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Résumé

Cette thèse se concentre autour du problème de l’estimation de matrices de
covariance conditionnelles et ses applications, en particulier sur la réduction
de dimension et l’analyse de sensibilités. En supposant qu’on observe X ∈ Rp

et Y ∈ R des variables aléatoires qui possèdent certaine distribution que, par
rapport à la mesure de Lebesgue, ont une densité jointe f (x, y). La matrice
conditionnelle de covariance Cov(E[X|Y]) = (σij)p×p pour i, j = 1, . . . , p, est
constituée d’éléments σij à estimer qui néanmoins, dépendent de la fonction f .

Ainsi, nous nous intéressons aux problématiques suivantes :

1. Construire des estimateurs des paramètres σij les plus optimaux possibles.
Le cadre de l’estimation est la statistique semi-paramétrique puisque nous
estimons des paramètres dépendant d’une distribution non paramétrique.

2. Nous nous interrogeons sur l’efficacité de notre méthode d’estimation.

3. Estimer la matrice de covariance conditionnelle en entier en tant qu’operateur
matricial.

4. Nous proposerons des applications de notre nouvelle méthode d’estimation.

La thèse est structurée de la manière suivante :

Chapitre 1

Le Chapitre 1 appliquera les enjeux développes dans cette thèse. Il présentera
les différentes définitions et les méthodes mathématiques abordées dans ce

v



travail de recherche.

L’estimation de variance conditionnelle occupe une place importante dans
deux problématiques : La réduction de la dimension en régression non linéaire
et l’étude de l’analyse de sensibilité d’un modèle. Ces deux problèmes ont de
nombreuses applications modernes dans la chimie, la biologie, l’économie ou le
marketing, pour en nombrer que quelqu’un-es.

Réduction de la dimension Le travail de Li (1991a) présente la méthode de
régression inverse par tranches. Cette méthode réduit le nombre de variables d’une
régression non linéaire en grande dimension. Il suppose un modèle avec X ∈ Rp

et Y ∈ R qui sont les variables indépendantes et dépendante respectivement. La
technique approxime l’espace central pour la réduction de la dimension, basée
sur l’estimation des valeurs propres de la matrice conditionnelle Cov(E[X|Y]).
Une fois que nous avons cet espace, nous sélectionnons les vecteurs propres
associés aux plus grandes valeurs propres. Ces vecteurs sont la projection du
modèle d’origine vers un nouvel ensemble réduit de variable. La question
principal ici est l’estimation de E[E[Xi|Y]E[Xj|Y]] pour i, j = 1, . . . , p.

Analyses de sensibilité Supposons un modèle avec entrées (X1, . . . , Xp) et
une sortie Y. Sobol’ (1993) a montré que la valeur Var(E[Y|Xi])/ Var(Y), pour
i = 1, . . . , p, mesure la sensibilité de Xi par rapport à Y. Cela signifie que ces
indices quantifient combien d’entrée Xi apporte à la variabilité de la sortie Y.
La littérature dans ce sujet se concentre dans la quantification de Var(E[Y|Xi]),
en particulier dans l’espérance conditionnelle E[(E[Y|Xi])

2].

Chapitre 2

Dans ce chapitre nous plaçons dans un modèle d’observation de type régression
en grande dimension pour lequel nous souhaitons utiliser une méthodologie
de type régression inverse par tranches. Pour cela nous proposons un nouvel
estimateur de Cov(E[X|Y]) qui repose sur un generalisation du travail de Da
Veiga and Gamboa (2013). Ils ont proposé un estimateur basé sur une décompo-
sition de Taylor pour E[(E[Y|Xi])

2] pour i = 1, . . . , p, qui nécessite l’estimation
d’intégrales quadratiques en deux dimensions, étudiés avant par Laurent (1996).
Notre travail cherche à generaliser leur travail au cas multidimensionel pour
estimer E[E[Xi|Y]E[Xj|Y]] pour i, j = 1, . . . , p.
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Notons f (xi, xj, y) la fonction de densité de (Xi, Xj, Y) et fY(y) la densité
marginale de Y. Nous allons commencer par la réécriture du terme non linéaire
conditionnel

E[E[Xi|Y]E[Xj|Y]] =
ˆ (´ xi f (xi, xj, y) dxi dxj

fY(y)

)
(´

xj f (xi, xj, y) dxi dxj

fY(y)

)
f (xi, xj, y) dxi dxj dy.

L’utilisation d’un opérateur fonctionnel en f , nous permettra d’appliquer
la décomposition de Taylor autour d’un estimateur préliminaire de f appelé f̂ .
Cet opérateur sera divisé en une partie linéaire, une quadratique et un terme
d’erreur. Cette décomposition nous servira de base pour développer notre
estimateur. En outre, la convergence asymptotique de la partie quadratique et
du terme d’erreur est négligeable par rapport à la partie linéaire. Cette propriété
nous permet de prouver deux choses : notre estimateur est asymptotiquement
normal avec une variance que dépend de la partie linéaire, et cette variance
est efficace selon le point de vue de Cramér-Rao. Nous allons également
démontrer la normalité asymptotique pour la matrice complète à l’aide du
“half-vectorization” opérateur. Encore une fois, la variance asymptotique de
l’estimateur de la matrice complète sera uniquement dépendant de la partie
linéaire de la matrice.

Chapitre 3

Dans ce chapitre, nous étudions l’estimation de matrices de covariance condi-
tionnelles dans un cadre général. Il s’agit d’estimer dans un premier temps
les matrices coordonnée par coordonnée, soit le paramètres E[E[Xi|Y]E[Xj|Y]]
pour i, j = 1, . . . , p. Ces espérances dépendent de la densité jointe inconnue que
nous remplacerons par un estimateur à noyaux inspiré avec les idées de Härdle
and Tsybakov (1991) et Zhu and Fang (1996).

Le principal résultat de ce chapitre se présente comme suit : si la distribution
jointe de (X, Y) appartient à une classe de fonctions lisses, nous pouvons prou-
ver que l’erreur quadratique moyenne de l’estimateur converge à une vitesse
paramétrique. Sinon, nous aurons une vitesse plus lente en fonction de la
régularité de la densité jointe.
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Pour éviter des incohérences dans notre estimateur de la matrice, en raison
de la grande dimension des données, nous allons appliquer une transformation
de “banding” étudiée par Bickel and Levina (2008b). Nous allons montrer que
sous une hypothèse de régularité sur la structure des matrices de covariance
conditionnelles, nous obtiendrons de nouveau une vitesse paramétrique de
convergence pour le risque quadratique sous la norme de Frobenius.

Chapitre 4

Nous allons dans ce chapitre utiliser nos résultats pour estimer des indices
de Sobol utilisés en analyses de sensibilité, lorsqu’on observe une sortie d’un
code numérique Y dépendant de variables d’entrée Xi, i = 1, . . . , p. Ces indices
mesurent l’influence des variables et sont définis par

Si =
Var(E[Y|Xi])

Var(Y)
for i = 1, . . . , p.

Nous allons utiliser la méthodologie appliquée dans le Chapitre 3 pour
estimer la valeur de E[(E[Y|Xi])

2]. En supposant, au moins, que la fonction
de densité conjointe de (Xi, Y) est deux fois différentiable, nous pouvons prou-
ver un comportement paramétrique de notre estimateur semi-paramétrique.
L’avantage de notre implémentation est d’estimer les indices de Sobol sans
l’utilisation de coûteuses méthodes de type Monte-Carlo. Certaines illustrations
sont présentées dans le chapitre pour montrer les capacités de notre estimateur.
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Abstract

This thesis will be focused in the estimation of conditional covariance matrices
and their applications, in particular, in dimension reduction and sensitivity
analyses. Suppose that we observe X ∈ Rp and Y ∈ R two random variables
with certain distribution. Denote as f (x, y) the joint density of (X, Y) with
respect to the Lebesgue measure. The conditional covariance Cov(E[X|Y]) =
(σij)p×p for i, j = 1, . . . , p is formed by the elements σij which depend on the
function f .

Thus, we will be interested in the following problems:

1. Construct the estimator for the parameters σij the most optimal possible.
We will be in a semiparametric framework since we will estimate those
parameters depending on one nonparametric distribution.

2. We will study the efficiency of our estimators.

3. Estimate the conditional covariance matrix as an operator.

4. We will propose some applications of our new estimation methods.

We structure this thesis as follows:

Chapter 1

The Chapter 1 introduces the challenges discovered in this thesis. We address
all the different definitions and the mathematical methods used in all the text.
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The estimation of the conditional covariance is linked to two problems: The
dimension reduction in nonlinear regression and the study of sensitivity analysis
in a model. Both problems have many modern applications in chemistry, biology,
economics or marketing, just to name a few.

Dimension reduction The work of Li (1991a) presents the sliced inverse re-
gression method. This method reduces the number of variables on a high-
dimensional nonlinear regression. He assumes a model with X ∈ Rp and
Y ∈ R being the independent and dependent variables respectively. The core of
its technique is the estimation of the spectral space of Cov(E[X|Y]). Once we
have this space, we select the eigenvectors associated to the largest eigenvalues.
Those vectors are the projection of the original model to a new reduced set
of variables. The main issue here is the estimation of E[E[Xi|Y]E[Xj|Y]] for
i, j = 1, . . . , p.

Sensitivity analysis Assume a model with inputs (X1, . . . , Xp) and one output
Y. Sobol’ (1993) showed that the value Var(E[Y|Xi])/ Var(Y), for i = 1, . . . , p,
measures the sensitivity of Xi with respect to Y. It means, these indices quantify
how much the input Xi affects the variability of the output Y. The literature
in this topic focuses in the quantification of Var(E[Y|Xi]), specifically in the
conditional expectation E[(E[Y|Xi])

2].

Chapter 2

In this chapter, we are in a context of high-dimensional nonlinear regression.
The main objective is to use the sliced inverse regression methodology. For this,
we propose a new estimator of Cov(E[X|Y]) generalizing the work of Da Veiga
and Gamboa (2013). They have proposed one estimator based on a Taylor
decomposition of E[(E[Y|Xi])

2] for i = 1, . . . , p. It requires the estimation
of quadratic integrals in two dimensions, studied priorly by Laurent (1996).
We search to generalize their work to the multidimensional case to estimate
E[E[Xi|Y]E[Xj|Y]] for i, j = 1, . . . , p.

Denote as f (xi, xj, y) the density function of (Xi, Xj, Y) and fY(y) the marginal
density of Y. We start rewriting the conditional nonlinear term as

E[E[Xi|Y]E[Xj|Y]] =
ˆ (´ xi f (xi, xj, y) dxi dxj

fY(y)

)

x



(´
xj f (xi, xj, y) dxi dxj

fY(y)

)
f (xi, xj, y) dxi dxj dy.

Using a functional depending on f , we apply Taylor decomposition around
a preliminary estimator of f called f̂ . This operator is split into a linear part,
a quadratic one and an error term. The Taylor decomposition serve us as a
base to develop our estimator. Moreover, the asymptotic convergence of the
quadratic part and the error term are negligible with respect to the linear part.
This property enable us to prove two things: our estimator is asymptotical
normal with variance depending only on the linear part, and this variance is
efficient from the Cramér-Rao point of view. We also prove the asymptotic
normality for the whole matrix using a “half-vectorization” operator. Again, the
asymptotic variance for the whole matrix estimator depend only in the linear
part of the matrix.

Chapter 3

In this chapter, we study the estimation of conditional covariance matrices in a
general framework. First, we estimate the matrix coordinate-wise given by the
parameters E[E[Xi|Y]E[Xj|Y]] for i, j = 1, . . . , p. These expectations depend on
the unknown joint density. We will replace this density by a kernel estimator
inspired by the ideas of Härdle and Tsybakov (1991) and Zhu and Fang (1996).

The main result of this chapter stands as follows: if the joint distribution of
(X, Y) belongs to some class of smooth functions; we can prove that the mean
squared error for the Nadaraya-Watson estimator of E[E[Xi|Y]E[Xj|Y]] has a
parametric rate of convergence. Otherwise, we get a slower rate depending on
the regularity of the model.

Therefore, we can expand our estimator to the whole matrix Cov(E[X|Y]).
To avoid inconsistencies in our matrix estimator due to the high dimensionality
of the data, we apply a banding transformation studied by Bickel and Levina
(2008b). We prove that assuming some regularity structure in the covariance
matrices, we get again a parametric rate for mean squared error under the
Frobenius norm.
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Chapter 4

In this chapter, we apply our results to estimate the Sobol or sensitivity indices.
Assume that we observe one output Y from a numeric code depending on
several inputs variables Xi, i = 1, . . . , p. These indices measure the influence of
the inputs with respect to the output and are defined by,

Si =
Var(E[Y|Xi])

Var(Y)
for i = 1, . . . , p.

We will use the methodology applied in the Chapter 3 to estimate the value
E[(E[Y|Xi])

2]. Assuming, at least, that the joint density function of (Xi, Y) is
twice differentiable, we can prove a parametric behavior of our semiparamet-
ric estimator. The advantage of our implementation is that we can estimate
the Sobol indices without use computing expensive Monte-Carlo methods.
Some illustrations are presented in the chapter showing the capabilities of our
estimator.
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Chapter 1

General presentation

1.1 Introduction

Real-world data usually lives in a high-dimensional space, such as in biology
(Heeger and Ress (2002); Stears et al. (2003)), economics (Fan et al. (2011)),
marketing (Dyer and Owen (2011)), among others. We illustrate some typical
cases when the data has high-dimensionality:

• The samples of DNA microarrays are of the order of thousands of genes,
but only a reduced set are the significant ones. The correct identification
of these variables, allows detecting effectively malign diseases such as
cancer.

• In finance and risk management, million of transactions run every second
for every stock. Those transactions have multiple characteristics as the
price, time to maturity, historic of interest rate, among others. The analysts
have to compress, transform and interpret this information into a relevant
subset to take immediate decisions.

• Machine learning and data mining aim to classify, predict and estimate
a variety of process automatically. The size of the data in these sets can
be astronomical. For instance, grocery sales, biomedical images, financial
market trading, natural resources surveys or web services.

For any statistician, giving sense to some phenomenon with hundreds or
thousands features is an overwhelming task. Given the complexity of those

1



2 General presentation

problems, he needs to control the quantity of variables in the data set. He could
select some relevant variables, and make his analyses with partials data sets or
change the model.

The dimension reduction scheme is another technique that intends to handle
the complexities of a model. It aims to reduce the number of variables by
transforming the original data into a small data set. The new representation
should have the minimum number of variables needed to observe the main
properties of the original data (see Fukunaga (1972)). An effective reduction
method allows, among others facilities: classification, visualization, and com-
pression of the high-dimensional data. See for example, Donoho (2000) and
Fan and Li (2006) for overviews of statistical challenges in high-dimensional
applications.

In this thesis, we will motivate our contributions to the dimension reduction
techniques starting with the following example. Let X ∈ Rp and Y ∈ R be
random variables. Then, the general nonparametric regression model in this
framework is,

Y = m(X) + ε. (1.1)

Here ε is a noisy random variable independent of X. The function m : Rp 7→ R

is unknown and represents the conditional expectation of Y given X.

In the model (1.1), we aim to estimate explicitly the function m by some
estimator m̂. It is possible to estimate m̂ restricting to m to some parametric
(linearity, quadratic, exponential) structure. In this case, it is only necessary to
3adjust the parameters that fit better in the model. Our objective is the estimation
of m without imposing any predefined structure. However, nonparametric
problems impose regularity conditions on m such belonging to some smooth
functional class. The semiparametric models mix the two techniques to use
the best of both of them. For a complete overview in nonparametric and
semiparametric models we refer, to Hardle (1990), Green and Silverman (1994),
Wand and Jones (1995), Fan and Gijbles (1996), Eubank (1999), Härdle (2004),
Tsybakov (2009) and references therein.

In nonparametric regression, the dimensionality of X penalizes the rate
of convergence of m to m̂ (see Hastie et al. (2009)). In other words, if the
dimensionality of X is large compared to the number of observations available,
then the estimation of the m by a nonparametric method will be inaccurate.
Some popular methods in nonparametric regression are kernel regression, local
polynomial regression, smoothing splines, Fourier, or wavelet regression. The
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literature split all those methods in two general schemes: The linear smoothers
and the orthogonal series.

Linear smoothers: The linear smoothers are a popular approach to tackle the
nonparametric regression. Recall that we have available an independent and
identically distributed sample (X1, Y1), . . . , (Xn, Yn). In general, the estimator
has the form,

m̂(·) =
n

∑
k=1

Yk`k(·) (1.2)

where the `k’s are functional weights depending on the sample. For any x ∈ R,
m̂(x) is the weighted average of Yk’s.

Nadaraya (1964) and Watson (1964) proposed, independently, the first non-
parametric univariate regression estimator. They used a linear smoother with
weights given by

`k(·) =
K((· − Xk)/h)

∑n
k=1 K((· − Xk)/h)

where K is a kernel function. The function K is usually a univariate density
function, symmetric and supported on [−1, 1]. The first moment of K is equal
to zero and h is a bandwidth depending on n. The function K express the way
the weights decrease with the distance and h quantifies the closeness between
points. In general, we could generalize the function `(x) to be a polynomial of
any degree. This extension is called local polynomial regression.

The local polynomial regression is easily adapted to that multivariate setting.
For the Nadaraya-Watson estimator, Stone (1982) showed if m is s times differ-
entiable, the optimal achievable rate of uniform convergence in norm q < ∞ of
m̂ to m is ns/(2s+p). This rate has sense only if p� n, otherwise the dispersion
of the data in such high-dimensional space hampers the performance of the
estimator.

Orthogonal series: Another type of methods are based in the called projection
estimators or an orthogonal series estimators. The idea is to approximate
m(x) to its projection ∑M

j=1 θkbk(x), where b1(x), . . . , bM(x) is a functional basis.
The number M acts as a smoothing parameter in the same way as h. We can
estimate the coefficients θ’s by its empirical version. Even more, we can rewrite
a projection or orthogonal regression estimator into the form (1.2) taking

`k(x) =
1
n

M

∑
j=1

bj(Xk)bj(x)
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The bases {bj} most used in projection are the trigonometric (Fourier),
the polynomials (splines) and the wavelets. For classical references about
orthogonal projections, we refer to Friedman and Silverman (1989), Friedman
(1991), Moussa and Cheema (1992) and Stone et al. (1997).

Some important early contributions in nonparametric regression are Shibata
(1981) and Rice (1984). The discussion continued with the references of Eubank
(1999), Efromovich (1999), Wasserman (2007) and Massart (2007). During
the 1990s, the wavelets techniques dominated the literature in nonparametric
regression. From the invention of the wavelets by Meyer (1990), other authors
started the use in nonparametric regression like Donoho and Johnstone (1994)
and Donoho et al. (1996). For an extensive overview and references we refer
to Härdle et al. (1998). Also other models in the same spirit are the project
pursuit regression (PPR) by Friedman and Stuetzle (1981) and the alternating
conditional expectations (ACE) by Breiman and Friedman (1985). In general
all these models fit into the area of generalized additive models. The classic
reference is given by Hastie and Tibshirani (1990).

The nonparametric models that we have reviewed in this section suffer
from the “curse of dimensionality”, term coined by Bellman (2003); Bellman et al.
(1961). This means that the sample needed to estimate some process, to a given
degree of accuracy, grows exponentially with the number of variables. In other
words, if p ≈ n or p � n the model complexity blurs the relation between X
and Y, hindering its properties. Recall the rate of convergence of ns/(2s+p) for
the nonparametric regression estimator found by Stone (1982). Given certain
regularity s on the density, we see that as p goes infinity faster than n, then the
rate of convergence loses its efficiency. Scott and Thompson (1983) remarked
that the responsible of the curse of dimensionality is the empty space phenomenon:
high-dimensional spaces are inherently sparse. The following example illustrate
the problem: One-dimensional normal standard normal distribution N (0, 1)
have 70% of its mass contained in the interval [−1, 1]. For a 10-dimensional
N (0, I10), the hyper-sphere with radius 1 contains only 0.02% of its mass. We
have to extend the radius to more than 3 to get the 70%.

Summarizing, when the dimension is high, any model-fitting method will
be unsuccessful. For this reason, it is necessary reduce the dimensional space
before examining the data further.
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1.2 Dimension Reduction

Nowadays, we find high-dimensional problems in almost every modern sta-
tistical applications. Such problems have the number of features (p) bigger
than the number of observations (n) available. One of the properties with
high-dimensional datasets is that, frequently, only a reduced set of variables
are “important” to the understanding the underlying process. The variables are
redundant for two main reasons: their variances are lower than the model noise;
or they are correlated with each other (through some functional dependence).
In any case, it is necessary to extract only the independent and relevant sources
of information in data. Fodor (2002) defines the dimension reduction scheme
as:

Given the p-dimensional random variable X = (X1, . . . , Xp)> find a lower
dimensional representation of it, S = (S1, . . . , SK)

> with K ≤ p, that
captures the content in the original data, according to some criterion.

Therefore, analyze directly a high-dimensional problem with the raw data is
not only naive but impractical. Generally, we need to reduce the dimensionality
of the data into a manageable size, preserving as much of the original infor-
mation as possible. Thus, we apply—to the reduced-dimensional data—some
technique to explain our model such as classification, visualization, hypothesis
tests, parametric or nonparametric regression and so on.

An effective dimension reduction technique finds the minimum number of
variables that explains with high fidelity the original process. Bennett (1969)
called this minimum the intrinsic dimensionality while studying collection of
signals. Determinate the intrinsic dimensionality is a core problem because
it avoids the possibility of over- or under-fit the model. In this thesis we will
not study the estimation of intrinsic dimensionality. However, a diversity of
methods exist to estimate it, for instance: the correlation dimension method,
local PCA or the reconstruction error. We refer to Lee and Verleysen (2007) for
general references on intrinsic dimension estimation.

In general we can find three general types of dimension reduction techniques
in the literature: the variable selection, the manifold learning and the projection
pursuit. We will mention briefly the two first approaches, and we will explain
with some detail the projection pursuit. The projection pursuit will introduce a
dimension reduction technique called sufficient dimension reduction, which will
be one of the basis for this thesis.
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1.2.1 Variable selection

The variable or feature selection, discards the irrelevant features of the model
preserving only the most “interesting” variables. Before presenting a review on
variable selection, we have to establish what relevant or irrelevant means first.
Diverse classifications exist in the literature, but the most popular is:

• Relevant features: They explain, by themselves or in a subset with other
features, information about the model.

• Redundant features: We can remove these features because, another fea-
ture or subset of feature, already have the same information about the
model.

• Noisy features: Those features only have noisy information and do not
contribute to explain any information of the model.

For a more mathematical definition on feature relevance, Gennari et al.
(1989), John et al. (1994) and Kohavi and John (1997) characterize the selection
problem in detail.

The issue in feature or variable selection is how to pick the relevant feature
and discard the others. For instance, Blum and Langley (1997), Guyon and
Elisseeff (2003) and Perkins and Theiler (2003) classify the type of selection into
two classes: wrapper/embedded methods and filter methods.

Wrapper/embedded methods: The wrapper methods score different subsets
of features according to their predictive power via a black-box learning machine.
They were popularized by Kohavi and John (1997) given the powerful way to ad-
dress the variable selection problem. Those methods work under a “brute-force”
approach requiring a massive amount of computational time. In fact, Amaldi
and Kann (1998) proved that the variable selection is NP-hard. However, effi-
cient techniques could alleviate the performance issue. Two popular methods in
this spirit are the forward selection and backward elimination. In forward selection,
we start with an empty set of features and then add variables progressively.
Backward elimination starts with the full set of features and removes the least
promising ones. Both cases search to maximize some score function in each
step.

In a similar context, the embedded methods perform variable selection in
the training process step. In other words, they embed the feature selection in the
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induction algorithm for classification. Some examples on embedding methods
are the decision tree algorithms ID3 (Quinlan (2007)) or the weighted models
(Payne and Edwards (1998) and Perkins and Theiler (2003)).

Filter methods: They are preprocessing methods that attempt to identify the
best features from the data, without take into account the properties of the
predictor. The simplest filtering method uses the mutual correlation between
each variable and the target function. It computes all the correlations and
takes the K features with the highest values. The filter methods are faster
than the wrapper methods, since they avoid to search over all the variable
space. However, given the independence with the predictor, some investigations
argue that filter methods are not tuned for a given learning machine. For
instance Almuallim and Dietterich (1994) developed the FOCUS algorithm
which first searches individual features, then pairs, then triplets and so on, until
finding the minimal feature set. Kira and Rendell (1992) presents the RELIEF
algorithm which evaluates individually the features and keeps only the best K
features. Gilad-Bachrach et al. (2004) describes a margin based feature selection
algorithm.

1.2.2 Manifold learning

Other recent techniques to study this dimension reduction use the underlying
nonlinear complex structure of the data and treat it as an abstract object—or
manifold.

For example, Tenenbaum et al. (2000) developed the Isometric featuring
mapping—Isomap—algorithm which can be viewed as a generalization of the
multidimensional scaling method. It estimates the nonlinear proximity between
the variables with the geodesic distance instead of the euclidean one. The
Isomap learns the geodesic distances by linearly approximating the nonlinear
manifold. Thus, it constructs an undirected neighborhood graph where each
point is a node. Finally, it computes a geodesic square distance matrix where
we project the original manifold to another in low-dimension.

Another popular method is the Local Linear Embedding—LLE—(Roweis
and Saul (2000)) which profits the intrinsic geometry of the manifold. The LLE
project a near-group of points on the manifold to an euclidean space via a
convex linear transformation. We estimated the new representation solving a
series of least squares problems based on a k-neighborhood graph.
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Other authors have developed alternative algorithms over the last decade.
Some of these are: Laplacian Eigenmap (Belkin and Niyogi (2003)), Hessian
Eigenmap (Donoho and Grimes (2003)), Diffusion maps (Coifman and Lafon
(2006)) and Local Tangent Space Alignment—LTSA—(Zhang and Zha (2004)).
For surveys on manifold algorithms see Cayton (2005), Lee and Verleysen (2007),
Izenman (2008) and Engel et al. (2012).

1.2.3 Projection pursuit

Pearson (1901) proposed one of the oldest technique in dimension reduction,
the principal component analysis. This technique constructs a linear subspace in
low-dimension minimizing the distance to the original data. Numerous authors
have rediscovered or extended the principal component analysis in diverse
areas. We can cite for example, the Hotelling transform (Hotelling (1933)), the
Karhunen-Loève transform (Karhunen (1946) and Loève (1955)), the empirical
orthogonal functions (Lorenz (1956)) and the proper orthogonal decomposition
(Lumley (1967)).

Let X1, . . . , Xn be independent and identical distributed observations taken
from random variable X ∈ Rp. Assume for simplicity that each X is centered.
The method of moments defines the classic sample covariance estimator for our
sample,

Σ̂X =
1
n

n

∑
k=1

XkX>k (1.3)

The matrix Σ̂X is symmetric semidefinite positive and admits a spectral
decomposition

Σ̂X = UΛU>.

Here U = (u1, . . . , up)p×p is an orthogonal matrix with columns vectors ui, the
matrix Λ is equal to diag(λ1, . . . , λp) and λi ≥ 0 for i = 1, . . . , p. Each vector
ui represents the normalized eigenvector of Σ̂X associated with the eigenvalue
λi. We create a new set of coordinates transforming the original variables to
Z = U>X. In this new reference system, the variables Z has mean 0 and
diagonal covariance matrix Λ. Therefore, we can discard the variables with
small variance, reducing the space to only the most K ≤ p relevant variables.
The principal component method finds the best linear subspace (in the least
square sense). It projects the original data X to the subspace spanned by
UK = (u1, . . . , uK).
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The principal component analysis belongs to a general set of methods called
projection pursuit. This is an unsupervised technique that picks relevant low-
dimensional linear orthogonal projection of a high-dimensional space, maxi-
mizing an objective function called the projection index. To obtain uncorrelated
direction, the projection pursuit constraints the search to normalized and mu-
tually orthogonal spaces. A projection index J is a real function on the space
of square integrable distributions, i.e., J : f ∈ L2 7→ I( f ) ∈ R where f is a
probability density function. Abusing of notation, we will write I(X) instead of
I( f ) where X is random variable having the distribution of f . The optimization
problem is then

max
A>A=I

J(AX).

with A an orthonormal matrix. Two classic examples of projection pursuit
techniques are:

• The principal component analysis (Hotelling (1933)) maximizes the vari-
ances of the data with the variable Z restricted to a linear space of dimen-
sion K.

max
A>A=I

{
tr

(
1
n

n

∑
k=1

ZkZ>k

)}
=

K

∑
k=1

λk

with Z = U>X restricted to A = UK.

• The Fisher matrix information (Huber (1985)) measures the information
of the variable X assuming a distribution parameterized by θ.

J(X) ≡ J′(θ) ≡ E

{(
∂ f (X; θ)

∂θ

)(
∂ f (X; θ)

∂θ

)>}−1

where f (X; θ) depends on some parameter θ.

The vector-based approach is useful to facilitate our intuitive understanding.
But, in practice, we use a matrix-based theory which is usually preferred for
their brevity and rich mathematical support. Recall that the covariance matrix
represents the variability or “interestingness” of each variable with respect to
another. For any covariance matrix Σ, the eigenvalues λ and eigenvectors v
of Σ are constructed by the relation Σv = λv. The eigenvalues represent a
score of variability for each feature in the matrix Σ and the eigenvectors are
the directions that maximize this score. Thus, we seek those directions v that
amplify this variability for the covariance matrix.
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The main aim in projected pursuit methods is the estimation of the spectral
space of the sample covariance matrix Σ̂X (or some equivalent form). Some
examples illustrate how the projection pursuit methods use the covariance
matrix to find the directions:

Kernel PCA: Assumes that a nonlinear function or Kernel approximates the
inner product of data point in the feature space. Thereby, the Kernel
PCA computes a reduced set of direction through the eigenvectors of the
covariance matrix of the data in the feature space.

Canonical correlation: This method takes two pairs of variables and seeks the
directions that create the maximum correlation between the variables.
The eigenvectors of the largest eigenvalues of the cross-correlation matrix
produce these directions.

Multidimensional Scaling: Assume a matrix of dissimilarities (in some norm)
between a set of features. The multidimensional scaling searches a low
dimensional space—embedded into the original one—that preserve the
distance between the variables. The eigenvectors associated to the largest
eigenvalues of the matrix of dissimilarities generate this new space.

Other projection pursuit method are factor analysis, linear discriminant
analysis, correspondence analysis, among others. The reader can found general
reference on projection pursuit models in Friedman and Tukey (1974), Jones
and Sibson (1987), Burges (2009), Engel et al. (2012) and Huber (1981).

The covariance matrix is the essential point to execute any projection pursuit
technique. In the next section we will review some approaches to estimate it in
a high-dimensional context. Then, in Section 1.3 we will explore a supervised
paradigm that improves the projection pursuit.

1.3 The sliced inverse regression

We have discussed about the “curse of dimensionality” on the nonlinear regression
and some techniques to overcome it. The classical projection pursuit methods
belong to the unsupervised techniques that aim to reduce the space of some
variable in high-dimension. Nevertheless, we look for a supervised scheme that
shrinks the dimension in a model driven by equation (1.1).
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In particular, projection pursuit methods have a long history in the literature
and recently a branch called sufficient dimension reduction has gained much
popularity. Li (1991a) wrote one of the historical articles in sufficient dimension
reduction which introduced the method called sliced inverse regression. He
started changing the model (1.1) by transforming the original variables X ∈ Rp

on a reduced subset only. In particular, this reduction will keep the structural
information of the model, using the independent variable X and the dependent
variable Y. For example, recall that the principal component analysis only
reduces the dimensionality of X to later apply a regression technique in model
(1.1). The sliced inverse regression finds a reduced subspace, similar to principal
component analysis, but incorporating the information of the output Y directly.

The works of Cook and Nachtsheim (1994), Cook (1994), Cook and Li
(2002) and Cook (2003) characterize this novel paradigm. Assume that we have
X ∈ Rp and Y ∈ R. The goal of sufficient dimension reduction is to find a map
M : Rp 7→ RK, with K � p, such as the distribution of Y|X is equal to the
distribution of Y|M(X). Cook showed that the last assertion is equivalent to

Y ⊥⊥ X|M(X).

where ⊥⊥ stands for probabilistic independence.

Thus, we can model Y only with a subset generated byM(X). In particular,
Li (1991a) presented an equivalent form of the latter equation, using a linear
transformationM(X) = (υ>1 X, . . . , υ>K X) where the υ’s are unknown vectors
to be estimated from data. This mapping transforms the model (1.1) into the
following semiparametric model,

Y = φ(υ>1 X, . . . , υ>K X, ε). (1.4)

Here ε is independent of X and φ is an arbitrary function in RK+1.

The variable Y explains a high-dimensional event via the covariate X. Model
(1.4) represents the weakest form that the information of Y could be retrieved by
the low-dimensional space υ>1 X, . . . , υ>K X when K is small. This model gathers
all the relevant information about the variable Y, with only a projection onto
the K � p dimensional subspace (υ>1 X, . . . , υ>K X).

The Figure 1.1 presents a simplified scheme of the change of model suggested
by Li. If K is small, the method reduces the dimension by estimating the υ’s
efficiently. We call the υ’s the effective dimension reduction directions and the
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Y

m

· · ·X1 Xp

Y

φ

· · ·υ>1 X υ>K X

X1
· · · Xp

Figure 1.1: Left diagram: Interactions in the model Y = m(X) + ε. The vari-
ables X1, . . . , Xp affect directly the output Y through the function m. Right
diagram: Interactions in the model Y = φ(υ>1 X, . . . , υ>K X, ε). The original vari-
ables X1, . . . , Xp are transformed to a reduced subset υ>1 X, . . . , υ>K X with K � p.
Then we use this reduced subset to model Y through φ.

span{υ1, . . . , υK} the effective dimension reduction space. This method is used
to search nonlinear structures in data and to estimate the projection directions.

The estimation of φ is unnecessary to find the effective dimension-reduction
directions, contrary to model-fitting algorithms reviewed in Section 1.1. That is,
the sliced inverse regression method only requires the dataset information to
find the effective dimension reduction directions. Nevertheless, we could fit a
nonparametric model to φ (or any statistical scheme, e.g., classification) in the
new coordinate system to understand better our model.

The sliced inverse regression method requires technical conditions about the
law of X,

Condition 1.1. For any direction b ∈ Rp, E[bX|υ>1 X, . . . , υ>K X] is a linear com-
bination of υ>1 X, . . . , υ>K X.

Condition 1.1 seems to impose a restrictive requirement on the distribution
of X. In fact, Li (1991a) mentioned that the condition occurs on the elliptical
distributions (e.g., the normal distribution). Later, Cook and Weisberg (1991)
showed explicitly that is a weaker version that characterizes elliptical distribu-
tions. In a further work, Li (1991b) and then Hall and Li (1993) proved that for
many high-dimension random vectors the condition holds approximately. We
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can ensure Condition 1.1 doing a normal resampling suggested by Brillinger
(1991); or averaging the data (by a discrete probability measure) such as they get
closer to an elliptical random vector studied by Cook and Nachtsheim (1994).

We state the following two results in sliced inverse regression.

Theorem 1.1 (Li (1991a)). Under the model (1.4) and Condition 1.1, the centered
inverse regression curve E[X|Y]−E[X] is contained in the linear subspace spanned
by υkΣX (k = 1, . . . , K), where ΣX denotes de covariance matrix of X.

Corollary 1.1 (Li (1991a)). Assume that X has been standardized to Z . Under the
model

Y = φ(η>1 Z, . . . , η>K Z, ε)

and Condition 1.1, the standardized inverse regression curve E[Z|Y] is contained in
the linear subspace spanned by ηk = υkΣ1/2

X (k = 1, . . . , K).

Under Condition 1.1, Li showed that the effective dimension reduction space
belongs to the spectral subspace spanned by Cov(E[Z|Y]). In other words, the
covariance matrix Cov(E[Z|Y]) is degenerated in any direction orthogonal to
the ηk’s. Therefore, the eigenvectors ηk associated with the largest K eigenvalues
of Cov(E[Z|Y]) are the standardized effective dimension reduction directions.

We present the classic sliced inverse regression procedure in the Algorithm
1.1. Notice that steps 2 and 3 create an approximation of E[Z|Y] slicing the
support of Y dividing it in H parts. Using this roughly approximation, the step
4 calculates empirically Cov(E[Z|Y]) through a weighted covariance matrix V̂.
Then, it finds the eigenvalues and eigenvectors of V̂ and returns the eigenvectors
associated to the largest K eigenvalues of the estimated matrix.

We have to emphasize the following result, product from Corollary 1.1 and
Algorithm 1.1:

To find the effective dimension reduction space of model (1.4),
it is enough to estimate the matrix Cov(E[Z|Y]). Once this ma-
trix is estimated, the eigenvectors associated to the K � p largest
eigenvalues of Cov(E[Z|Y]) are the effective dimension reduction
directions.

Summarizing, we will address the high-dimension problem from the suf-
ficient dimension reduction point of view. However, the estimation of the
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Algorithm 1.1 Classic sliced inverse regression method
Require: A sample (Xi, Yi) i = 1, . . . , n.
Ensure: υ̂k for k = 1, . . . , K.

1: Standardize X by an affine transformation to get Zi = Σ−1/2
X (Xi − X̄) (i =

1, ..., n), where Σ̂X and X̄ are the sample covariance matrix and sample
mean of X respectively.

2: Divide range of Y into H slices, I1, . . . , IH; let the proportion of the Yi that
falls in the slice h be p̂h; that is p̂h = (1/n)∑n

i=1 δ(Yi), where δ(Yi) takes the
values 0 or 1 depending on whether Y falls into the h-th slice Ih or not.

3: Within each slice, compute the sample mean of the Zi’s denoted by µ̂h, i.e.,
for each h = 1, . . . , H estimate µ̂h = (1/np̂h)∑y∈Ih

Zi.
4: Conduct a (weighted) principal component analysis for the data µ̂h in the

following way: Form the weighted covariance matrix V̂ = ∑H
h=1 p̂hµ̂hµ̂>h

then find the eigenvalues and the eigenvectors for V̂.
5: Let the K largest eigenvectors (row vectors) be η̂k (k = 1, . . . , K). Estimate

υ̂k = η̂kΣ̂−1/2
X

empirical covariance matrix is insufficient for this purpose. Therefore, we have
to use another richer object. In particular, we shall use the conditional covari-
ance matrix Cov(E[Z|Y]) to solve a connected problem called sliced inverse
regression. In particular, we will use the conditional covariance matrix to reduce
the dimensionality in problems like nonparametric regression and estimation of
sensitive indices.

1.4 Covariance estimation

The purpose in this thesis will be the estimation of high-dimensional conditional
covariances. This estimator will be used to reduce the dimensionality on
the nonlinear regression problem (1.1). In Section 1.4.1, we will present a
bibliographic review of techniques to overcome the dimensionality for the
sample covariance matrix Σ̂X introduced in (1.3). Afterwards, in Section 1.4.2,
we will examine some classic approaches for the estimation of conditional
covariances in the sliced inverse regression context.

1.4.1 High-dimensional covariance estimation

As we mentioned in Section 1.2.3, the estimation of the covariance matrix—or
some related form—is an essential tool for the analysis. The estimator Σ̂X
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defined in (1.3) has well known properties as: unbiasedness, consistency, para-
metric convergence, among others. However, these properties become useless
when the dimension of the model turns high and the empirical covariance
matrix has unexpected features.

For example, take a sample from a multivariate Gaussian distribution
Np(µ, Σp) where Σp = Ip denotes the identity matrix of size p. If p/n con-
verges to some constant c, then the empirical distribution of the eigenvalues of
the sample covariance matrix Σ̂p follows the Marĉenko-Pastur law (Marčenko
and Pastur (1967)), which is supported on ((1−

√
c)2, (1 +

√
c)2). Therefore, if

the dimension grows faster than the number of observations, the eigenvalues
will be more spread out. Some general references about similar issues in nu-
merous contexts are presented in Muirhead (1987), Johnstone (2001), Fan et al.
(2008), and references therein.

The authors have proposed solutions to mitigate the irregularities in covari-
ance estimation. The general procedure on these situations occurs in two stages:
first we need to restrict our attention to “well-behaved” subsets of covariance
matrices and then incorporate some regularization into the estimation. The
term “well-behaved” is vague because it depends on the problem. Sparsity is
one common hypothesis on these cases and it seems realistic for real-world
applications. Another popular matrix class is to assume that the entries of the
covariance decrease at some rate far away of the diagonal.

Roughly speaking, the literature classifies regularized estimation of high-
dimensional covariance matrices into two major categories:

Shrinkage type: These estimators shrink the covariance matrix to some well-
conditioned one under different performance measures. For instance, Ledoit
and Wolf (2004) and Chen et al. (2010) proposed a convex combination between
Σ̂X and p−1 Tr(Σ̂X)Ip, with the optimal combination weight that minimizes the
mean-squared errors. Recently, Fisher and Sun (2011) proposed using diag(Σ̂X)
as the shrinkage target with possibly unequal variances. Other estimators in
this line are: Lam and Fan (2009) minimizes a penalized log-likelihood with a
L1-penalty; Meinshausen and Bühlmann (2006) uses Lasso in graph models and
Levina et al. (2008) studies a nested Lasso together with a banding technique
both to find the structural zeros in sparse covariance matrices.

Matrix transformation type: Estimators in this category operate directly in
the covariance matrix through operators. For instance, thresholding (Bickel
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and Levina (2008a)), banding (Bickel and Levina (2008b)) and tapering (Cai
et al. (2010)). When the natural ordering exists in the variables (for example in
time-series) the banding and tapering techniques regularize better the empirical
covariance. The banding sets to zero the elements of the matrix away of some
chosen subdiagonal and keep the other entries unchanged. Tapering, improves
the banding by applying some smoother (originally a linear one) to shrink
gradually the values outside some subdiagonal. We can view banding as
a hard-thresholding rule while tapering is a soft-thresholding rule, up to a
certain unknown permutation (Bickel and Lindner (2012)). The thresholding
regularization deals with general permutation-invariant covariance matrices
cutting-off the entries below some level. Assuming certain covariance class of
matrices, the banding, tapering and thresholding regularizations are statistical
consistent. In fact, the tapering and thresholding techniques produce optimal
rates of convergence (see Cai et al. (2010), Cai et al. (2012) and Cai and Zhou
(2012)), contrary to the banding technique (Bickel and Levina (2008b)).

1.4.2 Conditional covariance estimation

The original sliced inverse regression has suffered alternative improvements
through the last decades. Recall that the key point in the method is the estima-
tion of Cov(E[X|Y]) for X ∈ Rp and Y ∈ R.

Cook and Weisberg (1991) discussed about the validity of Condition 1.1
and suggested a variance checking condition. He proposed a new method
called sliced average variance estimation (SAVE) using the first two moments of
the inverse conditional expectation. In particular, they proved that the sliced
inverse regression might fail under symmetric models because E[X|Y] could be
0. Thus, they suggested the use of Var[X|Y] to recover the effective dimension
reduction directions. Using the same notation as Algorithm 1.1, they proposed
the following estimator

SAVE =
H

∑
h=1

(I −Var(Z|Y ∈ Ih)),

where I is identity matrix, Z is the standardized version of X and Ih is the
indicator for a particular slice h. To estimate Var(Z|Y ∈ Ih) we can use an
empirical procedure similar to Algorithm 1.1. Other alternatives to estimate
the conditional variance can be found in Ruppert et al. (1997), Fan (1998) or
Pérez-González et al. (2010).
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In a further discussion, Li (1991b) generalized the SAVE estimator using
that Cov(Z) = Cov(E[Z|Y]) + E[Cov(Z|Y)]. In particular, he defined the SIRII
method which is represented by the matrix

SIRII = E[(Cov(Z|Y)−E[Cov(Z|Y)])2]

Härdle and Tsybakov (1991) criticized the estimator of the weighted co-
variance matrix in step 4 of the Algorithm 1.1. Instead, they considered the
estimation of each conditional expectation Ri(Y) = E[Xi|Y] by nonparametric
methods. In other words, the coefficient (i, j) of Cov(E[X|Y]) can be estimated
by

1
n

n

∑
k=1

R̂i(Yk)R̂j(Yk). (1.5)

The functions R̂i, R̂j may be kernel, orthogonal series (e.g., splines, wavelets),
or any other estimates. If R̂ is a regressogram, then we get an estimator
similar to the sliced inverse regression. Zhu and Fang (1996) showed the
asymptotic normality for Cov(E[X|Y]) and its eigenvalues when R̂ is estimated
by the Nadaraya-Watson estimator. Later, Zhu and Yu (2007) proved the exact
normality behavior as Zhu and Fang, but estimating R̂ by a B-splines series. Yin
et al. (2010) proposed a recent study on nonparametric conditional covariance
estimation.

Li (1992) presented an application of the Stein lemma (Stein (1981)) to find
the effective dimension reduction space named principal Hessian directions
(pHd). He used the average Hessian of E[Y|X] and its eigenvectors to create a
new reduced coordinate system. To construct this new space, he applied the
Stein’s Lemma to find a root-n consistency.

Hsing (1999) estimated Cov(E[X|Y]) by

1
2n

n

∑
k=1

ZkZ>k∗ + Zk∗Z>k

where Zk∗ is the nearest neighbor of Zk. Hsing proved the root-n rate of
convergence of the new estimator. Cadre and Dong (2010) present a modern
reference on the estimation of the central subspaces for dimension reduction
using nearest neighbors.

Bura and Cook (2001) estimated the sliced inverse regression through an
additive parametric form with q elements. Formally, they fixed E[X|Y] to have
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the form FnB + εn, where Fn is an n× q matrix of parametric fixed functions, B
is a q× p coefficient matrix and εn is an error matrix.

Ferré and Yao (2003); Ferré et al. (2005) worked with the functional version
of the sliced inverse regression. They assumed a set of curves X(t) as input
with some real value Y as output. They rewrote model (1.4) in the following
way

Y = φ

(ˆ
υ1(t)X(t) dt, . . . ,

ˆ
υK(t)X(t) dt, ε

)
.

where υ1(t), . . . , υK(t) are squared integrable functions in some interval. Using
a kernel estimate, they obtained similar results as Zhu and Fang (1996).

Another useful application of the sliced inverse regression is in graphics
displays. Cook (2003, 1998) studied the use of the sliced inverse regression
to create representative plots of the data giving novel ideas in the subject.
Other techniques in sliced inverse regression include: Cook and Ni (2005), Zhu
et al. (2007), Yoo and Cook (2007) Yoo (2008a,b) use ordinary least squares
to detect the central mean subspace in different settings or Loubes and Yao
(2013) studied the sliced inverse regression under a framework of strong mixing
conditions. Also, other investigations have extended the sliced inverse regression
to accommodate multiple outcomes. For instance Cook (2003) slices the bivariate
outcome into hypercubes or Setodji and Cook (2004) use k-means clustering. For
further disscussion on the classical sliced inverse regression method, we refer to
Brillinger (1991), Cook and Weisberg (1991), Härdle and Tsybakov (1991), Kent
(1991), Li (1991b), and references therein.

We have investigated the implications of Cov(E[X|Y]) to solve high-dimensional
problems. However the study of the conditional covariance has other appli-
cations. For example, Duffée (2005) modeled the relations between aggregate
stocks returns and aggregate consumption growth via conditional covariance
matrices. Another modern application is the sensitivity analysis where we have
a model with numerous inputs and one output. The researcher wants to know
how much the variation of one input affects the rest of the model. In particular,
we can model this relation by

Var(Input | Output).

Therefore, in the next section we will explore estimation of conditional
variances for sensitivity analysis.
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1.5 Sensitivity analysis

Models are built to approximate or mimic process and systems of different
nature, e.g., physics, economics, chemistry, etc. The mathematical formulation
of them, receives a series of equations, parameters, input factors and variables
to generate an output similar to the real process. Some sources of uncertainty
affect the input variables, such as measurement errors, lack of information or
poor or partial understanding of the system mechanism.

To handle complex models, uncertainty analysis and sensitivity analysis are
two essential tools. In one hand, uncertainty analysis refers to the determination
of the uncertainty in the outputs that derives from uncertainty in the inputs. In
other hand, sensitivity analysis studies the effects of the variations in the inputs
on the calculated output. Terms such as influence, importance, ranking and
dominance are all related to sensitivity analysis. Ideally, both analysis should
be run in tandem.

The model complexity is independent of the model size. A small model
might have complex interactions hardening its analysis. Instead, Simon (1969)
describes the complexity by the numbers of hierarchies, the “span” of each level
in the hierarchy and the number of levels.

Indeed, we can see the sensitivity analysis as a kind of reduction dimension
method. While the reduction dimension methods aims to “summarize” the
complete data space into a lower one, the sensitivity analysis tries to identify
the most relevant inputs in the model according to some score function. The
larger is the score function for some variable, the larger will be the influence of
that variable into the model. Below we will review some scores used to identify
relevant variable in sensitivity analysis. In any case, once we have the new set
of relevant variables, we can proceed to do further studies like classification,
regression, estimation and so on.

Saltelli et al. (2004) and later Pappenberger et al. (2010), emphasize the im-
portance of specifying the objectives before to apply any algorithm or technique.
In this way, the scientist knows a priori what it is searching and what kind of
result he wants. In this way, the most important objectives are

• identify and select the most influent inputs, and identify the nonrelevant
ones to set them constant,

• map the output behavior with respect to the inputs and focus the analysis
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in some interests zones,

• adjust the model variables taking in account the information of the most
important inputs.

Commonly, models in sensitivity analysis ignore the stochastic error. In this
framework, we will assume a nonparametric model similar to equation (1.1),
but with ε equal to 0. Therefore, for a set of variables (X1, . . . , Xp) ∈ Rp and
Y ∈ R we have,

Y = m(X1, . . . , Xp). (1.6)

Also, assume that each X has a valid range of variation and Y is non-null.
The explicit form of m is unavailable or simply is hard to obtain. However, the
analyst can create a computer code to describe some phenomenon, including
two-phase flow, multi-mode heat transfer, clad oxidation chemistry, stress and
strain, and reactor kinetics. For example, the work of Janon (2012) studies the
behavior of fluids in oceanographic and hydrologic models. Parameters like
viscosity, friction, wind speed, initial height among others, make impossible
have an explicit equation for the function m. For other illustrations on the use
of computer codes, we refer to Oakley and O’Hagan (2004), Langewisch (2010)
and references therein.

To solve model (1.6) there exist methods such as: one-at-a-time algorithms,
differential analysis, response surface methodology, Monte Carlo procedures
and variance decomposition procedures. Overview of these approaches are
available in general literature, for instance Saltelli et al. (2000), Christopher Frey
and Patil (2002), Helton et al. (2006), Saltelli et al. (2008).

Screening method: These methods are a low computational way to discard
factors in the analysis. For example, we can evaluate the model output by
varying only one variable across its entire range, while fixing the others in their
nominal values. Thus, we measure the difference between the nominal and
changed outputs to extract the most relevant factors. Even if the technique
is easy to implement, it provides only a limited quantity of information. For
example, we cannot recover the crossed interactions with this method. For a
general review in screening we refer to Cullen and Frey (1999), Campolongo
et al. (2011) and Saltelli et al. (2009)

Automatic differentiation: If we derivate the output variable with respect to
each factor, we will get a local measure of the model for every variable. In
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general, we want to estimate the following normalized partial derivative,

σXi ∂Y
σY∂Xi

(1.7)

where σXi and σY are variances of Xi and Y respectively. When the model is
complex, the estimation of the quantity (1.7) turns hard. Some methods to
estimate numerically those partial derivates from a model are available in Rall
(1980), Kedem (1980) and Carmichael et al. (1997).

Regression analysis: Recall the classical linear regression,

Y = β0 + β1X1 + · · ·+ βpXp.

We can interpret the regression coefficients βi as the change in the output when
the in input Xi increase or decreases by one unit (Devore and Peck (1996)). This
interpretation is valid if the other factors remain constant. Therefore, we can use
the regression coefficient as nominal measures of the sensitivity in the model.
Methods like stepwise regression serve to exclude statistical insignificant inputs.
Moreover, we can measure the distance of a linear model and the true using the
coefficient of determination or R2. This coefficient determines the percentage of
variance in the Y explained by the linear model (see Draper and Smith (1981)).
For example, if R2 is equal to 0.9, then the model is 90% linear and one could
use the β’s for sensitivity analysis at risk of lose 10% of information.

Response surface method: The response surface uses least squared regression
to fit a standardized first- or second-order equation to the data obtained from
the original model. The amount of time and effort required is as big as the
number of inputs. For this reason it is recommended to use it only in the latest
steps of the sensitivity investigation. Some general references in the area are
Myers et al. (2009) and Goos (2002).

Variance decomposition methods: Fix the variable Xi for some i = 1, . . . , p.
Recall that E[Y|Xi] represents the best approximation (in L2) of Y given all
the knowledge of Xi. The variance of E[Y|Xi], with respect Xi, quantifies
the dispersion of the best approximation of Y. Therefore, when the value
Var(E[Y|Xi]) is large, the variable Xi “influences” more respect to the output Y.
In other words, the variation of Y due to the variation of Xi is large. Normalizing
this conditional variance by the total variance of Y, we obtain the first order
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Sobol index associated to Xi,

Si =
Var(E[Y|Xi])

Var(Y)
.

Sobol’ (1993)–inspired by the prior work of Cukier et al. (1978)–initially studied
the estimation of Si while studying functional decomposition via Monte-Carlo
procedures.

We are mainly interested in the variance decomposition methodology ap-
plied to sensitivity analysis. In fact, in the next section we will present some
techniques used to estimate the value Si. Additionally, our knowledge in con-
ditional covariances, presented in Section 1.4.2, will serve us as a tool for the
estimation of Si.

1.5.1 Estimation of Sobol indices

Recall, from the previous Section, the first order Sobol indices of Y associated
to the variables Xi (i = 1, . . . , p) are

Si =
Var(E[Y|Xi])

Var(Y)
=

E[E[Y|Xi]
2]−E[Y]

Var(Y)
. (1.8)

Given the normalization by Var(Y), each Si belongs to the interval [0, 1]. The
Sobol indices measure the relevance of each factor and with respect the output.
They represent the percent of the variability of Y when we alter each variable.
Thus, Si reveals the sensitivity of Xi with respect to Y. We can define indices
taking account the interactions between the variables. Theoretically, the sum of
all Sobol indices—including interactions—adds up to 1.

Sobol’ (1993) showed that we can decompose any function into terms of
increasing dimension. We call this kind of decomposition as High-Dimensional
Model Representation (HDMR). Li et al. (2001) presents, for example, a complete
review about HDMRs. Sobol proved that if each term of the representation has
mean zero and all the term are orthogonal in pairs, then we have the following
equation

Y = ∑
i

Vi + ∑
ij

Vij + ∑
ijk

Vijk + · · ·+ V1,...,p.

where
Vi = E[Y|Xi], Vij = E[Y|XiXj]−Vi −Vj, . . .
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In our context, if we take variances in both sides of the HDMR equation, we
define the higher sensitivity Sobol indices by

Si =
Var(E(Y|Xi))

Var(Y)
=

Vi

Var(Y)
, Sij =

Vij

Var(Y)
, Sijk =

Vijk

Var(Y)
, · · ·

Finally, we can also define another type of index called Total effects. This
index accounts the total contribution to the output variation due to factor Xi,
i.e., its first-order effect plus all higher-order effects due to interactions. Define
the variable X∼i as X with the ith factor removed. The total effect index for the
variable Xi is defined by

STi = 1− Var(E[Y|X∼i])

Var(Y)
.

The aim of this thesis will be the estimation of first-order Sobol indices. To
achieve a good estimate of Si, it is necessary to estimate Var(E[Y|Xi]). The most
difficult part in equation (1.8) is the term E[E[Y|Xi]

2]. Indeed, the output of
the model m could be complex and the integrals for the conditional variance
could be intractable analytically. The Monte-Carlo estimation for integrals
(Hammersley (1960)) seems to be the simplest but most expensive method
to estimate Si. We start by selecting a set of random points to estimate the
inner conditional expectation for a fixed value of Xi. Then, for each of these
values make another sample of values to estimate the outer variance. We
see that as the number of points taken for the evaluation, and the number
of samples increase, the computational complexity of the algorithm increases
as well. Hence, numerous studies have developed numerical approximations
suitable to the practical needs in the applications.

The challenge in this context is given a finite sample, construct a compu-
tational effective estimator of Si. Ishigami and Homma (1990) studied one of
the first solutions in this path. They reduced the computational complexity to
only one Monte-Carlo loop. The idea was to rewrite the Sobol indices Si’s by
resampling X and by creating a two-fold function instead of the original. This
technique costs only 2p− 1 calculations. Later, Saltelli (2002), found that with
n(2p + 2) calculations it could be possible to estimate p− 2 Sobol indices.

The Fourier Amplitude Sensitivity Test (FAST) is another classic method.
Cukier et al. (1973) and Cukier et al. (1978) created the FAST which was origi-
nally used to analyze sensitivity in nonlinear rate equations. The method was
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developed further by Koda et al. (1979), McRae et al. (1982) and Saltelli et al.
(1999). The aim of FAST is to transform a multidimensional integral over all the
factors to a one-dimensional integral. This approach is done using a Fourier
expansion, i.e., we redefine each coefficient as following,

Xi = Gi(sin(wit))

where Gi are suitable transformation functions, {wi} is a set of integer angular
frequencies and t ∈ (−π, π). Some recent investigations with this method can
be found for example in Tarantola et al. (2006) and Tissot and Prieur (2012).

The Sobol pick-freeze (SPF) scheme is widely used and was proposed by
Sobol’ (1993, 2001). Rewrite the equation (1.8) in the following way,

Si =
Cov(Y, Y′)

Var(Y)

where
Y′ = m(X′1, X′1, . . . , X′i−1, Xi, X′i+1, . . . , X′p)

and X′j for j 6= i correspond to a random variable independent with the same
distribution as Xj. This scheme freezes the variable of interest while resampling
the other variables to measure the sensitivity in the former. In SPF we can
interpret the Sobol index as the regression coefficient between the output and
its pick-freezed replication. As a Monte-Carlo-based method, SPF requires
thousands of machine computations to get one index. And it gets harder if the
model is created by a complex computer code (e.g., numerical partial differential
equations). To workaround the computational complexity some authors use
meta-models which are—low-fidelity—approximations to the true model. Other
implementations of the SPF algorithm are proposed in Janon et al. (2013).

Alternatively, Da Veiga and Gamboa (2013) explored another estimator for
Sobol indices via a Taylor decomposition. As before, the quantity E[E[Y|Xi]

2]
represents the hardest part in equation (1.8). They see the conditional expecta-
tion as functional depending on the joint distribution f of (X, Y). Specifically,
we have the representation

E[E[Y|Xi]
2] =

ˆ ( ´
xi f (xi, y) dy´
f (xi, y) dxi dy

)2

dy.

Using a third order Taylor series development around a preliminary estima-
tor of f called f̂ , the latter functional turns into,ˆ

H( f̂ , x, y) f (x, y) dx dy +

ˆ
K( f̂ , x, y, z) f (x, y) f (x, z) dx dy dz + Γn.
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where H and K are functions depending on f̂ and Γn is an error term.

The Taylor-based estimator has two elements: An empirical estimator for
the first addend; and a projection to some functional orthonormal basis for
the second one. This type of projections were studied for instance by Laurent
(1996) in the estimation of integral functionals. They proved that its estimator
is asymptotical normal with variance depending only in the linear part of the
functional and that it is efficient from the Cramér-Rao point of view.

Further details in sensitivity analysis are in Saltelli et al. (2000), Saltelli et al.
(2004) and Saltelli et al. (2008).

1.6 Thesis scope and outline

In Section 1.3, we discussed how the matrix Σ = Cov(E[X|Y]) works into
the sliced inverse regression method. Once we have an estimator for Σ, the
eigenvectors associated to the largest eigenvalues of Σ provides an efficient
dimension reduction space. In an apparently unrelated issue, we explore,
in Section 1.5.1, techniques to estimate sensitivity indices through the value
Si = Var(Y|Xi)/ Var(Y). Both issues identify or extract the real influences of
the variables into the model and both are based in the estimation of some
conditional variance-covariance.

Our work falls in the following chapters:

Chapter 2. Chapter 2 present an Taylor-based estimator inspired by the work
of Da Veiga and Gamboa (2013). Motivated by application to sliced inverse
regression, we will estimate

σij = E[E[Xi|Y]E[Xj|Y]] for i, j = 1, . . . , p

Notice that this estimator generalizes the Da Veiga and Gamboas’s procedure
to three dimensions.

The strategy adopted in this chapter is the following: Denote as f (xi, xj, y)
the density function of (Xi, Xj, Y) and fY(y) the marginal density of Y. We can
rewrite σij as

σij =

ˆ (´ xi f (xi, xj, y) dxi dxj

fY(y)

)
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(´
xj f (xi, xj, y) dxi dxj

fY(y)

)
f (xi, xj, y) dxi dxj dy.

We will develop the estimator Σ̂T = (σ̂ij,T)p×p where σ̂ij,T is based in the
Taylor approximation explained in Section 1.5.1. The asymptotic convergence
of the quadratic part and the error term are negligible with respect to the linear
part. For this reason the variance in the normal distribution is built only by the
linear term.

Summing up, we will prove that the random variable
√

n (σ̂ij,T − σij)
converges to a normal distribution, with mean 0 and variance depending on
the linear part of Tij( f ), when n→ ∞.

Moreover we will show that our estimator is asymptotic efficient using a
Cramér Rao criterion. Finally, we can extend these results to the whole matrix
Σ proving that

√
n vech(Σ̂T − Σ) D−→ N (0, C( f ))

where C = (Cij)p×p depends on the linear part of T( f ) = (Tij( f ))p×p.

Chapter 3. The main issue with the estimator Taylor-based estimator Σ̂T in
Chapter 2 is the lack of flexibility to estimate rates of convergence in some
general cases. Thus, in Chapter 3 we propose a nonparametric estimator to
handle this issue. If the joint-density function of (X, Y) is smooth enough, we
can achieve parametric rates of convergence. We will use the ideas presented by
Zhu and Fang (1996).

We will define an estimator of the form (1.5) with R̂i, R̂j being the Nadaraya-
Watson of E[X|Y]. We will call it Σ̂K. In this work, we will find rates of
convergence for Σ̂K depending on the smoothness of the joint distribution f .
We will set that f belong to some Hölder functional class with parameters β > 0
and radius L > 0.

The main result in Chapter 3 establishes that under some mild conditions and
β ≥ 2, then E[(σij,K − σij)

2] decreases at rate 1/n. In other words, with enough
regularity in the model, we can achieve a parametric rate of convergence with a
nonparametric estimator. Otherwise, if β < 2, we will get a nonparametric rate.

If p � n, then the estimator Σ̂K = (σ̂ij,K)ij loses its performance. As
we explain in Section 1.4.1, as the dimension grows, we lose the estimator
convergence. To recover it, we need to regularize the matrix Σ̂K assuming
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certain structure in the matrix Σ. We will apply the solution giving by Bickel
and Levina (2008b) with a banding method. We shall use the Frobenuis norm
under some regular covariance class. Moreover, the rates will depend on the
dimensionality and the smoothness of the joint density function f (x, y) and
they will be coherent with the work of Cai et al. (2010). If p� n, we will use
the original covariance matrix Σ̂K given the low-dimension setting. Otherwise,
it is necessary to regularize the estimator to conserve the convergence.

Chapter 4. Finally, we will adjust the nonparametric estimator for condi-
tional variances, developed in Chapter 3, to study the quantity E[E[Y|Xi]]
for i = 1, . . . , p. We have seen how the latter expectation is related to the estima-
tion of the Sobol index Si presented in equation (1.8). Assuming at least that the
joint density of (Xi, Y) is twice times differentiable, we show that the estimator
of Si converges at a parametric rate to Si. Otherwise, for densities with less
than two derivatives, we obtain a nonparametric rate of convergence depend-
ing on the regularity. Our method avoids the run computational expensive
Monte-Carlo simulations because it estimates each Sobol index directly with
the inherent structure of the data. Furthermore, we present some numerical
results with popular sensitivity analysis test models, like the Ishigami function.
Our numerical simulations identify correctly the relevant and irrelevant factors
of the models.





Chapter 2

Efficient estimation of conditional
covariance matrices for dimension

reduction

joint work with S. Da Veiga1 and J-M. Loubes2.

Abstract: Let X ∈ Rp and Y ∈ R. In this chapter we estimate the conditional
covariance matrix Cov(E[X|Y]) in an inverse regression setting. We develop a
functional Taylor expansion of Cov(E[X|Y]) under some mild conditions. This
methodology provides a new efficient estimator from the Cramer-Rao point of
view. Also, we study its asymptotic properties.

2.1 Introduction

Consider the nonparametric regression

Yk = ϕ(Xk) + εk k = 1, . . . , n,

where Xk = (X1k, . . . , Xpk) ∈ Rp, Yk ∈ R and εk are random noises with
E[εk] = 0. If we face a model with more variables than observed data (i.e.,
p� n); the high-dimensional setting blurs the relation between X and Y, unless

1Institut Français du Pétrole, Paris, France.
2Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France.
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we have at hand a large sample. The literature calls this phenomenon the
curse of dimensionality.

Many authors have studied the dimensionality problem. For instance, the
generalized linear model in Brillinger (1983), the additive models in Hastie and
Tibshirani (1990), sparsity constraint models in Li (2007) and references therein.

Alternatively, Li (1991a) propose the sliced inverse regression method. He
considers the semiparametric model,

Yk = φ(υ>1 Xk, . . . , υ>K Xk, εk) (2.1)

where the υ’s are unknown vectors in Rp, the εk’s are independent of Xk and φ

is an arbitrary function in RK+1. This model gathers all the relevant information
about the variable Y, with only a projection onto the K � p dimensional
subspace (υ>1 X, . . . , υ>K X). If K is small, the method reduces the dimension
by estimating the υ’s efficiently. We call the υ’s effective dimension reduction
directions. This method is also used to search nonlinear structures in data and
to estimate the projection directions υ’s.

For a review on the sliced inverse regression methods, we refer to Li (1991a),
Li (1991b), Duan and Li (1991) Hardle and Tsybakov (1991) and references
therein. In short, the eigenvectors associated with the largest eigenvalues of
Cov(E[X|Y]) are the model (2.1) effective dimension reduction directions.

In this context, it is enough to estimate Cov(E[X|Y]) to find the effective
dimension reduction directions. Some previous works include: Zhu and Fang
(1996) and Ferré and Yao (2003) and Ferré et al. (2005) use kernel estimators;
Hsing (1999) combines nearest neighbor and the sliced inverse regression; Bura
and Cook (2001) assume that E[X|Y] has some parametric form; Setodji and
Cook (2004) use k-means and Cook and Ni (2005) write the sliced inverse
regression to least square form.

We propose an alternate estimation of the matrix

Cov(E[X|Y]) = E[E[X|Y]E[X|Y]>]−E[X]E[X]>,

using the ideas of Da Veiga and Gamboa (2013), inspired by the prior work of
Laurent (1996). Since we can compute E[X]E[X]> easily, we will focus on the
E[E[X|Y]E[X|Y]>] estimation.

We will present a quadratic functional estimator of E[E[X|Y]E[X|Y]>] via
a coordinate-wise Taylor development. Given a preliminary approximation of
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the (Xi, Xj, Y)’s density, we will make a Taylor’s expansion up to thrice order
of E[E[X|Y]E[X|Y]>]. The first order term drives the asymptotic convergence
meanwhile the other ones rest negligible. We will also prove this kind of
convergence for the whole matrix. Besides, we shall prove also its efficiency in
a semiparametric framework using a Cramer-Rao criterion.

Instead of compete with the methods mentioned before, we intent to make
it complementary. Indeed, we offer an alternative method on plug-in methods
for conditional covariance matrices with minimum variance properties.

We organize this chapter as follows. Section 2.2 motivates our investigation
of Cov(E[X|Y]) using a Taylor approximation. In Section 2.3.1 we set up all
the notations and hypotheses. We demonstrate, in Section 2.3.2, the efficient
convergence of each coordinate for our estimator. Also, we state the asymptotic
normality for the whole matrix. For the quadratic term of the Taylor’s expansion
of Cov(E[X|Y]), we find an asymptotic bound for the variance in Section 2.4.
We postpone all the technical Lemmas and related proofs to Sections 2.6.2 and
2.6.1 respectively.

2.2 Methodology

Let X ∈ Rp be a squared integrable random vector with p ≥ 1 and Y ∈ R be a
random variable. Denote as Xi, Xj the i-th and j-th coordinates of X, respectively
for i and j different. We denote by fij(xi, xj, y) the joint density of the vector
(Xi, Xj, Y) for i, j = 1 . . . p. Remark that the density function fij depends on
the indices i and j, namely for each triplet (Xi, Xj, Y) there exist a joint density
function called fij(xi, xj, y). For the sake of simplicity, we will denote fij only by
f to avoid cumbersome notations. When i is equal to j, we will call to the joint
density of (Xi, Y) by fi(xi, y) , for i = 1, . . . , p. When the context is clear, we can
name fi simply by f . Finally, let fY(·) =

´
R

f (xi, xj, ·) dxi dxj be the marginal
density function with respect to Y

The studies of Laurent (1996) and Da Veiga and Gamboa (2013) have already
considered the estimation of the diagonal of Cov(E[X|Y]). According to the
paragraph precedent, they assumed a context where the indices i and j are equal.
The former studied the estimation of density integrals in the unidimensional
case and the latter applied this estimation into sensibility analysis for computing
Sobol indices. In this work, we shall extend their methodologies to the case i
different of j to find an alternative estimator for the sliced inverse regression
directions.
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Recall that

Σ = Cov(E[X|Y]) = E[E[X|Y]E[X|Y]>]−E[X]E[X]>,

where A> means the transpose of A. We can easily estimate E[X] with the
empirical sample mean. Also, without loss of generality, we always can assume
the variables X centered, i.e., E[X] = 0.

Define each entry of the conditional covariance matrix Σ as

σij = E[E[Xi|Y]E[Xj|Y]] i, j = 1, . . . , p.

Given a sample of (X, Y), we aim to study the asymptotic and efficiency prop-
erties of σij. Also, we will find similar results for the whole matrix Σ.

Notice that we can write each σij for i 6= j as

σij =

ˆ (´ xi f (xi, xj, y) dxi dxj

fY(y)

)
(´

xj f (xi, xj, y) dxi dxj

fY(y)

)
f (xi, xj, y) dxi dxj dy. (2.2)

We will need the following functional operator.

Definition 2.1. Let ψ be a square-integrable function in L2(dxi dxj, dy). Define
the functional mapping ψ 7→ Tij(ψ) where

Tij(ψ) =

ˆ (´ xiψ(xi, xj, y) dxi dxj´
ψ(xi, xj, y) dxi dxj

)
(´

xjψ(xi, xj, y) dxi dxj´
ψ(xi, xj, y) dxi dxj

)
ψ(xi, xj, y) dxi dxj dy. (2.3)

A word to clarify the notations it is necessary at this point. The functional
Tij(ψ) takes any squared-integrable ψ an estimates the value described in
equation (2.3). If we take specifically ψ = f , then the functional Tij( f ) is equal
to the parameter σij defined in 2.2. We will apply a Taylor development to
Tij( f ) to obtain an estimator for σij. Thus, we should be able of transfer all the
properties of Tij( f ) to σij.
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Suppose that (Xik, Xjk, Yk), k = 1, . . . , n is an independent and identically
distributed sample of (Xi, Xj, Y). Assume that f̂ is a preliminary estimator of f
estimated with a subsample of size n1 < n. The main idea is to expand Tij( f )
in a Taylor’s series around a neighborhood of f̂ .

More precisely, define an auxiliar function F : [0, 1]→ R;

F(u) = Tij(u f + (1− u) f̂ )

with u ∈ [0, 1]. The Taylor’s expansion of F between 0 and 1 up to the third
order is

F(1) = F(0) + F′(0) +
1
2

F′′(0) +
1
6

F′′′(ξ)(1− ξ)3 (2.4)

for some ξ ∈ [0, 1]. Moreover, we have

F(1) = Tij( f )

F(0) = Tij( f̂ )

To simplify the notations set

mi( fu, y) =

´
xi fu(xi, xj, y) dxi dxj´

fu(xi, xj, y) dxi dxj
,

where fu = u f + (1− u) f̂ , for all u belonging to [0, 1]. Notice that if u = 0 then
mi( f0, y) = mi( f̂ , y).

We can rewrite F(u) as

F(u) =
ˆ

mi( fu, y)mj( fu, y) fu(xi, xj, y) dxi dxj dy.

The next Proposition gives the Tij( f ) Taylor’s expansion.

Proposition 1 (Linearization of the operator T). For the functional Tij( f ) defined
in (2.3), the following decomposition holds

Tij( f ) =
ˆ

H1( f̂ , xi, xj, y) f (xi, xj, y) dxi dxj dy

+

ˆ
H2( f̂ , xi1, xj2, y) f (xi1, xj1, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy + Γn (2.5)

where

H1( f̂ , xi, xj, y) = ximj( f̂ , y) + xjmi( f̂ , y)−mi( f̂ , y)mj( f̂ , y)
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H2( f̂ , xi1, xj2, y) =
1´

f̂ (xi, xj, y) dxi dxj
(xi1 −mi( f̂ , y))(xj2 −mj( f̂ , y))

Γn =
1
6

F′′′(ξ)(1− ξ)3, (2.6)

for some ξ ∈]0, 1[.

This decomposition separates Tij( f ) in three parts. A linear functional
of f —which is easily estimable—, a quadratic one and an error term Γn. In
Section 2.3.2, we prove that the term H1 drives the asymptotic convergence of
Tij( f ). Besides, Theorem 2.2 gives the semiparametric efficiency. We control the
quadratic functional variance in Section 2.4.

2.3 Main Results

In this section we estimate σij efficiently employing decomposition (2.5). Since
we used n1 < n to build a preliminary approximation f̂ , we will use a sample
of size n2 = n− n1 to estimate σij. Since the first term in equation (2.5) is a
linear functional in f , then its empirical estimator is

1
n2

n2

∑
k=1

H1( f̂ , Xik, Xjk, Yk). (2.7)

Conversely, the second addend complicates the estimate because it is a
nonlinear functional of f . However, in Section 2.4 we will study deeply the
general functional

θ( f ) =
ˆ

η(xi1, xj2, y) f (xi1, xj1, y) f (xi2, xj2, y)dxi1dxj1dxi2dxj2dy

where η : R3 → R is a bounded function. The value θ̂n of θ( f ) gives an
approximation of the second term in (2.5). This technique extends the method
developed by Da Veiga and Gamboa (2013).

2.3.1 Hypothesis and Assumptions

Throughout the chapter, we will use the following notations. Let ak and bk for
k = 1, 2, 3 be real numbers where ak < bk. Let, for i and j fixed, L2( dxi dxj dy) be
the squared integrable functions in the cube [a1, b1]× [a2, b2]× [a3, b3]. Moreover,
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let (pl(xi, xj, y))l∈D be an orthonormal basis of L2( dxi dxj dy), where D is a
subset of {1, . . . , p}. Let al =

´
pl f denote the scalar product of f with pl.

Furthermore, denote by L2( dxi dxj) (resp. L2( dy)) the set of squared in-
tegrable functions in [a1, b1]× [a2, b2] (resp. [a3, b3]). If

(
αlα(xi, xj)lα∈D1

)
(resp.(

βlβ
(y)lβ∈D2

)
) is an orthonormal basis of L2( dxi dxj) (resp. L2( dy)) then pl(xi, xj, y) =

αlα(xi, xj)βlβ
(y) with l = (lα, lβ) ∈ D1 × D2.

We also use the following subset of L2( dxi dxj dy)

E =

{
∑
l∈D

el pl : (el)l∈D is such that ∑
l∈D

∣∣∣∣ el
cl

∣∣∣∣2 < 1

}

where (cl)l∈D is a decreasing fixed sequence.

Moreover assume that (Xi, Xj, Y) have a bounded joint density fij on [a1, b1]×
[a2, b2]× [a3, b3] which lies in the ellipsoid E .

Besides, Xn
D−→X (resp. Xn

P−→X) denotes the convergence in distribution or
weak convergence (resp. convergence in probability) of Xn to X. Additionally, we
denote by supp f the support of f .

Let (Mn)n≥1 denote a sequence of subsets of D. For each n there exists Mn
such that Mn ⊂ D. Write by |Mn| the cardinal of Mn. We shall make three main
assumptions:

Assumption 2.1. For all n ≥ 1 there is a subset Mn ⊂ D such that

sup
l /∈Mn

|cl|2 ≈
√
|Mn|/n

(An ≈ B means λ1 ≤ An/Bn ≤ λ2 for some positives constants λ1 and λ2). Moreover,
for all f ∈ L2( dx dy dz),

´
(SMn f − f )2 dx dy dz→ 0 when n→ ∞, where SMn f =

∑l∈Mn al pl.

Assumption 2.2. We assume that supp f ⊂ [a1, b1]× [a2, b2]× [a3, b3] and for all
(x, y, z) ∈ supp f , 0 < α ≤ f (x, y, z) ≤ β with α, β ∈ R.

Assumption 2.3. It is possible to find an estimator f̂ of f built with n1 ≈ n/ log (n)
observations, such that for ε > 0,

∀(x, y, z) ∈ supp f , 0 < α− ε ≤ f̂ (x, y, z) ≤ β + ε
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and,
∀ 2 ≤ q ≤ +∞, ∀l ∈N∗, E f ‖ f̂ − f ‖l

q ≤ C(q, l)n−lλ
1

for some λ > 1/6 and some constant C(q, l) not depending on f belonging to the
ellipsoid E .

Assumption 2.1 is necessary to bound the bias and variance of θ̂n. It depends
on n to obtain a good quadratic approximation of the density projection using
only Mn coefficients. This condition relates the growing size of the set Mn with
the decay rate of the sequence cl.This behavior relates strongly the smoothness
of the density function f with the size of the coefficients cl.

For instance, we will use the Example 2 in Laurent (1996) and its notation.
Assume that f belongs to some Hölder space with index greater than s. If the
wavelet ψ̃ has regularity r > s, then f ∈ E where

E =

∑
j≥0

∑
λ∈Λj

α(λ)ψ̃λ, ∑
j≥0

∑
λ∈Λj

22js|α(λ)|2 ≤ 1

 .

See Meyer and Salinger (1993) for further details.

Moreover, they show that if s > p/4 and

Mn =
{

λ ∈ Λj, j ≤ j0, 2j0 = n2/(p+4s)
}

then supl /∈Mn
|cl|2 ≈

√
|Mn|/n. Also, |Mn|/n→ 0 with

|Mn| ≈ n2p/(d+4s), sup
l /∈Mn

|cl|2 ≈ 2−2j20 = n−4s/(p+4s).

Assumption 2.2 and 2.3 establish that Γn = O(1/n), i.e., the error term in
(2.5) is negligible. In Assumption 2.3, the function f̂ converges faster than some
given rate. Of course, the existence of such an estimator deeply relies on the
regularity of the true function.

On the one hand, a large literature exists to determine which estimator we
have to choose to achieve a rate of convergence for some kind of functions. See
for instance Tsybakov (2009). On the other hand, suppose we set a class of
estimators and a rate of convergence. Another type of theory specify the kind
of functions that we might approximate with these estimators and achieving
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this convergence rate. Particularly, the maxiset theory and we refer to Autin
et al. (2009) or Kerkyacharian and Picard (2002) for general articles.

The Nikol’skii functional class provides an example for our framework.
For x ∈ Rp, s > 0 and L > 0, we consider the class Hq(s, L) of Nikol’skii of
functions f ∈ Lq( dx) with partials derivatives up to order r = bsc inclusive.
For each of these derivatives f (r), we assume that

‖ f (r)(·+ h)− f (r)(·)‖q ≤ L|hs−r| ∀h ∈ R.

If f ∈ Hq(s, L) with s > p/4, then Assumption 2.3 is satisfied (see Ibragimov
and Khas’ minskii (1983, 1984)).

2.3.2 Efficient Estimation of σij

We consider the following estimator of σij adopting the decomposition of Tij( f )
in equation (2.5) along equations (2.7) and (2.12),

σ̂ij,T =
1
n2

n2

∑
k=1

H1
(

f̂ , Xik, Xjk, Yk
)
+

1
n2(n2 − 1) ∑

l∈M

n2

∑
k 6=k′=1

pl
(
Xik, Xjk, Yk

)
ˆ

pl
(
xi, xj, Yk′

)
H3
(

f̂ , xi, xj, Xik′ , Xjk′ , Yk′
)

dxi dxj

− 1
n2(n2 − 1) ∑

l,l′∈M

n2

∑
k 6=k′=1

pl
(
Xik, Xjk, Yk

)
pl′
(
Xik′ , Xjk′ , Yk′

)
ˆ

pl
(
xi1, xj1, y

)
pl′
(
xi2, xj2, y

)
H2
(

f̂ , xi1, xj2, y
)

dxi1 dxj1 dxi2 dxj2dy. (2.8)

where H3( f , xi1, xj1, xi2, xj2, y) = H2( f , xi1, xj2, y) + H2( f , xi2, xj1, y) and n2 =
n− n1. We remove the term Γn of (2.5) in equation (2.8) because we will prove
that it is negligible compared to the others terms.

Notice that if we take for example n1 = n/ log n, then n1/n → 0 and
n2/n → 1 as n → ∞. Thus, we will use n instead of n2 (asymptotically
speaking) from this point to simplify the notation.

The next theorem gives the asymptotic behavior of σ̂ij,T for i and j.

Theorem 2.1. Let Assumptions 2.1-2.3 hold and |Mn|/n→ 0 when n→ ∞. Then,

√
n
(
σ̂ij,T − σij

) D−→ N (0, Cij( f )), (2.9)
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and
lim

n→∞
n E[σ̂ij,T − σij]

2 = Cij( f ), (2.10)

where
Cij( f ) = Var(H1( f , Xi, Xj, Y))

The asymptotic variance of σij depends only on H1( f , Xi, Xj, Y). In other
words, the linear part of (2.5) controls the asymptotic normality of σij. This
property entails the natural efficiency of σ̂ij,T.

The next theorem produces the σij’s semiparametric Cramér-Rao bound.

Theorem 2.2 (Semiparametric Cramér Rao bound). Consider the estimation of

σij = E[E[Xi|Y]E[Xj|Y]>]

for a random vector (Xi, Xj, Y) with joint density f ∈ E .

Let f0 ∈ E be a density verifying the assumptions of Theorem 2.1. Then, for any
estimator σ̂ij,T of σij and every family {Vr( f0)}r>0 of neighborhoods of f0 we have

inf
{Vr( f0)}r>0

lim inf
n→∞

sup
f∈Vr( f0)

n E f
[
σ̂ij,T − σij

]2 ≥ Cij( f0)

where Vr( f0) = { f : ‖ f − f0‖2 < r} for r > 0.

Theorems 2.1 and 2.2 establish the asymptotic efficiency of the estimator
σ̂ij,T defined in (2.8).

We have proved asymptotic normality entry by entry of the matrix Σ =
(σij)p×p using the estimator Σ̂T = (σ̂ij,T)p×p defined in equation (2.8). To extend
the result to the whole matrix, we introduce the half-vectorization operator vech.
This operator stacks only the columns from the principal diagonal of a square
matrix downwards in a column vector. Formally, for a p× p matrix A = (aij),

vech(A) =
[
a11, · · · , ap1, a22, · · · , ap2, · · · , a33, · · · , app

]> .

Name H1( f ) the matrix with entries defined by
(

H1( fij, xi, xj, y)
)

i,j if i different
of j and (H1( fi, xi, xi, y))i,i when i is equal to j and i, j = 1, . . . , p.

Corollary 2.1 generalizes our previous results.
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Corollary 2.1. Let Assumptions 2.1-2.3 hold and |Mn|/n→ 0 when n→ ∞. Then
T̂n has the following properties:

√
n vech(Σ̂T − Σ) D−→ N (0, C( f )),

lim
n→∞

n E

[
vech

(
Σ̂T − Σ

)
vech

(
Σ̂T − Σ

)>]
= C( f )

where the limit is taking element-wise and

C( f ) = Cov(vech(H1( f ))).

The estimator σ̂ij,T is asymptotically normal with a variance depending on
the linear term of the Taylor development. Given this particular nature, it was
possible to show the asymptotic efficiency of σ̂ij,T. It means, among all the
estimators of σij, the estimator defined in equation (2.8) has the lowest variance.
The conclusions in Theorems 2.1 and 2.2 depend on to estimate accurately the
quadratic term of σ̂ij,T. We will handle this issue in the next section.

2.4 Estimation of quadratic functionals

We have proved, in Section 2.3.2, the asymptotic normality and found an efficient
semiparametric Cramér-Rao bound of the estimator σ̂ij,T defined in equation
(2.8). We used the Taylor decomposition (2.5) to construct the estimator σ̂ij,T. In
the present section, we will build an estimator for the quadratic term

ˆ
H2( f̂ , xi1, xj2, y) f (xi1, xj1, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

To this end, we build a general estimator of the parameter with the form:

θ =

ˆ
η(xi1, xj2, y) f (xi1, xj1, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy,

for f ∈ E and η : R3 → R a bounded function.

Given M = Mn a subset of D, consider the estimator

θ̂n =
1

n(n− 1) ∑
l∈M

n

∑
k 6=k′=1

pl(Xik, Xjk, Yk)

ˆ
pl(xi, xj, Yk′)

(
η(xi, Xjk′ , Yk′) + η(Xik′ , xj, Yk′)

)
dxi dxj
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− 1
n(n− 1) ∑

l,l′∈M

n

∑
k 6=k′=1

pl(Xik, Xjk, Yk)pl′(Xik′ , Xjk′ , Yk′)

ˆ
pl(xi1, xj1, y)pl′(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy. (2.11)

To simplify the presentation of Theorem 2.1, write ψ(xi1, xj1, xi1, xj2, y) =
η(xi1, xj2, y) + η(xi2, xj1, y) verifying

ˆ
ψ(xi1, xj1, xi2, xj2, y) dxi1 dxj1 dxi2 dxj2dy

=

ˆ
ψ(xi2, xj2, xi1, xj1, y) dxi1 dxj1 dxi2 dxj2 dy.

With this notation we can simplify (2.11) into

θ̂n =
1

n(n− 1) ∑
l∈M

n

∑
k 6=k′=1

pl(Xik, Xjk, Yk)

ˆ
pl(xi, xj, Yk′)ψ(xi, xj, Xik′ , Xjk′ , Yk′) dxi dxj

− 1
n(n− 1) ∑

l,l′∈M

n

∑
k 6=k′=1

pl(Xik, Xjk, Yk)pl′(Xik′ , Xjk′ , Yk′)

ˆ
pl(xi1, xj1, y)pl′(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy. (2.12)

The bias of θ̂ is equal to

−
ˆ
(SM f (xi1, xj1, y)− f (xi1, xj1, y))(SM f (xi2, xj2, y)− f (xi2, xj2, y))

η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

The following Theorem gives an explicit bound for the θ̂n variance.

Theorem 2.3. Let Assumption 2.1 hold. Then if |Mn|/n→ 0 when n→ ∞, then θ̂n
has the following property∣∣∣n E

[(
θ̂n − θ

)2]−Λ( f , η)
∣∣∣ ≤ γ

[
|Mn|

n
+ ‖SMn f − f ‖2 + ‖SMn g− g‖2

]
,
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where g(xi, xj, y) =
´

f (xi2, xj2, y)ψ(xi, xj, xi2, xj2, y) dxi2 dxj2 and

Λ( f , η) =

ˆ
g(xi, xj, y)2 f (xi, xj, y) dxi dxj dy

−
(ˆ

g(xi, xj, y) f (xi, xj, y) dxi dxj dy
)2

,

where γ is constant depending only on ‖ f ‖∞, ‖η‖∞, and ∆ = (b1 − a1)× (b2 − a2).
Moreover, this constant is an increasing function of these quantities.

Note that equation (2.3) implies that

lim
n→∞

n E[(θ̂n − θ)2] = Λ( f , η).

We can control the quadratic term of σ̂ij,T, which is a particular case of θ

choosing η(xi1, xj2, y) = H2( f̂ , xi1, xj2, y).

We will show, in proof 2.6.1, that Λ( f , η)→ 0 when n→ ∞. Consequently,
the linear part of σ̂ij,T governs its asymptotic variance, yielding also asymptotic
efficiency.

2.5 Conclusion

In this chapter, we propose a new way to estimate Cov(E[X|Y]), different from
the usual plugin type estimators. We use a general functional Tij( f ) depending
on the joint density function f of (Xi, Xj, Y). In particular, we grab a suitable
approximation f̂ of f and construct a coordinate-wise Taylor’s expansion up
to order three around it. We call this estimator σ̂ij,T. This expansion serves to
estimate Cov(E[X|Y]) using an orthonormal base of L2( dxi dxj dy).

We highlight that σ̂ij,T is asymptotic normal with variance leaded by the first
order term. This behavior also causes an efficiency from the Cramér-Rao’s point
of view. Again, the Cramér-Rao bound depends only on the linear part of the
Taylor’s series.

With the help of the vech operator, we expanded our results to the matrix-
estimator Σ̂ formed with the entries σ̂ij,T. We showed that the T( f )’s linear term
guides the variance for the Σ̂T’s asymptotic normality.

Even if we aim principally to study a new class of estimators for Cov(E[X|Y]),
we refer to Da Veiga and Gamboa (2013) for some simulations in a context simi-
lar to ours. In general, their numerical result behaves reasonably well despite its
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implementation’s complexity. These results could also work in our framework
and we will consider them in a future article.

The estimator Σ̂T could have negative eigenvalues, violating the semipositive
definiteness of the covariance. From a practical point of view, we could project
Σ̂T into the space of positive-semidefinite matrices. It means, we first diagonalize
Σ̂T and then replace negative eigenvalues by 0. The resulting estimator is
then semipositive-definite. The works of Bickel and Levina (2008a,b), and
Cai et al. (2010), present an extended discussion about techniques on matrix
regularization.

This research constitutes a first step in the study of estimators based in
Taylor’s series with minimum variance. To simplify the implementation’s
complexity of this estimator, we will explore another kind of techniques like
nonparametric methods for example.

2.6 Appendix

2.6.1 Proofs

Proof of Proposition 1.

We need to calculate the three first derivatives of F(u). to ease the calculation,
notice first that

d
du

mi( fu, y)u =

´ (
xi −mi( fu, y)

)
( f (xi, xj, y)− f̂ (xi, xj, y)) dxi dxj´
fu(xi, xj, y) dxi dxj

. (2.13)

It is possible to interchange the derivate with the integral sign because f
and f̂ are bounded. Now, using (2.13) and taking u = 0 we have

F′(0) =
ˆ [

ximj( f̂ , y) + xjmi( f̂ , y)−mi( f̂ , y)mj( f̂ , y)
]

( f (xi, xj, y)− f̂ (xi, xj, y)) dxi dxj dy. (2.14)

Deriving mi( fu, y)mj( fu, y) using the same arguments as in (2.13) and again
taking u = 0 we get,
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F′′(0) =
ˆ

2´
f̂ (xi, xj, y) dxi dxj

(xi1 −mi( f̂ , y))(xj2 −mj( f̂ , y))( f (xi1, xj1, y)− f̂ (xi1, xj1, y))

( f (xi2, xj2, y)− f̂ (xi2, xj2, y)) dxi1 dxj1 dxi2 dxj2 dy. (2.15)

Using the previous arguments we find also that

F′′′(u) =
ˆ −6´

fu(xi, xj, y)dxidxj

(
xi1 −mj( fu, y)

)(
xj2 −mj( fu, y)

)
(

f (xi1, xj1, y)− f̂ (xi1, xj1, y)
)(

f (xi2, xj2, y)− f̂ (xi2, xj2, y)
)(

f (xi3, xj3, y)− f̂ (xi3, xj3, y)
)

dxi1 dxj1 dxi2 dxj2 dxi3 dxj3 dy (2.16)

Replacing (2.14), (2.15) and (2.16) into (2.4) we get the desired decomposition.

Proof of Theorem 2.1. We will first control the remaining term (2.6),

Γn =
1
6

F′′′(ξ)(1− ξ)3.

Remember that

F′′′(ξ) = −6
ˆ (

xi1 −mi( fξ , y)
) (

xj2 −mj( fξ , y)
)(´

fξ(xi, xj, y) dxi dxj
)2(

f (xi1, xj1, y)− f̂ (xi1, xj1, y)
) (

f (xi2, xj2, y)− f̂ (xi2, xj2, y)
)

(
f (xi3, xj3, y)− f̂ (xi3, xj3, y)

)
dxi1 dxj1 dxi2 dxj2 dxi3 dxj3 dy,

Assumptions 2.1 and 2.2 ensure that the first part of the integrand is bounded
by a constant µ. Furthermore,

|Γn| ≤ µ

ˆ ∣∣∣ f (xi1, xj1, y)− f̂ (xi1, xj1, y)
∣∣∣ ∣∣∣ f (xi2, xj2, y)− f̂ (xi2, xj2, y)

∣∣∣∣∣∣ f (xi3, xj3, y)− f̂ (xi3, xj3, y)
∣∣∣ dxi1 dxj1 dxi2 dxj2 dxi3 dxj3 dy

= µ

ˆ (ˆ ∣∣∣ f (xi, xj, y)− f̂ (xi, xj, y)
∣∣∣ dxi dxj

)3

dy

≤ µ∆3
ˆ ∣∣∣ f (xi, xj, y)− f̂ (xi, xj, y)

∣∣∣3 dxi dxj dy
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by the Hölder inequality. Then E[Γ2
n] is equal to O(E‖ f − f̂ ‖6

3). Since f̂ verifies
Assumption 2.3, this quantity is of order O(n−6λ

1 ). Since we also assume n1 ≈
n/ log(n) and λ > 1/6, then n−6λ

1 = o (1/n). Therefore, we get E[Γ2
n] = o(1/n)

which implies that the remaining term Γn is negligible.

To prove the asymptotic normality of σ̂ij,T, we shall show that
√

n
(
σ̂ij,T − Tij( f )

)
and

Z(n)
ij =

1
n2

n2

∑
k=1

H1
(

f , Xik, Xjk, Yk
)
−
ˆ

H1( f , xi, xj, y) f (xi, xj, y)) dxi dxj dy (2.17)

have the same asymptotic behavior. We can get for Z(n)
ij a classic central limit

theorem with variance

Cij( f ) = Var(H1( f , xi, xj, y))

=

ˆ
H1( f , xi, xj, y)2 f (xi, xj, y)) dxi dxj dy

−
(ˆ

H1( f , xi, xj, y) f (xi, xj, y) dxi dxj dy
)2

which implies (2.9) and (2.10). In order to establish our claim, we will show
that

R(n)
ij =

√
n
[
σ̂ij,T − Tij( f )− Z(n)

ij

]
(2.18)

has second-order moment converging to 0.

Define Ẑ(n)
ij as Z(n)

ij with f replaced by f̂ . Let us note that R(n)
ij = R1 + R2

where

R1 =
√

n
[
σ̂ij,T − Tij( f )− Ẑ(n)

ij

]
R2 =

√
n
[

Ẑ(n)
ij − Z(n)

ij

]
.

It only remains to state that E[R2
1] and E[R2

2] converges to 0. We can rewrite R1
as

R1 = −
√

n
[

Q̂−Q + Γn

]
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with

Q =

ˆ
H2( f̂ , xi1, xj2, y) f (xi1, xj1, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

H2( f̂ , xi1, xj2, y) =
1´

f̂ (xi, xj, y) dxi dxj

(
xi1 −mi( f̂ , y)

) (
xj2 −mj( f̂ , y)

)
.

We can estimate H2( f̂ , xi1, xj2, y) = η(xi1, xj2, y) as done in Section 2.4. Let
Q̂ the estimator of Q. Since E[Γ2

n] = o(1/n), we only have to control the
term

√
n(Q̂−Q) which is such that limn→∞ n E[Q̂−Q]2 = 0 by Lemma 2.7 in

Section 2.6.2 below. This Lemma implies that E[R2
1]→ 0 as n→ ∞. For R2 we

have

E[R2
2] =

n
n2

[ˆ (
H1( f , xi, xj, y)− H1( f̂ , xi, xj, y)

)2
f (xi, xj, y)) dxi dxj dy

]
− n

n2

[ˆ
H1( f , xi, xj, y) f (xi, xj, y)) dxi dxj dy

−
ˆ

H1( f̂ , xi, xj, y)2 f (xi, xj, y)) dxi dxj dy
]

2.

The same arguments as the ones of Lemma 2.7 (mean value and Assumptions
2.2 and 2.3) show that E[R2

2]→ 0.

Proof of Theorem 2.2 . To prove the inequality we will use the usual framework
described in Ibragimov and Khas’Minskii (1991). The first step is to calculate
the Fréchet derivative of Tij( f ) at some point f0 ∈ E . Assumptions 2.2 and 2.3
and equation (2.5), imply that

Tij( f )− Tij( f0) =

ˆ (
ximj( f0, y) + xjmi( f0, y)−mi( f0, y)mj( f0, y)

)
(

f (xi, xj, y)− f0(xi, xj, y)
)

dxi dxj dy + O
(ˆ

( f − f0)
2
)

where mi( f0, y) =
´

xi f0(xi, xj, y) dxi dxj dy/
´

f0(xi, xj, y) dxi dxj dy. Therefore,
the Fréchet derivative of Tij( f ) at f0 is T′ij( f0) · h = 〈H1( f0, ·), h〉 with

H1( f0, xi, xj, y) = ximj( f0, y) + xjmi( f0, y)−mi( f0, y)mj( f0, y).

Using the results of Ibragimov and Khas’Minskii (1991), denote

H( f0) =
{

u ∈ L2( dxi dxj dy),
´

u(xi, xj, y)
√

f0(xi, xj, y) dxi dxj dy = 0
}

the set
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of functions in L2( dxi dxj dy) orthogonal to
√

f0, PH( f0) the projection onto

H( f0), An(t) =
(√

f0
)

t/
√

n and P(n)
f0

the joint distribution of
(
Xik, Xjk

)
k =

1, . . . , n under f0. Since
(
Xik, Xjk

)
k = 1, . . . , n are i.i.d., the family

{
P(n)

f0
, f ∈ E

}
is differentiable in quadratic mean at f0 and therefore locally asymptotically
normal at all points f0 ∈ E in the direction H( f0) with normalizing factor
An( f0) (see the details in Van der Vaart (2000)). Then, by the results of
Ibragimov and Khas’Minskii (1991) say that under these conditions, denot-

ing Kn = Bnθ′( f0)AnPH( f0) with Bn =
√

nu, if Kn
D−→ K and if K(u) = 〈t, u〉,

then for every estimator σ̂ij,T of Tij( f ) and every family V( f0) of vicinities of f0,
we have

inf
{V( f0)}

lim inf
n→∞

sup
f∈V( f0)

n E[σ̂ij,T − Tij( f0)]
2 ≥ ‖tL2( dxi dxj dy)‖2.

Here,

Kn(u) =
√

nT′( f0) ·
√

f0√
n

PH( f0)(u) = T′( f0)

(√
f0

(
u−

√
f0

ˆ
u
√

f0

))
,

since for any u ∈ L2( dxi dxj dy) we can write it as u =
√

f0
〈√

f0, u
〉
+

PH( f0)(u). In this case Kn(u) does not depend on n and

K(h) = T′( f0) ·
(√

f0

(
u−

√
f0

ˆ
h
√

f0

))
=

ˆ
H1( f0, ·)

√
f0u−

ˆ
H1( f0, ·)

√
f0

ˆ
u
√

f0

= 〈t, u〉

with

t(xi, xj, y) = H1( f0, xi, xj, y)
√

f0 −
(ˆ

H1( f0, xi, xj, y) f0

)√
f0.

The semi-parametric Cramér-Rao bound for this problem is thus

‖tL2( dxi, dxj, dy)‖ =
ˆ

H1( f0, xi, xj, y)2 f0 dxi dxj dy

−
(ˆ

H1( f0, xi, xj, y) f0 dxi dxj dy
)2

and we recognize the expression Cij( f0) found in Theorem 2.1.
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Proof of Corollary 2.1. The proof is based in the following observation. Em-
ploying equation (2.18) we have

T̂n − T( f ) = Zn( f ) +
Rn√

n

where Zn( f ) and Rn are matrices with elements Z(n)
ij and R(n)

ij , defined in (2.17)
and (2.18), respectively.

Hence we have,

n E

[∥∥∥vech
(

T̂n − T( f )− Zn( f )
)∥∥∥2

]
= E

[
‖vech (Rn)‖2

]
= ∑

i≤j
E

[(
R(n)

ij

)2
]

.

We see by Lemma 2.7 that E[R2
ij]→ 0 as n→ 0. It follows that

n E[‖vech
(

T̂n − T( f )− Zn( f )
)
‖2]→ 0 as n→ 0.

We know that if Xn, X and Yn are random variables, then if Xn
D−→ X and

(Xn −Yn)
P−→ 0, follows that Yn

D−→ X.

Remember also that convergence in L2 implies convergence in probability,
therefore √

n vech
(

T̂n − T( f )− Zn( f )
) P−→ 0.

By the multivariate central limit theorem we have that
√

n vech (Zn( f )) D−→
N (0, C( f )). Therefore,

√
n vech

(
T̂n − T( f )

) D−→ N (0, C( f )).

Proof of Theorem 2.3. For abbreviation, we write M instead of Mn and set
m = |Mn|. We first compute the mean squared error of θ̂n as

E[θ̂n − θ]2 = Bias2(θ̂n) + Var(θ̂n)

where Bias(θ̂n) = E[θ̂n]− θ.

We begin the proof by bounding Var(θ̂n). Let A and B be m× 1 vectors with
components

al =

ˆ
pl(xi, xj, y) f (xi, xj, y) dxi dxj dy l = 1, . . . , m,
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bl =

ˆ
pl(xi1, xj1, y) f (xi2, xj2, y)ψ(xi1, xj1, xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

=

ˆ
pl(xi, xj, y)g(xi, xj, y) dxi dxj dy l = 1, . . . , m

where g(xi, xj, y) =
´

f (xi2, xj2, y)ψ(xi, xj, xi2, xj2, y) dxi2 dxj2. Let Q and R be
m× 1 vectors of centered functions

ql(xi, xj, y) = pl(xi, xj, y)− al

rl(xi, xj, y) =
ˆ

pl(xi2, xj2, y)ψ(xi, xj, xi2, xj2, y) dxi2 dxj2 − bl

for l = 1, . . . , m. Let C a m×m matrix of constants with indices l, l′ = 1, . . . , m
defined by

cll′ =

ˆ
pl(xi1, xj1, y)pl′(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

Let us denote by Un the process

Unh =
1

n(n− 1)

n

∑
k 6=k′=1

h
(
Xik, Xjk, Yk, Xik′ , Xjk′ , Yk′

)
and Pn the empirical measure

Pnh =
1
n

n

∑
k=1

h
(
Xik, Xjk, Yk

)
for some h in L2( dxi, dxj, dy). With these notations, θ̂n has the Hoeffding’s
decomposition

θ̂n =
1

n(n− 1) ∑
l∈M

n

∑
k 6=k′=1

(
ql(Xik, Xjk, Yk) + al

)(
rl(Xik′ , Xjk′ , Yk′) + bl

)
− 1

n(n− 1) ∑
l,l′∈M

n

∑
k 6=k′=1

(
ql(Xik, Xjk, Yk) + al

)(
ql′(Xik′ , Xjk′ , Yk′) + al′

)
cll′

= UnK + PnL + A>B− A>CA

where

K
(
xi1, xj1, y1, xi2, xj2, y2

)
=Q>(xi1, xj1, y1)R(xi2, xj2, y2)

−Q>(xi1, xj1, y1)CQ(xi2, xj2, y2)
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L(xi, xj, y) =A>R(xi, xj, y) + BQ(xi, xj, y)− 2A>CQ(xi, xj, y).

Therefore Var(θ̂n) = Var(UnK) + Var(PnL) − 2 Cov(UnK, PnL). These three
terms are bounded in Lemmas 2.2 - 2.4, which gives

Var(θ̂n) ≤
20

n(n− 1)
‖η‖2

∞‖ f ‖2
∞∆2(m + 1) +

12
n
‖η‖2

∞‖ f ‖2
∞∆2.

For n enough large and a constant γ ∈ R,

Var(θ̂n) ≤ γ‖η‖2
∞‖ f ‖2

∞∆2
(

m
n2 +

1
n

)
.

The term Bias(θ̂n) is easily computed, as proven in Lemma 2.5, is equal to

−
ˆ (

SM f (xi1, xj1, y)− f (xi1, xj1, y)
) (

SM f (xi2, xj2, y)− f (xi2, xj2, y)
)

η(xi1, xj1, xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

From Lemma 2.5, we bound the bias of θ̂n by

|Bias(θ̂n)| ≤ ∆‖η‖∞ sup
l /∈M
|cl|2.

The assumption of
(

supl /∈M |ci|2
)2
≈ m/n2 and since m/n→ 0, we deduce that

E[θ̂n − θ]2 has a parametric rate of convergence O (1/n).

Finally to prove (2.3), note that

n E[θ̂n − θ]2 = n Bias2(θ̂n) + n Var(θ̂n)

= n Bias2(θ̂n) + n Var(UnK) + n Var(PnL).

We previously proved that for some λ1, λ2 ∈ R

n Bias2(θ̂n) ≤ λ1∆2‖η‖2
∞

m
n

n Var(UnK) ≤ λ2∆2‖ f ‖2
∞‖η‖2

∞
m
n

.

Thus, Lemma 2.6 implies

|n Var(PnL)−Λ( f , η)| ≤ λ [‖SM f − f ‖2 + ‖SMg− g‖2] ,

where λ is an increasing function of ‖ f∞‖2, ‖η‖2
∞ and ∆. From all this we

deduce (2.3) which ends the proof of Theorem 2.3.
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2.6.2 Technical Results

Lemma 2.1 (Bias of θ̂n). The estimator θ̂n defined in (2.12) estimates θ with bias equal
to

−
ˆ (

SM f (xi1, xj1, y)− f (xi1, xj1, y)
) (

SM f (xi2, xj2, y)− f (xi2, xj2, y)
)

η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

Proof. Let θ̂n = θ̂1
n − θ̂2

n where

θ̂1
n =

1
n(n− 1) ∑

l∈M
∑

k 6=k′=1
pl(Xik, Xjk, Yk)

ˆ
pl(xi, xj, Yk′)ψ(xi, xj, Xik′ , Xjk′ , Yk′)dxidxj

θ̂2
n = − 1

n(n− 1) ∑
l,l′∈M

n

∑
k 6=k′=1

pl(Xik, Xjk, Yk)pl′(Xik′ , Xjk′ , Yk′)

ˆ
pl(xi1, xj1, y)pl′(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

Let us first compute E[θ̂1
n].

E[θ̂1
n]

= ∑
l∈M

ˆ
pl(xi1, xj1, y) f (xi1, xj1, y) dxi1 dxj1 dy

ˆ
pl(xi1, xj1, y)ψ(xi1, xj1, xi2, xj2, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

= ∑
l∈M

al

ˆ
pl(xi1, xj1, y)ψ(xi1, xj1, xi2, xj2, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

=

ˆ (
∑

l∈M
al pl(xi2, xj2, y)

)
ψ(xi1, xj1, xi2, xj2, y) f (xi2, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

=

ˆ
SM f (xi1, xj1, y) f (xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

+

ˆ
SM f (xi2, xj2, y) f (xi1, xj1, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

Now for θ̂2
n, we get

E[θ̂2
n]
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= ∑
l,l′∈M

ˆ
pl(xi, xj, y) f (xi, xj, y) dxi dxj dy

ˆ
pl′(xi, xj, y) f (xi, xj, y) dxi dxj dy

ˆ
pl(xi1, xj1, y)pl′(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

= ∑
l,l′∈M

alal′

ˆ
pl(xi1, xj1, y)pl′(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

=

ˆ (
∑

l∈M
al pl(xi1, xj1, y)

)(
∑

l′∈M
al′ pl′(xi2, xj2, y)

)
η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy

=

ˆ
SM f (xi1, xj1, y)SM f (xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy.

Arranging these terms and using

Bias(θ̂n) = E[θ̂n]− θ = E[θ̂1
n]−E[θ̂2

n]− θ

we obtain the desire bias.

Lemma 2.2 (Bound of Var(UnK)). Under the assumptions of Theorem 2.3, we have

Var(UnK) ≤ 20
n(n− 1)

‖η‖2
∞‖ f ‖2

∞∆2(m + 1)

Proof. Note that UnK is centered because Q and R are centered and (Xik, Xjk, Yk),
k = 1, . . . , n is an independent sample. So Var(UnK) is equal to

E[UnK]2 =E

(
1

(n(n− 1))2

n

∑
k1 6=k′1=1

n

∑
k2 6=k′2=1

K
(
Xik1 , Xjk1 , Yk1 , Xik′1

, Xjk′1
, Yk′1

)
K
(
Xik2 , Xjk2 , Yk2 , Xik′2

, Xjk′2
, Yk′2

))

=
1

n(n− 1)
E

(
K2(Xi1, Xj1, Y1, Xi2, Xj2, Y2

)
+ K

(
Xi1, Xj1, Y1, Xi2, Xj2, Y2

)
K
(
Xi2, Xj2, Y2, Xi1, Xj1, Y1

))

By the Cauchy-Schwarz inequality, we get

Var(UnK) ≤ 2
n(n− 1)

E[K2 (Xi1, Xj1, Y1, Xi2, Xj2, Y2
)
].
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Moreover, using the fact that 2|E[XY]| ≤ E[X2] + E[Y2], we obtain

E[K2 (Xi1, Xj1, Y1, Xi2, Xj2, Y2
)
]

≤ 2

[
E[
(
Q>(Xi1, Xj1, Y1)R(Xi2, Xj2, Y2)

)2
]

+ E[
(
Q>(Xi1, Xj1, Y1)CQ(Xi2, Xj2, Y2)

)2
]

]
.

We will bound these two terms. The first one is

E[
(
Q>(Xi1, Xj1, Y1)R(Xi2, Xj2, Y2)

)2
]

= ∑
l,l′∈M

(ˆ
pl(xi, xj, y)pl′(xi, xj, y) f (xi, xj, y) dxi dxj dy− alal′

)
(ˆ

pl(xi2, xj2, y)pl′(xi3, xj3, y)ψ(xi1, xj1, xi2, xj2, y)

ψ(xi1, xj1, xi3, xj3, y) f (xi1, xj1, y) dxi1 dxj1 dxi2 dxj2 dxi3 dxj3 dy− blbl′

)
=W1 −W2 −W3 + W4

where

W1 =

ˆ
∑

l,l′∈M
pl(xi1, xj1, y)pl′(xi1, xj1, y)

pl(xi2, xj2, y′)pl′(xi3, xj3, y′)ψ(xi4, xj4, xi2, xj2, y′)

ψ(xi4, xj4, xi3, xj3, y′) f (xi1, xj1, y)

f (xi4, xj4, y′) dxi1 dxj1 dxi2 dxj2 dxi3 dxj3 dxi4 dxj4 dy dy′

W2 =

ˆ
∑

l,l′∈M
blbl′ pl(xi1, xj1, y)pl′(xi1, xj1, y) f (xi1, xj1, y) dxi1 dxj1dy

W3 =

ˆ
∑

l,l′∈M
alal′ pl(xi2, xj2, y′)pl′(xi3, xj3, y′)

ψ(xi4, xj4, xi2, xj2, y′)ψ(xi4, xj4, xi3, xj3, y′)

f (xi4, xj4, y′) dxi2 dxj2 dxi3 dxj3 dxi4 dxj4 dy′

W4 = ∑
l,l′∈M

alal′blbl′ .

W2 and W3 are positive, hence

E[
(

2Q>(Xi1, Xj1, Y1)R(Xi2, Xj2, Y2)
)2
] ≤W1 + W4.
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W1 =

ˆ
∑

l,l′∈M
pl(xi1, xj1, y)pl′(xi1, xj1, y)

(ˆ
pl(xi2, xj2, y′)ψ(xi4, xj4, xi2, xj2, y′) dxi2 dxj2

)
(ˆ

pl′(xi3, xj3, y′)ψ(xi4, xj4, xi3, xj3, y′) dxi3 dxj3

)
f (xi1, xj1, y) f (xi4, xj4, y′) dxi1 dxj1 dxi4 dxj4 dy dy′

≤ ‖ f ‖2
∞ ∑

l,l′∈M

ˆ
pl(xi1, xj1, y)pl′(xi1, xj1, y) dxi1 dxj1dy

ˆ (ˆ
pl(xi2, xj2, y′)ψ(xi4, xj4, xi2, xj2, y′) dxi2 dxj2

)
(ˆ

pl′(xi3, xj3, y′)ψ(xi4, xj4, xi3, xj3, y′) dxi3 dxj3

)
dxi2 dxj2 dxi4 dxj4 dy′

Since pl’s are orhonormal we have

W1 ≤‖ f ‖2
∞ ∑

l∈M

ˆ (ˆ
pl(xi2, xj2, y′)ψ(xi4, xj4, xi2, xj2, y′) dxi2 dxj2

)2

dxi4 dxj4 dy′.

Moreover by the Cauchy-Schwarz inequality and ‖ψ‖∞ ≤ 2‖η‖∞(ˆ
pl(xi2, xj2, y′)ψ(xi4, xj4, xi2, xj2, y′) dxi2 dxj2

)2

≤
ˆ

pl(xi2, xj2, y′)2 dxi2 dxj2

ˆ
ψ(xi4, xj4, xi2, xj2, y′)2 dxi2 dxj2

≤ ‖ψ‖2
∞∆
ˆ

pl(xi2, xj2, y′)2 dxi2 dxj2

≤ 4‖η‖2
∞∆
ˆ

pl(xi2, xj2, y′)2 dxi2 dxj2,

and then
ˆ (ˆ

pl(xi2, xj2, y′)ψ(xi4, xj4, xi2, xj2, y′) dxi2 dxj2

)2
dxi4 dxj4 dy′

≤ 4‖η‖2
∞∆2
ˆ

pl(xi2, xj2, y′)2 dxi2 dxj2 dy′

= 4‖η‖2
∞∆2.
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Finally,
W1 ≤ 4‖η‖2

∞‖ f ‖2
∞∆2m.

For the term W4 using the facts that SM f and SMg are projection and that´
f = 1, we have

W4 =

(
∑

l∈M
albl

)2

≤ ∑
l∈M

a2
l ∑

l∈M
b2

l ≤ ‖ f ‖2
2‖g‖2

2 ≤ ‖ f ‖∞‖g‖2
2.

By the Cauchy-Schwartz inequality we have ‖g‖2
2 ≤ 4‖η‖2

∞‖ f ‖∞∆2 and then

W4 ≤ 4‖η‖2
∞‖ f ‖2

∞∆2

which leads to

E[
(
Q>(Xi1, Xj1, Y1)R(Xi2, Xj2, Y2)

)2
] ≤ 4‖η‖2

∞‖ f ‖2
∞∆2(m + 1). (2.19)

The second term E[
(
Q>(Xi1, Xj1, Y1CQ(Xi2, Xj2, Y2)

)
] = W5 − 2W6 + W7 where

W5 =

ˆ
∑
l1,l′1

∑
l2,l′2

cl1l′1
cl2l′2

pl1(xi1, xj1, y)pl2(xi1, xj1, y)pl′1
(xi2, xj2, y′)pl′2

(xi2, xj2, y′)

f (xi1, xj1, y) f (xi2, xj2, y′) dxi1 dxj1 dxi2 dxj2 dy′ dy

W6 =

ˆ
∑
l1,l′1

∑
l2,l′2

cl1l′1
cl2l′2

al1 al2 pl′1
(xi, xj, y)pl′2

(xi, xj, y) dxi dxj dy

W7 = ∑
l1,l′1

∑
l2,l′2

cl1l′1
cl2l′2

al1 al′1
al2 al′2

.

Using the previous manipulation, we show that W6 ≥ 0. Thus

E[
(
Q>(Xi1, Xj1, Y1)CQ(Xi2, Xj2, Y2)

)
] ≤W5 + W7.

First, observe that

W5 = ∑
l1,l′1

∑
l2,l′2

cl1l′1
cl2l′2

(ˆ
pl1(xi1, xj1, y)pl2(xi1, xj1, y) f (xi1, xj1, y) dxi1 dxj1 dy

)
(ˆ

pl′1
(xi2, xj2, y′)pl′2

(xi2, xj2, y′) f (xi2, xj2, y′) dxi2 dxj2 dy′
)

≤‖ f ‖2
∞ ∑

l1,l′1

∑
l2,l′2

cl1l′1
cl2l′2

(ˆ
pl1(xi1, xj1, y)pl2(xi1, xj1, y) dxi1 dxj1 dy

)
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(ˆ
pl′1

(xi2, xj2, y′)pl′2
(xi2, xj2, y′) dxi2 dxj2 dy′

)
=‖ f ‖2

∞ ∑
l,l′

c2
ll′

again using the orthonormality of the pl’s. Besides given the decomposition
pl(xi, xj, y) = αlα(xi, xj)βlβ

(y),

∑
l,l′

c2
ll′ =

ˆ
∑
lβ,l′β

βlβ
(y)βl′β

(y)βlβ
(y′)βl′β

(y′)

∑
lα,l′α

(ˆ
αlα(xi1, xj1)αl′α(xi2, xj2)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2

)
(ˆ

αlα(xi3, xj3)αl′α(xi4, xj4)η(xi3, xj4, y′) dxi3 dxj3 dxi4 dxj4

)
dydy′

But

∑
lα,l′α

(ˆ
αlα(xi1, xj1)αl′α(xi2, xj2)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2

)
(ˆ

αlα(xi3, xj3)αl′α(xi4, xj4)η(xi3, xj4, y′) dxi3 dxj3 dxi4 dxj4

)
= ∑

lα,l′α

ˆ
αlα(xi1, xj1)αl′α(xi2, xj2)η(xi1, xj2, y)αlα(xi3, xj3)

αl′α(xi4, xj4)η(xi3, xj4, y′) dxi1 dxj1 dxi2 dxj2 dxi3 dxj3 dxi4 dxj4

=

ˆ
∑
lα

(ˆ
αlα(xi1, xj1)η(xi1, xj2, y) dxi1 dxj1

)
αlα(xi3, xj3)

∑
l′α

(ˆ
αl′α(xi4, xj4)η(xi3, xj4, y′) dxi4 dxj4

)
αl′α(xi2, xj2) dxi2 dxj2 dxi3 dxj3

≤
ˆ

η(xi3, xj3, xi2, xj2, y)η(xi3, xj2, y′) dxi2 dxj2 dxi3 dxj3

≤ ∆2‖η‖2
∞

using the orthonormality of the basis αlα . Then we get

∑
l,l′

c2
ll′ ≤ ∆2‖η‖2

∞

ˆ ∑
lβ,l′β

βlβ
(y)βl′β

(y)βlβ
(y′)βl′β

(y′) dy dy′


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= ∆2‖η‖2
∞ ∑

lβ,l′β

(ˆ
βlβ

(y)βl′β
(y) dy

)2

≤ ∆2‖η‖2
∞ ∑

lβ

(ˆ
β2

lβ
(y) dy

)2

≤ ∆2‖η‖2
∞m

since the βlβ
are orthonormal. Finally

W5 ≤ ‖ f ‖2
∞‖η‖2

∞∆2m.

Now for W7 we first will bound,

|∑
l,l′

cll′alal′ | = |
ˆ

∑
l,l′∈M

alal′ pl2(xi1, xj1, y)pl′1
(xi2, xj2, y)η(xi1, xj2, y) dxi1 dxj1 dxi2 dxj2 dy|

≤
ˆ
|SM(xi1, xj1, y)SM(xi2, xj2, y)η(xi1, xj2, y)| dxi1 dxj1 dxi2 dxj2 dy

≤ ‖η‖∞

ˆ (ˆ
|SM(xi1, xj1, y)SM(xi2, xj2, y)| dy

)
dxi1 dxj1 dxi2 dxj2.

Taking squares in both sides and using the Cauchy-Schwartz inequality twice,
we get(

∑
l,l′

cll′alal′

)2

= ‖η‖2
∞

(ˆ (ˆ
|SM(xi1, xj1, y)SM(xi2, xj2, y)| dy

)
dxi1 dxj1 dxi2 dxj2

)2

≤ ‖η‖2
∞∆2
ˆ (ˆ

|SM(xi1, xj1, y)SM(xi2, xj2, y)| dy
)2

dxi1 dxj1 dxi2 dxj2

≤ ‖η‖2
∞∆2
ˆ (ˆ

SM(xi1, xj1, y)2 dy
)(ˆ

SM(xi2, xj2, y′)2 dy′
)

dxi1 dxj1 dxi2 dxj2

= ‖η‖2
∞∆2
ˆ

SM(xi1, xj1, y)2SM(xi1, xj1, y′)2 dxi1 dxj1 dxi2dxj2 dy dy′

= ‖η‖2
∞∆2

(ˆ
SM(xi, xj, y)2 dxi dxj dy

)
≤ ‖η‖2

∞∆2‖ f ‖2
∞.

Finally,

E[
(
Q>(Xi1, Xj1, Y1)CQ(Xi2, Xj2, Y2)

)2
] ≤ ‖η‖2

∞‖ f ‖2
∞∆2(m + 1). (2.20)
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Collecting (2.19) and (2.20), we obtain

Var(UnK) ≤ 20
n(n− 1)

‖η‖2
∞‖ f ‖2

∞∆2(m + 1)

which concludes the proof of Lemma 2.2.

Lemma 2.3 (Bound for Var(PnL)). Under the assumptions of Theorem 2.3, we have

Var(PnL) ≤ 12
n
‖η‖2

∞‖ f ‖2
∞∆2.

Proof. First note that given the independence of
(
Xik, Xjk, Yk

)
k = 1, . . . , n we

have
Var(PnL) =

1
n

Var(L
(
Xi1, Xj1, Y1

)
)

we can write L
(
Xi1, Xj1, Y1

)
as

A>R
(
Xi1, Xj1, Y1

)
+ B>Q

(
Xi1, Xj1, Y1

)
− 2A>CQ

(
Xi1, Xj1, Y1

)
= ∑

l∈M
al

(ˆ
pl(xi, xj, Y1)ψ(xi, xj, Xi1, Xj1, Y1) dxi dxj − bl

)
+ ∑

l∈M
bl
(

pl(Xi1, Xj1, Y1)− al
)
− 2 ∑

l,l′∈M
cll′al′

(
pl(Xi1, Xj1, Y1)− al

)
=

ˆ
∑

l∈M
al pl(xi, xj, Y1)ψ(xi, xj, Xi1, Xj1, Y1) dxi dxj

+ ∑
l∈M

bl pl(Xi1, Xj1, Y1)− 2 ∑
l,l′∈M

cll′al′ pl(Xi1, Xj1, Y1)− 2AtB− 2AtCA.

=

ˆ
SM f (xi, xj, Y1)ψ(xi, xj, Xi1, Xj1, Y1) dxi dxj + SMg(Xi1, Xj1, Y1)

− 2 ∑
l,l′∈M

cll′al′ pl(Xi1, Xj1, Y1)− 2A>B− 2A>CA.

Let h(xi, xj, y) =
´

SM f (xi2, xj2, y)ψ(xi, xj, xi2, xj2, y) dxi2 dxj2, we have

SMh(xi, xj, y) = ∑
l∈M

(ˆ
h(xi2, xj2, y)pl(xi2, xj2, y) dxi2 dxj2 dy

)
pl(xi, xj, y)

= ∑
l∈M

(ˆ
SM f (xi3, xj3, y)ψ(xi2, xj2, xi3, xj3, y)

pl(xi2, xj2, y) dxi2 dxj2 dxi3 dxj3 dy
)

pl(xi, xj, y)
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= ∑
l,l′∈M

(ˆ
al′ pl′(xi3, xj3, y)ψ(xi2, xj2, xi3, xj3, y)

pl(xi2, xj2, y) dxi2 dxj2 dxi3 dxj3 dy
)

pl(xi, xj, y)

= 2 ∑
l,l′∈M

(ˆ
al′ pl′(xi3, xj3, y)η(xi2, xj3, y)

pl(xi2, xj2, y) dxi2 dxj2 dxi3 dxj3 dy
)

pl(xi, xj, y)

= 2 ∑
l,l′∈M

al′cll′ pl(xi, xj, y)

and we can write

L
(
Xi1, Xj1, Y1

)
= h

(
Xi1, Xj1, Y1

)
+ SMg

(
Xi1, Xj1, Y1

)
− SMh

(
Xi1, Xj1, Y1

)
− 2A>B− 2A>CA.

Thus,

Var(L
(
Xi1, Xj1, Y1

)
)

= Var(h
(
Xi1, Xj1, Y1

)
+ SMg

(
Xi1, Xj1, Y1

)
+ SMh

(
Xi1, Xj1, Y1

)
)

≤ E[
(
h
(
Xi1, Xj1, Y1

)
+ SMg

(
Xi1, Xj1, Y1

)
+ SMh

(
Xi1, Xj1, Y1

))2
]

≤ E[
(
h
(
Xi1, Xj1, Y1

))2
+
(
SMg

(
Xi1, Xj1, Y1

))2
+
(
SMh

(
Xi1, Xj1, Y1

))2
].

Each of these terms can be bounded

E[
(
h
(
Xi1, Xj1, Y1

))2
]

=

ˆ (ˆ
SM f (xi2, xj2, y)ψ(xi1xj2, xi2, xj2, y) dxi2 dxj2

)2

f (xi1, xj1, y) dxi1 dxj1 dy

≤ ∆
ˆ

SM f (xi2, xj2, y)2ψ(xi1xj2, xi2, xj2, y)2 f (xi1, xj1, y) dxi1 dxj1 dxi2 dxj2 dy

≤ 4∆2‖ f ‖∞‖η‖2
∞

ˆ
SM f (xi, xj, y)2 dxi dxj dy

= 4∆2‖ f ‖∞‖η‖2
∞‖SM f ‖2

2

≤ 4∆2‖ f ‖∞‖η‖2
∞‖ f ‖2

2

≤ 4∆2‖ f ‖2
∞‖η‖2

∞

and similar calculations are valid for the others two terms,

E[
(
SMg

(
Xi1, Xj1, Y1

))2
] ≤ ‖ f ‖∞‖SMg‖2

2 ≤ ‖ f ‖∞‖g‖2
2 ≤ 4∆2‖ f ‖2

∞‖η‖2
∞
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E[
(
SMh

(
Xi1, Xj1, Y1

))2
] ≤ ‖ f ‖∞‖SMh‖2

2 ≤ ‖ f ‖∞‖h‖2
2 ≤ 4∆2‖ f ‖2

∞‖η‖2
∞.

Finally we get,

Var(PnL) ≤ 12
n
‖η‖2

∞‖ f ‖2
∞∆2.

Lemma 2.4 (Computation of Cov(UnK, PnL)). Under the assumptions of Theorem
2.3, we have

Cov(UnK, PnL) = 0.

Proof of Lemma 2.4. Since UnK and PnL are centered, we have

Cov(UnK, PnL)
= E[UnKPnL]

= E

[
1

n2(n− 1)

n

∑
k 6=k′=1

K
(
Xik, Xjk, Yk, Xik′ , Xjk′ , Yk′

) n

∑
k=1

L
(
Xik, Xjk, Yk

)]

=
1
n

E[K
(
Xi1, Xj1, Y1, Xi2, Xj2, Y2

)(
L
(
Xi1, Xj1, Y1

)
+ L

(
Xi2, Xj2, Y2

))
]

=
1
n

E
[(

Q>(Xi1, Xj1, Y1)R(Xi2, Xj2, Y2)−Q>(Xi1, Xj1, Y1)CQ(Xi2, Xj2, Y2)
)

(
A>R(Xi1, Xj1, Y1) + B>Q(Xi1, Xj1, Y1)− 2A>CQ(Xi1, Xj1, Y1)

+ A>R(Xi2, Xj2, Y2) + B>QXi2, Xj2, Y2)− 2A>CQ(Xi2, Xj2, Y2)
)]

= 0.

Since K, L, Q and R are centered.

Lemma 2.5 (Bound of Bias(θ̂n)). Under the assumptions of Theorem 2.3, we have

|Bias(θ̂n)| ≤ ∆‖η‖∞ sup
l /∈M
|cl|2.

Proof.

|Bias θ̂n| ≤ ‖η‖∞

ˆ (ˆ
|SM f (xi1, xj1, y)− f (xi1, xj1, y)| dxi1 dxj1

)
(ˆ
|SM f (xi2, xj2, y)− f (xi2, xj2, y)| dxi2 dxj2

)
dy
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= ‖η‖∞

ˆ (ˆ
|SM f (xi, xj, y)− f (xi, xj, y)| dxi dxj

)2

dy

≤ ∆‖η‖∞

ˆ (
SM f (xi, xj, y)− f (xi, xj, y)

)2 dxi dxj dy

= ∆‖η‖∞ ∑
l,l′/∈M

alal′

ˆ
pl(xi, xj, y)pl′(xi, xj, y) dxi dxj dy

= ∆‖η‖∞ ∑
l /∈M
|al|2 ≤ ∆‖η‖∞ sup

l /∈M
|cl|2.

We use the Hölder’s inequality and the fact that f ∈ E then ∑l /∈M |al|2 ≤
supl /∈M |cl|2.

Lemma 2.6 (Asymptotic variance of
√

n
(

PnL
)
.). Under the assumptions of Theorem

2.3, we have
n Var(PnL)→ Λ( f , η)

where

Λ( f , η) =

ˆ
g(xi, xj, y)2 f (xi, xj, y) dxi dxj dy

−
(ˆ

g(xi, xj, y) f (xi, xj, y) dxi dxj dy
)2

.

Proof. We proved in Lemma 2.3 that

Var(L
(
Xi1, Xj1, Y1

)
)

= Var(h
(
Xi1, Xj1, Y1

)
+ SMg

(
Xi1, Xj1, Y1

)
+ SMh

(
Xi1, Xj1, Y1

)
)

= Var(A1 + A2 + A3)

=
3

∑
k,l=1

Cov(Ak, Al).

We claim that ∀k, l ∈ {1, 2, 3}2, we have∣∣∣∣∣Cov(Ak, Al)

− εkl

[ˆ
g(xi, xj, y)2 f (xi, xj, y) dxi dxj dy−

(ˆ
g(xi, xj, y) f (xi, xj, y) dxi dxj dy

)2
]∣∣∣∣∣

≤ λ [‖SM f − f ‖2 + ‖SMg− g‖2]

(2.21)
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where

εkl =

{
−1 if k = 3 or l = 3 and k 6= l
1 otherwise

,

and λ depends only on ‖ f ‖∞, ‖η‖∞ and ∆. We will do the details only for the
case k = l = 3 since the calculations are similar for others configurations.

Var(A3) =

ˆ
S2

Mh
(
xi, xj, y

)
f (xi, xj, y) dxi dxj dy−

(ˆ
SMh

(
xi, xj, y

)
f (xi, xj, y) dxi dxj dy

)2

.

The computation will be done in two steps. We first bound the quantity by the
Cauchy-Schwartz inequality

|
ˆ

S2
Mh(xi, xj, y) f (xi, xj, y) dxi dxj dy−

ˆ
g(xi, xj, y)2 f (xi, xj, y) dxi dxj dy|

≤
ˆ
|S2

Mh(xi, xj, y) f (xi, xj, y)− S2
Mg(xi, xj, y) f (xi, xj, y)| dxi dxj dy

+

ˆ
|S2

Mg(xi, xj, y) f (xi, xj, y)− g(xi, xj, y)2 f (xi, xj, y)| dxi dxj dy

≤ ‖ f ‖∞‖SMh + SMg‖2‖SMh− SMg‖2 + ‖ f ‖∞‖SMg + g‖2‖SMg− g‖2.

Using several times the fact that since SM is a projection, ‖SMg‖2 ≤ ‖g‖2, the
sum is bounded by

‖ f ‖∞‖h + g‖2‖h− g‖2 + 2‖ f ‖∞‖g‖2‖SMg− g‖2

≤ ‖ f ‖∞ (‖h‖2 + ‖g‖2) ‖h− g‖2 + 2‖ f ‖∞‖g‖2‖SMg− g‖2.

We saw previously that ‖g‖2 ≤ 2∆‖ f ‖1/2
∞ ‖η‖∞ and ‖h‖2 ≤ 2∆‖ f ‖1/2

∞ ‖η‖∞. The
sum is then bound by

4∆‖ f ‖3/2
∞ ‖η‖∞‖h− g‖2 + 4∆‖ f ‖3/2

∞ ‖η‖∞‖SMg− g‖2.

We now have to deal with ‖h− g‖2:

‖h− g‖2
2

=

ˆ (ˆ (
SM f (xi2, xj2, y)− f (xi2, xj2, y)

)
ψ(xi1, xj1, xi2, xj2, y)dxi2dxj2

)2

dxi1 dxj1 dy

≤
ˆ (ˆ (

SM f (xi2, xj2, y)− f (xi2, xj2, y)
)2 dxi2 dxj2

)
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(ˆ
ψ2(xi1, xj1, xi2, xj2, y) dxi2 dxj2

)
dxi1 dxj1 dy

≤ 4∆2‖η‖2
∞‖SM f − f ‖2

2.

Finally this first part is bounded by

|
ˆ

S2
Mh
(
xi, xj, y

)
f (xi, xj, y) dxi dxj dy−

ˆ
g(xi, xj, y)2 f (xi, xj, y) dxi dxj dy|

≤ 4∆‖ f ‖3/2
∞ ‖η‖∞ (2∆‖η‖∞‖SM f − f ‖2 + ‖SMg− g‖2) .

Following with the second quantity∣∣∣∣∣
(ˆ

SMh(xi, xj, y) f (xi, xj, y) dxi dxj dy
)2

−
(ˆ

g(xi, xj, y) f (xi, xj, y) dxi dxj dy
)2
∣∣∣∣∣

=

∣∣∣∣∣
(ˆ (

SMh(xi, xj, y)− g(xi, xj, y)
)

f (xi, xj, y) dxi dxj dy
)

(ˆ (
SMh(xi, xj, y) + g(xi, xj, y)

)
f (xi, xj, y) dxi dxj dy

)∣∣∣∣∣.
By using the Cauchy-Schwartz inequality, it is bounded by

‖ f ‖2‖SMh− g‖2‖ f ‖2‖SMh + g‖2

≤ ‖ f ‖2
2 (‖h‖2 + ‖g‖2) (‖SMh− SMg‖2 + ‖SMg− g‖2)

≤ 4∆‖ f ‖3/2
∞ ‖η‖∞ (‖h− g‖2 + ‖SMg− g‖2)

≤ 4∆‖ f ‖3/2
∞ ‖η‖∞ (2∆‖η‖∞‖SM f − f ‖2 + ‖SMg− g‖2)

using the previous calculations. Collecting the two inequalities gives (2.21) for
k = l = 3. Finally, since by assumption ∀t ∈ L2(dµ), ‖SMt− t‖2 → 0 when
n→ ∞ a direct consequence of (2.21) is

lim
n→∞

Var(L
(
Xi1, Xj1, Y1

)
)

=

ˆ
g2(xi, xj, y) f (xi, xj, y) dxi dxj dy−

(ˆ
g(xi, xj, y) f (xi, xj, y) dxi dxj dy

)2

= Λ( f , η).

We conclude by noticing that Var(
√

n
(

PnL
)
) = Var(L

(
Xi1, Xj1, Y1

)
).
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Lemma 2.7 (Asymptotics for
√

n(Q̂−Q) ). Under the assumptions of Theorem 2.1,
we have

lim
n→∞

n E[Q̂−Q]2 = 0.

Proof. The bound given in (2.3) states that if |Mn|/n→ 0 we have∣∣∣∣∣n E[
(
Q̂−Q

)2| f̂ ]−
[ˆ

ĝ(xi, xj, y)2 f (xi, xj, y) dxi dxj dy

−
(ˆ

ĝ(xi, xj, y) f (xi, xj, y) dxi dxj dy
)2
]∣∣∣∣∣

≤ γ
(
‖ f ‖∞, ‖η‖∞, ∆

) [ |Mn|
n

+ ‖SM f − f ‖2 + ‖SM ĝ− ĝ‖2

]
where

ĝ(xi, xj, y) =
ˆ

H3( f̂ , xi, xj, xi2, xj2, y) f (xi2, xj2, y) dxi2 dxj2,

where we recall that H3( f , xi1, xj1, xi2, xj2, y) = H2( f , xi1, xj2, y)+ H2( f , xi2, xj1, y)
with

H2( f̂ , xi1, xj2, y) =

(
xi1 −mi( f̂ , y)

)(
xj2 −mj( f̂ , y)

)
´

f̂ (xi, xj, y) dxi dxj
.

By deconditioning we get∣∣∣∣∣n E[
(
Q̂−Q

)2
]−E

[ˆ
ĝ(xi, xj, y)2 f (xi, xj, y) dxi dxj dy

−
(ˆ

ĝ(xi, xj, y) f (xi, xj, y) dxi dxj dy
)2
]∣∣∣∣∣

≤ γ
(
‖ f ‖∞, ‖η‖∞, ∆

) [ |Mn|
n

+ ‖SM f − f ‖2 + E[‖SM ĝ− ĝ‖2]

]
Note that

E[‖SMn ĝ− ĝ‖2] ≤E[‖SM ĝ− SMg‖2] + E[‖ĝ− g‖2] + E[‖SMn g− g‖2]

≤ 2E[‖ĝ− g‖2] + E[‖SMn g− g‖2]
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where g(xi, xj, y) =
´

H3( f , xi, xj, xi2, xj2, y) f (xi2, xj2, y) dxi2 dxj2. The second
term converges to 0 since g ∈ L2( dx dy dz) and ∀t ∈ L2( dx dy dz),´
(SMt− t)2 dx dy dz→ 0. Moreover

‖ĝ− g‖2
2

=

ˆ [
ĝ(xi, xj, y)− g(xi, xj, y)

]2 dxi dxj dy

=

ˆ [ˆ (
H3( f̂ , xi, xj, xi2, xj2, y)− H3( f , xi, xj, xi2, xj2, y)

)
f (xi2, xj2, y) dxi2 dxj2

]2

dxi dxj dy

≤
ˆ [ˆ (

H3( f̂ , xi, xj, xi2, xj2, y)− H3( f , xi, xj, xi2, xj2, y)
)2

dxi2 dxj2

]
[ˆ

f (xi2, xj2, y)2 dxi2 dxj2

]
dxi dxj dy

≤ ∆‖ f ‖2
∞

ˆ (
H2( f̂ , xi, xj, xi2, xj2, y)− H2( f , xi, xj, xi2, xj2, y)

)2
dxi dxj dxi2 dxj2 dy

≤ δ∆2‖ f ‖2
∞

ˆ (
f̂ (xi, xj, y)− f (xi, xj, y)

)2
dxi dxj dy

for some constant δ that comes out of applying the mean value theorem to
H3( f̂ , xi, xj, xi2, xj2, y)− H3( f , xi, xj, xi2, xj2, y). The constant δ was taken under
Assumptions 2.1-2.3. Since E[‖ f − f̂ ‖2]→ 0 then E[‖g− ĝ‖2]→ 0. Now show
that the expectation of

ˆ
ĝ(xi, xj, y)2 f (xi, xj, y) dxi dxj dy−

(ˆ
ĝ(xi, xj, y) f (xi, xj, y) dxi dxj dy

)2

converges to 0. We develop the proof for only the first term. We get

|
ˆ

ĝ(xi, xj, y)2 f (xi, xj, y) dxi dxj dy−
ˆ

g(xi, xj, y)2 f (xi, xj, y) dxi dxj dy|

≤
ˆ
|ĝ(xi, xj, y)2 − g(xi, xj, y)2| f (xi, xj, y) dxi dxj dy

≤ λ

ˆ (
ĝ(xi, xj, y)− g(xi, xj, y)

)2 dxi dxj dy

= λ‖ĝ− g‖2
2
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for some constant λ. By taking the both sides expectation, we see it is enough
to show that E[‖ĝ− g‖2

2]→ 0. Besides, we can verify

g(xi, xj, y) =
ˆ

H3( f , xi, xj, xi2, xj2, y) f (xi2, xj2, y) dxi2 dxj2

=
2´

f (xi, xj, y) dxi dxj
(xi − m̂i(y))(ˆ

xj2 f (xi2, xj2, y) dxi2 dxj2 − m̂j(y)
ˆ

f (xi2, xj2, y) dxi2 dxj2

)
= 0

which proves that the expectation of
´

ĝ(xi, xj, y)2 f (xi, xj, y) dxi dxj converges to
0. Similar computations shows that the expectation of (

´
ĝ(xi, xj, y) f (xi, xj, y) dxi dxj)

2

also converges to 0.

Finally we have
lim

n→∞
n E[Q̂−Q]2 = 0.





Chapter 3

Rates of convergence in
conditional covariance matrix

estimation

joint work with J-M. Loubes1 and C. Marteau2.

Abstract: Let X ∈ Rp and Y ∈ R two random variables. In this chapter we are
interested in the estimation of the conditional covariance matrix Cov (E [X|Y]).
To this end, we will use a plug-in kernel based algorithm. Then, we investigate
the related performance under smoothness assumptions on the density function
of (X, Y). Moreover, in high-dimensional context, we shall improve our estima-
tor to avoid inconsistency issues. In the matrix case, the convergence depends
on some structural conditions over the Cov (E [X|Y]).

Keywords: Conditional covariance, Frobenius norm, Hölder functional class,
nonparametric estimator, parametric rate.

3.1 Introduction

1Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France.
2Institut National des Sciences Appliquées de Toulouse, Toulouse, France.
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Given a couple of random variables X ∈ Rp and Y ∈ R, the conditional
covariance matrix

Σ = Cov (E [X|Y]) =
(
σij
)

p×p , (3.1)

plays a key role in reduction dimension techniques. For example, the sliced
inverse regression method is a popular one based on the accurate estimation
of the matrix Σ. See for instance Li (1991a). On Section 3.5 we will give more
details about this application.

According to the statistical literature, we can use parametric and nonpara-
metric techniques to build an estimator of the matrix Σ. For instance, Hsing
(1999) tackles the nearest neighbor and the sliced inverse regression, Setodji and
Cook (2004) use a version of k-means algorithm and Cook and Ni (2005) trans-
form the sliced inverse regression into a least square minimization program.
Usual non parametric methods involving kernel estimators are fully used to
model Σ as explained in, for instance, Ferré and Yao (2003), Ferré et al. (2005),
Zhu and Fang (1996) among others. From a parametric point of view Bura and
Cook (2001) assume that E [X|Y] has some parametric form while Da Veiga
et al. (2011) use a functional Taylor approximation on Cov (E [X|Y]) to build an
efficient estimate.

The aim of this chapter is to build an estimator of Σ when the joint density
of (X, Y) is unknown. For this, we will plug an estimate of the marginal density
of the observations into a parametric estimator of the conditional covariance
and study its asymptotic behavior. Under some smoothness assumptions, we
will prove that this density can be considered as a nuisance parameter which
does not hamper the rate of the covariance. We face issues for the estimation of
the covariance matrix, which arise in the high-dimensional context. Specifically,
if p is larger than n the empirical covariance matrix has unexpected features
like the lack of consistency or the significant spreading of the eigenvalues. In a
slightly different context, we refer to Marčenko and Pastur (1967), Johnstone
(2001) and references therein.

Hence regularization methods are necessary to get a consistent estimator
for the sample covariance matrix. Such estimation techniques include: banding
methods in Wu and Pourahmadi (2009) and Bickel and Levina (2008b), tapering
in Furrer and Bengtsson (2007) and Cai et al. (2010), thresholding in Bickel and
Levina (2008a) and El Karoui (2008), penalized estimation in Huang (2006), Lam
and Fan (2009) and Rothman et al. (2008), regularizing principal components in
Zou et al. (2006).
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In this chapter, we will use the nonparametric estimator used by Zhu and
Fang (1996) to compute entrywise the elements of Σ = (σij). More precisely,
the marginal density of Y and the vector of conditionals densities E[X|Y] are
unknown and we will estimate them by a kernel estimator. Then, we will
propose a new estimator of the conditional covariance matrix Σ based on a plug-
in version of the banding estimator. We will employ the normalized Frobenius
norm to measure the squared risk over a given class of matrices.

We will prove, provided that the model is regular enough, that it is possible
to obtain a pointwise parametric rate of convergence for the estimator of σij.
A parametric behavior is also found for the estimator of Σ with respect to the
Frobenius norm. In these cases, the estimation of the conditional covariance
matrix Σ turns into an efficient semiparametric issue.

This chapter falls into the following parts. Section 3.2 describes the nonpara-
metric algorithm introduced by Zhu and Fang (1996) to estimate entry-wise the
matrix defined in (3.1). In Section 3.3.1, we present all the required assump-
tions to assure the consistency and convergence of our estimator. The core of
this article is in Section 3.3.2 where we provide the convergence rate for the
element-wise estimator of Σ. We extend, in Section 3.4, our study for whole
matrix assuming some structure on Σ. Section 3.5 is devoted to the relation
between the matrix Σ and the sliced inverse regression method. In Section 3.5.1
we run some simulations comparing them with the classic the sliced inverse
regression algorithm. Finally, the conclusions of this work are drawn in Section
3.6. All the technical proofs are gathered in Section 3.7.

3.2 Methodology

Let X ∈ Rp be a random vector and Y ∈ R be a random variable. We denote
by f (x, y) the joint density of the couple (X, Y). Let fY(·) =

´
Rp f (x, ·)dx be the

marginal density function with respect to Y.

Suppose that X>k = (X1k, . . . , Xpk) and Yk, k = 1, . . . , n are i.i.d. observations
from the random vector X> = (X1, . . . , Xp) and Y respectively. Without loss of
generality, we suppose E[Xi] = 0, k = 1, . . . , p.

Our aim is to estimate, based on the sample (Xk, Yk)’s, the covariance matrix

Σ =
(
σij
)

i,j=1,...,p =
(
Cov(E(Xi|Y), E(Xj|Y))

)
i,j=1,...,p .
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For the sake of convenience, we introduce the following notation,

Ri(Y) = E(Xi|Y)
gi(Y) = Ri(Y) fY(Y)

=

ˆ
xi f (xi, Y)dxi ∀i ∈ {1, . . . , p}.

(3.2)

For any i, j ∈ {1, . . . , p}, the (i, j)-entry of the matrix Σ can then be written
as

σij = E[E[Xi|Y]E[Xi|Y]] = E

[
gi(Y)gj(Y)

f 2
Y(Y)

]
. (3.3)

Equation (3.3) has two functions to estimate, gi(·) and fY(·). We will estimate
them using a nonparametric method (based on the work of Zhu and Fang (1996))
in an inverse regression framework.

Firstly, assume that we know fY(·). Denote σ̂
fY
ij the following estimator of

σij,

σ̂
fY
ij =

1
n

n

∑
k=1

ĝi(Yk)ĝj(Yk)

f 2
Y(Yk)

, (3.4)

where

ĝi(Y) =
1

nh

n

∑
l=1

XilK
(

Y−Yl
h

)
.

Here, K(u) is a kernel function that satisfies some assumptions that we will
make precise later and h is a bandwidth depending on n.

The next step is to replace the function fY(·), in equation (3.4), by the
nonparametric estimator

f̂Y(Y) =
1

nh

n

∑
l=1

K
(

Y−Yl
h

)
.

The drawback with this approach is the observation superposition. In other
words, we need the whole sample twice to estimate first the ĝi’s and then f̂Y.
We can have dependency issues in the proper estimation of these functions.
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To prevent any further difficulties, we will use a subsample of size n1 < n
to estimate ĝj, and the remaining data n2 = n − n1 to estimate f̂Y. For the
sake of simplicity, we choose n1 = n2 = n/2. Moreover, we will remove all
the repeated observations in the ĝi’s estimation. This assumption entails the
mutually independence between the ĝi’s and f̂Y.

In this context, given the bandwidths h1 and h2 depending on n1 and n2
respectively, we estimate Σ by Σ̂ = (σ̂ij)p×p where for all i, j ∈ {1, . . . , p}

σ̃ij =
1
n1

n1

∑
k=1

ĝi(Yk)ĝj(Yk)

f̂ 2
Y(Yk)

(3.5)

and

ĝi(Y) =
1

(n1 − 1)h1

n1

∑
l=1
l 6=k

XilK
(

Y−Yl
h1

)
,

f̂Y(Y) =
1

n2h2

n2

∑
l=1

K
(

Y−Yl
h2

)
.

However, to avoid any trouble due to small values in the denominator, let
b > 0 a sequence of values satisfying

f̂Y,b(y) = max{ f̂Y(y), b}.

Besides, we assume that 0 < η < fY(y). Then, we propose the following
estimator for σij,

σ̂ij,K =
1
n1

n1

∑
k=1

ĝi(Yk)ĝj(Yk)

f̂ 2
Y,b(Yk)

. (3.6)

The estimator defined (3.6) relies on an unknown nonparametric density
distribution function fY(y). Hence, we are dealing with a semiparametric
framework. Our aim is to study under which conditions the density of Y is a
mere blurring parameter, that does not play any role in the estimation procedure.
In this case, the plug-in method does not hamper the estimation rate of the
conditional covariance Σ, i.e. leading to an efficient estimation rate. In the next
section we shall establish the rate of convergence for the mean squared risk of
σ̂ij,K.
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3.3 Pointwise performance for σ̂ij,K

3.3.1 Assumptions

We denote C, C1, C2 and so on, constants (independent of n) that may take
different values throughout all the chapter.

Assume that f (x, y) has compact support. Let β be a positive real value and
define bβc as the largest integer such that bβc ≤ β. We define the continuous
kernel function K(·) of order bβc to every function satisfying the following
three conditions:

(a) the support of K(·) is the interval [−1, 1];

(b) K(·) is symmetric around 0;

(c)
´ 1
−1 K(u)du = 1 and

´ 1
−1 ukK(u)du = 0 for k = 1, . . . , bβc.

To guarantee a parametric consistency in our model, we need to impose
some regularity conditions. In our case, define the Hölder class of smooth
functions as follows.

Definition 3.1. Denote as H(β, L) the Hölder class of density functions with
smoothness β > 0 and radius L > 0, defined as the set of bβc times differentiable
functions φ : T → R where T is an interval in R, whose derivative φ(bβc) satisfies∣∣∣φ(bβc)(x)− φ(bβc)(x′)

∣∣∣ ≤ L
∣∣x− x′

∣∣β−bβc , ∀x, x′ ∈ T.

The following assumption will be used recurrently in the proofs:

Assumption 3.1. For x fixed, the function f (x, y) belongs to a Hölder class of regu-
larity β and constant L, i.e. f (x, ·) ∈ H(β, L).

Moreover, fY(y) belongs to a Hölder class of smoothness β′ > β and radius L′, i.e.
fY ∈ H(β′, L′).

Remark 3.1. Notice that function gi defined in (3.2) also belongs to H(β, L) for
i = 1, . . . , p. Recall that

gi(y) =
ˆ

xi f (xi, y)dxi.

Let xi ∈ R fixed. If f (xi, ·) ∈ H(β, L) then by a direct calculation we can prove
our assertion.
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Denote as F = Fβ(L) the class of functions that fulfill Assumption 3.1. In
the next section, we shall found the rates of convergence for σ̂ij,K depending on
the parameter β.

Remark 3.2. To control the term f̂Y,b in the denominator on equation (3.6),
we need to fix h2 and b—both sequences converging to zero—to ensure the
convergence of σ̂ij,K. As n→ ∞, set h2 ∼ n−c1 and b ∼ n−c2 with the positives
number c1 and c2 satisfying that c1/β < c2 < 1/2− c1, and the notation “∼”
means that two quantities have the same convergence order.

3.3.2 Rate of convergence for the matrix entries estimates

We derive in this section the risk upper bound for the element-wise estimator
of (3.1) defined in (3.5).

Theorem 3.1. Assume that E |Xi|4 < ∞, i = 1, . . . , p. The upper bound risk of the
estimator σ̂ij,K defined in (3.5) over the functional class F satisfies:

sup
F

E[(σ̂ij,K − σij)
2] ≤ C1h2β

1 +
C2 log4 n1

n2
1h4

1
.

In particular,

• if β ≥ 2 and choosing n−1/4
1 ≤ h1 ≤ n−1/2β

1 then

sup
F

E[(σ̂ij,K − σij)
2] ≤ C

n1
. (3.7)

• if β < 2 and choosing h1 = n−1/(β+2)
1 then,

sup
F

E[(σ̂ij,K − σij)
2] ≤

(
log2(n1)

n1

)2β/(β+2)

. (3.8)

We provide the guideline for the proof of Theorem 3.1. The proofs of the
auxiliary lemmas are postponed to the Appendix.

Proof. First consider the usual bias-variance decomposition.

E
[
(σ̂ij,K − σij)

2
]
= Bias2(σ̂ij,K) + Var(σ̂ij,K)

where Bias(σ̂ij,K) = E[σ̂ij,K]− σij and Var(σ̂ij,K) = E[σ̂2
ij,K]−E[σ̂ij,K]

2.

The following lemma provides a control of the bias of the estimator.
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Lemma 3.1. Under the same assumptions as Theorem 3.1 and supposing that n1h1 → 0
as n1 → ∞ and n2h2 → 0 as n1 → ∞, we have

Bias2(σ̂ij,K) ≤ C1h2β
1 +

C2

n2
1h2

1

for C1 and C2 positives constants depending only on L, s, β and on the kernel K.

Then, the next lemma gives an upper bound for the variance term

Lemma 3.2. Under the same assumptions as Theorem 3.1 supposing that n1h1 → 0 as
n1 → ∞ and n2h2 → 0 as n1 → ∞, we have

Var
(
σ̂ij,K

)
≤ C1h2β

1 +
C2 log4 n1

n2
1h4

1

for C1, C2 and C3 positives constants depending only on L, s, β and the kernel K.

Therefore, we obtain the following upper bound for the estimation error

E[(σ̂ij,K − σij)
2] ≤ C1h2β

1 +
C2 log4 n1

n2
1h4

1
.

Depending on the regularity of the model, we consider two cases

• if β ≥ 2 then we can choose h1 such that

1

n1/4
1

≤ h ≤ 1

n1/2β
1

,

then
h2β ≤ 1

n1
,

1
n2

1h4
≤ 1

n1
,

concluding the result.

• Otherwise, if β < 2, we need to find h1 such that

h1 = argmin
h

(
h2β +

log4(n1)

n2
1h4

)
.

We get h1 = (log2(n1)/n1)
1/(β+2) and the risk is bounded by

sup
F

E[(σ̂ij,K − σij)
2] ≤

(
log2(n1)

n1

)2β/(β+2)

.
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From Theorem 3.1 we find an “elbow” effect in the rates of convergence. It
means, we recover a parametric rate for regular enough functions fY(y) and
gi(y) i = 1, . . . , p. Otherwise, the mean squared error has a slower—indeed
logarithmic—rate depending on the regularity of the functional class F . This
type of behaviour is common on functional analysis, for instance Donoho et al.
(1996).

In other words, the problem can be solved in a semiparametric context as
soon as the unknown functions fY(y) and gi(y) for i = 1, . . . , p are regular
enough.

We have provided rates of convergence for any β > 0, particularly the n-
consistency for β ≥ 2. Additionally, the results obtained here are coherent
with Zhu and Fang (1996). In their case, they have a n-consistency of the mean
squared error assuming a regularity of β = 4 supporting our method.

Now, under some mild conditions, it seems natural to investigate the rate of
convergence of the whole matrix estimator Σ̂K = (σ̂ij,K). The next section will be
dedicated to extend the result from Theorem 3.1 to find the rate of convergence
of Σ̂K under the Frobenius norm.

3.4 Rate of convergence for the nonparametric
covariance estimator

We have obtained in the previous section upper bounds of the quadratic risk
related to the estimation of each coefficient of the matrix Σ = Cov(E[X|Y]) =
(σij). We have estimated them with Σ̂K = (σ̂ij,K) where σ̂ij,K is defined in
equation (3.6). In this section, we shall extend this study to the whole matrix Σ.

There are several ways to measure the matrix mean squared error. In this
work, we have chosen the Frobenius norm defined as follows,

Definition 3.2. The Frobenius norm of a matrix A = (aij)p×p is defined as the
`2 vector norm of all entries in the matrix

‖A‖2
F = ∑

i,j
a2

ij.

In other words, this is equivalent to consider the matrix A as a vector of length
p2.
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The mean squared error over the normalize Frobenius norm between Σ̂K
and Σ is

sup
f∈F

1
p

E‖Σ̂K − Σ‖2
F ≤

p
n1

.

This approach is impractical when p � n1 since it causes the lost of con-
vergence. Some references about this issue in several contexts are: Muirhead
(1987), Johnstone (2001), Bickel and Levina (2008a), Bickel and Levina (2008b)
and Fan et al. (2008).

To avoid consistency problems, we consider a modified version of Σ̂K. We
build this modification setting on zero the coefficients of the matrix from some
point. This technique is also called “banding” and was studied by Bickel and
Levina (2008b) for instance.

Formally, for a given integer m with 1 ≤ m ≤ p, we define the banding
estimator of Σ̂K as

Σ̂K,m = (wijσ̂ij,K)p×p, (3.9)

where the function wij is defined as

wij =

{
1, when |i− j| ≤ m,
0, otherwise.

If p � n, we require that Σ belongs to some space where it is sufficiently
regular. Otherwise, it is not possible ensure any kind of convergence for Σ̂K.
The next assumption fixes Σ in a subset of the definite positive matrices.

Assumption 3.2. The positive-definite covariance matrix Σ belongs to the following
parameter space:

Gα = Gα(M0, M1)

= {Σ : |σij| ≤ M1|i− j|−(α+1) for i 6= j and λmax(Σ) ≤ M0}

where λmax(Σ) is the maximum eigenvalue of the matrix Σ, and M0 > 0 and M1 > 0.

Notation 3.1. Set G ′ = G ′α,β(L) as the functional class formed by the intersection
between Fβ(L) and Gα.

In our case, Assumption 3.2 defines a matrix space indexed by a regularity
parameter α. This parameter α states a rate of decay for the conditional covari-
ance as they move away from the diagonal. A detailed discussion over this
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subject can be found in the articles of Bickel and Levina (2008b) and Cai et al.
(2010).

The following theorem gives an upper bound for the rate of convergence of
the estimate defined in (3.9) under the normalized Frobenius norm based on
the sample {(X1, Y1), . . . , (Xn, Yn)}.

Theorem 3.2. Assume that E |Xi|4 < ∞, k = 1, . . . , p. The upper bound risk, under
the Frobenius norm, of the estimator Σ̂K = (σ̂ij,K) defined in (3.5) over the functional
class G ′ satisfies:

• if β ≥ 2,

sup
G ′

1
p

E‖Σ̂K,m − Σ‖2
F ≤ min

{
n
− 2α+1

2(α+1)
1 ,

p
n1

}
(3.10)

where m = p if n1/(2(α+1))
1 > p or m = n1/(2(α+1))

1 otherwise.

• if β < 2,

sup
G ′

1
p

E‖Σ̂K,m − Σ‖F ≤

min


(

log2 n1

n1

) 2β(2α+1)
(β+2)(2(α+1))

, p

(
log2 n1

n1

) 2β
β+2

 (3.11)

where m = p if (log2 n1/n1)
−2β/(2(α+1)(β+2)) > p or

m = (log2 n1/n1)
−2β/(2(α+1)(β+2)) otherwise.

The minimum in equations (3.10) and (3.11) depend if p is smaller or greater
than n1. If p � n1, we use the original covariance matrix Σ̂K. Otherwise, it is
necessary to regularize the estimator to conserve the consistency. For example,
in the case β ≥ 2, if n1/(2(α+1))

1 > p, we are in a relative low-dimensional

framework and we use the full matrix Σ̂K. In other case, when n1/(2(α+1))
1 ≤ p,

regularize the matrix is mandatory and we choose m = n1/(2(α+1))
1 to generate

the matrix Σ̂K,m defined in (3.9). A similar analysis can be done if β < 2.

Proof of Theorem 3.2. For the estimator (3.9), we have

E‖Σ̂K,m − Σ‖2
F =

p

∑
i,j=1

E(wijσ̂ij,K − σij)
2.
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Let i, j ∈ {1, . . . , p} be fixed. Then

E(wijσ̂ij,K − σij)
2 = w2

ijE[(σ̂ij,K − σ)2] + (1− wij)
2σ2

ij

≤ w2
ijγn1 + (1− wij)

2σ2
ij

where γn1is the rate (3.7) or (3.8) depending on the value of β. Furthermore,

1
p

E‖Σ̂K,m − Σ‖F ≤
1
p ∑
{(i,j) : |i−j|>m}

σ2
ij +

1
p ∑
{(i,j) : |i−j|≤m}

γn1

≡ R1 + R2.

Since the cardinality of {(i, j) : |i − j| ≤ m} is bounded by mp we have
directly that R2 ≤ Cmγn1 .

Thus, using Assumption 3.2 we show that

sup
G ′

1
p ∑
{(i,j) : |i−j|>m}

σ2
ij ≤ Cm−2α−1,

where |σij| ≤ C1|i− j|−(α+1) for allj 6= i. Thus,

sup
G ′

1
p

E‖Σ̂K,m − Σ‖2
F ≤ Cm−2α−1 + Cmγn1 ≤ C2γ

(2α+1)/(2(α+1))
n1 (3.12)

by choosing

m = γ
−1/(2(α+1))
n1

if γ
−1/(2(α+1))
n1 ≤ p. In the case of γ

−1/(2(α+1))
n1 > p we will choose m = p, then

the bias part is 0 and consequently

1
p

E‖Σ̂K,m − Σ‖F ≤ Cmγn1 . (3.13)

Using the result of Theorem 3.1, we distinguish two cases depending on the
regularity of the model. If β ≥ 2 then we take γn1 = 1/n1 and if β < 2 then
γn1 = (log2 n1/n1)

2β/(β+2). The result is obtained combining the latter with
(3.12) and (3.13).
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3.5 Application to dimension reduction

We introduced the sliced inverse regression method in the context of reduction
dimension. In general, we want to predict the behavior of a quantity of interest.
We have a multidimensional explanatory variables X ∈ Rp and noisy measure-
ments of this quantity denoted by Y ∈ R. In a nonparametric context, we deal
with the model

Y = ψ(X) + ε,

where ψ is a unknown function. It is known in the literature that as p increases,
the quality of estimation of the function ψ deteriorates as well. This is called
the curse of dimensionality.

To cope this issue, Li (1991a) proposed a methodology to reduce the di-
mensionality called sliced inverse reduction . He considered the following
regression model

Y = ϕ
(

ν>1 X, . . . , ν>k X, ε
)

where k is much less than p denoted as k� p, X is a p−dimensional random
vector, the ν’s are unknown vectors but fixed, ε is independent of X and ϕ is
a Rk+1 arbitrary real valued function. This model implies, via projection, the
extraction of all the Y’s relevant information by only a k-dimensional subspace
generated by the ν’s. These directions are called effective dimension reduction
(EDR) directions.

The main idea of the sliced inverse regression method is to estimate the
unknown matrix

Σ = Cov (E [X|Y]) =
(
σij
)

p×p ,

where we denote σij the (i, j) matrix element. This matrix is degenerate in any
direction orthogonal to the ν’s. Therefore, the eigenvectors, νj (j = 1, . . . , k),
associated with the largest k eigenvalues of Σ are the EDR directions. This
lead the classical the sliced inverse regression method consisting in slicing the
inverse regression curve, calculate the empirical covariance of this curve and
then estimate the largest eigenvalues with its corresponding eigenvectors. The
first k eigenvectors span the space.

Theorem 3.2 claims that if β ≥ 2 and other mild conditions, the non-
parametric estimator (3.9) behaves asymptotically as Cov(E[X|Y]). As con-
sequence, the eigenvectors of Σ̂K,m estimates correctly the EDR directions in this
context. In other words, we have an accurate characterization of the EDR space
span by the eigenvectors of Σ̂K,m.
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3.5.1 Simulation study

We consider numerical simulations to asses the performance of our estimator.
We will use two different models for the simulations.

Linear case: Define α > 0. Set the linear model,

Xi = aiY + (1− ai)ε,

ai = i−(α+1), i = 1, . . . , p.

The random variables Y and ε are independent having the standard
normal distribution. This model provides the conditional covariance
matrix Σ = (σij) with,

σij = Cov(E[Xi|Y]E[Xj|Y]) = Var(Y2)(ij)−(α+1) = 2(ij)−(α+1)

Moreover, σij satisfies Condition 3.2.

Polar case: Define the two dimensional model with independent random vari-
ables r ∈ R and 0 ≤ θ ≤ π/4,

X1 = 1.5 r cos(θ)
X2 = 1.5 r sin(θ)

Y = X2
1 + X2

2 + ε.

We use r and ε with standard normal distributions and θ with a uniform
distribution from 0 to π/4. In addition to these variables, we also generate
X3, . . . , Xp, all variables being independent and following the standard
normal distribution. The true conditional covariance matrix is,

Σ = Cov(E[X|Y])

= 1.52 Var(r2)


E[cos θ]2 E[cos θ]E[sin θ] 0 · · · 0

E[cos θ]E[sin θ] E[sin θ]2 0 · · · 0
0 0
...

... . . .
0 0 0


p×p

.

In both cases, we do not assume any structure for the conditional covariance
structure in the estimation of Σ̂K,m. We choose the value m = bn1/(2(α+1))

1 c to
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regularize the estimated matrix Σ̂K. We set the threshold b in the first quantile
of each estimation of f̂ .

We consider a range of parameter values for n, p and α. The simulation uses
values of α equals to 0.05, 0.1 and 0.5. Both p and n varying between 100 to
600. To estimate the kernel functions ĝi and f̂ we use the software R along the
library np ().

Table 3.1 reports the average error under the Frobenius norm over 100
replications for the linear and polar case respectively. The mean error decreases
with a rate equivalent to p/n as n increases due to the regularity of the model.
In other words, in both cases fY and gi belong to a Hölder class with β ≥ 2.
These results highlight the convergence of Σ̂K,m without any assumption in the
data structure.

3.5.2 Graphical representations

We next examine a simple application to the projection of data in a reduced
space. The models remains exactly the sames as before (linear and polar cases).
In this section, we have generated 500 data points for each model over 200
variables.

We compare the projected points calculated by our method against the clas-
sical the sliced inverse regression method proposed by Li (1991a) implemented
in the package dr.

The results in general are satisfactory. Figure 3.1 shows the data representa-
tion in the linear model. In this case, both methods capture well most of the
model information. The polar case is presented in Figure 3.2. We observe how
our method performs similar to the classic sliced inverse regression capturing
the data curvature for the first direction.

In Figure 3.3 and Figure 3.4, we observe that our method behaves better with
respect to the explained variance of the model. The nonparametric estimator
explains around 60% of the variance with around 50 variables. In the meantime,
the classic sliced inverse regression describes at most 40% of the variance with
the same number of variables. We have set in 0 all the negative eigenvalues,
therefore the curves in the nonparametric cases remains constant at the end.

3.6 Conclusion

In this chapter we have investigated the rate of convergence for a nonparamet-
rical estimator for the conditional covariance Cov(E[X|Y]). We have started
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α

p n 0.05 0.1 0.5

100 100 0.0090 0.0073 0.0049
200 0.0054 0.0050 0.0031
300 0.0042 0.0039 0.0024
400 0.0040 0.0035 0.0021
500 0.0037 0.0033 0.0019
600 0.0034 0.0031 0.0019

200 100 0.0070 0.0063 0.0041
200 0.0037 0.0036 0.0022
300 0.0028 0.0026 0.0016
400 0.0024 0.0022 0.0013
500 0.0022 0.0020 0.0011
600 0.0021 0.0018 0.0010

300 100 0.0066 0.0065 0.0040
200 0.0034 0.0034 0.0019
300 0.0024 0.0021 0.0014
400 0.0020 0.0018 0.0010
500 0.0017 0.0015 0.0009
600 0.0016 0.0014 0.0008

400 100 0.0059 0.0055 0.0041
200 0.0029 0.0028 0.0018
300 0.0021 0.0019 0.0012
400 0.0017 0.0016 0.0009
500 0.0015 0.0013 0.0008
600 0.0013 0.0012 0.0007

500 100 0.0071 0.0052 0.0060
200 0.0028 0.0028 0.0016
300 0.0020 0.0018 0.0012
400 0.0016 0.0014 0.0008
500 0.0013 0.0012 0.0007
600 0.0012 0.0011 0.0006

600 100 0.0062 0.0057 0.0036
200 0.0027 0.0026 0.0016
300 0.0019 0.0017 0.0011
400 0.0015 0.0014 0.0008
500 0.0012 0.0011 0.0007
600 0.0011 0.0010 0.0006

(a) Linear case.

α

p n 0.05 0.1 0.5

100 100 0.0513 0.0403 0.0336
200 0.0178 0.0187 0.0155
300 0.0139 0.0142 0.0116
400 0.0118 0.0114 0.0104
500 0.0110 0.0108 0.0098
600 0.0106 0.0104 0.0096

200 100 0.0536 0.0508 0.0346
200 0.0154 0.0161 0.0117
300 0.0093 0.0097 0.0077
400 0.0081 0.0077 0.0067
500 0.0071 0.0070 0.0059
600 0.0064 0.0063 0.0054

300 100 0.0594 0.0505 0.0251
200 0.0145 0.0138 0.0103
300 0.0094 0.0081 0.0075
400 0.0068 0.0067 0.0051
500 0.0057 0.0054 0.0045
600 0.0050 0.0048 0.0042

400 100 0.0664 0.0411 0.0260
200 0.0156 0.0118 0.0095
300 0.0085 0.0080 0.0064
400 0.0060 0.0058 0.0043
500 0.0050 0.0048 0.0038
600 0.0043 0.0042 0.0033

500 100 0.0377 0.0395 0.0350
200 0.0129 0.0140 0.0092
300 0.0076 0.0074 0.0054
400 0.0060 0.0054 0.0041
500 0.0048 0.0044 0.0034
600 0.0040 0.0038 0.0029

600 100 0.0570 0.0430 0.0350
200 0.0134 0.0132 0.0091
300 0.0078 0.0071 0.0049
400 0.0057 0.0052 0.0037
500 0.0045 0.0042 0.0032
600 0.0037 0.0034 0.0027

(b) Polar case.

Table 3.1: Average errors under the Frobenius norm of the nonparametric
conditional covariance estimator over 100 replications.
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Figure 3.1: Linear case: Real data against projected data. The black circles
represents the original data. The red crosses represent the projected points for
the linear model.
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Figure 3.2: Polar case: Real data against projected data. The black circles
represents the original data. The red crosses represent the projected points for
the polar model.
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Figure 3.3: Linear case: Comparison of the cumulative variance explained
between the nonparametric and classic sliced inverse regression methods
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Figure 3.4: Polar case: Comparison of the cumulative variance explained be-
tween the nonparametric and classic sliced inverse regression methods
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studying the nonparametric behavior of each element of the matrix based in
the work of Zhu and Fang (1996). This approach, allow us to find rate of
convergence depending on the value of β for the classical mean squared error.
We have shown that if the model is regular enough, it is possible to achieve
the parametric rate 1/n. Otherwise, we get a slower rate (log2(n)/n)2β/(β+2),
depending on the regularity β of certain Hölder class.

As a natural extension, we studied the performance of mean squared risk
of Σ̂K under the Frobenius norm. In order to keep the consistency and avoid
issues due to the high-dimension data, it is necessary regularize the matrix Σ̂K.
We used a regularized version of Σ̂K called Σ̂K,m, obtained by doing a Schur
multiplication between Σ̂K and a definite-positive matrix of weights. Those
weights are 1 until some point away from the diagonal when they turn in 0.

This method could not ensure the positive definiteness of the estimate—but
since we proved that under some mild conditions, our estimator is consistent
given either p/n → 0 or p(log2(n)/n)2β/(β+2) → 0, the estimator will be pos-
itive definite with probability tending to 1. Other practical solution for this
issue is suggested by Cai et al. (2010). He proposes project Σ̂K to the space of
positive-semidefinite matrices under the operator norm. In other words, first
diagonalize Σ̂K and replace the negative eigenvalues by 0. The matrix obtained
is then semidefinite positive.

There are several alternatives norms to compute and matrix-based error,
among them the operator norm. However, this approach would require the
estimation of concentration inequalities for some specific matrices blocks of Σ̂K
which is not suitable in our context. Nevertheless, the use of the operator norm
in the nonparametric estimation of Σ is worth to investigate.

3.7 Appendix

3.7.1 Technical lemmas

Lemma 3.3 (cf. Rao and Prakasa Rao (1983), Theorem 2.1.8). Suppose that K is a
kernel of order s = bβc and Assumption 3.1 is fulfilled. Then

sup
y
| f̂ (y)− f (y)| = O

(
hβ +

log n
n1/2h

)
.

The following lemma is a modified version of Theorem 2.37 of Pollard (1984).
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Lemma 3.4. Suppose that K is a kernel of order s = bβc, E[X4
i ] < ∞ and Assumption

3.1 is fulfilled. Then for any ε > 0,

P

(
sup

y
|ĝi(y)−E [ĝi(y)] | > 8n−1/2h−1ε

)

≤ 2c
(

ε√
nd

)−4

exp
{
−1

2
ε2/

(
32d(log n)1/2

)}
+ 8cd−8 exp

(
−nd2

)
+ E

[
X4

i

]
I
(
|Xi| > cd−1/2(log n)1/4

)
,

where

d ≥ sup
y

{
Var

(
K
(

y−Y
h

))}1/2

.

We refer to Zhu and Fang (1996) for the proof of Lemma 3.4. Using the last
result the uniform convergence rate of ĝi(y) can be obtained.

Lemma 3.5. Suppose that K is a kernel of order s = bβc, E[X4
i ] < ∞ and Assumption

3.1 is fulfilled. Then

sup
y
|ĝi(y)− gi(y)| = Op

(
hβ +

log n
n1/2h

)
.

Proof. Since the kernel function K is uniformly continuous on [−1, 1], writing
c1 = sup|u|≤1 |K(u)|, we have

sup
y

(
Var

(
K
(

y−Y
h

)))1/2

≤ sup
y

(ˆ
K2
(

y−Y
h

)
f (Y)dY

)1/2

≤ c1.

Choose ε = log n, then as n→ ∞, we have

sup
y
|ĝi(y)−E (ĝi(y)) | = Op

(
n−1/2h−1 log n

)
.

On the contrary, we will expand gi(y) in a Taylor series with the Lagrange
form of the remainder term (see Rao and Prakasa Rao (1983), page 47). Using
Assumption 3.1 and Remark 3.1, for any 0 < τ < 1 and s = bβc we have,

sup
y
|E (ĝi(y))− gi(y)|
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= sup
y

∣∣∣∣ˆ Kh(y−Y) {gi(Y)− gi(y)} dY
∣∣∣∣

= sup
y

∣∣∣∣ˆ K(u) {gi(y + uh)− gi(y)} du
∣∣∣∣

= sup
y

∣∣∣∣∣
ˆ

K(u)

{
gi(y) + uhg′i(y) + · · ·+ (uh)s g(s)i (y + τuh)

s!
− gi(y)

}
du

∣∣∣∣∣
= sup

y

∣∣∣∣ˆ K(u)
(uh)s

s!

(
g(s)i (y + τuh)− g(s)i (y)

)
du
∣∣∣∣ ,

as gi ∈ H(β, L) we conclude that,

sup
y
|E (ĝi(y))− gi(y)| ≤ c

ˆ ∣∣∣uβK(u)
∣∣∣ du · hβ.

3.7.2 Proof of Lemmas

Proof of Lemma 3.1. The proof follows three steps.

Step 1: Prove that

E

[
ĝi(Y1)ĝj(Y1)

f̂ 2
Y,b(Y1)

]
≤ E

[
ĝi(Y1)ĝj(Y1)

f 2
Y(Y1)

](
1 + C1hβ

2 + C2
log2 n2

n2h2
2

)
.

Notice that ĝi(Yk)ĝj(Yk)/ f̂ 2
Y,b(Yk) are not independent for k = 1, . . . , n1 but have

the same distribution. Thus,

E[σ̂ij,K] = E

[
1
n1

n1

∑
k=1

ĝi(Yk)ĝj(Yk)

f̂ 2
Y,b(Yk)

]
= E

[
ĝi(Y1)ĝj(Y1)

f̂ 2
Y,b(Y1)

]

Start by multiplying and dividing by f 2
Y(Y) inside the expectation. Then,

conditioning by respect Y1 and using the independence between ĝi and f̂Y we
can see that,

E

[
ĝi(Y1)ĝj(Y1)

f̂ 2
Y,b(Y1)

]
= E

[
ĝi(Y1)ĝj(Y1)

f 2
Y(Y1)

E

[
f 2
Y(Y1)

f̂ 2
Y,b(Y1)

∣∣∣∣∣Y1

]]
.

We observe that

f 2
Y(y)

f̂ 2
Y,b(y)

= 1 + 2
( fY(y)− f̂Y,b(y))

f̂Y,b(y)
+

( fY(y)− f̂Y,b(y))2

f̂Y,b(y)
,
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By Lemma 3.3 and Remark 3.2, equation (3.7.2) turns into

E

[
ĝi(Y1)ĝj(Y1)

f̂ 2
Y,b(Y1)

]

≤ E

[
ĝi(Y1)ĝj(Y1)

f 2
Y(Y1)

]1 + C1nc1

(
hβ

2 +
log n2

n1/2
2 h2

)
+ C2n2c1

(
hβ

2 +
log n2

n1/2
2 h2

)2


≤ E

[
ĝi(Y1)ĝj(Y1)

f 2
Y(Y1)

]
(1 + C1(n

c1−βc2
2 + n1/2−c1−c2

2 log n2)).

To simplify the notations, we will write simply n = n1 and h = h1 through
Steps 2 to 4

Step 2: Prove that,

E

[
ĝi(Y1)ĝj(Y1)

f 2
Y(Y1)

]
≤ C1

n− 1
E

(
Xi2Xj2K2

h(Y1 −Y2)

f 2
Y(Y1)

)

+ C2

(
n− 2
n− 1

)
E

(
Xi2Xj3Kh(Y1 −Y2)Kh(Y1 −Y3)

f 2
Y(Y1)

)
.

Denote

B = E

[
ĝi(Y1)ĝj(Y1)

f 2
Y(Y1)

]
.

Again, conditioning with respect to Y1 and developing all the terms, we obtain,

B =
1

(n− 1)2 E

[
1

f 2
Y(Y1)

E

[(
n

∑
k=2

XikKh(Y1 −Yk)

)(
n

∑
k=2

XjkKh(Y1 −Yl)

) ∣∣∣∣∣Y1

]]

=
1

(n− 1)2 E

[
1

f 2
Y(Y1)

E

[
n

∑
k=2

XikXjkK2
h(Y1 −Yk)

∣∣∣∣∣ Y1

]]

+
1

(n− 1)2 E

 1
f 2
Y(Y1)

E

 n

∑
k,r=2
k 6=r

XikXjrKh(Y1 −Yk)Kh(Y1 −Yr)

∣∣∣∣∣ Y1


 .

Therefore,
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E[σ̂ij,K] =
C1

n− 1
E

[
Xi2Xj2K2

h(Y1 −Y2)

f 2
Y(Y1)

]

+ C2

(
n− 2
n− 1

)
E

[
Xi2Xj3Kh(Y1 −Y2)Kh(Y1 −Y3)

f 2
Y(Y1)

]
≡ B1 + B2. (3.14)

Step 3: Prove that

B1 ≤
C
nh

.

We start with

B1 =
1

n− 1
E

(
Xi2Xj2K2

h(Y1 −Y2)

f 2
Y(Y1)

)

=
1

n− 1

ˆ
1

f 2
Y(y1)

xixjK2
h(y1 − y2) f (xi, y2) f (xj, y2) fY(y1)dxidxjdy2dy1

=
1

n− 1

ˆ
1

fY(y1)
xixjK2

h(y1 − y2) f (xi, y2) f (xj, y2)dxidxjdy2dy1

=
1

(n− 1) h

ˆ
1

fY(y1)
xixjK2(u) f (xi, y1 + uh) f (xj, y1 + uh)dudxidxjdy1.

Remark that given am and bm, m = 1, 2 being real numbers such as
am < bm, the integrals containing the coordinate (x, y) will be evaluated
in the cube [a1, b1]× [a2, b2].

Define the supremum norm of f as ‖ f ‖∞ = sup{ f (x, y) ∈ [a1, b1]× [a2, b2]}.
Therefore,

B1 ≤
‖ f ‖2

∞
(n− 1) h

ˆ
1

fY(y1)
xixjK2(u)dudxidxjdy1,

which leads to
B1 ≤

C
nh

.

Step 4: Show that
|B2 − σij| ≤ Ch2β.

The second term of (3.14) can be bounded as follows
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B2 =

(
n− 2
n− 1

)
E

(
Xi2Xj3Kh(Y1 −Y2)Kh(Y1 −Y3)

f 2
Y(Y1)

)

≤
ˆ (ˆ

xiKh(y1 − y) f (x, y)dxidy
)

(ˆ
xjKh(y1 − y) f (x, y)dxjdy

)
1

fY(y1)
dy1. (3.15)

By Assumption 3.1 with s = bβc and for 0 < τ < 1 we have,ˆ
Kh(y1 − y) f (x, y)dy− f (x, y)

=

ˆ
K(u) f (x, uh + y)du− f (x, y)

=

ˆ
K(u)

{
f (x, y) + uh f ′(x, y) + · · ·+ f (s)(x, y + τuh)

s!
(uh)j

}
du

=
1
s!

ˆ
K(u) (uh)s f (s)(x, y + τuh)du.

Adding K(u)(uh)s f (s)(x, y) to the last integral and the fact that f (x, ·) ∈ H(β, L)
we can see that,ˆ

Kh(y1 − y) f (x, y)dy− f (x, y)

=
1
s!

ˆ
K(u) (uh)s

{
f (s)(x, y + τuh)− f (s)(x, y)

}
du

≤ 1
s!

ˆ
K(u) (uh)s (τuh)β−s du

≤
(

1
s!

ˆ
|uβK(u)|du

)
τhβ = Chβ.

Plugging this into (3.15) leads to,

|B2 − σij| ≤
∣∣∣∣∣
ˆ {(ˆ

xi

(
Chβ + f (xi, y)

)
dxi

)(ˆ
xj

(
Chβ + f (xj, y)

)
dxj

)

−
(ˆ

xi f (xi, y)dxi

)(ˆ
xj f (xj, y)dxj

)}
1

fY(y)
dy

∣∣∣∣∣
≤ C2h2β

∣∣∣∣∣
ˆ xixj

fY(y)
dxidxjdy

∣∣∣∣∣
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+ Chβ

∣∣∣∣∣
(ˆ

xiRi(y)dxidy +

ˆ
xjRj(y)dxjdy

) ∣∣∣∣∣
≤ C1hβ + C2h2β

≤ C1hβ.

Step 5: Gathering the results from Steps 1 to 4, we get

Bias(σ̂ij,K) ≤
(

C1hβ
1 +

C2

n1h1

)
(1 + C3(n

c1−βc2
2 + n1/2−c1−c2

2 log n2)).

Since h1 → 0 and n1h1 → ∞ as n1 → ∞, we obtain

Bias2(σ̂ij,K) ≤ C1h2β
1 +

C2

n2
1h2

1
.

Proof of Lemma 3.2. The proof will be done in several steps. Define

Ri,b(Y) =
gi(Y)
fY(Y)

,

V1(Y) =
gi(Y)gj(Y)

f 2
Y,b(Y)

= Ri,bRj,b,

V2(Y) =
gi(Y)

f 2
Y,b(Y)

(
ĝj(Y)− gj(Y)

)
=

Ri,b

fY(Y)
(

ĝj(Y)− gj(Y)
)

,

V3(Y) =
gj(Y)

f 2
Y,b(Y)

(ĝi(Y)− gi(Y)) =
Rj,b

fY(Y)
(ĝi(Y)− gi(Y)) ,

V4(Y) =
1

f 2
Y,b(Y)

(ĝi(Y)− gi(Y))
(

ĝj(Y)− gj(Y)
)

,

Jn(Y) = (V1(Y) + V2(Y) + V3(Y) + V4(Y))(
2
( fY(Y)− f̂Y,b(Y))

f̂Y,b(Y)
+

( fY(Y)− f̂Y,b(Y))2

f̂ 2
Y,b(Y)

)
.

It is clear that σ̂ij,K = n−1
1 ∑n1

k=1 V1(Yk) + V2(Yk) + V3(Yk) + V4(Yk) + Jn(Yk). If
C > 0, then the variance Var(σ̂ij,K) is bounded by

C

{
Var

(
1
n1

n1

∑
k=1

V1(Yk)

)
+ Var

(
1
n1

n1

∑
k=1

V2(Yk)

)
+ Var

(
1
n1

n1

∑
k=1

V3(Yk)

)
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+ Var

(
1
n1

n1

∑
k=1

V4(Yk)

)
+ Var

(
1
n1

n1

∑
k=1

Jn(Yk)

)}
.

We are going to bound every term separately.

Step 1: Prove that

Var

(
1
n1

n1

∑
k=1

Jn(Yk)

)
≤ C(n2c1−4βc2 + n2c1+2c2−1 log n).

We bound first the term

J1n =
1
n1

n1

∑
k=1

V1(Yk)
( fY(Yk)− f̂Y,b(Yk))

f̂Y,b(Yk)
.

Using Cauchy-Schwartz’s inequality, it is straightforward that

Var(J1n) ≤
1
n2

1
E

( n1

∑
k=1

gi(Yk)gj(Yk)

f 2
Y,b

(
fY(y)− f̂Y,b(y)

f̂Y,b(y)

))2


≤ 1
n1

E

 n1

∑
k=1

(
gi(Yk)gj(Yk)

f 2
Y,b(Yk)

(
fY(Yk)− f̂Y,b(Yk)

f̂Y,b(Yk)

))2
 .

By Lemma 3.3 and Remark 3.2 we have

Var(J1n) ≤ CE

[
1
n1

n1

∑
k=1

g2
i (Yk)g2

j (Yk)

f 4
Y,b(Yk)

]
b−2(h2β + n−1/2h−1 log n)2

≤ C(n2c1−4βc2 + n2c1−1+2c2 log n),

where the second inequality is due to the law of large numbers for

1
n1

n1

∑
k=1

Ri,b(Yk)Rj,b(Yk).

To simplify the notation, we will write simply n = n1 and h = h1 through
Steps 2 to 4. Moreover we will denote Zk = (Xk, Yk) k = 1, . . . , n.



94 Rates of convergence in conditional covariance matrix estimation

Step 2. Prove that

Var(V1) ≤
C
n

.

By independence of the Zk’s and given that gj, gl and f̂Y are functions built
with the second sample, it is clear that

Var

(
1
n

n

∑
k=1

V1(Yk)

)
= Var

(
1
n

n

∑
k=1

Ri,b(Yk)Rj,b(Yk)

)

=
1
n

Var
(

Ri,b(Y)Rj,b(Y)
)
≤ C

n
.

Step 3. Show that

Var (V2) + Var (V3) ≤
C1

n
+

C2

n2h
.

First we get a bound of Var(V2). Note that,

V2 =
1
n

n

∑
k=1

Ri,b(Yk)

fY(Yk)

(
ĝj(Yk)− gj(Yk)

)
=

1
n(n− 1)

n

∑
k=1

n

∑
l=1
l 6=k

Ri,b(Yk)

fY(Yk)

(
XjlKh(Yk −Yl)− gj(Yk)

)

=
1

n(n− 1)

n

∑
k=1

n

∑
l=1
l 6=k

Ri,b(Yk)

fY(Yk)
XjlKh(Yk −Yl)

− 1
n(n− 1)

n

∑
i=1

n

∑
l=1
l 6=k

Ri,b(Yk)Rj,b(Yk)

= V21 −V22.

Notice that
Var(V22) =

1
n

Var
(

Ri,b(Y)Rj,b(Y)
)
=

C
n

.

The term V21 is indeed a one sample U-statistic of order two. Hence, if we
define Zli = (Xli, Yk) and rewrite the expression, we get

V21 =
1

n(n− 1)

n

∑
k=1

n

∑
l=1
l 6= k

Ri,b(Yk)

fY(Yk)
XjlKh(Yk −Yl)
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=
1
2

(
n
2

)−1

∑
(k,l)∈Cn

2

hi(Zik, Zil),

where Cn
2 = {(k, l); 1 ≤ k < l ≤ n} and

hi(Zjk, Zjl) =
Ri,b(Yk)

fY(Yk)
XjkKh(Yk −Yl).

Employing the symmetric version of hi

h̃i(Zjk, Zjl) =
1
2

(
Ri,b(Yk)

fY(Yk)
Xjl +

Ri,b(Yl)

fY(Yl)
Xjk

)
Kh(Yk −Yl),

it is possible (see Kowalski and Tu (2007) or Van der Vaart (2000)) to decompose
Var(V21) as

Var(V21) =

(
n
2

)−1{(2
1

)(
n− 2

1

)
Var(E(h̃i(Zj1, Zj2)|Zj1))

+

(
2
2

)(
n− 2

0

)
Var(h̃i(Zj1, Zj2))

}
.

Since fy(y) ≤ fY(y) we have,

E(h̃i(Zj1, Zj2)|Zj1)

=
1
2

ˆ
Kh(Y1 − y)

(
xjRi,b(Y1)

fY(Y1)
+

Xj1Ri(y)
fY(y)

)
f (xj, y)dxjdy

=
Ri,b(Y1)

2 fY(Y1)

ˆ
Kh(Y1 − y)Rj(y) fY(y)dy

+
1
2

Xj1

ˆ
Kh(Y1 − y)

Ri,b fY(y)
fY(y)

dy

≤ 1
2

Ri(Y1)Rj(Y1) +
1
2

Xj1Ri(Y1)

+
Ri(Y1)

2 fY(Y1)

ˆ
Kh(Y1 − y){Rj(y) fY(y)− Rj(Y1) fY(Y1)}dy

+
1
2

Xj1

ˆ
Kh(Y1 − y) {Ri(y)− Ri(Y1)} dy

≤ 1
2

Ri(Y1)Rj(Y1) +
1
2

Xj1Ri(Y1) + J1(Zj1) + J2(Zj1).
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Using Assumption 3.1 and applying the same arguments as in the proof of
Lemma 3.4, we can conclude that

Var(J1(Zj1)) ≤ E[(J1(Zj1))
2]

≤ Ch2β

ˆ (
Ri(y)
fY(y)

)2(ˆ
|usK(u)du|

)2

fY(y)dy

≤ Ch2βE[R2
i (Y1)] ≤ Ch2β.

Moreover, as f ∈ H(β, L) and 0 < η < fY(y), we have

Var(J2(Zj1)) ≤ E[(J2(Zj1))
2]

≤ 1
4

E

[
X2

j1

(ˆ
K(u) (Ri(Y1 + uh)− Ri(Y1)du) du

)2
]

≤ Ch2β.

Therefore,

Var(E(h̃i(Zj1, Zj2)|Zj1)) ≤ Var
(

1
2

R2(Y1) +
1
2

Xl1R(Y1)

)
+ C1h2β.

By similar calculations we bound,

Var(h̃i(Zj1, Zj2)) ≤
C2

h
.

Using the same procedure we can bound Var(V3). We conclude that,

Var(V2) + Var(V3) ≤
2

n(n− 1)

{
(n− 2)

(
C1 + C2h2β+

)
+

C4

h

}
≤ C1h2β +

C2

n2h
.

Step 4. Show that

Var(V4) ≤ C(h4β + n−2h−4 log4 n).

Using Lemma 3.4 we obtain

Var (V4) ≤ E[V2
4 ]
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=
1
n2 E

( n

∑
k=1

(ĝi(Yk)− gi(Yk))
(

ĝj(Yk)− gj(Yk)
)

f 2
Y(Yk)

)2


≤ Cn2

n2 (hβ + n−1/2h−1 log n)4

≤ C(hβ + n−1/2h−1 log n)4

≤ C(h4β + n−2h−4 log4 n).

Final bound Gathering all previous results, we have

Var
(
σ̂ij,K

)
≤ C1h2β +

C2 log4 n
n2h4 .





Chapter 4

Nonparametric estimator of Sobol
indices

4.1 Introduction

In the areas of chemistry, biology, psychology or finance, the process of imple-
menting some policy or taking some decision is often supported by complex
models. The researcher has to process, analyze and interpret those systems
with numerous variables, high interactions and complexity. Two examples of
complex models are the following:

• One bank could buy some financial contract (e.g., European option) in-
dexed to some rate of interest. This rate is unknown and depends on
complex factors: market dynamics, inflation or political policies (see Hull
(2011)). If the bank wants to sell the option, they face the risk associated
with the interest rate movements. The goal, in general, is to avoid the risk
exposure by holding this product and make the most profit with it.

• The Michaelis-Menten kinetics (Cornish-Bowden (2013)) models a sat-
urable enzymatic degradation of a substance. The model is highly com-
plex because it needs several experiments to estimate their parameters.
In general, the scientists search to approximate stably the time of the
reaction equilibrium. This process models the oxidation of glucose, which
produces water, carbon dioxide and energy for instance.

99
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To handle those complexities, it is necessary identify the most important
variables in the model. In the first example, the risk manager has to take a
decision based in some financial model. Given the inherent complexity, he
needs to select the most relevant features on the model of rates. With the new
set of relevant variables, he will gain insight on the model and it is possible take
a better decision. Also, as the Michaelis-Menten kinetics, the model has to run
stably to find the correct equilibrium. In other words, if the model suffer of
small alterations in the input, those should not produce large variations on the
output. In any case, the analyst has to validate, check and correct the model if
it is necessary.

We assume a set of inputs variables X = (X1, . . . , Xp) ∈ Rp producing an
output Y ∈ R related by the model

Y = m(X1, . . . , Xp). (4.1)

The function m is, generally, an unknown and complex function. However, a
computer code can gauge it in some cases (e.g., Oakley and O’Hagan (2004)).
When the running time for the evaluation of such complex function are impor-
tant, one could replace the original model by a meta-model (see Box and Draper
(1987)).

The literature present techniques to rank the influences of the inputs (X1, . . . , Xp)
in the model (4.1). Some of them are, for example, the screening method (Cullen
and Frey (1999) Campolongo et al. (2011)), the automatic differentiation (Rall
(1980), Carmichael et al. (1997)), the regression analysis (Draper and Smith
(1981), Devore and Peck (1996)) or the response surface method (Myers et al.
(2009), Goos (2002)).

Alternatively, Sobol’ (1993), inspired by a ANOVA (or Hoeffding) decom-
position, split down the variance of the model in partial variances generated
by the conditionals expectations of Y giving each input Xi for i = 1, . . . , p.
These partial variances represent the uncertainty created by each input or its
interactions. Dividing each partial variance by the model total variance, we
obtain a normalized index of importance. Specifically, we call the first-order
Sobol indices to the quantities,

Si =
Var(E[Y|Xi])

Var(Y)
for i = 1, . . . , p.

Notice that E[Y|Xi] is the best approximation of Y given the information of
Xi. Thus, if the variance of E[Y|Xi] is large, it means a large influence of Xi into
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Y. These indices are a widely used in theoretical and applied techniques and
identify the most relevant and sensible inputs on the model. We can construct
indices that measure the interactions between variables or the total effect of
certain input in the whole model. We refer the reader to Saltelli et al. (2000) for
the exact computation of higher-order Sobol indices.

The principle endeavor with the Sobol indices relays in its computation.
Some methods propose the use of multiple samples (of the order of hundreds
or thousands) for the evaluation of the model outputs. From applied problems
in engineering, biology, oceanography and others; the scientists have developed
Monte-Carlo or quasi Monte-Carlo methods. For instance, the Fourier amplitude
sensitivity test (FAST) or the Sobol pick-freeze (SPF). Cukier et al. (1973, 1978)
created the FAST method which transforms the partial variances in Fourier
expansions. This method allows the aggregated and simple estimation of Sobol
indices in an escalated way. The SPF scheme regresses the model output against
a pick-frozen replication. The principle is to create a replication holding the
interest variable (frozen variable) and resampling the other variables (picked
variables). We refer to the reader to Sobol’ (1993, 2001) and Janon et al. (2013).
Other methods include to Ishigami and Homma (1990) which improved the
classic Monte-Carlo procedure by resampling the inputs and reducing the whole
process to only one Monte-Carlo loop. Moreover, Saltelli (2002) proposed an
algorithm to estimate higher-order indices with the minimum computation
effort.

The Monte-Carlo methods suffer of the high-computational stress in its
implementation. For example, the FAST method requires estimate a set of
suitable transformation functions and integer angular frequencies for each
variable. The SPF scheme creates a new copy of the variable in each iteration.
For complex and high-dimensional models, those techniques could be expensive
in computational time.

The aim of this chapter propose an alternative way to compute the Sobol
indices. In particular, we will take the ideas of Zhu and Fang (1996) and we shall
apply a nonparametric Nadaraya-Watson to estimate the value Si for i = 1, . . . , p.
With this estimator, we avoid the stochastic techniques and we use the structure
of the data to fit the nonparametric model. We consider only the indices with
simple interaction between one variable with respect the output. We leave
out the sensitivity indices with interactions for a further study. Furthermore,
we will show that if the joint distribution of (Xi, Y) is twice differentiable, the
nonparametric estimator of Si, has a parametric rate of convergence. Otherwise,
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we will get a nonparametric rate of convergence depending on the regularity of
the density.

In Section 4.2 we will propose the nonparametric estimator for the first-order
Sobol indices. All the hypotheses and assumptions are gathered in Section
4.3. We display the main result of this chapter in Section 4.4. We illustrate our
methodology with some numerical examples in Section 4.5. Finally, in Section
4.6, we discuss the results and expose some conclusions.

4.2 Methodology

In our context we suppose that X>k = (X1k, . . . , Xpk) and Yk, k = 1, . . . , n are
independent and identically distributed observations from the random vector
X> = (X1, . . . , Xp) and Y respectively. We denote by f (xi, y) the joint density of
the couple (Xi, Y). Let fi(xi) =

´
Rp f (xi, y)dy be the marginal density function

with respect to Xi for i = 1, . . . , p.

Recall the definition of Sobol indices presented in the introduction,

Si =
Var(E[Y|Xi])

Var(Y)
=

E[E[Y|Xi]]
2 −E[Y]2

Var(Y)
for i = 1, . . . , p. (4.2)

We have expanded the variance of the numerator to simplify the presentation.
Notice that we can estimate the terms E[Y] and Var(Y) in equation (4.2) by their
empirical counterparts

Y =
1
n

n

∑
k=1

Yk (4.3)

and

σ̂Y =
1
n

n

∑
k=1

(Yk −Y)2 (4.4)

respectively.

Conversely, the estimation of the term E[E[Y|Xi]
2] requires more effort. For

any i = 1, . . . , p we introduce the following notation,

Vi = E[E[Y|Xi]
2] =

ˆ (´
y f (xi, y) dy

fi(xi)

)2

fi(xi) dxi
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=

ˆ (
gi(xi)

fi(xi)

)2

fi(xi) dxi,

where

gi(xi) =

ˆ
y f (xi, y) dy.

We will use a slightly modified version of the nonparametric estimator de-
veloped in Loubes et al. (2013). This paper estimates the conditional expectation
covariance for a reduction dimension problem. Taking the same methodology
applied to our case, define n1 < n and n2 = n− n2. For the sake of simplicity
we use n1 = n2 = n/2. Let h1 and h2 be two bandwidths depending on n1 and
n2 respectively.

We will estimate the functions gi(x) and fi(x) respectively by their nonpara-
metric estimators,

ĝi(x) =
1

(n1 − 1)h1

n1

∑
l=1
l 6=k

YlK
(

x− Xil
h1

)
, (4.5)

f̂i(x) =
1

n2h2

n2

∑
l=1

K
(

x− Xil
h2

)
. (4.6)

Also, to avoid small values in the V’s estimation due to small values in the
denominator, let b > 0 a sequence of values satisfying

f̂i,b(x) = max{ f̂i(x), b}.

The nonparametric estimator for Vi is,

V̂i =
1
n1

n1

∑
k=1

(
ĝi(Xik)

f̂i,b(Xik)

)2

. (4.7)

Therefore, gathering the estimators (4.3) and (4.7), we define the nonpara-
metric estimator for Si as

Ŝi =
V̂i −Y2

σ̂Y
. (4.8)

The estimator (4.8) provides a direct way to estimate the first-order Sobol
index Si. We want to control the square risk over some regular class of functions



104 Nonparametric estimator of Sobol indices

for the joint density f (xi, y). Therefore, we can choose a bandwidth h1 according
to the regularity to get a convergent estimator. Our objective is to find sufficient
conditions to have a parametric rate of convergence for Ŝi.

4.3 Hypothesis and Assumptions

We denote C1, C2 and so on, constants (independent of n) that may take different
values throughout all the chapter.

Let β be a positive real value and define bβc as the largest integer such that
bβc ≤ β. We define the continuous kernel function K(·) of order bβc to every
function satisfying the following three conditions:

(a) the support of K(·) is the interval [−1, 1];

(b) K(·) is symmetric around 0;

(c)
´ 1
−1 K(u)du = 1 and

´ 1
−1 ukK(u)du = 0 for k = 1, . . . , bβc.

To guarantee a parametric consistency in our model, we need to impose
some regularity conditions. In our case, define the Hölder class of smooth
functions as follows.

Definition 4.1. Denote as H(β, L) the Hölder class of density functions with
smoothness β > 0 and radius L > 0, defined as the set of bβc times differentiable
functions φ : T → R where T is an interval in R, whose derivative φ(bβc) satisfies∣∣∣φ(bβc)(x)− φ(bβc)(x′)

∣∣∣ ≤ L
∣∣x− x′

∣∣β−bβc , ∀x, x′ ∈ T.

The following technical assumption is important to establish the class of
function where we will find the upper bound of the risk.

Assumption 4.1. For y fixed, the function f (x, y) belongs to a Hölder class of regu-
larity β and constant L, i.e. f (·, y) ∈ H(β, L).

Moreover, fi(x) for i = 1, . . . , p belongs to a Hölder class of smoothness β′ > β

and radius L′, i.e. fi ∈ H(β′, L′).

Remark 4.1. Notice that function gi defined in (4.5) also belongs to H(β, L) for
i = 1, . . . , p. Recall that

gi(xi) =

ˆ
xi f (xi, y)dy.
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Let y ∈ R fixed. If f (·, y) ∈ H(β, L) then by a direct calculation we can prove
our assertion.

Denote as F = Fβ(L) the class of functions that fulfill Assumption 4.1. In
the next section, we shall found the rates of convergence for σ̂ij depending on
the parameter β.

Remark 4.2. To control the term f̂X,b in the denominator on equation (4.7),
we need to fix h2 and b—both sequences converging to zero—to ensure the
convergence of V̂i. As n → ∞, set h2 ∼ n−c1 and b ∼ n−c2 with the positives
number c1 and c2 satisfying that c1/β < c2 < 1/2− c1, and the notation “∼”
means that two quantities have the same convergence order.

4.4 Main result

The following theorem emphasizes the performance of our estimator.

Theorem 4.1. Assume that E |Xi|4 < ∞, i = 1, . . . , p. The upper bound risk of the
estimator Ŝi defined in (4.8) over the functional class F satisfies:

• if β ≥ 2 and choosing h1 ≈ n−1/4
1 then

sup
F

E[(Ŝi − Si)
2] ≤ C

n1
. (4.9)

• if β < 2 and choosing h1 ≈ n−1/(β+2)
1 then,

sup
F

E[(Ŝi − Si)
2] ≤ C

(
log2(n1)

n1

)2β/(β+2)

. (4.10)

The proof of the Theorem 4.1 will be postponed to the Appendix 4.7.

Theorem 4.1 presents an elbow effect on the rates of convergences. This is
a typical behavior in linked to studies on functional estimation, for instance
Baraud et al. (2003) or Laurent (2005). The regularity of the joint density function
f defines the rate of convergence for the mean squared risk of Ŝi. It means, we
can get a parametric rate n−1

1 paying a price on the regularity of β ≥ 2. When
β < 2, the rate turn into a nonparametric one which depends on the parameter
β.
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In the regular case, when β ≥ 2, we avoid any adaptability problem with
respect to the choose of the bandwidth h1. We can ensure a parametric rate
of convergence for Ŝi taking a bandwidth of hi = n−1/4. In other case, it is
necessary to be aware of the regularity of our model to choose the bandwidth.

4.5 Numerical illustrations

In this section, we illustrate the asymptotic results with some tests function for
sensitivity analysis. The reader can find an abundant list of well-known test
functions in the Section 2.9 of Saltelli et al. (2000).

In all the simulations we will took n equal to 1000, 2000, 5000 and 10000 for
each case. We repeated the experiment 100 times selecting a different sample
in each iteration. The inputs are gaussian random variables with mean 0 and
variance specified in each configuration. The horizontal full lines in the graphics
represent the theoretical Sobol index for each variable. We used the package
moments (Komsta and Novomestky (2011)) using a sample of 106 observations
to estimate those theoretical values. Also, we used the package np (Hayfield
and Racine (2008)) for the kernel estimators.

4.5.1 Ishigami model

The Ishigami function (cf. Ishigami and Homma (1990)) will generate our first
simulation study. We use the following configuration,

Y = sin X1 + 7 sin2 X2 + 0.1 X4
3 sin X1 (4.11)

where Xi ∼ N (0, 1.252) for i = 1, 2, 3.

The Ishigami function is a popular model in sensitivity analysis because
presents a strong nonlinearity and nonmonotonicity with interactions in X3.
For a further explanation of this function, we refer the reader to Sobol’ and
Levitan (1999). We will present only the first-order Sobol indices of the Ishigami
function in this work. We choose a bandwidth of h = n−1/4 for each sample.

Figure 4.1 summarizes the simulation results. Our method has estimated
correctly the Sobol indices for each input. The bias is inherent in the model
due to the choose of our bandwidth. We appreciate strongly this effect for
the inputs X2 and X3. The bandwidth h = n−1/4 is sub-optimal. We expected
it due to we have established only an upper bound for the kernel estimator.
Even so, the variance is well controlled and decrease as we raise the number
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Figure 4.1: Box plot of the Sobol indices for the Ishigami model over 100
replications. Each color represent the size of the sample (1000, 2000, 5000 and
10000). The bandwidth h used in the simulation was n−1/4. The horizontal full
lines represent the theoretical Sobol indices S1 = 0.14024, S2 = 0.59448 and
S3 = 0.02515.

of samples. In general, our method finds the most influential factor X2 and
discards the less influential ones X1 and X3 which their theoretical Sobol indices
are S1 = 0.14024037, S2 = 0.59448009 and S3 = 0.02514975.

4.5.2 Quartic model

The next model that we investigate is

Y = X1 + X4
2 (4.12)

where we consider three configurations for X1 and X2:

(Q1) Xi ∼ N (0, 0.252), i = 1, 2.
The most influent variable is X1 with S1 = 0.97750 while X2 has S2 =
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0.022510.

(Q2) Xi ∼ N (0, 0.52), i = 1, 2.
Both variables have comparable influence with S1 = 0.39710 and S2 =
0.60150.

(Q3) Xi ∼ N (0, 1), i = 1, 2.
The variable X2 has the greater Sobol index S2 = 0.98977 against S1 =
0.01031 for X1.

We have simulated the quartic model with two settings for the bandwidth
values: (a) selected by the cross-validation method implemented in the package
np, and (b) fixed to h = 1/16 n−1/4 according to Theorem 4.1. For the theoretical
bandwidths we used the values 0.01111, 0.00935, 0.00743 and 0.00625 for the
samples 1000, 2000, 5000 and 10000 respectively. The Table 4.1 presents the
average bandwidths estimated by cross-validation for each Sobol index and
each configuration.

Q1 Q2 Q3

S1 S2 S1 S2 S1 S2

1000 0.02260 0.09704 0.11040 0.06954 0.63539 0.06877
2000 0.02074 0.07039 0.09777 0.05354 0.47266 0.13996
5000 0.01741 0.05959 0.08991 0.03869 0.41863 0.03519

10000 0.01524 0.05323 0.08064 0.04176 0.38029 0.04588

Table 4.1: Average bandwidths estimated by the built-in cross-validation method
of the package np for the Sobol indices S1 and S2 with the configurations Q1,
Q2 and Q3.

Figures 4.2, 4.3 and 4.4 represent the box plots of the Sobol indices for the
configurations Q1, Q2 and Q3 respectively. First, notice that the simulations
taking the bandwidth chosen by the np cross-validation estimator performed
poorly. In particular, they present a bias consistently in all the configurations.
This is due that the package np optimizes its procedure for nonparametric
functional or regression estimation. It ignores any particular structure of the
conditional variance Var(E[Y|Xi]). Still, using these values the method can
approximate the theoretical values and control the variance as the sample
increases.
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(a) Bandwidth chosen by cross-validation using the package np.
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(b) Bandwidth set to 1/16 n−1/4.

Figure 4.2: Box plot of the Sobol indices for the analytical model Y = X1 + X4
2

over 100 replications for the configuration (Q1). Each color represent the size of
the sample (1000, 2000, 5000 and 10000). The horizontal full lines represent the
theoretical Sobol indices S1 = 0.97750 and S2 = 0.02251.
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(a) Bandwidth chosen by cross-validation using the package np.
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(b) Bandwidth set to 1/16 n−1/4.

Figure 4.3: Box plot of the Sobol indices for the analytical model Y = X1 + X4
2

over 100 replications for the configuration (Q2). Each color represent the size of
the sample (1000, 2000, 5000 and 10000). The horizontal full lines represent the
theoretical Sobol indices S1 = 0.39710 and S2 = 0.60150.
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(a) Bandwidth chosen by cross-validation using the package np.
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(b) Bandwidth set to 1/16 n−1/4.

Figure 4.4: Box plot of the Sobol indices for the analytical model Y = X1 + X4
2

over 100 replications for the configuration (Q3). Each color represent the size of
the sample (1000, 2000, 5000 and 10000). The horizontal full lines represent the
theoretical Sobol indices S1 = 0.01031 and S2 = 0.98977.
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Using the theoretical bandwidth 1/16 n−1/4, we improve our results. The
method reduces both the bias and the variance in every case as we raise the
number of observations. Compared with the cross-validation choice, we see how
the averages of our method stay close of the theoretical Sobol indices. Figures
4.2b and 4.4b present strong biases for the sample of 1000, but they shrink as we
increment to 10000 observations. Independently of the choice of the bandwidth,
our methodology has identified the most relevant input for each case.

4.6 Conclusion

In this work, we focused our attention in the estimation of first-order Sobol
indices. These indices measure the impact of the inputs to the output in general
models. We presented a nonparametric estimator based in the work proposed
previously by Loubes et al. (2013).

This procedure provides a direct way to estimate the Sobol indices with-
out run any expensive Monte-Carlo simulation. In real sensitivity analysis
applications, this advantage could give fast answers and create better models.

We have shown that the mean square risk of our estimator attains a para-
metric rate of convergence, if the regularity of the model is smooth enough.
In other case, we can only ensure a slower rate depending on the regularity
of the model. This is interesting from the theoretical point of view because
sets parametric properties to a nonparametric object. Moreover, it is possible
to extend this technique to higher-order indices. The idea is use multivariate
kernels in equations (4.5) and (4.6). We will explore higher-order indices in a
further work. Moreover, we have to improve the rates of convergence finding a
lower bound to proof the optimality.

The numerical simulations shown that our model identify correctly the
Sobol indices in each case presented. The configurations used were set with
gaussian inputs. We compared the bandwidth proposed in Theorem 4.1 against
the estimated by the np package. The results for the choice of our bandwidth
performed better than the cross-validation one. This is because the np is not
optimized for conditional variance regression. In general, it is hard understand
the regularity of the joint densities. However, in a future work, we could develop
a cross-validation scheme suited for this framework.

We have to test further our estimator, but the first results are promising. Also,
it would be interesting apply this algorithm to real data and test its capabilities.
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4.7 Appendix

4.7.1 Proof of Theorem 4.1

Proof. Notice that

E[(Ŝi − Si)
2] = E

( V̂i −Y2

σ̂Y
− Vi −E[Y]

Var(Y)

)2


≤ E

(Y2

σ̂Y
− E[Y]

Var(Y)

)2
+ E

( V̂i

σ̂Y
− Vi

Var(Y)

)2
 . (4.13)

The first term in equation (4.13) the it is easy to bound by n−1 applying the
delta-method. Now adding and subtracting V̂i/σY in the right term, we can
decompose it in the following way,

E

( V̂i

σ̂Y
− Vi

Var(Y)

)2
 = E

( V̂i

σY

(σ̂Y − σY)

σ̂Y

)2
+ E

( V̂i −Vi

σY

)2
 (4.14)

Given that the kernel function K and the value E[X4
i ] are bounded, we

can apply the Cauchy-Schwarz inequality to left term in equation (4.14). We
can establish that there exist a real number M > 0 such as E[(V̂i/σY)

4] ≤ M.
Moreover, applying once again the delta-method, we can control the value

E

[(
σ̂Y − σY

σ̂Y

)2
]
≤ 1

n
.

Finally, for the term
E[(V̂i −Vi)

2]

in equation (4.14) we will apply directly the Theorem 1 of Loubes et al. (2013).
We use the same reasoning in that proof: If β ≥ 2 and choosing h1 = n−1/4

1 we
obtain

sup
F

E[(Ŝi − Si)
2] ≤ C

n1
.
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Otherwise, taking h1 = n−1/(β+2)
1 the upper bound turns into

sup
F

E[(Ŝi − Si)
2] ≤ C

(
log2(n1)

n1

)2β/(β+2)

.

This proves the theorem.



Conclusions and perspectives

In this thesis we studied the estimation of the conditional covariance matrix for
two main problems: reduction dimension and sensibility analysis. We assumed,
generally, a nonlinear regression model with X ∈ Rp the independent variable
and Y ∈ R the dependent variable. Also we assume that p is bigger than the
number of observations available in the experiment.

In the first part we concentrate our efforts finding an estimator for the
conditional covariance matrix Σ = Cov(E[X|Y]). We introduced this matrix as
a collateral result for the sliced inverse regression method. In short, once we
have the spectral space of Σ, we can identify a reduced and more informative
set of coordinates. This new coordinates will serve us to explore further the
data, applying other technique like classification, regression, etc.

Then we moved our interest to study the value Var(E[Y|X]) for X ∈ R and
Y ∈ R. This quantity is directly linked with the estimation of Sobol indices for
sensitivity analysis. The Sobol indices measure the impact of the inputs into the
output inside a model.

We proposed different nonparametric methods to tackle those issues. We
will summarize briefly the results that we obtained and give some perspectives
about the ongoing work.

The Taylor estimator

In Chapter 2 we presented an estimator based on the Taylor decomposition of a
general functional T associated with the coordinate-wise conditional covariance.
We used a general basis of orthonormal functions to project the functional T
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onto its span. We found that the variance of the Taylor estimator depends only
on the linear part of its development. This characteristic, causes that the Taylor
estimator is efficient from the Cramér-Rao point of view. In other words, it
attains the minimum variance among the other estimators. Finally we found the
asymptotic variance for the whole matrix estimator and proved its asymptotic
normality.

There are still several topics about this subject to explore. It would be
interesting study the behavior of our estimator using particular sets of functional
basis like wavelets, splines or polynomial functions (Legendre, Laguerre and
so on). We explained briefly this topic with a general wavelet basis, but the
idea is to expand it to a wider set of basis and find some simplifications in the
estimator. This steps will allow us to implement it easier in future applications.

Another point worth to investigate the Cramér-Rao efficiency of the whole
matrix estimator. We can provide the result with a half-vectorized version of
the conditional covariance matrix.

The kernel-based estimator

We proposed a nonparametric estimator for the conditional covariance in Chap-
ter 3 and used the same idea for to find an estimator for the first-order Sobol
indices in Chapter 4. We proved that under some mild conditions, the element-
wise estimator’s mean squared error achieves a parametric rate of convergence.
In the case of Chapter 3, we observed a similar behavior for the full matrix
estimator under the Frobenius norm. We performed simulations with some test
cases.

One of the key point in the methodology was split the sample in two equal
parts to get the independence between the numerator and denominator. One
improvement to our methodology is to find some way to split the sample
adaptatively preserving the result. Also, we limited our work to the Frobenius
norm, but it would be interesting find rates of convergence under other norms
like the operator-norm.

One of the most encouraging ideas ongoing in both estimators are the
minimax and adaptive rates of convergence. There are plenty of literature about
minimax lower bound for the sample covariance, for instance Cai et al. (2010).
Find a rate of this kind, would prove that our estimators are optimal under some
regularity conditions. Moreover, given that our rate depends on the regularity
level β, search adaptive rates of convergence will produce attractive results.
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Real case simulations

We made some simulations in Chapters 3 and 4 with testing models for the
conditional covariance and variance respectively. We used the nonparametric
estimators in examples of reduction dimension and sensitivity analysis. For
the Taylor estimator, proposed in Chapter 2, we have already an incomplete
implementation which needs to be improved for real simulations. Therefore, we
have two main objectives in the near future: First, polish the Taylor estimator to
get a functional code base and use those implementations in real-case data and
test its capabilities.





Appendix

These programs were made using the R project version 3.0.2.

Nonparametric estimator for conditional covariance
l i b r a r y ( np )
l i b r a r y ( Matrix )

e s t i m a t e _ c o n d i t i o n a l _ e x p e c t a t i o n ← function ( i , dataX , dataY ,
f h a t ) {

n ← nrow ( dataY )
# Estimating the \hat{g} for each i
ghat ← npksum (

txdat = dataY [ [ 1 ] ] ,
tydat = dataX [ [ i ] ] ,
bws = n∧ (−1 / 4) ,
l e a v e . o n e . o u t = TRUE,
bandwidth.divide = TRUE) $ksum / n

g_div_f ← ghat / f h a t

return ( g_div_f )
}

compute_sigma←function ( data ) {
# Function to estimate the regularized estimator of
# the conditional covariance C(E(X | Y))
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# Setting the values of n and p
n ← nrow ( data $df )
p ← ncol ( data $df )−1
alpha ← data $ alpha

# Split the sample in two equal parts
n1←f l o o r ( n / 2)
rows1 ← 1 : n1
rows2 ← ( n1 +1) : n
colsY ← 1
colsX ← 2 : ( p+1)

# use np to estimate \hat{f}_Y
f h a t ← npudens (

t d a t=data $df [ rows2 , colsY , drop=FALSE ] ,
edat=data $df [ rows1 , colsY , drop=FALSE ] )

# Cut the small value to avoid incosistencies
threshold ← fivenum ( f h a t $dens ) [ 2 ]
f h a t $dens [ f h a t $ dens<threshold ] ← threshold

# Estimate hat{g} function (vector)
ghat←sapply ( seq ( 1 , p ) , e s t i m a t e _ c o n d i t i o n a l _ e x p e c t a t i o n ,

dataX=data $df [ rows1 , colsX , drop=FALSE ] ,
dataY=data $df [ rows1 , colsY , drop=FALSE ] ,
f h a t = f h a t $dens )

# With the vector of \hat{g}, estimate
# its covariance
matSigma ← cov ( ghat )

# Parameter for the banding matrix
k ← n1∧ (1 / (2 * ( alpha +1) ) )

i f ( k ≤ p && k > 0) {
# Construct a banding regularizator
Regular iza tor ← t o e p l i t z (

c ( rep ( 1 , k ) ,
numeric (p−(k−1) ) ) )

# Apply the banding matrix to Sigma
matSigma ← matSigma * Regular iza tor
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} e lse { }
matSigma ← Matrix ( matSigma , sparse=TRUE)

return ( l i s t ( SigmaHat=matSigma ) )
}

Nonparametric estimator for Sobol indices
Ksobol ← function (X , Y) {

# Function to estimate the Sobol index
# S = Var(E[Y | X])\V(Y).
# We assume some model with
# X is the input and,
# Y is the output

# Setting the parametres
n ← dim (X) [ 1 ]
p ← dim (X) [ 2 ]
g ← matrix ( nrow=n , ncol=p )

# Estimating the conditional expectations
# with the package np
for ( k in 1 : p ) {

g [ , k ] ← npreg ( txdat=X[ , k ] , tydat=Y) $mean
}

# Estimating the Variance of Y
sigma.Y ← var (Y)
# Creating a vector of V(E[Y | X])
var .g ← apply ( g , 2 , var )

# Computing the Sobol index
s o b o l . i d x ← var .g / sigma.Y

}
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Résumé

Cette thèse se concentre autour du problème de l’estimation de matrices de covariance conditionnelles et
ses applications, en particulier sur la réduction de dimension et l’analyse de sensibilités.

Dans le Chapitre 2 nous plaçons dans un modèle d’observation de type régression en grande di-
mension pour lequel nous souhaitons utiliser une méthodologie de type régression inverse par tranches.
L’utilisation d’un opérateur fonctionnel, nous permettra d’appliquer une décomposition de Taylor au-
tour d’un estimateur préliminaire de la densité jointe. Nous prouverons deux choses : notre estimateur
est asymptoticalement normale avec une variance que dépend de la partie linéaire, et cette variance est
efficace selon le point de vue de Cramér-Rao.

Dans le Chapitre 3, nous étudions l’estimation de matrices de covariance conditionnelle dans un
premier temps coordonnée par coordonnée, lesquelles dépendent de la densité jointe inconnue que
nous remplacerons par un estimateur à noyaux. Nous trouverons que l’erreur quadratique moyenne
de l’estimateur converge à une vitesse paramétrique si la distribution jointe appartient à une classe de
fonctions lisses. Sinon, nous aurons une vitesse plus lent en fonction de la régularité de la densité de la
densité jointe. Pour l’estimateur de la matrice complète, nous allons appliquer une transformation de
régularisation de type “banding”.

Finalement, dans le Chapitre 4, nous allons utiliser nos résultats pour estimer des indices de Sobol
utilisés en analyses de sensibilité. Ces indices mesurent l’influence des entrées par rapport a la sortie
dans modèles complexes. L’avantage de notre implémentation est d’estimer les indices de Sobol sans
l’utilisation de coûteuses méthodes de type Monte-Carlo. Certaines illustrations sont présentées dans le
chapitre pour montrer les capacités de notre estimateur.

Abstract

This thesis will be focused in the estimation of conditional covariance matrices and their applications,
in particular, in dimension reduction and sensitivity analyses.

In Chapter 2, we are in a context of high-dimensional nonlinear regression. The main objective is to
use the sliced inverse regression methodology. Using a functional operator depending on the joint density,
we apply a Taylor decomposition around a preliminary estimator. We will prove two things: our estimator
is asymptotical normal with variance depending only the linear part, and this variance is efficient from
the Cramér-Rao point of view.

In the Chapter 3, we study the estimation of conditional covariance matrices, first coordinate-wise
where those parameters depend on the unknown joint density which we will replace it by a kernel
estimator. We prove that the mean squared error of the nonparametric estimator has a parametric rate
of convergence if the joint distribution belongs to some class of smooth functions. Otherwise, we get a
slower rate depending on the regularity of the model. For the estimator of the whole matrix estimator,
we will apply a regularization of type “banding”.

Finally, in Chapter 4, we apply our results to estimate the Sobol or sensitivity indices. These indices
measure the influence of the inputs with respect to the output in complex models. The advantage of our
implementation is that we can estimate the Sobol indices without use computing expensive Monte-Carlo
methods. Some illustrations are presented in the chapter showing the capabilities of our estimator.
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