham [30] and Moore [17], eigenstructure assign-
ment has developed into a powerful controller design tool in the aerospace sector
and in other high technology fields. Eigenstructure assignment aims at shaping the
responses of the closed-loop system to certain input signals by way of two mech-
anisms. The placement of closed-loop modes to stabilize and achieve satisfactory
transients, and eigenvector structure to decouple responses to specific initial condi-
tions. In this paper we are concerned with the design of output feedback control laws,
where only partial eigenstructure assignment or pole placement can be expected. In
that case the standard approach to first selecting a partial set of closed-loop modes
A1,...,Ap, and then using the remaining degrees of freedom to shape the corre-
sponding closed-loop eigenvectors (v;, w;), is prone to failure to stabilize the system,
as the remaining closed-loop modes cannot be influenced directly.

“Paper submitted for publication. Conference version published in Proc. Internat. Conf. In-
formatics in Control, Automation and Robotics (ICINCO), Reykjavik, July 2013, pp. 307-314.

T
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As a remedy we propose to assign the eigenelements (\;, v;, w;) simultaneously.
We allow eigenelements (\;, v;, w;) to move in the neighborhood of their nominal
values (A, v, w?) in such a way that closed-loop stability and performance can
be further improved. The price for this gain of flexibility is that eigenelement as-
signment can no longer be achieved by linear algebra methods alone. Instead, a

combination of nonlinear optimization and linear algebra is required.

Over the years there have already been attempts to enhance eigenspace control
using off-the-shelf optimization. An early approach is Sobel and Shapiro [26], where
hand-tuning of eigenvalues was shown to improve stability margins of the controlled
system. In [27] the same authors elaborate on this idea and suggest a first-order
gradient method. In [1l 18], a sequential quadratic programming (SQP) technique
with finite-difference gradients was used to improve p robustness indicators, with
eigenvalues and some eigenvectors as decision variables. In [22], Patton and Liu
make full use of the freedom offered by eigenstructure assignment to improve the
frequency-domain sensitivities functions S and K.S. They use a genetic algorithm
in tandem with gradient-based techniques. The same idea is applied to a variety
of problems in their monograph [I4]. In the same vein, reference [I3] exploits the
Nelder-Mead direct search method to optimize assignable eigenvalues and eigen-
vectors, while safeguarding stability of unassigned eigenvalues via constraints. In
[15], eigenstructure assignment with dynamic compensators and linear programming
(LP) or quadratic programming (QP) are used to achieve stability and performance
for an entire family of plants. Merits of these approaches have been demonstrated
in numerous applications. See [14] and references therein.

In this work, we suggest a novel approach to eigenstructure assignment based on
a nonsmooth optimization technique, which has the following features:

e Unassigned poles are constrained to be stable, which secures stability of the
closed-loop system.

e Additional performance or robustness requirements such as H, or H,, are
handled rigorously by accounting for their nonsmoothness.

Nonsmoothness arises due to the spectral abscissa, and via H.,-norm or Han-
kel norm based requirements, but also when max-function of differentiable functions
such as the Ho-norm are built. The key observation is that disregarding nonsmooth-
ness is a serious source of numerical trouble. Avoiding this pitfall is a central moti-
vation of this work. Our investigation leads to a theoretically justified nonsmooth
method with local convergence certificate, which has good performance in practical
applications. The focus of this paper is on control aspects. A thorough convergence
analysis of the proposed algorithm is given in [211, 19, [8] 6] for the interested readers.

The structure of the paper is as follows. Section [2]recalls the basics of eigenstruc-
ture assignment using static output feedback and its variation as pole clustering,
where poles are allowed to move in small polydisks around their nominal values.
Section [3| extends the pole clustering problem to a variety of performance or robust-
ness criteria and gives a pseudo-code of our algorithmic approach to those problems.
Overdetermined and underdetermined eigenproblems are discussed in Section[d] Sec-
tion [5| shows how subgradients are computed for typical design requirements. Our
nonsmooth solver, along with its convergence properties, is presented in Section [6]
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Sections [7| and [§] illustrate our approach. We design a launcher and an aircraft
control system, two cases where poles and eigenvector structure play an important
role.

2. Partial eigenstructure assignment

Consider a linear time-invariant system described by the equations

T = Az + Bu

(1) y=Cx

with x € R", u € R™ and y € RP. Given a self-conjugate set A = {\1,...,\,} CC™,
partial pole placement consists in computing a static output feedback control law
u = Ky for such that A;,..., A\, become eigenvalues of the closed-loop system

&= (A+ BKC)x.

As is well-known [17], solving the set of linear equations

U;

[A—)\JHB}{M}:O,

with v; € C", w; € C™, i =1,...,p leads to a (static) control law
(2) K =[wy,...,w)(Cloy,...,v,)) " € R™<P

with the desired closed-loop modes, provided the v; are chosen in such a way that
the p x p matrix C'[vy,...,v,] is invertible, i.e., if span{vy,...,v,} Nker(C) = {0}.
Note that the outlined technique is readily specialized to state-feedback C' = I and
extended to nonzero feedthrough D # 0 and to dynamic compensators through a
preliminary augmentation of the plant [28].

In the case m > 1, it is possible to achieve more. One may then additionally
shape the v;, or w;, e.g. by arranging v;; = 0 or w;, = 0 for certain j, k. Formally
this can be expressed by linear equations

3) e =]

with suitable M; € C™>" N; € C™*™ r; € C™, m; 2 0,1 = 1,...,p, leaving
at least one degree of freedom in each triplet (\;,v;,w;) € C*"™. This is usually
referred to as partial eigenstructure assignment. Typical choices of M;, N;, r; can be
found in our experimental Sections [7] and [§]

The traditional approach to eigenstructure assignment consists in first choosing
the set A C C7, then introducing the desired structural constraints on the eigenvec-
tors v;, w; via the matrices M;, N; and the vector r;, using the remaining degrees of
freedom, and then computing v;, w; accordingly. Unfortunately, fixing the A\; may be
too restrictive, because partial eigenvalue placement does not guarantee stability in
closed-loop, so that some post-processing based on trial-and-error is often required.
Greater flexibility in the design is achieved by moving (\;, v;, w;) simultaneously.

What we have in mind is to interpret the eigenstructure equations as math-
ematical programming constraints and then optimize closed-loop stability subject
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to these constraints. With the definition «(A) := max{Re A : X eigenvalue of A} of
the spectral abscissa, this leads us to an optimization program of the form

minimize «(A+ BKC)
) A-NI, | B V; 0 .
(4) subject to { M, Nil{wi}:ln}forz:l,...,p
|Re\; —ReN)| < 6, [Im A\, —Im \)| < 6;,i=1,...,p
K=W(CV)!asin ({2).

Here the \? € C™ are nominal closed-loop poles, and the d; are tolerances which allow
the poles to move around their nominal values. As soon as K with a(A+BKC) <0
is reached, the optimization of can be stopped with an internally stabilizing
solution of the partial eigenstructure assignment procedure.

3. Including performance criteria

While is a natural approach to optimize closed-loop stability in partial eigen-
structure assignment, it seems even more attractive to include also closed-loop per-
formance or robustness criteria into the set-up. Given a linear time-invariant plant
P in standard form

t= Arx + Byw + Bu
(5) P: 2= Ciyz + Dpw + Djsu
y= Cx + Dyw

where x € R” is the state vector, u € R™ the vector of control inputs, w € R™
the vector of exogenous inputs, y € R? the vector of measurements and z € RP* the
controlled or performance vector, let u = Ky be a static output feedback control
law for . Then the closed-loop performance channel w — z has the state-space
representation

Wz ) z = (Cl + DuKO)ZL‘ + (D11 + DngDgl)w.

Note the slight abuse of notation in because the state-space data of P may
include filters, weightings or other dynamic elements that are not present in . We
assume the distinction will be clear from the context.

Given a self-conjugate eigenvalue set A° = {A},...,A\)} C C~ and tolerances d;,
we now consider the following extension of (4)):
A— NI,

M, N, ol Il ort=1,...,p

|Re\; —ReA)| <6, [Im A\, —Im A\ < 6;,i=1,...,p
K =K(\v,w) as in (2)

minimize || Ty, (K) ||

subject to {

(6)

where \! are nominal closed-loop pole positions, and again conveys additional
structural constraints on v, w. As compared to (), the cost function ||, (K)| in
(@ may now be used to enhance stability and to achieve additional performance or
robustness specifications of the design.
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Standard choices of || - || include the Ho-norm || - ||, the Hy-norm || - ||2, or the
Hankel norm ||-||g. One generally expects that ||T,—.(K)| < oo implies closed-loop
stability, but should this fail, it is possible to add a stability constraint c(\, v, w) =
a(A+BKC)+¢e < 0 to the cast (6]), where ¢ > 0 is some small threshold. Altogether
we propose the following

Algorithm 1. Optimized partial eigenstructure assignment

Input: Nominal modal set A° = {A?,... A0} with distinct X}.

Output: Optimal modal set A = {\y,..., A\ }, v, w;, K*.

> Step 1 (Nominal assignment). Perform standard eigenstructure assignment
based on A? and structural constraints M;, N;, ;. Obtain nominal eigenvectors
v, w), i =1,...,p. Assure that C[vf,...,v)] is invertible and obtain nominal
K°=woCvo)-t,

o Step 2 (Stability and performance). If K assures closed-loop stability and
good performance ||T,_,.(K")||, stop the algorithm. Otherwise, goto step 3.

> Step 3 (Tolerances). Allow tolerances | Re \; — Re \?| < d;, | Im \; — Im \?| <
(5i,i: 1,...,]).

> Step 4 (Parametric clustering). Solve the optimization program (6] using
a nonsmooth descent algorithm with (A% 0% w°) as initial seed.

> Step 5 (Synthesis). Return optimal A = {\;,..., A\, }, v,w, and K*.

4. Structure of eigenproblems

In this section we discuss practical ways to deal with the general nonlinear con-
straint in @ We assume that (A, B) is controllable, which is equivalent to
[A — A, B] having full row rank n for all A in C (see, e.g., [31, Theorem 3.1]). To
deal with , we observe that the m;’s can be distinct and the possibility m; = 0 is
not excluded. We now distinguish two cases.

The first case is when m; > m. Here pole assignment is ensured by pre-solving

for v; in ([3). We get
v = ()\1] — A)_lei .
In this case eigenvector decoupling is only possible in the least-square sense by
minimizing the Euclidean norm of M;v; + N;w; — r;. Upon defining the transfer
function Fj()\) := M;(A — A)™'B + N,, and assuming for simplicity that F;(\) has
full-column rank for X in the neighborhood of the nominal \°, we have
w; = Fi()\i)TTm

where F;(\;)T denotes the Moore-Penrose inverse or left-inverse of F; at A;. Alto-
gether we have derived the expression

(@) [ - ] - [ (T = A5 } F()'r.

Vectors v; and w; are now defined explicitly as functions of \;. It follows that a
parametrization of the control law (2|) in the sense of structured synthesis introduced
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in [2] has been obtained. Tunable variables in this parametrization are the desired
assignable eigenvalues A = {\y,... A\, }.

The rationale in this first case is as follows. We want to gain some flexibility in
the assignment by allowing ); to move in a neighborhood of the nominal \?. Now if
the (v), wY) are computed from (7)) for the nominal value \?; the (v;, w;), depending
continuously on \; via (7), will move in a neighborhood of the nominal (v?,wY), so
that optimization may decrease the cost function and thereby enhance stability and
performance. The outlined approach therefore generalizes eigenstructure assignment

with approximate decoupling as discussed in [28].
If F;()\) is not guaranteed to have full-column rank in the neighborhood \°, the
cast in () could be modified as follows:
minimize max { | Tz (K) ||, max | Ei( ) w; — TZ'HQ}
i=1,....p

(8) subject to |ReX; — ReA)| < &, |[Im A, —Im N\ < 6, i =1,...,p.
K =[wy,...,wy)(Clog,...,0)])"
K closed-loop stabilizing

where p is a penalty parameter used to weigh the relative importance of robustness
and performance as expressed through ||7,_. (K)| against eigenvector shaping.
Here the objective becomes a max-function which is truly nonsmooth and thus
requires special handling.

The second case is when m; < m. Here we partition

B = [B; Qi], Ni =[P, R}, w; = [?l} )

such that B;, P; have m; columns and u; € C™:. Then becomes
A= NI, | B; vi || 0] | @ "
P up || T R, |

M;
A— NI,
M;

Assuming that the matrix

B; . .
i (n+m;) x (n+m;)
2] e

is invertible in a neighborhood of the nominal A}, we get the parametrization
v = vi( i 1), u = ui(Nis i),

which in explicit form is

(9) { Z ] = A;(\)! { ri—_ngti ] .

The idea is now the same as in the first case. Allow ); to move around their
nominal values A}, and ¢; € C™ ™ around the nominal ¢). That also allows the
dependent variables v;, u; to move in a neighborhood of their nominal values v, u?,
and optimization uses this to enhance stability and robustness. In this second case
we have enough degrees of freedom to achieve true decoupling of some of the channels

by satisfying M,v; + N;w; = r; exactly.
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In order to apply nonlinear and nonsmooth optimization techniques to programs
of the form @ it is necessary to provide derivative information at acceptable cost.
As we shall see, this may be implemented by simple linear algebra techniques. We
have the following propositions with proofs given in the Appendix.

Proposition 4.1 (Over-specified eigenstructure). Let K = W(CV)™! with W =
[wy...wp| and V = [vy...v,]. If m;y = m then

0K ow; ov;

10 =10.--=— - KC—--.0] (CV)!
(10) O\ [ o\ O\ } (V)™
where v;, w; are given in (E?]) and

81]@'

oA | _ [ =A)TBEON)M T\ o ap
(11) dw; | = { FL 0w M, (NI — A)“BEF;(\i)'r; .

o\
Proof. See Appendix. O
Proposition 4.2 (Under-specified eigenstructure). Let K = W(CV)™! with W =
[wy...wp] and V = [vy...vp]. Suppose m; < m, partitioning w; = zl} with u; €

C™ and tl = [tl’h Ce ,t(m,mi)i]—r S Cm_mi, then

oK gf\” ov;
—|0.-.. || - K LA -1
B 0k _ [y ] el evy
OK i Ov; .
= NN ki | — K R
Ot {0 Chi Catkz‘ O} V)

where ey; € R™™™i 4s the vector all of whose components are zero, except the kth
component which is one, and

Proof. See Appendix. O

Remark 1. As derivatives have to be evaluated repeatedly in minimization programs,
it is desirable to pre-calculate as many elements as possible in and . This is
what we discuss next. Substantial speed-up can be achieved in the under-specified
case m; < m since A;()\;) is a reduced rank modification of a constant matrix, that
is, not depending on \;. We therefore pre-compute

A B]7' [P, Pi,
M; P| — |Py Pi,l|°
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where Pi, and P, are of size n x n and m; x m;, respectively. Using the Sherman-
Woodbury-Morrison formula [11] for

AN = L\Zl ﬁj + [_o[] (\I) [T 0]
gives

A = [ o APW P (AP Py
TP (1 = APL) T Pl + PhA(L — AP P,

As a consequence, there is only need to compute the inverse of the smaller matrix
(I, — \P%,) to get the entries in (13)).

Remark 2. Our algorithm can be extended to include nonlinear constraints on wv;.
We just add those to program @ Note also that the algorithm will return the
standard nominal modal set A\* = {A?,..., A0} if we choose d; = 0,7 =1,...,p, so
we present a genuine extension of the traditional assignment procedure. 0

5. System norms and their subdifferential in closed-loop

To solve program @ algorithmically, we have to compute function values and
subgradients of the cost function f(x) := || Ty (K(x))||?, where || - || is the H,-
norm || ||, the Ho-norm || - || or the Hankel norm || -|| 7, and where x represents the
decision variables. Here x regroups \; if m; > m, and (\;, ;) if m; <m,i=1,...,p.
The gradients given in , respectively , are generally complex gradients. Al-
gorithmic implementation requires passing from complex to real gradients. This is
done using Wirtinger formulas |12, Section 2.3]. For a complex variable z, we have
that

O0K/ORez = 0K/0z+ 0K/0Zz = 2Re(0K/0z),
0K/0Imz = 3(0K/0z—0K/0z) = —2Im(0K/0z).

For simplicity of the notation, it is assumed from now on that x is a real ¢-
dimensional vector regrouping real and imaginary parts of all free parameters (\;, ¢;).
Partial derivatives with respect to x will be denoted K;(x) := 0K (x)/0x; in the se-
quel of the paper. In consequence it now remains to compute Clarke subgradients
of || T, (K)||* with respect to K. By the generalized chain rule [5], this requires
subgradients of the norm in question, and the derivative of the transfer function
Tw—.(K) with respect to K.

Concerning the closed-loop, and to prepare the following, by setting

Acl:A+BKC, Bcl:Bl+BKD21,
Caq = C1+ D oKC, Dy = D1+ Di2K Do,

the controllability Gramian X and the observability Gramian Y can be obtained
from the Lyapunov equations [31]

(14) AgX + XAl + BB, =0,
(15) ALY + YA+ ClCy=0.
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5.1. The H,-norm. Consider a stable LTI system

a & = Axr + Bw
"1 z=Cxz+ Dw

with state x € R", input w € R, and output z € RP. It is well-known that the
H_ -norm of G is defined as

Gl = SUp G (G(5)) = 51D /A G0) PG,

weR

where o, denotes the maximum singular value of a matrix, and A, denotes the
maximum eigenvalue of a matrix. We now replace G by T,_,.(K) and rewrite

) = [T (KI5 = Sugf(f@w),
we
with f(K,w) := Amax (L= (K, jw)*T,.(K, jw)). Using the notation

i) o) NGl 1 ant (50 8]+ [ P,

G21 (K7 S) * D21 *
and following |4, Lemma 1], closed-loop stability implies that either f(K) = f(K,w)
forallwor f(K) = f(K,w) for a finite number of active frequencies wy, . . .,w,. From

[2, Section IV] we now obtain the Clarke subgradients of f at K as

q
Oy =2 Re (Gar(K, jwi) T (K, gwi) ReUGRE Gra (K, w))
k=1
where Ry is a matrix whose columns form an orthonormal basis of the eigenspace
of dimension r;, € N associated with A\ .« (TUHZ(K, Jwr) T, . (K, jwk)), and where
Ug €Sy, Ug = 0, > {_Tr(Uy) = 1. The symbol S,, stands for the space of
m X m symmetric or Hermitian matrices, and Tr(M) denotes the trace of M. By
the application of the chain rule in [5], we deduce that the Clarke subdifferential of
f at x is the set

Of(x) = {(Tr(Kl(x)Td)U), TH(K,(x) D)) By € af(K)}.

5.2. The Hy-norm. The Hy-norm of a system G of the form

| 2=Ax+ Bw
" o [

is defined as
1 400 1/2
6= (5 [ TGt Glms)

Suppose D does not explicitly depend on K, which is e.g. the case for D5 =0 or
Dy; = 0. Then it is reasonable to assess the closed-loop system via the Hy-norm of
(Acla Bcl; Ccla O) We have

f(K) = HTw—>Z(K>H§ = Tr(BJ-Z—YBcl) = Tr(CchCgl—)-

Using and ([15), it follows from [25, Theorem 3.2] that f is differentiable at each
closed-loop stabilizing K, and

Vf(K)=2(B"Y + D,Cy) XC" +2B"Y ByD,,.
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Therefore,
-
VI(x) = (Te(Ki(x) ' Vf(K)), ..., Tr(K,(x) ' Vf(K)))
for all x for which K (x) is closed-loop stabilizing.

5.3. The Hankel norm. For a stable system G of the form (16]), we think of w(t)
as an excitation at the input which acts over the time period 0 <t < 7. Then the
ring of the system G after the excitation has stopped at time T is z(t) for ¢ > T'. If
signals are measured in the energy norm, this leads to the Hankel norm of G defined
as

00 1/2 T
]|G||H:sup{</ szdt) :z:Gw,/ w'wdt < 1,w(t):Ofort>T}.
0

T>0 T

The Hankel norm [9], 6] can be understood as measuring the tendency of a system
to store energy, which is later retrieved to produce undesired noise effects known as
system ring. Minimizing the Hankel norm ||7,,—,.(K)|| g therefore reduces ringing in
the closed-loop channel w — z.

If we assume as above that D, does not explicitly depend on K, it is reasonable
to assess the channel w — z via the objective

FUK) = | Tuesa(K) | = Anax(XY),

where X and Y are the closed-loop Gramians and ([15)); see also [6, Lemma 1].
Due to positive semidefiniteness of BCZB; and C’CTIC’d, closed-loop stability assures
positive semidefiniteness of X and Y in and ([15). Therefore, although the
product XY need not be symmetric, we have

Amax(XY) = Ama (X 2V X2) = A\ (Y2 XY 2),

which brings us back to the realm of eigenvalue theory for symmetric matrices. Let
7 = X2Y X3 and take R to be a matrix whose columns form an orthonormal
basis of the eigenspace of Z of dimension r € N associated with A, (Z). We

write M;(x) := OM(x)/8x; as before, and M2 short for (Mz);, i = 1,...,q. Then
according to [6, Proposition 1|, the Clarke subdifferential of f at x is

Of(x) = {(Tr(RUR" Z,(x)), ..., Te(RUR" Z,(x)))" : U € S,,U = 0, Tr(U) = 1},
with
(17) Zi(x) =X

i

N

(X)YXE + X3Y;(x)XE + X3V X2 (x).
Here X;(x),Y;(x) and Xi% (x) are the solutions of the following Lyapunov equations
(18)  AuXi(x) + Xi(x)A} = —BK;(x)CX — X(BK;(x)C)"

— BK;(x)D21 B — Bq(BK;(x)Day) ",
(19)  AyYi(x) +Yi(x)Aq = —(BK;(x)C)'Y — Y BK;(x)C

— (D1, K4(x)C) " Cy — C D15 K;(x)C,
(20)  X3XZ(x) 4+ XZ(x)X3 = Xi(x).
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6. Nonsmooth solver

Step 4 of our main Algorithm |1| requires a subroutine to solve @ Here we use
a nonsmooth descent algorithm, presented as Algorithm [2, which we now discuss
briefly. To extend the scope, we consider a constrained optimization programs of
the more abstract form

minimize  f(x)
(21) subject to h(x) <0
Ax <b

where x € R? is the decision variable, and f and h are potentially nonsmooth and
nonconvex. This covers program (), where f(x) = ||Two. (K(x))||* for one of
the norms discussed in Section [f] while the constraint h(x) < 0 represents after
eliminating v, w via , respectively, @ The polydisk constraints | Re \; —Re \?| <
Si, | Im A; —Im A?| < 6; in (6] can easily be converted to the form Ax < b. According
to the cases discussed in Section [4] the decision variable x regroups either the \;, or

the (X;,¢;) as in (9). The cast (8) is also covered by (21).

To solve (21)) we use a progress function at the current iterate x,

F(,x) = max{f(-) = f(x) = vh(X)1, h() = h(x)4},

for some fixed parameter v > 0, which is successively minimized subject to the linear
constraints. Antecedents of this idea can for instance be found in Polak |23, Section
2.2.2] in the smooth case, or Polak and Wardi [24] in a nonsmooth setting, and in
our own contributions [3 &, 6], where more details and convergence proofs can be
found.

Convergence theory of Algorithm [2|is discussed in [8] [6]. The following result is
slightly more general than the main convergence theorem in [8] or [6], but can be
obtained based essentially on the same convergence analysis:

Theorem 6.1. Suppose f and h in program (21)) are lower-C functions in the sense
of [29] such that the following conditions hold:

(i) f is weakly coercive on the constraint set Q = {x € R?: h(x) < 0, Ax < b},
i.e., if xX) € Q and |x?|| — oo, then f(x7) is not monotonically decreasing.

(ii) h is weakly coercive on P = {x € R? : Ax < b}, i.e., if xX) € P and
|x?|| = oo, then h(x’) is not monotonically decreasing.

Then the sequence of serious iterates x) € P generated by Algorithm [2| is bounded,
and every accumulalion point x* of the x/ satisfies x* € P and 0 € 0, F(x*,x*) +
ATy for some multiplier n* > 0 with n*T (Ax* —b) = 0. In other words, x* is either
a critical point of constraint violation, or a Karush-Kuhn-Tucker point of program

(1) O

Note that the functions f, h used in @ are indeed lower-C! functions, see [8, 6],
so our convergence theory applies. Convergence for even larger classes of nonsmooth
functions is discussed in [21], [19]. For additional insight into this type of nonconvex
bundle method see [3], 211, 19, 20].
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Algorithm 2. Nonsmooth optimization subroutine

Parameters: 0 <7<7<1,0<y<I'<1,0<g<o00,qg<T < 0.

> Step 1 (Initialize outer loop). Choose initial iterate x' with Ax! < b and
matrix Q; = Q] with —¢/ < Q; = ¢I. Initialize memory control parameter
Tf > (0 such that Q1 + Tf[ > 0. Put outer loop counter 7 = 1.

o Step 2 (Stopping test). At outer loop counter j, stop if x? is a KKT-point
or a critical point of constraint violation. Otherwise, goto inner loop.

> Step 3 (Initialize inner loop). Put inner loop counter £ = 1 and initialize
T = 7']@. Build initial working model
q)l('axj) = gUZ( - Xj) =+ %( - Xj)TQj<' - Xj)a
where go; € O F(x7,x7).

> Step 4 (Trial step generation). At inner loop counter k find solution y*
of the tangent program

minimize O (y,x’) + Ly — x7||?
subject to Ay < b,y € R"™.
o Step 5 (Acceptance test). If
_ Pyt )
D (y*, %)

put x/*t = y* (serious step), quit inner loop and goto step 8. Otherwise (null
step), continue inner loop with step 6.

Pk Z 7,

> Step 6 (Update working model). Generate a cutting plane my(-,x’) = a; +
gn (- —x7) at null step y* and counter k using downshifted tangents. Compute
aggregate plane mi(-,x/) = a} +g;' (- —x7) at y*, and then build new working
model @, (-, x7) by including cutting plane and aggregate plane.

o Step 7 (Update proximity control parameter). Compute secondary con-
trol parameter

Dyt xd)
T TRy )

{Tk if i < 7,
Tk+1 =

and put

Increase inner loop counter £ and loop back to step 4.

o Step 8 (Update (); and memory element). Update matrix Q; — Q41 re-
specting Q41 = Q].TH and —q/ <X Q)41 = ¢l. Then store new memory element

# {Tk ifpk<F,

T~ =
+1 :
J %Tk if Pr = I.

Increase TJ#H if necessary to ensure Q1 + T}_,’_l] = 0. If T}_,’_l > T then re-set
T}i_H =T. Increase outer loop counter 5 and loop back to step 2.
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7. Control of a launcher in atmospheric flight

We consider attitude control of a satellite launcher in atmospheric flight. The
linear model

& = Ax + Bu
y="Cx
is specified as
[ Zy Zg+ Uy Zy Z, 0 Zy Z, Zy7]
M, M, o 0 M 0 M, O
0 T, 0O 0 7., 0 0 0
. Y., 0 Yo Y, Y. Y, Y, Y,
0 N, O N, N, 0 N, 0 |’
0 P, o 0 B O 0 0
0 L, o 0 L. 0 L, O
L0 F, o 0 F O 1 0 |
Zs, Ms; 0 0 0 0 0 07
B = 0 0 0 Yg Ng 0 0 O
0 0 0 O 0 0 Lg O

The states and controls are defined in Tables [I] and [2| while the vector of measure-
ments isy = [¢ 0 r ¢ p @' € RS The model has been obtained from

TABLE 1. States definitions

name | meaning

vertical velocity (m/s)
pitch rate (deg/s)
pitch angle (deg)
lateral velocity (m/s)
yaw rate (deg/s)

yaw angle (deg)

roll rate (deg/s)

roll angle (deg)

eV I S g

TABLE 2. Controls definitions

name | meaning

B deflection of pitch nozzle actuator (deg)
By deflection of yaw nozzle actuator (deg)
By deflection of roll nozzle actuator (deg)

linearization of the nonlinear equations [16] about a steady state flight point

Up = 88.11 m/s, vo = 0.678 m/s, wo = —1.965 m/s,
po = —0.0006 rad/s, ¢o = 0.0026 rad/s, 7o = 0.0046 rad/s,
6y = 8.38°, b = 3.48°, o = 11.99°,

the procedure being explained in [10]. Numerical data in A, B are gathered in Table
Bl
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TABLE 3. Numerical coefficients at steady state flight point

Zy | -00162 | M, | 0.0022 [[ Y, | -6e-4 || N, | be-4
Z, |87.9-88.11| M, | 0.0148 | Y, | -211 | N, | -M,
Zy -9.48 M, |-0.0005| Y, | Z, | N.|0.0151
Z, | 0.0006 M, | 0.0042 || Y, | -87.9 | N, |-0.0024
Zy | -2.013 T, | 098 |V, | 947 | P, | 0.2078
Z, | -0.687 T, |-0.2084 | Y, |-1.965 | P, | 0.9782
Zy 0.399 Ly 0 Y, [1.3272 | F, | 0.0704
L, 0 L, |-0.0289 || Ls. | 25.89 | F, | -0.015
Zs. | 10.87 Mg, | 4.08 | Vg, |-1087 | Ng, | 4.08

7.1. Control law specifications. The control law specifications include

e Decoupling of the 3 axes (0,q), (¥, ), and (¢, p).
e Well-damped responses to set-points in 6, ¥, and ¢, the selector outputs.
e Settling times around 2.5 seconds.

We use a set-point tracking control architecture with MIMO PI feedback as shown
in Figure [l Tunable matrix gains are therefore Kp and Kj.

Wref + e d c + y
——>0—> [ > & —>0—> ¢ >
A
launcher
Kp [
YH
H <€

selector

FI1GURE 1. Launcher control architecture with MIMO Pl-controller

Tracking performance is incorporated into program @ by minimizing the track-
ing error transfer function T, (/).

Pole placement with integral action is easily formulated using the augmented
state-space matrices

A0 B C 0
r= e o) m= [0 e= [0 1]

The control law is structured conformably upon defining

W =|wy...we], V=[vy...09], [Ay — NiIn1|Ba] [ v; ] —0.

7
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Ka = W(CQV)il, Ka == [—Kp K[] .

7.2. Study 1. In a first study we compare traditional and optimized partial pole
placement without shaping of eigenvectors. We start by choosing reference values
&, w to achieve appropriate second-order system responses. We have chosen the

desired damping £ = %= and natural frequencies
W1 = 2.1,(,(}2 = 2.2,&]3 = 18,
which leads to the nominal modal set A = {)\Y,... A3}, with

N = —w <§—|—j\/1—§2),)\3:—w1
N =~ (4 /T= ) A = —w2
A = —ws (54—]@),)\8: —w3

A =35, \J = —4, \j = —4.5.

1—52)
E-W1-8),
E-WV1-€),

Classical pole placement now leads to the initial controller K° in Algorithm [1l To
find the optimal controller K*, we follow Algorithm [I] and minimize the tracking
error wys — € subject to the pole placement constraint in @ via Algorithm
which returns the optimal controller K*.

/_\/_\A

TABLE 4. Launcher study 1. Cost for initial K° and optimal K*
controllers

Hankel | H H,
K° [66.7208 | 2.3714 | 45.3537
K*| 0.7135 | 1.4058 | 3.0845

We have run program (@ with three different norms, the Hankel norm, the H.-,
and the Hy-norm. The improvements in the cost function can be seen in Table
[l The wandering of the poles during optimization shown in Figure [3] corresponds
to the case of the Hankel norm. Figure [2| shows that decoupling is substantially
improved in all three cases. Note the sluggish responses for the initial controller are
due to unassigned modes of classical eigenstructure assignment. This is in contrast
with the proposed approach in which modes that are left unspecified are indirectly
assigned to achieve additional performance requirements.

7.3. Study 2. In our second study we compare standard and optimized eigen-
structure assignment. We achieve preliminary decoupling of the modes by choosing
structural constraints on eigenvectors v;. These constraints comply with decoupling
requirements of the launcher motion. The eigenvectors v; and its complex conjugate
vy are chosen to have zero entries in the rows corresponding to ¢ and ¢. The eigen-
vector vz and its conjugate vy have entries 0 relative to € and ¢. The eigenvectors
vs and its conjugate vg have zero entries in the rows associated with 6 and . For
the real modes, the eigenvectors are chosen as

v; =[x % 1 x %0 % 0 % %%,
vg =[x % 0 % x1 % 0 % x|,

vg =[x % 0% %0 % 1 % xx%|".
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Hankel controller
- = Hmcontroller

H2 controller

F1GURE 2. Control of a launcher, study 1. Initial and final controllers
obtained respectively by standard and optimized eigenstructure as-
signment in the case where eigenvectors are not structured (m; = 0).
Decoupling is improved for each norm

These structural constraints define the matrices M;, N; of in each case. We have

again tested the Hankel, H,, and Hy-norms in the objective f of @

The optimal controller K* computed by Algorithm [I| for the Hankel norm
gives the value || T(Pyert, K*)||g = 0.7360, while the initial controller K leads to
|T(Pyext, K°)||r = 0.7787. Similar improvements are obtained for the other norms.

The step responses are shown in Figure [
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Pole map of the process of eigenstructure assignment

O Initial poles
[ final poles
i
15-
Be
@
i \

0.5
(%]
x
[
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g of e e e S L
[=2]
©
E

-05F =
_1 = .
¢
g @
“L5¢ % (g)
-2 | | | | | |
6 -5 -4 -3 -2 -1 0

Real axis

FIGURE 3. Control of launcher, study 1. Itineraries of closed-loop
poles in optimized eigenstructure assignment based on the Hankel
program (6

In conclusion, the launcher application shows that decoupling can be significantly
enhanced through optimization even without shaping of the v; (study 1) if the per-
formance channel T, . is used within optimization program @ The second study
shows that even when 0’s are assigned to specific vy’s, the use of optimization is
still useful, as it significantly enhances decoupling as demonstrated by simulation.

8. Application to autopilot design for a civil aircraft

In this section, we consider the longitudinal dynamics for the robust civil aircraft
model (RCAM) at a nominal condition with the aircraft in its standard configura-
tion: aircraft air speed of 80 m/s, aircraft altitude of 305 m (1000 ft), aircraft mass
of 120 tons, aircraft centre of gravity at 23% horizontal MAC and 0% vertical MAC,
flight path angle of 0° (level) and still air (no wind effects). The linear longitudinal
model is given by

= Ax + Bu
y=Cxrx
where states are described in Table , the input vector is u = [, 5th]T with d; the

tailplane deflection and &;, the throttle position. The vector of measurements is
y = [gn. wy z V.]", where n, is vertical acceleration, wy vertical velocity, and V,
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Step Response

From: 6 command From: ¢y command From: @ command
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FiGURE 4. Control of launcher, study 2. Initial and final controller
obtained respectively by standard and optimized eigenstructure as-
signment based on Hankel program with m; = m or m; = m — 1

the air speed. Data borrowed from [7] are given as

[—0.9825 0 —0.0007 —0.0161 0 —2.4379 0.5825 T
1 0 0 0 0 0
—2.1927  —=9.7758 —0.0325 0.0743 0 0.1836 19.6200

A= |773571 —0.7674 —0.2265 —0.6683 0 —6.4785 0

0 —79.8667 —0.0283 0.9996 0 0 0
0 0 0 0 0 —6.6667 0
0 0 0 0 0 0 —6.6667
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TABLE 5. States of the longitudinal model

name | meaning

q pitch rate

0 pitch angle

Uup forward speed

wp upwards velocity

z altitude

Xy the state corresponding to the first order tailplane model
Tin the state corresponding to the first order engine model

s_[000 00 6667 0 i
00000 0 66667 °
1 0 0 O 0 0 0
—0.2661 0 —0.0231 —0.0681 0 —0.6604 0
C = 0 _70.8667 —0.0283 09996 0 0 0
0 0 0 0 1 0 0
0 0 0.9996 0.020 0 0 0

The controller structure of the longitudinal autopilot with tunable gains K;, Kp
is similar to the launcher structure given in Figure [II The output is now y =
[¢ n. wy 2]T, and the selector produces yi = [z V.]T. We next design a closed-loop
controller such that altitude is decoupled from air speed command and conversely.
This leads to decoupling altitude and altitude-tracking modes from forward speed
up, and decoupling of the air speed track mode from the upwards velocity wg. Other
modes are also decoupled from some states to reduce the mutual influence of the
aircraft variables. Accordingly, we take the nominal modes as follows:

ALy =—0.8=+708,
A3y = —0.15 % 50.15,
AN =-0.3, N\ =-04, \)=—-0.5.

The corresponding desired eigenvectors are shaped as

0172:**0******]T,
vsga=[* * x0 % % * **|,
v5:[**0******]T,
ve =[x * 0 x % * x x|
vr=1[% % 0 % % % * * |,

which defines the data M;, N; and r; in . The optimal controller K* computed by
Algorithm [1| gives ||T(Ppert, K*)||zr = 0.6270, while the initial controller K° obtained
by standard assignment had ||T'(Ppert, K°)||zz = 1.5041. The closed-loop eigenvalues



96 IV. ROBUST EIGENSTRUCTURE CLUSTERING

returned by the algorithm are

A2 = —0.8 £ 70.8,

Ag4 = —0.35 £ 70.05,

As = —0.3, \¢ = —0.05, A\ = —0.37,
which shows that some of the poles took indeed the opportunity to wander away from
their nominal values once they were allowed to do so. Step responses are compared

in Figure 5] The interpretation of the results is that optimization is useful to further
enhance decoupling even when eigenvectors are already shaped.

Step Response
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FIGURE 5. Aircraft attitude control. Responses to a step command in
altitude and in air speed. Optimal controller computed by optimized
eigenstructure assignment (m; = 1, m = 2) reduces coupling

9. Conclusion

We have presented a new approach to partial eigenstructure assignment in output
feedback control in which the eigenelements (A, v, w) are allowed to move simulta-
neously in a neighborhood of their nominal values (A\°, v°, w") obtained by standard
partial assignment. The flexibility gained in allowing this is apparent on two fronts.
First, stability of unassigned modes is guaranteed, leading to an internally stable
closed-loop system. Secondly, criteria such as H.,, Hy and Hankel norms can be
incorporated into our formulation to improve performance and/or robustness of the
controlled system. The efficiency of the new approach was demonstrated on two
aerospace applications, control of a launcher in atmospheric flight, and attitude
control of a civil aircraft.
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Appendix

Proof of Propositions[{.1 and[{.3 Let us start by discussing the case m; > m.
Derivatives of w; with respect to A; can be derived from the normal equations
E\)AE,(\)w; = Fy(\)r; or directly from the expression of w; in (7). Assum-
ing F;(\;) is full-column rank, we rewrite F;(\;)T = (F;(\)7Fy(\)) 1 E;(\)f. The
partial derivative of w; with respect to \; is then readily derived by exploiting the
facts that for an invertible matrix M depending smoothly on a parameter ¢, the
derivative of its inverse is obtained as

OM-! oM.
ot~ M e
Also, OF;(\)® /0N, is identically zero since ONF /OX; = 0. This gives
gf? = —(Fi(A»HE(AZ-))—lFi(Ai)H82’9")(E(Ai)HFi(Ai))—lm(Ai)Hri

The derivative of v; is obtained in much the same way using the upper part of .
Finally, collecting the results for w; and v; leads to expression ([11J).
This allows us now to express the terms dK/0)\; where K = W(CV)~!. Using
again the derivative of a matrix inverse, we have that
G(CV)_l 81]2'

= —(cV)~ o {o..-o o---o} (cv)~.

Combining with

—10---0 0---0
o [ }
yields ([10]).

Next consider the under-specified case m; < m. We have that (9 yields
analogously to the over-specified case. Finally, formulas for 0K /0\; and 0K /0ty; in
are obtained from the fact that K = W(CV)~! with V = [v1...v,] and

W= {wl--- 1;’ ...wp}_
OJ
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Nonconvex bundle method with application to a
delamination problem][]

M. N. Dao, J. Gwinner, D. Noll, and N. Ovcharova

Abstract. Delamination is a typical failure mode of composite materials caused
by weak bonding. It arises when a crack initiates and propagates under a destruc-
tive loading. Given the physical law characterizing the properties of the interlayer
adhesive between the bonded bodies, we consider the problem of computing the
propagation of the crack front and the stress field along the contact boundary.
This leads to a hemivariational inequality, which after discretization by finite ele-
ments we solve by a nonconvex bundle method, where upper-C' criteria have to
be minimized. As this is in contrast with other classes of mechanical problems
with non-monotone friction laws and in other applied fields, where criteria are
typically lower-C', we propose a bundle method suited for both types of nons-
moothness. We prove its global convergence in the sense of subsequences and test
it on a typical delamination problem of material sciences.

Keywords. Composite material - delamination - crack front propagation - hemi-
variational inequality - Clarke directional derivative - nonconvex bundle method -
lower- and upper-C'! function - convergence.

1. Introduction

We develop a bundle technique to solve nonconvex variational problems arising
in contact mechanics and in other applied fields. We are specifically interested in the
delamination of composite structures with an adhesive bonding under destructive
loading, a failure mode which is studied in the material sciences. When the prop-
erties of the interlayer adhesive between the bonded bodies are given in the form
of a physical law relating the normal component of the stress vector to the relative
displacement between the upper and lower boundaries at the crack tip, the chal-
lenge is to compute the displacement and stress fields in order to assess the reactive
destructive forces along the contact boundary, as the latter are difficult to measure
in situ. This leads to minimization of an energy functional, where a specific form

“Paper submitted for publication.
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100 V. BUNDLE METHOD WITH APPLICATION TO A DELAMINATION PROBLEM

of nonsmoothness arises in the boundary integral at the contact boundary. After
discretization via piecewise linear finite elements using the trapezoidal quadrature
rule, this leads to a finite-dimensional nonsmooth optimization problem of the form

(1) minimize  f(z)
subject to Ax <b

where f is locally Lipschitz and neither smooth nor convex. Depending on the nature
of the frictional forces, the criterion f may be upper-C! or lower-C!, see e.g. Figure
[} As these two classes of nonsmooth functions behave substantially differently when
minimized, we are forced to expand on existing bundle strategies and develop an
algorithm general enough to encompass both types of nonsmoothness. We prove
its convergence to a critical point in the sense of subsequences, and show that it
provides satisfactory numerical results in a simulation of the double cantilever beam
test [35], one of the most popular destructive tests to qualify structural adhesive
joints.

The difficulty in nonconvex bundling is to provide a suitable cutting plane oracle
which replaces the no longer available convex tangent plane. One of the oldest
oracles, discussed already in Mifflin [21]], and used in the bundle codes of Lemaréchal
and Sagastizabal [16], 17|, or the BT-codes of Zowe [36, B3|, uses the method of
downshifted tangents. While these authors use linesearch with Armijo and Wolfe
type conditions, which allows only weak convergence certificates in the sense that
some accumulation point of the sequence of serious iterates is critical, we favor
proximity control in tandem with a suitable backtracking strategy. This leads to
stronger convergence certificates, where every accumulation point of the sequence
of serious iterates is critical. For instance, in [24] 26| [7] a strong certificate for
downshifted tangents with proximity control was proved within the class of lower-
C! functions, but its validity for upper-C! criteria remained open. An oracle for
upper-C* functions with a rigorous convergence theory can be based on the model
approach of [24], 26, 25], but the latter is not compatible with the downshift oracle.

To have two strings to one bow is unsatisfactory, as one could hardly expect
practitioners to select their strategy according to such a distinction, which might not
be easy to make in practice. In this work we will resolve this impasse and present a
cutting plane oracle based on downshifted tangents, which leads to a bundle method
with strong convergence certificate for both types of nonsmoothness. In its principal
components our method agrees with existing strategies for downshifted tangents,
like |16, 36 19, 20], and could therefore be considered as a justification of this
technique for a wide class of applications. Differences with existing methods occur
in the management of the proximity control parameter, which in our approach has
to respect certain rules to assure convergence to a critical point, without impeding
good practical performance.

The structure of the paper is as follows. Section [ gives some preparatory in-
formation on lower- and upper-C! functions. Section 4| presents the algorithm and
comments on its ingredients. Theoretical tools needed to prove convergence are
presented and employed in sections [3| and [5] Section [6] gives the main convergence
result, while section [7| discusses practical aspects of the algorithm. In section
we discuss the delamination problem, which we solve numerically using our bundle
algorithm.
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Numerical results for contact problem with adhesion based on the bundle-Newton
method of L. Luksan and J. Vlcek [18] can be found e.g. in the book of Haslinger
et al. [12], in [19, 20], and in the more recent [4, 23]. Mathematical analysis and
numerical results for quasistatic delamination problems can be found in [15, 31].

2. Lower- and upper-C! functions

Following Spingarn [34], a locally Lipschitz function f : R" — R is lower-C at
xo, if there exists a compact Hausdorff space K, a neighborhood U of z(, and a
mapping F' : U x K — R such that both F and D,F' are jointly continuous and

(2) f(z) = max{F(z,y):y € K}
is satisfied for x € U. The function f is upper-C! at xg if —f is lower-C! at .

In a minimization problem , we expect lower- and upper-C' functions to be-
have completely differently. Minimizing a lower-C! function ought to lead to real
difficulties, as on descending we move into the zone of nonsmoothness, which for
lower-C! goes downward. In contrast, upper-C' functions are generally expected to
be well-behaved, as intuitively on descending we move away from the nonsmooth-
ness, which here goes upward. The present application shows that this argument is
too simplistic. Minimization of upper-C! functions leads to real difficulties, which
we explain subsequently. In delamination for composite materials we encounter
objective functions of the form

®) fla) = o)+ [ min o)

where f; gathers the smooth part, while the integral term, due to the minimum, is
responsible for the nonsmoothness.

Lemma 2.1. Suppose f, is of class C1 and the f; are jointly of class C*. Then the
function is upper-C* and can be represented in the form

(4) f(ZL’) = fs(x) + min fa(t)(xvt) dt,

oeX Jo

where Y is the set of all measurable mappings o : [0,1] — I.

Proof. Let us first prove (4). For ¢ € 3 and fixed z € R™ the function t
fow(z,t) is measurable, and since min;e; f;(z,t) < fou (2, t) < max;er fi(x, t), it is
also integrable. Hence F(z,0) = fs(z) + fol fow(x,t) dt is well-defined, and clearly
F(z,0) > f(z), so we have inf,cx, F(z,0) > f(z).

To prove the reverse estimate, fix £ € R™ and consider the closed-valued multi-
function @ : [0,1] — 2! defined by ®(t) = {i € I : f;(x,t) = minge; fy(x,t)}. Since
the f;(x,-) are measurable and [ is finite, ® is a measurable multifunction. Choose
a measurable selection o, that is, 0 € ¥ satisfying o(t) € ®(¢) for every ¢ € [0, 1].
Then clearly F(z,0) = f(z). This proves ({).
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Let us now show that f is upper-C'. We consider ¢(z,t) = min;e; fi(z,t). In
view of [34] (-, t) is upper-C' and its Clarke subdifferential Op(-,t) is strictly su-
permonotone uniformly over ¢ € [0,1]. By Theorem 2 in [5], ¢(-, t) is approximately
concave uniformly over ¢ € [0,1]. Integration with respect to ¢ € [0,1] then yields
an approximately concave function with respect to x, which by the equivalences in
[5] and [34] is upper-C"*. O

Note that the minimum is semi-infinite even though [ is finite. Minimization
of cannot be converted into a NLP, as would be possible in the min-max case.
The representation highlights the difficulty in minimizing (3). Minimizing a
minimum has a disjunctive character, and due to the large size of ¥ this could lead
to a combinatorial situation with intrinsic difficulty.

3. The model concept

The model of a nonsmooth function was introduced in [26] and is a key element
in understanding the bundle concept.

Definition 3.1 (Compare [26]). A function ¢ : R* x R* — R is called a model of
the locally Lipschitz function f : R™ — R on the set {2 C R" if the following axioms
are satisfied:

(My) For every x € 2 the function ¢(-,z) : R — R is convex, ¢(z,z) = f(x)
and O1¢(x,x) C Of ().

(M) For every x €  and every € > 0 there exists § > 0 such that f(y) <
é(y, x) + €lly — x| for every y € B(x,0).

(Ms) The function ¢ is jointly upper semicontinuous, i.e., (y;,z;) — (y,z) on
R™ x Q implies limsup ¢(y;, z;) < é(y, ). O

j—o00

We recall that every locally Lipschitz function f has the so-called standard model
Qﬁﬁ(y?x) - f(‘r) + fo(x7y - I)?

where fY(z,d) is the Clarke directional derivative of f at x in direction d. The same
function f may in general have several models ¢, and following |24} 25], the standard
#* is the smallest one. Every model ¢ gives rise to a bundle strategy. The question
is then whether this bundle strategy is successful. This depends on the following

property of ¢.

Definition 3.2. A model ¢ of f on Q is said to be strict at zy € Q if axiom (M)
is replaced by the stronger

(]\72) For every ¢ > 0 there exists 0 > 0 such that f(y) < ¢(y,z) + €|y — x| for
all z,y € B(x,0).

We say that ¢ is a strict model on €2, if it is strict at every zy € €. O

Remark 1. We may write axiom (Ms) in the form f(y) < o(y,x0) + o(|ly — zol|)
for y — o, and (]\/4\2) as f(y) < ¢(y,z) + o(|jly — z||) for x,y — x¢. Except for
the fact that these concepts are one-sided, this is precisely the difference between
differentiability and strict differentiability. Hence the nomenclature.
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Lemma 3.3 (Compare |24, 25]). Suppose f is upper-Ct. Then its standard model
&* is strict, and hence every model ¢ of f is strict. ([l

Remark 2. For convex f the standard model ¢* is in general not strict, but f may be
used as its own model ¢(-,z) = f. For nonconvex f, a wide range of applications is
covered by composite functions f = g o F' with g convex and F' differentiable. Here
the so-called natural model ¢(y,z) = g(F(x) + F'(x)(y — z)) can be used, because
it is strict as soon as F is class C'. This includes lower-C? functions in the sense of
[30], lower-C* functions in the sense of [6], or amenable functions in the sense of
[29], which allow representations of the form f = go F with F of class C'1.

We conclude with the remark that lower-C! functions also admit strict models,
even though in that case the construction is more delicate. The strict model in that
case cannot be exploited algorithmically, and for lower-C! functions we prefer the
oracle concept, which will be discussed in section o

4. Elements of the algorithm

In this section we briefly explain the main features of the algorithm. This con-
cerns building the working model, computing the solution of the tangent program,
checking acceptance, updating the working model after null steps, and the manage-
ment of the proximity control parameter.

4.1. Working model. At the current serious iterate x the inner loop of the algo-
rithm at counter k& computes an approximation ¢ (-, z) of f in a neighborhood of
x, called a first-order working model. The working model is a polyhedral convex
function of the form
(5) ¢r( ) = max a+g'(-— ),

(a,g)ng
where Gy, is a finite set of affine functions y — a + g (y — z) satisfying a < f(z),
referred to as planes. The set G, is updated during the inner loop k. At each step
k the following rules have to be respected when updating G, into Gy 1:

(Ry) One or several cutting planes at the null step y*, generated by an abstract
cutting plane oracle, are added to G 1.

(R2) The so-called aggregate plane (a*, g*), which consists of convex combina-
tions of elements of Gy, is added to Gy 1.

(R3) Some older planes in Gy, which become obsolete through the addition of the
aggregate plane, are discarded and not kept in Gy.

(R4) Every G contains at least one so-called exactness plane (ag,go), where
exactness plane means ag = f(z), go € df(x). This assures ¢p(z,x) = f(z),
hence the name.

(R5) We have to make sure that each working model ¢y satisfies 0y¢x(z,x) C

of ().

Once the first-order working model ¢y (-, x) has been built, the second-order working
model @y (-, x) is of the form

(6) O, 7) = oi(,2) + 5(- —2) Q) — 2),
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where Q(z) = Q(z)" is a possibly indefinite symmetric matrix, depending only on
the current serious iterate x, and fixed during the inner loop k. The second-order
term includes curvature information on f, if available.

4.2. Tangent program and acceptance test. Once the second-order working
model @ is formed and the proximity control parameter 7,_1; — 7, is updated, we
solve the tangent program

7) minimize  Px(y, ) + %y — x|
subject to Ay < b

Here the proximity control parameter 7 satisfies () + 7./ > 0, which assures that
(7) is strictly convex and has a unique solution, y*, called the trial step. The trial
step is a candidate to become the new serious iterate ™. In order to decide whether

y* is acceptable, we compute the test

f@) - b 2
F(x) — Dp(yFoa) ~

where 0 < v < 1 is some fixed parameter. If p, > v, then 27 = 9/* is accepted and
called a serious step. In this case the inner loop ends successfully. On the other
hand, if p, < 7, then y* is rejected and called a null step. In this case the inner
loop k continues. This means we will update working model ®x(-,x) — Py (-, x),
adjust the proximity control parameter 7, — 7511, and solve again.

(8) Pk =

Note that the test corresponds to the usual Armijo descent condition used
in linesearches, or to the standard acceptance test in trust region methods.

4.3. Updating the working model via aggregation. Suppose the trial step y*
fails the acceptance test and is declared a null step. Then the inner loop has to
continue, and we have to improve the working model at the next sweep in order to
perform better. Since the second-order part of the working model 3 (-—2) " Q(z)(-—x)
remains invariant, we will update the first-order part only.

Concerning rule (R,), by the necessary optimality condition for (7)), there exists
a multiplier n* such that

0€ hu(y",z) + m(y" —2) + ATy,
or what is the same,
(Q(x) + D) (y* — ) — AT € g (y*, ).

Since ¢y (-, z) is by construction a maximum of affine planes, we use the stan-
dard description of the convex subdifferential of a max-function.  Writing
Gr = {(ao0,9),..-,(ap,gp)} for p = card(Gy) + 1, we find non-negative multi-
pliers A, ..., A, summing up to 1 such that

Q@)+ D)y —x)— ATy = Z)\igia

and in addition, a; + g, (y* — x) = ¢p(y*,x) for all i € {0,...,p} with \; > 0. We
say that those planes which are active at y* are called by the aggregate plane. In the
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above rule (R3) we allow those to be removed from G;. We now define the aggregate

plane as:
p p
ay = Z Aiti, Gy = Z AiGi-
i=0 i=0

Note that by construction the aggregate plane m}(-,x) = aj + g;' (- — x) at null
step y* satisfies mi(y*, ) = a* + ¢*"(y* — ) = ¢r(y*,2). This construction is
standard and follows the original idea in Kiwiel [I4]. It assures in particular that
Cra(y*,2) = mi(yh,2) + 50" — 2) Q@) (¥ — 2) = Pu(y, @).

4.4. Updating the working model by cutting planes and exactness planes.
The crucial improvement in the first-order working model is in adding a cutting
plane which cuts away the unsuccessful trial step y* according to rule (R;). We
shall denote the cutting plane as my(-,z) = aj, + ¢g' (- — x). The only requirement
for the time being is that a; < f(z), as this assures ¢p41(z,2) < f(x). Since we
also maintain at least one exactness plane of the form mg(-, ) = f(z) + g4 (- — z)
with go € 0f(z), we assure ¢p1(z,x) = Ppyq(z,2) = f(x). Later we will also have
to check the validity of (Rs).

It is possible to integrate so-called anticipated cutting planes in the new working
model Gi ;. Here anticipated designates all planes which are not based on the rules
exactness, aggregation, cutting planes. Naturally, adding such planes can not be
allowed in an arbitrary way, because axioms (R;) — (Rs5) have to be respected.

Remark 3. It may be beneficial to choose a new exactness plane mg(-,x) = f(x) +
g" (-—x) after each null step y, namely the one which satisfies mo(y, z) = f°(z, y—=).
If z is a point of differentiability of f, then all these exactness planes are identical
anyway, so no extra work occurs. On the other hand, computing g € df(x) such
that ¢'(y — z) = f°(x,y — ) is usually cheap. Consider for instance eigenvalue
optimization, where f(z) = A\ (F(z)), z € R", FF: R" — §™ and A\; : S — R is
the maximum eigenvalue function of S™. Then f%(z,d) = (X, D) = \(Q" DQ),
where X = F(x), D = F'(x)d, and where @) is a t X m matrix whose columns
form an orthogonal basis of the maximum eigenspace of X of dimension ¢ [3]. Then
G =QQ" € 0N (X) attains N (X, D), hence g = F'(2)*QQ" attains f'(x,d). Since
usually ¢ < m, the computation of ¢ is cheap.

4.5. Management of proximity control. The central novelty of the bundle
methods developed in [24], 26, [I] is the discovery that in the absence of convex-
ity the proximity control parameter 7 has to follow certain basic rules to assure
convergence of the sequence 27 of serious iterates. This is in contrast with convex
bundle methods, where 7 could in principle be frozen once and for all. More pre-
cisely, suppose ¢ (-, r) has failed and produced only a null step *. Having built the
new model ¢y.1(-, z), we compute the secondary test

f(@) = Qppr (¥, 2) .
where 0 < v <7 < 1 is fixed. Our decision is

2 ifpp >y
(10) Thet = { T if pr <7

(9) Pr =

)
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The rationale of @D is to decide whether improving the model by adding planes will
suffice, or shorter steps have to be forced by increasing 7.

The denominator in @D gives the model predicted progress f(z) — én(y*, z) =
dr(r,2) — dr(y*,2) > 0 at y*. On the other hand, the numerator f(z) — ¢pi1(y*, )
gives the progress over  we would achieve at y*, had we already known the cutting
planes drawn at y*. Due to aggregation we know that ¢ 1(v*,2) = ¢r(y*, ), so
that pr < 1, but values p, &~ 1 indicate that little to no progress is achieved by
adding the cutting plane. In this case we decide that the 7-parameter must be
increased to force smaller steps, because that reinforces the agreement between f

and ¢k+1('7 CB)

In the test we replace pp = 1 by pr = 7 for some fixed 0 < v <75 < 1. If
pr < 7, then the quotient if far from 1 and we decide that adding planes has still
the potential to improve the situation. In that event we do not increase .

Let us next consider the management of 7 in the outer loop. Since 7 can only
increase or stay fixed in the inner loop, we allow 7 to decrease between serious steps
x — a7, respectively, 27 — 277!, This is achieved by the test

F) — fat)
F(?) — By (L a0)

where 0 < v < I" < 1 is fixed. In other words, if at acceptance we have not only
pr; = 7, but even py. > T', then we decrease 7 at the beginning of the next inner
loop j + 1, because we may trust the model. On the other hand, if v < pp; < T at
acceptance, then we memorize the last 7-parameter used, that is 75, at the end of
the jth inner loop.

(11) Pr; =

Remark 4. We should compare our management of the proximity control parameter
7 with other strategies in the literature. For instance Mikeld et al. [I9] consider a
very different management of 7, which is motivated by the convex case.

4.6. Statement of the algorithm. We are now ready to give our formal statement
of Algorithm [1] (See next page).

5. Nonconvex cutting plane oracles

In the convex cutting plane method [32} [[3] unsuccessful trial steps y* are cut
away by adding a tangent plane to f at y* into the model. Due to convexity, the
cutting plane is below f and can therefore be used to construct an approximation
of f. For nonconvex f, cutting planes are more difficult to construct, but several
ideas have been discussed. We mention [II, 2I]. In [24] we have proposed an
axiomatic approach, which has the advantage that it covers the applications we are
aware of, and allows a convenient convergence theory. Here we use this axiomatic
approach in the convergence proof.

Definition 5.1 (Compare |24]). Let f be locally Lipschitz. A cutting plane oracle
for f on the set 2 is an operator & which, with every pair (z,y),  a serious iterate
in 2, y € R™ a null step, associates an affine function my (-, ) = a+g'(-—z), called
the cutting plane at null step y for serious iterate x, so that the following axioms
are satisfied:
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Algorithm 1. Proximity control algorithm for (1)

Parameters: 0 <y<I'<1l,7<7<1,0<g<o00,q<T < 0.

> Step 1 (Initialize outer loop). Choose initial guess x! with Az' < b and
an initial matrix Q; = Q] with —q/ < Q; =< ¢/. Fix memory control parameter
7% such that Q, + 741 = 0. Put j = 1.

o Step 2 (Stopping test). At outer loop counter j, stop if 0 € df(27) + ATn*
for some multiplier n* > 0. Otherwise goto inner loop.

> Step 3 (Initialize inner loop). Put inner loop counter £ = 1 and initialize
T-parameter using the memory element, i.e., 71 = Tf. Choose initial convex
working model ¢;(-,27), possibly recycling some planes from previous sweep
j—1,and let (-, 27) = ¢1(-,27) + (- — 27) T Q;(- — 29).

> Step 4 (Trial step generation). At inner loop counter k solve tangent pro-
gram

min p(y, 27) + Zlly — 27|

The solution is the new trial step 3/*.
o Step 5 (Acceptance test). Check whether
o = F@) — f6*)
f(ad) = u(y*, a7)
If this is the case put 2/*! = y* (serious step), quit inner loop and goto step 8.
If this is not the case (null step) continue inner loop with step 6.

> 1.

> Step 6 (Update working model). Build new convex working model ¢4 (-, %)
based on null step y* by adding an exactness plane mﬂk(-, 2?) satisfying
mi(y*, 27) = fO(ad, y* —a7), a downshifted tangent my (-, #7), and the aggregate
plane mj(-, 7). Apply rule (R3) to avoid overflow. Build @, (-, 27), and goto
step 7.

o Step 7 (Update proximity parameter). Compute

5 — f(@?) = @piq (v, 29)
ET (@) = By ad)

Tg, if ﬁk < ”7 (bad)
Te4+1 =

21, if pr, =7 (too bad)
Then increase counter k£ and continue inner loop with step 4.

o Step 8 (Update (); and memory element). Update matrix (); — (Q;i1, re-
specting Q41 = Q]-TH and —qgI < Q41 = ¢l. Then store new memory element

T, fy<pe<D (not bad)

7, i pp =T (good)

LA f
Increase 7/, if necessary to ensure ;11 + 7,1 > 0.

o Step 9 (Large multiplier safeguard rule). If TJ@H > T then re-set Tjt-iﬂ =
T. Increase outer loop counter j by 1 and loop back to step 2.
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(O1) For y = x we have a = f(x) and g € 0f(x).

(O2) Let y; — x. Then there exist ¢; — 07 such that f(y;) < my,(y;,r) +
gilly; — |-

(O3) Let z; — x and y;,y; — y. Then there exists z € R” such that
limsupm,+(y;, z;) < m.(y, ). O

j—o0 J
As we shall see, these axioms are aligned with the model axioms (M;) — (Ms).
Not unexpectedly, there is also a strict version of (O,).

Definition 5.2. A cutting plane oracle & for f is called strict at xq if the following
strict version of (Oy) is satisfied:

Ag uppose vy;,r; — . en there exist ¢; — suc a Yi) <
0s2) S iy X Then th t g 0" such that f(y;) <
my, (Y, 25) + €5lly; — ;. O

We now discuss two versions of the oracle which are of special interest for our
applications.

Ezample 5.1 (Model-based oracle). Suppose ¢ is a model of f. Then we can generate
a cutting plane for serious iterate x and trial step y by taking g € 01¢(y,z) and
putting

my(-,2) = d(y,2) +9' (- —y) = by, 2) +g' (x —y) +g' (- — ).
Oracles generated by a model ¢ in this way will be denoted &,. Note that Oy
coincides with the standard oracle if f is convex and ¢(-,x) = f, i.e., if the convex
f is chosen as its own model. In more general cases, the simple idea of this oracle is
that in the absence of convexity, where tangents to f at y are not useful, we simply
take tangents of ¢(-,x) at y. Note that the model-based oracle 0, is strict as soon
as the model ¢ is strict. O

Example 5.2 (Standard oracle). A special case of the model-based oracle is obtained
by choosing the standard model ¢*. Due to its significance for our present work we
call this the standard oracle. The standard cutting plane for serious step x and null
step y is mi (-, x) = f(x) +¢' (- —x), where the Clarke subgradient g € df(x) is one
of those that satisfy ¢'(y — z) = f°(z,y — ). The standard oracle is strict iff ¢*
is strict. As was observed before, this is for instance the case when f is upper-C'.
Note a specificity of the standard oracle: every standard cutting plane mg(, x) is
also an exactness plane at x. O

FEzample 5.3 (Downshifted tangents). Probably the oldest oracle used for nonconvex
functions are downshifted tangents, which we define as follows. For serious iterate x
and null step y let ¢(-) = f(y) +g' (- —y) be a tangent of f at y. That is, g € 9f(y).
Then we shift ¢(-) down until it becomes useful for the model (f]). Fixing a parameter
¢ > 0, this is organized as follows: We define the cutting plane as m}(-,z) = t(-) — s,
where the downshift s > 0 satisfies

s = [t(x) = f(2) +clly — 2[*]+
In other words, m}(-,z) = a+ g'(- — x), where a = min{t(z), f(z) — clly — z|]*}.
Note that this procedure aways satisfies axioms (O;) and (O3), whereas axioms (Os),
respectively, (52), are satisfied if f is lower-C' at zy. In other words, see [24], for f
lower-C" this is an oracle, which is automatically strict. 0
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Motivated by the previous examples, we now define an oracle which works for
both lower-C' and upper-C*.

Ezample 5.4 (Modified downshift). Let = be the current serious iterate, y a null
step in the inner loop belonging to x. Then we form the downshifted tangent
my(-,z) == t(-) — s, that is, the cutting plane we would get from the downshift

oracle, and we form the standard oracle plane mi(-,z) = f(x) + g' (- — x), where
the Clarke subgradient g satisfies f%(z,y — ) = ¢ (y — x). Then we define

{ my( @) if my(y, @) = mi(y, z)

my (-, z) =
() mh(-,x) else

In other words, among the two candidate cutting planes mi(-,x) and mg(~,x), we
take the one which has the larger value at the null step .

Note that this is the oracle we use in our algorithm. Theorem [6.1] clarifies when
this oracle is strict. l

Given an operator ¢ which with every pair (x,y) of serious step x and null step
y associates a cutting plane m,(-,x) = a+ g' (- — z), we fix a constant M > 0 and
define what we call the upper envelope function of the oracle

o' (-, x) = sup{my (-, z) : [ly — =|| < M}.
The crucial property of ¢! is the following

Lemma 5.3. Suppose O : (x,y) — my(-,x) is a cutting plane oracle satisfying

azioms (O1) — (O3). Then ¢ is a model of f. Moreover, if the oracle satisfies (52),
then @' is strict. O

The proof can be found in [24]. We refer to ¢! as the upper envelope model
associated with the oracle &. Since in turn every model ¢ gives rise to a model-
based oracle, 0y, it follows that having a strict oracle and having a strict model
are equivalent properties of f. Note, however, that the model ¢' is in general not
practically useful. It is a theoretical tool in the convergence proof.

Remark 5. If we start with a model ¢, then build &, and go back to ¢', we get
back to ¢, at least locally.

On the other hand, going from an oracle & to its envelope model ¢!, and then
back to the model based oracle 0+ does not necessarily lead back to the oracle &.

We are now in the position to check axiom (Rj).

Corollary 5.4. All working models ¢ constructed in our algorithm satisfy
O1¢x(z, ) C Of (). O

6. Main convergence result

In this section we state and prove the main result of this work and give several
consequences.
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Theorem 6.1. Let f be locally Lipschitz and suppose for every x € R™, f is either
lower-C' or upper-C' at x. Let z' be such that Az' < b and {x € R" : f(x) <
f(x'), Az < b} is bounded. Then every accumulation point x* of the sequence x7 of
serious iterates generated by Algorithm (1| is a KKT point of .

Proof. The result will follow from [24, Theorem 1] as soon as we show that down-
shifted tangents as modified in Example [5.4] and used in the algorithm is a strict
cutting plane oracle in the sense of definition The remainder of the proof is to
verify this.

1) Let us denote cutting planes arising from the standard model ¢* by mg(~, x),
cutting planes obtained by downshift as (-, 2) = t(-)—s, and the true cutting plane
of the oracle as my (-, ). Then as we know my (-, z) = m}(-, ) it m} (y,z) = mi(y, ),
and otherwise m,(-,z) = mg(, x). We have to check (Oy), (62), (O3).

2) The validity of (O) is clear, as both oracles provide Clarke tangent planes to
f at x for y = x.

3) Let us now check (Os). Consider z; — x, and y;,y;” — y. Here y; is a null
step at serious step x;. Passing to a subsequence, we may distinguish case I, where
m,+ (-, ;) = szr(-,xj) for every j, and case II, where m + (-, z;) = m}(-,@) for

J g J J

every j.

Consider case I first. Let mij (yj, ;) = f(x;) + ng(yj — x;), where g; € 0f(x;)
satisfies fO(z;,y; — ;) = g (y; — ;). Passing to yet another subsequence, we
may assume g; — ¢, and upper semi-continuity of the Clarke subdifferential gives
g € 0f(x). Therefore myj(yj,:cj) = f(z;) + g/ (yy — ;) = fl@)+g"(y —x) <

mg(y, x) < my(y,x). So here (Os) is satisfied with z = y.

Newt consider case II. Here we have my+ (yj,75) = ty,(y;) — 55, where t, () is

a tangent to f at y; with subgradient g; € df(y]), and s; is the corresponding
downshift

sj = [tg; (z5) — fla5) + cllyy — xl°] -
Passing to a subsequence, we may assume ¢g; — g, and by upper semi-continuity
of Of we have g € 0f(y). Therefore s; — [t,(x) — f(z) + clly — z||*], =: s, where
uniform convergence t,,(y;) — t4(y) occurs due to the boundedness of df. But now

we see that s is the downshift for the pair (x,y) when g € 9f(y) is used. Hence
M+ (yj, xj) — mj(y, x), and since mi(y, x) < my(y,x), we are done. So again the z

in (O3) equals y here.

4) Let us finally check axiom (62) Let z;,y; — x be given. We first consider
the case when [ is upper-C' at . We have to find ¢; — 07 such that f(y;) <
my, (45, 2;) + €5]ly; — ;]| as j — oo, and by the definition of the oracle, it clearly
suffices to show f(y;) < mgj (yj, z;) + €;lly; — z;||. By Spingarn [34], or Daniilidis
and Georgiev [5], — f, which is lower-C" at z, has the following property: For every
e > 0 there exists 6 > 0 such that for all 0 <t < 1 and y, z € B(z,9),

Fly) S f)+17 (fz+tly —2) = f(2)) el =)z —y].
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Taking the limit superior ¢ — 0% implies

F) < @)+ f(zy—2) +elly =z < f(2) + 2y — 2) +elly — 2.

Choosing z = z;, y = y;, 0; = |ly; — zj|| = 0, we can find ¢; — 0% such that
Flys) < flag) + fOag, y;— x5) +e5lly; — 25, hence f(y;) < mi (y;,2;) +¢5lly; — 5]
by the definition of m%j(-, z;). That settles the upper-C! case.

Now consider the case where f is lower-C' at z. We have to find ¢; — 0
such that f(y;) < my,(y;,7;) + ¢jlly; — 24|l as j — oo, and it suffices to show
fly;) < mj (ys,x) + gjlly; — x5l Since my (yj, x;) = f(y;) — sj, where s; is the
downshift s, = [t(z;) — £(z;) + cllys — 55[12L,, and £(-) = F(;) + 9] (- — ;) for some
gj € 0f(y;), it suffices to exhibit ¢; — 07 such that f(y;) < f(y;)—s;+e;lly;—=;], or
what is the same, s; < ¢;||y; — ;. For that it suffices to arrange [t(x;) — f(7;)], <
gjlly; — x|, because once this is verified, we get s; < [t(x;) — f(x;)] +clly; — ;] <
(gj+clly;—x;Dlly;— ;|| =: &lly;—=;||. Note again that by [34, 5] f has the following
property at z: For every ¢ > 0 there exists § > 0 such that f(tz + (1 — t)y) <
tf(z)+ (1 —t)f(y) +et(l —t)||z — y|| for all y, 2z € B(z,d). Dividing by ¢ > 0 and
passing to the limit ¢ — 0T gives fO(y,2 —y) < f(2) — f(y) + €|ly — 2||, using the
fact that f is locally Lipschitz. But for every g € 9f(y), ¢'(z —y) < fo(y, 2z — v).
Using |ly; — x;]| =: 0; — 0 and taking y = y;, z = x;, this allows us to find ¢; — 0"
such that g (x; — y;) < f(z;) — f(y;) +€;lly; — ;. Substituting this above gives
t(x;) — flz;) = fly;) — flz;) + ng(asj —y;) < €5lly; — ;|| as desired. That settles
the lower-C' case. O

7. Practical aspects of the algorithm

In this section we discuss several technical aspects of the algorithm, which are
important for its performance.

7.1. Stopping. The stopping test in step 2 of the algorithm is stated in this form
for the sake of the convergence proof. In practice we delegate stopping to the inner
loop using the following two-stage procedure.

If the inner loop at serious iterate 27 finds the new serious step 277! such that

27 — 27| |f (@) = f(27)]
14 [l 14 [f(a)]

then we decide that 277! is optimal. In consequence, the (j + 1)st inner loop will
not be executed. On the other hand, if the inner loop has difficulties terminating
and produces five consecutive null steps y* where

f (") = f(a)]
1+ [f(2)]
or if a maximum number k., of allowed steps in the inner loop is reached, then we

decide that 27 is optimal. In our experiments we use tol; = 107°, toly = 107°, and
kmax = 50.

< tOll, < t0127

ly* — 7|

W =21 ol
1+ |27 '

< toly,
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7.2. Recycling of planes. At the beginning of a new inner loop at serious step
2/t we do not want to start building the working model ¢;(-, z7™!) from scratch.
It is more efficient to recycle some of the planes (a,g) € Gy, in the latest working
model gzﬁkj(-,xj). In the convex cutting plane method, this is self-understood, as
cutting planes are affine minorants of f, and can at leisure stay on in the sets G at
all times j, k. Without convexity, we need the following recycling procedure:

Given a plane m(-,27) = a + ¢" (- — 27) in the latest set Gk, we form the new
downshifted plane

m('v mj—H) = m('v xj) -5
where the downshift is organized as

s = [m(a™ 27) = fa/™) +cfa? —27|7] .

In other words, we treat m(-,z7) like a tangent to f at null step 27/ with respect to
the serious step 71! in the downshift oracle. We put

m( ) =a+g'(—a)) —s=a—s+g' (@ —27) +g" (- =27,

and we accomodate (a — s + g' (z9t! — 27),g) € G, at the beginning of the (j +
1)st inner loop. In the modified version we only keep a plane of this type in G
after comparing it to the exactness plane mg(-,29t1) = f(a/*1) + g7 (- — 2911),
g € Of(27*1), which satisfies g' (27 — 27%1) = fO(2/*1 27 — 27*1). Indeed, when
m(x?, 29T > mo(x?, 2971), then we keep the downshifted plane, otherwise we add
mo(+, z7T1) as additional exactness plane.

8. The delamination benchmark problem

The interface behavior of laminated composite materials is modeled by a non-
monotone multi-valued function 07, characteristic of the interlayer adhesive placed
at the contact boundary I'.. In more precise terms, Jj is the physical law which
holds between the normal component —S,,(s)|I'. of the stress vector and the relative
displacement wus(s)|T'., or jump, between the upper and lower boundaries. A typical
law 0j for an interlayer adhesive is shown in Figure [1| (left). In the material sciences,
the knowledge of 0j is crucial for the understanding of the basic failure modes of
the composite material.

The adhesive law 07 is usually determined experimentally using the double can-
tilever beam test [35] or other destructive testing methods. The result of a typical
experiment is shown schematically in Figure [3| from [35], where three probes with
different levels of contamination have been exposed. While the intact material shows
stable propagation of the crack front (dashed curve), the 10% contaminated speci-
men shows a typical zig-zag profile (bold solid curve), indicating unstable crack front
propagation. Indeed, when reaching the critical load P = 140N, the crack starts
to propagate. Since by the growth of the crack-elongation, the compliance of the
structure increases, the crack propagation slows down and the crack is "caught",
i.e., stops at us = 0.25mm and the load P in the structure drops from P = 140N to
P = 40N. Thereafter, due to the continuously increased load, the crack starts again
to propagate until reaching another critical load level at P = 90N and uy = Smm.
This phenomenon occurs five to six times, as seen in Figure
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FIGURE 1. Left image shows non-monotone delamination law 07,
leading to an upper-C! objective. Right image shows non-monotone
friction law, leading to a lower-C! objective

The 50% contaminated specimens (dotted curve) shows micro-cracks that appear
at a finer level and are not visible in the Figure 3] The lower level of the adhesive
energy, which is represented by the area below the load-displacement curve, indicates
now that this specimen is of minor resistance.

Even though the displacement uy in Figure [3|can only be measured at the crack
tip, in order to proceed one now stipulates the law 0j all along s € I'. by assuming
that the normal stresses S, (s)|[. follow the measured behavior

(12) — Sn(s) € 0j(s,ua(s)), s el

Under this hypothesis one now solves the variational inequality for the unknown
displacement field u = (u1, u2), and then validates (12). Note that S,(s)|T. is the
truly relevant information, as it indicates the action of the destructive forces along
I'., explaining eventual failure of the composite. In current practice in the material
sciences, this information cannot be assessed by direct measurement, and is therefore
estimated by heuristic formulae [35]. Our approach could be interpreted as one such
estimation technique based on mathematical modeling.

1 TfT
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FIGURE 2. Schematic view of cantilever beam testing. Under applied
traction force F; the crack front propagates to the left. In program
traction force F, and crack front length are given, while the corre-
sponding displacement u and reactive forces —S,|I". along the contact
boundary I'. have to be computed

8.1. Delamination study. Within the framework of plane linear elasticity we
consider a symmetric laminated structure with an interlayer adhesive under loading
(see Fig. . Because of the symmetry of the structure, it suffices to consider only
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the upper half of the specimen, represented by Q0 C R2 The Lipschitz boundary T
of €2 consists of four disjoint parts I'y, ['c, ', and I'p,. The body is fixed on Ty, i.e.,

u;=0onlYy, 1=1,2.
On I'p, the traction forces F are constant and given as
F=(0,F;) onlp.

The part I'p, is load-free. We adopt standard notation from linear elasticity and
introduce the bilinear form of linear elasticity

(13) a(u,v) = /Q c(u) : o(v)dz,

where u = (uy, us) is the displacement vector, e(u) = $(Vu+ (Vu)”) the linearized
strain tensor, and o(v) = C : ¢(v) the stress tensor. Here, C is the elasticity tensor
with symmetric positive L> coefficients. The bilinear form is symmetric and due to
the first Korn inequality, coercive. The linear form (g, -) is defined by

(g,v) = Fg/ Vg ds.
FFI

On the contact boundary I'. we have the unilateral constraint
ug =0 a.e. onl,
and we apply the non-monotone multi-valued adhesive law
(14) — Su(s) € 0j(s,uq(s)) fora.a.sel..
Here S,, = o;jn;n;, where n = (ny,ny) is the outward unit normal vector to I'...

A typical non-monotone law 0j(s,-) for delamination, describing the behavior
of the adhesive, is shown in Fig. This law is derived from a nonconvex and
a nonsmooth locally Lipschitz super-potential j expressed in terms of a minimum
function. In particular, j(s,-) is a minimum of four convex quadratic and one linear
function.

We also assume that tangental traction can be neglected on I, i.e., Si(s) = 0.
The weak formulation of the delamination problem is then given by the following
hemivariational inequality: Find u € K such that

(15) amw—u»y/j%mmgwx@—ww»@>wgv—w Vvek

where j°(s,u;d) is the Clarke directional derivative of j(s,-) at u in direction d, K
is the nonempty, closed convex set of all admissible displacements defined by
K={veV :v>0 on I'.},
contained in the function space
V={ve H(QR?*) : v=0on I',}.
The potential energy of the problem is

T1(v) = Sa(v,v) + J(v) — {g,v),
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where J : V' — R defined by

Iw) = [ s en(s)) ds
is the term responsible for the nonsmoothness. Using the potential energy, the
hemivariational inequality can be transformed to the following nonsmooth,
nonconvex constrained optimization problem of the form

minimize II(u)

(16) subject to ue K

where the objective is upper-C', because the super-potential j(s, -) is a minimum. In
particular, we have an objective of the form , where the smooth part f; comprises
1

3a(v,v) — (g, V), while the nonsmooth part J(v) = fFCj(s,vg(s)) ds has the form

with a finite index set I once the boundary integral is suitably parametrized.
According to the existence theory in [22], problem has at least one Clarke

critical point u* satisfying the necessary optimality condition

0 € 0II(u*) + Nk (u*),

where N (u) is the normal cone to K at u, and vice versa, by a result in [20] every
critical point of IT on K is a solution of (see also [19]).

8.2. Discrete problem. We consider a regular triangulation {7} of €2, where we
first divide (2 into small squares of size h and then each square by its diagonal into
two triangles. To approximate V and K we use a piecewise linear finite element
approximation and set

Vh = {Uh € C(ﬁ, R2) : Uh\T c (Pl)g, vT € 771, vhh“u = 0},

K, = {Uh eV, : UhQ(SV) >0 Vs, € fc\fu}

Similar to low order finite element approximations of nonsmooth convex contact
problems [8, 9], we use the trapezoidal quadrature rule to approximate the functional
J by

1

(17)  Jn(vn) = 3 D Isusustl (s vna(50)) + 5 (5041, vn2(s041))]

Sy efc \fu

where we are summing over the nodes s, on the contact boundary T'.\I',, with
sy+1 being the neighbor of node s, on I'. in the sense of integration. This can be
regrouped as

Jn(vn) = Z, v (8u,Un2(8v)) = Z, €y 1D 5i (50, Upa(50))
ENIS VAN sp€T\Ly
with appropriate weights ¢, > 0. Here, I is the set of zig-zags in the graph of 9;.

The bundle algorithm is applied to minimize the discrete functional

(18) Hh(vh) = %a(vh,vh) + Jh(vh) — <g,’Uh> on Kh.
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FIGURE 3. Load-displacement curve determined by double cantilever
beam test. Dashed curve shows stable behavior for material without
contamination. The 10% contaminated specimen (bold solid curve)
shows unstable crack growth. After initial linear growth, when the
critical load P = 140N is reached, the crack starts to propagate.
But then the propagation speed slows down, since by the crack the
compliance of the specimen increases, and the crack is "caught" at
ug = 0.25mm. The load P drops from P = 140N to P = 40N. Then,
by the constantly applied traction force, there is a linear growth of the
load P from P = 40N to the critical load P = 90N, where the crack
propagates again and stops at us = dmm, with the load now reduced
to P = 30N. The 50% contaminated specimen exhibits micro-cracks

not visible at the chosen scale.

Introducing an index set N for the nodes s, on the contact boundary T, we may
pull out the minimum from under the sum, which leads to the expression

1 . .
I, (vp) = §a(vh,vh) + min ZC,,]L'(V)(SV,U}LQ(SV)) — (g, vn).
VEN

This is the discrete version of (4), where Sa(vy, vy) — (g, vp) is the smooth term f;,

and Jp, the nonsmooth part.
While computation of Clarke subgradients is straightforward here, we still have
to explain how the matrix @ = Q(v) in the second-order working model (6] is chosen.

Discretizing the quadratic form of linear elasticity as a(vy,vy) = v;Avh with the
symmetric stiffness matrix A, and observing that (g, v,) = g vy is linear, we choose
Q) = A+ cn V%iu)(sv,vn(s,)), where i(v) € I is one of those indices, where
the minimum min,e; j;(s,, vpa(s,)) is attained.

For convergence of the lowest-order finite element approximation used here we
refer to the results in [27]. Higher-order approximations with no limitation in the
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polynomial degree, which lead to nonconforming approximation of unilateral con-
straints, have only recently been analyzed for monotone contact problems, see [10].

8.3. Numerical results. We present numerical results obtained in a delamination
simulation with modulus of elasticity £ = 210 GPa and Poisson ratio v = 0.3
corresponding to a steel specimen. In all examples we use the benchmark model of
[2] with geometrical characteristics (0, 100) x (0, 10) in [mm] and thickness 5bmm. We
apply our bundle method to and compare the results to those obtained by the
regularization technique in [27, 28]. All computations use piecewise linear functions
and the discretization 40 x 4 corresponding to h = 0.25cm. In this case, the number
of the unknowns in the discrete problem ([18) is 80.

T T

—+— F,=0.2 N/mm —— F,;=0.2 Nimm?
— 2 |

F,=0.4 N/mm F;0.4 N/mm \ A

—+— F,=0.6 N/mm? p

2
2

—+— F,=0.6 N/mm?
5 F,=0.8 N/mm? /
2

2
0.3} F,=0.8 N/mm L 5
—F— F,LON/mm*® /

—+— F,=1.0 N/mm #

0.2F

Normal stresses — N/mm?
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FIGURE 4. Upper: regularization method of [27, 28|. Lower: opti-
mization method. Left image shows vertical displacement us for 5
different values of F,. Right image shows vertical component of reac-
tive force along contact boundary for same 5 scenarios

TABLE 1. Regularization. Vertical displacement [mm| at 4 interme-
diate points for same 5 scenarios

| BBIN/mm?] || wus(zy) | walwa) | welws) | wo(wy) |
0.2 4.154500e-06 | 1.394500e-05 | 2.601700e-05 | 3.858700e-05
0.4 8.308100e-06 | 2.788800e-05 | 5.202800e-05 | 7.716600e-05
0.6 1.633200e-05 | 5.622700e-05 | 1.080000e-04 | 1.640000e-04
0.8 2.792500e-05 | 9.663100e-05 | 1.860000e-04 | 2.810000e-04
1.0 4.600600e-05 | 1.590000e-04 | 3.080000e-04 | 4.660000e-04
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TABLE 2. Optimization. Vertical displacement [mm| at four interme-
diate points for same 5 scenarios

| B[N/mm?] || us(ay) ug (o) us(x3) uy(zg) |
0.2 4.022500e-06 | 1.345400e-05 | 2.499300e-05 | 3.691900e-05
0.4 8.069300e-06 | 2.698800e-05 | 5.013300e-05 | 7.404900e-05
0.6 1.564800e-05 | 5.373900e-05 | 1.030000e-04 | 1.550000e-04
0.8 2.691300e-05 | 9.297200e-05 | 1.790000e-04 | 2.700000e-04
1.0 4.414000e-05 | 1.530000e-04 | 2.940000e-04 | 4.470000e-04

TABLE 3. Regularization. Horizontal displacement [mm| at four in-
termediate points for same 5 scenarios

| B[N/mm?] || us(ay) us(x2) us(x3) up(zq) |
0.2 1.481900e-06 | 2.251300e-06 | 2.474400e-06 | 2.499500e-06
0.4 2.963600e-06 | 4.502200e-06 | 4.948300e-06 | 4.998500e-06
0.6 5.918500e-06 | 9.400600e-06 | 1.077100e-05 | 1.097500e-05
0.8 1.015200e-05 | 1.625600e-05 | 1.866400e-05 | 1.904000e-05
1.0 1.674400e-05 | 2.690100e-05 | 3.100500e-05 | 3.167000e-05

TABLE 4. Optimization. Horizontal displacement [mm| at four inter-
mediate points for same 5 scenarios

H Fy[N/mm?] H us (1) us () us(x3) us(4) H
0.2 1.432200e-06 | 2.161500e-06 | 2.356100e-06 | 2.368400e-06
0.4 2.872700e-06 | 4.335000e-06 | 4.724700e-06 | 4.748800e-06
0.6 5.663400e-06 | 8.957000e-06 | 1.023200e-05 | 1.041100e-05
0.8 9.777300e-06 | 1.561000e-05 | 1.787700e-05 | 1.822600e-05
1.0 1.606400e-05 | 2.578000e-05 | 2.970700e-05 | 3.034700e-05

Traction force 0.2 N/mnf, 0.6 N/mm? 1.0 N/mm?, Grid 40x4
T T T T T T

Traction force 0.2 N/mn¥f, 0.6 N/mm?, 1.0 N/mm?, Grid 40x4 05

F,=0.2 N/mm?, regularization
— — - F,=0.2 N/mm?Z, bundle
F,=0.6 N/mm?, regularization

F,=0.6 N/mm?, bundle

F,=1.0 N/mm?, regularization

0.3r
— = = F,=1.0 N/mm?, bundle

0.2+

Normal displacements - mm

FIGURE 5. Comparison of regularization (bold solid curves) and op-
timization (dashed) for 3 different values of F}. Left vertical displace-
ment, right reactive force
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TABLE 5. Comparison of optimal valued obtained by regularization
and optimization

H FQ[N/m2] ‘ Hhreg[Nm] ‘ 1_[hopt [Nm] H

200000 -1.32894 -1.29271
400000 -2.35224 -2.30025
600000 -3.83972 -3.74609
800000 -5.08164 -5.05389
1000000 | -5.66771 -2.66770

9. Conclusion

We have presented a bundle method based on the mechanism of downshifted
tangents which is suited to optimize upper- and lower-C! functions. Our method
allows to integrate second-order information, if available, and gives a convergence
certificate in the sense of subsequences. Every accumulation point of the sequence
of serious iterates with an arbitrary starting point is critical. We have successfully
applied our method to a delamination problem arising in the material sciences, where
upper-C! functions have to be minimized. Results obtained by optimization were
compared to results obtained by the regularization technique of [27, 28], and both
methods are in good agreement.
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Résumé

L’optimisation non lisse est une branche active de programmation non linéaire moderne, ou 'objectif
et les contraintes sont des fonctions continues mais pas nécessairement différentiables. Les sous-
gradients généralisés sont disponibles comme un substitut a I'information dérivée manquante, et sont
utilisés dans le cadre des algorithmes de descente pour se rapprocher des solutions optimales locales.
Sous des hypothéses réalistes en pratique, nous prouvons des certificats de convergence vers les points
optimums locaux ou critiques a partir d’un point de départ arbitraire.

Dans cette thése, nous développons plus particuliérement des techniques d’optimisation non lisse
de type faisceaux, ol le défi consiste & prouver des certificats de convergence sans hypothése de
convexité. Des résultats satisfaisants sont obtenus pour les deux classes importantes de fonctions non
lisses dans des applications, fonctions C'-inférieurement et Cl-supérieurement.

Nos méthodes sont appliquées a des problémes de design dans la théorie du systéme de controle
et dans la mécanique de contact unilatéral et en particulier, dans les essais mécaniques destructifs
pour la délaminage des matériaux composites. Nous montrons comment ces domaines conduisent a
des problémes d’optimisation non lisse typiques, et nous développons des algorithmes de faisceaux
appropriés pour traiter ces problémes avec succes.

Mots-clés. Optimisation non lisse et non convexe - méthode de faisceaux - norme de Hankel - controle
optimal - placement de structure propre - probléme de délaminage.

Tém tat
T6i wu khong tron 1a mot linh viyc ning dong clia quy hoach phi tuyén hién dai, trong d6 cdc ham
muc tiéu v rang buoc lien tuc nhung khong nhéat thiét kha vi. Dé thay thé cho nhitng thong tin
dao ham con thiéu, dudi gradient suy rong da xuat hién va dude st dung trong khuon kho cac thuat
toan gidm nham xap xi cdc nghiém tdi uu dia phuong. V6i nhitng gia thiét thuc té trong van dung,
chiing t6i chiing minh su hoi tu clia thuat toan dén cac diém t6i uu dia phuong hoiic t6i han tit mot
diém khéi tao bat ki.
Trong luan an nay, ching toi tap trung phét trién nhitng ki thuat t6i wu khong tron dang bé véi
yéu cau dat ra 1a ching minh sy hoi tu khong st dung tinh 16i. Nhitng két qua thoéa dung dat dude
cho hai 16p ham khong tron quan trong trong tng dung, dé la cac ham C'-dudi va Cl-trén.
Céac phuong phap ctia ching toi dude ap dung cho nhitng bai toan thiét ké trong Iy thuyét hé thdng
diéu khién va co hoc tiép xic mot phia, dic biet 1a trong thit nghiém co hoc pha hity cho su tach 16p
vat lieu composite. Chiing t6i chuyén céc van dé nay vé nhitng bai toan t6i wu khong tron dién hinh
ro6i phat trién nhitng thuat toan b6 phit hop dé giai quyét chiing mot cach hiéu qua.

Tt khoéa. Téi wu khong tron khong 16i - thuat toan bé - chuan Hankel - diéu khién t6i uu - gan cau
tric riéng - bai toan tach 16p.

Summary

Nonsmooth optimization is an active branch of modern nonlinear programming, where objective and
constraints are continuous but not necessarily differentiable functions. Generalized subgradients are
available as a substitute for the missing derivative information, and are used within the framework
of descent algorithms to approximate local optimal solutions. Under practically realistic hypotheses
we prove convergence certificates to local optima or critical points from an arbitrary starting point.

In this thesis we develop especially nonsmooth optimization techniques of bundle type, where the
challenge is to prove convergence certificates without convexity hypotheses. Satisfactory results are
obtained for two important classes of nonsmooth functions in applications, lower- and upper-C!
functions.

Our methods are applied to design problems in control system theory and in unilateral contact me-
chanics and in particular, in destructive mechanical testing for delamination of composite materials.
We show how these fields lead to typical nonsmooth optimization problems, and we develop bundle
algorithms suited to address these problems successfully.

Keywords. Nonconvex and nonsmooth optimization - bundle method - Hankel norm - optimal
control - eigenstructure assignment - delamination problem.
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