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Summary

Nonsmooth optimization is an active branch of modern nonlinear programming,
where objective and constraints are continuous but not necessarily di�erentiable
functions. Generalized subgradients are available as a substitute for the missing
derivative information, and are used within the framework of descent algorithms to
approximate local optimal solutions. Under practically realistic hypotheses we prove
convergence certi�cates to local optima or critical points from an arbitrary starting
point.

In this thesis we develop especially nonsmooth optimization techniques of bundle
type, where the challenge is to prove convergence certi�cates without convexity
hypotheses. Satisfactory results are obtained for two important classes of nonsmooth
functions in applications, lower- and upper-C1 functions.

Our methods are applied to design problems in control system theory and in
unilateral contact mechanics and in particular, in destructive mechanical testing for
delamination of composite materials. We show how these �elds lead to typical non-
smooth optimization problems, and we develop bundle algorithms suited to address
these problems successfully.

Keywords. Nonconvex and nonsmooth optimization · bundle method · Hankel
norm · optimal control · eigenstructure assignment · delamination problem.
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Tóm tắt

Tối ưu không trơn là một lĩnh vực năng động của quy hoạch phi tuyến hiện đại,
trong đó các hàm mục tiêu và ràng buộc liên tục nhưng không nhất thiết khả vi.
Để thay thế cho những thông tin đạo hàm còn thiếu, dưới gradient suy rộng đã
xuất hiện và được sử dụng trong khuôn khổ các thuật toán giảm nhằm xấp xỉ các
nghiệm tối ưu địa phương. Với những giả thiết thực tế trong vận dụng, chúng tôi
chứng minh sự hội tụ của thuật toán đến các điểm tối ưu địa phương hoặc tới hạn
từ một điểm khởi tạo bất kì.

Trong luận án này, chúng tôi tập trung phát triển những kỹ thuật tối ưu không
trơn dạng bó với yêu cầu đặt ra là chứng minh sự hội tụ không sử dụng tính lồi.
Những kết quả thỏa dụng đạt được cho hai lớp hàm không trơn quan trọng trong
ứng dụng, đó là các hàm C1-dưới và C1-trên.

Các phương pháp của chúng tôi được áp dụng cho những bài toán thiết kế trong
lý thuyết hệ thống điều khiển và cơ học tiếp xúc một phía, đặc biệt là trong thử
nghiệm cơ học phá hủy cho sự tách lớp vật liệu composite. Chúng tôi chuyển các vấn
đề này về những bài toán tối ưu không trơn điển hình rồi phát triển những thuật
toán bó phù hợp để giải quyết chúng một cách hiệu quả.

Từ khóa. Tối ưu không trơn không lồi · thuật toán bó · chuẩn Hankel · điều khiển
tối ưu · gán cấu trúc riêng · bài toán tách lớp.
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Résumé

L'optimisation non lisse est une branche active de programmation non linéaire
moderne, où l'objectif et les contraintes sont des fonctions continues mais pas né-
cessairement di�érentiables. Les sous-gradients généralisés sont disponibles comme
un substitut à l'information dérivée manquante, et sont utilisés dans le cadre des
algorithmes de descente pour se rapprocher des solutions optimales locales. Sous des
hypothèses réalistes en pratique, nous prouvons des certi�cats de convergence vers
les points optimums locaux ou critiques à partir d'un point de départ arbitraire.

Dans cette thèse, nous développons plus particulièrement des techniques d'op-
timisation non lisse de type faisceaux, où le dé� consiste à prouver des certi�cats
de convergence sans hypothèse de convexité. Des résultats satisfaisants sont obte-
nus pour les deux classes importantes de fonctions non lisses dans des applications,
fonctions C1-inférieurement et C1-supérieurement.

Nos méthodes sont appliquées à des problèmes de design dans la théorie du
système de contrôle et dans la mécanique de contact unilatéral et en particulier,
dans les essais mécaniques destructifs pour la délaminage des matériaux composites.
Nous montrons comment ces domaines conduisent à des problèmes d'optimisation
non lisse typiques, et nous développons des algorithmes de faisceaux appropriés pour
traiter ces problèmes avec succès.

Mots-clés. Optimisation non lisse et non convexe · méthode de faisceaux · norme de
Hankel · contrôle optimal · placement de structure propre · problème de délaminage.

ix





Acknowledgments

I would like to express my deeply gratitude to my advisor Dominikus Noll for
his guidance, support and patience over the years. I feel fortunate to have had the
opportunity to work with him and thankful for all the doors he opened for me.

It is a pleasure for me to thank to my two referees Samir Adly and Michel
Zasadzinski for their detailed review and comments. My sincere thanks are due to
Pierre Apkarian for his friendly discussions and fruitful collaborative work. I am
also honoured that he agreed to be a member of the committee.

I wish to acknowledge my other co-authors Joachim Gwinner and Nina
Ovcharova on works that have contributed to the thesis. These contributions have
been and continue to be crucial.

This work was �nancially supported by the Vietnamese Government through the
322 project, to which I am grateful. I also would like to give thanks to my colleagues
in Hanoi National University of Education who have supported me in my work.

Many thanks to all the members at the Institute of Mathematics of Toulouse
for giving me the opportunity to learn and study in an academic environment. I
specially appreciate the help from Stanislas, Fabien, Marion, Rémi, Mathieu, Anne-
Charline, Amira, and Elissar.

I wish to thank all my Vietnamese friends in Toulouse, especially, Mrs. Châu, Mr.
Thanh–Mrs. Céline, Mr. Zũng, Minh–Hà, Tùng, Mạnh, Giang, Bình, Phong, Chinh,
Minh, Hùng–Yến, Sơn, Trang, Tuấn–Lan, An–Mai Anh, Long–Hoa, Hòa–Nhi for
their attention and help.

I am greatly indebted to all my teachers who have helped me directly and indi-
rectly to develop my knowledge and understanding.

My deepest gratitude and love belong to my whole family for their endless love
and unconditional support. The most special thanks goes to my friend, colleague
and wife Liên for loving me, listenning me, encouraging me, standing by me and
sharing with me through the ups and downs of life. This thesis is a dedication to
my little son Paul. He is my biggest source of inspiration and motivation.

xi





Contents

Summary v

Tóm tắt vii

Résumé ix

Acknowledgments xi

Introduction 1
References 4

I Bundle method for nonconvex nonsmooth constrained

optimization 7
1. Introduction 7
2. Progress function 8
3. Tangent program and acceptance test 10
4. Working model update 12
5. Proximity control management 13
6. Upper envelope model 15
7. Lower-C1 and upper-C1 functions 17
8. Analysis of the inner loop 19
9. Convergence of the outer loop 24
10. Conclusion 29
Acknowledgements 29
References 29

II Minimizing memory e�ects of a system 31
1. Introduction 31
Notation 32
2. Hankel norm minimization 32
3. Representation of the Hankel norm 33
4. Subgradients of the Hankel norm 35
5. An extension of the Hankel norm 38
6. Hankel synthesis 40
7. Control of �ow in a graph 43

xiii



xiv CONTENTS

8. Proximal bundle algorithm 45
9. A smooth relaxation of the Hankel norm 49
10. Numerical experiments 50
11. Conclusion 59
Acknowledgements 59
References 59

III Simultaneous plant and controller optimization based on

nonsmooth techniques 61
1. Introduction 61
2. A proximity control algorithm 62
3. Hankel norm 65
4. Steady �ow in a graph 66
5. Robust control of a mass-spring-damper system 67
6. Clarke subdi�erential of the Hankel norm 68
7. Numerical experiments 71
8. Conclusion 75
References 75

IV Robust eigenstructure clustering by nonsmooth optimization 77
1. Introduction 77
2. Partial eigenstructure assignment 79
3. Including performance criteria 80
4. Structure of eigenproblems 81
5. System norms and their subdi�erential in closed-loop 84
6. Nonsmooth solver 87
7. Control of a launcher in atmospheric �ight 89
8. Application to autopilot design for a civil aircraft 93
9. Conclusion 96
Appendix 97
References 97

V Nonconvex bundle method with application to a delamination

problem 99
1. Introduction 99
2. Lower- and upper-C1 functions 101
3. The model concept 102
4. Elements of the algorithm 103
5. Nonconvex cutting plane oracles 106
6. Main convergence result 109
7. Practical aspects of the algorithm 111
8. The delamination benchmark problem 112
9. Conclusion 119
Acknowledgments 119
References 119



List of Figures

I Bundle method for nonconvex nonsmooth constrained

optimization

1 Flowchart of proximity control algorithm 15

II Minimizing memory e�ects of a system

1 Flowchart of proximal bundle algorithm 48

2 Hankel feedback synthesis. Bearing of the algorithm 52

3 Hankel feedback synthesis. Step responses, impulse responses,
magnitude plot for controllers 53

4 Hankel feedback synthesis. Ringing for controllers Kb, K∞, and KH 53

5 Maximizing memory. Comparison between step responses y and yref for
H∞-controller and Hankel controllers 55

6 Maximizing memory. Comparison between standard Hankel program
with monitoring, constraint program, and extended Hankel program 56

7 Ringing e�ects of three systems for the �rst graph 57

8 Ringing e�ects of three systems for the second graph 58

III Simultaneous plant and controller optimization based on

nonsmooth techniques

1 Control architecture in the fairground. 67

2 Structure of mass-spring-damper control system. 68

3 Model of the fairground 71

4 Experiment 1. Step responses of three systems G(x1), G(x†) and
Tw→z(x

∗, κ∗) 72

5 Experiment 1. Ringing e�ects of three systems G(x1), G(x†) and
Tw→z(x

∗, κ∗) 73

6 Experiment 2. Step responses and white noise responses in two
synthesis cases 74

7 Experiment 2. Bearing of the algorithm 75

xv



xvi LIST OF FIGURES

IV Robust eigenstructure clustering by nonsmooth optimization

1 Launcher control architecture with MIMO PI-controller 90

2 Control of a launcher, study 1. Initial and �nal controllers obtained
respectively by standard and optimized eigenstructure assignment in
the case where eigenvectors are not structured 92

3 Control of launcher, study 1. Itineraries of closed-loop poles in
optimized eigenstructure assignment based on Hankel program 93

4 Control of launcher, study 2. Initial and �nal controller obtained
respectively by standard and optimized eigenstructure assignment
based on Hankel program with mi = m or mi = m− 1 94

5 Aircraft attitude control. Responses to a step command in altitude and
in air speed 96

V Nonconvex bundle method with application to a delamination

problem

1 Left image shows non-monotone delamination law ∂j, leading to an
upper-C1 objective. Right image shows non-monotone friction law,
leading to a lower-C1 objective 113

2 Schematic view of cantilever beam testing 113

3 Load-displacement curve determined by double cantilever beam test 116

4 Comparison of regularization and optimization for 5 di�erent values of
F2 117

5 Comparison of regularization and optimization for 3 di�erent values of
F2 118



List of Tables

II Minimizing memory e�ects of a system

1 Hankel system reduction. Comparison of optimal values ‖G−Gk(x
∗)‖H

with theoretical values σk+1 54

2 First graph, three distributions x1, x†, x∗. Times when 90% of crowd
in fairground has been evacuated 58

3 Second graph, three distributions. Times when 90% of crowd in the
fairground has been evacuated 58

IV Robust eigenstructure clustering by nonsmooth optimization

1 States de�nitions 89

2 Controls de�nitions 89

3 Numerical coe�cients at steady state �ight point 90

4 Launcher study 1. Cost for initial K0 and optimal K∗ controllers 91

5 States of the longitudinal model 95

V Nonconvex bundle method with application to a delamination

problem

1 Regularization. Vertical displacement at 4 intermediate points for same
5 scenarios 117

2 Optimization. Vertical displacement at four intermediate points for
same 5 scenarios 118

3 Regularization. Horizontal displacement at four intermediate points for
same 5 scenarios 118

4 Optimization. Horizontal displacement at four intermediate points for
same 5 scenarios 118

5 Comparison of optimal valued obtained by regularization and
optimization 119

xvii





Introduction

Optimization is a key technique in various �elds of science and engineering such
as mathematics [4], mechanics [15], physics [6], economics [16], optimal control [13],
computational chemistry and biology [5]. Most optimization problems in real-life
applications do not have explicit solutions and numerical optimization techniques
have to be developed to approximate local optimal solutions numerically. We ex-
pect such an iterative procedure to converge to a local solution when started at an
arbitrary initial guess.

Mathematically, a general optimization problem involves minimizing a function,
possibly subject to constraints imposed on the variables of the function. It may be
formulated as

(1)
minimize f(x)
subject to x ∈ C

where the objective function f : Rn → R is continuous, and the constraint set (also
called the feasible set) C is closed in Rn. Notice that maximization problems can be
transformed to minimization problems by reversing the sign of the objective function.
If C = Rn then (1) is called an unconstrained optimization problem. Otherwise, (1)
is called a constrained optimization problem, where the constraint set C could for
instance be given by linear and nonlinear inequalities, such as Ax 6 b, h(x) 6 0
with A, b given matrix and vector, and h : Rn → R a nonlinear function. Here
boundary constraints are included in linear inequalities and equality constraints
may be regarded as inequalities.

In this work we are particularly interested in nonsmooth optimization, where the
objective function or the constraints are no longer di�erentiable, but have weaker
properties like local Lipschitz continuity. This allows to replace the missing deriva-
tive information by generalized subgradients in the sense of Clarke, and to use these
elements in a descent algorithm. Following [3, Theorem 1], a necessary condition
for x to be a solution of (1) is that

(2) 0 ∈ ∂f(x) +NC(x),

where ∂f(x) denotes the Clarke subdi�erential of f at x, and NC(x) stands for the
(generalized) normal cone to C at x. For unconstrained optimization problems, the
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2 INTRODUCTION

optimality condition (2) is reduced to 0 ∈ ∂f(x). It is reasonable to seek for points x∗

satisfying (2), called critical points. The purpose of numerical methods is therefore
to approximate the solution of problem (1) by generating a sequence xj of estimates
converging to a critical point x∗ in a suitable sense. Starting with an initial guess
for the solution, numerical methods for solving problem (1) usually provide a search
direction and a step size at each iteration in order to move the approximate point
from the current position xj to a new position xj+1. Basically, these methods can
be classi�ed in two main groups, namely, subgradient methods [18, 1] and bundle
methods [12, 9, 13]. While the �rst ones require only one arbitrary subgradient
of the objective function at each iteration, the latter ones approximate the whole
subdi�erential and involve a quadratic subproblem for �nding search directions and
step sizes.

At the current time, bundle methods and their variations are known to be among
the most e�cient optimization methods for nonsmooth problems. Initially proposed
by Lemaréchal [11] and Wolfe [20], these methods accumulate subgradients from
past iterations into a bundle in order to perform a quadratic tangent program based
on the stored information for generating a trial step which is then a serious step
if the function value is improved or a null step otherwise. Subsequently, based on
the classical cutting plane methods due to Cheney and Goldstein [2] and to Kelley
[8], Kiwiel [9] introduced an approach to the bundle methods which builds a convex
piecewise linear approximation of the objective function using the linearizations en-
gendered by subgradients. In his work, Kiwiel also used subgradient selection and
aggregation techniques to restrict the number of cumulated subgradients. Neverthe-
less, cutting plane methods [2, 8] and their inherited bundle methods [9, 10, 21, 7]
both use cutting planes to form the lower approximation of the objective function,
and this is only guaranteed in the convex case.

Expanding on the nonconvex case, Mi�in [14] presented a bundle method using
the so-called downshift technique to solve the nonsmooth optimization problem

minimize f(x)
subject to h(x) 6 0

where the functions f and h are real-valued locally Lipschitz but not necessarily
convex on Rn. Developing this problem in the direction of adding linear constraints,
Mäkelä and Neittaanmäki [13] proposed a proximal bundle method dealing with the
constraints due to the improvement function

F (y, x) = max{f(y)− f(x), h(y)}.
As these approaches rely on line search techniques, they only provide weak conver-
gence certi�cates where at best one of the accumulation points of the sequence xj

of serious iterates is critical.

In this thesis we strive at better certi�cates in the sense that every accumulation
point x∗ of the sequence xj is critical. To achieve this, we use a nonconvex bun-
dle technique in tandem with proximity control as a backtracking mechanism We
consider a more general constrained optimization problem of the form

(3)
minimize f(x)
subject to h(x) 6 0

x ∈ C



Introduction 3

where the functions f and h are real-valued locally Lipschitz but not necessarily
smooth or convex on Rn, and the set C is closed convex in Rn. Note that this
formulation also covers the case of multiple constraints hi(x) 6 0, i = 1, . . . ,m by
simply taking h(x) as the pointwise maximum of the hi(x). Typically, additional
linear constraints can be included in C due to the convexity of their solution set.
To solve this problem, we suggest a nonconvex bundle method using downshifted
tangents and a proximity control management, which gives a strong convergence
certi�cate for both nonsmoothness classes of lower-C1 and upper-C1 types in the
sense of [19, 17].

Our methods are applied to design problems in control system theory and in
unilateral contact mechanics and in particular, in destructive mechanical testing for
delamination of composite materials. We show how these �elds lead to typical non-
smooth optimization problems, and we develop bundle algorithms suited to address
these problems successfully.

The rest of the thesis contains �ve chapters that correspond to the following �ve
contributions.

I. M. N. Dao, Bundle method for nonconvex nonsmooth constrained optimiza-
tion.
We develop a nonconvex bundle method based on the downshift mecha-
nism and a proximity control management technique to solve nonconvex
nonsmooth constrained optimization problems. The global convergence of
the algorithm in the sense of subsequences is proved for both classes of
lower-C1 and upper-C1 functions.

II. M. N. Dao and D. Noll, Minimizing memory e�ects of a system.
Given a stable linear time-invariant system with tunable parameters, we
present a method to tune these parameters in such a way that undesirable
responses of the system to past excitations, known as system ringing, are
avoided or reduced. This problem is addressed by minimizing the Hankel
norm of the system, which quanti�es the in�uence of past inputs on future
outputs. We indicate by way of examples that minimizing the Hankel norm
has a wide scope for possible applications. We show that the Hankel norm
minimization program may be cast as an eigenvalue optimization problem,
which we solve by a nonsmooth bundle algorithm with a local convergence
certi�cate. Numerical experiments are used to demonstrate the e�ciency
of our approach.

III. M. N. Dao and D. Noll, Simultaneous plant and controller optimization
based on nonsmooth techniques.
We present an approach to simultaneous design optimization of a plant and
its controller. This is based on a bundling technique for solving nonsmooth
optimization problems under nonlinear and linear constraints. In the ab-
sence of convexity, a substitute for the convex cutting plane mechanism is
proposed. The method is illustrated on a problem of steady �ow in a graph
and in robust feedback control design of a mass-spring-damper system.

IV. M. N. Dao, D. Noll, and P. Apkarian, Robust eigenstructure clustering by
nonsmooth optimization.
We extend classical eigenstructure assignment to more realistic problems
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where additional performance and robustness speci�cations arise. Our aim
is to combine time-domain constraints, as re�ected by pole location and
eigenvector structure, with frequency-domain objectives such as the H2,
H∞ or Hankel norms. Using pole clustering, we allow poles to move in
polydisks of prescribed size around their nominal values, driven by opti-
mization. Eigenelements, that is poles and eigenvectors, are allowed to
move simultaneously and serve as decision variables in a specialized non-
smooth optimization technique. Two aerospace applications illustrate the
power of the new method.

V. M. N. Dao, J. Gwinner, D. Noll, and N. Ovcharova, Nonconvex bundle
method with application to a delamination problem.
Delamination is a typical failure mode of composite materials caused by
weak bonding. It arises when a crack initiates and propagates under a
destructive loading. Given the physical law characterizing the properties of
the interlayer adhesive between the bonded bodies, we consider the problem
of computing the propagation of the crack front and the stress �eld along the
contact boundary. This leads to a hemivariational inequality, which after
discretization by �nite elements we solve by a nonconvex bundle method,
where upper-C1 criteria have to be minimized. As this is in contrast with
other classes of mechanical problems with non-monotone friction laws and
in other applied �elds, where criteria are typically lower-C1, we propose
a bundle method suited for both types of nonsmoothness. We prove its
global convergence in the sense of subsequences and test it on a typical
delamination problem of material sciences.
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I

Bundle method for nonconvex nonsmooth constrained

optimization ∗

Minh Ngoc Dao

Abstract. The paper develops a nonconvex bundle method based on the down-
shift mechanism and a proximity control management technique to solve non-
convex nonsmooth constrained optimization problems. We prove its global con-
vergence in the sense of subsequences for both classes of lower-C1 and upper-C1

functions.

Keywords. Nonsmooth optimization · constrained optimization · bundle method
· lower-C1 function· upper-C1 function.

1. Introduction

Nonsmooth optimization problems appear frequently in practical applications
such as economics, mechanics, and control theory. There are several methods for
solving nonsmooth optimization problems, and they can be divided into two main
groups: subgradient methods and bundle methods. We want to mention the latter
ones because of their proven e�ciency in solving relevant problems. Bundle methods
were �rst introduced by Lemaréchal [12] and have been developed over the years
based on subsequent works of Kiwiel [9], Lemaréchal, Nemirovskii, and Nesterov
[13]. The main idea of bundle methods is to estimate the Clarke subdi�erential
[3] of the objective function by accumulating subgradients from past iterations into
a bundle, and then to generate a trial step by a quadratic tangent program using
information stored in the bundle.

Extending Lemarechal's algorithm to the nonconvex case, Mi�in [16] gives a
bundle algorithm using the so-called downshift mechanism for the nonsmooth min-
imization problem

minimize f(x)
subject to h(x) 6 0

∗Paper submitted for publication.

7
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where f and h are real-valued locally Lipschitz but potentially nonconvex functions
on Rn. Subsequently, Mäkelä and Neittaanmäki [14] present a proximal bundle
method for the above problem adding linear constraints. This method uses the
improvement function

F (y, x) = max{f(y)− f(x), h(y)}
for the handling of the constraints. While these works use a line search procedure
which admits only weak convergence certi�cates in the sense that at least one of the
accumulation points of the sequence of serious iterates is critical, we are interested
in using a proximity control mechanism along with a suitable backtracking strategy.
This brings to stronger convergence certi�cates, where every accumulation point of
the sequence of serious iterates is critical. Recently, Gabarrou, Alazard and Noll
[7] showed a strong convergence for the case where f and h are lower-C1 functions
in the sense of [23, 22]. However, a convergence proof for upper-C1 functions still
remains open.

In present framework we consider a more general constrained optimization prob-
lem of the form

(1)
minimize f(x)
subject to h(x) 6 0

x ∈ C

where f and h are real-valued locally Lipschitz but potentially nonsmooth and non-
convex functions, and where C is a closed convex set of Rn. For solving this problem,
we propose a nonconvex bundle method based on downshifted tangents and a prox-
imity control management mechanism, in which a strong convergence certi�cate is
valid for both classes of lower-C1 and upper-C1 functions.

The motivation of this paper rises from the fact that many application problems
are addressed by minimizing lower-C1 functions. For instance, some problems in
the context of automatic control are quite successfully solved in [19, 17, 18, 7, 5] by
applying bundling techniques to lower-C1 functions. In particular, the problem of
maximizing the memory of a system [5] can be reformulated as minimizing upper-C1

functions.

The rest of the paper is organized as follows. Sections 2�5 present elements
of the proximity control algorithm. In section 6 we introduce a theoretical tool
in the convergence proof which is referred to as the upper envelope model. Some
preparatory information on semismooth, lower-C1 and upper-C1 functions is given
in section 7. The central sections 8, 9 prove global convergence of the algorithm.

2. Progress function

Following an idea of Polak in [21, Section 2.2.2], to solve problem (1) we use the
progress function

F (y, x) = max{f(y)− f(x)− µh(x)+, h(y)− h(x)+},
with µ > 0 a �xed parameter and h(x)+ = max{h(x), 0}. Here x represents the
current iterate, and y is the next iterate or a candidate for the next iterate.
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Let ∂f(x) denote the Clarke subdi�erential of f at x. For functions of two
variables, the notation ∂1 stands for the Clarke subdi�erential with respect to the
�rst variable. We �rst remark that F (x, x) = 0. Moreover, F (·, x) is also locally
Lipschitz, and by [4, Proposition 2.3.12] (see also [2, Proposition 9]),

(2)





∂1F (x, x) = ∂f(x) if h(x) < 0,

∂1F (x, x) ⊂ conv{∂f(x) ∪ ∂h(x)} if h(x) = 0,

∂1F (x, x) = ∂h(x) if h(x) > 0,

where conv signi�es convex hull, and where equality holds if f and h are regular
at y in the sense of Clarke [3]. Recall that the indicator function of a convex set
C ⊂ Rn de�ned by

iC(x) =

{
0 if x ∈ C,

∞ otherwise,

we have iC(·) is a convex function, and ∂iC(x) is the normal cone to C at x,

NC(x) = {g ∈ Rn : g>(y − x) 6 0 for all y ∈ C},
if x ∈ C, and the empty set otherwise. It is worth to notice that if C is a polyhedral
set having the form

C = {x ∈ Rn : a>i x 6 bi, i = 1, . . . ,m},
where ai and bi are respectively given vectors and scalars, then

∂iC(x) = NC(x) = {λ1a1 + · · ·+ λmam : λi > 0, λi = 0 if a>i x < bi}
for all x ∈ C (see [22, Theorem 6.46]). Motivated by [1, Lemma 5.1] and [2, Theorem
1], we now establish the following result.

Lemma 2.1. Let f and h be locally Lipschitz functions, then the following state-
ments hold.

(i) If x∗ is a local minimum of problem (1), it is also a local minimum of
F (·, x∗) in C, and then 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗). Furthermore, if x∗ is
a F. John critical point of (1) then 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗) in the case
where f and h are regular at x∗.

(ii) Conversely, if 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗) for some x∗ ∈ C then only one of
the following situations occurs.
(a) h(x∗) > 0, in which case x∗ is a critical point of h in C, called a critical

point of constraint violation.
(b) h(x∗) 6 0, in which case x∗ is a F. John critical point of (1). In

addition, we have either h(x∗) = 0 and 0 ∈ ∂h(x∗) + ∂iC(x∗), or x∗ is
a Karush-Kuhn-Tucker point of (1).

Proof. (i) Let x∗ be a local minimum of problem (1), then h(x∗) 6 0, x ∈ C, which
gives h(x∗)+ = 0, and so

F (y, x∗) = max{f(y)− f(x∗), h(y)}.
Moreover, there exists a neighborhood U of x∗ such that f(y) > f(x∗) for all y ∈
U ∩C satisfying h(y) 6 0. We will show that F (y, x∗) > F (x∗, x∗) for all y ∈ U ∩C.
Indeed, if h(y) > 0 then

F (y, x∗) > h(y) > 0 = F (x∗, x∗).
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If h(y) 6 0 then f(y) > f(x∗), and therefore

F (y, x∗) > f(y)− f(x∗) > 0 = F (x∗, x∗).

This means that x∗ is a local minimum of F (·, x∗) in C, which implies 0 ∈
∂1F (x∗, x∗) + ∂iC(x∗).

Now assume that x∗ is a F. John critical point of (1), i.e., there exist constants
λ0, λ1 such that

0 ∈ λ0∂f(x∗) + λ1∂h(x∗) + ∂iC(x∗),

λ0 > 0, λ1 > 0, λ0 + λ1 = 1,

λ1h(x∗) = 0.

Then if h(x∗) < 0, we have λ1 = 0, λ0 = 1, and by using (2), ∂1F (x∗, x∗) = ∂f(x∗),
which implies 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗). In the case where f and h are regular at
x∗, if h(x∗) = 0 then ∂1F (x∗, x∗) = conv{∂f(x∗) ∪ ∂h(x∗)}, and thus

0 ∈ λ0∂f(x∗) + λ1∂h(x∗) + ∂iC(x∗) ⊂ ∂1F (x∗, x∗) + ∂iC(x∗).

(ii) Suppose that 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗) for some x∗ ∈ C. Then by (2), there
exist constants λ0, λ1 such that

0 ∈ λ0∂f(x∗) + λ1∂h(x∗) + ∂iC(x∗),

λ0 > 0, λ1 > 0, λ0 + λ1 = 1.

If h(x∗) > 0 then ∂1F (x∗, x∗) = ∂h(x∗), and so 0 ∈ ∂h(x∗) + ∂iC(x∗), that is, x∗

is a critical point of h in C.

If h(x∗) < 0 then ∂1F (x∗, x∗) = ∂f(x∗), which gives λ1 = 0, and therefore x∗ is
a Karush-Kuhn-Tucker point and also a F. John critical point of (1).

In the case of h(x∗) = 0, we see immediately that x∗ is a F. John critical point
of (1). If x∗ fails to be a Karush-Kuhn-Tucker point then λ0 = 0 and we get
0 ∈ ∂h(x∗) + ∂iC(x∗). The lemma is proved completely. �

3. Tangent program and acceptance test

In accordance with Lemma 2.1, it is reasonable to seek for points x∗ satisfying
0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗). We present our nonconvex bundle method for �nding
solutions of problem (1), which generates a sequence xj of estimates converging to
a solution x∗ in the sense of subsequence.

Denote the current iterate of the outer loop by x, or xj if the outer loop counter
j is used. When a new iterate of the outer loop is found, it will be denoted by x+,
or xj+1. At the current iterate x, we build �rst-order working models φk(·, x), which
approximates F (·, x) in a neighborhood of x. Those are updated iteratively during
the inner loop, and have to satisfy the following properties at all times k:

• φk(·, x) is convex;
• φk(x, x) = F (x, x) = 0 and ∂1φk(x, x) ⊂ ∂1F (x, x).
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The latter is ensured when the so-called exactness plane m0(·, x) = g(x)>(· − x)
with g(x) ∈ ∂1F (x, x) is an a�ne minorant of φk(·, x). Note that due to (2) we can
choose g(x) ∈ ∂f(x) if h(x) 6 0, and g(x) ∈ ∂h(x) if h(x) > 0.

Once the �rst-order working model φk(·, x) has been decided on, we de�ne an
associated second-order working model

Φk(·, x) = φk(·, x) +
1

2
(· − x)>Q(x)(· − x),

where Q(x) is a symmetric matrix depending only on the current iterate x. Now we
�nd a new trial step yk via the tangent program

(3)
minimize Φk(y, x) + τk

2
‖y − x‖2

subject to y ∈ C

where τk > 0 is called the proximity control parameter. Note that this program is
strictly convex and has a unique solution as soon as we assure Q(x) + τkI � 0.

In the sequel, we write ∂1(φ(y, x) + iC(y)) for the Clarke subdi�erential of
φ(y, x) + iC(y) with respect to the �rst variable at y. Let us note that ∂1(φ(y, x) +
iC(y)) ⊂ ∂1φ(y, x) + ∂iC(y), and that equality need not hold. The necessary opti-
mality condition for tangent program (3) gives

0 ∈ ∂1(φk(y
k, x) + iC(yk)) + (Q(x) + τkI)(yk − x).

Therefore, if yk = x then 0 ∈ ∂1φk(x, x) + ∂iC(x), and so 0 ∈ ∂1F (x, x) + ∂iC(x)
due to the fact that ∂1φk(x, x) ⊂ ∂1F (x, x). The consequence of this argument is
that once 0 6∈ ∂1F (x, x) + ∂iC(x), the trial step yk will always bring something new.
From this time forth we suppose that 0 6∈ ∂1F (x, x) + ∂iC(x). Then yk 6= x is the
solution of the tangent program, so Φk(y

k, x) + τk
2
‖yk − x‖2 6 Φk(x, x), which gives

Φk(y
k, x) < Φk(x, x) = 0. In other words, there is always a progress predicted by

the working model Φk(·, x), unless x is already a critical point of (1) in the sense
that 0 ∈ ∂1F (x, x) + ∂iC(x).

Following standard terminology, yk is called a serious step if it is accepted as the
new iterate, and a null step otherwise. In order to decide whether yk is accepted or
not, we compute the test quotient

ρk =
F (yk, x)

Φk(yk, x)
,

which measures the agreement between F (·, x) and Φk(·, x) at yk. If the current
model Φk represents F precisely at yk, it is awaited that ρk ≈ 1. Fixing a constant
0 < γ < 1, we accept the trial step yk already as the new serious step x+ if ρk > γ.
Here the inner loop ends. Otherwise yk is rejected and the inner loop continues.

Remark 3.1. If the current iterate x is feasible then the serious step x+ is strictly
feasible and f(x+) < f(x). Indeed, we have F (x+, x) = max{f(x+)− f(x), h(x+)}
due to the feasibility of x. Assume that the serious step x+ is accepted at inner
loop counter k, which means x+ = yk ∈ C with ρk > γ > 0. Since x+ = yk 6= x
is the optimal solution of (3), Φk(x

+, x) + τk
2
‖x+ − x‖2 6 Φk(x, x) = 0, and so

Φk(x
+, x) < 0. This combined with ρk > 0 gives F (x+, x) < 0, which implies that

f(x+) < f(x) and h(x+) < 0.
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4. Working model update

Suppose that yk is a null step, we will improve the next model φk+1(·, x). Notice
that the exactness plane is always kept in �rst-order working models. To make
φk+1(·, x) better than φk(·, x), we need two more elements, referred to as cutting
and aggregate planes. Let us �rst look at the cutting plane generation.

The cutting plane mk(·, x) is a basic element in bundle methods which cuts
away the unsuccessful trial step yk. The idea is to construct mk(·, x) in the way
that yk is no longer solution of the new tangent program as soon as mk(·, x) is an
a�ne minorant of φk+1(·, x). For each subgradient gk ∈ ∂1F (yk, x), the tangent
tk(·) = F (yk, x) + g>k (· − yk) to F (·, x) at yk is used as a cutting plane in the case
where F (·, x) is convex. Without convexity, tangent planes may be useless, and a
substitute has to be found. We exploit a mechanism �rst described in [16], which
consists in shifting the tangent down until it becomes useful for φk+1(·, x). Fixing a
parameter c > 0 once and for all, we de�ne the downshift as sk = [tk(x)+c‖yk−x‖2]+,
and introduce the cutting plane

mk(·, x) = tk(·)− sk = ak + g>k (· − x),

with ak = min{tk(x),−c‖yk − x‖2} 6 −c‖yk − x‖2 < 0 by the fact that yk 6= x.

Remark 4.1. Let φk+1(·, x) = max{mi(·, x) : i = 0, . . . , k}, then φk+1(·, x) is convex,
and φk+1(x, x) = F (x, x) = 0, ∂1φk+1(x, x) ⊂ ∂1F (x, x). Indeed, since φk+1(·, x)
is a maximum of a�ne planes, and mi(x, x) = ai < 0 = m0(x, x) for i > 1, we
get convexity of φk+1(·, x), and also φk+1(x, x) = 0, ∂1φk+1(x, x) = ∂1m0(x, x) =
{g(x)} ⊂ ∂1F (x, x).

Next we see that the optimality condition for (3) can be written as

(4) (Q(x) + τkI)(x− yk) = g∗k + h∗k, for g
∗
k ∈ ∂1φk(y

k, x), h∗k ∈ ∂iC(yk).

If φk(·, x) = max{mi(·, x) : i = 0, . . . , r} then there exist λ0, . . . , λr are non-negative
and sum up to 1 such that

g∗k =
r∑

i=0

λigi, φk(y
k, x) =

r∑

i=0

λimi(y
k, x).

We call g∗k the aggregate subgradient as traditional, and build the aggregate plane

m∗k(·, x) = a∗k + g∗>k (· − x)

with a∗k =
∑r

i=0 λiai = φk(y
k, x) + g∗>k (x − yk). Then φk(y

k, x) = m∗k(y
k, x) 6

φk+1(yk, x) if we require that m∗k(·, x) is an a�ne minorant of φk+1(·, x). To avoid
over�ow, when generating the new working model φk+1(·, x), we may replace all
older planes corresponding to λi > 0 by the aggregate plane. This construction
follows the original lines as proposed in [9]. It does not change the conclusion of
Remark 4.1, nor the de�nition of aggregate planes.

Remark 4.2. Typically, the new working model φk+1(·, x) can be given by

φk+1(·, x) = max{m0(·, x),mk(·, x),m∗k(·, x)},
which satis�es the required properties of a �rst-order working model.
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As we pass from x to a new serious step x+, the planes m(·, x) = a + g>(· − x)
from previous serious steps may become useless at x+ since we have no guarantee
that m(x+, x) 6 F (x+, x+) = 0. But we can recycle the old planes by using again
the downshift mechanism as

m(·, x+) = m(·, x)− s+, s+ = [m(x+, x) + c‖x+ − x‖2]+.

For more details, we refer to [17].

5. Proximity control management

The management of the proximity control parameter τk is a major di�erence be-
tween the convex and nonconvex bundle methods. In the convex case, the proximity
control can remain unchanged during the inner loop. In the absence of convexity,
the parameter τk has to follow certain basic rules to assure convergence of the algo-
rithm. The central rule which we have to respect is that during the inner loop, the
parameter may only increase in�nitely often due to the strong discrepancy between
the current working model φk and the best possible working model. Assuming the
trial step yk is a null step, as a means to decide when to increase τk or not, we
compute the secondary test

ρ̃k =
Mk(y

k, x)

Φk(yk, x)
,

where Mk(·, x) = max{m0(·, x),mk(·, x)} + 1
2
(· − x)>Q(x)(· − x) with m0(·, x) the

exactness plane at the current iterate x, and mk(·, x) the cutting plane at x and
yk. If ρ̃k ≈ 1 which indicates that little to no progress is achieved by adding the
cutting plane, the proximity control must be increased to force smaller steps. In
the case where ρ̃k is too far from 1, we hope that the situation will be improved
without having to increase the proximity control. Fixing parameters γ̃ and θ with
0 < γ < γ̃ < 1 < θ <∞, we make the following decision

τk+1 =

{
τk if ρ̃k < γ̃,

θτk if ρ̃k > γ̃.

Let us next consider the management of the proximity parameter between serious
steps x → x+, respectively, xj → xj+1. To do this we use a memory element τ ]j ,
which is computed as soon as a serious step is made. Suppose that the serious step
xj+1 is achieved at inner loop counter kj, that is xj+1 = ykj with ρkj > γ. We
consider the test

ρkj =
F (ykj , xj)

Φkj(y
kj , xj)

?

> Γ,

where 0 < γ < Γ < 1 is �xed throughout. If ρkj < Γ then we memorize the last

parameter used, that means τ ]j+1 = τkj . On the other hand, if ρkj > Γ then we may

trust the model and store τ ]j+1 = θ−1τkj < τkj . At the �rst inner loop of the jth

outer loop, the memory element τ ]j serves to initialize τ1 = max{τ ]j ,−λmin(Qj) + κ}
or τ1 = T > q + κ with λmin(·) the minimum eigenvalue of a symmetric matrix, and
0 < κ� 1 �xed, which assures always that Qj + τkI � 0 during the jth outer loop.

Figure 1 shows a �owchart of the algorithm, while the detailed statement is
presented as Algorithm 1.
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Algorithm 1. Proximity control algorithm with downshifted tangents

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 1 < θ <∞, 0 < κ� 1, 0 < q <∞,
q + κ < T <∞.

. Step 1 (Outer loop initialization). Choose initial feasible guess x1, �x

memory control parameter τ ]1, and put outer loop counter j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop the algorithm if 0 ∈
∂1F (xj, xj)+∂iC(xj). Otherwise, take a symmetric matrix Qj respecting −qI �
Qj � qI, and goto inner loop.

. Step 3 (Inner loop initialization). Put inner loop counter k = 1 and

initialize control parameter τ1 = max{τ ]j ,−λmin(Qj)+κ}, where λmin(·) denotes
the minimum eigenvalue of a symmetric matrix. Reset τ1 = T if τ1 > T , and
choose initial working model φ1(·, xj) using the exactness plane m0(·, xj) and
possibly recycling some planes from previous loop.

. Step 4 (Tangent program). At inner loop counter k, let

Φk(·, xj) = φk(·, xj) +
1

2
(· − xj)>Qj(· − xj)

and �nd solution yk (trial step) of the tangent program

minimize Φk(y, x) + τk
2
‖y − x‖2

subject to y ∈ C.

� Step 5 (Acceptance test). Compute the quotient

ρk =
F (yk, xj)

Φk(yk, xj)
.

If ρk > γ (serious step), put xj+1 = yk, compute new memory element

τ ]j+1 =

{
τk if ρk < Γ,

θ−1τk if ρk > Γ,

and quit inner loop. Increase outer loop counter j and loop back to step 2. If
ρk < γ (null step), continue inner loop with step 6.

. Step 6 (Working model update). Generate a cutting plane mk(·, xj) at null
step yk and counter k using downshifted tangents. Compute aggregate plane
m∗k(·, xj) at yk, and then build a new working model φk+1(·, xj) by adding the
new cutting plane, keeping the exactness plane and using aggregation to avoid
over�ow.

� Step 7 (Proximity control management). Compute secondary control pa-
rameter

ρ̃k =
Mk(y

k, xj)

Φk(yk, xj)
,

with Mk(·, xj) = max{m0(·, xj),mk(·, xj)}+ 1
2
(· − xj)>Qj(· − xj), and then put

τk+1 =

{
τk if ρ̃k < γ̃,

θτk if ρ̃k > γ̃.

Increase inner loop counter k and loop back to step 4.



6. Upper envelope model 15

start
initialize x1, τ ♯

1

put j = 1
outer loop

stopping test exit

τ ♯
j+1 := θ−1τk j := j + 1

initialize Qj , τ1, put k = 1
initialize working model

inner loop

ρk > Γ τ ♯
j+1 := τk tangent program k := k + 1

recycle planes xj+1 := yk ρk > γ τk+1 := θτk τk+1 := τk

cutting and aggregate plane
update working model

ρ̃k > γ̃
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no
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Figure 1. Flowchart of proximity control algorithm. Inner loop is
shown in the lower right box

6. Upper envelope model

To analyse the convergence of the algorithm, we adapt a notion from [17, 18]
for the progress function F . At the current iterate x of the outer loop, the upper
envelope model is de�ned as

φ↑(y, x) = sup{my+,g(y, x) : y+ ∈ B(x,M), g ∈ ∂1F (y+, x)},
where B(x,M) is a �xed ball large enough to contain all possible trial steps during
the inner loop, and where my+,g(·, x) is the cutting plane at serious iterate x and
trial step y+ with subgradient g ∈ ∂1F (y+, x). We see immediately that φ↑(·, x) is
well-de�ned due to boundedness of B(x,M) and boundedness of all possible trial
steps during the inner loop which will be proved without using the notion φ↑ in
Lemma 8.1(i) and Lemma 8.2(i). Furthermore, we have the following result.

Lemma 6.1. Let f and h be locally Lipschitz functions, then the following state-
ments hold.

(i) φ↑(·, x) is a convex function and φk(·, x) 6 φ↑(·, x) for all counters k.
(ii) φ↑(x, x) = 0 and ∂1φ

↑(x, x) = ∂1F (x, x).
(iii) φ↑ is jointly upper semi-continuous.

Proof. (i) The �rst statement is followed from the de�nition of φ↑(·, x) and the
construction of φk(·, x).

(ii) By construction,my+,g(x, x) 6 0 andmx,g(x, x) = 0, which implies φ↑(x, x) =
0.

We now take an arbitrary ḡ ∈ ∂1φ
↑(x, x) and the tangent plane m̄(·, x) = ḡ>(·−x)

to the graph of φ↑(·, x) at x associated with ḡ. Since φ↑(·, x) is a convex function,
m̄(·, x) 6 φ↑(·, x). Fixing a vector v ∈ Rn, for each t > 0, by de�nition of φ↑(·, x),
there exists a cutting plane at trial step yt with subgradient gt ∈ ∂1F (yt, x) such
that φ↑(x + tv, x) 6 myt,gt(x + tv, x) + t2. Note that myt,gt(·, x) can be represented
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as myt,gt(·, x) = myt,gt(x, x) + g>t (· − x) and myt,gt(x, x) 6 −c‖yt − x‖2. This gives

tḡ>v = m̄(x+ tv, x) 6 φ↑(x+ tv, x) 6 myt,gt(x+ tv, x)+ t2 6 −c‖yt−x‖2 + tg>t v+ t2.

Let t → 0+, we get yt → x. By passing to a subsequence and using the upper
semi-continuity of the Clarke subdi�erential, we may assume that gt → g for some
g ∈ ∂1F (x, x). In addition, the above estimate also gives ḡ>v 6 g>t v+ t for all t > 0,
which infers ḡ>v 6 g>v, and so

ḡ>v 6 max{g>v : g ∈ ∂1F (x, x)}.
The expression on the right is the Clarke directional derivative of F (·, x) at x in
direction v. Since this relation holds true for every v ∈ Rn, ḡ ∈ ∂1F (x, x). Hence,
∂1φ

↑(x, x) ⊂ ∂1F (x, x).

It only remain to show ∂1F (x, x) ⊂ ∂1φ
↑(x, x). In order to do this, we consider

the limit set

∂1−→F (x, x) = { lim
k→∞
∇1F (yk, x) : yk → x, F (·, x) is di�erentiable at yk}.

Here ∇1F (yk, x) denote the subgradient of F (·, x) at yk in the case where F (·, x) is
di�erentiable at yk. We use the symbol ∂−→ for the limit set, following Hiriart-Urruty

[8]. By [2, Proposition 5] (see also [4, Theorem 2.5.1]), ∂1F (x, x) = conv(∂1−→F (x, x)).

We will prove that ∂1−→F (x, x) ⊂ ∂1φ
↑(x, x). Indeed, take g ∈ ∂1−→F (x, x), there exist

yk → x and gk = ∇1F (yk, x) ∈ ∂1F (yk, x) such that gk → g. Let mk(·, x) be
the cutting plane drawn at yk with subgradient gk then mk(y, x) 6 φ↑(y, x) for all
y ∈ Rn and

mk(·, x) = ak + g>k (· − x), ak = min{tk(x),−c‖yk − x‖2},
where tk(x) = F (yk, x) + g>k (x − yk). From yk → x, gk → g and F (x, x) = 0,
it follows that ak → 0, and so mk(y, x) → g>(y − x), which implies g>(y − x) 6
φ↑(y, x) for all y. This together with φ↑(x, x) = 0 gives g ∈ ∂1φ

↑(x, x). We obtain
∂1−→F (x, x) ⊂ ∂1φ

↑(x, x) and then ∂1F (x, x) = conv(∂1−→F (x, x)) ⊂ ∂1φ
↑(x, x) due to

the convexity of ∂1φ
↑(x, x).

(iii) Let (yj, xj) → (y, x), we have to prove that lim supφ↑(yj, xj) 6 φ↑(y, x).
Pick a sequence εj → 0+, by the de�nition of φ↑, there exist cutting planes
mzj ,gj(·, xj) = tzj(·) − sj at serious iterate xj, drawn at zj ∈ B(xj,M) with

gj ∈ ∂1F (zj, xj) such that

φ↑(yj, xj) 6 mzj ,gj(y
j, xj) + εj,

where tzj(·) = F (zj, xj) + g>j (· − zj) and sj = [tzj(x
j) + c‖zj − xj‖2]+. Since x

j → x

and zj ∈ B(xj,M), the sequence zj is bounded. Passing to a subsequence, we
may assume without loss that zj → z ∈ B(x,M) and gj → g ∈ ∂1F (z, x) by the
upper semi-continuity of the Clarke subdi�erential. This gives tzj(·) → tz(·) =
F (z, x) + g>(· − z), and so sj → s = [tz(x) + c‖z − x‖2]+. It follows that

mzj ,gj(·, xj) = tzj(·)− sj → tz(·)− s = mz,g(·, x)

as i→∞, and then also

mzj ,gj(y
j, xj) = tzj(y

j)− sj → tz(y)− s = mz,g(y, x),
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where uniformity comes from boundedness of the gj. Therefore,

lim sup
j→∞

φ↑(yj, xj) 6 mz,g(y, x) 6 φ↑(y, x).

�

7. Lower-C1 and upper-C1 functions

According to Mi�in [15], a function f : Rn → R is semismooth at x ∈ Rn if f
is Lipschitz on a ball about x, and for d ∈ Rn, {tk} ⊂ R+, {θk} ⊂ Rn, {gk} ⊂ Rn

satisfying tk ↓ 0, θk/tk → 0 ∈ Rn, gk ∈ ∂f(x+tkd+θk), the sequence g
>
k d has exactly

one accumulation point. The following lemma can be seen as a generalization of [15,
Lemma 2].

Lemma 7.1. A function f : Rn → R Lipschitz near x is semismooth at x if and
only if for any {dk} ⊂ Rn, {tk} ⊂ R+, {gk} ⊂ Rn satisfying dk → d ∈ Rn, tk ↓ 0,
gk ∈ ∂f(x+ tkdk), we have

lim
k→∞

g>k dk = f ′(x; d).

Proof. Assume that f is semismooth at x. Taking sk ↓ 0, by Lebourg's mean value
theorem established in [10, Theorem 2.1] and proved in [11, Theorem 1.7], there
exist t∗k ∈ (0, sk) and g

∗
k ∈ ∂f(x+ t∗kdk) such that

f(x+ skdk)− f(x) = g∗>k skdk.

Then t∗k ↓ 0, x+ t∗kdk → x, and by [22, Theorem 9.13], the sequence g∗k is bounded,
which gives g∗>k (dk − d) → 0. Observing that g∗k ∈ ∂f(x + t∗kd + θk) with θk =
t∗k(dk − d), θk/t

∗
k = dk − d→ 0, due to semismoothness of f , the sequence g∗>k d has

exactly one accumulation point, and so does g∗>k dk = g∗>k d + g∗>k (dk − d). On the
other hand,

g∗>k dk =
f(x+ skdk)− f(x)

sk
=
f(x+ skd)− f(x)

sk
+
f(x+ skdk)− f(x+ skd)

sk
.

The second term tends to 0 as k →∞ since f is Lipschitz near x and dk → d. This
implies that limk→∞ g

∗>
k dk = f ′(x; d). Now for any sequence tk ↓ 0, gk ∈ ∂f(x+tkdk),

then gk ∈ ∂f(x + tkd + θk) with θk = tk(dk − d), θk/tk = dk − d → 0. By merging
sequences {tk} and {t∗k}, {gk} and {g∗k} and using again semismoothness of f , we
must have limk→∞ g

>
k dk = limk→∞ g

∗>
k dk = f ′(x; d). Conversely, writing tkd + θk =

tk (d+ θk/tk) with dk = d+ θk/tk → d, we complete the proof of the lemma. �

Corollary 7.2. Let f : Rn → R be semismooth at x ∈ Rn. Then for any yk → x,
gk ∈ ∂f(yk) and for ε > 0,

g>k (x− yk) 6 f(x)− f(yk) + ε‖x− yk‖
for in�nitely many k.

Proof. Let yk → x and gk ∈ ∂f(yk). Passing to a subsequence, we may assume

without loss of generality that dk = yk−x
‖yk−x‖ → d as k →∞. Set tk = ‖yk − x‖, then
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yk = x+ tkdk and by Lemma 7.1,

lim
k→∞

g>k (yk − x)

‖yk − x‖ = f ′(x; d).

We have also

f(yk)− f(x)

‖yk − x‖ =
f(x+ tkdk)− f(x)

tk
=
f(x+ tkd)− f(x)

tk
+
f(x+ tkdk)− f(x+ tkd)

tk

converges to f ′(x; d) as k →∞ due to Lipschitzness of f near x. Hence,

g>k (x− yk)
‖x− yk‖ −

f(x)− f(yk)

‖x− yk‖ → 0

as k →∞, which completes the proof. �

We recall here the notion of lower-C1 and upper-C1 functions introduced in [23]
and [22]. A function f : Rn → R is lower -C1 at (or around) x0 ∈ Rn, if there
are a compact set S, a neighborhood U of x0, and a jointly continuous function
g : U × S → R whose partial derivative with respect to the �rst variable is also
jointly continuous, such that

f(x) = max
s∈S

g(x, s)

for all x ∈ U . The function f is upper -C1 at x0 if −f is lower-C1 at x0. For the
following, we collect some facts on lower-C1 and upper-C1 functions.

Remark 7.3. According to Proposition 2.4 and Theorem 3.9 in [23], if f is lower-C1

at x0 then f is regular and semismooth at x0, but the converse need not be true.

Lemma 7.4. Let f : Rn → R be locally Lipschitz. For all x0 ∈ Rn, the following
statements are equivalent.

(i) f is lower-C1 at x0.
(ii) ∂f is strictly submonotone at x0 in the sense that

lim inf
x6=y

x,y→x0

(gx − gy)>(x− y)

‖x− y‖ > 0,

whenever gx ∈ ∂f(x), gy ∈ ∂f(y).
(iii) For every ε > 0 and x, y close enough to x0,

g>y (x− y) 6 f(x)− f(y) + ε‖x− y‖,
whenever gy ∈ ∂f(y).

Proof. The equivalence of (i) and (ii) is already established in [23, Theorem 3.9].
We will show that (ii) and (iii) are equivalent.

? (ii)⇒ (iii). For any distinct x, y, by Lebourg's mean value theorem, there exist
λ ∈ (0, 1) and gz ∈ ∂f(z) with z = λx+ (1−λ)y such that f(x)− f(y) = g>z (x− y).
Take arbitrary gy ∈ ∂f(y) and note that z − y = λ(x− y), we can write

f(x)−f(y) = g>y (x− y) + (gz− gy)>(x− y) = g>y (x− y) +
(gz − gy)>(z − y)

‖z − y‖ ‖x− y‖.
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Assume that ∂f is strictly submonotone. Then, for �xed x0 ∈ Rn and ε > 0, there
exists δ > 0 such that for any distinct z, y ∈ B(x0, δ),

(gz − gy)>(z − y)

‖z − y‖ > −ε.

Now for every x, y ∈ B(x0, δ), x 6= y, we also have z, y ∈ B(x0, δ), z 6= y, and thus
(iii) holds due to the above expression and estimate.

? (iii) ⇒ (ii). Let x0 ∈ Rn and ε > 0 be �xed. If (iii) holds true, we can pick
x, y in a neighborhood of x0 such that

g>y (x− y) 6 f(x)− f(y) +
ε

2
‖x− y‖,

and also
g>x (y − x) 6 f(y)− f(x) +

ε

2
‖y − x‖.

After adding these inequalities, reversing the sign and taking limit inferior, we get
(ii). �

By applying Lemma 7.4 to function −f , we obtain immediately the following

Corollary 7.5. Let f : Rn → R be locally Lipschitz. Then f is upper-C1 at x0 ∈ Rn

if and only if for every ε > 0 and x, y close enough to x0,

g>x (x− y) 6 f(x)− f(y) + ε‖x− y‖,
whenever gx ∈ ∂f(x).

8. Analysis of the inner loop

In this section we show that the inner loop terminates with a serious iterate after
a �nite number of steps. The current iterate x is �xed, and so is Q := Q(x). Assume
that the inner loop at serious iterate x turns in�nitely, then either τk is increased
in�nitely often, or τk is frozen from some counter k0 onwards. These two scenarios
will be analyzed in Lemmas 8.1 and 8.2. Denote by F the feasible set of problem
(1), i.e., F = {x ∈ C : h(x) 6 0}, we have the following results.

Lemma 8.1. Let f and h be locally Lipschitz on Rn such that at every point of F ,
f is semismooth or upper-C1, and h is semismooth. Suppose that the inner loop
at serious iterate x produces an in�nite sequence of null step yk and the proximity
control parameter is increased in�nitely often. Then the following statements hold.

(i) yk → x and Φk(y
k, x)→ F (x, x) = 0 as k →∞.

(ii) 0 ∈ ∂1F (x, x) + ∂iC(x).

Proof. (i) We see that the proximity parameter τk is never decreased in the inner
loop, which combines with the assumption on τk implies that τk → ∞. Since yk is
the optimal solution of the tangent program (3),

τk(x− yk) ∈ ∂1(Φk(y
k, x) + iC(yk)).

Using the subgradient inequality and noting that Φk(x, x) = 0, x ∈ C, yk ∈ C, we
get

τk‖x− yk‖2 6 Φk(x, x) + iC(x)− Φk(y
k, x)− iC(yk) = −Φk(y

k, x),
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which implies

0 6 τk
2
‖x− yk‖2 6 −φk(yk, x)− 1

2
(x− yk)>(Q+ τkI)(x− yk)

6 −φk(yk, x) 6 ‖g(x)‖‖x− yk‖.
Here we recall that Q+ τkI � 0 and m0(·, x) 6 φk(·, x) with m0(·, x) = g(x)>(· − x)
the exactness plane at x. It thus follows τk‖x − yk‖ 6 2‖g(x)‖. This gives yk → x
since τk → ∞. Using again the above estimate, we have φk(y

k, x) → 0, and so
Φk(y

k, x)→ 0.

(ii) Let
g∗k := (Q+ τkI)(x− yk) ∈ ∂1(φk(y

k, x) + iC(yk)),

then the sequence g∗k is bounded since ‖g∗k‖ is proportional to τk‖x− yk‖ 6 2‖g(x)‖
for k large enough. Passing to a subsequence if necessary, we may assume without
loss that g∗k → g∗ for some g∗. We claim that g∗ ∈ ∂1F (x, x) + ∂iC(x). For all
y ∈ Rn, the subgradient inequality gives

g∗>k (y − yk) 6 φk(y, x) + iC(y)− φk(yk, x)− iC(yk)

6 φ↑(y, x)− φk(yk, x) + iC(y),

due to Lemma 6.1 and the fact that iC(yk) = 0. Passing to the limit in the above
estimate and using the results in part (i), we get

g∗>(y − x) 6 φ↑(y, x) + iC(y)

for all y ∈ Rn. This together with φ↑(x, x) = 0 and iC(x) = 0 gives g∗ ∈ ∂1(φ↑(x, x)+
iC(x)). Using again Lemma 6.1, it implies that g∗ ∈ ∂1F (x, x) + ∂iC(x).

We now prove g∗ = 0. Since the inner loop at serious iterate x turns in�nitely,
ρk < γ for all k. Moreover, the proximity parameter τk is increased in�nitely, so
there is an in�nity of counters k where ρ̃k > γ̃. Therefore

(5) γ̃ − γ < ρ̃k − ρk =
F (yk, x)−Mk(y

k, x)

−Φk(yk, x)
.

It has already been shown in part (i) that−Φk(y
k, x) > τk‖x−yk‖2. Fixing 0 < δ < 1

and using τk →∞ we have

‖g∗k‖ 6 (1 + δ)τk‖x− yk‖,
and then

(6) − Φk(y
k, x) > 1

1 + δ
‖g∗k‖‖x− yk‖

for k large enough. Next we estimate the di�erence F (yk, x) −Mk(y
k, x). By con-

struction,

Mk(y
k, x) > mk(y

k, x) +
1

2
(yk − x)>Q(yk − x)

with mk(·, x) = tk(·)− [tk(x) + c‖yk−x‖2]+, where tk(·) = F (yk, x) + g>k (·− yk) and
gk ∈ ∂1F (yk, x). This gives

F (yk, x)−Mk(y
k, x) 6 [tk(x) + c‖yk − x‖2]+ −

1

2
(yk − x)>Q(yk − x).

Observing that the algorithm assures the feasibility of x, we �rst consider the case
when f and h are semismooth at x. Then F (·, x) is semismooth at x due to [15,
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Theorem 6]. For each ε > 0, using yk → x and Corollary 7.2, and passing to a
subsequence, we �nd k(ε) such that for k > k(ε),

g>k (x− yk) 6 F (x, x)− F (yk, x) + ε‖x− yk‖,
which implies

tk(x) = F (yk, x) + g>k (x− yk) 6 ε‖x− yk‖,
and then for k large enough,

(7) F (yk, x)−Mk(y
k, x) 6 (1 + δ)ε‖x− yk‖.

In the case where f is upper-C1 and h is semismooth at x, notice that

F (yk, x) = max{f(yk)− f(x), h(yk)}.
If f(yk)− f(x) < h(yk) then F (yk, x) = h(yk), ∂1F (yk, x) = ∂h(yk), and so tk(x) =
h(yk) + g>k (x− yk) with gk ∈ ∂h(yk). Using again Corollary 7.2, for k large enough,

tk(x) 6 h(x) + ε‖x− yk‖ 6 ε‖x− yk‖,
which yields (7). On the other hand, noting that the exactness plane m0(·, x) =
g(x)>(· − x) is based on g(x) ∈ ∂f(x) since h(x) 6 0, and then applying Corollary
7.5, we get

m0(yk, x) = g(x)>(yk − x) > −f(x) + f(yk)− ε‖x− yk‖
for k large enough. Now if f(yk)− f(x) > h(yk) then F (yk, x) = f(yk)− f(x), and
(7) holds true due to the fact that Mk(y

k, x) > m0(yk, x) + 1
2
(yk − x)>Q(yk − x).

From (5), (6) and (7), we obtain

‖g∗k‖ 6
(1 + δ)2

γ̃ − γ ε

for k large enough. This holds for all ε > 0, so g∗ = 0, and the lemma is proved. �

Lemma 8.2. Let f and h be locally Lipschitz functions. Suppose that the inner loop
at serious iterate x produces an in�nite sequence of null step yk and the proximity
control parameter is increased �nitely often. Then the following statements hold.

(i) yk → x and Φk(y
k, x)→ F (x, x) = 0 as k →∞.

(ii) 0 ∈ ∂1F (x, x) + ∂iC(x).

Proof. (i) Since the control parameter τk is increased �nitely often, it remains un-
changed from counter k0 onwards, i.e., τk = τk0 := τ for all k > k0. This means that
ρk < γ and ρ̃k < γ̃k for all k > k0. We consider the objective function of tangent
program (3) for k > k0,

Ψk(y, x) = Φk(y, x) +
τ

2
‖y − x‖2 = φk(y, x) +

1

2
‖y − x‖2

Q+τI ,

where ‖ · ‖Q+τI denote the Euclidean norm derived from the positive de�nite matrix
Q+ τI. Then

Ψk+1(y, x) = φk+1(y, x) +
1

2
‖y − x‖2

Q+τI .
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It follows from the construction of φk+1(·, x) that φk+1(y, x) > m∗k(y, x) withm∗k(·, x)
the aggregate plane at null step yk. For y ∈ C, we have

m∗k(y, x) = φk(y
k, x) + g∗>k (y − yk)

= φk(y
k, x) + [(Q+ τI)(x− yk)]>(y − yk)− h∗>k (y − yk)

> φk(y
k, x) + (x− yk)>(Q+ τI)(y − yk),

by using (4) and noting that h∗>k (y−yk) 6 iC(y)−iC(yk) = 0 due to the subgradient
inequality. In addition,

‖y − x‖2
Q+τI = ‖(yk − x) + (y − yk)‖2

Q+τI

= ‖yk − x‖2
Q+τI + ‖y − yk‖2

Q+τI − 2(x− yk)>(Q+ τI)(y − yk),

using the fact that (x − y)>(Q + τI)(y − yk) = (y − yk)>(Q + τI)(x − y). Hence,
for y ∈ C,

Ψk+1(y, x) > φk(y
k, x)+

1

2
‖yk−x‖2

Q+τI+
1

2
‖y−yk‖2

Q+τI = Ψk(y
k, x)+

1

2
‖y−yk‖2

Q+τI .

Substituting y = yk+1 and remarking that yk+1 is the minimizer of Ψk+1(y, x), we
have

Ψk(y
k, x) +

1

2
‖yk+1 − yk‖2

Q+τI 6 Ψk+1(yk+1, x) 6 Ψk+1(x, x) = Φk+1(x, x) = 0.

This shows that the sequence Ψk(y
k, x) is monotonically increasing and bounded

above by 0, so Ψk(y
k, x) → Ψ∗ as k → ∞ for some Ψ∗ 6 0. Letting k → ∞ in the

above inequality, we obtain 1
2
‖yk+1 − yk‖2

Q+τI → 0, which implies

(8) ‖yk+1 − yk‖ → 0 as k →∞.

On the other hand, proceeding as in the proof of Lemma 8.1, we have

τ‖x− yk‖ 6 2‖g(x)‖, k > k0,

which proves that the sequence of trial steps yk is bounded. By combining with (8),

‖yk+1−x‖2
Q+τI−‖yk−x‖2

Q+τI = (yk−yk+1)>(Q+τI)[(yk+1−x)+(yk−x)]→ 0 as k →∞.

Recalling that φk(y, x) = Ψk(y, x)− 1
2
‖y − x‖2

Q+τI and using the above convergence
results, we get

(9) φk+1(yk+1, x)− φk(yk, x) =

Ψk+1(yk+1, x)−Ψk(y
k, x)− 1

2

(
‖yk+1 − x‖2

Q+τI − ‖yk − x‖2
Q+τI

)

converges to 0 as k →∞.

We now claim that φk+1(yk, x) − φk(y
k, x) → 0, and then also Φk+1(yk, x) −

Φk(y
k, x) → 0 as k → ∞. By the construction of the model φk+1(·, x), there exists

a cutting plane mik(·, x) = aik + g>ik(· − x) at null step yik , ik ∈ {1, . . . , k}, with
gik ∈ ∂1F (yik , x) such that φk+1(yk, x) = mik(y

k, x). Then

φk+1(yk, x) = mik(y, x)− g>ik(y − y
k) 6 φk+1(y, x)− g>ik(y − y

k)
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for all y. Therefore,

0 6 φk+1(yk, x)− φk(yk, x)

6 φk+1(yk+1, x)− φk(yk, x) + ‖gik‖‖yk+1 − yk‖
and this term converges to 0 due to (8), (9) and boundedness of gik . Here bound-
edness of the gik ∈ ∂1F (yik , x) follows from boundedness of the subdi�erential of
F (·, x) on the bounded set of trial steps yk (cf. [22, Theorem 9.13]). We obtain
φk+1(yk, x)− φk(yk, x)→ 0, and so

(10) Φk+1(yk, x)− Φk(y
k, x)→ 0 as k →∞.

We next show that Φk(y
k, x) → F (x, x) = 0, of course also φk(y

k, x) → 0,
and then yk → x as k → ∞. Assume this is not the case, then η :=
lim supk→∞Φk(y

k, x) < 0. Choose ε > 0 such that 0 < ε < −(1 − γ̃)η. Thanks to
(10), there exists k1 > k0 such that

Φk+1(yk, x) 6 Φk(y
k, x) + ε

for all k > k1. Since ρ̃k < γ̃ for all k > k1 > k0 and Φk(y
k, x) 6 Φk(x, x) = 0,

γ̃Φk(y
k, x) 6Mk(y

k, x) 6 Φk+1(yk, x) 6 Φk(y
k, x) + ε,

using Mk(·, x) 6 Φk+1(·, x) by construction. Passing to the limit, we get γ̃η 6 η+ ε,
which contradicts the choice of ε. That gives η = 0, as claimed.

By the de�nitions of Φk and y
k we have

Φk(y
k, x) +

τ

2
‖yk − x‖2 = Ψk(y

k, x) 6 Ψk(x, x) = Φk(x, x) = 0.

This together with Φk(y
k, x)→ F (x, x) = 0 gives yk → x as k →∞.

(ii) We observe that by the necessary optimality condition for (3) and the sub-
gradient inequality,

(x− yk)>(Q+ τI)(y − yk) 6 φk(y, x) + iC(y)− φk(yk, x)− iC(yk)

6 φ↑(y, x) + iC(y)− φk(yk, x)− iC(yk)

for all y. Passing to the limit and noting that φ↑(x, x) = φ(x, x) = 0, iC(yk) =
iC(x) = 0, we obtain

0 6 φ↑(y, x) + iC(y)− φ↑(x, x)− iC(x),

which implies 0 ∈ ∂1(φ↑(x, x) + iC(x)), and since ∂1φ
↑(x, x) = ∂1F (x, x), we are

done. �

We end this section with the following conclusion.

Proposition 8.3. Let f and h be locally Lipschitz on Rn such that at every point
of F , f is semismooth or upper-C1, and h is semismooth. Then the inner loop �nds
a serious iterate after a �nite number of trial steps.

Proof. Suppose that the inner loop at serious iterate x turns in�nitely. Then, as
proved in Lemmas 8.1 and 8.2, we must have 0 ∈ ∂1F (x, x)+∂iC(x). This contradicts
the fact that the inner loop is only entered when 0 6∈ ∂1F (x, x) + ∂iC(x). �
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9. Convergence of the outer loop

We show in this section a strong convergence of our algorithm under the assump-
tion that at every point of the feasible set F , f is lower-C1 or upper-C1, and h is
lower-C1. By Proposition 8.3 and Remark 7.3, this assumption on f and h assures
that the inner loop always terminates �nitely.

Theorem 9.1. Assume f and h in problem (1) are locally Lipschitz on Rn such that
at every point of the feasible set F , f is lower-C1 or upper-C1, and h is lower-C1.
Let {x ∈ F : f(x) < f(x1)} be bounded, and let xj be the sequence of serious iterates
generated by Algorithm 1. Then xj is a sequence of feasible points for (1), and one
of the following two statements holds.

(i) The sequence xj ends �nitely at a F. John critical point xj
∗
of (1). In the

case j∗ > 1, xj
∗
is even a Karush-Kuhn-Tucker point.

(ii) The sequence xj is bounded in�nite, and every accumulation point x∗ is a
F. John critical point of (1). In other words, x∗ is either a critical point of
constraint violation, or a Karush-Kuhn-Tucker point.

We see immediately that feasibility of sequence xj follows from feasibility of x1

and Remark 3.1. If the sequence xj is �nite, then the �rst statement of the theorem
holds due to the stopping test of Algorithm 1 and Lemma 2.1. In the sequel, we
focus on the case where the sequence xj is in�nite, and suppose that in the jth outer
loop, the serious step is accepted at inner loop counter kj, that is, x

j+1 = ykj . At
the jth outer loop and the kth inner loop, we denote more precisely the proximity
control parameter as τ jk , and write τkj for τ

j
kj
. We also write Qj := Q(xj) for the

matrix of the second-order model, which depends on the serious iterates xj.

Lemma 9.2. Let f and h be locally Lipschitz functions such that {x ∈ F : f(x) <
f(x1)} is bounded. Then the sequence of serious iterates xj is bounded. In addition,
F (xj+1, xj)→ 0, τkj‖xj − xj+1‖2 → 0 and ‖xj − xj+1‖2

Qj+τkj I
→ 0 as j →∞.

Proof. Following Remark 3.1, feasibility of x1 gives f(xj+1) < f(xj) and h(xj+1) < 0
for all j. Thus, xj is feasible for all j, and sequence f(xj) is decreased. This yields
{xj : j = 1, 2, . . .} ⊂ {x ∈ F : f(x) < f(x1)}, and so the sequence xj is bounded.

Now for every accumulation point x∗ of the sequence xj, the local Lipschitz
continuity of f implies that f(x∗) is an accumulation point of the sequence f(xj),
and then f(xj)→ f(x∗) due to the monotone sequence theorem. Therefore,

lim inf
j→∞

F (xj+1, xj) > lim
j→∞

(f(xj+1)− f(xj)) = 0.

This together with F (xj+1, xj) 6 0 gives F (xj+1, xj)→ 0 as j →∞.

Since xj+1 = ykj is the optimal solution of tangent program (3),

(Qj + τkjI)(xj − xj+1) ∈ ∂1(φkj(x
j+1, xj) + iC(xj+1)).
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Using the subgradient inequality, we obtain

(xj − xj+1)>(Qj + τkjI)(xj − xj+1) 6 φkj(x
j, xj) + iC(xj)− φkj(xj+1, xj)− iC(xj+1)

= −φkj(xj+1, xj)

= −Φkj(x
j+1, xj) +

1

2
(xj − xj+1)>Qj(x

j − xj+1).

By noting that Qj + τkjI � 0, this implies

1

2
‖xj − xj+1‖2

Qj+τkj I
+

1

2
τkj‖xj − xj+1‖2 6 −Φkj(x

j+1, xj).

Moreover, −γΦkj(x
j+1, xj) 6 −F (xj+1, xj) due to the acceptance test and the fact

that Φkj(x
j+1, xj) 6 0. Hence,

1

2
‖xj − xj+1‖2

Qj+τkj I
+

1

2
τkj‖xj − xj+1‖2 6 −1

γ
F (xj+1, xj).

Combining with F (xj+1, xj)→ 0, we complete the proof. �
Lemma 9.3. Let f and h be locally Lipschitz functions such that {x ∈ F : f(x) <
f(x1)} is bounded. Suppose there exists an in�nite subset J ⊂ N such that xj → x∗,
j ∈ J . Let g∗j = (Qj + τkjI)(xj − xj+1) be the aggregate subgradient belonging to

xj+1 in the jth outer loop. Then if the sequence (g∗j )j∈J has a subsequence which
converges to 0 we have that 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗).

Proof. Assume that there exists an in�nite subset J ′ of J such that g∗j → 0, j ∈ J ′.
Since g∗j ∈ ∂1(φkj(x

j+1, xj) + iC(xj+1)), for any y ∈ Rn, the subgradient inequality
gives

g∗>j (y − xj+1) 6 φkj(y, x
j) + iC(y)− φkj(xj+1, xj)− iC(xj+1)

= φkj(y, x
j)− Φkj(x

j+1, xj) +
1

2
(xj+1 − xj)>Qj(x

j+1 − xj) + iC(y)

6 φkj(y, x
j)− Φkj(x

j+1, xj) +
1

2
‖xj − xj+1‖2

Qj+τkj I
+ iC(y)

6 φ↑(y, xj)− 1

γ
F (xj+1, xj) +

1

2
‖xj − xj+1‖2

Qj+τkj I
+ iC(y).

Here the last estimate is obtained by Lemma 6.1 and the acceptance test of the
algorithm. By passing to the limit and using the hypothesis g∗j → 0 and the results
from Lemmas 6.1(iii) and 9.2, we get

0 6 φ↑(y, x∗) + iC(y).

It follows that 0 ∈ ∂1(φ↑(x∗, x∗) + iC(x∗)) since φ↑(x∗, x∗) = 0 and iC(x∗) = 0.
Together with ∂1φ

↑(x∗, x∗) = ∂1F (x∗, x∗), this ends the proof of the lemma. �
Lemma 9.4. Under the hypotheses of Lemma 9.3, if ‖g∗j‖ > ζ for some ζ > 0 and
every j ∈ J then the following statements hold.

(i) τkj →∞ as j ∈ J , j →∞.
(ii) There exists an in�nite subset J+ of J such that the τ -parameter was in-

creased at least once during the jth outer loop for all j ∈ J+. Suppose this
happened for the last time at stage rj for some rj. Then x

j − yrj → 0 and
φrj(y

rj , xj)→ 0 as j ∈ J+, j →∞.
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(iii) If at every point of F , f is lower-C1 or upper-C1, and h is lower-C1, then
0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗).

Proof. (i) Suppose on the contrary that the sequence (τkj)j∈J has a bounded subse-
quence, then by passing to a subsequence, we may assume without loss of generality
that (τkj)j∈J is bounded. By combining with boundedness of the Qj and bounded-
ness of the serious steps xj shown in Lemma 9.2, there exists an in�nite subset J ′ of
J such that τkj → τ̄ , Qj → Q̄ and xj−xj+1 → ∆x as j ∈ J ′, j →∞. It follows that

g∗j → (Q̄+τ̄ I)∆x with ‖(Q̄+τ̄ I)∆x‖ > ζ > 0 and g∗>j (xj−xj+1)→ ∆x>(Q̄+τ̄ I)∆x.

According to Lemma 9.2, g∗>j (xj − xj+1) = ‖xj − xj+1‖2
Qj+τkj I

→ 0, which implies

∆x>(Q̄ + τ̄ I)∆x = 0. Since Q̄ + τ̄ I is positive semide�nite symmetric, we deduce
(Q̄ + τ̄ I)∆x = 0, that contradicts ‖(Q̄ + τ̄ I)∆x‖ > ζ > 0. Hence, τkj → ∞ as
j →∞.

(ii) For each outer loop counter j ∈ J , either τkj > τ j1 or τkj = τ j1 with τ j1 6 T <

∞ by the algorithm. But τkj → ∞ as j → ∞, j ∈ J , set J− = {j ∈ J : τkj = τ j1}
therefore must be �nite, which implies the in�nity of set J+ = {j ∈ J : τkj > τ j1}.
Suppose that for each j ∈ J+, the τ -parameter was increased for the last time at
counter rj, then rj ∈ {1, . . . , kj − 1} since at inner loop counter kj the serious step
is accepted. That is

τkj = τkj−1 = · · · = τrj+1 = θτrj .

Conforming to the update proximity control parameter of the algorithm, the increase
at stage rj is due to the fact that

(11) ρrj < γ and ρ̃rj > γ̃.

Noting that τrj = θ−1τkj → ∞ (j ∈ J+) and yrj is the optimal solution of tangent
program (3), we have

τrj(x
j − yrj) ∈ ∂1(Φrj(y

rj , xj) + iC(yrj)).

By the subgradient inequality and the fact that Φrj(x
j, xj) = 0, iC(xj) = iC(yrj) = 0,

(12) τrj‖xj − yrj‖2 6 −Φrj(y
rj , xj).

It follows that

0 6
τrj
2
‖xj − yrj‖2 6 −φrj(yrj , xj)−

1

2
(xj − yrj)>(Qj + τrjI)(xj − yrj)

6 −φrj(yrj , xj) 6 ‖g(xj)‖‖xj − yrj‖,
where m0(·, xj) = g(xj)>(· − xj) is the exactness plane at xj. This implies τrj‖xj −
yrj‖ 6 2‖g(xj)‖. Remark that the sequence g(xj) is bounded due to [22, Theorem
9.13], and then xj − yrj → 0 since τrj → ∞. The term −φrj(yrj , xj) therefore
is squeezed in between two convergent terms with the same limit 0, which gives
φrj(y

rj , xj)→ 0.

(iii) We now consider

g̃j :=
(
Qj + τrjI

)
(xj − yrj) ∈ ∂1(φrj(y

rj , xj) + iC(yrj)),

then as τrj →∞ and the Qj are bounded, ‖g̃j‖ behaves asymptotically like constant
times τrj‖xj − yrj‖ 6 2‖g(xj)‖, which implies boundedness of the sequence g̃j.
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Therefore, possibly passing to a subsequence, we have g̃j → g̃ for some g̃. By using
the subgradient inequality and Lemma 6.1, and noting that iC(yrj) = 0,

g̃>j (y − yrj) 6 φrj(y, x
j) + iC(y)− φrj(yrj , xj)− iC(yrj)

6 φ↑(y, xj) + iC(y)− φrj(yrj , xj).
for all y ∈ Rn. Passing to the limit and using the results in part (ii), we obtain

g̃>(y − x∗) 6 φ↑(y, x∗) + iC(y),

which implies g̃ ∈ ∂1(φ↑(x∗, x∗) + iC(x∗)) since φ↑(x∗, x∗) = 0 and iC(x∗) = 0. By
Lemma 6.1, we deduce that g̃ ∈ ∂1F (x∗, x∗) + ∂iC(x∗).

Let us next show g̃ = 0. Fix 0 < δ < 1, it follows from τrj →∞ that for j large
enough,

‖g̃j‖ 6 (1 + δ)τrj‖xj − yrj‖,
which combined with (12) gives

(13) ‖g̃j‖ 6 (1 + δ)
−Φrj(y

rj , xj)

‖xj − yrj‖ .

On the other hand, from (11) we have

(14) γ̃ − γ < ρ̃rj − ρrj =
F (yrj , xj)−Mrj(y

rj , xj)

−Φrj(y
rj , xj)

.

Remarking that

Mrj(·, xj) > mrj(·, xj) +
1

2
(· − xj)>Qj(· − xj),

wheremrj(·, xj) = trj(·)−[trj(x
j)+c‖yrj−xj‖2]+, and trj(·) = F (yrj , xj)+g>rj(·−yrj)

with grj ∈ ∂1F (yrj , xj), we get

F (yrj , xj)−Mrj(y
rj , xj) 6 [trj(x

j) + c‖yrj − xj‖2]+ −
1

2
(yrj − xj)>Qj(y

rj − xj).

For ε > 0 �xed, we distinguish the following two cases.

Case I. The both functions f and h are lower-C1 at x∗, so is F (·, xj). By the
assumption that xj → x∗ and the fact that xj − yrj → 0 proved in part (ii), thanks
to Lemma 7.4, there exists j(ε) such that

g>rj(x
j − yrj) 6 F (xj, xj)− F (yrj , xj) + ε‖xj − yrj‖

for every j > j(ε). This implies

trj(x
j) = F (yrj , xj) + g>rj(x

j − yrj) 6 ε‖xj − yrj‖,
and thus for j large enough,

(15) F (yrj , xj)−Mrj(y
rj , xj) 6 (1 + δ)ε‖xj − yrj‖.

Case II. The function f is upper-C1 and the function h is lower-C1 at x∗. By the
feasibility of xj, if f(yrj)− f(xj) < h(yrj) then

F (yrj , xj) = max{f(yrj)− f(xj), h(yrj)} = h(yrj), ∂1F (yrj , xj) = ∂h(yrj),
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and therefore the tangent trj(·) = h(yrj) + g>rj(· − yrj) with grj ∈ ∂h(yrj). The

estimate (15) holds based on the inequality

trj(x
j) 6 h(xj) + ε‖xj − yrj‖ 6 ε‖xj − yrj‖, for j large enough,

using Lemma 7.4. Conversely, if f(yrj)− f(xj) > h(yrj) then F (yrj , xj) = f(yrj)−
f(xj), and by recalling the exactness plane m0(·, xj) = g(xj)>(· − xj) with g(xj) ∈
∂f(xj), we have

Mrj(y
rj , xj)− 1

2
(yrj−xj)>Qj(y

rj−xj) > m0(yrj , xj) > −f(xj)+f(yrj)−ε‖xj−yrj‖

due to Corollary 7.5. This gives (15).

Now it follows from (13), (14) and (15) that

‖g̃j‖ 6
(1 + δ)2

γ̃ − γ ε

for j large enough. Since ε > 0 is arbitrary, we conclude that g̃ = 0, meaning
0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗). �

Proof of Theorem 9.1. As discussed just after the statement of the theorem, the
sequence xj consists of feasible points for (1) and veri�es statement (i) when it is
�nite. Suppose that the sequence xj is in�nite, then it is bounded by Lemma 9.2.
Let x∗ be an accumulation point of the sequence xj, we have h(x∗) 6 0, x∗ ∈ C due
to feasibility of xj for all j, continuity of h(·) and closed convexity of C. It follows
from Lemmas 9.3 and 9.4 that 0 ∈ ∂1F (x∗, x∗)+∂iC(x∗). This together with Lemma
2.1 gives the last statement of the theorem. �

In practice, a challenge is the lack of convexity, by which it is di�cult to guarantee
convergence to a single critical point. Some satisfactory results can nevertheless be
obtained from the following corollaries.

Corollary 9.5. Under the hypotheses of Theorem 9.1, for every ε > 0 there exists
an index j0(ε) ∈ N such that every j > j0(ε), xj is within ε-distance of the set

L = {x∗ ∈ C : 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗)}.

Proof. Suppose there exists ε > 0 and an in�nite subsequence xj, j ∈ J , such that
‖xj − x∗‖ > ε for all j ∈ J and all x∗ ∈ L. Since the sequence xj, j ∈ J , is
bounded, it has an accumulation point x∗, and by Theorem 9.1, x∗ ∈ L. That is a
contradiction. �
Corollary 9.6. Under the hypotheses of Theorem 9.1, if the set L in Corollary 9.5
is totally disconnected [6, De�nition 9.4.1], then the sequence xj converges to a single
point x∗ ∈ C with 0 ∈ ∂1F (x∗, x∗) + ∂iC(x∗).

Proof. Recall that ‖xj − xj+1‖2
Qj+τkj I

→ 0 as j → ∞ due to Lemma 9.2. In each

outer loop counter j, since T > q + κ > −λmin(Qj) + κ, so

τkj > τ1 > −λmin(Qj) + κ,

and therefore λmin(Qj + τkjI) > κ, which implies that

‖xj − xj+1‖2
Qj+τkj I

> κ‖xj − xj+1‖2.
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It follows that ‖xj − xj+1‖2 → 0, and also xj − xj+1 → 0 as j →∞. By Ostrowski's
theorem [20, Theorem 26.1], the set K of accumulation points of the sequence xj is
either singleton or a compact continuum. Theorem 9.1 gives K ⊂ L, and so K must
be singleton thanks to the hypothesis of L. �

In the case where subgradients are inexact, working with the approximate sub-
di�erential

∂εf(x) = ∂f(x) + εB,

where ∂ is the exact Clarke subdi�erential, and B the unit ball in some �xed Eu-
clidean norm, we have the following

Corollary 9.7. Let f and h in problem (1) be locally Lipschitz on Rn such that
at every point of F , f is lower-C1 or upper-C1, and h is lower-C1. Suppose that
{x ∈ F : f(x) < f(x1)} is bounded, and subgradients are drawn from ∂ε1F (y, x),
whereas function values are exact. Then the sequence of serious iterates xj is a
bounded sequence of feasible points for (1), and every accumulation point x∗ of the xj

satis�es h(x∗) 6 0, x∗ ∈ C and 0 ∈ ∂ ε̃1F (x∗, x∗)+∂ ε̃iC(x∗), where ε̃ = (1+(γ̃−γ)−1)ε.

Proof. Noting that in this case ∂1φ
↑(x, x) = ∂ε1F (x, x), we proceed as in proof of

Theorem 9.1, and have just to replace (7) and (15) by the following estimates for
every ε′ > 0,

F (yk, x)−Mk(y
k, x) 6 (1 + δ)(ε′ + ε)‖x− yk‖ for k large enough,

F (yrj , xj)−Mrj(y
rj , xj) 6 (1 + δ)(ε′ + ε)‖xj − yrj‖ for j large enough.

For a detailed proof in the case of unconstrained optimization, we refer to [18]. �

10. Conclusion

We have presented a nonconvex bundle method using downshifted tangents and
the management of proximity control, which is adapted for nonconvex nonsmooth
constrained optimization problems with lower-C1 and upper-C1 functions. A global
convergence of the algorithm was proved in the sense that every accumulation point
of the sequence of serious iterates is critical. Some satisfactory convergence results
for practical purpose have been given as corollaries.
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II

Minimizing memory e�ects of a system ∗

Minh Ngoc Dao and Dominikus Noll

Abstract. Given a stable linear time-invariant system with tunable parameters,
we present a method to tune these parameters in such a way that undesirable re-
sponses of the system to past excitations, known as system ringing, are avoided or
reduced. This problem is addressed by minimizing the Hankel norm of the system,
which quanti�es the in�uence of past inputs on future outputs. We indicate by
way of examples that minimizing the Hankel norm has a wide scope for possible
applications. We show that the Hankel norm minimization program may be cast
as an eigenvalue optimization problem, which we solve by a nonsmooth bundle
algorithm with a local convergence certi�cate. Numerical experiments are used to
demonstrate the e�ciency of our approach.

Keywords. System ringing · system memory · Hankel norm · system reduction ·
controller design · system with tunable parameters.

1. Introduction

Ringing generally designates undesired responses of a system to past excitations.
In electronic systems, ringing arises under various forms of noise, such as gate ringing
in converters, undesired oscillations in digital controllers, or input ring back in clock
signals. In mechanical systems, ringing e�ects, when combined with resonance, may
accelerate breakdown. In audio systems, ringing may cause echoes to occur before
transients.

In more abstract terms, ringing may be understood as a tendency of the system
to store energy, which is retrieved later to produce undesired e�ects. One way to
quantify this capacity uses the Hankel norm of a system, which measures the e�ects
of past inputs on future outputs.

This paper focuses on the problem of minimizing system ringing by casting it
as a Hankel norm minimization program. This leads to an eigenvalue optimization

∗Paper published in Math. Control Signals Syst., doi: 10.1007/s00498-014-0135-9. Conference
version published in Proc. Asian Control Conf. (ASCC), Istanbul, June 2013.
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problem, for which we propose a nonsmooth bundle algorithm which assures con-
vergence to a critical point from an arbitrary starting point. We demonstrate that a
variety of problems such as Hankel synthesis, maximizing the memory of a system,
and control of �ow in a graph, can be interpreted as Hankel norm minimization
programs and solved e�ciently using the proposed algorithm.

There is a considerable body of literature dedicated to Hankel norm system
reduction, the original contribution being [12]. Our present approach is complemen-
tary to this classical line, as we focus on Hankel norm optimization problems which
cannot be solved by linear algebra techniques. This makes our method closer in
spirit to H2- or H∞-controller or �lter design [26].

The structure of the paper is as follows. After presenting the problem in abstract
form in Sect. 2, we show in Sect. 3 how it can be cast as a nonconvex eigenvalue
optimization program. Section 4 describes how Clarke subgradients of a Hankel
norm objective can be computed. In Sect. 5 we extend the Hankel norm to systems
with direct transmission in a physically meaningful way. Sections 6, 7 present typical
applications for the purpose of motivation of the Hankel minimization problem.
Section 8 discusses a proximal bundle algorithm used to solve the Hankel norm
minimization program. We propose a smooth relaxation of the Hankel norm in
Sect. 9. Experiments with typical applications are given in Sect. 10.

Notation

Terminology in nonsmooth optimization is covered by [8], system theory by [26].
Following the latter reference, given a transfer matrix function G(s) = C(sI −
A)−1B +D, we use the standard notations

G(s) =

[
A B
C D

]
or G = (A,B,C,D)

to indicate that

G :

{
ẋ = Ax+Bw
z = Cx+Dw

is a state-space realization of z(s) = G(s)w(s). Similar notations apply to discrete
time systems.

We shall work in the set of rectangular matrices with the corresponding scalar
product 〈M,N〉 = Tr(M>N) = Tr(N>M), whereM> and Tr(M) are transpose and
trace of a matrix. For symmetric matrices, M � 0 means positive de�nite, M � 0
positive semide�nite.

2. Hankel norm minimization

Consider a linear time-invariant system

G :

{
ẋ = Ax+Bw
z = Cx

with state x ∈ Rnx , input w ∈ Rm, and output z ∈ Rp. Suppose G is internally
stable in the sense that all eigenvalues of A have negative real part. If we think
of w(t) as an excitation at the input which acts over the time period 0 6 t 6 T
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with dynamics started at x(0) = 0, then the ring of the system after the excitation
has stopped at time T is z(t) for t > T . If signals are measured in the energy
norm, this leads to the de�nition of the Hankel norm of an internally stable system
G = (A,B,C) with input w and output z = Gw as

‖G‖H = sup
T>0

{(∫ ∞

T

z>z dt

)1/2

:

∫ T

0

w>w dt 6 1, w(t) = 0 for t > T

}
.

For the discrete time case, the Hankel norm of an internally stable system

G :

{
x(t+ 1) = Ax(t) +Bw(t)
z(t) = Cx(t)

is given by

‖G‖H = sup
T>0





(
∞∑

t=T

z(t)>z(t)

)1/2

:
T∑

t=0

w(t)>w(t) 6 1, w(t) = 0 for t > T



 ,

where now internally stable means that all eigenvalues of A have magnitude < 1,
and where it is again understood that z = Gw. A formula which works in both
cases is

(1) ‖G‖H = sup
T>0

{
‖z‖2,[T,∞) : ‖w‖2,[0,T ] 6 1, w ∈ L2[0, T ], w(t) = 0, t > T

}
.

Note that the system G in the above de�nition has no direct transmission D. This
accounts for the fact, proved in Lemma 5.1 in Sect. 5, that D causes no memory
e�ects, and is therefore not seen by the Hankel norm (1). In consequence, on the
space of systemsG = (A,B,C,D) with direct transmission, ‖·‖H is only a semi-norm
and not a norm.

By de�nition, the Hankel norm can be interpreted as a measure of the e�ects of
past inputs, that is, the memory of the system, on the states and future outputs.
Here, we are interested in systems G(x) with tunable parameters x ∈ Rn, where the
matrices A(x), B(x), C(x) depend smoothly on a design parameter x varying in Rn

or in some constrained subset of Rn. Our goal is to tune x such that system ringing
is avoided or reduced while internal stability of the system is guaranteed. This leads
to the following Hankel norm minimization program

(2)
minimize ‖G(x)‖H
subject to G(x) internally stable

x ∈ Rn.

We will discuss various instances, where program (2) may be of interest. Then,
we present a nonsmooth optimization method based on techniques from eigenvalue
optimization to solve (2), and discuss a smooth relaxation motivated by a result of
Nesterov in [15].

3. Representation of the Hankel norm

A representation of the Hankel norm ‖·‖H amenable to computations is obtained
through the observability and controllability Gramians, de�ned in [26, Section 3.8].
Based on the results in [12, Section 2.3], see also [26, Theorem 8.1], we have the
following
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Lemma 3.1. Let G = (A,B,C) be an internally stable linear time-invariant system
with input w and output z, and let ΓG : L2(−∞, 0] −→ L2[0,∞) be the Hankel
operator associated with G, de�ned by

(ΓGw)(t) =

∫ 0

−∞
CeA(t−τ)Bw(τ)dτ, t > 0.

Then, the following de�nitions are equivalent:

(i) ‖G‖H = supT>0

{
‖z‖2,[T,∞) : ‖w‖2,[0,T ] 6 1, w ∈ L2[0, T ], w(t) = 0, t > T

}
.

(ii) ‖G‖H = ‖ΓG‖ = sup
{
‖ΓGw‖2,[0,∞) : ‖w‖2,(−∞,0] 6 1, w ∈ L2(−∞, 0]

}
.

(iii) ‖G‖H =
√
λ1(XY ), where λ1 denotes the maximum eigenvalue of a matrix,

and X, Y are the controllability and observability Gramians of the system.

Proof. We assume x(−∞) = 0 for the Hankel operator ΓG and obtain

z(t) =

∫ t

−∞
CeA(t−τ)Bw(τ)dτ.

If we now focus on input signals w− that live for times t 6 0 and vanish for t > 0,
then the output restricted to t > 0 is

z+(t) =

∫ 0

−∞
CeA(t−τ)Bw−(τ)dτ = ΓGw−, t > 0.

Assuming x(0) = 0 in (i), it now follows from the time-invariance that

sup
T>0

06=w∈L2[0,T ]
w(t)=0, t>T

‖z‖2,[T,∞)

‖w‖2,[0,T ]

= sup
T>0

06=w∈L2[−T,0]
w(t)=0, t>0

‖z‖2,[0,∞)

‖w‖2,[−T,0]

= sup
06=w∈L2(−∞,0]
w(t)=0, t>0

‖z‖2,[0,∞)

‖w‖2,(−∞,0]

= sup
06=w−∈L2(−∞,0]

‖z+‖2,[0,∞)

‖w−‖2,(−∞,0]

= ‖ΓG‖.

This gives the equivalence of (i) and (ii). Next, we have

〈w,Γ∗Gz〉L2(−∞,0] = 〈ΓGw, z〉L2[0,∞)

=

∫ ∞

0

(∫ 0

−∞
w(τ)>B>eA

>(t−τ)C>dτ

)
z(t)dt

=

∫ 0

−∞
w(τ)>

(∫ ∞

0

B>eA
>(t−τ)C>z(t)dt

)
dτ,

which implies

(Γ∗Gz)(τ) =

∫ ∞

0

B>eA
>(t−τ)C>z(t)dt, τ 6 0.

Note that the operator norm of ΓG is equal to its maximum singular value. Therefore,
to complete the proof, we show that σ2

i (ΓG) = λi(XY ), where σi(·) and λi(·) denote,
respectively, the ith singular value and ith eigenvalue of an operator or matrix.
Suppose σ is a nonzero singular value of ΓG, and w is an eigenvector corresponding
to the eigenvalue σ2 of Γ∗GΓG, i.e., Γ∗GΓGw = σ2w. Setting z(t) = (ΓGw)(t) = CeAtx0

with x0 =
∫ 0

−∞ e
−AτBw(τ)dτ , and noting by [26, Lemma 3.18] that

X =

∫ ∞

0

eAtBB>eA
>tdt, Y =

∫ ∞

0

eA
>tC>CeAtdt,
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we have

σ2w = Γ∗Gz = B>e−A
>τ
∫ ∞

0

eA
>tC>z(t)dt

= B>e−A
>τ
∫ ∞

0

eA
>tC>CeAtx0dt = B>e−A

>τY x0.

It follows that

σ2x0 =

∫ 0

−∞
e−AτBσ2w(τ)dτ =

∫ 0

−∞
e−AτBB>e−A

>τY x0dτ = XY x0.

Moreover, x0 6= 0 since otherwise σ2w = 0, which is impossible. Thus, σ2 is an
eigenvalue of XY . Conversely, if σ2 6= 0 is an eigenvalue and x0 6= 0 is a corre-
sponding eigenvector of XY , i.e., XY x0 = σ2x0, then by setting w = B>e−AτY x0

we obtain w 6= 0 and Γ∗GΓGw = σ2w. Hence, σ2
i (ΓG) = λi(XY ), and so

‖ΓG‖ = σ1(ΓG) =
√
λ1(XY ).

The lemma is proved. �

Lemma 3.1 shows that the Hankel norm can be considered as a measure of
controllability and observability of the system, and that it does not depend on the
state-space representation of the system. It is now clear that problem (2) may be
cast as an eigenvalue optimization program. In the sequel, we examine how this
problem can be solved algorithmically.

4. Subgradients of the Hankel norm

In this section, we compute Clarke subgradients [8, Section 2.1] of the nonconvex
composite function f(x) = ‖G(x)‖2

H . This is a fundamental tool for our optimization
method.

Let G(x) be a linear time-invariant system with state-space realization
(A(x), B(x), C(x)) depending smoothly on a design parameter x ∈ Rn. Let
X(x), Y (x) be the controllability and observability Gramians. Suppose the maxi-

mum eigenvalue λ1 (Z(x)) of the matrix Z(x) = X(x)
1
2Y (x)X(x)

1
2 has multiplicity

r(x), and let R = R(x) be a matrix whose columns form an orthonormal basis
of the eigenspace associated with λ1 (Z(x)). For any matrix function M(x), put

Mk(x) = ∂M(x)
∂xk

and write M
1
2
k for (M

1
2 )k, k = 1, . . . , n. We have the following

Proposition 4.1. The function f(x) = ‖G(x)‖2
H is well de�ned and locally Lipschitz

on the set S = {x ∈ Rn : A(x) stable}. In addition, for every x in the set S0 =
{x ∈ S : (A(x), B(x)) controllable} the Clarke subgradients of f at x have the form

(3) gU =
[
Tr(UR>Z1(x)R) . . . Tr(UR>Zn(x)R)

]>
,

where U is symmetric of size r × r, U � 0, Tr(U) = 1, and where the partial
derivatives Zk(x), k = 1, . . . , n are given by

(4) Zk(x) = X
1
2
k (x)Y X

1
2 +X

1
2Yk(x)X

1
2 +X

1
2Y X

1
2
k (x).
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Here, Xk(x), Yk(x) and X
1
2
k (x) are the solutions of the following Lyapunov equations

AXk(x) +Xk(x)A> = −Ak(x)X −XAk(x)> −Bk(x)B> −BBk(x)>,(5)

A>Yk(x) + Yk(x)A = −Ak(x)>Y − Y Ak(x)− Ck(x)>C − C>Ck(x),(6)

X
1
2X

1
2
k (x) +X

1
2
k (x)X

1
2 = Xk(x).(7)

Proof. (1) By Lemma 3.1,

f(x) = ‖G(x)‖2
H = λ1(X(x)Y (x)),

where the Gramians X(x) and Y (x) depend on the tunable parameters x
and are the solutions of the Lyapunov equations

A(x)X +XA(x)> +B(x)B(x)> = 0,(8)

A(x)>Y + Y A(x) + C(x)>C(x) = 0.(9)

Note that despite the symmetry of X and Y the product XY is not nec-
essarily symmetric, but stability of A(x) guarantees X � 0, Y � 0 in (8),
(9), so that we can write

λ1(XY ) = λ1(X
1
2Y X

1
2 ) = λ1(Y

1
2XY

1
2 ),

which brings us back to the realm of eigenvalue theory of symmetric matri-
ces. By positive semide�niteness of X(x) and Y (x), the function f is now
well de�ned on S.

(2) Let us next prove that f is locally Lipschitz on S. Using the Kronecker
product [3], Eq. (8) can be written as

(I ⊗ A(x) + A(x)⊗ I)vec(X(x)) = −vec(B(x)B(x)>),

where I is a conformable identity matrix, and where vec(·) vectorizes a
matrix by stacking its columns in order. Since A(x) is smooth in x and
M(x) = (I ⊗ A(x) + A(x) ⊗ I) is invertible by the stability of A(x),
M(x)−1 is also smooth in x, and since B(x) depends smoothly on x, then so
does vec(X(x)) = −M(x)−1vec

(
B(x)B(x)>

)
. A similar argument shows

smooth dependence of Y (x) on x. This can also be justi�ed based on the
explicit formulas

X(x) =

∫ ∞

0

eA(x)tB(x)B(x)>eA(x)>tdt, Y (x) =

∫ ∞

0

eA(x)>tC(x)>C(x)eA(x)tdt

(see e.g., [26, Lemmas 2.7 and 3.18]), where uniform convergence of these
integrals on any bounded set of x gives di�erentiability in x. We infer that
the coe�cients of the characteristic polynomial of X(x)Y (x) also depend
smoothly on x. Since this characteristic polynomial is hyperbolic, that is,
has only real roots, we may invoke the multi-parameter version of Bron-
stein's theorem [6], for which an elegant proof is given in [19, Theorem 2],
to conclude that f(x) = λ1(X(x)Y (x)) is locally Lipschitz on S.
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(3) Let us �nally establish formula (3) for the subdi�erential ∂f(x) at points
x ∈ S0. By the above argument, f(x) = λ1(Z(x)). Observe that con-
trollability of (A(x), B(x)) implies that X(x) is positive de�nite [26, The-

orem 3.1], and since the operator X → X
1
2 is smooth on the set of ma-

trices X � 0, the chain rule gives smoothness of x → X
1
2 (x), and so of

Z(x) = X
1
2Y X

1
2 , on S0.

Applying [18, Theorem 3], the Clarke subgradients of f at x are of the

form gU =
[
g1 . . . gn

]>
, where

gk =
〈
U,R>Zk(x)R

〉
= Tr(UR>Zk(x)R)

for U symmetric of size r × r, U � 0, Tr(U) = 1. It now remains to
calculate Zk(x), k = 1, . . . , n. We �rst have (4) by the de�nition of Z.
Taking derivatives with respect to x on both sides of (8)�(9), we get (5)�

(6), and then also Xk(x), Yk(x). Finally, to compute X
1
2
k (x), we use (7),

which is obtained by di�erentiating X
1
2X

1
2 = X. Altogether, we obtain

Clarke subgradients of f at each x due to (3)�(9).

�

Remark 1. Formula (3) also holds if controllability of (A(x), B(x)) is replaced by
observability of (A(x), C(x)) (cf. [26, De�nition 3.4]). Here, we work with Z =

Y
1
2XY

1
2 instead.

Remark 2. In the discrete time case, the Gramians X(x) and Y (x) are the solutions
of the discrete Lyapunov equations

A(x)XA(x)> −X +B(x)B(x)> = 0,

A(x)>Y A(x)− Y + C(x)>C(x) = 0,

so that Xk(x) and Yk(x) are solutions, respectively, of the following equations

AXk(x)A> −Xk(x) = −Ak(x)XA> − AXAk(x)> −Bk(x)B> −BBk(x)>,

A>Yk(x)A− Yk(x) = −Ak(x)>Y A− A>Y Ak(x)− Ck(x)>C − C>Ck(x).

Remark 3. Subgradients of f at x ∈ S \ S0 are no longer represented by (3), since

the solution of (7) need not exist, as only X
1
2 � 0 is guaranteed. Nonetheless, by

Clarke subdi�erentiability at points x ∈ S \ S0 proved above, we can be sure that
for every sequence xk ∈ S0 converging to x ∈ S \ S0 and gk ∈ ∂f(xk) computed via
(3), the gk stay bounded and each of their accumulation points g is an element of
∂f(x). This guarantees stability of our numerical procedure even when iterates get
close to the set S \ S0.

Remark 4. Practical parametrizations G(x) use elementary computable operations,
which can be expressed in mathematical terms by assuming that A(x), B(x), C(x)
are smooth de�nable functions of x in the sense of [25, Chap. 1, Sect. 5.3]. In that
case, one can say a little more about the behavior of f at points x ∈ S. Namely, it
then follows from [21, Theorem 4.12] that for every smooth de�nable curve x(t) ∈ S
the eigenvalues λi(t) = λi(X(x(t))Y (x(t))) are smooth functions of t, so that f(x(t))
is a �nite maximum of smooth functions of t. On S0 this property is a consequence
of symmetric eigenvalue theory, which is true without the de�nability hypothesis.
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Note that this does not mean that f is a �nite maximum of smooth functions of
x ∈ Rn, but it nonetheless indicates a favorable structure.

5. An extension of the Hankel norm

Lemma 3.1 shows why the Hankel norm is only a semi-norm on the space of
internally stable systems G. It does not see a direct transmission D from w to z,
as the latter does not create memory transmitted from the past to the future. This
rises the question how to assess a direct transmission block in the context of (1)
or (2). Namely, in some applications, attributing no cost to a block D(x) which is
free to vary with the tunable parameters x bears the risk that optimization favors
a solution with a high energy direct transmission.

It is well known that ‖G‖H 6 ‖G‖∞ in the case D = 0 (See e.g., [5, Sect. 5.5]),
and this may guide us to de�ne an extension. Note �rst that

Lemma 5.1. ‖(A,B,C)‖H 6 ‖(A,B,C,D)‖∞ for every internally stable system
G = (A,B,C,D).

Proof. Let G0 = (A,B,C) be the system where the direct transmission is ignored.
Consider an input w with w(t) = 0 for t > T , and let z0 = G0w, z = Gw. Then,
z(t) = z0(t) for t > T , because the direct transmission creates no memory, and since
w(t) = 0 for t > T , its in�uence on the output ends at T . Combining this with
‖w‖2,[0,T ] = ‖w‖2 and ‖z‖2,[T,∞) 6 ‖z‖2, we obtain

‖(A,B,C)‖H = sup
T>0

06=w∈L2[0,T ]
w(t)=0, t>T

‖z‖2,[T,∞)

‖w‖2,[0,T ]

6 sup
T>0

06=w∈L2[0,T ]
w(t)=0, t>T

‖z‖2

‖w‖2

6 sup
w 6=0

‖z‖2

‖w‖2

= ‖(A,B,C,D)‖∞.

�

This suggests the following extension of Hankel norm ‖ · ‖H to systems G =
(A,B,C,D) with direct transmission D.

De�nition 5.2. Let G = (A,B,C,D) be an internally stable linear time-invariant
system. Then,

(10) ‖G‖H = max {‖(A,B,C)‖H , σ1(D)}
is called the extended Hankel norm of the system. Here, σ1 denotes the maximum
singular value of a matrix. �

This de�nition agrees with the usual Hankel norm for a system without direct
transmission, and also preserves the inequality ‖G‖H 6 ‖G‖∞, since the term σ1(D)
is part of the maximum ‖G‖∞ = maxω σ1 (G(jω)) at ω =∞.

As the proof of Lemma 5.1 shows, a direct transmission does not change the value
of ‖ · ‖H de�ned according to (1). In the sequel, we therefore adopt the convention
that in the case D 6= 0, ‖(A,B,C)‖H is the usual Hankel norm, where the direct
transmission is ignored, while ‖(A,B,C,D)‖H is the extended Hankel norm.
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An advantage of (10) is that the new function is still a maximum eigenvalue
function. Namely, stability of G implies positive semide�niteness of the Gramians
X and Y , and so

(11) ‖G‖2
H = max

{
λ1(X

1
2Y X

1
2 ), λ1(D>D)

}
= λ1

[
X

1
2Y X

1
2 0

0 D>D

]
.

Proceeding as in the proof of Proposition 4.1, we get immediately the following

Corollary 5.3. Let G(x) be a linear time-invariant system depending smoothly on
x ∈ S with S = {x ∈ Rn : A(x) stable}. Suppose the maximum eigenvalue λ1(Z(x))
of the matrix

Z(x) =

[
X(x)

1
2Y (x)X(x)

1
2 0

0 D(x)>D(x)

]

has multiplicity r = r(x), and R = R(x) is a matrix whose columns form an or-
thonormal basis of the eigenspace associated with λ1(Z(x)). With the notations of
Proposition 4.1, the function f(x) = ‖G(x)‖2

H is locally Lipschitz on S and its Clarke
subgradients on S0 = {x ∈ S : (A(x), B(x)) controllable} have the form

gU =
[
Tr(UR>Z1(x)R) . . . Tr(UR>Zn(x)R)

]>
,

for U symmetric of size r × r, U � 0, Tr(U) = 1, where the partial derivatives
Zk(x), k = 1, . . . , n are given by

Zk(x) =

[
Zk(x) 0

0 Dk(x)>D(x) +D(x)>Dk(x)

]

and the Zk(x) are de�ned in Proposition 4.1. �

To justify the use of (10) rigorously, we consider the extended Hankel norm
minimization program (2) based on (10), and compare it to the following constraint
program

(12)
minimize f(x) = ‖(A(x), B(x), C(x))‖H
subject to h(x) = σ1 (D(x)) 6 η.

For the following, recall from [13] that x∗ ∈ Rn is called a Fritz John critical point
of the constraint program min{f(x) : h(x) 6 η} if there exist multipliers λ∗0 > 0,
λ∗1 > 0, not both zero, such that

0 ∈ λ∗0∂f(x∗) + λ∗1∂h(x∗), h(x∗) 6 η, λ∗1 (h(x∗)− η) = 0.

If in addition λ∗0 > 0, then x∗ is called a Karush�Kuhn�Tucker point. Remember
that every local minimum x∗ of the constraint program is automatically a Fritz
John critical point, while it will in general only be a Karush�Kuhn�Tucker point if
an additional constraint quali�cation is satis�ed [13, Chapter 7]. For later on, we
call x∗ a critical point of constraint violation if 0 ∈ ∂h(x∗) and h(x∗) > η.

With these preparations, we have the following

Proposition 5.4. Let x∗ be a critical point of the extended Hankel norm minimiza-
tion program (2) with (10). Then, x∗ is a Fritz John critical point of program (12)
for a suitable choice of η. More precisely, x∗ is either a Karush�Kuhn�Tucker point
of (12), or a critical point of h(x) = σ1(D(x)) alone.
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Proof. Note that ‖G(x)‖H = max{f(x), h(x)}. Now, if x∗ is a critical point of
‖G(x)‖H , then we have three possibilities, f(x∗) > h(x∗), f(x∗) = h(x∗), or f(x∗) <
h(x∗). In the �rst case, x∗ is a critical point of f alone, hence also a Karush�
Kuhn�Tucker point of (12). The third case corresponds to a critical point of h
alone. In the case of equality, the situation is more complex. There exist multipliers
λ∗0 > 0, λ∗1 > 0, not both zero, such that 0 ∈ λ∗0∂f(x∗) + λ∗1∂h(x∗). If λ∗0 = 0
then λ∗1 6= 0 and 0 ∈ ∂h(x∗), so x∗ is a critical point of h. In case λ∗0 6= 0, we
have 0 ∈ ∂f(x∗) + (λ∗1/λ

∗
0)∂h(x∗). This is the �rst part of the Karush�Kuhn�Tucker

conditions. If we put η = f(x∗), then we also get the second half. That completes
the argument. �
Remark 5. Suppose we solve program min{f(x) : h(x) 6 η} starting at an infeasible
point h(x1) > η, then we will usually try to minimize h alone to �nd a feasible
iterate. Suppose a descent method used to minimize h runs into a local minimum
x∗ of h satisfying h(x∗) > η. Such a local minimum of constraint violation indicates
a failure, since nothing better will be found in a neighborhood of x∗ due to local
optimality, so that the search for a feasible point has to be stared anew elsewhere;
cf. [20, Section 2.2] for this theme complex.

By Proposition 5.4 we can now interpret minimization of the extended Han-
kel norm (2) with (10) as a trade-o� between minimizing the memory e�ects of
(A(x), B(x), C(x)), subject to a constraint σ1(D(x)) 6 η, or dually, as of minimiz-
ing σ1(D(x)) subject to a constraint on the memory e�ects of G(x). Since f(x) is
a valid measure of the memory or ringing e�ects of G(x), such an interpretation is
physically meaningful.

We conclude this section by showing that the Hankel norm is amenable to op-
timization techniques, as this will be needed later. According to Spingarn [24] a
function f : U → R, where U is an open set in Rn, is lower -C1 on U , if for each
x0 ∈ U , there are a compact space K, a neighborhood V of x0, and a jointly con-
tinuous function F : V × K → R whose partial derivative DxF with respect to x
exists and is jointly continuous, such that f(x) = maxz∈K F (x, z) for all x ∈ V .
Proposition 5.5. Let G(x) = (A(x), B(x), C(x), D(x)) be a linear time-invariant
system depending smoothly on the set S0 of all x ∈ Rn such that A(x) is stable and
(A(x), B(x)) is controllable or (A(x), C(x)) is observable. Then, f(x) = ‖G(x)‖2

H

is lower-C1 on S0.

Proof. For each x ∈ S0, according to (11) and using the Rayleigh quotient,

f(x) = λ1(Z(x)) = max
‖z‖=1

z>Z(x)z,

where Z is symmetric and depends smoothly on x. Set K = {z ∈ Rm : ‖z‖ = 1}
and F (x, z) = z>Z(x)z, then K is compact, f(x) = maxz∈K F (x, z), and both F
and its partial derivatives Fx are jointly continuous on S0 × K and smooth in x.
Therefore, f is lower-C1 on S0. �

6. Hankel synthesis

The �rst application of program (2) we consider is output feedback controller
synthesis, where performance is assessed by the Hankel norm. Consider a linear
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time-invariant plant in standard form

(13) P (s) :



ẋ
z
y


 =



A B1 B2

C1 D11 D12

C2 D21 D22





x
w
u


 ,

where x ∈ Rnx is the state, u ∈ Rm2 the control, w ∈ Rm1 the vector of exogenous
inputs, y ∈ Rp2 the measurements, and z ∈ Rp1 the controlled or performance vector,

P (s) :=

[
P11(s) P12(s)
P21(s) P22(s)

]
=

[
C1

C2

]
(sI − A)−1

[
B1 B2

]
+

[
D11 D12

D21 D22

]
.

Without loss of generality, it is assumed that D22 = 0. Let u(s) = K(s)y(s) be an
output feedback controller for the open-loop plant (13), with

K :

[
ẋK
u

]
=

[
AK BK

CK DK

] [
xK
y

]
,

where xK ∈ Rk is the state of K. The closed-loop transfer function of the perfor-
mance channel w → z is obtained as

Tw→z(K, s) = P11(s) + P12(s)K(s)(I − P22(s)K(s))−1P21(s).

Our aim is to �nd an optimal controller K which stabilizes the system in closed-
loop such that ‖Tw→z(K)‖H is minimized among all stabilizing K. By substituting
u = Ky into (13), the state-space representation of the closed-loop performance
channel w → z is

Tw→z(K) :

[
ξ̇
z

]
=

[
A(K) B(K)
C(K) D(K)

] [
ξ
w

]
,

where ξ = (x, xK) and

A(K) =

[
A+B2DKC2 B2CK

BKC2 AK

]
, B(K) =

[
B1 +B2DKD21

BKD21

]
,

C(K) =
[
C1 +D12DKC2 D12CK

]
, D(K) = D11 +D12DKD21.

This problem is now a speci�c instance of (2), where in agreement with our general
theme we try to minimize the memory of a speci�c channel w → z within the plant
P . If we allow structured control laws K(x) in the sense of [1], then we obtain the
following optimization program

(14)
minimize ‖Tw→z(K)‖H
subject to K stabilizes (13) internally

K = K(x),x ∈ Rn.

Example 1. Typical examples of structured controllers are, for instance, PIDs or
observer-based controllers, which in state-space have the form

Kpid(x) =




0 0 ri
0 −τ rd
1 1 dK


 , Kobs(x) =

[
A+B2Kc +KfC2 −Kf

Kc 0

]
.

For a PID, the tunable parameters are x = (ri, rd, dK , τ), while for observer-based
controllers Kobs(x) the vector x gathers the elements of Kc, Kf . Other examples are
decentralized, �xed reduced order controllers, and more generally, control architec-
tures combining basic building blocks such as PIDs with �lters, feed-forward blocks,
and much else (see [1]).
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Remark 6. The norm in program (14) is the usual Hankel norm (1) if D(K) = 0,
which is the case e.g., under standard assumption as in H2-synthesis, where D11 = 0
and either D21 = 0 or D12 = 0 or K strictly proper. In contrast, if D(K) 6= 0, then
we should use the extended Hankel norm (10), or likewise, the constraint program
(12), to control the direct transmission. It is also possible to neglect the direct
transmission term D(K) and optimize the semi-norm ‖(A(K),B(K), C(K))‖H . We
then exercise caution by monitoring the term σ1(D(K)) during optimization to check
whether a large direct transmission gain σ1(D(K)) is favored. If that is the case,
switching to the extended Hankel norm becomes mandatory.

In the sequel of this section, we discuss two particular cases of the Hankel syn-
thesis problem (14).

6.1. System reduction. System reduction is the most widely known application
of the Hankel norm minimization problem. Given a stable system

G :

{
ẋ = Ax+Bw
z = Cx+Dw

of order nx, we wish to �nd a stable system

Gk :

{
ẋ = Akx+Bkw
z = Ckx+Dw

of reduced order k < nx with input�output behavior as close as possible to the
original system G. If the model matching error e = (G − Gk)w is measured in the
Hankel norm, then the program

(15)
minimize ‖G−Gk(x)‖H
subject to G−Gk(x) internally stable

x = (Ak, Bk, Ck)

is a particular case of (14), where we de�ne plant and controller as

(16) P :



A B 0
C D −I
0 I 0


 , K :

[
Ak Bk

Ck D

]
,

the tunable parameters x being the elements of Ak, Bk and Ck.

(17)

-

-

G

Gred

?

6
c+

�
-ew

Due to the seminal work of Glover [12], program (15) has an explicit solution based
on linear algebra, at least when no additional structural constraints on the matrices
Ak, Bk, Ck are imposed. This allows us to implement a blind testing of Algorithm
1 in Sect. 8, which is applied to (15), considered as a particular case of (14) using
(16). The value obtained by Algorithm 1 is then compared to the theoretical value
obtained by an explicit Hankel system reduction.
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6.2. Maximizing the memory of a system. Within the present framework, it
is also possible to maximize the memory e�ects of a system G via feedback if a
reference system Gref with desirable memory properties is used. In other words,
while minimizing ‖G(x)‖H leads to a system which is the least biased, we now bias
G(x) as much as possible by bringing it as close as possible to Gref , and we achieve
this by making G(x)−Gref as less biased as possible.

Example 2. As a motivating example, we consider a 2-DOF synthesis scheme of the
following form

(18)
-q
- F

K- -?d -

-z2

z1Gd -
6

y

u

v

w e−+ +−

- Gref
yref

6
d -

where the decentralized controller structure was chosen to challenge our method in
a typical situation in practice.

Assuming that Gref has desirable memory features which do not lead to ringing,
the idea is to tune the parameters in feed-forward �lter F and controller K in
such a way that G in closed-loop follows Gref , independently of the input w. That
is, the undesirable part of the memory of G, which contributes to the mismatch
z1 = y − yref , is reduced by minimizing ‖Tw→z1(F,K)‖H . It may be bene�cial to
arrange this by adding a constraint ‖z2‖2 6 η2 or ‖z2‖∞ 6 η∞, where z2 = u+ v, to
avoid exceedingly large controller actions. This problem can be cast as a particular
case of program (14) if the following plant and decentralized controller structures
are used

P :




A 0 0 B B
0 Aref Bref 0 0
C −Cref −Dref D D
0 0 0 I I
−C 0 I −D −D
0 0 I 0 0



, K :




AF 0 BF 0
0 AK 0 BK

CF 0 DF 0
0 CK 0 DK


 .

Notice that

F :

{
ẋF = AFxF +BFw
v = CFxF +DFw

, K :

{
ẋK = AKxK +BKe
u = CKxK +DKe

can be further structured if we wish. In our experiment, we will use this example
with F a reduced-order �lter, and K a PID.

7. Control of �ow in a graph

We consider the �ow in a directed graph G = (V ,A ) with interior nodes, sources
and sinks, V = Vstay ∪ Vin ∪ Vout, and not excluding self-arcs. For nodes i, j ∈ V
connected by an arc (i, j) ∈ A the transition probability i → j quanti�es the ten-
dency of �ow going from node i towards node j. As an example consider for instance
a large fairground with separated entrances and exits, with itineraries represented
by the graph. By acting on the transition probabilities between nodes connected by
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arcs, we expect to guide the crowd in such a way that a steady �ow is assured, and
a safe evacuation is possible.

Assume that an individual at interior node j ∈ Vstay decides with probability
ajj′ > 0 to proceed to a neighboring node j′ ∈ Vstay, where neighboring means
(j, j′) ∈ A , or with probability ajk > 0 to move to a neighboring exit node k ∈ Vout,
where (j, k) ∈ A . The case (j, j) ∈ A of deciding to stay at stand j ∈ Vstay is
not excluded. Similarly, an individual entering at i ∈ Vin proceeds to a neighboring
interior node j ∈ Vstay with probability bij > 0, where (i, j) ∈ A . We suppose for
simplicity that there is no direct transmission from entrances to exits. Then,

(19)
∑

j′∈Vstay:(j,j′)∈A

ajj′ +
∑

k∈Vout:(j,k)∈A

ajk = 1,

for every j ∈ Vstay, and

(20)
∑

j∈Vstay:(i,j)∈A

bij = 1

for every i ∈ Vin. Let xj(t) denote the number of people present at interior node
j ∈ Vstay and time t, and wi(t) the number of people entering the fairground through
entry i ∈ Vin at time t. Then, the number of people present at interior node j ∈ Vstay

and time t+ 1 is

xj(t+ 1) =
∑

j′∈Vstay:(j′,j)∈A

aj′jxj′(t) +
∑

i∈Vin:(i,j)∈A

bijwi(t),

while the number of people leaving the fairground at time t through exit k ∈ Vout

is
∑

j∈Vstay:(j,k)∈A ajkxj(t). To assess the evacuation pattern, we quantify the total
number of people still inside the fairground at time t via the weighted sum

z(t) =
∑

j∈Vstay

cjxj(t),

where cj > 0 are �xed weights, and where cj = 1 would correspond to simply
counting the number of people inside the fairground. We let x regroup the pa-
rameters ajj′ , ajk, bij, so that the discrete linear time-invariant system has the form
G(x) = (A(x), B(x), C), where C is the row vector of cj's.

Let us now consider an evacuation scenario, where at time T the in�ow w(t)
through the entrance gates is stopped by closing the gates, and the time until the
fairground is evacuated is assessed by measuring the evacuation pattern z(t), t > T .
This corresponds to computing the Hankel norm ‖G(x)‖H , which identi�es the worst
case evacuation scenario. Minimizing ‖z‖2,[T,∞)/‖w‖2,(0,T ] may then be understood
as enhancing overall safety of the network by orienting the crowd in such a way
that the worst case evacuation time is minimized. This leads to the optimization
program

(21)
minimize ‖G(x)‖H
subject to G(x) internally stable

ajj′ > 0, ajk > 0, bij > 0, (19), (20)

which is a discrete version of (2) including linear constraints. Notice that these linear
constraints are readily added in our algorithmic approach. In an extended model,
one might consider measuring the number of people y at some selected nodes i ∈
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Vstay∪Vout, and use this to react via feedback u = Ky at the entry gates. This leads
to a problem where controller and parts of the plant are optimized simultaneously.
Other variants include cases, where some of the probabilities ajj′ , bij are imposed
and cannot be modi�ed by the designer.

8. Proximal bundle algorithm

In this section, we present our main algorithm to solve programs (2) and (12).
Let us consider an abstract constrained optimization program of the form

(22)
minimize f(x)
subject to h(x) 6 0

where x ∈ Rn is the decision variable, and f and h are locally Lipschitz but poten-
tially nonsmooth and nonconvex functions, representing objective and constraints.
To �nd solutions of the constraint program (22), using an idea inspired by Polak
[20, Section 2.2.2], we introduce the progress function

F (y,x) = max{f(y)− f(x)− νh(x)+, h(y)− h(x)+},
where h(x)+ = max{h(x), 0}, and ν > 0 is some �xed parameter (with ν = 1 a
typical value). One can think of x as the current iterate, and y as the next iterate
or as a candidate to become the next iterate. We need to collect a few facts about
F . Note �rst that F (x,x) = 0. For the subdi�erential, we have the useful

Lemma 8.1. Suppose f and h are lower-C1 functions. Then, the Clarke subdi�er-
ential of the progress function F with respect to the �rst variable is obtained as

∂1F (x,x) =





∂f(x) if h(x) < 0,

conv{∂f(x) ∪ ∂h(x)} if h(x) = 0,

∂h(x) if h(x) > 0.

Proof. Applying the formula for the Clarke subdi�erential of a maximum [8, Proposi-
tion 2.3.12] we readily get ∂1F (x,x) = ∂f(x) if h(x) < 0, ∂1F (x,x) ⊂ conv{∂f(x)∪
∂h(x)} if h(x) = 0, and ∂1F (x,x) = ∂h(x) if h(x) > 0. But since f and g are lower-
C1, according to [24, Proposition 2.4, Theorem 3.9], they are Clarke regular, so we
have equality in the second case h(x) = 0. �
Lemma 8.2. Suppose x∗ is a local minimum of program (22), then it is also a local
minimum of F (·,x∗), and 0 ∈ ∂1F (x∗,x∗). Conversely, if 0 ∈ ∂1F (x∗,x∗) then
x∗ is either a Karush�Kuhn�Tucker point of (22), or a critical point of constraint
violation.

Proof. Since x∗ is a local minimum of (22), we have feasibility h(x∗) 6 0, and so
h(x∗)+ = 0, which implies F (y,x∗) = max{f(y) − f(x∗), h(y)}. Now, there exists
a neighborhood U of x∗ such that f(y) > f(x∗) for every y ∈ U with h(y) 6 0.
We argue that F (y,x∗) > F (x∗,x∗) for every y ∈ U . Namely, if h(y) > 0, then
F (y,x∗) > h(y) > 0 = F (x∗,x∗). On the other hand, if h(y) 6 0, then y is
feasible, and we have f(y) > f(x∗) by what was said before. But then F (y,x∗) >
f(y)− f(x∗) > 0 = F (x∗,x∗). This proves x∗ is a local minimum of F (·,x∗), and so
0 ∈ ∂1F (x∗,x∗).
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Next, suppose 0 ∈ ∂1F (x∗,x∗), then by Lemma 8.1, there exist non-negative
constants λ∗0, λ

∗
1 summing up to 1 such that 0 ∈ λ∗0∂f(x∗) + λ∗1∂h(x∗). If h(x∗) > 0,

we have ∂1F (x∗,x∗) = ∂h(x∗), and then 0 ∈ ∂h(x∗), meaning that x∗ is a critical
point of h. If h(x∗) < 0 then ∂1F (x∗,x∗) = ∂f(x∗), so λ∗1 = 0 and x∗ is a Karush�
Kuhn�Tucker point of (22). Assume that h(x∗) = 0 but x∗ fails to meet the Karush�
Kuhn�Tucker conditions, we then obtain λ∗0 = 0 and 0 ∈ ∂h(x∗). This completes
the proof of the lemma. �

The consequence of this argument is that we should seek points x∗ with 0 ∈
∂1F (x∗,x∗). We now present our method for computing solutions of program (22),
which is based on this rationale. It generates a sequence xj of estimates which
converges to a solution x∗ in the sense of subsequences. At the current iterate x,
the inner loop of the algorithm constructs �rst-order working models φk(·,x) and
the corresponding second-order working models

Φk(y,x) = φk(y,x) +
1

2
(y − x)>Q(x)(y − x),

updated with counter k. The Φk(·,x) are approximations of F (·,x) around x, where
Q(x) is symmetric, depends only on the current iterate x, and may re�ect second-
order information of F around x. The �rst-order working model φk(·,x) has to
satisfy φk(x,x) = F (x,x) = 0 and ∂1φk(x,x) ⊂ ∂1F (x,x) at all instants k. This is
guaranteed when me(·,x) = g(x)>(·−x) with g(x) ∈ ∂1F (x,x) is an a�ne minorant
of φk(·,x) at all times k. We refer to me(·,x) as the exactness plane at x.

For a given working model, we solve the tangent program

min
y∈Rn

Φk(y,x) +
τk
2
‖y − x‖2,

with the so-called proximity control parameter τk > 0. We require Q(x) + τkI � 0,
which assures that the tangent program is strictly convex and has a unique solution
yk, called the trial step. According to standard terminology, yk is called a serious
step if it is accepted as the new iterate yk = x+, and a null step otherwise. Suppose
yk is a null step, then we will have to make sure that the next working model
φk+1(·,x) improves over φk(·,x). This is achieved by adding cutting and aggregate
planes. Let us �rst look at aggregation. The optimality condition for the tangent
program implies

g∗k := (Q(x) + τkI)(x− yk) ∈ ∂1φk(y
k,x).

We call m∗k(·,x) = φk(y
k,x) + g∗>k (· − yk) = a∗k + g∗>k (· − x) with a∗k = φk(y

k,x) +
g∗>k (x− yk) the aggregate plane. By assuring that m∗k(·,x) is an a�ne minorant of
φk+1(·,x), we have φk+1(yk,x) > m∗k(y

k,x) = φk(y
k,x).

A central element in bundle methods is the cutting plane whose role is to cut
away the unsuccessful trial step yk. For each subgradient gk ∈ ∂1F (yk,x), the
a�ne function tk(·) = F (yk,x) + g>k (· − yk) is a tangent to F (·,x) at yk. Without
convexity, we cannot use tk(·) directly as a cutting plane. Instead, we use a technique
�rst analyzed in [14], which shifts the tangent down. Fixing a parameter c > 0, we
de�ne the cutting plane as

(23) mk(·,x) = tk(·)− s = ak + g>k (· − x),
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where ak = min{tk(x),−c‖yk − x‖2}, and where s = [tk(x) + c‖yk − x‖2]+ is the
downshift. The detailed statement is described as Algorithm 1, while a �owchart of
the algorithm is shown in Fig. 1. For more details we refer to [17, Section 3], [16,
Section 4] for unconstrained optimization case, and [2, Section 5], [11, Section 3] for
the constrained case.

Algorithm 1. Proximal bundle algorithm with downshifted tangents

Parameters: 0 < γ < γ̃ < Γ < 1, 0 < δ � 1, 0 < q < T 6∞.

. Step 1 (Initialize outer loop). Choose initial feasible guess x1, �x mem-

ory control parameter τ ]1, and put outer loop counter j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop if 0 ∈ ∂1F (xj,xj).
Otherwise, take a symmetric matrix Qj respecting −qI � Qj � qI, and goto
inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize

control parameter τ1 = max{τ ]j ,−λmin(Qj) + δ}, where λmin(·) denotes the
minimum eigenvalue of a symmetric matrix. Choose initial working model
φ1(·,xj) = g(xj)>(· − xj) with g(xj) ∈ ∂1F (xj,xj).

. Step 4 (Tangent program). At inner loop counter k, let Φk(y,x
j) =

φk(y,x
j) + 1

2
(y − xj)>Qj(y − xj) and �nd solution yk (trial step) of the

tangent program

min
y∈Rn

Φk(y,x
j) +

τk
2
‖y − xj‖2.

� Step 5 (Acceptance test). Compute the quotient

ρk =
F (yk,xj)

Φk(yk,xj)
.

If ρk > γ (serious step), put xj+1 = yk and update memory element τ ]j+1 as

τk if ρk < Γ, and 1
2
τk otherwise. Reset τ

]
j+1 = T if τ ]j+1 > T , increase outer loop

counter j and loop back to step 2. If ρk < γ (null step), continue inner loop
with step 6.

. Step 6 (Update working model). Generate a cutting plane mk(·,xj) at null
step yk and counter k using downshifted tangents. Compute aggregate plane
m∗k(·,xj) at yk, and then build new working model φk+1(·,xj) by adding the
new cutting plane, keeping the exactness plane and using aggregation to avoid
over�ow.

� Step 7 (Update control parameter). Compute secondary control parameter

ρ̃k =
Mk(y

k,xj)

Φk(yk,xj)
,

with Mk(y,x
j) = mk(y,x

j) + 1
2
(y − xj)>Qj(y − xj). If ρ̃k < γ̃ then keep

τk+1 = τk, otherwise step up τk+1 = 2τk. Increase inner loop counter k and loop
back to step 4.

Next, we establish the following result on the convergence of Algorithm 1.
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start
initialize x1, τ ♯

1

put j = 1
outer loop

τ ♯
j+1 := τk/2 j := j + 1 0 ∈ ∂1F (xj ,xj) exit

ρk > Γ τ ♯
j+1 := τk

initialize Qj , τ1, put k = 1
initialize working model

inner loop

update Qj+1 tangent program k := k + 1

recycle planes xj+1 := yk ρk > γ τk+1 := 2τk τk+1 := τk

cutting and aggregate plane
update working model

ρ̃k > γ̃

yes

noyes

no

yes

no yes

no

Figure 1. Flowchart of proximal bundle algorithm. Inner loop is
shown in the lower right box

Theorem 8.3. Suppose that f and h in (22) are lower-C1 functions, and let {x ∈
Rn : f(x) 6 f(x1)} be bounded. Then, every accumulation point x∗ of the sequence
of serious iterates xj generated by Algorithm 1 satis�es 0 ∈ ∂1F (x∗,x∗). In other
words, x∗ is either a critical point of constraint violation, or a Karush�Kuhn�Tucker
point of (22).

Proof. We will adapt the proof of Theorem 6.6 and Corollary 6.7 in [17] to our needs.
For that let us recall a notion from [17, De�nitions 2.1 and 6.1], which we apply here
to the progress function F . We call φ : Rn × S → R a strict �rst-order model of F
on the set S ⊂ Rn if for every x ∈ S the function φ(·,x) is convex and the following
axioms hold:

(M1) φ(x,x) = F (x,x) = 0 and ∂1φ(x,x) ⊂ ∂1F (x,x).

(M̂2) If yj → x and xj → x then there exists εj → 0+ such that F (yj,xj) −
φ(yj,xj) 6 εj‖yj − xj‖.
(M3) φ is jointly upper semicontinuous on Rn × S, i.e., if (yj,xj) → (y,x) then
lim sup
j→∞

φ(yj,xj) 6 φ(y,x).

Representing the cutting plane in (23) as my+(·,x) = a + g>(· − x) with g ∈
∂1F (y+,x) and a = min{ty+(x),−c‖y+ − x‖2}, ty+(·) = F (y+,x) + g>(· − y+), we
de�ne

φ(y,x) = sup{my+(y,x) : y+ ∈ B(x, r)},
where B(x, r) is a �xed ball large enough to contain all possible trial steps, and
where the supremum is over all possible cases of my+(·,x). It then follows that
φ is a strict model of F in the sense of the above de�nition. This can be shown

as in [16, Lemmas 7�9]. Axiom (M̂2) relies on the fact that F (·,x) is lower-C1

by the assumptions on f and h. Furthermore, the construction of φ and φk also
guarantees that the working models φk are lower approximations of φ satisfying
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φk(x,x) = φ(x,x) = F (x,x) = 0, ∂1φk(x,x) ⊂ ∂1φ(x,x) and φk(·,x) 6 φ(·,x).
The di�erence with [17] is that here the cutting planes mk(·,x) are not directly
tangents of φ, but we shall argue that the essential link between φk and φ rests the
same.

The proof now follows essentially [17, Theorem 6.6, Corollary 6.7], which assures
that every accumulation point x∗ of the iterates xj satis�es 0 ∈ ∂1F (x∗,x∗). Note
that f(xj) and f(yk) used in [17] have to be replaced by F (xj,xj) = 0 and F (yk,x).
The fact that Φ(yk+1) in the de�nition of ρ̃k in [17] is changed to Mk(y

k,x) can be
treated using the property that if yj → x and xj → x then there exists εj → 0+ such
that F (yj,xj) − myj(yj,xj) 6 εj‖yj − xj‖, as follows from [16, Lemma 8], using

again crucially that F (·,x) is lower-C1. The equality φk+1(yk+1,x) = φ(yk+1,x)
used in the proof of [17, Lemma 4.2] is now replaced by φk+1(yk,x) > mk(y

k,x).
Finally, Lemma 8.2 completes the last statement of the theorem. �

9. A smooth relaxation of the Hankel norm

Here, we introduce a smooth relaxation of the Hankel norm based on a result
of Nesterov in [15]. He provides a �ne analysis of the convex bundle method in
situations where the objective f(x) has the speci�c structure of a max-function,
including the case of a convex maximum eigenvalue function. These �ndings indicate
that for a given precision, such programs may be solved with lower algorithmic
complexity using smooth relaxations. While these results are a priori limited to
the convex case, it may be interesting to apply Nesterov's idea as a heuristic in the
nonconvex situation. This leads to the following

Proposition 9.1. Let Z be a symmetric matrix of order m depending smoothly on
a parameter x ∈ Rn with eigenvalues λ1(Z) > · · · > λm(Z). Then, for a tolerance
parameter µ > 0, the function

(24) fµ(x) = µ ln

(
m∑

i=1

eλi(Z(x))/µ

)

is a uniform smooth approximation of the nonsmooth function f(x) = λ1(Z(x)) in
the sense that fµ(x) converges uniformly to f(x) as µ→ 0.

Proof. Following [15, Section 4], fµ is smooth in Z and

∇fµ(Z) =

(
m∑

i=1

eλi(Z)/µ

)−1 m∑

i=1

eλi(Z)/µqiq
>
i ,

where qi is the ith column of the orthogonal matrix Q(Z) from the eigendecom-
position of the symmetric matrix Z = Q(Z)D(Z)Q(Z)>. This implies that fµ is
smooth at x with the gradient given by

∇fµ(x) =
[
Tr(∇fµ(Z(x))>Z1(x)) . . . Tr(∇fµ(Z(x))>Zm(x))

]>
.

On the other hand, we have the estimate

f(x) 6 fµ(x) 6 f(x) + µ lnm,

which says that fµ(x) is a uniform approximation of the function f(x). �
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Now, we can try to solve problem (2) and (12) on replacing the function f(x) =
λ1(Z(x)) by its smooth approximation fµ(x) in (24). Due to the estimate in the
above proof, to �nd an ε-solution x̄ of problem (2) and (12), we have to �nd an
ε
2
-solution of the smooth problem

(25) min{fµ(x) : h(x) 6 0}
with µ = ε

2 lnm
. Here, we use a local solution of (25) to initialize the nonsmooth

Algorithm 1. The smooth problem (25) can be solved using standard NLP software.

10. Numerical experiments

In this section, we apply our approach to a variety of problems. Let us start by
commenting on practical ways to implement the stopping test 0 ∈ ∂1F (xj,xj) in
step 2 of the algorithm. In practice, this is delegated to the inner loop. If the inner
loop at xj �nds a new feasible serious iterate xj+1 satisfying

(26)
|f(xj+1)− f(xj)|

1 + |f(xj)| < tol1,

then we accept xj+1 as optimal. This corresponds to stopping the algorithm in step
2 of the (j + 1)st outer loop. In our experiments, we have used tol1 = 10−8.

On the other hand, if the inner loop has di�culties �nding a serious step and
provides three unsuccessful trial steps satisfying

(27)
‖xj − yk‖
1 + ‖xj‖ < tol2,

then we interpret this in the sense that xj is already optimal. This corresponds to
stopping the algorithm in step 2 of the jth outer loop. Here, we have used tol2 =
10−7. Theoretically, both tests are based on the observation that 0 ∈ ∂1F (xj,xj) if
and only if yk = xj is solution of the tangent program in the trial step generation
(see [11] for theoretical results).

In general, our stopping strategy is similar to recommendations in smooth op-
timization, see e.g., [10, Chapter 7], where the goal is to obtain scale independent
choices of the tolerances tol1 and tol2. Nonetheless, one has to accept that a non-
smooth algorithm converges very slowly at the �nal stages, which makes stopping a
delicate task.

Before applying Algorithm 1 to solve examples of (2), note that internal stability
is not a constraint in the usual sense of mathematical programming since the set
S = {x ∈ Rn : G(x) internally stable} is open. The stability of the system can
be formulated as a constraint α (A(x)) 6 −ε using the spectral abscissa α(A) =
max{Re(λ) : λ eigenvalue of A} in the continuous time case, and as ρ (A(x)) 6 1−ε
using the spectral radius ρ(A) = max{|λ| : λ eigenvalue of A} in the discrete time
case, for ε > 0 some small threshold. Theoretical properties of the spectral abscissa
and the spectral radius have been studied in [7]. In general, before optimization can
start, one has, indeed, to �nd a stabilizing x. Using the method in [4], this can be
achieved by an initial phase where α (A(x)) is minimized until an iterate x1 with
α (A(x1)) 6 −ε is found.
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10.1. Hankel feedback synthesis. We introduce an application of program (14)
to a classical 1-DOF control system design, using an example from [5, Section 2.4].
The open-loop system G, exogenous input w and regulated output z, are given by

G =
10− s

s2(10 + s)
, w =



d
ny
r


 , z =

[
yp
u

]
.

The corresponding plant is

P :



A B1 B2

C1 0 D12

C2 D21 0


 ,

where

A =



−10 0 0

1 0 0
0 1 0


 B1 =




1 0 0
0 0 0
0 0 0


 B2 =




1
0
0




C1 =

[
0 −1 10
0 0 0

]
D12 =

[
0
1

]

C2 =
[
0 1 −10

]
D21 =

[
0 −1 1

]
.

Inspired by a manually tuned controller

Kb =
219.6s2 + 1973.95s+ 724.5

s3 + 19.15s2 + 105.83s+ 965.95
,

proposed in [5, Section 2.4], we compute the optimal Hankel controller KH with the
same proposed structure and compare it toKb and also to the optimal H∞-controller
K∞ of that same structure

K(x) =
as2 + bs+ c

s3 +ms2 + ns+ p
=




−m −n −p 1
1 0 0 0
0 1 0 0
a b c 0


 ,

where x = [m,n, p, a, b, c]> regroups the unknown tunable parameters. Using the
Matlab function hinfstruct based on [1], we obtain

K∞ =
7941.9s2 + 13028.4s+ 3611.6

s3 + 3206.2s2 + 12528.3s+ 11078.3
.

The interest in this example is also to show that parametrizations x may arise
naturally in the frequency domain. Note also that the closed-loop has no direct
transmission term since D11 = 0 and K is strictly proper. To compute KH , we
solve (14) with the standard Hankel norm (1) and start Algorithm 1 at an initial
stabilizing controller

x1 = [2.1460, 12.7448, 7.4208, 1.2271, 1.8013, 0.3517]>

with f(x1) = 455.2874, using the stability constraint h(x) = α(A(x))+ε 6 0 with a
typical value ε = 10−8. The stopping tests were (26) and (27). The algorithm came
to a halt due to (26) and returned the optimal solution

x∗ = [77.0614, 255.2324, 74.6195, 188.0709, 133.9333, 22.2401]>
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with f(x∗) = 10.8419, meaning ‖Tw→z(P,KH)‖H = 3.2927 and

KH := K(x∗) =
77.0614s2 + 255.2324s+ 74.6195

s3 + 188.0709s2 + 133.9333s+ 22.2401
.
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Figure 2. Hankel feedback synthesis. Bearing of the algorithm. Top
left shows j 7→ f(xj) and j 7→ α(A(xj)) + 10−8. Top right shows

j 7→ ‖xj− xj+1‖. Lower left shows j 7→ kj, lower right shows j 7→ τ ]j ,
the evolution of the memory control parameter at serious steps

The algorithm needed 50 serious iterates with 2.3 s CPU to reach the local min-
imum KH . Bearing of the algorithm is shown in Fig. 2. The improvement of
‖Tw→z(P,KH)‖H = 3.2927 over ‖Tw→z(P,K∞)‖H = 3.3265 is moderate, while the
improvement over ‖Tw→z(P,Kb)‖H = 109.52 is plain. Step responses and magni-
tude plots of the controllers Kb, KH and K∞ are shown in Fig. 3. Posterior testing
displays ringing e�ects caused by various input signals w, including w = unit step,
white noise and sinc, shown in Fig. 4. As can be seen e.g., in Fig. 4, middle
image, for a truncated white noise function wT = wχ[0,T ], with T = 3, compari-
son of the responses zH = Tw→z(KH)wT and z∞ = Tw→z(K∞)wT , while con�rming
optimality ‖z∞‖∞ = 0.5413 < ‖zH‖∞ = 0.5498, reveals that the bulk of energy in
z∞ has a wider spread over time, and ‖zH‖2,[T,∞) = 1.1626 < ‖z∞‖2,[T,∞) = 1.1878
corroborating that the memory e�ects in KH are reduced by the use of program
(14).
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Figure 3. Hankel feedback synthesis. Step responses (left), impulse
responses (middle), magnitude plot (right) for controllers Kb (dotted),
K∞ (dashed), and KH (solid)
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10.2. Hankel system reduction. In this section, we solve program (15) with the
usual Hankel norm, where our tests use the 15th order Rolls-Royce Spey gas turbine
engine model described in [23, Chapter 11], with data available for download on
I. Postlethwaites's homepage as aero0.mat. The goal of this study is to use the
theoretical values to perform a blind testing of our algorithm. For k = 1, 2, . . . , 14,
using Algorithm 1, we computed Hankel reduced-order systems Gk of order k, and
compared the achieved objective f(x∗) = ‖G − Gk(x

∗)‖H of (15) with the theoret-
ically known optimal Hankel norm approximation errors ‖G − Gk‖H = σk+1, the
(k+ 1)st Hankel singular value of G. As can be seen in columns 2 and 3 of Table 1,
this error is within the limits of numerical precision.

In each run, the algorithm was started from a random initial guess, and no
information as to the speci�c structure of problem (15) was provided. On average,
the algorithm needed about 103 serious steps to reach the optimal objective function
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Table 1. Hankel system reduction. Comparison of optimal values
‖G−Gk(x

∗)‖H with theoretical values σk+1

k σk+1 ‖G−Gred‖H No of iterations Time
1 4.046418 4.046418 26 3.5
2 2.754623 2.754624 71 21.0
3 1.763527 1.763529 124 47.3
4 1.296531 1.299542 151 101.5
5 0.629640 0.629640 88 118.0
6 0.166886 0.166887 183 197.3
7 0.093407 0.093408 93 185.8
8 0.022193 0.022201 76 132.4
9 0.015669 0.015675 162 203.7
10 0.013621 0.013624 175 191.3
11 0.003997 0.003997 140 380.0
12 0.001179 0.001179 57 488.4
13 0.000324 0.000324 24 224.2
14 0.000033 0.000033 68 372.5

value within a tolerance of < 10−10. See Table 1 for number of iterations and running
times in seconds.

Remark 7. The results show no clear relation between running times and the order
of the reduced system, as one might have expected. This is due to the fact that
local optimization techniques depend very sensibly on the initial guess, which in
this comparison was chosen randomly.

Remark 8. In [9], we have used the same example to give a comparison between
Hankel system reduction and H∞-system reduction, which is compared to the H∞-
bound (see [12]).

10.3. Maximizing the memory of a system. We use here an illustrative exam-
ple for (18), where G and Gref are de�ned as

G(s) =
1

s− 1
, Gref =

11.11

s2 + 6s+ 11.11
.

The �lter F is chosen of order 2,

F (s) =
as2 + bs+ c

s2 + ds+ e
=



−d −e 1
1 0 0

b− ad c− ae a


 ,

which leads to 5 tunable parameters, whereas K is a PID

K(s) = kp +
ki
s

+
kds

Tfs+ 1
=




0 0 ki
0 − 1

Tf
− kd
T 2
f

1 1 kp + kd
Tf


 ,

adding another 4 unknowns. We have added a low-pass �lter W1(s) = 0.25s+0.6
s+0.006

to
the output z1 to asses the tracking error y − yref in low-frequency, and a high-pass
�lter W2(s) = s

s+0.001
on the control output z2 to reduce high-frequency components

of the control signal u+ v.
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Due to the choice of the performance channel w → z = (W1z1,W2z2), the closed-
loop has a non-vanishing direct transmission term. We therefore solve problem (14)
for the setup (18) using the extended Hankel program (2) with (10), and also using
the constraint program (12). Running Algorithm 1 from the same starting point,
these two methods give Hankel controllers (FeH , KeH) and (FcH , KcH) with

FeH(s) = −3.4778s2−13.9996s−0.0546
s2+1.9202s+0.0001

, KeH(s) = 6.3078 + 3.6689
s
− 1.0924

0.4739s+1
,

FcH(s) = −3.6552s2−13.6987s−0.0522
s2+1.9588s+0.0001

, KcH(s) = 6.1959 + 3.8435
s
− 0.7121

0.3644s+1
,

where we used the constraint σ1(D) 6 η with η = 1. For comparison, we also syn-
thesized the usual Hankel norm controller, where the direct transmission is ignored,
and the H∞-controller, both with the same architecture:

FH(s) = −2.2376s2−1.9738s−2.4161
s2+0.9054s+0.9836

, KH(s) = 2.4482 + 0.7883
s

+ 0.8023
0.7817s+1

,

F∞(s) = −9.9366s2−1.5077s−0.0349
s2+0.9969s+0.0273

, K∞(s) = 11.5131 + 0.2673
s
− 0.5507

1.0117s+1
.

Figure 5 compares step responses y and step reference responses yref for these con-
trollers. The evolution of the optimization method for the three Hankel controllers
can be traced in Fig. 6. The achieved Hankel norms are

‖Tw→z(FeH , KeH)‖H = 0.8767 < ‖Tw→z(FcH , KcH)‖H = 0.8862

< ‖Tw→z(FH , KH)‖H = 1.0160 < ‖Tw→z(F∞, K∞)‖H = 1.0277.

This example is again interesting in so far as the parametrization of F and K arises
naturally in the frequency domain.
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Figure 5. Maximizing memory. Comparison between step responses
y and yref for H∞-controller and Hankel controllers computed by pro-
grams (2) with monitoring (dotted), (12) (dashed) and (2) with (10)
(solid)

10.4. Control of �ow in a graph. Here, we give an application of program
(21). Let Vstay = {1, 2, . . . , nx}, Vin = {1, 2, . . . ,m}, Vout = {1, 2, . . . , p}. Let x
regroup the unknown tunable parameters ajj′ , bij and set A(x) = [ajj′ ]

>
nx×nx , B(x) =

[bij]
>
m×nx , C = [c1, . . . , cnx ], where ajj′ = 0 if (j, j′) 6∈ A , bij = 0 if (i, j) 6∈ A . We
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Figure 6. Maximizing memory. Comparison between standard Han-
kel program (2) with monitoring (left), constraint program (12) (mid-
dle), and extended Hankel program (2) with (10) (right). While
(2) with (10) and (12) give comparable results, minimization of
‖(A,B,C)‖H alone (left) gives a large direct transmission

have a discrete linear time-invariant system

G(x) :

{
x(t+ 1) = A(x)x(t) +B(x)w(t)
z(t) = Cx(t).

Remark that the linear constraint conditions in (21) can be transferred to the form
Aeqx = beq,x > 0, which are added in each trial step generation of Algorithm 1.

We now take the following graph G = (V ,A ) with nx = 24,m = 4 and p = 4.
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Let z(t) be the total number of people on the fairground, which corresponds to the
weights c1 = · · · = cnx = 1. We start Algorithm 1 at the uniform distribution x1,
where f(x1) = 714.8634, and ‖G(x1)‖H = 26.7369. After 2469 serious iterates with
8768 s CPU, our algorithm returns the optimal x∗ with f(x∗) = 8.6056, meaning
‖G(x∗)‖H = 2.9335. For comparison, with the Matlab function fmincon started at
x1, we obtain x† with f(x†) = 12.5994 > f(x∗) = 8.6056. However, if we take x† as
initial for Algorithm 1, the result is f(x∗) = 8.6056, meaning ‖G(x∗)‖H = 2.9335,
which is achieved very fast (29 serious iterates, 87 s CPU).
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Figure 7. Ringing e�ects of three systems G(x1) (dotted), G(x†)
(dashed) and G(x∗) (solid) for the �rst graph. Input: Unit step signal
(top) and white noise signal (bottom)
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We next consider an example using the second graph with nx = 36,m = 2 and p = 2.
Let z(t) quantify the number of people on the fairground, where the 6 central nodes
are counted twice. In this example, we will directly compare our nonsmooth method
to the heuristic in Sect. 9. Optimization starts again at the uniform distribution
x1. Minimizing smooth function fµ(x) in (24) with initial x1 leads to x†, where
f(x†) = 21.7291, ‖G(x†)‖H = 4.6614, while f(x1) = 578.6875, ‖G(x1)‖H = 24.0559.
We now use x† to initialize the nonsmooth Algorithm 1. After 44 serious steps with
168 s CPU, our algorithm returns the optimal x∗ with f(x∗) = 14.8353, meaning
‖G(x∗)‖H = 3.8517.

For the two displayed graphs, Figs. 7 and 8 compare ringing e�ects in unit step
and white noise responses truncated at T = 30 for the three systems G(x1), G(x†)
and G(x∗). We can see that ringing for G(x†) and G(x∗) is substantially reduced.

Tables 2 and 3 show a simulated study, where we compare the e�ects of the
transition probability distributions x1,x†,x∗ by recording the evacuation of people
from the fairground. We simulate crowd entering through the gates 1, . . . , 4 for
di�erent scenarios w. We then close the entrance gates at time T = 15, when in the
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Figure 8. Ringing e�ects of three systems G(x1) (dotted), G(x†)
(dashed) and G(x∗) (solid) for the second graph. Input: Unit step
signal (top) and white noise signal (bottom)

Table 2. First graph, three distributions x1, x†, x∗. Times when
90% of crowd in fairground has been evacuated

Input signal People z1(T ) G(x1) z†(T ) G(x†) z∗(T ) G(x∗)
Entering Remain Evac. time Remain Evac. time Remain Evac. time

[w1;w2;w3; 0] 6994 4680 78 1478 18 1141 17
[w1;w2; 0;w3] 6994 4375 75 1293 18 941 17
[w1; 0;w2;w3] 6994 4367 75 1306 18 941 17
[0;w1;w2;w3] 6994 4367 75 1374 18 941 17
Entry gates are closed at T = 15

Table 3. Second graph, three distributions. Times when 90% of
crowd in the fairground has been evacuated

Input signal People z1(T ) G(x1) z†(T ) G(x†) z∗(T ) G(x∗)
Entering Remain Evac. time Remain Evac. time Remain Evac. time

[w1;w2] 4994 3794 63 1530 20 1216 19
[w1;w3] 5200 3901 63 1546 20 1227 19
[w2;w3] 3794 2704 63 1034 20 804 20
Entry gates are closed at T = 15

�rst study 6994 people have entered the ground, and record the time which passes
until 90% of the crowd has been evacuated. In our tests w1 is a step signal, w2 is
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a sine wave, and w3 is a square wave. A similar approach is chosen in the second
graph.

Column z1(T ) gives the number of people still present on the fairground at time
T when distribution x1 is used, and column G(x1) gives the time which then elapses
until this crowd is reduced below 10% of the total number 6994. Columns 5�8 are
analogous. As compared to x1, the optimal strategy x∗ reduces the evacuation time
to close to 1/5 in the �rst graph, and to close to 1/3 in the second graph.

11. Conclusion

We have proposed a new methodology to reduce unwanted ringing e�ects in a
tunable linear time-invariant system. The problem was addressed by minimizing the
Hankel norm of the system, a problem which leads to an eigenvalue optimization
program for the associated Hankel operator. A proximal bundle algorithm was
presented to solve a variety of test problems successfully, and a smooth heuristic,
based on work of Nesterov [15], was added and used to initialize the algorithm with
a favorable initial seed.
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III

Simultaneous plant and controller optimization based on

nonsmooth techniques ∗

Minh Ngoc Dao and Dominikus Noll

Abstract. We present an approach to simultaneous design optimization of a plant
and its controller. This is based on a bundling technique for solving nonsmooth
optimization problems under nonlinear and linear constraints. In the absence of
convexity, a substitute for the convex cutting plane mechanism is proposed. The
method is illustrated on a problem of steady �ow in a graph and in robust feedback
control design of a mass-spring-damper system.

Keywords. Robust control · Hankel norm · system with tunable parameters ·
nonlinear optimization · steady �ow.

1. Introduction

In modern control system, desirable closed-loop characteristics include stability,
speed, accuracy, and robustness and depend on both structural and control spec-
i�cations. Traditionally, structural design with its drive elements precedes and is
disconnected from controller synthesis, which may result in a sub-optimal system.
In contrast, optimizing plant structure and controller simultaneously may lead to a
truly optimal solution. We therefore propose design methods which allow to opti-
mize various elements such as system structure, actuators, sensors, and the controller
simultaneously.

Here we focus on simultaneous optimization of certain plant and controller pa-
rameters to achieve the best performance for a closed-loop system with constraints.
This leads to a complex nonlinear optimization problem involving nonsmooth and
nonconvex objectives and constraints. Suitable optimization methods are discussed
to address such problems.

∗Paper published in Lecture Notes in Engineering and Computer Science: Proc. World Con-
gress Eng. Comp. Sci. (WCECS), vol. II, San Francisco, 2013, pp. 855�861.
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Consider a stable LTI state-space control system

G :

{
δx = Ax+Bu

y = Cx+Du

where δx represents ẋ(t) for continuous-time systems and x(t+ 1) for discrete-time
systems, and where x ∈ Rnx is the state vector, u ∈ Rm the control input vector,
and y ∈ Rp the output vector. Our interest is the case in which system G is placed
in a control system containing actuators, sensors and a feedback controller K, and
matrices A,B,C,D and controller K depend smoothly on a design parameter x
varying in Rn or in some constrained subset of Rn. Denoting by Tw→z(x) the closed-
loop performance channel w → z, this brings to the optimization program

minimize ‖Tw→z(x)‖
subject to x ∈ Rn,

K = K(x) assures closed-loop stability
(1)

Here standard choices of ‖ · ‖ include the H∞-norm ‖ · ‖∞, the H2-norm ‖ · ‖2, or
the Hankel norm ‖ · ‖H which is discussed in more detail in the sections 3 and 6.
Solving (1) leads to nonsmooth optimization problems.

2. A proximity control algorithm

Bundle methods are currently among the most e�ective approachs to solve non-
smooth optimization problems. In these methods, subgradients from past iterations
are accumulated in a bundle, and a trial step is obtained by a quadratic tangent
program based on information stored in the bundle. In the absence of convexity,
tangent planes can no longer be used as cutting planes, and a substitute has to
be found. A sophisticated management of the proximity control mechanism is also
required to obtain a satisfactory convergence theory. We will show in which way
these elements can be assembled into a successful algorithm.

For the purpose of solving the problem (1), we present here a nonsmooth algo-
rithm for general constrained optimization programs of the form

minimize f(x)
subject to c(x) 6 0

Ax 6 b
(2)

where x ∈ Rn is the decision variable, and f and c are potentially nonsmooth and
nonconvex, and where the linear constraints are gathered in Ax 6 b and handled
directly.

Expanding on an idea in [15, Section 2.2.2], we use a progress function at the
current iterate x,

F (·,x) = max{f(·)− f(x)− νc(x)+, c(·)− c(x)+},
where c(x)+ = max{c(x), 0}, and ν > 0 is a �xed parameter. It is easy to see that
F (x,x) = 0, where either the left branch f(·) − f(x) − νc(x)+ or the right branch
c(·) − c(x)+ in the expression of F (·,x) is active at x, i.e., attains the maximum,
depending on whether x is feasible for the non-linear constraint or not.
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Setting P = {x ∈ Rn : Ax 6 b}, it follows from [16, Theorem 6.46] that the
normal cone to P at x is given by

NP (x) = {A>η : η > 0, η>(Ax− b) = 0}.
We remark therefore that if x∗ is a local minimum of program (2), it is also a local
minimum of F (·,x∗) on P , and then 0 ∈ ∂1F (x∗,x∗)+A>η∗ for some multiplier η∗ >
0 with η∗>(Ax∗ − b) = 0. The symbol ∂1 here stands for the Clarke subdi�erential
with respect to the �rst variable. Indeed, if x∗ is a local minimum of (2) then
x∗ ∈ P, c(x∗) 6 0, and so for y in a neighborhood of x∗ in P we have F (y,x∗) =
max{f(y) − f(x∗), c(y)} > f(y) − f(x∗) > 0 = F (x∗,x∗) if y is feasible, and
F (y,x∗) > c(y) > 0 otherwise. This implies that x∗ is a local minimum of F (·,x∗)
on P , and therefore 0 ∈ ∂1F (x∗,x∗) + NP (x∗). We now present the following
algorithm for computing solutions of program (2).

Convergence theory of Algorithm 1 is discussed in [7, 10] and based on these
results, we can prove the following theorem.

Theorem 2.1. Suppose f and c in program (2) are lower-C1 functions such that
the following conditions hold:

(a) f is weakly coercive on constraint set Ω = {x ∈ Rn : c(x) 6 0, Ax 6 b},
i.e., if xj ∈ Ω, ‖xj‖ → ∞, then f(xj) is not monotonically decreasing.

(b) c is weakly coercive on P , i.e., if xj ∈ P , ‖xj‖ → ∞, then c(xj) is not
monotonically decreasing.

Then the sequence of serious iterates xj ∈ P generated by Algorithm 1 is bounded,
and every accumulation point x∗ of the xj satis�es x∗ ∈ P and 0 ∈ ∂1F (x∗,x∗) +
A>η∗ for some multiplier η∗ > 0 with η∗>(Ax∗ − b) = 0. �

An immediate consequence of Theorem 2.1 is the following

Corollary 2.2. Under the hypotheses of the theorem, every accumulation point of
the sequence of serious iterates generated by Algorithm 1 is either a critical point of
constraint violation, or a Karush-Kuhn-Tucker point of program (2).

Proof. Suppose x∗ is an accumulation point of the sequence of serious iterates gener-
ated by Algorithm 1. According to Theorem 2.1 we have 0 ∈ ∂1F (x∗,x∗) +NP (x∗).
By using [4, Proposition 9] (see also [5, Proposition 2.3.12]), there exist constants
λ0, λ1 such that

0 ∈ λ0∂f(x∗) + λ1∂c(x
∗) +NP (x∗),

λ0 > 0, λ1 > 0, λ0 + λ1 = 1.

If c(x∗) > 0 then ∂1F (x∗,x∗) = ∂c(x∗), and therefore 0 ∈ ∂c(x∗) + NP (x∗), which
means that x∗ is a critical point of constraint violation. In the case of c(x∗) 6 0,
if x∗ fails to be a Karush-Kuhn-Tucker point of (2), then λ0 must equal 0, and so
0 ∈ ∂c(x∗) + NP (x∗). We obtain that x∗ is either a critical point of constraint
violation, or a Karush-Kuhn-Tucker point of program (2). �

In the absence of convexity, proving convergence to a single Karush-Kuhn-Tucker
point is generally out of reach, but the following result gives nonetheless a satisfac-
tory answer for stopping of the algorithm.
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Algorithm 1. Proximity control with downshift

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < q < ∞, 0 < c < ∞,
q < T <∞.

. Step 1 (Initialize outer loop). Choose initial iterate x1 with Ax1 6 b and

matrix Q1 = Q>1 with −qI � Q1 � qI. Initialize memory element τ ]1 such that

Q1 + τ ]1I � 0. Put j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop the algorithm if 0 ∈
∂1F (xj,xj) + A>ηj, for a multiplier ηj > 0 with ηj>(Axj − b) = 0. Otherwise,
goto inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize

τ1 = τ ]j . Build initial working model

F1(·,xj) = g>0j(· − xj) + 1
2
(· − xj)>Qj(· − xj),

where g0j ∈ ∂1F (xj,xj).

. Step 4 (Trial step generation). At inner loop counter k �nd solution yk

of the tangent program

minimize Fk(y,x
j) + τk

2
‖y − xj‖2

subject to Ay 6 b,y ∈ Rn.

� Step 5 (Acceptance test). If

ρk =
F (yk,xj)

Fk(yk,xj)
> γ,

put xj+1 = yk (serious step), quit inner loop and goto step 8. Otherwise (null
step), continue inner loop with step 6.

. Step 6 (Update working model). Generate a cutting plane mk(·,xj) = ak +
g>k (· − xj) at null step yk and counter k using downshifted tangents. Compute
aggregate plane m∗k(·,xj) = a∗k + g∗>k (· −xj) at yk, and then build new working
model Fk+1(·,xj).
� Step 7 (Update proximity control parameter). Compute secondary con-
trol parameter

ρ̃k =
Fk+1(yk,xj)

Fk(yk,xj)
and put

τk+1 =

{
τk if ρ̃k < γ̃,

2τk if ρ̃k > γ̃.

Increase inner loop counter k and loop back to step 4.

� Step 8 (Update Qj and memory element). Update Qj → Qj+1 respecting
Qj+1 = Q>j+1 and −qI � Qj+1 � qI. Then store new memory element

τ ]j+1 =

{
τk if ρk < Γ,
1
2
τk if ρk > Γ.

Increase τ ]j+1 if necessary to ensure Qj+1 + τ ]j+1I � 0. If τ ]j+1 > T then re-set

τ ]j+1 = T . Increase outer loop counter j and loop back to step 2.
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Corollary 2.3. Under the hypotheses of the theorem, for every ε > 0 there exists
an index j0(ε) ∈ N such that for every j > j0(ε), xj is within ε-distance of the set
L of critical points x∗ in the sense of the theorem.

Proof. By the fact that our algorithm assures always xj−xj+1 → 0 and Ostrowski's
theorem [13, Theorem 26.1], the set of limit point L of the sequence xj is either
singleton or a compact continuum. Our construction then assures convergence of
xj to the limiting set L in the sense of the Hausdor� distance. See [11] for the
details. �

3. Hankel norm

Given a stable LTI system

G :

{
ẋ = Ax+Bw

z = Cx

with state x ∈ Rnx , input w ∈ Rm, and output z ∈ Rp, if we think of w(t) as an
excitation at the input which acts over the time period 0 6 t 6 T , then the ring of
the system after the excitation has stopped at time T is z(t) for t > T . If signals
are measured in the energy norm, this leads to that the Hankel norm of the system
G is de�ned as

‖G‖H = sup
T>0

{(∫ ∞

T

z(t)>z(t) dt

)1/2

:

∫ T

0

w(t)>w(t) dt 6 1, w(t) = 0 for t > T, z = Gw

}
.

For the discrete-time case, the Hankel norm of G is given by

‖G‖H = sup
T>0





(
∞∑

t=T

z(t)>z(t)

)1/2

:

T∑

t=0

w(t)>w(t) 6 1, w(t) = 0 for t > T, z = Gw

}
.

The Hankel norm can be understood as measuring the tendency of a system
to store energy, which is later retrieved to produce undesired noise e�ects known
as system ring. Minimizing the Hankel norm therefore reduces the ringing in the
system. It is worth to note that in both continuous-time and discrete-time cases we
have the following

Proposition 3.1. If X and Y are the controllability and observability Gramians of
the stable system G, then

‖G‖H =
√
λ1(XY ),

where λ1 denotes the maximum eigenvalue of a symmetric or Hermitian matrix.

Proof. See [6] and also [8, Section 2.3]. �
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4. Steady �ow in a graph

Here we consider the problem of steady �ow in a directed graph G = (V ,A )
with sources, sinks, and interior nodes, V = Vstay∪Vin∪Vout, and not excluding self-
arcs. For nodes i, j ∈ V connected by an arc (i, j) ∈ A the transition probability
i → j quanti�es the tendency of �ow going from node i towards node j. As an
example we may for instance consider a large fairground with separated entrances
and exits, where itineraries between stands, entrances and exits are represented by
the graph. By acting on the transition probabilities between nodes connected by
arcs, we expect to guide the crowd in such a way that a steady �ow is assured, and
a safe evacuation is possible in case of an emergency.

Assume that an individual at interior node j ∈ Vstay decides with probability
ajj′ > 0 to proceed to a neighboring node j′ ∈ Vstay, where neighboring means
(j, j′) ∈ A , or with probability ajk > 0 to proceed to a neighboring exit node
k ∈ Vout, where (j, k) ∈ A . The case (j, j) ∈ A of deciding to stay at stand
j ∈ Vstay is not excluded. Similarly, an individual entering at i ∈ Vin proceeds to a
neighboring interior node j ∈ Vstay with probability bij > 0, where (i, j) ∈ A . We
assume for simplicity that there is no direct transmission from entrances to exits.
Then

∑

j′∈Vstay:(j,j′)∈A

ajj′ +
∑

k∈Vout:(j,k)∈A

ajk = 1,(3)

for every j ∈ Vstay, and
∑

j∈Vstay:(i,j)∈A

bij = 1(4)

for every i ∈ Vin. Let xj(t) denote the number of people present at interior node
j ∈ Vstay and time t, and wi(t) the number of people entering the fairground through
entry i ∈ Vin at time t. Then the number of people present at interior node j ∈ Vstay

and time t+ 1 is

xj(t+ 1) =
∑

j′∈Vstay:(j′,j)∈A

aj′jxj′(t) +
∑

i∈Vin:(i,j)∈A

bijwi(t).

We quantify the total number of individuals still inside the fairground via the
weighted sum

z(t) =
∑

j∈Vstay

cjxj(t)

at time t, where cj > 0 are �xed weights. We assess the performance of the network
by using the L2-norm to quantify input and output �ows w, z. This attributes a
high cost to a strong concentration of people at a single spot. Take x to regroup
the parameters ajj′ , ajk, bij, the discrete LTI system above has the form G(x) =
(A(x), B(x), C, 0), where C is the row vector of cj's. The Hankel norm ‖G(x)‖H
may then be interpreted as computing the worst-case of all scenarios where the
in�ow w is stopped at some time T , and the out�ow is measured via the pattern
z(t), t > T , with which the fairground is emptied. Minimizing ‖z‖2,[T,∞)/‖w‖2,(0,T ]

may then be understood as enhancing overall safety of the network. It leads to the
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optimization program

minimize ‖G(x)‖H
subject to G(x) internally stable

ajj′ > 0, ajk > 0, bij > 0, (3), (4)
(5)

which is a version of (1).

w - e+
�
e - G -z

6

K �

Figure 1. Control architecture in the fairground.

In an extended model one might consider measuring the number of people at
some selected nodes j ∈ Vstay ∪ Vout, and use this to react via a feedback controller
at the entry gates as in Figure 1. With this controller, we can regulate the number
of people in the fairground. More accurately, the feedback controller K = K(κ) in-
cludes admission rates κi at entry gate i, and the number of people entering may be
restricted based on the total weighted number of people inside the fairground. Let-
ting Tw→z(x, κ) denote the closed-loop transfer function of the performance channel
mapping w into z, this leads to the following problem where controller and parts of
the plant are optimized simultaneously.

minimize ‖Tw→z(x, κ)‖H
subject to K = K(κ) assures closed-loop stability,

ajj′ > 0, ajk > 0, bij > 0, κi > 0, (3), (4)
(6)

5. Robust control of a mass-spring-damper system

In this section we discuss a 1DOF mass-spring-damper system with mass m,
spring sti�ness k and damping coe�cient c. The values can be in any consistent
system of units, for example, in SI units, m in kilograms, k in newtons per meter,
and c in newton-seconds per meter or kilograms per second. The system is of second
order, since it has a mass which can contain both kinetic and potential energy. The
force F is considered as input u, and the displacement p of the mass from the
equilibrium position is considered as output y of this system. By Hooke's law, the
force exerted by the spring is

Fs = −kp.
Let v be the velocity of the mass, then the damping force Fd is expressed as

Fd = −cv = −cdp
dt

= −cṗ
due to d'Alembert's principle. Using Newton's second law, we have

F + Fs + Fd = m
d2p

dt2
= mp̈,
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which gives

mp̈+ cṗ+ kp = u.

A possible selection of state variables is the displacement p and the velocity v. The
linear model of the mass-spring-damper is then described by

G :

{
ẋ = Ax+Bu

y = Cx

where

A =

[
0 1
− k
m
− c
m

]
, B =

[
0
1
m

]
and C =

[
1 0

]
.

r = 0- e
+ �

- K - eu
+
?

w

+- G -y

6

Figure 2. Structure of mass-spring-damper control system.

The design objective for the mass-spring-damper system with a disturbance is
to �nd an output feedback control law u = Ky which stabilizes the closed-loop
system while minimizing worst-case energy of output z = [y u]> in order to avoid
the disturbance input w to a�ect the system. In realistic systems, the physical
parameters k and c are not known exactly but can be enclosed in intervals. Assuming
the controller is parameterized as K(κ), taking x to regroup the tunable parameters
k, c and κ, and denoting by Tw→z(x) the closed-loop performance channel w → z,
this leads to the optimization problem

minimize ‖Tw→z(x)‖
subject to x = (k, c, κ) ∈ Rn,

K = K(κ) assures closed-loop stability,
k and c are in some intervals

(7)

where choices of ‖ · ‖ include the H∞-norm ‖ · ‖∞ or the Hankel norm ‖ · ‖H .

6. Clarke subdi�erential of the Hankel norm

In order to apply nonlinear and nonsmooth optimization techniques to programs
of the form (5), (6) and (7) it is necessary to provide derivative information of the
objective function

f(x) = ‖G(x)‖2
H = λ1(X(x)Y (x)),

where X(x) and Y (x) are the controllability and observability Gramians. In the
discrete-time case, X(x) and Y (x) can be obtained from the Lyapunov equations

A(x)XA>(x)−X +B(x)B>(x) = 0,(8)

A>(x)Y A(x)− Y + C>(x)C(x) = 0.(9)
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Remark that despite the symmetry of X and Y the product XY need not be sym-
metric, but stability of A(x) guarantees X � 0, Y � 0 in (8), (9), so that we can
write

λ1(XY ) = λ1(X
1
2Y X

1
2 ) = λ1(Y

1
2XY

1
2 ),

which brings us back in the realm of eigenvalue theory of symmetric matrices.

Recalling the de�nition of the spectral radius of a matrix

ρ(M) = max{|λ| : λ eigenvalue of M},

we can address programs (5) and (6) in the following program

(10)
minimize f(x) := ‖G(x)‖2

H

subject to c(x) := ρ(A(x))− 1 + ε 6 0

for some �xed small ε > 0. Notice that f = ‖ · ‖2
H ◦G(·) is a composite function of a

semi-norm and a smooth mapping x 7→ G(x), which implies that it is lower-C2, and
therefore also lower-C1 in the sense of [16, De�nition 10.29]. Theoretical properties
of the spectral radius c(x), used in the constraint, have been studied in [3]. We also
have X(x) � 0 and Y (x) � 0 on the feasible set C = {x : c(x) 6 0}, so that f is
well-de�ned and locally Lipschitz on C.

Let Mn,m be the space of n×m matrices, equipped with the corresponding scalar
product 〈X, Y 〉 = Tr(X>Y ), where X> and Tr(X) are respectively the transpose
and the trace of matrix X. We denote by Bm the set of m×m symmetric positive
semide�nite matrices with trace 1. Set Z := X

1
2Y X

1
2 and pick Q to be a matrix

whose columns form an orthonormal basis of the ν-dimensional eigenspace associated
with λ1(Z). By [14, Theorem 3], the Clarke subdi�erential of f at x consists of all
subgradients gU of the form

gU = (Tr(Z1(x)>QUQ>), . . . ,Tr(Zn(x)>QUQ>))>,

where U ∈ Bν , and where Mi(x) := ∂M(x)
∂xi

, i = 1, . . . , n for any matrix M(x).We
next have

(11) Zi(x) = χi(x)Y X
1
2 +X

1
2Yi(x)X

1
2 +X

1
2Y χi(x),

where χi(x) := ∂X
1
2 (x)
∂xi

. It follows from (8) and (9) that

A(x)Xi(x)A>(x)−Xi(x) = −Ai(x)XA>(x)

− A(x)X[Ai(x)]> −Bi(x)B>(x)−B(x)[Bi(x)]>,(12)

A>(x)Yi(x)A(x)− Yi(x) = −[Ai(x)]>Y A(x)

− A>(x)Y Ai(x)− [Ci(x)]>C(x)− C>(x)Ci(x).(13)

Since X
1
2X

1
2 = X,

(14) X
1
2χi(x) + χi(x)X

1
2 = Xi(x).

Altogether, we obtain Algorithm 2 to compute elements of the subdi�erential of
f(x).
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Algorithm 2. Computing subgradients

Input: x ∈ Rn. Output: g ∈ ∂f(x).

. Step 1. Compute Ai(x) = ∂A(x)
∂xi

, Bi(x) = ∂B(x)
∂xi

, Ci(x) = ∂C(x)
∂xi

, i = 1, . . . , n

and X, Y solutions of (8), (9), respectively.

. Step 2. Compute X
1
2 and Z = X

1
2Y X

1
2 .

. Step 3. For i = 1, . . . , n compute Xi(x) and Yi(x) solutions of (12) and (13),
respectively.

. Step 4. For i = 1, . . . , n compute χi(x) solution of (14) and Zi(x) using (11).

. Step 5. Determine a matrix Q whose columns form an orthonormal basis of
the ν-dimensional eigenspace associated with λ1(Z).

. Step 6. Pick U ∈ Bν , and return

(Tr(Z1(x)>QUQ>), . . . ,Tr(Zn(x)>QUQ>))>,

a subgradient of f at x.

Remark 1. In the continuous-time case, the Gramians X(x) and Y (x) can be ob-
tained from the continuous Lyapunov equations

A(x)X +XA>(x) +B(x)B>(x) = 0,(15)

A>(x)Y + Y A(x) + C>(x)C(x) = 0,(16)

Therefore, Xi(x) and Yi(x) are solutions respectively of the following equations

A(x)Xi(x) +Xi(x)A>(x) = −Ai(x)X −X[Ai(x)]>

−Bi(x)B>(x)−B(x)[Bi(x)]>,(17)

A>(x)Yi(x) + Yi(x)A(x) = −[Ai(x)]>Y − Y Ai(x)

− [Ci(x)]>C(x)− C>(x)Ci(x).(18)

In addition, let us note that for this case, the stability constraint in program (10) is
c(x) = α(A(x))+ε 6 0, where α(·) denotes the spectral abscissa of a square matrix,
i.e., the maximum of the real parts of its eigenvalues. �

We now introduce a smooth relaxation of Hankel norm. It is based on a result
established by Y. Nesterov in [9], which gives a �ne analysis of the convex bun-
dle method in situations where the objective f(x) has the speci�c structure of a
max-function, including the case of a convex maximum eigenvalue function. These
�ndings indicate that for a given precision, such programs may be solved with lower
algorithmic complexity using smooth relaxations. While these results are a priori
limited to the convex case, it may be interesting to apply this idea as a heuristic in
the nonconvex situation. More precisely, we can try to solve problem (10), (2) by
replacing the function f(x) = λ1(Z(x)) by its smooth approximation

fµ(x) := µ ln

(
nx∑

i=1

eλi(Z(x))/µ

)
,(19)



7. Numerical experiments 71

where µ > 0 is a tolerance parameter, nx the order of matrix Z, and where λi
denotes the ith eigenvalue of a symmetric or Hermitian matrix. Then

∇fµ(Z) =

(
nx∑

i=1

eλi(Z)/µ

)−1 nx∑

i=1

eλi(Z)/µqi(Z)qi(Z)>,

with qi(Z) the ith column of the orthogonal matrix Q(Z) from the eigendecompo-
sition of symmetric matrix Z = Q(Z)D(Z)Q(Z)>. This yields

∇fµ(x) = (Tr(Z1(x)>∇fµ(Z)), . . . ,Tr(Zn(x)>∇fµ(Z)))>.

Let us note that
f(x) 6 fµ(x) 6 f(x) + µ lnnx.

Therefore, to �nd an ε-solution of problem (2), we have to �nd an ε
2
-solution of the

smooth problem

minimize fµ(x)
subject to c(x) 6 0

Ax 6 b
(20)

with µ = ε
2 lnnx

. This smoothed problem can be solved using standard NLP software.

We have initialized the nonsmooth Algorithm 1 with the solution of problem (20).

7. Numerical experiments

7.1. Steady �ow in a graph. We give an illustration of programs (5) and (6).
Let Vstay = {1, 2, . . . , nx}, Vin = {1, 2, . . . ,m} and Vout = {1, 2, . . . , p}. Taking x
to regroup the unknown tunable parameters ajj′ , bij and setting A(x) = [ajj′ ]

>
nx×nx ,

B(x) = [bij]
>
m×nx , C = [c1, . . . , cnx ], where ajj′ = 0 if (j, j′) 6∈ A , bij = 0 if (i, j) 6∈ A ,

we have a discrete LTI system

G(x) :

{
x(t+ 1) = A(x)x(t) +B(x)w(t)

z(t) = Cx(t).

Note that the linear constraint conditions in (5) as well as (6) can be transferred to
the form {

Aeqx = beq,

x > 0.

We now take the graph G = (V ,A ) with nx = 36, m = 2 and p = 2 as in
Figure 3. Let z(t) be the total number of individuals inside the fairground with
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Figure 3. Model of the fairground
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doubled weights at 6 nodes in the center that form a hexagon as compared to the
other nodes. We start with the case without controller and initialize at the uniform
distribution x1, where f(x1) = 528.7672 and ‖G(x1)‖H = 22.9949. In order to
save time, we use the minimizer of the relaxation fµ(x) in (19) with initial x1 to
initialize the nonsmooth Algorithm 1. Our algorithm then returns the optimal x†

with f(x†) = 16.5817, meaning ‖G(x†)‖H = 4.0721.

In the case with controller K = K(κ), κ = [κ1 . . . κm]>, as shown in Figure 1,
we have

Tw→z(x, κ) :

{
x(t+ 1) = A(x)x(t) +B(x)e(t)

z(t) = Cx(t).

Here e(t) = w(t)−Kz(t) = w(t)−KCx(t), which gives

Tw→z(x, κ) =

[
A(x)−B(x)K(κ)C B(x)

C 0

]
.

Initializing at (x, κ) = (x1, 0) with remarking that Tw→z(x, 0) = G(x) and proceed-
ing as in the previous case, we obtain the optimal (x∗, κ∗) with f(x∗, κ∗) = 2.0001,
meaning ‖Tw→z(x∗, κ∗)‖H = 1.4142. Step responses and ringing e�ects in unit step
and white noise responses truncated at T = 30 for the three systems G(x1) =
Tw→z(x

1, 0), G(x†) and Tw→z(x
∗, κ∗) are compared in Figure 4 and Figure 5.
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Figure 4. Experiment 1. Step responses of three systems G(x1)
(dotted), G(x†) (dashed) and Tw→z(x

∗, κ∗) (solid)

7.2. Robust control of a mass-spring-damper system. Here we apply Algo-
rithm 1 to solve problem (7), where the mass-spring-damper plant with a disturbance
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Figure 5. Experiment 1. Ringing e�ects of three systems G(x1)
(dotted), G(x†) (dashed) and Tw→z(x

∗, κ∗) (solid). Input: Unit step
signal (top) and white noise signal (bottom)

is given by

P :



ẋ
z
y


 =



A B1 B
C1 0 D12

C 0 0





x
w
u


 ,

with

A =

[
0 1
− k
m
− c
m

]
, B1 = B =

[
0
1
m

]

C1 =

[
1 0
0 0

]
, D12 =

[
0
1

]
and C =

[
1 0

]
.

The controller K is chosen of order 2, namely

K(κ) =
κ1s

2 + κ2s+ κ3

s2 + κ4s+ κ5

=




−κ4 κ5 1
1 0 0

κ2 − κ1κ4 κ3 − κ1κ5 κ1


 :=

[
AK BK

CK DK

]
.

Then, the closed-loop transfer function of the performance channel channel w → z
has the state-space representation

Tw→z(x) :

[
ξ̇
z

]
=

[
A(x) B(x)
C(x) 0

] [
ξ
w

]
,
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where ξ = [x xK ]>, xK the state of K, and where

A(x) =

[
A+BDKC BCK

BKC AK

]
,

B(x) =

[
B1 +BDKD21

BKD21

]
,

C(x) =
[
C1 +D12DKC D12CK

]
.

Assume that mass m = 4, and spring sti�ness k and damping coe�cient c be-
long to the intervals [4, 12] and [0.5, 1.5], respectively. Using the Matlab function
hinfstruct based on [1], we optimized H∞-norm and obtained k = 12, c = 1 and

K∞ =
−6.0927s2 − 0.3981s− 5.1816

s2 + 19.0834s+ 1.1708
.

In the Hankel norm synthesis case, our Algorithm 1 returned k = 12, c = 1.5 and

KH =
−6.1975s2 − 2.1828s− 4.2523

s2 + 19.3261s+ 3.9198
.

Figure 6 compares step responses and white noise responses in two synthesis cases.
Bearing of the algorithm is shown in Figure 7.
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Figure 6. Experiment 2. Step responses (left) and white noise re-
sponses (right) in two synthesis cases

8. Conclusion

We have shown that it is possible to optimize plant and controller simultaneously
if the idea of a structured control law introduced in [1] is applied. Our approach was
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Figure 7. Experiment 2. Bearing of the algorithm

illustrated for Hankel norm synthesis as well as for H∞-synthesis, and for a contin-
uous and a discrete system. Due to inherent nonsmoothness of the cost functions,
nonsmooth optimization was applied, and in particular, a nonconvex bundle method
was presented. For eigenvalue optimization, as required for Hankel norm synthesis,
a relaxation developed by Nesterov for the convex case was successfully used as a
heuristic in the nonconvex case to initialize the bundle method.

References

1. P. Apkarian and D. Noll, Nonsmooth H∞ synthesis, IEEE Trans. Automat. Control 51 (2006),
no. 1, 71�86.

2. , Nonsmooth optimization for multidisk H∞ synthesis, Eur. J. Control 12 (2006), no. 3,
229�244.

3. J. V. Burke and M. L. Overton, Di�erential properties of the spectral abscissa and the spectral
radius for analytic matrix-valued mappings, Nonlinear Anal. 23 (1994), no. 4, 467�488.

4. F. H. Clarke, Generalized gradients of Lipschitz functionals, Adv. in Math. 40 (1981), no. 1,
52�67.

5. , Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts,
John Wiley & Sons, Inc., New York, 1983.

6. M. N. Dao and D. Noll, Minimizing the memory of a system, Proc. Asian Control Conf.
(Istanbul), June 2013.

7. M. Gabarrou, D. Alazard, and D. Noll, Design of a �ight control architecture using a non-
convex bundle method, Math. Control Signals Syst. 25 (2013), no. 2, 257�290.

8. K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their
L∞-error bounds, Internat. J. Control 39 (1984), no. 6, 1115�1193.

9. Y. Nesterov, Smoothing technique and its applications in semide�nite optimization, Math.
Program., Ser. A 110 (2007), no. 2, 245�259.



76 III. SIMULTANEOUS PLANT AND CONTROLLER OPTIMIZATION

10. D. Noll, Cutting plane oracles to minimize non-smooth non-convex functions, Set-Valued Var.
Anal. 18 (2010), no. 3-4, 531�568.

11. , Convergence of non-smooth descent methods using the Kurdyka-�ojasiewicz inequality,
J. Optim. Theory Appl. 160 (2014), no. 2, 553�572.

12. D. Noll, O. Prot, and A. Rondepierre, A proximity control algorithm to minimize nonsmooth
and nonconvex functions, Pac. J. Optim. 4 (2008), no. 3, 571�604.

13. A. M. Ostrowski, Solutions of equations in Euclidean and Banach spaces, Pure and Applied
Mathematics, vol. 9, Academic Press, New York-London, 1973.

14. M. L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optim. 2 (1992), no. 1, 88�
120.

15. E. Polak, Optimization: Algorithms and consistent approximations, Appl. Math. Sci., vol. 124,
Springer-Verlag, New York, 1997.

16. R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Springer-Verlag, Berlin, 1998.



IV

Robust eigenstructure clustering by nonsmooth optimization ∗

Minh Ngoc Dao, Dominikus Noll, and Pierre Apkarian

Abstract. We extend classical eigenstructure assignment to more realistic prob-
lems where additional performance and robustness speci�cations arise. Our aim
is to combine time-domain constraints, as re�ected by pole location and eigenvec-
tor structure, with frequency-domain objectives such as the H2, H∞ or Hankel
norms. Using pole clustering, we allow poles to move in polydisks of prescribed
size around their nominal values, driven by optimization. Eigenelements, that
is poles and eigenvectors, are allowed to move simultaneously and serve as deci-
sion variables in a specialized nonsmooth optimization technique. Two aerospace
applications illustrate the power of the new method.

Keywords. Structured feedback control · eigenstructure assignment · modal
shaping · nonsmooth optimization · frequency-domain · robust design

1. Introduction

Since its introduction by Wonham [30] and Moore [17], eigenstructure assign-
ment has developed into a powerful controller design tool in the aerospace sector
and in other high technology �elds. Eigenstructure assignment aims at shaping the
responses of the closed-loop system to certain input signals by way of two mech-
anisms. The placement of closed-loop modes to stabilize and achieve satisfactory
transients, and eigenvector structure to decouple responses to speci�c initial condi-
tions. In this paper we are concerned with the design of output feedback control laws,
where only partial eigenstructure assignment or pole placement can be expected. In
that case the standard approach to �rst selecting a partial set of closed-loop modes
λ1, . . . , λp, and then using the remaining degrees of freedom to shape the corre-
sponding closed-loop eigenvectors (vi, wi), is prone to failure to stabilize the system,
as the remaining closed-loop modes cannot be in�uenced directly.

∗Paper submitted for publication. Conference version published in Proc. Internat. Conf. In-
formatics in Control, Automation and Robotics (ICINCO), Reykjavík, July 2013, pp. 307�314.
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As a remedy we propose to assign the eigenelements (λi, vi, wi) simultaneously.
We allow eigenelements (λi, vi, wi) to move in the neighborhood of their nominal
values (λ0

i , v
0
i , w

0
i ) in such a way that closed-loop stability and performance can

be further improved. The price for this gain of �exibility is that eigenelement as-
signment can no longer be achieved by linear algebra methods alone. Instead, a
combination of nonlinear optimization and linear algebra is required.

Over the years there have already been attempts to enhance eigenspace control
using o�-the-shelf optimization. An early approach is Sobel and Shapiro [26], where
hand-tuning of eigenvalues was shown to improve stability margins of the controlled
system. In [27] the same authors elaborate on this idea and suggest a �rst-order
gradient method. In [1, 18], a sequential quadratic programming (SQP) technique
with �nite-di�erence gradients was used to improve µ robustness indicators, with
eigenvalues and some eigenvectors as decision variables. In [22], Patton and Liu
make full use of the freedom o�ered by eigenstructure assignment to improve the
frequency-domain sensitivities functions S and KS. They use a genetic algorithm
in tandem with gradient-based techniques. The same idea is applied to a variety
of problems in their monograph [14]. In the same vein, reference [13] exploits the
Nelder-Mead direct search method to optimize assignable eigenvalues and eigen-
vectors, while safeguarding stability of unassigned eigenvalues via constraints. In
[15], eigenstructure assignment with dynamic compensators and linear programming
(LP) or quadratic programming (QP) are used to achieve stability and performance
for an entire family of plants. Merits of these approaches have been demonstrated
in numerous applications. See [14] and references therein.

In this work, we suggest a novel approach to eigenstructure assignment based on
a nonsmooth optimization technique, which has the following features:

• Unassigned poles are constrained to be stable, which secures stability of the
closed-loop system.
• Additional performance or robustness requirements such as H2 or H∞ are
handled rigorously by accounting for their nonsmoothness.

Nonsmoothness arises due to the spectral abscissa, and via H∞-norm or Han-
kel norm based requirements, but also when max-function of di�erentiable functions
such as the H2-norm are built. The key observation is that disregarding nonsmooth-
ness is a serious source of numerical trouble. Avoiding this pitfall is a central moti-
vation of this work. Our investigation leads to a theoretically justi�ed nonsmooth
method with local convergence certi�cate, which has good performance in practical
applications. The focus of this paper is on control aspects. A thorough convergence
analysis of the proposed algorithm is given in [21, 19, 8, 6] for the interested readers.

The structure of the paper is as follows. Section 2 recalls the basics of eigenstruc-
ture assignment using static output feedback and its variation as pole clustering,
where poles are allowed to move in small polydisks around their nominal values.
Section 3 extends the pole clustering problem to a variety of performance or robust-
ness criteria and gives a pseudo-code of our algorithmic approach to those problems.
Overdetermined and underdetermined eigenproblems are discussed in Section 4. Sec-
tion 5 shows how subgradients are computed for typical design requirements. Our
nonsmooth solver, along with its convergence properties, is presented in Section 6.
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Sections 7 and 8 illustrate our approach. We design a launcher and an aircraft
control system, two cases where poles and eigenvector structure play an important
role.

2. Partial eigenstructure assignment

Consider a linear time-invariant system described by the equations

(1)
ẋ = Ax+Bu
y = Cx

with x ∈ Rn, u ∈ Rm and y ∈ Rp. Given a self-conjugate set Λ = {λ1, . . . , λp} ⊂ C−,
partial pole placement consists in computing a static output feedback control law
u = Ky for (1) such that λ1, . . . , λp become eigenvalues of the closed-loop system

ẋ = (A+BKC)x.

As is well-known [17], solving the set of linear equations

[
A− λiIn B

] [ vi
wi

]
= 0,

with vi ∈ Cn, wi ∈ Cm, i = 1, . . . , p leads to a (static) control law

(2) K = [w1, . . . , wp] (C [v1, . . . , vp])
−1 ∈ Rm×p

with the desired closed-loop modes, provided the vi are chosen in such a way that
the p× p matrix C [v1, . . . , vp] is invertible, i.e., if span{v1, . . . , vp} ∩ ker(C) = {0}.
Note that the outlined technique is readily specialized to state-feedback C = I and
extended to nonzero feedthrough D 6= 0 and to dynamic compensators through a
preliminary augmentation of the plant [28].

In the case m > 1, it is possible to achieve more. One may then additionally
shape the vi, or wi, e.g. by arranging vij = 0 or wik = 0 for certain j, k. Formally
this can be expressed by linear equations

(3)

[
A− λiIn B
Mi Ni

] [
vi
wi

]
=

[
0
ri

]
,

with suitable Mi ∈ Cmi×n, Ni ∈ Cmi×m, ri ∈ Cmi , mi > 0, i = 1, . . . , p, leaving
at least one degree of freedom in each triplet (λi, vi, wi) ∈ C1+n+m. This is usually
referred to as partial eigenstructure assignment. Typical choices of Mi, Ni, ri can be
found in our experimental Sections 7 and 8.

The traditional approach to eigenstructure assignment consists in �rst choosing
the set Λ ⊂ C−, then introducing the desired structural constraints on the eigenvec-
tors vi, wi via the matrices Mi, Ni and the vector ri, using the remaining degrees of
freedom, and then computing vi, wi accordingly. Unfortunately, �xing the λi may be
too restrictive, because partial eigenvalue placement does not guarantee stability in
closed-loop, so that some post-processing based on trial-and-error is often required.
Greater �exibility in the design is achieved by moving (λi, vi, wi) simultaneously.

What we have in mind is to interpret the eigenstructure equations (3) as math-
ematical programming constraints and then optimize closed-loop stability subject
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to these constraints. With the de�nition α(A) := max{Reλ : λ eigenvalue of A} of
the spectral abscissa, this leads us to an optimization program of the form

(4)

minimize α(A+BKC)

subject to

[
A− λiIn B
Mi Ni

] [
vi
wi

]
=

[
0
ri

]
for i = 1, . . . , p

|Reλi − Reλ0
i | 6 δi, | Imλi − Imλ0

i | 6 δi, i = 1, . . . , p
K = W (CV )−1 as in (2).

Here the λ0
i ∈ C− are nominal closed-loop poles, and the δi are tolerances which allow

the poles to move around their nominal values. As soon as K with α(A+BKC) < 0
is reached, the optimization of (4) can be stopped with an internally stabilizing
solution of the partial eigenstructure assignment procedure.

3. Including performance criteria

While (4) is a natural approach to optimize closed-loop stability in partial eigen-
structure assignment, it seems even more attractive to include also closed-loop per-
formance or robustness criteria into the set-up. Given a linear time-invariant plant
P in standard form

(5) P :




ẋ = Ax + B1w + Bu
z = C1x + D11w + D12u
y = Cx + D21w

where x ∈ Rn is the state vector, u ∈ Rm the vector of control inputs, w ∈ Rm1

the vector of exogenous inputs, y ∈ Rp the vector of measurements and z ∈ Rp1 the
controlled or performance vector, let u = Ky be a static output feedback control
law for (5). Then the closed-loop performance channel w → z has the state-space
representation

Tw→z(K) :

{
ẋ = (A+BKC)x + (B1 +BKD21)w
z = (C1 +D12KC)x + (D11 +D12KD21)w.

Note the slight abuse of notation in (5) because the state-space data of P may
include �lters, weightings or other dynamic elements that are not present in (1). We
assume the distinction will be clear from the context.

Given a self-conjugate eigenvalue set Λ0 = {λ0
1, . . . , λ

0
p} ⊂ C− and tolerances δi,

we now consider the following extension of (4):

(6)

minimize ‖Tw→z (K) ‖

subject to

[
A− λiIn B
Mi Ni

] [
vi
wi

]
=

[
0
ri

]
for i = 1, . . . , p

|Reλi − Reλ0
i | 6 δi, | Imλi − Imλ0

i | 6 δi, i = 1, . . . , p
K = K(λ, v, w) as in (2)

where λ0
i are nominal closed-loop pole positions, and (3) again conveys additional

structural constraints on v, w. As compared to (4), the cost function ‖Tw→z(K)‖ in
(6) may now be used to enhance stability and to achieve additional performance or
robustness speci�cations of the design.
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Standard choices of ‖ · ‖ include the H∞-norm ‖ · ‖∞, the H2-norm ‖ · ‖2, or the
Hankel norm ‖·‖H . One generally expects that ‖Tw→z(K)‖ <∞ implies closed-loop
stability, but should this fail, it is possible to add a stability constraint c(λ, v, w) =
α(A+BKC)+ε 6 0 to the cast (6), where ε > 0 is some small threshold. Altogether
we propose the following

Algorithm 1. Optimized partial eigenstructure assignment

Input: Nominal modal set Λ0 = {λ0
1, . . . , λ

0
p} with distinct λ0

i .
Output: Optimal modal set Λ = {λ1, . . . , λp}, vi, wi, K∗.
. Step 1 (Nominal assignment). Perform standard eigenstructure assignment
based on Λ0 and structural constraints Mi, Ni, ri. Obtain nominal eigenvectors
v0
i , w

0
i , i = 1, . . . , p. Assure that C[v0

1, . . . , v
0
p] is invertible and obtain nominal

K0 = W 0(CV 0)−1.

� Step 2 (Stability and performance). IfK0 assures closed-loop stability and
good performance ‖Tw→z(K0)‖, stop the algorithm. Otherwise, goto step 3.

. Step 3 (Tolerances). Allow tolerances |Reλi−Reλ0
i | 6 δi, | Imλi− Imλ0

i | 6
δi, i = 1, . . . , p.

. Step 4 (Parametric clustering). Solve the optimization program (6) using
a nonsmooth descent algorithm with (λ0, v0, w0) as initial seed.

. Step 5 (Synthesis). Return optimal Λ = {λ1, . . . , λp}, v, w, and K∗.

4. Structure of eigenproblems

In this section we discuss practical ways to deal with the general nonlinear con-
straint (3) in (6). We assume that (A,B) is controllable, which is equivalent to
[A− λIn B] having full row rank n for all λ in C (see, e.g., [31, Theorem 3.1]). To
deal with (3), we observe that the mi's can be distinct and the possibility mi = 0 is
not excluded. We now distinguish two cases.

The �rst case is when mi > m. Here pole assignment is ensured by pre-solving
for vi in (3). We get

vi = (λiI − A)−1Bwi .

In this case eigenvector decoupling is only possible in the least-square sense by
minimizing the Euclidean norm of Mivi + Niwi − ri. Upon de�ning the transfer
function Fi(λ) := Mi(λI − A)−1B +Ni, and assuming for simplicity that Fi(λ) has
full-column rank for λ in the neighborhood of the nominal λ0, we have

wi = Fi(λi)
†ri ,

where Fi(λi)
† denotes the Moore-Penrose inverse or left-inverse of Fi at λi. Alto-

gether we have derived the expression

(7)

[
vi
wi

]
=

[
(λiI − A)−1B

I

]
Fi(λi)

†ri .

Vectors vi and wi are now de�ned explicitly as functions of λi. It follows that a
parametrization of the control law (2) in the sense of structured synthesis introduced
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in [2] has been obtained. Tunable variables in this parametrization are the desired
assignable eigenvalues Λ = {λ1, . . . , λp}.

The rationale in this �rst case is as follows. We want to gain some �exibility in
the assignment by allowing λi to move in a neighborhood of the nominal λ0

i . Now if
the (v0

i , w
0
i ) are computed from (7) for the nominal value λ0

i , the (vi, wi), depending
continuously on λi via (7), will move in a neighborhood of the nominal (v0

i , w
0
i ), so

that optimization may decrease the cost function and thereby enhance stability and
performance. The outlined approach therefore generalizes eigenstructure assignment
with approximate decoupling as discussed in [28].

If Fi(λ) is not guaranteed to have full-column rank in the neighborhood λ0, the
cast in (6) could be modi�ed as follows:

(8)

minimize max

{
‖Tw→z (K) ‖, µ max

i=1,...,p
‖Fi(λi)wi − ri‖2

}

subject to |Reλi − Reλ0
i | 6 δi, | Imλi − Imλ0

i | 6 δi, i = 1, . . . , p.

K = [w1, . . . , wp] (C [v1, . . . , vp])
−1

K closed-loop stabilizing

where µ is a penalty parameter used to weigh the relative importance of robustness
and performance as expressed through ‖Tw→z (K) ‖ against eigenvector shaping.
Here the objective becomes a max-function which is truly nonsmooth and thus
requires special handling.

The second case is when mi < m. Here we partition

B = [Bi Qi], Ni = [Pi Ri], wi =

[
ui
ti

]
,

such that Bi, Pi have mi columns and ui ∈ Cmi . Then (3) becomes
[
A− λiIn Bi

Mi Pi

] [
vi
ui

]
=

[
0
ri

]
−
[
Qi

Ri

]
ti.

Assuming that the matrix

Ai(λi) =

[
A− λiIn Bi

Mi Pi

]
∈ C(n+mi)×(n+mi)

is invertible in a neighborhood of the nominal λ0
i , we get the parametrization

vi = vi(λi, ti), ui = ui(λi, ti),

which in explicit form is

(9)

[
vi
ui

]
= Ai(λi)

−1

[
−Qiti
ri −Riti

]
.

The idea is now the same as in the �rst case. Allow λi to move around their
nominal values λ0

i , and ti ∈ Cm−mi around the nominal t0i . That also allows the
dependent variables vi, ui to move in a neighborhood of their nominal values v0

i , u
0
i ,

and optimization uses this to enhance stability and robustness. In this second case
we have enough degrees of freedom to achieve true decoupling of some of the channels
by satisfying Mivi +Niwi = ri exactly.
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In order to apply nonlinear and nonsmooth optimization techniques to programs
of the form (6) it is necessary to provide derivative information at acceptable cost.
As we shall see, this may be implemented by simple linear algebra techniques. We
have the following propositions with proofs given in the Appendix.

Proposition 4.1 (Over-speci�ed eigenstructure). Let K = W (CV )−1 with W =
[w1 . . . wp] and V = [v1 . . . vp]. If mi > m then

(10)
∂K

∂λi
=

[
0 · · · ∂wi

∂λi
−KC ∂vi

∂λi
· · · 0

]
(CV )−1,

where vi, wi are given in (7) and

(11)




∂vi
∂λi
∂wi
∂λi


 =

[
(λiI − A)−1BFi(λi)

†Mi − I
Fi(λi)

†Mi

]
(λiI − A)−2BFi(λi)

†ri .

Proof. See Appendix. �
Proposition 4.2 (Under-speci�ed eigenstructure). Let K = W (CV )−1 with W =

[w1 . . . wp] and V = [v1 . . . vp]. Suppose mi < m, partitioning wi =

[
ui
ti

]
with ui ∈

Cmi and ti = [t1i, . . . , t(m−mi)i]
> ∈ Cm−mi, then

∂K

∂λi
=

[
0 · · ·

∣∣∣∣
∂ui
∂λi

0

∣∣∣∣−KC
∂vi
∂λi
· · · 0

]
(CV )−1,

∂K

∂tki
=

[
0 · · ·

∣∣∣∣
∂ui
∂tki

eki

∣∣∣∣−KC
∂vi
∂tki
· · · 0

]
(CV )−1,

(12)

where eki ∈ Rm−mi is the vector all of whose components are zero, except the kth
component which is one, and

(13)



∂vi
∂λi

∂vi
∂tki

∂ui
∂λi

∂ui
∂tki


 =

[
In 0n×mi
0mi×n Imi

]
Ai(λi)

−1

[
vi
0
−sik

]
,

with sik the kth column of

[
Qi

Ri

]
.

Proof. See Appendix. �
Remark 1. As derivatives have to be evaluated repeatedly in minimization programs,
it is desirable to pre-calculate as many elements as possible in (10) and (12). This is
what we discuss next. Substantial speed-up can be achieved in the under-speci�ed
case mi < m since Ai(λi) is a reduced rank modi�cation of a constant matrix, that
is, not depending on λi. We therefore pre-compute

[
A Bi

Mi Pi

]−1

=

[
Pi

11 Pi
12

Pi
21 Pi

22

]
,
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where Pi
11 and Pi

22 are of size n× n and mi×mi, respectively. Using the Sherman-
Woodbury-Morrison formula [11] for

Ai(λi) =

[
A Bi

Mi Pi

]
+

[
−I
0

]
(λiI)

[
I 0

]

gives

Ai(λi)
−1 =

[
(In − λiPi

11)−1Pi
11 (In − λiPi

11)−1Pi
12

Pi
21(In − λiPi

11)−1 Pi
22 + Pi

21λi(In − λiPi
11)−1Pi

12

]
.

As a consequence, there is only need to compute the inverse of the smaller matrix
(In − λiPi

11) to get the entries in (13).

Remark 2. Our algorithm can be extended to include nonlinear constraints on vi.
We just add those to program (6). Note also that the algorithm will return the
standard nominal modal set λ0 = {λ0

1, . . . , λ
0
p} if we choose δi = 0, i = 1, . . . , p, so

we present a genuine extension of the traditional assignment procedure. �

5. System norms and their subdi�erential in closed-loop

To solve program (6) algorithmically, we have to compute function values and
subgradients of the cost function f(x) := ‖Tw→z (K(x)) ‖2, where ‖ · ‖ is the H∞-
norm ‖·‖∞, the H2-norm ‖·‖2 or the Hankel norm ‖·‖H , and where x represents the
decision variables. Here x regroups λi if mi > m, and (λi, ti) if mi < m, i = 1, . . . , p.
The gradients given in (10), respectively (12), are generally complex gradients. Al-
gorithmic implementation requires passing from complex to real gradients. This is
done using Wirtinger formulas [12, Section 2.3]. For a complex variable z, we have
that

∂K/∂ Re z = ∂K/∂z + ∂K/∂z̄ = 2 Re(∂K/∂z),
∂K/∂ Im z = (∂K/∂z − ∂K/∂z̄) = −2 Im(∂K/∂z).

For simplicity of the notation, it is assumed from now on that x is a real q-
dimensional vector regrouping real and imaginary parts of all free parameters (λi, ti).
Partial derivatives with respect to x will be denoted Ki(x) := ∂K(x)/∂xi in the se-
quel of the paper. In consequence it now remains to compute Clarke subgradients
of ‖Tw→z(K)‖2 with respect to K. By the generalized chain rule [5], this requires
subgradients of the norm in question, and the derivative of the transfer function
Tw→z(K) with respect to K.

Concerning the closed-loop, and to prepare the following, by setting

Acl = A+BKC, Bcl = B1 +BKD21,
Ccl = C1 +D12KC, Dcl = D11 +D12KD21,

the controllability Gramian X and the observability Gramian Y can be obtained
from the Lyapunov equations [31]

AclX +XA>cl +BclB
>
cl = 0,(14)

A>clY + Y Acl + C>clCcl = 0.(15)
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5.1. The H∞-norm. Consider a stable LTI system

G :

{
ẋ = Ax+Bw
z = Cx+Dw

with state x ∈ Rn, input w ∈ Rm, and output z ∈ Rp. It is well-known that the
H∞-norm of G is de�ned as

‖G‖∞ = sup
ω∈R

σmax(G(jω)) = sup
ω∈R

√
λmax(G(jω)HG(jω)),

where σmax denotes the maximum singular value of a matrix, and λmax denotes the
maximum eigenvalue of a matrix. We now replace G by Tw→z(K) and rewrite

f(K) = ‖Tw→z(K)‖2
∞ = sup

ω∈R
f(K,ω),

with f(K,ω) := λmax

(
Tw→z(K, ω)HTw→z(K, ω)

)
. Using the notation

[
Tw→z(K, s) G12(K, s)
G21(K, s) ∗

]
=

[
Ccl
C

]
(sI − Acl)−1

[
Bcl B

]
+

[
Dcl D12

D21 ∗

]
,

and following [4, Lemma 1], closed-loop stability implies that either f(K) = f(K,ω)
for all ω or f(K) = f(K,ω) for a �nite number of active frequencies ω1, . . . , ωq. From
[2, Section IV] we now obtain the Clarke subgradients of f at K as

ΦU = 2

q∑

k=1

Re
(
G21(K, ωk)Tw→z(K, ωk)

HRkUkR
H
k G12(K,ωk)

)>
,

where Rk is a matrix whose columns form an orthonormal basis of the eigenspace
of dimension rk ∈ N associated with λmax

(
Tw→z(K, ωk)

HTw→z(K, ωk)
)
, and where

Uk ∈ Srk , Uk � 0,
∑q

k=1 Tr(Uk) = 1. The symbol Sm stands for the space of
m ×m symmetric or Hermitian matrices, and Tr(M) denotes the trace of M . By
the application of the chain rule in [5], we deduce that the Clarke subdi�erential of
f at x is the set

∂f(x) =
{(

Tr(K1(x)>ΦU), . . . ,Tr(Kq(x)>ΦU)
)>

: ΦU ∈ ∂f(K)
}
.

5.2. The H2-norm. The H2-norm of a system G of the form

(16) G :

{
ẋ = Ax+Bw
z = Cx

is de�ned as

‖G‖2 =

(
1

2π

∫ +∞

−∞
Tr(G(jω)HG(jω))dω

)1/2

.

Suppose Dcl does not explicitly depend on K, which is e.g. the case for D12 = 0 or
D21 = 0. Then it is reasonable to assess the closed-loop system via the H2-norm of
(Acl, Bcl, Ccl, 0). We have

f(K) = ‖Tw→z(K)‖2
2 = Tr(B>clY Bcl) = Tr(CclXC

>
cl ).

Using (14) and (15), it follows from [25, Theorem 3.2] that f is di�erentiable at each
closed-loop stabilizing K, and

∇f(K) = 2
(
B>Y +D>12Ccl

)
XC> + 2B>Y BclD

>
21.
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Therefore,

∇f(x) =
(
Tr(K1(x)>∇f(K)), . . . ,Tr(Kq(x)>∇f(K))

)>

for all x for which K(x) is closed-loop stabilizing.

5.3. The Hankel norm. For a stable system G of the form (16), we think of w(t)
as an excitation at the input which acts over the time period 0 6 t 6 T . Then the
ring of the system G after the excitation has stopped at time T is z(t) for t > T . If
signals are measured in the energy norm, this leads to the Hankel norm of G de�ned
as

‖G‖H = sup
T>0

{(∫ ∞

T

z>zdt

)1/2

: z = Gw,

∫ T

0

w>wdt 6 1, w(t) = 0 for t > T

}
.

The Hankel norm [9, 6] can be understood as measuring the tendency of a system
to store energy, which is later retrieved to produce undesired noise e�ects known as
system ring. Minimizing the Hankel norm ‖Tw→z(K)‖H therefore reduces ringing in
the closed-loop channel w → z.

If we assume as above that Dcl does not explicitly depend on K, it is reasonable
to assess the channel w → z via the objective

f(K) = ‖Tw→z(K)‖2
H = λmax(XY ),

where X and Y are the closed-loop Gramians (14) and (15); see also [6, Lemma 1].
Due to positive semide�niteness of BclB

>
cl and C

>
clCcl, closed-loop stability assures

positive semide�niteness of X and Y in (14) and (15). Therefore, although the
product XY need not be symmetric, we have

λmax(XY ) = λmax(X
1
2Y X

1
2 ) = λmax(Y

1
2XY

1
2 ),

which brings us back to the realm of eigenvalue theory for symmetric matrices. Let
Z := X

1
2Y X

1
2 and take R to be a matrix whose columns form an orthonormal

basis of the eigenspace of Z of dimension r ∈ N associated with λmax(Z). We

write Mi(x) := ∂M(x)/∂xi as before, and M
1
2
i short for (M

1
2 )i, i = 1, . . . , q. Then

according to [6, Proposition 1], the Clarke subdi�erential of f at x is

∂f(x) = {(Tr(RUR>Z1(x)), . . . ,Tr(RUR>Zq(x)))> : U ∈ Sr, U � 0,Tr(U) = 1},
with

(17) Zi(x) = X
1
2
i (x)Y X

1
2 +X

1
2Yi(x)X

1
2 +X

1
2Y X

1
2
i (x).

Here Xi(x), Yi(x) and X
1
2
i (x) are the solutions of the following Lyapunov equations

AclXi(x) +Xi(x)A>cl = −BKi(x)CX −X(BKi(x)C)>(18)

−BKi(x)D21B
>
cl −Bcl(BKi(x)D21)>,

A>clYi(x) + Yi(x)Acl = −(BKi(x)C)>Y − Y BKi(x)C(19)

− (D12Ki(x)C)>Ccl − C>clD12Ki(x)C,

X
1
2X

1
2
i (x) +X

1
2
i (x)X

1
2 = Xi(x).(20)
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6. Nonsmooth solver

Step 4 of our main Algorithm 1 requires a subroutine to solve (6). Here we use
a nonsmooth descent algorithm, presented as Algorithm 2, which we now discuss
brie�y. To extend the scope, we consider a constrained optimization programs of
the more abstract form

(21)
minimize f(x)
subject to h(x) 6 0

Ax 6 b

where x ∈ Rq is the decision variable, and f and h are potentially nonsmooth and
nonconvex. This covers program (6), where f(x) = ‖Tw→z (K(x)) ‖2 for one of
the norms discussed in Section 5, while the constraint h(x) 6 0 represents (3) after
eliminating v, w via (7), respectively, (9). The polydisk constraints |Reλi−Reλ0

i | 6
δi, | Imλi− Imλ0

i | 6 δi in (6) can easily be converted to the form Ax 6 b. According
to the cases discussed in Section 4, the decision variable x regroups either the λi, or
the (λi, ti) as in (9). The cast (8) is also covered by (21).

To solve (21) we use a progress function at the current iterate x,

F (·,x) = max{f(·)− f(x)− νh(x)+, h(·)− h(x)+},

for some �xed parameter ν > 0, which is successively minimized subject to the linear
constraints. Antecedents of this idea can for instance be found in Polak [23, Section
2.2.2] in the smooth case, or Polak and Wardi [24] in a nonsmooth setting, and in
our own contributions [3, 8, 6], where more details and convergence proofs can be
found.

Convergence theory of Algorithm 2 is discussed in [8, 6]. The following result is
slightly more general than the main convergence theorem in [8] or [6], but can be
obtained based essentially on the same convergence analysis:

Theorem 6.1. Suppose f and h in program (21) are lower-C1 functions in the sense
of [29] such that the following conditions hold:

(i) f is weakly coercive on the constraint set Ω = {x ∈ Rq : h(x) 6 0, Ax 6 b},
i.e., if xj ∈ Ω and ‖xj‖ → ∞, then f(xj) is not monotonically decreasing.

(ii) h is weakly coercive on P = {x ∈ Rq : Ax 6 b}, i.e., if xj ∈ P and
‖xj‖ → ∞, then h(xj) is not monotonically decreasing.

Then the sequence of serious iterates xj ∈ P generated by Algorithm 2 is bounded,
and every accumulation point x∗ of the xj satis�es x∗ ∈ P and 0 ∈ ∂1F (x∗,x∗) +
A>η∗ for some multiplier η∗ > 0 with η∗>(Ax∗− b) = 0. In other words, x∗ is either
a critical point of constraint violation, or a Karush-Kuhn-Tucker point of program
(21). �

Note that the functions f, h used in (6) are indeed lower-C1 functions, see [8, 6],
so our convergence theory applies. Convergence for even larger classes of nonsmooth
functions is discussed in [21, 19]. For additional insight into this type of nonconvex
bundle method see [3, 21, 19, 20].
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Algorithm 2. Nonsmooth optimization subroutine

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < q <∞, q < T <∞.

. Step 1 (Initialize outer loop). Choose initial iterate x1 with Ax1 6 b and
matrix Q1 = Q>1 with −qI � Q1 � qI. Initialize memory control parameter

τ ]1 > 0 such that Q1 + τ ]1I � 0. Put outer loop counter j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop if xj is a KKT-point
or a critical point of constraint violation. Otherwise, goto inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize

τ1 = τ ]j . Build initial working model

Φ1(·,xj) = g>0j(· − xj) + 1
2
(· − xj)>Qj(· − xj),

where g0j ∈ ∂1F (xj,xj).

. Step 4 (Trial step generation). At inner loop counter k �nd solution yk

of the tangent program

minimize Φk(y,x
j) + τk

2
‖y − xj‖2

subject to Ay 6 b,y ∈ Rn.

� Step 5 (Acceptance test). If

ρk =
F (yk,xj)

Φk(yk,xj)
> γ,

put xj+1 = yk (serious step), quit inner loop and goto step 8. Otherwise (null
step), continue inner loop with step 6.

. Step 6 (Update working model). Generate a cutting plane mk(·,xj) = ak +
g>k (· − xj) at null step yk and counter k using downshifted tangents. Compute
aggregate plane m∗k(·,xj) = a∗k + g∗>k (· −xj) at yk, and then build new working
model Φk+1(·,xj) by including cutting plane and aggregate plane.

� Step 7 (Update proximity control parameter). Compute secondary con-
trol parameter

ρ̃k =
Φk+1(yk,xj)

Φk(yk,xj)
and put

τk+1 =

{
τk if ρ̃k < γ̃,

2τk if ρ̃k > γ̃.

Increase inner loop counter k and loop back to step 4.

� Step 8 (Update Qj and memory element). Update matrix Qj → Qj+1 re-
specting Qj+1 = Q>j+1 and −qI � Qj+1 � qI. Then store new memory element

τ ]j+1 =

{
τk if ρk < Γ,
1
2
τk if ρk > Γ.

Increase τ ]j+1 if necessary to ensure Qj+1 + τ ]j+1I � 0. If τ ]j+1 > T then re-set

τ ]j+1 = T . Increase outer loop counter j and loop back to step 2.
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7. Control of a launcher in atmospheric �ight

We consider attitude control of a satellite launcher in atmospheric �ight. The
linear model

ẋ = Ax+Bu

y = Cx

is speci�ed as

A =




Zw Zq + U0 Zθ Zv 0 Zψ Zp Zφ
Mw Mq 0 0 Mr 0 Mp 0
0 Tq 0 0 Tr 0 0 0
Yw 0 Yθ Yv Yr Yψ Yp Yφ
0 Nq 0 Nv Nr 0 Np 0
0 Pq 0 0 Pr 0 0 0
0 Lq 0 0 Lr 0 Lp 0
0 Fq 0 0 Fr 0 1 0




,

B =



Zβz Mβz 0 0 0 0 0 0
0 0 0 Yβy Nβy 0 0 0
0 0 0 0 0 0 Lβr 0



>

.

The states and controls are de�ned in Tables 1 and 2, while the vector of measure-
ments is y = [q θ r ψ p φ]> ∈ R6. The model has been obtained from

Table 1. States de�nitions

name meaning
w vertical velocity (m/s)
q pitch rate (deg/s)
θ pitch angle (deg)
v lateral velocity (m/s)
r yaw rate (deg/s)
ψ yaw angle (deg)
p roll rate (deg/s)
φ roll angle (deg)

Table 2. Controls de�nitions

name meaning
βz de�ection of pitch nozzle actuator (deg)
βy de�ection of yaw nozzle actuator (deg)
βr de�ection of roll nozzle actuator (deg)

linearization of the nonlinear equations [16] about a steady state �ight point

U0 = 88.11 m/s, v0 = 0.678 m/s, w0 = −1.965 m/s,
p0 = −0.0006 rad/s, q0 = 0.0026 rad/s, r0 = 0.0046 rad/s,
θ0 = 8.38◦, ψ0 = 3.48◦, φ0 = 11.99◦,

the procedure being explained in [10]. Numerical data in A, B are gathered in Table
3.
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Table 3. Numerical coe�cients at steady state �ight point

Zw -0.0162 Mw 0.0022 Yw -6e-4 Nq 5e-4
Zq 87.9 - 88.11 Mq 0.0148 Yθ -2.11 Nv -Mw

Zθ -9.48 Mr -0.0005 Yv Zw Nr 0.0151
Zv 0.0006 Mp 0.0042 Yr -87.9 Np -0.0024
Zψ -2.013 Tq 0.98 Yψ 9.47 Pq 0.2078
Zp -0.687 Tr -0.2084 Yp -1.965 Pr 0.9782
Zφ 0.399 Lq 0 Yφ 1.3272 Fq 0.0704
Lr 0 Lp -0.0289 Lβr 25.89 Fr -0.015
Zβz 10.87 Mβz 4.08 Yβy -10.87 Nβy 4.08

7.1. Control law speci�cations. The control law speci�cations include

• Decoupling of the 3 axes (θ, q), (ψ, r), and (φ, p).
• Well-damped responses to set-points in θ, ψ, and φ, the selector outputs.
• Settling times around 2.5 seconds.

We use a set-point tracking control architecture with MIMO PI feedback as shown
in Figure 1. Tunable matrix gains are therefore KP and KI .

+

−

∫
KI G

launcher

KP

H

selector

yH

yce d +

−

wref

.

Figure 1. Launcher control architecture with MIMO PI-controller

Tracking performance is incorporated into program (6) by minimizing the track-
ing error transfer function Twref→e(K).

Pole placement with integral action is easily formulated using the augmented
state-space matrices

Aa =

[
A 0
−HC 0

]
, Ba =

[
B
0

]
, Ca =

[
C 0
0 I3

]
.

The control law is structured conformably upon de�ning

W = [w1 . . . w9] , V = [v1 . . . v9] , [Aa − λiI11|Ba]

[
vi
wi

]
= 0.
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Ka = W (CaV )−1, Ka = [−KP KI ] .

7.2. Study 1. In a �rst study we compare traditional and optimized partial pole
placement without shaping of eigenvectors. We start by choosing reference values
ξ, ω to achieve appropriate second-order system responses. We have chosen the

desired damping ξ =
√

2
2
, and natural frequencies

ω1 = 2.1, ω2 = 2.2, ω3 = 1.8,

which leads to the nominal modal set Λ = {λ0
1, . . . , λ

0
9}, with

λ0
1 = −ω1

(
ξ + 

√
1− ξ2

)
, λ0

2 = −ω1

(
ξ − 

√
1− ξ2

)
,

λ0
3 = −ω2

(
ξ + 

√
1− ξ2

)
, λ0

4 = −ω2

(
ξ − 

√
1− ξ2

)
,

λ0
5 = −ω3

(
ξ + 

√
1− ξ2

)
, λ0

6 = −ω3

(
ξ − 

√
1− ξ2

)
,

λ0
7 = −3.5, λ0

8 = −4, λ0
9 = −4.5.

Classical pole placement now leads to the initial controller K0 in Algorithm 1. To
�nd the optimal controller K∗, we follow Algorithm 1 and minimize the tracking
error wref → e subject to the pole placement constraint in (6) via Algorithm 2,
which returns the optimal controller K∗.

Table 4. Launcher study 1. Cost for initial K0 and optimal K∗

controllers

Hankel H∞ H2

K0 66.7208 2.3714 45.3537
K∗ 0.7135 1.4058 3.0845

We have run program (6) with three di�erent norms, the Hankel norm, the H∞-,
and the H2-norm. The improvements in the cost function can be seen in Table
4. The wandering of the poles during optimization shown in Figure 3 corresponds
to the case of the Hankel norm. Figure 2 shows that decoupling is substantially
improved in all three cases. Note the sluggish responses for the initial controller are
due to unassigned modes of classical eigenstructure assignment. This is in contrast
with the proposed approach in which modes that are left unspeci�ed are indirectly
assigned to achieve additional performance requirements.

7.3. Study 2. In our second study we compare standard and optimized eigen-
structure assignment. We achieve preliminary decoupling of the modes by choosing
structural constraints on eigenvectors vi. These constraints comply with decoupling
requirements of the launcher motion. The eigenvectors v1 and its complex conjugate
v2 are chosen to have zero entries in the rows corresponding to ψ and φ. The eigen-
vector v3 and its conjugate v4 have entries 0 relative to θ and φ. The eigenvectors
v5 and its conjugate v6 have zero entries in the rows associated with θ and ψ. For
the real modes, the eigenvectors are chosen as

v7 = [∗ ∗ 1 ∗ ∗ 0 ∗ 0 ∗ ∗ ∗]>,
v8 = [∗ ∗ 0 ∗ ∗ 1 ∗ 0 ∗ ∗ ∗]>,
v9 = [∗ ∗ 0 ∗ ∗ 0 ∗ 1 ∗ ∗ ∗]>.
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Figure 2. Control of a launcher, study 1. Initial and �nal controllers
obtained respectively by standard and optimized eigenstructure as-
signment in the case where eigenvectors are not structured (mi = 0).
Decoupling is improved for each norm

These structural constraints de�ne the matrices Mi, Ni of (3) in each case. We have
again tested the Hankel, H∞ and H2-norms in the objective f of (6).

The optimal controller K∗ computed by Algorithm 1 for the Hankel norm
gives the value ‖T (Pperf , K

∗)‖H = 0.7360, while the initial controller K0 leads to
‖T (Pperf , K

0)‖H = 0.7787. Similar improvements are obtained for the other norms.
The step responses are shown in Figure 4.
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Figure 3. Control of launcher, study 1. Itineraries of closed-loop
poles in optimized eigenstructure assignment based on the Hankel
program (6)

In conclusion, the launcher application shows that decoupling can be signi�cantly
enhanced through optimization even without shaping of the vi (study 1) if the per-
formance channel Twref→e is used within optimization program (6). The second study
shows that even when 0's are assigned to speci�c vik's, the use of optimization is
still useful, as it signi�cantly enhances decoupling as demonstrated by simulation.

8. Application to autopilot design for a civil aircraft

In this section, we consider the longitudinal dynamics for the robust civil aircraft
model (RCAM) at a nominal condition with the aircraft in its standard con�gura-
tion: aircraft air speed of 80 m/s, aircraft altitude of 305 m (1000 ft), aircraft mass
of 120 tons, aircraft centre of gravity at 23% horizontal MAC and 0% vertical MAC,
�ight path angle of 0◦ (level) and still air (no wind e�ects). The linear longitudinal
model is given by

ẋ = Ax+Bu

y = Cx

where states are described in Table 5, the input vector is u = [δt δth]
> with δt the

tailplane de�ection and δth the throttle position. The vector of measurements is
y = [q nz wV z Vc]

>, where nz is vertical acceleration, wV vertical velocity, and Vc
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Figure 4. Control of launcher, study 2. Initial and �nal controller
obtained respectively by standard and optimized eigenstructure as-
signment based on Hankel program with mi = m or mi = m − 1

the air speed. Data borrowed from [7] are given as

A =




−0.9825 0 −0.0007 −0.0161 0 −2.4379 0.5825
1 0 0 0 0 0

−2.1927 −9.7758 −0.0325 0.0743 0 0.1836 19.6200
77.3571 −0.7674 −0.2265 −0.6683 0 −6.4785 0

0 −79.8667 −0.0283 0.9996 0 0 0
0 0 0 0 0 −6.6667 0
0 0 0 0 0 0 −6.6667



,
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Table 5. States of the longitudinal model

name meaning
q pitch rate
θ pitch angle
uB forward speed
wB upwards velocity
z altitude
xt the state corresponding to the �rst order tailplane model
xth the state corresponding to the �rst order engine model

B =

[
0 0 0 0 0 6.6667 0
0 0 0 0 0 0 6.6667

]>
,

C =




1 0 0 0 0 0 0
−0.2661 0 −0.0231 −0.0681 0 −0.6604 0

0 −79.8667 −0.0283 0.9996 0 0 0
0 0 0 0 1 0 0
0 0 0.9996 0.0290 0 0 0



.

The controller structure of the longitudinal autopilot with tunable gains KI , KP

is similar to the launcher structure given in Figure 1. The output is now y =
[q nz wV z]T , and the selector produces yH = [z Vc]

T . We next design a closed-loop
controller such that altitude is decoupled from air speed command and conversely.
This leads to decoupling altitude and altitude-tracking modes from forward speed
uB, and decoupling of the air speed track mode from the upwards velocity wB. Other
modes are also decoupled from some states to reduce the mutual in�uence of the
aircraft variables. Accordingly, we take the nominal modes as follows:

λ0
1,2 = −0.8± 0.8,
λ0

3,4 = −0.15± 0.15,

λ0
5 = −0.3, λ0

6 = −0.4, λ0
7 = −0.5.

The corresponding desired eigenvectors are shaped as

v1,2 = [∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗]>,
v3,4 = [∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗]>,
v5 = [∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗]>,
v6 = [∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗]>,
v7 = [∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗]>,

which de�nes the dataMi, Ni and ri in (3). The optimal controller K∗ computed by
Algorithm 1 gives ‖T (Pperf , K

∗)‖H = 0.6270, while the initial controller K0 obtained
by standard assignment had ‖T (Pperf , K

0)‖H = 1.5041. The closed-loop eigenvalues
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returned by the algorithm are

λ1,2 = −0.8± 0.8,
λ3,4 = −0.35± 0.05,

λ5 = −0.3, λ6 = −0.05, λ7 = −0.37,

which shows that some of the poles took indeed the opportunity to wander away from
their nominal values once they were allowed to do so. Step responses are compared
in Figure 5. The interpretation of the results is that optimization is useful to further
enhance decoupling even when eigenvectors are already shaped.
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Figure 5. Aircraft attitude control. Responses to a step command in
altitude and in air speed. Optimal controller computed by optimized
eigenstructure assignment (mi = 1, m = 2) reduces coupling

9. Conclusion

We have presented a new approach to partial eigenstructure assignment in output
feedback control in which the eigenelements (λ, v, w) are allowed to move simulta-
neously in a neighborhood of their nominal values (λ0, v0, w0) obtained by standard
partial assignment. The �exibility gained in allowing this is apparent on two fronts.
First, stability of unassigned modes is guaranteed, leading to an internally stable
closed-loop system. Secondly, criteria such as H∞, H2 and Hankel norms can be
incorporated into our formulation to improve performance and/or robustness of the
controlled system. The e�ciency of the new approach was demonstrated on two
aerospace applications, control of a launcher in atmospheric �ight, and attitude
control of a civil aircraft.
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Appendix

Proof of Propositions 4.1 and 4.2. Let us start by discussing the case mi > m.
Derivatives of wi with respect to λi can be derived from the normal equations
Fi(λi)

HFi(λi)wi = Fi(λi)
Hri or directly from the expression of wi in (7). Assum-

ing Fi(λi) is full-column rank, we rewrite Fi(λi)
† = (Fi(λi)

HFi(λi))
−1Fi(λi)

H . The
partial derivative of wi with respect to λi is then readily derived by exploiting the
facts that for an invertible matrix M depending smoothly on a parameter t, the
derivative of its inverse is obtained as

∂M−1

∂t
= −M−1∂M

∂t
M−1 .

Also, ∂Fi(λi)
H/∂λi is identically zero since ∂λHi /∂λi = 0. This gives

∂wi
∂λi

= −(Fi(λi)
HFi(λi))

−1Fi(λi)
H ∂Fi(λi)

∂λi
(Fi(λi)

HFi(λi))
−1Fi(λi)

Hri

= Fi(λi)
†Mi(λiI − A)−2BFi(λi)

†ri .

The derivative of vi is obtained in much the same way using the upper part of (7).
Finally, collecting the results for wi and vi leads to expression (11).

This allows us now to express the terms ∂K/∂λi where K = W (CV )−1. Using
again the derivative of a matrix inverse, we have that

∂(CV )−1

∂λi
= −(CV )−1C

[
0 · · · 0 ∂vi

∂λi
0 · · · 0

]
(CV )−1.

Combining with
∂W

∂λi
=

[
0 · · · 0 ∂wi

∂λi
0 · · · 0

]

yields (10).

Next consider the under-speci�ed case mi < m. We have that (9) yields (13)
analogously to the over-speci�ed case. Finally, formulas for ∂K/∂λi and ∂K/∂tki in
(12) are obtained from the fact that K = W (CV )−1 with V = [v1 . . . vp] and

W =

[
w1 · · ·

∣∣∣∣
ui
ti

∣∣∣∣ · · ·wp
]
.
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V

Nonconvex bundle method with application to a

delamination problem ∗

M. N. Dao, J. Gwinner, D. Noll, and N. Ovcharova

Abstract. Delamination is a typical failure mode of composite materials caused
by weak bonding. It arises when a crack initiates and propagates under a destruc-
tive loading. Given the physical law characterizing the properties of the interlayer
adhesive between the bonded bodies, we consider the problem of computing the
propagation of the crack front and the stress �eld along the contact boundary.
This leads to a hemivariational inequality, which after discretization by �nite ele-
ments we solve by a nonconvex bundle method, where upper-C1 criteria have to
be minimized. As this is in contrast with other classes of mechanical problems
with non-monotone friction laws and in other applied �elds, where criteria are
typically lower-C1, we propose a bundle method suited for both types of nons-
moothness. We prove its global convergence in the sense of subsequences and test
it on a typical delamination problem of material sciences.

Keywords. Composite material · delamination · crack front propagation · hemi-
variational inequality · Clarke directional derivative · nonconvex bundle method ·
lower- and upper-C1 function · convergence.

1. Introduction

We develop a bundle technique to solve nonconvex variational problems arising
in contact mechanics and in other applied �elds. We are speci�cally interested in the
delamination of composite structures with an adhesive bonding under destructive
loading, a failure mode which is studied in the material sciences. When the prop-
erties of the interlayer adhesive between the bonded bodies are given in the form
of a physical law relating the normal component of the stress vector to the relative
displacement between the upper and lower boundaries at the crack tip, the chal-
lenge is to compute the displacement and stress �elds in order to assess the reactive
destructive forces along the contact boundary, as the latter are di�cult to measure
in situ. This leads to minimization of an energy functional, where a speci�c form

∗Paper submitted for publication.
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of nonsmoothness arises in the boundary integral at the contact boundary. After
discretization via piecewise linear �nite elements using the trapezoidal quadrature
rule, this leads to a �nite-dimensional nonsmooth optimization problem of the form

minimize f(x)
subject to Ax 6 b

(1)

where f is locally Lipschitz and neither smooth nor convex. Depending on the nature
of the frictional forces, the criterion f may be upper-C1 or lower-C1, see e.g. Figure
1. As these two classes of nonsmooth functions behave substantially di�erently when
minimized, we are forced to expand on existing bundle strategies and develop an
algorithm general enough to encompass both types of nonsmoothness. We prove
its convergence to a critical point in the sense of subsequences, and show that it
provides satisfactory numerical results in a simulation of the double cantilever beam
test [35], one of the most popular destructive tests to qualify structural adhesive
joints.

The di�culty in nonconvex bundling is to provide a suitable cutting plane oracle
which replaces the no longer available convex tangent plane. One of the oldest
oracles, discussed already in Mi�in [21], and used in the bundle codes of Lemaréchal
and Sagastizábal [16, 17], or the BT-codes of Zowe [36, 33], uses the method of
downshifted tangents. While these authors use linesearch with Armijo and Wolfe
type conditions, which allows only weak convergence certi�cates in the sense that
some accumulation point of the sequence of serious iterates is critical, we favor
proximity control in tandem with a suitable backtracking strategy. This leads to
stronger convergence certi�cates, where every accumulation point of the sequence
of serious iterates is critical. For instance, in [24, 26, 7] a strong certi�cate for
downshifted tangents with proximity control was proved within the class of lower-
C1 functions, but its validity for upper-C1 criteria remained open. An oracle for
upper-C1 functions with a rigorous convergence theory can be based on the model
approach of [24, 26, 25], but the latter is not compatible with the downshift oracle.

To have two strings to one bow is unsatisfactory, as one could hardly expect
practitioners to select their strategy according to such a distinction, which might not
be easy to make in practice. In this work we will resolve this impasse and present a
cutting plane oracle based on downshifted tangents, which leads to a bundle method
with strong convergence certi�cate for both types of nonsmoothness. In its principal
components our method agrees with existing strategies for downshifted tangents,
like [16, 36, 19, 20], and could therefore be considered as a justi�cation of this
technique for a wide class of applications. Di�erences with existing methods occur
in the management of the proximity control parameter, which in our approach has
to respect certain rules to assure convergence to a critical point, without impeding
good practical performance.

The structure of the paper is as follows. Section 2 gives some preparatory in-
formation on lower- and upper-C1 functions. Section 4 presents the algorithm and
comments on its ingredients. Theoretical tools needed to prove convergence are
presented and employed in sections 3 and 5. Section 6 gives the main convergence
result, while section 7 discusses practical aspects of the algorithm. In section 8,
we discuss the delamination problem, which we solve numerically using our bundle
algorithm.
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Numerical results for contact problem with adhesion based on the bundle-Newton
method of L. Luk²an and J. Vl£ek [18] can be found e.g. in the book of Haslinger
et al. [12], in [19, 20], and in the more recent [4, 23]. Mathematical analysis and
numerical results for quasistatic delamination problems can be found in [15, 31].

2. Lower- and upper-C1 functions

Following Spingarn [34], a locally Lipschitz function f : Rn → R is lower-C1 at
x0, if there exists a compact Hausdor� space K, a neighborhood U of x0, and a
mapping F : U ×K → R such that both F and DxF are jointly continuous and

f(x) = max{F (x, y) : y ∈ K}(2)

is satis�ed for x ∈ U . The function f is upper-C1 at x0 if −f is lower-C1 at x0.

In a minimization problem (1), we expect lower- and upper-C1 functions to be-
have completely di�erently. Minimizing a lower-C1 function ought to lead to real
di�culties, as on descending we move into the zone of nonsmoothness, which for
lower-C1 goes downward. In contrast, upper-C1 functions are generally expected to
be well-behaved, as intuitively on descending we move away from the nonsmooth-
ness, which here goes upward. The present application shows that this argument is
too simplistic. Minimization of upper-C1 functions leads to real di�culties, which
we explain subsequently. In delamination for composite materials we encounter
objective functions of the form

f(x) = fs(x) +

∫ 1

0

min
i∈I

fi(x, t) dt,(3)

where fs gathers the smooth part, while the integral term, due to the minimum, is
responsible for the nonsmoothness.

Lemma 2.1. Suppose fs is of class C
1 and the fi are jointly of class C1. Then the

function (3) is upper-C1 and can be represented in the form

f(x) = fs(x) + min
σ∈Σ

∫ 1

0

fσ(t)(x, t) dt,(4)

where Σ is the set of all measurable mappings σ : [0, 1]→ I.

Proof. Let us �rst prove (4). For σ ∈ Σ and �xed x ∈ Rn the function t 7→
fσ(t)(x, t) is measurable, and since mini∈I fi(x, t) 6 fσ(t)(x, t) 6 maxi∈I fi(x, t), it is

also integrable. Hence F (x, σ) = fs(x) +
∫ 1

0
fσ(t)(x, t) dt is well-de�ned, and clearly

F (x, σ) > f(x), so we have infσ∈Σ F (x, σ) > f(x).

To prove the reverse estimate, �x x ∈ Rn and consider the closed-valued multi-
function Φ : [0, 1]→ 2I de�ned by Φ(t) = {i ∈ I : fi(x, t) = mini′∈I fi′(x, t)}. Since
the fi(x, ·) are measurable and I is �nite, Φ is a measurable multifunction. Choose
a measurable selection σ, that is, σ ∈ Σ satisfying σ(t) ∈ Φ(t) for every t ∈ [0, 1].
Then clearly F (x, σ) = f(x). This proves (4).
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Let us now show that f is upper-C1. We consider ϕ(x, t) = mini∈I fi(x, t). In
view of [34] ϕ(·, t) is upper-C1 and its Clarke subdi�erential ∂ϕ(·, t) is strictly su-
permonotone uniformly over t ∈ [0, 1]. By Theorem 2 in [5], ϕ(·, t) is approximately
concave uniformly over t ∈ [0, 1]. Integration with respect to t ∈ [0, 1] then yields
an approximately concave function with respect to x, which by the equivalences in
[5] and [34] is upper-C1. �

Note that the minimum (4) is semi-in�nite even though I is �nite. Minimization
of (3) cannot be converted into a NLP, as would be possible in the min-max case.
The representation (4) highlights the di�culty in minimizing (3). Minimizing a
minimum has a disjunctive character, and due to the large size of Σ this could lead
to a combinatorial situation with intrinsic di�culty.

3. The model concept

The model of a nonsmooth function was introduced in [26] and is a key element
in understanding the bundle concept.

De�nition 3.1 (Compare [26]). A function φ : Rn × Rn → R is called a model of
the locally Lipschitz function f : Rn → R on the set Ω ⊂ Rn if the following axioms
are satis�ed:

(M1) For every x ∈ Ω the function φ(·, x) : Rn → R is convex, φ(x, x) = f(x)
and ∂1φ(x, x) ⊂ ∂f(x).

(M2) For every x ∈ Ω and every ε > 0 there exists δ > 0 such that f(y) 6
φ(y, x) + ε‖y − x‖ for every y ∈ B(x, δ).

(M3) The function φ is jointly upper semicontinuous, i.e., (yj, xj) → (y, x) on
Rn × Ω implies lim sup

j→∞
φ(yj, xj) 6 φ(y, x). �

We recall that every locally Lipschitz function f has the so-called standard model

φ](y, x) = f(x) + f 0(x, y − x),

where f 0(x, d) is the Clarke directional derivative of f at x in direction d. The same
function f may in general have several models φ, and following [24, 25], the standard
φ] is the smallest one. Every model φ gives rise to a bundle strategy. The question
is then whether this bundle strategy is successful. This depends on the following
property of φ.

De�nition 3.2. A model φ of f on Ω is said to be strict at x0 ∈ Ω if axiom (M2)
is replaced by the stronger

(M̂2) For every ε > 0 there exists δ > 0 such that f(y) 6 φ(y, x) + ε‖y − x‖ for
all x, y ∈ B(x0, δ).

We say that φ is a strict model on Ω, if it is strict at every x0 ∈ Ω. �
Remark 1. We may write axiom (M2) in the form f(y) 6 φ(y, x0) + o(‖y − x0‖)
for y → x0, and (M̂2) as f(y) 6 φ(y, x) + o(‖y − x‖) for x, y → x0. Except for
the fact that these concepts are one-sided, this is precisely the di�erence between
di�erentiability and strict di�erentiability. Hence the nomenclature.
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Lemma 3.3 (Compare [24, 25]). Suppose f is upper-C1. Then its standard model
φ] is strict, and hence every model φ of f is strict. �
Remark 2. For convex f the standard model φ] is in general not strict, but f may be
used as its own model φ(·, x) = f . For nonconvex f , a wide range of applications is
covered by composite functions f = g ◦ F with g convex and F di�erentiable. Here
the so-called natural model φ(y, x) = g(F (x) + F ′(x)(y − x)) can be used, because
it is strict as soon as F is class C1. This includes lower-C2 functions in the sense of
[30], lower-C1,α functions in the sense of [6], or amenable functions in the sense of
[29], which allow representations of the form f = g ◦ F with F of class C1,1.

We conclude with the remark that lower-C1 functions also admit strict models,
even though in that case the construction is more delicate. The strict model in that
case cannot be exploited algorithmically, and for lower-C1 functions we prefer the
oracle concept, which will be discussed in section 5.

4. Elements of the algorithm

In this section we brie�y explain the main features of the algorithm. This con-
cerns building the working model, computing the solution of the tangent program,
checking acceptance, updating the working model after null steps, and the manage-
ment of the proximity control parameter.

4.1. Working model. At the current serious iterate x the inner loop of the algo-
rithm at counter k computes an approximation φk(·, x) of f in a neighborhood of
x, called a �rst-order working model. The working model is a polyhedral convex
function of the form

φk(·, x) = max
(a,g)∈Gk

a+ g>(· − x),(5)

where Gk is a �nite set of a�ne functions y 7→ a + g>(y − x) satisfying a 6 f(x),
referred to as planes. The set Gk is updated during the inner loop k. At each step
k the following rules have to be respected when updating Gk into Gk+1:

(R1) One or several cutting planes at the null step yk, generated by an abstract
cutting plane oracle, are added to Gk+1.

(R2) The so-called aggregate plane (a∗, g∗), which consists of convex combina-
tions of elements of Gk, is added to Gk+1.

(R3) Some older planes in Gk, which become obsolete through the addition of the
aggregate plane, are discarded and not kept in Gk+1.

(R4) Every Gk contains at least one so-called exactness plane (a0, g0), where
exactness plane means a0 = f(x), g0 ∈ ∂f(x). This assures φk(x, x) = f(x),
hence the name.

(R5) We have to make sure that each working model φk satis�es ∂1φk(x, x) ⊂
∂f(x).

Once the �rst-order working model φk(·, x) has been built, the second-order working
model Φk(·, x) is of the form

Φk(·, x) = φk(·, x) + 1
2
(· − x)>Q(x)(· − x),(6)
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where Q(x) = Q(x)> is a possibly inde�nite symmetric matrix, depending only on
the current serious iterate x, and �xed during the inner loop k. The second-order
term includes curvature information on f , if available.

4.2. Tangent program and acceptance test. Once the second-order working
model (6) is formed and the proximity control parameter τk−1 → τk is updated, we
solve the tangent program

minimize Φk(y, x) + τk
2
‖y − x‖2

subject to Ay 6 b
(7)

Here the proximity control parameter τk satis�es Q + τkI � 0, which assures that
(7) is strictly convex and has a unique solution, yk, called the trial step. The trial
step is a candidate to become the new serious iterate x+. In order to decide whether
yk is acceptable, we compute the test

ρk =
f(x)− f(yk)

f(x)− Φk(yk, x)

?

> γ,(8)

where 0 < γ < 1 is some �xed parameter. If ρk > γ, then x+ = yk is accepted and
called a serious step. In this case the inner loop ends successfully. On the other
hand, if ρk < γ, then yk is rejected and called a null step. In this case the inner
loop k continues. This means we will update working model Φk(·, x) → Φk+1(·, x),
adjust the proximity control parameter τk → τk+1, and solve (7) again.

Note that the test (8) corresponds to the usual Armijo descent condition used
in linesearches, or to the standard acceptance test in trust region methods.

4.3. Updating the working model via aggregation. Suppose the trial step yk

fails the acceptance test (8) and is declared a null step. Then the inner loop has to
continue, and we have to improve the working model at the next sweep in order to
perform better. Since the second-order part of the working model 1

2
(·−x)>Q(x)(·−x)

remains invariant, we will update the �rst-order part only.

Concerning rule (R2), by the necessary optimality condition for (7), there exists
a multiplier η∗ such that

0 ∈ ∂1Φk(y
k, x) + τk(y

k − x) + A>η∗,

or what is the same,

(Q(x) + τkI)(yk − x)− A>η∗ ∈ ∂1φk(y
k, x).

Since φk(·, x) is by construction a maximum of a�ne planes, we use the stan-
dard description of the convex subdi�erential of a max-function. Writing
Gk = {(a0, g0), . . . , (ap, gp)} for p = card(Gk) + 1, we �nd non-negative multi-
pliers λ0, . . . , λp summing up to 1 such that

(Q(x) + τkI)(yk − x)− A>η∗ =

p∑

i=0

λigi,

and in addition, ai + g>i (yk − x) = φk(y
k, x) for all i ∈ {0, . . . , p} with λi > 0. We

say that those planes which are active at yk are called by the aggregate plane. In the
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above rule (R3) we allow those to be removed from Gk. We now de�ne the aggregate
plane as:

a∗k =

p∑

i=0

λiai, g∗k =

p∑

i=0

λigi.

Note that by construction the aggregate plane m∗k(·, x) = a∗k + g∗>k (· − x) at null
step yk satis�es m∗k(y

k, x) = a∗ + g∗>(yk − x) = φk(y
k, x). This construction is

standard and follows the original idea in Kiwiel [14]. It assures in particular that
Φk+1(yk, x) > m∗k(y

k, x) + 1
2
(yk − x)>Q(x)(yk − x) = Φk(y

k, x).

4.4. Updating the working model by cutting planes and exactness planes.

The crucial improvement in the �rst-order working model is in adding a cutting
plane which cuts away the unsuccessful trial step yk according to rule (R1). We
shall denote the cutting plane as mk(·, x) = ak + g>(· − x). The only requirement
for the time being is that ak 6 f(x), as this assures φk+1(x, x) 6 f(x). Since we
also maintain at least one exactness plane of the form m0(·, x) = f(x) + g>0 (· − x)
with g0 ∈ ∂f(x), we assure φk+1(x, x) = Φk+1(x, x) = f(x). Later we will also have
to check the validity of (R5).

It is possible to integrate so-called anticipated cutting planes in the new working
model Gk+1. Here anticipated designates all planes which are not based on the rules
exactness, aggregation, cutting planes. Naturally, adding such planes can not be
allowed in an arbitrary way, because axioms (R1)− (R5) have to be respected.

Remark 3. It may be bene�cial to choose a new exactness plane m0(·, x) = f(x) +
g>(·−x) after each null step y, namely the one which satis�esm0(y, x) = f 0(x, y−x).
If x is a point of di�erentiability of f , then all these exactness planes are identical
anyway, so no extra work occurs. On the other hand, computing g ∈ ∂f(x) such
that g>(y − x) = f 0(x, y − x) is usually cheap. Consider for instance eigenvalue
optimization, where f(x) = λ1 (F (x)), x ∈ Rn, F : Rn → Sm, and λ1 : Sm → R is
the maximum eigenvalue function of Sm. Then f 0(x, d) = λ′1(X,D) = λ1(Q>DQ),
where X = F (x), D = F ′(x)d, and where Q is a t × m matrix whose columns
form an orthogonal basis of the maximum eigenspace of X of dimension t [3]. Then
G = QQ> ∈ ∂λ1(X) attains λ′1(X,D), hence g = F ′(x)∗QQ> attains f ′(x, d). Since
usually t� m, the computation of g is cheap.

4.5. Management of proximity control. The central novelty of the bundle
methods developed in [24, 26, 1] is the discovery that in the absence of convex-
ity the proximity control parameter τ has to follow certain basic rules to assure
convergence of the sequence xj of serious iterates. This is in contrast with convex
bundle methods, where τ could in principle be frozen once and for all. More pre-
cisely, suppose φk(·, x) has failed and produced only a null step yk. Having built the
new model φk+1(·, x), we compute the secondary test

ρ̃k =
f(x)− Φk+1(yk, x)

f(x)− Φk(yk, x)

?

> γ̃,(9)

where 0 < γ < γ̃ < 1 is �xed. Our decision is

τk+1 =

{
2τk if ρ̃k > γ̃
τk if ρ̃k < γ̃

(10)
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The rationale of (9) is to decide whether improving the model by adding planes will
su�ce, or shorter steps have to be forced by increasing τ .

The denominator in (9) gives the model predicted progress f(x) − φk(yk, x) =
φk(x, x)−φk(yk, x) > 0 at yk. On the other hand, the numerator f(x)−φk+1(yk, x)
gives the progress over x we would achieve at yk, had we already known the cutting
planes drawn at yk. Due to aggregation we know that φk+1(yk, x) > φk(y

k, x), so
that ρ̃k 6 1, but values ρ̃k ≈ 1 indicate that little to no progress is achieved by
adding the cutting plane. In this case we decide that the τ -parameter must be
increased to force smaller steps, because that reinforces the agreement between f
and φk+1(·, x).

In the test (10) we replace ρ̃k ≈ 1 by ρ̃k > γ̃ for some �xed 0 < γ < γ̃ < 1. If
ρ̃k < γ̃, then the quotient if far from 1 and we decide that adding planes has still
the potential to improve the situation. In that event we do not increase τ .

Let us next consider the management of τ in the outer loop. Since τ can only
increase or stay �xed in the inner loop, we allow τ to decrease between serious steps
x→ x+, respectively, xj → xj+1. This is achieved by the test

ρkj =
f(xj)− f(xj+1)

f(xj)− Φkj(x
j+1, xj)

?

> Γ,(11)

where 0 < γ 6 Γ < 1 is �xed. In other words, if at acceptance we have not only
ρkj > γ, but even ρkj > Γ, then we decrease τ at the beginning of the next inner
loop j + 1, because we may trust the model. On the other hand, if γ 6 ρkj < Γ at
acceptance, then we memorize the last τ -parameter used, that is τkj at the end of
the jth inner loop.

Remark 4. We should compare our management of the proximity control parameter
τ with other strategies in the literature. For instance Mäkelä et al. [19] consider a
very di�erent management of τ , which is motivated by the convex case.

4.6. Statement of the algorithm. We are now ready to give our formal statement
of Algorithm 1 (See next page).

5. Nonconvex cutting plane oracles

In the convex cutting plane method [32, 13] unsuccessful trial steps yk are cut
away by adding a tangent plane to f at yk into the model. Due to convexity, the
cutting plane is below f and can therefore be used to construct an approximation
(5) of f . For nonconvex f , cutting planes are more di�cult to construct, but several
ideas have been discussed. We mention [11, 21]. In [24] we have proposed an
axiomatic approach, which has the advantage that it covers the applications we are
aware of, and allows a convenient convergence theory. Here we use this axiomatic
approach in the convergence proof.

De�nition 5.1 (Compare [24]). Let f be locally Lipschitz. A cutting plane oracle
for f on the set Ω is an operator O which, with every pair (x, y), x a serious iterate
in Ω, y ∈ Rn a null step, associates an a�ne function my(·, x) = a+g>(·−x), called
the cutting plane at null step y for serious iterate x, so that the following axioms
are satis�ed:
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Algorithm 1. Proximity control algorithm for (1)

Parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q <∞, q < T <∞.

. Step 1 (Initialize outer loop). Choose initial guess x1 with Ax1 6 b and
an initial matrix Q1 = Q>1 with −qI � Q1 � qI. Fix memory control parameter

τ ]1 such that Q1 + τ ]1I � 0. Put j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop if 0 ∈ ∂f(xj) + A>η∗

for some multiplier η∗ > 0. Otherwise goto inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize

τ -parameter using the memory element, i.e., τ1 = τ ]j . Choose initial convex

working model φ1(·, xj), possibly recycling some planes from previous sweep
j − 1, and let Φ1(·, xj) = φ1(·, xj) + 1

2
(· − xj)>Qj(· − xj).

. Step 4 (Trial step generation). At inner loop counter k solve tangent pro-
gram

min
Ay6b

Φk(y, x
j) + τk

2
‖y − xj‖2.

The solution is the new trial step yk.

� Step 5 (Acceptance test). Check whether

ρk =
f(xj)− f(yk)

f(xj)− Φk(yk, xj)
> γ.

If this is the case put xj+1 = yk (serious step), quit inner loop and goto step 8.
If this is not the case (null step) continue inner loop with step 6.

. Step 6 (Update working model). Build new convex working model φk+1(·, xj)
based on null step yk by adding an exactness plane m]

k(·, xj) satisfying

m]
k(y

k, xj) = f 0(xj, yk−xj), a downshifted tangent m↓k(·, xj), and the aggregate
plane m∗k(·, xj). Apply rule (R3) to avoid over�ow. Build Φk+1(·, xj), and goto
step 7.

� Step 7 (Update proximity parameter). Compute

ρ̃k =
f(xj)− Φk+1(yk, xj)

f(xj)− Φk(yk, xj)
.

Put

τk+1 =

{
τk, if ρ̃k < γ̃ (bad)

2τk, if ρ̃k > γ̃ (too bad)

Then increase counter k and continue inner loop with step 4.

� Step 8 (Update Qj and memory element). Update matrix Qj → Qj+1, re-
specting Qj+1 = Q>j+1 and −qI � Qj+1 � qI. Then store new memory element

τ ]j+1 =





τk, if γ 6 ρk < Γ (not bad)

1
2
τk, if ρk > Γ (good)

Increase τ ]j+1 if necessary to ensure Qj+1 + τ ]j+1I � 0.

� Step 9 (Large multiplier safeguard rule). If τ ]j+1 > T then re-set τ ]j+1 =
T . Increase outer loop counter j by 1 and loop back to step 2.
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(O1) For y = x we have a = f(x) and g ∈ ∂f(x).
(O2) Let yj → x. Then there exist εj → 0+ such that f(yj) 6 myj(yj, x) +

εj‖yj − x‖.
(O3) Let xj → x and yj, y

+
j → y. Then there exists z ∈ Rn such that

lim sup
j→∞

my+
j

(yj, xj) 6 mz(y, x). �

As we shall see, these axioms are aligned with the model axioms (M1) − (M3).
Not unexpectedly, there is also a strict version of (O2).

De�nition 5.2. A cutting plane oracle O for f is called strict at x0 if the following
strict version of (O2) is satis�ed:

(Ô2) Suppose yj, xj → x. Then there exist εj → 0+ such that f(yj) 6
myj(yj, xj) + εj‖yj − xj‖. �

We now discuss two versions of the oracle which are of special interest for our
applications.

Example 5.1 (Model-based oracle). Suppose φ is a model of f . Then we can generate
a cutting plane for serious iterate x and trial step y by taking g ∈ ∂1φ(y, x) and
putting

my(·, x) = φ(y, x) + g>(· − y) = φ(y, x) + g>(x− y) + g>(· − x).

Oracles generated by a model φ in this way will be denoted Oφ. Note that Oφ

coincides with the standard oracle if f is convex and φ(·, x) = f , i.e., if the convex
f is chosen as its own model. In more general cases, the simple idea of this oracle is
that in the absence of convexity, where tangents to f at y are not useful, we simply
take tangents of φ(·, x) at y. Note that the model-based oracle Oφ is strict as soon
as the model φ is strict. �
Example 5.2 (Standard oracle). A special case of the model-based oracle is obtained
by choosing the standard model φ]. Due to its signi�cance for our present work we
call this the standard oracle. The standard cutting plane for serious step x and null
step y is m]

y(·, x) = f(x) + g>(· −x), where the Clarke subgradient g ∈ ∂f(x) is one

of those that satisfy g>(y − x) = f 0(x, y − x). The standard oracle is strict i� φ]

is strict. As was observed before, this is for instance the case when f is upper-C1.
Note a speci�city of the standard oracle: every standard cutting plane m]

y(·, x) is
also an exactness plane at x. �
Example 5.3 (Downshifted tangents). Probably the oldest oracle used for nonconvex
functions are downshifted tangents, which we de�ne as follows. For serious iterate x
and null step y let t(·) = f(y) + g>(·−y) be a tangent of f at y. That is, g ∈ ∂f(y).
Then we shift t(·) down until it becomes useful for the model (5). Fixing a parameter
c > 0, this is organized as follows: We de�ne the cutting plane as m↓y(·, x) = t(·)−s,
where the downshift s > 0 satis�es

s = [t(x)− f(x) + c‖y − x‖2]+.

In other words, m↓y(·, x) = a + g>(· − x), where a = min{t(x), f(x) − c‖y − x‖2}.
Note that this procedure aways satis�es axioms (O1) and (O3), whereas axioms (O2),

respectively, (Ô2), are satis�ed if f is lower-C1 at x0. In other words, see [24], for f
lower-C1 this is an oracle, which is automatically strict. �
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Motivated by the previous examples, we now de�ne an oracle which works for
both lower-C1 and upper-C1.

Example 5.4 (Modi�ed downshift). Let x be the current serious iterate, y a null
step in the inner loop belonging to x. Then we form the downshifted tangent
m↓y(·, x) := t(·) − s, that is, the cutting plane we would get from the downshift

oracle, and we form the standard oracle plane m]
y(·, x) = f(x) + g>(· − x), where

the Clarke subgradient g satis�es f 0(x, y − x) = g>(y − x). Then we de�ne

my(·, x) =

{
m↓y(·, x) if m↓y(y, x) > m]

y(y, x)

m]
y(·, x) else

In other words, among the two candidate cutting planes m↓y(·, x) and m]
y(·, x), we

take the one which has the larger value at the null step y.

Note that this is the oracle we use in our algorithm. Theorem 6.1 clari�es when
this oracle is strict. �

Given an operator O which with every pair (x, y) of serious step x and null step
y associates a cutting plane my(·, x) = a + g>(· − x), we �x a constant M > 0 and
de�ne what we call the upper envelope function of the oracle

φ↑(·, x) = sup{my(·, x) : ‖y − x‖ 6M}.
The crucial property of φ↑ is the following

Lemma 5.3. Suppose O : (x, y) 7→ my(·, x) is a cutting plane oracle satisfying

axioms (O1)− (O3). Then φ↑ is a model of f . Moreover, if the oracle satis�es (Ô2),
then φ↑ is strict. �

The proof can be found in [24]. We refer to φ↑ as the upper envelope model
associated with the oracle O. Since in turn every model φ gives rise to a model-
based oracle, Oφ, it follows that having a strict oracle and having a strict model
are equivalent properties of f . Note, however, that the model φ↑ is in general not
practically useful. It is a theoretical tool in the convergence proof.

Remark 5. If we start with a model φ, then build Oφ, and go back to φ↑, we get
back to φ, at least locally.

On the other hand, going from an oracle O to its envelope model φ↑, and then
back to the model based oracle Oφ↑ does not necessarily lead back to the oracle O.

We are now in the position to check axiom (R5).

Corollary 5.4. All working models φk constructed in our algorithm satisfy
∂1φk(x, x) ⊂ ∂f(x). �

6. Main convergence result

In this section we state and prove the main result of this work and give several
consequences.
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Theorem 6.1. Let f be locally Lipschitz and suppose for every x ∈ Rn, f is either
lower-C1 or upper-C1 at x. Let x1 be such that Ax1 6 b and {x ∈ Rn : f(x) 6
f(x1), Ax 6 b} is bounded. Then every accumulation point x∗ of the sequence xj of
serious iterates generated by Algorithm 1 is a KKT point of (1).

Proof. The result will follow from [24, Theorem 1] as soon as we show that down-
shifted tangents as modi�ed in Example 5.4 and used in the algorithm is a strict
cutting plane oracle in the sense of de�nition 5.2. The remainder of the proof is to
verify this.

1) Let us denote cutting planes arising from the standard model φ] by m]
y(·, x),

cutting planes obtained by downshift asm↓y(·, x) = t(·)−s, and the true cutting plane
of the oracle asmy(·, x). Then as we knowmy(·, x) = m↓y(·, x) ifm↓y(y, x) > m]

y(y, x),

and otherwise my(·, x) = m]
y(·, x). We have to check (O1), (Ô2), (O3).

2) The validity of (O1) is clear, as both oracles provide Clarke tangent planes to
f at x for y = x.

3) Let us now check (O3). Consider xj → x, and yj, y
+
j → y. Here y+

j is a null
step at serious step xj. Passing to a subsequence, we may distinguish case I, where

my+
j

(·, xj) = m]

y+
j

(·, xj) for every j, and case II, where my+
j

(·, xj) = m↓
y+
j

(·, xj) for

every j.

Consider case I �rst. Let m]

y+
j

(yj, xj) = f(xj) + g>j (yj − xj), where gj ∈ ∂f(xj)

satis�es f 0(xj, y
+
j − xj) = g>j (y+

j − xj). Passing to yet another subsequence, we
may assume gj → g, and upper semi-continuity of the Clarke subdi�erential gives
g ∈ ∂f(x). Therefore my+

j
(yj, xj) = f(xj) + g>j (yj − xj) → f(x) + g>(y − x) 6

m]
y(y, x) 6 my(y, x). So here (O3) is satis�ed with z = y.

Newt consider case II. Here we have my+
j

(yj, xj) = tgj(yj) − sj, where tgj(·) is

a tangent to f at y+
j with subgradient gj ∈ ∂f(y+

j ), and sj is the corresponding
downshift

sj =
[
tgj(xj)− f(xj) + c‖y+

j − xj‖2
]

+
.

Passing to a subsequence, we may assume gj → g, and by upper semi-continuity
of ∂f we have g ∈ ∂f(y). Therefore sj → [tg(x)− f(x) + c‖y − x‖2]+ =: s, where
uniform convergence tgj(yj)→ tg(y) occurs due to the boundedness of ∂f . But now
we see that s is the downshift for the pair (x, y) when g ∈ ∂f(y) is used. Hence
my+

j
(yj, xj)→ m↓y(y, x), and since m↓y(y, x) 6 my(y, x), we are done. So again the z

in (O3) equals y here.

4) Let us �nally check axiom (Ô2). Let xj, yj → x be given. We �rst consider
the case when f is upper-C1 at x. We have to �nd εj → 0+ such that f(yj) 6
myj(yj, xj) + εj‖yj − xj‖ as j → ∞, and by the de�nition of the oracle, it clearly

su�ces to show f(yj) 6 m]
yj

(yj, xj) + εj‖yj − xj‖. By Spingarn [34], or Daniilidis

and Georgiev [5], −f , which is lower-C1 at x, has the following property: For every
ε > 0 there exists δ > 0 such that for all 0 < t < 1 and y, z ∈ B(x, δ),

f(y) 6 f(z) + t−1 (f(z + t(y − z))− f(z)) + ε(1− t)‖z − y‖.



7. Practical aspects of the algorithm 111

Taking the limit superior t→ 0+ implies

f(y) 6 f(z) + f ′(z, y − z) + ε‖y − z‖ 6 f(z) + f 0(z, y − z) + ε‖y − z‖.
Choosing z = xj, y = yj, δj = ‖yj − zj‖ → 0, we can �nd εj → 0+ such that
f(yj) 6 f(xj) + f 0(xj, yj−xj) + εj‖yj−xj‖, hence f(yj) 6 m]

yj
(yj, xj) + εj‖yj−xj‖

by the de�nition of m]
yj

(·, xj). That settles the upper-C1 case.

Now consider the case where f is lower-C1 at x. We have to �nd εj → 0+

such that f(yj) 6 myj(yj, xj) + εj‖yj − xj‖ as j → ∞, and it su�ces to show

f(yj) 6 m↓yj(yj, xj) + εj‖yj − xj‖. Since m↓yj(yj, xj) > f(yj) − sj, where sj is the
downshift sj = [t(xj)− f(xj) + c‖yj − xj‖2]+, and t(·) = f(yj) + g>j (·− yj) for some
gj ∈ ∂f(yj), it su�ces to exhibit εj → 0+ such that f(yj) 6 f(yj)−sj+εj‖yj−xj‖, or
what is the same, sj 6 εj‖yj−xj‖. For that it su�ces to arrange [t(xj)− f(xj)]+ 6
εj‖yj−xj‖, because once this is veri�ed, we get sj 6 [t(xj)− f(xj)]+ +c‖yj−xj‖2 6
(εj+c‖yj−xj‖)‖yj−xj‖ =: ε̃j‖yj−xj‖. Note again that by [34, 5] f has the following
property at x: For every ε > 0 there exists δ > 0 such that f(tz + (1 − t)y) 6
tf(z) + (1 − t)f(y) + εt(1 − t)‖z − y‖ for all y, z ∈ B(x, δ). Dividing by t > 0 and
passing to the limit t → 0+ gives f 0(y, z − y) 6 f(z) − f(y) + ε‖y − z‖, using the
fact that f is locally Lipschitz. But for every g ∈ ∂f(y), g>(z − y) 6 f 0(y, z − y).
Using ‖yj − xj‖ =: δj → 0 and taking y = yj, z = xj, this allows us to �nd εj → 0+

such that g>j (xj − yj) 6 f(xj) − f(yj) + εj‖yj − xj‖. Substituting this above gives

t(xj) − f(xj) = f(yj) − f(xj) + g>j (xj − yj) 6 εj‖yj − xj‖ as desired. That settles
the lower-C1 case. �

7. Practical aspects of the algorithm

In this section we discuss several technical aspects of the algorithm, which are
important for its performance.

7.1. Stopping. The stopping test in step 2 of the algorithm is stated in this form
for the sake of the convergence proof. In practice we delegate stopping to the inner
loop using the following two-stage procedure.

If the inner loop at serious iterate xj �nds the new serious step xj+1 such that

‖xj+1 − xj‖
1 + ‖xj‖ < tol1,

|f(xj+1)− f(xj)|
1 + |f(xj)| < tol2,

then we decide that xj+1 is optimal. In consequence, the (j + 1)st inner loop will
not be executed. On the other hand, if the inner loop has di�culties terminating
and produces �ve consecutive null steps yk where

‖yk − xj‖
1 + ‖xj‖ < tol1,

|f(yk)− f(xj)|
1 + |f(xj)| < tol2,

or if a maximum number kmax of allowed steps in the inner loop is reached, then we
decide that xj is optimal. In our experiments we use tol1 = 10−5, tol2 = 10−5, and
kmax = 50.
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7.2. Recycling of planes. At the beginning of a new inner loop at serious step
xj+1, we do not want to start building the working model φ1(·, xj+1) from scratch.
It is more e�cient to recycle some of the planes (a, g) ∈ Gkj in the latest working
model φkj(·, xj). In the convex cutting plane method, this is self-understood, as
cutting planes are a�ne minorants of f , and can at leisure stay on in the sets G at
all times j, k. Without convexity, we need the following recycling procedure:

Given a plane m(·, xj) = a + g>(· − xj) in the latest set Gkj , we form the new
downshifted plane

m(·, xj+1) = m(·, xj)− s,
where the downshift is organized as

s =
[
m(xj+1, xj)− f(xj+1) + c‖xj+1 − xj‖2

]
+
.

In other words, we treat m(·, xj) like a tangent to f at null step xj with respect to
the serious step xj+1 in the downshift oracle. We put

m(·, xj+1) = a+ g>(· − xj)− s = a− s+ g>(xj+1 − xj) + g>(· − xj+1),

and we accomodate (a − s + g>(xj+1 − xj), g) ∈ G1 at the beginning of the (j +
1)st inner loop. In the modi�ed version we only keep a plane of this type in G1

after comparing it to the exactness plane m0(·, xj+1) = f(xj+1) + g>(· − xj+1),
g ∈ ∂f(xj+1), which satis�es g>(xj − xj+1) = f 0(xj+1, xj − xj+1). Indeed, when
m(xj, xj+1) > m0(xj, xj+1), then we keep the downshifted plane, otherwise we add
m0(·, xj+1) as additional exactness plane.

8. The delamination benchmark problem

The interface behavior of laminated composite materials is modeled by a non-
monotone multi-valued function ∂j, characteristic of the interlayer adhesive placed
at the contact boundary Γc. In more precise terms, ∂j is the physical law which
holds between the normal component −Sn(s)|Γc of the stress vector and the relative
displacement u2(s)|Γc, or jump, between the upper and lower boundaries. A typical
law ∂j for an interlayer adhesive is shown in Figure 1 (left). In the material sciences,
the knowledge of ∂j is crucial for the understanding of the basic failure modes of
the composite material.

The adhesive law ∂j is usually determined experimentally using the double can-
tilever beam test [35] or other destructive testing methods. The result of a typical
experiment is shown schematically in Figure 3 from [35], where three probes with
di�erent levels of contamination have been exposed. While the intact material shows
stable propagation of the crack front (dashed curve), the 10% contaminated speci-
men shows a typical zig-zag pro�le (bold solid curve), indicating unstable crack front
propagation. Indeed, when reaching the critical load P = 140N, the crack starts
to propagate. Since by the growth of the crack-elongation, the compliance of the
structure increases, the crack propagation slows down and the crack is "caught",
i.e., stops at u2 = 0.25mm and the load P in the structure drops from P = 140N to
P = 40N. Thereafter, due to the continuously increased load, the crack starts again
to propagate until reaching another critical load level at P = 90N and u2 = 5mm.
This phenomenon occurs �ve to six times, as seen in Figure 3.
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Figure 1. Left image shows non-monotone delamination law ∂j,
leading to an upper-C1 objective. Right image shows non-monotone
friction law, leading to a lower-C1 objective

The 50% contaminated specimens (dotted curve) shows micro-cracks that appear
at a �ner level and are not visible in the Figure 3. The lower level of the adhesive
energy, which is represented by the area below the load-displacement curve, indicates
now that this specimen is of minor resistance.

Even though the displacement u2 in Figure 3 can only be measured at the crack
tip, in order to proceed one now stipulates the law ∂j all along s ∈ Γc by assuming
that the normal stresses Sn(s)|Γc follow the measured behavior

− Sn(s) ∈ ∂j(s, u2(s)), s ∈ Γc.(12)

Under this hypothesis one now solves the variational inequality for the unknown
displacement �eld u = (u1, u2), and then validates (12). Note that Sn(s)|Γc is the
truly relevant information, as it indicates the action of the destructive forces along
Γc, explaining eventual failure of the composite. In current practice in the material
sciences, this information cannot be assessed by direct measurement, and is therefore
estimated by heuristic formulae [35]. Our approach could be interpreted as one such
estimation technique based on mathematical modeling.

Γu ΓF1
ΓF2Γc

F2

Figure 2. Schematic view of cantilever beam testing. Under applied
traction force F2 the crack front propagates to the left. In program
(16) traction force F2 and crack front length are given, while the corre-
sponding displacement u and reactive forces −Sn|Γc along the contact
boundary Γc have to be computed

8.1. Delamination study. Within the framework of plane linear elasticity we
consider a symmetric laminated structure with an interlayer adhesive under loading
(see Fig. 2). Because of the symmetry of the structure, it su�ces to consider only
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the upper half of the specimen, represented by Ω ⊂ R2. The Lipschitz boundary Γ
of Ω consists of four disjoint parts Γu, Γc, ΓF1 and ΓF2 . The body is �xed on Γu, i.e.,

ui = 0 on Γu, i = 1, 2.

On ΓF1 the traction forces F are constant and given as

F = (0, F2) on ΓF1 .

The part ΓF2 is load-free. We adopt standard notation from linear elasticity and
introduce the bilinear form of linear elasticity

(13) a(u,v) =

∫

Ω

ε(u) : σ(v) dx,

where u = (u1, u2) is the displacement vector, ε(u) = 1
2
(∇u+ (∇u)T ) the linearized

strain tensor, and σ(v) = C : ε(v) the stress tensor. Here, C is the elasticity tensor
with symmetric positive L∞ coe�cients. The bilinear form is symmetric and due to
the �rst Korn inequality, coercive. The linear form 〈g, ·〉 is de�ned by

〈g,v〉 = F2

∫

ΓF1

v2 ds.

On the contact boundary Γc we have the unilateral constraint

u2 > 0 a.e. on Γc

and we apply the non-monotone multi-valued adhesive law

− Sn(s) ∈ ∂j(s, u2(s)) for a.a. s ∈ Γc.(14)

Here Sn = σijnjni, where n = (n1, n2) is the outward unit normal vector to Γc.

A typical non-monotone law ∂j(s, ·) for delamination, describing the behavior
of the adhesive, is shown in Fig. 1. This law is derived from a nonconvex and
a nonsmooth locally Lipschitz super-potential j expressed in terms of a minimum
function. In particular, j(s, ·) is a minimum of four convex quadratic and one linear
function.

We also assume that tangental traction can be neglected on Γc, i.e., St(s) = 0.
The weak formulation of the delamination problem is then given by the following
hemivariational inequality: Find u ∈ K such that

(15) a(u,v − u) +

∫

Γc

j0(s, u2(s); v2(s)− u2(s)) ds > 〈g,v − u〉 ∀v ∈ K,

where j0(s, u; d) is the Clarke directional derivative of j(s, ·) at u in direction d, K
is the nonempty, closed convex set of all admissible displacements de�ned by

K = {v ∈ V : v2 > 0 on Γc},
contained in the function space

V = {v ∈ H1(Ω;R2) : v = 0 on Γu}.
The potential energy of the problem is

Π(v) =
1

2
a(v,v) + J(v)− 〈g,v〉,
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where J : V → R de�ned by

J(v) =

∫

Γc

j(s, v2(s)) ds

is the term responsible for the nonsmoothness. Using the potential energy, the
hemivariational inequality (15) can be transformed to the following nonsmooth,
nonconvex constrained optimization problem of the form (1)

minimize Π(u)
subject to u ∈ K(16)

where the objective is upper-C1, because the super-potential j(s, ·) is a minimum. In
particular, we have an objective of the form (3), where the smooth part fs comprises
1
2
a(v,v) − 〈g,v〉, while the nonsmooth part J(v) =

∫
Γc
j(s, v2(s)) ds has the form

(3) with a �nite index set I once the boundary integral is suitably parametrized.

According to the existence theory in [22], problem (16) has at least one Clarke
critical point u∗ satisfying the necessary optimality condition

0 ∈ ∂ Π(u∗) +NK(u∗),

where NK(u) is the normal cone to K at u, and vice versa, by a result in [20] every
critical point of Π on K is a solution of (15) (see also [19]).

8.2. Discrete problem. We consider a regular triangulation {Th} of Ω, where we
�rst divide Ω into small squares of size h and then each square by its diagonal into
two triangles. To approximate V and K we use a piecewise linear �nite element
approximation and set

Vh = {vh ∈ C(Ω;R2) : vh|T ∈ (P1)2, ∀T ∈ Th, vh|Γu = 0},

Kh = {vh ∈ Vh : vh2(sν) > 0 ∀ sν ∈ Γc\Γu}.
Similar to low order �nite element approximations of nonsmooth convex contact
problems [8, 9], we use the trapezoidal quadrature rule to approximate the functional
J by

Jh(vh) =
1

2

∑

sν∈Γc\Γu

|sνsν+1|
[
j(sν , vh2(sν)) + j(sν+1, vh2(sν+1))

]
,(17)

where we are summing over the nodes sν on the contact boundary Γc\Γu, with
sν+1 being the neighbor of node sν on Γc in the sense of integration. This can be
regrouped as

Jh(vh) =
∑

sν∈Γc\Γu

cνj(sν , vh2(sν)) =
∑

sν∈Γc\Γu

cν min
i∈I

ji(sν , vh2(sν))

with appropriate weights cν > 0. Here, I is the set of zig-zags in the graph of ∂j.

The bundle algorithm is applied to minimize the discrete functional

(18) Πh(vh) =
1

2
a(vh, vh) + Jh(vh)− 〈g, vh〉 on Kh.
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Figure 3. Load-displacement curve determined by double cantilever
beam test. Dashed curve shows stable behavior for material without
contamination. The 10% contaminated specimen (bold solid curve)
shows unstable crack growth. After initial linear growth, when the
critical load P = 140N is reached, the crack starts to propagate.
But then the propagation speed slows down, since by the crack the
compliance of the specimen increases, and the crack is "caught" at
u2 = 0.25mm. The load P drops from P = 140N to P = 40N. Then,
by the constantly applied traction force, there is a linear growth of the
load P from P = 40N to the critical load P = 90N, where the crack
propagates again and stops at u2 = 5mm, with the load now reduced
to P = 30N. The 50% contaminated specimen exhibits micro-cracks
not visible at the chosen scale.

Introducing an index set N for the nodes sν on the contact boundary Γc, we may
pull out the minimum from under the sum, which leads to the expression

Πh(vh) =
1

2
a(vh, vh) + min

i(·)∈IN

∑

ν∈N

cνji(ν)(sν , vh2(sν))− 〈g, vh〉.

This is the discrete version of (4), where 1
2
a(vh, vh)− 〈g, vh〉 is the smooth term fs,

and Jh the nonsmooth part.

While computation of Clarke subgradients is straightforward here, we still have
to explain how the matrix Q = Q(v) in the second-order working model (6) is chosen.
Discretizing the quadratic form of linear elasticity as a(vh, vh) = v>hAvh with the
symmetric sti�ness matrix A, and observing that 〈g, vh〉 = g>vh is linear, we choose
Q(v) = A +

∑
ν∈N ∇2ji(ν)(sν , vh(sν)), where i(ν) ∈ I is one of those indices, where

the minimum mini∈I ji(sν , vh2(sν)) is attained.

For convergence of the lowest-order �nite element approximation used here we
refer to the results in [27]. Higher-order approximations with no limitation in the



8. The delamination benchmark problem 117

polynomial degree, which lead to nonconforming approximation of unilateral con-
straints, have only recently been analyzed for monotone contact problems, see [10].

8.3. Numerical results. We present numerical results obtained in a delamination
simulation with modulus of elasticity E = 210 GPa and Poisson ratio ν = 0.3
corresponding to a steel specimen. In all examples we use the benchmark model of
[2] with geometrical characteristics (0, 100)×(0, 10) in [mm] and thickness 5mm. We
apply our bundle method to (16) and compare the results to those obtained by the
regularization technique in [27, 28]. All computations use piecewise linear functions
and the discretization 40×4 corresponding to h = 0.25cm. In this case, the number
of the unknowns in the discrete problem (18) is 80.
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Figure 4. Upper: regularization method of [27, 28]. Lower: opti-
mization method. Left image shows vertical displacement u2 for 5
di�erent values of F2. Right image shows vertical component of reac-
tive force along contact boundary for same 5 scenarios

Table 1. Regularization. Vertical displacement [mm] at 4 interme-
diate points for same 5 scenarios

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 4.154500e-06 1.394500e-05 2.601700e-05 3.858700e-05
0.4 8.308100e-06 2.788800e-05 5.202800e-05 7.716600e-05
0.6 1.633200e-05 5.622700e-05 1.080000e-04 1.640000e-04
0.8 2.792500e-05 9.663100e-05 1.860000e-04 2.810000e-04
1.0 4.600600e-05 1.590000e-04 3.080000e-04 4.660000e-04
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Table 2. Optimization. Vertical displacement [mm] at four interme-
diate points for same 5 scenarios

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 4.022500e-06 1.345400e-05 2.499300e-05 3.691900e-05
0.4 8.069300e-06 2.698800e-05 5.013300e-05 7.404900e-05
0.6 1.564800e-05 5.373900e-05 1.030000e-04 1.550000e-04
0.8 2.691300e-05 9.297200e-05 1.790000e-04 2.700000e-04
1.0 4.414000e-05 1.530000e-04 2.940000e-04 4.470000e-04

Table 3. Regularization. Horizontal displacement [mm] at four in-
termediate points for same 5 scenarios

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 1.481900e-06 2.251300e-06 2.474400e-06 2.499500e-06
0.4 2.963600e-06 4.502200e-06 4.948300e-06 4.998500e-06
0.6 5.918500e-06 9.400600e-06 1.077100e-05 1.097500e-05
0.8 1.015200e-05 1.625600e-05 1.866400e-05 1.904000e-05
1.0 1.674400e-05 2.690100e-05 3.100500e-05 3.167000e-05

Table 4. Optimization. Horizontal displacement [mm] at four inter-
mediate points for same 5 scenarios

F2[N/mm2] u2(x1) u2(x2) u2(x3) u2(x4)

0.2 1.432200e-06 2.161500e-06 2.356100e-06 2.368400e-06
0.4 2.872700e-06 4.335000e-06 4.724700e-06 4.748800e-06
0.6 5.663400e-06 8.957000e-06 1.023200e-05 1.041100e-05
0.8 9.777300e-06 1.561000e-05 1.787700e-05 1.822600e-05
1.0 1.606400e-05 2.578000e-05 2.970700e-05 3.034700e-05
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Figure 5. Comparison of regularization (bold solid curves) and op-
timization (dashed) for 3 di�erent values of F2. Left vertical displace-
ment, right reactive force
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Table 5. Comparison of optimal valued obtained by regularization
and optimization

F2[N/m2] Πhreg[Nm] Πhopt [Nm]

200000 -1.32894 -1.29271
400000 -2.35224 -2.30025
600000 -3.83972 -3.74609
800000 -5.08164 -5.05389
1000000 -5.66771 -5.66770

9. Conclusion

We have presented a bundle method based on the mechanism of downshifted
tangents which is suited to optimize upper- and lower-C1 functions. Our method
allows to integrate second-order information, if available, and gives a convergence
certi�cate in the sense of subsequences. Every accumulation point of the sequence
of serious iterates with an arbitrary starting point is critical. We have successfully
applied our method to a delamination problem arising in the material sciences, where
upper-C1 functions have to be minimized. Results obtained by optimization were
compared to results obtained by the regularization technique of [27, 28], and both
methods are in good agreement.
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Résumé

L'optimisation non lisse est une branche active de programmation non linéaire moderne, où l'objectif

et les contraintes sont des fonctions continues mais pas nécessairement di�érentiables. Les sous-

gradients généralisés sont disponibles comme un substitut à l'information dérivée manquante, et sont

utilisés dans le cadre des algorithmes de descente pour se rapprocher des solutions optimales locales.

Sous des hypothèses réalistes en pratique, nous prouvons des certi�cats de convergence vers les points

optimums locaux ou critiques à partir d'un point de départ arbitraire.

Dans cette thèse, nous développons plus particulièrement des techniques d'optimisation non lisse

de type faisceaux, où le dé� consiste à prouver des certi�cats de convergence sans hypothèse de

convexité. Des résultats satisfaisants sont obtenus pour les deux classes importantes de fonctions non

lisses dans des applications, fonctions C1-inférieurement et C1-supérieurement.

Nos méthodes sont appliquées à des problèmes de design dans la théorie du système de contrôle

et dans la mécanique de contact unilatéral et en particulier, dans les essais mécaniques destructifs

pour la délaminage des matériaux composites. Nous montrons comment ces domaines conduisent à

des problèmes d'optimisation non lisse typiques, et nous développons des algorithmes de faisceaux

appropriés pour traiter ces problèmes avec succès.

Mots-clés. Optimisation non lisse et non convexe ·méthode de faisceaux · norme de Hankel · contrôle
optimal · placement de structure propre · problème de délaminage.

Tóm tắt

Tối ưu không trơn là một lĩnh vực năng động của quy hoạch phi tuyến hiện đại, trong đó các hàm
mục tiêu và ràng buộc liên tục nhưng không nhất thiết khả vi. Để thay thế cho những thông tin
đạo hàm còn thiếu, dưới gradient suy rộng đã xuất hiện và được sử dụng trong khuôn khổ các thuật
toán giảm nhằm xấp xỉ các nghiệm tối ưu địa phương. Với những giả thiết thực tế trong vận dụng,
chúng tôi chứng minh sự hội tụ của thuật toán đến các điểm tối ưu địa phương hoặc tới hạn từ một
điểm khởi tạo bất kì.

Trong luận án này, chúng tôi tập trung phát triển những kỹ thuật tối ưu không trơn dạng bó với
yêu cầu đặt ra là chứng minh sự hội tụ không sử dụng tính lồi. Những kết quả thỏa dụng đạt được
cho hai lớp hàm không trơn quan trọng trong ứng dụng, đó là các hàm C1-dưới và C1-trên.

Các phương pháp của chúng tôi được áp dụng cho những bài toán thiết kế trong lý thuyết hệ thống
điều khiển và cơ học tiếp xúc một phía, đặc biệt là trong thử nghiệm cơ học phá hủy cho sự tách lớp
vật liệu composite. Chúng tôi chuyển các vấn đề này về những bài toán tối ưu không trơn điển hình
rồi phát triển những thuật toán bó phù hợp để giải quyết chúng một cách hiệu quả.

Từ khóa. Tối ưu không trơn không lồi · thuật toán bó · chuẩn Hankel · điều khiển tối ưu · gán cấu
trúc riêng · bài toán tách lớp.

Summary

Nonsmooth optimization is an active branch of modern nonlinear programming, where objective and

constraints are continuous but not necessarily di�erentiable functions. Generalized subgradients are

available as a substitute for the missing derivative information, and are used within the framework

of descent algorithms to approximate local optimal solutions. Under practically realistic hypotheses

we prove convergence certi�cates to local optima or critical points from an arbitrary starting point.

In this thesis we develop especially nonsmooth optimization techniques of bundle type, where the

challenge is to prove convergence certi�cates without convexity hypotheses. Satisfactory results are

obtained for two important classes of nonsmooth functions in applications, lower- and upper-C1

functions.

Our methods are applied to design problems in control system theory and in unilateral contact me-

chanics and in particular, in destructive mechanical testing for delamination of composite materials.

We show how these �elds lead to typical nonsmooth optimization problems, and we develop bundle

algorithms suited to address these problems successfully.

Keywords. Nonconvex and nonsmooth optimization · bundle method · Hankel norm · optimal

control · eigenstructure assignment · delamination problem.
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