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Résumé 

L'auxine est une hormone centrale du développement chez les végétaux, impliquée dans 

un large éventail de processus tels que l'organogenèse, la croissance racinaire, le 

développement des fruits et le développement vasculaire. Chez les plantes ligneuses, 

l'auxine joue un rôle clé dans la régulation de la formation du bois en stimulant l’activité 

du cambium vasculaire et le développement du xylème. Les ARFs (Auxin-response 

factors) et les Aux/IAAs (Auxin/Indole acetic acid) sont des régulateurs importants de 

la voie de perception et de signalisation de l'auxine. La disponibilité récente de la 

séquence du génome d’Eucalyptus grandis nous a permis d'étudier les caractéristiques 

et l'histoire évolutive de ces deux familles de gènes chez cette plante ligneuse de grande 

importance économique. Dans ce travail, nous avons identifié et caractérisé 17 

EgrARFs et 24 EgrIAAs que nous avons nommés en fonction de leurs orthologues 

putatifs chez Arabidopsis. Chez E. grandis, ces deux familles ont un peu moins de gènes 

que chez la plupart des angiospermes étudiés jusqu'ici. L’analyse de phylogénie 

comparative de génomes appartenant à des lignées taxonomiques pertinentes a révélé, 

chez la famille ARF, la présence d'une clade trouvée préférentiellement chez les plantes 

ligneuses pérennes. Des analyses d'expression à haut débit sur un large panel d’organes 

et de tissus et en réponse à des signaux environnementaux ont mis en évidence des 

gènes exprimés préférentiellement dans le cambium vasculaire et/ou le xylème en 

différentiation, certains présentant des réponses à des stimuli abiotiques. Sur la base de 

leurs profils d'expression, nous avons sélectionné certains gènes candidats prometteurs 

et effectué leur caractérisation fonctionnelle afin d’évaluer leur rôle potentiel dans la 

formation du bois. Nous avons utilisé Arabidopsis, qui peut dans certaines conditions 

présenter une croissance secondaire, pour surexprimer des versions mutées et 

stabilisées de EgrIAA4, 9 et 20. Les lignées transgéniques présentent des phénotypes 

aberrants d’insensibilité à l'auxine. Parmi ceux-ci, des tailles de plantes réduites ou 

naines, des racines qui croissent de façon agravitropique, la réduction ou même 

l’absence de racines latérales et la stérilité partielle. Les analyses histochimiques 

complétées par des analyses en pyrolyse ont montré des modifications évidentes dans 
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la différentiation des cellules du xylème et/ou des fibres interfasciculaires ainsi que 

composition chimique de leurs parois secondaires. En conclusion, cette étude offre une 

caractérisation complète de deux familles de régulateurs importants de l’auxine chez l' 

Eucalyptus et met en évidence l'implication de certains membres dans la régulation de 

la formation du bois. 
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Abstract 

Auxin is a central hormone involved in a wide range of developmental processes 

including organogenesis, tropic movement, root growth, fruit development, tissue and 

organ patterning and vascular development. In woody plants, auxin has been proposed 

to play a key role in regulating wood formation through its effects on cambial activity 

and xylem development. Auxin Response Factors (ARF) and Auxin/Indole-3-Acetic 

Acid (Aux/IAA) are important regulators of auxin responses in plants. The recent 

availability of the Eucalyptus grandis genome allowed us to investigate the 

characteristics and evolutionary history of these two gene families in a woody plant of 

high economic importance. In this work, we identified and characterized 17 EgrARF 

and 24 EgrIAA gene members and named them according to their putative orthologs in 

Arabidopsis. Both of these two gene families are slightly contracted, as compared to 

those of most angiosperms studied hitherto. Comparative phylogenetic analyses with 

genomes of relevant taxonomic lineages revealed the presence of a new ARF clade 

found preferentially in woody and/or perennial plants. High-throughput expression 

profiling among different organs and tissues and in response to environmental cues 

highlighted genes expressed in vascular cambium and/or developing xylem, in addition 

to dynamic modifications in response to environmental stimuli. Based on their 

expression profiles, we selected some promising candidates and carried out their 

functional characterization to get insights into their potential roles in wood formation. 

We used Arabidopsis, which was shown to undergo secondary growth in some 

conditions, to overexpress stabilized versions of EgrIAA4m, 9Am and 20. The 

transgenic lines exhibited auxin-related aberrant phenotypes, such as smaller size, 

impaired root growth and development, and partial sterility. Histochemistry and Py-

GC/MS analysis revealed that the transgenic plants showed obvious modifications in 

xylem and/or fiber cells differentiation and secondary cell wall composition. Altogether, 

the present study provides a comprehensive characterization of the Eucalyptus ARF and 

Aux/IAA gene families and highlights the involvement of some members in the 

regulation of wood development. 
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摘 要 

生长素参与植物生长和发育诸多过程，包括器官的形成、植物的向地和向光反应、

根的发育生长、果实的发育，以及维管束组织的形成和分化。生长素在木材的形

成过程中也发挥着重要作用，主要通过对维管形成层及木质部细胞发育的影响来

调控其形成。生长素响应因子（ARF）和生长素/吲哚乙酸蛋白（Aux/IAA）是植

物生长素响应的主要调节蛋白。桉树作为木材在人类的生产生活中具有重要的经

济价值，其全基因组测序工作已于近期完成，这使得我们可以对桉树 ARF 和

Aux/IAA 这两个家族进行全面的分析。在本论文中，我们一共分离出了 17 个 ARF 

与 24 个 Aux/IAA 基因，并且根据其与拟南芥的同源性对它们进行了重命名。目

前为止，这两个基因家族的数量在桉树中较其它研究过的大多数的被子植物有所

减少。与其它物种的系统发育进化树分析表明在 ARF 家族中存在一个木本植物植

物中占有优势的分支。对不同组织器官、环境因素及植物激素处理实验的高通量

表达分析显示有些基因在维管形成层和/或木质部中有优势表达，而且大部分基

因会对不同的环境因素及激素处理作出响应。为了深入了解桉树 ARF 与 Aux/IAA 

在木材发育过程中的作用，我们选择了一些可能调控木质部发育的 ARF 与

Aux/IAA 基因构建了转基因拟南芥。其中 EgrIAA4m, EgrIAA9Am 与 EgrIAA20 转

基因拟南芥表现出了一些与生长素缺陷相关的表型，比如矮小株型，根与侧根非

正常的生长发育，根向地性的丧失以及育性降低。组织化学及高温分解气相色谱

质朴分析表明转基因植株中木质部细胞的发育以及次生细胞壁的组成成分都发

生了明显的改变。总之，该研究全面分析了桉树 ARF 与 Aux/IAA 两个家族，并

通过反义基因功能分析揭示了有些成员在木质部的生长发育中起着重要的调控

作用。 
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General introduction 

1 

 

General introduction 

Scientific context   

The plant hormone auxin plays a prominent role in regulation of plant growth in 

response to diverse developmental and environmental cues such as organogenesis, 

tropic movement, root growth, fruit development, tissue and organ patterning (Friml 

2003). In woody plants, auxin has been proposed to play a key role in the development 

of secondary xylem cells, a differentiation process involving cell division, expansion, 

secondary cell wall formation and cell death (Miyashima et al. 2013; Sundberg et al. 

2000). Auxin is believed to exert its function in wood formation through its 

perception/signalling pathway, of which Auxin Response Factors (ARFs) and 

Aux/IAAs are two well-known components regulating auxin responsive gene 

expression (Guilfoyle and Hagen 2007; Tiwari et al. 2003). These two families have 

been studied in several annual plants and more deeply in Arabidopsis, but remain 

largely under investigated in tree species. The recent availability of Eucalyptus grandis 

genome (Myburg et al. 2014), the second hardwood forest tree genome fully sequenced, 

offers new opportunities to get insights into the regulation of secondary growth and 

cambial activity by ARF and IAA. Eucalyptus is indeed the most planted hardwood in 

the world, mainly for pulp and paper production but is also foreseen as a dedicated 

energy crop for lignocellulosic biofuel production. My PhD work was supported by the 

European Plant KBBE “Tree for Joules” project aiming at identifying candidate 

transcription factors involved in the regulation of secondary cell wall formation for 

improving their recalcitrance to degradation during the saccharification process.  

Objectives of the thesis 

The overall objective of my PhD was to better understand how auxin is involved in the 

regulation of secondary xylem formation in Eucalyptus through the analysis of two 

main components of the auxin-signalling pathway. 
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The first overarching objective was to survey, identify and characterize all members of 

the ARF and Aux/IAA families in E. grandis and to compare their evolutionary histories 

to that of other genomes. The second aim was to analyse the expression patterns in a 

wide range of tissues and organs and in response to environmental cues in order to 

select the best candidates potentially involved in wood formation. The third objective 

was to functionally characterize using reverse genetics some promising candidates to 

get insights on their potential roles in wood formation. 

Organization of the manuscript 

This thesis manuscript comprises four main chapters. The first chapter consists in a 

bibliographic review on wood formation and auxin. First, it presents actual knowledge 

regarding the development of secondary xylem and its regulation at molecular level in 

this chapter. It also describes auxin homeostasis, auxin signalling and the main roles of 

auxin on regulation different plant development process and wood formation. At last, it 

also explained why Eucalyptus was chosen as a model tree to study auxin action on 

wood formation. 

Chapter II is presented in the form of an article (accepted in Plos one) and presents a 

genome-wide identification and characterization of the ARF family in E. grandis. With 

17 members, the E. grandis ARF gene family is slightly contracted, as compared to 

those of most angiosperms studied hitherto, lacking traces of duplication events. 

Alternative splicing seemed to be a preeminent mechanism in shaping the functional 

diversity of the ARF family in Eucalyptus. We identified a new ARF clade found 

preferentially in woody plants. Finally, this study allowed identification of three ARF 

candidates (ARF4, 10, 19A) potentially involved in the auxin-regulated transcriptional 

program underlying wood formation  

Chapter III is also presented in the form of an article (will be submitted to PCP) and 

presents a comprehensive genome-wide analysis of Aux/IAA gene family in Eucalyptus 

with evidence for EgrIAA4‘s role in wood formation. In this work, 24 functional 
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EgrIAAs were identified. High-throughput expression profiling highlighted Aux/IAAs 

expressed in vascular cambium and/or developing xylem, some showing differential 

expression in response to developmental (juvenile versus mature) and/or to 

environmental (tension stress) cues. We selected EgrIAA4 as the most promising 

candidate gene. Overexpressing of EgrIAA4m in Arabidopsis strongly and negatively 

affected both xylary and interfascicular fibers development, and lignified secondary 

cell wall formation. 

Chapter IV focuses on wood-associated ARFs and IAAs candidate gene selection and 

their functional characterization by reverse genetic in Arabidopsis. Thirteen promising 

candidate genes were selected and six of them have been overexpressed into 

Arabidopsis hitherto. By now, EgrIAA4, EgrIAA9A and EgrIAA20 transgenic lines were 

analyzed both exhibiting alternated lignification pattern in stems and hypocotyls. 
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Chapter I: Bibliographic review 

From the numerous adaptations that land plants have developed during evolution, the 

acquisition of the vascular system some 400 million years ago has been a crucial event 

ensuring their successful earth colonization. Plant vascular systems are composed of 

xylem and phloem. They provide physical strength to plant bodies and transport water, 

nutrients and other substances required for growth and defense. They interconnect all 

the plant body parts by their conductive function, from the root tip to the various organs 

in the shoot. Xylem is the main tissue for transporting water and solute minerals, 

whereas phloem is the route for distributing photosynthetic products and various 

signaling molecules. These two conductive tissues consist of highly specialized cell 

types that arise from undifferentiated stem cells located in lateral meristems via 

asymmetric periclinal cell division (Eames and MacDaniels, 1947; Esau, 1965). In the 

first part of the introduction, we will focus on secondary xylem formation and in a 

second part on auxin and the roles it plays in the different steps of xylem ontogeny. 

Part I Wood or secondary xylem  

1 Wood plays crucial roles for trees and mankind 

1.1 Wood role in trees 

The major functions of wood are to conduct water from roots to the crown, to support 

an ever-increasing mass of the growing tree, whilst adjusting to various environmental 

cues (wind, snow, slope, light) and to contribute to tree growth over more than one year 

by storing temporary reserves (Déjardin et al, 2010). In angiosperm trees, different cell 

types fulfill these three functions. Vessels and fibres are involved, respectively, in water 

conduction and mechanical support, while parenchyma cells, organized in rays, are 

involved in the radial transfer of assimilates between phloem and xylem, their 

temporary storage as starch or lipids, and their remobilization at the new season. As 

fibres and vessels account for the major part of the xylem cell population, wood is 
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mostly made of the secondary cell walls of dead cells. 

1.2 Wood is composed of lignified secondary cell walls of dead fibres 

The majority of plant cells have only primary cell wall, while wood cells are 

characterized by thick lignified secondary cell wall (SCW). The cell starts producing 

the SCW after the primary cell wall is complete and the cell has stopped expanding. 

The SCW is located between the primary cell wall and the plasma membrane and 

contains three different layers S1, S2 and S3 (Fig. I-1), each composed of a network of 

long bundles of cellulose microfibrils, oriented at a fixed angle, and cemented in an 

amorphous matrix of hemicelluloses – xylans mainly –, and lignins. In smaller 

quantities, proteins and pectins are also present (Déjardin et al, 2010). From a 

mechanical point of view, the SCW can indeed be regarded as a composite material, 

like reinforced concrete. The composition of the SCW typically comprises 40-50% of 

cellulose, 25% of hemicellulose, 25-35% of lignin, pectin and cell wall proteins. The 

 

Fig. I-1 Three-dimensional structure of the secondary cell wall of a tracheid (xylem cell). 

The cell wall is divided into different layers, each layer having its own particular arrangement 

of cellulose MFs, which determine the mechanical and physical properties of the wood in that 

cell. These MFs may be aligned irregularly (as in the primary cell wall), or at a particular angle 

to the cell axis (as in layer S1, S2, and S3). The middle lamella ensures the adhesion between 

cells. (Adapted to Plomion et al. 2001) 
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three layers differ from one another with respect to thickness and the orientation of their 

cellulose microfibrils (Plomion et al. 2001). The microfibril angle (MFA) in the S2 layer, 

which is the thickest one, is a parameter widely used in wood technology. The 

biosynthesis of the main polymers will be presented below. 

1.3 Economic importance and end-uses of wood 

Wood represents the most important natural and endlessly renewable resource for 

humans providing timber (e.g. for house building, furniture, packaging), fibres (for pulp, 

paper, plywood) and energy (firewood). It is also an important sink for excess 

atmospheric CO2, one of the major causes of global warming due to the greenhouse 

effect (Demura and Fukuda 2007). Wood is expected to play a significant role in the 

future as a renewable and environmentally cost effective alternative to fossil fuels. As 

the world population is predicted to reach over 9 billion in 2050, the global demand for 

wood for renewable energy, building and pulp and paper will grow rapidly (Mauriat et 

al, 2014). 

The major obstacle to the use of lignocellulosic biomass for the pulp industry and for 

bioethanol production resides in its recalcitrance to degradation, due to the structure 

and composition of the lignified secondary cell walls (SCW) (Séguin 2011). For the 

plant, the presence of lignin confers rigidity and also protects the cell wall 

polysaccharides from pathogens and microbial degradation (Vanholme et al. 2010). 

This high resistance to degradation is also one of the most important industrial 

limitations, where lignin impairs the accessibility of cellulose during kraft pulping as 

well as during saccharification, reducing in the latter the yield of fermentable sugars 

and rendering the whole process costly. The economic importance of wood for the pulp 

industry and more recently for the production of bioethanol have driven many 

researches worldwide aiming at improving SCW degradation (Pauly and Keegstra 2008; 

Burton and Fincher 2014; Carpita 2012). 
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2. Wood plasticity 

Trees are long-living organisms with a sessile lifestyle, which develop in a variable 

environment and are subjected to developmental control. As a consequence, wood is a 

complex and highly variable tissue, the formation of which is developmentally and 

environmentally regulated (Plomion et al, 2001). Wood structure and composition show 

large differences not only between hardwoods and softwood and between different tree 

species, but individual trees also exhibit huge variations in their wood properties. The 

variability occurs at the tissue level (proportion of different cell types) as well as at the 

individual cell level (size, shape, wall structure, texture and chemical composition). 

Anatomical, chemical and physical differences in wood characteristics are not only 

common from tree to tree within the same area, but are also present within a single tree 

(Plomion et al., 2001). This difference in wood properties is important for the end-uses 

of wood as a raw material. Wood plasticity occurs during development and in responses 

to environmental cues. 

Developmental wood plasticity: 

The age of the cambium has an important effect on the type of wood produced. Indeed, 

juvenile wood is formed during the rapid early growth of a tree (usually first 10–12 

years of the tree life but depending on the species). The young cambium located in the 

crown of adult trees also produces juvenile wood. Once this period is finished another 

type of wood, called mature wood, is produced by the mature cambium (Mauriat et al, 

2014). Mature wood differs from juvenile wood by having thicker cell walls, narrower 

cell lumens, larger cellulose microfibril angles and a higher specific density. In terms 

of chemical composition, mature wood shows higher cellulose and lower lignin 

contents (Mauriat et al, 2014; Zobel and Sprague 1998). 

Environmental plasticity: 

Environmental cues trigger the formation of different types of wood, which can be 

found within a single tree genotype.  
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In reaction to gravitropic (wind, slope) or light stimuli, trees develop a reaction wood 

at the upper side of the inclined axes in order to reorient their axes, trunks and branches, 

and to allow their adaptation and harmonious development in their environment (Pilate 

et al, 2004). In angiosperm trees, it is called tension wood (TW), because it is formed 

in zones of the tree held in tension – the upper side of a leaning stem. At the 

macroscopic level, a high eccentricity is often observed in the transverse section of stem, 

suggesting that cell divisions are activated on tension wood side. Tension wood 

generally has fewer, smaller vessels whereas fibres are significantly longer. The most 

obvious and striking feature of TW is the presence in fibres of an inner gelatinous cell-

wall layer. This so-called G-layer consists of almost pure crystalline cellulose in parallel 

microfibrils to the long cell axis (Jourez et al. 2001). The lignin content of the TW cell 

walls is generally decreased (Pilate et al. 2004; Furuy et al. 1970; Habrant et al. 2003). 

The changes in the biophysical properties and morphology of reaction wood cell walls 

have a negative impact on the quality of wood products and their potential industrial 

uses. For instance, TW is a problem for the solid wood industry as it increases 

longitudinal, radial and tangential shrinkage during the drying process (Plomion et al., 

2001). 

Nitrogen availability has been described to influence growth and development as well 

as xylogenesis. Fiber morphology, SCW structure and composition were modified in 

response to high N supply, including lignification pattern (Pitre et al. 2007). Further 

mRNA profiles analysis showed that nitrogen fertilization had overlapping effects with 

tension wood formation (Pitre et al. 2010). Moreover, using pedigree of pseudo-

backcrossed hybrid poplar (Populus trichocarpa × Populus deltoides), Novaes et al. 

(2009) have shown that N fertilization significantly increased all growth traits as well 

as the amount of cellulose and hemicelluloses in the wood whereas a decrease of the 

lignin content was observed.  

Other environmental cues such as temperature, drought have been shown to impact 

wood properties (Gindl et al. 2014; Searson et al. 2004; Moura et al. 2010). 
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3. Wood develops during secondary growth 

Wood, also called secondary xylem, consists of three main cell types: xylem tracheary 

(vessel) elements, xylary fibres, and xylem parenchyma cells (Fig. I-2). Tracheary 

elements, which facilitate water and solute transport between organs, and fibres, which 

provide structural support for the plant, both possess thick secondary cell walls. Xylem 

parenchyma cells lack well-defined secondary cell walls and are implicated in a variety 

of biological processes, including aiding the lignification of secondary cell walls in 

neighbouring vessel elements and fibres (Pesquet et al, 2013; McCann et al. 2001).  

Wood derives from a secondary meristem, the vascular cambium, and is manufactured 

 

Fig. I-2 Schematic model of xylem (wood) formation. Procambial cells and daughter cells 

produced by cambial initials differentiate into phloem cells and xylem (wood) cells. Xylem 

(wood) cells include tracheary elements and fibres. Tracheids and vessels are constituents of 

tracheary elements. Two types of vessels are observed in angiosperms: protoxylem vessels that 

commonly have annular and spiral secondary wall thickenings and metaxylem vessels that 

usually have reticulate and pitted thickenings. (Adapted to Demura and Fukuda 2005) 
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by a succession of four major steps, including cell division, cell expansion (elongation 

and radial enlargement), secondary cell wall thickening (involving cellulose, 

hemicellulose, cell wall proteins, and lignin biosynthesis and deposition) (Plomion et 

al. 2001). In addition, vessels undergo programmed cell death (PCD), resulting in a 

continuous system of adjoining hollow cells that function in water/solute transport. 

During fibre development, PCD is delayed, allowing for more extensive thickening and 

lignification of secondary cell walls, consistent with a primary role for this cell type in 

providing structural support. 

The vascular cambium is derived from the procambium, and parenchyma cells that 

regain the capacity to divide and form a layer of meristematic cells located between the 

primary xylem and phloem in the vascular bundles. Whereas the procambium provides 

a source of vascular stem cells during primary growth, the vascular cambium ensures 

the same role during secondary growth, a prominent phenomena in woody plants where 

it is responsible for the diametral growth of the plant. It is especially important for the 

development of trees, ensuring their perennial life through the regular renewal of 

functional xylem and phloem. An increase in the amount of vascular tissues mediated 

by cambium is one of the characteristics that distinguish dicotyledons and 

gymnosperms from monocots.  

In woody species, the vascular cambium presents unique characteristics since it is 

composed of two distinct cell types, the fusiform initials and the ray initials, which 

differentiate into several particular cell types closely interconnected to constitute the 

secondary xylem or wood, a complex tridimensional tissue (Chaffey, 2002). The 

fusiform initials divide length-wise and produce secondary vascular tissues through 

periclinal divisions in a position-dependent manner: on the inner side, wood elements 

(mostly tracheids in gymnosperms, but also vessel elements, vessel-associated cells, 

axial parenchyma and fibers in dicotyledons) and, on the outer side, phloem cells (sieve 

tubes, and, in dicotyledons, companion cells, axial parenchyma, and fibers) (Fig. I-3). 

Compared to phloem mother cells, xylem mother cells having a greater rate of division, 
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so there is more secondary xylem than phloem in the tree. Anticlinal (radial) divisions 

of the fusiform initials also produce daughter cells similar to mother cells and ensure 

the harmonious increase in circumference of the cambium. Radial initials give rise to 

rays that are essential to the translocation of nutrients between phloem and xylem (Du 

and Groover 2010; Plomion et al. 2001).  

The economic importance of secondary growth and wood formation has focused 

considerable research attention on the function of the vascular cambium in tree species, 

but this question has also been actively studied in Arabidopsis thaliana. With several 

advantages such as genomic resources, Arabidopsis has emerged as a useful model for 

investigating the secondary growth. 

 

 

 
Fig. I-3 Terminology of wood-forming tissues. (Schrader et al. 2003) 
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4. Arabidopsis as a model to study secondary growth 

Although this herbaceous plant does not normally undergo extensive secondary growth, 

two regions of vascular cambium—zones of fascicular cambium and the neighbouring 

zones of interfascicular cambium—are found within the Arabidopsis inflorescence 

stem (Fig. I-4). Despite their proximity to each other and their apparent similarity, these 

two cambial niches have different developmental origins. The fascicular cambium is 

derived from the procambium that developed within the original vascular tissue as it 

was formed during the primary growth of the stem. It is not surprising, therefore, that 

radial differentiation of fascicular cambial cells gives rise to the full range of both xylem 

and phloem cell types. The inflorescence stem fascicular cambium can thus be 

considered functionally analogous to the circumferential vascular cambium of woody 

plants.  

The interfascicular cambium, on the other hand, is thought to arise through the de novo 

recruitment of interfascicular parenchyma cells as primary growth in the stem slows. It 

represents a specialized vascular meristem that gives rise exclusively to the structurally 

important interfascicular fibres. 

 

Fig. I-4 Schematic illustration of the primary and secondary stem anatomy in Arabidopsis. 

The primary stem exhibits disconnected vascular bundles with procambium. In the secondary 

developmental phase, this procambium turns into a fascicular cambium and the cells between 

bundles become an interfascicular cambium. Fascicular and interfascicular cambia interconnect 

to each other and establish a cambium in a circular form. (Miyashima et al. 2013) 
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In contrast to the bundled arrangement of vascular tissues and intervening cambial cells 

in Arabidopsis inflorescence stems, the true stem (hypocotyl) of Arabidopsis forms a 

circumferential vascular cambium that can also undergo substantial secondary growth 

under certain conditions to form so-called ‘Arabidopsis wood’ (Chaffey et al., 2002). 

Examination of cross-sections of this ‘secondary growth’ hypocotyl reveals an axial 

tissue arrangement of large metaxylem tracheary elements dispersed among thick 

xylem fibres, similar to that observed in woody stems of trees (Fig. I-5) (Chaffey et al., 

2002). 

The most prominent difference between the secondary xylem in true woody plant stems 

and in these Arabidopsis ‘secondary’ stems is the lack of well-defined xylem rays and 

the determinate growth habit in the latter. Despite these differences, Arabidopsis 

 

Fig. I-5 Anatomy of primary and secondary vascular tissues in Arabidopsis and in 

comparison with Populus wood-forming region. The same developmental phases can be 

identified in the cross section of (I)Populus stem and (II) 6-week-old Arabidopsis hypocotyl, 

both representing secondary vascular development, as well as (III) in the confocal microscopy 

image of Arabidopsis root tip, representing primary vascular development. CP: cell proliferation 

zone; CE: cell expansion (elongation) zone; CD: cell differentiation zone. (Zhang et al. 2010) 
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provides a useful model for understanding the process of secondary growth in woody 

plants. 

5. Regulation of cambium activity and wood specification 

Plant hormones play important roles to regulate wood formation. For example, ethylene 

and cytokinin acts as positive regulators of wood formation, promoting cambial cell 

proliferation (Love et al. 2009; Nieminen et al. 2008); gibberellin promotes both cell 

division and xylem fibers elongation (Mauriat and Moritz 2009); Auxin is involved in 

different steps: formation and maintenance of the pro(cambium), cell division and cell 

specification. Its role will be examined in more details in a specific paragraph. It is 

worth noting that the different hormones also show crosstalking in control cambial 

growth and differentiation (Sorce et al. 2013). 

5.1 Regulation of cambium identity and activity 

The procambium is formed and maintained by directed auxin flow in the precursors of 

procambium cells (Donner et al. 2009; Ohashi-Ito and Fukuda 2010). In the leaf veins, 

auxin flow is directed by polar localization of an auxin efflux carrier, PINFORMED 1 

(PIN1) and the expression of PIN1 precedes differentiation of the procambium 

precursor cells (Donner et al. 2009). ATHB8, a class III HD-ZIP transcription factor, is 

required for preprocambial development and procambium differentiation, and its 

expression depends on the activity of the auxin response factor MONOPTEROS (MP) 

(Donner et al. 2009). There are five HD-ZIP III genes in Arabidopsis, PHB/ATHB14, 

PHV/ATHB9, REV/IFL1, ATHB8 and CNA/ATHB15. They have been shown to regulate 

the number of procambium cells by promoting xylem differentiation during vascular 

development (Baima et al. 2001; Carlsbecker et al. 2010; Ilegems et al. 2010). 

The maintenance of the pluripotent identity of the cambium is crucial for continuous 

meristem activity. Current evidence indicates that a similar molecular mechanism 

regulating shoot apical meristem (SAM) and root apical meristem (RAM) is likely 



Chapter I 

15 

 

applicable in cambial meristems. Recent findings have identified a peptide-receptor-

transcription factor signaling pathway, TDIF/CLE41/CLE44-TDR/PXY-WOX4, that 

plays a crucial role in the maintenance of the vascular meristem organization during 

secondary growth (Hirakawa et al. 2010), controls cambium maintenance (Fig. I-6) 

(Hirakawa et al. 2010; Eitchells and Turner 2010; Elo et al. 2009). The small peptide 

TDIF (Tracheary element Differentiation Inhibitory factor), that is processed from the 

translated products of CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) 

41/CLE44 in Arabidopsis, is produced in the phloem; it interacts with its receptor, the 

receptor-like kinase TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED 

WITH XYLEM), which is expressed in (pro)cambium. This TDIF-TDR/PXY signal 

promotes proliferation of procambial cells and suppresses their xylem differentiation. 

PXY-CLE41/CLE44 loop suppresses the differentiation of vascular stem cells into 

xylem cells and thus maintains the undifferentiated pluripotent status in the cambium. 

WOX4, a WUSCHEL HOMEOBOX RELATED gene, mediates this ligand-receptor 

signaling to regulate the maintenance of (pro)cambium cells. Cambium activity is 

reduced in the hypocotyl and inflorescence stem of the wox4 mutant, indicating that 

 

Fig. I-6 A current model suggests that the procambial cell population is maintained by 

the autoregulation loop of CLE41/44–PXY signalling system in a non-cell-autonomous 

manner. According to this model a signal molecule, TDIF (CLE41/CLE44), is produced and 

secreted by phloem and their neighboring cells. Procambial cells perceive the TDIF signal 

through the PXY (TDR) receptor. TDIF signal promotes maintenance and proliferation of 

cambial (stem) cells and inhibits their differentiation into xylem cells. (Elo et al. 2009) 
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WOX4 regulates, but is not required to establish, the meristem (Hirakawa et al. 2010; 

Suer et al. 2011). Another WOX-family gene, WOX14, acts redundantly with WOX4 to 

regulate cambial cell proliferation (Etchells et al. 2013). The TDIF/CLE41/CLE44-

TDR/PXY-WOX4 signaling pathway appears to act downstream of auxin signaling in 

regulating cambial cell proliferation and seems to be evolutionarily conserved between 

both woody and herbaceous species, as it has been described in both Arabidopsis and 

Populus (Schrader et al. 2004). Two other receptor-like kinases, REDUCED IN 

LATERAL GROWTH1 (RUL1) and MORE LATERAL GROWTH1 (MOL1), were 

also found to be activator and repressor of cambium activity, respectively (Agusti et al. 

2011b). 

In Arabidopsis, class I KNOX transcription factors are major regulators of SAM activity. 

Plants overexpressing a class I KNOX gene, BREVIPEDICELLUS (BP)/KNAT1, 

exhibited impaired lignin deposition while bp mutants show ectopic lignification in the 

inflorescence stem, indicating that BP regulates xylem cell differentiation during 

vascular development (Mele et al. 2003). In Populus, an ortholog of BP, 

ARBORKNOX2 (ARK2), is expressed in both SAM and cambium region. 

Overexpression of ARK2 in Populus results in the expansion of the cambium region 

and inhibition of differentiation of tracheary elements and fibres in secondary xylem as 

well as phloem fibres. Knock-down of ARK2 results in early appearance of lignified 

secondary xylem and thicker SCWs (Du et al. 2009). 

KANADI genes (KAN1-4) belong to one clade of the GARP transcription factor family. 

Gain-of-function KANADI alleles result in a loss of cambium activity, while loss-of-

function result in increased cambium activity. For example, ectopic KAN1 expression 

results in a complete loss of vascular tissue development. KANADI and Class III HD-

ZIP show function mutual antagonism through effects on the auxin flow (Ilegems et al. 

2010).  
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5.2 Regulation of xylem specification 

Several Arabidopsis mutants defective in the radial patterning of vascular tissues also 

have defects in the radial (abaxial–adaxial) patterning of leaves, suggesting the 

involvement of HD-ZIP III and KANADI transcription factors in the xylem cell type 

patterning in root and stem (McConnell et al. 2001; Kerstetter et al. 2001; Emery et al. 

2003; Cano-Delgado et al. 2010). Class III homeodomain-leucine zipper (HD-ZIP III) 

transcription factors, including AtHB8, CORONA/AtHB15 (CNA), PHABULOSA 

(PHB), PHAVOLUTA (PHV), and REVOLUTA (REV), are expressed in procambium, 

cambium and developing xylem, and play important roles in cambium and xylem 

differentiation in Arabidopsis. Loss-of-function mutants rev plants display disruption 

of the differentiation of interfascicular fibers and secondary xylem, while AtTHB8 and 

AtHB15 appear to have functions antagonistic to the REV in vascular formation (Prigge 

et al. 2005). HD-ZIP III gene expression is positively regulated by auxin, and the 

expression of AtHB8 is directly activated by the auxin-response transcription factor 

MONOPTEROS (MP) at Arabidopsis preprocambial stages (Donner et al. 2009). The 

stability of transcripts are regulated by microRNA165/166, and all the gain-of-function 

mutations disrupt the miR165/166 target sequence (Demura and Fukuda 2007). In 

additional, brassinosteroids can also activate HD-ZIP III expression and thus promote 

xylem differentiation (Ohashi-Ito and Fukuda 2003). In Populus, knock down of 

POPCORONA results in abnormal lignification, while overexpression of a miRNA-

resistant POPCORONA results in delayed lignification of xylem and phloem fibres 

during secondary growth (Du et al. 2011). When the microRNA resistant form of 

popREVOLUTA (PRE) (orthologous to AtREV) is overexpressed, it leads to abnormal 

cambium formation in the cortex (Robischon et al. 2011).  

Other transcription factors such as class I KNOX and bHLH TFs are also involved in 

secondary growth. Populus ARK2, the ortholog of Arabidopsis BP/KNAT1, is expressed 

in both SAM and cambium region, and ARK2 overexpression Populus displays 

expansion of the cambium region and inhibited xylem differentiation. Knock-down of 
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ARK2 results in early appearance of lignified secondary xylem and thicker SCWs (Du 

et al. 2009). TMO quadruple mutants completely lost vascular tissue in roots, and TMO5 

and LHW co-expression plants induced dramatic periclinal divisions within the 

vasculature of roots (De Rybel et al. 2013). 

6. Secondary cell wall formation and its transcriptional regulation 

6.1 Biosynthesis of the three main polymers 

Cellulose 

Cellulose, as a major structural of the cell wall, is the most abundant biopolymer 

synthesized on land. It is consists of several linear polymer chains of ß-1, 4 linked 

glucose residues. The fundamental structure units of cellulose are the microfibrils 

(MFs), which are formed through intra- and inter-chain hydrogen bonds between the 

different parallel linear glucan chains. In higher plants, the synthesis of cellulose is  

believed to be catalyzed by cellulose synthase (CesA), organizing into cellulose 

synthase complexes (CSCs) localized on the plasma membrane (Brett 2000; Saxena 

and Brown 2005). CSCs exist as rosettes, containing six subunits arranged in a 

hexagonal structure, and it has been postulated that each of the six rosette subunits 

contains six cellulose synthase (CesA) proteins. It means that each rosette therefore has 

a total of 36 CesA proteins (Doblin et al. 2002; Li et al. 2014).  

CesAs are intEgral plasma membrane proteins with multiple transmembrane domains 

and a central catalytic domain (Sethaphong et al. 2013; Slabaugh et al. 2014). The 

Arabidopsis genome encodes ten CesA genes, which are roughly classified into two 

groups: AtCesA1, AtCesA3, AtCesA6, AtCesA2, AtCesA5 and AtCesA9 are involved in 

primary cell walls cellulose synthesis (Li et al. 2014); while AtCesA4, AtCesA7 and 

AtCesA8 are required for cellulose synthesis in secondary cell walls (Taylor et al. 2003). 

Among primary CesAs, AtCesA1 and AtCesA3 are essential, while AtCesA6 is 

redundant with AtCesA2, AtCesA5 and AtCesA9. For example, the temperature 

sensitive mutant, radial swelling root 1 (rsw1) caused the rosette to disintegrate, 
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revealing the importance of AtCesA1 in the formation of an intact CSC during the 

synthesis of primary cell walls (Arioli et al. 1998). Secondary cell wall cellulose 

synthesis gene mutation results in collapsed or irregular xylem cells, and loss of 

function of any single secondary CesA of AtCesA4 (irx5), AtCesA7 (irx3) or AtCesA8 

(irx1) causes a complete xylem morphology defect, indicating the CSCs require at least 

three subunits to function (Taylor et al. 2000). Furthermore, 18 CesA gene loci have 

been identified in Populus, and based on sequence analysis, PtiCesA4, PtiCesA7-A and 

-B, and PtiCesA8-A and -B were found to be homologous to AtCesA4, AtCesA7 and 

AtCesA8, respectively (Song et al. 2010).  

In additional, many non-CESA encoding genes have also been identified to be involved 

in cellulose synthesis, such as the korrigan gene and sucrose synthase gene (SuSy). 

Mutations in korrigan gene (KOR1), which encodes a putative membrane bound β-1, 4 

endoglucanase, resulted in defects in cellulose synthesis in both primary and secondary 

cell walls (Liebminger et al. 2013; Paredez et al. 2008; Szyjanowicz et al. 2004). UDP-

glucose, a substrate of CesA in the synthesis of cellulose glucan in plants, can be made 

from sucrose through a reaction catalyzed by sucrose synthase (SUSY) (Amor et al. 

1995; Haigler et al. 2001).  

Hemicellulose 

Hemicelluloses, which present along with cellulose in almost all plant cell walls, are 

polysaccharides containing many sugar monomers including glucose, xylose, mannose, 

galactose, rhamnose, and arabinose. They are a heterogeneous group of polysaccharides, 

consisting of xyloglucan, xylans, mannans and glucomannans, and β-(1→3, 1→4)-

glucans. Xylans is a predominant hemicellulose and accounts for ∼20% of the total dry 

weight of wood in angiosperms woody plants, while mannans such as 

galactoglucomannans are the major hemicellulose in the SCW of gymnosperms (Capek 

et al. 2002; Mellerowicz et al. 2001). 

Hemicelluloses are synthesized by a variety of glycosyltransferases (GTs) located in 
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the Golgi membranes. In Arabidopsis, many GT genes have been identified involved 

in xylan biosynthesis through the characterization of collapsed xylem Arabidopsis 

mutants, such as AtFRA8/IRX7, AtIRX8, AtIRX14, AtIRX14-L, AtF8H, AtPARVUS, 

AtIRX10 and AtIRX10-Like (IRX10-L), AtIRX9, AtIRX9-L. AtIRX9, AtIRX14, AtIRX10 

and AtIRX10-L are involved in synthesis of the β-D-(1→4)-xylan backbone elongation, 

while the AtFRA8/IRX7, AtIRX8, AtF8H, and PARVUS are thought to play a role in 

forming this oligosaccharide (Brown et al. 2009; Lee et al. 2007a; Lee et al. 2007b; 

Pauly et al. 2013; Persson et al. 2007; Wu et al. 2009). In poplar, a few GT genes 

involved in xylan biosynthesis have also been studied. PoGT47C, PoGT8D and 

PoGT43B show high sequence similarity to AtFRA8, AtIRX8 and AtIRX9, respectively, 

and it has also been shown that PoGT43B and PoGT47C can rescue the defects of 

Arabidopsis Atirx9 and Atfra8 mutants, respectively. Moreover, poplar GT8E, 

GT8F/PdGATL1.1 and PdGATL1.2 are identified as functional orthologs of 

Arabidopsis PARVUS since they are able to rescue the Arabidopsis irregular xylem 

phenotype (Kong et al. 2009; Lee et al. 2009a, b). 

Lignin 

Lignin is phenolic biopolymer produced by the dehydrogenative polymerization of 

essentially three different hydroxycinnamyl alcohols, the p-coumaryl, coniferyl, and 

sinapyl alcohols, that differ in the degree of methoxylation at the C3 and C5 positions 

of the aromatic ring giving raise to p-hydroxyphenyl (H), guaiacyl (G), syringyl (S), 

and units, respectively (Fig. I-7) (Baucher et al. 2003). 

Lignin embeds the polysaccharide matrix of the SCW to make them rigid and 

impervious. Lignin content and monomeric composition vary widely among different 

species, individuals, cell types, and cell wall layers and are influenced by 

developmental and environmental cues. In general, lignins from gymnosperms and 

related species are rich in G units and contains low amounts of H units, whereas dicots 

lignins are mainly composed of G and S units (Weng and Chapple 2010). H-units are 

elevated in softwood compression wood and may be slightly higher in grasses (Boerjan 
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et al. 2003; Weng and Chapple 2010). Vessel element walls are rich in G lignin whereas 

fibre walls contain S–G lignin. In addition to developmentally programmed deposition 

of lignin, some biotic and abiotic stress such as wounding and pathogen infection can 

also induce the lignin biosynthesis (Vanholme et al. 2010). 

The monolignols are synthesized from phenylalanine through the general 

phenylpropanoid and monolignol-specific pathways via a series of enzymes (Fig. I-7). 

Phenylalanine ammonia lyase (PAL) converts phenylalanine to trans-cinnamic acid at 

the entry point of the phenylpropanoid pathway. Cinnamate 4-hydroxylase (C4H) and 

p-coumarate 3-hydroxylase (C3H), two cytochrome P450 enzymes, catalyze the first 

two aromatic hydroxylation reactions. 4-Hydroxycinnamoyl-CoA ligase (4CL) 

 

Fig. I-7 Phenylpropanoid and monolignol biosynthetic pathways. The grey box represents the 

phenylpropanoid and monolignol biosynthetic pathways that are generally accepted for 

angiosperms. The general phenylpropanoid pathway starts with PAL and ends with CCoAOMT, 

whereas the monolignol-specific biosynthesis starts with CCR. (Adapted to Van Acker et al. 2013) 
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activates p-coumaric acid to the activated thioester form p-coumaroyl CoA, which 

represents the most important branchpoint within the central phenylpropanoid 

biosynthesis in plants (Vogt 2010). Hydroxycinnamoyl-CoA: shikimate 

hydroxycinnamoyl transferase (HCT), which belongs to the BAHD acyltransferase 

superfamily, catalyzes the formation of p-coumarate esters using shikimate or quinate 

as an acyl acceptor. Caffeoyl-CoA O-methyltransferase (CCoAOMT) catalyzes the first 

transmethylation reaction in the phenylpropanoid pathway, synthesizing feruloyl-CoA 

from caffeoyl-CoA (Fig. I-7). The first step of the monolignol-specific pathway starts 

with cinnamoyl-CoA reductase (CCR) (Van Acker et al. 2014). CCR and Cinnamyl 

alcohol dehydrogenase (CAD), two oxidoreductases, convert the hydroxycinnamoyl-

CoA esters to their corresponding alcohols (Fig. I-7). Ferulate 5-hydroxylase (F5H) and 

caffeic acid O-methyltransferase (COMT) are two S lignin biosynthesis specific 

enzymes. 

The different monolignol subunits are synthesized in the cytoplasm and then 

transported to the cell wall for subsequent polymerization (Wang et al. 2013). Recently, 

it has been reported that AtABCG29, an ATP-binding cassette transporter, acts as a p-

coumaryl alcohol transporter (Alejandro et al. 2012). However, as a large transporter 

gene family in plant, ABC transporters for coniferyl alcohol and sinapyl alcohol remain 

to be identified and characterized (Wang et al. 2013). Following transport to the 

secondary cell wall, monolignols are oxidized and subsequently polymerized by 

peroxidases and laccases to form lignin (Baucher et al. 2003). 

6.2 The SCW transcriptional network 

The SCW formation is a critical step of wood formation. Through the recent studies in 

Arabidopsis as well as other species such as Populus, Eucalyptus and pine, several key 

transcriptional switches have been identified to regulate the entire differentiation 

process. A simplified SCW regulatory network is shown in Fig. I-8. 

NAC transcription factors 
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NAC (NAM, ATAF1/2 and CUC2) transcription factors is a large gene family in plant 

and they have been extensively studied in several plants especially in model plant 

Arabidopsis and poplar. Some of them have been shown to play pivotal roles in wood 

formation. Recent studies show that four of them (VND6, VND7, NST1 and 

SND1/NST3) are the top of the master switches regulating several downstream 

 

 

Fig. I-8 Transcriptional regulatory network controlling secondary cell wall biosynthesis in 

Arabidopsis and Populus. Arabidopsis genes are presented in green and their Populus orthologs 

in orange. The NAC genes (blue boxes) function as first-level master switches; they induce 

expression of the second-level master switches, MYB46 and MYB83 (red box), which in turn 

activates a plethora of downstream TFs (yellow boxes), as well as many genes directly involved 

in secondary wall biosynthesis. The MYB target TFs promote the biosynthesis of lignin, 

cellulose, hemicellulose and xylan biosynthesis. A multilevel feed-forward loop structure is 

intEgrated in the transcriptional network: both NAC and MYB master switches directly induce 

expression of many of the same genes (dashed arrows). (Zhang et al. 2014a) 
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transcription factors which lead to the secondary cell wall formation. VASCULAR-

RELATED NAC-DOMAIN6 (VND6) and VND7 are transcription switches for plant 

metaxylem and protoxylem vessel formation, respectively (Kubo et al. 2005), while 

NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) and 

SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1/NST3) are 

two mater regulators promoting fiber differentiation (Mitsuda et al. 2007; Zhong et al. 

2007). The other two NAC transcription factors SND2 and SND3, which are indirect 

and direct targets of SND1 respectively, positively regulate the secondary wall 

thickness of both xylary fibers and interfascicular fibers (Hussey et al. 2011; Zhong et 

al. 2008). In Populus, PtrWND (PtVNS) genes, homologs of the four Arabidopsis NAC 

transcription factors, which are highly expressed in developing secondary xylem tissue, 

has been shown to be master switches activating the secondary cell wall biosynthesis 

(Ohtani et al. 2011; Zhong and Ye 2010).  

MYB transcription factors 

Several MYB transcription factors have also been shown to be important regulators of 

secondary cell wall formation. First, Eucalyptus EgMYB2 was found to bind the 

EgCCR and EgCAD2 gene regulatory regions and act as a positive regulator of 

secondary cell wall formation and lignin biosynthesis (Goicoechea et al. 2005). Then 

in Arabidopsis, the MYB proteins have been identified as the direct target of secondary 

wall NACs master switches regulating secondary wall biosynthesis. For example, 

MYB46 and MYB83, both of which are SND1 direct targets, were found to function 

redundantly as second-level master switches regulating secondary wall biosynthesis. 

Over-expression of MYB46 or 83 in Arabidopsis induces activation of secondary wall 

biosynthetic genes for cellulose, xylan and lignin and results in ectopic deposition of 

secondary walls in cells that are generally parenchymatous, while mutations of MYB46 

and 83 results in lack of secondary wall thickening (McCarthy et al., 2009; Zhong and 

Ye, 2012). More recently, four Populus orthologs PtrMYB2, PtrMYB3, PtrMYB20 and 

PtrMYB21 were also proved to be the direct target of the master regulators PtrWND 
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and function as second-level master switches of wood formation (McCarthy et al. 2010; 

Zhong et al. 2013). In addition, other MYB transcription factors such as MYB58, 

MYB63 and MYB85, were shown to be regulated by the SND1 close homologs NST1, 

NST2, VND6, and VND7 and their downstream target MYB46 and/or MYB83 to 

control biosynthesis of cellulose, hemicellulose, xylan and lignin (Zhong et al. 2008; 

Zhou et al. 2009).  

The Class II KNAT7 transcription factor 

KNAT7, which has been shown to be one of the direct target of both SND1 and MYB46 

(Ko et al. 2009; Zhong et al. 2008), is a regulator of secondary cell wall biosynthesis. 

Loss-of-function knat7 mutants displayed exhibit both irx and enhanced fiber cell wall 

thickness, while overexpression plants displayed opposite phenotype with decreased 

secondary wall thickening in interfascicular fibres (Li et al. 2012). So KNAT7 acts as a 

transcriptional repressor rather than an activator in regulating secondary wall 

biosynthesis. KNAT7 can also interact with members of the Ovate Family Protein (OFP) 

transcription co-regulators, such as OFP1 and OFP4. The ofp4 mutant exhibited similar 

irx and fibre cell wall phenotypes as knat7, so it has been proposed that KNAT7 forms 

a functional complex with OFP proteins to regulate aspects of secondary cell wall 

formation (Li et al. 2011). 

Part II Auxin-key regulators of plant growth and development 

1 Auxin homeostasis 

The plant hormone auxin has a crucial role in plant development, and this depends on 

the graded distribution of auxin. The auxin homeostasis maintains the active auxin at 

an optimal level for growth and development. This homeostasis depends on the 

combined effects of all the process: biosynthesis, transport, conjugation and 

degradation. 
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1.1 Auxin biosynthesis 

IAA is mainly produced in the shoot apical meristems and young leaves of plant. In 

2001, Ljung and colleagues proved that even all parts of the Arabidopsis seedling can 

synthesize low levels of IAA, but young leaves have the highest biosynthetic capacity 

(Ljung et al. 2001). Auxin biosynthesis in plants is fairly complex. Multiple pathways 

that contribute to de novo auxin biosynthesis have been postulated. There are two major 

widely accepted pathways to synthesize IAA: the Trp-independent and Trp-dependent 

pathways (Mano and Nemoto 2012). In Trp-independent pathway, indole-3-glycerol 

phosphate or indole is the likely precursor, but little is known about the biochemical 

 

Fig. I-9 Presumptive pathways for IAA biosynthesis in plants. Blue arrows indicate steps for 

which the gene and enzymatic function are known in the tryptophan-dependent IAA biosynthetic 

pathway. Red arrows indicate the indole alkaloid and serotonin biosynthetic pathway. Mustard-

coloured arrows indicate the Brassicaceae species-specific pathway. Black arrows indicate steps 

for which the gene(s) and enzymatic function(s) are unknown. Dashed mustard-coloured arrows 

indicate steps for which the gene and enzymatic function(s) remain poorly understood. Letters 

in italics show genes involved in the conversion process. Lower case letters in italics indicate 

bacterial genes. (Adapted to Mano and Nemoto, 2012).  

(IAAID) NIT1?

NIT2?

NIT3?



Chapter I 

27 

 

pathway to IAA. In Trp-dependent pathway, there are four proposed pathways for 

biosynthesis of IAA from tryptophan in plants (Fig. I-9): i) the IAM (indole-3-

acetamide) pathway; ii) the IPA (indole-3-pyruvate acid) pathway; iii) the TAM 

(tryptamine) pathway; and iv) the IAOx (indole-3-acetaldoxime) pathway.  

1.2 Auxin conjugation and degradation 

Although free IAA is the biologically active form of the hormone, the majority of auxin 

in plants is found in a conjugated state. These Auxin conjugations have been identified 

in both higher and lower plants and are considered hormonally inactive. There are three 

main types of conjugation: 1) ester conjugates with sugar moieties; 2) amide conjugates 

with amino acids; 3) high molecular weight conjugates with peptides or proteins also 

via amide bonds (Ludwig-Muller 2011). These conjugates are involved in auxin storage, 

transport and degradation to maintain auxin homeostasis. Auxin ester conjugates, 

including IAA-glucose, IAA-myo-inositol and molecular weight IAA-glycan, have 

been identified from a variety of plant species (Normanly 2010). 

1.3 Auxin transport 

Auxin synthesis occurs in some specific tissues, and the distribution of auxin is 

generally realized by two distinct pathways. Throughout the plant, IAA is transported 

over long distances (from the source tissues to the roots) through the phloem by mass 

flow. In addition, there is also another auxin transport system called auxin polar 

transport (PAT), which is a slower, regulated and carrier-mediated cell-to-cell 

directional transport system (Zazimalova et al. 2010). This PAT within plant tissues 

appears to be unique to auxin, as it has not been detected for any other signaling 

molecule. PAT provides essential directional and positional information for 

developmental processes, such as vascular differentiation, apical dominance, organ 

development and tropic growth (Blakeslee et al. 2005). The PAT is based on 

chemiosmotic hypothesis. Because IAA is a weak acid, it exists in a charged anionic 

form (IAA-) in the cytoplasm (pH ~ 7). In the more acidic cell wall environment (pH ~ 
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5.5), ~ 15% of the molecules are in the uncharged form (IAAH), which can enter the 

cell by lipophilic diffusion across the plasma membrane (Zazimalova et al. 2010). This 

pH differential between the cytoplasm and wall means that auxin can move into but not 

out of the plant cells. So the auxin ion requires facilitators or transporters to exit cells 

(Fig. I-10). The majority (85%) of IAA remains in its dissociated form (IAA-) and 

would require a carrier for its active uptake across the cell. Three types of auxin 

transporters have been studied. The AUX1/LAX (AUXIN RESISTANT 1/LIKE AUX1) 

are influx auxin carriers (Bennett et al. 1996), while PIN (PIN-FORMED), and ABCB 

(ATP Binding Cassette subfamily B) are efflux auxin carriers (Friml et al. 2002; Yang 

and Murphy 2009). Recently, a novel PIN like family of auxin transport facilitators 

termed PILS (PIN-LIKES) has been discovered by in silico studies and appears to be 

involved in the regulation of auxin homeostasis in Arabidopsis (Barbez et al. 2012). 

More recently, WALLS ARE THIN1 (WAT1) has also been demonstrated to be a 

vacuolar auxin transport facilitator mediate auxin homoeostasis (Ranocha et al. 2013). 

2 Auxin signaling 

In different plant species, auxin can rapidly regulate gene expression in a few minutes 

 

Fig. I-10 Model of intercellular auxin transport. (Adapted to Friml, 2010) 
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and control many plant developmental processes. Auxin acts by regulating transcription 

through the action of at least three protein families called the TIR1/AFB F-box proteins, 

the Aux/IAA transcriptional repressors, and the ARF transcription factors. The best 

characterized pathway model is the SCFTIR1/AFB-proteasome complex mediated the 

degradation of Aux/IAA which releases auxin response factor (ARF) to induce early 

auxin-responsive gene expression (Chapman and Estelle 2009). Auxin signaling is also 

involved in non-transcriptional regulation, but the mechanism is not as well 

characterized. AUXIN BINDING PROTEIN 1 (ABP1) is the best characterized auxin 

binding proteins and implicated in non-transcriptional auxin signaling.  

2.1 Auxin receptors 

By now, two distinct classes of auxin receptors have been recognized: TIR1 (transport 

inhibitor response 1) and AFB (auxin-signaling F-box proteins) that control 

transcriptional responses to auxin, and ABP1 (auxin binding protein 1), that controls a 

wide variety of growth and developmental processes.   

TIR1 (transport inhibitor response 1)/AFB (auxin-signaling F-box proteins) 

TIR1 and additional five AFB proteins, AFB1 to AFB5, are six F-box proteins, and 

function as auxin receptors (Dharmasiri et al. 2005a; Dharmasiri et al. 2005b). These 

six proteins can be grouped into three subclusters according to the phylogenetic analysis, 

TIR1/AFB1, AFB2/AFB3 and AFB4/AFB5. They form SCF (SKP1-Cullin-F-box) 

protein complex with SUPPRESSOR OF KINETOCHORE PROTEIN 1 (SKP1 or 

ASK1), CULLIN1 (CUL1) and RING BOX1 (RBX1) (Cardozo and Pagano 2004). 

SCF complex is the largest family of E3 ubiquitin – protein ligases and catalyze the 

ubiquitination of diverse regulatory and signalling protein destined for proteasomal 

degradation. 

Previous study showed TIR1/AFB1-3 function as auxin receptors and interact with 

Aux/IAA in an auxin dependent manner. Genetic experiments indicate that reducing the 

number of functional TIR1/AFB1-3 proteins in plant results in increasing resistance to 
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exogenous auxin. Comparison of single and multiple mutants in the TIR1, AFB1, AFB2, 

and AFB3 genes and protein interaction analysis with Aux/IAA showed that TIR1 

appears to make the largest contribution to auxin response followed by AFB2. Double, 

triple and quadruple mutants showed a gradual decrease in auxin response and defects 

in hypocotyl, cotyledon, root growth, leaf morphology and flow development. 

Although TIR1/AFB1-3 show close relationships, their biochemically function are 

distinct. For example, AFB1 and AFB2 do not rescue the tir1 mutant even regulated by 

the TIR1 promoters (Parry et al. 2009).  

Members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling, 

while both AFB4 and AFB5 function as auxin receptors based on in vitro assays 

(Greenham et al. 2011; Hu et al. 2012). AFB4 and AFB5 are the major targets of the 

picolinate herbicides in Arabidopsis. Genetic experiments showed that afb4-2 single 

and afb4-2 afb5-5 double mutants displayed opposite effects compare to tir1 afb2 

mutant, such as elongated petioles and longer hypocotyls. In addition, the afb4-2 mutant 

had shorter roots and produced more lateral roots/primary root length, so it suggests 

that AFB4 has a role in anchor or adventitious root production (Hu et al. 2012). 

ABP1 (auxin binding protein 1) 

ABP1 was discovered from maize coleoptiles 40 years ago (Hertel et al. 1972) and it 

was a soluble 22kDa glycoprotein that specifically binds to auxin. The majority of 

ABP1 protein localizes to the endoplasmic reticulum (ER), while some ABP1 (~22%) 

is also found on the plasma membrane (Timpte 2001) and works as a functional receptor 

for auxin perception. ABP1 is essential for early embryogenesis, root development, leaf 

expansion, cell morphogenesis, and subcellular distribution of PIN auxin transporters. 

In addition, auxin binding by ABP1 coordinates the cytoskeleton structure by regulating 

the activity of two GTPases ROP2 and ROP6 (Sauer and Kleine-Vehn 2011). However, 

it is not known how ABP1 transmits the auxin signal to regulate these cytoplasmic 

responses, while the mechanism of the auxin recognition site is quite different from 

TIR/AFB receptors. The crystal structure analysis of ABP1 suggested that ABP1 forms 
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a dimer through the ß-barrel structure, and auxin binds within a predominantly 

hydrophobic pocket with a zinc ion coordinated with three histidines and a glutamate 

in each subunit (Fig. I-11A) (Woo et al. 2002). Until recently, it was proved that the 

plasma membrane–localized TMK1 receptor–like kinase is functionally and physically 

associated with ABP1 at the cell surface to regulate auxin- and ABP1-mediated 

activation of ROP GTPase signaling in non-transcriptional signaling way (Fig. I-11B) 

(Xu et al. 2014). It was also demonstrated that ABP1 is involved in the control of 

Aux/IAA homeostasis (Fig. 11B) (Tromas et al. 2013). 

2.2 Aux/IAAs family 

Several classes of auxin-responsive gene families have been identified and 

characterized in different plants, such as Aux/IAA, GH3 (Gretchen Hagen3) and SAUR 

(Small Auxin-up RNA) (Guilfoyle et al. 1998). Most of their transcription level can be 

directly altered without novo protein synthesis, so these gene families are termed 

 

Fig. I-11 ABP1 auxin signaling pathway. (A) ABP1 Regulates Clathrin-Dependent 

Endocytosis. Auxin binding to ABP1 reduces clathrin-dependent endocytosis, leading to higher 

retention of PIN proteins and, subsequently, higher auxin efflux rates. (Sauer and Kleine-Vehn 

2011) (B) Model for ABP1 action on TIR1/AFB–AUX/IAA pathway and for coordination of 

root growth. ABP1 promotes stabilization of AUX/IAA repressors and maintenance or 

restoration of transcriptional repression by acting negatively on the TIR1/AFB pathway 

(Adapted to Xu et al 2014 and Tromas et al. 2013). 
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primary/early auxin-responsive genes (Abel and Theologis 1996). Aux/IAA gene as a 

primary response to auxin was firstly identified in soybean and pea (Ainley et al. 1988; 

Theologis et al. 1985; Walker and Key 1982). Then Aux/IAA genes have been found in 

many plant species, including Arabidopsis (Overvoorde et al. 2005), poplar (Kalluri et 

al. 2007), tomato (Audran-Delalande et al. 2012), maize (Wang et al. 2010) and rice 

(Jain et al. 2006). 

Canonical Aux/IAA proteins contain four highly conserved amino acid sequence motif 

designated domain I, II, III and IV (Fig. I-12), although several proteins lacking one or 

more of these domains are also included in the family. Domain I which contains a 

conserved Leu repeat motif (LxLxLx) similarity within the EAR motif is responsible 

for the repressing activity of the proteins (Tiwari et al. 2004), and it can also form co-

repressor with TOPLESS through this domain (Szemenyei et al. 2008). The instability 

of Aux/IAA proteins involves conserved domain II composed by a hydrophobic motif 

GWPPV (Worley et al. 2000), which mediates interaction with SCFTIR1 ubiquitin-ligase 

complex for targeting of Aux/IAA to the 26S proteasome (Gray et al. 2001; Kepinski 

and Leyser 2004). An amino acid substitution in the dEgron sequence (mutation of G 

or P in GWPP motif) results in a stabilization of the affected protein and a decrease in 

auxin response (Ouellet et al. 2001; Reed 2001; Tian et al. 2003). Domain III and IV 

which are located in the carboxyl part of the protein, can mediate homo- and herero-

dimerization with other Aux/IAA members, as well as dimerization with ARFs which 

contain similar domains (Kim et al. 1997; Ouellet et al. 2001; Ulmasov et al. 1997). 

The Aux/IAA proteins do not contain DNA binding domain, so they cannot bind to the 

 
Fig. I-12 Structural and functional domains of Aux/IAA proteins. (Colón-Carmona A et 

al. 2000) 
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auxin-responsive elements (AuxREs) directly and regulate auxin-mediated gene 

expression by interaction with ARF proteins, which have a B3-like DNA binding 

domain (Guilfoyle and Hagen 2007). In addition to conserved domains, Aux/IAA 

proteins display putative nuclear localization signals (NLS). NLS are composed by both 

the bipartite structure of conserved basic doublet KR between domains I and II and 

basic amino acids in domain II, and the SV40-type NLS located in domain IV.  

Aux/IAA function has been mostly studied in Arabidopsis through the characterization 

of gain-of-function mutants (mutation in domain II). axr5/iaa1 Arabidopsis mutant 

showed defects in root and shoot tropisms, leaf morphology and inflorescence (Yang et 

al. 2004). Both gain-of-function and loss-of-function mutant of AtIAA3 is characterized. 

Gain-of-function shy2/iaa3 mutant showed a reduced lateral root formation and 

increased root hair and slow root re-orientation, while loss-of-function mutant 

displayed the opposite phenotype, indicating that IAA3 plays a central role in auxin 

regulation of root growth and gravitropism. Shy2/iaa3 mutant also causes short 

hypocotyls, leaf formation in dark and short inflorescence stems (Tian and Reed 1999). 

axr2/iaa7 mutant causes agravitropic root and shoot growth, a short hypocotyl and stem, 

and auxin-resistant root growth (Nagpal et al. 2000). The bdl/iaa12 Arabidopsis mutant 

fails in initiating root meristem during early embryogenesis showing a specific role of 

AtIAA12 during this process (Hamann et al. 2002). iaa28-1, slr/iaa14 and msg2-1/iaa19 

suppress lateral root development (Fukaki et al. 2002; Rogg et al. 2001; Tatematsu et 

al. 2004). The axr3/iaa17 Arabidopsis mutant presents shorter primary roots and 

formation of adventitious roots with altered root gravitropism. Moreover, leaves are 

darker and smaller than wild type and plants are dwarf showing altered apical 

dominance (Leyser et al. 1996). 18 of 29 Aux/IAA T-DNA insertion mutants in 

Arabidopsis have been characterized, but none of them displays visible developmental 

defects, even for the double or triple mutants of closely homologs, suggesting that there 

is an extensive functional redundancy among Aux/IAA gene family members 

(Overvoorde et al. 2005). 
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2.3 ARFs (auxin response factors) family 

Auxin response factors are transcription factors that regulate the expression of auxin 

response genes. Arabidopsis ARF family is composed of 23 members (Okushima et al. 

2005b). Most ARFs contains a conserved N-terminal DNA-binding domain (DBD), a 

variable middle transcriptional regulatory region (MR) and a carboxy-terminal 

dimerization domain (CTD) (Fig. I-13) (Guilfoyle and Hagen 2007). The DBD of ARFs 

bind with specificity to TGTCTC auxin response elements (AuxRE) in promoter 

regions of auxin response genes. The middle region (MR) is very variable. The QSL-

rich (glutamine, serine, leucine) middle region ARFs function as an activatior whereas 

the S-rich (serine), SPL-rich (serine, proline, leucine) and SL/G-rich (serine, leucine 

and/or glycine) middle region ARFs are repressor. Five Arabidopsis ARFs, ARF5-8 

and 19, function as transcriptional activators when tested on auxin response genes in 

transfected protoplasts, while the remainder of the ARFs function as transcriptional 

repressors. The carboxy-terminal dimerization domain is similar to those found in 

Aux/IAA proteins designated to domains III and IV, makes it can function as a homo- 

and hetero- dimerization among the ARFs or with several Aux/IAA proteins. ARF TF 

family also has been identified and characterized in a number of species, such as maize 

 

Fig. 1-13 The classification and structures of the ARF protein family in Arabidopsis 

(Guifoyle and Hagen, 2007). 
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(Xing et al. 2011), rice (Wang et al. 2007), tomato (Kumar et al. 2011, Zouine et al. 

2014), poplar (Kalluri et al. 2007), etc.  

To understand their function in plant growth and development, the expression pattern 

of ARF genes have been studied. ARF genes display specific expression pattern, ARF1 

and ARF6 mainly expressed in developing flowers, ARF2 in floral organs and seedlings, 

ARF3 and ARF4 in reproductive and vegetative tissues, ARF5 in embryos and vascular 

tissues, ARF7 in roots, seedlings and embryos, ARF8 in seedlings and flowers, ARF12 

in seeds, ARF16 in roots, leaves, vascular tissues and embryos, ARF19 in roots and 

seedlings (Guilfoyle and Hagen 2007). A number of closely related ARFs (ARF12, -14, 

-15, -17, -20-23) which located near the centromere of chromosome 1 were expressed 

exclusively in the embryo (Rademacher et al. 2011). Moreover, lots of Arabidopsis arf 

mutants have been studied. arf2 exhibits pleiotropic developmental phenotypes 

including delayed flowing, leaf senescence and floral abscission, thick and long 

inflorescence as well as defective apical hook formation, and arf1 mutations enhanced 

many arf2 phenotypes (Ellis et al. 2005; Okushima et al. 2005a). arf3/ettin displays 

abnormal development of flowers (Sessions et al. 1997). arf4 mutant shows no 

phenotype whereas ett arf4 double mutants presents transformation of abaxial tissues 

into adaxial ones in all aerial parts. It has been proven that ARF3 and ARF4 have 

overlapping functions in leaf and floral organ patterning and cooperate with KANADI 

genes to specify abaxial cell identity (Pekker et al. 2005). ARF5/ MONOPTEROS (MP) 

gene is involved in embryo development and vascular tissue formation (Hardtke and 

Berleth 1998). The AtARF7/NPH4 gene regulates hypocotyls tropism and the 

sensitivity of auxin and ethylene (Harper et al. 2000). arf7 arf19 double mutant displays 

strong auxin-related phenotype not observed in single mutant, including severely 

impaired lateral roots formation and abnormal gravitropism in both hypocotyl and root 

(Okushima et al. 2005b). AtARF6 and AtARF8 both regulate flowering process by 

coordinating stamen development, petal expansion, anther dehiscence and gynoecium 

maturation. arf6 arf8 double mutant has complete arrested flower development before 

bud opening and are completely infertile, while arf6 and arf8 single mutants display 
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delayed flower maturation and reduced fertility (Wu et al. 2006). arf10 and arf16 single 

mutant present no phenotype whereas the arf10 arf16 double mutant has root cap 

defects and abnormal root gravitropism (Wang et al. 2005b). Screens for T-DNA 

insertion mutations have identified mutations in at least 18 of the Arabidopsis ARF 

genes, but few of these have distinctive growth or developmental phenotypes beyond 

those genes identified by forward genetic approaches, suggesting that there are 

functional redundancies among the ARF proteins (Okushima et al. 2005b).  

The expression of ARF genes have been shown to respond to environmental and 

hormonal signals. Such as ARF1 and 8 response to light, while ARF4, 5, 16, 19 response 

to auxin. Studies in Arabidopsis also have found that several ARF genes are post-

transcriptionally regulated by micro-RNA (miR). ARF10, 16 and ARF17 display site-

recognition of miR160 (Axtell and Bartel 2005), ARF6 and ARF8 regulated by miR167 

(Wu et al. 2006), while ARF2, 3 and ARF4 are post-transcriptionally regulated by a 

trans-acting-small interfering RNAs (ta-siRNA) called TAS3 ta-siRNA (Fahlgren et al. 

2006). 

2.4 Protein-protein interactions in auxin signaling 

Aux/IAA and ARF are two groups of well-studied transcription factors mediate auxin 

response, and auxin signaling is mainly regulated by the interactions of Aux/IAA and 

ARF proteins. The similar conserved domains III and IV present in these proteins allow 

the formation of Aux/IAA-ARF heterodimers. The effects of auxin depend on its 

concentration, with high and low doses eliciting different responses. At basal auxin 

levels, Aux/IAAs are relatively stable, so the (activating) ARFs are bound by Aux/IAAs 

(Tiwari et al. 2001), which recruit the TOPLESS co-repressor and associated 

chromatin-modification machinery, thereby inhibiting transcription (Szemenyei et al. 

2008). When auxin levels are high, auxin promotes the formation of SCFTIR1/AFB –

Aux/IAA complex which in turn facilitates ubiquitination and degradation of the 

Aux/IAAs (Chapman and Estelle 2009). The degradation of Aux/IAAs results in the 

release of ARFs which can then activate the transcription of target genes via binding to 
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the Auxin Responsive Elements (AuxRE) present in the promoter regions of auxin-

regulated genes (Fig. 1-14) (Guilfoyle and Hagen 2007).  

29 Aux/IAAs and 23 ARFs protein-protein interactions in Arabidopsis have been 

deeply studied by high-throughput yeast two-hybrid approach (Vernoux et al. 2011). 

This analysis revealed that 433 interactions among the 1,225 tested combinations 

between Aux/IAAs and ARFs and themselves. Among the 433 interactions, the 

majority of Aux/IAA proteins interact with themselves and ARF activators, while ARF 

repressors have no or very limited interactions with other proteins in the network (Fig. 

I-15). So it is suggesting that ARF repressors may more act as a competition for AuxRE 

element binding with ARF activators rather than be directly involved in auxin signaling 

through Aux/IAA regulation (Vernoux et al. 2011; Weijers et al. 2005). Moreover, the 

in planta analysis also proved that auxin signals are converted into specific responses 

 

Fig. I-14 Auxin signaling in Arabidopsis. SCFTIR1 and related SCF complexes bind auxin 

and target Aux/IAA proteins for degradation. (a) At low cellular levels of auxin, transcription 

of auxin response genes is repressed by the Aux/IAAs. (b) When auxin cellular levels increase, 

auxin binds to TIR1, enhances its affinity for the Aux/IAAs, and promotes their ubiquitination 

and subsequent degradation, thus permitting the ARF proteins to promote transcription. 

(Santner, et al. 2009) 
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by matching pairs of co-expressed ARF and Aux/IAA proteins. AtIAA12 paralog 

IAA13 could interact with ARF5, regulating embryonic root formation (Weijers et al. 

2005), and the specific interaction between AtIAA14 and AtARF7 or AtARF19 is 

essential for the inactivation of lateral root formation (Fukaki et al. 2006).  

3 Roles of auxin in plant development 

Auxin plays critical roles in plant cell growth and in a wide variety of developmental 

processes. The effects of auxin was first documented by Darwin in 1880, then 45 years 

later, by Went in 1926. The term generic term “auxin” in fact represents a family of 

related compounds: indole-3-acetic acid (IAA) is considered to be the major 

biologically active auxin, while a number of related compounds with auxin activity like 

indole-3-butyric (IBA), 4-Chloroindole-3-acetic (4-Cl-IAA) and phenylacetic acid 

(PAA) have also been identified in various plant species (Simon and Petrášek 2011). 

3.1 Auxin promotes cell division, and cell expansion 

On the cellular level, auxin influences aspects of cell division, cell elongation and cell 

differentiation according to auxin concentration and cell/tissue-specific responses. 

 

Fig. I-15 The Arabidopsis ARF-Aux/IAA interaction map. Most of Aux/IAAs are able to 

interact with ARF activators while ARF repressors display very few interactions in 

Arabidopsis. (Vernoux et al. 2011) 
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Auxin starvation of suspension cells causes cell division arrest while addition of auxin 

to the arrest cells will lead to restoration of cell division (Perrot-Rechenmann 2010). 

Auxin can induce the main gene expression promoted the cell division, such as Cyclin-

dependent kinase (CDKA) and D-type cyclins which plays a critical role in G1 to S and 

G2 to M progression (Koroleva et al. 2004), while reduce the expression of cell division 

inhibitors such as KRP (Himanen et al. 2002). One of the auxin receptors ABP1 is also 

critical for auxin regulation of the cell cycle and expansion. Inactivation of ABP1 in 

tobacco cells leads to cell-cycle arrest in G1 phase even in the presence of auxin (David 

et al. 2007). Overexpression of ABP1 leads to an increased expansion of some leaf 

tissues and the null Arabidopsis ABP1 mutant displays altered cell expansion (Chen et 

al. 2001a; Chen et al. 2001b). Plant cell extension requires uptake of water and 

irreversible extension of the cell wall, which includes wall loosening (short time frame) 

and deposition of new wall material (long time frame). Auxin is one of the major stimuli 

affecting these mechanisms, and this auxin-dependent cell expansion follows a dose-

response curve in which high concentrations are inhibitory (Barbier-Brygoo et al. 1991; 

Evans et al. 1994). 

3.2 Auxin roles in organ patterning 

Auxin plays critical role in regulation of organ patterning, such as embryo and vascular 

pattern, root initiation, apical dominance, tropism and fruit development. The role of 

auxin in vascular patterning will be reviewed in the next paragraph.  

Vascular patterning 

Vascular tissues are generated during embryogenesis and organogenesis and response 

for water and nutrients conduction. Auxin plays a key role in embryonic vascular 

pattern, and disrupt auxin polar transport result in defects in leaf veins (reviewed in 

Berleth and Mattsson 2000). In Arabidopsis, lax2 knockouts exhibited vascular breaks 

in their cotyledons. Mutations in auxin response related genes such as MONOPTEROS 

(MP)/AUXIN RESPONSE FACTOR 5 (AFR5), AUXIN RESISTANT 6 (AXR6), and 



Chapter I 

40 

 

BODENLOS (BDL)/IAA12 result in incomplete vascular systems and defects in embryo 

axis formation and embryonic root (Berleth T 1993; Hamann T 1999; Hobbie L 2000; 

Przemeck et al. 1996). Auxin can induce xylem tracheary element differentiation in 

suspension cells under special conditions (Fukuda 1997) and local auxin sources can 

induce the formation of new vascular strands from parenchymatic cells (Sachs 1986).  

Lateral root formation 

In most eudicot plants, lateral roots (LRs) initiate from anticlinal cell divisions of 

pericycle cell layers adjacent to the xylem pole (Bellini et al. 2014; Barlow et al. 2004; 

Dubrovsky et al. 2001). Recent studies in several model plants have shown that LR 

formation is dependent on auxin (Peret et al. 2009; Fukaki et al. 2007, Fukaki and 

Tasaka 2009; Lavenus et al. 2013; Lucas et al. 2008). In plant cells, many auxin-

responsive genes are regulated by auxin through Aux/IAA–ARF auxin-signalling 

modules as described in 2.2.4. Molecular genetic studies with mutants defective in LR 

formation have shown that several Aux/IAA–ARF modules play important roles in the 

developmental steps during LR formation. Gain-of-function slr-1 mutation in the 

SLR/IAA14 blocks pericycle cell division for LR initiation, resulting solitary-root 

phenotype (Fukaki et al. 2002; Vanneste et al. 2005). The arf7 arf19 loss-of-function 

double mutant also has a few LRs, but the arf7 and arf19 single mutants do produce 

LRs, indicating that ARF7 and ARF19 have redundant functions for LR formation 

(Okushima et al. 2005). In addition, the SLR/IAA14, ARF7 and ARF19 genes are co-

expressed in root tissues and SLR/IAA14 interacts with ARF7 and ARF19 in yeast 

yeast two-hybrid system, which strongly suggested that the stabilized mutant IAA14 

constitutively inhibits the activity of ARF7 and 19, thereby repressing the downstream 

genes for LR initiation (Okushima et al. 2005; Fukaki et al. 2005). Therefore, auxin 

was proposed to promote the degradation of SLR/IAA14, resulting in the activation of 

ARF7/19-dependent transcription of the target genes (such as LBD16/ASL18) involved 

in LR initiation (Wilmoth et al. 2005; Okushima et al. 2005; Okushima et al. 2007; 

Fukaki et al. 2005). At present, several gain-of-functions Aux/IAA members, including 
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IAA28, AXR5/IAA1, SHY3/IAA3, CRANE/IAA18 and MSG2/IAA19 also showed 

decreased number of LRs, indicating that auxin signalling dependent on these Aux/IAAs 

is necessary for LR formation (Overvoorde et al 2010). More recently, a multiple 

AUX/IAA–ARF modules regulate lateral root formation has been demonstrated by Goh 

et al. (2012) (Fig. I-16): IAA28 module regulates LR founder cell specification (De 

Rybel et al. 2010), then SLR/IAA14-ARF7-ARF19 module regulates nuclear migration 

and asymmetric cell divisions of the LR founder cells (Goh et al. 2012). Moreover, this 

  

Fig. I-16 Schematic of lateral root (LR) formation regulated by SLR/IAA14–ARF7–ARF19 

and SHY2/IAA3–ARFs auxin-signalling modules. LR initiation is controlled by the 

SLR/IAA14–ARF7–ARF19 auxin-signalling module (orange box) by the activation of 

LBD16/ASL18 and its related LBD/ASL proteins (red arrow 1). After initiation, the 

SHY2/IAA3–ARFs signalling module (green box) plays a role not only for LR primordium 

development and LR emergence after the SLR/IAA14–ARF7–ARF19 module (red arrows 2 and 

3) but also for inhibition of SLR/IAA14–ARF7–ARF19-dependent LR initiation in the xylem 

pericycle cells by affecting auxin homeostasis (blue dotted line). (Goh et al. 2012) 
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process is also regulated by BDL/IAA12-MP/ARF5 which represses ectopic pericycle 

cell divisions (Goh et al. 2012). SHY2/IAA3-ARFs positively regulate LR primordium 

development and in parallel inhibit LR formation by affecting auxin homeostasis (Goh 

et al. 2012).  

Flower and fruit development 

As known, auxin plays a critical role in regulating flower and subsequent fruit 

development (Dharmasiri et al., 2005b; Liscum and Reed, 2002). Auxin accumulation 

controls the floral primordium initiation (Reinhardt et al., 2000); it is also essential for 

anther development (Cecchetti et al. 2008) and involved in stamen and pollen 

development. Several mutants disrupted in either auxin biosynthesis (yuc2yuc6), 

transport (tir1afb), or signalling (arf6arf8, ettin/arf3, mp/arf5) exhibit flowering defects 

that are variable but typically involve alterations in organ numbers, organ spacing, and 

gynoecium morphology (Nagpal et al. 2005; Cecchetti et al. 2008).  

Auxin plays a critical role in fruit development, beginning with flower formation, 

through fruit set, fruit growth and ripening (de Jong et al. 2009b, Sundberg and 

Ostergaard 2009, Ruan et al. 2012). In Arabidopsis alteration of AtARF8 expression 

leads to the formation of parthenocarpic fruits (Goetz et al. 2007). In the loss-of-

function tomato iaa9 mutant ovary develops prior to pollination leading to precocious 

fruit set and marker fruit parthenocarpy (Wang et al. 2005a). Moreover application of 

auxin results in a delayed fruit ripening (Aharoni et al. 2002; Cohen 1996). Recent data 

are also uncovering new roles for other Aux/IAA and ARF proteins in fruit growth after 

fruit set. It was recently demonstrated that tomato IAA27 and ARF10 are involved in 

the regulation of seed development and the size and shape of the fruit (Bassa et al. 2012, 

Hendelman et al. 2012). Silencing of ARF4, which is expressed strongly in tomato 

pericarp resulted in enhanced accumulation of starch and chlorophyll content, which 

suggests the involvement of auxin signaling in the control of chloroplastic activity and 

sugar metabolism in the fruit (Jones et al. 2002, Sagar et al. 2013). 
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Apical dominance 

In intact plants, the shoot apex grows predominantly and inhibits outgrowth of axillary 

buds. After decapitation of the shoot apex, outgrowth of axillary buds begins. This 

phenomenon is called an apical dominance, and it is regulated by the plant hormones 

auxin and cytokinin (CK). Auxin, derived from the shoot apex, inhibits the growth of 

axillary buds, while CK, thought to be derived from the roots, promotes the growth of 

axillary buds (Leyser 2003; Shimizu-Sato et al. 2001). Tanaka et al. (2006) proposed 

that in intact plants, auxin is basipetally transported and represses expression of the IPT 

gene (a key enzyme in CK biosynthesis) in the stem, then consequently, axillary buds 

lack the ability to grow out. On the other hand, once the shoot apex is decapitated, the 

auxin level in the stem decreases, repression of IPT gene expression is released, CK 

levels increase and axillary buds grow out. After axillary buds grow out, de novo 

synthesized IAA derived from a new shoot apex flows to the stem and again represses 

IPT gene expression.  

3.3 Typical auxin insensitive responses 

Auxin regulates a host of plant developmental and physiological processes through the 

SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. 

The domain II of the Aux/IAA is responsible for ubiquitin-mediated proteolysis, so 

when the mutation happened in this domain, the Aux/IAA protein will be stabilized and 

further resulted in altered auxin sensitivity and response. Most of the insight into the 

biological function of Aux/IAA proteins gathered to date comes from this 

characterization of dominant, gain-of-function mutations. Gain-of-function AtIAA12 

mutant bdl is insensitive to auxin and displayed several auxin related phenotypes. The 

strong lines displayed lacked hypocotyl, root and primary root meristem and the 

vasculature of the cotyledons was reduced (Hamann et al. 1999). The bdl homozygous 

mutant plants were short with rolled-up leaves and the apical dominance was reduced. 

Semidominant AtIAA3 mutant shy2 showed less sensitive to auxin and adult plants were 

extremely dwarfed with curled-up leaves. The seedlings displayed larger and curled up 
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cotyledons and shorter hypocotyls, and it could make leaves in dark. The lateral roots 

were largely reduced and primary roots were shorter than wild-type, and the root 

gravitropic response were altered (Tian and Reed 1999). Other gain-of-function 

Aux/IAA mutants also displayed these similar auxin insensitive responses, such as 

slr/IAA14, msg2/IAA19, IAA28, etc. 

4 Auxin signal and wood formation 

Several hormonal signals have been shown to be involved in cambial activity and xylem 

development (reviewed in Sorce et al. 2013), while the auxin indole acetic acid (IAA) 

is considered to be the primary hormonal signal among those (Fig. I-17).  

 

Fig. I-17 Summary of the main biological effects of IAA on cambium development and 

xylem and phloem differentiation processes. The diagram on the left shows the 

hypothesized relationship between the longitudinal auxin gradient concentration (decreasing 

from the top to the base of the stem) and the pattern of vessel development. Light micrograph 

shows a transverse section of Populus stem. Cr cambial region, Ec enlarging xylem cells, 

MXy maturing xylem, Ph phloem (Sorce et al. 2013) 
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The phenomenon of recruiting existing parenchyma cells for differentiation into files 

of procambial precursors is observed both during normal leaf vein development and in 

response to rupture of existing vascular strands (Sachs 1986). Early experiments 

established that ectopic application of the hormone auxin [indole-3-acetic acid (IAA)] 

was sufficient to trigger the specification of vascular tissue, including proliferation of 

cambial cells and final differentiation of vascular cell types (reviewed in Berleth and 

Mattsson 2000). Auxin (supported by cytokinin) can induce xylem tracheary element 

differentiation in suspension culture cells of Zinnia and Arabidopsis (Fukuda 1997). In 

1981, Sachs proposed the ‘canalization of auxin flow hypothesis’ as a model for the 

auxin-mediated formation of vascular tissues (Sachs, 1981). In this model, channels of 

preferential auxin flow are created when a series of cells gradually become specialized 

for directional auxin transport. Once established, these channels effectively drain auxin 

from surrounding cells, resulting in localized concentration of auxin within distinct cell 

files, and this shift in auxin distribution was hypothesized to subsequently induce 

vascular tissue formation. The ‘canalization of auxin’ model thus provided a single 

mechanism that could account for both the initial specification and the physical 

contiguity of developing vascular tissues. The auxin-induced vascular differentiation 

response is: (1) local, as vascular strand formation is initiated at the specific site of 

auxin application; (2) polar, as vascular strand formation progresses from the auxin 

source toward the basal side of the plant; and (3) continuous, as it generates 

uninterrupted files of vascular cells (Scarpella et al. 2010). In normal plants, auxin is 

predominantly produced in apical regions, such as young leaves, from which it is 

transported basally to roots, such a steady polar flow of auxin induces the continuity of 

vascular tissues along the plant.  

The proposed canalization of auxin was supported by the fact that disruption of auxin 

polar transport result in defects in leaf veins (Berleth and Mattsson 2000) and by the 

identification of genes involved in auxin signalling and transport. Mutations in auxin 

response related genes such as MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 

(AFR5), AUXIN RESISTANT 6 (AXR6), and BODENLOS (BDL)/IAA12 result in 
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incomplete vascular systems and defects in embryo axis formation and embryonic root 

(Berleth 1993; Hamann 1999; Hobbie 2000; Przemeck et al. 1996). mp mutants also 

have severely attenuated levels of expression of the PINFORMED1 (PIN1) gene 

(Wenzel et al. 2007). Asymmetric localization of PIN1 in plant cells is thought to 

establish a directional auxin flow. In the Arabidopsis leaf, PIN1 and MP are co-

expressed during very early stages of procambial cell specification, and their spatial 

pattern of expression gradually changes from initially broader domains to a single file 

of cells, as predicted for positive feedback onto the auxin canalization process 

(Scarpella et al, 2006; Wenzel et al. 2007). 

Recent findings have identified auxin-mediated basic helix-loop-helix (bHLH) TF 

dimers as important factors regulating early vascular development, including TARGET 

OF MONOPTEROS5 (TMO5), LONESOME HIGHWAY (LHW) and their closest 

homologs (reviewed in Zhang et al. 2014a). Vascular tissue differentiation was totally 

blocked in the roots of TMO quadruple mutants. By contrast, co-overexpression of 

TMO5 and LHW induced dramatic periclinal divisions within the vasculature of roots. 

Whether these factors interact to regulate secondary growth in different species is still 

an open question. 

The major path of auxin flow along the stems of pine and poplar trees is in the vascular 

cambium, then auxin is distributed in a radial concentration gradient, with highest levels 

in vascular cambium, where cell division takes place, then decline rapidly toward the 

xylem and phloem (Fig. I-17, 18) (Uggla et al. 1998; Uggla et al. 1996). Thus, it has 

been suggested that auxin acts as in a manner similar to a morphogen to provide 

positional information for the division of wood-forming tissue into distinct 

differentiation zones. High auxin concentrations may be interpreted as a signal for cell 

division, intermediate levels may promote cell expansion and low levels may be read 

out as a signal inducing the deposition of secondary cell walls. So auxin concentration 

could define the fate of differentiating cells. High levels of auxin in cambium initial 

mother cells would maintain cambial cells meristematic, whereas low levels would lead 
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to differentiation into either xylem or phloem. In pinus explants lacking an apical auxin 

source, cambial derivatives are not able to maintain their fusiform shape and 

differentiate into parenchymatic cells instead of xylem tracheids (Savidge 1983). This 

suggest that auxin is required for maintaining the meristematic identity of the cambium, 

while it seems factors other than auxin likely to contribute to subsequent cell fate 

decision. So the role of auxin in promoting procambial cells to differentiate into xylem 

is still unclear. Moreover, Nilsson et al. (2008) did auxin-responsive transcriptome 

analysis in hybrid aspen wood forming tissues through depleting stem segments form 

endogenous auxin and then adding exogenous auxin to monitor global gene expression. 

Surprisingly, expression patterns of only a few auxin-responsive genes correlated well 

with the auxin concentration gradient, including transcription factors such as PttHB8 

and those of the Aux/IAA gene family (Nilsson et al. 2008). In addition, the transcripts 

of auxin-responsive genes responded dynamically to the changes in auxin levels, rather 

than being dependent on the steady state of auxin concentration. Moreover, although 

the auxin levels in cambium undergo only subtle seasonal changes (Uggla et al. 2001), 

the stability of PttIAA3 protein is quite different between the active growth and 

 

Fig. I-18 Auxin concentration gradient across wood-forming tissue. Auxin concentrations 

higher than threshold 1 (T1), correspond to the cell division zone, concentrations between T1 

and T2 with cell expansion and below T2 with secondary cell wall formation (SCW). (Bhalerao 

and Fischer, 2014) 
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dormancy stage (Baba et al. 2011). These findings argue against auxin displaying 

morphogen-like activity, and support the idea that auxin signaling controls cambial 

activity by modulation of auxin responsiveness (Bhalerao and Fischer 2014). Nilsson 

et al. (2008) hypothesized that auxin could regulate secondary xylem development 

through two mechanisms: (1) direct regulation of the expression of a few key genes, 

including some transcription factors; (2) posttranscriptional destabilization of 

transcriptional repressors.  

During the auxin concentration gradient formation, PIN-FORMED 1 (PIN1)-like auxin 

efflux carries has been suggested to play an important role in trees (Hellgren et al. 2004; 

Schrader et al. 2003). In order to redistribute polarly transported auxin from the 

cambium into phloem and xylem, efflux carriers would need to be localized to the 

lateral membrane of cambial cells and their derivatives. Although PIN proteins have 

not yet been systematically localized in cambia, PIN1, which is strongly expressed in 

Arabidopsis inflorescence stems, has been shown to localize not only to basal plasma 

membranes but also in the lateral plasma membrane at the basal end of parenchymatic 

xylem cells (Galweiler et al. 1998; Sauer et al. 2006). Similarly, PIN3, which is 

involved in redirecting the auxin flux upon gravistimulation in the root tip, localizes to 

the inner lateral membrane of the starch sheath of the Arabidopsis inflorescence stem 

(Friml et al. 2002). In both a pin1 and pin3 mutant the radial extension of derivatives 

of the interfascicular cambium is reduced (Agusti et al. 2011a). In stems of revolute 

(rev) mutants, which are defective in the formation of interfascicular fibres, PIN3 and 

PIN4 is dramatically reduced (Zhong and Ye 2001). Another auxin transporter which 

be involved in this auxin gradient is the ATP-binding cassette (ABC) transporter 

ABCB14. The abcb14 mutant displays reduced polar auxin transport and a mild radial 

cell expansion phenotype in the xylem (Kaneda et al. 2011). More recently, WAT1 has 

been demonstrated as a vacuolar auxin transporter. WAT1 mutants revealed two cell 

wall-related phenotypes in Arabidopsis stems: a defect in cell elongation, resulting in a 

dwarfed habit and little to no secondary cell walls in fibres. Secondary walls of vessel 

elements were unaffected by the mutation (Ranocha et al. 2010). In summary, 
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phenotypes of auxin carrier mutants related to wood formation have either not been 

reported or are difficult to interpret due to an absence of auxin distribution data in those 

mutants (Agusti et al. 2011a, Kaneda et al. 2011).  

The control of vessel size is an important trait for ensuring the ascent of water and 

minerals from roots to leaves and adaptation of plants to the environment. Auxin 

concentration has also been proposed to be involved in the regulation of vessel size and 

density (Aloni and Zimmermann 1983). The hypothesis is that high auxin concentration 

near the leaves stimulate rapid cell differentiation resulting in narrow vessels, while low 

auxin levels further down result in wide vessels because of the slow differentiation, 

which permits more cell expansion before secondary wall deposition. Thus, along the 

tree axis, auxin induces gradual gradients of increasing vessel diameter and decreasing 

vessel density from leaves to roots, which ensuring the ascent of water and minerals 

from roots to leaves and the adaptation of plants to the environment (Aloni 2001). 

Although the detailed mechanisms of how IAA would regulate growth and 

differentiation are not fully understood, the aforesaid hypothesis is substantiated by 

several observations: (1) the major sources of IAA are developing buds and young 

shoots (Uggla et al. 1998); (2) IAA is transported basipetally from the leaves towards 

the roots (Aloni 2001); (3) the major path of the IAA flow in tree stems is in the vascular 

cambium (Sundberg et al. 2000); (4) there is a general decrease in the IAA 

concentration towards the stem base (Aloni 2001).  

As trees are long living organisms with sessile lifestyle, they have to adapt to changing 

environmental conditions throughout their lifetimes which may span decades and 

centuries in some cases. In particular, vascular stem cell activity shows plasticity in 

response to mechanical stress which affects wood formation and quality. In angiosperm 

woody species, a local increase in cambial cell division induces the formation of tension 

wood in the upper side of the leaning tree stems (Paux et al. 2004; Hellgren et al. 2004). 

Auxin has been proposed to be implicated in the tension response, and many different 

experiments have indicated this (Little and Savidge 1987). For example, application of 
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either exogenous auxin or auxin transport inhibitors was shown to induce the gelatinous 

G-fibres characteristics of tension wood (Pilate et al 2004). Although measurements of 

endogenous auxin failed to reveal significant changes in auxin balance in the cambial 

region tissues (Hellgren et al. 2004), a rather large set of auxin-related genes were found 

to be differentially expressed in developing poplar tension wood (Andersson-Gunneras 

et al. 2006). 

Despite the fact that auxin has long been proposed as primary regulator of cambial 

activity and wood formation (Uggla et al. 1996, Sundberg et al. 2000), the auxin-

regulated transcriptional programs underlying wood formation remain largely under 

investigated. 

Part III The Eucalyptus, an evergreen angiosperm tree for wood 

formation 

Eucalyptus species, commonly referred to as eucalypts, are native to Australia and the 

islands to its north. It is a large genus of evergreen hardwood trees and comprises more 

than 700 species, belonging to the angiosperm family Myrtaceae (Brooker 2000). 

Eucalyptus species occur naturally from sea level to the alpine tree line, from high 

rainfall to semi-arid zones and from the tropics to latitudes as high as 43° south. Species 

of Eucalyptus are cultivated widely in the tropical and temperate world, though most 

species do not tolerate frost. A mature Eucalyptus may take the form from a low 

shrubby mallees (less than 10 m) to a straight-trunked forest up to 90 m tall. 

Due to its wide adaptability, extremely fast growth rate, good form, and excellent wood 

and fibres properties, Eucalyptus species have become the most valuable and most 

widely planted forest trees on a world-wide basis. They are cultivated mainly in tropical 

and temperate zones. Today Eucalyptus can be found in Brazil, India, Portugal, South 

Africa, China, Uruguay, Ethiopia, California and more than 100 countries across six 

continents about more than 20 million hectares. The rotation cycles have relatively 
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shorter (5-7 years) compared to teak (20-40 years). The rotation time also depends on 

the trunk diameter desired, for example 4-5 years for heating wood, 7-10 years for paper 

pulp and 15 years or more for furniture wood. The productivity of managed Eucalyptus 

forests can reach to 20-50 m3 ha-1 yr-1 due to improved genetic breeding and silviculture, 

against about 15 m3 ha-1 yr-1 for the classical coniferous forests. 

Eucalyptus is the most common short fibres source for pulpwood to make pulp. 

Eucalyptus globulus (in temperate climates) and the hybrid of Eucalyptus urophylla x 

Eucalyptus grandis (in tropical climates) are the most used varieties in papermaking. 

They are also utilized for a diverse array of products including sawn timber, mine props, 

poles, firewood, essential oils, honey and tannin as well as for shade, shelter and soil 

reclamation. In rural communities of many developing countries, eucalypt wood is an 

important source of fuel and building material. In today’s "new carbon economy", 

eucalypts are receiving attention as fast-growing, short-rotation, renewable biomass 

crops for energy production. It is for instance listed as one of the U.S. Department of 

Energy's candidate biomass energy crops. 

The genome of Eucalyptus grandis BRASUZ1 has been fully sequenced and annotated 

(Myburg et al. 2014), offering new opportunities to get insights into the regulation of 

secondary growth and cambial activity by auxin-signalling mediators. Understanding 

the mechanisms that underlie auxin regulation in Eucalyptus wood formation is of 

interest both in the context of plant development and as a path to improve 

lignocellulosic biomass production and quality as a dedicated energy crop for 

lignocellulosic biofuel production. It is worth noting that Eucalyptus is an evergreen 

tree that do not present dormancy in contrast to poplar a deciduous tree, allowing further 

comparison of the regulation of cambium activity and xylem differentiation between 

the two only forest genus sequenced hitherto.

 

 

 

  





 
Chapter II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genome-wide Characterization and Expression 

Profiling of the AUXIN RESPONSE FACTOR 

(ARF) Gene Family in Eucalyptus grandis 
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Abstract

Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular
stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription
of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis
genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of
high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of
most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene
truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in
Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new
ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different
organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or
developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of
three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation.

Citation: Yu H, Soler M, Mila I, San Clemente H, Savelli B, et al. (2014) Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR
(ARF) Gene Family in Eucalyptus grandis. PLoS ONE 9(9): e108906. doi:10.1371/journal.pone.0108906

Editor: Marcel Quint, Leibniz Institute of Plant Biochemistry, Germany

Received July 2, 2014; Accepted August 27, 2014; Published September 30, 2014

Copyright: � 2014 Yu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All Eucalyptus ARF sequences used in this
paper are available in phytozome http://www.phytozome.net/. E. globulus RNA Seq Illumina reads are provided in File S1.

Funding: This work was supported by the Centre National pour la Recherche Scientifique (CNRS), the University Paul Sabatier Toulouse III (UPS), the French
Laboratory of Excellence project ‘‘TULIP’’ (ANR-10-LABX-41; ANR-11-IDEX-0002-02) and the Plant KBBE TreeForJoules project (ANR-2010-KBBE-007-01 (FR) and P-
KBBE/AGR_GPL/0001/2010 (FCT, PT)). HY was supported by PhD grants from the China Scholarship council. MS was supported by a Postdoc fellowship ‘‘Beatriu de
Pinós’’ thanks to the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya. JAPP acknowledges Fundação para a Ciência e
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1 Introduction

The plant hormone auxin plays a prominent role in the

regulation of plant growth in response to diverse developmental

and environmental cues such as organogenesis, tropic movement,

root growth, fruit development, tissue and organ patterning and

vascular development [1]. Auxin plays a crucial role in the

specification of vascular stem cells (procambium) and in cambial

activity [2]. Analysis of auxin distribution across the cambial

region in hybrid aspen trees showed a radial auxin gradient

reaching a peak level in the cambial zone or at the border between

the cambial zone and the expansion zone towards developing

wood cells [3,4]. The auxin gradient was indeed shown to overlap

with the sequential and numerous auxin-regulated genes respond-

ing dynamically to the change in auxin levels in wood forming cells

[5].

As trees are long living organisms with sessile lifestyle, they have

to adapt to changing environmental conditions throughout their

lifetimes which may span decades and centuries in some cases. In

particular, vascular stem cell activity shows plasticity in response to

mechanical stress which affects wood formation and quality. In

angiosperm woody species, a local increase in cambial cell division

induces the formation of tension wood in the upper side of the

leaning tree stems [6,7]. Auxin has been proposed to be implicated

in the tension response, and application of either exogenous auxin

or auxin transport inhibitors was shown to induce the gelatinous

G-fibres characteristics of tension wood [8]. Although measure-

ments of endogenous auxin failed to reveal significant changes in

auxin balance in the cambial region tissues, a rather large set of

auxin-related genes were found to be differentially expressed in

developing poplar tension wood [9]. A recent study indicated that

the auxin signalling pathway is significantly disrupted during
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cambial dormancy in hybrid aspen [10]. Despite the fact that

auxin has long been proposed as primary regulator of cambial

activity and wood formation [4,11], the auxin-regulated transcrip-

tional programs underlying wood formation remain largely under

investigated.

Auxin exerts its function through modulating the expression of

numerous genes among which is a set of transcriptional regulators.

Auxin Response Factors (ARFs) and Aux/IAAs are two well-

known mediators which regulate auxin responsive gene expression

[12,13]. Most ARF proteins contain a highly conserved N-

terminal B3-like DNA binding domain that recognizes an auxin-

response element (AuxRE: TGTCTC) present in the promoters of

auxin-responsive genes. The C-terminal domain contains two

motifs, called III and IV, also found in Aux/IAA proteins and

shown to enable the formation of homo- and heterodimers among

ARFs and Aux/IAAs [14,15]. The middle region whose sequence

is less conserved confers transcription activation or repression

depending on its amino acid composition [13]. Biochemical and

genetic studies in Arabidopsis and other plants have led to a

working model of the mediation of auxin response by ARF

proteins [14,16]. In the absence of auxin, Aux/IAAs bind to ARFs

and recruit co-repressors of the TOPLESS (TPL) family,

preventing the ARFs from regulating target genes [17]. The

presence of auxin induces Aux/IAA protein degradation via the

26S proteasome through SCF-TIR1 ubiquitin ligase complex; thus

liberating the trapped ARF proteins, allowing them to modulate

the transcription of target auxin-responsive genes (for review, see

Guilfoyle and Hagen) [12]. This model based on limited ARF-

Aux/IAA interaction studies which provides a framework for

understanding how members of these families may function. More

recently, a large-scale analysis of the Aux/IAA-ARF interactions

in the shoot apex of Arabidopsis showed that the vast majority of

Aux/IAAs interact with all ARF activators, suggesting that most

Aux/IAAs may repress the transcriptional activity of ARF

activators [18]. In contrast, Aux/IAAs have limited interactions

with ARF repressors suggesting that the role of the latter is

essentially auxin-independent and that they might simply compete

with the ARF activators for binding to the promoter of auxin-

inducible genes [18]. This finding is particularly important taking

into account that auxin predominantly activates transcription [19–

21] and that a large complement of the ARF family acts as

transcriptional repressors [12]. Whereas the above proposed

scenario applies to the shoot apical meristem, it is likely that

specific interactions between Aux/IAAs and ARFs might also

affect the dynamics of the ARF-Aux/IAA signalling pathway in

other developmental processes such as cambial development.

The ARF gene family has been most extensively studied in

Arabidopsis where phenotyping of mutants revealed involvement

of specific ARF genes in various plant growth and development

processes [20,22–30]. For instance, ARF5/MONOPTEROS

(MP) is a transcriptional activator known to play a critical role

in the specification of vascular stem cells [27,31].

The ARF family has also been characterized in several annual

herbaceous plants including monocots (rice, maize) [32,33] and

dicots (Arabidopsis, tomato, soybean, Brassica rapa) [24,34–37]

and in only two woody perennial genera, Populus [38] and Vitis
[39]. However, so far, no ARF candidate has been identified as

specifically involved in vascular cambium activity and xylem

differentiation.

The recent availability of Eucalyptus grandis genome [40], the

second hardwood forest tree genome fully sequenced, offers new

opportunities to get insights into the regulation of secondary

growth and cambial activity by ARFs, especially because

Eucalyptus belongs to evergreen trees that do not present

dormancy in their cambial activity in sharp contrast with

deciduous trees like Populus. Eucalyptus is also the most planted

hardwood in the world, mainly for pulp and paper production but

is also foreseen as a dedicated energy crop for lignocellulosic

biofuel production. Thus, understanding the mechanisms that

underlying auxin regulation in Eucalyptus wood formation is of

interest both in the context of plant development and as a path to

improve lignocellulosic biomass production and quality.

In the present paper, we report a genome-wide identification

and characterization of the ARF family in Eucalyptus grandis. We

analyzed gene structure, protein motif architecture, and chromo-

somal location of the members of the E. grandis ARF family. We

also performed comparative phylogenetic relationships and large

scale transcript profiling with a special focus on vascular tissues to

get insights in their evolution, expression characteristics and

possible functions.

2 Materials and Methods

2.1 Identification of ARF gene family in Eucalyptus 
grandis and chromosomal location

The identification procedure is illustrated in Fig. S1. Firstly we

used Arabidopsis ARF proteins as queries in BLASTP searches for

predicted protein in Eucalyptus genome (JGI assembly v1.0,

annotation v1.1, http://www.phytozome.net/eucalyptus). A total

of 64 Eucalyptus proteins identified in this initial search were

examined by manual curation of protein motif scan using Pfam

domain IDs (http://pfam.wustl.edu) and NCBI conserved domain

database (http://www.ncbi.nlm.nih.gov/cdd). Redundant and

invalid gene models were eliminated based on gene structure,

intactness of conserved motifs and EST support. Three incomplete

gene models were identified and completed by FGeneSH

(http://linux1.softberry.com). To complete partial sequence of

Eucgr.K02197.1, we cloned the corresponding genomic fragment

using forward primer: 59-AATTGACCGCGGTTGGATA-39 and

reverse primer 59-GAGCAGGCCAACATCCTCA-39, which

located up-stream and down-stream respectively of the non-

determined sequence (N). According to sequencing result we

complete the missing part (1156 bp), corresponding to a part of

promoter region and a part of 59end CDS of the Eucgr.K02197.1

(submitted to GenBank data library under the accession number

KC480258). All these manual curations enabled us to obtain 17

complete Eucalyptus ARF proteins sequences. We then used them

as query in two subsequent additional searches: 1) BLASTP

against Eucalyptus proteome for exhaustive identification of

divergent Eucalyptus gene family members, and 2) tBLASTn

searches against Eucalyptus genome for seeking any possible non-

predicted genes. For validation, we also used poplar ARF proteins

as queries to do the search procedure described above, and we

obtained exactly the same result.

In the course of the above identification process we completed

and expertly re-annotated three partial sequences (accession

numbers Eucgr.F02090.1, Eucgr.F04380.1, and Eucgr.K03433.1

in the Phytozome database) initially annotated in the Eucalyptus
genome-sequencing project (Table 1). In addition, we found one

gene (accession number Eucgr.K02197.1) that corresponded to a

partial sequence for which the 59 end was not determined (1240 N

as sequencing results). Information on chromosomal location was

retrieved from the Eucalyptus genome browser (http://www.

phytozome.net/eucalyptus). EgrARF genes were mapped to their

loci using MapChart 2.2 [41].

The Eucalyptus ARF Family
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2.2 Sequence, phylogenetic, gene structure analysis
Conserved protein motifs were determined by Pfam [42].

Multiple protein sequences alignment was performed using Clustal

X program (Version 2.0.11). Using full length sequences of all

predicted protein, phylogenetic trees were constructed with

MEGA5 program by neighbor-joining method with 1000 boot-

strap replicates. Their exon-intron structures were extracted from

Phytozome (http://www.phytozome.net/eucalyptus) and visual-

ized in Fancy Gene V1.4 (http://bio.ieo.eu/fancygene/). The

prediction of small RNA target sites in EgrARF genes was

performed through the web application psRNATarget (http://

plantgrn.noble.org/psRNATarget/). The stem-loop structures

were predicted using RNAfold web server (http://rna.tbi.univie.

ac.at/cgi-bin/RNAfold.cgi) and visualized by RNAstructure 5.3

program.

2.3 Plant material
The plant materials provenance and preparation are described

in Cassan-Wang et al. [43]. Hormone treatments were performed

in an in vitro culture system. 10 mM NAA (1-Naphthaleneacetic

acid, for auxin), or 20 mM gibberellic acid or 100 mM ACC (1-

aminocyclopropane-1-carboxylic-acid, for ethylene) were added to

the medium of 65-d-old young trees, and trees were sampled 14

days after treatments.

2.4 Total RNA extraction, cDNA synthesis, quality controls
and high throughput quantitative RT-PCR

All the procedures used for the qRT-PCR, from the RNA

extraction to the calculation of transcript abundance are described in

Cassan-Wang et al. [43]. Only samples with a RNA integrity number

.7 (assessed by Agilent 2100 Bioanalyzer) were retained for reverse

transcription. cDNA quality was assessed as described by Udvardi et

al. [44] using housekeeping genes IDH and PP2A3 (primers see

Table S1). Primer pairs were designed using the software

QuantPrime (http://www.quantprime.de) [45], showing in Table

S1. qRT-PCR was performed by the Genotoul service in Toulouse

(http://genomique.genotoul.fr/) using the BioMark 96:96 Dynamic

Array integrated fluidic circuits (Fluidigm Corporation, San

Francisco, USA) described in Cassan-Wang et al. [43]. The specificity

of the PCR products was confirmed by analysing melting curves.

Only primers that produced a linear amplification and qPCR

products with a single-peak melting curves were used for further

analysis. The efficiency of each pair of primers was determined

from the data of amplification Ct value plot with a serial dilution of

mixture cDNA and the equation E = 10(-1/slope) -1. E-DDCt method

was used to calculate relative mRNA fold change compared

to control sample using formula (Etarget)
DCt_target (control2sample)/

(Ereference)
DCt_reference (control2sample) [46] and five reference genes

(IDH, PP2A1, PP2A3, EF-1a and SAND, Table S1) were used for

data normalization. We chose in vitro plantlets as control sample,

because it contains the main organs and tissues of our studies such as

stem, leaves, shoot tips, xylem, phloem and cambium, and it is a

relative stable and less variable sample as being grown under the

same in vitro culture condition from one experiment to another.

2.5 Transactivation analysis in single cell system
For testing the ability of ARF transcription factors to up or

down regulate the expression of auxin responsive promoter DR5,

the full-length cDNAs of the ARF transcription factors were

cloned in pGreen vector under 35SCaMV promoter to create the

effector constructs. The reporter constructs use a synthetic auxin-

responsive promoter DR5 fused with the GFP reporter gene.

Tobacco BY-2 protoplasts were co-transfected with the reporter

and effector constructs as described in Audran-Delalande et al.

[47]. After 16 h incubation, GFP expression was quantified by

flow cytometry (LSR Fortessa, BD Biosciences). Data were

analysed using BD FacsDiva software. Transfection assays were

performed in three independent replicates and 3000–4000

protoplasts were gated for each sample. GFP fluorescence

corresponds to the average fluorescence intensity of the protoplasts

population after subtraction of auto-fluorescence determined with

non-transformed protoplasts. 50 mM 2, 4-D was used for auxin

treatment. We tested two independent protoplast preparations and

for each of them, we performed in three independent transfor-

mation replicates. Similar results were obtained with the

independent protoplast preparations and the data were represent-

ed by one of the preparations. For normalization, protoplasts were

transformed with the reporter vector and the effector plasmid

lacking the ARF gene.

3 Results and Discussion

3.1 Identification and chromosomal distribution 
of Eucalyptus ARF genes

The procedure to identify all members of the ARF family in the

E. grandis genome (JGI assembly v1.0, annotation v1.1 (http://

www.phytozome.net/cgi-bin/gbrowse/eucalyptus/), included ex-

pert manual curation as illustrated in Fig. S1. It allowed the

identification of 17 genes encoding full length Eucalyptus ARF

proteins (henceforth referred to as EgrARF genes). We named

these genes according to their potential orthologs in Arabidopsis
(Table 1). Where two EgrARFs matched the same potential

Arabidopsis ortholog AtARFx, they were named as EgrARFxA
and xB, with xA being the closest to the Arabidopsis ortholog; e.g.

EgrARF2A and EgrARF2B. The percentage of identity between

the Arabidopsis and the Eucalyptus predicted ARF protein

sequences, and among the Eucalyptus ARFs themselves are given

as Table S2 and S3, respectively. Eight Arabidopsis genes have no

corresponding Eucalyptus orthologs (AtARF12 to 15 & 20 to 23),

while only one EgrARF gene, EgrARF24, has no ortholog in

Arabidopsis (Table 1). In silico chromosomal mapping of the gene

loci revealed that the 17 EgrARF genes are scattered on nine of

the eleven chromosomes, with one to three EgrARF genes per

chromosome and with chromosomes 8 and 9 being devoid of ARF
genes (Fig. S2).

The predicted proteins encoded by the EgrARF genes ranged

from 593–1119 amino acid residues (Table 1), with PIs in the

range of 5.43–8.32, suggesting that they can work in very different

subcellular environments. Sequence analyses of the predicted

proteins and Pfam protein motif analysis showed that most of them

(14 of the 17 predicted proteins) harbour the typical ARF protein

structure comprising a highly conserved DNA-binding domain

(DBD) in the N-terminal region composed of a plant specific B3-

type subdomain and an ARF subdomain, a variable middle region

(MR) that functions as an activation or repression domain, and a

carboxy-terminal dimerization (CTD) domain consisting of two

highly conserved dimerization subdomains III and IV, similar to

those found in Aux/IAAs (Fig. 1). We analysed and aligned the

predicted amino acid sequences of the EgrARFs (Fig. 1 and Fig.

S3). Four out of the 17 EgrARFs (10, 16A, 16B and 17) exhibited

an additional short segment of amino acids (between 15 to 43

amino-acids) in their DBD, between the B3 and ARF subdomains

(Fig. 1 and Fig. S3). Such a feature has already been reported in

Arabidopsis and soybean [36]. At the end of the DBD domain, all

of the EgrARFs excepty EgrARF6A, 6B and 19A contain a

conserved putative mono-partite nuclear localization signal (NLS)

(Fig. S3) shown to direct the proteins into the nucleus [36,48].
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Five EgrARFs (EgrARF5, 6A, 6B, 19A and 19B) harbour a

glutamine (Q)-rich middle region (Fig. S3) implying that these

proteins are likely transcriptional activators since glutamine

enrichment seems to be a distinctive feature of ARF activators

in all plant lineages [15,49]. The other 12 EgrARFs may function

as repressors based on their middle regions enriched either in S

(serine), SPL (Serine, Proline, Leucine) or SGL (Serine, Glycine,

Leucine) [36] (Fig. S3).

The predicted protein structures of EgrARF3 and EgrARF17

are lacking dimerization domains III and IV like their potential

orthologs in Arabidopsis (Fig. 1 and Fig. S3). EgrARF24, which

has no ortholog in Arabidopsis, has a truncated CTD since only

Aux/IAA subdomain III is present. The percentage of EgrARFs

displaying a truncated CTD (17.6%) is similar to that in

Arabidopsis (17.4%), but lower than in rapeseed (22.6%) or

tomato (28.6%) [24,37,50]. These truncated EgrARFs are

predicted to be unable to interact with Aux/IAA, a sequestration

mechanism which may regulate their activity, and hence, they are

likely to be insensitive to auxin. However, ARF repressors seem to

display very limited interactions with Aux/IAA proteins [18],

therefore the lack of domains III and/or IV could also have

consequences for the interaction of ARFs with other transcrip-

tional regulators [49].

Compared to Arabidopsis, the ARF family in Eucalyptus is

slightly contracted with 17 versus 23 members. It is worth noting

that we found the exact same number of ARF genes in another

Eucalyptus species, E. camaldulensis (http://www.kazusa.or.jp/

eucaly/). Indeed when comparing to other species, in which the

ARF family has been characterized (Table 2), Eucalyptus and

grapevine appeared to have the smallest families with 17 and 19

members respectively, whereas poplar and soybean had the largest

families with 39 and 51 members, respectively. We did not find

evidence that any of the 17 EgrARF genes arose by tandem,

segmental, or whole genome duplication, or even the more ancient

hexaploidization in the E. grandis genome [40] and it appears that

any such duplicates have been lost in Eucalyptus as is the case for

95% of whole-genome duplicates. This is sharply contrasting with

the intensive tandem duplication events found for Arabidopsis
ARF members [14,51], the segmental duplication found in

Populus [38], and the whole-genome duplication events in

soybean [36].

As duplication and alternative splicing are the two main

mechanisms involved in diversification of function within gene

families, sometimes viewed as opposite trends in gene family

evolution, we performed an in silico survey of the alternative

transcripts predicted in the E. grandis genome JGI assembly v1.0,

annotation v1.1 (http://www.phytozome.net/eucalyptus), and

compared them to those in Arabidopsis (Table 1 and Fig. S4).

More than half of the Eucalyptus ARF family members (10 out of

17) have evidence of alternative splicing (Fig. S4). Taking into

Figure 1. Gene structure of the EgrARF family. The information on exon–intron structure was extracted from the Phytozome database and
visualized by using the FancyGene software (http://bio.ieo.eu/fancygene/). The sizes of exons and introns are indicated by the scale at the top. The
domains of EgrARF gene were predicted by Pfam (http://pfam.xfam.org/) and are indicated by different colours. The B3 together with ARF
subdomains constitute the DNA binding domain (DBD). The CTD contains two sub-domains III and IV. The TAS3 and microRNA target sites are
marked on the corresponding target genes. The triangles underline the insertion sites of additional short amino-acids segments between the B3 and
ARF subdomains.
doi:10.1371/journal.pone.0108906.g001
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account the number of possible alternative transcripts in Euca-
lyptus (17) and in Arabidopsis (15), the total number of possible

transcripts in both species becomes very similar, 34 and 38,

respectively. Some of the transcripts resulted in truncated versions

of the genes like EgrARF1.4, 4.3 and 9B.2 lacking the Aux/IAA

interaction domain and EgrARF2B.2 lacking the B3/DBD

domain. We further compared the in silico predicted ARF
alternative transcripts from E. grandis to those expressed in a

dataset of in-house RNA-Seq data from E. globulus (Table S4,

Fig. S5, File S1). Remarkably, the vast majority of the alternative

transcripts predicted in E. grandis were found expressed in E.
globulus providing strong experimental support to their occur-

rence and conservation in the two Eucalyptus species. The

importance of alternative splicing in the ARF family, has been

highlighted recently by Finet et al. [49], who have shown that two

Arabidopsis alternative transcripts of AtARF4 have very different

functions in flower development, and by Zouine et al. [35] who

have shown that in tomato, one third of the ARF members

displays alternative splicing as a mode of regulation during the

flower to fruit transition. In Arabidopsis and in many other species,

not only domain rearrangement through alternative splicing but

also extensive gene duplication played a significant role in ARF
functional diversification [49], whereas in Eucalyptus the first

mechanism appeared to be preeminent.

3.2 Comparative Phylogenetic analysis of the ARF family
To assess the relationship of Eucalyptus ARF family members to

their potential orthologs in other landmark genomes, we

constructed a comparative phylogenetic tree using all predicted

ARF protein sequences from genomes of relevant taxonomic

lineages. The core rosids were represented by Arabidopsis and

Populus (Malvids) while the Myrtales, the Vitales and the

Asterides were represented by Eucalyptus grandis, Vitis vinifera
and Solanum lycopersicum, respectively. The monocots were

represented by the Oryza sativa genome (Fig. S6). A simplified tree

with only Arabidopsis, Populus and Eucalyptus (Fig. 2A) showed

that ARFs are distributed into four major groups I, II, III, and IV.

Eucalyptus (and also grapevine) which harbour the smallest

number of ARF genes as compared to all other species (Table 2),

have the fewest number of ARF proteins in each of the four

groups. The positions and phases of the introns were well

conserved within each group (Fig. 1 and Fig. 2), whereas their

sizes were poorly conserved even within the same group. All five

predicted Eucalyptus ARF transcriptional activators fell within

group II as their potential orthologs from Arabidopsis and other

species; the remaining EgrARFs were distributed among the three

other groups.

Some lineage-specific clades were found in the Solanaceae ARF
family [35] as well as in Arabidopsis ARF family [24]. In

Arabidopsis, group I was substantially expanded with a subgroup

containing seven tandem duplicated genes (encoding proteins

AtARF12 to 15 and AtARF20, to 22), and the sister pair of

AtARF11–AtARF18, for which orthologs were found only in

Brassicaceae.

In group I, an isolated clade (highlighted in green in Fig. 2)

contained EgrARF24 clustering with PtrARF2.5 and PtrARF2.6

and did not contain any obvious Arabidopsis ortholog. This clade

was absent from the herbaceous annual plants (Arabidopsis,
tomato and rice), but present in woody perennial plants

(Eucalyptus, Populus and Vitis; Fig. S6). To verify if this clade

could be more specific to woody perennial plants, we performed a

BLAST similarity search in 33 plant genomes available in

Phytozome and found potential orthologs of EgrARF24 in 13

plant species out of 33 (Table S5) which are presented in a

phylogenetic tree (Fig. 2B). Among these 13 plant species, 11 are

trees such as M. domestica, C. sinensis, C. clementina, P. persica,

or tree-like plants and shrubs such as C. papaya, T. cacao, G.
raimondii, although the latter is often grown as an annual plant. A.
coerulea and F. vesca are perennial herbaceous plants. The two

notable exceptions are two members of the Fabaceae family (G.
max, and P. vulgaris) which are annual herbaceous plants. We

thus considered this clade as woody-preferential. Regarding

Group III, there was no evidence of large expansion of ARF3
and ARF4 genes in any of the three species, with only ARF3
duplicated in Populus. Group IV contained four members from

Eucalyptus, i.e. one more than in Arabidopsis. All of the EgrARFs

belonging to this group have in common an additional fragment

(between 15 to 43 amino-acids residues) within their DBD (Fig. 1

and Fig. 2) and, noteworthy, alternative splicing was not detected

for any of these genes in Eucalyptus and Arabidopsis (Fig. S4).

3.3 Prediction of small regulatory RNAs and their potential 
ARF targets

In Arabidopsis, several ARF genes are targets of microRNAs

miR160 and miR167, or of a trans-acting short interfering RNA

(tasiRNA) TAS3 [29,52–54]. Since these small RNAs and their

targets are very often conserved across plant species [32,55,56], we

searched for their potential orthologs in the Eucalyptus genome.

Their chromosomal locations, genomic sequences and the

sequences of their mature forms are presented in Table S6. We

identified three potential Eucalyptus miR160 loci and three

Table 2. Summary of ARF gene content in angiosperm species.

Species ARFs content Reference

Eucalyptus grandis 17 This study

Vitis vinifera 19 [39] Wan et al. (2014)

Solanum lycopersicon 22 [35] Zouine et al. (2014)

Arabidopsis thaliana 23 [24] Okushima et al. (2005)

Oryza sativa 25 [33] Wang et al. (2007)

Zea mays 31 [32] Xing et al. (2011)

Brassica rapa 31 [37] Mun et al. (2012)

Populus trichocarpa 39 [38] Kalluri et al. (2007)

Glycine max 51 [36] Ha et al. (2013)

doi:10.1371/journal.pone.0108906.t002
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potential miR167 loci, all predicted gene products formed typical

microRNA stem–loop structures (Fig. S7). The three EgrmiR160
genes encode a mature RNA identical to that in Arabidopsis. The

three miR167 genes produce two different mature RNA forms

(Table S6) whereas in Arabidopsis three different mature miR167

forms were detected. We also identified a potential TAS3 locus in

the Eucalyptus genome (Table S6).

We used these newly identified Eucalyptus small RNAs as

probes to search in silico for their target sites in EgrARF genes.

Ten of the 17 EgrARF genes were found to be potential targets of

these three small RNAs (Table S7). We identified highly conserved

target sites for EgrmiR160 in EgrARF10, 16A, 16B and 17, for

EgrmiR167 in EgrARF6A and B, and for EgrTAS3 in

EgrARF2A, 2B, 3 and 4 (Table S7). The targeting of three

different small RNA to their corresponding target genes was highly

conserved between Arabidopsis and Eucalyptus suggesting com-

mon regulation of plant growth and development. For example,

miR160, a highly conserved miRNA group across the plant

kingdom, is known to target ARF10, ARF16 and ARF17 to

regulate various aspects of plant development [30,52,53]. In

Arabidopsis, miR167 regulates lateral root outgrowth [57],

adventitious rooting [58], ovule and anther growth, flower

maturation [20,29] and jasmonic acid homeostasis [59] by

targeting both AtARF6 and AtARF8. Very recently, it has also

been shown that miR167 regulates flower development and female

sterility in tomato [60]. Because Eucalyptus is a woody perennial

plant, one could expect that some small RNAs (for instance

miR160 and Tasi 3) could be involved in the regulation of wood

formation through targeting of ARF genes preferentially expressed

in cambial cells or developing xylem.

3.4 Expression of EgrARFs in different Eucalyptus organs 
and tissues and in response to environmental cues

To start investigating the functions of the EgrARF genes, we

assessed their transcript expression levels in various Eucalyptus
organs and tissues by qRT-PCR, with special attention to vascular

Figure 2. Phylogenetic relationships of ARF proteins between Eucalyptus and other species. (A) Phylogenetic relationships between ARF
proteins from Arabidopsis, Populus and Eucalyptus. Full-length protein sequences were aligned by using the Clustal_X program. The phylogenetic tree
was constructed by using the MEGA5 program and the neighbor-joining method with predicted ARF proteins. Bootstrap support is indicated at each
node. The blue shade highlights the activators, and the green shade indicates the distinct likely woody preferential clade containing EgrARF24. (B)
Phylogenetic relationships between the orthologs of EgrARF24 in other species. EgrARF24 proteins were used to blast 33 species genomes in
Phytozome. An E-value of 1.0E-50 as used as a cut off to select the ARF potential orthologs from each species. A phylogenetic tree was constructed
used the procedure as in (A) and using AtARF2 was used as an outgroup. The species containing putative orthogs of EgrARF24 were the followings: 1
Aquilegia coerulea, 2 Glycine max, 1 Phaseolus vulgaris, 1 Carica papaya, 2 Malus domestica, 1 Prunus persica, 1 Fragaria vesca, 1 Vitis vinifera, 2 Populus
trichocarpa, 1 Citrus sinensis, 1 Citrus clementine, 2 Gossypium raimondii, 1 Theobroma cacao.
doi:10.1371/journal.pone.0108906.g002
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tissues (Fig. 3, Fig. S8 and Fig. S9). Transcript accumulation was

detected for 16 EgrARFs in all 13 organs and tissues tested

(Fig. 3), except for EgrARF24, which was detected only in shoot

tips and young leaves (Fig. S8A). The very restricted expression

profile of EgrARF24 is surprising first because this gene belongs to

a woody-preferential clade and second, because its poplar

orthologs PtrARF2.5 and PtrARF2.6 could be detected in xylem

based on microarray expression data [38], PtrARF2.6 being

highly expressed in developing wood (http://popgenie.org/). It

should be noted however that this gene is truncated in E. grandis,
it has lost domain III, whereas PtrARF2.6 and their grapevine

ortholog still have domain III and IV.

Heatmap representation (Fig. 3) indicated that EgrARF genes

were expressed across various tissues and organs, but different

members displayed preference to particular tissues and/or organs

and could therefore be clustered into three main expression

groups. Group A is the smallest with only two members

EgrARF10 (predicted repressor) and EgrARF19A (predicted

activator) showing a relatively higher expression in vascular

cambium as compared to other tissues and/or organs. EgrARF10
was expressed at higher level in cambium (both mature and

juvenile) than in differentiating xylem and/or phloem (Fig. 3 and

Fig. S9). Its ortholog in Populus, PtrARF10.1, is highly expressed

in developing xylem tissues [38], suggesting that AtARF10
orthologs in trees might be involved in wood cell differentiation

having a different/supplementary role as compared to that of the

Arabidopsis sister pair AtARF10 – AtARF16 whose mutants

exhibit root cap defects and abnormal root gravitropism [30].

EgrARF19A was expressed at similar levels in the three vascular

tissues (Fig. 3 and Fig. S9). Group B is the largest with eight genes

(EgrARF4, 6B, 6A, 3, 1, 9A, 9B, 17) expressed in all tissues

including vascular and non-vascular tissues (Fig. 3). The expres-

sion of EgrARF3 and EgrARF4 is highest in root, stem and

phloem and differs from the specific expression of their Arabidopsis
orthologs AtARF3 and AtARF4 associated with developing

reproductive and vegetative tissues. This suggests that they might

be involved in other processes than the control of the abaxial

identity of the gynoecium, and lateral organs shown in Arabidopsis
[26]. Group C includes six genes (EgrARF2A, 2B, 5, 16A, 16B,

19B) preferentially expressed in leaves, floral buds and fruits and

virtually absent from vascular tissues and particularly from

cambium and xylem (Fig. 3 and Fig. S9). As its Arabidopsis

Figure 3. Expression profiles of 16 EgrARF genes in various organs and tissues. The heat map was constructed by using the relative
expression values determined by qRT-PCR of 16 EgrARF genes (indicated on the right) in 13 tissues and organs (indicated at the top) normalized with
a control sample (in vitro plantlets). In the heat map, red and green indicate relatively high and lower expression (log2ratios) than in the control,
respectively. Each measurement is the mean of three independent samples. The heat map and the hierarchical clustering were generated by
MultiExperiment Viewer (MEV).
doi:10.1371/journal.pone.0108906.g003
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ortholog, EgrARF19B was highly expressed in root [24]. It should

be noted that the activator EgrARF5 is highly expressed in all

samples analysed, with the highest expression in in vitro plantlets.

Because in vitro plantlets were used to normalize the expression

data in the heatmap, the expression of EgrARF5 appeared in

green in all other samples (Fig. 3). Its expression profile

normalized using a different sample is given in Fig. S8.

Thirteen of the sixteen EgrARF genes examined (Fig. 3 and

Fig. S9) exhibited higher expression in phloem than in xylem and/

or cambium, suggesting that in Eucalyptus more EgrARF genes

are involved in phloem than in xylem differentiation and/or

function. EgrARF5 was equally expressed in phloem and xylem.

In Arabidopsis, ARF5/MONOPTEROS (MP) is known to play a

critical role in the specification of vascular stem cells [27] but its

role in secondary growth driven by vascular cambium activity has

not been explored hitherto. EgrARF10 and EgrARF19A were the

only two genes more expressed in cambium and/or xylem than in

other organs or tissues, supporting their possible involvement

during the differentiation of meristematic cambium cells into

xylem cells. No obvious difference in transcript levels were

observed between juvenile and mature stages neither in cambium

nor in differentiating xylem (Fig. 3 and Fig. 4).

We further examined the responsiveness to bending stress of the

eight EgrARF genes which showed moderate to high expression in

vascular tissues (Fig. 4). Half of EgrARFs were down-regulated in

tension wood as compared to the control upright xylem, including

three predicted repressors (EgrARF3, 4, and 9A) and one

predicted activator (EgrARF6A). Conversely, in opposite xylem,

four genes were up-regulated, including three predicted activators

Figure 4. Effect of environmental cues and developmental
stages on EgrARF expression. The heat map was constructed by
using the relative expression values determined by qRT-PCR of EgrARF
genes (indicated on the right) in various tissues and conditions
(indicated at the top) normalized with a control sample (in vitro
plantlets). In the heat map, red and green indicates relatively higher
expression and lower expression (log2ratios) than in the control,
respectively. The heat map and the hierarchical clustering were
generated by MultiExperiment Viewer (MEV).
doi:10.1371/journal.pone.0108906.g004

Figure 5. EgrARF genes expression levels in young tree stems after long term hormones treatments. Hormone treatments are detailed in
the Methods section. NAA, 1-naphthaleneacetic acid, a synthetic auxin usually used in in vitro culture. ACC, a precursor of ethylene biosynthesis. GA,
gibberellic acid. Relative mRNA abundance was compared to expression in mock-treated young tree stems. Error bars indicated the SE of mean
expression values from three independent experiments.
doi:10.1371/journal.pone.0108906.g005
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(EgrARF6A, 6B, 19A) and one repressor (EgrARF10). Only one

gene (EgrARF4) was repressed. In general, EgrARF gene

expression was repressed in tension xylem and induced in opposite

xylem, except in the case of EgrARF4, which was down-regulated

in both tension and opposite xylem (Fig. 4). These results are

consistent with a study performed in Populus where seven ARF
genes were detected in a poplar tension wood EST database, while

the majority of genes were down-regulated in tension wood as

compared to opposite wood [61].

Recent studies indicated that high nitrogen fertilization affects

xylem development and alters fibre structure and composition in

Populus [62,63] and induces some overlapping effects with tension

wood on xylem cell walls. Interestingly, EgrARF4 and EgrARF6A
were down regulated in tension wood, but were down regulated

when nitrogen was in excess (Fig. 4).

3.5 Effects of long-term hormone treatments on 
EgrARFs transcript levels

Several hormones are known to regulate cambium activity and

xylem formation [[31], [64] and references therein]. For instance,

application of exogenous ethylene (ACC) on young poplar trees

during 12 days was shown to stimulate cambial activity, while

xylem cell size was decreased [65]. We performed similar long-

term hormonal treatments (15 days) by growing young Eucalyptus
trees on medium supplemented with either auxin, gibberellin or

ethylene in order to evaluate the consequences on the transcripts

levels of the EgrARF genes in stems (organs enriched in xylem).

The phenotypes of the Eucalyptus trees after hormonal treatments

were typical of each hormone: gibberellin stimulated plant growth

resulting in longer stems, ethylene reduced plant growth and led to

epinastic leaves, whereas auxin induced shortened and bolded

roots (Fig. S10). All EgrARF transcripts except EgrARF24 were

detected in young tree stems and the expression levels of 13 were

altered and mainly down-regulated by long-term hormonal

treatments (Fig. 5). Although long-term hormonal treatments

likely have both direct and indirect effects on ARFs expression,

it is interesting to note distinct and differential behaviours: Five

ARFs exhibited a kind of ‘‘hormonal preference’’ response since

their transcripts levels were altered in stems treated only by one of

the three hormones. For instance, EgrARF3 was up-regulated

only in auxin treated samples; EgrARF5, only in ethylene treated

samples, whereas EgrARF6A, EgrARF16A and EgrARF19B
were altered only in gibberellin treated samples. Most of the other

ARFs were modulated at different degrees by the direct and/or

indirect actions of each of three hormones with the notable

exception of EgrARF4 that was down-regulated in stems treated

by ethylene and gibberellic acid but not affected in those treated

by auxin.

3.6 Transcriptional activities of EgrARF4, EgrARF 10 
and EgrARF19A

We decided to characterize the transcriptional activity of three

ARF members: EgARF10 and 19A which were preferentially

expressed in cambium/xylem, and EgARF4 whose expression was

modulated in xylem in response to mechanical stress and to

nitrogen fertilization. For this purpose, tobacco protoplasts were

co-transfected with an effector construct expressing the full-length

coding sequence of the ARFs under the 35SCaMV promoter and

a reporter construct carrying the auxin-responsive DR5 promoter

fused to GFP coding sequence (Fig. 6A). DR5 is a synthetic auxin-

responsive promoter made of nine inverted repeats of the

conserved Auxin-Responsive Element, (TGTCTC box), fused to

a 35SCaMV minimal promoter. This reporter construct has been

widely used to assess auxin responsive transcriptional activation or

repression in vivo and in planta [15,47]. The DR5-driven GFP

showed low basal activity which was induced up to 4-fold by

exogenous auxin treatment (Fig. 6B). Co-transfection with the

effector genes EgrARF4 and EgrARF10 resulted in a very

significant (p,0.001) repression of auxin-induced reporter gene.

Expression of 80% and 38%, respectively hereby confirming their

predicted repressors roles. On the other hand, the values obtained

for EgrARF19A suggested that it could be an activator as

predicted by its sequence analysis, but this tendency was not

strongly supported by the student-T test.

4 Conclusions

The ARF family in E. grandis contains 17 members (5

activators and 12 repressors) and is slightly contracted as

compared to most angiosperm ARF families studied hitherto. In

contrast to these species, it is characterized by the absence of

whole genome, segmental and/or tandem duplication events.

Indeed, whole genome duplication in Eucalyptus occurred 109.9

Mya ago, considerably earlier than those detected in other rosids

Figure 6. EgrARF transcriptional activities in tobacco proto-
plasts. (A) Schemes of the effector and reporter constructs used to
analyse the function of EgrARFs in auxin-responsive gene expression.
The effector constructs express the EgrARF of interest driven by the 35S
promoter. The reporter construct consists of a reporter gene expressing
GFP driven by the auxin-responsive promoter DR5 (DR5::GFP). (B)
Effector and reporter constructs were co-expressed in tobacco
protoplasts in the presence or absence of a synthetic auxin (50 mM 2,
4-D). GFP fluorescence was quantified 16 h after transfection by flow
cytometry. A mock effector construct (empty vector) was used as a
control. In each experiment, protoplast transformations were per-
formed in independent biological triplicates. Two independent
experiments were performed and similar results were obtained; the
figure indicates the data from one experiment. Error bars represent SE
of mean fluorescence. Significant statistical differences (student T test,
P,0.001) to control are marked with **.
doi:10.1371/journal.pone.0108906.g006
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and 95% of the paralogs were lost [40]. The absence of tandem

duplication is remarkable especially because E. grandis has the

largest number of genes in tandem repeats (34% of the total

number of genes) reported among sequenced plant genomes.

Indeed, tandem duplication shaped functional diversity in many

gene families in Eucalyptus. The ARF family thus evolved in a

very different way. Our data suggests that genomic truncation and

alternative splicing were preeminent mechanisms leading to the

diversity of domain architecture, shaping and increasing the

functional diversity of the ARF family in Eucalyptus, thereby

compensating for the lack of extensive gene duplication found in

other species. Comparative phylogenetic studies pointed out the

presence of a new clade, maintained preferentially in woody and

perennial plants. Finally, large scale expression profiling allowed

identifying candidates potentially involved in the auxin-regulated

transcriptional programs underlying wood formation.

Supporting Information

Figure S1 Procedure used for identifying ARF genes in
Eucalyptus grandis. Arabidopsis ARF protein sequences were

used to search their orthologs in the predicted Eucalyptus
proteome by using in BLASTP. Sixty-four Eucalyptus proteins

identified in this initial search were further examined by manual

curation using protein motif scanning and the FgeneSH program

to complete partial sequences. Redundant and invalid genes were

eliminated based on gene structure, integrity of conserved motifs

and EST support. Manual curation resulted in 17 complete

Eucalyptus ARF protein sequences. These 17 protein sequences

were used in two subsequent additional searches: first, a BLASTP

search against the Eucalyptus proteome to identify exhaustively all

divergent Eucalyptus ARF gene family members and, second,

tBLASTn searches against the Eucalyptus genome for any possible

unpredicted genes. To confirm our findings, we used poplar ARF

proteins and repeated the complete search procedure described

above and obtained identical results.

(TIFF)

Figure S2 Locations of the 17 EgrARF genes on the 11
Eucalyptus grandis chromosomes.

(TIFF)

Figure S3 Multiple sequence alignment of predicted
amino acid sequences of EgrARF and AtARF proteins.
The multiple sequence alignment was obtained with the

MUSCLE software [66]. The highly conserved domains and

nuclear localization signals (NLSs) proteins were noted on the

bottom of the alignment with different colours.

(PDF)

Figure S4 Comparative analysis of predicted ARF
alternative variants between Eucalyptus grandis and
Arabidopsis thaliana. The alternative spliced protein sequenc-

es were extracted from Phytozome except for AtARF4 (obtained

from Finet et al. (2013), the motif structures were predicted by

Pfam (http://pfam.xfam.org/).

(PDF)

Figure S5 Structure of the ARF alternative transcripts in
E. globulus. The E. globulus alternative transcripts were

obtained from a compendium of RNASeq data. The material

and methods are described in Table S4. The illumina reads

sequences are provided in File S1 in the FastQ format.

(PDF)

Figure S6 Comparative Phylogenetic relationships be-
tween ARF proteins from poplar, Eucalyptus, grapevine,

Arabidopsis, tomato and rice. Full-length protein sequences

were aligned using the Clustal_X program. The phylogenetic tree

was constructed by using the MEGA5 program and the

neighbour-joining method with predicted full-length ARF pro-

teins. Bootstrap supports are indicated at each node.

(PDF)

Figure S7 Predicted stem-loop structures of three
EgrmiR160 and three EgrmiR167. The part of the stem-loop

from which the mature microRNA derives is highlighted in yellow.

(TIFF)

Figure S8 Expression profiles of EgrARF5 and EgrARF24
in various organs and tissues. Relative mRNA abundance of

EgrARF5 and EgrARF24 was compared to expression in the

control sample of mature leaves and in vitro plantlets, respectively.

Error bars indicate the SE of mean expression values from three

independent experiments.

(TIFF)

Figure S9 Expression profiles of EgrARF genes in
tissues involved in secondary growth. Relative mRNA

abundance was compared to expression in the control sample (in
vitro plantlets).

(TIFF)

Figure S10 Young Eucalyptus grandis trees phenotypes
in response to various long-term hormonal treatments.
10 mM NAA, or 20 mM gibberellic acid or 100 mM ACC were

added to the medium of 65-d-old young tree, and phenotypes were

observed 14 days later.

(TIFF)

Table S1 Primers for EgrARF genes and reference genes
used in qRT-PCR experiments.
(PDF)

Table S2 Protein identity matrix between EgrARF and
AtARF.
(PDF)

Table S3 Protein identity matrix among EgrARF.
(PDF)

Table S4 Comparison of the number of alternative
transcripts predicted in phytozome for E. grandis to
those found in a large compendium of transcriptomic
data from in E. globulus.
(PDF)

Table S5 Comparison of the number of EgrARF24
putative orthologs in other species.
(PDF)

Table S6 Potential small RNAs targeting EgrARF genes.
(PDF)

Table S7 Small RNAs target site prediction in EgrARF
genes.
(PDF)

File S1 Sequences of the Illumina reads from RNA Seq
used to predict the E. globulus alternative transcripts.
The origin of the material and the procedure are described in

Table S4.

(ZIP)
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1 Abstract 

Auxin plays a pivotal role in various plant growth and development processes, 

including vascular differentiation. The modulation of auxin responsiveness through the 

auxin perception and signaling machinery is believed to be a major regulatory 

mechanism to control cambium activity and wood-formation. In order to get more 

insights into the role of Aux/IAAs key regulators of auxin response in these processes, 

we performed a genome-wide identification and characterization of Aux/IAA family in 

Eucalyptus grandis a tree of high worldwide economic importance. The size of the 

family in Eucalyptus is slightly contracted as compared to Populus and Arabidopsis, 

but all the phylogenetic groups are represented. High-throughput expression profiling 

among different organs and tissues highlighted several Aux/IAAs expressed in vascular 

cambium and/or developing xylem, some showing differential expression in response 

to developmental (juvenile versus mature) and/or to environmental (tension stress) cues. 

Based on expression profiles, we selected the most promising candidate gene EgrIAA4 

for functional characterization. We showed that EgrIAA4 was localized in nucleus and 

functioned as an auxin-responsive repressor. Overexpressing a stabilized version of 

EgrIAA4 in Arabidopsis impeded dramatically plant growth and fertility and induced 

auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root 

emergence and agravitropism. More interestingly, the lignified secondary walls of the 

interfascicular fibers appeared very late whereas that of the xylary fibers was virtually 

undetectable, indicating that EgrIAA4 plays crucial roles in fiber development and 

secondary cell wall deposition. 

Key words: Aux/IAA, auxin, Eucalyptus, expression analysis, wood formation  

Abbreviations: 

Aux/IAA, auxin/indole-3-acetic acid; TIR1, transport inhibitor response1; AFB, auxin 

signaling F-box; ARF, auxin response factor; AuxRE, auxin-responsive cis-element; 

CaMV, Cauliflower mosaic virus; EAR, ethylene-responsive element-binding factor-

associated amphiphilic repression; GFP, green fluorescent protein; MS medium, 
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Murashige and Skoog medium; NLS, nuclear localization signal; qRT–PCR, 

quantitative reverse transcription–PCR. 

 

2 Introduction  

The plant hormone auxin plays an important role in regulating plant growth and 

development processes like embryogenesis, apical dominance, lateral root formation, 

tropism, fruit development and vascular differentiation (Friml 2003). Auxin also plays 

a crucial role in the specification of vascular stem cells (Miyashima et al. 2013), and in 

the regulation of the activity of the vascular cambium (for a review see Bhalerao and 

Fischer (2014)] a lateral meristem that contributes to secondary radial growth of wood 

in trees. Measurements of auxin levels across wood-forming tissues evidenced a radial 

auxin concentration gradient where high auxin concentrations localize to the cambium, 

intermediate concentrations to the xylem elongation zone and low auxin concentrations 

to the maturation zone (Tuominen et al. 1997; Uggla et al. 1998; Uggla et al. 1996). It 

was proposed that this gradient regulates cambial activity and differentiation of cambial 

derivatives by providing positional information to cells within the tissue (Schrader et 

al. 2003; Sundberg et al. 2000; Uggla et al. 1998). However, the hypothesis that auxin 

acts as a kind of morphogen still lacks strong experimental support (Bhalerao and 

Fischer 2014; Nilsson et al. 2008). Moreover, the expression patterns of most of the 

auxin-responsive genes display limited correlation with the auxin concentration across 

the wood-forming gradient, questioning a strong and direct impact of auxin levels on 

radial patterning (Nilsson et al. 2008). In addition, there is only subtle variation of the 

absolute auxin levels between the active and the dormant cambium in trees, suggesting 

instead seasonal fluctuation of auxin sensitivity (Schrader et al. 2003; Schrader et al. 

2004; Uggla et al. 2001; Uggla et al. 1996). Indeed, reduced auxin responsiveness of 

the dormant cambium correlates with reduced expression levels of components of the 

auxin perception machinery, implying that auxin signalling controls cambial activity by 

modulation of auxin responsiveness (Baba et al. 2011). 

Wood is a highly variable material both developmentally and environmentally regulated 
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(Plomion et al. 2001). For instance, in reaction to mechanical stress, a local increase in 

cambial cell division induces the formation of tension wood in the upper side of the 

leaning angiosperm tree stems. Tension wood had specific anatomical specificities as 

the presence of a characteristic inner gelatinous cell-wall layer (G layer) (Pilate et al. 

2004; Timell 1969). Auxin has been proposed to be implicated in the tension response, 

and application of either exogenous auxin or auxin transport inhibitors was shown to 

induce the formation of the G-fibers (Mellerowicz et al. 2001; Morey and Cronshaw 

1968). For a long time, it has been assumed that auxin distribution was involved in the 

regulation of tension wood but Hellgren et al. (2004) have shown that auxin levels were 

homogeneously balanced under gravitational stress in Populus bended stems. Auxin 

may rather exert its influence via components of its signalling pathway, as suggested 

by changes in expression of a large set of auxin-related genes (Andersson-Gunneras et 

al. 2006) including some members of the aspen Aux/IAA gene family (Moyle et al. 2002; 

Paux et al. 2005). 

The perception and signalling of auxin involve central regulators such as the Transport 

Inhibitor Response 1 (TIR1)/Auxin Signalling F-Box (ABFs) proteins, Auxin/Indole 

Acetic Acid (Aux/IAA) proteins, and Auxin Response Factor (ARF) proteins (Calderon 

Villalobos et al. 2012; Mockaitis and Estelle 2008). Aux/IAA proteins are direct targets 

of TIR1 and of its paralogs AFBs (Dharmasiri et al. 2005; Kepinski and Leyser 2005; 

Tan et al. 2007). At low intracellular auxin concentrations, Aux/IAA proteins act as 

transcriptional repressors of the auxin-mediated gene expression, by interacting and 

sequestering ARF proteins thus preventing them from regulating the transcription of 

their target genes (Guilfoyle and Hagen 2007). In contrast, high intracellular auxin 

levels foster interactions between Aux/IAA proteins and TIR1 E3 ubiquitin–ligase 

complexes, resulting in the degradation of Aux/IAA proteins by the 26S proteasome 

(Gray et al. 2001; Tan et al. 2007; Woodward and Bartel 2005). As a consequence, ARF 

proteins are released from their Aux/IAA interactants and can regulate the transcription 

of their auxin-responsive target genes. 

The Aux/IAA genes were first identified in soybean and pea and described as early 
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auxin-responsive genes (Ainley et al. 1988; Theologis et al. 1985; Walker and Key 

1982). This plant specific transcription factor family displays 29 members in 

Arabidopsis (Overvoorde et al. 2005), whose vast majority encode short-lived nuclear 

proteins. Canonical Aux/IAA contains four highly conserved domains (called I, II III 

and IV). Domain I contains a conserved Leu repeat motif (LxLxLx) similar to the EAR 

motif, which is responsible for the repressing activity (Tiwari et al. 2004) and can also 

interact with the co-repressor TOPLESS (Szemenyei et al. 2008). Domain II has a five 

highly conserved amino acid motif (VGWPP) that leads to the rapid degradation of 

Aux/IAA through interaction with a component of the ubiquitin–proteasome protein 

(TIR1/AFBs) degradation pathway (Dharmasiri et al. 2005; Gray et al. 2001; Kepinski 

and Leyser 2005). This interaction is abolished by mutations within the core sequence 

of domain II (VGWPP) resulting in accumulation of the mutated protein and leading to 

defects in auxin responses (Gray et al. 2001; Ouellet et al. 2001; Reed 2001; Tian et al. 

2003). Domain III and IV can mediate homo-dimerization and hetero-dimerization with 

other Aux/IAA family members, as well as dimerization with ARFs which also contain 

these two similar domains (Kim et al. 1997; Ouellet et al. 2001; Ulmasov et al. 1997). 

High-throughput protein-protein interactions study between 29 Aux/IAAs and 23 ARFs 

in Arabidopsis showed that the majority of Aux/IAA proteins interact with themselves 

and with ARF activators (Vernoux et al. 2011).  

Our current knowledge of the diverse roles of Aux/IAA in plant growth and development 

comes mainly from the characterization of gain-of-function mutants in Arabidopsis 

(Fukaki et al. 2002; Rouse et al. 1998; Tian and Reed 1999; Watahiki and Yamamoto 

1997; Yang et al. 2004) and from down-regulation in Solanaceae species (Su et al. 2014; 

Bassa et al. 2012; Deng et al. 2012a; Deng et al. 2012b; Chaabouni et al. 2009; Wang 

et al. 2005).  

Although, several studies have stressed out the importance of the auxin perception and 

signalling machinery in the regulation of cambial activity, cambial dormancy, 

secondary cell wall deposition and tension wood formation (Bhalerao and Fischer 

2014), the involvement of Aux/IAAs in these processes remains largely under 
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investigated. The work from Nilsson et al. (2008) showed that changes in endogenous 

auxin levels in wood-forming tissues modulate the expression of a few key regulators 

such as Aux/IAAs that control the global gene expression patterns essential for normal 

secondary xylem development. Moreover, these authors have shown that 

overexpressing a stabilized version of PttIAA3m (mutation in the degron domain II) in 

Populus led to a reduction in cambium cell divisions and in a decrease of secondary 

xylem’s width (Nilsson et al. 2008). To the best of our knowledge, this is the only 

example demonstrating the role of an Aux/IAA gene in xylem development in a woody 

species. 

The Eucalyptus grandis genome (Myburg et al. 2014) was recently made available 

being the second forest tree genome sequenced and offering unique opportunities to 

analyze the characteristics of the Aux/IAA family in the most planted hardwood 

worldwide, which in contrast to Populus does not present cambium dormancy. In this 

study, we performed a comprehensive genome-wide identification and characterization 

of the Aux/IAA gene family in E. grandis. In addition to comparative phylogenetic 

analyses, genomic organization and prediction of protein structural motifs, we 

investigated by RT-qPCR the expression profiles of the 24 Aux/IAA members among 

different organ/tissues, at different developmental stages and in response to 

environmental cues, with special focus on wood-forming tissues. Based on these 

phylogenetic and expression results, we identified EgrIAA4 as the best candidate 

potentially involved in the regulation of wood formation in Eucalyptus. Overexpression 

of a stabilized version of EgrIAA4 (EgrIAA4m) in transgenic Arabidopsis led to auxin-

related aberrant phenotypes and strongly affected interfascicular and xylary fiber 

formation, thereby confirming the hypothesized role of EgrIAA4 in the regulation of 

cambium and wood forming tissues.  

3 Results 

3.1 Identification and sequence analysis of Aux/IAA gene family in E. grandis 

The procedure to identify all members of Aux/IAA family in E. grandis is illustrated in 
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Fig. S1. After manual curation, a total of 26 E. grandis Aux/IAA genes were identified. 

We named them according to their putative Arabidopsis orthologs (henceforth referred 

to as EgrIAA genes) based on their phylogenetic relationships (Fig. S2). Two genes, 

EgrIAA29A and 29B, encode protein sequences very similar to EgrIAA29 but both lack 

domains III and IV that are crucial for Aux/IAA activity (Fig. S3). 

The coding sequences of the vast majority (83%) of the EgrIAA genes are disrupted by 

three or four introns, and the introns’ positions and phases are well conserved (Fig. 1). 

However, variations were observed for some members, implicating mainly loss of one 

or more introns (EgrIAA3A, 19 and 33A) and gain of one additional intron (EgrIAA9B). 

The EgrIAA exons-introns patterns are similar to their orthologs in Arabidopsis (Fig. 

S2).  

The predicted EgrIAA proteins range in size from 154 (EgrIAA20) to 370 amino acids 

(EgrIAA26B) with the corresponding molecular mass ranging from 17 to 41 kDa (Table 

1). The theoretical isoelectric points also vary widely from 4.7 (EgrIAA33B) to 9.5 

(EgrIAA31), indicating that they may function in different microenvironments. Pair-

wise analysis of EgrIAA protein sequences showed that the identity levels greatly vary 

from 83.7% (EgrIAA3A and 3B) to 26.4% (EgrIAA9A and 28) (Table S1). A similar 

wide variation of identity values was reported in Arabidopsis (Overvoorde et al. 2005) 

and tomato (Audran-Delalande et al. 2012). Sequence alignment of the predicted 

proteins and MEME protein motif analyses showed that 17 of the 24 EgrIAA proteins 

harbour the typical four highly conserved domains of the canonical Aux/IAA proteins 

(Fig. 1; Fig. S4), comprising (i) a N-terminal repressor domain I with a conserved 

leucine repeat motif (LxLxLx) which can recruit the co-repressor TOPLESS, (ii) a 

degron domain II, which is responsible for the stability of Aux/IAA proteins, and (iii) a 

carboxy-terminal dimerization (CTD) domain, consisting of two highly conserved 

dimerization subdomains III and IV, similar to those found in ARFs (Reed 2001). 

However, some members displayed poor conservation or even missing domains I and/or 

II. For instance, the consensus sequence T/LELrLGLPG in domain I, is not well in 

domain II is not well conserved in EgrIAA31 (QDWPP) and is missing in EgrIAA20
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Table 1. Aux/IAA gene family in E. grandis 

Gene namea 

Number of 

predicted 

alternative 

transcript 

Accession nob. Chromosomec Genome locationd ORFe (bp) 

Deduced polypetidef 

Exon No. length 

(aa) 

MW 

(kDa) 
PI 

EgrIAA1 2 Eucgr.K03314.1 11 42,167,198..42,168,788 570 189 21 5.39 4 

EgrIAA3A 2 Eucgr.H03171.1 8 46,743,317..46,744,932 612 203 23 6.02 3 

EgrIAA3B 1 Eucgr.H00216.1 8 2,425,940..2,428,241 615 204 23 5.58 4 

EgrIAA4 1 Eucgr.H04336.1 8 62,350,663..62,352,118 576 191 22 5.63 4 

EgrIAA9A 2 Eucgr.H02407.1 8 32,905,397..32,912,178 1107 368 39 6.05 5 

EgrIAA9B 4 Eucgr.F02172.1 6 29,479,509..29,487,212 1080 359 39 6.18 6 

EgrIAA11* 1 Eucgr.K01426.1 11 17,332,089..17,336,565 930 309 33 5.88 4 

EgrIAA13 1 Eucgr.H02914.1 8 42,398,802..42,401,976 801 266 29 8.8 5 

EgrIAA14 1 Eucgr.H03170.1 8 46,720,521..46,722,685 732 243 26 6.45 5 

EgrIAA15A 1 Eucgr.J03016.1 10 37,360,412..37,362,334 648 215 23 5.76 5 

EgrIAA15B* 1 Eucgr.C01083.1 3 17,083,069..17,086,237 645 214 23 7.54 5 

EgrIAA16 1 Eucgr.H04335.1 8 62,338,061..62,341,249 813 270 29 8.28 5 

EgrIAA17* 1 Eucgr.K03313.1 11 42,152,995..42,155,812 807 268 29 6.06 5 

EgrIAA19 1 Eucgr.F02578.1 6 35,331,299..35,341,010 585 194 22 8.33 3 

EgrIAA20 1 Eucgr.K00561.1 11 6,262,537..6,264,036 465 154 17 4.99 4 

EgrIAA26A 3 Eucgr.F03080.1 6 40,229,065..40,232,796 990 329 36 8.38 5 

EgrIAA26B 2 Eucgr.J02934.1 10 36,614,769..36,618,150 1113 370 41 8.88 5 

EgrIAA27 3 Eucgr.F03050.1 6 39,988,867..39,991,412 1050 349 37 6.27 4 

EgrIAA28* 2 Eucgr.C02984.1 3 56,397,825..56,400,087 1044 347 38 6.72 5 

EgrIAA29 1 Eucgr.C01734.1 3 29,257,063..29,258,993 651 216 25 6.6 4 



Chapter III 

73 

 

EgrIAA[T]29A 1 Eucgr.C01731.1 3 29,214,163 - 29,215,275 390 129 14  9.87 2 

EgrIAA[T]29B 1 Eucgr.C01732.1 3 29,230,438 - 29,231,106 369 122 14  9.45 2 

EgrIAA31* 1 Eucgr.H04141.1 8 59,329,525..59,330,844 687 228 25  9.51 4 

EgrIAA32 1 Eucgr.B02853.1 2 52,269,360..52,271,045 654 217 25  4.83 4 

EgrIAA33A 1 Eucgr.C02329.1 3 43,423,640..43,424,409 531 176 19  8.71 2 

EgrIAA33B 1 Eucgr.C01373.1 3 22,002,554..22,005,153 651 216 24  4.75 4 

*Using FGENESH+ to complete the complete sequence 
aDesignation given to E. grandis in this work. 
bAccession number in phytozome 
cdLocation of the EgrIAA genes to the Chromosome 
eLength of open reading frame in base pairs 
fThe number of amino acids, molecular weight (kilodaltons), and isoelectric point (pI) of the deduced polypeptides 

[T] Truncated gene 
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 32, 33A and 33B (Fig. 1; Fig. S4). Rapid degradation of Aux/IAA proteins is essential 

for auxin signalling and an amino acid substitution in the degron sequence was shown 

to cause Aux/IAA protein accumulation leading to auxin response defects in 

Arabidopsis (Woodward and Bartel 2005). Therefore, the Aux/IAA proteins with either 

no or degenerated degron sequence are to be more stable, and their molecular properties 

may be distinct from those of canonical Aux/IAA proteins.  

Two types of putative nuclear localization signals (NLS) were detected in most of the 

E. grandis Aux/IAA proteins. The first one is a bipartite structure comprising a 

conserved basic doublet KR between domains I and II and being associated with the 

presence of basic amino acids in domain II (Fig. S4). The second one is a basic residue-

rich region located in domain IV that resembles to SV40-type NLS (Fig. S4). Most of 

 

Fig. 1 Gene structures of the EgrIAA family members. The sizes of exons and introns are 

indicated by the scale at the top. The protein domains are indicated by different colours. The 

numbers 0, 1 and 2 represent the phases of the introns.  

 

2 2 1

2 2

2 2 1

1 1

2 2 1

2 2 1 2

2 2 1 20

2 2 2

2 2 1 2

2 2 1 2

2 2 1 2

2 2 1 2

2 2 1 2

2 2 1 2

2 2 1

2 2 11

2 2 1

2 1 1 1

2 2 1

2 2 1

1 0 1

2

2 2 1



Chapter III 

75 

 

the EgrIAA proteins contain the two types of NLS and are most likely targeted to the 

nucleus consistent with their transcriptional activity. However, family members such as 

EgrIAA29 and 33B contain a degenerated SV40-type NLS whereas EgrIAA20, 

EgrIAA32, EgrIAA33A and EgrIAA33B lack the bipartite NLS. Using transient 

expression assays with tomato Aux/IAA, Audran-Delalande et al. (2012) have shown 

that despite of having a degenerated NLS, Sl-IAA29 protein was specifically targeted 

to the nucleus. In contrast, in the absence of the bipartite structure like for instance in 

Sl-IAA32, the accumulation of the protein was not restricted to the nuclear 

compartment (Audran-Delalande et al. 2012). 

3.2 Comparative phylogenetic analysis and chromosomal distribution of EgrIAA 

genes  

The Aux/IAA family in E. grandis is slightly contracted with only 24 members versus 

29 and 35 in Arabidopsis and Populus, respectively. However, its size is quite similar 

to that of tomato, which contains only 25 members (Table 2). To investigate the 

phylogenetic relationships of Aux/IAA family members in different species, we 

constructed a phylogenetic tree using predicted full-length amino acid sequences of 

Aux/IAA from Eucalyptus, Arabidopsis and Populus. All the Aux/IAA members could 

be grouped into 11 groups named A-K (Fig. 2), and EgrIAAs are distributed among all 

groups and have representatives even within the four groups of non-canonical 

Aux/IAAs (groups H, I, J and K) lacking domain I and/or II (Overvoorde et al. 2005). 

As compared to Arabidopsis and Populus, Eucalyptus has the fewest members of 

Table 2. Number of Aux/IAA family gene members in angiosperm species  

 Aux/IAA Reference 

Eucalyptus grandis 24 This study 

Solanum lycopersicon 25 Audran-Delalande et al. (2012) 

Arabidopsis thaliana 29 Overvoorde et al. (2005) 

Cucumis sativus 29 Gan et al. (2013) 

Populus trichocarpa 35 Kalluri et al. (2007) 

Zea mays 34 Ludwig et al. (2013) 

Oryza sativa 31 Jain et al. (2006) 
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Aux/IAA proteins in each group except in group E, which notably contains two 

Eucalyptus members (EgrIAA15A and 15B).  

In silico mapping of the gene loci showed that the 24 EgrIAA and the two truncated 

genes were unevenly distributed among 6 out of the 11 E. grandis chromosomes with 

one to eight genes per chromosome and with chromosomes 1, 4, 5, 7 and 9 being devoid 

of Aux/IAA genes (Table 1; Fig. S5). Similarly, in Populus, the PtrIAAs were present in 

only ten of the nineteen chromosomes with one to five genes per chromosome (Kalluri 

 

Fig. 2 Phylogenetic analysis between Eucalyptus, Arabidopsis and Populus Aux/IAA 

proteins. Full-length protein sequences were aligned using the Clustal_X program. The 

phylogenetic tree was constructed using the MEGA5 program and the neighbor-joining method 

with predicted Aux/IAA proteins. Bootstrap support is indicated at each node. Each Aux/IAA 

group (A to K) is indicated by a specific color. EgrIAAs are noted in red and bold. EgrIAAs 

exhibiting vascular preferential expression (cluster III, Fig 4) are marked with a red solid circle. 

 



Chapter III 

77 

 

et al. 2007), whereas Arabidopsis Aux/IAAs are scattered on all of the five chromosomes 

(Overvoorde et al. 2005). Notably, one cluster of recent tandem was detected on 

chromosome 3. EgrIAA29, 29A and 29B are located within a 45 kb fragment on 

chromosome 3 and result from a recent tandem duplication event, which led to two 

truncated versions and probably inactive versions of EgrIAA29 (Fig. S3). Three pairs 

of EgrIAAs were identified as the results of segmental duplications (Myburg et al. 2014) 

although they are located very close to each other (within a distance < 25 kb) on 

chromosomes 8 (EgrIAA4/16 and EgrIAA3A/14) and 11 (EgrIAA1/17) respectively (Fig. 

S5). These six genes are phylogenetically related, the more distant genes sharing 61% 

protein identity. Members of protein pairs shares identity levels higher than 63% (Table 

S1). However, each member of the protein pairs belongs to a distinct phylogenetic 

group. EgrIAA1, 3A and 4 belong to group A, whereas EgrIAA17, 14 and 16 are 

members of group C (Fig. S5 and Fig. S2). Altogether, these data suggest that one 

ancestor gene went through ancient tandem duplication to give a first pair of EgrIAAs 

that subsequently went through segmental duplication events to generate the other two 

pairs. It seems that Aux/IAA family tandem duplication events in Eucalyptus occurred 

prior to the chromosomal block duplication in Aux/IAA family in a similar way to that 

proposed for Arabidopsis (Remington et al. 2004).  

As duplication and alternative splicing are the two main mechanisms involved in 

diversification of function within gene families, we performed an in silico survey of the 

alternative transcripts predicted in the E. grandis genome JGI assembly v1.0, 

annotation v1.1 (http://www.phytozome.net/eucalyptus). Among the 24 EgrIAAs, eight 

of them showed more than one splice variant (Table 1). This proportion of alternative 

transcripts is similar to that found in Arabidopsis. In Eucalyptus, most of the alternative 

transcripts arise from members of groups B and F, while in Arabidopsis, the majority 

of them belong to groups B and G (Table S2, Fig. 2). Some alternative transcripts are 

lacking domains III and/or IV (Fig. 1, Fig. S6), likely contributing to shape the 

functional diversity of the family. 

http://www.phytozome.net/eucalyptus
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3.3 Expression profiling of EgrIAA genes in different tissues/organs and 

environmental cues 

To gain insights into the developmental patterns of expression of EgrIAA genes, we 

assessed their transcript levels by qRT-PCR in thirteen different organs and tissues. The 

24 EgrIAA genes could be detected in all the tissues tested, and most of them showed 

preferential expression in some distinct tissues (Fig. 3). The relative transcript 

accumulations of EgrIAA genes are presented as a heat map, and hierarchical clustering 

allowed grouping all the expression patterns into three distinct clusters (Fig. 3). Many 

members of the three clusters exhibited differential expression between young and 

 

Fig. 3 Expression profiles of the 24 EgrIAA genes in various organs and tissues. The 

hierarchical clustered heat map was constructed using the log2 ratios of relative expression 

values normalized with a control sample (in vitro plantlets) of 24 EgrIAA genes (indicated on 

the right) in thirteen tissues and organs (indicated at the top). The genes belonging to cluster 

III are preferentially expressed in vascular tissues (phloem, cambium and/or xylem) and in 

organs such as stems and roots. 

Cluster I

Cluster II

Cluster III
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mature leaves. Most of them showed higher expression in young leaves whereas only 

EgrIAA14 displayed higher expression level in mature leaves. Members of both cluster 

I and II displayed highest expression in non-vascular tissues, but they diverged 

regarding their differential expression in leaves. The members of cluster I showed high 

expression in leaves, while those of cluster II showed very low expression in these 

organs. Cluster III was the largest cluster, containing eleven members that displayed 

preferential expression in vascular tissues (phloem, cambium and xylem).  

Within cluster III, EgrIAA13, 20 and 31 displayed relatively high expression in all three 

vascular tissues whereas EgrIAA4 and 33A showed higher expression levels in 

cambium and xylem than in phloem. EgrIAA29 was preferentially expressed in 

cambium as compared to phloem and xylem. Most of the members of cluster III showed 

higher expression in juvenile xylem versus mature xylem (Fig. 4A) whereas no obvious 

differences in their expression patterns were detected between juvenile and mature 

cambium (Fig. 3). Of particular note, EgrIAA4 was the only gene showing higher 

expression in mature xylem as compared to juvenile xylem (Fig. 4A). Most of EgrIAA 

genes from cluster III are responsive to bending mechanical stress (Fig. 4B). Four 

EgrIAA genes were down-regulated (EgrIAA4, 11, 13 and 20) and two (EgrIAA31 and 

33A) were up-regulated in tension wood as compared to straight wood (Fig. 4B). 

Interestingly, EgrIAA11 and 20 were down-regulated in both tension and opposite 

woods, whereas EgrIAA33A was up-regulated in these tissues (Fig. 4B).  

3.4 Candidates EgrIAA genes potentially involved in wood formation 

In order to identify the best candidate(s) potentially involved in wood formation for 

functional characterization in planta, we defined several criteria based on (i) transcript 

abundance in vascular tissues, (ii) high expression in cambium and/or xylem versus low 

expression in phloem, (iii) responsiveness to bending, given that response to bending 

involves dramatic changes both in xylem development and secondary cell wall structure 

and composition, (iv) differential expression between mature versus juvenile xylem 

known to exhibit different biochemical and physical properties. The combination of all 

these criteria presented as a Venn diagram (Fig. S7) highlighted EgrIAA4 and 
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EgrIAA33A as the most suited candidates matching the three first and main criteria. 

Ultimately, EgrIAA4 was selected for further functional characterization because it was 

the only gene more expressed in mature than in juvenile xylem (Fig. S7).  

3.5 Nuclear localization and transcriptional activity of EgrIAA4  

When transiently expressed as GFP fusion proteins in BY-2 tobacco protoplasts, 

EgrIAA4 protein was exclusively located in the nucleus (Fig. 5A) as predicted by the 

presence of two well conserved NLS (Fig. S4). The impact of EgrIAA4 on the 

transcriptional activity of target genes was assessed in tobacco protoplasts co-

transfected with an effector construct expressing the full-length coding sequence of 

 

Fig. 4 Effects of developmental and environmental cues on the transcript levels of ten 

EgrIAAs preferentially expressed in vascular tissues. Ratios of the relative mRNA 

abundance between (A) mature and juvenile xylem, (B) tension versus straight xylem, and 

opposite versus straight xylem. Each relative mRNA abundance was normalized with a control 

sample (in vitro plantlets). Error bars indicate the standard error (SE) of mean expression values 

from three independent experiments. Asterisks indicate values found to be significantly 

different (student’s t-test, p value) * p<0.05, ** p<0.01. 
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EgrIAA4 under the 35SCaMV promoter and a reporter construct carrying the DR5::GFP, 

an auxin-responsive promoter fused to the GFP coding sequence). The DR5::GFP 

reporter construct is commonly used to assess auxin-dependent transcriptional activity 

 

Fig. 5 Subcellular localization and repressor activity of EgrIAA4 protein on a synthetic 

DR5 promoter. (A) Subcellular localization of EgrIAA4-GFP protein in BY-2 tobacco 

protoplasts. The merged pictures of the green fluorescence channel (left panels) and the 

corresponding bright field (middle panels) are shown in the right panels. Scale bar, 10 µm. 

(B) Repressor activity of EgrIAA4 protein on a synthetic DR5 promoter. Effector and 

reporter constructs were co-expressed in tobacco protoplasts in the presence or absence of a 

synthetic auxin (50 μM 2, 4-D). A mock effector construct (empty vector) was used as 

control. In each experiment, protoplast transformations were performed in independent 

biological triplicates. Three independent experiments were performed and similar results 

were obtained; the figure indicates the data from one experiment. Error bars represent SE of 

mean fluorescence. Significant statistical differences (student T test, P<0.001) to control are 

marked with **. 
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in planta (Audran-Delalande et al. 2012; Ulmasov et al. 1999). The DR5-driven GFP 

showed a low basal activity which was induced up to 9-fold by exogenous auxin 

treatment (Fig. 5B). Co-transfection with the effector plasmid EgrIAA4 resulted in a 

strong repression (87%) of the auxin-induced expression of the reporter gene (Fig. 5B) 

indicating that EgrIAA4 is able to mediate auxin response in vivo and that it functions 

as a strong transcriptional repressor. 

3.6 Overexpression of EgrIAA4m affects plant growth and development  

To gain insights into the role of EgrIAA4, we overexpressed in Arabidopsis a mutated 

version of the gene, referred to as EgrIAA4m (see Material and Methods and Fig. S8A), 

encoding a stabilized form of the protein. The mutation introduced in the degron 

domain was hypothesized to prevent auxin-mediated EgrIAA4 protein degradation. 

Then EgrIAA4m was cloned under the control of the 35SCaMV promoter into the 

Gateway pFAST-G02 expression vector and transformed into A. thaliana Col-0. This 

pFAST-G02 vector contains an OLE1-GFP selection marker that allows direct screening 

of transformed seeds displaying fluorescence under UV light (Shimada et al. 2010). 

Among the ten seeds sown, six germinated giving independent EgrIAA4m 

transformants, all exhibiting similar and dramatically reduced sizes as compared to 

controls. We selected two phenotypically representative transformants (EgrIAA4m_1.3, 

ErIAA4m_2.3) overexpressing EgrIAA4m (Fig. S8B) for further characterization. T2 

seeds from both lines germinated and half of the seedlings exhibited a drastic phenotype 

remaining very tiny (around one cm rosette only) and displaying very small and curled-

down leaves turning yellow or brown just before the plants die without flowering. (Fig. 

S8C). The surviving transgenic plants (T2) exhibited several distinctive phenotypes in 

their aerial parts (Fig. 6A, B). During the seedling stage, the cotyledons showed curled-

up shape, while the leaves had a curled-down shape and very short petioles (Fig. 6A). 

During the vegetative stage, the EgrIAA4m transgenic plants from both lines showed 

significantly reduced plant height and rosette diameter (Fig. 6B), and the inflorescence 

stems were obviously thinner than those of wild type plants. In addition, EgrIAA4m 

plants showed smaller siliques and much lower fertility than wild-type (no seeds or less 
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than 20 seeds per plant).  

3.7 EgrIAA4m affects root development and gravitropism  

To examine the root phenotype of the transgenic plants, seeds collected from T1 plants 

were grown in vitro on 1/2 MS medium and the primary root length and the number of 

lateral roots were compared ten days after germination between wild-type and 

EgrIAA4m plants. The primary roots of EgrIAA4m lines were significantly shorter 

(around 15 mm) than those of wild type seedlings, which were approximately 49.7 mm 

long (Fig. 6C). In addition, no lateral roots were observed in EgrIAA4m transgenic 

seedlings, while wild-type seedlings had well-developed lateral roots of 6.9 mm (Fig. 

6D). Seventeen days after germination, there was still no lateral root emergence in 

EgrIAA4m transgenic plants. These results indicate that EgrIAA4m overexpression 

 

Fig. 6 Phenotypic characterization of EgrIAA4m transgenic plants. (A) Nine-day-old 

plantlets of wild-type and two representative EgrIAA4m lines plantlets. (B) 45-day-old wild-

type and EgrIAA4m transgenic plants. (C, D) Primary root length and lateral root numbers in 

10-day-old wild type and EgrIAA4m transgenic seedlings grown on 1/2 MS medium. Error 

bars represent SE of mean of primary root length (n>10). Significant statistical differences 

(student T test, P<0.001) to control are marked with **. (E) Three-day-old seedlings grown 

on vertical plates with 1/2 MS medium. 
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inhibits both primary root elongation and lateral root emergence. 

Gravitropic response is a typical auxin-related phenotype, and several Aux/IAA 

Arabidopsis mutants showed agravitropism in roots and/or hypocotyls, such as 

axr5/IAA1, axr2/IAA7, slr/IAA14, axr3/IAA17and msg2/IAA19 (Fukaki et al. 2002; 

Nagpal et al. 2000; Rouse et al. 1998; Watahiki and Yamamoto 1997; Yang et al. 2004). 

To assess the gravitropic response of the EgrIAA4m transgenic plant, we grew them on 

vertically oriented 1/2 MS plates. Ten days after germination, the hypocotyls and roots 

of the EgrIAA4m transgenic plants grew in random directions (agravitropically) as 

compared to the wild-type seedlings that all grew vertically (Fig. 6E). Then we 

reoriented the plates by 90 degrees and checked the roots’ response. After 48 hours, the 

wild-type Arabidopsis roots changed their growth direction of 90 degrees, while the 

EgrIAA4m transgenic plants did not respond to the gravity change (data not shown), 

indicating that transgenic roots lost completely their ability to perceive gravity. 

3.8 EgrIAA4m negatively regulates xylem differentiation in Arabidopsis stem  

We further investigated the impact of EgrIAA4m overexpression on xylem and 

interfascicular fibers’ development in Arabidopsis inflorescence stem (Fig. 7). The 

lignification patterns were obtained by staining the stem cross-sections of plants grown 

for 37 (Fig. 7A, B, C, D) and 47 days (E, F) with phloroglucinol-HCl. As compared to 

37 day-old wild-type plants (Fig. 7A, C), the proportion of lignified tissues stained in 

red by phloroglucinol were dramatically reduced in transgenic lines (Fig. 7B and D) 

suggesting that, at the same age, the activity of both fascicular and interfascicular 

cambium was greatly reduced and/or delayed in the transgenic plants (Fig. 7A-F). 

Closer examination revealed the virtual absence of lignified interfascicular fibers in 37 

day-old EgrIAA4m transgenic Arabidopsis (Fig. 7D) as compared to control (Fig. 7C). 

However, a very weak and discontinuous light reddish staining appeared in the 

interfascicular zone of 47 day-old transgenic plants (Fig. 7F), suggesting that a very 

limited lignification had occurred. In addition, the xylary fibers in the vascular bundle 

regions were completely absent and the xylem vessels were much smaller as compared 
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to control plants (Fig. 7C-F). These results indicate that overexpression of EgrIAA4m 

strongly and negatively affected xylem bundles and interfascicular fibers development.  

4 Discussion 

The Aux/IAA family in E. grandis contains 24 members and therefore is slightly 

 

Fig. 7 Histochemical analysis of basal stem cross sections of EgrIAA4m 

transgenic Arabidopsis. Sections of wild-type and EgrIAA4m transgenic plants 

were stained with phloroglucinol-HCl. if, interfascicular fiber; xf, xylary fiber; xv, 

xylem vessel. Scale bar: 50 μm. 
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contracted as compared to most angiosperms Aux/IAA families studied hitherto (Table 

2). With 25 members, the size gene family in tomato is the closest to Eucalyptus but it 

lacks non-canonical members in group I (Audran-Delalande et al. 2012), which were 

shown here to be present in Eucalyptus. In fact, all the eleven phylogenetic groups 

defined in Arabidopsis were represented in Eucalyptus but with less members in each 

group except in group E that contains two members whereas Arabidopsis and Populus 

have only one member each. In Arabidopsis, transcripts of AtIAA15, the unique member 

of group E, were never been detected suggesting that it may be a pseudogene 

(Remington et al. 2004), while in E. grandis the transcripts of both EgrIAA15A and 15B 

were detected by qRT-PCR, indicating they are likely functional genes. Whereas in 

Arabidopsis and Populus members of the Aux/IAA family arose predominantly through 

large-scale genomic duplication events (Kalluri et al. 2007; Remington et al. 2004), 

Aux/IAA family members in the E. grandis genome are concerned with only very few 

segmental duplications events. One cluster of recent tandem duplication was detected 

on chromosome 3, but the duplication of EgrIAA29 led to two truncated genes lacking 

both domains III and IV. To the best of our knowledge, such a structure had never been 

reported in other species and these truncated genes are most likely not functional.  

The virtual absence of tandem duplication in the Eucalyptus Aux/IAA family is 

especially striking because E. grandis has the largest number of genes in tandem repeats 

reported among sequenced plant genomes (34% of the total number of genes; Myburg 

et al. 2014) and tandem duplication shaped functional diversity in many gene families 

in Eucalyptus such as in the MYB (Soler et al. 2014) and NAC (Hussey et al. 2014) 

transcription factor families. On the other hand, this situation is quite similar to ARF 

family in E. grandis whose size is also slightly contracted as compared to other 

angiosperms genome studied (Yu et al. 2014). Because Aux/IAA proteins regulate 

auxin-mediated gene expression through interaction with ARF proteins, a proper 

dosage relationship is probably needed (Remington et al. 2004).  

The expression profiles of EgrIAAs in various tissues and organs showed that some 

genes have preferential expression patterns, contrasting to ARF family members that 
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exhibited more constitutive expression in the same panel of samples (Yu et al. 2014). 

According to the current model, Aux/IAA proteins regulate auxin-mediated gene 

expression by protein-protein interactions with ARFs, so the preferential expression 

pattern of Aux/IAA genes may have a primary role in their physiological functions 

(Muto et al. 2007). All the EgrIAA genes in groups G, H and I showed vascular tissue 

preferential expression, and most of their orthologs in Arabidopsis and/or Populus also 

showed high/preferential expression in xylem cells (Table S3) (Hruz et al. 2008; Kalluri 

et al. 2007; Moyle et al. 2002; Nilsson et al. 2008), and/or induce vascular defects in 

transgenic plants (Nilsson et al. 2008; Sato and Yamamoto 2008) suggesting that these 

phylogenetic groups are regulating cambium activity and/or xylem development. 

Overexpression of AtIAA20, 30 and 31 in Arabidopsis resulted in reduced and 

discontinued vascular strands in cotyledons (Sato and Yamamoto 2008). Alteration of 

auxin responsiveness through overexpression of a stabilized version of PttIAA3 

(EgrIAA20 ‘s putative ortholog) in transgenic aspen reduced the cambial cell division 

activity, caused spatial deregulation of cell division of the cambial initials and led to 

reductions in not only radial but also axial dimensions of fibers and vessels (Nilsson et 

al. 2008). 

Most of the EgrIAAs in cluster III showed responsiveness to bending stress, but their 

behaviour seems quite different from that of their potential orthologs in Populus (Moyle 

et al. 2002). For example, in our conditions (three weeks of bending stress), EgrIAA20 

was down-regulated in tension wood, whereas its Populus orthologs PttIAA3 and 4 were 

not affected (Moyle et al. 2002). An opposite pattern was evidenced for EgrIAA9A that 

was not affected by long-term bending, while its Populus ortholog PttIAA2 was down-

regulated in tension wood (Moyle et al. 2002). In fact, in a previous study, we had 

shown that the transcript level of EgrIAA9A increased sharply between six and 24 hours 

and then decreased between 24 h and one week, to reach a level similar to that of the 

control (Paux et al. 2005). Aux/IAAs are thus responding to bending in a time-dependent 

way explaining the apparent discrepancies between the responses of Populus and 

Eucalyptus Aux/IAA orthologs. Indeed, Moyle et al. (2002) analysed an early response 
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to bending (from 30 minutes to eleven hours) whereas we analysed a late response after 

three weeks of bending. Our results are indeed more consistent with those of Anderson-

Gunneras et al. (2006) who analyzed Populus gene expression after three weeks 

bending. We found that EgrIAA4, 11 and 20 were all down-regulated in tension wood 

as their Populus orthologs (Anderson-Gunneras et al. 2006).  

EgrIAA4, which belongs to subgroup A, was considered as the best candidate to 

regulate cambium activity and wood formation based on its expression profile, and was 

chosen for functional characterization in planta. EgrIAA4 is the ortholog of Arabidopsis 

sister pair AtIAA3 and AtIAA4. Only the function of AtIAA3 has been studied through 

gain-of-function experiments. AtIAA3 mutation shy2 led to plants with shorter 

hypocotyls, fewer lateral roots, and slower gravitropic response (Reed et al. 1998; Tian 

and Reed 1999). AtIAA3 was shown recently to be part of the auxin-signalling module 

(SLR/IAA14–ARF7–ARF19 and SHY2/IAA3–ARFs) regulating lateral root formation 

(Goh et al. 2012). Likewise the down-regulation of Sl-IAA3, the ortholog of AtIAA3 in 

the tomato, leads to reduced growth of primary and inhibition of lateral roots 

(Chaabouni et al. 2009). Overexpression of an auxin-insensitive version of EgrIAA4 in 

Arabidopsis led to very similar but more severe auxin aberrant phenotypes. The 

gravitropic response was completely lost and the growth and development were 

severely affected with strongly reduced height and diameter of the inflorescence stem, 

reduced leaf size and fertility and absence of lateral roots. Notably, EgrIAA4m 

overexpression also led to phenotypic alterations of the vascular system not reported 

yet for its Arabidopsis’s ortholog. The development of both xylem and interfascicular 

fibers were dramatically delayed and reduced suggesting a reduced cambium activity 

in response to the altered auxin responsiveness induced by EgrIAA4m expression. In 

the transgenic plants, the lignified secondary walls of the interfascicular fibers appeared 

very late whereas that of the xylary fibers was virtually undetectable, indicating that 

EgrIAA4 plays crucial roles in fiber development and secondary cell walls deposition 

consistent with its expression profile.  
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5 Materials and Methods 

5.1 Identification of Aux/IAA gene family in Eucalyptus 

Firstly, we used 29 Arabidopsis Aux/IAA proteins as queries to do BLASTP against 

Eucalyptus grandis genome (JGI assembly v1.0, annotation v1.1, 

http://www.phytozome.net/eucalyptus), and identified 55 potential E. grandis Aux/IAA 

proteins. Then, the Pfam database (http://pfam.sanger.ac.uk/search) and NCBI 

conserved domain database (http://www.ncbi.nlm.nih.gov/cdd) web server were used 

to examine the conserved domains (Finn et al. 2010; Marchler-Bauer et al. 2011). The 

incomplete gene models were completed by FGENESH+ (http://linux1.softberry.com), 

and redundant and invalid gene models were removed. The corrected E.grandis 

Aux/IAA proteins were used as query sequences in two subsequent additional search: 

1) BLASTP against E. grandis proteome for exhaustive identification of divergent E. 

grandis gene family member, 2) TBLASTN searches against E. grandis genome for 

seeking any possible no predicted genes. Finally 26 EgrIAAs were identified in E. 

grandis genome (E.grandis genome V1.1, May 2012). For validation, we also used 

Populus Aux/IAA proteins as queries to do the complete search procedure described 

above, and we obtained exactly the same final 26 EgrAux/IAA genes. Gene information 

on chromosomal location was retrieved from the E. grandis genome browser 

(http://www.phytozome.net/eucalyptus) with manual curation and we mapped their loci 

using MapChart 2.2 (Voorrips 2002). Basic physical and chemical parameters of 

Aux/IAA proteins were calculated by online ProtParam tool 

(http://web.expasy.org/protparam/).  

5.2 Sequence, gene structure and phylogenetic analysis 

Conserved protein motifs of EgrIAA were determined by MEME-MAST programs 

(http://meme.sdsc.edu/meme) (Bailey et al. 2009). The exon-intron structures were 

extracted from Phytozome with manual curation and visualized by Fancy Gene v1.4 

(http://bio.ieo.eu/fancygene/). Multiple protein sequences alignment was performed 

using Clustal_X2 program (Version 2.0.11). All predicted protein sequences were used 

http://www.phytozome.net/eucalyptus
http://pfam.sanger.ac.uk/search
http://www.ncbi.nlm.nih.gov/cdd
http://linux1.softberry.com)/
http://www.phytozome.net/eucalyptus
http://web.expasy.org/protparam/
http://meme.sdsc.edu/meme/intro.html
http://bio.ieo.eu/fancygene/
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to do phylogenetic analysis and the phylogenetic trees were constructed with MEGA5 

program by neighbour-joining method with 1000 bootstrap. 

5.3 Plant materials and growth conditions 

All Eucalyptus organ/tissues provenance and preparation are described in Cassan-Wang 

et al. (2012). A. thaliana ecotype Col-0 plants were grown in growth chamber: 16 h 

day/8 h night for long days, 22/20ºC day/night temperature, 70% relative humidity, 200 

µmol photons m−1s−1 light intensity (intense luminosity). The plants were watered every 

two days and fertilized weekly. Seeds were surface-sterilized for 1 min in 70% ethanol, 

10 min in 25% bleach, rinsed five times in sterile water and plated on Murashige and 

Skoog (MS) medium containing 1.0% sucrose solidified with 1% agar. 

5.4 RNA isolation, cDNA synthesis and qRT-PCR 

Total RNAs were extracted from 100–200 mg of frozen material as described by 

(Southerton et al. 1998) and treated by Turbo DNA-freeTM kit (Ambion, Carlsbad, USA) 

to remove the genomic DNA contamination. RNA concentration and purity were 

determined by using a NanoDrop spectrophotometer ND-1000 (Thermo Scientific, 

Waltham, USA) and the integrity was assessed by using the Agilent 2100 Bioanalyzer 

(Agilent, Santa Clara, USA). Only samples with RNA Integrity Number (RIN) over 7 

were used for reverse transcription. cDNA was reversed transcribed from 2 g total 

RNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

Foster, USA).  

Primers were designed using the software QuantPrime (qPCR primer design tool: 

http://www.quantprime.de/ (Arvidsson et al. 2008) and the sequences are shown in 

Table S4. Oligonucleotides were synthesized by Sigma Life Science. qRT-PCR was 

performed by the Genotoul service in Toulouse (http://genomique.genotoul.fr/) using 

the BioMark® 96:96 Dynamic Array integrated fluidic circuits (Fluidigm Corporation, 

San Francisco, USA) as described in (Cassan-Wang et al. 2012). Only primers that 

produced a linear amplification and qPCR products with a single-peak melting curves 

were used for further analysis. The efficiency of each pair of primers was determined 

http://www.quantprime.de/
http://genomique.genotoul.fr/
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from the data of amplification Ct value plot with a serial dilution of mixture cDNA and 

the equation E =10(-1/slope) -1. E-∆∆Ct method was used to calculate relative mRNA fold 

change compared to control sample using formula (Etarget)
ΔCt_target 

(control−sample)/(Ereference)
ΔCt_reference (control−sample) (Pfaffl 2001) and five reference genes (IDH, 

PP2A1, PP2A3, EF-1a and SAND, Table S4) were used for data normalization. In vitro 

plantlets were used as control sample. 

5.5 EgrIAA4 amplification and gain-of-function transgenic Arabidopsis 

construction 

The EgrIAA4 gene was amplified by polymerase chain reaction (PCR) using Phusion 

Taq (Thermo, Waltham, USA) by a gene specific primer pair: 5’-

CACCATGGCAGCTCAAGGAGAGGAT-3’ and 5’-

AACCTCTGATGACCCTTTCATGATT-3’ which was based on the prediction from E. 

grandis genome v.1.1 (Eucgr.H04336.1). To investigate the function of this gene, we 

create a mutation in the auxin degradation domain changing the 80th amino acid from 

proline to serine (P-to-S) in domain II by using overlap PCR. The overlap primers are 

5’-ATCGGACCGGACTCCACCCCACGACTTGTGCCTTA-3’ and 5’-

CGTGGGGTGGAGTCCGGTCCGATCCTACCGAAA-3’. The underlined sequences 

are the overlap region and the bold bases are the mutated nucleotides. The EgrIAA4m 

fragment was cloned into the pENTR/D-TOPO vector (Invitrogen, Carlsbad, USA) to 

sequence. After sequencing, we recombined EgrIAA4m fragment into the destination 

vector pFAST-G02 using LR Clonase (Invitrogen, Carlsbad, USA). pFAST-EgIAA4m 

vector was transformed into A. tumefaciens strain GV3101, and then transformed into 

A. thaliana ecotype Col-0 using the floral dip method (Clough and Bent 1998).  

5.6 Transient expression using a single cell system 

Protoplast for transfection were obtained from suspension-cultured tobacco (Nicotiana 

tabacum) BY-2 cells according to the method of Leclercq et al. (2005). Protoplast were 

transfected by a modified polyethylene glycol method as described by Abel and 

Theologis (1994). For nuclear localization of the selected Aux/IAA, the full length 
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cDNAs were fused in frame at the C-terminus with GFP in the pK7FWG2.0 vector 

(Karimi et al. 2002) under the control of 35SCaMV promoter. Transfected protoplasts 

were incubated for 16 h at 25ºC and examined for GFP florescence signals using a Leica 

TCS SP2 laser scanning confocal microscope. Images were obtained with a x40 water 

immersion objective. For co-transfection assays, the full-length cDNAs of the selected 

Aux/IAA were cloned into pGreen vector under 35SCaMV promoter to create the 

effector constructs. The reporter constructs used a synthetic auxin-responsive promoter 

DR5 fused to the GFP reporter gene. Tobacco BY-2 protoplasts were co-transfected 

with the reporter and effector constructs as described in Audran-Delalande et al. (2012). 

After 16h incubation, GFP expression was quantified by flow cytometry (LSR Fortessa, 

BD Bioscience), and the data were analysed using Cell Quest software BD FacsDiva 

software. Transfection assays were performed in three independent replicates and 3000-

4000 protoplasts were gated for each sample. GFP fluorescence corresponds to the 

average fluorescence intensity of the protoplasts population after subtraction of auto-

fluorescence determined with non-transformed protoplasts. 50 µM 2, 4-D was used for 

auxin treatment. 

5.7 Microscopy analysis 

The Arabidopsis inflorescence stems at the basal end (~1 cm) and hypocotyls were 

harvested at 37 and 47 days old, and then stored in 70% ethanol. The cross sections 

were prepared using vibratome Leica VT1000 S (Leica, Paris, France). Lignin polymers 

are the characteristic components of secondary cell wall (SCW) and are normally absent 

from primary cell wall, therefore we used lignin deposition detection techniques to 

screen for SCW phenotype. Cross sections of inflorescence stem and hypocotyl (~80 

µm) were stained with phloroglucinol-HCl, which stains specifically lignin polymer 

precursors coniferaldehyde and p-coumaraldehyde in the SCW giving violet-red color. 

Phloroglucinol-HCl was directly applied on the slide and images were recorded with a 

CCD camera (Photonic Science, Robertsbridge, UK, http://www.photonic-

science.co.uk). 

 

http://www.photonic-science.co.uk/
http://www.photonic-science.co.uk/
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Chapter IV: Wood formation associated IAAs/ARFs candidate genes selection 

and functional characterization 

1 Introduction 

The goal of the work presented in this chapter was refine the selection of the most 

promising candidate genes involved in the differentiation of secondary xylem in order 

to start their functional characterization in planta. Capitalizing on the genome-wide 

analyses of the Aux/IAAs and ARFs families in the Eucalyptus grandis genome and on 

their expression profiling in a large panel of organs, tissues and experimental conditions, 

we were able to select 13 genes (3 ARFs and 10 IAAs presented in chapters II and III 

and summarized in Table IV-1) highly and/or preferentially expressed in secondary 

xylem and/or cambium and for some of them differentially expressed between 

contrasting wood tissues. For instance, EgrIAA31 displayed a high expression in 

tension wood while low expression in opposite wood, suggesting that this gene could 

be involved in either the regulation of active cell division occurring in tension wood 

and/or in the regulation of secondary cell wall formation since these contrasting woods 

have very different SCW composition and structure. Although EgrARF10 showed a 

relatively low expression in xylem, it was selected because it was highly expressed in 

cambium, suggesting that it could be involved in the regulation of cambium identity 

and/or xylem cell specification.  

In addition, we seek for Eucalyptus Aux/IAA and ARF genes in EUCATOUL database 

(Eucalyptus wood EST database: a dataset of 3928 wood-related unigenes (2479 

contigs and 1449 singletons) (Paux et al. 2004; Foucart et al. 2006; Rengel et al. 2009). 

Among the 17 EgrARF and 24 EgrIAA, only four genes were detected including three 

IAA (EgIAA3B, 9B, 13) and one ARF (EgARF6A), and two of them (EgIAA3B, and 13) 

were included in wood associated CGs (Table IV-1). 
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Table IV-1 Wood formation associated CGs in Eucalyptus 

In order to gather information on the expression patterns of their potential orthologs in 

Arabidopsis, we performed an in silico gene expression profiling analysis by surveying 

Genevestigator database for xylem-associated member of Aux/IAA and ARF families. 

We seek for orthologs showing high and/or specific expression in xylem (hypocotyls of 

adult plants) and/or differentially expressed during in vitro tracheary element (TE) 

induction experiment. The later expression data have been obtained from an in vitro 

xylem vessel element induction system from Arabidopsis (Kubo et al 2005). In this 

system, about 50% of suspension cultured cells of Arabidopsis ecotype Col-0 

differentiated into xylem vessel elements showing thickened SCW within 7 d in the 

presence of 1 μM brassinolide and 10 mM boric acid. The data are reported on Table 

IV-1. 

Gene name 
Ortholog in 

Arabidopsis 

Expression in Eucalyptus  

In silico 

Bibliography  EUCAWOOD 

EST 

Arabidopsis 

Genevestigator*  

xylem/ 

cambium 

opposite/ 

tension 

expression 

in xylem 
TE 

EgrIAA3B 
AtIAA3/4 

++B  3 
++B -2.9 

 

EgrIAA4 +++A 3.3   

EgrIAA9A AtIAA8/9 ++B   +++B 0.9 AtIAA8/SlIAA9 

EgrIAA11 AtIAA11 ++B   +++A 0.2  

EgrIAA13 AtIAA12/13 +++A 3.2 2 +++A 1 AtIAA12/13 

EgrIAA20 AtIAA20/30 +++A 7    AtIAA20/30/PttIAA3 

EgrIAA29 AtIAA29 ++A   +++A 2.5  

EgrIAA31 AtIAA31 +++B 0.3    AtIAA31 

EgrARF4 AtARF4 ++B   +++A -0.5 AtARF4 

EgrARF10 AtARF10 ++B   +++A -2.9 AtARF10 

EgrARF19A AtARF19 ++B     ++A 0.9 AtARF19 

A Preferential expression 

B Non-preferential expression 

++ Medium expression 

+++ High expression 

TE Tracheary element induction 

* AtARF2, 3 and AtIAA2, 16, 18, 19, 26, 27, 28 also showed high and/or preferential expression in 

xylem, but not their orthologs in Eucalyptus. 
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Some ARF and Aux/IAA genes have been reported involved or potentially involved in 

vascular tissue growth and development (Table IV-2). Most of the studies were done on 

the model plants Arabidopsis. For instance AtARF5 loss-of-function mutants mp/arf5 

displayed discontinuous and reduced vascular patterns in cotyledons (Przemeck et al. 

1996). AtIAA12 gain-of-function mutant bdl/iaa12 mutants displayed strong phenotype 

similar to mp, showing reduced and incomplete vascular venation in the cotyledons 

(Hamann et al. 1999). Overexpression of the non-canonical Aux/IAA genes IAA20, 

IAA30 or IAA31, (lacking the degron domain II, and therefore encoding more stable 

proteins), also caused incomplete vasculatures in seedling cotyledons (Sato and 

Yamamoto 2008). During the development of Arabidopsis inflorescence stems, the 

expression of four Aux/IAAs (IAA13, IAA26, IAA27, and IAA28) was up-regulated in 

the mature stem where the secondary walled cells are abundantly developed. Several 

ARF genes were differentially regulated during secondary xylem formation, among 

them ARF2, ARF4, and ARF12 showed the most dramatic expression changes, 

suggesting putative roles in xylem formation (Ko et al. 2004).  

Several studies in poplar also pointed out the involvement of these two gene families 

in wood formation. For instance overexpression of the mutated PttIAA3m lead to a 

reduction in cambium cell divisions and to a decrease in width of secondary xylem 

(Nilsson et al. 2008). In additional, some Aux/IAA genes in tomato, maize and cotton 

were also proposed to be involved in xylem development. In tomato, down-regulation 

of Sl-IAA9 led to pronounced vascular venation due to more procambial cell 

differentiated into xylem cells (Wang et al. 2005a). In suppressed Sl-IAA15 lines, the 

number of xylem cells in stem also increased (Deng et al. 2012). According to the 

comparative phylogenic analyses described in Chapter II and III, we identified their 

corresponding orthologs in Eucalyptus (Table IV-2).  
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Table IV-2 Bibliography summary and comparative analysis of ARF and Aux/IAA genes potentially involved in wood formation  

Gene 
Expression in 

Eucalyptus 

 Arabidopsis  Poplar 

Tomato Maize Expression in 

Genevestigator 
Bibliography 

Microarray Data 

(Kalluri et al. 2007) 
Bibliography 

EgrARF5   

  

ARF5 mutants (mp) display 

discontinuous and reduced leaf 

vascular patterns (Przemeck et al. 

1996)  

   

EgrARF10 
High expression 

in cambium 

AtARF10 shows high and 

preferential expression in 

hypocotyl xylem cells  

AtARF10 expressed in vascular tissue 

(Liu et al. 2007) 
 

   

EgrARF19A 

High expression 

in cambium and 

xylem 

AtARF10 shows high and 

preferential expression in 

root xylem cells  

AtARF19 expressed in vascular tissue 

(Wilmoth et al. 2005) 
    

EgrIAA9A 

Xylem and 

cambium 

preferential 

expression 

AtIAA8 and 9 shows high 

expression in hypocotyl 

xylem cells  

AtIAA8 was up-regulated in xylem 

(Oh et al. 2003). IAA8 transcript is 

localized to developing vasculature 

and its expression precedes the 

appearance of secondary cell walls in 

TEs (Groover et al 2003) and 

involved in LR formation (Arase et 

al. 2012) 

PoptrIAA9 also 

showed high 

expression in xylem 

PttIAA2 showed high 

expression in cambium and 

xylem (Moyle et al. 2002) 

Down-regulation of 

SlIAA9 altered 

vascular venation 

patterning (Wang et al 

2005) 

RUM1 mutant cause lignin 

deposition and thicker cell 

wall in maize root pith 

cells probably by 

decreased polar auxin 

transport (Zhang et al. 

2014b) 

EgrIAA27  
High expression 

in stem 

AtIAA27 shows high 

expression in hypocotyl 

xylem cells  

AtIAA27 was up-regulated in mature 

stem (Ko, et al. 2004) 

PoptrIAA27.2 also 

showed high 

expression in xylem  
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EgrIAA11 

Xylem and 

cambium 

preferential 

expression 

AtIAA11 showed 

preferential expression in 

root xylem cells 

 

PoptrIAA11 showed 

high expression in 

xylem 

PttIAA5 preferentially strong 

expressed in secondary wall 

forming xylem cells (Moyle et 

al. 2002) 

  

EgrIAA13  

Vascular tissue 

preferential 

expression 

AtIAA12 and AtIAA13 

display high/specific 

expression in hypocotyl 

xylem cells 

 iaa12/bdl seeding  showed 

reduced cotyledons vasculature 

(Hamann et al. 1999), AtIAA12 and 

13 was up-regulated in xylem  (Oh 

et al. 2003), and up-regulated in 

mature stem (Ko, et al. 2004) 

    

EgrIAA15A 
High expression 

in vascular tissue 
    

Suppressed SlIAA15 

lines increased xylem 

cells in tomato stem 

(Deng et al. 2012) 

 

EgrIAA29 

Preferential 

expression in 

xylem and 

cambium 

AtIAA29 showed 

preferential expression in 

root xylem cells  
 

PoptrIAA29 showed 

high expression in 

xylem 
   

EgrIAA20 

High and 

preferential 

expression in 

vascular tissue 

 

overexpressing these three genes 

(AtIAA20, 30, 31) result in reduced 

and discontinued vascular in 

cotyledons (Sato and Yamamoto 

2008) 

PoptrIAA20.2 showed 

preferential expression 

in xylem 

PttIAA3 and 4 showed cambium 

and differentiating xylem 

preferential expression (Moyle 

et al. 2002). PttIAA3m 

transgenic poplar showed 

reduced xylem development 

(Nilsson et al. 2008).   

EgrIAA31 

Vascular 

preferential 

expression   
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In the course of this PhD, we carried on the subcellular localization of eight of the 13 

candidate genes, and assessed their transcriptional activities using co-transfection 

assays tobacco protoplasts.   

Heterologous expression in Arabidopsis was adopted to explore their physiological 

roles in plants. We made overexpression constructs of either native or mutated versions 

as well as dominant repression constructs. We analyzed in depth the effects of 

EgrIAA4m (chapter III), EgrIAA9Am and EgrIAA20 (this chapter) in transgenic 

Arabidopsis lines. Physiological and molecular experiments demonstrated the impacts 

of over-expressing these genes on plant growth and development. Anatomical analyses 

revealed altered vascular patterning and xylem development and biochemical analysis 

further confirmed their impacts on plant cell wall compositions in transgenic plants. 

2 Results 

2.1 Subcellular localization  

We examined the subcellular localisation of eight proteins including three ARF and five 

Aux/IAA genes. When transiently expressed as GFP fusion proteins in tobacco 

protoplasts, two ARFs (EgrARF4 and 10) and two Aux/IAA (9A and 13) were located 

exclusively in the nucleus (Fig. IV-1), consistent with their predicted function as 

transcription factors. However, EgrIAA3B and 20 were localized both in the nucleus 

and cytoplasm, as reported for other Aux/IAA proteins (Arase et al. 2012; Audran-

Delalande et al 2013). Surprisingly, both the N- and C- terminal GFP fusion proteins of 

EgrARF19A were not localized in the nucleus. Co-transformation with a nuclear 

marker (simian virus 40 (SV40) large-T antigen) (David S. Goldfarb 1986) fused with 

mRFP confirmed that EgrARF19A which harbours a weak bipartite NLS as its ortholog 

in Arabidopsis, was localized outside the nucleus (Fig. IV-2). It is worth noting that 

EgrARF19A localization was different to that of the control expressing GFP protein 

alone which was localized everywhere including in the nucleus and the cytoplasm.  
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EgrARF19A seemed to be localized in some particular subcellular organelles in 

cytoplasm (Fig. IV-2) and further experiments would be necessary to determine which   

 

Fig. IV-1 Subcellular localization of selected EgrARF and EgrIAA proteins. Selected 

EgrARF and EgrIAA proteins were fused with green fluorescent protein (GFP) at their C-

terminal and transiently expressed in BY-2 tobacco protoplasts under the control of the 

cauliflower mosaic virus 35S promoter. The protoplasts were then analysed by confocal laser-

scanning microscopy (left panels) and by bright-field microscopy (middle panels). Merged 

images are shown in the right panels. Control cells expressed GFP alone. Scale bar, 10 µm. 
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organelle. We tested the hypothesis that EgrARF19A proteins could migrate into the 

nucleus in response to auxin signals and monitored the fluorescence emitted by the 

EgrARF19A-GFP, 8h, 18h and 25h after auxin treatment (50 µM 2,4-D), but no nuclear 

localization was observed in these experimental conditions. 

 

2.2 Transcriptional activity  

We also tested the ability of three EgrARF genes (EgrARF4, 10 and 19A) and three 

EgrIAA genes (EgrIAA4, 9A and 20) to modulate transcription using the auxin 

 

Fig. IV-2 Subcellular localisation of EgrARF19A. EgrARF19A protein was fused with green 

fluorescent protein (GFP) and transiently expressed in BY-2 tobacco protoplasts under the 

control of the cauliflower mosaic virus 35S promoter. Control cells expressed GFP alone. Scale 

bar, 10 µm. 50 µm 2, 4-D was used for auxin treatment. 
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responsive reporter construct, DR5::GFP in tobacco protoplasts and assaying GFP 

expression by flow cytometry. Transcriptional activities of the three ARF proteins 

(EgrARF4, 10 and 19A) has been described in chapter II (Fig. II-6), EgrARF4 and 10 

function as strong repressors of auxin response, while EgrARF19A seems to be a weak 

 

Fig. IV-3 Transcriptional activities of EgrIAA in tobacco protoplasts. (A) Schemes of the 

effector and reporter constructs used to analyse the function of EgrIAAs in auxin-responsive 

gene expression. (B) Effector and reporter constructs were co-expressed in tobacco protoplasts 

in the presence or absence of a synthetic auxin. GFP fluorescence was quantified 16 h after 

transfection by flow cytometry. A mock effector construct (empty vector) was used as a control. 

In each experiment transformations were performed in independent triplicates. Three 

independent experiments were performed and similar results were obtained; the figure 

indicates the data from one experiment. Error bars represent SE of mean fluorescence. 

Asterisks indicate values found to be significantly (student’s t-test) different from the wild 

type. * p<0.05, ** p<0.01. 
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activator. All three tested EgrIAAs mediated auxin response in vivo and functioned as 

strong transcriptional repressors. EgrIAA4 (reported in Chapter III), EgrIAA9A and 

EgrIAA20 repressed auxin-induced reporter gene expression by 87%, 70% and 88% 

respectively as compared to the control co-transformed with an empty vector (Fig. IV-

3). 

2.3 Strategies for functional characterization by heterologous expression of 

Eucalyptus ARF or IAA transcription factors in Arabidopsis 

We used reverse genetic approach to explore the role of some candidate genes using 

heterologous expression in Arabidopsis. Despite its herbaceous nature, Arabidopsis is 

a good model to study wood formation (Zhang et al. 2011; Chaffey et al. 2002; 

Nieminen et al. 2004). We describe below the different construction we made 

explaining the rationale behind them. These construction were made in the framework 

of European project but only some of them were transformed into plants as detailed in 

2.4. 

2.3.1 ‘gain-of-function’ strategy for Aux/IAA candidate genes  

In Arabidopsis, all of the Aux/IAA T-DNA insertion mutants characterized (12 out of 

29) failed to show any obvious visible phenotype (Overvoorde et al. 2005). All other 

loss-of-function mutants using RNAi or antisense exhibited only subtle phenotypes 

(reviewed in Reed 2001), probably because of gene function redundancy or feedback 

regulatory loops that enabled the mutant plants to compensate for the absence of a 

particular Aux/IAA protein. Recent progress toward discovering the functions of 

Aux/IAA genes has come from the fortuitous discovery of gain-of-function mutations in 

several of these genes (IAA3/SHY2, IAA6/SHY1, IAA7/AXR2, IAA12/BDl, IAA14/SLR1, 

IAA17/AXR3, IAA18, IAA19/MSG2, and IAA28). All these mutations occurred in the 

highly conserved domain II and conferred increased stability to their corresponding 

proteins. Aux/IAA proteins are very short living proteins, and their degradation is 

essential for auxin signaling. Mutations in domain II increase protein stability. Some 
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non-canonical Aux/IAA proteins that lack of domain II have longer half-lives (Dreher 

et al. 2006).  

So, we decided to create gain-of-function mutants by changing one amino acid in 

domain II (VGWPP to VGWPS) for EgrIAA3B, 4, 9A, 15A, 13, 29, 31 and 33A. For the 

non-canonical member EgrIAA20 lacking of domain II and for EgrIAA31 harboring a 

partially conserved domain II (QDWPP), we over-expressed the native forms.   

We used the vector pFAST-G02 (Shimada et al 2010) to overexpress the EgrIAAs under 

the 35SCamV promoter. Because time was limited, we generated transgenic plants 

corresponding to four Aux/IAA genes EgrIAA4m, 9Am, 13m and 20. For each gene at 

least two independent lines were characterized (Fig. IV-4).  

 

Fig. IV-4 Transcript levels of the candidate gene in transgenic Arabidopsis under the 

control of the 35SCaMV promoter and the wild type by RT-PCR. A total of three technic 

replicates were used for each RT-PCR experiment. Bars shows averages ratio of the fragment 

intensity of interest relative to that of AtUBQ10. Error bars represent SE. 
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2.3.2 Appropriate reverse genetic strategies for three selected EgrARFs 

Many loss-of-function mutants of ARF (T-DNA insertion mutant) did not show any 

phenotypes, probably due to functional redundancy. Similarly, some transgenic plants 

over expressing ARF failed to give any phenotype due to the endogenous post-

transcriptional regulation by miRNAs. Mutations in their miRNA target sites lead to 

distinct phenotypes revealing their functions in plant growth and development (Liu et 

al. 2007; Hendelman et al. 2012). Two of the selected Eucalyptus ARF genes, EgrARF4 

and EgrARF10 were predicted to be targeted by miRNA; EgrARF4 has two TAS3 target 

sites and EgrARF10 has one miR160 target site. Therefore, we choose to introduce 

miRNA resistant-mutation in EgrARF4 and EgrARF10 to generate ‘gain-of-function’ 

transgenic plants. For the third selected gene EgrARF19A, no miRNA target site was 

detected, we chose to overexpress the native form and also to make a dominant 

repression construct to transform the TF in a strong repressor. 

The transgenic Arabidopsis (overexpression, dominant repression, and miRNA 

resistant mutations) were generated as described in Materials and Methods. We 

obtained ten independent EgrIAA19A overexpression lines (EgrARF19A_OE) and 

twelve EgrARF19A dominant repression lines (EgrARF19A_DR), four independent 

miRNA resistant EgrARF10 lines (EgrARF10m) (Fig. IV-4). For technical reasons and 

limited time, we failed the EgrARF4 overlap PCR because it contains two miRNA target 

sites.  

2.4 Preliminary analyses of the IAA and ARF transgenic lines 

We generated transgenic Arabidopsis lines for four IAA (EgrIAA4, 9A, 13 and 20) and 

two ARF (EgrARF10 and 19A). Among all these transgenic Arabidopsis, only three 

mutants (EgrIAA4m, 9Am and 20) exhibited distinct xylem related phenotypes. The 

functional characterization of EgrIAA4m was reported in Chapter III, and that of 

EgrIAA9Am and EgrIAA20 will be addressed in the following sections. The two 

EgrIAA13m transgenic lines grew smaller plants as compared to the wild type without 
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no other obvious phenotype on plant growth and development.  

Both of the EgrARF19A overexpression and dominant repression transgenic plants 

showed no obvious phenotypes. This is may be not unexpected because this TF was not 

localized in the nucleus and exhibited very weak transcriptional activity. Some 

EgrARF10m transgenic plants showed severely impaired leaf development and formed 

needle-like leaves, but seeds collect was impossible since they were sterile. These 

transgenic plants were not further characterized in the framework of this PhD due to 

time constraints. 

2.5 Functional characterization of EgrIAA9A in transgenic Arabidopsis 

2.5.1 Over-expression of EgrIAA9Am in Arabidopsis led to smaller, shorter plant 

with enhanced apical dominance  

To evaluate the function of EgrIAA9A on plant growth and development, a mutated 

version in which the 229th amino acid was mutated from proline to serine (P-to-S) in 

the highly conserved domain II was overexpressed in transgenic Arabidopsis plants. 

Two independent transgenic lines: EgrIAA9Am_OE_4.1 and EgrIAA9Am_OE_4.2 were 

studied. 

Both independent lines were smaller than wild-type. The rosette diameter measured at 

bolting time was reduced of 30% in the two transgenic lines as compared to controls 

(Fig. IV-5A and C). The number of rosette’s leaves and the size of the leaves were also 

significantly reduced as compared to wild type (Fig. IV-5D). The differences in rosette 

size, in leaves number and in leaves size were maintained throughout all developmental 

stages.  

Neither bolting nor flowering times were altered in the two transgenic lines, however 

the inflorescence stems of the transgenic plants grew slower and adult plants were 

substantially shorter than wild-type plants (Fig. IV-5B). The inflorescence stem 

diameters were also reduced of one third in the transgenic plants. In addition, the 
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transgenic lines produce dramatically fewer lateral stems both at the rosette level and 

on the primary inflorescences (Fig. IV-5A), indicating enhanced apical dominance. In 

Arabidopsis, IAA9 T-DNA insertion mutant exhibited no visible phenotype 

(Overvoorde et al, 2005) whereas in tomato the down-regulation of IAA9 resulted in 

bigger plant size due to enhanced stem elongation and reduced apical dominance (Wang 

et al 2005a).  

2.5.2 EgrIAA9Am transgenic plants showed altered root development and reduced 

auxin sensitivity 

Many Aux/IAA members were shown to regulate root growth and development such as 

 

Fig. IV-5 Phenotypic characteristics of EgrIAA9Am_OE transgenic plants in short days. 

(A) 50-day-old wild type and IAA9m_OE transgenic Arabidopsis. (B) Growth curve of the 

Arabidopsis inflorescence stem. (C, D) Rosette diameter and leaf number at bolting time. (E) 

The diameter of the inflorescence stem base when the first silique fully development. Asterisks 

indicate values found to be significantly (student’s t-test) different from the wild type. * 

p<0.05, ** p<0.01. 
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axr5/IAA1, axr2/IAA7, slr/IAA14, axr3/IAA17and msg2/IAA19 (Fukaki et al. 2002; 

Nagpal et al. 2000; Rouse et al. 1998; Watahiki and Yamamoto 1997; Yang et al. 2004). 

We therefore examined the root development of the transgenic plants growing on 1/2 

MS medium. We measured the primary root length and the lateral root number of 10-

day-old seedlings. Both independent EgrIAA9Am_OE lines exhibited shorter primary 

root (Fig. IV-6A). The average of primary root length was 5.5 mm in line 

EgrIAA9Am_OE_4.1 and 5 mm in line EgrIAA9Am_OE_4.2 as compared to the 6.3 

mm root length of wild-type. At this stage, wild-type had well developed lateral roots 

(on average 12 per plants) but the two EgrIAA9Am_OE line grew barely no lateral roots 

(Fig. IV-6B). Together the data indicate that EgrIAA9Am overexpression prevents 

 

Fig. IV-6 Root phenotype of the EgrIAA9Am_OE transgenic Arabidopsis. (A, B) The length 

of primary root and the number of lateral root of the Arabidopsis seedlings at 10 days after 

germination (n =10). (C) The effect of 0-1.0 μM NAA on the transgenic and wild type 

Arabidopsis roots (n =10). Error bars indicate standard error of the mean. Asterisks indicate 

values found to be significantly (student’s t-test) different from the wild type. * p<0.05, ** 

p<0.01. 

 

0
2
4
6
8

10
12
14
16

Th
e 

n
u

m
b

er
 o

f 
la

te
ra

l r
o

o
t

A B

0
1
2
3
4
5
6
7
8

P
ri

m
ar

y 
ro

o
t 

le
gt

h
 (

cm
)

*

C

R
o

o
t 

le
n

gt
h

 (
cm

)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.01 0.1 1 10

WT IAA9Am_OE_4.1 IAA9Am_OE_4.2

Auxin concentration (µM)

**



Chapter IV 

115 

 

lateral root formation and slightly reduce primary root elongation.    

To assess auxin-responsiveness of EgrIAA9Am_OE plants, we examined auxin dose 

response on root elongation. Wild type and EgrIAA9Am transgenic seeds were sowed 

on 1/2MS medium containing 0, 0.01, 0.1, 1 and 10 μM NAA and root length was 

measured 5 days after germination. The wild type root elongation was significantly 

inhibited at 1 μM, while the EgrIAA9Am transgenic plants roots were inhibited by a 10-

fold higher concentration (10 μM) than the wild type plants (Fig. IV-6C). This result 

indicates that the EgrIAA9Am_OE transgenic plants are less sensitive to the inhibitory 

effect of the high auxin concentrations on primary root elongation.  

2.5.3 EgrIAA9Am_OE plants showed increased secondary cell wall deposition and 

lignification proportion in Arabidopsis inflorescence  

We further investigated the impact of EgrIAA9m overexpression on xylem formation in 

transgenic plants. Phenotyping was performed on inflorescence stems of plants grown 

under short-day growth conditions when the first siliques were fully developed. Under 

these conditions, the basal part of the stem abundantly develops wood-like cells 

undergoing SCW thickening (xylem vessel cells, xylary fiber cells, and interfascicular 

fiber cells).  

The overall organization of the vascular bundles and interfascicular fibers was not 

altered, but a more intense and thicker phloroglucinol staining was observed in 

EgrIAA9Am_OE transgenic lines in both regions as compared to the control (Fig. IV-

7A and C), suggesting a higher lignin content and an increased SCW deposition in 

xylem vessels, xylary fibers and interfascicular fiber cells (Fig. IV-7B and D). A strong 

phloroglucinol staining was also detected in the phloem cap cells (Fig. IV-7D, green 

arrows) in transgenic lines suggesting a transition of phloem cap cells to phloem 

sclereids (highly lignified). The proportion lignified area quantified using image J 

software, was increased of 37% in stems of transgenic lines as compared to controls 

(Fig. IV-7E). It should be noted that stem diameter was reduced (around 33%) in 
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transgenic lines, most likely a consequence of reduced cell size for different cell types 

(including vessel, fibers and parenchyma cells) in transgenic lines (Fig. IV-7B and D).      

 

Fig. IV-7 Microscopic analysis of cross sections of EgrIAA9Am_OE transgenic and wild type 

Arabidopsis inflorescence base stem. Sections of wild-type plant (A, C) and EgrIAA9Am_OE 

transgenic plants (B, D) were stained with phloroglucinol-HCl. Ectopic lignification in phloem cap 

cells are indicated by green arrows. The proportion of lignified area of stem cross sections were 

displayed (E). Error bars indicate standard error of the mean. co, cortex; if, interfascicular fiber; xv, 

xylem vessel. Scale bar, 100 µm. 
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2.5.4 EgrIAA9Am greatly altered secondary xylem formation in Arabidopsis 

hypocotyl 

The most extensive secondary xylem (wood formation) was found to develop in the 

Arabidopsis hypocotyls grown under short-day conditions (Chaffey et al. 2002). In the 

first phase of secondary xylem development, only vessel elements differentiate, and the 

rest of the xylem cells remain as parenchyma cells. This phase I is visualized as a central 

core in which only the vessels are stained by phloroglucinol due to their lignified SCW  

(Fig. IV-8A and C). During phase II, all xylem cells develop into either vessels or fibers, 

both have lignified thick SCW stained by phloroglucinol into red-violet. The fiber cells 

are smaller and show brighter phloroglucinol staining than the vessels, due to the 

 

Fig. IV-8 Microscopic analysis of cross sections of EgrIAA9Am_OE transgenic 

Arabidopsis and wild type hypocotyl. Sections of wild-type plant (A, C) and 

EgrIAA9Am_OE transgenic plants (B, D) were stained with phloroglucinol-HCl. I, xylem I; 

II, xylem II; f, fiber; v, vessel. Scale bar, 100 µm.  
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presence of Syringyl lignin (S) whereas the lignin in vessels are made mainly of G units 

(Fig. IV-8A and C). It is during this later stage of secondary xylem development that 

the anatomy of the Arabidopsis hypocotyl most closely resembles the xylem of woody 

species (Chaffey et al. 2002).  

EgrIAA9m_OE lines presented strikingly altered secondary xylem formation in 

hypocotyls showing only phase I, in which much more vessel elements were 

differentiated with smaller size as compared to controls (Fig. IV-8B and D). The phase 

II of xylem development was completely absent in the transgenic lines at this stage 

(approximately two weeks after bolting). It is also worth noting that much less lignified 

phloem fibers were found in EgrIAA9m_OE lines as compared to the wild-type (Fig. 

IV-8A, indicated by arrow). 

Unexpectedly, these observations are in sharp contrast with those made at the basal part 

of inflorescence stem which showed more lignified cells in EgrIAA9Am_OE lines. 

These discrepancies in xylem patterning between the two organs suggest that different 

regulating mechanisms may exist between stem and hypocotyl. These results underlie 

the different origins of xylem in the two organs and deserve more investigations. 

2.5.5 EgrIAA9Am overexpression affects lignin composition of secondary cell walls 

in Arabidopsis hypocotyls 

GC/MS pyrolysis (Py-GC/MS) analysis provides a chemical finger-print of the cell 

walls and now is widely used for rapid determination of lignin chemistry (Gerber et al. 

2012; Meier et al. 2005). We performed Py-GC/MS analysis to evaluate and identify 

SCW modifications of the transgenic plants using hypocotyls as target material. The 

Py-GC/MS chromatograms were evaluated using Simca software by multivariate 

OPLS-DA method (orthogonal projections to latent structures discriminant analysis) 

(Worley et al. 2013), which yielded in a clear separation of the two transgenic lines 

from wild type (Fig. IV-9A).  
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The transgenic plants showed a significantly reduced total lignin content as compared 

to wild type plants. The S lignin content decreased dramatically (65%) whereas the G 

units content also decreased but to a lesser extent (21%) resulting in a significantly 

decreased S/G ratio (Fig. IV-9B). These results are in agreement with the histological 

observations from hypocotyl. Indeed, the virtual absence of fibers (rich is S units) as a 

consequence of the lack of phase II of secondary xylem development, would contribute 

to a decreased S/G ratio since the vessels lignin are rich in G units and depleted in S 

units.  

 

Fig. IV-9 Chemical composition of EgrIAA9Am_OE transgenic Arabidopsis and wild type 

hypocotyl by Py-GC/MS analysis. (A) Orthogonal projections to latent structures 

discriminant analysis (OPLS-DA) scores plot of spectra acquired from Arabidopsis hypocotyl. 

(B) The chemical compounds proportion of EgrIAA9Am_OE transgenic Arabidopsis and WT 

(n>12). Asterisks indicate values found to be significantly (student’s t-test) different from the 

wild type. * p<0.05, ** p<0.01. 
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2.6 Functional characterization of EgrIAA20 in transgenic Arabidopsis 

2.6.1 Overexpression of EgrIAA20 in Arabidopsis results in smaller, shorter and 

bushier plants 

The EgrIAA20_OE transgenic Arabidopsis displayed helical twisting and backward 

rolling leaves since early stages of development, visible ~20 day after germination (Fig. 

IV-10A). The number of rosette leaves was significantly reduced in transgenic plants, 

as well as the rosette diameter as a consequence of obviously smaller leaves (Fig. IV-

10B and C). The differences in rosette sizes were maintained throughout all 

development stages. The bolting time was not altered in transgenic lines but the 

inflorescence stem of transgenic lines grew much slower, especially that of the strong 

line EgrIAA20_OE_3.1 (Fig. IV-11A and B). The main inflorescence stem was 

obviously thinner and shorter as compared to wild type control (Fig. IV-11C). In the 

 

Fig. IV-10 Phenotype of 42 days old EgrIAA20_OE transgenic plants and wild type. The 

twisting leaves were displayed (A), the leaf number (B) and rosette diameter (C) were measured 

at bolting time (n>10). Error bars indicate standard error of the mean. Asterisks indicate values 

found to be significantly (student’s t-test) different from the wild type. * p<0.05, ** p<0.01. 
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severe transgenic line EgrIAA20_OE_3.1, the main stem grew very slowly and a lot of 

lateral stems emerged from the base of the stem (rosette level) which grew rapidly 

becoming in many cases even longer than the main stem, indicating that the apical 

dominance was severely reduced in EgrIAA20_OE lines. While the bolting time was 

unaffected, the flowering time in the EgrIAA20_OE lines was retarded, and flower 

development was impaired. The flowers remained as closed buds for a long time and 

very often failed to reach the anthesis stage. Closer observations showed that the 

stamens were dramatically shorter than the wild- type (Fig. IV-11D). The fecundity of 

EgrIAA20_OE lines was seriously decreased resulting in a small number of seeds 

collected per plant (0-20 seeds per plant). Artificial pollination of the transgenic lines 

 

Fig. IV-11 Phenotypic characteristics of EgrIAA20_OE transgenic plants in short days. (A) 

53 DAG WT and transgenic Arabidopsis. (B) Growth curve of the Arabidopsis inflorescence 

stem (n>10). (C) Stem diameter was measured when the first silique fully developed (n>6). (D) 

Flower bud of EgrIAA20_OE and WT transgenic Arabidopsis. Asterisks indicate values found 

to be significantly (student’s t-test) different from the wild type. * p<0.05, ** p<0.01. 
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using the wild-type pollen allowed seed formation, indicating that the ovules were still 

functional in the transgenic lines. Thus the reduced fertility could be a consequence of 

an impaired stamen development and/or of the shorter stamens formed. Indeed, an un-

even position of stamen relative to the pistil is known to prevent the normal pollination 

and fertilization.  

2.6.2 Overexpression of EgrIAA20 affected root development and root gravitropic 

response  

We also examined the root growth phenotype in the transgenic lines. We compared the 

primary root length and number of lateral roots between wild type and EgrIAA20_OE 

lines 10 days after germination on 1/2 MS medium. The EgrIAA20_OE lines showed 

significantly reduced primary roots elongation as compared to the wild-type (Fig. IV-

12A). Few lateral roots were formed in EgrIAA20_OE lines at this stage, in sharp 

contrast to the wild type plants which had already 12 lateral roots in average (Fig. IV-

12B). This result indicate that the over expression EgrIAA20 gene inhibit primary root 

elongation and lateral root formation.  

Gravitropic response is a typical auxin-related phenotype, and several Aux/IAA 

mutants show agravitropism in Arabidopsis roots and/or hypocotyl, such as axr5/IAA1, 

axr2/IAA7, slr/IAA14, axr3/IAA17and msg2/IAA19 (Fukaki et al. 2002; Nagpal et al. 

2000; Rouse et al. 1998; Watahiki and Yamamoto 1997; Yang et al. 2004). To assess 

the gravitropic response of the EgrIAA20 transgenic plant, we grew them on vertically 

oriented 1/2 MS medium plates. Eight days after germination we reoriented these plates 

by 90 dEgrees to test their roots response to gravity. Fourty eight hours later, all the 

wild type Arabidopsis roots changes 90 dEgrees according to the gravity changes, while 

all the EgrIAA20 transgenic plants shows no changes to the gravity change (Fig. IV-
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12C, D), indicating that transgenic plants roots lost the gravitropic response.  

2.6.3 EgrIAA20 impaired vascular patterning in cotyledons 

During embryogenesis and primary growth, the conductive tissues (xylem and phloem) 

are formed from the procambial tissues associated with the apical meristem. The 

vascular patterning in cotyledons was successfully used to screen regulators governing 

vascular tissues development. Overexpression of EgrIAA20 led to severe defects in the 

cotyledons vascular patterning (Fig. IV-13). The vascular patterning was assessed by 

the number of secondary vein loops originating from the mid-vein. In wild type 

 

Fig. IV-12 Root phenotype of the EgrIAA20_OE transgenic Arabidopsis. (A, B) The length of 

primary root and the number of lateral root of the Arabidopsis seedlings at 10 days after 

germination (n =10). (C, D) Eight day-old Arabidopsis root response to gravity after 48 h 

reoriented the plate to 90 dEgree. Error bars indicate standard error of the mean. Scale bar, 0.5 

cm. Asterisks indicate values found to be significantly (student’s t-test) different from the wild 

type. * p<0.05, ** p<0.01. 
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seedlings, all the cotyledon venation patterns belonged to classes I and II, and 45% of 

them exhibited a more complex pattern (class I with four complete loops). In contrast, 

cotyledon venation patterns of all the transgenic plants belonged to classes II and III, 

none of them showed the complete vascular patterning with four loops (class I), 

indicating that overexpressing EgrIAA20 prevented the complete vascular patterning 

during embryogenesis.  

This incomplete vascular patterning in cotyledon phenotype mimicks that of 

Arabidopsis ARF5 loss-of-function mutant monopteros/arf5, and AtIAA20 shows 

interaction with AtARF5 in Arabidopsis (Vernoux et al 2010), suggesting that 

EgrIAA20 may interact with ARF5 to control this development process. To assess this 

 

Fig. IV-13 Cotyledon venation pattern in EgrIAA20_OE transgenic plants. Values in 

brackets indicate the percentage contribution of each class.  

 

Fig. IV-14 Protein-protein interaction between EgrIAA20 and AtARF5, EgrARF5. Yeast of 

co-transformed EgrIAA20-BD and AtARF5 or EgrARF5 grew on selected medium lacking Trp, 

Leu, His, and Ade (THLA) and then scratched again on a TLHA plate. AD-T7 were used as 

negative controls. 



Chapter IV 

125 

 

hypothesis, we verified the protein-protein interaction between EgrIAA20 and AtARF5 

using yeast two hybrid system and the results confirmed that there was a strong 

interaction between these two proteins (Fig. IV-14).      

2.6.4 Overexpressing of EgrIAA20 altered xylem formation during secondary 

growth in inflorescence stem and hypocotyl 

In Arabidopsis secondary growth can occur in the inflorescence stem, hypocotyl and 

root. We assessed the overexpression of EgrIAA20 in Arabidopsis secondary growth in 

the basal part of inflorescence stems and in the hypocotyls of plants grown in short day 

conditions.  

The overall organization of vascular bundles and interfascicular fibers was not altered 

but a more intense phloroglucinol staining was observed in sections made at the basal 

part of the inflorescence stems of EgrIAA20_OE plants (Fig. IV-15B and D), suggesting 

a higher lignification level in both xylem vessels and interfascicular fibres. A higher 

proportion of lignified area was quantified in both transgenic lines as compared to 

controls (Fig. IV-15E). Moreover, the increase in the proportion of lignified area 

correlated well to the level of EgrIAA20 transcript, the strong line EgrIAA20_OE_3.1 

had higher lignified area than the weak line EgrIAA20_OE_3.3 (Fig. IV-4, Fig, IV-15E). 

It should be noted that the EgrIAA20_OE lines have thinner stem probably due to 

smaller cell size (Fig. IV-15B and C).  

We next evaluated the secondary growth in hypocotyls. The phase I of xylem 

development in which only vessels differentiate and mature appeared not affected in 

transgenic lines (Fig. IV-16A-D); on the other hand, the phase II was altered in both 

transgenic lines. The onset of phase II development appeared earlier than in wild-type, 

leading to an increased proportion of phase II -xylem relative to phase I-xylem. 

Moreover, only a thin layer of fibres differentiated and matured in transgenic lines, 

giving rise to a narrow discontinuous ring where phase II xylem starts (Fig. IV-16B and 

D). This is in sharp contrast to the controls, in which both fiber and vessels were 
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simultaneously differentiated and matured forming a thick continuous ring (Fig. IV-

16A and C). In addition, the transgenic lines differentiated much more vessel elements 

in phase II xylem as compared to the control (Fig. IV-16C and D). It should be noted 

that transgenic lines had a smaller hypocotyl diameter as compared to the control, 

indicating a globally reduced secondary growth in EgrIAA20_OE lines.              

 

Fig. IV-15 Microscopic analysis of cross sections of EgrIAA20_OE transgenic and wild type 

Arabidopsis inflorescence base stem. Sections of wild-type plant (A, C) and EgrIAA20_OE 

transgenic plants (B, D) were stained with phloroglucinol-HCl. The proportion of lignified area 

of stem cross sections were displayed (E). Error bars indicate standard error of the mean (n>6). 

Asterisks indicate values found to be significantly (student’s t-test) different from the wild type. 

* p<0.05, ** p<0.01. Scale bar, 100 µm. 
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2.6.5 EgrIAA20 overexpression affects lignin composition of secondary cell walls 

in Arabidopsis hypocotyls 

We further analyzed the chemical composition of cell walls in these Arabidopsis 

hypocotyl by PY-GC/MS. Py-GC/MS chromatograms were evaluated using Simca 

software by multivariate OPLS-DA method (orthogonal projections to latent structures 

discriminant analysis), which clearly separated the two transgenic plants from the 

controls (Fig. IV-17A). In particular, the transgenic plants showed less S lignin and a 

reduced phenolic content while H lignin was increased as compared to wild type plants. 

As a consequence of the reduced S lignin, the S/G was largely reduced (Fig. IV-17B). 

These results are in agreement with the histological results, which showed dramatically 

reduced fiber cells (higher S/G ratio) in transgenic Arabidopsis hypocotyls (Fig. IV-

16B and D).  

 

Fig. IV-16 Microscopic analysis of cross sections of EgrIAA20_OE transgenic Arabidopsis 

and wild type hypocotyl. Sections of wild-type plant (A, C) and EgrIAA20_OE transgenic 

plants (B, D) were stained with phloroglucinol-HCl. I, xylem I; II, xylem II; f, fiber; v, vessel. 

Scale bar, 100 µm. 
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Taking together, these data showed that overexpressing EgrIAA20 led to distinct auxin 

related phenotype including diminished primary growth, reduced apical dominance, 

reduced the secondary growth in both inflorescence stem and hypocotyl that led to 

narrow stems and thinner hypocotyls, and in particular an abnormal xylem development 

in hypocotyls.  

3 Discussion 

The functional analyses of gain of function lines for EgrIAA9A and 20 revealed that 

these two selected candidate genes are indeed regulating wood formation. 

We have shown that EgrIAA9A belongs to a distinct phylogenetic clade whose 

members are particularly long proteins (50% longer, ~300 amino acids) as compared to 

the majority of the other AtIAAs (~200 amino acids). It is strictly localized in the 

 

Fig. IV-17 Chemical composition of EgrIAA20_OE transgenic Arabidopsis and wild type 

hypocotyl by Py-GC/MS analysis. (A) Orthogonal projections to latent structures 

discriminant analysis (OPLS-DA) scores plot of spectra acquired from Arabidopsis hypocotyl. 

(B) The chemical compounds proportion of EgrIAA20_OE transgenic Arabidopsis and WT 

(n>12). Asterisks indicate values found to be significantly (student’s t-test) different from the 

wild type. * p<0.05, ** p<0.01. 
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nucleus and behaves as a strong repressor of auxin-dependent transcription. It was 

chosen for functional characterization because it belongs to IAA cluster III (more 

expressed in xylem/cambium than in phloem, Chapter III) that also contains genes 

involved in the biosynthesis of the main components of the SCWs (data not shown) and 

also because it was more expressed in juvenile than in mature xylem, two types of wood 

with distinct SCW properties. Its potential orthologs in Arabidopsis are the sister pair 

AtIAA8/AtIAA9. No gain of function mutant of AtIAA8 nor AtIAA9 was reported, 

whereas loss of function mutants (T-DNA insertion mutants iaa8-1, iaa9-1) and double 

mutant iaa8/iaa9 did not exhibit any obvious phenotype (Overvoorde et al 2005) except 

the presence of more lateral roots in iaa8-1 (Arase et al 2012). Despite the fact that no 

phenotype was reported at the level of the vascular system, a large body of evidence 

supports the hypothesis that the orthologs of EgrIAA9 in Arabidopsis and other species 

are involved in the regulation of xylem formation: (i) both AtIAA8 and AtIAA9 show 

high expression in hypocotyl xylem and inflorescence stem (Genevestigator database 

survey), (ii) AtIAA8 and AtIAA9 transcript levels, measured at the base of the 

inflorescence stem under artificial weight treatment shown to induce secondary growth, 

were the highest among all other IAAs (Ko et al, 2004) but they underwent differential 

expression strands suggesting different roles. AtIAA8 transcript level reaches it 

maximum at a developmental stage corresponding to the beginning of the lignification 

of the interfascicular fibres and decreases at a more mature stage, whereas AtIAA9 

transcript level is highest at this latter stage (Ko et al 2004), (iii) the promoter of AtIAA8 

is active in the vascular strands (Groover et al 2003),  (iv) Zinnia zIAA8 is highly 

induced during in vitro tracheary element induction  (Groover et al 2003), (iv) Aspen 

PttIAA2 shows high expression in cambium and xylem (Moyle et al 2002), (v) poplar 

PtrIAA9 also displayed high expression in xylem (Kalluri et al 2007) and finally (vi) 

down-regulation of the tomato SlIAA9 results in enhanced venation in leaves and thick 

peduncles (Wang et al 2005). During the course of our study, it was reported that in the 

monocot plant maize, the gain of function mutation in RUM1 (ortholog of EgrIAA9A) 

led to defects in root xylem organisation and to ectopic lignification and wall thickening 

in the pith cells (Zhang et al 2014).   
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Overexpressing a stabilized version of EgrIAA9Am in Arabidopsis led to auxin-related 

phenotypes, such as dwarfism, inhibition of lateral root emergence, reduced auxin 

sensitivity in root growth, enhanced apical dominance. In line with EgrIAA9Am 

expression profile, secondary xylem formation was altered in both the basal part of the 

inflorescence stem and hypocotyl. Surprisingly, the alterations of secondary xylem 

formation exhibit opposite patterns between the inflorescence stems and the hypocotyls: 

secondary xylem formation was globally enhanced in the inflorescence stems of 

transgenic lines showing an increased lignification staining both in the xylem bundles 

and the interfascicular fibres, whereas in the hypocotyls, secondary xylem (fibres and 

vessels) normally produced in the phase II was completely absent in transgenic lines 

although in phase I xylem, more lignified vessels were produced in comparison to 

controls. To the best of our knowledge such opposite vascular patterns between the 

inflorescence stems and the hypocotyls has not been reported before, but histochemical 

analysis of both organs is not systematically done and such distinct patterns may have 

escaped to previous observations. These puzzling results suggest that different auxin-

regulated differentiation mechanisms may occur between inflorescence stems and 

hypocotyls, the development of the latter resembling more to root ontogeny than to 

stem ontogeny. Moreover, it also should be kept in mind that EgrIAA9Am was expressed 

in Arabidopsis which contains two potential orthologs AtIAA8 and 9 having different 

behaviours during secondary xylem formation in inflorescence stems artificially treated 

to induce secondary growth (Ko et al 2004) and thus likely playing different roles 

during this process. EgrIAA9m might interfere with both endogenous genes leading to 

the complexes and antagonist vascular phenotypes, the most striking and dramatic 

being the inhibition of secondary growth and xylem formation (Phase II) in hypocotyls. 

These results are very promising although further investigations are needed to better 

understand the role of EgrIAA9A and of its Arabidopsis orthologs. To this end, the 

respective expression levels of Arabidopsis endogenous AtIAA8 and 9 will need to be 

assessed as well as other auxin-related genes in EgrIAA9Am gain of function lines both 

in hypocotyls and basal inflorescence stems and in parallel, auxin levels should be 

evaluated at different development stages of xylem differentiation. In line with this, it 
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is worth noting that co-expression analysis showed that AtIAA9 is tightly co-expressed 

with WAT1 gene encoding a tonoplast localized auxin efflux facilitator. Mutations in 

the fibre deficient mutant wat1 cause a reduction in polar auxin transport and 

misregulation of genes associated with auxin response of which AtIAA9 was found to 

be down-regulated (Ranocha et al. 2010, 2013). 

EgrIAA20 encode a non-canonic IAA protein, as its orthologs in Arabidopsis, the sister 

pair AtIAA20/AtIAA30, it lacks the domain II (dEgron), which interacts with the 

SCFTIR1 complex and lead to the rapid degradation of Aux/IAA proteins by 26S 

proteasome. In Arabidopsis mutation in domain II cause higher steady-state levels of 

Aux/IAA proteins and the members who lack domain II (such AtIAA20 and AtIAA30) 

are more stable proteins. Thus, EgrIAA20 was supposed to be more stable as compared 

to the canonical EgrIAAs. We also showed that EgrIAA20 was not exclusively located 

in the nucleus suggesting the possibility of a regulatory mechanism allowing its 

migration to the nucleus to strongly repress the transcription of auxin-responsive genes. 

In sharp contrast with AtIAA20 that shows very low basic expression in all tissues 

examined (Genevestigator database survey), EgrIAA20 expression was found 

preferentially expressed in vascular tissues, and particular highly expressed in vascular 

cambium in Eucalyptus. No report described the loss of function mutant for AtIAA20 

or AtIAA30 (no T-DNA insertion mutation for AtIAA20 was available and the AtIAA30 

T-DNA insertion mutant iaa30-1 was not yet characterized (Overvoorde et al 2005). 

Gain of function mutations by overexpressing AtIAA20 and AtIAA30 in Arabidopsis 

resulted in semi-dwarf plants with agravitropic and impaired root growth. The 

cotyledon venation was also impressively reduced (Sato and Kotaro 2008), mimicking 

the phenotype of loss of function mutant for ARF5 (mp/arf5) and we also showed that 

the EgrIAA20 protein was able to interact with ARF5. Overexpressing EgrIAA20 

resulted in auxin related growth phenotypes such as reduced apical dominance, 

inhibition of lateral root formation and agravitropic root response. The inflorescence 

stems and hypocotyls were thinner and vascular patterning in cotyledons was impaired. 

Histological analysis of hypocotyls sections showed altered secondary xylem formation 
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formed during phase II, harboring virtually no fibers but more vessels than controls. 

Biochemical analysis by Py-GC/MS further confirmed the significantly lower S lignin 

content and the reduced S/G ratio due to fewer fibers rich in S units. These data strongly 

suggest that EgrIAA20 regulates fibre development during secondary xylem 

differentiation. It is worth noting that although the poplar PtrIAA20.1, PtrIAA20.2 and 

aspen PttIAA3 are phylogenetically close to EgrIAA20, they contain the domain II in 

contrast to EgrIAA20 and its Arabidopsis orthologs, suggesting that they are not stable, 

and may have different roles in planta. Overexpressing a stabilized version of PttIAA3 

(OE PttIAA3m) in poplar resulted in reduced secondary growth eg. decreased xylem 

radial growth and reduced xylem/phloem ratio.  

Although preliminary, the results obtained are new and promising suggesting that 

IAA9A is regulating secondary xylem formation in hypocotyl whereas IAA20 is more 

specifically involved in the regulation of fibres. Further investigations will be necessary 

to get further insights into the roles and mechanisms of action of these two genes during 

secondary xylem formation, and will be presented in the general discussion. 

4 Materials and Methods 

4.1 Plant materials and culture condition 

The Arabidopsis seeds used for in vitro culture were surface-sterilized for 1 min in 70% 

ethanol, 10 min in 25% bleach, rinsed five times in sterile water and plated on 1/2 

Murashige and Skoog (MS) medium containing 1.0% sucrose solidified with 1% agar. 

The culture conditions were: 16 h day/8 h night cycle, 22/20℃ day/night temperature, 

40% relative humidity. For auxin dose-response experiments, sterilized seeds were 

germinated on 1/2 MS medium containing 0, 0.01, 0.1, 1, 10 µM NAA respectively. 

The primary root length was measured five days after germination. For gravitropic 

response, sterilized seeds were planted on vertically oriented 1/2 MS plates. Eight days 

after germination, we reoriented the plate by 90 dEgrees for another 48 h to check their 

roots response to gravity. 
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For pyrolysis and histochemical analysis, the Arabidopsis were planted in short day 

conditions: 9 h day/15 h night cycle, 22/20℃ day/night temperature, 70% relative 

humidity, 200 µmol photons m−1s−1 light intensity (intense luminosity). The plants were 

watered every two days and fertilized weekly.  

4.2 Gene expression analysis  

All the Eucalyptus ARFs and Aux/IAAs gene expression in different tissues/organs were 

performed in chapter II and III. In addition, Eucalyptus wood EST database 

EUCATOUL (http://www.polebio.lrsv.ups-tlse.fr/eucatoul/db.php) was used for 

checking their EST support. All the Arabidopsis ARF and Aux/IAA gene expression 

profiles and their expression changes during the tracheary element (TE) induction 

experiment were analyzed by surveying Genevestigator database 

(https://www.genevestigator.com/gv/plant.jsp).  

4.3 Transient expression of CGs in protoplast system for subcellular localization 

and transcription activation analysis 

For the subcellular localization, the CDS sequences of the EgrARF4, 10, 19A and 

EgrIAA3B, 4, 9A, 13, 20 were first cloned into the Gateway entry vector pENTR-TOPO 

(Fig. SIV-1), then recombined them into pK7FWG2 vector fused with GFP at C-

terminal and expressed under the control of the 35S CaMV promoter (Fig. SIV-2A). 

EgrARF19A was also recombined into pK7WGF2 vector fused with GFP at N-terminal 

(Fig. SIV-2B). The empty vector pK7WGF2.0 was used as control. The constructs were 

introduced into tobacco BY-2 protoplasts by polyethylene glycol-mediated transfection 

as described in Materials and Methods in chapter III. After 16 h incubation, the 

transfected protoplasts were examined for green florescence signals using a Leica TCS 

SP2 laser scanning confocal microscope. Images were obtained with a 40x 1.25 

numerical aperture water-immersion objective. 

For testing the ability of ARF transcription factors to up or down regulate the expression 

http://www.polebio.lrsv.ups-tlse.fr/eucatoul/db.php
https://www.genevestigator.com/gv/plant.jsp
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of auxin responsive promoter DR5, the full-length cDNAs of the EgrARF4, 10, 19A 

and EgrIAA9A, 13, 20 transcription factors were cloned in pGreen vector  under 

CaMV35S promoter to create the effector constructs(Fig. SIV-3). The reporter 

constructs use a synthetic auxin-responsive promoter DR5 followed by GFP reporter 

gene. Tobacco BY-2 protoplasts were co-transfected with the reporter and effector 

constructs as described in (Audran-Delalande et al. 2012). After 16 h incubation, GFP 

expression was quantified by flow cytometry (LSR-Fortessa, BD Bioscience). Data 

were analysed using Facsdiva software. Transfection assays were performed in three 

independent replicates and 400-1000 protoplasts were gated for each sample. GFP 

fluorescence corresponds to the average fluorescence intensity of the protoplasts 

population after subtraction of auto-fluorescence determined with non-transformed 

protoplasts. 50 µM 2, 4-D was used for auxin treatment.  

4.4 Genetic transformation in Arabidopsis (vectors, primers, OE, OE mutated 

protein, dominant repression) 

Total RNA was isolated from Eucalyptus xylem using CTAB method as described by 

Southerton et al. (1998). The cDNA first strand was synthesized from 2 μg total RNA 

using SuperScript III reverse transcriptase (Invitrogen, USA), according to the 

manufacturer’s instructions. We designed primer pairs of the corresponding gene 

coding sequences using Primer3 v.04.0 (http://frodo.wi.mit.edu/), and the primers 

sequences are shown in Table SIV-1. To get gain-of-function transgenic plants, we did 

site target mutations in the miRNA target sites of EgrARF4 and EgrARF10, as well as 

the domain II for EgrIAA3B, 4, 9A, 13 and 29. The mutation sites were introduced by 

using overlap PCR. The CDS sequence was cloned into the Gateway entry vector 

pENTR-TOPO, and then recombined into the overexpression vector pFAST-G02 (Fig. 

SIV-4) (Shimada et al. 2010) and/or dominant repression vector pH35GEAR (Fig. SIV-

5) (Kubo et al. 2005), respectively. All binary expression constructs were transferred to 

Agrobacterium tumefaciens strain GV3101 and the flower dip method was used to 

transform Arabidopsis thaliana Col-0 (Clough and Bent 1998). For overexpression 

http://frodo.wi.mit.edu/
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construction, the vector pFAST-G02 contains a GFP marker fused with a seed-specific 

promoter OLE1, and this allowed us to select the transgenic seeds using the binocular 

microscope under UV light (Shimada et al. 2010). For the dominant repression 

construction, we used vector PH35GEAR which contains a repression domain 

(LDLDLELRLG) after the target protein and hygromycin marker for transgenic plants 

selection. PCR analysis of corresponding targeted genes were applied to confirm 

transgenic plants for each line.   

Underline sequences (CACC) represent the extra sequence needed for the pENTR/D-

TOPO cloning; sequences in red represent the overlap region for overlap PCR; 

sequences highlight in yellow represent the mutation base. 

4.5 Histochemical analysis 

The histological comparative analysis of SCW between wild type and transgenic plants 

was done at the stage of the first green siliques newly fully developed. At this stage, the 

basal part of the inflorescence stem and hypocotyl abundantly develops cells 

undergoing secondary wall thickening (xylem vessel cells, fascicular, and 

interfascicular fiber cells). The Arabidopsis inflorescence stems at the basal end (~1 cm) 

and hypocotyls were harvested and stored in 70% ethanol. The cross sections were 

prepared using vibratome Leica VT1000 S. Lignin polymers are the characteristic 

components of SCW and are normally absent from primary cell wall, therefore we used 

lignin deposition detection techniques to screen for SCW phenotype. Cross sections of 

inflorescence stem and hypocotyl were (~80 µm) were stained with phloroglucinol-HCl 

which stains specifically lignin polymer precursors coniferaldehyde and p-

coumaraldehyde in the SCW giving violet-red color. Phloroglucinol-HCl was directly 

applied on the slide and images were recorded with a CCD camera (Photonic Science, 

http://www.photonic-science.co.uk). 

4.6 Pyrolysis analysis 

EgrIAA9A and 20 overexpression transgenic (two different lines for each) and wild type 
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Arabidopsis were planted 3 different batches in short days (5 plants for each line in one 

batch), and 10 days different between each batch. The hypocotyls were harvested in 

liquid nitrogen when the first silique was fully development. Then the hypocotyls were 

freeze-dried and ball-milled (MM400; Retsch) at 30 Hz in stainless steel jars (1.5 mL) 

for 2 min with one ball (diameter of 7 mm). A total of 50 – 70 μg (XP6, Mettler-Toledo, 

Switzerland) powder was transferred to auto sampler containers (Eco-cup SF, Frontier 

Laboratories, Japan) for the Py-GC/MS. The sample was carried to oven pyrolyzer by 

an auto sampler (PY-2020iD and AS-1020E, FrontierLabs, Japan) and analyzed by a 

GC/MS system (Agilent, 7890A/5975C, Agilent Technologies AB, Sweden). The 

pyrolysis oven was set to 450°C, the interface to 340°C and the injector to 320°C. The 

pyrolysate was separated on a capillary column with a length of 30 m, diameter of 250 

mm, and film thickness of 25 mm (JandW DB-5; Agilent Technologies Sweden). The 

gas chromatography oven temperature program started at 40°C, followed by an 

temperature ramp of 32°C/min to 100°C, 6°C/min to 118.75°C, 15°C/min to 250°C, 

and 32°C/min to 320°C. Total run time was 19 min and full-scan spectra were recorded 

in the range of 35 to 250 mass-to-charge ratio. Data processing, including peak 

detection, intEgration, normalization, and identification, was done as described by 

Gerber et al. (2012). 

The relative amounts of S-, G-, and H-lignin and the carbohydrates were further 

expressed as the percentage of the total compounds amounts. Orthogonal projections to 

latent structures discriminant analysis (OPLS-DA) analysis of each individual replicate 

was performed using SIMCA-P+ (12.0). 

4.7 Protein-protein interaction analysis by yeast two hybrid system 

For Y2H experiments, the cDNA sequence of EgrIAA20 was cloned into pBD vector 

(Fig. SIV-5A), the cDNA sequence of EgrARF5 and AtARF5 were cloned into pAD 

(Fig. SIV-5B) vectors, respectively. pBD Y2H vector (BD-bait) was used for the bait-

protein construction. It contains a functional copy of the Trp1 gene, thus restoring in 

AH109 tryptophan autotrophy. pAD Y2H vector (AD-prey) was used for the prey-
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protein construction. It contains a functional copy of the Leu2 gene, thus restoring in 

AH109 leucine autotrophy. Then, the BD-bait and AD-prey were co-transformed into 

yeast AH109, co-transformants being selected on culture lacking both tryptophane and 

leucine. If there is no interaction between the bait and prey protein, yeast will grow only 

on the selection medium lacking Trp and Leu. If there was an interaction, yeast can 

grow on the selection medium lacking Trp, Leu, His and Ade. Manipulation and 

analysis of the Y2H assay followed the manufacturer’s instructions (Clontech Yeast 

Protocols Handbook). 
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General discussion and perspectives 

In woody plants, auxin has been proposed to play a key role in the development of 

secondary xylem cells, a differentiation process involving cell division, expansion, 

secondary cell wall formation and cell death (Miyashima et al. 2013; Sundberg et al. 

2000). In comparison to the knowledge accumulated on the role of auxin in the control 

of early vascular patterning in which some important actors and mechanisms involved 

either in the maintenance of pro(cambial) identity or xylem specification have been 

identified (reviewed in Berleth et al 2000; Elo et al 2009; Reinhardt 2003), our 

knowledge of the auxin actors underlying secondary xylem differentiation is very 

limited. Due to the growing importance of wood as a renewable and environmentally 

cost effective alternative to fossil fuels, and the economic and ecological importance of 

trees, a better understanding of the auxin regulation of wood formation is timely. 

Auxin is believed to exert its function in wood formation through its 

perception/signaling pathway, of which Auxin Response Factors (ARFs) and Aux/IAAs 

are two well-known mediators of auxin responsive gene expression (Guilfoyle and 

Hagen 2007; Tiwari et al. 2003). These two families have been studied in several annual 

plants and more deeply in Arabidopsis, but remain largely under investigated in tree 

species. 

Taking advantage of the recent release of the E. grandis genome (Myburg et al, 2014), 

we have performed a genome-wide comprehensive survey of two major transcription 

families involved in the auxin perception and signaling pathway. One striking feature 

of the E. grandis is the very high proportion of genes found in tandem repeats (34% of 

the total number of genes). Indeed it is the highest rate of tandem duplication reported 

among sequenced plant genomes (Myburg et al, 2014). In Eucalyptus, tandem 

duplication shaped the functional diversity of many gene families like for instance the 

MYB transcription factor family (Soler et al, 2014). However tandem duplication is 

distributed unevenly between gene families and indeed, the ARF and IAA families 

evolved in a very different way. Both families were slightly contracted as compared to 
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most angiosperms and monocots families studied hitherto, including the model plant 

Arabidopsis. The functional diversity of the ARF family in Eucalyptus was mainly 

shaped by alternative splicing and gene truncation leading to a diversity of domain 

architecture, thereby compensating for the lack of extensive gene duplication 

mechanisms found in other species.  In contrast to these species, it is characterized by 

the absence of whole genome, segmental and/or tandem duplication events. Indeed, 

whole genome duplication in Eucalyptus occurred 109.9 Mya ago, considerably earlier 

than those detected in other rosids and 95% of the paralogs were lost. The IAA family 

has a different evolutionary history from that of the ARF, and the number of alternative 

transcripts was similar to that of Arabidopsis. 

Noteworthy, comparative phylogenetic studies pointed out the presence of a new clade 

absent in Arabidopsis and maintained preferentially in woody and perennial plants. It 

is likely that the genes belonging to this clade have been lost in herbaceous annual 

species, and more work will be needed to decipher the role of these genes. Although in 

our qRT-PCR experiments, EgrARF24 was not found to be expressed in xylem, unlike 

its ortholog in poplar, it was found later to be expressed in this tissue in RNA-Seq data 

(unpublished). This apparent discrepancies may be due to the presence of an alternative 

transcript expressed in xylem and not detected by the primers chosen for the qRT-PCR, 

this will need further verification. 

We used large–scale expression profiling to identify ARF and Aux/IAA genes highly 

and/or preferentially expressed in vascular cambium and/or xylem to identify those 

potentially involved in the auxin-regulated transcriptional programs underlying wood 

formation. Among the 13 genes exhibiting such expression patterns, we generated gain 

of function transgenic Arabidopsis lines for six of them (four IAA (EgrIAA4, 9A, 13 

and 20) and two ARF (EgrARF10 and 19A)). We functionally characterized lines 

overexpressing EgrIAA4m, 9Am and 20. All three mutants exhibited distinct alterations 

of the lignified vascular tissues: 

The most dramatic macroscopic phenotype was obtained by overexpressing a stabilized 
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version of EgrIAA4, the plants were dwarf with strongly reduced fertility and exhibited 

strong auxin insensitive phenotypes such as inhibition of primary root elongation and 

lateral root emergence and roots agravitropism. EgrIAA4 is the potential ortholog of the 

Arabidopsis sister pair AtIAA3/AtIAA4. Loss of function mutants (T-DNA insertion 

mutant iaa4-1) exhibited no phenotype (Overvoorde et al 2005) whereas AtIAA3 gain 

of function mutant (EMS mutation in the dEgron) exhibited a similar macroscopic 

phenotype to the one induced by EgrIAA4m especially a reduced stature and short 

hypocotyls (Reed et al., 1998; Tian and Reed, 1999). However, no phenotype was 

reported at the level of the vascular system, probably because the authors did not look 

specifically for it. Unfortunately, the hypocotyls were so tiny that we did not succeed 

to obtain hypocotyl sections and the material was insufficient for chemical analyses. So, 

we made sections to observe lignified vascular tissues patterning at two developmental 

stages at the base of the inflorescence which is known to undergo secondary growth 

(Altamura et al, 2001). Overexpression of EgrIAA4m strongly and negatively affected 

the interfascicular fibres and the xylary fibres development, as shown by the virtual 

absence of lignified secondary cell wall formation.   

Similar phenotypes have been reported but for loss of function mutants suggesting 

antagonist roles: (i) for the NAC master regulators of the SCW known to switch on the 

expression of secondary wall genes in xylem fibres, (ii) for REV a class III 

homeodomain leucine zipper transcription factor involved in organ polarity (ii) for 

WAT1, which encodes for a tonoplast localized auxin efflux facilitator. In a nst1, 

nst3/snd1 double mutant, secondary cell wall deposition in interfascicular fibres is 

completely abolished (Mitsuda et al 2007; Mitsuda and Ohme-Takagi 2008). In Rev 

loss-of-function mutants the development of interfascicular fibres is impaired (Zhong 

and Ye 1999; Prigge et al 2005). REV is likely involved in cell fate determination rather 

than directly promoting secondary cell wall deposition. As observed for rev mutants, 

mutations in wat1 cause a similar reduction in polar auxin transport and misregulation 

of genes associated with auxin response (Ranocha et al 2010, 2013). Secondary cell 

wall deposition in xylary and interfascicular fibers is strongly reduced in wat1 mutants. 
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However, as there is residual lignification of fibres indicating fibre cell identity seems 

not to be affected by wat1 mutation and that WAT1 acts more specifically on late fibre 

differentiation. 

Whether EgrIAA4 is involved more in interfascicular and xylary fibres specification or 

in later differentiation and SCW deposition stages is yet to be solved. However, this 

gene is differentially expressed between contrasting wood samples (tension versus 

opposite wood, mature versus juvenile wood) whose secondary cell walls have very 

different structure and composition. It is for instance, the only Eucalyptus IAA to be 

more expressed in mature wood than in juvenile wood. These results together with the 

residual lignification (although very light) of the SCW of the interfascicular fibres at 

later stages of development in the EgrIAA4m lines, indirectly support a role in fibre 

differentiation although more investigations are needed to decipher the mechanisms of 

action of this gene. 

Similar questions on the exact roles and mechanisms of action are still to be solved for 

EgrIAA9A and EgrIAA20 which seem to regulate the whole secondary xylem formation 

and secondary xylem fiber differentiation in hypocotyls, respectively.  

Given the phenotypes of the three mutants, it would be important to assess endogenous 

auxin distribution, this can be done by crossing the mutants lines to transgenic 

Arabidopsis lines expressing the auxin induced marker DR5-Venus (Heisler et al 2005) 

and visualization of its fluorescence at different stages of development of the vascular 

system. 

It would be also useful to assess the transcripts levels of genes involved in auxin 

transport/signalling, those known to affect vascular system patterning as well of 

transcription factors regulating fibre and vessels differentiation such the NACs, and 

SCW biosynthetic genes. A systematic search for the transcripts levels of the three IAA 

genes in the transcriptome of mutants such as Wat1, Rev, NAC… when available as 

well as a without a priori search for their partners using an Eucalyptus two yeast hybrid 
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library available in the lab would help getting more insights into the regulation of the 

three IAAs.  

The use of an inducible promoter or even preferably of the promoter of the gene fused 

to its coding sequence and tagged by a fluorescent protein would an interesting 

alternative to the use of the 35SCamV promoter to allow less strong and pleiotropic 

effects and in the latter case would allow to localize more precisely the sites of gene 

expression. In the case of EgrIAA4m lines where the hypocotyls were particularly tiny, 

it should allow comparative examination of xylem patterning between inflorescence 

stems and hypocotyls. These strategies would be suitable at minima for the three genes 

studied here and moreover a systematic comparison between inflorescence stems and 

hypocotyls should be done for all transgenic lines as suggested by the highly contrasting 

patterns of secondary xylem deposition in the two organs as observed in EgrIAA9m 

overexpressing lines. These observations should be done at different stages of 

development of the vascular system. 

To overcome problems linked with heterologous transformation system, as well as the 

frequent presence of sister pairs orthologs for one Eucalyptus IAA, a good alternative 

would be to express the three IAA genes in an homologous system. Since the Eucalyptus 

transformation is a very time consuming process with low efficiency of transformation, 

our team has set up a hairy root transformation system and shown that secondary xylem 

could be easily obtain. This promising and simplified tool will be valuable to further 

functionally characterize the three IAA genes especially because the anatomy of the 

hypocotyl vascular system is similar to that of the root (Chaffey et al 2002). 
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Supplementary data for chapter II 

Figure SII-1. Procedure used for identifying ARF genes in Eucalyptus grandis. Arabidopsis 

ARF protein sequences were used to search their orthologs in the predicted Eucalyptus 

proteome by using in BLASTP. Sixty-four Eucalyptus proteins identified in this initial search 

were further examined by manual curation using protein motif scanning and the FgeneSH 

program to complete partial sequences. Redundant and invalid genes were eliminated based on 

gene structure, integrity of conserved motifs and EST support. Manual curation resulted in 17 

complete Eucalyptus ARF protein sequences. These 17 protein sequences were used in two 

subsequent additional searches: first, a BLASTP search against the Eucalyptus proteome to 

identify exhaustively all divergent Eucalyptus ARF gene family members and, second, 

tBLASTn searches against the Eucalyptus genome for any possible unpredicted genes. To 

confirm our findings, we used poplar ARF proteins and repeated the complete search procedure 

described above and obtained identical results. 
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Figure SII-2. Locations of the 17 EgrARF genes on the 11 Eucalyptus grandis chromosomes. 
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Figure SII-3. Multiple sequence alignment of predicted amino acid sequences of EgrARF 

and AtARF proteins. The multiple sequence alignment was obtained with the MUSCLE 

software. The highly conserved domains and nuclear localization signals (NLSs) proteins were 

noted on the bottom of the alignment with different colours. 
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Figure SII-4. Comparative analysis of predicted ARF alternative variants between 

Eucalyptus grandis and Arabidopsis thaliana. The alternative spliced protein sequences were 

extracted from Phytozome except for AtARF4 (obtained from Finet et al. (2013), the motif 

structures were predicted by Pfam (http://pfam.xfam.org/). 

 

http://pfam.xfam.org/
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Figure SII-5. Structure of the ARF alternative transcripts in E. globulus. The E. globulus 

alternative transcripts were obtained from a compendium of RNASeq data. The material and 

methods are described in Table S1. The illumina reads sequences are provided in supplementary 

File S1 in the FastQ format. 
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Figure SII-6. Comparative Phylogenetic relationships between ARF proteins from poplar, 

Eucalyptus, grapevine, Arabidopsis, tomato and rice. Full-length protein sequences were 

aligned using the Clustal_X program. The phylogenetic tree was constructed by using the 

MEGA5 program and the neighbour-joining method with predicted full-length ARF proteins. 

Bootstrap supports are indicated at each node. 
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Figure SII-7. Figure SII-7. Predicted stem-loop structures of three EgrmiR160 and three 

EgrmiR167. The part of the stem-loop from which the mature microRNA derives is highlighted 

in yellow. 
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Figure SII-8. Expression profiles of EgrARF5 and EgrARF24 in various organs and tissues. 

Relative mRNA abundance of EgrARF5 and EgrARF24 was compared to expression in the 

control sample of mature leaves and in vitro plantlets, respectively. Error bars indicate the SE 

of mean expression values from three independent experiments. 

 

 

 

 

 

 

 

Figure SII-9. Expression profiles of EgrARF genes in tissues involved in secondary growth. 

Relative mRNA abundance was compared to expression in the control sample (in vitro plantlets). 
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Figure SII-10. Young Eucalyptus grandis trees phenotypes in response to various long-

term hormonal treatments. 10 µM NAA, or 20 µM gibberellic acid or 100 µM ACC were 

added to the medium of 65-d-old young tree, and phenotypes were observed 14 days later. 
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Table SII-1. Primers for EgrARF genes and reference genes used in qRT-PCR experiments 

Name Accession No. Forward 5'-3' Reverse 5'-3' Efficiency 

ARF1 Eucgr.G00076.1 TTTAAGAGCGCTGTGGTTCTCTG AAGCATCAGCAAACGCACCTTG 1.90 

ARF2A Eucgr.K02197.1 GGCATGCCATTTCTACAGGAACC TCAGCAGGGCTTATCCTAGGTTTG 1.97 

ARF2B Eucgr.B03551.1 ATTGAGGGCTGAACCAGAGACC TGGTTAGGCACCGGAAGCAAAG 1.95 

ARF3 Eucgr.D00588.1 ACATATATACCGGGCAGGACAGC TCTTCCGGTTTACAAATGCACTCC 1.94 

ARF4 Eucgr.B02480.1 AGCTGTCGCTAGTGCTGTATCC AACTCTGCATGGCTTGCCCTTG 1.96 

ARF5 Eucgr.F02090.1 GCACATGGCAACAGCAAGTAGC ATCGACCTTCCGACTGATCCTG 1.97 

ARF6A Eucgr.D00264.1 TGAGCTTGCTCGCATGTTTAGCC TGTTCACAAACTCCGGCCAAGG 1.89 

ARF6B Eucgr.A02065.1 GCTGGCAGCTTGTATTTGTAGACC CCACACATTGTTGACGAACTCCTG 1.88 

ARF9A Eucgr.D01764.1 TCCAAAGCAGTCTGTGGTTTCACC ATGCGACTCCTTGCAGTGGTAG 1.87 

ARF9B Eucgr.E00888.1 GTGACTCGTTCGTGTTCTTAAGGG TGACGAGCAACTCGTTTCACTCC 2.00 

ARF10 Eucgr.J00923.1 TAGCAGGGCGTGTCGTGTTATC AATCCGGACGCTTGCGTTTCTC 1.90 

ARF16A Eucgr.G02838.1 AGGGACATGTTCGGCATAAACGG AATAGCACCGGCAGCATCTGAG 1.84 

ARF16B Eucgr.K01240.1 CTCAGAAATCGGCCACTGCAAAG TGAGGCAAGCAACGAGAGATCG 1.97 

ARF17 Eucgr.F04380.1 ATGGAGGTGGTGGTGAATGCAG AAACCACCTCGAACGGCAATCC 1.85 

ARF19A Eucgr.C03293.1 TCAGTTTCAAGCGGATGAGAAGCC AAGGACAGCCACTCTGGGTTAG 1.78 

ARF19B Eucgr.C02178.1 TCAAACAGGACCTGGCTCGTAG CGAACACAGTTCACGAAGTCCTC 1.93 

ARF24 Eucgr.K03433.1 TCCAGCGACTTTGTGCAGGTTATC AGCCTTTGAATGGGCTGAGGTC 1.92 

EF-1α Eucgr.B02473.1 ATGCGTCAGACTGTGGCTGTTG TTGGTCACCTTGGCTCCACTTG 1.84 

SAND Eucgr.B02502.1 TTGATCCACTTGCGGACAAGGC TCACCCATTGACATACACGATTGC 2.11 

PP2A1 Eucgr.B03386.1 TCGAGCTTTGGACCGCATACAAG ACCACAAGAGGTCACACATTGGC 1.98 

PP2A3 5'end Eucgr.B03031.1 CGGAAGAACTGGGTGTGTTT CACAGAGGGTCTCCAATGGT 2.03 

PP2A3 3'end Eucgr.B03031.1 CAGCGGCAAACAACTTGAAGCG ATTATGTGCTGCATTGCCCAGTC 2.02 

IDH 5'end Eucgr.F02901.1  AATCGACCTGCTTCGACCCTTC TCGACCTTGATCTTCTCGAAACCC 1.92 

IDH 3'end Eucgr.F02901.1  TGCTGTGGCAGCTGAACTCAAG ATGTTGTCCGCCAGTCACCTAC 1.86 



Annexes 

Table SII-2. Protein identity matrix between EgrARF and AtARF 

 

  EgrARF1 EgrARF2A EgrARF2B EgrARF3 EgrARF4 EgrARF5 EgrARF6A EgrARF6B EgrARF9A EgrARF9B EgrARF10 EgrARF16A EgrARF16B EgrARF17 EgrARF19A EgrARF19B EgrARF24 

AtARF1 0.622 0.388 0.399 0.239 0.31 0.244 0.251 0.257 0.471 0.446 0.226 0.222 0.216 0.194 0.203 0.208 0.309 

AtARF2 0.39 0.593 0.495 0.23 0.297 0.226 0.249 0.246 0.361 0.345 0.193 0.185 0.181 0.164 0.206 0.203 0.268 

AtARF3 0.244 0.22 0.242 0.462 0.326 0.192 0.196 0.205 0.247 0.23 0.195 0.197 0.187 0.206 0.153 0.157 0.23 

AtARF4 0.298 0.28 0.295 0.31 0.578 0.226 0.231 0.247 0.282 0.286 0.198 0.193 0.195 0.168 0.201 0.202 0.24 

AtARF5 0.242 0.247 0.247 0.195 0.224 0.593 0.342 0.349 0.235 0.232 0.181 0.176 0.181 0.156 0.311 0.302 0.2 

AtARF6 0.243 0.247 0.244 0.18 0.22 0.337 0.691 0.656 0.238 0.235 0.181 0.168 0.18 0.143 0.369 0.349 0.197 

AtARF7 0.196 0.216 0.208 0.147 0.186 0.293 0.32 0.332 0.187 0.183 0.148 0.145 0.147 0.115 0.59 0.415 0.159 

AtARF8 0.263 0.235 0.254 0.197 0.236 0.334 0.518 0.541 0.266 0.251 0.191 0.189 0.194 0.166 0.329 0.317 0.214 

AtARF9 0.435 0.347 0.367 0.224 0.273 0.232 0.247 0.25 0.586 0.584 0.236 0.218 0.213 0.195 0.208 0.193 0.3 

AtARF10 0.221 0.196 0.206 0.184 0.192 0.165 0.183 0.188 0.235 0.229 0.601 0.477 0.493 0.292 0.154 0.158 0.205 

AtARF11 0.449 0.356 0.357 0.224 0.271 0.235 0.253 0.25 0.522 0.488 0.238 0.229 0.227 0.204 0.198 0.202 0.341 

AtARF12 0.347 0.285 0.298 0.214 0.243 0.193 0.208 0.212 0.397 0.369 0.206 0.214 0.209 0.191 0.169 0.172 0.312 

AtARF13 0.344 0.271 0.286 0.2 0.236 0.189 0.204 0.207 0.391 0.374 0.188 0.202 0.192 0.172 0.159 0.164 0.289 

AtARF14 0.357 0.285 0.308 0.213 0.247 0.2 0.21 0.218 0.412 0.385 0.2 0.208 0.205 0.187 0.169 0.173 0.317 

AtARF15 0.343 0.278 0.29 0.209 0.24 0.193 0.208 0.213 0.393 0.368 0.205 0.217 0.208 0.196 0.167 0.171 0.3 

AtARF16 0.214 0.178 0.2 0.197 0.196 0.166 0.185 0.179 0.227 0.217 0.525 0.58 0.525 0.318 0.151 0.152 0.197 

AtARF17 0.179 0.149 0.155 0.171 0.141 0.139 0.138 0.139 0.177 0.162 0.284 0.276 0.291 0.421 0.113 0.123 0.167 

AtARF18 0.449 0.348 0.354 0.227 0.283 0.225 0.252 0.256 0.519 0.486 0.233 0.229 0.225 0.204 0.201 0.197 0.335 

AtARF19 0.207 0.215 0.214 0.161 0.199 0.318 0.346 0.354 0.198 0.195 0.164 0.156 0.16 0.129 0.604 0.448 0.169 

AtARF20 0.351 0.283 0.297 0.21 0.249 0.196 0.212 0.218 0.399 0.381 0.204 0.216 0.211 0.196 0.17 0.172 0.309 

AtARF21 0.357 0.283 0.295 0.21 0.249 0.198 0.212 0.221 0.398 0.375 0.205 0.214 0.212 0.191 0.175 0.176 0.308 

AtARF22 0.356 0.284 0.299 0.211 0.24 0.195 0.208 0.212 0.407 0.382 0.201 0.209 0.202 0.188 0.17 0.173 0.307 

AtARF23 0.163 0.13 0.138 0.14 0.119 0.088 0.094 0.098 0.176 0.161 0.106 0.116 0.108 0.127 0.073 0.074 0.155 
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Table SII-3. Protein identity matrix among EgrARF 

 

  EgrARF1 EgrARF2A EgrARF2B EgrARF3 EgrARF4 EgrARF5 EgrARF6A EgrARF6B EgrARF9A EgrARF9B EgrARF10 EgrARF16A EgrARF16B EgrARF17 EgrARF19A EgrARF19B EgrARF24 

EgrARF1 ID 0.389 0.411 0.246 0.29 0.247 0.261 0.267 0.503 0.471 0.237 0.245 0.233 0.2 0.208 0.206 0.329 

EgrARF2A 0.389 ID 0.515 0.222 0.276 0.247 0.261 0.262 0.372 0.371 0.202 0.204 0.206 0.167 0.215 0.218 0.296 

EgrARF2B 0.411 0.515 ID 0.233 0.285 0.252 0.265 0.266 0.387 0.388 0.211 0.205 0.204 0.166 0.218 0.218 0.317 

EgrARF3 0.246 0.222 0.233 ID 0.363 0.197 0.196 0.2 0.237 0.241 0.21 0.207 0.202 0.18 0.165 0.164 0.226 

EgrARF4 0.29 0.276 0.285 0.363 ID 0.225 0.236 0.235 0.281 0.285 0.214 0.21 0.21 0.166 0.194 0.188 0.242 

EgrARF5 0.247 0.247 0.252 0.197 0.225 ID 0.371 0.379 0.236 0.242 0.185 0.18 0.192 0.15 0.32 0.328 0.203 

EgrARF6A 0.261 0.261 0.265 0.196 0.236 0.371 ID 0.678 0.263 0.265 0.191 0.187 0.193 0.155 0.35 0.337 0.217 

EgrARF6B 0.267 0.262 0.266 0.2 0.235 0.379 0.678 ID 0.268 0.266 0.194 0.197 0.203 0.162 0.361 0.358 0.224 

EgrARF9A 0.503 0.372 0.387 0.237 0.281 0.236 0.263 0.268 ID 0.668 0.238 0.236 0.239 0.198 0.21 0.208 0.321 

EgrARF9B 0.471 0.371 0.388 0.241 0.285 0.242 0.265 0.266 0.668 ID 0.224 0.223 0.228 0.189 0.207 0.203 0.301 

EgrARF10 0.237 0.202 0.211 0.21 0.214 0.185 0.191 0.194 0.238 0.224 ID 0.564 0.577 0.302 0.166 0.166 0.202 

EgrARF16A 0.245 0.204 0.205 0.207 0.21 0.18 0.187 0.197 0.236 0.223 0.564 ID 0.556 0.301 0.162 0.156 0.204 

EgrARF16B 0.233 0.206 0.204 0.202 0.21 0.192 0.193 0.203 0.239 0.228 0.577 0.556 ID 0.311 0.164 0.165 0.214 

EgrARF17 0.2 0.167 0.166 0.18 0.166 0.15 0.155 0.162 0.198 0.189 0.302 0.301 0.311 ID 0.125 0.135 0.199 

EgrARF19A 0.208 0.215 0.218 0.165 0.194 0.32 0.35 0.361 0.21 0.207 0.166 0.162 0.164 0.125 ID 0.476 0.159 

EgrARF19B 0.206 0.218 0.218 0.164 0.188 0.328 0.337 0.358 0.208 0.203 0.166 0.156 0.165 0.135 0.476 ID 0.163 

EgrARF24 0.329 0.296 0.317 0.226 0.242 0.203 0.217 0.224 0.321 0.301 0.202 0.204 0.214 0.199 0.159 0.163 ID 
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Table SII-4 Comparison of the number of alternative transcripts predicted in phytozome 

for E. grandis to those found in a large compendium of transcriptomic data from in E. 

globulus. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Material and Methods for Alternative slipicing validation 

TopHat and Cufflink Suite (Trapnell et al. 2012), currently used for differential gene and transcript expression 

analysis of RNA-seq experiments, were used to validate the Eucalyptus ARF genes (E. grandis genome v162 

annotation). Ten developing xylem (DX) RNA-Seq libraries were produced and sequenced FASTERIS SA 

(Genève, CH; www.fasteris.com). RNA-Seq libraries were prepared from ten equimolar pools of high quality 

individual total RNA: a) four seasonal libraries produced from total RNA extracted from DX samples collected in 

2008 on three ramets of non-related tree genotypes at Herdade do Zambujal, Pegões (Portugal) [February 26 th 

(Feb), May 23rd (May), September 5th (Sep) and December 3rd (Dec)] (Carocha et al., unpublished); b) four pulp 

yield pools (five trees by pool) obtained by pooling the total RNA from samples. collected at Carregal Fundeiro, 

Abrantes (Portugal), from 10 trees with very constrasting pulp yields in the coded AxB mapping population, and 

10 trees with very constrasting pulp yields in a natural variation panel; c) two libraries from samples collected 

from an adult tree and a juvenile one, (same genotype) at Herdade do Zambujal, Pegões (Portugal). Sampling 

procedures and RNA extraction were described, respectively in Paux et al. (2004) and Cassan- Wang et al. (2012). 

All samples were kindly provided by RAIZ Institute (Portugal). The TruSeq™ SBSv5 sequencing kit (Illumina) 

was used for library sequencing, using the Illumina Hi-Seq 2000 instrument, on a multiplex runs with 

1x100nt+7(index) cycles. For each RNA-Seq library, adaptors removal and a successive quality and contaminants 

(ribosomal sequences) filters were applied. The resulting filtered high quality reads were then mapped to the E. 

grandis genome sequence v162 using TopHat v1.3.1. Cufflinks v1.1.0 was used to determine the potential coding 

regions and their intron-exon structures. Finally, Cuffcompare v1.1.0 were then used to compare the assembled 

multiple libraries Cufflinks transcripts to the E. grandis v162 gene annotations. The sequences of the Illumina 

reads from RNA Seq used to predict the E. globulus alternative transcripts are provided in FastaQ format in 

supplementary File S1. 

REF: Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, 

Steven L Salzberg, John L Rinn & Lior Pachter (2012) Differential gene and transcript expression analysis of 

RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7: 562–578. 
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Table SII-5 Comparison of the number of EgrARF24 putative orthologs in other species 

Species Number of  orthologs* 

Brassica rapa 0 

Gossypium raimondii 2 

Malus domestica 2 

Medicago truncatula 0 

Citrus sinensis 1 

Citrus clementina 1 

Prunus persica 1 

Solanum lycopersicum 0 

Manihot esculenta 0 

Ricinus communis 0 

Linum usitatissimum 0 

Phaseolus vulgaris 1 

Glycine max 2 

Cucumis sativus 0 

 Fragaria vesca 1 

Arabidopsis lyrata 0 

Capsella rubella 0 

Thellungiella halophila 0 

Carica papaya 1 

Theobroma cacao 1 

Solanum tuberosum 0 

Mimulus guttatus v1.1 0 

Aquilegia coerulea 1 

Sorghum bicolor 0 

Setaria italica 0 

Panicum virgatum 0 

Brachypodium distachyon 0 

Selaginella moellendorffii 0 

Populus trichocarpa 2 

Arabidopsis thaliana 0 

Zea mays 0 

Oryza sativa 0 

Vitis vinifera 1 

Eucalyptus grandis 1 

*The number of EgrARF24 orthologs in other species are counted in phytozome by 

using "Filter homologs" with a cut off E value 1.0E-50 
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Table SII-6. Potential small RNAs targeting EgrARF genes 

 

 

Table SII-7. Small RNAs target site prediction in EgrARF genes 
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Supplementary data for chapter III 

Supplementary Fig. SIII-1 Procedure used for identifying Aux/IAA genes in Eucalyptus 

grandis. Arabidopsis Aux/IAA protein sequences were used to search for related proteins in the 

predicted E. grandis proteome by using BLASTP (REF). Fifty-five E. grandis proteins 

identified in this initial search were further examined by manual curation using protein motif 

scanning and the FgeneSH program to complete partial sequences. Redundant and invalid genes 

were eliminated based on gene structure, the integrity of conserved motifs and EST support. 

Manual curation resulted in 26 EgrIAA protein sequences. We then used these 26 protein 

sequences in two subsequent additional searches: first, a BLASTP search against the E. grandis 

proteome to identify exhaustively all divergent E. grandis Aux/IAA gene family members and, 

second, tBLASTn searches against the E. grandis genome for any possible unpredicted genes. 

To confirm our findings, we also used poplar Aux/IAA proteins to repeat the complete search 

procedure described above with identical results obtained. 
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Supplementary Fig. SIII-2 Phylogenetic analysis of E. grandis and Arabidopsis IAA 

proteins and the exon–intron organization of corresponding genes. (A) Neighbor-joining 

phylogenetic tree of E. grandis and Arabidopsis IAA proteins. Bootstrap values are indicated 

at each node. (B) Exon–intron organization of the EgrIAA (in red) and AtIAA (in green) genes 

corresponding to the proteins in the phylogenetic tree. The sizes of exons and introns are 

indicated by the scale at the top.  

 

 

Supplementary Fig. SIII-3 Sequencing alignment of EgrIAA29 and two putatively 

pseudogenes, EgrIAA29A and 29B.   
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Supplementary Fig. SIII-4 Multiple sequence alignment of predicted amino acid 

sequences of EgrIAA proteins. The four highly conserved domains of Aux/IAA proteins were 

noted on the top of the alignment. Nuclear localization signals (NLSs) were indicated by filled 

circles. The amino acid position was given on the right of each sequence. 
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Supplementary Fig. SIII-5 Chromosomal positions of the EgrIAA genes. The tandem 

duplications (TD) and segmental duplication (SD) are written on the right side of the 

corresponding genes. Chromosome scaffolds (1–11) are indicated at the top end of each 

chromosome. 
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Supplementary Fig. SIII-6 Predicted proteins of all the transcripts of EgrIAA and their 

conserved domains. Conserved domains were predicted using the MEME web server with 

the following parameters: distribution of motif occurrences, zero or one per sequence; motif 

width ranges from 10 to 50 residues; maximum number of motifs to find, 4. The size and 

location of motifs can be estimated by the scale at bottom. 
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Low expression in phloem 

Responsiveness to bending 

Preferential expression in mature versus juvenile xylem 

IAA13 

IAA20 

IAA29 
IAA11 

IAA31 

IAA4 

IAA33A 

IAA3B 

IAA9A 

IAA15A 

Supplementary Fig. SIII-7 Venn diagram of overall strategy to identify the best potential 

candidate(s) involved in wood formation. Best potential candidate(s) should be i) highly 

expressed in vascular tissues; ii) preferentially expressed in xylem/cambium compare to phloem; 

iii) showing a response to bending; iv) preferential expression in mature versus juvenile xylem.

Only EgrIAA4 is fulfilling these conditions. 
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Supplementary Fig. SIII-8 Protein sequence of EgrIAA4 and the phenotype of gain-of-

function transgenic Arabidopsis. (A) Amino acid sequence of mutated EgrIAA4m protein. In 

the mutated EgrIAA4m cDNA, the 80th codon encoding the conserved Pro residue (highlighted 

in red) was changed to a codon encoding a Ser residue. (B) Transcript levels of EgrIAA4m in 

transgenic Arabidopsis under the control of the 35SCaMV promoter. Three technical replicates 

were used for each qRT-PCR experiment. Bars shows averages ratio of the fragment intensity 

of interest relative to that of AtUBQ10. Error bars represent SE. (C) EgrIAA4m transgenic and 

wild type Arabidopsis plants grown in long/short days for 40 days. Scale bar: 1 cm. 
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Supplementary Table SIII-1. Protein identity matrix among EgrIAA 

 

  IAA1 IAA3A IAA3B IAA4 IAA9A IAA9B IAA11 IAA13 IAA14 IAA15A IAA15B IAA16 IAA17 IAA19 IAA20 IAA26A IAA26B IAA27 IAA28 IAA29 IAA31 IAA32 IAA33A IAA33B 

IAA1 100%                        

IAA3A 78.04% 100%                       

IAA3B 76.62% 83.73% 100%                      

IAA4 78.25% 82.31% 79.06% 100%                     

IAA9A 44.51% 44.10% 44.30% 43.29% 100%                    

IAA9B 46% 45.93% 46.34% 44.51% 64.83% 100%                   

IAA11 50.60% 51.42% 51.62% 50.60% 28.04% 30.48% 100%                  

IAA13 56.09% 57.52% 57.11% 56.91% 29.47% 34.75% 60.56% 100%                 

IAA14 66.26% 67.88% 67.07% 67.68% 45.52% 49.39% 50.20% 56.30% 100%                

IAA15A 67.27% 69.51% 71.74% 68.29% 41.66% 44.30% 52.23% 55.08% 67.07% 100%               

IAA15B 64.83% 65.04% 67.68% 65.65% 41.46% 44.51% 48.17% 54.26% 63.61% 69.30% 100%              

IAA16 61.58% 61.99% 61.38% 63.00% 44.30% 47.76% 48.17% 52.03% 78.65% 63.21% 61.17% 100%             

IAA17 64.83% 63.00% 63.41% 64.02% 45.52% 50.20% 46.34% 51.01% 76.21% 63.82% 61.38% 72.76% 100%            

IAA19 71.95% 72.96% 72.15% 71.54% 39.83% 42.27% 48.57% 59.34% 66.46% 69.30% 62.19% 62.80% 62.19% 100%           

IAA20 66.26% 64.83% 64.63% 65.24% 34.75% 34.34% 46.74% 52.43% 56.70% 61.78% 58.33% 52.23% 52.43% 63.82% 100%          

IAA26A 43.90% 42.68% 43.90% 42.47% 30.08% 33% 40.24% 43.49% 44.71% 45.73% 42.47% 44.51% 44.91% 43.29% 41.05% 100%         

IAA26B 37.60% 36.58% 37.39% 36.17% 27.23% 29.87% 33.53% 36.58% 38.41% 37.60% 36.17% 39.22% 38.41% 36.38% 33.13% 62.19% 100%        

IAA27 48.98% 51.62% 52.43% 49.18% 46.74% 48.37% 40.04% 41.05% 54.47% 52.03% 54.06% 54.87% 55.69% 48.17% 39.02% 38.00% 33.94% 100%       

IAA28 39.83% 39.43% 38.00% 39.43% 26.42% 28.25% 32.52% 34.95% 40.44% 38.82% 38.61% 40.44% 39.63% 39.63% 36.17% 48.78% 44.51% 34.14% 100%      

IAA29 62.80% 59.55% 60.56% 61.78% 33.94% 35.16% 48.98% 51.01% 54.47% 59.14% 54.47% 51.62% 52.03% 59.55% 63.61% 41.86% 35.16% 40.44% 38.61% 100%     

IAA31 62.80% 61.78% 61.58% 63.21% 35.97% 36.38% 49.18% 52.43% 54.67% 56.70% 55.08% 52.23% 51.42% 57.92% 70.12% 39.22% 34.75% 39.83% 36.58% 61.99% 100%    

IAA32 59.55% 57.52% 58.33% 57.11% 28.45% 31.30% 45.12% 52.03% 51.62% 56.09% 52.64% 47.56% 47.35% 62.39% 61.38% 39.83% 30.69% 35.56% 36.99% 56.91% 56.70% 100%   

IAA33A 65.85% 64.02% 62.80% 62.80% 31.09% 32.52% 44.71% 52.03% 55.28% 60.97% 57.11% 50.00% 51.82% 63.00% 65.24% 38.21% 30.28% 36.78% 33.94% 60.36% 58.33% 60% 100%  

IAA33B 60.36% 56.91% 57.92% 57.92% 31.30% 33.53% 46.34% 48.17% 51.42% 56.70% 52.03% 47.15% 48.37% 57.92% 61.38% 39.02% 31.09% 38.00% 35.36% 64.63% 57.52% 54.06% 58.53% 100% 
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Table SIII-2. Alternative transcript comparison between Eucalyptus and Arabidopsis 

 

  Gene name 

Number of 

predicted 

alternative 

transcript 

Gene 

name 

Number of predicted 

alternative transcript 

EgrIAA1 2 AtIAA1 1 

EgrIAA3A 2 AtIAA2 1 

EgrIAA3B 1 AtIAA3 1 

EgrIAA4 1 AtIAA4 1 

EgrIAA9A 2 AtIAA5 1 

EgrIAA9B 4 AtIAA6 1 

EgrIAA11* 1 AtIAA7 2 

EgrIAA13 1 AtIAA8 4 

EgrIAA14 1 AtIAA9 2 

EgrIAA15A 1 AtIAA10 1 

EgrIAA15B* 1 AtIAA11 3 

EgrIAA16 1 AtIAA12 2 

EgrIAA17* 1 AtIAA13 3 

EgrIAA19 1 AtIAA14 1 

EgrIAA20 1 AtIAA15 1 

EgrIAA26A 3 AtIAA16 1 

EgrIAA26B 2 AtIAA17 1 

EgrIAA27 3 AtIAA18 1 

EgrIAA28* 2 AtIAA19 1 

EgrIAA29 1 AtIAA20 1 

EgrIAA[P]29A 1 AtIAA26 1 

EgrIAA[P]29B 1 AtIAA27 1 

EgrIAA31* 1 AtIAA28 1 

EgrIAA32 1 AtIAA29 1 

EgrIAA33A 1 AtIAA30 1 

EgrIAA33B 1 AtIAA31 1 

  AtIAA32 2 

  AtIAA33 1 
 

 
 

 AtIAA34 1 

Total number 

of transcript 38  40 
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Table SIII-3. Bibliography of the genes which are potentially involved in wood formation in cluster III from the phylogenetic tree   
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Supplementary Table SIII-4. The primers for EgrARF genes and reference genes used in 

qRT-PCR experiments 

 

Name Accession no Forward 5'-3' Reverse 5'-3' Efficiency 

EgrIAA1 Eucgr.K03314.1 AGGGTCTGATTATGCGCCTACC TGTGGACGTAAACATGTTCCAAGG 2.01 

EgrIAA3A Eucgr.H03171.1 ACTCTGCTCCTTCTTCCAAAGCAC GTTTCAGCCTCTGTCTTCTTCGTC 1.88 

EgrIAA3B Eucgr.H00216.1 TGGGCATCTGCCTGATGTCTTC TATCTATCTGTGCGCCGTCCTC 2.06 

EgrIAA4 Eucgr.H04336.1 GGTCCAATGAGGAGGAGTCCAATG TTGTGCCTTAGATGGCCGATGC 2.05 

EgrIAA9A Eucgr.H02407.1 GCTTGAATTGCACCTAGAGCGTTG AGGCAAGCATAGCAACCTGCAC 2.10 

EgrIAA9B Eucgr.F02172.1 TCAGTTGTTTCACCATAGGTGCTC TCTTTCAGCTTGCTCTCACTTAGC 2.01 

EgrIAA11 Eucgr.K01426.1 TCAACGCACCACGTTCAAATAGG TGAGGCACTTGTTGCTCGTACC 1.93 

EgrIAA13 Eucgr.H02914.1 AGAGGGAGACTGGATGCTCATTGG TTGACGGCAGTGAGGAACATCC 1.96 

EgrIAA14 Eucgr.H03170.1 TGCTCTGGGCAAGATGTTCAGC ATCATTCCTTGCGCACCATAGC 2.10 

EgrIAA15A Eucgr.J03016.1 AGCTAAACCTCCTGCAGCCAAG TCATCACGCTCTTCCTGAACGC 1.88 

EgrIAA15B Eucgr.C01083.1 TGCCATCATCGACGGAAACAGC AAGGTCAGTTCCGTGTCCATGC 1.85 

EgrIAA16 Eucgr.H04335.1 AGCGCCTGAGGATCATGAAAGG TCTCTACTGCTCTCGGTGCAAG 1.91 

EgrIAA17 Eucgr.K03313.1 AAGAGCTGTCTGAGGCCTTGTG TCCTTCACTCCTTGGGATTCGC 1.98 

EgrIAA19 Eucgr.F02578.1 ATACTGCAGACCAGGGACTTCCTC AGAAGCGTTGCCCGTTCTCATC 1.99 

EgrIAA20 Eucgr.K00561.1 AGATGGGCAAAGGAAGCAGCTC TTCTTGAGACGCCGAGACATGG 2.03 

EgrIAA26A Eucgr.F03080.1 TCTGAGATTTCTGTGCTCAGTGC GCTCATTGCATGGCAGAATCCG 1.73 

EgrIAA26B Eucgr.J02934.1 CCGAAGCAAAGTCGATTCAAGAGG AACCAAGAGGATCTGCAACAAGAG 1.98 

EgrIAA27 Eucgr.F03050.1 AGTTCCGAGGCAATTGGTCTAGC CTAATCCCGGCTCTTGCACTTCTC 1.87 

EgrIAA28 Eucgr.C02984.1 TAGAGGCCTTCTTGCTGCTCAC GGCATTTGTGTCCTCTCTCTTTGC 1.87 

EgrIAA29 Eucgr.C01734.1 TCAAGTCCTGGAGGAAGGAGTTCG TCTCGTAATGATCCTGGTGTGGTG 2.11 

EgrIAA31 Eucgr.H04141.1 TTGGATTGGCCCTTCGGTTTCG TTGATGGGTGGCCAGTCTTGTC 1.83 

EgrIAA32 Eucgr.B02853.1 GCGCATGCGGATCACAAGAAAG TTGGTTGTTCGTCGGCTGATGC 2.43 

EgrIAA33A Eucgr.C02329.1 AGGCAGATGTTCGTGGACGATG AAGGTGTCCGGGAACAGCATTG 1.69 

EgrIAA33B Eucgr.C01373.1 TCATCAACATGTTCGGCTTGTGC CTCAGCAGTTTCAATCGCTGTGC 1.76 

EF-1a Eucgr.B02473.1 ATGCGTCAGACTGTGGCTGTTG TTGGTCACCTTGGCTCCACTTG 1.84 

SAND Eucgr.B02502.1 TTGATCCACTTGCGGACAAGGC TCACCCATTGACATACACGATTGC 2.11 

PP2A_1 Eucgr.B03386.1 TCGAGCTTTGGACCGCATACAAG ACCACAAGAGGTCACACATTGGC 1.98 

PP2A_3 5'end Eucgr.B03031.1 CGGAAGAACTGGGTGTGTTT CACAGAGGGTCTCCAATGGT 2.03 

PP2A_3 3'end Eucgr.B03031.1 CAGCGGCAAACAACTTGAAGCG ATTATGTGCTGCATTGCCCAGTC 2.02 

IDH 5'end Eucgr.F02901.1  AATCGACCTGCTTCGACCCTTC TCGACCTTGATCTTCTCGAAACCC 1.92 

IDH 3'end Eucgr.F02901.1  TGCTGTGGCAGCTGAACTCAAG ATGTTGTCCGCCAGTCACCTAC 1.86 
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Supplementary data for chapter IV 

Fig. SIV-1 Maps and features of pENTR/D-TOPO which can cloning blunt-end PCR 

products into the empty used for the gateway system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. SIV-2 Maps and features of vectors pK7FWG2 (A) and pK7WGF2 (B) used for 

subcellular localization. 
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pGrII-35S-OMEGA

5346 bp
Vector backbone

NptI

pGREEN F

pGreen R

pGreen-35S-F

New-R

35-F

35S

35S

Terminator

ApaLI (315)

EcoRI (5056)

HindIII (4174)

Sma I (5014)

XmaI (5012)

BamHI (5007)

BamHI (5016)

AvaI (2457)

AvaI (4153)

AvaI (5012)

Fig. SIV-3 Maps and features of pGreen vector used for transcription activation analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. SIV-4 Maps and features of pFAST-G02 vector used for overexpression construction 

by gateway.  
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Fig. SIV-5 Maps and features of vector pH35GEAR used for dominant repression 

construction.   
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Table SIV-1. The Primers for wood associated CGs amplification 

Name Forward 5'-3' Reverse 5'-3' 

ARF4m_1 CACCATGGAAATTGATCTAAATCATGC CTCCTGTCCCTGTAACACTTTAGAGGATCGTAAAGATTCCTCA 

ARF4m_2 AAGTGTTACAGGGACAGGAGAAGTTGCATTTGGTGTCACCT CTCCTGTCCCTGTAACACTCTTGGGAATCTATCGGATTCCA 

ARF4m_3 AGAGTGTTACAGGGACAGGAGATATGCACACTGAAGTCTTTGACG AAGCCTAACGACAGTAGGTGAA 

ARF10m_1 CACCATGACGGTGTTGAAGGAGCCAGA TTGTCTTGCACCTTGGATACCTGCAGGAGCATTATCAGATAGACAA 

ARF10m_2 TGCAGGTATCCAAGGTGCAAGACAAGCTCAATTTGGAATACCCTTAAC CGCGTAAGTGCTCAATGGAC 

ARF19A CACCATGAAGGTTCCTTCCAATGGATTTTTAGCT TCTACTAATCAATATATCACCTCTCCATGCGT 

IAA3Bm_1 ATGGAGTTTCGAGAAATGGAGAG TCGGACAGGACTCCATCCCACGATCTGTGCTT 

IAA3Bm_2 TGGGATGGAGTCCTGTCCGATCCTACCGAAA AACACCATAACCCAAGCCCCTA 

IAA4m_1 CACCATGGCAGCTCAAGGAGAGGAT ATCGGACCGGACTCCACCCCACGACTTGTGCCTTA 

IAA4m_2 CGTGGGGTGGAGTCCGGTCCGATCCTACCGAAA AACCTCTGATGACCCTTTCATGATT 

IAA9Am_1 CACCATGTCTCCACCACTTCTGG CTAATAGGACTCCAACCAACGACCTGAGC 

IAA9Am_2 GGTTGGAGTTCCTATTAGATCATACAGGAAGAATACA ACTCTTCGATTTGTTCACTAGTCC 

IAA13m_1 CACCATGGAAGCTCCACCTGCTC TTATAGGACTCCATCCCACAACCTGACTTG 

IAA13m_2 TTGTGGGATGGAGTCCTATAAGGGCATACAGGATGA TATCGGCTTTCTCATTTGCCT 

IAA20 CACCATGGGCAAAGGAAGCAGCTCAT CTCTATTCTTGTAATCTTCAGTCTCTTCA 

IAA29m_1 CACCATGGATCTTCAACTCGGTTTAGC TTGATGGGACTCCACCCCAGAACCTGATCAT 

IAA29m_2 TTCTGGGGTGGAGTCCCATCAAGTCCTGGAGGAAG ATCTCTACTCCTTTGTATCTGCAGGC 

IAA31 CACCATGGGAAGGGCTTCAGCTA CTAACATCTGTCGGCTCTCG 

Underline sequences (CACC) represent the extra sequence needed for the pENTR/D-TOPO cloning; sequences in 

red represent the overlap region for overlap PCR; sequences highlight in yellow represent the mutation base. 
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