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Introduction

This Ph.D. thesis has been performed in the frame of a CIFRE contract in partnership with
the Future Project Office (FPO) of Airbus France. CIFRE is a French acronym and stands for
Conventions Industrielles de Formation par la REcherche.
Passenger transport aircraft is probably one of the most complex industrial products. With no
surprise, the associated design process reflects this complexity. This process includes quite a
lot of phases which can be grouped within three main stages: Conceptual Design, Preliminary
Design and Detailed Design. This study is focused on the first phase where very impacting
decisions are taken while very few information are available about the product itself.

Conceptual Design is carried out by the Future Project Office. The objective at this stage
is to perform overall aircraft sizing (versus a given set of design and operational requirements)
of several possible configurations in order to determine the best ones according to strategic and
marketing criteria. This overall sizing is classically achieved through a global optimisation pro-
cess under constraints. In most of the cases, many aircraft configurations have to be analysed
and ranked according to various criteria which requires very time efficient computational pro-
cesses. During conceptual design, only the main characteristics of the aircraft are defined. The
outcome of this conceptual phase is a selection of very few number of airplane configurations
(most often 2) that will be studied in more details in a preliminary design phase. Preliminary
design phase is still based on simplified models so that global Multidisciplinary Optimisation
could be achieved. The global computational process is very similar in Conceptual and Pre-
liminary phases, only models are more refined in Preliminary Design, we use to speak about
Overall Design Process. This second step involves FPO as well as some specialised departments
that will work to reduce the uncertainty on some risky assumptions. After selection of the best
candidate, the project may evolve towards detailed design phases. It is important to highlight
one of the main difficulties of early design steps: in spite of a very limited knowledge available
on the product, decisions that are taken have the greatest impact on further developments.

The Overall Design Process is complex. It is, at the same time, a:

• constrained optimisation process. It can be seen as a global optimisation where
one seeks for the optimal aircraft configuration that allows minimising a given criterion
(such as the weight) under operational and cost requirements. Optimisation methods are
also used for other purposes within the preliminary design process: for example, they are
involved in models calibration and are necessary to compute most of simulated operational
performances of the aircraft (as Take Off Field Lengths or Ceilings).

• multidisciplinary process. An aircraft is a product where several physical fields are in-
volved and interact such as aerodynamic, handling qualities, propulsion, weights or struc-
ture. All of these physics have to be represented when designing an aircraft, even in a
preliminary study.

• simulating-based process. As many other engineering processes, aircraft design process
is based on the use of numerical models that mimic the physics, in the most rigorous way.
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2 Introduction

The level of fidelity of these models varies depending on where we are in the design process
and on the frequency of use of the model. During the last decade, FPO engineers have
developed a platform providing models and processes which answer to the various aspects
of preliminary aircraft design process. This platform has evolved as knowledge on the
process increased.

Numerical models are generally constituted of a set of input parameters. For time saving, this set
is generally a subset of the group of parameters which are involved in reality. The less parameter
the model has, the less precise it will be. Then, the model may have a lack of accuracy because
all physics are not represented. Consequently, there generally exist a discrepancy between the
model estimation and experiments.

Aircraft design is classically based on a deterministic process: it assumes that there is no
uncertainty. Engineers are used to managing the risk by launching sensitivity analysis that can
possibly lead to take margins on some design parameters. Uncertainty is able to modify the
response of a system and can degrade its performance, thus it is important to manage it as soon
as possible. The objective of this study is to propose a new Design Philosophy based on robust
optimisation technique in order to manage and integrate uncertainty into the existing aircraft
design process. This approach requires that the main source of uncertainty is identified, quan-
tified. Then, it can be propagated through the simulation code to launch robustness analysis.
Moreover, since the involved models are simple and rapid to compute, quite a lot of evaluations
can be made and classical techniques can be used to perform the optimisation.

Chapter 1 provides more details on the context of the study. The Future Project Office
role and objectives are further explained, the stakes and the core of preliminary aircraft design
process are presented (description of the simulation models, etc) and the strategy used by FPO
engineers to manage risk and insure robustness is described. The general context, the indus-
trial’s stake and the aim of the thesis are detailed at the end of this chapter.

Chapter 2 deals with the state of the art of the fields related to the thesis study such as op-
timisation, uncertainty quantification, robust optimisation and response surfaces. This chapter
will help in finding methods that can be applied to aircraft design.

Chapter 3 is about the uncertainty quantification. First, the uncertainty involved at pre-
lim inary aircraft design is identified. Then, the selected method used to quantify this uncer-
tainty is presented. A new generic distribution probability is introduced as well as the reasons
motivating its set up. Moreover, focus is put on the difficulty to quantified uncertainty related
to models with nested sub-models. A strategy is adopted to escape this difficulty and to be able
to identify uncertainty for each model separately. A succinct correlation study is presented. In
the last part of this chapter, an interpretation of the uncertainty quantified in terms of aircraft
design freedom is presented.

Chapter 4 deals with uncertainty propagation through the aircraft simulation code. First,
a short state of the art of existing propagation methods is presented. In this study, put the
focus on Monte Carlo and moment propagation methods. We present the moment propagation
method as well as the various steps involved in its implementation. Then, for a comparison
sake, the robustness of the original process used by FPO engineers to manage risk is analysed
by launching uncertainty propagation thanks to these two methods. In the last part of this
chapter, we present two examples in which the moment propagation is used.

Chapter 5 aims to present the robust optimisation for aircraft design. A selection is done
among the set of robust optimisation methods, the formulation of the robust aircraft design
optimisation is described and the selection of an algorithm to solve the optimisation is justified.
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The proposed methodology is tested on a twin-jet design problem. The results are presented
and discussed.

Conclusion and perspectives of the thesis are presented at the end.
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6 Overall Aircraft Design in Future Project Office

1.1 Future Project Office

While being very similar to any other product development (see [Geb95]), the complexity of the
Aircraft Design Process is in proportion to the complexity of the final product:

1. Idea generation (basic design)

2. Planning and definition (definition of the main function of the product)

3. Design (evaluation and definition of the project’s goal)

4. Development/Realization: drafting, design, calculation (raw and detailed design, calcula-
tion and evaluation)

5. Test run

Time elapsing between the idea generation and test run varies according to the product
development and is roughly proportional to the life of the product. In aircraft design context,
this time is quite long. To give some idea, we can do the parallel with other product such as
mobile phones, computers and cars (figure 1.1 and table 1.1). A mobile phone can be developed
in about 2 to 5 months and will be in use a very few years (or even months) whereas an aircraft
is developed in about 120 months (10 years) and may be in use other more than 50 years! This
large design time is also related to the great amount of safety rules to satisfy.

Figure 1.1: Comparison of time conception for different products

Computer Automobile Aircraft

Pre-design 2 5 10

Production 3 5 20

Operating 5 10 30

Life cycle 10 20 60

Table 1.1: Product life cycle comparison

The aircraft design process can be split in four phases: feasibility, conceptual, definition and
production.

These four phases are marked by a serie of important events called Maturity Gate (MG).
MG are indicators of the evolution of the project. They represent the change from one status of
the project to another one. Some MGs are particularly important. As an example, MG3 implies
that the concept is frozen which has a great impact on future work and product life. Figure 1.2
presents the aircraft design process and its different MGs.
In this study, we will focus mainly on the first phase of the design process which is the feasibility
phase. During this phase, the following actions are managed:

• Scenario analysis (corresponding to MG1),
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Figure 1.2: Aircraft design process maturity gates

• Scenario selection (corresponding to MG2),

• Finding out which product capabilities are really needed to make it attractive,

• Finding out which product concept does best address these capabilities,

• Definition of the specifications,

• Finding out how one could best make such product (technical, companies, partnership...),

• Entry into concept (corresponding to MG3).

The final goal of all these actions is the realisation of Overall Aircraft Design (OAD). OAD refers
to the global definition of the aircraft according to a set of given requirements. The objective
for engineers is to find, among all possible aircraft configurations, the ’best’ one that allows
fulfilling the requirements while optimising the selected criteria. Figure 1.3 presents, in a simple
way, the process which leads to this ’best’ aircraft configuration.

Figure 1.3: Process for future project conception
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It is not a linear process: number of iterations has to be made in order to find the optimum
design or, at least, to be convinced that the selected configuration is a pretty good one. Note
that, OAD is not only dedicated to new aircraft project. It can be used when the evolution of
an existing aircraft is at stake.
Future Project Office (FPO) plays a crucial and a major role in the aircraft design phase. As
FPO is mainly involved at the beginning of the aircraft design process, its presence decreases
as long as the project evolves to vanish at the beginning of the production phase. Consistently
with the overall definition of the aircraft, FPO role is also to provide initial technical targets
to the different groups that are in charge of component design (wing, fuselage, landing gear,
empennage,...) .These groups take over at the detailed design phase starting between MG3 and
MG4.
In the following section, we give further detail on the different items which composed the OAD
process in figure 1.3.

1.1.1 Top Level Aircraft Requirements

Top Level Aircraft Requirements (TLARs) are supposed to be the most structuring requirements
that will give shape to the future aircraft. They form the specifications and are the input of
the design process. Actually, there are two types of requirements: flexible requirements (the
aircraft ”should” reach them) and hard one (the aircraft ”shall” fulfil them). The selection
of a well balanced set of TLARs is an essential step and also a tricky one as a clear view on
commercial and economical stakes is necessary. A wrong set of TLARS may as well drive to
an unfeasible aircraft or economically not viable. This selection is the result of quite a lot of
iterations between several entities of the three domains: the environment (regulation authorities,
competitors, providers,...), the airliners and the aircraft manufacturer (fig. 1.4).

Figure 1.4: Entities which influence TLARs selection

Indeed, the requirements are not the same according to the entity considered. Sometimes,
they can even be antagonistic. Then, it is necessary to come to a compromise in order to reach
an aircraft configuration that satisfies more or less everyone (i.e. without letting somebody
completely unsatisfied). Hereafter are some examples of requirements for each entity. Further
details can be found in [Bad05].
Environment brings requirements on everything that is related to the environment in which the
aircraft flies. It concerns:

• environmental constraints (noise, emissions...)

• Federal Aviation Regulations (FAR) or Joint Airworthiness Regulation (Joint Aviation
Requirement) (JAR) regulations (in fact EASA, CS25 from 2008)(FAR in United States
and EASA in European Union),

• competitor’s aircraft,
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• partnership (e.g. engine manufacturer)...

The most important for airline is to make profit. Then the requirements they bring are mainly
related to passenger transportation aspect and on the operational aspect of the aircraft:

• range,

• capacity,

• noise,

• operational cost,

• cruise Mach,

• take-off field length...

For the manufacturer, the most important is to sell the maximum number of aircraft by min-
imising their cost production. Thus, they have requirements on:

• profitability,

• resources,

• product strategy...

There is another important point for the manufacturer that depends also on the TLARs values: it
concerns the family concept. The manufacturer strategy is generally to design an aircraft family
covering several seat capacities and not only a single aircraft. This practice is explained by the
attempt to cover different market segments and to take advantage of technological evolutions.
This evolution process is called ”aircraft derivation”. Indeed, it is less expensive and more rapid
to ”derive” an aircraft from an existing one than to start a complete new aircraft design. The
capacity to downsize or extend an aircraft configuration depends on the original TLAR values.
Indeed, with irrelevant TLAR values, it may be impossible to derive the related aircraft.
Figure 1.5 presents the family concept idea. With a family with three members, one could start
with the basic aircraft configuration which is in the middle and then derive a stretch version
and a shrunk version.

Figure 1.5: Family concept: basic, stretched and shrunk variants

The OAD role is to select those TLARs by taking into account the requirements coming
from all the three entities: environment, airline and manufacturer. The set of requirements that
we have finally retained in our study are:

• Range

• Total number of passengers

• Cruise Mach Number (Mn)

• Aircraft wing Span
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• Take-Off Field Length (TOFL)

• Approach Speed (Vapp)

• Time To Climb (TTC)

• Initial Cruise Altitude (ICA)

• Flight ceilings

• Fuel Margin.

They are mostly related to performance aspects of the aircraft. Requirement on wing span is a
geometrical limitation due to operational constraints aircraft have to satisfy. These constraints
are defined by International Civil Aviation Organization (ICAO).

• TTC is related to the time the aircraft should take to reach cruise altitude.

• ICA refers to the capability to start cruise at sufficient altitude regarding to air traffic,
meteorological conditions and best aircraft efficiency.

• Fuel margin corresponds to the difference between the total fuel necessary for the siz-
ing mission and the Maximum Fuel Capacity (MFC) of the aircraft (see Payload-Range
diagram for more explanation: figure 1.21).

• There are 4 types of flight ceilings: climb ceiling, cruise ceiling, buffeting ceiling and
One-Engine-Inoperative (OEI) ceiling.

– Climb ceiling corresponds to the highest altitude for which the aircraft is able to
insure a given climb speed (or vertical speed).

– The definition of cruise ceiling is almost the same. The difference is in the engine
ratings: the engine rating is now configured for cruise instead of climb.

– Buffeting refers to vibration of the aircraft caused by airflow separation. That may
appear during cruise. Depending on the angle of attack, the airflow may separate
which causes aerodynamic instability. Due to this instability, the structure of the
aircraft shakes and the structural integrity of the aircraft is not ensured anymore.
Buffeting is a dangerous state for the aircraft. Thus, it is important to identify the
flight ceiling where this phenomenon appears and to add safety margins.

– OEI ceiling refers to the highest altitude for which the aircraft is able to ensure a
”PENTE” of at least 1,1% after an engine failure.

OAD role is also to estimate the cost associated to each TLARs. This amounts to asking
question such as ”what is the impact of requiring 4500NM range rather than 4000NM on aircraft
performance and fuel consumption?”. The answer to such question is looked for doing trade
study.

1.1.2 Preliminary Aircraft Design Process

1.1.2.1 Multidisciplinary and simulation-based aspect

The preliminary aircraft design process has several characteristics: it is multidisciplinary and
simulation-based. A process is defined as multidisciplinary when several disciplines are involved
so that none of them could be individually determining. An aircraft is a system where many
disciplines are highly contributing to achieve final objective which is to transport passengers
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safely and economically. As an example, we have geometry, structure and weights, propulsion,
aerodynamics, thermics, acoustics ... Each of these disciplines has its own characteristics, objec-
tives and requirements. When designing an aircraft definition process, the purpose is to find the
configuration which has the best performance as a global system. We do not look for the best of
each discipline because it would not bring a global optimum. The optimum configuration is the
one where a compromise is made between the different disciplines. Figure 1.6 shows the shape
of the optimum aircraft configuration for each disciplines point of view.

Figure 1.6: Idea of optimal configuration for each disciplines

The different aspects of those five disciplines are simulated/estimated thanks to models. That
leads to the second characteristics of the aircraft design process: it is based on simulation. The
aim in OAD is to find relevant models that allow predicting the physic behind each disciplines
in short computation time so that a great number of evaluations could be performed (i.e. wide
exploration of the design space). These models are presented in section 1.3.
The preliminary aircraft design process contains several internal sub-processes but we will focus
on two of them: the Mass-Mission loop and the optimisation process. They are presented
hereafter.

1.1.2.2 Aircraft Weights description

In the present study, we will refer to several characteristic weights of the aircraft: Maximum
Take-Off Weight, Operator Empty Weight or again Landing Weight. They are used in the
Mass-Mission loop and the Payload-Range diagram which will be presented later. Thus, to ease
understanding, we present first the relations existing between all of these characteristic weights.
In figure 1.7, we define:

• Manufacturer Weight Empty (MWE)

• Operator Empty Weight (OWE)

• Zero Fuel Weight (ZFW)

• Landing Weight (LW)

• Take-Off Weight (TOW)

• Ramp Weight (RW)

When ZFW, LW, TOW and RW are reaching their maximum value according to maximum load
concideration, they are called:
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• Maximum Zero Fuel Weight (MZFW)

• Maximum Take-Off Weight (MTOW)

• Maximum Landing Weight (MLW)

• Maximum Ramp Weight (MRW)

,

Figure 1.7: Design weights

1.1.2.3 Mass-Mission loop

The Mass-Mission loop is the process used to compute the MTOW of an aircraft in accordance
with the nominal payload and the nominal operational range. MTOW calculation encompasses
two aspects: fuel consumption aspect and structural aspect. To carry out the mission the air-
craft must take a necessary quantity of fuel on board, which impacts the MTOW. Moreover, the
structure of the aircraft must be adapted to characteristics masses: MLW, MTOW, MZFW...
Thus, a system needs to be solved in order to find the MTOW value.

Design Mission aspect: range constraint

An aircraft is expected to perform a mission. Specifically, it is designed to respect the Payload-
Range diagram (see figure 1.21). A nominal range RAnom is associated to a nominal payload
PLnom. This nominal payload corresponds to the maximum number of passengers (and their
luggage) in a typical configuration. To be able to perform the mission with the MTOW, it is
necessary to have a certain quantity of fuel Fuelnom. This quantity of fuel will have an impact
on the MTOW of the aircraft. Then, we have the following relation:

MTOW = ZFWnom + FuelNom.

The ZFW is the nominal Payload plus the OWE. OWE corresponds to the weight of the aircraft
regarding its structure, propulsion and equipement but without any payload nor fuel. Then we
have:

ZFWnom = OWE + PLNom.

This means that:
MTOW = OWE + PLNom + FuelNom.
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So, we have:
OWE = MTOW − PLNom − FuelNom.

Then, for a given mission, OWE is a function of MTOW :

OWE = f(MTOW ).

Structural aspect: weight estimate

The structure weight, and then the OWE must be estimated to calculate the MTOW. The
OWE depends on:

• MTOW

• MLW

• MZFW

• PLMax: Maximum Payload

PLMax is linked to the fuselage volume that a is geometrical limitation. The OWE can be
written as a function of these four previous variables:

OWE = g(MTOW,MLW,MZFW,PLMax).

As MLW is linked to MZFW (MLW = 1.06*MZFW), it comes that:

OWE = g(MTOW,MZFW,PLMax).

And by definition,
MZFW = OWE + PLMax.

Then
OWE = g(MTOW,MZFW ).

For a given MTOW, we deduced that MZFW has to be adapted to get a OWE compatible with
PLMax. Then we obtain the following equation:

OWE = g(MTOW ).

Figure 1.8 illustrates the idea behind the iterative resolution done (black arrow on the figure).

The blue line represents the relation between the range and MTOW (mission aspect) and
the yellow one represents the relation between payload and MTOW. The solution is situated at
the intersection of the two linear operational constraints.

There exists a snowball effect behind the Mass-Mission loop: a small deviation on structure
value can lead to a huge deviation on the final aircraft MTOW after looping. Figure 1.9 illustrates
this phenomenon. Consider an initial deviation on OWE from the initial aircraft. We solve the
Mass-mission loop starting from this deviation. The result is immediate: the looped aircraft is
heavier than the initial one and the deviation is more important compared to the initial deviation
introduced on OWE. For example, +1 tonne on initial OWE can lead to +2.4t on final MTOW
and 1.4 on final OWE. Indeed, additional fuel is necessary to carry additional structural weight
required.
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Figure 1.8: Mass-Mission loop

Figure 1.9: Mass-Mission loop: snowball effect
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1.1.2.4 Optimisation under constraints

Among the small group of high level parameters that are managed at preliminary design level,
three have probably the most important impact on the future product:

• Wing Area denoted WingArea,

• Engine Size driven by SLSThrust,

• Maximum Take-Off Weight (MTOW ).

Wing Area and Engine Size are the most important components on which relies fly ability and
performance of the aircraft. They are typically counting for half of the structural mass of the
aircraft (see figure 1.10).

Figure 1.10: Typical split of the Manufacturer Weight Empty of an aircraft

A complete aircraft configuration can be described from the value of these two parameters.
Moreover, modification on any TLARS has generally impact on both Wing Area and Engine
Size. That places these parameters at the top of design parameters list.

MTOW is also an important parameter. It has a great impact on structural loads (as many
maximum loads occur at maximum mass) and thus on the necessary amount of material. It is
closely coupled to any form of cost associated to aircraft manufacturing and operation. For in-
stance, it has a strong impact on all classical cost criteria (such as Direct Operating Cost (DOC)
or Cash Operating Cost (COC)) as well as on all criteria related to energy assumption. It is an
output from the preliminary design stage and an input for the detailed design phase. Regarding
these reasons, MTOW appears as one of the most suited top level criteria to optimise. Gener-
ally, when designing an aircraft, we always look for optimising a target function. Nevertheless,
with the fuel price increasing, other criteria such as the block fuel or climate impact parameters
can be considered as top level criteria to optimise.

Assessing as soon as possible correct values for these parameters may reduce significantly the
number of design loops (involving high fidelity tools) that will be necessary to converge towards
the final design. The core process of the overall aircraft design has aim to define consistent values
for these three parameters. Traditionally, this process is based on a deterministic optimisation.
The aim is to look for the best couple WingArea and SLSThrust that minimize MTOW and
satisfy operational requirements (take-off field length, approach speed, ceilings...), under a set
of design assumptions (number of engines (Ne), wing aspect ratio (WingAR), By-Pass Ratio
(BPR),...). By varying them, a set of possible aircraft configurations can be determined. Only
configurations allowing to simultaneously reach the set of requirements and to minimize criterion
are selected.

The structure of the optimisation process is in figure 1.11.

This process is clearly multidisciplinary. We distinguish at least five disciplines: geometry,
propulsion, aerodynamics, weight and performance.
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Figure 1.11: Overall Aircraft Design Process

The first step of the process is the definition of the aircraft geometry (see figure 1.12). From
the design parameters (wing area and engine size being the most important ones), we drive the
entire shape of the aircraft. This is done through parametric model which is in charge to change
consistently the geometry (including the engine) of the aircraft. To do so, the parametric model
implements feasible strategies to change the shape of the aircraft: for instance, if engines are
attached to the wing, moving the wing sweep angle shall have the consequence to move also the
engines. In addition to this type of geometrical constraints, it exists generally several ways to
implement a given change: for instance, the area of the wing can be changed keeping constant
the span or the aspect ratio. The choice of the geometrical constraints that are applied depends
on the TLARs and influences the design space where the solutions are looked for.

Figure 1.12: Step 1 - Definition of the aircraft geometry

Once the complete description of the aircraft geometry is available, we can move to step 2 which
is about the estimation of aerodynamic forces and structural masses of the aircraft (see fig-
ure 1.13). To initiate structural mass estimation, we need to take assumptions of characteristic
weights and especially the MTOW. In parallel, from masses and aerodynamic estimation, we
can also simulate the mission of the aircraft. At the end of this simulation, a new value for the
MTOW is obtained according to the required payload. This leads to the Mass-Mission loop.
The purpose of the Mass-Mission loop is to find the necessary amount of material for the aircraft
structure. Further detail on the Mass-Mission loop is given in subsection 1.1.2.3.

At the end of step 2, we have the complete aircraft description regarding its geometry, engine,
aerodynamics and weight. Then, in step 3 (figure 1.14), we are able to compute its operational
performance and compare them to the requirements. We remind that the final objective of the
design process is to find an aircraft configuration that fulfils all of these requirements at the
same time by optimising a target function.

This final step leads to the top level aircraft design process which is the optimisation under
constraints (figure 1.11).
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Figure 1.13: Step 2 - Estimation of aerodynamic forces and structural masses with Mass-Mission
loop

Figure 1.14: Step 3 - Operational performance computation and comparison to requirements
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There is not always a solution to the optimisation problem. Indeed, it is not always possible to
satisfy all requirements at the same time. Nevertheless, for ranges below 9000 NM and capacities
not higher than 1000 seats, the specificities of the overall physical problem allow to find a feasible
solution. This solution is represented graphically (see figure 1.15).

Figure 1.15: Overall Aircraft Design Process: graphical result

The design parameters engine size (driven by its max thrust) and wing area are respectively
on X-axis and Y-axis. Each point of the surface stands for a given aircraft configuration. The
colour field shows the evolution of the MTOW of these configuration: the darker, the heavier.
According to this field, best aircraft has to be searched at the lower left corner (in the gradient
direction). Each line of this graphic represents a constraint and divides the field in two areas:
the hatched part is the area where the constraint is not satisfied. The feasible domain appears in
the part of the field where all the constraints are satisfied. According to this diagram, it seems
that it always exists a feasible area for high wing area and high engine power, in fact, wing area
and engine power cannot be grown infinitely...

The solution for this classical optimisation is denoted:

WingAreadeterministic : Wing Area value

SLSThrustdeterministic : Engine thrust value

MTOWdeterministic : Maximum Take-Off Weight value

In this optimisation, the constraints are deterministic: the optimum point found is situated
at the intersection of two active constraints. Any modification of the operational requirements
would lead to get the optimum point be inaccurate and make obsolete the associated aircraft
configuration (see figure 1.16). For example, if the estimation of the take-off field length reveals
to be (a little bit) underestimated, the optimum solution found with the initial value of take-off
field length will finally not satisfy its requirements. Such a solution is said to be not robust.

Robustness is not a new concept in aircraft design process. It had been developed in order
to improve product quality and reliability. Robustification has aim to master the effect of the
uncertainties along the design process in order to ensure requirements satisfaction. Classically,
risks are covered by oversizing of some design parameters; the difference between oversized and
nominal values of design parameters is called design margin. As oversizing generally leads to
overcosting, the problem is of course to select the best set of margins that covers the widest
uncertainty field at lower cost. From a formal point of view, robustness is acting as an inde-
pendent new criterion (in addition to costing for instance) which makes the Robust Design a
basic multicriteria problem. A particular Design can be defined as robust when its overall per-
formances are able to resist to alterations of the assumptions taken for its elaboration. Then,
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Figure 1.16: Consequence of modification of operational requirement value on deterministic
solution

the problem was for engineers to define a methodology allowing to elaborate robust Design. A
solution, integrating the risk concept, had been exhibited, and gave rise to a process: margin
setting process. The process is presented in section 1.2.

1.2 Risk Management: Margin Setting Process

In many areas of aircraft design activity, technical risks are mitigated by introducing margins
or safety factors on design parameter values [GNG11]. The purpose is to ensure the satisfaction
of an aircraft design configuration according to an amount of uncertainty. These margins are
often fixed values assessed according to experience gained by designers. Sometimes, they are
computed according to simple processes as worst case or sensitivity analysis. But, even if data
and know-how are available and if possible significant gain has been identified, these margins
are rarely assessed according to uncertainty propagation techniques (which in the end could
allow for the reduction of these margins, improving the overall performance of the product).
This situation can be explained by the difficulty to change a proven and widely accepted way
of doing when so important issues are involved such as meeting performance guarantees or
passenger safety. A Margin Setting Process (MSP) based on uncertainty propagation would
require defining acceptable probability of failure in fulfiling requirements. As no experience
exists in using these techniques, we are in a ’chicken and egg’ situation where things keep going
as usual. Moreover, values of these parameters have a great impact since they are used to set up
targets for the Center of Competence (CoC). These targets have to be ambitious enough to let
room for challenge and innovation but realistic enough to maintain as much as possible overall
consistency of the first design loops. The first definition of an aircraft configuration is driven by
conflicting tendencies: if technically too comfortable, detailed design will most probably reveal
an aircraft too expensive; if too ambitious, detailed design will reveal so many requirements not
reached that a complete redesign may be necessary. In both cases, an important amount of work
provides poor outcomes. The question we address is: does it exist a computational process that
could ensure best chances to produce a relevant compromise for a new aircraft?
The margin setting process is an answer to that question. We present the rationale of this process
in the following section. For that, we first have to introduce the Breguet-Leduc equation.
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1.2.1 Breguet-Leduc Equation

The aim of a commercial aircraft is to carry an amount of passengers from one place to another
one by air route. For that, we need three technological pillars:

• A structure to carry the passenger,

• A particular form called aerodynamic form to efficiently fly through the air,

• Engines to create propulsive forces called thrust.

Aerodynamics, thermodynamic of propulsion and structure-system weight are the three techno-
logical pillars that make possible air transport. These three ingredients are well integrated into
the Breguet-Leduc equation, through combination of efficiency factors, to produce the range for
a given amount of fuel. The Breguet-Leduc equation is given by:

Range =
1

g
· L
D

· V

SFC
· ln
(

1 +
FuelBurn

MWE +OIW + Pl +Reserve

)

(1.1)

where:

• V is the Ground speed (m/s),

• g is the Gravity acceleration (m/s2),

• Pl is the Payload (kg),

• MWE is the Maximum Weight Empty (kg),

• OIW is the Operational Items Weight (kg),

• SFC is the Specific Fuel Consumption (kg/s/N),

• L

D
is the Lift over Drag ratio (no dimension) (further denoted L/D),

• FuelBurn is the quantity of fuel burnt by the aircraft during a given mission (kg).

• Reserve is additional quantity of fuel taken on board for holding and reroute (see detailled
definition hereafter).

The MWE (see 1.7) corresponds to the sum of the weights of structural, system and engine
components of the aircraft. That includes the weight of wing, fuselage, vertical tailplane (VTP),
horizontal tailplane (HTP), landing gear, pylons, engines, systems and furnishings weight (toi-
lets, floor covering, crew seats, overhead bins, emergency oxygen,...).

The Operational Items Weight (OIW) (see 1.7) is the sum of the weights of all equipment
introduced for the operator of the aircraft such as passenger seats, catering, crew, unusable fuel,
emergency equipment,...

The Specific Fuel Consumption (SFC) is the fuel flow rate required for a unit of thrust. For
more details on this equation, see annex A.

The reserve is fixed by the regulation Jar 3% or Jar 5%. This additional quantity of fuel is
constitute by 3% (or 5%, depending on the regulation) of the Block fuel plus fuel necessary for
30 minutes of holding starting from arrival airport plus fuel necessary for a reroute of 200 NM
also starting from arrival airport.

In this equation, the aircraft velocity V and the payload Pl are fixed inputs because their
value is generally the result of developments that are more strategic than technical.

This relation combines the influence of the three main drivers of air transport efficiency that
are:
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• L/D, which quantifies the aerodynamic efficiency of the airplane (the higher is L/D, the
more efficient is the airplane);

• SFC, which quantifies the propulsion efficiency (the lower is SFC, the more efficient is the
airplane);

• OWE, which is a measure of the structural efficiency (the lower is OWE, the more efficient
is the airplane).

Consequently, from this equation, we understand that any problem which could appear in the
design project of an aircraft, can be interpreted as a variation of L/D, a variation of SFC and
a variation of MWE. It is then possible to simulate design perturbation by changing the value
of these three variables. The rationale of the MSP is based on this fact.

1.2.2 Margin Setting Process principle

The MSP is a classical way in Future Project Office to design an aircraft which integrates
margins. The process has two objectives: compute value for the three important parameters
WingArea, SLSThrust and MTOW and determine realistic but ambitious targets for detailed
design stage. The process is composed of three steps. In step 1, we compute oversized value
of WingArea and SLSThrust by applying degradation factor on aerodynamics, thermodynamics
and structure. This is done through the three efficient factors combined in Breguet-Leduc
equation meaning through L/D, SFC and MWE. This step is called ”take margins” step. In
step 2, we find out a value for MTOW by computing the Mass-Mission loop. It is called ”the
most probable case” step. The last step deals with computation of target for the Center of
Competence (CoC). This last step is refered as the ”Challenge step”.

1.2.2.1 Step 1: Take margins

The aim of the first step of the MSP is to determine oversized values for WingArea and
SLSThrust. In a classical way, their values are determined thanks to the optimisation pro-
cess previously presented. In this optimisation, we have a set of nominal values for the efficient
factors L/D, SFC and MWE. The first step of the MSP is also based on this optimisation under
constraints, but it integrates hypotheses of deterioration of the efficient factors values. This de-
terioration corresponds to an increase or a decrease of their value in order to make them worse.
The different phases of this step are:

1. deterioration of efficiency factor values,

2. deterministic optimisation under constraint of MTOW.

Phase 1 is about the deterioration of the value of the efficiency factors L/D, SFC and MWE.
Deteriorating their values mean decreasing the nominal value of the L/D, increasing the nominal
value of the SFC and increasing the nominal value of the Empty weight of the aircraft MWE.
Phase 2 is related to the optimisation process. The value of WingArea and SLSThrust are
determined by computing the classical deterministic optimisation of MTOW but with poor
efficiency factors. Values obtained at this step are noted: WingAreaaltered, SLSThrustaltered,
MTOWaltered.
Figure 1.17 displays the principle of this first step.

The aircraft configuration obtained at the end of this step is oversized. If we compare this
result with the one of the classical optimisation we have:

• WingAreaaltered > WingAreanominal



22 Overall Aircraft Design in Future Project Office

Figure 1.17: Step 1 of the MSP: risk cover

• SLSThrustaltered > SLSThrustnominal

• MTOWaltered > MTOWnominal

Indeed, if we want to fulfil the same set of requirements, the aircraft should have larger wings
and more powerful engines. This is due to the degradation introduced. Moreover, for the same
sizes (WingArea, SLSThrust), the aircraft is heavier in the altered case (with degradation) than
in the classical one (without degradation)

Regarding to MTOWaltered, the value found is too conservative. Indeed, there is no real
challenge in designing an aircraft with such MTOW value. The objective is then to compute a
less conservative value for this parameter meaning a smaller value. It is the aim of step 2.

1.2.2.2 Step 2: Most probable case

Once WingArea and SLSThrust values are fixed to WingAreaaltered and SLSThrustaltered, we
have to determine a value for MTOW. This step is composed of the following phases:

1. setting of efficiency factors, WingArea and SLSThrust values,

2. determination of hypotheses for the MTOW with the Mass - Mission loop.

Phase 1 is related to the setting of the different parameters. The efficiency factors L/D, SFC
and MWE, are fixed to their nominal values: there is no deterioration considered. Regarding to
WingArea and SLSThrust, their values are set to WingAreaaltered and SLSThrustaltered found
in step 1. The risk is then taken into account by introducing these values into the calculation.
In phase 2, we compute a value for MTOW which is in line with oversized value of WingArea
and SLSThrust but with no deterioration on efficiency factors. This is done by solving the
Mass-Mission loop presented in section 1.1.2.3. The value obtained is noted MTOWconservative.
Figure 1.18 illustrates this second step.

By integrating the risk in the calculation, the value found for the MTOW at the end of
the Mass-Mission loop is specific: it is higher than MTOWnominal computed in the classical
optimisation but lower than MTOWaltered computed in step 2. In other words, we have:

MTOWnominal < MTOWconservative < MTOWaltered.
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Figure 1.18: Step 2 of the MSP: most probable case

MTOWconservative value seems to be a balance between the better case and the worst case
(according to a set of degradation).
We remind that OAD has 2 objectives: the first one is to give a global definition of an aircraft
which fulfils a set of given requirements, and the second one is to compute target for the detailed
design phase. The first objective is satisfied thanks to the first two steps of the MSP. The MSP
assignes a value to the three main parameters WingArea, SLSThrust and MTOW. Then, we
have to define target for the Component Design. This is done through the last step of the MSP:
challenge determination.

1.2.2.3 Step 3: Challenge determination

The aim of the last step of the Margin Setting Process is to determine targets for Component
Design. There are two kinds of target: general targets and specific targets. General targets
refer to those which concern the geometry and the mass of the aircraft. The specific targets
refer to those which are transmitted separately to the different Centers. For instance, the SFC
is a specific target for the engine manufacturer whereas the L/D is a specific target for the
aerodynamic center. It is then important to find a way to give separately ambitious target to
each discipline, which allows reaching a common goal but also let a room for expressing their
creativity. For determining the targets, an hypothesis of improvement of the efficiency factor
values is made. This last step of the MSP process is almost identical to the second step of the
process. The main differences are located in the value of efficiency factors considered and the
Mass-Mission loop condition. It is then composed of the following phases:

1. improvement of efficiency factor values and setting of WingArea and SLSThrust value,

2. computation of Mass-Mission loop with fixed hypotheses for MTOW.

Contrary to phase 2 of the risk cover step (step 1 of MSP), the value of the efficiency factors are
improved: the L/D is increased, the SFC decreased and the MWE of the aircraft decreased.
Moreover, as in step 2, value of WingArea and SLSThrust are fixed to WingAreaaltered and
SLSThrustaltered in order to always consider the risk cover in the calculation.
In step 3, computation of the targets is done. The Mass-Mission loop is run again but this
fixed hypothesis about MTOW : the MTOW value is fixed to the one found in step 2, meaning
MTOWconservative, and it does not change during the Mass-Mission loop (see fig 1.19).

This last step of the MSP leads to:

• risk cover with the choice of using WingAreaaltered and SLSThrustaltered,
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Figure 1.19: Step 3 of the MSP: challenge

• balance between risk and challenge with the value of MTOWconservative,

• ambitious but realistic targets.

1.2.2.4 Graphical example

Hereafter is a graphical example which illustrates step 1 and step 2 of MSP.

Figure 1.20: Graphical example of the MSP process

Graph 1 displays the result of the classical deterministic optimisation. In this case, the
triplet of design variables (WingArea, SLSThrust, MTOW ) of the optimal aircraft configuration
is equal to (172 m2, 175600 N , 96200 kg). It is represented by the purple diamond-shaped point.

Graph 2 displays the result of MSP’s step 1. The deterministic solution is also visible on
this graph. As described previoulsy, the aircraft configuration obtained at step 1 is bigger than
the one found by the deterministic optimisation: the triplet is given by (176 m2, 179 300 N , 98
300 kg). Indeed, because of the deterioration injected into the process, a larger wing and a more
powerful engine are necessary to fulfil the same set of constraint than in the determistic case.
Nevertheless, the value proposed for MTOW is too conservative. Moreover, for the same Wing
Area and Engine Size, the aircraft is heavier (example: the value of MTOW obtained in this
case for WingArea and SLSThrust respectively equal to 172 m2 and 179600 N is higher than in
graph 1).
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Graph 3 displays the value proposed for MTOW by the step 3 of MSP. As explained afore-
mentioned, this MTOW value is lower than the one in graph 2 and higher than the one in graph
1.

1.2.2.5 Conclusion

In this section, we have presented the principle of a Margin Setting Process dedicated to Aircraft
Overall Design. The presented MSP makes use of the classical deterministic design process to
build margins for overall design parameters and so make the final configuration more robust.
Nevertheless, this method reveals two main drawbacks:

• It does not clearly explain which values of deterioration should be considered for the
efficiency factors. Worst case is not applicable because it would result in a too much
oversized and not competitive aircraft.

• Being based on a pure deterministic approach, the risk brought by constraints that are
not active, but likely to be, is not taken into account.

Due to the level of granularity of selected models, the computation time of MSP process is
relatively short. These models and their characteristics are presented in next section.

1.3 Models for Conceptual Aircraft design

In this study, we used an aircraft tool box called SiMCAD which is the acronym of Simple Models
for Conceptual Aircraft Design. SiMCAD is dedicated to research activity in the domain of OAD.
It has been designed to provide to academic people who are not necessarily familiar to aircraft
design, the capability to tackle the problem from a systemic point of view. It is develop in Scilab
[INR89].

It is a toolbox of models that allows to run simple, but realistic, pre-design processes involving
all main physics. It offers the possibility to test multi-disciplinary, multi-level, multi-objective
and robust optimisation strategies without having to manage huge amount of data and also
huge computation time. By developping SiMCAD, the engineers have tried to capture the main
effects that are contributing to give shape to an aircraft configuration. Moreover, the models
have been designed so that they meet the following rules:

• The model toolbox must be able to compute all the parameters of the aircraft description
knowing only the number of passengers, the nominal range and the cruise speed of the
aircraft and a limited number of architectural choices, e.g. number of engines.

• All models must be as simple as possible and one run of a sequence, involving all the
relations in the right order of call, should not exceed one second on a standard computer.

• The description must contain only top level parameters and the total number of parameters
should not exceed a few hundreds (500 being an absolute limit).

• The description must be complete enough to give an overview of the configuration of
the aircraft according to its geometry, weights, aerodynamics, low speed and high speed
performances, route performances and cost.

The tool box has evolved during several years under the pressure of these rules and the
various research activities that have taken benefit of it. For example, it is referred to as USMAC
in [Bad05]. The level of granularity addressed by SiMCAD is low in order to respect the second
rule. This type of model is also referred to Level Zero Models (LZ Models) by the engineers of
FPO. The description of the aircraft is given by around 200 parameters. For each disciplines
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(geometry, weights, aerodynamics, low speed and high speed performances, route performances
and cost), only few aircraft parameters are selected to describe the aircraft. They are presented
in the next section 1.3.1.

1.3.1 Aircraft description

1.3.1.1 Geometrical description

Five main aircraft components are considered in our model: cabin and fuselage, wing, horizontal
stabilizer, vertical stabilizer, and nacelles. For all these components, only a limited number of
very top level parameters have been selected. Most of these parameters are supposed to be
measurable on pictures taken at a distance corresponding to several times the span of the
aircraft. Some of them, like stabilizer volume factors or gross wetted areas are computable from
the others. These parameters have been selected to give a global description of the aircraft that
gets rid of all details. For instance, from the fuselage, only its average width, height, length and
gross wetted area are taken. The complete geometry is represented by 36 parameters that are
listed in Table A.1 with their name, usual unit and short description.

These parameters are considered as the minimum level of geometrical information that gives
access to aerodynamic forces, component masses and propulsive efficiency estimations at a con-
sistent level of accuracy for all the components.

1.3.1.2 Aerodynamic description

Only six parameters are used to define aircraft configurations from an aerodynamic point of
view (table A.2).

The aerodynamic coefficients can be computed by aerodynamic models taking as input the
previous geometrical description. One can ask how it is possible that so few aerodynamic
parameters characterize an aircraft configuration? The following answer is clearly illustrating
this fact: by looking for main part of aerodynamic contribution to aircraft design, we see that
an aircraft must be able to take-off, to travel in cruise and to land. The three main parameters
that are driving performances in such conditions are the maximum lift coefficients at take-off,
the lift-to-drag ratio in cruise and the maximum lift coefficient at landing.

In this global approach, these three parameters have a slightly different meaning than in a
pure physical approach. They are driving the aerodynamic performances of the aircraft from its
overall geometry, provided that a competent design office is working to optimise the shape and
robustness of the aircraft. The proposed aerodynamic model does not pretend to figure out the
physical performances of a given shape. It gives a reachable level of performance corresponding
to a given shape associated to current state of the art skills and technology. The numerical link
between the shape and the aerodynamic coefficients is not only pure physics but also manu-
facturing know-how and technological assumptions. These assumptions are introduced in the
models through statistical calibrations when enough data are available.

1.3.1.3 Mass description

The mass characterization is of similar level of granularity as geometry. It is done through the
main component mass breakdown and a classical set of design weights (table A.3).

1.3.1.4 Engine performance

In this paragraph, one can find some information about engine performances in terms of available
thrust in several characteristic flying conditions and SFC in cruise conditions. These values can
be used to compare the engines of different aircraft configurations. Each typical rating of the
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engine power management is characterized by one single set of flying conditions, except for take-
off where two different sets of flying conditions are specified to be able to distinguish the effect
of temperature (disa) (table A.4).

1.3.1.5 Operational performance

Considering that an aircraft should be able to take-off, climb, cruise and land, the constraints
to be considered are related to these four flight phases. A particular attention is taken for
constraints that can limit the top of climb point where cruise leg is starting. These constraints
are called ceilings and they are of different types:

1. Minimum Vertical speed (climb and cruise ceilings, vertical speed (Vz) should not be lower
than a given requirement).

2. Minimum Lift coefficient versus buffeting (buffeting ceiling, Cl should not be higher than
Cl buffeting

1.3 ).

3. Minimum Climb path angle (OEI ceiling, path angle should not be lower than a given
requirement).

4. Altitude of maximum Specific Air Range (SAR).

5. Time limited (TTC should not be higher than a given requirement).

In addition, the computation of the necessary time to reach the initial cruise altitude is
introduced. It is not a ceiling but it can be an operational constraint. The Specific Air Range
refers to the distance covered per unit of fuel mass burnt when considering the assumption of no
wind. It is a measure of the efficiency of the aircraft. For information, the altitude of best SAR
has been added and should be lower or equal to all top of climb altitude limitation. Indeed,
when it is higher, it cannot be reached.

All these constrained outputs are computed at a given aircraft mass which is supposed to
be a fraction of the MTOW (generally 0.98). In principle, the mass should result from the
amount of fuel required to reach the targeted altitude but this complexity would be out of
our scope. A constant factor on MTOW reveals to be a robust way to take into account the
most important phenomenon which is: the heavier the aircraft takes-off, the heavier it reaches
the cruise altitude. Relaxing this constraint (by managing a smoother climb) can be modeled
by decreasing the factor on MTOW or simply decreasing the requested vertical speed. For
most of these operational constraints, two computational points are proposed. Typically these
points correspond to different flying conditions, for instance one condition could be sea level
International Standard Atmosphere (ISA) and the other a hot and high condition for take-off, or
two different vertical speed requirements corresponding to two different temperature deviations
for climb and cruise ceilings (table A.5).

1.3.1.6 Mission performance

Five classical mission definitions are used to characterize transportation efficiency.
The first one, called Nominal Mission or Design Mission is used at design time to define the

MTOW of the aircraft and correlatively the structural masses and the amount of fuel that must
find place in the various tanks.

Then, three missions are used to define the so called payload/range diagram that usually
looks like in Fig. 1.21.

1. Maximum Payload Mission (structural limitation): the aircraft is supposed to be loaded
at its maximum payload capacity (passenger and also freight capability).
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Figure 1.21: Payload range diagram.

2. MTOW (structural or performance limitation): payload and fuel added up to that TOW
= MTOW.

3. MFC : all tanks are filled up and payload is reduced.

On branch 1 of Fig. 1.21, the fuel taken on board increases at constant maximum payload. On
branch 2, fuel increase compensates payload decrease to keep the TOW constant and equal to
its maximum (MTOW). That leads to increasing the range. Finally on branch 3, the payload
is decreasing until the aircraft become the lighter one. The range reaches its maximum value
after this. Most of the time, this limitation is required not to be active above a given payload.
It may even not appear at all for some A/C.

The last mission, called Cost Mission is used to quantify an operational cost, that can be
DOC or COC.

Each mission is characterized by its range and some important weights (Table A.6).

1.3.1.7 Operating cost

Two figures are most often used: the Direct Operating Cost (DOC) and the Cash Operating
Cost (COC). The DOC is the COC plus Depreciation and Insurance. The DOC is used as far
as specific economical context has to be taken into account or for mid and long term strategy
analysis. For pure technical comparisons, COC is preferred. The selected formulas let two
parameters to the user: the cost of human labor in $/h and the fuel price in $/USgal (Table
A.7).

1.3.2 SiMCAD input data

SiMCAD tool box has 13 input parameters from which we are able to build a complete aircraft
configuration. Some of them are coming from the TLARs (cf. section 1.1.1). They are:

• Total number of passengers (Npax )

• Nominal Range

• Cruise Mach Number (Mn)

• ICA (Initial Cruise Altitude)
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• Center Wing Tank, Fuselage Tank, Tail Tank

• Containers and Pallets

• Number of engines (Ne)

• BPR (By-Pass Ratio)

• WingAR (wing aspect ratio)

• Labor Cost

• Fuel Price

Total number of passengers, Nominal Range and Cruise Mach Number are most impor-
tant TLARs and their values are decided by the aircraft manufacturer who wants to address a
particular market area.

The Initial Cruise Altitude (which is also taken as the Reference Altitude) is an operational
requirement.

The installation of a Center Wing Tank, a Fuselage Tank, a Tail Tank and the use of
Containers and Pallets are configuration choices.

BPR refers to the ratio of amount of air blown outside the core (called secondary flow which
is cold air) with respect to that moving through the core (called primary flow which is hot air)
(see figure 1.22). A high BPR gives a lower exhaust speed. This reduces the SFC. Airbus’ and

Figure 1.22: Engine By-Pass Ratio

Boeing’s aircraft have a BPR value between 6 and 10. The BPR and the number of engines are
mainly driven by availability of engines and/or technologies.

WingAR is a measure of how long and slender is a wing: a high aspect ratio corresponds
to long and narrow wings whereas a low one indicates short and stubby wings. It is the ratio
between the square of the wing span with respect to the wing reference area. WingAR of Airbus’
and Boeing’s aircraft is between 8 and 9.

1.3.3 SiMCAD outputs

The SiMCAD outputs are a list of operational performances of the aircraft which are:

• Fuel margin
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• Take-Off Field Length (TOFL)

• Flight ceilings: Cruise, Climb, Buffetting and OEI

• Approach speed (Vapp)

• Time To Climb (TTC)

Most of them have been presented previously in section 1.1.1.

1.3.4 SiMCAD architecture

SiMCAD has a layered architecture (fig 1.23). The two lower layers (or inner layers) contain the
Level Zero (LZ) Models which allow to estimate the aircraft component values within the fol-
lowing physics: geometry, weight, aerodynamics, propulsion, cost and performance. The higher
layers (or outer layers) contain design processes which are used for running the Mass-Mission
loop and the deterministic optimisation of WingArea and SLSThrust described previously.

Figure 1.23: SiMCAD architecture

1.3.4.1 Level Zero Models

There are two levels of models in LZ Models. The first level is composed of basic models used
to compute the parameters related to the geometry, the mass, the aerodynamics, the propulsion
and the cost. This first level of models is then used and combined in the second level of models
in order to compute the operational performances of the aircraft (previously listed) at given
flying conditions.

The LZ Models is composed of three types of function:

• Definition function,

• Regulation function,

• Models.

1.3.4.1.1 Definition function Definition function refers to functions which give the ex-
pression of a physical parameter versus a set of other physical parameters. As an example, a
function in SiMCAD gives the definition of the aircraft wing span versus its wing area and its
wing aspect ratio. This model contains only one line.

Function Name: wing span

Input: WingArea, WingAR - Ouput: WingSpan

WingSpan = (WingArea ·WingAR)
1

2
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1.3.4.1.2 Regulation function Regulation function gives the value of a parameter fixed
by regulation. For instance, there is a function which gives the value security coefficient kvs TO
(where vs is for velocity stall). It refers to the required margin to respect versus stalling velocity
at Take-Off. This function also contains only one line.

Function Name: Kvs Take Off

Input: None - Ouput: kvs TO

Kvs Take Off = 1.13

1.3.4.1.3 Models

1.3.4.1.3.1 Model building process Models are the functions that most populate SiM-
CAD toolbox. They are designed to capture the main part of involved physical links between
the parameters to be estimated and the available information in the aircraft description. They
have been designed by following the process hereafter:

1. Define a list of parameters that are supposed to capture the target level of model granu-
larity.

2. Define the sub-list of parameters that is the most representative of top level aicraft re-
quirements (TLARs) of the object. For instance: number of passengers, nominal range
and Mach number.

3. Try to set up relations to compute as many parameters as possible directly from TLARs
and cascade the relations to compute as many other parameters as possible. Try to have
independent variables in the input list of relations.

4. Build the other relations by giving priority to expert judgment and statistical efficiency
of the formula versus the available data without restriction concerning which variable
depends on what. Try to have independent variables in the input list of relations.

5. When a sub-set of parameters are linked by too many relations, some static situations may
occur. In that case, eliminate from the set the relations that have the lowest statistical
efficiency. Since remaining as general as possible is a concern, keep preferentially the
relations that are linking parameters according to the minimum set of assumptions. For
example: prefer a relation linking fuselage mass to its geometry instead of a relation linking
fuselage mass to MZFW. The last one has probably a validity domain which is narrower
than the first one.

6. Possibly, add or remove some parameters from the initial list in order to get overall con-
sistency of the set of relations.

7. In some cases, it is not possible to establish a pure sequence of relations to compute all
the parameters because the calculation of the parameters is made by using a system. In
this case, we use statistics to initialise the parameters of the system.

8. Proceed from step 1 to 7 until all the parameters of the description can be computed.

9. For all loops that have been created in the work-flow due to upstream relations, install
the necessary iterative solving to compute them by minimizing the size of the system of
equations to manage.

10. Finally, install the overall optimisation loop.
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11. Evaluate the statistical efficiency of the whole process to predict available aircraft descrip-
tions from the limited set of selected input parameters.

12. Eventually, adjust model constants in order to improve the global efficiency of the process
versus all available aircraft descriptions.

1.3.4.1.3.2 Model input selection The main problem here is to identify the relevant
links. This approach has been illustrated for long in the area of so called Semi-Empirical
Models. For this reason, some of the relations used to build the simplified models have taken
their structure from various literatures as [VLC86] or simply have been selected according to
their statistical efficiency. In each cases they all have the same very classical methodological
basis. For example we consider here a variable to be estimated, Fuselage mass, denoted FusMass:

1. Look for the parameters that influence directly this variable. In the case of the FusMass
variable, one can propose FusWidth, FusHeight and FusLength. If it appears that impor-
tant information is missing in the data structure, the parameters have to be rethought
in order to have a consistent set. From another side, it is very important not to add too
many parameters by trying to ”improve” the first order: this could bring instability and
make fuzzy the granularity of the global model.

2. See if some parameters can be coupled into composite ones according to physical under-
standing of the phenomenon. This step is very important because it contributes with
the same magnitude as step 1 to narrow the model uncertainty. In the case of fuselage
weight, we can note that most part of the structure is concentrated on its surface and
on its floors, both parts which areas are proportional to the multiplication of the equiv-
alent diameter by the length of the fuselage. So it seems to be a good idea to build the
term FusDiameter =

√
FusWidth · FusHeight (which is a sort of virtual diameter of the

fuselage that takes account of both width and height of the fuselage) and multiply it by
FusLength. The result behaves as a built surface that not only takes account of the skin
but also of the floor(s).

3. Introduce tuning parameters T within the currently built formula in order to match at
best to a set of measurements that is relevant for the purpose. Here also, a compromise is
necessary: too few points would over determine the parameters and produce a non physical
behaviour of the model but it is sometimes difficult to find many relevant measurements.
Too many points may fuzzy the validity domain of the resulting model. Least squares
method allows to optimise parameter values. This step is important to be able to cus-
tomize the model in a particular study context (for instance Short Range or Long Range,
Turboprop or Turbofan, ...).

4. If necessary, compose the function through a polynomial function (with possible fractional
power) in order to improve data matching. This last step is sometimes useful to capture
some industrial hidden properties related to the overall size of the component. For instance
the mass of a main aircraft component is never fully linear versus its size due to some
snowball effect.

The result in the example would be for instance:

FusMass = T1 · FusArea2 + T2 · FusArea+ T3 (1.2)

where:

• T = [0.008, 11.8, 1500],

• and FusArea can be computed as FusArea = π · FusLength · FusDiameter.



1.3. MODELS FOR CONCEPTUAL AIRCRAFT DESIGN 33

Fig. 1.24 shows a classical way to represent the accuracy associated to a model. Coordinate
of each point is built by taking along the horizontal axis the value of the variable coming from
the set of experiments and along the vertical axis the value coming out of the model. Of course,
all corresponding inputs of the model have to be available consistently with the measurements.

The diagonal is the line of equation Y = X. As a result, a point below the diagonal means
that the model underestimates the value, while a point above the diagonal means that the model
overestimates the value.

Figure 1.24: Model value versus Database value for Fuselage mass parameter

The example in Fig. 1.24 shows a typical behaviour of such models: absolute spreading
increases with the order of magnitude of the known predicted data. It is to be noted that this
behaviour is the most important justification to the classical operation consisting in tuning a
formula with a multiplicative factor in order to capture a reference point. Models with such
behavior are called extensive models. Conversely, models which are not extensive are intensive
and have a behavior such as in figure 1.25.

Figure 1.25: Model value versus Database value for MWE model

1.3.4.1.3.3 Examples of models Hereafter are some examples of models contained in
SiMCAD.

The first example is a mass model which gives an estimation of the engine mass. The input
data of this model are SLSThrust and the number of engines. The expression of the model is
as follows:

Function Name: engine mass

Input: SLSThrust, Ne - Ouput: EngineMass

T = 0.00247
EngineMass = T · SLSThrust ·Ne

A second example with a geometry model which computes the fuselage width. The fuselage
width is estimated versus the number of passenger abreast and the number of aisles. The model
expression is:
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Function Name: fuselage width

Input: NpaxAbreast, Naisle - Ouput: FusWidth

T = [0.38, 1.05, 0.55]
FusWidth = T1 ·NpaxAbreast+ T2 ·Naisle+ T3

Here is a last example with a performance model. The following model computes the value
of the approach speed of the aircraft. It uses geometry and aerodynamics data in its calculation
through WingArea and CzMaxLD.

Function Name: approach speed

Input: mass, disa, Zp, kvsLD - Ouput: Vapp

globalMODEL aircraft
WingArea = MODEL aircraft.geom.wing([′WingArea′])
CzMaxLD = MODEL aircraft.geom.wing([′CzMaxLD′])
g = 9.80665
T = 0.98
[Pamb;Tamb;Rho] = non stand atmos (Disa;Zp)

V app = 0.98 ·
√

2·mass·g
Rho·WingArea·(CzMaxLD/KvsLD2)

1.3.4.1.4 Dependency graph It is possible to group the different relations of SiMCAD
into disciplinary modules. Figure 1.26 displays the dependency graph of the different modules.
Hollow dots on the geometry line mean that the dependency is due to the WingArea only. It is
to be noticed that the simplicity of the relations is responsible of the absence of some expected
dependencies as the possible influence of the L/D upon the TOFL for instance. Dashed upward
arrows are showing the reverse links that are the consequences of an optimisation process under
constraints that can be played using SiMCAD. The following chapter presents this process and
some others. Similar block diagrams can be made by exploring the content of each blue boxes.

All LZ Models can be put together in order to run classical design processes. In the next
subsection, we give some details on them.

1.3.4.2 Design Processes

Using LZ Models, we are able to compute the four design processes that compose the higher
layer of SiMCAD architecture, that is to say:

• Mass-Mission loop (cf 1.1.2.3),

• Deterministic optimisation (cf. section 1.1.2.4),

• Statistical design,

• Extended design.

All of these processes are very classical in the domain of aircraft design. They all have the
objective to define the description of an aircraft that should fulfil a set of requirements.

1.4 Global context

The thesis subject is the continuation of one internal project and one external project which
are respectively CRESCENDO [Pro09] and Integrated Design For Complex System (ID4CS)
[ANR09].
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Figure 1.26: Dependency graph of SiMCAD models
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CRESCENDO, for Collaborative and Robust Engineering using Simulation Capability En-
abling Next Design Optimisation, is a 3-years project led by Airbus which brings together 13
European countries. The objective of the consortium is to bring methods for changing the way
that Modelling and Simulation activities are carried out, in order to develop new aeronautical
products in a more efficient manner in terms of cost and time. CRESCENDO will develop the
foundations for the Behavioural Digital Aircraft (BDA) which will become the new backbone
for the simulation (just as the Digital Mock-up (DMU) is today for the Product Life-cycle man-
agement). The main components of the BDA are: the model store, the simulation factory, the
quality laboratory and the enterprise collaboration capabilities. This will lead to:

• a reduction of development lifecycle duration and cost,

• a reduction in rework,

• and a reduction in the cost of physical tests.

The CRESCENDO project will impact the three specific targets of the aeronautical industry’s:
Strategic Research Agenda. Note that CRESCENDO is the continuation of the project VI-
VACE. Information on the CRESCENDO project can be found in: [Pro09].

ID4CS, for Integrative Design for Complex Systems, is an ANR (French National Research
Agency) project. The objective of the consortium is to propose a development and simulation
environment for designing complex systems such as aircraft, by encompassing the complexity of
the project which may come from several aspects:

• multi-disciplinary,

• multi-objective,

• multi-level,

• multi-attribute,

• multi-search-method,

• modelling uncertainty.

The idea is to use adaptive multi-agent technology in order to move toward a self-adaptative
distributed and open architecture, enabling the integration of the previous multi-dimensional
aspects. The final system will be able to communicate with several level of granularity. Infor-
mation on the project can be found in: [ANR09]. The project is applied to the practical cases
of preliminary aircraft design and aircraft engine design.

1.5 Industrial stake: need and motivation

As aforementioned, designing an aircraft is a long process which generally takes more than 9
years from the idea generation of the new aircraft to its first delivery. The phases which are
necessary to move from a simple list of requirements to the fly-able aircraft configuration are
numerous. Moreover, the process is not linear: number of iteration has to be made in order
to access to the final product. Some of these iterations are unavoidable: they correspond to
exchanges between the different poles of competence (Mass, performance,...) and between the
actors of different phases (detailed phase to preliminary phase for example). In contrast, it-
erations that are necessary to correct wrong initial assumptions are avoidable. This category
of iterations is the result of uncertainties which are present at some maturity gates and which
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consequences are only revealed downstream in the design development process. Thus, the man-
agement of these uncertainties since the first stage of the design process might help in avoiding
these unnecessary iterations. Depending on the actual technical difficulties of a given project,
removing unnecessary iterations may lead to significant decrease of development cost.

Nowadays, engineers look for new strategies and new tools which can help them to improve
the aircraft design process in three ways:

• by achieving a better initial effectiveness of the product.

• by focussing on the very final objectives of the customers, internal ones such as any design
office department or final ones such as the airline companies and their passengers.

• by reducing the design cycle. This could be achieved by making the selected aircraft
configuration more insensitive to variations which occur all along the design development
process. That will allow to avoid trivial iterations between the different design phases.

As described before, the final aircraft design, appointed the nominal design, is classically the
solution of a deterministic process. It is the best solution engineers are convinced they are able
to produce according to the available technologies. Moreover, this final aircraft configuration
integrates margins (or safety factors), that are taken to mitigate the risk and cover possible
deteriorations of the product performances revealed by tests for instance. These margins are
generally fixed values assessed according to experience compiled by the designers on previous
aircraft project. There are a priori margins and generally are not the results of an explicit
quantitative evaluation process. This way of doing is characteristic of a conservative approach
which reveals unpleasant aspects: it promotes the accumulation of a priori margins which may
lead to big oversizing of the product and jeopardise its economical efficiency as well as introduc-
tion of new technologies. Indeed, each expert at each stage of the design takes margins to avoid
risks noted in the past or forecasted due to new technologies. At the end, the final product is
probably in accordance with the requirements, but less attractive for customers.

The use of an explicit method for managing the uncertainty can help to fight against system-
atic conservative attitude and improve the performances and the attractivity of the final product.
The only set of margins that are exported to the final customers (the airliners) are those who
are attached to the guaranties of performances that are given by the aircraft manufacturer to
trigger the first contracts. If we succeed in quantifying the whole chain of uncertainties along the
project life, we can imagine being able to retro-propagate these uncertainties on guaranties at
each stage of the design process which would be the most clever way to handle them. Moreover,
we can imagine that some margins are taken on some detailed design parameters in early design
stages on the basis of quantitative uncertainty propagations and released afterwards when it
becomes clear that they are useless to achieve the final requested performances. Presently, we
are far from being able to quantitatively manage uncertainty all along the project life. The
presented work is a first step to introduce some techniques of Uncertainty Quantification and
Management (UQ&M) that are able to make the link between detailed design levels, where
UQ&M already exist or is beeing developed and Global Aircraft Level where final performance
constraints criteria are expressed.

1.6 Global objective of the thesis

The global objectives of the thesis are to introduce and to implement new mathematical tools
in order to initiate robust aircraft design practices. For that purpose, we will first define the
mathematical methodologies involved and realise their state of the art in order to select the ones
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that are the most adapted to aircraft design process.

The second task is to introduce the current approach used in FPO in order to manage the
risk. The aim is to analyse the advantages and the weaknesses of these methods. Thanks to
this analysis, we will be able to select another method to achieve our goal.

Another part of the objective, and one of the main, is to introduce the notion of uncertainty.
The aim is to propose a new process based on uncertainty propagation which allows to improve
the way the margins are taken on aircraft design while ensuring the satisfaction of the opera-
tional constraints. The first goal will be to carefully identify the uncertainty involved at FPO
stage and then to propose effective methodology to propagate it through the simulation code.

The last part of the objective is to put in place the robust design. We have to find the
relevant problem formulation depending on the FPO objective. One of the challenges is to find
friendly way to explain to aircraft engineers the physical meaning of the results obtained with
the new methodology and to make the link with the method currently used.
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2.1 Introduction

As described before, preliminary aircraft design consists in the global definition and sizing of a
future aircraft configuration in order to fulfil specific requirements. It is a complex deterministic,
mono-objective, constrained, multidisciplinary and simulated-based process. The engineer role
is to determine the optimal aircraft configuration which permits to optimise a given criterion
(for instance, to minimise the MTOW ), while fulfilling operational (and cost) requirements. To
find this optimal solution, he uses a mathematical method called optimisation.

Once the engineer has identified an optimal aircraft configuration, he has to realise it. This
realisation is not a linear process: unforeseen turns of events, such as change of strategy or
involvement of new supplier, generally occur at this stage. Moreover, errors are committed
during the process. These errors are due to imprecision of measurement and calculation tools,
to physical aspects out of control such as the whether (...). This kind of unforeseen event can
degrade significantly the performance of the final product. The classical optimisation problem
which gives the optimal configuration does not take into account these unforeseen turns of event:
it supposes a complete absence of uncertainty whereas reality is more complex. Methods have
been developed to take uncertainty into account during the optimisation process. The product
quality obtained by optimising with uncertainty is improved and its sensitivity to uncertainty
is reduced. These kind of methods are called Robust Optimisation methods.

This chapter is focused on the introduction of different methodologies existing for the res-
olution of an optimisation problem under uncertainty. On one hand, we will be able to fully
realise the amount of work which has been done on the subject and on the other hand, we will
be able to identify the methodology which can be applied in the case of aircraft preliminary
design. Thus, in a first part, we briefly present an optimisation problem in its generality and
introduce the notations. In section 2.3, we present multi-objective optimisation problem and
some methods for solving it. In section 2.4, we introduce the notations and definitions related
to statistical and probabilistical concepts necessary for the understanding. Section 2.5 is about
the presentation of robust optimisation. We first introduce the notion of uncertainty and its
measure. The different sources of uncertainty will be listed and methodology for integrating
it in the optimisation process will be studied. Then, we present the existing methods for the
optimisation of the robustness measures presented.

2.2 Optimisation

A general single-objective (or mono-objective) optimisation problem can be formulated as in
equation (2.1):

min
x∈Ω

f(x) (2.1)

where Ω ⊂ R
n is the design space, x = (x1, . . . , xn) is the vector of design variables (also called

decision variables) and f : R
n → R is the objective function to be minimised (also called cost

function, criteria, payoff function or value function). Depending on the problem considered, we
will seek for the minimisation or the maximisation of the objective function f . Note that these
two formulations are linked because maximising f(x) comes down to minimising −f(x). In this
study, all the formulation will be written in the sense of the minimisation.

The aim of the optimisation is to determine the solution x∗ for which the value f(x∗) is
minimal. We distinguish two types of solution: local and global ones. A local solution is the
best solution within a neighbourhood set of feasible solutions whereas a global solution is the
best one within the set of all feasible solutions. Figure 2.1 is an illustration of the optimisation
concept in the case of the minimisation of an objective function f , where the notions of local
and global solution are represented.
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Figure 2.1: Illustration of the optimisation concept

The optimisation problem can be constrained by equality or/and inequality constraints.
The addition of these constraints has the effect to reduce the design space. They are commonly
denoted h for equality constraint and g for inequality constraint. This type of problem is in the
class of constrained optimisation. Then, equation (2.1) becomes:

min
x∈Ω

f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m, (2.2)

hk(x) = 0, k = 1, . . . , p,

where:

• Ω ⊂ R
n is the design space,

• x = (x1, . . . , xn) is the vector of design variables,

• f : Rn → R is the objective function,

• m is the number of inequality constraints and p the number of equality constraints,

• g(x) = (g1(x), . . . , gm(x)) is the vector of inequality constraints,

• h(x) = (h1(x), . . . , hp(x)) is the vector of equality constraints.

For more detailed information, the reader can refer to [Yan08] and [Bie06, NW06].

There exists a large list of methods to solve optimisation problems. The choice of the most
efficient method to solve a given problem is guided by its nature! characteristics of the objective
function, characteristics of the constraints (...). The choice is also guided by information available
at this time such as derivative information. There are two families of methods: Derivative-based
methods and Derivative-free methods. Derivative-based methods contain algorithms which use
the derivative information to solve the problem. Obviously, there are applicable only when the
derivative information is available or can be approximated (e.g. finite differences). Conversely,
algorithms contained in the family of derivative-free methods do not require the derivative
information. Figure 2.2 presents the tree of both derivative-based and derivative-free families.

In figure 2.2, an example of 1.5-order methods is quasi-Newton method [Cor91]. In this
study, we will not go further in the presentation of these methods.
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Figure 2.2: Methods for deterministic optimisation

2.3 Multi-Objective optimisation

Optimisation problems engineers have to deal with in the real-life have generally more than
one objective to be optimised. This kind of problem with several objectives is refered to as
multi-objective optimisation or multicriteria optimisation. Many examples of multi-objective
optimisation can be found in the literature. For instance, in the field of finance, a common
problem is to choose a portfolio for which the risk is minimised and the expected value max-
imised. Another example is in the paper industry, where the design of a paper mill requires to
decrease the amount of capital invested while increasing the quality of the paper. Both of these
previous examples are bi-objective optimisation problems.

A general multi-objective optimisation is formulated as follows:

min
x∈Ω

F (x) = (f1(x), . . . , fl(x))

s.t. gj(x) ≤ 0, j = 1, . . . ,m, (2.3)

hk(x) = 0, k = 1, . . . , p,

where l is the number of objective functions, m the number of inequality constraints and p
the number of equality constraints. The feasible design space X (also called decision space or
constraint set) is defined as the set {x ∈ Ω : g(x) ≤ 0 and h(x) = 0}. The feasible criterion space
Z (also called feasible cost space or feasible objective space) is defined as the set {F (x) : x ∈ X}.
It is the image of the feasible design space.

In the case of multi-objective optimisation, the solution is generally not unique: it is unlikely
to find a solution that optimise each objectives at the same time. In fact, the solution is more
a set of solutions. The aim, in multi-objective problem, is to find a solution that gives a
satisfactory design and this is done thanks to a trade-off between the different objectives. Thus,
it is necessary to extend the notion of optimum for the case of multi-objective optimisation.
This leads to the introduction of Pareto-Optimality and dominance notions.

2.3.1 Dominance relation and Pareto-optimality

2.3.1.1 Dominance relation

The notion of dominance defines a relation between two feasible points x1 and x2 in order to
determine if one of them is better than the other one or if they are equivalent. It is said that
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x1 dominates x2 (denotes x1 � x2 [Ehr05]) if the following conditions are true:

1. the solution x1 is not worse than x2 in all objectives,

2. and the solution x1 is strictly better than x2 in at least one objective.

That leads to:

x1 � x2 ⇔
{

∀i ∈ 1, 2, . . . , l, fi(x1) ≤ fi(x2),
∃j ∈ 1, 2, . . . , l, fj(x1) < fj(x2).

2.3.1.2 Pareto Optimality

The notion of dominance is used to defined the Pareto Optimality. A point x∗ ∈ Ω is Pareto
optimal if and only if it is a feasible solution and if there is no other feasible point x ∈ Ω such
that x � x∗ (i.e. there is no other point such that F (x) ≤ F (x∗) and fi(x) < fi(x

∗) for at least
one 1 ≤ i ≤ l). The points which are Pareto optimal are also called efficient points. In fact, the
term efficiency is used for the design variables and the term dominance for the function in the
criterion space. The set of all Pareto optimal solutions constitute the Pareto front.

Multi-objective optimisation has two goals [Deb01]:

• find a set of solutions as close as possible to the Pareto Front,

• find a set of solutions as diverse as possible.

The points of the Pareto front are called non-dominated solutions. They are located on the
boundary of the criterion space Z. Moreover, they are all equivalent: no solution is objectively
better than another. Pareto solutions are such that any improvement in one criterion can occur
only if another criterion is degraded. The selection of one of them over the other as final ”best”
solution is done by using subjective rules such as expert judgement and knowledge about the
problem. Figure 2.3 illustrates the notion of Dominance and shows a Pareto front.

Figure 2.3: Example of dominance relation and Pareto front in the criteria space

2.3.2 Methods for multi-objective optimisation

Methods for solving multi-objective optimisation can be categorised in five main classes [MA04]:

• Methods with a priori articulation of preferences,

• Methods with a posteriori articulation of preferences,

• Methods with progressive articulation of preferences,

• Methods with no articulation of preferences,
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• Evolutionary algorithms.

The previous classification depends on how the decision-maker specifies his/her preferences in
the methods. Preference in this context refers to the opinion of the decision-maker on the im-
portance of the objectives. This opinion is expressed thanks to preference functions (abstract
functions (of points in the criterion space) in the mind of the decision-maker, which perfectly
incorporates his preferences) or utility functions (functions which represent the relative impor-
tance of one objective depending on the decision-maker preferences). In the following subsection,
the rationale of some common methods is presented.

2.3.2.1 Methods with a priori articulation of preferences

In this class of methods, the decision-maker states his preferences with a priori articulation
meaning before the resolution of the optimisation problem: he indicates the relative importance
of the objectives or desired goals before viewing points in the criterion space. It is the most
common way to solve a multi-objective optimisation. Most of these methods incorporate pa-
rameters and use scalar functions. Scalar function is the term used in [MA04] to refer to the
single objective function obtained after the combination of the components of a vector of ob-
jective functions (the term scalarisation method is coming from that). The idea is to transform
the multi-objective optimisation into a mono-objective optimisation in order to be able to solve
the problem with standard optimisation methods. These methods return a unique and single
optimal point. Examples of such methods are Weighted Global Criterion, Goal Programming
methods, Lexicographic or Exponential Weighted Criterion.We present the first three methods.

2.3.2.1.1 Weighted Global Criterion methods The Weighted Global Criterion method
is a scalarisation method where all the objectives are combined to form one single function which
is then minimised [Aro11, AP96]. The expression of this single function, called utility function,
is given hereafter:

U =

{

k
∑

i=1

wi[fi(x)− f o
i ]

p

}

1

p

where:

• F o = (f0
1 , . . . , f

0
k ) is called utopia point (or ideal point) i.e. for each i = 1, . . . , k, f o

i = min
{fi(x)|x ∈ Ω}.

• w is a vector of weights typically set by the decision-maker such that
∑k

i=1wi = 1 and
wi > 0 for i = 1, . . . , k.

• The exponent p is also defined by the decision-maker. Its value depends on the distance
measure the decision-maker wants to use.

The solutions obtained using this method depend on the value of w and p parameters. Depending
on the value set for the parameter p, the Weighted Global Criterion method can be reduced to
other common methods.

For example, the Weighted Sum method is a particular case of the weighted global criterion
method with p = 1 and f0

i = 0. It is the most widely used approach because of its simplicity
and ease of use. In this case, The utility function to be minimised is simply:

U =

k
∑

i=1

wifi(x).
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The minimum of this utility function U is Pareto optimal if and only if all of the weights are
positive.

Despite the simplicity of the Weighted Global Criterion method, it presents three main
drawbacks [DD97]. First, the choice of the weights made by the decision-maker is not always
intuitive even if some authors have developed methods for quantifying them (method based on
fuzzy set theory [RR88] and ranking methods [YH95]). Second, the a priori choice of these
weights does not guarantee that the final solution will be acceptable from the user point of view.
Third, an uniform variation of the weights may not necessarily result in complete, accurate
and uniformly distributed Pareto optimal points. Sometimes different weights lead to the same
Pareto optimal points. Finally, it is not possible to find points on a non-convex part of the
Pareto front.

2.3.2.1.2 Goal Programming methods In this method, developed by [CCF55], the decision-
maker first specifies goals, denoted bj, that each criterion has to achieve in order to find a feasible

solution. Then, he minimises the sum of the absolute deviation from the goals
∑k

j=1 |dj |, where
dj is the deviation from the goal bj for the jth objective. To model the absolute values, dj
is split into a negative deviation variable d−j and a positive deviation variable d+j , such that

dj = d+j + d−j , with d+j ≥ 0, d−j ≥ 0 and d+j d
−
j = 0. d+j denotes how much the decision has

exceeded the goal and d−j denotes how far the decision is from the goal. Then, | dj |= d+j + d−j .
Charnes and Cooper [CC77] present the formulation of this problem as in equation (2.4):

min
x∈Ω,d−,d+

k
∑

i=1
(d+i + d−i )

s.t. fj(x) + d−j d
−
j = bj, j = 1, . . . , k (2.4)

d+j , d
−
j ≥ 0, j = 1, . . . , k

d+j d
−
j = 0, j = 1, . . . , k.

The drawback of Goal Programming method is that there is no guarantee to obtain a solution
which is Pareto optimal. Three popular subclasses of Goal Programming are Weighted Goal
Programming (also called archimedean Goal Programming), Lexicographic Goal Programming
and Min-max Goal Programming.

2.3.2.1.3 Lexicographic method In this method, the decision-maker first sorts the objec-
tive functions by decreasing order of importance. Then, the following mono-objective optimisa-
tion problems are successively solved for i = 1, ..., k,

min
x∈Ω

fi(x)

s.t. fj(x) = f∗
j j = 1, . . . , i− 1,

where f∗
j is the minimum of the jth objective function found in the jth iteration and i is the

position of the function in the classification.

The main drawback of Lexicographic method is that the objectives have to be ordered before
the optimisation. This arbitrary ordering leads generally to different solutions [CS02].

2.3.2.2 Methods with progressive articulation of preferences

Methods with progressive articulation of preferences are also called interactive methods. In
this class of methods, the decision-maker continuously gives input to the algorithm doing the
resolution of the optimisation. The inputs may concern the search direction, reference points,
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weight vector ... These methods produce only one solution. Surrogate Worth Trade off method,
Step method, Reference point method, Fandel method, Jahn method or Geoffrion-Dyer-Feinberg
method are examples of such methods. We will not give more details on these methods but the
reader can refer to the study of Miettinen [Mie99].

2.3.2.3 Methods with no articulation of preferences

Methods in this class do not require any articulation of preferences from the decision-maker.
Moreover, these methods produce only one point of the Pareto optimal set. They can be split
essentially into two classes: exponential sum and objective product. Some examples of these
methods are the Min-max method, the Nash Arbitration method, the Global Criterion, or the
Objective Product method.

2.3.2.3.1 Min-Max Method TheMin-max formulation is derived from the general Weighted
Sum method where:

• there is no weights because the decision-maker does not have to express his/her preferences
anymore ;

• and p = ∞: the norm used is the L∞ norm.

The problem is formulated as follows:

min
x∈Ω

{

max
i

fi(x)

}

.

More information on this method can be found in [CCC99], [Osy78] and [Rao87].

2.3.2.3.2 Nash Arbitration Nash Arbitration method is derived from Game Theory. The
aim is to maximise the product of the objectives. It is formulated as follows:

max
x∈Ω

Fg(x) =

k
∏

i=1

(si − fi(x)),

where si > fi(x) is selected as an upper limit value on each objective function. The solution
proposed by this method depends on si values.

2.3.2.4 Methods with a posteriori articulation of preferences

In this class of methods conversely to methods with a priori articulation of preferences, the
decision-maker states his/her preferences after the resolution of the optimisation. These meth-
ods have been developed because sometimes it is not easy for the decision-maker to state his/her
preferences a priori or because he/she prefers to make a choice directly on a range of solutions.
Weighted methods (aforementioned) are also a mean to generate Pareto optimal solutions. This
is done by executing successively several mono-objective optimisations by varying the param-
eters. For example, one can vary the value of wi in order to obtain a subset of the Pareto
front. However, this successive execution while uniformly varying the parameters does not guar-
antee obtaining an even spread of the optimal solutions that accurately represent the Pareto
Front. Consequently, some algorithms have been developed for this purpose. They are also
called Generate-first-choose-later or cafeteria [BR00]. As an example, we find the Physical
Programming or the Normal Boundary Intersection.



2.3. MULTI-OBJECTIVE OPTIMISATION 47

2.3.2.4.1 Physical Programming The Physical Programming method was first developed
for a priori articulation of preferences. It can be adapted for a posteriori articulation of prefer-
ences [MM02]. One of its advantages is that it generates points on the convex and non-convex
part of the Pareto front. It consists in minimising the following function [MSC+99]:

g(x) = log10

(

1

nsc

n
∑

i=1

ḡi(gi(x))

)

,

where

• gi represents an objective to be optimised, or a constrained quantity to satisfy ;

• ḡi is a preference function introduced according to the decision-maker preferences. Hard
class-functions reflect the presence of constraints, and soft class-functions reflect the pref-
erences settled for objective functions ;

• nsc is the number of soft criteria.

Some region boundaries are introduced to translate the degrees of preferences of the decision-
maker. They are composed of six ranges:

• unacceptable,

• highly-undesirable,

• undesirable,

• tolerable,

• desirable,

• highly-desirable.

The interest in introducing these regions is to compare the evolution of objective functions
in a qualitative way. For instance, it can be better for one criterion to travel across the tolerable
region than all the others to travel across the desirable region.

For more details on this method, the reader can refer to [Mes96] and [MM02].

2.3.2.4.2 Normal Boundary Intersection method Normal Boundary Intersection (NBI)
is another method for obtaining an approximation of the Pareto set in both cases of convex and
non-convex Pareto optimal set. Das and Dennis [DD96] built this approach based on the idea
that the intersection between the boundary of the feasible criterion space Z denoted ∂Z and
the normal set of the Convex Hull Individual Minima is a point on the portion of ∂Z containing
the efficient points. To present this method, we first have to define the concept of Convex Hull
Individual Minima further denoted CHIM.

Let:

• x∗i be the global minimum of the objective function fi and f∗
i = fi(x

∗
i ),

• F ∗
i = F (x∗i ),

• F ∗ = (f∗
1 , . . . , f

∗
k ) be the utopia vector.

We can define the k × k matrix Φ such that Φ = [F ∗
i − F ∗] for i = 1, . . . , k and which has the

following properties:
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• Φ(i, i) = 0, for all i = 1, . . ., k,

• Φ(i, j) > 0, for all i,j = 1, . . ., k and i 6= j.

The CHIM is defined as:

CHIM =

{

Φω : ω ∈ R
k,

k
∑

i=1

ωi = 1, ωi ≥ 0

}

.

For a given convex weighting ω, Φω represents a point in the CHIM. ñ denotes the unit
normal vector to the CHIM pointing to the origin. Then, Φω+ tñ, where t is a scalar, represents
the set of points on that normal direction. The point of intersection between the normal and the
boundary of the feasible domain can be obtained by solving the following optimisation problem:

max
x,t

t

s.t. Φω + tñ = F (x), (2.5)

g(x) ≤ 0,

h(x) = 0.

This method finds the part of the boundary of Z that contains the Pareto optimal set. Never-
theless, the method can also generate points which are not Pareto optimal. But this is not a
disadvantage because these points can be useful in order to construct a ”smoother approximation
of the Pareto boundary”.

Remark

In most of the previous methods described (except for methods with a posterior articulation
of preferences), the objectives are combined into one single objective to solve the optimisation
problem. This combination guarantees to find a solution which is Pareto optimal but the result
is one single point. In addition, these methods may not be efficient with an objective function
which is noisy or which has a discontinuous variable space. They can also be computationally
very expensive. Moreover, the main drawback of the scalarisation methods is that the result
fully depends on the weights assigned by the decision-maker: the decision-maker must have
strong knowledge on the priority of the objective function in order to assign the weights. Thus,
the solutions obtained for a same problem can be different.

2.3.2.5 Evolutionary algorithms

Evolutionary Algorithms (further denoted EA) are heuristic-based algorithms developed to solve
multi-objective problems. They are gaining attentions from researchers because of their efficiency
and robustness in finding a set of global solutions. They mimic natural evolutionary principles
to solve complex optimisation problem. They incorporate vocabularies related to biology do-
main such as population, genotype, genetic code, self-adaptation... Candidate solution of the
optimisation is represented by an individual in a population. [B9̈6] says that this individual
may also be ”a container of current knowledge about the laws of the environment”. The initial
population evolves toward optimal point thanks to processes such as mutation, selection and
recombination.

There are three mainstream in EA:

• Evolution Strategies developed by [Rec71] and [Sch81],

• Evolutionary Programming developed by [FOO66] (see also [Fog95]),
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• Genetic Algorithm developed by [Hol75] and reviewed by [Gol89].

In EA, we also find algorithms such as Simulated Annealing, Taboo Search or Ant Colony. In
this study, we describe Genetic Algorithm only. The authors in [CC10] make a list of references
on evolutionary multi-objective optimisation.

Genetic Algorithms (GA) have been developed by Holland [Hol75] and are inspired by natural
evolutionary principle formulated by Charles Darwin [Dar59]. They are part of derivative-free
methods which make them effective regardless the nature of the objective function (discontinu-
ous, non-differentiable or highly nonlinear). Moreover, they can be used to solve both constrained
and unconstrained optimisation problems. They have been used in several domains such as sci-
ence, commerce (trade) or engineering, for instance in Airbus with [Bad05] and [TC11] works.
Before going further, a brief description of the principle of GA is given. We review the related
vocabulary.

A population is a set of candidate solutions of the design space. A population is composed
of individual (one point of the population). A chromosome (or genotype) is another name for
individual but taken as a set of values. It represents a unique solution in the design space. A
chromosome is composed of several discrete units called genes. A gene represents a component
of the design vector (degree of freedom of the optimisation). The genes are assumed to be binary
digits, and a generation is an iteration of the algorithm. The mapping between the design space
and the chromosomes is called encoding.

The fitness function is another important element of GA. It assigns a fitness value to each
individual. This fitness value can be seen as the survival probability of the individual: it repre-
sents the capacity of the individual to solve the problem. The more likely to fit the solution is,
the higher its fitness value.

In GA, the generation of a new solution is done by using the following operators:

• selection operator,

• crossover (or reproduction) operator,

• mutation operator.

The selection operator allows to choose the individuals, called parents, which are retained for
reproduction, i.e. to breed a new generation called children. This operator does not create new
individuals, it only selects the more likely to fit ones. Indeed, it enables to keep the population
size globally constant as worst individuals (between parents and children) are eliminated. The
selection is done according to the fitness function. There exist several selection methods such
as Elitism, Roulette wheel selection, Rank selection, Local selection, Steady-State selection or
Tournament selection. In the simplest method, the parents are randomly chosen.

The crossover operator (also called reproduction operator) has the objective to combine the
genes of two chromosomes called parents in order to form two new chromosomes called chil-
dren. The way the parents are chosen depends on the type of algorithm used for the resolution.
After selecting the parents, the crossover can be done using several strategies such as single
point crossover, two points crossover or uniform crossover. Figure 2.4 illustrates the single point
crossover method: first, a random single point is chosen on both parents; then, all data beyond
that point are permuted in order to form the children.

The mutation operator introduces random changes in the value of one or more of the chro-
mosome’s gene. The probability of mutation is very small and depends on the length of the
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Figure 2.4: Single point crossover

chromosomes. This operator helps in keeping diversity in the population and helps the popu-
lation to escape from a local optimum. The reader can find more detail on mutation operator
in [Deb01]. An an example, the chromosome 11010011 can be mutated in 11011011 .

Figure 2.5 displays the principle of a simple GA.

Figure 2.5: Flow chart of a simple genetic algorithm

GA are suitable to a large set of problems (multi-dimensional, non-differentiable, etc). There
is no need to have a priori knowledge on the problem (derivability, convexity, etc): the main
part of the work is in the encoding phase. Moreover, the calculation times does not increase
with the number of variables but with the size of the population.

The main drawback of GA is the tuning of the parameter values such as the number of
generation, the mutation rate, the size of the population...

The literature proposes a large number of GA. A short list of some of them is given
in [KCS06]. Vector Evaluated Genetic Algorithm (VEGA) presented by Schaffer in 1985 [Sch85]
is one of the first GA developed for multi-objective optimisation problems. After VEGA,
many other algorithms have been proposed such as Multiple Objective Genetic Algorithm
(MOGA) [FF93], Niched Pareto Genetic Algorithm (NPGA) [HNG94], Strength Pareto Evolu-
tionary Algorithm (SPEA) [ZT99], Weight-Based Genetic Algorithm (WBGA) [HL92], Multi-
objective Evolutionary Algorithm (MEA) [SL02], Non dominated Sorting Genetic Algorithm
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(NSGA) [SD94] or again Fast Non dominated Sorting Genetic Algorithm (NSGA-II) [DPAM02].
In this study, we will use the Non dominated Sorting Genetic Algorithm (NSGA).

NSGA have been developed by Srinivas and al. [SD94]. The difference between NSGA and
other basic GA comes from the selection phase: NSGA uses a ranking selection method based
on non-domination sorting and a fitness sharing strategy based on niching in order to maintain
diversity in the population [DPAM02, MA04]. The crossover and mutation phases are kept the
same. The flow chart of NSGA is displayed in figure 2.6.

Figure 2.6: Flow chart of NSGA method

Step 1 in NSGA consist in ranking the population into several front. First, we look for a set
F1 of individuals which are non-dominated by the other individuals of the population. Solutions
in this first front F1 are said to belong to the best non-dominated front in the population. Since
all solutions in F1 are equally important in terms of their closeness to the pareto-optimal front
relative to the current population, the same high dummy fitness value is assigned to all of them in
order to guarantee an equal reproduction potential. Then, the rest of the population is processed
of the same way until all the population is entirely classified into several fronts F1, F2, . . . , Fi

where i is the total number of front (see figure 2.7). Note that the dummy fitness value attached
to a front Fi is kept smaller than the minimum dummy fitness value of the previous front Fi−1.
Doing that, the individuals of the first front F1 get more copies as they have the higher dummy
fitness value.

Task 2 in NSGA is to share the individuals. This process is done in each front Fi individ-
ually. Individuals of Front F1, affected with their dummy fitness value, are the first ones to
be shared thanks to a sharing function. The aim of this sharing process is to keep diversity in
the population. The idea is to degrade the original fitness value of an individual by a quantity
which is proportional to the number of individuals which are around it: the more there are
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Figure 2.7: NSGA ranking process [Bau12]

individuals located in the individual’s neighbourhood, the more its fitness value is degraded.
Once the individuals of the first non-dominated front F1 have been shared, the sharing process
is repeated for the individuals of the other front F2 to Fi.

The sharing function between two individuals i and j in the same front is expressed as
follows:

Sh(dij) =

{

1−
(

dij
σshare

)2
if dij < σshare,

0 otherwise ,

where

• dij is the distance between two individuals i and j in the current front (dij defines the size
of the neighbourhood of an individual). with n1 is the number of individuals in front F1,
xmax
k and xmin

k respectively the upper and the lower bounds of xk.

• σshare is the maximum distance allowed between any two individuals to become members
of a niche.

A parameter niche count is calculated for the ith individual by adding the sharing function values
for all individuals of the current front as follows:

nCi =

nk
∑

j=1

Sh(dij).

Finally, the shared fitness value of each individual is computed by dividing its dummy fitness
value denoted fi with its niche count:

f ′
i =

fi
nCi

.

2.3.3 Summary

In this section, we have introduced the multi-objective optimisation problems and we have
presented a short state of the art of methods existing to solve this category of optimisation
problems. In the next section, we introduce probabilistic and statistical theories.

2.4 Probabilistic and statistical definitions and notations

Many uncertainty management tools are based on statistical and probabilistic concepts. So
before going further, the following is an introduction to the basics of the probability theory.
The reader can refer to Walter Appel’s book [App13]. The following definitions are extracted
from [Sap06] and [Bea04].
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2.4.1 Probability space

A random experiment is an experiment for which the results can not be predicted beforehand.
The set of all possible outcomes of the experiment is called the sample space and is generally
denoted Ω. An element of Ω is an elementary event denoted ω, with ω ∈ Ω. A random event is
defined as a set of outcomes ω.

The intersection of two events A and B is denoted A∩B. Respectively, their union is denoted
A ∪B.

The set of possible events associated to the sample space Ω is called an event space. This
space forms a class F of part of Ω also called σ-algebra. It is defined by the three following
axioms:

1. if A ∈ F then Ā ∈ F (with Ā complement of A),

2. if A1, A2, ..., An ∈ F then
⋃n

i=1 Ai ∈ F ,

3. F is non-empty then Ω ∈ F .

The pair (Ω, F) is called probabilisable space, with F a σ-algebra associated to Ω.

Each event is equipped with probabilities. They correspond to positive numbers which lie
between 0 and 1. The probability of an event E is denoted P(E). This probability is defined by
the axiom of Kolmogorov given by definition 2.4.1.

Definition 2.4.1. [Kolmogorov axiom] A probability is an application P with P: F 7→ [0, 1]
such as:

P(Ω) = 1,
P(A) ≥ 0, ∀A ∈ F ,
P(A ∪B) = P(A) + P(B), ∀A,B ∈ F such that A ∩B = ∅.

From the Kolmogorov axiom, we have the properties of a probability measure. P is a proba-
bility measure if:

P(∅) = 0,
P(Ā) = 1− P(A),
P(A) ≤ P(B), if A ⊂ B,
P(A ∪B) = P(A) + P(B)− P(A ∩B).

The triplet (Ω, F , P) is called a probability space.

2.4.2 Random variable

A random variable (or stochastic variable) X is a variable whose values are outcomes from a
random process. More precisely, a real random variable is an application from the probability
space (Ω, F , P) to the space of real number R. There are two types of random variables:
continuous variable and discrete variable. A random variable X is continuous if its domain of
definition contains a real interval. Inversely, X is discrete if it can take a finite or a countable
infinite set of discrete values. A random variable is generally associated with two functions:
Cumulative Distribution Function and Probability Density Function.

2.4.2.1 Cumulative Distribution Function

The Cumulative Distribution Function (CDF) of a random variable X is the application F from
R to [0,1] given by:

F(x) = P(X ≤ x).



54 State-of-the-art

It is an increasing monotoneous function which describes the probability for the random variable
X to be less or equal to a value x. It is defined for both discrete and continuous random variables.
An example of such function is exhibited in figure 2.8.

Figure 2.8: Cumulative Distribution Function of a continuous variable

By using the CDF, it is possible to determine the probability of x lying in a range [a, b] with
a ≤ b:

P(a ≤ X ≤ b) = F(b)− F(a).

2.4.2.2 Probability Density Function

The Probability Density Function (PDF) is defined only for continuous random variables. In-
deed, a continuous random variable X has a density function denoted fX and defined by:

P (a ≤ X ≤ b) =

∫ b

a
fX(x)dx.

The PDF fX is a positive function with integral equal to 1:

∫

R

fX(x)dx = 1.

Figure 2.9: Probability Density Function

2.4.3 Statistical measure

A random variable X with a known PDF is characterised by some statistical criteria.
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2.4.3.1 Mean

The mean (also called mathematical expectation or expected value) of a random variable X,
denoted E(X), is defined by

• E(X) =
∫

R
xfX(x)dx, if X is a continuous variable (a variable with a density function)

• and E(X) =
∑

i xiP(X = xi), if X is a discrete variable.

It gives the measure of the central tendency of values taken by X. The mean is also called
first moment. It is commonly denoted µX .

2.4.3.2 Variance and Standard-deviation

The variance of a random variable X, denoted V (X) is defined by:

V (X) = E((X − E(X))2) = E(X2)− (E(X))2.

It is a measure of the dispersion of X around its mean value E(X). The variance is called second
moment and commonly denoted σ2 =. From the definition of the variance, we can define the
standard-deviation σ. It is the square root of the variance, meaning σX =

√

V (x).

2.4.3.3 Other moments

The moment of order n is defined by:

mn(X) = E(Xn).

In the literature, we can find the notion of centred moment and normalised (or standardised)
moment. The centred moment of order n is defined by:

mn(X) = E ((X −E(X))n) ,

and the normalised moment of order n is given by:

mn(X) = E

((

X −E(X)

σ

)n)

.

Let us particularly consider the third and the fourth moments. These two moments can give
information about the shape of the distribution of a random variable X.

The third normalised moment is called skewness coefficient. It is the moment of order 3
and its centred expression is given by E

(

(X − E(X))3
)

. Its normalised expression corresponds
to the centred moment of order 3 normalised by the cube of the standard-deviation σ and is
defined by:

m3(X) = E

(

(

X − E(X)

σ

)3
)

=
E
(

(X − E(X))3
)

σ3
. (2.6)

The skewness coefficient gives information about the symmetry of the density function. A dis-
tribution with a negative skewness means that the distribution is asymmetric to the left (with
a tail longer to the left than to the right). A distribution with a positive skewness means that
the distribution is asymmetric to the right. And a distribution with a skewness equal to zero
means that the distribution is symmetric. As an example, the normal density function has a
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symmetrical distribution then its skewness coefficient is equal to zero.

The fourth normalised moment is called kurtosis coefficient, also called Pearson Kurtosis
coefficient. Its centred definition is given by E((X −E(X))4) and its normalised one is defined
by:

m4(X) = E

(

(

X − E(X)

σ

)4
)

=
E
(

(X − E(X))4
)

σ4
. (2.7)

The kurtosis coefficient gives information about the ”peaky” aspect of the distribution: it
measures the degree of the concentration of the observations in the distribution tail. The higher
the value of the kurtosis coefficient, the more peaky the distribution. Kurtosis values are used
to be compared to the kurtosis value of the Gaussian distribution which is equal to 3. A new
expression of the kurtosis coefficient is given taking the Gaussian distribution as reference. It is
called the excess Kurtosis:

m4(X) =
(n+ 1)n

(n− 1)(n − 2)(n − 3)

n
∑

i=1

(

xi − E(X)

σ

)4

− 3(n− 1)2

(n− 2)(n − 3)
, (2.8)

where n is the size of the sample. A distribution with a positive excess Kurtosis coefficient is
peaky: it rises up and falls abruptly. It is called leptokurtic distribution. One with a negative
excess Kurtosis coefficient is flattened and is called platykurtic distributions.

2.4.3.4 Covariance

The covariance of two random variables X and Y is given by:

cov(X,Y ) = E(XY )− E(X)E(Y ) = E
(

(X − E(X))(Y − E(Y ))
)

.

The covariance is a measure of the strength of the linear link between two random variables. The

variance is a particular case of the covariance: cov(X,X) = E
(

(X−E(X))(X−E(X))
)

= V (X).

The covariance coefficient depends on the units of the variables X and Y . It can be meaningless
to compare the covariance of variables which are totally different (such as the mass of the fuselage
and the sweep angle). To avoid this drawback, one can use the correlation coefficient.

2.4.4 Correlation

2.4.4.1 Correlation coefficient

The correlation coefficient, also called Pearson’s coefficient in the literature, is a normalisation of
covariance coefficient by the product of the standard deviation of the variables and is independent
of the variable’s units. It gives information on the existence of a linear relation between two
variables. The correlation coefficient between X and Y is given by:

r(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY
, (2.9)

where E[(X −µX)(Y −µY )] is nothing but the covariance between X and Y commonly denoted
cov(X,Y ). The correlation coefficient r(X,Y ) is always in [−1, 1] and it is equal to:

• 0 if there is no linear relation between the samples;



2.5. OPTIMISATION WITH UNCERTAINTY 57

• 1 if there is a maximal positive linear relation and it is in the range [0,1] if there is a simple
positive linear dependence;

• -1 if there is a maximal negative linear relation and it is in the range [-1, 0] if there is a
simple negative linear relation.

The correlation coefficient presents some drawbacks:

• It is sensitive to outliers i.e. values which are far from the others and which are considered
as exceptions.

• It only gives information on the existence of a linear relation between two variables. Thus,
two variables X and Y which are independent have a correlation coefficient equal to zero.
Note that the converse is wrong. The correlation coefficient can be equal to zero even
though there is a ’non linear’ functional relation between the variables. Consider the
function Y = X2. Y is completely dependent of X but their correlation coefficient is equal
to zero.

• It is a biased coefficient but this bias disappears when the size of the sample increases.

• Its interpretation is sensitive. A high correlation coefficient between two variables doesn’t
necessarily mean that there exists a causal relationship between them. It could just mean
that the phenomenon represented by the variables have the same origin. For instance,
let us consider the correlation between ”the number of firemen on the fire area” and ”the
repayment price demanded by the insurance company”. A study has shown that there is
a high correlation between these events but it is obvious that in reality it is not the case.
Although, if we consider the third event ”the fire gravity”, we see that the first two ones
have the same cause: the third one.

In the case where the relation between the variables is non linear but monotonic, the corre-
lation coefficient can highlight the existence of a relation but is not able to give information on
the strength of the relation. One solution to avoid that problem is to make a transformation
(of the variables) in order to obtain a linear relation. Nevertheless, this way of doing presents
several drawbacks: the choice of the transformation function is not always obvious. Moreover,
the number of transformation increases with the number of relationship to analyse. In this case,
other correlation coefficients such as the Spearman’s one are more relevant.

2.5 Optimisation with uncertainty

The optimal solution proposed by the deterministic optimisation methods does not take into
account uncertainty that can affect the system. Thus, the performance of the system designed
with this solution can be highly degraded when changes occur. Sometimes, it could be wiser
to retain a solution that may not be optimal but that is less sensitive to changes. This type of
solution is said to be robust.

Let us consider an example with figure 2.10. In this figure, x∗1 appears as the global optimal
solution of the problem. Nevertheless, if any perturbation occurs, the performance associated
to x∗1 can be highly degraded whereas the performance associated to x∗2 remains stable. In this
example, x∗2 is the robust solution. Thus, it could be more interesting to consider solution x∗2
which is not optimal but insensitive to changes rather than solution x∗1 which is optimal but
highly sensitive to changes.

Robust design has been introduced by Taguchi at the end of the 1940s [TCT00, Pha89].
The purpose was to improve the quality of engineering design process by achieving two goals:
minimise the variability of the performance by integrating noise factors information and adjust
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Figure 2.10: Illustration of the notion of robustness on a single objective optimisation

the mean performance to the desired target. Since this introduction by Taguchi, many methods
have been put in place to launch robust optimisation.

To be able to determine robust solution, we first have to identify and quantify the uncertainty
which affects the system. In the next part, we first present the notion of uncertainty. We review
the different existing sources, the steps to follow in order to assess the uncertainty and we
present the existing method to model the uncertainty. We then make a review of the robustness
measures and we end up with the concept of robust optimisation.

2.5.1 Uncertainty

2.5.1.1 Definition and Source

Uncertainty is a concept increasingly used in a wide range of domains as economics, automo-
tive [NAT07] or aeronautics [DDST98]. Several definitions of this concept can be found in the
literature. Uncertainty is described in [Web07] as ”a lack of certainty resulting from inaccuracy
of input parameters, analysis process or both”. In [CFS04], it is seen as ”the fact that measured
values frequently do not match the true values, but differ from them in a probabilistic manner”.
And in [Vos00], uncertainty is said to be ”the assessor’s lack of knowledge about the param-
eters that characterise the physical system that is being modelled”. Moreover, when looking
for information about sources of uncertainty and error in modelling of complex systems, one
can also find various expressions referring to those concepts (e.g. random and epistemic uncer-
tainty, model uncertainty [Dra95, NA03], predictive model uncertainty [Ril11, MMU99], model
error [Kim01, Lun05]. Before going further, emphasis is put on the definition of these different
sources in order to clarify the meaning we put in the concepts of uncertainty and error.

The classical definition of error is given by the experimentalists [Eur00]. It is defined as the
difference existing between the measured value and the true value of a physical variable. In the
context of complex system modelling, based on this definition, the error of model would be the
difference between the model prediction and the true value of the physical variable. But it is
more subtle. In [ODR+02], error of model is defined as ”a recognisable inaccuracy in any phase
or activity of modelling and simulation that is not due to lack of knowledge”. In this study,
the error of model is defined as the discrepancy existing between the model prediction and the
experimental value of the physical variable (as the true value is not known). This discrepancy
is, among others, the consequence of simplifications made during the modelling process and
corresponds to ”acknowledged error” defined by the authors in [ODR+02]: ”an error can be
either acknowledged or unacknowledged [...]. Examples of acknowledged error are assumptions
and approximations made to simplify the modelling of a physical process”.
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According to [BS07] there are two ways to classify uncertainty: from an epistemological point
of view and from a system one. We present both of them.

From a system point of view, uncertainty affecting the system are of 4 types (see figure 2.11):

• Uncertainties coming from the environment and from operating conditions. This type of
uncertainty can not be controlled. It is represented by the parameter α in figure 2.11.

• Uncertainty on the design parameters. Generally, the system is realised with a certain
degree of precision because it is not possible to make a design with a perfect accuracy.
This type of uncertainty is introduced into the system by the parameter β.

• Uncertainty on the system output. It comes from imprecision in the evaluation of the
system output and performance. Measuring errors and approximation errors (due to the
use of models representing the reality) are contained in this type of uncertainty. They are
represented by the parameter γ.

• Feasibility uncertainty. This type of uncertainty is related to the fulfilment of the con-
straints of the problem. It has an effect on the design space and not on the objective
function. This last type is not represented on figure 2.11 because it can be seen as the
consequences of the effect of the first three types of uncertainty.

Figure 2.11: Uncertainty source from a system point of view

From an epistemological point of view, uncertainty can be categorised in two main groups:
random uncertainty and epistemic uncertainty.

Random uncertainty is the inherent variation associated with the physical system under
consideration or associated to the environment (meteorological, geographical variability). It is
also called irreducible uncertainty, inherent uncertainty, stochastic uncertainty, objective un-
certainty, and variability. This kind of uncertainty is completely out of control and does not
decrease (even if the project gets in maturity). Random uncertainty is generally handled with
probability methods through a PDF or a CDF.

Epistemic uncertainty refers essentially to a lack of knowledge or need for simplification of
engineers about the behaviour of the system or the physic being modelled. It is also called
reducible uncertainty, subjective uncertainty, and ignorance. In [ODR+02], the authors define
it as ”a potential inaccuracy in any phase or activity of the modelling process that is due to lack
of knowledge”. This type of uncertainty can be reduced through increasing knowledge about
the physical system, increasing data available, the use of higher fidelity models, expert judge-
ment, etc. Epistemic uncertainty is generally handled with Interval Analysis, Fuzzy Set theory,
Possibility theory, Dempster-Shafer Evidence theory or with Second-order Probability [SP+09].
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Let us consider the example of drag estimation in aircraft design process. Uncertainty ap-
pears to be linked with time and the use of models with higher and higher fidelity allows to
reduce uncertainty as design time goes (see Figure 2.12.) At preliminary design phase, drag
is estimated with Semi-Empirical Methods (SEM). At this stage, the uncertainty is large, the
only data available for the studies are data about previous aircraft and the modelling methods
are ”rough”. At detailed design phase, drag is first computed thanks to Computational Fluid
Dynamic (CFD), then corrected by wind tunnel testing. CFD calculations are based on numer-
ical integration of Navier-Stokes equations. This method is more precise than SEM and allows
to reduce the uncertainty. Wind tunnel testing also helps to further reduce the uncertainty.
Finally, at test and evaluation phase, drag is estimated from measurements made during flight
tests.

Figure 2.12: Evolution of uncertainty on drag estimation in aircraft design

During the last decade, focus has been put on the differentiation of these two types of un-
certainty even if it is not always easy [Apo99, HB96]. This distinction helps, while trying to
reduce the uncertainty, to focus on epistemic uncertainty which is reducible rather than random
uncertainty which is not [Apo99]. Moreover, in some cases, both random and epistemic uncer-
tainties can be propagated to obtain better results. It is the issue of Second Order Probability
method [Zdr93]. In this study, we will focus on the assessment of epistemic uncertainty.

Uncertainty sources which create variation in the model prediction can be categorised in 4
groups:

• Simulation variability,

• Model parameter uncertainty,

• Structural model uncertainty (or model form uncertainty), and

• Predictive model uncertainty.

Simulation variability (also called numerical errors, numerical approximation) is related to
uncertainty inherent to computational implementation. It includes truncation errors, iterative
convergence errors, discretization error, round-off error,... Model parameter uncertainty refers
to the uncertainty in parameters assigned to the model. It comes from a lack of knowledge (or
limited amount of information) on the good values to assign to the model parameters. This con-
cerns both input parameters and internal parameters of the model (e.g. what is the appropriate
value for a constant in the model?). Structural model uncertainty refers to uncertainty related
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to the structure of the model itself. Various models can emerge while trying to represent the be-
haviour of a physical system. The differences between these models come from the assumptions
taken, their mathematical form, the levels of fidelity,... Predictive model uncertainty refers to
the uncertainty existing on the error committed by the model. If ytrue is the reality and fi(x)
is the model prediction, then we have:

ytrue = fi(x) + ǫfi , (2.10)

where ǫfi is the error of model fi. The aim is to quantify the predictive uncertainty on ǫfi . Its
quantification helps to know how good the model is in the predictability of the system behaviour.

2.5.1.2 Uncertainty assessment steps

Uncertainty assessment is split in four main steps:

1. Case-study specification,

2. Uncertainty Modelling,

3. Uncertainty Propagation,

4. Sensitivity Analysis (or Importance Ranking).

The goal of the step 1 is to describe the case-study. The specification of uncertainty sources
(distinction between uncertain and fixed variable), model and criteria (variable of interest, quan-
tity of interest,...) and uncertainty assessment framework (deterministic, probabilistic,...) are
done at this stage.

The goal of step 2 is to characterise and quantify the source of uncertainty detected in step 1.
This quantification will depend on the type of uncertainty framework selected. For example, it
can be done by using a range in a deterministic framework, a PDF in a probabilistic framework,
etc.

The goal of step 3 is to propagate the uncertainty which have been identified and quantified
in the previous steps. The uncertainty is carried out through the system, in order to measure
the effect of this uncertainty on the variable of interest.

The goal of the last step is to analyse the sensitivity of the component of the uncertain
variables with respect to a given quantity of interest in the output of the system.

Several tools have been developed to perform uncertainty assessment. OpenTURNS is one of
them. OpenTURNS, for Open source Treatment of Uncertainties, Risk’N Statistics, is an open
source tool developed, since 2005, by EDF R&D (Électricité De France), EADS Innovation
Works (European Aeronautic Defense and Space) and Phimeca Engineering. It provides a large
set of methods for the management of the uncertainty through its quantification, its propagation
and its classification.

For the uncertainty quantification, OpenTUNRS provides a set of non-parametric and para-
metric probabilistic density functions such as the Kernel smoothing method, Normal distri-
bution, Logistic distribution, Exponential distribution or the Log-normal distribution. It also
provides a statistical toolbox with methods for estimating the density function parameter values.

For the uncertainty propagation, OpenTURNS provides methods for deterministic or prob-
abilistic study. It proposes Min-max criterion in a deterministic framework and Approximation
methods and Sampling method in a probabilistic framework (as Monte Carlo, FORM-SORM,
Importance Sampling, Latin Hypercube Sampling, etc).

For the sensitivity analysis, OpenTURNS provides ranking methods for the classification of
the uncertainty source with a probabilistic criterion.

OpenTURNS is developed with Linux and can be downloaded as a C++ library, as a Python
module or as an autonomous application with a graphical user interface. A rich documentation
is available on the website of the software [EcP05].
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2.5.1.3 Uncertainty Modelling

Uncertainty quantification is an important phase in uncertainty management. The goal of
this step is to determine a model for representing the uncertain parameters. The uncertainty
modelling can be done by using two frameworks:

• Non-probabilistic framework,

• Probabilistic framework.

The choice of the framework to be used depends on the amount of information available about
the source of uncertainty (database, expert judgement, etc).

Within the set of non-probabilistic framework, we can find:

• Interval Analysis method,

• Fuzzy set,

• Possibility theory,

• Dempter-Shafer theory of evidence.

More information on these methods can be found in [DP86].

In the probabilistic framework, the uncertainty is considered as a random variable X which
is represented by a PDF or by a CDF. A PDF is defined only for continuous variables whereas
discrete variables can be only represented with a CDF. In this framework, the objective of un-
certainty modelling phase is to identify the relevant PDF to be used for representing the random
variable X. In the literature, one can find this process named as distribution fitting [KD00] or
density estimation [Sil86].

Three alternatives can be considered to identify this PDF [Ass08]:

• Non-parametric estimation,

• Semi-parametric estimation,

• Parametric estimation.

In the non-parametric approach, the PDF is built using the available data. In [Ass08],
the authors state that this method ”let the data speak for themselves”. Less assumptions are
taken on the a priori nature of the distribution of the observed data. Kernel estimation is an
example of non-parametric approach. More information on non-parametric methods can be
found in [Tsy08, HMSW04].

Semi-parametric approach is used for models which have both a parametric (a regression
function) and a non-parametric part (the distribution of the error of the model) [Pow08]. In
semi-parametric approach, as in non-parametric one, the a priori shape of the PDF is not as-
sumed.

In the parametric estimation, the data are assumed to be coming from a specific density
function. This density function has parameters stored in θ vector, which have to be determined.
The choice of the density function to be used is not obvious: several ones should be tested in
order to find the one which best fit the data. A bad choice can lead to a wrong representation
of the real PDF, then to wrong conclusions. For instance, in aircraft design context, it can lead
to time and money losses. In this study, we use the probabilistic framework and specifically
the parametric estimation method. The probabilistic approach have been already used in the
context of aircraft design [War98].

The parametric density function estimation is made in three main steps:
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1. Computation of the sample characteristics: moments (expectation, standard deviation...),
mode (value that appears more often in the sample), histogram (etc),

2. Selection of a family of parametric density functions fX(x, θ) which seems to fit well the
distribution (Gaussian, Exponential, etc),

3. Estimation of the parameters of the density function stored in the θ vector using methods
such as method of moments, maximum likelihood method, method of probability-weighted
moments [Sor80].

2.5.2 Robustness measure

Once the uncertainty has been quantified, it can be used to analyse the robustness of different
solutions regarding this uncertainty and retain the more robust one. This robustness analysis
relies on robustness measures.

There exist several robustness measures. The relevant measure to be used depends on the
type of knowledge available. In [BS07], the authors make a review of some of them. Table 2.1
displays the list of robustness measures presented by the authors depending on the framework
of the study and on the function the measure is applied on. Indeed, there exist two concepts:
robustness related to the objective function and robustness related to the constraints satisfaction.

Robustness measure applied on:
Framework Objective function Constraints

Deterministic Robust Counterpart Approach
Probabilistic Expectancy measures Statistical feasibility
Possibilistic Bootstrap method, Fuzzy Logic and Evidence theory

Table 2.1: List of robustness measures presented by authors in [BS07]

In the following, we give a brief description of the deterministic and probabilistic measures
of robustness. For that, we denote ǫx the uncertainty affecting the parameter x.

2.5.2.1 Robust counterpart approach

A. Ben-Tal and A. Nemirovski give the description of the Robust Counterpart approach in [BTN98].
It is based on the construction of a robust counterpart of the function f(x). This counterpart
denoted R(x, ǫ) is given by:

R(x, ǫx) = sup
δ∈V(x,ǫx)

f(δ)

whereV(x, ǫx) is a neighbourhood of the design point x and its size is defined by the parameter ǫx.
This measure adopts the philosophy of the worst case method because it seeks for determining
the worst value of f within a neighbourhood of the design point. This method is used in
deterministic framework (there is no need to know the distribution of the random variable) for
measuring uncertainty affecting design parameters (denoted uncertainty of type B in [BS07]).
This approach is also called ”minimax approach” [Jur07].

The advantage of this measure is that the size of the optimisation problem does not expo-
nentially grow with the number of uncertain parameters. The drawback is in the determination
of the ǫx parameter value defining the size of the neighbourhood. A large neighbourhood can
lead to an optimal solution but with poor performances. This kind of solution has to be avoided
because it leads to a design which is without interest for the industries.
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2.5.2.2 Probabilistic robustness measure

In probabilistic robustness measures, the uncertainties α or β described in figure 2.11 become
random variables and follow a distribution. This distribution can be provided by the decision-
maker and represents the decision-maker’s knowledge on the uncertainty attached to the problem
at this moment.

In [Bau12] the authors sort the probabilistic robustness measures in two groups: measures
based on expectancy and ones based on percentile.

2.5.2.2.1 Expectancy Measures The group of expectancy measures is composed of two
types of measures:

• Measure based on expectation computation,

• Measure based on dispersion computation.

2.5.2.2.1.1 Expectation measure The expectation measure considers the mean value
of the objective function in a neighbourhood of the design point x being studied. The robustness
measure is expressed as follows:

RU (x, ǫx) = E[U(f(x, ǫx))]

where U is called utility function. Depending on the choice of U , one will obtain different
robustness measures. Using U(f) = sign(f)|f |, one obtains:

R(x, ǫx) =

∫

f(x+ β)pǫx(β)dβ,

where pǫx is the probability density function of ǫx.

2.5.2.2.1.2 Dispersion measure Another expectancy measure is the dispersion mea-
sure. It evaluates the variance of the objective function in order to quantify its amplitude of
variation in the neighbourhood of a solution x. It is expressed as follows:

R(x, ǫx) = V [f(x+ ǫx)]

= E
[

(f(x+ ǫx)− E[f(x+ ǫx)])
2
]

= E
[

f2(x+ ǫx)]− E2[f(x+ ǫx)
]

where

E[f2(x+ ǫx)] =

∫

(f(x+ β))2pǫx(β)dβ.

The higher the variance is, the more the performance of the solution is degraded due to the
effect of uncertainty.

As one can see, the objectives of expectation and dispersion measures of robustness are not
the same: the expectation measure works on the performance and the dispersion measure on the
variability of the performance. There are two methods which allow to optimise both objectives
at the same time. The first method comes down to consider the Pareto front. The second one
is the aggregation method. In this approach, the two objectives are aggregated in a single one
using a weighted sum. Then, the robustness measure is:

R(x, ǫx) = E(f(x, ǫx)) + C2

√

V [f(x, ǫx)]. (2.11)
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2.5.2.2.2 Percentile measures of robustness The second type of probability robustness
measure is the percentile measure. It is used when one seeks for robust solutions which have a
certain level of performance f . In this case, we directly consider the distribution of the output f .

The percentile measure of robustness of order k (e.g. 90% quantile) is expressed as follows:

R(x, ǫx) = inf {q ∈ R : P(f(x, ǫx) ≤ q) ≥ k} (2.12)

where q and k are thresholds fixed by the user. The level of robustness is controlled with the
parameter k. Equation (2.12) means that the probability that the objective value is lower than
a threshold q is higher than k.

Percentile measures of robustness are widely used to evaluate the robustness of constraints
g. In this case, it is called statistical feasibility robustness. The feasibility of the constraints is
probabilistically guarantee as in equation 2.13.

R(x, ǫx) = P(g(x, ǫx) ≤ 0) ≥ P0 (2.13)

where P(g(x, ǫx) ≤ 0) is known as the probability of safety and P0 is the so called level of con-
fidence or level of reliability representing the safety margin predefined by the decision-maker.
P0 can also be seen as the minimum allowable probability of safety. This way of formulating
feasibility robustness referred to as Chance Constrained Programming (CCP) in the Stochastic
Programming context [BL97, Liu09, Hen10]. Chance constrained programming has been intro-
duced by Charnes and al. [CCS58], then was further expanded by Miller and al [MW65] and
Prékopa [Pré70]. Optimisation problems integrating probabilistic constraints are referred to as
Reliability-Based Design Optimisation (RBDO) in mechanical engineering.

2.5.3 Formulation of a robust optimisation

Once the uncertainty is identified, we have to formulate the robust optimisation problem we
want to solve. There are several ways to formulate the robust problem depending on the ro-
bustness measure used. The choice for a suitable formulation is led by two points: the type of
information available at the time the study is done (e.g. available information on the noise) and
the decision-maker demand on the system performance (e.g. focus on performance only or on
both performance and variability).

To transform a classical deterministic optimisation as in Equation (2.3) in a robust optimi-
sation, we can use one of the following strategy [Bau12]:

• Replace each initial objective function of the problem by robustness measure,

• Keep initial objective functions and add one or more robustness measures in the problem
as additional objectives,

• Add new constraints to the initial problem.

In the first strategy, each initial objective function of the problem is replaced by its robustness
measure. As an example, one can minimise the expectation of the objective function:

min E(f(x+ ǫx))

or minimise a percentile robustness measure such as the probability of failure:

min P(f(x+ ǫx) ≤ q).
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We can also use the aggregation method aforementioned to optimise performance and vari-
ability of the performance (see equation (2.11)):

min C1E(f(x, ǫx)) + C2V (f(x, ǫx))

where C1 and C2 are positive constants fixed by the decision-maker (the result depends on the
value set for them).

In the second strategy, the initial objective functions are kept and one or more robustness
measures are added in the problem as additional objectives. As an example:

min (f(x), R[f(x+ ǫx)]) .

The problem becomes a multi-objective optimisation and we have both objectives with no un-
certainty and robust objectives. This strategy presents one drawback: the resolution of the
problem can become tedious as the number of objective increases.

In the last strategy, new constraints are added to the initial optimisation problem. It allows
to quantify the sensitivity threshold the decision-maker wants. As an example, one can minimise
the expectation of the objective function with a constraint on the performance variability:

min E(f(x+ ǫx)) (2.14)

s.t.
√

V (f(x, ǫx) < λ,

where λ is a positive constant to be chosen. Equation (2.15) refers to the notion of M-robust
defined by [LSW04].

2.5.4 Method to solve robust optimisation

When solving a robust optimisation problem, the first task is to compute the robustness measure
used in its formulation. There exist several approaches to do so. They have been sorted in two
groups in [BS07]:

• Methods that compute the robustness measure by using numerical techniques. These
methods transform the robust problem into an ordinary one. They are referred to as
deterministic approaches to robust optimisation.

• Methods that use directly the value of the objective and which do not need the first or
second order derivative information. They are referred to as randomised approaches.

In this section, we give a short description of some of these methods.

2.5.4.1 Deterministic approaches to robust optimisation

In deterministic approaches to robust optimisation, the robustness measure is computed using
numerical techniques. There are two methods: Feasibility robustness method and Expected
Value Robustness and Related Measures method.

Feasibility robustness methods are used in the case where we are facing expectancy measure
of robustness and statistical feasibility constraints. An example of approach with Constraints
with Build-in Constraints Variation, First-Order Reliability Method (FORM) and Second-Order
Reliability Method (SORM). Constraints with Built-in Constraints Variation approach is viewed
as worst case analysis [REF]: it uses Taylor approximation for replacing the constraints (by tak-
ing into account the uncertainty). First-Order Reliability Method (FORM) and Second-Order
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Reliability Method (SORM) are techniques which also use Taylor series. In the first case, the
Taylor series approximating the probability P(gi(x, α) ≤ 0) is truncated after the linear term
and in the other one the Taylor series is truncated after the quadratic terms. More details can
be found in [Rac01, EK05].

Expected Value Robustness and Related Measures methods are used to compute robustness
measures based on expectancy and dispersion. They rely on approximation methods because it
is almost always impossible to analytically compute these measures.

2.5.4.2 Randomised approach to robust optimisation

Randomised approaches differ from deterministic approaches to robust design in the sense that
they directly introduce the uncertainty into the initial optimisation problem. The uncertainty
considered is probabilistic uncertainty. There are several categories of approaches. In following,
we present two of them: Monte Carlo and Meta-Model strategies.

2.5.4.2.1 Monte Carlo strategy Monte Carlo strategy, denoted MC further, refers to a
family of methods using sampling for evaluating a quantity or for solving a system. They can be
used to compute integrals, to solve partial differential equations, linear systems or optimisation
problems. We present the general idea of the method hereafter.

Consider one wants to evaluate the following probability:

I = P[f(X) ≤ 0] =

∫

f(X)≤0
pX(x)dx (2.15)

where X is a random variable which have a probability density function pX . We introduce the
indicator function 1f(X)≤0 such that:

1f(X)≤0 =

{

1 if f(X) ≤ 0,
0 otherwise.

Then equation (2.15) becomes:
I = E[1f(X)≤0]. (2.16)

If we consider a set {x1, . . . , xn} of N independent samples of X, the probability I can be
approximated by:

Î =
1

N

N
∑

i=1

1f(X)≤0

The law of large numbers (denoted LLN, see [App13]) guarantees that Î converges to I as the
size N of the sample tends to infinity. Moreover, thanks to the Central Limit Theorem [Joh04],
we have access to the Monte Carlo confidence interval of order α:

ConfInt =



Î − α

(

Î(1− Î)

N

)0.5

, Î + α

(

Î(1− Î)

N

)0.5


 .

With this approach, it is also possible to estimate the mean and the variance of a random
variable X for which the distribution pX is not explicitly known. They are estimated as follows:

E[X] ≃ x̄ =
1

n

n
∑

i=1

xi,

V [X] ≃ 1

n

n
∑

i=1

(xi − x̄)2.
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MC strategy is a method widely used to evaluate the robustness because of its simplicity and
its generality: there is no need to put forward hypothesis on the output distribution (directly
linked to the distribution of the inputs). Its main drawback is that it can be computationally
expensive: it is necessary to compute a large number of evaluations of the function f in order
to converge to an estimation which have a pertinent level of precision. This large number of
evaluations can lead to high computation time specifically when the simulation of the function f
is expensive. Indeed, much of today’s engineering numerical simulations representing a system
are complex simulations which are expensive to run. That is why, most of the time, we do
not use the simulation of f directly but we use a meta-model. Nevertheless, even if the use of
surrogate models allows reducing computation cost, MC method remains costly.

2.6 Meta-modelling method

The numerical tools used by engineers to simulate the behaviour of a system can be very complex
and expensive to evaluate. Sometimes, a simple evaluation can take several hours or several days.
It is avoided to use them directly in methods such as optimisation or uncertainty propagation.
Indeed, these methods realise many evaluations of the analysis code which are time consuming.

An idea to reduce significantly the computation time is to replace the complex computer
code by a much simpler model. When physics allows it, this model takes the form of a basic
simplification of the computer code, otherwise it takes the form of an approximation, called
meta-model, obtained by evaluating f at selected design points and interpolating or smoothing
the function values obtained [JCS01].

The design of a meta-model involves the following three phases:

1. Elaborate an experimental design to generate a subset of design points. This can be done
by using sampling methods such as Random sampling, Latin Hypercube Sampling (LHS),
...

2. Choose a family of models representative of a set of data (polynomials, neural networks,
kriging, etc),

3. Fit the model on the subset of design points defined in step 1 by using method such as
Least Square Regression or Weighted Least Square Regression.

Figure 2.13: Idea of meta-modelling techniques

In this section, we present three of the most popular meta-modelling techniques which are:

• Polynomial regression models,

• Artificial neural networks,

• Kriging models.



2.6. META-MODELLING METHOD 69

2.6.1 Polynomial Regression Models

Polynomial Regression Models, commonly called Response Surface Model (RSM), are the most
popular methods used to fit a sample of data because of its simplicity and its ease of implemen-
tation.

In RSM, the model is expressed as follows:

f(x) = P (x) + ǫ

where

• f(x) is the unknown function of interest,

• P (x) is the known polynomial function of x,

• ǫ is a random vector with ǫ ∼ N(0,σ2) (with σ2 ∈ R).

The polynomial models involved are generally low-order polynomial models such as linear or
quadratic polynomials. Linear polynomials are used as approximation method when the surface
to be approximated presents little curvature. In this case, the form of the model is:

P (x) = b0 +

n
∑

i=1

bixi. (2.17)

Quadratic polynomials are used when the surface presents significant curvature. The quadratic
polynomial model form becomes:

P (x) = b0 +

n
∑

i=1

bixi +

n
∑

i=1

n
∑

j=i

bijxixj. (2.18)

The number of unknown coefficients in Equation (2.17) is n+1 and the number of unknown

coefficients in Equation (2.18) is (n+2)(n+1)
2 . Theses coefficients are evaluated using Least Squares

Regression analysis to fit the meta-model to the existing set of data. Moreover, to fit the
meta-model, the sample size should be at least two or three times the number of unknown
coefficients [JDC03].

2.6.2 Artificial Neural Networks

The Artificial Neural Networks concept, further denoted ANN, is inspired from the function-
ality of the human brain behaviour where billions of neurons are interconnected by synapses.
An ANN is composed of neurons (also called unit or single-unit perceptron), which are multiple
nonlinear regression models which non-linearly transform their input signals to produce an out-
put. ANN are well known because they present the advantage to be able to approximate any
type of function and particularly, to successfully model abrupt changes in the function. They
are also appreciated for their capacity to learn.

An ANN is defined by:

• its architecture (Feed-Forward or Feed-Back network, number of neurons, number of in-
puts, . . . ),

• its learning process (e.g. weight estimation).
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Feed-Forward ANN are networks that allow signals to go only in one way: from input to
output. At the opposite, Feed-Back ANN (actually contained in recurrent neural network) are
networks where the signals can go in both directions. It can produce complex networks.

Figure 2.14 presents the general architecture of an ANN. It is composed of an input layer,
an hidden layer and an output layer. It can have several hidden layers containing intermediate
variables. In this example, the ANN has 3 neurons in its input layer, one hidden layer with 4
neurons and one neuron in its output layer.

Figure 2.14: General architecture of ANN

Figure 2.15 gives more details on how works an ANN. In this figure, (x1, . . . , xn) are the
inputs of each neuron contained in the input layer, (w1, . . . , wn) are weights affected to each
input, f is an activation function and b is a bias.

Figure 2.15: Details on the ANN working process

The neuron behaviour depends on the synaptic weights w and on the activation function f
which aim is to transform non-linearly the inputs of the neurons. Activation functions most often
used are Heaviside function, sigmoid function and linear function [REF] which are expressed as
follows:

• Heaviside function:

f(x) =

{

0 if x < k
1 if x ≥ k

where k ∈ R is a fixed threshold.

• Sigmoid function:

f(x) =
1

1 + e−λx

which is a differentiable function where λ is a threshold which governs the slope of the
function.

• Linear function:

f(x) = x.
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Once the architecture of the ANN is fixed for the approximation of a particular system, that
network has to be trained: it is fit to training data coming from the original complex problem
by adjusting the value of the weights wi (which are the degree of freedom of the ANN). The
objective is to configure the network such that the application of a given set of inputs results
in a desired output. This training process is called learning process. There are several learning
processes: supervised, unsupervised and reinforcement learning.

The most popular ANN are:

• Multi-Layer Perceptron (MLP),

• Radial Basis Function (RBF),

• Support Vector Machine (SVM).

More details on these ANN can be found in [Bad05, BL00, VGS97, SS04].

2.6.3 Kriging Interpolation

The kriging interpolation is another approximation technique. It has been first introduced by
D.G. Krige in the field of spatial statistics and geostatistics [Kri51, Cre93]. Kriging models are
often used to approximate response data coming from deterministic simulations.

In Kriging interpolation, the unknown model is expressed as follows [LS08]:

f(x) = P (x) + Z(x) (2.19)

where:

• f(x) is the unknown function we look for,

• P (x) is a known polynomial regression model,

• Z(x) is the realisation of a stationary, normally distributed random Gaussian process with
mean zero, variance σ2 ∈ R and non-zero covariance matrix.

In equation (2.19), the term P (x) represents the global trend of the process. Depending on
the form considered for P (x), the kriging process is said to be general, ordinary or simple. In
the general case, also called universal kriging, the polynomial function P (x) is a linear weighted
combination of n known functions ri, with weighted coefficients βi: P (x) =

∑n
i=1 βiri(x). In the

ordinary case, P (x) is an unknown constant: P (x) = p ∈ R. Finally, in the simple case, P (x) is
a known constant: as an example P (x) = 0.

The term Z(x) creates ”localised” deviations from the polynomial part P (x) so that the
kriging model interpolates the observations at the sampling points. As a result, the output of
the kriging model at the sampling points is equal to the real observations. The construction of
the interpolation is based on spatial covariance between points. The covariance is expressed as
follows:

Cov(Z(x), Z(x′)) = σ2R(x, x′)

where R is the correlation function such that

R(x, x′) =

n
∏

k=1

Rk(xk, x
′
k).

The previous correlation function is specified by the user. He has the choice between a
large set of correlation functions (see [SWMH89]). The more frequently used is the Gaussian
correlation function:

Rk(|xk − x′k|) = e−θk(xk−x′

k
)2
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where θ ∈ R
+.

Kriging interpolation technique offers the advantage to provide, with the prediction of the
function, an error of the prediction.
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One of the main sources of uncertainty detected in conceptual and preliminary aircraft design
is coming from the model. It is often called model predictive uncertainty. It is part of the group of
epistemic uncertainties. As aforementioned in the previous chapter, preliminary aircraft design
relies, as many other engineering activities, on computational simulation models. In this study,
the models are organized in the SiMCAD toolbox presented in chapter 1. At very early stage of
aircraft design, predictive uncertainty has a larger amplitude than in any other following stages.
The possibility that the final product reaches its requirements is linked to the know-how of the
manufacturer which has not yet been acting in the new proposed development. This know-
how would be available if we could involve very precise models and engineering skills but this
is not possible in early design stages. In fact, at early design stages, manufacturer know-how
can mostly be extracted from already built airplanes. Existing aircraft data base is clearly the
most rigorous source of information where to look for a relation between physical dimensions and
properties, as also for resulting performances obtained by the way of a specific know-how. As we
have seen in chapter 1, semi-empirical models are an effective way to formalize these relations.
Nevertheless, as only top level physical parameters of the product can be managed in early
design stages, semi-empirical models reveals an important predictive uncertainty. Here again,
the existing aircraft database can provide quantitative information about this uncertainty. This
chapter is dedicated to the presentation of the methodologies used to assess the uncertainty in
Preliminary aircraft design. We present in details the second step of the uncertainty assessment
process described in chapter 1. In section one, we present the process used to identify the
error of each SiMCAD models based on the comparison with experimental data stored in an
aircraft database. Section 2 is devoted to the introduction of the framework used to quantify
the predictive uncertainty. In these studies we use probability tools. The aim of section 3 is
to present the reasons which have motivated the design of a new generic distribution function
and to introduce its characteristics. Section 4 is focused on the particular case of nested models
where uncertainty of sub-parts of the models cannot be addressed without being superimposed
to uncertainty coming from other parts. In section 5, we perform a short correlation study in
order to analyse the dependences existing between the errors of SiMCAD models. Finally, in
section 6, an interpretation of the uncertainty is given in terms of freedom design.

3.1 SiMCAD models error identification

The error of the SiMCAD model is the discrepancy between the SiMCAD model prediction
and the experimental values of the physical variable represented by the model ([ZGD95]). In
[Lun05], the author used this method to identify the error of fire models. It is also the first step
in model validation procedures ([RO10]). In this study, the experimental values come from an
in-house aircraft database containing information about existing aircraft but also about future
projects of aircraft which are sufficiently advanced (i.e. project for which we have enough data).
We extract from this database a selection of the aircraft for which all important parameters
are available. This leads to a specific database containing around 50 aircraft descriptions. The
scope of data covers the main five important domains described previously: geometry, weight,
aerodynamic, propulsion and performance.
If we use equation 2.10, the error of model fi is given by:

ǫi = yDB − fi(x), (3.1)

where yDB is the experimental value taken in the database. This function can be assessed
according to a given aircraft j. Thus, the model error ǫij of model fi versus the experimental
value taken in the description of aircraft j is:

ǫij = yDBj − fi(xj), (3.2)
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provided that the model number i takes its input in the description of aircraft j.
The previous definition does not take into account intensive or extensive characteristics of the
model defined in paragraph ”Model Input Selection”. Indeed, as explained before, extensive
models have a non-linear scatter plot form and the error identification process should be repre-
sentative of this phenomenon.The previous definition of error model is suitable only for intensive
models. So, it is necessary to define another error definition for the extensive model case. The
solution is to use relative error for extensive models. Finally, we consider:

ǫij = yDBj − fi(xj) for intensive models, and (3.3)

ǫij =
yDBj − fi(xj)

fi(xj)
for extensive models. (3.4)

The extensive and intensive characteristics also have to be taken into account during the
propagation phase of the uncertainty. Thus, the error is applied to the model output as in 3.1.
This way of doing is similar to the adjustment factor approach described in [Zio09].

fi(x) = fi(x) + ǫ for intensive models, (3.5)

fi(x) = fi(x)(1 + ǫ) for extensive models. (3.6)

By computing the error for the model fi for each aircraft j of the database, we obtain a sample
of error (ǫi1, ǫi2, ..., ǫij , ..., ǫin). This sample can be represented as an histogram in order to
observe its behaviour. The model error identification process is summarized in Figure 3.1. With

Figure 3.1: Identification of aircraft model error versus an aircraft database.

these histograms, we are able to proceed to a PDF distribution fitting. It is the aim of the next
section: uncertainty quantification.

3.2 SiMCAD model uncertainty modelling

We first choose a probabilistic methods for representing the predictive uncertainty of each model.
Then, we have to answer the following question: which density function best fits the histogram
of each SiMCAD model error? We first launch a graphical analysis of each SiMCAD model error
histogram. Then, we perform a study of normality.

3.2.1 Histogram of SiMCAD model error

A quick look at histograms of SiMCAD model errors leads to the main conclusion that the SiM-
CAD model errors are not all coming from a symmetrical probability distributions. It supposes
that we use also asymmetrical density functions. Moreover, it also gives relevant information
about the normality of errors. Up to now, noise model is assumed to follow a Normal distri-
bution, but this assumption has never been checked (the normality assumption on the data is
generally necessary to be able to compute some statistical tests). One of the characteristics of
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the Normal distribution is to be symmetrical. Consequently, the previous remark leads straight-
forwardly to the conclusion that SiMCAD models which have an asymmetrical distribution of
error are not following a Normal distribution.

Remark 3.2.1. Symmetry is necessary but not sufficient to conclude in normality. Indeed, other
distributions such as Cauchy and Student distributions have a PDF of the same ”shape” as the
Normal distribution. Then, it is not straightforwardly possible to conclude in the normality of
distribution of data which have a symmetrical distribution.

We check the normality property of the model errors. For this purpose, we use the Henry
line method and launch the Anderson Darling test.

3.2.2 Result of the Normality tests for the SiMCAD model error

Figures 3.2 and 3.3 present examples of obtained Henry lines. They confirm our first conclu-
sions. As we can see in figure 3.2, the hypothesis of normality seems acceptable for the error
distribution of models like the one computing the Take-Off Field Length (TOFL1 and TOFL2)
or the furnishing weight (Mfurn). Conversely, in figure 3.3, we clearly see that the hypothesis
of normality is not appropriate for representing the behaviour of the SiMCAD model error.
It is important to notice that the previous method is a graphical analysis: consequently, it

Figure 3.2: Example of SiMCAD error models which are normal: Henry line ok

remains fully subjective. Thus, more quantitative techniques (such as statistical tests) should
be carried out to confirm conclusions obtained graphically.

3.2.3 SiMCAD: goodness-of-Fit test

In the previous subsection, we conclude that some of SiMCAD model errors were normally dis-
tributed. Thus, we have to find the adequate density function to use in order to fit the remaining
SiMCAD model error.

OpenTURNS (cf. [EcP05]) provides a set of tools for checking the compatibility between a
sample of data and a set of density functions. As for example: Chi-squared test (for discrete
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Figure 3.3: Example of SiMCAD error model which are not nomal

distributions), Kolomogorov-Smirnov test, Cramer-Von Mises test or Anderson Darling test. In
this study, we use the Bayesian Information Criterion (BIC). The BIC is based on the maximum
likelihood estimates of the model parameters. To use the BIC, we first have to select a list of
candidate density functions. In the literature, we found a large set of probability distributions
([ME98]). By using the description of some of them, we identified a short list of possible can-
didates. These distributions can be classified into two groups: symmetrical and asymmetrical
distributions.

In our study, two symmetrical distributions have been retained: the Uniform distribution
and the Normal distribution (mentioned before). The Uniform distribution is retained to fit
the SiMCAD model error distributions which have no particular form. Regarding asymmetrical
distributions, the question is the same: how to select one distribution? This selection is discussed
in [Ass08], [TNB02] and [CS97]. By using the expert judgment, we have retained the two
following asymmetrical distributions: Gumbel and Gamma distributions.

3.3 Build-up of a generic density function

Among the density functions presented before, three of them do not have a compact support.
Using this kind of distribution functions for representing the uncertainty of SiMCAD model
errors could lead to obtain unphysical data (e.g.: a negative weight). Thus, we have decided to
set up a new generic density function.

We look for a density function that could cover a wide range of possible shapes including
uniform, triangular, normal distribution and possible variations of these distributions. Moreover,
it should fulfil the following requirements:

• to have a compact support,

• to be unimodal,

• to be continuous,

• the position of its mode can be controlled,

• the shape of its mode (sharp or flat) can be controlled.
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In addition to these 5 requirements, we add another one, more subjective: the behaviour of the
shape of the law when its parameters vary should be as intuitive as possible. The aim of this
last point is to make easy the use of the distribution in engineers’ daily life. To a great extent,
a density function with only four parameters are required to satisfy these requirements. Within
the existing classic density functions, the four parameters Beta distribution (see [Bur99, NIS12])
appear to be the perfect candidate. It allows to cover a large range of shapes. Nevertheless, it
does not satisfy the fourth and fifth requirements. Indeed, with the Beta distribution, the third
and fourth parameters control independently the left and the right part of the curve. Moreover,
the way the shape of the distribution is controlled by the parameters is not intuitive enough.
Therefore, we have decided to build a new generic distribution based on the density function of
the four parameters Beta distribution. Thus, we have set the following rules for the proposed
generic distribution:

• The first parameter a represents the lower bound of the support;

• The second parameter b represents the upper bound of the support;

• The third parameter Z, by varying between -1 and +1, controls the symmetry of the
density;

• The fourth parameter P will control the spreading in reference to the Normal distribution
law, that is to say: the Normal law should be approximated by a rounded value of the
parameter (for instance 1 or 10).

Hereafter, we present two versions of density functions that fulfil all the above requirements:
the first one is built by assembling two polynomial functions and the second one is based on
Beta distribution. Because of the ability of these laws to correctly mimic various distributions
as the Uniform, Triangular, Normal or Gamma ones, we decided to name them respectively the
Mystique distribution and the Beta-Mystique distribution, in reference to the character of
Mystique in the X-Men movies.

3.3.1 Mystique distribution

The definition of the Mystique distribution is given hereafter: (3.7).

D(x, a, b, Z, P ) =
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(3.7)
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,

K = 1 + 8.437 ·max(ε, P ) and 0 ≤ P,

W = max
(

ε− 1,min(Z, 1 − ε)
)

and − 1 ≤ Z ≤ 1.

Here, ε is the smallest significant positive value on the used computer. The introduction of such
a ε, as it appears in the formula, avoids computational troubles when the P and Z parameters
reach their respective bounds.
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The expression of the cumulative law is given in the equation (3.8) with the same notations as
before.

C1(x, a, b, Z, P ) =
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if W < X ≤ 1,

0 if X < −1 or 1 < X.
(3.8)

If we denote C2, C3, C4, C5 the integrals of higher degrees of the distribution law, we can
obtain the mean, variance, skewness and kurtosis coefficients as shown in equations (3.9), (3.10),
(3.11) and (3.12).

µ = b · C1(b)−C2(b), (3.9)

σ2 = b2 · C1(b)− 2b · C2(b)− 2 · C3(b)− µ2, (3.10)

skew = b3 · C1(b)− 3b2 · C2(b) + 6b · C3(b)− 6 · C4(b)− 3 · µ · σ2

−µ3, (3.11)

kurt = b4 · C1(b)− 4b3 · C2(b) + 12b2 · C3(b)− 24b · C4(b) + 24 · C5(b)

−4 · µ · skew − 6 · µ2 · σ2 − µ4. (3.12)

Figure (3.4) shows the evolution of the shape of the Mystique distribution law when P varies
between 0 and 5, with Z = 0.

Figure 3.4: Evolution of the shape of the distribution law (0.1 ≤ P ≤ 1 and −1 ≤ Z ≤ 0)

Figure 3.5 illustrates the evolution of the shape for P varying between 0.1 and 1 and Z
varying between -1 and 0 (the behaviour is symmetrical when 0<Z<1).

The ability of our flexible distribution to mimic Normal, GumbleMax, Uniform or Triangular
laws is illustrated in the graphs from figure 3.6.

Observe that the Normal distribution N(0, σ) is approximated by Myst(−6σ, 6σ, 0, 1) and
the Uniform U(min,max) is approximated with Myst(min,max, 0, 0). The Mystique law has
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Figure 3.5: Evolution of the shape of the distribution law (0.1 ≤ P ≤ 1 and −1 ≤ Z ≤ 0)

Figure 3.6: Illustration of the versatility of the Mystique law
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some difficulties to mimic the shapes of the peaks of Normal, Gumble or Triangular laws. This
drawback is acceptable if one is mainly interested in the distribution tails where the Mystique
law matches quite well the reference distributions.
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3.3.2 Beta distribution

Among the set of classical laws, there is one which has the same characteristics as the Mystique
distribution: the Beta distribution. The Beta distribution has a compact support and it can
take a wide variety of forms depending on the values of its parameters. The characteristics of
Beta distributions are:

• Parameters: α and β (both shape parameters)

• PDF:

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

=
1

B(α, β)
xα−1(1− x)β−1, (3.13)

where α is the shape parameter, β is the scale parameter, Γ(z) the gamma function and
B(θ) is the Beta function defined by

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt

.

• CDF:

F (x) =
Bx(α, β)

B(α, β)
.

= Ix(α, β) (3.14)

where Bx(α, β) is the incomplete beta function and Ix(α, β) is the regularized incomplete
beta function.

• Mean: α
α+β

• Standard Deviation:
√

αβ
(α+β)2(α+β+1)

.

The estimation of the beta distribution parameters with the method of moments gives:

α =
E[X]2 − E[X]3 − V [X]

V [X]
,

β = (1− E[X])

(

E[X](1 − E[X]

V [X]
− 1

)

.

The previous expression was for a Beta distribution defined on the interval [0,1]. The use of
Beta distributions can be extended (generalised) to any interval [a, b] by performing a change of
variable. Indeed, if X follows a Beta distribution defined on [0,1], then Y = a+X(b−a) follows
a Beta distribution defined on [a, b]. This leads to a four parameter Beta distribution which is
expressed as following:

• Parameters: a, b, α and β

• PDF:

f(x) =

{

Γ(α+β)
Γ(α)Γ(β)(b−a) (

x−a
b−a )

α−1(1− x−a
b−a )

β−1, a ≤ x ≤ b

0, otherwise
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• Mean: E[X] = a+ (b− a) α
α+β

• Standard deviation: V [X] =
√

(b− a)2 αβ
(α+β)2(α+β+1)

.

Remark 3.3.1. Outside its range of validity, meaning for x 6∈ [a, b] , the Beta distribution is not
null. Thus, the user has to be careful when using the Beta distribution and has to stay in its
domain of definition.

This Beta distribution is also able to mimic various forms. The first two parameters define the
support, while the last two parameters drive independently the left part of the curve and the
right part of the curve. This behaviour was not found intuitive enough by our collaborators. For
that reason, we introduced a specific transformation in order to satisfy our initial requirements.
That leads to the definition of a new distribution, the Beta-Mystique distribution.

3.3.3 Beta-Mystique distribution

The expression of the Beta-Mystique distribution is given in equation (3.15).

D(x, a, b, Z, P ) =











(b− x)q1 − 1 (x− a)p1 − 1

β (p1, q1) (b− a)p1 + q1 − 1
if a ≤ x ≤ b

0 if x < a or b < x

(3.15)

where































































W = max (ε− 1,min(Z, 1 − ε)) and − 1 ≤ Z ≤ 1,

K =
3.3max(ε, P )

b− a
and 0 ≤ P,

M =
1

2
(a. (1−W ) + b. (1 +W )) ,

p1 = 1 +K (M − a) ,

q1 = 1 +K (b−M) ,

β(p1, q1) =
Γ(p1)Γ(q1)

Γ(p1 + q1)
, Γ being the Gamma Law.

Here again, ε is the smallest significant positive value on the used computer. Introducing
such an ε, as shown in the formula above, avoids computational problems when the P and Z
parameters reach their respective bounds.

In the case of the Beta-Mystique law, the expressions of Mean, Variance, Fisher Skewness
and Kurtosis Coefficients [JKB95] are simple to obtain as shown in equations (3.21), (3.22),
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(3.23) and (3.24).

Z = max(−1 + ǫ,min(Z, 1 − ǫ)), (3.16)

m =
a(1− Z) + b(1 + Z)

2
, (3.17)

r =
3.3 × P

b− a
, (3.18)

p1 = 1 + r(m− a), (3.19)

q1 = 1 + r(b−m), (3.20)

Mean =
p1b+ q1a

p1 + q1
, (3.21)

V ar =
p1q1 (b− a)2

(p1 + q1 + 1) (p1 + q1)
2 , (3.22)

Skew =
2 (q1 − p1)

√
p1 + q1 + 1

(p1 + q1 + 2)
√
p1q1

, (3.23)

Kurt = 6
(p1 + q1 + 1) (q1 − p1)

2 − p1q1 (p1 + q1 + 2)

p1q1 (p1 + q1 + 2) (p1 + q1 + 3)
. (3.24)

The graphs from figure 3.7 show the evolution of the shape of the distribution law when P
varies between 0 and 10 and Z equals 0.

Figure 3.7: Evolution of the shape of the distribution law (0 ≤ P ≤ 10 and Z = 0)

The graphs from figure 3.8 illustrate the evolution of the shapes for P varying between 0.5
and 4 and Z varying between −1 and 0 (the behaviour is symmetrical when 0 < Z < 1).

The ability of the law to mimic the Normal, GumbleMax, Uniform or Triangular laws is
illustrated on the graphs from figure 3.9. Note that the Normal Law N(0, σ) is approximated by
BetaMyst(−6σ, 6σ, 0, 10) and the Uniform U(min,max) is obtained withBetaMyst(min,max, 0, 0).
The Beta-Mystique distribution seems to perform better than the Mystique one for capturing
the shapes of the pick of Normal, Gumble laws, but it turns out not to be very accurate for the
Triangular one.
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Figure 3.8: Evolution of the shape of the distribution law (0.5 ≤ P ≤ 4 and −1 ≤ Z ≤ 0)

Figure 3.9: Illustration of the flexibility of the Beta-Mystique law
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In both cases (Mystique and Beta-Mystique distribution), the best values of parameters that
allow matching the different distributions (Gumble, Triangular and Normal) have been obtained
by solving an optimization problem with the parameters (to be chosen) as unknowns and the
likelihood as the criterion to be maximized.

3.3.4 Results of SiMCAD predictive uncertainty quantification

The uncertainty on the error of each aircraft model within the five domains (geometry, aero-
dynamics, mass, propulsion and performance) has been quantified using the Beta-Mystique
distribution. Figure 3.10 displays examples of this quantification on three aircraft models corre-
sponding to the aircraft aerodynamics. The values of the Beta-Mystique parameters are stored
in table 3.1.

Figure 3.10: Uncertainty quantification of our aerodynamic models using Beta-Mystique law

Beta-Mystisque parameter

Model name a b Z P

LoDmax -1.7020 2.3807 -0.28 0.79
CzMaxTO -0.1864 0.2548 0 1
CzMaxLD -0.2376 0.4481 -0.4 1.44

Table 3.1: Beta-Mystique parameter values

A graphical editor of the Beta-Mystique distribution (see figure 3.11) has been developed so
that experts could easily define what they have in mind concerning uncertainty of some given
input parameters. It has been proved user friendly by users such as Airbus engineers.

The expert can define graphically the shape of the distribution or enters directly the param-
eters of the Beta-Mystique law. Note that the support of the distribution is defined by deltas vs
a so called nominal value which can be different from the most probable value (the peak) since it
happens quite often that the nominal value, being altered by margins, is different from the final
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Figure 3.11: Graphical editor of the Beta-Mystique distribution

most probable value.Once the Beta-Mystique parameters have been captured, the information
is translated into moments (using formulas (3.16) to (3.24)).

3.4 Particular case of performance models error

In this section we focus on the quantification of the uncertainty on the error of models computing
performance of the aircraft. The method used in section 3.1 for evaluating the model error is
not applicable in the case of the performance models because of their structure.

3.4.1 Problem definition

Not all aircraft models do have the same structure. We list two types of structures: simple
structure and interlinked structure. We say that an aircraft model has a simple structure if it
does not use sub-models for which the uncertainty can be measured independently. It can be
represented as in figure 3.12. This is typically the case for aerodynamic and engine models.
Conversely, we say that an aircraft model has an interlinked structure if it uses other models
for its calculation. These sub-models have both inputs coming from outside of the main model
and inputs that are strictly internal. It can be represented as in figure 3.13. Input 1 and input
2 are coming from outside and i3 and i4 are strictly internal inputs. All models computing the
performance of the aircraft have an interlinked architecture. Indeed, they need aerodynamic
and engine data for their calculation.

Figure 3.12: Simple structure Figure 3.13: Interlinked structure

The interlinked structure of these models leads to an inability to apply the method presented
in section 3.1 to identify their errors. As aforementioned, the error of each model is identified by
confronting the output value of the model with the experimental value available in the aircraft
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description. Doing so, we identify an error distribution for both types of models (fig. 3.14).
Nevertheless, because of the interlinked structure of performance models, the error distribution

Figure 3.14: Error identification

identified for them implicitly contains errors of model coming from aerodynamic and engine
models. Then, if we want to quantify the intrinsic error of performance model by not taking
into account uncertainty coming from nested models, it is necessary to develop a strategy.

3.4.2 Methodology

The strategy used is based on an optimisation process and is split into four steps.

1. Generation of three samples of errors ǫA, ǫE and ǫP of size n respectively for aerodynamic,
engine and performance models from their corresponding Beta-Mystique distribution pre-
viously identified: ǫA = (ǫA1, . . . , ǫAn), ǫE = (ǫE1, . . . , ǫEn), ǫP = (ǫP1, . . . , ǫPn) (the same
three samples are used during the whole process in order to avoid sampling noises).

2. Building of the reference CDF of performance output. In this step, we first launch a
performance calculation without propagating any uncertainty. This gives a single value
for performance model. Then, we add noise to this single value with error values contained
in ǫP . At the end of this step we obtain a sample of values for the performance model. We
represent this sample through an empirical CDF. This step is described in Figure 3.15.

Figure 3.15: Process to build the reference CDF

3. Generation of a sample of errors ǫI (size = n) from a Beta-Mystique distribution with
an arbitrary parameter value θ = (a, b, Z, P ) for representing the intrinsic uncertainty on
errors of performance model. We build this sample thanks to the CDF inversion method
previously described (cf. theorem A.2.1). We first generate random variate according to
the Uniform(0,1) distribution and then transform them in order to obtain random variate
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of the Beta-Mystique distribution. The same random variate of the Uniform(0,1) will be
used all along the process in order to avoid sampling noise.

4. Building of the parametric CDF and launching an optimisation process on θ (which is
directly linked to the contents of ǫI) in order to minimize the distance between the reference
CDF and the parametric CDF. In this step, we launch another performance calculation
but, this time, by propagating errors stored in ǫA, ǫE and also ǫI . That leads to a sample
of values for the performance model. It is described in Figure 3.16. The objective is then

Figure 3.16: Process to build the parametric CDF

to find the value of θ that minimises the distance between the reference CDF built in step
2 and the parametric one. The distance between the two CDF is expressed as in equation
3.25 (see figure 3.17).

D =
∑

i

(

Fi(ǫP )− F̃i(θ, ǫA, ǫE , ǫU )
)

. (3.25)

Figure 3.17: Distance between two CDF

The solution of this optimisation process is denoted by θopt and is the point that produces
a F̃i(θ, ǫA, ǫE , ǫU ) close of the reference CDF Fi(ǫP ). The intrinsic uncertainty ǫI of perfor-
mance model is then represented by a Beta-Mystique distribution with a parameter value
fixed as θopt.
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We used two mehods to minimise D: a classical optimisation method and the maximum
likelihood method aforementioned (cf. section A.2.3.2). Moreover, the convergence of the opti-
misation is not easy because its depends on the starting point θ0: the more θ0 is far from the
starting point, the more difficult the convergence is to access. Some strategies can be put in
place in order to select the starting point (cf. [GS10]). Within the two methods, the classical
optimisation method was the most robust regarding to the starting point θ0.

3.4.3 Results

Figures 3.18 and 3.19 display the comparison betwen the reference (green curve) and the para-
metric CDF (red curve) built with the result θopt of the optimisation.

Figure 3.18: Parametric CDF ob-
tained for the Take-Off Field Length
model

Figure 3.19: Parametric CDF obtained for the
Climb ceiling model

In example 1 in figure 3.18, the result obtained is correct: the difference between the two
CDF is minimised and the parametric CDF is ”uniformly” close to the reference curve. In the
second example (see figure 3.18), the result is not so good. There is some area where the red
curve is far from the reference CDF (in the neighborhood of f).

3.5 Correlation study

The study carried out is based on the hypothesis of a complete independence of model errors as
measured in reference to the airplane data base. In order to check the validity of this assumption,
we performed a correlation study. For this purpose, we have computed the correlation coefficients
r(X,Y ) (also referred as Pearson’s coefficient in the literature) which informs on the existence
of a linear relation between two sets of data (or two random variables). In our case, X and Y
are two sets of aircraft model errors. The correlation coefficient is given by Equation (3.26):

r(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY
, (3.26)

where E[(X − µX)(Y − µY )] is the covariance between X and Y commonly denoted cov(X,Y ).
The correlation coefficient r(X,Y ) lies always in [-1, 1] and it is equal to:

• 0 if there is no linear relation between the samples;

• 1 if there is a maximal positive linear relation, and it is in the range [0,1] if there is a
simple positive linear dependence;
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• -1 if there is a maximal negative linear relation, and it is in the range [-1, 0] if there is a
simple negative linear relation.

The results highlights a few correlations. Table 3.2 displays some of those which have a
correlation coefficient higher than 0.90 in absolute value. Figure 3.20 illustrates the positive
correlation between error of FNslst and MTOW models.

Model name Correlated with Correlation coefficient

FNslst MTOW 0.93
ToCk ToCt 0.93
MCL MCR 0.97

ClbCeil CrzCeil 0.94
ZFWplMax FuelMaxFuel -0.99
FuelplNom ZFWplNom -1

Table 3.2: Correlation coefficient |r| > 0.90

Figure 3.20: Correlation between samples of 2 model errors

We could distinguish three different categories:

• A correlation appears between variables that are linked by a deterministic relation, this
is the case for instance for FuelPlNom and ZFWplNom. Correlations of this category are
not a problem because the uncertainty is attached to only one variable while the other one
is computed without uncertainty using the deterministic relation.

• A correlation appears between variables of the same nature, which values are resulting
from a unique sub-model. This is the case for instance for ToCk and ToCt, MCL and
MCR or ClbCeil and CrzCeil. In this case, the uncertainty measured is attached to the
sub-model (see figure 3.21).

Figure 3.21: Same model used to compute 3 parameters related to the engine
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• A correlation appears because of a strong physical link between the variables which are
not taken into account as a model but as a process involving the models. This is the case
for instance for FNslst and MTOW which are linked by overall optimisation of the aircraft
submitted to the necessity to fulfill operational requirements. In this case, it is important
not to use both models in the same process. For example, if the MTOW is assessed using
the corresponding model and its uncertainty, then FNslst must be computed according to
operational requirements satisfaction without introducing any other uncertainty.

3.6 Design freedom

Figure 3.22 gives a graphical explanation of the model error distribution according to a given
set of experiments (i.e., the content of the aircraft database).

Figure 3.22: Aircraft model error distribution.

For a given output value of the model fi, the range in brackets in Figure 3.23 contains the
possible variability ǫfi of the real output that would result from a real design process.

Figure 3.23: Visualisation of the possible variability of the real output.

ytrue = fi(xn, ..., xp) + ǫfi ,

ǫfi is the predictive uncertainty of the model fi at a very early design stage, let’s say for t = t1.
Some months later, at t = t2, if the design process goes on well, the knowledge acquired on the
studied aircraft configuration has increased and we can assume the existence of a refined version
of model fi (which probably requires new input parameters). Similarly, at the end of the design
process, let’s say t = t3, we assume the existence of the most refined version of model fi denoted
Fi giving the ”best” (i.e. the most accurate) value of variable y taking as input the detailed
design parameters zq. The remaining uncertainty ǫFi

will be drastically reduced in comparison
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with ǫfi . Let us note Ei the difference Fi − fi, then we have:

ytrue = fi(xn, ..., xp) + Ei(xn, ..., xp, ..., zq , ...) + ǫFi
with ǫFi

<< ǫfi .

Finally:

ǫfi = Ei(xn, ..., xp, ..., zq , ...) + ǫFi
. (3.27)

Formula (3.27) is developing the true value of predictive error of ǫfi but a new question is raised:
are we sure that such a function Fi exists?

Actually, we can find an indication (but not a proof) of the existence of the function Fi in
the two following remarks:

• According to most of the recent aircraft developments that have been carried to their
conclusion, final aircraft performances have been quite well predicted by last versions of
models.

• All the points in Figure 3.22 correspond to aircraft which development have been carried
to the end.

If we assume the existence of the function Fi (which is not a so strong assumption in fact),
then for most of the quantities ytrue (corresponding to continuous physical phenomena) we can
deduce that it exists particular set of values for the zq parameters that allow Fi(zq) + ǫFi

to
reach any value within the range of ǫfi . In other words, for a given set of values xn, ..., xp, it
exists a set of detailed parameters zq that allows Fi to reach most values within the range of
uncertainty of fi + ǫfi . Trying to reformulate again, we are just saying that uncertainty on ǫfi
could be a measurement of the freedom given by further detailed design.

This last interpretation is particularly interesting because it suggests a kind of equivalence
between the amplitude of predictive uncertainty at a given design process stage and the am-
plitude of freedom given by effective further design work. But this does not mean that any
deviation from the nominal design within the range of ǫfi can be reached with the same level of
difficulty. The opposite is most probably true, as it is well known that it is much more difficult
to make a structural part lighter than to make it heavier for a given set of load cases...

Practically, it is quite easy to guess, for each yi, which side is the most difficult to reach (see
Figure 3.24). This side can be used to orientate the measured distribution of errors so that the
position of the peak corresponds naturally to the common state of the art: low values of quantile
correspond to deviations that are not challenging while high values of quantile correspond to
deviations that are very challenging according to the current state of the art (but not unreachable
and even which can be overtaken).

This information can be enriched by expert judgment in order to rank the yi parameters
from those which are quite easy to deviate by the way of an adequate design process to those
which cannot be managed easily (as maximum aerodynamic efficiency for instance). Thanks to
this set of information, robust design can be achieved by looking for the best set of deviations
(according to design facility) that is able to contain the risk on the quantities of interest below
a required value while minimizing selected cost criteria.

At this stage, a last question requires some clarification: how do evolve the uncertainty ǫFi

when a deviation Fi is assumed for the purpose of risk quantification. Three considerations are
helping us:

• The closer the deviation is from the maximum challenging value, the more reduced is the
uncertainty because the use of refined models is compulsory in this situation.

• Here also, expert judgment can be helpful to determine the minimum amplitude of uncer-
tainty.
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Figure 3.24: Challenging and easy side.

• Closer the design process is to its end, lower is this uncertainty.

In order to match with the first and second points, we propose the following mechanism:

• The original distribution is just scaled so that the peak remains at the current deviated
value and the most challenging deviated value remains unchanged (anchored).

• When minimum uncertainty range is reached according to expert advice, the scaled dis-
tribution is not narrowed anymore and, consequently, the support will move accordingly.

• If the deviation overtakes the anchor value (limit of the support of the original distribution),
then the difficulty increases linearly according to the relative distance to the nominal value
of the original distribution.

• The quantile corresponding to the deviated value according to the original distribution is
interpreted as the level of difficulty of the deviation.

• A symmetrical behavior is assumed on the ”easy” side but with a decrease of the difficulty
quotation according to the quantile versus the original distribution (quotation being floored
to zero).

This mechanism is illustrated in Figure 3.25. It may be seen as artificial but it has some
interesting properties:

• The most probable value is always the current one, which is in line with the intuition.

• The most challenging deviation is clearly identified by a quotation of 100 but can be
overtaken (on expert advice for instance).

• The quantile corresponding to the deviated value according to the original distribution be-
ing interpreted as the level of difficulty of the deviation, this quotation evolves accordingly
to the shape of the distribution, which is also in line with intuition: for non symmetrical
distributions, steep ramps reveal hardly possible deviations.
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Figure 3.25: Model uncertainty distribution arbitrarily correlated to the design effort.

3.7 Conclusion

In this chapter, a methodology for quantifying and modelling the model error uncertainty for
aircraft design is given.

First, the process used to identify the error of each aircraft design model is presented. It is
based on a comparison between the model prediction and data contained in the available aircraft
database.

Then, we first consider a classical distribution function for the uncertainty quantification
but finally, we build up a generic distribution function called Beta-Mystique. It is generic and
is used to quantify the uncertainty on errors of all aircraft design models.

Then, the particular case of performance model is pointed out. A specific methodology has
been put in place in order to quantify the uncertainty of performance models which have a
different structure compare to geometry, weight, aerodynamic and propulsion models. For this
purpose, a methodology based on an optimization process is presented.

A correlation study is done in order to test the independence of aircraft design model errors.
These correlations have induced some adaptations in the architecture of the models and given
some insight in the way to use them into a computational process. Finally, in the last section
of this chapter, we performed a correlation study. The results highlight dependences between
some model errors. Further investigations and adapted method can be computed to be able to
take into account this correlation. This is the subject of future work.

Finally, an interpretation of the predictive uncertainty in terms of design freedom has been
proposed.
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In the previous chapter, we have identified and quantified the main source of uncertainty
involved in preliminary aircraft design. As aforementioned, the final objective of this study is
to use this uncertainty into a robust optimisation method in order to directly generate robust
aircraft configuration. This uncertainty can first be used in the frame of uncertainty propaga-
tion. As we have seen in chapter 2, the aim of the uncertainty propagation is to carry out the
uncertainty through the system thanks to a numerical method, in order to assess the uncertainty
effect on the output of the system. In this study, we apply the propagation in order to:

• Evaluate the effect of SiMCAD model error uncertainty on the operational performances
of the aircraft,

• And evaluate the protection offered by the MSP (cf. section 1.2.2) used by FPO engineers
to generate oversized aircraft configuration.

We use the well-known uncertainty propagation method which is the Monte Carlo method.
We also present another uncertainty propagation method called moment propagation and com-
pare the results with those obtained with Monte Carlo method.

4.1 Uncertainty propagation methods

There exist several uncertainty propagation methods. Table 4.1 displays the main groups.

Methods Criterion Method calcula-
tion

Computation
time

Deterministic
method (min-max)

Range First order optimi-
sation method

Potentially high

Numerical Integra-
tion

All probabilistic cri-
teria

Integration by
quadrature

Exponential

Taylor Approxima-
tion

Variance First order Taylor
development

Low

Monte Carlo Simu-
lation

All probabilistic cri-
teria

Random sampling High

Variance-Reduction
Techniques

Exceedance proba-
bility

Conditional MC,
Importance sam-
pling, Directional
sampling

Reasonable

FORM-SORM
methods

Exceedance proba-
bility

Numerical approxi-
mation

Low

Hybrid methods Exceedance proba-
bility

Importance sam-
pling

Reasonable

Method based on
stochastic develop-
ment

Moment - PDF -
Exceedance proba-
bility

Development onto
functional basis

Reasonable

Table 4.1: Uncertainty propagation methods

4.1.1 Monte Carlo method

Monte Carlo (MC) simulation (already presented in chapter 2) is the most widely used method.
It presents the advantage to provide a confidence interval around the estimated value, and this
is a measure of the degree of precision of this estimation. Nevertheless, its main drawback is the
prohibitive computation time. This is particularly the case when the simulation models used are
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themselves time consuming. However, MC simulation may be used at preliminary design phase
because the models used are most of the time simple, consequently, computationally inexpensive.
As our study is done at preliminary design stage, we first use MC simulation for propagating
the uncertainty into the aircraft design process. Nevertheless, in order to further reduce the
computation time, we used the moment propagation method.

4.1.2 Method of moment propagation

Monte Carlo method is known to be time consuming. Thus, we have decided to test another
much cheaper method: moment propagation method.

The method of moment propagation is an analytical method. As it is based on Taylor
series expansion, it requires derivatives information. The method is called First order method
of moments when only the first-order approximation is considered and Second order method of
moments when both first and second orders approximation are considered. Moment propagation
method have been already used in aircraft design context such as in [GLK02, DMC12]: for
example, first order method of moment is widely used in CFD calculation context [PNT04].

4.1.2.1 Description of the method

This method refers to the propagation of the moments through a function or a system in order to
compute statistical quantities of the system output according to a given uncertainty. Consider
a function f ∈ C1(Rn,R) such that y0 = f(X) where X = (x1, . . . , xn). Let ǫxi

and ǫy be
the uncertainty respectively attached to xi and to the output y where ǫxi

is defined by the
mean-variance couple (µxi

, σ2
xi
) and ǫy by (µy, σ

2
y). We have thus:

y0 + ǫy = f(x1 + ǫx1
, . . . , xn + ǫxn). (4.1)

With Equation (4.1), the first order Taylor development of f gives:

y0 + ǫy = f(X) +
∑

i

∂xi
f(X)ǫxi

+ o(||(ǫx1
, . . . , ǫxn)||).

and then
ǫy =

∑

i

∂xi
f(X)ǫxi

+ o(||(ǫx1
, . . . , ǫxn)||). (4.2)

We can use Equation (4.2) to evaluate the first four moments of ǫy by using the following
formula presented in Chapter 2:

mn(X) = E
((

X − E(X)
)n)

, ∀n ≥ 2.

Keeping only the first order terms, we obtain:

µy = E(ǫy)

≃
∑

i

∂xi
f(X)µxi

, (4.3)

σ2
y = E((ǫy − E(ǫy))

2)

≃
∑

i

(∂xi
f(X))2 σ2

xi
, (4.4)

sy = E
(

(ǫy − E(ǫy))
3
)

≃
∑

i

(∂xi
f(X))3 sxi

, (4.5)

ky = E
(

(ǫy − E(ǫy))
4
)

≃
∑

i

(∂xi
f(X))4 kxi

+ 6

n
∑

j=1

j−1
∑

i=1

(

(∂xi
f(X))2(∂xj

f(X))2σ2
xj
σ2
xi

)

. (4.6)
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To be more precise, the previous formulas should incorporate derivatives of higher order of
function f . Nevertheless, in this case, the formulas become so enormous that they turn out to
be unmanageable. Besides, practical tests made with computational processes used in this study
have shown sufficiently accurate results with only first order approach. This way of propagat-
ing uncertainty is more precise when variability (errors) are contained into limited variations
or when the modelled phenomena are varying smoothly (which is often the case in our business).

Equations 4.5 and 4.6 have been obtained by using the centered definition of the third and
fourth moments. In some cases, their values can become very big and then it is better to use
the standardized form for the skewness and the kurtosis (see Section 2.4.3). Thus, the previous
formulas for moments have to be adapted to be able to propagate the standardized moments.
Then, we obtain the following propagation formulas:

Sky =
1

(σ2
y)

3

2

∑

i

(∂xi
f(X))3 Skxi

(σ2
xi
)
3

2 , (4.7)

Kuy =
1

(σ2
y)

2

∑

i

(∂xi
f(X))4 Kuxi

(σ2
xi
)2. (4.8)

Let us first prove the skewness formulae (4.7).

Sky = E

(

(

ǫy − E(ǫy)

σy

)3
)

=
1

(σ2
y)

3

2

sy =
1

(σ2
y)

3

2

n
∑

i=1

(∂xi
f(X))3 sxi

.

Since sxi
= (σ2

xi
)
3

2Skxi
, we have

Sky =
1

(σ2
y)

3

2

n
∑

i=1

(∂xi
f(X))3 Skxi

(σ2
xi
)
3

2 .

The proof for the excess kurtosis is given hereafter.

Kuy = E

(

(

ǫy −E(ǫy)

σy

)4
)

− 3

=
1

(σ2
y)

2
ky − 3

=
1

(σ2
y)

2





n
∑

i=1

(∂xi
f(X))4 kxi

+ 6
n
∑

j=1

j−1
∑

i=1

(

(∂xi
f(X))2(∂xj

f(X))2σ2
xj
σ2
xi

)



− 3

=
1

(σ2
y)

2





n
∑

i=1

(∂xi
f(X))4 kxi

+ 6

n
∑

j=1

j−1
∑

i=1

(

(∂xi
f(X))2(∂xj

f(X))2σ2
xj
σ2
xi

)

− 3(σ2
y)

2



 .
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Since kxi
= (Kuxi

+ 3)(σ2
xi
)2 and

(

n
∑

i=1

aibi

)2

=
n
∑

i=1

a2i b
2
i + 2

n
∑

j=1

j−1
∑

i=1

aibiajbj , we have:

Kuy =
1

(σ2
y)

2





n
∑

i=1

(∂xi
f(X))4 (Kuxi

+ 3)(σ2
xi
)2 + 6

n
∑

j=1

j−1
∑

i=1

(

(∂xi
f(X))2(∂xj

f(X))2σ2
xj
σ2
xi

)

− 3

(

n
∑

i=1

(∂xi
f(X))2σ2

xi

)2




=
1

(σ2
y)

2

(

n
∑

i=1

(∂xi
f(X))4(σ2

xi
)2Kuxi

+ 3

[(

n
∑

i=1

(∂xi
f(X))4(σ2

xi
)2

)

+ 2
n
∑

j=1

j−1
∑

i=1

(

(∂xi
f(X))2(∂xj

f(X))2σ2
xj
σ2
xi

)



− 3

(

n
∑

i=1

(∂xi
f(X))2σ2

xi

)2




=
1

(σ2
y)

2

n
∑

i=1

(∂xi
f(X))4 (σ2

xi
)2Kuxi

.

Coupling phenomenon The previous formulas have been established in the case of a com-
plete independence of the model errors as measured in reference to the airplane database. Nev-
ertheless, within a computation flow as we can find in the expression of a model, variables are
most often correlated. Figure 4.1 illustrates the coupling phenomenon that naturally appears
within the computation flow. Models M1 and M2 are both using the input X2. Consequently,

Figure 4.1: Coupling phenomenon within the computation flow

the outputs S1 and S2 are not independent. In this case, it is not allowed to use the previous
formulas in order to add or substract S1 tO S2. Consequently, we have to look for a way to
propagate the uncertainty by taking into account this coupling phenomenon. In this study, we
consider that overall inputs of the whole computation are independent.

To achieve this objective, we compute the partial derivative of any internal variable X versus
any overall input ai denoted ∂aiX such as

∂X

∂ai
= ∂aiX.

Consider a generic function f with 2 entries x1 and x2:

y = f
(

x1 + ǫx1
(µx1

, σ2
x1
, Skx1

,Kux1
), x2 + ǫx2

(µx2
, σ2

x2
, Skx2

,Kux2
)
)

.

For this function f , the formulas 4.3,4.4, 4.7 and 4.8 becomes:
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µy =
2
∑

i=1

∂xi
f(X)µxi

, (4.9)

σ2
y =

2
∑

i=1

(∂xi
f(X))2 σ2

xi
+ 2

2
∏

i=1

∂xi
f(X)

∑

j

∂ajx1∂ajx2 · σ2
aj , (4.10)

Sky =
1

(σ2
y)

3

2

2
∑

i=1

(∂xi
f(X))3 Skxi

(σ2
xi
)
3

2 + . . . (4.11)

3
(

(∂x1
f(X))2∂x2

f(X) + (∂x2
f(X))2∂x1

f(X)
)

× . . . (4.12)
∑

j

(

(∂ajx1)
2∂ajx2 + (∂ajx2)

2∂ajx1
)

Skajσ
2
aj )

3

2 , (4.13)

Kuy =
1

(σ2
y)

2

2
∑

i=1

(∂xi
f(X))4Kuxi

(σ2
xi
)2 + . . . (4.14)

4(∂x1
f(x0))

3∂x2
f(x0)

∑

j

(∂ajx1)
3∂ajx2Kuaj (σ

2
aj )

2 + . . . (4.15)

4∂x1
f(x0)(∂x2

f(x0))
3
∑

j

∂ajx1(∂ajx2)
3Kuaj (σ

2
aj )

2 + . . . (4.16)

6(∂x1
f(x0))

2(∂x2
f(x0))

2
∑

j

(∂ajx1)
2(∂ajx2)

2Kuaj (σ
2
aj )

2, (4.17)

where X = (x1, x2). The propagation stream must know how to carry as well the gradient
of overall inputs gy.

These formulas have been implemented in the models and processes such that mean, variance,
kurtosis and skewness of the current calculated value are available at each step of the calculation.
This way of doing allows to save a lot of time compared to Monte-Carlo method: the uncertainty
distribution of all outputs is obtained in only one run.

4.1.2.2 Practical computing: overloading operation

Our main objective is to capture the uncertainty into a structure in order to be able to use it
afterwards. The uncertainty has been captured thanks to the Beta Mystique distribution which
is characterised by its four parameters a, b, Z, P . Moreover, we have presented earlier the mo-
ment propagation formula of order 1 to 4 through a function or a system (cf. Equations (4.3),
(4.4), (4.7) and (4.8)). The purpose now is to find a way to put together all these informations
in order to explain to computers how to manipulate the Beta Mystique distribution. The first
idea is to concentrate this information into a vector. Nevertheless, vectors already have their
own algebra in the computers and the way computers are manipulating vectors is not suited for
the parameters of the Beta Mystique distribution. In fact, we have to create our own data type
called ’bmyst’ and denoted {’bmyst’,x,a,b,Z,P}. Then, we have to define a new algebra, which
propagates the values and the moments. This is done by overloading the basic operators.

4.1.2.2.1 Overloading operators Any modern language offers the possibility to overload
its basic operators. This operation is completely independent of the coding of the models.
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4.1.2.2.2 An example with the addition operator We consider the function f defined
by

y = f(x1, x2) = x1 + x2

and its gradient
{

∂x1
f = 1

∂x2
f = 1.

The vectors









µx1

σ2
x1

Skx1

Kux1









and









µx2

σ2
x2

Skx2

Kux2









contain the first four moments of x1 and x2. The objective

is to determine the vector (µy, σ
2
y , Sky,Kuy) containing the first four moments of y in order to

define the addition operator ⊕.
Let us first determine the expression of µy. From Equation (4.3), we have

µy = [∂x1
f, ∂x2

f ]

(

µx1

µx2

)

= µx1
+ µx2

.

Doing the same for σ2
y , we obtain:

σ2
y = σ2

x1
+ σ2

x2
.

The expression of the skewness of y, denoted Sky, is given by:

Sky =
[

(∂x1
f)3 , (∂x2

f)3
]













Skx1
(σ2

x1
)
3

2

(σ2
y)

3

2

Skx2
(σ2

x2
)
3

2

(σ2
y)

3

2













=
Skx1

(σ2
x1
)
3

2 + Skx2
(σ2

x2
)
3

2

(σ2
y)

3

2

=
Skx1

(σ2
x1
)
3

2 + Skx2
(σ2

x2
)
3

2

(σ2
x1

+ σ2
x2
)
3

2

.

Doing the same for the kurtosis Kuy, we have:

Kuy =
Kux1

(σ2
x1
)2 +Kux2

(σ2
x2
)2

(σ2
x1

+ σ2
x2
)2

.

Finally, the addition operator ⊕ is defined as follows:













y
µy

σ2
y

Sky
Kuy













=













x1
µx1

σ2
x1

Skx1

Kux1













⊕













x1
µx2

σ2
x2

Skx2

Kux2













=









































x1 + x2

µx1
+ µx2

σ2
x1

+ σ2
x2

Skx1
(σ2

x1
)
3

2 + Skx2
(σ2

x2
)
3

2

(σ2
x1

+ σ2
x2
)
3

2

Kux1
(σ2

x1
)2 +Kux2

(σ2
x2
)2

(σ2
x1

+ σ2
x2
)2









































.
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4.1.2.2.2.1 An example with the subtraction operator Following the same process
with

y = f(x1, x2) = x1 − x2

and
{

∂x1
f = 1

∂x2
f = −1,

we obtain the formulas for the subtraction operator ⊖:













y
µy

σ2
y

Sky
Kuy













=













x1
µx1

σ2
x1

Skx1

Kux1













⊖













x1
µx2

σ2
x2

Skx2

Kux2













=









































x1 − x2

µx1
− µx2

σ2
x1

+ σ2
x2

Skx1
(σ2

x1
)
3

2 − Skx2
(σ2

x2
)
3

2

(σ2
x1

+ σ2
x2
)
3

2

Kux1
(σ2

x1
)2 +Kux2

(σ2
x2
)2

(σ2
x1

+ σ2
x2
)2









































.

The overloading operation is not enough to develop applications based on Beta-Mystique
distribution and moment propagation method. The processes used contain also System Solvers
and Optimizers. These objects also have to be overloaded.

4.1.2.2.3 Overloading System Solvers Overloading a system solver is not so difficult: we
have to accept to stay at the first order level that means to take into account only the Jacobian
information.

Any system of n equations with n unknown variables can be formalized as follows:

F being a function from R
n −→ R

n,

Find X0 = [x01 , . . . , x0n ]

such that F (X0) = 0.

The variable X0 being the output of the system, the objective is to compute the variability
denoted ǫx in function of the variability denoted ǫF coming from the function F . By introducing
uncertainty propagation, the problem becomes:

F being a function from R
n+p −→ R

n,

Find X0 = [x01 , . . . , x0n ] and ǫX0
= [ǫx01

, . . . , ǫx0p
]

such that: F (X0 + ǫX0
, Y + ǫY ) = 0,

where Y = [y1, . . . , yp] are parameters associated to ǫY = [ǫy1 , . . . , ǫyp ]. The first order Taylor’s
development of F gives:

F (X0 + ǫX0
, Y + ǫY ) ≃ F (X0, Y + ǫY ) +

[

∂F

∂X

]

ǫX0
.

We obtain:

X0 being solution of the system: F (X,Y ) = 0,

F (X0, Y + ǫY ) +

[

∂F

∂X

]

ǫX0
= 0 ⇐⇒ ǫX0

= −
[

∂F

∂X

]−1

F (X0, Y + ǫY ).



4.1. UNCERTAINTY PROPAGATION METHODS 105

In other terms, the uncertainty output UX0
+ ǫX0

is computed by replacing the original
non - linear system by its local linear approximation (this is the Newton-Raphson scheme) and
propagating the uncertainty ǫY through it :

UX0
= X0 −

[

∂F

∂X

]−1

F (X0, Y + ǫY ).

In doing so, we are supposing that the variability of the partial derivative
[

∂F
∂X

]

is negligible.
In addition, moment propagation offers an interesting opportunity to compute the Jacobian.
If we apply propagation formula of the first moment (Equations (4.3), (4.4), (4.7), (4.8)) to
function F , we obtain:

µF =
∑

i

[

∂F

∂X

]

X0

µxi
,

where µxi
is the first moment of the variability of the component xi of the vector X. Conse-

quently, if we propagate the following input through the function F :

Xi =













x1 =
′uv′, x01 , 0, 0, 0, 0

. . .
xi =

′uv′, x0i , 1, 0, 0, 0
. . .

xn = ′uv′, x0n , 0, 0, 0, 0













,

we obtain in its output the column i of the Jacobian of F :

F (Xi) =















∂F1

∂xi

. . .
∂Fj

∂xi

. . .
∂Fn

∂xi















.

Doing so for each i will produce the complete Jacobian. This method is well known in the field
of automatic derivation.

The Scilab function fsolve is an example of System Solvers which has been overloaded for
this study.

4.1.2.2.4 Overloading Optimizers Optimisation Operators cannot be overloaded in a
generic way. Nevertheless, in some particular cases which are frequent in Overall Aircraft Design
context, Optimization Operators can be overloaded. Two cases are described hereafter.

As aforementioned in Chapter 1, most of the time, the optimum of the OAD optimization is
located at the intersection of two active constraints. If we assume that these active constraints
are not impacted by the injected uncertainty (which has to be carefully checked), then the
Optimisation Operator can be replaced by a System Solving Operator and uncertainty can be
propagated through it.

There is another situation where overloading an Optimization Operator can be done: when

• there is no constraint on output;

• and uncertainty does not push the optimum outside a fixed domain in which a polynomial
approximation of the function remains valid.
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Figure 4.2: Maximum Lift over Drag ratio of an aerodynamic polar

A good illustration of this situation is the maximum Lift over Drag ratio (LoD) of an aero-
dynamic polar (cf. Figure 4.2).

Three points are computed at fixed values of Angle of Attack. Coefficients and maximum of
the second degree polynomial function that goes through these three points can be computed
using a pure algebraic direct process. As a result, propagation of uncertainty through this pro-
cess can be managed simply using basic operators overloading.

From a general point of view, moment propagation can be achieved easily each time a
numerical result can be obtained using a direct sequence of algebraic computations (non iterative,
except for system solving).

4.1.2.2.4.1 Numerical experiments The purpose of these numerical experiments is
to compare results given by the two propagation methods: Monte Carlo sampling and moment
propagation.

Consider two variables x and y following a Beta-Mystique distribution such as x ∼ bmyst(ax, bx, Zx, Px)
and y ∼ bmyst(ay, by, Zy, Py). Consider two samples of data S1 and S2, both of size n, coming
from x and y. We proceed as follows:

• First, we perform the addition of x and y using the moment propagation method combined
with the overloading addition. The result of this addition gives the variable w such as
w ∼ bmyst(aw, bw, Zw, Pw): (w, aw, bw, Zw, Pw) = (x, ax, bx, Zx, Px)⊕ (y, ay, by, Zy, Py).

• Then, we perform the addition of the two samples S1 and S2. We obtain the third sam-
ple S3. From this third sample S3, we compute the parameters of the Beta-Mystique
distribution associated. We say that S3 is a sample of the variable v such as v ∼
bmyst(av, bv, Zv, Pv).

• Finally, we compare w ∼ bmyst(aw, bw, Zw, Pw) and v ∼ bmyst(av, bv, Zv, Pv).

Let us consider the following values: x ∼ bmyst(−0.4, 0.4,−0.5, 1), y ∼ bmyst(−0.5, 0.5,−0.42, 0.56).
With those values, we obtain w ∼ bmyst(−1.078, 0.845, 0.12, 2.86). The result is displayed on
Figure 4.3.

The addition of the two samples S1 and S2 gives v ∼ bmyst(−1.062, 0.854, 0.1, 2.77). The
result is displayed on Figure 4.4.

A graphical comparison can be done with the third graphics of Figure 4.3 and 4.4. We can
see that the results are practically the same. Thus, with these results we are able to conclude
that the moment propagation method is as efficient as the Monte Carlo method. Neverthe-
less, even if the two methods give close results, the execution time makes a difference between



4.1. UNCERTAINTY PROPAGATION METHODS 107

Figure 4.3: Example of addition with moment propagation combined with operation overloading

Figure 4.4: Example of addition of two samples of bmyst data

them.Indeed, the moment propagation method is less greedy in terms of computation time than
the MC method. Thus, if execution time is an important issue, it is more interesting to use mo-
ment propagation method (then to put more effort on the code development) than MC method.
This choice is possible only in the case where the derivative information is available.

4.1.2.3 Limitation of moment propagation method

The moment propagation method presents a drawback: its precision decreases in case of high
non-linearity. This can be improved by taking into account the second order derivative infor-
mation.This work is currently in progress. It is not an easy task to carry out because of the
overloading operation. Note that this limitation does not matter in this study. Even in the case
where all the uncertainty has been considered, the results stayed inside the frontier or at most,
on the frontier.

Otherwise, when distortions brought by non-linearity are not acceptable, the way to proceed
is to use Monte Carlo method.

4.1.2.4 Problem when transforming Beta-Mystique moments into parameters

In Chapter 3, we have presented the Beta Mystique distribution and its characteristics. Thanks
to the method of moment propagation, we have access to the formula that allows to transform
the Beta-Mystique parameters into Mean, Variance, Skewness and Kurtosis and conversely:

a = Mean− p1 · fac, (4.18)

b = Mean+ q1 · fac, (4.19)

Z =
2 ·Mean+ q1 · fac

b− a
, (4.20)

P =
p1 + q1 − 2

3.3
, (4.21)
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where



















































































sum =
6 ·
(

Skewness2 −Kurtosis− 2
)

2 ·Kurtosis− 3 · Skewness2 ,

prod =
6 · (sum+ 1) · sum2

Kurtosis · (sum+ 2) · (sum+ 3) + 30 · sum+ 36
,

det = sum2 − 4 · prod,
sign =

Skewness

|Skewness| ,

p1 =
sum− sign ·

√
det

2
,

q1 =
sum+ sign ·

√
det

2
,

fac =

√

V ar · p1 + q1 + 1

p1 · q1
.

The possibility to compute the (Z,P ) parameters of the Beta-Mystique law from (Skewness,
Kurtosis) does not mean that any couple of values (Skewness, Kurtosis) can be reached from a
couple of values (Z,P ). It appears that some positive Kurtosis values are not reachable for low
absolute values of Skewness, as shown in Fig. 4.5 and Fig. 4.6.

Figure 4.5: Illustration of values unreachable by Skewness and Kurtosis

Figure 4.6: Illustration of values unreachable by Skewness and Kurtosis

In practice, we have proposed the following work around (equations (4.22), (4.23), (4.24)
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and (4.25)) which has the effect to put a ceiling on the resulting value of P to 99:

Pmax = 99, (4.22)

Klimit = min

(

Kurtosis,
(9.9 · Pmax + 12) · Skewness2 − 12

6.6 · Pmax + 10

)

, (4.23)

sum =
6 ·
(

Skewness2 −Klimit − 2
)

2 ·Klimit − 3 · Skewness2 , (4.24)

prod =
6 · (sum+ 1) · sum2

Klimit · (sum+ 2) · (sum+ 3) + 30 · sum+ 36
, (4.25)

where Klimit is the maximum value of Kurtosis that can be reached with the current Skewness
and a maximum value of Pmax for the fourth parameter of the Beta-Mystique Law. In doing so,
we alter the identification of some distribution shapes that have both a ”thick base” and ”high
pick” as illustrated on Fig. 4.7. Further analysis is required to better manage this limitation of
the Beta-Mystique law.

Figure 4.7: Example of limitation of Beta-Mystique law

4.2 Aircraft design process for uncertainty propagation

The aircraft design process has been presented in chapter 1 (cf. Figure 1.3). In the frame of the
uncertainty propagation, we did not use the same process. We used a process without neither
optimisation loop nor mass-mission loop. In this case, the aircraft characteristics are estimated
with a sequential process. Starting from the values of WingArea, SLSThrust and MTOW,
the values of each aircraft characteristics are evaluated from the geometry to the operational
performances respectively in this order: geometry, engine, aerodynamics, masses and finally
operational performances (this sequence is the backbone of the aircraft design process). The
process is presented in Figure 4.8.

Figure 4.9 displays how the uncertainty is propagated into the sequential process with the
Monte Carlo method. First, we generate a sample of model errors for each SiMCAD models with
respect to their distribution. Then, we run the sequential design process for each individual of the
sample. At the end, we obtain a sample of values for each operational performance. With these
samples, we are able to evaluate the number of aircraft that do not fulfil the given requirements
on each operational performance.

In Figure 4.9, the error ǫI introduced for the performance models is the intrinsic error
evaluated in Chapter 3 Section 3.4. We remind that ǫI of performance models does not contain
errors coming from aerodynamic and engine models which are nested in performance models.
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Figure 4.8: Pure sequential aircraft design

Figure 4.9: Uncertainty propagation in the sequential design process
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4.3 Robustness study of Margin Setting Process

4.3.1 Strategy

As presented in section 1.2.2, MSP is a method used in FPO to compute aircraft configura-
tions which integrates margins. The objective is to compute values for the three parameters
WingArea, SLSThrust and MTOW and determine realistic but ambitious targets for detailed
design stage. In this study, we focus only on the first objective.

The purpose of this section is to evaluate the protection offered by the MSP. Evaluating
the protection offered by the MSP requires that we guess the performances of the final aircraft
which is designed during detailed design phase with high level fidelity models. But models used
for the simulation at preliminary design stage (i.e. SiMCAD models) are very simple and they
have a much lower level of fidelity than the models used at the detailed design phase. Thus,
we have to keep in mind that the evaluation we make at preliminary design is done by using
simpler models which are less precise than the high fidelity models used in reality.

The strategy used to evaluate the MSP is based on the process presented in Figure 4.9. It
is composed of the following steps:

1. Launch step 1 and step 2 of MSP in order to have values for WingArea, SLSThrust and
MTOW. They are denoted WingAreaMSP , SLSThrustMSP and MTOWMSP .

2. Define the set S of SiMCAD models which have an uncertainty on their error of simulation.

3. Generate a sample of model errors for each model in S from the probability density function
identified during uncertainty quantification step.

4. Launch the sequential process of Figure 4.9 with WingAreaMAP , SLSThrustMAP and
MTOWMAP as inputs.

5. Store the probability to not fulfil the requirement for each operational performance.

For that purpose, we used two methods: Monte Carlo method and moment propagation
method. The results obtained are presented in the next section on an example of a twinjet
aircraft design.

4.3.2 Test case and results

In this example, we look for an aircraft which fulfils the specifications stored in Table 4.2. It is
a twin-jet aircraft, which can carry 160 passengers and which has a 3500 NM design range.

The first step of the strategy is to launch MSP process. The deterioration coefficients used
in step 1 are fixed to: kL/D = −1, kSFC = +1 and kMWE = +1 (we remind that this
deterioration coefficients are applied to the efficiency factors L/D, SFC and MWE and that
they are equal to kL/D = 0, kSFC = 0 and kMWE = 0 in step 2: there is no deterioration
considered in step 2). With this initialisation, the aircraft configuration proposed by MSP is
given by the triplet (WingArea, SLSThrust,MTOW ) = (131.3 m2, 145330.77 N , 77976.8 kg).

In this example, we analysed the capacity of this aircraft configuration to fulfil the require-
ments when all SiMCAD models are considered as uncertain: the set S contains all SiMCAD
models.
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Design Assumptions

WingAr 8

BPR 8

Design range 3500 NM

Cruise mach 0.76 mach

Number of engines 2

Number of passengers 160

Reference altitude 35000 ft

Requirements

Range 3500 NM

Take Off Field Length 1700 m

Climb ceiling 33000 ft

Cruise ceiling 33000 ft

Approach speed 137 kt

Table 4.2: Design specifications

Constraint Name Probability of satisfaction

Range 0.41

TOFL 0.73

Climb 1

Cruise 1

Vapp 0.98

Table 4.3: Results of MSP robustness study with Monte Carlo method

4.3.2.1 Propagation with Monte Carlo method

By using the Monte Carlo method, we obtained the results stored in Table 4.3. Most of the
operational constraints seems to be well protected by the MSP except two of them: the range
and the Take-Off Field Length (TOFL) constraints. Nevertheless, these constraints are very
important ones. TOFL is a strong constraint: an increase of a few % of the necessary Take Off
Field Length can lead to the inability of the aircraft to operate in some airports.

A sensitivity test has been carried out in order to find the values of degradation which reduce
the probability of not fulfilling the constraint. The results of this test are stored in Table 4.4.

L/D MWE SFC Range Climb Cruise TOFL Vapp

-1 +1 +1 0.41 1 1 0.73 0.98

-2 +1 +1 0.41 1 1 0.74 0.98

-1 +2 +1 0.41 1 1 0.84 0.98

-1 +1 +2 0.41 1 1 0.79 0.98

-2 +3 +2 0.4 1 1 0.95 0.99

Table 4.4: Sensitivity study of TOFL constraint variation regarding MSP degradation values

The variations of degradation values have a great effect on TOFL constraint. Penalizing
the MWE parameter risk (i.e. increasing MWE value) leads to a significant increase of the
probability of fulfilling TOFL constraint. Nevertheless, the probability of fulfilling the nominal
range constraint is not improved. This result can be explained by the fact that the MTOW
given by the MSP is too low. Thus, we launch again steps 4 and 5 of the strategy but with a
higher MTOW value than the one given in by MSP. We operate an 1% increasing. The results
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obtained are in Table 4.5.

Constraint Name Probability of satisfaction

Range 0.42

TOFL 0.57

Climb 1

Cruise 1

Vapp 0.98

Table 4.5: Result of MSP robustness study with a higher MTOW value

The results show that increasing MTOW value helps in decreasing the probability to miss
the constraint on range but, at the opposite, it has a negative effect on the probability to fulfil
TOFL constraint: both constraints are acting in opposite ways. This situation seems to reveal
an impossibility to fulfill all the constraints at the same time.

4.3.2.2 Propagation with moment propagation method

We carry out another uncertainty propagation to evaluate the robustness of the MSP result,
but this time, with the moment propagation method. The results of the analysis are given
in table 4.6. The results are slightly different from those found with Monte Carlo method.

Constraint Name Monte Carlo Moment propagation

Range 0.41 0.35

TOFL 0.73 0.67

Climb 1 0.82

Cruise 1 0.79

Vapp 0.98 0.79

Table 4.6: Result of MSP robustness study with the moment propagation method

Nevertheless, the same pattern emerges: Range and TOFL are the less protected constraints
and the protection on Range does not exceed 50%. The significant difference between both
methods is the computation time. The execution of Monte Carlo with a sample size equal to
500 took around 300 seconds while the execution with the moment propagation method took
around 10 seconds.

4.3.3 Conclusion

The analysis of the MSP robustness with the two methods reveals that the process does not offer
a perfect protection. Most of the constraints seem to be well protected but the method does
not protect TOFL enough, which is the most threatening constraint and it does not ensure the
nominal range for a large number of possible occurrences. Moreover, we have seen that TOFL
and Range constraints react inversely versus an increase of MTOW value coming out of MSP.
Even more, TOFL constraint is much more sensitive than the Range one. Furthermore, the
results also show that combining different assumptions for degradations can protect efficiently
against TOFL constraint but has no significant effect on Range. This last remark requires
to be further investigated. Besides, the method does not explain how to assess the different
degradation coefficient. Finally, it does not take into account the threat level of each constraint.

Figure 4.10 illustrates the threat level of constraints: in case of uncertainty, some the con-
straints threat levels of are not the same. Consequently, it is interesting to have a method which
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Figure 4.10: Illustration of the constraints threat level

allows us to enforce more protection on threatening constraints. For all these reasons, we have
decided to experiments technics of robust optimisation.

Finally, the study conducted in this section has revealed the effectiveness of the moment
propagation method compared to the Monte Carlo method.

4.4 Other example of use of moment propagation method

4.4.1 Illustration of the Design Freedom

We can illustrate the section 3.6 Design freedom page 92 using the Breguet-Leduc equation
presented in chapter 1 (see Eq 1.1). As aforementioned, this relation is a simple but fundamental
model of air transport. It makes the link between the possible range that an airplane can fly
and the necessary amount of fuel.

Range =
1

g
· L
D

· Mach · V snd

SFC
· ln
(

1 +
FuelBurn

OWE + Pl

)

(4.26)

where:

• Range is the distance that can be covered by the airplane (m),

• Mach is the cruise Mach number,

• Vsnd is the sound speed (m/s),

• g is the Gravity acceleration (m/s2),

• Pl is the passenger weight (payload) (kg),

• OWE is the weight of the airplane without passengers and without fuel (kg),

• SFC is the Specific Fuel Consumption (kg/s/N),

• L

D
is the Lift over Drag ratio (no dimension) (further denoted L/D),

• FuelBurn is the quantity of fuel burnt by the aircraft during a given mission (kg).

This relation combines the influence of the three main drivers of air transport efficiency that
are L/D, SFC and OWE. At a given point in project time line, the values of L/D, SFC and
OWE are attached to a certain amount of uncertainty that can be estimated. The following
values are typical of the amount of uncertainty that can be encountered within the first half of
project development of a short range aircraft:
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• ǫL/D = BmystLaw(x=19, a=-0.04, b=0.005, Z=0.75, P=1),

• ǫSFC = BmystLaw(x=1.68·10−5 , a=-1·10−7, b=2·10−7, Z=0.25, P=1),

• ǫOWE = BmystLaw(x=45000, a=-200, b=1500, Z=0, P=1).

A possible targeted maximum range for a modern short range aircraft could be 4000 NM.
Additionally, the following characteristic values of cruise conditions have been used:

• g = 9.806 m/s2,

• Mach = 0.76,

• V snd = 296.53 m/s,

• PL = 11000 kg,

• FuelBurn = 19000 kg.

With these assumptions, we obtain the distribution law displayed in Figure 4.11 for the Range
that can be covered by the airplane:

Figure 4.11: Distribution for the Range that can be covered by the airplane.

By analyzing this output, we found that:

• the probability that the Range become higher or equal to 4000 NM is 18.8%,

• the range value which probability to be achieved is 80% is 3840 NM.

These values are related to a level of difficulty of 0.5 which corresponds to a nominal (medium)
investment in term of design effort.

If we assume more investment in the design effort corresponding to a level of difficulty of 0.7,
uncertainty on efficiency drivers is modified as shown by the graphs in Figure 4.12. Blue curves
correspond to nominal design effort while red curves correspond to an index of design effort of
0.7:

By analyzing the corresponding output, we found that:

• the probability that the Range become higher or equal to 4000 NM is now: 63.7%,
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Figure 4.12: Modification of uncertainty on efficiency drivers: Blue curves correspond to nominal
design effort and red curves correspond to an index of design effort of 0.7.

• the range value which probability to be achieved is 80% becomes: 3973 NM.

We can see that the probability to reach the targeted maximum range has greatly increased
when the design effort has gone from 0.5 to 0.7. An effort a little bit higher than 0.7 would
achieve it with a probability of 80%. Of course this method does not tell what the cost of such
an effort is. This has to be figured out from deeper industrial analysis. At this stage, the method
gives a link between the design effort (not yet scaled) and the achievable performance of the
product inside the validity domain that appears according to the existing aircraft.

4.5 Conclusion

The aim of this chapter was to present the propagation methods that we used in the study. We
focused on two methods: Monte Carlo sampling and moment propagation methods.

The moment propagation method has been put in place: we have overloaded the basic
algebraic operators, the optimizer and the system solvers. We have a way to store the uncertainty
measured with the Beta-Mystique distribution into a generic format. Moreover, we have put in
place the necessary tools in order to propagate the uncertainty through simulation models.

A robustness study of the Margin Setting Process (MSP) has been carried out thanks to
Monte Carlo and moment propagations. Both methods have highlighted the weakness of the
MSP: the method does not offer the best possible protection. Moreover, moment propagation
method turns up to be much more effective than the Monte Carlo method in terms of compu-
tation time.

Finally, in the last part of this chapter, we have presented two examples in which moment
propagation method has been used to:

• transform the Beta Mystique parameters into moments (mean, variance, skewness and
kurtosis) and conversely. That allows to obtain the Beta-Mystique parameters when having
only the moments of a sample of data;

• understand the effect of uncertainty affecting the three pillar parameters (L/D, SFC and
MWE) on the range performance.
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The study carried out in the previous chapter has brought out the weakness of the protection
offered by the Margin Setting Process (MSP) against risk. The solution obtained with MSP
integrates margins but can lead very easily, according to uncertainties, to aircraft configurations
which do not fulfil all the operational requirements. That leads us to the conclusion that the
MSP is not the more efficient method to use to design aircraft configuration that are protected
against risk.

In chapter 2, we have introduced the field of robust optimisation. Robust optimisation
methods take into account uncertainties during the process in order to produce solutions which
are insensitive to this uncertainty. These methods are new for future project engineers and
none of them are implemented or used currently. The use of such methods will help to generate
aircraft configurations which are robust according to identified sources of uncertainty.

The aim of this chapter is to present the methodology put in place to achieve robust air-
craft design. For that purpose, we display hereafter the steps to formulate and solve a robust
optimisation problem in the context of overall aircraft design. First, a robustness measure is
selected, then the mathematical formulation of the robust aircraft optimisation is made explicit,
and finally the method used to solve that robust optimisation problem is presented.

5.1 Modelisation of the robust aircraft design problem

The modelisation of robust optimisation problem is an important step. Indeed, the result of the
optimisation will depend on it. As introduced in chapter 2, we proceed in two steps to model
a robust problem: first we select a robustness measure, then we select the formulation of the
robust optimisation problem itself (integrating the robustness measure selected in the first step).

5.1.1 Choice of a robustness measure

The choice of the robustness measure is crucial. The result of the study relies on it and may
be different according to the measure used. This choice is guided by the type of information
available such as:

• the framework used to quantify the uncertainty,

• the decision-maker expectation about the robust solution,

• the constraints on the computation time.

Overall aircraft design problem has been presented in chapter 1. An aircraft configuration is
said to be optimal with respect to a set of design assumptions, if it is solution of the deterministic
optimisation problem 5.1:

min
x

MTOW (x)

s.t. gj(x) ≤ 0, j = 1, . . . , n (5.1)

where x = (WingArea, SLSThrust), the gj(.) refer to the operational constraints that the
aircraft have to fulfil and n is the number of operational constraints. The fulfilment of those
constraints is the very first difficulty in aircraft design processes since some parts of the models
are just not computable if some related constraints are not satisfied. Afterwards, the capability
of an airplane to fulfil these constraints is later converted into Guaranty of Performances for
the Airliners. Important effort is done to guarantee their feasibility so the robustness measure
considered should underscore this important aspect. Computation time is also an important
issue at this stage: the used methods have to be computationally cheap in order to allow a high
number of design studies. Then, the robustness measure should be, computationally, as cheap
as possible. At last, the robustness measure should be adapted to uncertainty quantified with
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probabilistic tools.

Three categories of measures have been presented in chapter 2: deterministic, probabilistic
and possibilistic. Within these categories, probabilistic measures seem to be the most adapted
to overall aircraft design problem.

In this study, two probabilistic measures are considered:

• expectation measure of robustness on the objective function (the objective function is also
represented by a robustness measure because it is also subject to uncertainty);

• statistical feasibility robustness measure applied on constraints (chance constraints).

The measure proposed for constraints is the probability PG of satisfying all constraints (see
Eq. 5.2):

Pg = P [gj(x, ǫ) ≤ 0, j = 1, . . . , n] ≥ P0, (5.2)

where ǫ is a random variable representing the uncertainty on aircraft model error. This proba-
bility is called joint chance constraint because the probability is calculated for the event all the
constraints are satisfied simultaneously.

The measure proposed on the objective function is the expectation measure (Eq. 5.3):

Rf (x, ǫ) = E[f(x, ǫ)]. (5.3)

5.1.2 Formulation of the robustness problem

Once the robustness measures are selected, the next task is the formulation of the robust opti-
misation problem to solve. The robustness measures have to appear in this formulation. Here
again, the choice of a formulation depends on the characteristics of the problem and on the in-
formation available. In this study, the strategy adopted to transform equation (5.1) is to replace
the objective function and the constraints by their robustness measures. Thus, the formulation
proposed for the robust aircraft design optimisation is equation (5.4):

min
x

E(f(x, ǫ))

s.t. P [gj(x, ǫ) ≤ 0, j = 1, . . . , n] ≥ P0, (5.4)

where x = (WingArea, SLSThrust) and P0 ∈ [0, 1] is the confidence level fixed by the decision-
maker. This formulation means that we look for a couple of values of WingArea and SLSThrust
that gives an aircraft configuration for which the constraints are satisfied with a probability P0

at least.

In equation (5.4), the chance constraint considered is called a joint chance constraint. There
exists another type of chance constraint: the individual chance constraint. In the latter, the
confidence level P0 may be not the same for each constraint. It is useful because sometimes all
constraints do not have the same criticality. For example, one could ask for an aircraft design
for which the constraint on Take-Off Field Length is fulfilled at least 95% and the constraint
on Approach Speed is satisfied only at least 50%. The formulation of the robust problem with
individual chance constraints is as in equation (5.6):

min
x

E(f(x, ǫ)) (5.5)

s.t. P[gj(x, ǫ) ≤ 0] ≥ P0j , j = 1, . . . , n (5.6)

where x = (WingArea, SLSThrust).
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Equation (5.6) is not the final expression of the robust aircraft design problem to calculate.
An information is missing.

Consider again the deterministic optimisation problem in equation (5.1) associated to fig-
ure 1.11 page 16. In this optimisation problem, the design variables areWingArea and SLSThrust
and the criterion to minimise is MTOW. Actually, there is a third design variable which is hid-
den in the Mass-Mission loop: it corresponds to the MTOW used as hypothesis for structural
design. Consider figure 1.13 page 17 which focuses on the mass-mission loop step. As explained,
to initiate the mass-mission loop, an assumption on MTOW value is taken. Moreover, once
the complete geometry of the aircraft is available, as well as aerodynamic forces and structural
mass, the mission of the aircraft is simulated and a new value of MTOW is obtained. To
differentiate the two variables and to avoid misunderstanding, the assumed MTOW value is de-
noted MTOWDV (as design variable) and the value obtained after mission simulation is denoted
MTOWOF (as objective function). What does not appear in figure 1.13, is that MTOWOF may
be lower than (or at most equal to) MTOWDV . And the objective of the mass-mission loop
is to ensure that this inequality is verified. Thus, if MTOWOF is higher than MTOWDV ,
it is recalculated so that its value becomes equal to MTOWDV . As MTOWDV is an input
of the structural design sub-process, it could be considered as a design variable of the whole
optimisation. Thus, the new formulation of the deterministic aircraft design problem is :

min
x

MTOWOF(x)

s.t. gj(x) ≤ 0, j = 1, . . . , n (5.7)

where x = (WingArea,SLSThrust,MTOWDV). With these new variables, figure 1.11 page 16
is transformed and becomes figure 5.1.

Figure 5.1: Overall Aircraft Design Process with a third design variable

Finally, regarding equations (5.6) and (5.7), the robust formulation proposed is (eq. 5.8):

min
x

E(f(x, ǫ))

s.t. P[gj(x, ǫ) ≤ 0] ≥ P0j , j = 1, . . . , n (5.8)

where x = (WingArea, SLSThrust,MTOWDV ).

5.2 Strategy to compute the robustness measures

Two classes of approaches have been presented in the state-of-the-art (chapter 2) to compute
the robustness mesures Pg and Rf :
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• Deterministic approaches corresponding to methods that compute the robustness measures
by using numerical methods;

• Randomised approaches referring to methods that use directly the values of the objective
and which do not need the derivative information.

In aircraft design, the derivative information is not available at any stage of the design. Indeed,
it is possible to have access to it at overall stage but it is quasi impossible at detailed stage.

In this study, we will compare two strategies:

• the first one is to build surrogate models of the robustness measures then to use them for
the optimisation;

• the second one is to directly use moment propagation method to solve the problem.

Both strategies offer the advantage not to focus on the computation of the robustness measure
during the optimisation. Moreover, in the first case, the uncertainty is involved only during
the design of the surrogate models and not anymore during the optimisation. Other methods
such as FORM or SORM are able to directly realise estimations in the range which is in concern.

In the first strategy, two levels of surrogate models are generated: the first level contains
surrogate models of the criterion and the operational performances and the second level contains
surrogate models of the feasibility probability. The process launched to generate these surrogate
models is the following (cf. figure 5.2):

• STEP 1: Generate n vectors of size m of sample of model errors. That gives a matrix ǫ
of size n×m:

ǫ =







ǫ1
...
ǫn






=







ǫ11, . . . , ǫ1m
... , . . . ,

...
ǫn1, . . . , ǫnm






(5.9)

Generate a design of experiments (DOE) of size q×p of the design parameters (WingArea,
SLSThrust, MTOWDV ), where q = 3 is the number of design parameters and p is the
number of samples of each design parameter. The DOE is built thanks to Latin Hypercube
Sampling (LHS) method.

• STEP 2: For each point of the DOE, launch a linear aircraft design analysis by prop-
agating uncertainty stored in vector ǫ1 (first line of ǫ). That gives a set of p aircraft
configurations. With these p aircraft configurations, we are able to compute response
surfaces for each operational constraint and also for the criterion.

Step 2 is repeated n times, where n is the number of vector of model errors. We obtain n
response surfaces for each operational constraint and n response surfaces for the criterion

• STEP 3: Using the surrogate model generated in step 2, we compute, for each con-
straint, the frequencies of aircraft that fulfil requirements. With these frequencies, we are
able to build response surfaces representing the feasibility probability of each operational
constraint.

This approach in two steps allows the user to change the value of the operational require-
ments and to recalculate the feasibility probabilities (step 2) without having to recalculate the
performances (step 2). Changing operational constraints is sometimes performed when engineers
want to understand the sensitivity of the design point to the set of Top Level Requirements itself
which can lead to reconsider the requirements. Nevertheless, this method presents one draw-
back: the two levels of surrogate models introduce two levels of modelling errors which can be
difficult to manage. But it is not limitative.
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Figure 5.2: First strategy: compute robustness measures with surrogate models

5.3 Algorithm for the resolution

Once the robustness measures have been computed with the first strategy, they are used in the
optimisation process in order to compute the robust solutions. For that purpose, an efficient
optimisation solver has to be selected. This selection is done according to the characteristics of
the problem being solved such as the nature of the objective function, constraints, number of
design variables or the decision-maker expectation. Several solvers can be retained for solving
the same problem. In this case, the final choice can be done regarding to the solver execution
time.

In the case of robust overall aircraft design, the solver should be adapted to mono or multi-
objective constraints optimisation problems in which function evaluations are fast because of
the use of surrogate models to retrieve constraints and criteria.

Figure 2.2 page 42 presents the two families of deterministic optimisation methods. The
study is oriented toward derivative-free optimisation algorithms. Three methods have been
taken into consideration:

• Nonlinear Simplex with penalty method for constraints (Nelder-Mead)

• Genetic Algorithm (GA) with Non dominated Sorting Genetic Algorithm (NSGA) for
multi-objective optimisation

• Mesh Adaptative Direct Search (MADS)

In this study, we have used the Nonlinear Simplex with penalty method for constraints for
the mono-objective optimisation and the Genetic Algorithm with NSGA for the multi-objective
optimisation.
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5.4 The test case

Table 5.1 shows the specification of the test case. We want to design a twin jet aircraft, able to
carry 180 passengers, and to reach a range of 3000 nautical miles. Moreover, this aircraft should
have for example an approach speed lower than 130 kt and a Take-Off Field Length lower than
1800 meters. The criterion to minimise is either the Cash Operating Cost (COC).

Design Assumptions Definition/Unit Value

WingAr Wing Aspect Ratio 9

BPR By Pass Ratio 10

Range Design Range (NM) 3000

Mn Cruise Mach number (mach) 0.76

Ne Number of engine 2

Npax Number of passenger 180

AltRef Reference altitude (ft) 35000

Requirements Definition Value

Range Design Range (NM) ≥ 3000

TOFL Take Off Field Length (m) ≤ 1800

ClVz Climb vertical speed (ft/min) ≥ 500

CrVz Cruise vertical speed (ft/min) ≥ 300

Vapp Approach speed (kt) ≤ 130

Table 5.1: Design specifications

5.5 Deterministic aircraft design optimisation

The deterministic optimisation (cf. Eq. (5.7) page 120) is first launched. The results will be
considered as a baseline for comparison. They are stored in table 5.2.

Design Variables Value

Wing Area (m2) 140

Engine size (N) 120910

MTOWDV (kg) 76306

Criterion/Constraints

COC ($/trip) 4259

Range (NM) 3000

TOFL (m) 1799

ClVz (ft/min) 597

CrVz (ft/min) 400

Vapp (kt) 129

Table 5.2: Deterministic optimisation results

In this example, the active constraints are Take-Off Field Length (orange line) and Approach
Speed (yellow line). They are displayed in Figure 5.3.

The optimal aircraft design is located at the intersection of the two active constraints. The
robustness of this design is analysed by using a moment propagation method. In this study,
we consider as uncertain the same three variables presented in chapter 1 when describing the
margin assessment process: L/D, SFC and MWE. The among of uncertainties propagated is
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Figure 5.3: Deterministic optimisation result

fixed according to expert judgement, through Beta Mystique distribution. We consider: ǫL/D ∼

bmyst(1,-0.02,0.01,0.33,1), ǫSFC ∼ bmyst(1,-0.01,0.02,-0.33,1) and ǫMWE ∼ bmyst(1,-0.01,0.02,-
0.33,1). Figures 5.4 to 5.6 present these uncertainties.

Figure 5.4: Uncertainty on LOD

Figure 5.5: Uncertainty on SFC

Table 5.3 displays the results of the analysis.

With this aircraft configuration, requirement on Range is 51% of the times fulfilled, the one
on TOFL is 33% of the times fulfilled, and the one on Vapp is 40% of times satisfied. The
probability on range and approach speed constraints are very low. It is not acceptable because
the fulfillment of the constraint on range is crucial.
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Figure 5.6: Uncertainty on MWE

Constraint names Probability of satisfaction

Range (NM) 0.51

TOFL (m) 0.33

ClVz (ft/min) 1

CrVz (ft/min) 1

Vapp (kt) 0.40

Table 5.3: Probabilistic analysis of the deterministic design with the three uncertain variables
L/D, SFC and MWE by using moment propagation method

5.6 Chance constrained optimisation

5.6.1 Mono-objective optimisation

The chance constrained optimisation (cf. Eq. (5.8)) has been solved thanks to the Simplex algo-
rithm. We compare the results of the strategy where the robustness measures are represented by
surrogate models (further denoted SurrMod), with the results of the strategy based on moment
propagation (further denoted MomProp). The confident levels P0 considered are displayed in
table 5.4.

Probability of safety Confident level P0

P(Range≥ 3000) 0.85

P(TOFL ≤ 1800) 0.95

P(ClVz ≥ 500) 0.75

P(CrVz ≥ 300) 0.95

P(Vapp ≤ 135) 0.75

Table 5.4: Description of the Probability of reliability and the level of confidence P0

The result of the deterministic optimisation is taken as a starting point of the chance con-
strained optimisation.

In the following, we carry two mono-objective studies: one with low amount of uncertainties
and the other one with high amount of uncertainties. In the first case, only the three variables
L/D, SFC and MWE are considered as uncertain. In the second case, we introduce all the
uncertainty quantified in chapter 3 for all SiMCAD models. The aim is to compare the aircraft
configuration proposed in both cases.

5.6.1.1 Low amount of uncertainties

Table 5.5 provides the results obtained with the robust optimisation according to the confidence
levels P0 and according to the two strategies SurrMod and MomProp, in the case with low
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amount of uncertainties.

Design Variables RD with SurrMod RD with MomProp

Wing Area (m2) 149 141

Engine size (N) 124940 123190

MTOWDV (kg ) 79349 77119

Criterion/constraints

COC ($/trip) 4298 4275

P(Range≥ 3000) 0.85 0.85

P(TOFL ≤ 1800) 0.95 0.95

P(ClVz ≥ 500) 0.96 1

P(CrVz ≥ 300) 0.96 1

P(Vapp ≤ 135) 0.99 0.75

Computation time (s) 4 400

Table 5.5: Robust Mono-Objective optimisation results with surrogate models and moment
propagation strategies in the case of low amount of uncertainties

The resulting robust aircraft designs are heavier than the deterministic design for both
SurrMod and MomProp methods. The robust configurations proposed by the Surrogate Models
and moment propagation strategies are respectively: 4% and 1% heavier with a 6% and 1%
bigger wing area and a 3% and 2% bigger engine size than the configuration obtained with the
deterministic approach. At the end, that will cost less than 1% more on both to guarantee the
satisfaction of the requirements at the confident level P0. With these results, we are able to
apprehend the margins that robust optimisation bring to the design.

Furthermore, when focusing on the computation time, Moment Propagation method seems
to be longer than the Surrogate Models strategy. This is only possible because the step of build-
ing the two stages of surrogate models have been done upstream. In fact, when considering all
the steps, Surrogate Models strategy turns to be longer than Moment Propagation strategy.

By using a Monte Carlo sampling (50000 points), we can check the validaty of the results
obtained in Table 5.5 with the robust optimisations. The results of the analysis are presented
in Tables 5.6 and 5.7.

Constraint names Required RD with SM Monte carlo Probabilistic analysis

Range (NM) 0.85 0.85 1

TOFL (m) 0.95 0.95 1

ClVz (ft/min) 0.75 0.96 1

CrVz (ft/min) 0.95 0.96 1

Vapp (kt) 0.75 0.99 1

Table 5.6: Probabilistic analysis of the robust design obtained with surrogate models strategy,
with the three uncertain variables L/D, SFC and MWE by using moment propagation analysis

The active constraints for both optimisations are the Range and the Approach Speed (Vapp).
If we focus on the probability of satisfaction for these constraints, we see that, with the moment
propagation method, the probabilistic analysis gives exactly the required value.

5.6.1.2 High amount of uncertainty

We launched another chance-constrained optimisation by taking into account all the uncertainty
quantified for all SiMCAD models. The required levels of confidence are kept identical than in
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Constraint names Required RD with MP Monte carlo Probabilistic analysis

Range (NM) 0.85 0.85 0.84

TOFL (m) 0.95 0.95 1

ClVz (ft/min) 0.75 1 1

CrVz (ft/min) 0.95 1 1

Vapp (kt) 0.75 0.75 0.75

Table 5.7: Probabilistic analysis of the robust design obtained with moment propagation strat-
egy, with the three uncertain variables L/D, SFC and MWE by using moment propagation
analysis

Table 5.4. To solve the problem, we used only the moment propagation method because the
strategy based on the Monte Carlo method would have required billions of computations to
reach the same level of precision. The results are stored in Table 5.8.

Design Variables RD with MomProp

Wing Area (m2) 165

Engine size (N) 173300

MTOWDV (kg ) 90489

Criterion/constraints

COC ($/trip) 4788

P(Range≥ 3000) 0.85

P(TOFL ≤ 1800) 0.98

P(ClVz ≥ 500) 0.95

P(CrVz ≥ 300) 0.95

P(Vapp ≤ 135) 0.75

Table 5.8: Robust Mono-Objective optimisation results with moment propagation strategy in
the case of full model uncertainties

The aircraft configuration solution, in this case with high amount of uncertainty, is much
larger than the other configuration proposed so far in Table 5.5 (with the moment propagation
method).

From the designer and the airliner point of view, these results are not manageable: on one
hand this aircraft would be too costly and on the other hand it would not be economically
attractive for the airliners. An aircraft design expert would say that a lighter aircraft could be
made for sure that would achieve the same requirements. In other terms: such an aircraft do not
exploit really the possibilities of the technology. This situation is the result of the way models
has been calibrated by minimising the least square error versus the aircraft database. Doing
so, the level of technical skills captured by the model corresponds to an average of what can be
actually done. We would want to have a way to tune this implicit technical skill incorporated
into the models. The Design Freedom Parameter introduced in chapter 3 can play this role. Of
course, it would be interesting to have a quantitative relation between the level of skill and the
cost of the associated design, indeed, a high level of skill is most costly than an average one.
Such a relation would allow to incorporate this cost in the optimisation criteria.

5.6.2 Multi-objective optimisation

Engineers are also interested in the case of optimisation problem where several objectives are
involved i.e. in multi-objective optimisation. For example, one would like to minimise the
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Maximum Take-Off Weight (MTOW) while maximising the range that the aircraft should cover.
This deterministic multi-objective optimisation problem is formulated as follows:

min
x

(MTOWOF (x),−Range(x))

s.t. gj(x) ≤ 0, j = 1, . . . , n (5.10)

where x = (WingArea, SLSThrust,MTOWDV ).

The formulation proposed for the robust multi-objective optimisation is as in Eq. (5.11):

min
x

(E(f1(x, ǫ)), . . . , E(fl(x, ǫ)))

s.t. P[gj(x, ǫ) ≤ 0] ≥ P0j , j = 1, . . . , n (5.11)

where x = (WingArea, SLSThrust,MTOWDV ) and l is the number of objective functions. Its
resolution is carried out thanks to the Genetical Algorithm NSGA.

The first numerical experiment is to solve the bi-objective optimisation which confronts a
cost criterion and one representing the level of robustness. The criterion representing the level
of robustness is the probability not to fulfil all operational constraints at the same time, noted
nJP . This problem has been solved thanks to the NSGA algorithm set up with a population
size equal to 800, a number of children by generation equal to 800 and a maximum number of
generation equal to 500. The result of the bi-objective optimisation is Figure 5.7 showing the
Pareto Front. We recall that the Pareto Front is the set of points representing the compromises
for which it is not possible to improve one objective without deteriorating another one.

Figure 5.7: Pareto Front

All the points on the Pareto front are solutions of the bi-objective optimisation problem.
The two extreme points of the Pareto Front are reported in Table 5.9.

Min Objective COC nJP

COC($/trip) 4802 4904

nJP (%) 79 53

Wing Area (m2) 144 161

Engine size (N) 136421 146333

MTOWDV (kg) 78797 84985

Table 5.9: Result of the robust bi-objective optimisation COC-nJP
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Figure 5.8: Pareto Front population in variable environment

Thanks to the Pareto Front, we are able to visualise the trade-off between cost and robustness.
Indeed, it costs more to build an aircraft with high level of robustness (meaning with a low
probability not to fulfil all constraints together) than one with a low level of robustness.

The selection of a given solution in the Pareto Front is not necessarily done by the engineer as
some strategic and political issues may place the decision at higher hierarchical level. Sometimes,
the task is not easy because of the high number of solutions especially when more than 2 criteria
are involved. Methods have been developed in order to help the user in this task. More details
can be found in [Bau12].

5.7 Conclusion

The aim of this chapter was to present the methodologies proposed to handle robust aircraft
design by the way of chance constrained optimisation. The test case is based on the toolbox of
Scilab codes named SiMCAD presented in chapter 1.

For comparison sake, we have proposed two strategies to solve it:

• the first strategy was to approximate the feasibility probabilities with surrogate models
and to solve the optimisation problem with the surrogate models (in place of the real
probabilities);

• use moment propagation method to get out directly output probabilities and solve the
optimisation problem.

The resolution of the robust optimisation problem has been done thanks to the Simplex for
mono-objective optimisation and thanks to the Genetical Algorithm NGSA for multi-objective
optimisation. The different experiments carried out have first shown the advantages of chance
constrained method compare with deterministic one. The results obtained help in understand-
ing the way the margins are bring to the design in a robust optimisation problem. This study
has also highlighted the weakness and the potential of each of the experimented strategies. The
moment propagation method turns out to have high potential in comparison with the method
using surrogate models.
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Several improvements can be made to the current process:

• increase the level of fidelity of the response surfaces used to approximate the probabilistic
constraints or use another type of surrogate models such as Kriging or polynomial chaos;

• compute the probability not to fulfil all requirements together using the moment propa-
gation method;

• generate output graphics in order to present from a synthetic point of view the results
of the chance constrained optimisation (inspired from the one produced at the end of the
deterministic optimisation);

• propose a method that is able to highlight some particular compromises inside the Pareto
front on the basis of engineering knowledge. This could help the decision maker to select
a final solution.



Conclusion

This last chapter presents the contributions, the conclusions and the perspectives of the thesis.
This study was intended to propose a new Design Philosophy based on robust optimisation tech-
nique in order to manage and integrate quantitative uncertainty management into the very early
phase of aircraft design processes in Airbus. First, we have developed a new generic distribution
function to quantify the uncertainty which have been propagated through the simulation code
thanks to Monte Carlo and moment propagation methods. Then, we have exhibited a strategy
to move from a deterministic aircraft design problem toward a chance constrained optimisation.
This work has lead to the creation of a toolbox of Scilab functions which propose mathemat-
ical tools covering from automated uncertainty quantification and propagation to the chance
constrained optimisation.

Contribution and conclusion

Our first objective was to identify and quantify the source of uncertainty involved at preliminary
aircraft design stage. Such objective has been achieved by adopting a probabilistic framework,
particularly a parametric estimation.

Uncertainty on error modelling, named predictive uncertainty, has been identified as the main
source of uncertainty in aircraft design. It has been quantified using a new generic distribution
function called Beta-Mystique distribution that we have specifically built for that purpose. It is
a four parameters distribution which has the characteristic to adapt itself on the shape of most
of unimodal distributions. The use of a unique distribution function offers the advantage to
simplify the quantification process because it is no more necessary to select a family of density
function. Thanks to the propagation method, we were able to transform the Beta-Mystique
parameters into moments and conversely. Nevertheless, this operation is not always possible in
an exact manner and a strategy has been adopted to manage this conversion in all cases, paying
a decrease of precision when exact conversion is not possible.

The particular structure of the models computing the aircraft performances has been high-
lighted. We have defined, implemented and validated a specific strategy, based on an optimisa-
tion process, in order to assess the predictive uncertainty of such interlinked models. Important
effort has been done to select the more efficient method to solve the problem.

The second objective of the thesis was to select an efficient method for propagating the un-
certainty through the aircraft simulation code. Two methods have been selected: Monte Carlo
method and moment propagation method. The principle of the moment propagation method
has been presented as well as the implementation necessary for its proper integration into the
current conceptual aircraft design process. The implementation method has been based on over-
loading the basic operators, system solvers and local optimization sub-processes. This strategy
has been selected because it was judged as the less intrusive regarding the existing model source
codes.
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A comparison between the two methods has been carried out and the moment propagation
method turns out to be more efficient than Monte Carlo method in terms of computation times.
Moment propagation method reveals to be very adapted to the context of conceptual design and
allows to handle many uncertainty sources without being submitted to combinatorial explosion.
Nevertheless, a limitation of the moment propagation has been pointed out regarding its loss
of precision in case of important non-linearity. A solution to overcome this drawback has been
identified: taking into account the second order derivative information. Further investigation is
currently in progress. Both of these methods have been used to analyse the robustness of an
existing process used in Airbus to manage the risk called the margin setting process (MSP).
The results have revealed the weaknesses of the MSP: poor protection on the most threatening
constraints, no explicit explanation on how to assess the degradation values and no consideration
of the level of threat of each constraint.

Our last objective was to put in place mathematical tools which allow to design aircraft by
mastering the final risks. The selection of the appropriate method to use have been done regard-
ing to the characteristics of the problem. As the feasibility of the constraints is an important
issue in aircraft design, we had to select a method which put importance on that point. That led
us to focus on the chance constrained optimisation where the constraints are probabilistically
guarantee. After exhibiting the path followed to transform the deterministic aircraft design
optimisation into a chance constrained optimisation, two strategies have been used to compute
the probabilistic constraints: the use of surrogate models for approximating the probabilistic
constraints or directly the use of moment propagation method.

The resolution of the optimisation has been done with the Nonlinear Simplex with penalty
method for constraints (Nelder-Mead) in the case of mono-objective optimisation and with the
Genetic Algorithm (GA) with NSGA in the case of multi-objective optimisation.

To summarise, the contribution of the thesis are:

• automation of a process for calibrating the SiMCAD models on a given aircraft database;

• definition, implementation and validation of a methodology for quantifying the predictive
uncertainty of performance models with an interlinked structure;

• automation of a process to identify the predictive uncertainty of all SiMCAD models (with
simple or interlinked structure);

• definition, implementation and validation of a generic four parameter distribution function
called Beta-Mystique for fitting most of unimodal distributions;

• integration and validation of the algebraic propagation of the moments in the current
conceptual aircraft design;

• definition and validation of a numerical strategy to convert the moments into Beta-
Mystique parameters and the reversal;

• proposition of an interpretation of the predictive uncertainty, measured according to a
database, as a design freedom;

• specification and integration of a chance constrained optimisation based on the strategy
of surrogate models and Monte Carlo sampling in conceptual aircraft design;

• specification and integration of a chance constrained optimisation based on moment prop-
agation method in conceptual aircraft design.
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Perspectives

Future work can be focus on some points to improve this presented study. The moment propa-
gation method can be improved by taking into account the second order derivative information.
In addition to the gradient, the operator overloading can also be developed to be able to prop-
agate the Hessian. Consequently, the coupling terms in the moment propagation formulas will
incorporate some more terms. This work has been investigated in the frame of an internship
and will be applied in another thesis which has started recently.

The capability to propagate gradient and Hessian through the computational process can
also be greatly profitable to solve optimisation problems. Late versions of the SiMCAD toolbox
are being adapted to provide Gradient and Hessian to imbedded optimisation methods that
can use them. The use of the uncertainty on model error in terms of design freedom should be
experimented. This would allow to point out the problematic parts of the design and to mitigate
the associated risks by transferring part of the design effort inside the domains which have the
best return on investment in term of technical results.

Clearly, the use of linear interpolation as surrogate models to approximate the probabilistic
constraints is not satisfactory. Other solutions should be used such as Kriging or Polynomial
Chaos in order to reduce (and control) the approximation error.

The possibility to calculate the joint probability (to satisfy all the constraints) thanks to the
moment propagation method has to be investigated. The answer is not obvious because of the
coupling between all constraints through uncertain inputs parameters. The use of copulas may
provide a way to compute this joint probability.

The NSGA algorithm used in this study for solving the multi-objective optimisation problem
might be replaced by its successor, the NSGA II algorithm. In the literature it is presented as
more efficient than NSGA. Another algorithm might be interested to use: the Mesh Adaptative
Direct Search (MADS). It has already been tested in the frame of a thesis on the context of
aircraft departure procedure and has given promising results.

All the processes developed are interesting tools in the frame of new technology evaluation.
In this type of study, we try to evaluate the economical benefit of using a new technology as fuel
cells or electrical engines for instance according to various technical implementation scenario.
Indeed, in this context, only very few data are available, some of them being very fuzzy. That
implies the use of models with low level of fidelity. Then, the quantitative consideration of
the uncertainty allows to sort the different technological scenario according to their credibility,
evaluated in term of probability. A study is currently carried out on this subject in the frame
of another thesis.
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Appendix

A.1 SiMCAD front end

In order to be able to replay all the important steps of this work, a front end has been devel-
oped to be able to launch the corresponding scripts. The front end is able to launch various
sub-process of the work from the calibration of the models on a given aircraft database to the
robust optimisation process including specific illustration of propagation techniques. For each
sub-process, some input variables are offered to the user for modification but the list is not
exhaustive and any other variables can be added just by modifying the scripts. The aim of this
paragraph is to briefly present the use of the SiMCAD front end also called abusively tool box
(the words SiMCAD tool box referencing the internal modules of SiMCAD in other parts of this
report).

The SiMCAD front end is accessible from a Batch file (’.bat’). This file can be launched from
Windows(R) by a double click or from a Disk Operating System (DOS) session. After double
clicking on the Batch file, the user can visualise the GUI of SiMCAD front end, presented in
Figure A.1.

Figure A.1: SiMCAD Architecture

Several choices are proposed to the user as a list of tabs. To activate his choice, he just has
to click on the corresponding tab. In the remainder of this section, we give examples on the
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steps to follow to carry out specifics studies such as a deterministic aicraft optimisation or a
robust aircraft optimisation.

A.1.1 Deterministic Optimisation

To launch a deterministic aircraft optimisation, the user has to click on the tap ’deterministic
studies’ then on ’Optimised Design’. Another window opens so that the user can enter its
preferences on the requirements the aircraft should fulfil: the total number of passengers, the
range, the Cruise Mach number, the reference altitude, the number of engines, the By Pass
Ratio, the Wing Aspect Ratio, the Take-Off Field Length and finally the approach speed. The
user can visualise the process running (see Figure A.3).

Figure A.2: Deterministic optimisation

Figure A.3: Deterministic optimisation running

The result of the optimisation is presented to the user through three files: a Scilab file
and a text file containing the description of the optimal aircraft configuration and a graphic
representing the position of the solution regarding the active constraints.

A.1.2 Uncertainty

The tool box offers several tabs related to uncertainty management. The first tab is related
to the Beta-Mystique (Figure A.5). The user has the possibility to display a graphical setting
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Figure A.4: Results of the deterministic optimisation

of the Beta-Mystique distribution. It can also launch basic operations with this distribution:
addition, subtraction, multiplication, division, power, log, and exponential. Figure A.6 presents
the addition of two Beta-Mystique distributions.

Figure A.5: Beta-Mystique distribution

Uncertainty propagation study can be executed with SiMCAD tool box. Two methods are
proposed: the moment propagation method and the Monte Carlo method. The moment prop-
agation method is accessible via the tab ’moment propagation’ and the Monte Carlo method
under the tab ’sampling propagation’. Based on these propagation methods, we have imple-
mented the whole code sequence for the robustness study of some processes such as the Margin
Setting Process (see Figure A.7).

A.1.3 Robust aircraft optimisation

To launch a robust aircraft optimisation, the user has to click on the tab ’CCP by sampling’
for Chance Constraint Programming. The user will be offered a list of control to carry out the
robust optimisation from the generation of error sampling to the resolution of the optimisation.
He will just have to follow the different steps from the first tabs to the optimisation.
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Figure A.6: Addition of two Beta-Mystique distributions

Figure A.7: Robustness study of the Margin Setting Process with the moment propagation
method
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The user can launch the robust optimisation by using two strategies: the first one is to build
two levels of surrogate models in order to approximate the feasibility probability and the second
one is to use moment propagation method.

To launch the first strategy with the surrogate models, the user has to execute the following
steps:

• generate the model error sampling,

• build the performance data,

• build the surrogates models to approximate the aircraft performances,

• build the surrogates models to approximate the feasibility probabilities,

• launch the robust optimisation named ’CCP by MC’.

To launch the second strategy with the moment propagation, the user has to execute the
following steps:

• generate the model error sampling,

• launch the robust optimisation named ’CCP by FOM’.

Whatever the strategy selected by the user, when clicking on the taps for the resolution of
the optimisation, the user is asked to enter its preference on the value of the confident level P0,
as in Figure A.8.

Figure A.8: Optimisation with Surrogate Models strategy

SiMCAD front end also proposes a tab to launch multi-objective optimisation. The currently
proposed resolution used the two level of surrogate models to approximate the feasibility proba-
bility and the Genetical Algorithm Non dominated Sorting Genetic Algorithm (NSGA). During
the execution, the user can visualise the point into the parameter space and the evolution of the
Pareto Front.
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Figure A.9: Multi-Objective optimisation with Surrogate Models strategy and Genetical Algo-
rithm NSGA
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A.2 Some statistical tools

Several methods exist to validate the choice of the density function. Their objective is to test the
adequacy between the sample of data and a candidate density function. They can be split into 2
groups: empirical method and statistical test (also called goodness-of-fit tests). In the empirical
method, we find histogram and quantile-quantile plot (Q-Q plot). They are both graphical tools.
Examples of goodness-of-fit tests are Chi-square, Kolmogorov-Smirnov, Cramer-Von Mises or
Anderson Darling tests. In the next paragraphs, we give a brief description of Q-Q plot method
and Anderson-Darling test (the definitions are extrated from OpenTURNS documentation).

A.2.1 Quantile-Quantile plot

Let X be a scalar uncertain variable modelled as a random variable. Quantile-Quantile plot
is a graphical tool used to test whether two samples of data {x1, . . . , xn} and {x′1, . . . , x′n} are
coming from the same probability distribution or not.

The α-quantile qX(α) of X, where α ∈ (0, 1) is defined as follows:

P(X ≤ qX(α)) = FX(qX(α)) = α. (A.1)

Then:

qX(α) = F
−1
X (α). (A.2)

The 50%-quantile (qx(50%)) is called the median, and the 25%-quantile (qx(25%)) and 75%-
quantile (qx(75%)) are called the quartiles.

The value of the quantile is estimated empirically by using the sample. It is done in two steps:

1. the sample {x1, . . . , xn} is sort in increasing order to obtain the ordered statistics x(1), . . . , x(N),

2. the α-quantile value is estimated by q̂X(α) = x([N ]+1)

where [N ] is the intregral part of N .

A second estimate q̂′X(α) of the quantile can be calculated with the sample {x′1, . . . , x′n}. If
F is its cummulative distribution function, then we have:

q̂′X(α) = F
−1
X (

j

N + 1
). (A.3)

Then, if the sample of data is really coming from the distribution F, the points {q̂X(α), q̂X (α)′}
should form a line (see figures A.10 and A.11).

Henry plot (or Henry line) is a classical, simple and quick way to test the adequation between
the normal distribution and a sample of data. It is a particular case of Quantile-Quantile plot.
Nevertheless, as the Cumulative Distribution Functions of the normal distribution has no simple
expression, we used one of the properties of the Normal distribution given by: if X follows a
Normal distribution with mean µ and standart deviation σ, then X−µ

σ follows a Normal distri-
bution with mean 0 and standart-deviation 1.

Let us consider F the empirical CDF of the sample and G the CDF of the Normal distribu-
tion. The Henry line is built by following these steps:

1. Classification of the sample {x1, . . . , xn} in an increasing order.

2. Calculation of values of the CDF Fi of the observed sample, with Fi =
i−3/8
n+1/4 (see [CC88]).
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Figure A.10: Quantile-Quantile plot of Gamma data quantile versus Gamma theoretical quantile:
the adequation between the two samples is total and it is materialized by a line.

Figure A.11: Quantile-Quantile plot of Chi-square data quantile versus Gamma theoretical
quantile: there is no adequation between the two samples.

3. Calculation of quantiles z∗(i) associated to each value Fi by using the inverse of the normal
ditribution with mean 0 and standart-deviation 1.

4. Representation of (x(i), z∗(i)).

If the distribution of observed sample is really a Normal distribution, then there exists a linear
relation between the quantile of the observation and the theoretical Normal function with mean 0
and standart-deviation 1. The points (x(i), z∗(i)) represent a line called ”Henry line”.

A.2.2 Anderson-Darling test principle

The principle of the test is based on the calculation of the distance between the CDF of the
sample of data x1, . . . , xn, noted FN and that of the probability distribution which is tested,
noted F. This distance belong to the class of quadratic statistical measure and is equal to:

D =

∫ +∞

−∞

[F(x)− FN (x)]2

F(x)(1− F(x))
dF(x). (A.4)

With the sample of data x1, . . . , xn sorted in an increasing order x(1), . . . , x(n), this distance D
is estimated with:

D̂ = −N −
N
∑

i=1

2i− 1

N
[ln(F(x(i))− ln(1− F(x(N+1−i)))]. (A.5)

The probability distribution of the distance D̂ is asymptotically known. If N is sufficiently large,
one can calculate the threshold dα such that:
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• D̂ > dα, the candidate distribution is rejected with a risk of error α,

• D̂ < dα, the candidate distribution is considered acceptable.

dα depends on the candidate distribution F being tested. In the context of OpenTURNS,
it is limited to the case of a Normal distribution. The assumption which is tested is: ”The
SiMCAD model error is normally distributed”. Then, dα is calculated such that:

• D̂ > dα, SiMCAD model error is not normally distributed with a risk of error α,

• D̂ < dα, SiMCAD model error is normally distributed.

A.2.3 Parameter estimation of Density function

Once a density function is selected, we have to evaluate its parameter values that allow fitting
the sample of data as well as possible. We present two methods hereafter: Method of Moments
and Maximum Likelihood Method.

A.2.3.1 Method of Moments

The Method of Moments (MM) is the simplest existing method in order to evaluate the value of
the parameter θ of a probability distribution that allows to best fit the probability on a sample
of data {x1, . . . , xn}. The method is based on the calculation of the empirical moments (see
section 2.4.3.3 page 55) of the observed data (see [FEHP11]).
Suppose we look for an estimator θ̂ of the parameter θ = (θ1, θ2, . . . , θp) (where p is the number
of scalar parameters of fX) of the probability distribution fX according to a sample of data
{x1, . . . , xn}. We know the expression of the first p moments of the probability distribution fX
which are defined as follow:

m1(θ) = E(X)

m2(θ) = E(X2)

... (A.6)

mp(θ) = E(Xp).

Moreover, we can compute the first p empirical moments of the sample of data {x1, . . . , xn}
given as:

µ1 =
1

n

n
∑

i=1

xi

µ2 =
1

n

n
∑

i=1

x2i

. . . (A.7)

µp =
1

n

n
∑

i=1

xpi . (A.8)

The method of moment estimator θ̂MM is the value of θ solution of the following system:

mr(θ) = µr for r = 1, . . . , p. (A.9)
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Example: Suppose X follows a gamma distribution with parameter θ′ = (α, β) and with
density function:

f(x; (α, β)) =
βαxα−1exp(−βx)

Γ(α)
.

The theoretical moment of X are:

E(X) =
α

β
(A.10)

E(X2) =
α

β2
. (A.11)

Suppose we have a sample of data {x1, x2, ..., xn}, assuming to follow a gamma distribution.
The first two empirical moments are given by:

µ1 =
1

n

n
∑

i=1

xi = x̄ (A.12)

µ2 =
1

n

n
∑

i=1

x2i = s2. (A.13)

According to the method of moments, the estimator θ̂′MM = (α̂, β̂) of θ is solution of the system:

{

E(X) = µ1

E(X2) = µ2.

Thus, the estimators of α̂ and β̂ are:

α̂ =
x̄2

s2
(A.14)

β̂ =
x̄

s2
. (A.15)

A.2.3.2 Maximum Likelihood Method

The Maximum Likelihood Estimation (MLE) is another method to estimate the value of θ. It
has been popularized by the statistician, biologist, eugenicist and geneticist R. A. Fisher. The
MLE method is based on the calculation of the likelihood function from the density function
taken as assumption and the sample of observed data.
Suppose we have the sample of data {x1, . . . , xn} iid: independent and identically distributed.
The expression of the likelihood function is given by:

L(x1, . . . , xn; θ) =

n
∏

i=1

fX(xi, θ). (A.16)

It can be seen as a the joint PDF of the sample (x1, . . . , xn). The estimator θ̂MLE of θ is the
value of θ that maximise the likelihood function A.16. It is an optimisation process. In practice,
it is more convenient to maximise the log-likelihood function than the likelihood one itself. The
expression of θ̂MLE is given by:

θ̂MLE = argmaxθ∈Rn ln L(x1, . . . , xn; θ)). (A.17)
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Example

Consider the exponential probability distribution with parameter λ (λ > 0) and with PDF given
by:

f(x, λ) =

{

λe−λx if x ≥ 0
0 else.

The likelihood function is expressed as follow:

L(x1, . . . , xn;λ) =
n
∏

i=1

λe−λxi (A.18)

= λne−λ
∑n

i xi . (A.19)

The log-likelihood associated is:

lnL(x1, . . . , xn;λ) = nln(λ)− λ

n
∑

i

xi. (A.20)

It is a concave function of λ. The first derivative regarding λ is:

∂lnL(x1, . . . , xn;λ)

∂λ
=

n

λ
−

n
∑

i

xi. (A.21)

The previous first derivative is null for:

λ̂ =
n

∑n
i xi

. (A.22)

Thus, the MLE estimator λ̂MLE of λ is:

λ̂MLE =
n

∑n
i xi

. (A.23)

A.2.4 Random variate generation

A.2.4.1 Cumulative Density Function Inverse Method

To propagate uncertainty source which are quantified with a PDF, it is necessary to first generate
random variates from this probability distribution. To generate random simulations, we use a
sample of random simulations of the Uniform(0,1) distributions which is transformed in order to
obtain random simulations of the selected distribution. Several methods exist in the literature to
do this transformation: the CDF inversion method, the rejection method (commonly called the
acceptance-rejection method), the decomposition as discrete mixture method, the acceptance-
complement method... Devroye ([Dev86]) gives a detailed description of some of them. Some
techniques are specific to the type of distribution considered: [MT00] deals with a method for
generating gamma samples and [Doo05] with one for generating normal samples. In our study,
we used the CDF inversion method (previously described). It is the most simple and direct
method for simulation. It is based on the following theorem:

Theorem A.2.1. Let F be a continuous CDF, with an inverse function F
−1 given by:

F
−1(u) = inf{x : F(x) ≥ u, u ∈ [0, 1]}. (A.24)

If U is a variable following an uniform probability distribution on [0,1], then F
−1(U) is

distributed from F. Moreover, if X has F as CDF, then F(X) is uniformly distributed on [0,1].

The method is illustrated in figure A.12. Proof of theorem A.2.1 is available in [Dev86]. This

method is generally used when a simple analytical expression of the inverse CDF is available.
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Figure A.12: Graphical illustration of the inverse method

A.2.4.2 Gaussian case: Box-Muller Method

The Inversion Method previously described is not effective when facing the Normal density as
there is no simple expression of the Gaussian CDF. In 1958, George Box and Mervin Muller has
created an ingenious transformation to overcome this issue: Box-Muller transformation. The
Box-Muller transformation maps an Uniform(0,1) distribution to a standard Normal distribu-
tion. If U1 and U2 are random variables following a Uniform(0,1) distribution, then the random
variables

N1 =
√

−2 ∗ ln(U1) ∗ cos(2πU2)

and

N2 =
√

−2 ∗ ln(U1) ∗ sin(2πU2)

follow a standard normal distribtuion. Thus, variables

S1 = µ+ σN1

and

S2 = µ+ σN2

follow a normal distribution with mean µ and standard-deviation σ.

A.3 Breguet-Leduc equation

In this section, we give further details on the three technological pillar that are combined in the
Breguet-Leduc equation.

Breguet-Leduc is important because through its expression it appears that any technical modi-
fication of the aircraft can finally be expressed in term of L/D, SFC and MWE. Of course, many
constaints will drive the design of the aircraft, but, at the end of the day, the combination of
the resulting values of L/D, SFC and MWE will mostly contribute to its overall performance.
We present hereafter each of these three pillars.



A.3. BREGUET-LEDUC EQUATION 147

A.3.1 Aerodynamic efficiency

An aircraft in movement is subject to 4 main forces (see A.13):

• Lift (L)

• Weight (mg)

• Thrust (Fn)

• Drag (T)

Figure A.13: Forces applied to an aircraft in movement

As any other object on the Earth, the aircraft is subject to the force called Weight due to the
gravity. To be able to go up, a force is necessary to overcome the Weight of the aircraft. This
force is called Lift. It is created due to the way the air moves around the aircraft wing. When
having lift, we need help to move forward and create more air movement around the wing. This
is done with the engine. The engines create a force called Thrust which help to go forward.
Thrus also help to overcome Drag which is the consequence of the movement of the aircraft
through the air.

These four forces are applied to any powered aircraft (see figure A.14).

Figure A.14: Forces applied to a glider in movement

In the case of a glider there is no thrust to balance the drag, thus The glider can only move
in the air mass that surrounds it. The projection of its weight along the glide path is playing the
role of the engine thrust. The glider can rise above the ground when the air mass that surrounds
it is rising quicker than the glider is going down.

The flight path angle γ can be expressed from thrust force T and lift force L:

tan(γ) =
T

L

. Thrust and lift force are generally represented by the product of a pressure with a surface
T = p ∗ S and L = p ∗ S where:

• p is the pressure given by
1

2
∗ ρ ∗ V 2



148 Appendix

• S is an arbitrary surface. Wing area is generally taken as reference in this study.

Then we have T =
1

2
∗ ρ ∗ V 2 ∗ S and L =

1

2
∗ ρ ∗ V 2 ∗ S. As S is an arbritrary value,

it is necessary to add a coefficient which will allow to find the exact value of drag and lift.
These coefficients are denoted Cx for the drag and Cz for the lift. They are called aerodynamic
coefficient. That lead to

T =
1

2
∗ ρ ∗ V 2 ∗ S ∗ Cx

and

L =
1

2
∗ ρ ∗ V 2 ∗ S ∗ Cz

. Then, the expression of the angle of attack α is:

tan(α) =
T

L
(A.25)

=
1
2ρV

2S ∗ Cx
1
2ρV

2S ∗ Cz
(A.26)

=
Cx

Cz
(A.27)

=
D

L
(A.28)

This last equation is the expression of an efficiency denoted L/D ratio which is an indicator
of the quality of the aerodynamic form of the aircraft.

A.3.2 Propulsive efficiency

The SFC is related to the efficiency of the propulsion system. It represents the weight of Fuel
burnt by unity of time (hours) and by unity of thrust (newton).

SFC =
Fuelf low

Thrust
=

[M ]

[T ][F ]
=

kg

h ∗N (A.29)

It varies according to the flying conditions. It generally takes its value in the range [0.45 -
0.65] (even if most of aircraft have one between 0.58 and 0.63). The efficiency of the propulsion
system deacreases when the SFC increases.

A.3.3 Structural efficiency

The structural efficiency can be seen as the ability to move from one point to another one by
using the minimum quantity of structure. This efficiency is given by:

η =
Arrival Weight

Departure Weight
(A.30)

This efficiency is related to the technology level. Its values is nowadays around 0.5. A
technological breakthrough is needed if we want to move this value significantly lower.

A.3.4 Combination in Breguet Leduc equation

Hypothesis: SFC, f, Q = Departure Weight - Arrival Weight = Weight of fuel burnt. We look
for the relation existing between Q and Ra.

dx

dQ
=

V

SFC · F
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Ra =

∫ B

A

V

SFC · F dQ

Ra =
V · f

SFC · g

∫ B

A

dQ

m

Fuel loss involving weight loss, we have: dQ = −dm. Then, we have:

Ra =
V · f

SFC · g

∫ B

A

dm

m
(A.31)

= − V · f
SFC · g

∫ M2

M1

dm

m
(A.32)

= − V · f
SFC · g (log(M2)− log(M1)) (A.33)

= − V · f
SFC · g log

(

M2

M1

)

(A.34)

=
V · f

SFC · g log

(

M1

M2

)

(A.35)

where M1 is the aircraft weight at departure and M2 the aircraft weight at arrival.
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A.4 SiMCAD

A.4.1 Geometrical description

Table A.1: Description of geometrical parameters

Name Usual Unit Short Description

Cabin

TotalNpax integer Total number of passengers
NpaxAbreast integer Number of pax abreast in economic class

Naisle integer Number of aisle in economic class

Fuselage

FusLength m Total fuselage length
FusHeight m Fuselage section height
FusWidth m Fuselage section width
FusFuel l Fuel in fuselage tank(s)
FusGWA m2 Fuselage gross wetted area

Wing

WingArea m2 Wing reference area
WingSpan m Wing span
WingAR no dim Wing aspect ratio : (WingSpan)2 over Wing Area
WingTR no dim Wing taper ratio : Tip Chord over Root Chord ratio

WingSweep deg Wing sweep angle at 25% chord
WingMac m2 Wing mean aerodynamic chord
WingToCr no dim Wing thickness over Chord ratio at root
WingToCk no dim Wing thickness over Chord ratio at main kink
WingToCt no dim Wing thickness over Chord ratio at tip

WingCTkFuel litre Fuel volume in the wing centre tank
WingFuel litre Fuel volume in the wing
WingGWA m2 Wing gross wetted area

Horizontal stabiliser

HtpArea m2 Horizontal tail plane area
HtpAR no dim Horizontal tail aspect ratio
HtpTR no dim Horizontal tail taper ratio

HtpSweep deg Horizontal tail sweep angle at 25% chord
HtpLarm m Horizontal tail lever arm
HtpVolume no dim Horizontal tail volume factor
HtpFuel litre Horizontal tail fuel volume
HtpGWA m2 Horizontal tail gross wetted area

Vertical stabiliser

VtpArea m2 Vertical tail plane area
VtpAR no dim Vertical tail aspect ratio
VtpTR no dim Vertical tail taper ratio

VtpSweep deg Vertical tail sweep angle at 25% chord
VtpLarm m Vertical tail lever arm
VtpVolume no dim Vertical tail volume factor
VtpGWA m2 Vertical tail gross wetted area

Landing gear

nWheel int Number of wheel on main landing gear

Nacelles

nEngine int Number of engines
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NacHeight m Nacelle height
NacWidth m Nacelle width
NacLength m Nacelle length
NacGWA m2 Nacelles and pylons gross wetted area

BPR nodim Engine by pass ratio

A.4.2 Aerodynamic description

Table A.2: Description of aerodynamic parameters

Name Usual Unit Short Description

ZpRef ft Reference altitude for aero data
CruiseMach mach Cruise Mach number
LoDmaxCz no dim Lift coefficient for maximum Lift over Drag ratio
LoDmax no dim Maximum Lift over Drag ratio
CzMaxTO no dim Maximum lift coefficient in Take-off for MTOW SL ISA
CzMaxLD no dim Maximum lift coefficient in landing configuration

A.4.3 Mass description

Table A.3: Description of mass parameters

Name Usual Unit Short Description

Mass breakdown

WingMass kg Wing equipped structural weight
FusMass kg Fuselage equipped structural weight
HtpMass kg Horizontal tail equipped structural weight
VtpMass kg Vertical tail equipped structural weight
LdgMass kg Landing gear weight
PylonMass kg Engine pylons equipped structural weight
EngMass kg Total engine weight
SystMass kg System weight
FurnMass kg Furnishings

MWEadjust kg MWE Adjustment

Operational masses

OpItemMass kg Operator items weight
ContPallMass kg Containers and Pallets weights (Tare)

Characteristic masses

MWE kg Evaluation MWE
OWE kg Evaluation Operational empty weight
MZFW kg Maximum Zero Fuel Weight
MFW kg Maximum Fuel Weight
MLW kg Maximum Landing Weight
MTOW kg Maximum Take-off Weight

FuelDensity kg/l Fuel density

A.4.4 Engine Performance
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Table A.4: Description of engine parameters

Name Usual Unit Short Description

Propulsion

SLSThrust lbf Sea level static thrust (reference thrust)

Take-Off Normal: case 1

TONzp1 ft Altitude for TON thrust
TONmach1 mach Mach number for TON thrust
TONdisa1 degK delta ISA for TON thrust
TONkfn1 no dim Throttle push factor on TO rating

TONthrust1 lbf Normal take off rating thrust at sea level

Take-Off Normal: case 2

TONzp2 ft Altitude for TON thrust
TONmach2 mach Mach number for TON thrust
TONdisa2 degK delta ISA for TON thrust
TONkfn2 no dim Throttle push factor on TO rating

TONthrust2 lbf Normal take off rating thrust at sea level

Maxi Continuous

MCNzp ft Altitude for MCN thrust
MCNmach mach Mach number for MCN thrust
MCNdisa degK delta ISA for MCN thrust
MCNkfn no dim Throttle push factor on MCN rating

MCNthrust lbf Maxi continuous rating thrust

Max Climb

MCLzp ft Altitude for MCL thrust
MCLmach mach Mach number for MCL thrust
MCLdisa degK delta ISA for MCL thrust
MCLkfn no dim Throttle push factor on MCL rating

MCLthrust lbf Maxi climb rating thrust

Max Cruise

MCRzp ft Altitude for MCR thrust
MCRmach mach Mach number for MCR thrust
MCRdisa degK delta ISA for MCR thrust
MCRkfn no dim Throttle push factor on MCR rating

MCRthrust lbf Maxi cruise rating thrust

SFC bucket

BucketZp ft Altitude for bucket sfc
BucketMach mach Mach number for bucket sfc
BucketDisa degK delta ISA for bucket sfc
BucketK Sfc no dim Technological factor on bucket SFC
BucketThrust lbf Net thrust at bucket sfc conditions
BucketSfc lb/lbf/h Minimum specific fuel consumption

A.4.5 Operationnal performance

Table A.5: Description of operational parameters

Name Usual Unit Short Description

Take-off: case 1

ToDisa1 degK Temperature shift for take off case 1
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ToZp1 ft Pressure altitude for take off case 1
ToKmtow1 no dim MTOW ratio for take off case 1
ToKvs1g1 no dim Factor V2/Vs1g for take off case 1

Tofl1 m Field length for take off case 1

Take-off: case 2

ToDisa2 degK Temperature shift for take off case 2
ToZp2 ft Pressure altitude for take off case 2

ToKmtow2 no dim MTOW ratio for take off case 2
ToKvs1g2 no dim Factor V2/Vs1g for take off case 2

Tofl2 m Field length for take off case 2

Landing

LdDisa1 degK Temperature shift for landing case 1
LdZp1 ft Pressure altitude for landing case 1

LdKmlw1 no dim MLW ratio for landing case 1
LdKvs1g1 no dim Factor Vapp/Vs1g for landing case 1
LdSpeed1 kt Approach speed for landing case 1

Ceiling Climb

ClbDisa1 degK Temperature shift for climb case 1
ClbVz1 ft/min Required vertical speed for climb case 1

ClbKmtow1 no dim MTOW ratio for climb case 1
ClbZp1 ft Ceiling pressure altitude for climb case 1

Ceiling Cruise

CrzDisa1 degK Temperature shift for cruise case 1
CrzVz1 ft/min Required vertical speed for cruise case 1

CrzKmtow1 no dim MTOW ratio for cruise case 1
CrzZp1 ft Ceiling pressure altitude for cruise case 1

Buffeting

CeilBufDisa degK Temperature shift for buffeting ceiling
CeilBufKmtow no dim MTOW ratio for buffeting ceiling
CeilBufKcz no dim effective CL margin versus buffeting lift
CeilBufZp ft Ceiling pressure altitude for buffeting

One engine out

CeilOeiDisa degK Temperature shift for one engine out ceiling
CeilOeiKmtow no dim MTOW ratio for one engine out ceiling
CeilOeiPath rad Effective climb path angle for one engine
outCeilOeiZp ft Ceiling pressure altitude with one engine out

Max sar

MaxSarDisa degK Temperature shift for max SAR altitude
MaxSarKmtow no dim MTOW ratio for max SAR altitude

MaxSarZp ft altitude for max Specific Air Range

Time to climb

TtcDisa degK Temperature shift for Time to climb
TtcKmtow no dim MTOW ratio for time to climb

TtcZp ft Altitude to reach for time to climb
TimeToClimb min Time to climb

A.4.6 Mission performance
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Table A.6: Description of mission parameters

Name Usual Unit Short Description

Conditions

HSperfoDisa degK Temperature Shift for all mission computations

Nominal

NominalMisRange NM Range of nominal mission
NominalMisTOW kg Take off weight of nominal mission
NominalMisZFW kg Zero fuel weight of nominal mission

NominalMisTotalFuel kg Total fuel of nominal mission
NominalPayLoad kg Payload of nominal mission

Max payload

MaxPlMisRange NM Range of max payload mission
MaxPlMisTOW kg Take off weight of max payload mission
MaxPlMisZFW kg Zero fuel weight of max payload mission

MaxPlMisTotalFuel kg Total fuel of max payload mission
MaxPayLoad kg Payload of max payload mission

Max fuel

MaxFuelMisRange NM Range of max fuel mission
MaxFuelMisTOW kg Take off weight of max fuel mission
MaxFuelMisZFW kg Zero fuel weight of max fuel mission
MaxFuelWeight kg Total fuel of max fuel mission

MaxFuelMisPayload kg Payload of max fuel mission

Zero payload

ZeroPlMisRange NM Range of zero payload mission
ZeroPlMisTOW kg Take off weight of zero payload mission
ZeroPlMisZFW kg Zero fuel weight of zero payload mission

ZeroPlMisTotalFuel kg Total fuel of zero payload mission

Cost

CostMisRange NM Range of cost mission
CostMisTOW kg Take off weight of cost mission
CostMisZFW kg Zero fuel weight of cost mission

CostMisPayload kg Payload of cost mission
CostMisBlockFuel kg Block fuel of cost mission
CostMisBlockTime min Block time of cost mission

A.4.7 Operating cost

Table A.7: Description of Cost parameters

Name Usual Unit Short Description

LaborCost $/h Labor Cost (typically: 60 $/h)
FuelPrice $/USgal Fuel Price (typically: 2 $/USgal)

ZeroPlMisTOW kg Take off weight of zero payload mission

+1

A.1.8 Geometry Models
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Table A.8: Equations

Formula Type

WingArea = 88 · TotalNpax · 1.10−9 ·DesignRange+ 60 (1) Model

SLSThrust =
177 · TotalNpax · 1 · 10−6 ·DesignRange+ 100000

Nengine
(2) Model



























































TotalNpax ≤ 8, NpaxAbreast = 2;

8 < TotalNpax ≤ 16, NpaxAbreast = 3;

16 < TotalNpax ≤ 50, NpaxAbreast = 4;

50 < TotalNpax ≤ 100, NpaxAbreast = 5;

100 < TotalNpax ≤ 225, NpaxAbreast = 6;

225 < TotalNpax ≤ 300, NpaxAbreast = 8;

300 < TotalNpax ≤ 375, NpaxAbreast = 9;

375 < TotalNpax,NpaxAbreat = 10;

(3) Model

{

NpaxAbreast ≤ 6, Naisle = 1

NpaxAbreast > 6, Naisle = 2
(4) Model

FusWidth = 0.38 ·NpaxAbreast+ 1.05 ·Naisle+ 0.55 (5) Model
FusHeight = 0.38 ·NpaxAbreast+ 1.05 ·Naisle (6) Model

FusLength = 7.9 · FusWidth+ 0.0063

(

TotalNpax

NpaxAbreast

)2.2

(7) Model

FusFuel = sign(Ftk) · 0.27 · FusLength · FusWidth ·max(0, FusHeight − 2.2) (8) Model

FusGWA = 2.47 · FusLength ·
√

FusWidth · FusHeight (9) Model

WingMac = 1.2 ·
√

WingArea

WingAR
(10) Model

WingSpan =
√

WingArea ·WingAR (11) Model

K = 3 ·
(

WingSpan ·WingMac

4 ·WingArea

)

(12) Model

WingTR =
0.8 · ((2 ·K − 1)−

√
4 ·K − 3)

2 · (1−K)
+ 0.15 (13) Model

WingSweep = 1.59 ·max 0, (CruiseMach− 0.5) (14) Model

WingToCr = −0.030 · CruiseMach+ 0.180 ·
√

cos(WingSweep) (15) Model

WingToCk = −0.028 · CruiseMach+ 0.140 ·
√

cos(WingSweep) (16) Model

WingToCt = −0.016 · CruiseMach+ 0.120 ·
√

cos(WingSweep) (17) Model
WingGWA = (0.00005 ·WingArea+ 1.6) ·WingArea (18) Model






WingFuel = 0.2 ·WingArea ·WingMac · ...

... · 5 ·WingToCr + 3 ·WingToCk + 2 ·WingToCt

10

(19) Model

WingCTkFuel = sign(Ctk) · 1.3 · FusWidth ·WingToCr ·WingMac2 (20) Model
NacWidth = 0.28 ·BPR+ 0.000004 · SLSThrust (21) Model
NacHeight = 0.28 ·BPR+ 0.000004 · SLSThrust (22) Model
NacLength = 0.63 ·BPR+ 0.0000013 · SLSThrust (23) Model

NacGWA = 0.9 ·Nengine · π ·
√

NacHeight ·NacWidth ·NacLength+ 16 (24) Model

HtpV olume = −0.087 · SLSThrust · 1 · 10−5 + 1.05 (25) Model
HtpAR = 5.1 (26) Constant
HtpTR = 0.35 (27) Constant
HtpSweep = 0.7 · abs(WingSweep) + 0.2 (28) Model
HtpLarm = (0.0002 · FusLength+ 0.45) · FusLength (29) Model
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HtpArea = 1.012 · (HtpV olume ·WingArea · WingMac

HtpLarm
) + 0.16 (30) Model

HtpGWA = (−0.002 ·HtpArea+ 1.82) ·HtpArea (31) Model
HtpFuel = sign(T tk) · 0.08 ·HtpArea (32) Model
V tpV olume = −0.0014 · (WingSpan · SLSThrust · 1 · 10−6) + 0.09 (33) Model
V tpAR = 1.7 (34) Constant
V tpTR = 0.4 (35) Constant
V tpSweep = 0.75 · abs(WingSweep) + 0.3 (36) Model
V tpLarm = (0.00034 · FusLength+ 0.42) · FusLength (37) Model

V tpArea = (V tpV olume ·WingArea · WingSpan

V tpLarm
) + 0.4 (38) Model

V tpGWA = (−0.002 · V tpArea+ 2) · V tpArea (39) Model

A.1.9 Mass models

Table A.9: Equations

Formula Type

MTOW = 67 · TotalNpax ·DesignRange · 1.10−6 + 20500 (40) Model
MZFW = 41 · TotalNpax ·DesignRange · 1.10−6 + 25000 (41) Model

FusMass = 5.47 · (π · FusLength ·
√

FusWidth · FusHeight)1.2 (42) Model










































A = 3.5 ·WingSpan3 ·
√
MTOW ·MZFW

B = 0.6 ·WingToCr + 0.3 ·WingToCk + 0.1 ·WingToCt

C = WingArea · cos(WingSweep)2

D = 1 · 10−6 · 1 + 2 ·WingAR

1 +WingAR

WingMass = 33 ·WingArea1.1 + 1.1 · A

B · C ·D

(43) Model

PylonMass = 0.0034 · SLSThrust ·Nengine (44) Model
EngineMass = 0.0247 · SLSThrust ·Nengine (45) Model
HtpMass = (0.04 ·HtpArea+ 21) ·HtpArea (46) Model
V tpMass = (0.008 · V tpArea+ 29) · V tpArea (47) Model

LdgMass = 0.03 ·MTOW 1.02 (48) Model

SystemMass = 0.545 ·MTOW 0.8 (49) Model
FurnMass = (0.063 · TotalNpax+ 9.76) · TotalNpax (50) Model
{

MWE =WingMass+ FusMass+HtpMass+ V tpMass+ LdgMass

+ PylonMass+ EngineMass+ SystemMass+ FurnMass
(51) Definition

OpItemMass = 5.2 · TotalNpax ·DesignRange · 1 · 10−6 (52) Model
ContPallMass = sign(CnP ) · 4.36 · FusWidth · FusLength (53) Model
OWE = MWE +OpItemMass+ ContPallMass (54) Definition
FuelDensity = 803 (55) Constant
MFW = (FusFuel +WingCTkFuel +WingFuel +HtpFuel) · FuelDensity (56) Definition
NominalMisTOW = MTOW (57) Model
NominalPayload = 102 · TotalNpax (58) Model
MaxPlMisTOW = MTOW (59) Model
MaxPayload = 145 · TotalNpax (60) Model
MaxFuelMisTOW = MTOW (61) Model
MaxFuelPayload = max(MTOW −MFW,OWE)−OWE (62) Definition
ZeroP lMisTOW = OWE +min(MFW,MTOW −OWE) (63) Definition
CostMisPayload = NominalPayload (64) Model
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MZFWeff = OWE +MaxPayload (65) Definition
MLW = 1.07 ·MZFW (66) Model

A.1.10 Atmospheric models

Function Name: non stand atmos (67)

Input: Disa, Zp−Ouput : Pamb, Tamb,Rho


























































































Zp ≤ 11000,

{

Pstd = (8.961962852 − Zp · 2.021612304 · 10−4)5.255880

Tstd = 288.15 − 0.0065 · Zp

11000 < Zp ≤ 20000,

{

Pstd = 128244.6928 · exp(Zp · (−1.576885 · 10−4))

Tstd = 216.65

20000 < Zp ≤ 32000,

{

Pstd = (0.7055184555 + Zp · 3.587686018 · 10−6)−34.16322

Tstd = 216.65 + 0.001 · (Zp− 20000)

32000 < Zp ≤ 47000,

{

Pstd = (0.3492686141 + Zp · 7.033096869 · 10−6)−12.20115

Tstd = 228.65 + 0.0028 · (Zp− 32000)

47000 < Zp ≤ 50000,

{

Pstd = 41828.42421 · exp(Zp · (−1.2622656 · 10−4))

Tstd = 270.65

Pamb = Pstd
Tamb = Tstd+Disa
Rho = Pamb/(287.05 · Tamb)

Function Name: pressure altitude (68)

Input: Pamb−Output: Zp






























Pamb ≥ 22632 , Zp = 44330.76923 − 4946.546863 · Pamb0.1902630958

22632 ≥ Pamb ≥ 5474.87 , Zp = 74588.16198 − 6341.616541 · log (Pamb)

5474.87 ≥ Pamb ≥ 868.014 , Zp = −196650 + 278731.1919/Pamb0.02927124551

868.014 ≥ Pamb ≥ 110.906 , Zp = −49660.71227 + 142184.8751/Pamb0.08195948743

110.906 ≥ Pamb ≥ 75.9443 , Zp = 84303.42544 − 7922.262953 · log (Pamb)

Function Name: climb mode (69)

Input: Cmode,Disa, Tamb,Zp,Mach−Ouput : Acc, dTodz






































































Zp < 10950 , dTodZ = −0.0065

10950 ≤ Zp < 11050 , dTodZ = −0.0065 + (0.0065/100) · (Zp− 10950)

11050 ≤ Zp < 19950 , dTodZ = 0

19950 ≤ Zp < 20050 , dTodZ = (0.0010/100) · (Zp− 19950)

20050 ≤ Zp < 31950 , dTodZ = 0.0010

31950 ≤ Zp < 32050 , dTodZ = 0.0010 + (0.0018/100) · (Zp− 31950)

32050 ≤ Zp < 46950 , dTodZ = 0.0028

46950 ≤ Zp < 47050 , dTodZ = 0.0028 − (0.0028/100) · (Zp− 46950)

47050 ≤ Zp < 50000 , dTodZ = 0
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Cmode =′ CAS′ , Acc = 1 +
(1 + 0.2 ·Mach2)3.5 − 1

(1 + 0.2 ·Mach2)2.5
+

+ 20.49029021 ·Mach2 · Tamb−Disa

Tamb
· dTodZ

Cmode =′ MACH ′ , Acc = 1 + 20.49029021 ·Mach2 · Tamb−Disa

Tamb
· dTodZ

Function Name: V cas from Mach (70)

Input: Pamb,Mach−Ouput : V cas

V cas = 340.29 ·
√

5 · (((Pamb · ((1 + 0.2 ·Mach2)3.5 − 1)/101325) + 1)0.4/1.4 − 1)

Function Name: Mach from V cas (71)

Input: Pamb, V cas−Ouput : Mach

Mach =

√

(((0.2 · (V cas/340.29)2 + 1)3.5 − 1) · 101325/Pamb + 1)1/3.5 − 1

0.2

A.1.11 Miscellanous

Function Name: m nm (Translate nautical miles into metres) (72)

Input: nm−Ouput : m

m = nm · 1852

Function Name: m ft (Translate feet into metres) (73)

Input: ft−Ouput : m

m = ft · 0.3048

Function Name: s min (Translate minutes into seconds) (74)

Input: mn−Ouput : s

s = mn · 60

Function Name: mps kt (Translate knots into metres per seconds) (75)

Input: kts−Ouput : mps

s = kts · 1852/3600

Function Name: Dpl DpUSgal (Translate dollars per US gallon into dollars per litre) (76)

Input: DpUSgal −Ouput : Dpl

Dpl = DpUSgal · 0.264173

A.1.12 Aerodynamic models
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Function Name: CzMaxTO (77)

Input: WingSweep −Ouput : CzMaxTO

CzMaxTO = 2.84 · ((−1.3459506 ∗WingSweep + 0.7648987) ·WingSweep + 0.71)

Function Name: CzMaxLD (78)

Input: WingSweep −Ouput : CzMaxLD

CzMaxLD = 3.20 · ((−0.4858553 ·WingSweep − 0.4277130) ·WingSweep + 1.11))

Function Name: divergence mach (79)

Input: Cz −Ouput : MachDiv

Czth = max([0.25, Cz])

MachDiv = 1.0358 · (0.85 − 0.5 · (Czth2 + 0.0625) + 0.25 · Czth)√
cosWingSweep + 0.1 ·WingToCr + 0.4 ·WingToCk + 0.5 ·WingToCt

Function Name: buffeting lift (80)

Input: Mach−Ouput : CzBuf

CzBuf = 0.6
for j = 1 : 8
[MachDiv] = divergence mach (CzBuf)
x = max(0.277,Mach + (MachDiv − 0.82))

y = 37.821274 · x5 − 133.87462 · x4 + 164.16013 · x3 − 86.945536 · x2 + 18.268534 · x+ 0.2362113
CzBuf = 0.45 · y + 0.35

endfor

Function Name: aero efficiency (81)

Input: Pamb, Tamb,Mach,Cz −Ouput : LoD

Fac = (1 + 0.126 ·Mach2)

Re = 47899 · Pamb ·Mach · (Fac · Tamb+ 110.4)/(Tamb2 · Fac2.5)

FusCx0 = 1.4 · ((0.455/Fac) ·
(

log(10)

log(Re · FusLength

)2.58

· FusGWA

WingArea

NacCx0 = 1.4 · ((0.455/Fac) ·
(

log(10)

log(Re ·NacLength

)2.58

· NacGWA

WingArea

TailCx0 = 1.4 · ((0.455/Fac) ·
(

log(10)

log(Re ·WingMac

)2.58

· (HtpGWA+ V tpGWA)

WingArea

WingCx0 = 1.4 · ((0.455/Fac) ·
(

log(10)

log(Re ·WingMac

)2.58

· WingGWA

WingArea
Cx0 = FusCx0 +WingCx0 +NacCx0 + TailCx0

Cxi =
(FusWidth/WingSpan)2 + 1.02

π ·WingAR
· Cz2

Mdiv = divergence mach (Cz)
Cxc = 0.0002 · exp(45 · (Mach−Mdiv))
Cx = Cx0 + Cxi+ Cxc
LoD = Cz/Cx
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Function Name: lif t of LoDmax (82)

Input: Disa, Zp,Mach−Ouput : CzLoDmax

[Pamb, Tamb] = non stand atmos (Disa, Zp)
dCz = 0.05 ; [Cz1, Cz2, Cz3] = (0, dCz, 2 · dCz)
LoD1 = aero efficiency (Pamb, Tamb,Mach,Cz1)
LoD2 = aero efficiency (Pamb, Tamb,Mach,Cz2)
LoD3 = aero efficiency (Pamb, Tamb,Mach,Cz3)
while LoD3 > LoD2
Cz1 = Cz2 ; Cz2 = Cz3 ; Cz3 = Cz3 + dCz ; LoD1 = LoD2 ; LoD2 = LoD3
[LoD3] = aero efficiency (Pamb, Tamb,Mach,Cz3)

endwhile

X = [Cz1 ; Cz2 ; Cz3]

A = [X2,X, ones(X)]
B = [LoD1 ; LoD2 ; LoD3]
C = lsq(A,B)
CzLoDmax = −C(2)/(2 · C(1))

Table A.26: Equations

Formula Type

CzMaxTO = CzMaxTO (WingSweep) (83) Model
CzMaxLD = CzMaxLD (WingSweep) (84) Model
LoDmaxCz = lif t of LoDmax(0, ZpRef,CruiseMach) (85) Model

(Pamb, Tamb) = non stand atmos (0, ZpRef) (86) Model
LoDmax = aero efficiency (Pamb, Tamb,CruiseMach,LoDmaxCz) (87) Model

A.1.13 Engine models

Function Name: engine thrust (88)

Input: SLSThrust, Tamb, rho,Mach, rating −Ouput : Fnet

if rating = ”mto” , Kfn = 0.82
elseif rating = ”mcn” , Kfn = 0.61
elseif rating = ”mcl” , Kfn = 0.47
elseif rating = ”mcr” , Kfn = 0.44
endif

MC = [ − 0.0017 , 0.0562 , 0.1693 ; 0.0043 , − 0.1269 , − 0.1914 ; − 0.001 , 0.0279 , 1.0354]

kBprMach = [Mach2 , Mach , 1] ·MC · [BPR2 ; BPR ; 1]

Fnet = Kfn · SLSThrust ·
√

rho/1.225 · kBprMach

Function Name: engine wimd m drag (89)

Input: Pamb,Mach −Ouput : Fd

Fd = 0.7 · Pamb ·Mach2 · (0.12 ·NacWidth ·NacHeight)
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Function Name: engine sfc (90)

Input: Pamb, Tamb,Mach, Fnet −Ouput : Sfc

Sfc = (−0.026 · BPR+ 0.76)/(10 · 3600)

Table A.30: Equations

Formula Type

TONdisa1 = 15 (91) Constant
TONzp1 = 0 (92) Constant
TONmach1 = 0.25 (93) Constant
(Pamb, Tamb,Rho) = non stand atmos (TONdisa1, TONzp1) (94) Model
TONthrust1 = engine thrust (SLSThrust, Tamb,Rho, TONmach1,′ mto′) (95) Model
TONdisa2 = 15 (96) Constant
TONzp2 = m ft(5000) (97) Constant
TONmach2 = 0.25 (98) Constant
(Pamb, Tamb,Rho) = non stand atmos (TONdisa1, TONzp2) (99) Model
TONthrust2 = engine thrust (SLSThrust, Tamb,Rho, TONmach2,′ mto′) (100) Model
MCNdisa = 15 (101) Constant
MCNzp = m ft(25000) (102) Constant
MCNmach = 0.45 · CruiseMach (103) Constant
(Pamb, Tamb,Rho) = non stand atmos (MCNdisa,MCNzp) (104) Model
MCNthrust = engine thrust (SLSThrust, Tamb,Rho,MCNmach,′ mcn′) (105) Model
MCLdisa = 0 (106) Constant
MCLzp = m ft(25000) (107) Constant
MCLmach = CruiseMach (108) Constant
(Pamb, Tamb,Rho) = non stand atmos (MCLdisa,MCLzp) (109) Model
MCLthrust = engine thrust (SLSThrust, Tamb,Rho,MCLmach,′ mcl′) (110) Model
MCRdisa = 0 (111) Constant
MCRzp = ZpRef (112) Constant
MCRmach = CruiseMach (113) Constant
(Pamb, Tamb,Rho) = non stand atmos (MCRdisa,MCRzp) (114) Model
MCRthrust = engine thrust (SLSThrust, Tamb,Rho,MCRmach,′ mcr′) (115) Model
Bucketdisa = 0 (116) Constant
Bucketzp = ZpRef (117) Constant
Bucketmach = CruiseMach (118) Constant
(Pamb, Tamb,Rho) = non stand atmos (BucketDisa,Bucketzp) (119) Model
MCRthrustBucket = engine thrust (SLSThrust, ...

..., Tamb,Rho,BucketMach,′ mcr′)
(120) Model

BucketThrust = 0.7472 ·MCRthrustBucket+ 4233 (121) Model
BucketSfc = engine sfc (Pamb, Tamb,BucketMach,BucketThrust) (122) Model

A.1.14 Low speed operation models

A.1.14.1 Take off

Function Name: take off (123)

Input: mass,Disa, Zp,KvsTO −Ouput : TOFL

g = 9.80665
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[Pamb, Tamb,Rho] = non stand atmos (Disa, Zp)
CzMaxTO = CzMaxTO (WingSweep)

MachStall =

√

mass · g
0.7 · Pamb ·WingArea · CzMaxTO

Mach = KvsTO ·MachStall
Fnet = engine thrust (SLSThrust, Tamb,Rho,Mach,′ mto′)

K =
mass2

CzMaxTO

KvsTO2
· Fnet ·Nengine ·WingArea · (Rho/1.225)0.8

TOFL = (−0.056 ·K + 34.5) ·K − 1600

Table A.32: Equations

Formula Type

ToKvs1g1 = 1.13 (124) Constant
ToKmtow1 = 1 (125) Constant
ToDisa1 = 15 (126) Constant
ToZp1 = 0 (127) Constant
Tofl1 = take off (ToKmtow1 ·MTOW,ToDisa1, T oZp1, T oKvs1g1) (128) Model
ToKvs1g2 = 1.13 (129) Constant
ToKmtow2 = 1 (130) Constant
ToDisa2 = 33 (131) Constant
ToZp2 = m ft(1200) (132) Constant
Tofl2 = take off (ToKmtow2 ·MTOW,ToDisa2, T oZp2, T oKvs1g2) (133) Model

A.1.14.2 Landing

Function Name: approach speed (134)

Input: mass,Disa, Zp,KvsLD −Ouput : AppSpeed

g = 9.80665
[Pamb, Tamb,Rho] = non stand atmos (Disa, Zp)
CzMaxLD = CzMaxLD (WingSweep)

AppSpeed = 0.98 ·
√

2 ·mass · g
Rho ·WingArea · (CzMaxLD/KvsLD2)

Table A.34: Equations

Formula Type

LdKvs1g1 = 1.23 (135) Constant
LdKmlw1 = 1 (136) Constant
LdDisa1 = 0 (137) Constant
LdZp1 = 0 (138) Constant
LdSpeed1 = approach speed (LdKmlw1 ·MLW,LdDisa1, LdZp1, LdKvs1g1) (139) Model
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A.1.15 High speed operation models

A.1.15.1 Ceilings

Function Name: flight aero data (140)

Input: Disa, Zp,Mach,mass −Ouput : LoD,Cz, g, SoundSpeed, Pamb, Tamb,Rho

g = 9.80665
[Pamb, Tamb,Rho] = non stand atmos (Disa, Zp)
SoundSpeed = sqrt(1.4 · 287.05 · Tamb)

Cz = (mass · g)/(0.7 · Pamb ·WingArea ·Mach2)
LoD = aero efficiency (Pamb, Tamb,Mach,Cz)

Function Name: climb speed (141)

Input: Cmode,mass,Disa, Zp,Mach, rating −Ouput : V z, Path

g = 9.80665
[LoD,Cz, g, SoundSpeed, Pamb, Tamb,Rho] = flight aero data (Disa, Zp,Mach,mass)
Acc = climb mode (Cmode,Disa, Tamb,Zp,Mach)
Fnet = engine thrust (SLSThrust, Tamb,Rho,Mach, rating)
Path = (Fnet · nEngine/(mass · g)− 1/LoD)/Acc
V z = Mach · SoundSpeed · Path

Function Name: climb path (142)

Input: Cmode,mass,Disa, Zp, V cas, rating,Nei−Ouput : Path , V z

g = 9.80665
[Pamb, Tamb,Rho] = non stand atmos (Disa, Zp)
Mach = Mach from V cas (Pamb, V cas)
LoD,Cz, g, SoundSpeed] = flight aero data (Disa, Zp,Mach,mass)
Acc = climb mode (Cmode,Disa, Tamb,Zp,Mach)
Fnet = engine thrust (SLSThrust, Tamb,Rho,Mach, rating)
Path = (Fnet · (nEngine−Nei)/(mass · g)− 1/LoD)/Acc
V z = Mach · SoundSpeed · Path

Function Name: cas max path (143)

Input: mass,Disa, Zp−Ouput : Cas

g = 9.80665
[Pamb, Tamb,Rho] = non stand atmos (Disa, Zp)

Mach =

√

mass · g
0.7 · Pamb ·WingArea · LoDmaxCz

Cas = V cas from Mach (Pamb,Mach)
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Function Name: buffet (144)

Input: mass,Disa, Zp,Mach−Ouput : kCz

[LoD,CzEff ] = flight aero data (Disa, Zp,Mach,mass)
CzBuf = buffeting lift (Mach)
kCz = CzBuf/CzEff

Table A.40: Equations

Formula Type

ClbKmtow1 = 0.97 (145) Constant
ClbDisa1 = 0 (146) Constant
ClbZp1 = m ft(35000) (147) Constant
ClbV z1 = climb speed (′MACH ′, ClbKmtow1 ·MTOW,ClbDisa1, ...

..., ClbZp1, CruiseMach,′ mcl′)
(148) Model

CrzKmtow1 = 0.97 (149) Constant
CrzDisa1 = 0 (150) Constant
CrzZp1 = m ft(35000) (151) Constant
CrzV z1 = climb speed (′MACH ′, CrzKmtow1 ·MTOW,CrzDisa1, ...

..., CrzZp1, CruiseMach,′ mcr′)
(152) Model

CeilBufKmtow = 0.97 (153) Constant
CeilBufDisa = 0 (154) Constant
CeilBufZp = m ft(35000) (155) Constant
CeilBufKczMin = 1.3 (156) Constant
CeilBufKcz = buffet (CeilBufKmtow ·MTOW,CeilBufDisa, ...

..., CeilBufZp,CruiseMach)
(157) Model











nEngine = 2 , CeilOeiMinPath = 0.011

nEngine = 3 , CeilOeiMinPath = 0.013

nEngine = 4 , CeilOeiMinPath = 0.016

(158) Model

CeilOeiKmtow = 0.97 (159) Constant
CeilOeiDisa = 10 (160) Constant
CeilOeiZp = m ft(19000) (161) Constant
CeilOeiCas = cas max path (CeilOeiKmtow ·MTOW, ...

CeilOeiDisa,CeilOeiZp)
(162) Model

CeilOeiPath =climb path (′CAS′, CeilOeiKmtow ·MTOW, ...

..., , CeilOeiDisa,CeilOeiZp,CeilOeiCas,′ mcn′, 1)
(163) Model

A.1.15.2 Best cruise altitude

Function Name: maximum SAR Zp (164)

Input: mass,Disa,Mach−Ouput : Zp

dZp = m ft(2500) ; [Zp1, Zp2, Zp3] = (0, dZp, 2 ∗ dZp)
Sar1 = cruise SAR (Disa, Zp1,Mach,mass)
Sar2 = cruise SAR (Disa, Zp2,Mach,mass)
Sar3 = cruise SAR (Disa, Zp3,Mach,mass)
while Sar3 > Sar2
[Zp1, Sar1, Zp2, Sar2, Zp3] = (Zp2, Sar2, Zp3, Sar3, Zp3 + dZp)
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Sar3 = cruise SAR (Disa, Zp3,Mach,mass)
endwhile

X = [Zp1 ; Zp2 ; Zp3]

A = [X2,X, ones(X)]
B = [ Sar1 ; Sar2 ; Sar3]
C = lsq(A,B)
Zp = −C(2)/(2 · C(1))

Function Name: cruise SAR (165)

Input: Disa, Zp,Mach,mass−Ouput : Sar

[LoD,Cz, g, SoundSpeed, Pamb, Tamb,Rho] = flight aero data (Disa, Zp,Mach,mass)
Fnet = (mass · g)/LoD
Sfc = engine sfc (Pamb, Tamb,Mach, Fnet)
Sar = 0.98 · (Mach · SoundSpeed · LoD)/(mass · g · Sfc)

Table A.43: Equations

Formula Type

MaxSarKmtow = 0.97 (166) Constant
MaxSarDisa = 0 (167) Constant
MaxSarZp = maximum SAR Zp (MaxSarKmtow ·MTOW, ...

...,MaxSarDisa,CruiseMach)
(168) Model

A.1.15.3 Time to climb

Function Name: time to climb (169)

Input: mass,Disa, Zp max,Mach max−Ouput : T tC

Zp ini = m ft(1500)
V cas ini = mps kt(230)
Zp int = m ft(10000)
V cas int = mps kt(250)
T tC1 = time to climb seg (′CAS′,mass,Disa, Zp ini, Zp int, V cas ini)

Pamb brk =
(

(1 + 0.2 · (V cas int/340.29)2)3.5 − 1
)

· 101325/((1 + 0.2 ·Mach max2)3.5 − 1)
Zp brk = pressure altitude (Pamb brk)


























































Zp max < Zp brk











[ T tC2,Mach top] = time to climb seg (′CAS′,mass, ...

...,Disa, Zp int, Zp max, V cas int)

T tC3 = 0

Zp int < Zp brk < Zp max



















T tC2 = time to climb seg (′CAS′, ...

...,mass,Disa, Zp int, Zp brk, V cas int)

[ T tC3,Mach top] = time to climb seg (′MACH ′, ...

...,mass,Disa, Zp brk, Zp max,Mach max)

Zp brk < Zp int , print(”Mach max is reached below ”altp int”m, in time to climb ”)
T tC = T tC1 + T tC2 + T tC3
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Function Name: time to climb seg (170)

Input: Cmode,mass,Disa, Zp1, Zp2, Speed−Ouput : T tC,Mach2


































































Cmode = ”CAS”











































Pamb1 = non stand atmos (Disa, Zp1)

Mach1 =

√

(

(((0.2 · ( Speed
340.29

)2 + 1)3.5 − 1) · 101325
Pamb1

+ 1)1/3.5 − 1

)

/0.2

Pamb2 = non stand atmos (Disa, Zp2)

Mach2 =

√

(

(((0.2 · ( Speed
340.29

)2 + 1)3.5 − 1) · 101325
Pamb2

+ 1)1/3.5 − 1

)

/0.2

Cmode = ”MACH”

{

Mach1 = Speed

Mach2 = Speed

V z1 = max
(

0.02, climb speed (Cmode,mass,Disa, Zp1,Mach1,′ mcl′)
)

V z2 = max
(

0.01, climb speed (Cmode,mass,Disa, Zp2,Mach2,′ mcl′)
)

T tC = ((Zp2− Zp1)/(V z2− V z1)) · log (V z2/V z1)

Table A.46: Equations

Formula Type

T tcKmtow = 0.97 (171) Constant
HSperfoDisa = 0 (172) Constant
T tcZp = m ft(33000) (173) Constant
T imeToClimb = time to climb (T tcKmtow ·MTOW, ...

...,HSperfoDisa, T tcZp,CruiseMach)
(174) Model

A.1.16 En Route Operation Models

A.1.16.1 Standard missions

Function Name: mission (175)

Input: TOW, fuel block,Disa, Zp,Mach
Ouput : Fuel, ZFW,Range, T ime, Fuel div, T ime div, Fuel hld, T ime hld

Zp hld = m ft(1500)
Mach hld = 0.60 ·Mach
T ime hld = s min(30)
Zp div = m ft(25000)
Mach div = 0.75 ·Mach
Leg div = m nm(200)
KF res = 0.05
mass = min(TOW,max(TOW/2, TOW − fuel block/2))
LDW = TOW − fuel block
[LoD,Cz, g, SoundSpeed, Pamb, Tamb] = flight aero data (Disa, Zp,Mach,mass)
Fnet = (mass · g)/LoD
Sfc = engine sfc (Pamb, Tamb,Mach, Fnet)
Range = 0.98 · (SoundSpeed ·Mach · LoD)/(Sfc · g) · log(TOW/LDW )
T ime = 1.09 · (Range/(Mach · SoundSpeed))
[LoD div,Cz div, g div, SoundSpeed div, Pamb div, Tamb div] = ...
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flight aero data (Disa, Zp div,Mach div, LDW )
Fnet div = (LDW · g)/LoD div
Sfc div = engine sfc (Pamb div, Tamb div,Mach div, Fnet div)

Fuel div = LDW · (1− e
− Sfc div · g
SoundSpeed div ·Mach div · LoD div · (leg div/0.98))

T ime div = 1.09 · (leg div/(Mach div · SoundSpeed div))
[LoD hld,Cz hld, g hld, vsnd hld, Pamb hld, Tamb hld] = ...

f light aero data (Disa, Zp hld,Mach hld, LDW )
Fnet hld = (LDW · g)/LoD hld
Sfc hld = engine sfc (Pamb hld, Tamb hld,Mach hld, Fnet hld)
Fuel hld = Sfc hld · Fnet hld · T ime hld
Fuel = (1 +KF res) · fuel block + Fuel hld+ Fuel div
ZFW = TOW − Fuel

Function Name: fct miss (176)

Input: FuelBlock,Disa, Zp,Mach, TOW,OWE,Payload −Ouput : delta

FuelTotal = mission (TOW,FuelBlock,Disa, Zp,Mach)
delta = TOW −OWE − Payload− FuelTotal

Function Name: standard operation (177)

Input: TOW,OWE,Payload,Disa, Zp,Mach −Ouput : RA,ZFW,FUEL

fct = list(fct miss,Disa, Zp,Mach, TOW,OWE,Payload)
[FuelBlock, Y res, rc] = fsolve((TOW −OWE − Payload), fct, 0.001)
[FUEL,ZFW,RA] = mission (TOW,FuelBlock,Disa, Zp,Mach)

Table A.50: Equations

Formula Type

HSperfoDisa = 0 (178) Constant
[NominalMisRange,NominalMisZFW,NominalMisTotalFuel] = ...

standard operation (NominalMisTOW,OWE,NominalPayload, ...

...,HSperfoDisa, ZpRef,CruiseMach)

(179) Model

[MaxPlMisRange,MaxP lMisZFW,MaxP lMisTotalFuel] = ...

standard operation (MaxPlMisTOW,OWE,MaxPayload, ...

...,HSperfoDisa, ZpRef,CruiseMach)

(180) Model

[MaxFuelMisRange,MaxFuelMisZFW,MaxFuelWeight] = ...

standard operation (MaxFuelMisTOW,OWE,MaxFuelPayload, ...

...,HSperfoDisa, ZpRef,CruiseMach)

(181) Model

[ZeroP lMisRange, ZeroP lMisZFW,ZeroP lMisTotalFuel] = ...

standard operation (ZeroP lMisTOW,OWE, 0, ...

...,HSperfoDisa, ZpRef,CruiseMach)

(182) Model
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A.1.16.2 Missions for costing

Function Name: fct cost (183)

Input: X,Disa, Zp,Mach,OWE,Payload,Range −Ouput : Y

[ TOW,FuelBlock[ = (X(1),X(2))
[FUEL,ZFW,RA[ = mission (TOW,FuelBlock,Disa, Zp,Mach)
Y = [Range−RA,ZFW −OWE − Payload[

Function Name: cost operation (184)

Input: Range,OWE,Payload,Disa, Zp,Mach −Ouput : TOW,FuelBlock, T imeBlock

fct = list(fct cost,Disa, Zp,Mach,OWE,Payload,Range)
[Xres, Y res, rc] = fsolve(OWE · [2.0, 0.5], fct, 0.001)
[ TOW,FuelBlock] = (Xres(1),Xres(2))
[FUEL,ZFW,Range, T imeBlock] = mission (TOW,FuelBlock,Disa, Zp,Mach)

Table A.53: Equations

Formula Type
{

DesignRange < m nm(4500) , CostMisRange = m nm(500)

m nm(4500) ≤ DesignRange , CostMisRange = m nm(4000)
(185) Model

[CostMisTOW,CostMisBlockFuel, CostMisBlockT ime] = cost operation (..

CostMisRange,OWE,CostMisPayload,HSperfoDisa, ZpRef,CruiseMach)
(186) Model

A.1.16.3 Operating cost

Function Name: Cash Op8cost (187)

Input: LaborCost, FuelPrice
Ouput : CashOpCost, FuelCost, FrameMC,EngineMC,CockpitCrew, ...

..., CabinCrew,LDGfees,NAV fees

BH = CostMisBlockT ime/3600
T t = BH + 0.25
WG = MTOW · 1e− 3

Wf = (MWE − EngineMass) · 1e−5l

Th = 0.05 · (SLSThrust/4.4482198) · 1e−4

FuelCost = CostMisBlockFuel · (FuelPrice ∗ 1 · 103/FuelDensity)
CockpitCrew = BH · 2 · (440 − 0.532 ·WG)
CabinCrew = BH · ceil(TotalNpax/50) · LaborCost

LaborFrame =((1.26 + 1.774 ·Wf − 0.1071 ·Wf2) · T t+ ...

+ (1.614 + 0.7227 ·Wf + 0.1204 ·Wf2)) · LaborCost

MatrlFrame = (12.39 + 29.8 ·Wf + 0.1806 ·Wf2) · T t+ ...

+ (15.2 + 97.33 ·Wf − 2.862 ·Wf2)
FrameMC = LaborFrame+MatrlFrame
LaborEngine = Nengine · (0.645 · T t+ Th · (0.566 · T t+ 0.434)) · LaborCost
MatrlEngine = Nengine · (25 · T t+ Th · (0.62 · T t+ 0.38))
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EngineMC = LaborEngine+MatrlEngine
LDGfees = (MTOW/1000) · 7.5
NAV fees = (CostMisRange/185200) · sqrt((MTOW/1000)/50) · 77
CashOpCost =FuelCost+ FrameMC + EngineMC + ...

CockpitCrew + CabinCrew+ LDGfees+NAV fees
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