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Résumé

Afin de pouvoir satisfaire la demande sans cesse croissante du trafic aérien, le futur système

de gestion du trafic aérien utilisera le concept d’opérations basées sur les trajectoires (Trajectory

Based Operations), qui augmentera la capacité du trafic aérien, en réduisant la charge de travail

du contrôleur. Pour ce faire, les tâches de détection et de résolution de conflits seront transférées

depuis la phase tactique vers la phase stratégique de la planification.

Dans le cadre de ce nouveau paradigme pour le système de gestion du trafic aérien, nous

introduisons dans cette thèse une méthodologie qui permet d’aborder ce problème de planifi-

cation stratégique de trajectoires d’avion à l’échelle d’un pays ou d’un continent. Le but de la

méthodologie proposée est de minimiser l’interaction globale entre les trajectoires d’avion, en

affectant de nouveaux créneaux de décollage, de nouvelles routes et de nouveaux niveaux de

vols aux trajectoires impliquées dans l’interaction. De plus, afin d’améliorer la robustesse du

plan stratégique de vols obtenu, nous prenons en compte l’incertitude de la position de l’avion

et de son heure d’arrivée à un point donné de la trajectoire de l’avion.

Nous proposons une formulation mathématique de ce problème de planification stratégique

conduisant à un problème d’optimisation discrète et un problème d’optimisation en variables

mixtes, dont la fonction objectif est basée sur le nouveau concept d’interaction. Un algorithme

efficace en termes de temps de calcul pour évaluer l’interaction entre des trajectoires d’avion

pour des applications de grande taille est introduit et mis en oeuvre.

Des méthodes de résolution basées sur des algorithmes de type métaheuristique et méta-

heuristique hybride ont été développées pour résoudre ces problèmes d’optimisation de grande

taille. Enfin, la méthodologie globale de planification stratégique de trajectoires d’avion est

mise en oeuvre et testée sur des données de trafic, prenant en compte des incertitudes, pour

l’espace aérien français et l’espace aérien européen, impliquant plus de 30 000 vols. Des plans

de vols 4D sans conflits et robustes ont pu être produits avec des temps de calcul acceptables

dans un contexte opérationnel, ce qui démontre la viabilité de l’approche proposée.

Mots-clés: Planification stratégique, trajectoire d’avion 4D, gestion du trafic aérien, opti-

misation discrète, optimisation en variables mixtes, métaheuristique, métaheuristique hybride.
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Strategic planning of aircraft trajectories

Abstract

To sustain the continuously increasing air traffic demand, the future air traffic management

system will rely on a so-called Trajectory Based Operations (TBO) concept that will increase

air traffic capacity by reducing the controllers workload. This will be achieved by transferring

tactical conflict detection and resolution tasks to the strategic planning phase.

In this future air traffic management paradigm context, this thesis presents a methodology

to address such strategic trajectory planning at nation-wide and continent scale. The proposed

methodology aims at minimizing the global interaction between aircraft trajectories by allocating

alternative departure times, alternative horizontal flight paths, and alternative flight levels to

the trajectories involved in the interaction. To improve robustness of the strategic trajectory

planning, uncertainty of aircraft position and aircraft arrival time to any given position on the

trajectory are considered.

This thesis proposes a mathematical formulation of this strategic trajectory planning prob-

lem leading to a discrete-optimization and a mixed-integer optimization problem whose objective

function relies on the new concept of interaction between trajectories. A computationally effi-

cient algorithm to compute interaction between trajectories for large-scale applications is intro-

duced and implemented. Resolution methods based on metaheuristic and hybrid-metaheuristic

algorithms have been developed to solve the above large-scale optimization problems. Finally,

the overall methodology is implemented and tested with air traffic data taking into account

uncertainty over the French and the European airspaces, involving more than 30,000 trajecto-

ries. Conflict-free and robust 4D trajectory planning are produced within computational time

acceptable for the operation context, which shows the viability of the approach.

Keywords: Strategic planning, 4D aircraft trajectory, air traffic management, discrete

optimization, mixed-integer optimization, metaheuristic, hybrid metaheuristic.
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Introduction

We first present here an overview of the current air traffic management system and its

limitations. After that, future trends of the air traffic management concept are discussed. Then,

objectives, scope, and the contributions of this study are presented. Finally, the structure of

this thesis is given.

Air traffic management system

Air traffic management (ATM) is a system that assists and guides aircraft from a depar-

ture airport to a destination airport in order to ensure its safety, while minimizing delays and

airspace congestion. It manages the air traffic through the management of the three following

complementary systems: airspace management (ASM), air traffic flow management (ATFM),

and air traffic control (ATC).

The ASM manages the usage of airspace. Its primary objective is to maximize the utilization

of available airspace by segregating the airspace among various airspace user’s needs in order

to prevent interference from all users and to facilitate the flow of air traffic.

The ATFM manages the air traffic flow in order to minimize delays and to prevent conges-

tion. In Europe, this system is managed by the Central Flow Management Unit (CFMU) of

Eurocontrol. Every (non-military operation) flight performing under instrument flight rules1 in

Europe must submit a flight plan to the CFMU. The CFMU then analyzes the compatibility of

the request. If the request is not compatible with the airspace structure or the capacity limit,

the CFMU will suggest alternative routes, then distributes the accepted flight plan to all local

air traffic control centers overflown by that particular flight in Europe.

This flight plan includes the following information:

• aircraft identification number, aircraft type, and navigation equipment installed on board;

• departure airport;

• proposed time of departure;

• requested cruising altitude (flight level2);

• requested route of flight;

1Instrument Flight Rules (IFR) is a set of regulations concerning aircraft operated when the pilot is unable
to use visual reference navigation.

2Flight level (FL) is a pressure altitude, expressed in hundreds of feet, e.g. and altitude of 32,000 feet is
referred to as FL 320.
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INTRODUCTION

• cruising airspeed, climb and descent profiles, and speed schedules;

• destination airport.

The ATC then controls the air traffic in real time. It uses the flight plan information to

predict the traffic situation, then issues necessary changes to the flight plan in order to ensure

aircraft separation, and to maintain the order of air traffic flow, while satisfying as much as

possible the pilot’s request. For this purpose, the airspace is partitioned into different sectors,

each of which is assigned to a group of controllers monitoring the air traffic. In order to prevent

the controller from being overloaded, the number of aircraft allowed to enter a given sector at

any given time is limited. When the number of aircraft reaches this limit, the corresponding

sector is said to be congested.

Generally, congestion in air transportation can be categorized into two groups according to

the part of airspace it involves. Terminal congestion is the congestion that occurs around the

terminal control area3 (TCA, or TMA outside the U.S. and Canada). En-route congestion is

the congestion involved in the en-route section of the flight between TMAs. In the U.S. the

congestion occurs more often in the terminal areas, whereas the en-route congestion is more

critical in Europe due to the fragmented nature of its airspace where there are extra difficulties

for coordinating the air traffic across the boundaries.

Air traffic regulations impose that aircraft must always be separated by some prescribed

distance, noted Nv for the vertical separation and Nh for the horizontal separation. Current

ATC regulations require aircraft operating in the terminal maneuvering area (TMA) to be

vertically separated by at least Nv = 1,000 feet and horizontally separated by a minimum of Nh

= 3 nautical miles. In the en-route environment, for aircraft operating up to (and including) FL

410, the horizontal minimum separation is increased to 5 nautical miles; for aircraft operating

above FL 410, the vertical separation is increased to 2,000 feet [71]. Aircraft are considered to be

in conflict when these minimum separation requirements are violated. Such conflict situations

would not necessary lead to a collision; however, it is a situation that controllers must avoid.

One can consider that at any given time, each aircraft has a bounded and closed reserved block

of airspace defined by a three-dimensional cylinder, as shown in Figure 1, in which other aircraft

are not allowed to enter.

Because airspace, aircraft, ground systems, and human operators are limited resources which

are very costly to extend, the usage of these resources has to be optimized through an effective

planning. A good planning allows the ATM process to conform with the airspace user’s require-

ment, and to be robust against unexpected events. The ATM process is performed through the

following three planning phases:

• Strategic planning. This phase is performed around one year down to one week before

real-time operations of the flight. This process aims to predict the air traffic load, and

design the air route structure in order to balance capacity and demand.

• Pre-tactical planning. This phase takes place six days down to one day before real-time

3A terminal control area (also known as a terminal maneuvering area) is a controlled airspace surrounding
major airports, generally designed as a cylindrical or up-side-down wedding-cake shape airspace of 30 to 50 mile
radius and high of 10,000 feet.
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Nh	  

2	  Nv	  

Figure 1: The cylindrical protection volume

operations. Its primary aims are to optimize the overall ATM network performance, min-

imizing delays and costs by fine-tuning the strategic plan using more-update information

of expected traffic condition, traffic demand, available capacity and weather forecast.

• Tactical planning. This phase is carried out on the day of operations. In this phase,

individual aircraft departure slots are to be provided, re-routings and alternative flight

profiles can also be issued in order to avoid bottlenecks (congested sector) and to maximize

airspace capacity according to real-time traffic demand.

As the air-traffic demand keeps on increasing, the airspace becomes more and more con-

gested. Over past decades, several methods have been proposed to address the air traffic man-

agement problem aiming at balancing air traffic demand and airspace capacity, and to prevent

airspace congestion. There are two frequently-used air traffic decongestion strategies.

The first one adapts the airspace capacity to the increased demand. This includes reducing of

separation norms (e.g. the reduced vertical separation minima - RVSM - approach), constructing

new airports, increasing the number of runways, etc. These methods, however, involve high

building costs, and the space for airport construction is limited. Another method to increase the

capacity is to reduce the size of airspace sectors, in order to decrease the controller’s workload.

This method is considered, for instance, in [34, 81, 70]. Unfortunately, this re-sectorization

strategy has its structural limits since the controller needs sufficient space and time in order

to manage the traffic which imposes a constraint on how small the size of the sector can be.

Besides, the controller handles only the aircraft of his sector; therefore, he must collaborate

with the pilot to ensure flight safety as the aircraft passes from one sector to another. Reducing

the size of sectors, in fact, increases the number of sectors and therefore increases the traffic

transfer workload.

The second air traffic decongestion strategy is to regulate the air traffic demand to the

current capacity. This strategy focuses on decongesting the ATM system through several ap-

proaches, such as: allocating delays to each aircraft in order to reduce congestion in sectors or at

destination airports, re-routing flights, or regulating aircraft speed in order to avoid congestion

mainly in TMA sector, etc. These approaches are considered, for instances, in [72, 51, 84, 24, 22].
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Despite the use of the above-mentioned methods, the capacity of today’s air traffic man-

agement system is still constrained by procedures, and technologies that require air traffic

controllers to operate within inefficient guidelines. The usage of the airspace is limited by the

inflexible route structure based on the location of beacons.4 In order to accommodate the in-

creasing air-traffic demand in the near future, in an already saturated airspace, ATM requires

a major improvement that allows more automations and more efficient usage of the airspace.

Future trends in air traffic management system

Currently, the world’s major ATM systems (i.e. European and U.S. ATM systems) are being

modernized. The Next Generation air transportation system (NextGen) is a project aiming

at transforming the national airspace system (NAS) in the United States towards a satellite-

based air traffic management and control system. The Single European Sky ATM Research

(SESAR) system is a major collaborative project aiming at modernizing the European air

traffic management system.

With the soon-coming technologies that will enable more powerful communication systems,

more precise surveillance, and more reliance automated support tools, the new ATM system

will improve safety, reduce delay and aviation emission, as well as maximize airspace capacity.

The new ATM system will rely on a concept of Trajectory Based Operations (TBOs) which

will focus more on adapting the airspace user’s demand to the current airspace capacity. In

this new ATM paradigm, air traffic will no longer be constrained by artificial boundaries such

as airspace sectors, national borders, locations of beacons, etc. Instead, ATM will focus on

trajectory management together with an adapted airspace design. An aircraft flying through

the airspace will be required to follow a negotiated conflict-free trajectory, accurately defined

in 4 dimensions (3 spatial dimensions and time).

This new route structure will not be limited by the location of beacons as in the current

ground-based ATM system. Therefore, aircraft will be able to fly more efficient and more direct

routes. Besides, this will increase flexibility in aircraft trajectory design.

In addition, improved surveillance equipment will provide the controller precise positions and

trajectory data of every aircraft, while advanced avionics technology will allow each aircraft to

follow its assigned 4D trajectory with very high accuracy. This will significantly improve the

predictability of the air traffic.

Moreover, this improvement of air traffic predictability implies a possibility to automate

the conflict detection and resolution tasks. Furthermore, because the uncertainties of the air

traffic is decreased, this will also allow us to shift the tactical conflict management tasks to the

strategic and pre-tactical planning levels. The concept of 4D strategic deconfliction that aims to

generate conflict-free trajectories for aircraft from origin to destination airports is introduced in

the Innovative Future Air Transport System (IFATS) project [86] and the 4 Dimension Contract-

Guidance and Control (4D CO-GC) project [55]. This 4D trajectory concept will significantly

reduce the need of controller’s intervention during the tactical phase. The tactical workload will

4Beacon is a device that transmits radio signal that could be received by overflown aircraft. It allows aircraft
to determine their bearing and pinpoint their exact locations.
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involve more monitoring than conflict prediction and resolution. Therefore, a controller will be

able to accommodate more flights in a given airspace at a given time.

Objectives, scope, and contributions of this study

In the perspective of the future ATM system, such as the one proposed by the 4D CO-GC

project [55], the key factor to improve the ATM capacity is an efficient strategic 4D trajectory

planning methodology to compute a conflict-free 4D trajectory for each aircraft. In this work,

we propose a methodology to address such a strategic planning of trajectories at national and

continent scale. The goal of the proposed strategic planning method is to separate the given set

of aircraft trajectories in both the three dimensional space and in the time domain by allocating

an alternative flight plan (route, departure time, FL) to each flight.

Instead of trying to satisfy the capacity constraint, we focus on minimizing the global in-

teraction between trajectories. An interaction between trajectories occurs when two or more

trajectories have an effect on each other; for instance, when trajectories occupy the same space

at the same period of time. Therefore, contrary to the concept of conflict, the measurement

of interaction does not only refer to the violation of minimum separation requirements. It also

allows us to take into account other separation criteria such as minimum separation time be-

tween aircraft crossing at the same point, minimal distance between trajectories, topology of

trajectory intersection, etc.

In real-life situations, aircraft may not be able to follow precisely the assigned 4D trajectory

due to external events, such as passenger delays, wind conditions, etc. Besides, aircraft may

not be able to fly at their optimal speed profile in order to satisfy the hard constraints imposed

on the 4D trajectory. To improve robustness of the deconflicted trajectories and to relax the

4D trajectory constraints, uncertainties of aircraft position and arrival time will also be taken

into account in the strategic trajectory planning process introduced in this thesis.

More precisely, the strategic trajectory planning problem under consideration can be pre-

sented as follows:

• We are given a set of flight plans for a given day associated with a nation-wide scale or

continent-scale air traffic.

• For each flight, i, we suppose that the following elements are known:

– a set of possible routes;

– a set of possible flight levels;

– a set of possible departure times;

– the features of the uncertainties of aircraft position and arrival time.

The proposed strategic planning methodology consists of four main modules: a 4D-trajectory

generator, a conflict-detection module, an interaction evaluation module, and an optimization

module (Figure 2). The 4D-trajectory generator is used to compute a 4D trajectory given an

alternative route, an alternative flight level, and an alternative departure time. The conflict

detection module computes the conflicts encountered by a given set of 4D trajectories. Then, the
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interaction-evaluation module computes the level of interaction between trajectories at a nation-

wide or continent scale. The objective of the optimization algorithm is to provide alternative

routes, flight levels, and departure times that attempt at minimizing the interaction between

trajectories. The optimization algorithm therefore manages the search of an optimal set of

alternative routes, alternative flight levels, and alternative departure times.

Ini$al	  flight	  plan	   Possible	  alterna$ve	  
	  flight	  plans	  

Conflict	  detec$on	  
module	  

Interac$on	  
evalua$on	  

Op$miza$on	  
module	  

4D	  trajectory	  
generator	  

Best	  flight	  plan	  

Figure 2: Proposed strategic trajectory planning procedure.

In this thesis, we contribute to the area of air traffic management in the framework of

future ATM paradigm. More precisely, we introduce a global strategy to solve conflicts and

reduce interaction between 4D aircraft trajectories at a large scale. We also introduce mathe-

matical formulations of the strategic trajectory planning problem under the form of a discrete

optimization problem and a mixed-integer optimization problem.

Moreover, we develop a computationally efficient method to detect conflicts and to compute

interaction between aircraft trajectories. We propose a metaheuristic optimization algorithm

and a hybrid metaheuristic optimization algorithm to solve this large scale and complex problem.

Finally, we introduce an approach to consider uncertainties of aircraft trajectory in the spatial

and temporal domains during the optimization process.
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Thesis structure

This thesis addresses two problems. First, we formalize mathematical models of the strate-

gic trajectory planning problem assuming that the aircraft is able to fly the resulting 4D tra-

jectory with high precision. This strategic trajectory planning problem, without uncertainty,

will be referred to, in the sequel of this thesis, as the strategic trajectory planning problem.

A methodology to detect conflict and to compute the interaction between trajectories is in-

troduced. Optimization algorithms are developed in order to solve this strategic trajectory

planning problem.

We shall then focus on improving robustness of the resulting 4D trajectory plan, by taking

into account uncertainties of aircraft position and arrival time. This variation of the strategic

trajectory planning problem, taking into account uncertainty, will be referred to, in the sequel

of this thesis, as the robust strategic trajectory planning problem.

The remaining parts of this thesis are organized as follows. Chapter 1 discusses previ-

ous works related to air traffic decongestion and trajectory deconfliction problem. Chapter

2 describes the nominal strategic trajectory planning problem in a mathematical framework.

Trajectory separation maneuvers to separate the trajectories are introduced. The concept of

measuring interaction between trajectories is explained. Mathematical formulations of the nom-

inal strategic trajectory planning problem are presented. Issues related to the complexity and

the size of the formulations are discussed. Then, we present an efficient algorithm to detect

conflicts and to compute interaction between trajectories in a large-scale application context.

In Chapter 3, resolution algorithms to solve the strategic trajectory planning problem are pre-

sented. Numerical examples are given, and the performances of the proposed algorithms are

discussed. In Chapter 4, we consider the extension of the proposed methodology in order to

improve the robustness of the resulting 4D trajectory plan. The concept of robust optimization

is briefly described. The uncertainties of the aircraft position and the arrival time are modeled.

Mathematical formulations of the robust strategic trajectory planning problem are proposed.

The conflict-detection and the interaction-computation algorithms are adapted in order to take

into account uncertainties. The optimization algorithm adapted to solve the robust strategic

trajectory planning problem is presented, and numerical examples are given. Finally, we present

conclusion and perspectives.
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Chapter 1

Literature review: Air traffic

decongestion and trajectory

deconfliction problems

In this chapter, we present existing methods in the literature considering air traffic decon-

gestion and trajectory deconfliction problems. First, the main approaches to alleviate air traffic

congestion are presented. Then, we present strategies to detect and solve conflict between air-

craft. Finally, we discuss the main methods to address trajectory deconfliction problem that

can be applied on large-scale air traffic. We refer the reader interested by a survey on modeling

and optimization in air traffic to the recent book [37]. Another survey on mathematical opti-

mization models for air traffic management problems based on different air traffic management

strategies is provided in [2].

1.1 Air traffic decongestion methodologies

In this section, we present existing approaches in the literature to address air traffic decon-

gestion problem. Congestion is a situation where the number of aircraft in a given airport or

in a given airspace exceeds the maximum number of aircraft that are allowed to enter in the

airport or in the airspace respectively. Several researches aiming at minimizing congestion have

been conducted in the recent decades. The main goal is to regulate the air traffic demand to fit

the current capacity. The air traffic decongestion approaches can be roughly categorized into

two categories: ground holding approaches and air traffic flow management approaches.

1.1.1 Ground holding

One of the simplest approaches to regulate the air traffic demand is to attribute delays to

the initially-planned aircraft departure times. This is commonly referred to as ground delay

or ground holding. The main idea of the ground holding approach is to limit the number of

airborne aircraft at any given time in order to reduce the controller workload, and/or to respect

the capacity constraints of the arrival airport. Ground holding strategies transfer airborne delay

to the ground at the departure airport, because it is safer and less expensive. Indeed, aircraft

17



CHAPTER 1. LITERATURE REVIEW: AIR TRAFFIC DECONGESTION AND
TRAJECTORY DECONFLICTION PROBLEMS

can thereby avoid flying extra distance to avoid congested areas or flying in a holding pattern

around congested airport, both of which induce extra fuel consumption.

In general, the ground holding problem assumes that capacity of the arrival airport is known

in advance, and that the capacity of both the departure airport and the airspace are unlimited.

Alternative route options are not considered. The given data of the problem include: a set

of flights, initial preferred departure times, scheduled arrival times to destination airports,

a set of possible delay slots, associated delay costs, capacity of the arrival airports for the

given scenario, etc. The set of decision variables includes: the arrival times to the destination

airport, the ground delay attributed to each flight, etc. The objective function typically involves

minimizing the total congestion and delay costs (relative to the total ground holding and to the

airborne delays for the flights), while satisfying the capacity constraints of the arrival airports.

The ground holding strategy was first studied in the U.S. in 1987 by A.R. Odoni [72]. This

work considers flight planning in real time, aiming at minimizing congestion costs. In [11], the

ground holding problem involving multiple aircraft that take off from different airports and that

land at a common arrival airport at the same time was studied. A comparison of formulations

for the single-airport ground holding problem with landing time-window constraints is discussed

in [51]. More applications of the ground holding strategy can be found, for example, in [12, 72,

76, 79, 84, 88].

Despite the advantages of the ground holding approach in terms of reduced airport con-

gestion, with increasing demand, significant delays have to be assigned to a large number of

aircraft in order to meet all airport capacity constraints. Besides, the ground holding approach

is more effective for situations where congestion is more likely to occur at the airports, which

is not the case in Europe, where most congestion occurs in the airspace sectors.

1.1.2 Air traffic flow management

Another commonly-used approach to address the air traffic demand involves managing the

flow of air traffic within the airspace. It boils down to study the so-called Air Traffic Flow

Management (ATFM) problem. In addition to controlling the departure time of each flight,

ATFM also seeks optimal arrival times to each airspace sector, taking into account airspace

capacity constraints. In other words, ATFM controls not only the departure time, but also

the flight itself, throughout its duration [24]. An overview of the air traffic flow management

problem is provided in [73].

The ATFM problem assumes that the capacities of both the airports and the airspace are

known. The flight precedence constraints and turnaround time (time during which aircraft must

remain at the airport) requirements are usually considered. Change of flight speed profiles are

however not taken into consideration. The problem inputs include, for instance, a set of initial

flight plans (scheduled departure times, routes, flight levels, etc.), a set of possible alternative

delay slots, a set of possible alternative routes, associated ground delay and airborne delay costs,

etc.

The decision variables includes, for instance, the ground delay times, the air delay times, the

time at which each flight arrives at a given airspace or at a given waypoint, the time at which

each flight arrives at a given destination airport, alternative routes, and alternative flight levels

18
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associated to each flight, etc. Typically, optimization criteria involve minimizing the total cost

of deviation from the initial flight plans, while respecting the airport and the airspace capacity

constraints.

In general, the ATFM problem represents the air traffic network by a directed graph, where

the nodes correspond to a set of capacitated elements (e.g. airports and airspace sectors), and

the arcs represent the sequence relations. For instance, an arc from node i to node j exists if

i and j are adjacent sectors such that an aircraft can reach sector j immediately after flying

through sector i. An example of a set of possible routes from one origin airport to one destination

airport based on this directed graph model, considered in [23], is illustrated in Figure 1.1.

origin	   des*na*on	  sector	  i	   sector	  j	  

sector	  k	  

sector	  f	  

sector	  h	  sector	  g	  

sector	  e	  

Li
f Pj

f

Figure 1.1: Example of possible routes from one origin airport to one destination airport modeled
as a directed graph [23], given a flight f , the set Lfi of sectors that follow sector i, and the set

P fj of sectors that precede sector j.

In [24], a 0-1 integer optimization model for the ATFM problem considering re-routing

options is presented. The objective of this model is to find ground holding and airborne delays

that minimize the total delay cost. To take the re-routing option into account, the proposed

formulation relies on two possible approaches. The first one is a path approach that decides,

for each aircraft, which route to fly among a set of possible routes. The second one is a sector

approach that determines, for each flight on its route, which sector to enter next. The problem

is shown to be NP-hard1. Numerical results for problems involving approximately 1,000 flights

are obtained.

In [22] an integer program for ATFM taking into account all phases of each flight (i.e.

take-off, cruising, and landing) is presented. The origin-destination route is represented by a

sequence of sectors flown by an aircraft. An alternative route is therefore represented by a

sequence of sectors to be flown by the aircraft. The proposed route representation allows the

ATFM model to be represented by a collection of subgraphs Gi = (Ni, Ai), where the node set,

Ni represents the airports and waypoints overflown by flight i, and the arc set, Ai, connects

the nodes for flight i. Each of the decision variables, xti,m,n, takes value 1 if flight i is planned

to arrive at node n at time t through arc (m,n), and takes value 0 otherwise. In addition to

minimizing the total ground delay and airborne delay costs, the proposed model also takes into

account equity between flights. In [23], integer optimization approaches are used in order to

1According to the famous NP 6= P conjecture, a Non-deterministic Polynomial-time hard (NP hard) problem
cannot be solved in polynomial time (with respect to the size of the instance). The reader interested in complexity
of decision problems and combinatorial optimization problems is referred for example to [77].
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allocate ground delays and rerouting options to trajectory flows taking into account airspace

sector capacity constraints.

The works described above and presented in [22, 23, 24] all rely on algorithms called branch-

and-bound algorithms that implicitly consider all feasible points of the optimization problem

to provide optimal solutions to the air traffic management problem. Branch-and-bound is

an optimization method that successively partitions the solution space by creating a tree of

subproblems, some of which are not further refined, based on associated bounds. Such bounds

are key issues of the algorithm, and must be specifically defined for each problem. We refer the

reader interested by combinatorial optimization methods to, for example, [77].

In [5], the authors introduce a mixed-integer programming model to minimize traveling time,

operating/fuel cost, air/sound pollutions subjected to separation and technical constraints.

Their decision variables are the arcs and nodes (in a 3D-mesh network), speeds and depar-

ture/arrival times for each flight. The problem is solved by an exact deterministic method

but on instances involving not more than 10 flights. Further work focusing on managing each

individual flight in a large-scale context can be found, for instance, in [74, 75, 3, 66].

In [74, 75], the peak of airspace congestion is minimized using a route-slot allocation tech-

nique. Their problem is modeled as follows. For each flight i, there is a pair of decision variables,

(δi, ri), where δi is the delay attributed to flight i, and ri is the alternative route allocated to

flight i. These variables are chosen from a set of possible delays and alternative routes associated

to each flight i. Each alternative route is represented by a set of waypoints to be over flown by

a given aircraft. The set of possible alternative routes is obtained by filtering all possible routes

for each origin-destination pair from a week of real flight plans. The objective is to minimize

the peak of the controllers’ workload (i.e. monitoring and coordination workload), considering

flight-connection constraints. This problem is NP hard and is non separable. The optimal

alternative routes and slots are simultaneously solved using a stochastic optimization method

called genetic algorithm (GA) which is a population-based optimization algorithm inspired by

biological evolution [42].

The basic principle of GA relies on the “survival of the fittest” principle [45]. The evolution

starts from a randomly-generated population of individual candidate solutions, referred to as

chromosomes. The chance of reproduction of each chromosome in each generation depends on

its fitness which depends on the resulting objective function value. The offspring (or the new

generation) are generated by combining the selected (according to fitness) parent chromosomes

via cross-over, and/or mutation, and/or cloning operations. The selection and reproduction

process repeats until the maximum number of generations has been attained, or a pre-defined

fitness level has been reached by the population.

Their proposed methods are tested on nation-wide scale air traffic over the French airspace.

Their method is able to provide a robust alternative flight plan that reduces congestion over

the airspace by a factor of 2 [74].
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1.2 Trajectory deconfliction methodologies

As mentioned in the previous chapter, in order to accommodate the predicted air traffic de-

mand in the near future, the world’s major ATM systems are evolving towards the trajectory-

based operation concept. In the framework of this future ATM paradigm, one of the most

important ATM efficiency improvements will be obtained through improved aircraft conflict

management. Instead of focusing only on satisfying the capacity constraints, during recent

years, several researches concentrated on solving directly each individual conflict between air-

craft trajectories. This approach considers the air traffic management problem at a fine-grain

level by ensuring minimum separation between each aircraft via several trajectory deconfliction

methodologies.

In this section, we first discuss different methods to detect conflict between aircraft. Then, we

present different strategies and methods that are considered in the literature to solve conflict

between aircraft. Finally, we present some recent research works concerning the large-scale

trajectory deconfliction problem.

1.2.1 Conflict detection methods

Conflict is a situation where two or more aircraft experience a loss of minimum separation.

In order to detect such a conflict, one must predict the future position of each aircraft, using a

large-enough time window, based on the current state (position, heading, speed, flight plan, etc.)

of the aircraft. Several approaches can be used for state propagation based on the assumptions

made on the aircraft states.

One possible approach is to predict the aircraft future position using information on the

current state of the aircraft, aircraft dynamic models, and current (or predicted) wind condi-

tions. This approach requires a high computational effort, therefore it is usually used in the

cases involving small number of aircraft with short prediction time windows.

Another approach uses flight-plan information to predict the aircraft trajectory. This

method is employed by the ATC. It is less accurate than the previous trajectory prediction

method. This can be counterbalanced by considering higher degree of uncertainties on the

predicted trajectory. Accuracy of the conflict detection depends on the reliability of the pre-

dicted aircraft future position. A review of conflict detection and resolution modeling methods

is provided, for instance, in [59, 61].

Conflict detection methods can be roughly classified into three categories: nominal, worst-

case, and probabilistic conflict detections, according to which assumptions are made on the

predicted aircraft trajectory. An example of aircraft state propagation based on the three

methods, given in [61], is illustrated in Figure 1.2.

• The nominal conflict detection method is straightforward. Aircraft position is pro-

jected into the future without considering any uncertainty or deviation of the aircraft from

its assigned (nominal) trajectory (Figure 1.2 (a)). Uncertainty can still be accounted for

by, for example, introducing a safety buffer, or enlarging the minimum separation require-

ments. This conflict detection method is used, for instance, in [7, 15, 16, 30, 31].
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Fig. 3. State propagation methods.

here but may be quite different in terms of implementation or
maturity. More detail on 33 of the 68 models covered here is
available in Kuchar and Yang [7].

A. State Propagation

Because conflict detection and resolution can only be as re-
liable as the ability of the model to predict the future, the most
concrete difference between modeling approaches involves the
method by which the current states are projected into the fu-
ture. Three fundamental extrapolation methods have been iden-
tified, termed nominal, worst case, and probabilistic. The three
methods are shown schematically in Fig. 3.

In the nominal method, the current states are projected into
the future along a single trajectory, without direct consideration
of uncertainties. An example would be extrapolating the air-
craft’s position based on its current velocity vector [Fig. 3(a)].
The nominal projection method is straightforward, and provides
a best estimate of where the aircraft will be, based on the current
state information. In situations in which aircraft trajectories are
very predictable (such as when projecting only a few seconds
into the future), a nominal trajectory model may be quite accu-
rate. Nominal projections, however, do not directly account for
the possibility that an aircraft may not behave as expected—a
factor that is especially important in longer term conflict de-
tection. Generally, this uncertainty is managed by introducing a
safety buffer, minimum miss distance, or time to closest point
of approach threshold at which point a conflict will be detected.
Alerts for conflicts that are predicted to occur far in the future
using a nominal trajectory model will need to be inhibited so as
to not cause a nuisance to the operator.

The other extreme of dynamic modeling is to examine a
worst-case projection. Here, it is assumed that an aircraft
will perform any of a range of maneuvers. If any one of
these maneuvers could cause a conflict, then a conflict is
predicted. The result is a swath of potential trajectories which
is monitored to detect conflicts with other aircraft [Fig. 3(b)].
Worst-case approaches are conservative in that they can trigger
conflict alerts whenever there is any possibility of a conflict
within the definition of the worst-case trajectory model. If such
conflict-inducing maneuvers are unlikely, protecting against
them may severely reduce overall traffic capacity due to a high
false alarm rate. Accordingly, the worst-case trajectory must
be limited to a certain look-ahead projection time. Still, the
worst-case approach may be appropriate when it is desirable to
determine if a conflict is possible, or for air traffic concepts in
which aircraft are procedurally constrained to remain within a
given maneuvering corridor. Each corridor then becomes the

boundary of the Worst-case aircraft trajectories, and conflicts
can be predicted based simply on whether corridors intersect
at the same point in time.

In the probabilistic method, uncertainties are modeled to de-
scribe potential variations in the future trajectory of the aircraft
[Fig. 3(c)]. This is usually done in one of two ways. In URET
and CTAS, for example, a position error is added to a nominal
trajectory, from which the conflict probability can be derived
[1] and [2]. A second approach is to develop a complete set of
possible future trajectories, each weighted by a probability of
occurring (e.g., using probability density functions). The trajec-
tories are then propagated into the future to determine the prob-
ability of conflict.

A probabilistic approach provides an opportunity for a
balance between relying on either a single-trajectory model or
a set of worst-case maneuvers. The advantage of a probabilistic
approach is that decisions can be made on the fundamental
likelihood of a conflict; safety and false alarm rate can be
assessed and considered directly. The probabilistic method is
also the most general: the nominal and worst-case models are
subsets of Probabilistic trajectories. The nominal trajectory
corresponds to a case in which the aircraft will follow a given
(maximum likelihood) trajectory with probability one; the
worst-case model is one in which the aircraft will follow any
trajectory with equal likelihood. However, the logic behind a
probability-based system may be difficult to convey to opera-
tors, possibly reducing their confidence [21]. There may also
be difficulty in modeling the probabilities with which future
trajectories will be followed.

Tables I–III provide an organized listing of the 68 models.
To conserve space, only the first author is listed in cases where
there are multiple authors on a publication. The three tables in-
clude those models using nominal, worst-case, or probabilistic
state propagation, respectively. Within each table, the models
are organized according to the approach that each takes across
several stages in CDR from Fig. 2. Five columns are used to or-
ganize the models: state dimensions, conflict detection, conflict
resolution, resolution maneuvers, and multiple conflicts, each
of which is described below and summarized in Table IV.

B. State Dimensions

The dimensions column shows whether the state information
used in the model involves purely the horizontal plane (H), ver-
tical plane (V), or both (HV). The majority of models cover ei-
ther three dimensions or the horizontal plane; only GPWS fo-
cuses solely on the vertical plane. Some models may be easily
extended to cover additional dimensions than are shown here,
but such extension is not explicitly described in the reference.
It also must be noted that coverage of a certain dimension does
not necessarily mean that acompletedescription of the situa-
tion in that dimension is available. For example, TCAS uses
range measurements and range-rate estimates to determine if
a conflict exists in the horizontal plane. A better prediction of
the threat condition could be obtained if additional information
were available, such as relative bearing. Ultimately, one would
like to have a full four-dimensional description of the aircraft
trajectories over time. The lack of complete observability of the
conflict situation can lead to false alarms or late (or missed) de-
tection events.

Figure 1.2: Three aircraft state propagation methods: (a) nominal method, (b) worst case
method, and (c) probabilistic method from [61].

• The worst-case conflict detection assumes that aircraft may not behave as expected,

and identifies the conflict as a situation where the separations between the envelopes

(see Figure 1.2 (b)) of the predicted trajectories do not satisfy the minimum separation

requirements. Resolving conflict based on this worst-case assumption is the most robust

method. However, it can cause high false-alarm rates by identifying conflicts that are not

likely to happen.

• The probabilistic conflict detection method is a compromise between nominal and

worst-case conflict detections. It computes the probability of conflict between aircraft

whose trajectories are described by probability density functions (see Figure 1.2 (c)).

The advantage of the probabilistic conflict detection is that different conflict-resolution

decisions can be made according to the conflict probability. Probabilistic conflict detection

is suitable for assessing the air traffic condition in a large-scale traffic scenario involving a

high level of uncertainties, for example in strategic trajectory planning. The probabilistic

conflict detection can be carried out in two different approaches. The first one sums up

uncertainties to the nominal trajectory, and then computes conflict probability between

these trajectories. The second approach constructs the set of all possible trajectories, then

weights these trajectories according to their probability of occurring.

1.2.2 Conflict resolution strategies and resolution methods

In this subsection, we present strategies and methods to solve conflicts between aircraft.

Conflict resolution strategies

In a conflict situation involving multiple aircraft, the conflict resolution may be performed

based on 1-against-n , pair-wise, or global strategies.

• The 1-against-n strategy considers one aircraft trajectory after other previously-considered

n trajectories according to a given order of priority (e.g. arrival times in the sector). The
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aircraft trajectories that are considered first are fixed and become obstacles for the air-

craft trajectories that will be considered later. Therefore, the obtained solution depends

on the priority order in which the trajectories are considered. This method is effective for

a problem involving a small number of aircraft; however, it may not be able to separate

all trajectories in some situations.

• In a pair-wise strategy, the conflicts between aircraft are solved sequentially considering

a pair of aircraft in conflict at a time. This approach is effective; however, it could fail to

solve all the conflicts in complex situations.

• The global conflict resolution strategy considers the conflicts between all trajectories in

the whole traffic situation simultaneously. This approach, designed to manage complex

and large-scale traffic situation, is complex and requires more computational effort than

the two above-mentioned strategies.

Conflict resolution methods

In order to solve conflicts between aircraft, conflict resolution maneuvers (i.e. horizontal

maneuvers, vertical maneuvers, and speed changes) can be computed using, for instance, pre-

scribed, force-field, and optimized methods.

• The prescribed method determines conflict resolution maneuvers among a pre-defined

set of procedures. The advantage of this method is that the operator (controller, pilot) can

be trained to determine the resolution maneuvers so that the response time is decreased.

This resolution method is usually used during tactical phases in an open-loop manner;

therefore the solution obtained from this method can be too conservative.

• The force field method considers each aircraft as a charged particle. The proposed

resolution maneuvers is computed based on a relatively simple equation: the electrostatic

equation that defines repulsive forces between aircraft. It provides satisfactory solutions

in low-density traffic situations. However, it requires a high level of guidance, since the

trajectories need to be modified continuously. The most known algorithm is based on

navigation function [62]. This method brings a proof for solution. However, the resulting

trajectories are not always smooth. Moreover, it does not ensure that aircraft speed stay

in a given range.

• The optimized method focuses on finding a solution that optimizes a set of pre-defined

cost functions. The cost function can include criteria, such as, aircraft separation, fuel

consumption, operation costs, time, etc. This method is usually employed in the strategic

trajectory deconfliction problem.

1.2.3 Trajectory deconfliction methods

In this subsection, we present the main research works in the literature that address the

trajectory deconfliction problem considering large-scale air traffic.

Trajectory deconfliction by genetic algorithms
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Aircraft trajectory deconfliction problem that relies on genetic algorithm to solve en-route

conflicts between trajectories, taking into account uncertainties of aircraft velocity, is considered

in [45]. A 4D trajectory is described by a time sequence of 4D coordinates, sampled with

sampling time step of 15 seconds, which have been shown to be small enough to detect every

conflict. In the horizontal plane, the initial position of aircraft is represented by a point. Due

to the uncertainties, this point becomes a segment, and when there is a change in the speed

vector, the aircraft is represented by a 2D convex envelope. In the vertical plane, the aircraft is

represented by a cylinder whose height grows with time until the aircraft reaches its requested

flight level. Figure 1.3 illustrates the trajectory modeling in the horizontal and vertical planes.

282 9 Genetic Algorithms Applied to Air Traffic Management

as shown in figure 9.1. Time is discretized in practice employing 15 seconds of
sampling steps. In the horizontal plane, the aircraft is represented by a point
at the initial moment. In due course of time, this point becomes a segment
whose length keeps on increasing. When direction is changed (at t = 4), the
segment gets deformed while following the new speed vector . The aircraft is
then represented by a parallelogram. Implementing a new change of heading
(at t = 7) transforms the parallelogram into a hexagon and, more generally
speaking, into a “convex”. In the vertical plane, a cylinder can be defined
whose height grows with time. When the plane reaches its requested flight
level (at t = 8), the top of the cylinder does not change its altitude any more
and the bottom of the cylinder continues to go up until the flight level is
reached.

Fig. 9.1. Modeling the uncertainty.

Figure 1.3: Modeling of uncertainty of aircraft trajectory proposed in [45].

The authors propose two conflict-resolution maneuvers: modifying the heading, and mod-

ifying the flight level. The maneuver begins at time t0 and ends at time t1 as illustrated in

Figures 1.4 and 1.5.

The decision variables are the types of maneuver, the starting time t0 and the ending time

t1. The conflict detection and the conflict resolution are operated on a sliding time window Tw,

whose length is set between 10 and 15 minutes. The optimization criteria include ensuring all

separations between aircraft, minimizing delays, minimizing the number of the maneuvers and

the number of aircraft undergoing maneuvers, and minimize the duration of maneuvers.

The solutions are provided by genetic algorithm (GA). The algorithm proposed in [45] is able

to solve all conflicts involved in one day of en-route traffic in the French airspace involving 7,540

flights considering different levels of uncertainties (2 % to 30 %) within reasonable computation

time (26 - 55 minutes).
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Real time management

The resolution is operated on the forecast time window Tw (a fixed value, cho-
sen between 10 and 15 minutes) and the situation is updated each δ minutes
(2 or 3 minutes in practice). The figure 9.3 details the real time modeling.
Three periods are distinguished in the time window. The first one is the time
duration of δ minutes which is called the locked period. No modification of
trajectory can be effected during this period. Indeed, during the time neces-
sary for evaluation of the situation, the resolution of possible conflicts and
the transmission of the orders of maneuvers, the aircraft continue to fly. It is
consequently not possible to modify their trajectories. The following period is
called the final period, because the orders of maneuvers given for this period
could not be modified during the next iteration. The last period is the pe-
riod of predicted maneuvers. These maneuvers will be reconsidered during the
next iteration. Because of uncertainty, certain conflicts can disappear when
one approaches the point of conflict.

Tw

Tw

Tw

Tw

Tw

δ

t

t+δ

t+

t+

t+4

3δ

2δ

5 δt+

predicted maneuver

fixed period

final maneuver

Fig. 9.3. Modeling in real time.

The traffic simulator

The traffic simulator controlled CATS12 is an arithmetic simulator which uses
a tabulated model to make aircraft fly. It takes into account flight plans for

12Complete Air Traffic Solver

Figure 1.4: Trajectory deconfliction maneuver in the horizontal plane proposed in [45].

Trajectory deconfliction by ground holding and flight level allocation technique

In [15], the authors consider a 4D trajectory deconfliction problem using a ground hold-

ing method. The 4D trajectory is defined by a time-sequence of 4D trajectory sample points.

The trajectories are sampled with sampling time step of 15 seconds. Potential conflicts be-

tween trajectories are detected by an O(N2p2) pairwise comparison, where N is the number of

trajectories, and p is the total number of sampling points of the N trajectories (see Figure 1.6).

The set of feasible delays that would solve the potential conflicts between trajectories is

defined a priori. Uncertainty of aircraft departure times is taken into account by extending the

conflict interval (worst-case conflict detection). The optimal conflict-free solutions that minimize

the maximal allocated delay is obtained by constraint programming techniques, which rely on

two basic concepts: constraint propagation and constructive search. The constraint propagation

aims at reducing the search domain of the problem, while the constructive search explores the

reduced search domain. The constraint programming solver computes solutions of a given

problem by iterating the constraint propagation and the constructive search.

This slot allocation is shown to be powerful for the trajectory deconfliction problem. It is

able to deconflict trajectories for a full day of air traffic over the French airspace involving up to

9,500 flights. The proposed trajectory deconfliction method is able to solve all conflicts between

trajectories occurring above a given flight level by allocating a single delay to each flight, when

uncertainties are not taken into account. However, in presence of take-off time uncertainties,

the proposed method must allocate significant delays in order to solve all the conflicts.

In [43], an evolutionary algorithm (EA) is used to solve this ground holding problem.
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Fig. 9.2. Maneuvering in the vertical plane.

Conflict detection

To detect potential conflicts between aircraft, we need to measure, at each time
step, the horizontal distance between the convexes and the vertical distance
between the cylinders representing the two aircraft. A conflict occurs when
the vertical and the horizontal standards are simultaneously violated.

Modeling the maneuvers for avoidance

In order to respect both pilots and aircraft performances we define simple
maneuvers: in the horizontal plane, a maneuver is a heading change of 10, 20
or 30 degrees to the right or to the left. The maneuver begins at time t0 and
ends at time t1. In the vertical plane, the maneuvers proposed depend on the
phase of flight in which the airplane is. Thus, as shown in figure 9.2, when the
aircraft is climbing, it can stop its climb at t0 and resume its climb at t1. In
the cruising phase, it can descend to the nearest lower flight level (1000 feet
down) at t0 and join the initial flight level at t1. When the aircraft is less than
50 nautical from the beginning of its descent, it can anticipate its descent at
t0 and stop descending at t1 to join its trajectory of descent. In order to make
the maneuver achievable, only one maneuver is given to the pilot at a time.
A new maneuver could be proposed to him only when the first maneuver is
finished.

A maneuver is thus modeled by three variables. The first is a discrete
variable indicating the type of maneuver (10, 20, 30, −10, −20, −30 degrees,
or vertical maneuver), the two others, t0 and t1, are integer variables indicating
the beginning and the end of the maneuver. A resolution of a n aircraft cluster
is thus modeled by 3n variables.

Figure 1.5: Trajectory deconfliction maneuver in the vertical plane proposed in [45].
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Figure 1.6: Pairwise-comparison conflict-detection technique used in [15].

Since the nation-wide scale air traffic under consideration is non separable, the authors pro-

pose to reduce the size of the problem by using a time-sliding window technique: the trajectory

deconfliction algorithm only considers aircraft that are scheduled to take off in the next Tw

minutes in the future. Numerical results show that EA requires more computation time than

constraint programming, but provides better solutions in terms of reduced delays.

To increase the degrees of freedom, the same authors introduce an option to allocate al-

ternative flight levels in [16]. In this work, they propose to reduce the complexity of conflict

detection by bounding each trajectory in 2D bounding boxes. Then, the trajectories are probed

pairwise; the conflict detection procedure is performed only if the bounding boxes of two tra-

jectory intersect (see Figure 1.7).

In this work, several nearby trajectories are first grouped into flows, then an alternative

flight level is allocated to each flow so that two intersecting flows have different flight levels.

Then, the remaining conflicts between trajectories belonging to a same flow are subsequently

solved by departure-slot allocation technique. The results show advantages of using the flight

level allocation technique in terms of reduced delay, in presence of departure time uncertainties.

In [7], a flight-level allocation technique is used to address 4D trajectory deconfliction at the
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traffic flows with possible changes of FL along the route
(as well as lateral deviations for direct routes).

However, contrary to these studies, our model does
not fit well within standard graph coloring problems as
the choice of FL is very much restricted for operational
reasons and each flow will only have a couple of
possible FL available above or below its RFL. Moreover,
the FL allocation phase should handle over-constrained
instances as well to obtain the best possible solution to
feed the ground holding phase, even if some conflicts
remain, so classic coloring techniques like the use of
cliques as lower bounds or “all-different” constraints (cf.
[9]) cannot be used to speed up the search. Furthermore,
the cost of solutions is measured w.r.t. the number of
still conflicting flows and the sum of distances to RFLs
(weighted by the number of flights in the flow), which
are uncommon criteria for graph coloring problems.

III. DECONFLICTION WITH GROUND HOLDING

The ground holding CP model uses as input a set
of temporal conflict constraints computed for each pair
of flights that intersect in the three spatial dimensions.
This conflict detection will be used as well as input of
the FL allocation phase, but without taking the vertical
dimension into account during intersection computation.

The following section describes the processing of
flight plans to compute the conflict constraints and
the modelling of deconfliction by ground holding as a
constraint program.

A. Conflict Detection

Our data are provided by the CATS2 simulator [19],
which takes as input all filed flight plans concerning
the French airspace for a given day of traffic and the
relevant airspace configuration (sectors, waypoints...),
and outputs the corresponding 4D-trajectories. Trajec-
tories are sampled with a 15 s time step, which is the
largest interval to guarantee that at least two points of
the trajectories of facing aircraft at the highest possible
speed will be closer than one separation norm, i.e. even
the shortest conflicts will be detected.

Trajectories are then probed pairwise for potential
conflicts, taking the maximal allowed delay into account.
The separation norm is thus tested for each pair of points
of the two probed trajectories (up to p = 900 points per
trajectory for up to n = 8600 flights in O(n2p2)) as
illustrated on figure 2 in the horizontal plane.

To reduce the complexity of this detection phase,
trajectories are encapsulated into bounding boxes: each

2The Complete Air Traffic Simulator developed at DSNA/DTI.
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Fig. 2. Conflicting points detection.

trajectory is split into segments (a segment being here
defined as a constant heading portion of the trajectory);
then each of these segments is encapsulated into a
bounding box, such that every point of the segment is
farther than half the separation norm from each side of
the box, as illustrated in figure 3 in the horizontal plane.

Fig. 3. Two intersecting trajectories and their associated bounding
boxes. Conflicting point detection is only performed for points in the
intersecting boxes.

Consider two flights i and j with trajectories encap-
sulated in bounding boxes (b1i , ..., b

n
i ) and (b1j , ..., b

m
j )

respectively. If there is an intersection between boxes
bki and blj , then the pairwise tests for conflicting points
is only performed for points contained in bki and blj ,
thus saving a lot of useless tests for the rest of the
trajectories. This filtering proved to reduce computing
time for conflict detection dramatically.

Operationally, flights originating outside the Eurocon-
trol countries cannot be delayed, so their delay variable
will be fixed to 0 in our constraint model, reducing
the number of variables but tightening the constraints
as well and offering less opportunities for optimization.
Constraints corresponding to conflicts occurring between
two such flights will of course be discarded as we
cannot delay the flights to solve them. Such remaining
conflicting cases would have to be taken care of by other
ATC techniques beyond the scope of this study.

Figure 1.7: Two intersecting trajectories and their bounding boxes [16].

European-continent scale. However, the proposed method yields residual potential conflicts.

Trajectory deconfliction by speed adjustment

Another idea to separate trajectories is based on speed regulations; it is used, for instance, in

[29] and [32]. In these works, conflict detection and resolution are performed at two layers with

different sampling periods and time windows. Speed regulations introduce additional degree

of freedom to the trajectory design. However, it requires numerous extensive and fine-tuned

computations, which are not suitable to implement in a large-scale problem.

Trajectory deconfliction by light-propagation algorithm

In [39, 40], a Light Propagation Algorithm (LPA) is introduced to solve potential conflicts

between 4D trajectories, to avoid congested area, and to avoid bad-weather areas. The principle

of the light-propagation model is similar to those of the force-field conflict resolution method.

It mimics the physical propagation of light from one given point towards a destination point.

The congested area, bad-weather area, and other aircraft potentially in conflicts are analogous

to high refractive-index areas.

In order to find the conflict free path, the wavefront of light in the half space towards the

destination is discretized using a discretization angle step dθ, and a discretization time step

dt (see Figure 1.8). The discretization angle creates a set of child nodes at each time step.

These child nodes determine the region that aircraft has to fly through with velocity v given by

v = Vnom
I , where vnom is the nominal speed of aircraft, and I is the refractive index.

The optimal trajectory (corresponding by the successive child nodes yielding to the shortest-

time light ray going to the destination point) that solve conflicts are provided by a Branch-and-

Bound (B&B) algorithm. B&B is a method that implicitly enumerates all the feasible solutions

of a combinatorial optimization problem, by successively partitioning the solution space and

eliminating large subsets of the search space in order to prove that a solution is optimal, without

exhaustive search.

The proposed LPA has been tested on a real-world air traffic over the French airspace. The

4D trajectories are iteratively de-conflicted using moving time windows of 21 minutes. For each

time window, trajectory segments that are in conflicts are grouped together in a same conflict

cluster. Then, each cluster is treated separately. The algorithm is able to solve all the conflicts
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Fig. 3 Half-space discretization with a time step dt and an angle step dθ1

Fig. 4 Launching rays from current node N

Fig. 5 A shortest trajectory between the departure and the arrival points

Figures 3, 4 and 5 illustrate the algorithm operation in R2. Figure 3 displays an initial
wavefront from the starting point, s. Figure 4 shows wavefront deformation for the current
node N . Finally, Fig. 5 shows the trajectory produced by the algorithm.

In order to describe our algorithm, we assume that the user has set a distance-from-desti-
nation tolerance ε > 0 (see Fig. 5). Moreover, we shall need a procedure

123

Figure 1.8: Light propagation model proposed in [39].

for the French airspace.

In [40], to improve robustness of aircraft trajectories, uncertainty is modeled as a time

segment [texpected − δtlate, texpected + δtearly], where texpected is the expected transit time to a

given point P , δtlate denotes the difference with the latest transit time, and δtearly denotes the

difference with earliest transit time. The uncertainty increases the difficulty of the problem and

reduces the solution space, so that the LPA can remove only 88% of the conflicts.

The remaining conflicts are solved by imposing time constraints called Required Time of

Arrival (RTA). The RTA reduces the uncertainty by imposing aircraft to arrive at a given point

at a given time with some tolerance. Figure 1.9 illustrates the uncertainty model with an RTA

requiring the aircraft to adjust its speed from the time 2
3(RTA − t), where t is the predicted

starting time.

The introduction of RTA’s significantly improves the solution in presence of uncertainty.

However, there are still remaining unsolved conflicts.

Real-time conflict-free trajectory optimization

A methodology to optimize and deconflict aircraft trajectories in the horizontal plane, in

en-route environment, and in real time is proposed by Matt R. Jardin in [54]. In this work,

aircraft trajectories are deconflicted and optimized in the time scale of thirty minutes into the

future. The trajectory optimization problem considering a single aircraft is modeled as a cost

function minimization with dynamic constraints and constraints on initial and final aircraft

states:

Ji(xi) =

∫ tfi

0
Li(xi, t)dt


xi(0)− x0i = 0

xi(tfi)− xfi = 0

ẋ = f(xi, t),

where x̄i is the state vector for aircraft i, Ji is the integrated trajectory cost, and the integrated
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3.3.1. Speed control mode
This mode does not actually reduce uncertainty. It enable to move what is commonly called the uncer-

tainty area around the aircraft position (aircraft protection zone with uncertainty), in order to avoid inter-
secting another aircraft protection zone. This is done by controlling the aircraft speed. More specifically,
aircraft will be accelerated or decelerated within the interval [−3%, 6%] (considered acceptable in practice)
of the aircraft initial velocity, during the time window horizon Δt. This mode is already available with the
current FMS. However, it is the least interesting since it does not reduce the uncertainty per se.

3.3.2. Final RTA mode
This mode is also already available on the current FMS. It enable to impose the aircraft to arrive at a

given point of its trajectory, at a given time called Required Time of Arrival (RTA) with a tolerance of ±10s.
An approximate envelope curve of temporal uncertainty (that we simply call uncertainty curve in the sequel)
with a RTA point is given in Figure 7. As before, this curve is known to be valid 95% of the time. It evolves
first as the uncertainty cone of Figure 4 with a slope of ±6% of the total elapsed time from the beginning of
the prediction. Then, approaching the RTA time, current FMS is designed to change the aircraft speed from
the time 2

3 (RTA-t) (where t is the prediction starting time) so as to compensate the time error, enforcing the
aircraft to be on its originally scheduled position at RTA time.

ΔtTime = t+
6%

−6%

+/− 10 s tolerance

Time 2/3 (RTA − t)

RTA time
−6%

6%

Difference with latest transit time

Difference with earliest transit time

Temporal uncertainty:
(actual transit time − expected transit time) 

Time = t
Time

Fig. 7. Closed-loop uncertainty model with an RTA point.

This mode is currently used on final approaches. This is an improvement over the previous mode.
Indeed, uncertainty is reduced in the vicinity of the RTA point. However, since the RTA is imposed at the
end of the trajectory, uncertainty is only reduced in the last third of the trajectory.

3.3.3. Multi-RTA mode
Unlike the two previous modes, this mode is not available on current FMS. It is an extension of the

final RTA mode described above: instead of imposing a single RTA point on the aircraft trajectory, we
impose several RTA points throughout the aircraft trajectory. The uncertainty curve remains the same as
in the previous mode: uncertainty decreases to ±10 second at each RTA point and it then increases with a
slopes ±6% afterwards. Unlike the final RTA mode, the multi-RTA mode can impact conflict detection and
resolution throughout the trajectory. In the sequel, we study the application of the multi-RTA mode. Our
goal will be to determine the number n of RTA points to impose on each aircraft trajectory and their 4D
locations (space-time) in order to find results on conflict resolution which are comparable to those obtained
with LPA in the case without uncertainty.

3.3.4. Full 4D mode
This mode is the most demanding from the board point of view. On the one hand, it assumes as the other

modes, that the aircraft follows perfectly its trajectory, and on the other hand, it requires the aircraft to pass

Figure 1.9: Uncertainty model with an RTA point proposed in [40].

objective function, Li, is defined as the time rate of change of the direct operating costs (e.g.

linear combination of fuel and time cost) for aircraft i.

To consider the multi-aircraft trajectory optimization problem, the cost function is written

as a sum of N single-aircraft cost functions:

Jtot(x) =
N∑
i=1

Ji(xi),

where x is an optimization vector whose ith component is xi.

Aircraft separation constraints are defined for all time t for all 1 ≤ i, j ≤ N such that i 6= j,

where ∆dij(x, t) is the distance at time t between the aircraft i and aircraft j, and Dmin is the

(given) minimum separation requirement.

The trajectory deconfliction concept proposed in this work focuses on sequentially comput-

ing optimal-wind and conflict-free trajectories for each aircraft, considering previously-planned

trajectories as obstacles. The wind-optimal route is obtained by using an algorithm called

Neighboring Optimal Wind Routing (NOWR). The NOWR algorithm is based on the concept

of neighboring feedback control that minimizes objective function by regulating small perturba-

tions around a nominal optimal trajectory. To avoid the computationally inefficient pair-wise

conflict search, conflicts between trajectories are detected via a conflict detection algorithm

called Conflict Grid (CG).

The basic idea of CG is to store successively the wind-optimal trajectories in a three-

dimensional grid (2D space + time). In the deterministic case, trajectories are stored in the

CG by setting the value of the corresponding grid cells to one (see Figure 1.10). The size of

each grid cell (discretization step) is set according to the minimum separation requirement Nh

(typically 5 Nm). If it is found that a grid cell is already occupied, then a conflict is identified
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Figure 1.10: The deterministic conflict grid method proposed in [54].

and then conflict-resolution maneuvers are computed.

The conflict grid can also take into account active constraints such as uncertainty on the

aircraft trajectories, weather storms, special use airspace, etc. For this stochastic case, the CG

stores in each grid cell the probability that at least one such active constraint exists in that grid

cell (see Figure 1.11).

Figure 1.11: The stochastic conflict grid method to compute probability of conflict between
multiple aircraft proposed in [54].

Once a conflict is detected, or when conflict probability is larger than a (pre-defined) thresh-

old value, the proposed methodology computes resolution maneuvers by generating a pertur-

bation of the wind-optimal route using a concept of pseudo-shear, introducing pseudo wind

shear at the nearest (discretized) wind control point (see Figure 1.12). Once the pseudo wind

shear is introduced, a new wind optimal route (with respect to the sum of real wind shear and
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Figure 1.12: Conflict resolution maneuver based on pseudo-shear concept proposed in [54].

pseudo wind shear) is computed. The conflict resolution algorithm iterates until the value of

the pseudo-shear that yields conflict free trajectory is found.

The proposed algorithm is able to compute conflict free optimal wind route for one day air

traffic over the U.S. considering single flight level. However, the proposed algorithm is limited

to the en-route air traffic in the horizontal plane.

Automated conflict detection and resolution

In the free-flight operation context, a methodology to estimate conflict probability between

aircraft in presence of trajectory prediction error, and to solve the identified conflict is presented

in [48]. The proposed method estimates probability of conflict during a certain period of look-

ahead time. The prediction error is modeled as normally distributed with zero mean over ellipses

in the horizontal plane, or as ellipsoids in three-dimensional space. Figure 1.13 illustrates the

growth of uncertainty ellipses in the along-track direction.

As the prediction errors are modeled as normally distributed, the two error covariances for a

pair of aircraft can be combined into a single equivalent error covariance of the relative position

of one aircraft with respect to the other. This combined covariance enables us to consider one

aircraft as the“stochastic” aircraft, and assign the other aircraft as the “reference” aircraft, as

illustrated in Figure 1.14.

The conflict-resolution module aims at modifying the heading of the aircraft in order to

maintain the post-resolution conflict probability below a pre-defined threshold conflict proba-

bility value, Prs. It is shown that setting the value of Prs in the range of 0.05 - 0.15 yields

effective resolution trajectories.

To avoid the time-consuming pair-wise (N(N − 1)/2) comparison, where N is the total

number of aircraft, the authors propose three methods to limit the computational load in

the conflict search algorithm: trajectory-pair pruning, minimizing-separation computation, and

time skipping.

The trajectory-pair pruning aims at verifying whether two trajectories are potentially in

conflict and in need of further examination, by determining whether they are spatially exclusive

in either altitude or horizontal positions.

The minimizing-separation computation method eliminates unnecessary computations based
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where QS and QR are the individual covariances based
on equation 1, and QSR is the cross-correlation term.
The cross-correlation term accounts for the fact that the
wind modeling error is spatially correlated and a portion
of its e�ect cancels in the position di�erence. In general,
the combined error ellipsoid corresponding to M will no
longer have principal axes aligned with the along-track
and cross-track directions of either aircraft.

Figure 2 shows an example 2D encounter geome-
try in the horizontal plane; the three-dimensional (3D)
case is more di�cult to illustrate but similar in principle.
The combined error ellipse is centered on the stochastic
aircraft, and the circular conict zone (nominal 5 nmi
radius) is centered on the reference aircraft. The error
ellipse corresponds to a probability density function that
can be represented as a surface over the ellipse, where
the total volume under the surface is unity. The prob-
ability of conict at a particular time is the portion of
that volume that is within the circular conict zone, but
this probability is not as important as the total proba-
bility of conict for the encounter, which is discussed in
the following paragraphs.

It is assumed that the aircraft velocities and predic-
tion errors are constant during the encounter or period
of potential conict, which will be at least approximately

combined
error
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circular
conflict
zone

relative velocity

extended confl ict zone

Figure 2: 2D encounter geometry

true for most aircraft pairs in free ight. Without these
assumptions, an analytical solution is much more di�-
cult or perhaps impossible to �nd. Note that prediction
errors due to planned turns or other maneuvers that will
be completed before the encounter begins can be prop-
erly accounted for in the covariance matrices.

The total probability of conict for the encounter
can then be determined as follows. Project the conict
zone along a line parallel to the relative velocity to form
an extended conict zone, as illustrated in �gure 2 for
the 2D case. The conict probability is equal to the por-
tion of the volume under the probability density surface
that is within this extended conict zone. The coor-
dinate transformation to be presented in the following
paragraphs allows this probability to be determined an-
alytically.

Coordinate Transformation

The conict probability is di�cult or impossible to de-
termine analytically in the original coordinate system.
It can be determined numerically, but a numerical solu-
tion is likely to be less accurate and much less e�cient
than an analytical solution. Such ine�ciency is undesir-
able for an algorithm that is intended to run in real time
for extended periods of time. Fortunately, a coordinate
transformation has been found that allows an exact an-
alytical solution for the case of level ight and a good

3

Figure 1.13: Uncertainty of aircraft position in the horizontal plane, modeled as ellipses in [48].
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where QS and QR are the individual covariances based
on equation 1, and QSR is the cross-correlation term.
The cross-correlation term accounts for the fact that the
wind modeling error is spatially correlated and a portion
of its e�ect cancels in the position di�erence. In general,
the combined error ellipsoid corresponding to M will no
longer have principal axes aligned with the along-track
and cross-track directions of either aircraft.

Figure 2 shows an example 2D encounter geome-
try in the horizontal plane; the three-dimensional (3D)
case is more di�cult to illustrate but similar in principle.
The combined error ellipse is centered on the stochastic
aircraft, and the circular conict zone (nominal 5 nmi
radius) is centered on the reference aircraft. The error
ellipse corresponds to a probability density function that
can be represented as a surface over the ellipse, where
the total volume under the surface is unity. The prob-
ability of conict at a particular time is the portion of
that volume that is within the circular conict zone, but
this probability is not as important as the total proba-
bility of conict for the encounter, which is discussed in
the following paragraphs.

It is assumed that the aircraft velocities and predic-
tion errors are constant during the encounter or period
of potential conict, which will be at least approximately
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true for most aircraft pairs in free ight. Without these
assumptions, an analytical solution is much more di�-
cult or perhaps impossible to �nd. Note that prediction
errors due to planned turns or other maneuvers that will
be completed before the encounter begins can be prop-
erly accounted for in the covariance matrices.

The total probability of conict for the encounter
can then be determined as follows. Project the conict
zone along a line parallel to the relative velocity to form
an extended conict zone, as illustrated in �gure 2 for
the 2D case. The conict probability is equal to the por-
tion of the volume under the probability density surface
that is within this extended conict zone. The coor-
dinate transformation to be presented in the following
paragraphs allows this probability to be determined an-
alytically.

Coordinate Transformation

The conict probability is di�cult or impossible to de-
termine analytically in the original coordinate system.
It can be determined numerically, but a numerical solu-
tion is likely to be less accurate and much less e�cient
than an analytical solution. Such ine�ciency is undesir-
able for an algorithm that is intended to run in real time
for extended periods of time. Fortunately, a coordinate
transformation has been found that allows an exact an-
alytical solution for the case of level ight and a good
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Figure 1.14: Uncertainty of aircraft position in the horizontal plane, modeled as reference
aircraft and stochastic aircraft in [48].
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on the result of computations already performed (e.g. if the aircraft are already separated in

the vertical plane, it is not necessary to compute the horizontal distance).

Finally, the time-skipping method skips the conflict search on the given pair of trajectories

when it can surely determine from the two previous time steps that no conflict is possible.

1.3 Conclusions

In this chapter, we reviewed various air traffic decongestion and trajectory deconfliction

methodologies from the literature. The simplest strategy to address the air traffic management

problem is the ground holding strategy, that focuses on delaying the aircraft on the ground in

order to respect the capacity constraints at the destination airport. This strategy is effective

in the cases where congestion usually occurs at the airport. However, in Europe, where most

congestion is in the airspace sectors, the flow of air traffic between origin and destination airports

has to be considered.

In the framework of new ATM paradigm, several researches aim at directly solving conflicts

between aircraft. There exists several trajectory deconfliction methodologies relying on, for

example, genetic algorithms, speed adjustment, light propagation algorithm, etc. However, none

of the proposed methodologies is able to solve globally the trajectory deconfliction problem due

to its size and complexity. Most of the algorithms proposed in the literature rely on the moving

time window strategy to reduce the size of the problem. This strategy is effective for conflict

detection and resolution in tactical phases. However, when high-density traffic is involved, it

tends to fail to solve all conflicts.

Numerous optimization methods have been applied to the air traffic management problem.

Exact methods such as branch-and-bound, linear programming, and constraint-programming

methods can guarantee convergence to a global optimum to the problem. However, for the NP-

hard problem we are addressing here, the computation time required to find a global optimum

grows exponentially with the size of the problem. Metaheuristic optimization methods have

been shown to provide good solutions to the air traffic management problem within reasonable

computation time. During recent years, hybrid-metaheuristic optimization methods have been

successfully applied on several hard real-world problems, providing good results within much

shorter computation time than using exact methods or a single metaheuristic.
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Chapter 2

Mathematical model of the strategic

trajectory planning methodology

This chapter sets the mathematical framework of the strategic trajectory planning method-

ology we are proposing. First, the assumptions, simplifications, and given data are presented.

Then, the allowed trajectory deconfliction maneuvers are described. Next, a definition of in-

teraction between trajectories is introduced. After that, a mathematical formulation of the

strategic trajectory planning problem is proposed, and its complexity is discussed. Finally, a

methodology to compute the value of the objective function is presented.

2.1 Problem description, given data, assumption, and simplifi-

cations

The strategic trajectory planning problem that we aim to solve in this work considers a set

of flight plans for a given day. The objective is to find alternative 4D trajectory for each flight,

so as to minimize the total interactions between trajectories. Interaction is, again, the situation

occurring in the planning phase when two or more aircraft trajectories compete for the same

space at the same period of time.

The given data include:

• An initial set of flight plans. Such flight plans are then used to create N initial (or

nominal) 4D trajectories by means of a fast time simulation (BADA-Base of Aircraft

Data model). These 4D trajectories are labelled with index i = 1, 2, . . . , N ;

• The maximum allowed delay departure time shift that can be allocated to each flight i,

denoted by δid;

• The maximum allowed advance departure time shift that can be allocated to each flight

i, denoted by δia;

• The maximum allowed coefficient of route length extension that can be allocated to each

flight i, denoted by di;
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Each initial 4D trajectory, i, is defined by a set of 4D points (x, y, z, t) sampled with a

(given) constant sampling time, ts. The initial 4D trajectory is composed of three parts; the

initial en-route segment is the shortest possible route between the origin and the destination

airports (great circle path) and the two (extremity) Terminal Maneuvering Area (TMA) parts

of the trajectory, as illustrated in Figure 2.1 and Figure 2.2.

departure	  
airport	  

des,na,on	  
airport	  

x	  (Nm)	  

y	  (Nm)	  

O	  

En	  route	  

TMA	  

TMA	  

Figure 2.1: A given (initial) trajectory in the horizontal plane consisting of departure, en-route,
and two extremity TMA segments.

z	  ($)	  

&me	  (seconds)	  

cruise	  

en	  route	  TMA	   TMA	  

TOC	   TOD	  

Figure 2.2: A given (initial) trajectory in the vertical plane consisting of departure, en-route,
and arrival segments.

In this work, the following assumptions and simplifications are made. The initial (given)

velocity profile is assumed to be optimal. To respect the standard departure and arrival proce-

dures in the TMAs, trajectory deconfliction maneuvers in the 3D space domain are limited only

to the en-route segment. For TMA areas, only actions in time domain (not in space) will be

considered. The airspace is considered as a Euclidean space. Latitudes and longitudes on the
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earth surface are projected into (x, y) coordinates. The altitude, in feet, will be represented by

the z coordinate. Finally, aircraft are assumed to be able to follow a given 4D trajectory with

high precision.

2.2 Trajectory separation maneuvers

In this section, we describe two possible trajectory separation maneuvers, that we are con-

sidering in order to generate alternative 4D trajectories that minimize the total interactions:

• shifting the departure time;

• modifying the route (horizontal flight path profile).

In order to minimize the interaction between trajectories, the trajectories must be sepa-

rated in 3D space and in time. To separate trajectories in the time domain, one can adjust

the departure time of each aircraft. However, with increasing traffic volume, large amount

of departure-time shift may have to be distributed to each flight in order to separate all tra-

jectories. To limit the amount of time shifts necessary to deconflict all trajectories, the 4D

trajectories can also be separated by acting also on the 3D routes.

Since the resolution of this problem is implemented at the strategic level, the interaction-

reduction problem can be solved simultaneously on both the spatial and the temporal dimen-

sions. The alternative departure time and the alternative trajectory to be allocated to each

flight are modeled as follows.

2.2.1 Alternative departure time

The departure time of each flight, i, can be shifted by a positive (delay) or a negative

(advance) time shift denoted by δi. The departure time, ti, of flight i is therefore

ti = ti,0 + δi,

where ti,0 is the initially-planned departure time of flight i. Following common practice in

airports, the set of possible values for δi will be discrete.

By considering negative (and positive) time shifts, we consider the regular times of departure

of aircraft. If δi is restricted to be only positive, this corresponds to the regular ground delay

program.

2.2.2 Alternative trajectory design

An alternative route should not deviate too much from the nominal route. It should also be

computed in a short computation time because of the large-scale applications we wish to solve.

To respect the given optimal cruise level, altitude profile, and standard departure and arrival

procedures, in this work we concentrate on modifying only the horizontal profile of the en-route

segment of a given 4D trajectory. To generate an alternative route, we proposed to modify the

(given) initial horizontal flight profile of the en-route segment of a trajectory, by placing a set

of virtual waypoints near its initial en-route segment, and then by connecting the successive
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waypoints with straight-line segments. Figure 2.3, illustrates a possible alternative horizontal

profile for a given trajectory constructed with M = 2 virtual waypoints.

	  wi
1	  

wi
2	  

departure	  
airport	  

des/na/on	  
airport	  

x’	  
y’	  

x	  (Nm)	  

y	  (Nm)	  

O	  
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Figure 2.3: An alternative horizontal profile for a given trajectory, i, constructed with M = 2
virtual waypoints.

To simplify the presentation of the location of each virtual waypoint, we call longitudinal

axis (x′) the axis that is tangent to the initial en-route segment, and the lateral axis (y′) is

the axis that is perpendicular to the longitudinal axis (in the horizontal plane). Furthermore,

we normalize the coordinates of the x′y′-reference axes, as illustrated in Figure 2.4, so that the

location of virtual waypoints for every trajectory can be represented in the same manner. The

position of each waypoint will be defined using these normalized relative x′y′-reference axes.

We define, for each flight i, a vector, wi, of virtual waypoints (our optimization variables)

used to control the trajectory shape of flight i:

wi = (w1
i , w

2
i , . . . , w

M
i ),

where M denotes the number of virtual waypoints that the user is allowed to introduce, where

wmi = (wmix′ , w
m
iy′) is the mth virtual waypoint of trajectory i, and where wmix′ and wmiy′ are the

normalized longitudinal and lateral components of wmi respectively. Therefore, the longitudinal

component of the mth virtual waypoint, wmi , is:

wix′Li,0,

and the lateral component of the mth virtual waypoint, wmi , is:

wiy′Li,0,
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where Li,0 is the length of the initial planned en-route segment.

x’	  	  

y’	  

0	  

	  wi
1	   wi

2	   1.0	  

alterna1ve	  en-‐route	  segment	  

ini1al	  en-‐route	  segment	  

virtual	  waypoint	  

1/3	   2/3	  

Figure 2.4: An initial and an alternative en-route segment of trajectory, i, on normalized x′y′-
reference axes, constructed with M = 2 virtual waypoints.

Remark that the alternative trajectory will yield an increase in flight duration when com-

pared with the initial trajectory. To compensate this increased flight duration, the altitude

profile must be updated to avoid a premature descent. Let Text be the increased flight duration.

In the case of a regional flight whose all flight phases (departure, climb, cruise, descent, and

arrival) are executed in the considered airspace area, the altitude profile is updated by extending

the cruise phase (constant-level) at the top of descent (TOD) for a duration Text, as illustrated

in Figure 2.5.

On the other hand, for a flight whose origin or destination airports are outside of the current

airspace area, the cruise phase can take place inside or outside the current airspace area. This

yields six possible configurations of the initial altitude profile, as illustrated in Figure 2.6. Let

zmax be the maximum altitude that the flight will attain in the current airspace area. In this

case, the vertical profile can be updated by extending the flight with a constant altitude zmax

for a duration Text (the aim is to preserve the given optimal profile and the same climb / descent

slopes).

More precisely, in case 1 and case 3, the TOD takes place in the current airspace area,

therefore, the vertical profile is updated by extending the flight with a constant altitude zmax

for a duration Text. In case 2 and case 5, only a part of cruise phase takes place in the current

airspace area, the vertical profile is updated by extending the flight with a constant cruise

altitude for a duration Text. Finally, in case 4 and case 6, only climb or descent phase takes

place in the current airspace area, the vertical profile is updated by extending the flight with a

constant cruise altitude zmax for a duration Text.
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Figure 2.5: Altitude-profile update: extending cruise phase at the top of descent (TOD).

2.3 Optimization formulation

In this section, we present an optimization formulation of the strategic 4D trajectory plan-

ning problem. The strategic 4D trajectory planning methodology using route / departure-time

allocation can be formulated as an optimization problem aiming at minimizing the interaction

between trajectories.

Given data. A problem instance is given by:

• A set of N initial (nominal) discretized 4D trajectories;

• The sampling time step: ts;

• For each flight i, for i = 1, . . . , N :

– The initial planned departure time: ti,0;

– The maximum allowed advance departure time shift: δia < 0;

– The maximum allowed delay departure time shift: δid > 0;

– The length of the initial planned en-route segment: Li,0;

– The maximum allowed route length extension coefficient: 0 ≤ di ≤ 1;

– The user-defined parameters controlling the dimensions of the feasible domains for

locating the virtual waypoints: ai and bi.

– The number of 4D discretization points on trajectory i: Ki.

Model parameters. Here are user-provided parameters necessary to define our optimiza-

tion model and the proposed methodology.

• The interpolation sampling time step: tinterp;

• The number of allowed virtual waypoints: M ;
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Figure 2.6: Altitude profile update: six possible ways to extend the trajectory at maximum
altitude.

• The discretization time step for the possible delay / advance departure-time shift interval:

δs;

• The constant that defines the number of possible locations of each virtual waypoint: Nw;

The role of these parameters will be made more precise in the sequel.

Decision Variables. As mentioned above, we consider two ways to separate trajectories.

In the time domain, one can use a departure-time shift, δi, associated to each flight, i. In the

3D space, one can rely on a vector, wi, of virtual waypoint locations, wi := (w1
i , w

2
i , . . . , w

M
i )

associated to each flight, i, where M is the number of virtual waypoints.

Let us set the compact vector notation:

δ := (δ1, δ2, . . . , δN ),

and

w := (w1, w2, . . . , wN ).

Therefore, the decision variables of our route / departure-time allocation problem can be

represented by the vector:

u := (δ,w).

We shall denote by ui the components of u. It is a vector whose components are related to the

modification of the ith trajectory, thereby:

ui = (δi, wi)
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Constraints. The above optimization variables must satisfy the following constraints:

• Allowed departure time shift . Departure time of flight i is given by an auxiliary

optimization variable, ti, which is linked to the above decision variables, as follows:

ti = ti,0 + δi, (2.1)

where ti,0 is the initial planned departure time of flight i (given data).

In practical problems, passengers may have to transfer from one flight to another in order

to get to their final destination. This generates precedence constraints stipulating that

certain flights must arrive at the airport before the departure of others. In addition, each

aircraft may be used for several flights on a same day. This raises a constraint of minimum

rotation time (time required to disembark the passengers, to service the aircraft, and to

embark passengers) between flights. Moreover, the number of aircraft departing from and

arriving to a given airport at any given time are limited by the airport capacity. These

constraints are not taken into account in this work due to the lack of data from airlines

and from airports. However, they can easily be handled by, for example, pre-processing

the set of feasible time shifts of each flight.

Since it is not reasonable to delay or to advance departure times for too long, the departure

time shift, δi, is assumed to be limited to lie in the interval

[δia, δ
i
d]. (2.2)

Common practice in airports conducted us to rely on a discretization of this time interval.

Given the (user-defined) time-shift step size δs, this yields N i
a := −δia

δs
possible advance

slots and N i
d :=

δid
δs

possible delay slots of flight i. Therefore, we define the set, ∆i, of all

possible departure time shifts of flight i by

∆i := {−N i
a.δs,−(N i

a − 1).δs, . . . ,−δs, 0, δs, . . . , (N i
d − 1).δs, N

i
d.δs}. (2.3)

• Maximal route length extension . The alternative trajectory induces route length

extension which causes an increase of fuel consumption and flight time. Therefore, it

should be limited so that it is acceptable by the airline.

Let 0 ≤ di ≤ 1 be the maximum allowed route length extension coefficient of flight i

(model parameter to be set by the user). To restrain the route length extension, the

alternative en-route profile of flight i must satisfy:

Li(wi) ≤ (1 + di), (2.4)

where Li(wi) denotes the normalized length of the alternative en-route profile determined

by wi. The normalized length Li(wi) can be straightforwardly computed once the position

of the waypoints (contained in the vector wi) is known as it can be seen from Figure 2.4.

Constraint can in fact be implicitly satisfied by restricting the set of possible waypoint
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locations (as will be described below).

• Allowed waypoint locations. To limit the search space, to prevent undesirable sharp

turns, and to restrain the route length extension, we bound the possible location of each

virtual waypoint. To avoid sharp turns, the longitudinal position of the virtual waypoints

should not be too close to each other.

Let Wm
ix′ be a set of all possible normalized longitudinal locations of the mth virtual

waypoint on trajectory i. For simplicity, for each trajectory i, the normalized longitudinal

component, wmix′ , is set to lie in the interval:

Wm
ix′ :=

[(
m

1 +M
− bi

)
,

(
m

1 +M
+ bi

)]
. (2.5)

To obtain a regular trajectory, the normalized longitudinal component of two adjacent

waypoints must not overlap, i.e.(
m

1 +M
+ bi

)
<

(
m+ 1

1 +M
− bi

)
(2.6)

and hence the user should choose bi so that

bi <
1

2(M + 1)
. (2.7)

Let Wm
iy′ be a set of all possible normalized lateral locations of the mth virtual waypoint

on trajectory i. Similarly, the normalized lateral component, wmiy′ , is restricted to lie in

the interval:

Wm
iy′ := [−ai, ai], (2.8)

where 0 ≤ ai ≤ 1 is a (user-defined) model parameter chosen a priori so as to satisfy (2.4).

The sets Wm
ix′ and Wm

iy′ can be modeled as discrete or continuous sets. In a first approach,

we choose to discretize uniformly and symmetrically the interval [−ai, ai] into 2Nw + 1

possible values, for i = 1, . . . , N , where Nw ∈ N+ is a (user-defined) model parameter.

Therefore, the lateral location wmiy′ , of the mth virtual waypoint of flight i can be chosen

from the set:

Wm
iy′ := ai

{
−1,−Nw − 1

Nw
,−Nw − 2

Nw
, . . . ,

− 1

Nw
, 0,

1

Nw
, . . . ,

Nw − 2

Nw
,
Nw − 1

Nw
, 1

}
(2.9)

For simplicity, in this first approach, let us assume that the coefficient bi is set to zero.

Therefore, the set of possible normalized longitudinal components, wmix′ , is reduced to the

singleton

Wm
ix′ :=

{
m

1 +M

}
. (2.10)

This discretization scheme involves (2Nw + 1)M possible alternative trajectories for each
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flight i. Figure 2.7 illustrates an example of possible alternative horizontal profiles of a

flight when M = 2, and Nw = 3 (therefore 49 possible route choices).

1/3	   2/3	   1	  

a	  

y’	  

x’	  

2a/3	  
a/3	  

-‐a	  
-‐2a/3	  

0	  
-‐a/3	  

Figure 2.7: All possible horizontal profiles of the en-route segment using discrete virtual way-
points constraint for M = 2 virtual waypoints and a discretization step size, Nw = 3.

Let us now consider a second approach where we model the sets Wm
ix′ and Wm

iy′ as continu-

ous sets. This yields a rectangular shape for the possible locations of the virtual waypoint

wmi . Figure 2.8 illustrates the possible locations of M = 2 virtual waypoints.

Finally, in order to restrain the maximum route extension, the model parameters ai and

bi must be chosen by the user so that:

max{L′i(wi)|wi ∈Wix′ ×Wiy′} ≤ (1 + di), (2.11)

which can be straightforwardly done (for instance, given the value of bi, one computes the

largest possible value for ai).

Objective function. In strategic trajectory planning, we focus more on separating aircraft

trajectories than on solving each conflict locally. Therefore, we voluntarily employ a term

interaction between trajectories, which is, roughly speaking, a situation which occurs in the

planning phase, when more than one trajectory compete for the same space at the same period

of time. It is different from the conflict situation, which corresponds simply to a violation

of the minimum separation norm (i.e. 5 Nm horizontally and 1,000 ft vertically). Additional

separation conditions, such as time separation, topology of trajectory intersection, distance

between trajectories, etc. can also be taken into account in such a concept of interaction.

Here is how we evaluate this interaction-based objective function, for given values of the

decision variables u = (δ,w). One must first discretize each of the N resulting alternative

trajectories into a sequence of 4D points: {Pi,k(ui)}Kik=1, i = 1, 2, . . . , N . We shall use in the

remaining part of this thesis the notation Pi,k = (xPi,k , yPi,k , zPi,k , tPi,k) to designate the kth 4D

point on trajectory i. Each of these points depends only on ui = (δi, wi), the ith component of

the optimization variable vector u.

For the sake of simplicity, let us assume that minimizing the interaction between trajectories

boils down to minimizing the total number of conflicts between aircraft. Consider for example
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Figure 2.8: Rectangular-shape sets of the possible locations of M = 2 virtual waypoints, for
trajectory i.

the two trajectories A and B in Figure 2.9. A conflict between PA,k and PB,l occurs when

the horizontal distance, dh =
√

(xPA,k − xPB,l)2 + (yPA,k − yPB,l)2, is less than Nh, the vertical

distance, dv = |zPA,k − zPB,l |, is less than Nv, and the difference of the arrival times of both

aircraft, dt = |tPA,k − tPB,l | is zero for some 1 ≤ k ≤ KA and some 1 ≤ l ≤ KB, where KA and

KB are the numbers of discretization points on trajectories A and B respectively.

Let us further define an interaction at a point Pi,k(ui) to be the sum of all the conflicts

associated to point Pi,k(ui); we denote it by Φi,k(u). Remark that it depends also on the other

trajectories j 6= i. More precisely,

Φi,k(u) :=

N∑
j=1
j 6=i

Kj∑
l=1

C(Pi,k(ui), Pj,l(uj)), (2.12)

where Kj are the number of sampling points for trajectory j, and

C(P,Q) :=

1 if point P is in conflict with point Q

0 otherwise.
(2.13)

Figure 2.9 illustrates interaction in the horizontal plane between N = 3 trajectories measured

at point PB,4, yielding ΦB,4 = 2.
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We define the interaction, Φi, associated to trajectory i, as:

Φi(u) :=

Ki∑
k=1

Φi,k(u). (2.14)

PB,4	  
trajectory	  B	  

trajectory	  A	  

trajectory	  C	  

ΦB,4	  =	  2	  

protec4on	  volume	  

dh	  <	  Nh	  

dh	  <	  Nh	  

Nh	  

PB,1	   PB,2	   PB,3	   PB,5	   PB,6	   PB,7	  

PA,1	   PA,2	   PA,3	   PA,5	   PA,6	   PA,7	   PA,8	  
PA,4	  

PC,1	   PC,2	  
PC,3	  

PC,5	  
PC,6	   PC,7	   PC,8	  

PC,4	  

Figure 2.9: Interactions, ΦB,4, at sampling point PB,4 of trajectory B.

Finally, interaction between trajectories, Φtot, for a whole traffic situation is simply defined

as:

Φtot(u) :=

N∑
i=1

Φi(u) =

N∑
i=1

Ki∑
k=1

Φi,k(u). (2.15)

One can observe that the measurement of the interaction between trajectories implicitly

take into account the duration of conflict between trajectories. A practical methodology to

compute the value of the objective function in a large-scale context is presented in Section 2.4.

The optimization formulation we are about to present involves determining values for the

optimization variables wi and δi for each flight i = 1, 2, . . . , N so as to minimize, Φtot(u), the

interaction between the N given flights.

In the case where we consider the discrete constraints (2.9) and (2.10) for the possible virtual

waypoint locations, the interaction minimization problem can be formulated as a combinatorial

optimization problem, as follows:

min
u=(δ,w)

Φtot(u)

subject to

δi ∈ ∆i, for all i = 1, . . . , N

wmix′ ∈Wm
ix′ , for all i = 1, . . . , N,m = 1, . . . ,M

wmiy′ ∈Wm
iy′ , for all i = 1, . . . , N,m = 1, . . . ,M,

(P1)

where Φtot(u) is defined by (2.15), and ∆i, W
m
ix′ , and Wm

iy′ are defined by (2.3), (2.10), and

(2.9) respectively.

In the case where the sets of possible virtual waypoints are continuous sets, the interaction

minimization problem can be formulated as a mixed-integer optimization problem, as follows:
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min
u=(δ,w)

Φtot(u)

subject to

δi ∈ ∆i, for all i = 1, . . . , N

wmix′ ∈Wm
ix′ , for all i = 1, . . . , N,m = 1, . . . ,M

wmiy′ ∈Wm
iy′ , for all i = 1, . . . , N,m = 1, . . . ,M,

(P2)

where Wm
ix′ , and Wm

iy′ are defined by (2.5), and (2.8) respectively.

The combinatorial optimization problem (P1) involves the following complexity. The number

of possible trajectory solutions for flight i is:

(N i
a +N i

d + 1).(2Nw + 1)M .

Therefore, the total number of possible solutions is:

N∏
i=1

(N i
a +N i

d + 1).(2Nw + 1)M ,

where N i
a and N i

d are the possible advance and delay slots of flight i respectively, and Nw are the

parameters that define the number of possible values of the longitudinal and lateral components

of each waypoint wmi , respectively.

If, for instance, for an air traffic involving N = 10, 000 flights, we let M = 2, Nw = 3, and

we allow N i
a = N i

d = 60 choices of departure time shifts for each flight, then the cardinality

of the feasible space becomes 5.88 × 107. The solution space of problem (P1) is discrete and

its size grows exponentially fast. The problem has been shown to be NP hard (relative to the

number, N , of flights involved) [24].

The optimization formulation (P2) involves mixed-integer variables introducing also high

combinatorics to the search space. Since W k
nx′ and W k

ny′ ⊆ R2, we have w ∈ R2NM . Moreover,

the objective function of both problems (P1) and (P2) is non-separable (each term Φi,k(u) does

not depend solely on variables wi and δi); it is also affected by neighboring trajectories. The

evaluation of the objective function involves a heavy computational burden in practice, as will

be seen in the sequel of the thesis, where we consider the continental scale. Besides, the objective

function may feature several equivalent global optima plus numerous uninteresting local minima

(multimodal). This route / departure-time assignment problem is therefore sufficiently difficult

to motivate recourse to a stochastic method for optimization.

2.4 Objective function computation method

This section presents the method used to detect conflicts and to compute interaction between

trajectories. A practical data structure that allows to save computation time and memory is

also presented.

In order to evaluate the objective function of a candidate solution, (w, δ), one needs to

compute interaction, Φtot, between the N aircraft trajectories. To avoid the N(N−1)
2 time-
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consuming pair-wise comparisons, which is prohibitive in our large-scale application context,

we propose a grid-based conflict detection scheme as presented in [31]. The idea is to put

successively each trajectory in a grid, then check for conflicts only in the surrounding cells of

the current trajectory.

First, we define a four dimensional (3D space + time) grid. The dimension of the 4D grid

must be large enough to include the current airspace. The time dimension of the grid must

span enough to include the earliest and the latest flights on a given operational day, taking into

account all possible departure time shift options.

This 4D grid is then partitioned into cells (see Figure 2.10). The size of each cell in the

x, y, and z directions is defined by the minimum separation requirements, Nh and Nv. The

size of the cell in the time domain is set according to the discretization step size, ts. This

discretization step size must be sufficiently small so that any conflict occurring between two

consecutive sampling time steps can be detected. To detect conflicts, the idea is to store the N

trajectories in each corresponding cell in the 4D grid. Then, for each trajectory i, and for each

cell (Ix, Iy, Iz, It) corresponding to each sampling point Pi,k := (xPi,k , yPi,k , zPi,k , tPi,k), we simply

need to check all the surrounding (adjacent) cells in the x, y, and z directions corresponding

to the time period tPi,k . If one of these surrounding cells is occupied by another aircraft, for

instance j, we then note j ∈ (Ix, Iy, Iz, It), and then the horizontal distance, dh, and the vertical

distance, dv, between point Pi,k and the sample point corresponding to aircraft j are computed.

Since the violation of the protection volume can only occur when the points in question are in

the same or in adjacent grid cells, the number of points to check is significantly smaller than in

a pair-wise comparison method.

t0	   t1	   t2	   .	  .	  .	   tn	  

(me	  x	  
y	  

z	  
x	  

y	  

z	  
x	  

y	  

z	  
x	  

y	  

z	  

Figure 2.10: Four dimension (space - time) grid.

In order not to underestimate interaction (missing the loss of spatial separation occurring

between two successive sampling time steps), trajectories must be discretized with a sufficiently-

small sampling time step, ts, which depends on the maximum possible aircraft horizontal and

vertical speeds.

As stated in [16], the worst-case scenario for interaction detection in the horizontal plane

occurs when two aircraft follow parallel trajectories that are separated by a distance, D, less

than or equal to the horizontal separation norm, Nh, at maximum horizontal speed, Vhmax , with

heading in opposite directions. Hence, in the horizontal plane, an undetected interaction can
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occur when:

ts >
Nh

Vmax
cos

(
arcsin

(
D

Nh

))
.

Figure 2.11 illustrates an undetected violation of the horizontal minimum separation occurring

between two successive time steps.

A	  
B	  tPA,k
tPB,l ! tPA,k

A	   tPA,k + ts

B	  

tPB,l + ts

A	  tPA,k + t<ts!
B	  
tPB,l + t<ts!

(a)	   (b)	   (c)	  

protec.on	  volume	  

Figure 2.11: Undetected violation of horizontal separation when the sampling step, ts, is too
large. In figures (a) and (c) the horizontal spatial distances between A and B are larger than
Nh = 5 Nm, therefore the violation of the horizontal minimum separation, which occurs in the
meantime (b), cannot be detected.

In the vertical plane, the worst-case scenario occurs when one aircraft is climbing at maxi-

mum rate of climb, RoCmax, and another is descending at maximum rate of descent, RoDmax

(see Figure 2.12). Thus, in the vertical plane, in an analogical way as what was done in [16] for

the horizontal plane, we can easily show that undetected interaction can occur when:

ts >
Nv

(RoCmax +RoDmax)
.

In order to avoid such undetected conflicts, one can therefore simply choose a sufficiently-

small value for the (user-provided) sampling time step, ts. However, using too small a sampling

time step leads to a large number of trajectory sample points, which in turn requires more

computation time and memory. Instead, we propose an inner-loop algorithm, called interp,

detecting the violation of minimum separation requirements between two sampling times, t

and t + ts, by interpolating aircraft positions with a sufficiently small interpolation step size,

tinterp. This tinterp value must be set by the user so as to guarantee that no interaction remains

undetected. Then, one checks each pair of these interpolated points. The algorithm stops when

a violation of the minimum separation requirements is identified or when all pairs of points have

been checked. The inner-loop interpolation algorithm called interp is described in Algorithm

2.1.

Recall that C(P,Q) is defined in (2.13) as 1 when points P and Q are in conflict and zero

otherwise. The algorithm to compute the total interaction between the N trajectories, Φtot(u),

is described in detail in Algorithm 2.2.

In order to optimize the required computation memory, we implement the interaction detec-
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Algorithm 2.1 Interp

Require: Pi,k, Pj,l . two trajectory sample points
1: Discretize, using time step tinterp, the trajectory segments [Pi,k, Pi,k+1] and [Pj,l, Pj,l+1] as
{Pα}Kα=1 and {Qβ}Kβ=1 respectively;

2: for k = 0→ K do . for each pair of interpolated points
3: Initialize C := 0;
4: Check conflict, C := C(Pk, Qk);
5: if C 6= 0 then
6: Return C;
7: End;
8: end if
9: end for

10: Return C;

Algorithm 2.2 Interaction computation algorithm

Require: value of the decision variables u = (δ,w), and the time sequence of 3D grids
1: Initialize Φtot(u) := 0;
2: for i= 1 to N do . (for each trajectory i)
3: Discretize the alternate trajectory i defined by ui into a sequence {Pi,k}Kik=1;
4: Initialize Φi(u) = 0;
5: for k = 1 to Ki do . (for each point Pi,k of trajectory i)
6: Initialize Φi,k := 0;
7: Compute the cell Ix, Iy, Iz, It corresponding to Pi,k;
8: Compute Φi,k(u):
9: for ix = Ix − 1 to Ix + 1 do

10: for iy = Iy − 1 to Iy + 1 do
11: for iz = Iz − 1 to Iz + 1 do
12: if ∃j 6= i such that j ∈ (ix, iy, iz, it) then
13: L:= list of all trajectory sample points Pj ’s in (ix, iy, iz, it);
14: for l = 1 to length(L) do
15: P := L(l);
16: Check conflict, C = C(Pi,k, P );
17: if C = 0 then
18: C := interp(P_{i, k}, P);
19: end if
20: Φi,k := Φi,k + C;
21: end for
22: end if
23: end for
24: end for
25: end for
26: end for
27: Φi := Φi + Φi,k;
28: end for
29: Φtot := Φtot + Φi;
30: Return Φtot.
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Figure 2.12: Worst-case scenario for interaction detection in the vertical plane between two
time steps when one aircraft is descending at maximum rate of descent (RoD)max and another
aircraft is climbing at maximum rate of climb (RoC)max.

tion scheme using a so-called hash table [4], which is a data structure that maps keys to values

or entries. It allows us to store information in an array without pre-defining the size of array

in advance. Moreover, the hash table only stores the data once the data is created, therefore

empty cells in the array do not occupy memory.

In the optimization process, the computation of the objective function, Φtot(u), will be

repeated many times, therefore it must be computed as fast as possible. To avoid checking

interactions for all N trajectories when some of the trajectories are modified in a new proposed

solution, the interaction is updated in a differential manner.

First, the 4D grid is initialized with every cell empty. Then, the N trajectories, corre-

sponding to the initial value of the decision vector, u, are placed in the 4D grid. After that,

the current interaction, ΦiC , associated to each trajectory, i, and the current total interaction

between trajectories, ΦtotC , are computed.

Assume now that during the optimization process the decision variables of m flights are to

be modified. Let Imodif be a list of length m containing the flight indices of all the m flights.

To update the value of total interaction, we first remove all the m corresponding trajectories

from the 4D grid. Therefore, the interaction associated to each trajectory in Imodif has an

intermediate value:

Φi,inter(u) = 0, ∀i ∈ Imodif .

Remark that the measurement of interaction is symmetrical. Let Φij(u) denote the contri-

bution of trajectory i to the interaction associated to trajectory j. More precisely, we define

Φij(u) :=

Ki∑
k=1

Kj∑
l=1

C(Pi,k(ui), Pj,l(uj)),

where C is defined in (2.13), Pi,k is the kth sampling point of trajectory i, Pj,l is the lth sampling

point of trajectory j, and where Ki and Kj are the number of sampling points of trajectory i
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and trajectory j respectively. Clearly, we have

Φij(u) = Φji(u).

Let Ni be a set of trajectories currently interacting with trajectory i. In other words,

Ni = {j : C(Pi,k(ui), Pj,l(uj)) > 0 for some indices k and l}. Therefore, for each trajectory

i ∈ Imodif , the interaction associated to each trajectory j ∈ Ni has an intermediate value given

by:

Φj,inter(u) = Φj(u)− Φij(u).

After that, the modified trajectories corresponding to the new decision variable values,

ui ∀i ∈ Imodif are placed in the 4D grid. The interaction detection procedure is then performed

for all trajectories i ∈ Imodif . Then, the interaction, Φi, associated to each trajectory i ∈ Imodif ,

is computed.

Again, the interaction associated to each trajectory, j, interacting with the modified trajec-

tories set is updated as follows:

Φj(u) = Φj,inter(u) + Φij(u).

Finally, the total interaction between trajectories is simply computed as follows:

Φtot(u) =
N∑
i=1

Φi(u).

This interaction computation method allows us to update the value of objective function

when some trajectories are modified in a very short computation time, since we do not need

to compute the change of interaction associated to the decisions that are not modified at the

current optimization iteration.

2.5 Conclusions

In this chapter, we presented a strategic 4D trajectory planning methodology. First, a defi-

nition of interaction between trajectories was given. Then, a route / departure - time allocation

technique was proposed. The proposed approach allocates an alternative route (horizontal

profile) and/or an alternative departure time to each flight, so as to separate trajectories.

The route / departure time allocations was then formulated as a combinatorial optimization

problem, and as a mixed-integer optimization problem depending on the structure of the set

of possible virtual waypoint locations. Complexity issues tend to show that a metaheuristic

approach should be considered to address the large-space instance of continental traffic.

Then, a computationally efficient method to detect interactions between aircraft trajecto-

ries was presented. The proposed procedure relies on a 4D grid to store the information of the

trajectory samples. For each cell occupied by an aircraft in the 4D grid, its surrounding cells

are checked. If one such surrounding cell is occupied by another aircraft, then the distance be-

tween two trajectory samples are measured. In order to guarantee that no interaction occurring
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between two time sampling steps is missed, an inner-loop algorithm, that interpolates the air-

craft positions and measure distance between these interpolated positions, has been introduced.

Finally, practical issues related to the computation of the total interaction between trajectories

have been discussed.
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Chapter 3

Resolution algorithms for the

strategic trajectory planning

problem

This chapter proposes two resolution algorithms to solve the strategic trajectory planning

problem, formulated under the form of an interaction minimization problem.

First, we present an adaptation of a non-population based metaheuristic algorithm, called

simulated annealing, to solve this problem. The proposed simulated annealing algorithm is

tested with nation-wide scale and continent-scale en-route air traffic. Numerical results from

computational experiments with different setting of the algorithm’s parameter values are pre-

sented and discussed.

Then, we propose to improve the computational efficiency of the resolution algorithm by

hybridizing the simulated annealing with simple local-search algorithms. The hybrid algorithms

are tested with nation-wide scale and continent-scale air traffic including this time also the traffic

in the terminal maneuvering area (near the airport). Numerical results from computational

experiments are presented and discussed.

3.1 Metaheuristic optimization algorithm

To solve the strategic trajectory planning problem formulated under the form of a discrete

optimization problem (P1) and a mixed-integer optimization problem (P2), we first rely on a

metaheuristics optimization method. A metaheuristic is a problem-independent procedure or

framework that guides other lower-level heuristic procedures to solve an optimization problem.

Metaheuristics are well known for their ability to find high-quality solutions for large-size

and complex problems within reasonable computation times. They are typically inspired by

nature or by a physical process, and they can be roughly divided into two different classes [83]:

• Population-based algorithms. The population-based algorithms explore the search

space by evolving a whole population of candidate solutions (diversification). Various

selection processes are used in order to choose elite solutions among the population of

solutions. Then, these elite solutions are evolved through transformation operators. Se-
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lection processes are again applied, and these processes repeat until some pre-defined

termination criteria are satisfied. The quality of the solutions obtained from such meth-

ods depends mainly on the size of the population. Therefore, these methods are not

well adapted for problems that require a lot of computation memory to code the state

space. Optimization methods belonging to this class are, for instance, genetic algorithms,

ant-colony algorithms, particle swam, etc.

• Non-population-based algorithms. These algorithms have typically rather an ability

to intensify the search in some local regions of the solution space. Their search strategy

can be viewed as a walk from one solution to another solution in the solution space. Several

strategies are proposed in order to prevent the walk from being trapped in local minima.

Optimization methods belonging to this class are, for example, simulated annealing, local

search, tabu search, etc.

In our application context, the evaluation of the objective function value relies on a black-

box simulation process and no derivatives can be computed through the interaction detection

scheme introduced in Section 2.4. For a large-scale problem (i.e. national-scale and continental-

scale air traffic contexts), this simulation requires a very large computation memory. In our

simulation, one point of the state space may require 2 Go. memory. Therefore, population-

based metaheuristic approaches are not suitable for our problem due to the excessive memory

requirements intrinsic to population-based optimization algorithms. To solve the problem (P1)

and (P2), we first rely on a classical simulated annealing algorithm due to its simplicity to

implement.

3.1.1 Simulated annealing (SA) algorithm

Simulated annealing (SA) was separately introduced by S. Kirkpatrick et al. in 1982 [57]

and by V. C̆erný in 1985 [87]. It is well known for its ability to escape from a local minimum

(or local trap) by allowing occasional moves that deteriorate the value of the objective function,

such deteriorating moves being less and less likely as the number of iterations grows.

Simulated annealing is inspired by the annealing process in metallurgy where the state of

a material can be modified by controlling the cooling temperature. The physical annealing

process consists in heating up a material to bring it to a high-energy state. Then, it is slowly

cooled down until a thermodynamic balance is reached. The temperature is reduced according

to a pre-described temperature reduction schedule, until the material reaches a global-minimum

energy state and forms a crystallized solid. Decreasing too rapidly the temperature can however

yield a non desirable local-minimum energy state.

In the simulated annealing optimization algorithm, the objective function to be minimized

is analogical to the energy of the physical problem, while the values of the decision variables of

the problem are analogical to the coordinates of the material’s particles. A control parameter,

T , that decreases as the number of iterations grows, plays the role of the temperature schedule,

and a number of iterations, NI , at each temperature step plays the role of the time duration

the material is kept at each temperature stage.

For a physical system, when the system reaches the thermodynamic balance at a given
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temperature, T , the energy, E, of its particles is distributed according to the Boltzmann distri-

bution: e
−E
kBT , where kB is the Boltzmann constant.

To simulate this evolution of the physical system towards a thermal equilibrium, the Metropo-

lis algorithm [68] is used. The Metropolis algorithm is a Markov Chain Monte Carlo (MCMC)

method that generates a sequence of random samples according to pre-defined probability dis-

tribution. For a given temperature, T , starting from a current configuration, the state space of

the simulated system is subjected to a transformation (e.g. apply a local change to one deci-

sion variable). If this transformation improves the objective-function value, then it is accepted.

Otherwise, it is accepted with a probability

Paccept := e
∆E
T , (3.1)

where ∆E is the degradation of the objective-function value (negative for minimization). Re-

peating this process creates a chain of events (Markov chain), where the next stage only depends

on the current state. If this chain is of infinite length, it can be shown that the simulated system

will reach the Boltzmann distribution (therefore thermal equilibrium).

Once the equilibrium is reached, the temperature is decreased according to a pre-defined

cooling schedule. As the temperature decreases, the probability, Paccept, to accept a degrading

solution becomes smaller and smaller. Therefore, the system will eventually converge to the

nearest local optimum which will expectantly be close to a global optimum. We refer the reader

interested by simulated annealing algorithm to the following books [42, 83].

3.1.2 Adaptation of SA for strategic 4D trajectory planning

In order to implement the simulated annealing algorithm to the strategic planning of 4D

trajectories, we first define the following parameters.

1. Neighborhood function. A neighborhood solution is generated by applying a neighbor-

hood function (or transformation operator) that generates a local change to the current

solution. This change should be computed rapidly, but should not have large effects on

the system; otherwise, the characteristic of the simulated annealing will become those of

a pure random search. Here is the neighborhood function we propose.

To generate a neighborhood solution, first a flight i is randomly chosen. In order not to

modify excessively the trajectories that are not involved in any interaction, we set a user-

defined threshold value of interaction, denoted Φτ , such that the trajectory of a randomly

chosen flight i will be modified only if

Φi(u) ≥ Φτ . (3.2)

Otherwise, another trajectory will be randomly chosen until condition (3.2) is satisfied.

This process ensures that changes will be first applied on trajectories involved in congestion

area.

Then, for a chosen flight, i, one has to determine whether to modify the location of way-

points, or to modify the departure time, in the next move. A priori, searching for a
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solution in the time domain would be better since it does not induce extra fuel consump-

tion. However, empirical tests show that limiting the search to using only that degree of

freedom results in prohibitive computational times, and excessive departure time shifts.

Therefore, we introduce a user-defined parameter, Pw ≤ 1 to control the probability of

modifying the value of the ith trajectory waypoint location vector, wi. The probability

to modify rather the departure time is therefore 1− Pw. This parameter, Pw, allows the

user to set his/her preference on the way to deconflict trajectories.

In order not to generate large changes to the system, only one virtual waypoint, randomly

chosen among the M virtual waypoints, w1
i , w

2
i , . . . , w

M
i , is modified at each time. More

precisely, if r ≥ Pw, where r is a random number generated between 0 and 1, one virtual

waypoints, say wmi , is randomly chosen, and then, a new location for wmi is randomly

generated from the set of possible locations, Wm
i . If r < Pw, then a new departure

time shift is randomly chosen from the set of possible departure time shifts, ∆i. The

neighborhood function we use in this thesis is summarized in Algorithm 3.1.

Algorithm 3.1 Neighborhood function

Require: probability Pw, trajectory i.
1: Generate random number, r := random(0,1);
2: if r < Pw then
3: Choose randomly new δi from ∆i;
4: else
5: Choose randomly one virtual waypoint wmi to be modified.
6: Choose randomly new wmix′ from Wm

ix′ ;
7: Choose randomly new wmiy′ from Wm

iy′ ;
8: end if

2. Initial temperature and initial acceptance probabilities. The initial temperature

determines the acceptance probability at the initial temperature. If it is high, the system

will accept almost every neighborhood solutions proposed. On the other hand, if it is

very low, the system will spend much time evaluating neighborhoods solution that are not

likely be accepted, and eventually it will converge to a local minimum.

Theoretically, the initial temperature, denoted T0, should be high enough so that the

probability of accepting a degrading solution at the end of the first temperature step is

close to 1. However, in practice, setting this probability too high may lead to long com-

putation times. This parameter is usually experimentally tuned according to the configu-

ration of the problem being solved. Before starting the optimization process, one observes

the evolutions of the system under the transformations generated by the pre-determined

neighborhood function. From this observation, one will obtain a rough knowledge about

the relation between the objective-function value and the search space (the landscape of

the objective function). From this information, one can determine a value for T0 that is

adapted to the problem’s configuration.

To determine the initial temperature and initial acceptance probability, we rely on a

practical recommendations given in [42]. They are computed by first generating 100

deteriorating transformations (neighborhood solutions) at random; then by evaluating
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Figure 3.1: Proposed simulated annealing algorithm.
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the average variations, ∆Eavg, of the objective-function value. The initial temperature,

T0, is then deduced from the relation:

τ0 = e
∆Eavg
T0 ,

where τ0 is the initial rate of accepting degrading solutions. The value of τ0 is empirically

set depending of the assumed quality of the initial configuration (initial air traffic situation

in our case), for example:

• for poor quality (poor resulting objective-function value) initial configuration: τ0 :=

50%;

• and for good quality configuration: τ0 := 20%.

3. Cooling schedule. In the simulated annealing algorithm, the cooling schedule plays an

essential role to guide the system towards a good optimum. If the temperature is decreased

slowly, the system is more likely to converge to a better solution, but it will require more

computation time. On the other hand, decreasing too rapidly the temperature tends to

yield undesirable local optima.

The temperature, T , can be decreased by one of the following laws of decrease:

• Linear law: Ti = T0 − (α.i), where α > 0 is a pre-defined constant value.

• Geometrical law: Ti = β.Ti−1, where 0 ≤ β ≤ 1 is a pre-defined constant value.

• Logarithmic law. The temperature is decreased by: Ti = T0
log(i) , etc.

For simplicity, we will decrease the temperature, T , following the geometrical law, where

the constant β will be experimentally tuned.

4. Equilibrium state. In order to reach an equilibrium, a sufficient number of iterations,

denoted NI , or moves, have to be performed at each temperature step. The value of NI

can be determined in the following manners:

• Static manner: NI , is constant in order to ensure that the system reaches an equi-

librium at each temperature step. For instance, the temperature will be decreased

after a.N iterations, or b.N perturbation accepted, where a and b are user-defined

constants, and where N is the number of degrees of freedom of the problem.

• Adaptive manner. In this case, the number of iterations, NI , is adapted to the current

configuration of the system. In other words, the number of iterations depends on the

quality of the solutions found during the iteration process. For instance, one may

set NI by using the best and the worst objective-function values found during the

previous (pre-defined) number of iterations to determine the number of iterations

to be further performed before reducing the temperature. It is not necessary that

the simulated annealing reaches the equilibrium at each temperature step, thus the

computation time is decreased.
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Again, for simplicity, in our case, the number of iterations, NI , to be performed at each

temperature step will be constant and experimentally set.

5. Termination criterion. Theoretically, it is suggested that the SA algorithm stops when

the temperature reaches zero. However, this stopping criterion is not utilized in practice,

since when the temperature is near zero, the probability of acceptance becomes negligible.

Therefore, a better stopping criterion could be to wait that, Tf , is reached, or when a

pre-determined number of transitions, or when a pre-defined number of temperature steps

without improvement is performed.

In our case, the simulated annealing algorithm will terminate when the final temperature,

Tf , reaches the value C.T0, where 0 ≤ C ≤ 1 is a user-defined coefficient.

The overall simulated annealing algorithm we used in this work is summarized in Figure 3.1.

3.1.3 Computational experiments

The simulated annealing algorithm adapted to solve the strategic trajectory planning prob-

lem is implemented in Java. It is tested on two problem instances of different sizes. The

first problem instance involves national-scale (≈ 8,000 flights) en-route air traffic. The second

problem instance considers continent-scale (≈ 29,000 flights) en-route air traffic.

Influences of the optimization formulation chosen (discrete / mixed-integer) on the resolution

of the problem is studied. The influence of the user-defined parameters Nw, and Φτ on the

resolution of the problem is also discussed.

Problem instance 1: National-size en-route air traffic

First, we test the proposed SA algorithm on a national-size en-route air traffic. The given

data set corresponds to a full day en-route air-traffic over the French airspace corresponding to

the demand of 17th August 2008. It is provided by the Complete Air Traffic Simulator (CATS)

[8] and consists of N = 8,836 trajectories using direct route. Figures 3.2 and 3.3 illustrate the

initial given trajectory set, sampled with the trajectory discretization time step ts = 20 seconds

in the horizontal and the vertical planes respectively (the dense area located at the coordinate

point (0; 5× 106) on Figure 3.2 corresponds to Paris).

To solve this problem instance, we implement our strategic 4D trajectory planning method-

ology on a Unix platform with a 2.4 GHz processor and 8 GB RAM (personal computer). The

initial trajectory set involves Φtot = 83,044 total interactions between trajectories. Figure 3.4

illustrates the initial interaction, Φi, associated to each flight i.

The parameter values chosen to specify the optimization problem are given in Table 3.1.

To give an idea of the complexity of the computation of the objective-function value, for this

problem instance and using the mixed-integer optimization formulation (P2), when using the

sampling time-step value ts = 20 seconds, the initial N trajectories are discretized into 1,387,112

sample 4D points. With regard to the dimension of the search space, when setting M = 2, our

optimization problem involves for this instance:

• 2MN = 35,344 (continuous) virtual waypoints variables (component of the vector w),
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Figure 3.2: The initial given trajectories consisting of a full-day traffic over the French airspace
in the horizontal plane.

Figure 3.3: The initial given trajectories consisting of a full-day traffic over the French airspace
in the vertical plane.
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Figure 3.4: Initial interactions associated to each flight index, i, over the French airspace.

parameter value

Sampling time step, ts 20 seconds
Maximum departure time shift, −δia = δid := δ 60 minutes
Discretization time step for possible delays / advance departure-time shifts, δs 20 seconds
Maximum allowed route length extension, di 0.12 (12 %)
Maximum number of waypoints, M 2

Table 3.1: Chosen (user-defined) parameter values defining the overall methodology applied to
problem instance 1 (en-route French air traffic)

• N = 8,836 (discrete) departure-time shift variables (the components of the optimization

vector δ), each of which involving 2δ
δs

+ 1 = 361possible values.

The parameters defining the overall resolution methodology are empirically set, and pre-

sented in Table 3.2. The algorithm terminates when the final temperature, Tf , is reached or

when an interaction-free solution is found.

• Resolution based on the optimization formulation (P1) First, we solve the problem

instance 1 based on the discrete optimization formulation (P1). The proposed algorithm

parameter value

Number of iterations at each temperature step, NI 100
Initial rate of accepting degrading solution, τ0 0.3
Geometrical temperature reduction coefficient, β 0.99
Final temperature, Tf (1/500).T0
Inner-loop interpolation sampling time step, tinterp 5 seconds
Probability to modify horizontal flight profile, Pw 0.5
Interaction threshold value, Φτ 0.5 Φavg

Table 3.2: Empirically-set (user-defined) parameter values of the resolution methodology.
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is implemented with the value of the parameters Nw that defines the number of possible

lateral location for each flight i. The influence of the parameter Nw on the resolution of

the interaction minimization problem is discussed. For M = 2, the longitudinal locations

of the virtual waypoints are:

w1
ix′ =

1

3
,

and

w2
ix′ =

2

3
,

for each flight i. The maximum route length extension occurs when

w1
i = (

1

3
, ai),

and

w2
i = (

2

3
, −ai),

and therefore ai can be straightforwardly deduced from:

(1 + di) = 2

√(
1

3

)2

+ (ai)
2 +

√(
1

3

)2

+ (2ai)2,

which yields ai ≈ 0.12 (for a value di = 0.12 for the maximal route length extension

coefficient).

The set, Wiy′ , of possible lateral locations for each virtual waypoint is therefore given by

Wm
iy′ := 0.12{−1,−Nw − 1

Nw
,−Nw − 2

Nw
, . . . ,− 1

Nw
, 0,

1

Nw
,

. . . ,
Nw − 2

Nw
,
Nw − 1

Nw
, 1},

which yields (2Nw + 1)2 possible alternative horizontal profiles.

The simulations with Nw = 2, 3, 4, 8 yield 25, 49, 81, 289 possible alternative horizontal

flight paths for each flight respectively. The simulations are performed 10 times for each

Nw value.

SA yields interaction-free (therefore conflict-free) solution for every flight and for every

value of Nw. The average number of iterations performed in order to reach the interaction-

free solutions are presented in Figure 3.5, and the corresponding average computation

times are reported in Figure 3.6. The number of flights that are subjected to departure-

time shifts and route length extensions are compared in Figure 3.7. The average departure-

time shifts attributed to each delayed (or advanced) flight are not significantly different

when using different values of Nw. The averaged route length extensions applied to each

extended flight are compared in Figure 3.8.

SA solves this national-scale en-route air traffic problem instance based on discrete formu-

lation (P1), and yields interaction-free solutions within a significantly short computation

time (less than 10 minutes) using a personal computer. The use of high value for the
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Figure 3.5: Average number of SA iterations to reach an interaction-free solution with different
Nw values.
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Figure 3.6: Average SA computation time to reach an interaction-free solution with different
Nw values.
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Figure 3.7: Average number of modified flight plans with different Nw values.
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Figure 3.8: Average route length extensions attributed to each extended flight with different
Nw values.
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parameter Nw increases the richness of the solution space. It allows the algorithm to con-

verge to better solutions (solutions that induce less route length extension) within shorter

computation time.

• Resolution based on optimization formulation (P2)

We now implement SA based on the mathematical formulation (P2) with the parameter

values as given in Table 3.2.

We set two different values for the pair of parameters ai and bi that define the size of the

continuous search space of the possible locations of the virtual waypoints.

First, the value of parameter bi that defines the interval of possible longitudinal component

of virtual waypoint wmi is set to 0, and the value of parameter ai is set to 0.12 for

i = 1, 2, . . . , N , as in the previous case. Then, we empirically set the value of parameter

bi to 1/15. For any flight i, the maximum route extension can occur when:

w1
i = ((

1

3
− bi), ai),

and

w2
i = ((

2

3
+ bi), −ai).

Therefore ai can be straightforwardly deduced from:

(1 + di) = 2

√(
1

3
− bi

)2

+ (ai)
2 +

√(
1

3
+ 2bi

)2

+ (2ai)2,

which yields ai ≈ 0.126.

The simulations are performed 10 times for each possible value of the pair of parameters

ai and bi. Again, SA yields an interaction-free solution trajectory for every flight. In

Table 3.3, we compare the average number of iterations and the average computation

time required to solve this problem instance using formulation (P1) with Nw = 8, and

(P2) with different values of ai and bi. This continuous relaxation of the constraint of the

virtual waypoint locations and the enlargement of the feasible search domain (case 3 in

Table 3.3) reduce significantly the computation time.

Optimization formulation avg. no. of iterations avg. computation time (mins)

P1 (ai = 0.12, Nw = 8) 56,440 4.53
P2 (ai = 0.12, bi = 0.0) 53,550 5.17
P2 (ai = 0.126,bi = 0.067) 43,480 3.19

Table 3.3: Comparison of the average number of iterations and the average computation time for SA
to reach an interaction-free solution using optimization formulations (P1) with Nw = 8, and (P2).

Then, the influence of the threshold value, Φτ , that determines the neighboring function on

the performance is studied. Simulations with different values of the threshold parameter,

Φτ , are performed. Let Φavg(u) := 1
N

N∑
i=1

Φi(u) denote the average objective-function
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Figure 3.9: Average number of iterations performed to attain an interaction-free solution using
different Φτ values.

value, and Φmax := max(Φ1(u), . . . ,ΦN (u)) denote the maximum objective-function value.

We set Φτ = 0.5Φavg, 0.75Φavg, Φavg, and Φmax, respectively. The average number of

iterations performed using these values of Φτ are compared in Figure 3.9. Figure 3.10

compares number of modified flight plans using different values of Φτ .

The computation time required by the SA to attain interaction-free solutions and the

number of modified trajectories depend largely on how the neighborhood function selects

one solution (ui) to be modified. When the value of Φτ is large, the trajectories that are

involved in more interactions are more likely to be chosen. Therefore, the neighborhood

function guides the SA towards a more promising region of the solution space, and the

algorithm converges faster to interaction-free solutions. On the other hand, when the

value of Φτ is lower, more candidate flights can be chosen to be modified; therefore the

algorithm modifies more trajectories and requires more computation time to converge to

interaction-free solutions.

Let us denote, Φ0 := {Φ1,init,Φ2,init, . . . ,ΦN,init}, the vector of the initial interaction com-

puted for each of the N flights. Figure 3.11 and 3.12 illustrate the correlation between Φ0

and the solution vectors, δ and w, according to different values of the interaction threshold

parameter Φτ respectively. The correlation between the indices of the trajectories that

are modified (in space / time) and the indices of the trajectories that are involved in the

initial interaction directly varies with the value of Φτ . The interaction threshold value Φτ

also influences the number of modified flight plans. As expected, when the neighborhood

function targets the trajectories that are involved in more interactions (a large Φτ value),
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Figure 3.10: Number of modified flight plans using different Φτ values.
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Figure 3.11: Correlation between the solution vector δ and the vector of initial interaction, Φ0,
associated to each flight with different value of the interaction threshold parameter Φτ .
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Figure 3.12: Correlation between the solution vector w and the vector of initial interaction, Φ0,
associated to each flight with different values of interaction threshold parameter Φτ .

the number of delayed/advanced flights and the number of extended flights decrease.

Problem instance 2: Continental-size en-route air traffic

Here, the proposed algorithm solves a continent-size en-route air traffic problem. The data

set is a full day of air-traffic over the European airspace on July 1, 2011. It consists of 30,695

trajectories simulated with optimal vertical profiles and with direct route. First, we consider

only the air traffic in the en-route environment by filtering out the trajectory segments that lies

under the altitude of z = 1,000 feet, (disregarding the whole trajectory when the flight duration

of a post-filtering trajectory is shorter than 1 minute). This results in a reduced set of N =

29,852 en-route trajectories.

We address this problem instance with an AMD Opteron 2 GHz processor with 128 Gb RAM.

The user-defined parameter values that specify the problem instance under consideration are the

same as given in Table 3.1. To give an idea of the complexity of the computation of the objective

function of this problem instance, when using the sampling time-step value ts = 20 seconds, the

initial N trajectories are discretized into 7,249,253 sample 4D points. The initial trajectory set

involves Φtot = 142,144 total interactions between trajectories. Figure 3.13 illustrates the initial

trajectories (blue dots) sampled with a sampling time step, ts = 20 seconds, and the locations

where the initial interactions occur (red dots).

With regard to the dimension of the search space, when setting M = 2 waypoints, our

optimization problem involves, for this instance:

• 2MN = 119,408 (continuous) waypoint variables (w);
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Figure 3.13: Initial trajectory set involving en-route air traffic over the European airspace
sampled with ts = 20 seconds with initial location of interactions displayed as red color dots.

Numerical results value

number of iterations 497,000
avg. computation time (minutes) 76.19
avg. proportion of delayed / advanced flights 71.29%
avg. proportion of extended flights 46.23%
avg. departure time shifts (minutes) 30.14
avg. route length extensions 1.95%

Table 3.4: Numerical results for problem instance 2 solved by SA based on optimization formu-
lation (P2) (averages are computed over 10 runs).
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• N = 29,852 (discrete) departure-time shift variables (δ), each of which involving 2δ
δs

+ 1

= 361 possible values.

The parameters defining the overall resolution methodology are the same as those given in

Table 3.2, but this time the number of iterations at each temperature step, NI , is empirically

set to 3,500.

This continent-scale problem instance is solved based on the mixed-integer formulation (P2).

The SA yields an interaction-free solution for this continent-scale problem instance in a com-

putation time that is still compatible for strategic planning application. Numerical results

obtained from the simulation is reported in Table 3.4.

The simulated annealing algorithm yields interaction-free solutions for both national-size

and continent-size en-route air traffic. For a national-size problem instance involving 8,836

en-route trajectories, the SA converges to interaction-free solution in a very short computation

time (3 to 10 minutes depending on the parameter setting, and on the nature of the constraints

(discrete or continuous) describing the location of virtual waypoints). However, when applying

on the larger problem instance 2, involving 29,852 en-route trajectories, the required compu-

tation time increases significantly. To improve further the computation time, we propose to

combine two simple metaheuristic algorithms together. This combination of multiple meta-

heuristic algorithms is referred to as hybrid-metaheuristic algorithm, which will be detailed in

the following section.

3.2 Hybrid metaheuristics optimization algorithm

To further improve efficiency of the optimization algorithm, we propose in this section to

combine the simulated annealing with another metaheuristics algorithm. This combination of

metaheuristic algorithms is referred to as hybrid metaheuristics. In recent years, the hybrid

metaheuristics have been more and more successful for its capability to solve large and complex

real-world problems. Instead of relying on one metaheuristics algorithm, the hybrid metaheuris-

tics allows us to integrate advantages of several metaheuristics together. One of the most used

technique to develop a hybrid-metaheuristic algorithm is to combine non-population based with

population-based metaheuristics. The population-based metaheuristic is known for its ability to

explore the solution space by recombining solutions to generate new ones. Therefore, it can be

effectively used to find promising areas of the solution space. The non-population base method,

in contrast, focuses on intensify the search in a small neighborhood; therefore, it can be used

to drive the search process to the nearest local optimum.

To implement a hybrid metaheuristic, one first has to determine a structure to control

the level of hybridization of the metaheuristic algorithm. We may classified the level of

hybridization into two categories: low-level hybridization and high-level hybridization [28].

• Low-level hybridization addresses an integration of metaheuristics algorithms, where each

algorithm has a strong coupling between each other. In this case, the individual compo-

nents of function in each metaheuristic may be replaced by or exchanged with a function

from the other metaheuristic algorithm. For instance, one may use a greedy heuristic as

a crossover operator in a genetic algorithm.
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• In high-level hybridization, each algorithm retains its own characteristics without direct

interactions between the internal functions of the algorithm. Information is exchanged

between each self-contained metaheuristic algorithm over a well-defined interface. For

instance, one may use the best solution obtained from one metaheuristic algorithm as an

initial solution of the other metaheuristic algorithm.

Then, another feature to consider is the order of carrying out each metaheuristic al-

gorithm. In general, the algorithms can be executed in a sequential, interleaved or parallel

manners.

Finally, to combine effectively several metaheuristics together, one has to determine the

values of the various user-provided parameters specifying the metaheuristics. These parameters

controls, for example, the balance between exploration and exploitation of the solution space.

They must be fine-tuned with care as they have a strong impact on the quality of the solution

obtained. The interested readers are referred to, for instance, [28, 83], for more details on

hybrid-metaheuristics algorithms.

3.2.1 Adaptation of a hybrid-metaheuristic for strategic 4D trajectory plan-

ning

As stated earlier in the previous section, population-based metaheuristic are not convenient

for the large-scale problem we are considering, due to the computational memory required.

Therefore, we propose here to combine the simulated annealing with simple local search algo-

rithms.

Since the simulated annealing has an ability to escape from local minima (or local traps)

by accepting degraded solutions from times to times, it can be effectively used to control the

diversification of the search while the local search will intensify the search around a promising

region found by the simulated annealing.

Local search

A local search is an algorithm that starts from a given initial solution, and then iteratively

replaces the current solution with a better solution in a pre-defined neighborhood. In this

work, we rely on a simple Iterative Improvement Local Search (IILS) that allows only strict

improvement of the objective function value. Given a solution, the IILS generates a neighbor-

hood solution (using a pre-defined neighborhood function), and then moves to this new solution

only if it yields an improvement of the objective function value. The algorithm stops when a

pre-defined maximum number of iterations, noted NLoc, is reached. The quality of the solution

found by the IILS depends on the initial solution, the definition of the neighborhood function,

and the neighborhood search strategy.

For simplicity, we rely on the same neighborhood function as that presented in Algorithm

3.1. We introduce two different neighborhood search strategies as follows:

• Intensifying the search on one Particular Trajectory (PT). Given a flight i, this

state-exploitation step focuses on improving the current solution by applying a local
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change from the neighborhood structure only to flight i (only the decision variables ui

are affected).

• Modifying the Interacting Trajectories (IT). Given a flight i, this state-exploitation

step applies a local change, from the neighborhood structure, to every flight that is cur-

rently interacting with flight i. For instance, suppose that trajectory i interacts with

trajectories p, q, and r; the changes are then sequentially applied to the decision variables

up, uq, and ur.

Hybrid simulated annealing - local search algorithm

For the sake of simplicity of implementation, the SA and the IILS are hybridized in a

self-contained (high-level) manner where each algorithm is sequentially executed. The IILS is

integrated as an inner-loop in the SA so that the IILS can be considered as one iteration step

of the SA. The initial solution of the IILS is provided by the current solution of the SA. Then,

the solution found by the IILS is returned to the SA, where an acceptance condition will be

verified. However, the IILS only allows strict improvements of the solution, it will always be

accepted by the SA here.

The order of execution of each metaheuristic is given as follows.

• At each iteration of the hybrid algorithm, one flight is randomly chosen among all flights

featuring the pre-defined level of interactions, Φτ . It is, as before, a pre-defined interaction

threshold parameter provided by the user. The hybrid algorithm chooses randomly one

flight in the set {i ∈ {1, 2, . . . , N} : Φi ≥ Φτ}. Let i denote the selected flight.

• Then, the hybrid algorithm determines whether to perform a classical SA step, or to trigger

the IILS, or to perform both algorithms successively. This decision is taken according to

a specific (user-defined) probability that depends upon the control temperature, T , and

the value of the term, Φi, of the objective function corresponding to flight i.

The probability to carry out SA step, PSA, is:

PSA(T ) = PSA,min + (PSA,max − PSA,min) · T0 − T
T0

, (3.3)

where PSA,max and PSA,min are the (user-provided) maximum and minimum allowed probabil-

ities to perform SA.

The probability of running the IILS module, PLoc, is given by:

PLoc(T ) = PLoc,min + (PLoc,max − PLoc,min) · T0 − T
T0

, (3.4)

where, similarly, PLoc,max and PLoc,min are the (user-provided) maximum and minimum prob-

abilities to perform the local search.

Finally, the probability of carrying out both SA and the IILS (successively), PSL, is

simply:

PSL(T ) = 1− (PSA(T ) + PLoc(T )) (3.5)
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Figure 3.14: Hybrid simulated-annealing / iterative-improvement local search algorithm.
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A key factor in tuning this hybrid algorithm is to reach a good trade-off between exploration

(diversification) and exploitation (intensification) of the solution space, i.e. a compromise be-

tween fine convergence towards local minima, and the computation time invested in exploring

the whole search space in order not to miss a global optimum.

The proposed hybrid algorithm is detailed in Figure 3.14, where Tinit and Tfinal are respec-

tively the initial and the final temperatures of the (user-provided) cooling schedule, and where

NI is the maximal number of iterations at each temperature step (also set by the user).

3.2.2 Computational experiments

The proposed hybrid SA / IILS algorithm is implemented in Java and, again, run on an

AMD Opteron 2 GHz processor with 128 Gb RAM. First, the hybrid algorithm is tested on

the (previously-presented) problem instance 2, involving en-route air traffic over the European

airspace. The user-defined parameter values specifying the optimization problem are the same

as those given in Table 3.1. Empirical tests lead us to set the user-defined parameters of the

hybrid algorithm as given in Table 3.5.

User-defined algorithm parameters value

Minimum probability to perform SA step, PSA,min 0.8
Maximum probability to perform SA step, PSA,max 0.9
Minimum probability to perform local search step, PLoc,min 0.4
Maximum probability to perform local search step, PLoc,max 0.6
Number of iterations at each temperature step, NI 3,500
Number of iterations of the inner-loop local search step, NLoc 5
Initial rate of accepting degrading solution, τ0 0.3
Geometrical temperature reduction coefficient, β 0.99
Final temperature, Tf (1/500).T0

Table 3.5: Empirically set parameters of the hybrid simulated-annealing / iterative-improvement
local search algorithm

To investigate the influence of each local search strategy (PT, IT, and PT&IT) on the

resolution of the problem, we first perform simulations by using either PT or IT strategy, and

then perform simulations using both PT and IT successively (PT&IT).

These three versions of the hybrid algorithm yield interaction-free solutions for every flight.

The number of iterations required by each resolution algorithm to reach interaction-free so-

lutions for problem instance 2 and their corresponding computation times are compared in

Figure 3.15. One can observe that, the hybrid algorithm converges to interaction-free solutions

significantly faster (around 3 times faster) than the classical SA described in Subsection 3.1.2.

In addition, the hybrid algorithm converges faster when using both search strategies (PT&IT)

successively. Figure 3.16 compares the number of modified flight plans yielded by each resolu-

tion algorithm. The number of modified flight plans (delayed / advanced flights and extended

flight) is significantly lower when using the hybrid algorithms (PT&IT, PT, and IT) thanks

to the more targeting search strategy that intensifies the search on flights that are involved in

interactions. The average departure time shifts and the average route length extension of each

modified flight are not significantly different when using different local search strategies. This
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Figure 3.16: Number of modified flight plans yielded by each resolution algorithm.
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Pw residual interactions no. of iterations computation time (minutes)

0.00 32 539,000 1,016.7
0.25 0 56,000 51.9
0.50 0 49,000 43.1
0.75 0 52,500 46.8
1.00 1,984 682,500 436.9

Table 3.6: Comparison of the numerical results of problem instance 2 for different values of the
parameter Pw.

is due to the fact that our objective function only focuses on minimizing the total interaction

between trajectories; route length extension and departure time shift are criteria that are only

dealt with as constraints.

To study the influence on the resolution time of the user-defined parameter Pw, that sets the

user preference to modify the departure time or to modify the horizontal flight path, simulations

are performed with Pw = 0, 0.25, 0.5, 0.75, and 1. The maximum allowed departure time shifts

are set this time to −δia = δid = 120 minutes. The maximum allowed route length extension is

set to di = 0.2.

Computation time of the hybrid algorithm using different Pw values are reported in Table

3.6. The hybrid algorithm yields interaction-free solutions when Pw is set to 0.25, 0.5, and 0.75.

However, by definition of Pw, when Pw is set to zero, the interactions can be solved only by

acting in the time domain. When Pw is set to one, the interactions can be solved only by acting

in the 3D space domain. In both cases the solution space is thereby significantly reduced. As a

consequence, the hybrid algorithm yields residual conflicts and requires long computation times

to converge.

Problem instance 3: continent-size air traffic including TMAs

A terminal maneuvering area (TMA, or terminal control area (TCA) in the U.S. and

Canada), is a controlled airspace dedicated to approaches or departures. For the sake of simplic-

ity, we shall consider that a given aircraft is in the TMA when its altitude is below 10,000 feet

above ground level, and we set the size of the minimum separation in this area, noted NhTMA
,

to 3 Nm.

To respect the departure and approach procedure in the TMA, we do not affect the shape

of trajectories in such area. We only modify the shape of trajectories in the en-route phase.

Therefore, the TMA-traffic is much more constrained than the en-route segment traffic. Indeed,

the interactions occurring in en-route airspace can be separated in space and in time, while the

interactions occurring in the TMA can only be separated in the time domain.

This problem instance involves the same traffic as the one of instance 2, with adding traffic

in the TMAs. The trajectory set, therefore, consists of N = 30, 695 trajectories, which yields

235,632 initial interactions. Remark that the total interactions between trajectories considering

traffic in the TMA is significantly higher than in the previous case where only en-route air traffic

is considered. This is due to the high density of the traffic in TMA. In addition, the interaction-

detection module cannot distinguish aircraft using parallel runways from actual interaction.

This leads to some false-positive contributions to the interaction. The control parameters of
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the optimization algorithm are the same as given in Table 3.5, but this time the number of

iterations at each temperature step, NI is set to 4,500.

The user-defined parameter values used to solve this problem are the same as those given

in Table 3.1. However, to solve this more constrained problem instance, the maximum number

of waypoints, M is set to = 3. Furthermore, two different values for the maximum departure

time shift, −δia, δid, and for the maximum route length extension, di, are used.

traffic scenario initial final di −δia, δid avg. computation avg. of modified avg. of modified
interaction interaction (minutes) time (minutes) trajectories departure times

En-route traffic 142,144 0 0.12 60 18.3 21.73 % 38.57%
traffic with TMA 235,632 0 0.12 60 1272.4 63.6% 89.6%
traffic with TMA 235,632 0 0.25 60 756.3 59.7 % 68.3 %
traffic with TMA 235,632 0 0.25 120 478.1 48.3 % 76.1 %

Table 3.7: Numerical results of the strategic planning algorithm taking into account the air
traffic in TMA.

The simulation is carried out 10 times. Numerical results are shown in Table 3.7. Again,

the proposed algorithm is able to find interaction-free solutions for the given traffic situation

involving high-density traffic in the TMA within computation times that are still compatible

with strategic planning applications. One observes that the computation time required to

obtain the interaction-free solution depends on the size of the solution space. As expected,

with the same settings as before (di = 0.12 and maximum time shift, −δia = δid = 60 minutes),

the algorithm requires significantly more computation time for solving the scenario with TMA

traffic. However, the required computation time decreases significantly when the solution space

is relaxed (i.e. when more candidate solutions are considered; last two lines of Table 3.7).

3.3 Conclusions

This chapter presents resolution algorithms to solve the proposed strategic trajectory plan-

ning problem formulated under the form of discrete and mixed-integer optimization problems.

The first resolution algorithm relies on a non-population based metaheuristic optimization al-

gorithm called simulated annealing (SA). The SA is implemented and tested with national-size

and continental-size en-route air traffic instances involving up to 29,852 flights.

The two mathematical formulations of the strategic trajectory planning problem are com-

pared. First, simulations are performed based on the discrete formulation, using different values

for the parameter Nw that controls the total number of possible alternative horizontal pro-

files. When Nw is increased, the solution space becomes richer. Therefore, it is easier to find

interaction-free solutions, and the SA converges faster to the interaction-free solution.

Then, simulations are performed based on the mixed-integer formulation. The SA yields

interaction-free solutions in less computation time and induces less route length extension.We

studied the influence of the parameter Φτ , that controls the neighborhood function, on the

computation time required by the simulated annealing. When Φτ increases, the neighborhood

function targets first the trajectories that are involved in more interactions. Therefore, the SA

converges to interaction-free solutions significantly faster when setting Φτ = Φmax.

To further improve efficiency of the resolution algorithm, we propose to combine the SA
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with an iterative-improvement local search algorithm. In this hybrid-metaheuristic algorithm,

the SA is responsible for exploring the solution space while the iterative improvement local

search intensifies the search around a promising region found by the SA. The hybrid algorithm

was tested on the continent-size air traffic instance. It requires significantly less computation

time to reach interaction-free solutions than the SA.

Finally, we took into account the air-traffic in the terminal maneuvering area (TMA). The

interaction between trajectories in the TMA is more dense and more difficult to solve than

in the en-route environment. Therefore, we increased the richness of the solution space by

increasing the number of virtual waypoints (M = 3). The influence of the size of the solution

spaces (maximum allowed departure time shift, maximum allowed route length extension) on

the resolution of this problem was studied. As expected, the problem becomes easier to solve

when the constraints are relaxed. This nevertheless provides a practical way to address such a

difficult problem.
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Chapter 4

Extension to the case with

uncertainty

In this chapter, we present an extension of the proposed strategic 4D trajectory planning

methodology to the case with uncertainties of aircraft positions and arrival times. To consider

such uncertainties, we rely on the concept of robust optimization, using two different models of

the uncertainty sets.

During flight, aircraft may not be able to comply with its assigned interaction-free 4D

trajectory with high precision due to, for instance, wind conditions, passenger delays, etc.

Moreover, imposing a hard 4D constraints on the trajectory may results in an increase of fuel

consumption and of aircraft engine workload, since the aircraft may have to keep on adjusting

its velocity. In order to improve robustness of the strategic trajectory planning, and to relax

the 4D constraints, uncertainties of aircraft position and arrival time are taken into account in

the trajectory optimization process.

More precisely, we rely on a concept of robust optimization to incorporate the uncertainties

into the problem. We propose a robust strategic 4D trajectory planning methodology based on

two different uncertainty models: deterministic model, and probabilistic model. The solutions

obtained are based on the following assumptions:

• the features of the uncertainties are identical for every aircraft.

• the uncertainty does not grow with time.

The present chapter is organized as follows. Section 4.1 presents a brief introduction to

the concept of robust optimization. Section 4.2 proposes a worst-case-oriented robust strategic

4D trajectory planning methodology based on a deterministic-type uncertainty set. Section

4.3 presents a less-conservative robust strategic 4D trajectory planning methodology based

on a probabilistic-type uncertainty set. In both Section 4.2 and Section 4.3, the interaction-

computation methods considering each type of uncertainty sets are detailed, and numerical

results from computational experiments are presented.

81



CHAPTER 4. EXTENSION TO THE CASE WITH UNCERTAINTY

4.1 Robust optimization: an introduction

The solutions to an optimization problem can be very sensitive to small changes or pertur-

bations on the data of the system being optimized. Indeed, the data of real-world problems are

hardly certain. The uncertainty can result from, for instance:

• Change of environment and operating conditions. These uncertainties can arise from

disruptive events linked to, for example, wind conditions, external temperature, pressure,

etc.

• Measurement or estimation errors. This type of error can be caused by, for example,

limitation of technology and environment conditions that make it impossible to measure

exactly the values of the system’s parameters. It may also be caused by the approximation

errors due to the use of models instead of real physical systems.

• Implementation errors. These errors are caused by the fact that it is not possible to

implement a solution exactly as it is computed.

These uncertainties can impact the optimization problem through the objective function

or through the constraint set. These uncertainties should be considered, otherwise the quality

of solution can be compromised, and/or the constraints of the problem can be violated when

implementing the solution.

To handle uncertainty, the concept of robust optimization has been developed mainly in the

fields of operations research and engineering design [82]. It aims at optimizing the objective

function for any realization of some of the data which are known to belong to some sets. A

comprehensive survey on robust optimization is provided in [25]. The interested readers are

referred to some standard robust optimization literature, for instance, [18, 19, 20, 21].

The concept of robust optimization differs from that of sensitivity analysis, which is a post-

optimization tool for quantifying the impact of perturbations in the values of the decision

variables and in the system data on the optimization cost. In contrast, robust optimization

focuses on optimizing the so-called robust counterpart of the objective function or satisfying the

robust counterpart of the constraints, given the characteristics of the uncertainty. The robust

counterpart, or sometimes referred to as robust regularization [63], is a function whose value at

any given point is the maximum value of the original function in a fixed neighborhood of such

a point. In other words, the robust counterpart approach aims to immune the solution of the

optimization problem, so that the original constraints are satisfied for any realization of the

uncertainties on pre-defined uncertainty sets.

The robustness of the optimization, therefore, lies in the characterization of the uncertainty

sets. There are different approaches to characterize and quantify uncertainty. According to [25],

there are:

• the deterministic type, which considers every possible realization of the system’s param-

eters in a given bounded set;

• the probabilistic type, which considers probability of the events, represented by probability

distributions; and
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• the possibilistic type, which considers the possibility or impossibility of the events can be

modeled by so-called fuzzy sets, whose elements have degrees of membership [89].

Considering the deterministic type, different geometries of uncertainty set have been con-

sidered. One of the commonly used geometry for the uncertainty set is the box:

U∞ = {ε | ‖ε‖∞ ≤ Ψ} ,

where Ψ is a parameter controlling the box’s size. Another commonly used and more realistic

uncertainty set is ellipsoidal uncertainty set which is motivated by the normal distribution. The

ellipsoidal uncertainty set is given by:

U2 =
{
ε | ‖Σ−1/2ε‖2 ≤ ρ

}
,

where Σ is the covariance matrix of ε, and ρ is a parameter controlling the size of the ellipsoid.

It is considered, for instance, in [19]. More geometries of uncertainty set are introduced, for

example, in [64].

To construct a robust counterpart of a given optimization problem, we shall limit our dis-

cussion, without loss of generality, to the case with an uncertain objective function. Note that

uncertain constraints can be incorporated by modifying the objective function so that the con-

straints have no uncertainty. Note also that the robust optimization can be modeled in an

opposite manner, by incorporating the uncertainty only to the constraint set (with introduction

of new constraints if necessary), and keeping the objective function without uncertainty [21].

Consider the objective function f(x) to be minimized, the uncertainties can be incorporated

by considering the robust counterpart function, FR, given by

FR = sup
ε∈U

f(x; ε),

where U is a set that defines the uncertainty of the system. We can assume without loss of

generality that the uncertainty set, U , has the form U = U1 × U2 × . . . × Un, where n is the

number of uncertainty sets to be considered. This robust counterpart is based on the Minimax

principle that seeks to immune the solution against the worst-case scenario.

A less conservative approach to define the uncertainty set, based on a probabilistic frame-

work, can also be considered. In this case, it is assumed that the probability distribution of the

uncertainty set U is known, yielding a random objective function, f(x; ε). In order to optimize

such a random objective function, one can, instead, optimize a related deterministic value, for

instance, the expected value:

FR = E[f(x; ε)].

This approach is referred to as Mean value optimization approach.

There exist other approaches to construct the robust counterpart of a given function, based

on different assumptions on the uncertainty sets. The interested readers is referred to, for

instance, [25].

The robust counterpart allows one to represent an uncertain problem under a deterministic

form, so that it can be solved using the same optimization approaches (with some modifications
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if necessary) as for its non-robust counterpart. Modeling a robust optimization problem is to

trade-off between the quality of the solution and robustness. Being too pessimistic will yield a

solution with higher cost (in terms of an objective function that one minimizes), while being

too optimistic will compromise the robustness of the solution obtained.

4.2 Robust strategic 4D trajectory planning based on deterministic-

type uncertainty

In this section, we present the strategic 4D trajectory planning problem taking into account

the uncertainty of the aircraft position and arrival time, by modeling these uncertainties as

deterministic sets. First, we present the uncertainty models that we are considering. Then, an

optimization formulation of the robust strategic 4D trajectory planning is introduced. After

that, a method to compute the value of the objective function under such uncertainties is

detailed. Then, a resolution algorithm to solve this problem is discussed. Finally, numerical

results from computational experiments are presented.

4.2.1 Uncertainty model

To consider the uncertainty of aircraft position and arrival time, we characterize the uncer-

tainty sets as follows.

Uncertainty of aircraft position in the horizontal plane

Consider an initial 4D trajectory planning specifying that an aircraft must arrive at a given

horizontal point (x, y) at time t. Due to uncertainties, we shall assume that the real horizontal

position, (xr, yr), of the aircraft at time t can be in an area defined by a disk of radius Rh (defined

by the user) around (x, y), as illustrated in Figure 4.1. Let εhx = (xr − x) and εhy = (yr − y)

denote the uncertainties of aircraft position in the x and the y directions respectively. The

vector of uncertainty of aircraft position in the horizontal plane, denoted εh = {εhx , εhy}, must

belong to the set:

Uh := {εh : ‖εh‖2 ≤ Rh} (4.1)

In other words, the possible locations of the aircraft at time t are the elements of the set:

{(xr, yr) : (xr − x)2 + (yr − y)2 ≤ R2
h}.

To ensure horizontal separation of aircraft subjected to such uncertainties, the protection

volume has to be enlarged by a radius of Rh as illustrated in Figure 4.1. Thus, the robust

minimum separation in the horizontal plane, N r
h, is defined as:

N r
h := Nh +Rh,

where Nh is the (usual) minimum horizontal separation of the case without uncertainty.
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Rh Nh

set	  of	  possible	  	  
aircra.	  horizontal	  	  
posi2ons	  	  (xr, yr )

Figure 4.1: Possible aircraft positions in the horizontal plane in presence of deterministic un-
certainty.

Uncertainty of aircraft position in the vertical dimension

Aircraft position may be subject to uncertainty in the vertical dimension mainly when the

aircraft is not in its cruise phase, e.g. climb, descent; we shall call such flight phase: non-level

flight phase. We shall assume that during such a non-level flight phase, the real altitude, denoted

zr, of the aircraft at a given time t lies in a bounded interval defined by an uncertainty radius

Rv (set by the user) which reduces strongly when the aircraft reaches its requested flight level.

The uncertainty of aircraft position in the vertical dimension, noted εv = zr− z, must therefore

belong to the set:

Uv := {εv : |εv| ≤ Rv} . (4.2)

In other words, the possible altitudes of the aircraft during non-level flight phase at time t

are the elements of the set:

{zr : z −Rv ≤ zr ≤ z +Rv}.

To ensure vertical separation of aircraft subjected to such uncertainties, the vertical sep-

aration requirement has to be enlarged by Rv as illustrated in Figure 4.2. Thus, the robust

minimum separation in the vertical dimension, noted N r
v , is defined as:

N r
v := Nv +Rv,

where Nv is the (usual) minimum vertical separation of the case without uncertainty.

Uncertainty of aircraft arrival time

In addition to the uncertainty in the 3D space domain (see Figure 4.3), aircraft may be

subject to uncertainty so that it arrives at a given position with a time error. Let tε be

the maximum time error (defined by the user). For simplicity, to implement the interaction
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z

Rv

possible	  aircra,	  
	  al-tude	  	   zr

Rv

Nv

Nv

Figure 4.2: Possible aircraft altitude, zr in presence of deterministic uncertainty in the vertical
dimension.

x, y, z
Rv

Nv

possible	  aircra,	  
posi-on	  	  xr, yr, zr

Rh Nh

Figure 4.3: Possible aircraft position in the 3D space domain in presence of deterministic
uncertainty.
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Figure 4.4: Two alternative vertical profiles for a trajectory (two alternative flight levels).

detection scheme, we shall assume that tε is chosen so that it is a multiple of the discretization

time step ts. The real arrival time, noted tr, of aircraft at the same trajectory point therefore

lies in the time interval:

[t− tε, t+ tε].

The uncertainty of the arrival time, noted εt = t− tr, must therefore belong to the set:

Ut := {εt : |εt| ≤ tε} . (4.3)

4.2.2 Robust optimization formulation

The uncertainties restrict the solution space of the problem and make it more difficult to

solve. Therefore, we introduce an additional degree of freedom to separate aircraft trajectories

in the vertical plane, by allowing aircraft to fly at alternative flight levels. The alternative flight

level to be allocated to each flight i is modeled as follows.

Alternative flight level. We define another decision variable associated to each flight i:

a flight-level shift li ∈ Z. Therefore, the flight level, FLi, of flight i is given by:

FLi = FLi,0 + li,

where FLi,0 is the (given data) initially-planned flight level of flight i. Figure 4.4 shows a

trajectory with two alternative flight levels.

Maximum allowed flight-level changes. In order to limit the change of flight levels, the

flight level shift is also bounded. The set, ∆FLi, of all possible flight-level shifts for flight i is:

∆FLi := [FLi,0 − li,max, . . . , FLi,0 − 1, 0, FLi,0 + 1, . . . , FLi,0 + li,max], (4.4)
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where li,max is the (user-provided) maximum flight level shifts allowed to be allocated to flight

i.

Decision variables. Recall that we have set δ = (δ1, δ2, . . . , δN ) the vector of departure

time shift, and w = (w1, w2, . . . , wN ) the vector of virtual waypoint locations associated to

flight i = 1, . . . , N . Let us set another compact vector notation:

l := (l1, l2, . . . , lN ).

Therefore, the decision variables of the robust strategic trajectory planning can be represented

by the vector:

u := (δ, l,w).

Objective function. Recall that we have defined the interaction at point Pi,k(ui) to be

the sum of all the conflicts associated to point Pi,k(ui):

Φi,k(u) :=

N∑
j=1
j 6=i

Kj∑
l=1

C(Pi,k(ui), Pj,l(uj)),

where Kj is the number of sampling points for trajectory j, and

C(P,Q) =

1 if point P is in conflict with point Q

0 otherwise.

Let us now denote ε to be the uncertainty of aircraft positions and aircraft arrival times,

and let U = Uh × Uv × Ut be the uncertainty set, where Uh, Uv, and Ut are defined by (4.1),

(4.2), and (4.3) respectively. The robust interaction associated to the point Pi,k(ui) considering

the deterministic-type uncertainty, denoted ΦD
i,k(u), can be defined as:

ΦD
i,k(u) = sup

ε∈U
Φi,k(u, ε) (4.5)

The robust interaction associated to trajectory i is, therefore, defined as:

ΦD
i (u) =

Ki∑
k=1

ΦD
i,k(u),

where Ki is the number of sampled points of trajectory i. Finally, the robust total interaction

between trajectories, that we are minimizing, is:

ΦD
tot(u) =

N∑
i=1

Ki∑
k=1

ΦD
i (u), (4.6)

where N is the total number of trajectories.

One wishes, therefore, to determine values for the optimization variables δi, li, and wi for

each flight i = 1, 2, . . . , N so as to minimize the total interaction, ΦD
tot(u), between the N given

trajectories.
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To summarize, the robust strategic trajectory planning problem, based on deterministic-

type uncertainty set, can be represented by an interaction minimization problem formulated as

a mixed-integer optimization problem as follows:

min
u

ΦD
tot(u)

subject to

δi ∈ ∆i, i = 1, 2, . . . , N

li ∈ ∆FLi, i = 1, 2, . . . , N

wmi ∈Wm
ix′ ×Wm

iy′ , m = 1, 2, . . . ,M, i = 1, 2, . . . , N,

(P3)

where ΦD
tot(u) is defined by (4.6), and ∆i, ∆FLi, W

m
ix′ , and Wm

iy′ are defined by (2.3), (4.4),

(2.5), and (2.8) respectively.

4.2.3 Objective function computation

To explain the process to determine the interaction between aircraft trajectories taking

into account deterministic-type uncertainties, let us first consider two trajectories A and B

illustrated in Figure 4.5, and let P and Q be any pair of sample points on the trajectories A

and B respectively. To compute the interaction between these two trajectories, we must check

whether the minimum separations, N r
h and N r

v is satisfied, between every possible pair of points

such as P and Q (pair-wise comparisons). Recall that the real arrival time, trP , of aircraft A at

A	  

B	  

Rh
P	  

Rh

Q	  

Nr
h

N r
h

Figure 4.5: Evaluating the interaction between two continuous trajectories A and B in presence
of deterministic-type uncertainty.

point P , and the real arrival time, trQ, at point Q are subject to:

trP ∈ [tP − tε, tP + tε],

and

trQ ∈ [tQ − tε, tQ + tε],

respectively.

A potential conflict between trajectories A and B, taking into account uncertainties, can

occur when the three following conditions are satisfied for a certain pair of sample points, P

and Q, from each trajectory:
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Figure 4.6: Possible scenarios of arrival time of two aircraft to the same 3D space region.

• dh :=
√

(xP − xQ)2 + (yP − yQ)2 < N r
h.

• dv := |zP − zQ| < N r
v .

• [tP − tε, tP + tε] ∩ [tQ − tε, tQ + tε] 6= ∅, i.e. |tP − tQ| ≤ 2tε.

When the above conditions are satisfied, we say that point P is in conflict with point Q taking

into account the deterministic-type uncertainty.

Figure 4.6 illustrates the four possible scenarios of arrival time of two aircraft to the same

3D space region. Remark that a potential conflict between P and Q can occur only in cases a)

and case b) where

|tP − tQ| ≤ 2tε.

Let us define further

CD(P,Q) =


1 if point P is in conflict with point Q

taking into account the deterministic uncertainty

0 otherwise.

(4.7)

With the above definitions, we can perform implicitly the supremum computation involved in

equation (4.5). Indeed, one can straightforwardly check that we have

ΦD
i,k(u) =

N∑
j=1
j 6=i

Kj∑
l=1

CD(Pi,k(ui), Pj,l(uj)).

To implement the interaction detection scheme, in presence of this deterministic-type un-

certainty, one simply has to adjust the size of the (3D space) grid cells according to the (user-

provided) robust minimum separation N r
h and N r

v (robust grid). Then, to detect interactions,
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for each cell (Ix, Iy, Iz, It) corresponding to each sampling point Pi,k := (xPi,k , yPi,k , zPi,k , tPi,k),

one simply needs to check all the surrounding cells (in the robust grid) corresponding to the

time period [tP − 2tε, tP + 2tε]. The algorithm used to compute the total interaction between

N trajectories taking into account the deterministic-type uncertainty is described in detail in

Algorithm 4.1.

Algorithm 4.1 Interaction computation algorithm in presence of deterministic-type uncer-
tainty

Require: value of the decision variables u = (δ, l,w), and the time sequence of 3D robust grids
(taking into account the N r

h and N r
v minimum separations.

1: Initialize ΦD
tot(u) := 0;

2: for i= 1 to N do . (for each trajectory i)
3: Discretize the alternate trajectory i defined by ui into a sequence {Pi,k}Kik=1;
4: Initialize ΦD

i (u) := 0;
5: for k = 1 to Ki do . (for each point Pi,k of trajectory i)
6: Initialize ΦD

i,k(u) := 0;
7: Compute the cell Ix, Iy, Iz, It corresponding to sample point Pi,k;
8: Compute ΦD

i,k(u):
9: for ix = Ix − 1 to Ix + 1 do

10: for iy = Iy − 1 to Iy + 1 do
11: for iz = Iz − 1 to Iz + 1 do
12: for it = It − 2 tεts to It + 2 tεts do
13: if ∃j 6= i such that j ∈ (ix, iy, iz, it) then
14: L:= list of all trajectory sample point in (ix, iy, iz, it);
15: for l = 1 to length(L) do
16: P := L(l);
17: Check conflict, C := CD(Pi,k, P ) using (4.7);
18: if C = 0 then
19: C :=interp(Pi,k, P );
20: end if
21: ΦD

i,k(u) := ΦD
i,k(u) + C;

22: end for
23: end if
24: end for
25: end for
26: end for
27: end for
28: end for
29: ΦD

i (u) := ΦD
i (u) + ΦD

i,k(u);
30: end for
31: ΦD

tot(u) := ΦD
tot(u) + ΦD

i (u);
32: Return ΦD

tot(u).

4.2.4 Resolution algorithm

To solve the robust strategic 4D trajectory planning problem, we rely on the hybrid SA /

IILS algorithm proposed in Section 3.2. As we have introduced an additional decision variable,

li, to modify the flight level of any given trajectory i, some modifications to the neighborhood

function are made as follows.
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Consider a chosen flight i to be modified, we introduce here another user-defined parameter,

noted Pl, to control the probability to modify the flight level of flight i. This parameter Pl must

satisfy:

Pw + Pl ≤ 1,

where Pw is the previously-defined (user-provided) probability to modify the location of way-

points. Finally, the probability to modify the departure time of flight i is 1 − (Pw + Pl). The

new neighborhood function considering flight level shifts is summarized in Algorithm 4.2.

Algorithm 4.2 Neighborhood function considering flight level shifts

Require: probabilities Pw, Pl, trajectory i.
1: Generate random number, r := random(0,1);
2: if r < Pw then
3: Choose randomly one virtual waypoint wmi to be modified.
4: Choose randomly new wmix′ from Wm

ix′ ;
5: Choose randomly new wmiy′ from Wm

iy′ ;
6: else
7: if r < (Pw + Pl) then
8: Choose randomly new flight level shift li from ∆FLi;
9: else

10: Choose randomly new departure time shift δi from ∆i;
11: end if
12: end if

Two additional local search algorithms to intensify the search on each particular trajectory

in different solution spaces are introduced as follows:

• Intensify the search in the Time Domain (TD). This local search module intensifies

the search by modifying only the departure time of a given trajectory i. The algorithm

repeats until a pre-defined number of local-search iterations is performed.

• Intensify the search in the Flight-level Domain (FD). This local search module

intensifies the search by modifying the flight level of a given trajectory i. If the change of

flight level yields an improvement of the objective-function value, the module further

intensifies the search on the current flight level by applying a local change from the

neighborhood structure to trajectory i (using the PT local search of Subsection (3.2.1).

The algorithm repeats until a pre-defined number of local search iterations is performed.

4.2.5 Computational experiments

The robust strategic 4D trajectory planning methodology addressing the deterministic type

uncertainty seen before is implemented on an AMD Opteron 2 GHz processor with 128 Gb

RAM. It is tested with the national-size and continent-size air traffic previously considered in

Chapter 3.

National-size en-route air traffic

First, we test the proposed methodology on the full-day national-size en-route air traffic

over the French airspace (Problem instance 1) involving 8,836 trajectories. Simulations are
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parameter value

Sampling time step, ts 20 seconds
Discretization time step for possible delay / advance departure-time shift, δs 20 seconds
Maximum departure time shift, deltaia = δid := δ 120 minutes
Maximum allowed route length extension coefficient, di 0.20
Maximum allowed flight level shifts, li,max := lmax 2
Maximum number of virtual waypoints, M 3

Table 4.1: Chosen (user-defined) parameter values specifying the robust optimization problem
for the national-size air traffic.

parameter value

Number of iterations at each temperature step, NI 200
Initial rate of accepting degrading solutions, τ0 0.3
Geometrical temperature reduction coefficient, β 0.99
Final temperature, Tf (1/500).T0
Inner-loop interpolation sampling time step, tinterp 5 seconds
Probability to modify horizontal flight profile, Pw 1/3
Probability to modify flight level, Pl 1/3
Threshold value, Φτ 0.5 Φavg

Table 4.2: Empirically-set (user-defined) parameter values of the resolution methodology to
solve the national-size air traffic.

performed with different values for the parameters Rh, Rv, and tε, defining the size of the

uncertainty sets.

The parameter values chosen to specify the optimization problem are given in Table 4.1.

Simply to give an idea of the complexity of this problem, with regard to the dimension of the

search space, remark that our optimization problem involves for this instance:

• 2MN = 53,016 (continuous) virtual waypoint variables (the component of the vector w);

• N = 8,836 (discrete) departure-time shift variables (the component of the vector δ), each

of which involves 2δ
δs

+ 1 = 721 possible values;

• N = 8,836 (discrete) flight-level shift variables (the component of the vector l), each of

which involves 2lmax + 1 = 5 possible values;

for a total of 53,016 continuous variables and 2N = 17,672 discrete variables involving a joint

combinatoric of (2δδs + 1)N · (2lmax + 1)N = (721 · 5)8,836 possible values.

The parameter values specifying the resolution algorithm are empirically set and given in

Table 4.2. The initial and final total interaction between trajectories, the computation time,

and the number of iterations performed to solve the problems considering different levels of

uncertainty are reported in Table 4.3 (the vertical uncertainty radius, Rv, is used only when

aircraft are climbing and descending).

The size of the uncertainty set affects the resolution time and the final total interaction

between trajectories. When increasing the time uncertainty, the initial interaction increases

significantly (cases 1, 3, 4 and 5), and the algorithm requires more computation time to converge.
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case uncertainty set initial final solved CPU no. of
dimensions ΦD

tot ΦD
tot interactions time (minutes) iterations

Rh = 0 Nm.
1 Rv = 0 feet. 2,282,436 5,934 99.7% 1,093.8 1,083,215

tε = 180 seconds.

Rh = 1 Nm.
2 Rv = 100 feet. 765,448 0 100.0% 101.1 97,400

tε = 60 seconds.

Rh = 1 Nm.
3 Rv = 100 feet. 1,425,384 4,314 99.7% 1,809.0 1,791,000

tε = 120 seconds.

Rh = 1 Nm.
4 Rv = 100 feet. 2,821,706 37,290 98.7 % 2,213.3 2,191,970

tε = 240 seconds.

Rh = 2 Nm.
5 Rv = 100 feet. 5,000,430 110,021 97.9% 2,289.8 2,266,956

tε = 240 seconds.

Table 4.3: Initial and final total interaction between trajectories for the national-size air traffic,
considering different dimensions for the uncertainty set (the vertical uncertainty radius, Rv, is
relevant only when aircraft are climbing or descending).

The algorithm reaches an interaction-free solution for the case 2. It solves up to 99.7% of the

initial interactions in the remaining cases (1, 3, 4, and 5), within computation times that are

still compatible in a strategic planning context (the worst run, case 5, involving less than 38

hours of CPU time).

Continent-size air traffic

To test the proposed methodology on continent-size air traffic, simulations were performed

on the en-route traffic scenario as well as on traffic involving the TMAs. However, due to the

lack of data, alternative flight levels for these two continent-size instances are not available. To

solve these problem instances, we limit the maximum flight level change, li,max, to zero, for all

flight i (lmax = 0). The uncertainty of aircraft position in the TMA is not taken into account

(RTMA
h = 0, and RTMA

v = 0), since during this phase of flight, aircraft are usually required to

follow a given path with very high precision.

The user-defined input parameters of the optimization algorithm are all set to the same

values as those for the national-size en-route air traffic (Table 4.1), except for lmax which is set

to zero as explained above. These values are displayed in Table 4.4. Since for this instance

there is no flight-level variables, the complexity of the optimization problem (in terms of the

dimension of the search space) is reduced. For the problem instance involving en-route air

traffic, one has

• 2MN = 179,112 (continuous) virtual waypoint variables (the component of the vector w);

• N = 29,852 (discrete) departure-time shift variables (the component of the vector δ), each

of which involves involving (2δδs + 1)N = 72129,852 possible values;
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parameter value

Sampling time step, ts 20 seconds
Discretization time step for possible delay / advance departure-time shift, δs 20 seconds
Maximum departure time shift, −δia = δid := δ 120 minutes
Maximum allowed route length extension, di 0.20
Maximum allowed flight level shifts, li,max 0
Maximum number of waypoints, M 3

Table 4.4: Chosen (user-defined) parameter values specifying the robust optimization problem
for continent-size air traffic.

parameter value

Number of iterations at each temperature step, NI 4,000
Initial rate of accepting degrading solution, τ0 0.3
Geometrical temperature reduction coefficient, β 0.99
Final temperature, Tf (1/500).T0
Inner-loop interpolation sampling time step, tinterp 5 seconds
Probability to modify horizontal flight profile, Pw 0.5
Probability to modify flight level, Pl 0.0
Threshold value, Φτ 0.5 Φavg

Table 4.5: Empirically-set (user-defined) parameter values of the resolution methodology to
solve the continent-size air traffic instances.

for total of 208,964 decision variables. For the problem instance involving air traffic in the

TMAs, one has

• 2MN = 184,170 (continuous) virtual waypoint variables (the component of the vector w);

• N = 30,695 (discrete) departure-time shift variables (the component of the vector δ), each

of which involves involving (2δδs + 1)N = 72130,695 possible values;

for total of 214,865 decision variables.

The user-defined parameter values specifying the hybrid SA / IILS algorithm to solve these

problem instances are given in Table 4.5. The only difference with those for the national-size

instance (Table 4.2) is that the number of iterations at each temperature step is increased from

200 to 4,000, the probability to modify the flight level becomes irrelevant (set to zero), and the

probability to modify the horizontal flight profile is consequently increased from 1/3 to 1/2.

The initial and final total interaction between trajectories, and the computation time to solve

the problem considering different levels of uncertainty are reported in Table 4.6. Although the

trajectories can be separated only by modifying the horizontal flight profile and the departure

time of each flight, the resolution algorithm finds an interaction-free solution, taking into account

uncertainty of aircraft positions, for both problem instances in cases 2 and 4. When time

uncertainty is considered (case 1 and 3), there remains less than 15% of the initial interaction

between trajectories. This could be improved by introducing more degrees of freedom to the

solution space, e.g. alternative flight levels, or speed regulation in the TMA. The most remaining

interactions are located in the TMA. When we took into account only the en-route phase as

in the French air traffic case, one can expect much better results. Remember also that in the
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case traffic uncertainty initial final solved CPU time no. of
scenario set dimensions ΦD

tot ΦD
tot interactions (minutes) iterations

only Rh = 3 Nm.
1 en-route Rv = 200 feet. 5,142,632 634,474 87.7 % 2,756.2 2,728,776

tε = 60 s.

only Rh = 3 Nm.
2 en-route Rv = 200 feet. 430,234 0 100.0 % 347.6 345,528

tε = 0 s.

Rh = 0 Nm.
3 with TMA Rv = 0 feet. 3,874,402 560,114 85.5 % 2,652.1 2,625,714

tε = 120 s.

Rh = 3 Nm.
4 with TMA Rv = 200 feet. 487,698 0 100.0 % 578.4 572,648

tε = 0 s.

Table 4.6: Initial and final total interaction between trajectories for the continent-scale air
traffic with different dimensions for the uncertainty set.

continental case, there is no alternative choices in the vertical dimension (due to the lack of

data).

4.3 Robust strategic 4D trajectory planning based on probabilistic-

type uncertainty model

The worst-case-oriented methodology to consider uncertainty presented in the previous sec-

tion tries to guarantee an interaction-free solution over every possible cases of the given uncer-

tainty set. However, some events corresponding to the points in the uncertainty set have very

low probability to occur. Trying to immune the solution against such events could yield un-

necessarily costly solutions, and can be interpreted as too conservative for a situation involving

high levels of uncertainty as it is the case in strategic planning.

Instead of relying on deterministic sets to define the uncertainties, we assume in this sector

that the probability distribution of uncertainty is known. Therefore, instead of trying to guar-

antee separation between the envelopes of trajectories (the set of all possible trajectories), we

introduce a methodology that aims, roughly speaking, at minimizing a weighted overlap of the

uncertainty envelopes, where the weights are driven by the uncertainty probability distribution.

This will be defined formally in Subsection 4.3.3.

As an aircraft is able to follow a given flight profile with very high accuracy thanks to the

flight management system (FMS).1, we shall consider in this section that the residual uncertainty

of aircraft position is more likely to occur in the time domain, assuming that an aircraft is able

to follow a given trajectory with high precision in the 3D space domain.

1Flight management system (FMS) is an on-board computer system that determines the aircraft exact position
and calculates the lateral and horizontal guidance for the aircraft
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Figure 4.7: Uncertainty of aircraft arrival time, defined by triangular distribution over given
time intervals (left: view in the space domain; right: view in the time domain).

4.3.1 Probabilistic uncertainty model

Using the maximum time error, tε (set by the user), the predicted arrival time of an aircraft

at a position P under uncertainty lies in the interval:

[tP − tε, tP + tε],

where tP is the assigned arrival time to point P . For the purpose of potential conflict detection,

we assume here that the predicted aircraft arrival time can be modeled as a random variable

with the following triangular distribution defined over the interval [tP − tε, tP + tε]. Given the

lower limit tP − tε, the upper limit tP + tε, the predicted arrival time, denoted t̂P , to the position

P is given by the probability density function:

t̂P (t) = TP,tε(t),

where TP,tε(t) denotes the triangular distribution:

TP,tε(t) =



0 for t < tP − tε,
(t−tP+tε)

t2ε
for tP − tε ≤ t ≤ tP ,

(−tP+tε−t)
t2ε

for tP < t ≤ tP + tε,

0 for tP + tε < t.

(4.8)

Figure 4.7 illustrates the uncertainty of arrival time of two aircraft A and B to the trajectory

sample points P and Q respectively defined by a triangular distribution function over the time

interval [tP − tε, tP + tε] and [tQ − tε, tQ + tε] respectively.

4.3.2 Optimization formulation

To solve the robust strategic 4D trajectory planning problem based on the above probabilistic-

type uncertainty set, we rely on the same trajectory separation methods, the same decision
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variables, and the same constraints as presented in Section 4.2. The objective function of this

problem can be modeled as follows.

Objective function. Given values of the decision variables, the components of the op-

timization vector u = (δ, l,w), we define a robust interaction at a point P based on the

probabilistic-type uncertainty, to be the sum of all the probabilistic interaction associated to

point P . Given a trajectory i and the kth sample point, Pi,k(ui), we note ΦP
i,k(u) the robust

interaction at point Pi,k(ui) based on probabilistic-type uncertainty. Remark that it depends

also on the decision variables related to the other trajectories j 6= i. Hence, we have

ΦP
i,k(u) :=

N∑
j=1
j 6=i

Kj∑
l=1

Ptε(Pi,k(ui), Pj,l(uj)),

where Kj are the number of sampling points for trajectory j, and where Ptε(PA, PB) is the

probabilistic interaction associated to the sample points PA and PB of trajectory A and B

respectively. It will be defined precisely in the next Subsection (4.3.3).

In this probabilistic uncertainty context, we redefine the robust interaction associated with

trajectory i, denoted ΦP
i (u), is defined as follows:

ΦP
i (u) :=

Ki∑
k=1

ΦP
i,k(u).

Finally, the total interaction between trajectories, ΦP
tot(u), for a whole N -aircraft traffic

situation is simply defined as:

ΦP
tot(u) =

N∑
i=1

ΦP
i (u) =

N∑
i=1

Ki∑
k=1

ΦP
i,k(u). (4.9)

One wishes to determine values for the optimization variables δi, li, and wi for each flight

i = 1, 2, . . . , N so as to minimize the total robust interaction, ΦP
tot(u), between the N given

trajectories.

To summarize, given a value, tε, of time uncertainty and the triangular probability dis-

tribution defined in (4.8), the strategic trajectory planning problem with probabilistic-type

uncertainty can be represented by a robust interaction minimization problem formulated as the

following mixed-integer optimization problem:

min
u

ΦP
tot(u)

subject to

δi ∈ ∆i, i = 1, 2, . . . , N

li ∈ ∆FLi, i = 1, 2, . . . , N

wmi ∈Wm
ix′ ×Wm

iy′ , m = 1, 2, . . . ,M, i = 1, 2, . . . , N,

(P4)

where ΦP
tot(u) is defined by (4.9), and ∆i, ∆FLi, W

m
ix′ , and Wm

iy′ are defined by (2.3), (4.4),

(2.5), and (2.8) respectively.
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4.3.3 Objective function computation

To explain the process to compute the total robust interaction between trajectories based on

probabilistic-type uncertainty, let us consider the trajectories A and B given in Figure 4.7. Let

P and Q be any trajectory sample points on trajectories A and B respectively. The predicted

arrival time, t̂P , of aircraft A to the given point P , and the predicted arrival time, t̂Q, of aircraft

B to the given point Q are given by:

t̂P (t) = TtP ,tε(t),

and

t̂Q(t) = TtQ,tε(t).

Again, a potential conflict between trajectories A and B occurs when there exists a pair of

points, PA and PB, from each trajectory such that the three following conditions are satisfied:

• dh < Nh;

• dv < Nv;

• and [tP − tε, tP + tε] ∩ [tQ − tε, tQ + tε] 6= ∅.

The probabilistic interaction, denoted Ptε(P,Q), associated to the trajectory sample points P

and Q is formally defined as follows:

Ptε(P,Q) :=

∫
IPQtε

t̂P (t)t̂Q(t)dt, (4.10)

where IPQtε denotes the time interval [tP − tε, tP + tε]∩ [tQ− tε, tQ+ tε]. Remark that when this

intersection is the empty set, the integral in (4.10) reduced to zero. The interaction detection

algorithm taking into account probabilistic uncertainty of aircraft arrival time is detailed in

Algorithm 4.3.

4.3.4 Computational experiments

To test the proposed robust strategic 4D trajectory planning methodology based on the

probabilistic-type uncertainty model, we rely on the hybrid SA / IILS algorithm with mod-

ifications presented in Subsection (4.2.4). The proposed methodology is implemented on an

AMD Opteron 2 GHz processor with 128 Gb RAM. It is tested again with the national-size and

continent-size air traffic presented in Chapter 3.

National-size en-route air traffic

The parameter values that specify the problem under consideration are the same as those

given in Table 4.1. The parameters of the hybrid simulated-annealing / local-search are the

same as those presented in Table 4.2.The simulations are performed considering successively

aircraft maximum time uncertainty, tε, of 1 up to 4 minutes, respectively.

The initial and final interaction between trajectories and the required computation time

are reported in Table 4.7. Remark that the initial total interactions between trajectories are
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Algorithm 4.3 Interaction computation algorithm in presence of probabilistic-type uncertainty

Require: value of the decision variables u = (δ, l,w)
1: Initialize ΦP

tot(u) := 0;
2: for i= 1 to N do . (for each trajectory i)
3: Discretize the alternate trajectory i defined by ui into a sequence {Pi,k}Kik=1;
4: Initialize ΦP

i (u) = 0;
5: for k = 1 to Ki do . (for each point Pi,k of trajectory i)
6: Initialize ΦP

i,k(u) := 0;
7: Compute the cell Ix, Iy, Iz, It corresponding to Pi,k;
8: Compute ΦP

i,k(u):
9: for ix = Ix − 1 to Ix + 1 do

10: for iy = Iy − 1 to Iy + 1 do
11: for iz = Iz − 1 to Iz + 1 do
12: for it = It − 2 tεts to It + 2 tεts do
13: if ∃j 6= i such that j ∈ (ix, iy, iz, it) then
14: L:= list of all trajectory sample point Pj in (ix, iy, iz, it);
15: for l = 1 to length(L) do
16: P := L(l);
17: compute probabilistic interaction, P := Ptε(Pi,k, P ) using

(4.10);
18: if P = 0 then
19: P := interp(P_{i, k}, P);
20: end if
21: ΦP

i,k(u) := ΦP
i,k(u) + P;

22: end for
23: end if
24: end for
25: end for
26: end for
27: end for
28: end for
29: ΦP

i (u) := ΦP
i (u) + ΦP

i,k(u);
30: end for
31: ΦP

tot(u) := ΦP
tot(u) + ΦP

i (u);
32: Return ΦP

tot(u).
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significantly smaller than those of the worst-case-oriented approach. This is not surprising, since

in the later (deterministic) case one counts one interaction when in the former (probabilistic)

case there is even only a tiny positive probability of conflict.

The proposed strategic trajectory planning methodology is able to find interaction-free tra-

jectory planning for all cases. When considering higher level of time uncertainty (4 minutes),

the solution space becomes more constrained and therefore the algorithm requires more com-

putation time to converge.

tε initial final solved CPU time No. of
(seconds) ΦP

tot ΦP
tot interactions (minutes) iterations

60 217,441.37 0.0 100.0 % 116.07 114,970
90 274,953.55 0.0 100.0 % 175.4 173,736
120 383,967.60 915.04 99.8 % 586.3 1,031,730
240 718,374.42 1,547.13 99.8 % 1,052.4 1,041984

Table 4.7: Numerical results for the national-size air traffic considering four different levels of
aircraft maximum time uncertainty (1 to 4 minutes).

Continent-size air traffic

Now we test the algorithm with the continent-size air traffic considering en-route as well as

the air traffic in the TMA. The parameter values that specify the problem under consideration

are, here again, the same as those given in Table 4.4. The parameters of the hybrid SA / IILS

are the same as those given in Table 4.5, with the number of iterations at each temperature

step, NI empirically set to 2,000, more than for the above, smaller, national-size instance (NI

=200).

case traffic tε initial final solved CPU time no. of
scenario (seconds) ΦP

tot ΦP
tot interaction (minutes) iterations

1 en-route 60 529,555.5 12,550.0 97.6 % 1,341.7 1,328,152
2 en-route 120 1,079,738.4 40,706.2 96.2 % 2,254.2 2,231,881
3 with TMA 60 1,128,282.7 85,185.3 92.5 % 2,340.7 2,317,065
4 with TMA 120 2,344,753.2 147,250.5 93.7% 2,453.8 2,429,264

Table 4.8: Numerical results for the continent-size instances, with and without TMA traffic,
considering two different levels of time uncertainty.

The initial and final interactions between trajectories, and computation time to solve the

problem are reported in Table 4.8. Recall again that, as in the case without uncertainty,

alternative flight levels for these two (with and without TMA traffic) continent-size instances

are not available. Therefore, due to this lack of data, these problem instances can be separated

only by modifying the horizontal flight profile and by modifying the departure time of aircraft

(li,max is therefore set to zero for all flight i, and the only decision variables are the components

of the optimization vectors w and δ). Nevertheless, there still remains less than 7% of the initial

interactions taking into account the probabilistic-type time uncertainty.
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4.4 Conclusions

In this chapter, we have presented a methodology to consider uncertainty of aircraft position

and arrival time in the strategic 4D trajectory planning process. The proposed approach relies on

the concept of robust optimization to incorporate uncertainties into the trajectory optimization

process. This problem is more difficult to solve, since the uncertainty decreases substantially

the size of the search space. Therefore, additional degrees of freedom to modify the flight level

of each flight have been introduced in order to able to propose a resolution algorithm that is

compatible with the operational context of large-scale problem.

First, the uncertainties have been modeled with deterministic sets. The algorithm therefore

tries to minimize the interaction between trajectories considering all possible scenario implicitly

described by the uncertainty sets (worst-case approach). The algorithm developed for the

case without uncertainty was adopted via a modification of the way the objective function is

evaluated. The modified algorithm was tested on national-size and continent-size air traffic. It

was able to find interaction-free solutions for some uncertainty set sizes. There remains less

than 15 % of the initial interactions when the size of the uncertainty set is larger.

Since such a worst-case uncertainty model can be far too conservative in practice, probabilistic-

type uncertainty sets were then considered to represent aircraft arrival time, assuming that an

aircraft is able to follow the 3D spatial constraints of its trajectory with high precision. The

resulting algorithm was first tested on a national-size scenario. It is able to separate all tra-

jectories considering time uncertainty intervals (2tε) of up to 3 minutes, and solve 99.8 % of

interactions considering time uncertainty intervals (2tε) of up to 8 minutes. Then, it was tested

on the continent-size air traffic scenario considering en-route traffic, as well as traffic in the

TMA. The algorithm is able to separate near 97 % of the initial interaction between trajectories

for en-route traffic, and near 94% when including TMA traffic considering time uncertainty

interval (2tε) of 4 minutes.

The level of uncertainty to be considered is a trade-off between the desired robustness of

the solution obtained and the associated trajectory modifications costs, to be decided by the

user. Considering too important uncertainty in strategic planning will, indeed, results in a lost

of capacity, since large portions of airspace have to be cleared for a given aircraft for a long

period of time. Instead, the user can consider lower uncertainty levels, and iteratively solve the

remaining interactions during pre-tactical and tactical phases.

When the traffic in the TMA is included, result may be improved by adding speed control

variable in the state space to reduce interaction in such area which is not the case in the above-

presented algorithm (in all benchmark with TMA, the remaining interaction are mainly located

in such area).
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To accommodate the continuously growing air traffic demand, the world’s major air traffic

management (ATM) systems are being transformed towards trajectory-based operations, which

focus on managing aircraft trajectories in order to improve the ATM efficiency and to maximize

the use of the available airspace. One of the key factors to improve the ATM capacity is the

new conflict management concept that aims at transferring the tactical conflict detection and

resolution tasks to the strategic trajectory planning phase. Instead of the more conventional

approach that tries to satisfy given airspace capacity constraints, the new conflict management

concept focuses on increasing the capacity by managing conflicts between aircraft trajectories

so that the air traffic will become easier to manage. Therefore the controller will be able to

accommodate more flights in a given airspace.

Contributions

In this thesis, we have contributed to the domain of air traffic management research in

the framework of future ATM paradigm. More precisely, we have proposed and developed the

following model, algorithms and overall methodology:

Mathematical model for strategic trajectory planning methodology

We have introduced a concept of interaction to quantify the situation where pairs of aircraft

samples trajectory points violate the separation norms so that minimizing interaction boils

down to minimizing conflicts between trajectories.

We have introduced a mathematical model to separate all aircraft trajectories for large-scale

traffic scenarios by allocating alternative routes, alternative departure times, and alternative

flight levels to flights in conflicts, yielding to a discrete optimization problem and to a mixed-

integer optimization problem.

4D grid-based interaction-computation algorithm

We have developed a computationally-efficient algorithm to detect and compute interaction

between N aircraft trajectories that can handle large-scale applications. To avoid using the
N(N−1)

2 time-consuming pair-wise comparisons to detect conflicts between any pair of trajectory

sample points, we have developed a detection scheme exploiting a four-dimension (3D space +

time) grid that limits the number of sampling trajectory points to be checked.
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This algorithm is very flexible and easy to extend to larger airspace areas, to other separation

constraints, or to complex uncertainty models. Furthermore, due to its short computation time,

the application of the proposed detection algorithm is not only limited to the strategic planning

phase, it can also be applied, for instance, in a tactical planning context involving a smaller

number of trajectories.

Metaheuristic algorithms to solve the interaction-minimization problems

To solve the above-described optimization problems for large-scale and complex strategic

4D trajectory planning problems, we relied on metaheuristic algorithms.

First, we adapted a simulated annealing algorithm, a classical non-population based meta-

heuristic algorithm, to address the problem. The proposed implementation was successfully

tested on national-size and continent-size air traffic scenarios involving more than 30,000 tra-

jectories. However, the simulated annealing requires more than one hour of computation time

to converge to zero-interaction solutions.

To improve the efficiency of the resolution algorithm, we have developed a hybrid-metaheuristic

algorithm, combining the simulated annealing with two simple local search modules. This hy-

brid algorithm was successfully implemented and tested on both the national and continent

size air traffic, and converged to interaction-free solutions up to 3 times faster than the pure

simulated annealing.

Overall methodology for strategic trajectory planning

The overall methodology we introduced first simulates trajectories using the BADA (Base of

Aircraft Data) model, and proposes modified 4D trajectories thanks to the above optimization

and the efficient interaction-computation algorithm. As a result, one can handle large-scale air

traffic within reasonable computation time.

Methodology for robust strategic 4D trajectory planning

To improve robustness of the resulting interaction-free 4D trajectories, we have introduced

a method to consider uncertainty of aircraft position and arrival time, based on the concept of

robust optimization. Two different uncertainty models were used to represent the uncertainty

sets.

The first one modeled the uncertainty with deterministic sets. Our overall methodology was

adapted to take into account such a worst-case oriented uncertainty model. It was successfully

implemented and tested. However, it appears that it is too conservative to try to guarantee

interaction-free trajectories against every possible uncertainty scenario in the strategic planning

when one deals with high levels of uncertainty. Indeed, preliminary numerical simulations tend

to show that using too large uncertainty sets can result in a decrease of capacity.

We have considered a less conservative uncertainty model, representing uncertainty of air-

craft arrival time using probabilistic sets. This yields a probabilistic adaptation of our concept

of interaction. The proposed methodology was again adapted, implemented and tested, yielding

interaction-free solutions for time uncertainty intervals up to 4 minutes wide.
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Perspectives

Further research could follow the following recommendations:

Speed adjustment in the TMAs

The high density air traffic in the TMAs was managed in this thesis by acting only in the

time domain in order to respect the standard departure and arrival procedures. To improve

the interaction management in this area, one could consider increasing the number of degrees

of freedom in the search space by allowing also speed adjustment (new decision variables in the

optimization formulations) in the TMAs.

Minimizing flight-plan modifications

The objective of the proposed methodology was to minimize the total interaction between

trajectories, while the cost of modifying the flight plans were considered implicitly in the opti-

mization constraints. Our methodology can find zero-interaction solutions; it would be relevant

to attempt at choosing, among all such solutions, the ones that involve the lowest cost, includ-

ing for instance the costs associated to the modification of flight plans (e.g. delay cost, extra

fuel consumption). To extend the work presented in this thesis, one can concentrate on reduc-

ing the total costs associated to the modifications of the initial flight plans; thereby reducing

the number of departure time shifts, the total trajectory length extension, and the number of

flight-level shifts.

This could be achieved, for example, by relying on the concept of “dynamical” constraints,

where the optimization constraints may change over the solving time. The idea is to start from

a small, restricted search space and, if necessary, gradually increase the size of the search space

as a function of the simulated-annealing temperature steps that have been performed. Another

idea is to rely on the concept of multi-objective optimization [46]. Due to the computational

memory requirement, one could simply consider scalarizing the objectives into a single one.

Improving uncertainty models

In this thesis, preliminary steps to improve robustness of the resulting trajectories were

conducted by taking into account uncertainty of aircraft position and arrival time into the

strategic trajectory planning process. To improve further robustness of the solutions, one could

consider using more realistic uncertainty models, for instance, considering evolutions of the

uncertainty sets during the flight time.
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