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Introduction

A hyperbolic surface is a two dimensional complete Riemannian manifold of constant sectional
curvature −1. Such a surface is isometric to a quotient H/Γ, where H is the Poincaré upper half-
plane and Γ is a discrete and torsion free subgroup of PSL(2, R). Each hyperbolic surface carries
a second order elliptic differential operator ∆, called the Laplace operator or the Laplacian, that
acts on the space of functions of the surface. In this thesis we consider hyperbolic surfaces with
finite area. When S is closed, the spectrum of ∆ consists of a discrete set:

0 = λ0(S) < λ1(S) ≤ ... ≤ λi(S) ≤ ...

where λi(S) denotes the i-th eigenvalue of S and a number in the sequence is repeated according
to its multiplicity as eigenvalue. In this case the set of eigenvalues does not have a finite point
of accumulation and so λn(S) → ∞ as n → ∞. The number 1

4 has a special significance in the
spectral theory of the Laplacian of hyperbolic surfaces. Eigenvalues of ∆ below 1

4 are called small
eigenvalues. Existence of hyperbolic surfaces with small eigenvalues was originally shown by B.
Randol [R1] using the famous trace formula of A. Selberg. P. Buser uses a different approach
and shows that for any g ≥ 2:

Theorem 0.0.1. (Buser [Bu, Chapter 8])
Given δ > 0 there exists a closed hyperbolic surface S of genus g such that λ2g−2(S) < δ.

He also showed that for a fixed genus, the number of small eigenvalues has a topological upper
bound. More precisely, he proved the following theorem:

Theorem 0.0.2. (Buser [Bu, Chapter 8])
For any closed hyperbolic surface S of genus g: λ4g−2(S) > 1

4 .

It was however not known until recently whether this upper bound is sharp. It was conjectured
that 2g − 2 is an upper bound. This is proved for genus two surfaces by P. Smutz [Sch] and
for arbitrary genus by Otal-Rosas [O-R]. The result of Otal-Rosas is actually stated for any
hyperbolic surfaces with finite area.

Theorem 0.0.3. (Otal-Rosas)
Any finite area hyperbolic surface of type (g, n) has at most 2g − 2 + n small eigenvalues.

Motivated by this result, in this thesis, we try to understand the relation between small
eigenvalues and topology of a hyperbolic surface. More precisely, our aim is to obtain bounds on
the number of small eigenvalues in terms of the topology of the surface.

In Chapter I we review some known properties of eigenvalues and eigenfunctions of the Laplace
operator on hyperbolic surfaces. We discuss two eigenvalue problems: the closed eigenvalue
problem and the Dirichlet eigenvalue problem. We review two variational characterizations of
these eigenvalues: Rayleigh’s theorem and the min-max principle. Then we recall two geometric
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Introduction

inequalities, the Faber-Krahn inequality and the Cheeger’s inequality, that will be used in Chapter
2. In the second part we review some results on nodal sets and nodal domains of eigenfunctions
of the Laplacian. In particular, we recall a theorem of S. Y. Cheng [Ch] that describes the nodal
set around a point where the gradient of the eigenfunction vanishes. Then we review a lemma
of J. P. Otal [O] that provides topological description of nodal sets and nodal domains of small
eigenfunctions. After that we recall two local bounds for eigenfunctions of the Laplacian that
will be used in Chapter 3. We end the chapter by giving Fourier expansions for eigenfunctions
on two hyperbolic surfaces: cylinders and cusps.

Chapter II begins with the construction of P. Buser that proves Theorem 0.0.1. Then we
focus on the Otal-Rosas result Theorem 0.0.3. This result provides a global lower bound on the
2g − 2-th eigenvalue for closed hyperbolic surfaces of genus g. First section of this chapter is
devoted to closely follow the proof of Theorem 0.0.3 and provide the following geometric lower
bound:

Theorem 2.1.4 Let S be a closed hyperbolic surface of genus g and let s(S) denote the systole
of S. Then λ2g−2(S) > 1

4 + ε0(S) where ε0(S) can be taken any quantity smaller than

min{ 1
4(g − 1) ,

1
4((cosh ρ0

sinh ρ0
)2 − 1)}

where 2s(S)sinh ρ0 = |S|.
In the next section we consider the i-th eigenvalue, λi, as a function of the metric i.e. λi is

viewed as a function on the moduli spaceMg. We present a result concerning limiting behavior
of λi as metrics converges to ∂Mg. In the last section, using similar ideas as in the proof of
Theorem 2.1.4, we prove a result that provides a lower-bound for certain anti symmetric cuspidal
eigenvalue of certain noncompact hyperbolic surfaces of finite area.

In Chapter III we consider a sequence of hyperbolic surfaces (Sm) that converges to S∞ ∈
Mg,n. When n 6= 0, the spectrum of the Laplacian on these surfaces consist of two parts: the
continuous spectrum and the discrete spectrum. The discrete spectrum is again composed of
two parts: the residual spectrum and cuspidal spectrum. The cuspidal spectrum is arranged in
the ascending order and the i-th cuspidal eigenvalue of S is denoted by λci (S). If S does not
have i many cuspidal eigenvalues then we put λci (S) = ∞. We consider a sequence (λm, φm) of
eigenpairs of Sm such that λm → λ∞ < ∞. Behavior of the sequence of eigenfunctions (φm) is
then studied in the special case when, for each m, (λm, φm) is a small cuspidal eigenpair. We
recall four results: [C-C], [He], [Ji] and [Wo] that concern this type of limiting. Motivated by
these results we prove the following theorem:

Theorem 3.2.1 Let Sm → S∞ in Mg,n. Let (λm, φm) be a normalized (L2-norm of φm is
1) small cuspidal eigenpair of Sm. Assume that λm converges to λ∞. Then one of the following
holds:
(1) There exist strictly positive constants ε, δ such that lim sup ‖φm‖S[ε,∞)

m
≥ δ. Then, up to

extracting a subsequence, (φm) converges to a λ∞-eigenfunction φ∞ of S∞.
(2) For each ε > 0 the sequence (‖φm‖S[ε,∞)

m
) → 0. Then, up to extracting a subsequence, (φm)

converges to the zero function on S∞. Moreover, there exist constants Km → ∞ such that, up
to extracting a subsequence, (Kmφm) converges to a linear combination of Eisenstein series and
(possibly) a cuspidal λ∞-eigenfunction of S∞.
The later possibility arises only when: S∞ ∈ ∂Mg,n and λ∞ = 1

4 .
We apply this result to give a new and elementary proof of a result of D. Hejhal.
In Chapter IV we study small cuspidal eigenfunctions of finite area hyperbolic surfaces. In

particular, we try to understand the following conjecture of Jean-Pierre Otal and Eulalio Rosas
on the maximum possible number of such eigenvalues [O-R].

Conjecture For any S ∈Mg,n: λc2g−3(S) > 1
4 .
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We then use Theorem 3.2.1 from Chapter III and a topological property of nodal sets of small
eigenfunctions to provide the following:

Theorem 4.1.1 C
1
4
g,n(2g − 1) is an unbounded, open subset ofMg,n.

Here
C

1
4
g,n(2g − 1) = {S ∈Mg,n : λc2g−1(S) > 1

4}.

In Chapter V, with the help of continuity properties of λi and a construction of P. Buser, we
recall a proof of the fact that each λi is bounded. Then we focus on λ1 and ask the question if
the maximum of λ1 overMg is more than 1

4 or not. Results due to Burger-Buser-Dodziuk [BBD]
and Brooks-Makover [B-M] say that there exist surfaces with λ1 arbitrary close to 1

4 . However,
the surfaces constructed in these results are not of the same genus. Using topological arguments,
as in Chapter 2, we prove that the answer is yes in the case of genus two i.e. there are surfaces
in M2 such that λ1 >

1
4 . Moreover, we prove that the subset of M2 containing surfaces with

λ1 >
1
4 disconnectsM2.
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Chapter 1

Eigenvalues and eigenfunctions of the Laplacian of
hyperbolic surfaces

This chapter is divided into three sections. In the first section we begin from the definition of
the Laplace operator (or the Laplacian) on hyperbolic surfaces. In the second section we consider
two eigenvalue problems related to the Laplacian and recall two variational characterizations of
these eigenvalues: Rayleigh’s theorem and the min-max principle. Then we recall two geometric
inequalities that provide lower bounds for these eigenvalues. In the third section we consider
eigenfunctions of the Laplacian. We recall the description, due to S. Y. Cheng [Ch], of nodal sets
of eigenfunctions of the Laplacian on surfaces. Next we recall a topological property of nodal sets
and nodal domains of small eigenfunctions of finite area hyperbolic surfaces due to J. P. Otal
[O]. Then we recall two results that provide local bounds for eigenfunctions of the Laplacian.
In the end we recall Fourier expansions of eigenfunctions on two hyperbolic surfaces: cusps and
cylinders.

1.1 The Laplacian on hyperbolic surfaces
The Poincaré upper half-plane H is {x+ iy ∈ C : y > 0} with the Riemannian metric:

ds2 = dx2 + dy2

y2 .

This metric is called the hyperbolic metric. The Laplacian of this metric is given by the formula

∆ = −y2{ ∂
2

∂2x
+ ∂2

∂2y
}.

Each element of the group PSL(2,R)(= SL(2,R)/(±I)) acts on H by Möbius transformation(
a b
c d

)
z → az + b

cz + d
. (1.1)

This action is by orientation preserving isometries of H. A hyperbolic surface is a two dimensional
Riemannian manifold which is isometric to a quotient H/Γ, where Γ is a Fuchsian group, i.e.
a discrete torsion-free subgroup of PSL(2,R). The action of PSL(2,R) leaves the Laplacian ∆
invariant in the sense that for each γ ∈ PSL(2, R): ∆(f · γ) = (∆f) · γ. Thus ∆ induces an

11



Chapter 1. Eigenvalues and eigenfunctions of the Laplacian of hyperbolic surfaces

operator on the quotient S = H/Γ. This operator is called the Laplacian on S. We shall use
the symbol ∆ for this Laplacian also. Now we consider two specific types of hyperbolic surfaces:
cylinders and cusps.

1.1.1 Cylinders
A hyperbolic cylinder C with core geodesic γ is the quotient H/ < τ > where τ is a hyperbolic

isometry of H and γ is the image of the axis of τ under the quotient map. Let lγ = 2πl denote
the length of γ i.e. the hyperbolic distance dH(x, τx) for some x on the axis of τ . We will use
the following Fermi coordinates on C. First choose an orientation of γ. Then parametrize γ with
constant speed equal to l and identify γ with R/2πZ. Now choose an orientation of the normal
bundle of γ in C. The Fermi coordinates, with all these orientations understood, assign to each
point p ∈ C the pair (r, θ) ∈ R × R/2πZ where r is the signed distance of p from γ and θ is
the projection of p on γ [Bu, p. 4]. These coordinates give a diffeomorphism of this hyperbolic
cylinder to R× R/2πZ. In terms of these coordinates the hyperbolic metric is given by:

ds2 = dr2 + l2cosh2rdθ2.

The Laplacian is given by the formula:

−
(
d2

dr2 + tanh r d
dr

+ 1
l2cosh2r

d2

dθ2

)
.

For w ≥ l we define the collar Cw around γ by

Cw = {(r, θ) ∈ C : lγ cosh r < w, 0 ≤ θ ≤ 2π}.

Then Cw is diffeomorphic to an annulus whose each boundary component has length w. Now let
S be a hyperbolic surface and let γ be a simple closed closed geodesic on S. The Collar Theorem
of Linda Keen [K] says that C1 around γ embeds in S (more precisely, Cw(lγ) embeds in S where
w(lγ) = lγ cosh(sinh−1( 1

sinh lγ
2

)) > 1 and w(lγ) ≈ 2).

1.1.2 Cusps
Denote by ι the parabolic isometry ι : z → z + 2π. The quotient H/ < ι > is called a cusp P

at ∞. For t > 0 the half infinite annulus {x+ iy : y > 2π
t , 0 ≤ x ≤ 2π}/ < ι > is denoted by Pt

and will also be called a cusp. The boundary curve {y = 2π
t } is a horocycle of length t that we

identify with R/tZ by arc-length parametrization. One can parametrize Pt using the horocycle
coordinates [Bu, p. 4] with respect to its boundary horocycle. The horocycle coordinates assigns
to a point p ∈ Pt the pair (r, θ) ∈ R≥0 × {R/tZ} where r is the distance of p from the horocycle
{y = 2π

t } and θ the projection of p on the horocycle. In terms of these coordinates hyperbolic
metric takes the form:

ds2 = dr2 + ( t2π )2e−2rdθ2.

We shall use the (x, y) coordinates on Pt more frequently.

A noncompact hyperbolic surface S with finite area has finitely many punctures. Recall that the
cusp P1 (in fact P2) around each puncture of S embeds in S and that those cusps corresponding
to distinct punctures have disjoint interiors (ref. [Bu, Chapter 4]). We call them standard cusps.
Observe that the area and boundary length of a standard cusp is equal to 1. For t ≤ 1 denote
the disjoint union

⋃
c∈S Pt by S

(0,t)
c where c ranges over distinct cusps in S.

12



1.2. Eigenvalues of the Laplacian

1.2 Eigenvalues of the Laplacian
Let S be a hyperbolic surface and ∆ be the Laplacian on S.

Definition 1.2.1. Let λ > 0 be a real number and f ∈ C∞(S) ∩ L2(S) be a nonzero function on
S. The pair (λ, f) is called an eigenpair of S if ∆f = λf . One calls λ and f an eigenvalue and
an eigenfunction respectively (sometimes a λ-eigenfunction). If λ ≤ 1

4 then λ, f and (λ, f) are
respectively called small eigenvalue, small eigenfunction and small eigenpair.

Two Eigenvalue Problems

The closed eigenvalue problem is posed for a closed hyperbolic surface S. The problem is to
find all eigenvalues of S i.e. to find all possible λ ∈ R such that there exists a nonzero, smooth
function f on S such that

∆f = λf. (1.2)
For non-compact hyperbolic surfaces without boundary we shall consider the same problem and
require furthermore f ∈ L2(S).

Next, let N be a hyperbolic surface. Let S ⊂ N be a sub-surface of N such that S is compact,
∂S is non-empty and piecewise smooth. The second type of problem is to find all possible λ ∈ R
such that there exists a nonzero, smooth function f on S which is continuous on S such that{

∆f = λf on S
f ≡ 0 on ∂S.

(1.3)

This problem is referred to as the Dirichlet boundary value problem for S. We shall consider the
same problem for those S which have smooth boundary but S is not compact in N also. In this
case we require that f ∈ L2(S).

We recall the following result on existence of eigenvalues. So S is either closed or a subsurface
of a hyperbolic surface N that satisfies the conditions to pose the Dirichlet eigenvalue problem.

Theorem 1.2.2. [Cha, p-8] For both the eigenvalue problems, the set of eigenvalues of S consists
of a sequence

0 ≤ λ0(S) ≤ λ1(S) ≤ ... ≤ λi(S) ≤ ...
where λi(S) denotes the i-th eigenvalue of S and each number in the sequence is repeated according
to its multiplicity as eigenvalue. The sequence (λi(S)) does not have any finite limit point.
Moreover, the eigenspaces corresponding to distinct eigenvalues are orthogonal in L2(S) and
L2(S) is spanned by the direct sum of the eigenspaces.

Green’s formulas

Let S be a hyperbolic surface and let µH be the hyperbolic area measure of S. For vector
fields X and Y on S consider the inner-product

< X,Y >=
∫
S

< Xp, Yp >pdµH.

Let Fc(S) denote the space of all smooth vector fields on S that has compact support. Denote
by L2(S) the closure of Fc(S) with respect to the above inner-product. Then L2(S) is a Hilbert
space whose elements are measurable vector fields X with

‖X‖2 =
∫
S

|Xp|2dµH <∞.
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Chapter 1. Eigenvalues and eigenfunctions of the Laplacian of hyperbolic surfaces

For a C1-function f we de note by ∇f the gradient of f .
Green’s Formula 1. Let h ∈ C1(S) and f ∈ C2(S) be such that h(∇f) has compact

support in S. If ∂S = ∅ then ∫
S

h∆fdµH =
∫
S

< ∇h,∇f >dµH.

Green’s Formula 2. Let h ∈ C1(S) and f ∈ C2(S) be such that h(∇f) has compact
support in S. Then ∫

S

h∆fdµH =
∫
S

< ∇h,∇f >dµH −
∫
∂S

hν(f)dµl

where µl denotes the length measure of ∂S.
Given f ∈ L2(S) we say that Y ∈ L2(S) is a derivative of f in the sense of distribution if for

any C1 vector filed X with compact support one has:

< Y,X >= − < f, divX > .

In case such a Y exists, it is unique, and we denote it by ∇f . We shall denote by H(M) the
space of all f ∈ L2(M) which has derivative in the sense of distribution. On this space we have
the inner-product

< f, g >1 = < f, g >L2(S)+ < ∇f,∇g >

with norm
‖f‖21 = ‖f‖2L2(S) + ‖∇f‖2.

It is known that for each f ∈ H(S): ‖f‖1 <∞. When ∂S is sufficiently smooth C∞(S) is dense
in H(S).

Let φ be an eigenfunction for the closed eigenvalue problem on S and let f ∈ H(S). Then
one has the following consequence of the Green’s formula 1:

< ∆φ, f >=< ∇φ,∇f > .

Now let S be a sub-surface of hyperbolic surface N such that S is compact, ∂S is non-empty
and piecewise smooth. Let C∞0 (S) denote the space of all smooth functions f on S such that f has
compact support and f |∂S the restriction of f to ∂S is zero. Let H0(S) be the closure of C∞0 (S)
in H(S) with respect to ‖.‖-norm. Now let φ be an eigenfunction of the Dirichlet eigenvalue
problem on S and let f ∈ H0(S). Then one has the following consequence of Green’s formula
2:

< ∆φ, f >=< ∇φ,∇f > .

1.2.3 Variational estimates
In this subsection we recall some variational characterizations of eigenvalues of the two eigen-

value problems discussed in 1.2. Let S be either a closed hyperbolic surface or a subsurface of
hyperbolic surface N that satisfies the conditions to pose the Dirichlet eigenvalue problem. For
f 6= 0 ∈ H(S) one considers, R(f), the Rayleigh quotient of f :

R(f) = ‖∇f‖
2

‖f‖2
.
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1.2. Eigenvalues of the Laplacian

Theorem 1.2.4. (Rayleigh’s Theorem [Cha, p-16])
Closed case: Let S be a closed hyperbolic surface. For the closed eigenvalue problem on S:
λ0(S) = 0 and

λ1(S) = inf
f∈H(S)\{0},

∫
S
fdV=0R(f).

For i ≥ 1 denote by Hi the subspace of H(S) spanned by the first i eigenfunctions. Let ⊥Hi

denote the L2-orthogonal complement of Hi in L2(S). Then for i ≥ 2:

λi(S) = inff∈⊥HiR(f).

Dirichlet case: Let S be a sub-surface of a hyperbolic surface N such that S is compact, ∂S
is non-empty and piecewise smooth. For the Dirichlet eigenvalue problem on S:

λ0(S) = inff∈H0(S)R(f).

For i ≥ 1 denote by H0
i the subspace of H0(S) spanned by the first i eigenfunctions. Let ⊥H0

i

denote the L2-orthogonal complement of H0
i in H0(S). Then for i ≥ 1:

λi(S) = inff∈⊥H0
i
R(f).

Another variational characterization for eigenvalues of the closed eigenvalue problem is the
following:

Theorem 1.2.5. (Min-max Principle)
Let S be a closed hyperbolic surface. For the closed eigenvalue problem on S one has:

λi(S) = inf
V :dimV=i

sup
f∈V \{0}

R(f) (1.4)

where V is a subspace of L2(S).

1.2.6 Two geometric inequalities
We recall two geometric inequalities, the Faber-Krahn inequality and the Cheeger’s inequality,

that provide lower bounds for the first eigenvalue of the Dirichlet eigenvalue problem. Let S be a
sub-surface of a hyperbolic surface N such that S is compact and ∂S is piecewise smooth. Recall
that λ0(S) denotes the first Dirichlet eigenvalue of S.

To each open set Ω ⊂ H, consisting of a finite union of disjoint regular domains (with piecewise
smooth boundary) in S, associate the geodesic disc D in H with center i and satisfying:

µH(Ω) = µH(D) (1.5)

where µH denotes the area measure of H. Let µl denote the length measure of H. Isoperimetric
inequality for H says that for any Ω in H, equality in (1.5) implies:

µl(∂Ω) ≥ µl(∂D) (1.6)

with equality if and only if Ω is isometric to D. Therefore we have the following theorem due to
Faber and Krahn.

Theorem 1.2.7. (Faber-Krahn)[Cha, p-87] For any Ω in H let D be the geodesic disc described
as above. Then one has the following inequality:

λ0(Ω) ≥ λ0(D) (1.7)

with equality in (1.7) if only if Ω is isometric to D.
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Chapter 1. Eigenvalues and eigenfunctions of the Laplacian of hyperbolic surfaces

Now we recall the Cheeger’s inequality. We consider a noncompact hyperbolic surface S
possibly having nonempty boundary and possibly having compact closure.

Definition 1.2.8. The Cheeger’s constant of S, h(S), is defined by

h(S) = inf
Ω

µl(∂Ω)
µH(Ω)

where Ω ranges over all open sub-surfaces of S, with compact closure and smooth boundary in S.

Theorem 1.2.9. (Cheeger)[Cha, p-95]

λ0(S) ≥ h2(S)
4 . (1.8)

For the closed eigenvalue problem on a closed hyperbolic surface S, a similar inequality, also
called the Chheger’s inequality, exists. However, in that case, the definition of the Cheeger’s
constant is different from the above one [Cha].

1.3 Eigenfunctions of the Laplacian
In this section we recall some properties of eigenfunctions of the Laplacian. Let S be a closed

hyperbolic surface and let (λi(S), φi) denote the sequence of all eigenpairs of S where λi(S)
denote the i-th eigenvalue of S (see Theorem 1.2.2).

Definition 1.3.1. Let f : S → R be a smooth function. The nodal set Z(f) of f is defined as:

Z(f) = {x ∈M : f(x) = 0}.

Components of S \ Z(f) are called nodal domains of f .

Recall that c is called a regular value of f if ∇xf 6= 0 for all x ∈ f−1(c). Let f be a finite linear
combinations of φi’s. Therefore f is smooth (by Theorem 1.2.2) and, by Sard’s theorem, almost
all values of f are regular. For x ∈ Z(f) if ∇xf 6= 0 then, by implicit function theorem, Z(f)
is an 1 dimensional submanifold in a neighborhood of x. In a neighborhood of a point y ∈ Z(f)
where ∇yf = 0 the geometry of Z(f) is not so simple. However, when f is an eigenfunction of
the Laplacian, the following theorem of S.Y. Cheng [Ch] describes Z(f) near such a point.

Theorem 1.3.2. (Cheng) Let S be a 2-dimensional manifold with a C∞ metric. Then, for any
solution of the equation (∆ + h(x))f = 0, h ∈ C∞(S), one has:
(i) Critical points on the nodal set Z(f) are isolated.
(ii) Any critical point in Z(f) has a neighborhood N in S which is diffeomorphic to the disc
{z ∈ C : |z| < 1} by a C1- diffeomorphism that sends Z(f)∩N to an equiangular system of rays.

Now we recall the famous theorem of Courant, known as the Courant’s nodal domain
theorem, that provides a global bound on the number of nodal domains. For two dimensional
manifolds this theorem says the following:

Theorem 1.3.3. (Courant’s nodal domain theorem)
For each of the eigenvalue problems the number of nodal domains of an eigenfunction correspond-
ing to the i-th eigenvalue is at most i+ 1.
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1.3. Eigenfunctions of the Laplacian

Corollary
(1) For the closed eigenvalue problem an eigenfunction corresponding to the first nonzero eigen-
value has exactly two nodal domains.
(2) For the Dirichlet eigenvalue problem each eigenfunction corresponding to the zeroth eigenvalue
has constant sign on S and so the multiplicity of λ1 is exactly one. Moreover an eigenfunction
corresponding to the first eigenvalue has exactly two nodal domains.

Local description of the nodal set of a finite linear combination of eigenfunctions does not
follow from Cheng’s theorem. In Chapter 2 we will have to consider such a sum in the case
when the metric on S is analytic. We recall the following theorem which would be helpful in this
situation.

Theorem 1.3.4. (analyticity)
Let S be a surface with an analytic metric. Then eigenfunctions of S are real analytic functions
in the interior of S.

Therefore if f is a finite linear combination of eigenfunctions then f is analytic and its nodal
set is the zero set of a real analytic function. Then Proposition 5 in [O-R] says that Z(f) is the
union of a locally finite graph without free vertex and possibly a set of isolated points.

Topological properties of small eigenfunctions

Let S be hyperbolic surface without boundary. Recall that any eigenvalue of S below 1
4 is

called a small eigenvalue.

Definition 1.3.5. An open subset Ω ⊂ S (resp. a graph G ⊂ S) is called incompressible if the
fundamental group of any connected component of Ω (resp. of G) maps injectively into π1(S).

We will use the following lemma about nodal set and nodal domains of small eigenfunctions
[O, Lemma 1].

Lemma 1.3.6. (Otal) Let S be a hyperbolic surface. Let 0 < λ ≤ 1
4 and f : S → R be a λ-

eigenfunction. Then the graph Z(f) is incompressible and the Euler characteristic of each nodal
domain f is negative.

In Chapter II we shall prove an extension of this lemma in the particular case when S is
closed.

1.3.7 Local bounds for eigenfunctions
Here we recall two properties of eigenfunctions of the Laplacian of hyperbolic surfaces. These

properties will be used in Chapter 3. We begin with the mean value property of J. D. Fay [F].
Let Dr ⊂ H be a geodesic disc around a point z0. Let ∆f = s(s − 1)f in Dr. Then f has

the following mean value property [F, Corollary 1.3].

Theorem 1.3.8.
f(z0) = 1

m(r, s)

∫
Dr

f(z)dµH, (1.9)

where m(r, s) is a continuous function of r and s only which has the following asymptotic:

m(r, s) ∼ πr2 as r → 0.
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Chapter 1. Eigenvalues and eigenfunctions of the Laplacian of hyperbolic surfaces

Next we recall a bound on gradients of eigenfunctions of the Laplacian depending on its
Lp-norms. Let Ω ⊂ H be a bounded open set. We consider the following norms on the space of
smooth functions on Ω:

(i) ‖φ‖Lr(Ω) =
(∫

Ω
|φ|rdx

) 1
r

for r > 1,

(ii) ‖∇φ‖Ω = supΩ|∇φ(x)| (1.10)

The following theorem is a particular case of the Lp Schauder interior estimate for solutions of
elliptic differential equations [BJS, p-235, Theorem 4].

Theorem 1.3.9. Let S be a hyperbolic surface. Let (λ, u) be an eigenpair of S. Let Ω be a
bounded domain in H and let Ω0 be a compact subset of Ω. Then there exists a constant C <∞,
depending only on Ω, Ω0 and a bound on λ, such that

‖∇u‖Ω0
≤ C

(
‖u‖Lp(Ω) + ‖u‖C0(Ω)

)
. (1.11)

1.3.10 Fourier expansions of eigenfunctions on cylinders and cusps
Let C be the cylinder with core geodesic γ that has length 2πl = lγ . Denote (r, θ) the Fermi

coordinates in C (see 1.1). Any smooth function f on C can be expressed as a Fourier series in
the θ-coordinate:

f(r, θ) = a0(r) +
∞∑
j=1

(
aj(r) cos jθ + bj(r) sin jθ

)
, (1.12)

the convergence being uniform over compact sets. The functions aj = aj(r) and bj = bj(r)
are defined on R and the pair (aj , bj) is called the j-th Fourier coefficients of f . When f is a
λ-eigenfunction, aj and bj are solutions of the differential equation in the r variable:

d2φ

dr2 + tanh r dφ
dr

+ (λ− j2

l2cosh2r
)φ = 0. (1.13)

The change of variable u(r) = cosh
1
2 (r)φ(r) transforms (3.15) into

d2u

dr2 =
(

(1
4 − λ) + 1

4cosh2r
+ j2

l2cosh2r

)
u. (1.14)

Let sj (resp. cj) be the solution of (3.20) satisfying the conditions: sj(0) = 0 and s′j(0) = 1 (resp.
cj(0) = 1 and c′j(0) = 0). Since (3.20) is invariant under r → −r one has: sj(−r) = −sj(r) and
cj(−r) = cj(r) for all j ≥ 0. Therefore there exists t > 0 such that sj > 0 and c′j > 0 on (0, t].
We will not need the explicit form of these solutions. For our purpose a convexity property (see
Chapter 3) will suffice.

Let P be a cusp at∞. Let (x, y) be the coordinates on P induced from the upper half-plane.
Any smooth function f on P can be expressed as a Fourier series in the x coordinate as follows:

f(x, y) = f0(y) +
∞∑
j=1

(
fj(y) sin jx+ gj(y) cos jx

)
, (1.15)

the convergence being uniform over compact sets. The pair (fj , gj) is defined on R+ and are
called the j-th Fourier coefficient of f . When f is a λ-eigenfunction fj and gj are the two linearly
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independent solutions of the differential equation:

d2φ

dy2 +
(
λ

y2 − j
2
)
φ = 0. (1.16)

Let λ = s(1 − s) for s = 1
2 + ir with r ∈ R. In the case j = 0 the two linearly independent

solutions of (1.16) are explicit:

1
2(ys + y1−s) and 1

2s− 1(ys + y2s−1) if s 6= 1
2

√
y and √y log y if s = 1

2 (1.17)

For j ≥ 1 the two linearly independent solutions are:√
2jy
π
Ks− 1

2
(jy) and

√
2jyπIs− 1

2
(jy) (1.18)

where Kν(y) and Iν(y) are the standard Bessel functions [I, Appendix B.4]. They have the
following asymptotic behavior:√

2jy
π
Ks− 1

2
(jy) ∼ e−jy and

√
2jyπIs− 1

2
(jy) ∼ ejy (1.19)

Therefore, if one assumes that f is bounded by some power of y as y →∞ then one has:

f(x, y) = f0(y) +
∞∑
j=1

fj
√
jyKs− 1

2
(jy) cos jx+ gj

√
jyKs− 1

2
(jy) sin jx. (1.20)

Using the complex variable z the above Fourier expansion can also be expressed in terms of the
Whittaker function, Ws(z), as [I, Proposition 1.5]:

f(z) = f0(y) +
∑
j 6=0

f
′

jWs(jz). (1.21)





Chapter 2

Geometric lower bounds on eigenvalues of hyperbolic
surfaces

We begin by recalling a construction of Peter Buser [Bu] that shows the existence of closed
hyperbolic surfaces with small eigenvalues. Then we state the Otal-Rosas [O-R] result on the
number of small eigenvalues of hyperbolic surfaces of finite area that confirms a conjecture of
Buser. In the next section, closely following the proof of the Otal-Rosas theorem in the case
of closed hyperbolic surfaces, we obtain a quantitative version of their result in Theorem 2.1.4.
In the following section we consider the i-th eigenvalue λi as a function on Mg and obtain a
limiting behavior for it. This behavior distinguishes between i ≤ 2g − 3 and i ≥ 2g − 2. In the
last section, using arguments similar to those used in the proof of Theorem 2.1.4, we obtain a
bound on the number of anti symmetric cuspidal eigenvalues for certain noncompact hyperbolic
surfaces of finite area.

2.1 Hyperbolic surfaces with small eigenvalues

Existence of surfaces with small eigenvalues was proved originally by B. Randol [R1] using
the famous trace formula of A. Selberg. We begin by recalling another constructive method, due
to P. Buser [Bu], that shows that such surfaces exists.

Theorem 2.1.1. (Buser) For any ε > 0 there exist surfaces S ∈Mg such that λ2g−3(S) < ε.

Now we quickly describe the construction. Consider a genus g hyperbolic surfaceM admitting
a pair of pants decomposition P1, ..., P2g−2 such that the boundary geodesics of each Pi has
length ε

6 . Observe that surfaces with this property can be constructed explicitly using the
Fenchel-Nielsen coordinates [Bu, Chapter 6]. Now, for each 1 ≤ i ≤ 2g−2, consider the function
fi:

fi(x) =
{
d(x, ∂Pi) if d(x, ∂Pi) ≤ 1 and x ∈ Pi
1 else where in Pi.

(2.1)

Extend fi on the rest ofM by zero. Then {fi}2g−2
i=1 is an orthogonal set of functions because their

supports do not overlap. One may check that the Rayleigh quotients of fi, R(fi) < ε. Using the
min-max principle (see Chapter 1) one concludes that M has at least 2g − 2 many eigenvalues
below ε.
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Chapter 2. Geometric lower bounds on eigenvalues of hyperbolic surfaces

The above construction extends to hyperbolic surfaces with finite area. So there exist finite
area hyperbolic surfaces of type (g, n) that has 2g−2+n small eigenvalues. For closed hyperbolic
surfaces Buser shows the following.

Theorem 2.1.2. (Buser) A closed hyperbolic surface of genus g can have at most 4g − 2 many
small eigenvalues.

In the general case i.e. for a hyperbolic surface with finite area and type (g, n) it was
conjectured that 2g − 2 + n should be the maximal number. For closed hyperbolic surfaces
of genus two this conjecture is confirmed by P. Schmutz [Sch]. In [O-R] Jean-Pierre Otal and
Eulalio Rosas proves this conjecture in the general case.

Théorèm 0.2 ([O-R]) For any S ∈ Mg,n the number of small eigenvalues of S is at most
2g − 2 + n i.e. λc2g−2+n(S) > 1

4 .
In view of the above theorem it is clear that, for a closed hyperbolic surface S of genus g, 1

4
works as a lower bound for λ2g−2(S). We shall closely follow the proof of [O-R, Théorèm 0.2], for
closed hyperbolic surfaces, to prove the following theorem which gives a geometric lower bound
on λ2g−2. We first give the definition of systole for a surface.

Definition 2.1.3. Systole of a hyperbolic surface S is the infimum of lengths of closed geodesics
on S.

Theorem 2.1.4. Let S be a closed hyperbolic surface of genus g and let s(S) denote the systole
of S. Then λ2g−2(S) > 1

4 + ε0(S) where ε0(S) can be taken any quantity smaller than

min{ 1
4(g − 1) ,

1
4((cosh ρ0

sinh ρ0
)2 − 1)}

where 2s(S)sinh ρ0 = |S|.

Recall that any λi, in particular λ2g−2, is a continuous function onMg (see Chapter 5). Recall
that the set Iε = {S ∈ Mg : s(S) ≥ ε} is compact ([Bu, p. 163]). By [O-R] λ2g−2(S) > 1/4 for
all S ∈ Mg. Hence there exists a non-zero constant η(ε) such that λ2g−2(S) > 1/4 + η(ε) for
all S ∈ Iε. This proves the Theorem with ε0(S) = η(s(S)). The content of Theorem 2.1.4 is to
make this constant explicit in terms of the geometry of S i.e. one can take ε0(S) any quantity
below

min{ 1
4(g − 1) ,

1
4((cosh ρ0

sinh ρ0
)2 − 1)}

where 2s(S)sinh ρ0 = |S|.
We now briefly sketch the proof of the above theorem. Let Eλ denote the λ-eigenspace of

the Laplacian on S. For ε > 0, let E 1
4 +ε be the direct sum of eigenspaces Eλ with λ ≤ 1

4 + ε.

For f 6= 0 ∈ E 1
4 +ε, consider the nodal set Z(f) (see Chapter 1). It is proved in [O-R], using

the analyticity of eigenfunctions on H, that Z(f) is the union of a finite graph and a discrete
set. Let G(f) be the subgraph of Z(f) obtained by suppressing those connected components
which are homotopic to a point on S (equivalently, those which are contained in a topological
disc). Due to this modification, each component of S \ G(f) is incompressible (see Chapter 1 for
the definition). One of the main observation in [O-R] was that for any f 6= 0 ∈ E 1

4 , the Euler
characteristic of at least one component of S \ G(f) is strictly negative. For ε > 0 there is no
reason, in general, to believe such a result for f 6= 0 ∈ E 1

4 +ε. However we will prove the following
lemma.

Lemma 2.1.5. Let S be a closed hyperbolic surface of genus g. Then there exists an explicit
constant ε0(S) > 0 depending only on the genus g and the systole of S, such that for any f 6= 0
∈ E 1

4 +ε0(S), the Euler characteristic of at least one component of S \ G(f) is strictly negative.
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2.1. Hyperbolic surfaces with small eigenvalues

The above Lemma will be deduced from the following:

Proposition 2.1.6. Let S be a closed hyperbolic surface of genus g. Let Ω ⊂ S be a surface with
smooth boundary which is homeomorphic either to a disc or to an annulus. Then there exists a
constant ε(Ω) > 0 depending on the length lΩ of the geodesic in S homotopic to a generator of
π1(Ω) and the area of Ω such that the first Dirichlet eigenvalue of Ω satisfies: λ0(Ω) > 1/4+ε(Ω).
Furthermore there exists an explicit constant ε0(S) > 0 depending only on the systole of S such
that ε(Ω) > ε0(S).

Notation 2.1.7. For any surface Ω ⊆ S with smooth boundary, |Ω| denotes the area of Ω for the
area measure on S and L(∂Ω) denote the length of the boundary of Ω.

We shall see in the proof that ε(Ω) is a strictly decreasing function of |Ω| when lΩ is kept fixed
and a strictly increasing function of lΩ when |Ω| is kept fixed. The statement in the proposition
then follows from the observation that both the parameters i.e. |Ω| and lΩ are bounded: the first
one being bounded above by 4π(g − 1) and the last one being bounded below by s(S).

In §3 we study the behavior of λi as a function on the moduli spaceMg. We recall that the
moduli space Mg is the space of all closed hyperbolic surfaces of genus g up to isometry. We
focus our interest on the first 2g − 2 non-zero eigenvalues. Theorem 2.1.4 (or even a continuity
argument onMg) implies one direction of the following

Claim 2.1.8. For a family Sn of compact hyperbolic surfaces in Mg, λ2g−2(Sn) tends to 1/4 if
and only if the systole s(Sn) tends to zero.

The other direction follows from a construction due to P. Buser [Bu].
The above proposition can be compared with the following result of Schoen, Wolpert and

Yau [S-W-Y]. Let M be a closed oriented surface of genus g with a metric of (possibly variable)
Gaussian curvature K. For an integer n ≥ 1 consider the family C̃n of curves on M which are
disjoint union of simple closed geodesics and which divide M into n+ 1 components (necessarily
n ≤ 2g − 3). Define a number ln by

ln = min{L(C) : C ∈ C̃n}.

where L(C) denotes the length of C. Then
Theorem (Schoen-Wolpert-Yau). Suppose for some constant k > 0 we have −1 ≤ K ≤

−k. Then there exist positive constants α1, α2 depending only on g such that for 1 ≤ n ≤ 2g− 3,
we have α1k

3/2ln ≤ λn ≤ α2ln and α1k ≤ λ2g−2 ≤ α2.
Recall that the Bers constant β [B] which depends only on g has the property that l2g−2 < β.

So this theorem implies that λ2g−2 is bounded above by a constant depending only on g. Observe
also that the Buser’s construction ([Bu, Theorem 8.1.3]) leads to the same conclusion. Namely
by Buser’s construction for any δ > 0 there exists a constant ε > 0 such that λ2g−2 <

1
4 + δ for

any S ∈ Mg with s(S) < ε. Since λ2g−2 is a continuous function on Mg and Iε = {S ∈ Mg :
s(S) ≥ ε} is compact the existence of an upper bound is clear. In this context we would like to
mention a paper due to Dodziuk, Pignataro, Randol and Sullivan [D-P-R-S] where the authors
obtained a result similar to the one of [S-W-Y] in the context of possibly non-compact hyperbolic
surfaces.

After proving Claim 2.1.8, we focus on the behavior of λi(S), for 1 ≤ i ≤ 2g − 3, as s(S)
tends to zero. More precisely, letMg denote the compactification ofMg obtained by adding the
moduli spaces of (not necessarily connected) non-compact finite area hyperbolic surfaces with
area equal to 4π(g − 1). Let ∂Mg = Mg \ Mg be the corresponding boundary of Mg. We
study the behavior of λi(Sn) when Sn ∈ Mg tends to a point in ∂Mg. By the above theorem
of Schoen, Wolpert and Yau and the discussion after, it is clear that λi is bounded over Mg.
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Chapter 2. Geometric lower bounds on eigenvalues of hyperbolic surfaces

Indeed the method using Buser’s construction works for any i, showing that λi is bounded by a
constant depending only on g and i. So for any i we can consider the set

Vi = { lim
n→∞

λi(Sn) : (Sn) is a sequence inMg converging to a point in ∂Mg

such that lim
n→∞

λi(Sn) exists}.

With this notation, the above claim says that V2g−2 = {1
4}. We next prove

Claim 2.1.9. For any 1 ≤ i ≤ 2g − 3, there exists a Λi(g) ∈ (0, 1
4 ] such that Vi contains the

interval [0,Λi(g)].

We shall use a result of Courtois and Colbois [C-C, Theorem 0.1] to prove this claim.
In §4 we consider finite area hyperbolic surfaces of type (g, n). The Laplace spectrum of

these surfaces consists of two parts: the continuous part and the discrete part. The continuous
part covers the interval [ 1

4 ,∞) and is spanned by the Eisenstein series with multiplicity n. The
discrete spectrum consists of eigenvalues. They are distinguished into two parts: the residual
spectrum and the cuspidal spectrum. We shall consider the cuspidal spectrum only. An eigenpair
(λ, f) is called cuspidal if f tends to zero at each cusp. In this case λ and f are respectively
called a cuspidal eigenvalue and a cuspidal eigenfuction. These eigenvalues with multiplicity are
arranged by increasing order and we denote λcn(S) the n-th cuspidal eigenvalue of S.

Denote by Tg,n the Teichmüller space of all marked hyperbolic surfaces of type (g, n). For
any choice of pair of pants decomposition of such a hyperbolic surface S one can define a system
of coordinates on Tg,n, the Fenchel-Nielsen coordinates which consists, for each curve in the
pants decomposition, of the length of that curve and a twist parameter along that curve ([Bu,
Chapter 6]). Now we consider the set T 0

g,n of all hyperbolic surfaces in Tg,n for which all twist
parameters are equal to zero. Each surface in T 0

g,n carries an involution ι which when restricted
to each pair of pants is the orientation reversing involution that fixes the boundary components.
This involution induces an involution on each eigenspace of the Laplacian. The eigenfunctions
corresponding to the eigenvalue −1 are called antisymmetric and the corresponding eigenvalue
is called an antisymmetric eigenvalue. We denote the i-th antisymmetric cuspidal eigenvalue of
S by λo,ci(S).

Theorem 2.1.10. For every surface S ∈ T 0
g,n there exists an explicit constant ε0(S) > 0,

depending only on the systole of the surface S, such that λo,cg(S) > 1/4 + ε0(S).

Indeed, the constant ε0(S) can be taken equal to any number below

min{ 1
2(2g − 2 + n) ,

1
4((cosh ρ0

sinh ρ0
)2 − 1)}

where 2s(S)sinh ρ0 = |S|.

2.2 Proof of Proposition 2.1.6
The proof depends mainly on two geometric inequalities: the Faber-Krahn isoperimetric

inequality and the Cheeger’s inequality. Suppose first that Ω ⊆ S is a disc or more generally a
domain such that π1(Ω) maps to zero in π1(S). Then choose an isometric lift of Ω to H, still
denoted by Ω.
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2.2. Proof of Proposition 2.1.6

Let B(t) be the geodesic disc in H with radius t. The geodesic disc with same area as Ω

has radius t(Ω) = 2sinh−1( |Ω|4π ). By the Faber-Krahn inequality (see Chapter 1) λ0(B(t(Ω))) 6
λ0(Ω).

Since Ω is contained in S whose area equals 2π(2g − 2), by Gauss-Bonnet theorem, |Ω| <
2π(2g − 2). Therefore, B(t(Ω)) is contained in the disc with radius t0 = 2sinh−1(g − 1). Recall
that for two subsurfaces D1 and D2 in H with compact closure, λ0(D1) > λ0(D2) when D1 ( D2.
Thus λ0(B(t)) is a strictly decreasing function of t. Hence λ0(B(t(Ω))) > λ0(B(t0)). Now by
Theorem 5 in [Cha], we have

λ0(B(t)) > lim
s→∞

λ0(B(s)) = 1
4 .

Hence we finally have a strictly positive ε1(|Ω|) which depends only on the area |Ω| of Ω such
that λ0(B(t(Ω))) = 1

4 + ε1(|Ω|). Since λ0(B(t)) is a strictly decreasing function of t, ε1(|Ω|) is a

strictly decreasing function of |Ω| which is bounded below by the constant ε1(S) = λ0(B(t0))− 1
4 .

Suppose now that Ω is an annulus and that the image of π1(Ω) in π1(S) is a non-trivial cyclic
subgroup 〈τ〉. Let T denote the cylinder H/〈τ〉. Let γ denote the core geodesic of T and l the
length of γ. Then l is the length of the shortest geodesic of S homotopic to a generator of π1(Ω).
Consider an isometric lift of the annulus Ω to H/〈τ〉, still denoted by Ω. We need to prove that
λ0(Ω) > 1

4 + ε0(S) where ε0(S) depends only on l and |Ω|. We will use Cheeger’s inequality (see
Chapter 1) in the following form:

Cheeger inequality
Let Ω ( T be a submanifold with piecewise smooth boundary. Let h(Ω) be the Cheeger constant
of Ω. Then

λ0(Ω) > h2(Ω)
4 .

Recall that the Cheeger constant of Ω is equal to inf{L(∂V )
|V |

} where V ranges over all compact

submanifolds of Ω with smooth boundary.
The proof of Proposition 2.1.6 in the case of an annulus follows from Cheeger inequality and

the next

Lemma 2.2.1. Let Ω ( T be a submanifold with piecewise smooth boundary and h(Ω) be the
Cheeger constant of Ω. Then:

h(Ω) > 1 + ε2(|Ω|, l),

for some constant ε2(|Ω|, l) > 0, depending only on the area of Ω and the length l of the core
geodesic of T.

Proof. First we observe that the Cheeger constant is bounded below by the quantity
inf{L(∂V )

|V |
} where V ranges over connected submanifolds of Ω. Secondly, this infimum is the

same when V ranges over all discs or essential annuli contained in Ω. Recall that an annulus
is essential when it is not homotopically trivial in T. This is because any connected, compact
submanifold V ⊆ Ω is diffeomorphic either to a disc with some discs removed or to an essential
annulus with some discs removed. In both cases, taking the union of V with those removed
discs, one obtains a submanifold V ′ which is either a disc or an essential annulus which satisfies:

L(∂V ′) ≤ L(∂V ) and |V ′ ≥ |V |. Therefore L(∂V ′)
|V ′ |

<
L(∂V )
|V |

.
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Suppose now that V ⊆ Ω is diffeomorphic to a disc. By the isoperimetric inequality ([B-Z,
p. 11]), one has

(L(∂V )
|V |

)2 ≥ 1 + 4π
|V |

.

Therefore if V ⊆ Ω then (L(∂V )
|V |

)2 ≥ 1 + 4π
|Ω| .

Since |V | < 2π(2g − 2), we get (L(∂V )
|V |

)2 > 1 + 1
g − 1 .

Now we suppose that V ⊆ Ω is an essential annulus. In order to prove the claim in this
case we will need the following notion of symmetrization, which is close to the notion of Steiner
symmetrization ([He, p. 18]).

Definition 2.2.2. Let V ⊆ T be an essential annulus. The symmetrization of V is the annulus
V0 ⊆ T symmetric with respect to γ with constant width and which has the same area V .

Recall that the Fermi coordinates on T assign to each point p the pair (r, s) ∈ R × {γ},
where r is the signed distance of p from γ and s is the projection of p on γ. For simplicity of
computation we parametrize the geodesic γ by arc-length. The resulting coordinates provide a
diffeomorphism between T and R × R/lZ. The hyperbolic metric in these coordinates equals
dr2 + cosh r2ds2.

Lemma 2.2.3. Let V ⊆ T be an essential annulus with piecewise smooth boundary and V0 be the
symmetrization of V . Then L(∂V ) ≥ L(∂V0).

Proof. First we consider the case when each component of ∂V is a graph over γ. By that
we mean that there exist two functions r1 and r2: [0, l]→ R such that ri is a piecewise smooth
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map (there is a partition 0 = s1 < s2 < ... < sm = l such that each restriction ri|[sj , sj+1] is
smooth) with ri(0) = ri(l) and the components of ∂V are parametrized in Fermi coordinates as:
{(s, ri(s)), s ∈ [0, l]} for i = 1, 2. Then the components of the symmetrization V0 of V are the

graphs of the constant functions r3 = ρ and r4 = −ρ with ρ = sinh−1( |V |2l ). Up to exchanging
r1 and r2, we may suppose that r1(s) > r2(s) for all 0 ≤ s ≤ l. Then we calculate the areas of
V and V0:

|V | =
∫ l

0

∫ r2(s)

r1(s)
cosh rdrds =

∫ l

0
{sinh r2(s)− sinh r1(s)}ds

and
|V0| =

∫ l

0

∫ ρ

−ρ
cosh rdrds =

∫ l

0
2. sinh ρds = 2l sinh ρ.

The length of ∂V0 is
L(∂V0) = 2l cosh ρ

and the length of ∂V satisfies

L(∂V ) =
∫ l

0
{ṙ1(s)2 + 1}1/2 cosh r1(s)ds+

∫ l

0
{ṙ2(s)2 + 1}1/2 cosh r2(s)ds

≥
∫ l

0
{cosh r1(s) + cosh r2(s)}ds.

Call L0 the constant equal to the last expression. Observe that L(∂V ) = L0 if and only if
ṙ1(θ) = 0 = ṙ2(θ). This implies that r1 and r2 are constants.

One has:
L(∂V )2 − |V |2 ≥ (L0 + |V |)(L0 − |V |).

Now,

L0 + |V | =
∫ l

0
((cosh r2(s) + sinh r2(s)) + (cosh r1(s)− sinh r1(s)))ds

=
∫ l

0
(exp(r2(s)) + exp(−r1(s)))ds

and similarly

L0 − |V | =
∫ l

0
(exp(−r2(s)) + exp(r1(s)))ds.

Thus we have
(L0 + |V |)(L0 − |V |)

=
(∫ l

0
(exp

(
r2(s)

)
+ exp

(
− r1(s)

)
)ds
)(∫ l

0
(exp

(
− r2(s)

)
+ exp

(
r1(s)

)
)ds
)

≥ (
∫ l

0
(exp

(
r2(s)

)
+ exp

(
−r1(s)

)
) 1

2 (exp
(
− r2(s)

)
+ exp

(
r1(s)

)
) 1

2 ds)2

(by Hölder’s inequality)

= (
∫ l

0
(2 + 2 cosh

(
r1(s) + r2(s)

)
) 1

2 ds)2.
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Since cosh x ≥ 1 ∀x, we get (L0 + |V |)(L0 - |V |) ≥ 4l2 = L(∂V0)2 − A(V0)2. Equality holds if
and only if r1, r2 are independent of s and if r1 = −r2.
Since by construction |V | = |V0|, the lemma is proven when V is an annulus whose boundary
components are graphs over γ.

Now we consider the case of an arbitrary annulus with piecewise smooth boundary. By
approximation, it suffices to prove Lemma 2.2.3 for those V which satisfy the following property:
there exists a partition of γ: 0 = s1 < s2 < ... < sk = l = 0 such that over each interval [si, si+1],
∂V is the union of graphs of finitely many functions. We consider now such an annulus. We
consider the strip over [si, si+1] in T which is diffeomorphic to [si, si+1]×R in Fermi coordinates.
Denote by V i the intersection of V with this strip. Let for 1 ≤ i ≤ k, we denote by fj , j =
0, 1, 2..., l(i) the boundary curves of V i i.e. in Fermi coordinates the components of ∂V i are
parametrized as {(s, fj(s)) : s ∈ [si, si+1]} for j = 0, 1, 2..., l(i) and for any s ∈ [si, si+1],
r(f0(s)) > r(f1(s)) > ... > r(fl(i)(s)). Now we calculate the area of V i

|V i| =
∑

j=l(i)−1,l(i)−3,...,1

∫ si+1

si

∫ fj+1(s)

fj(s)
cosh rdrds =

l(i)∑
j=1

∫ si+1

si

(−1)j+1 sinh fj(s)ds.

The length of ∂V i is given by

L(∂V i) =
l(i)∑
j=1

∫ si+1

si

{ḟj(s)2 + 1}1/2 cosh fj(s)ds ≥
∫ si+1

si

l(i)∑
j=1

cosh fj(s).

Call L0(i) the constant equal to the last expression and calculate

L(∂V )2 − |V |2 = (
∑
i

L(∂V i))2 − (
∑
i

|V i|)2 ≥ (
∑
i

L0(i))2 − (
∑
i

|V i|)2

= (
∑
i

∫ si+1

si

(
l(i)∑
j=1

exp[(−1)j+1fj(s)]ds)× (
∑
i

∫ si+1

si

(
l(i)∑
j=1

exp[(−1)jfj(s)]ds)

≥ (
∑
i

∫ si+1

si

(exp[(−1)0+1f0(s)] + exp[(−1)1+1f1(s)])ds)

×(
∑
i

∫ si+1

si

(exp[(−1)0f0(s)] + exp[(−1)1f1(s)])ds)

≥ (
∫ l

0
(2 + 2 cosh(f1(s)− f0(s)) 1

2 ds)2

( by Hölder’s inequality)

≥ 4l2 = L(∂V0)2 − |V0|2.

Hence using the same argument as before we finally prove Lemma 2.2.3. 2
So now we have (L(∂V )

|V |
) ≥ (L(∂V0)

|V0|
) = cosh ρ

sinh ρ where |V | = 2l sinh ρ. Thus we conclude the

proof of Lemma 2.2.1 by taking

ε2(Ω, l) = 1
2min{cosh θ

sinh θ − 1, (1 + 4π
|Ω| )

1
2 − 1}
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where |Ω| = 2l sinh θ. 2

Since cosh ρ
sinh ρ is a strictly decreasing function of ρ we have

(L(∂V )
|V |

) ≥ cosh ρ1

sinh ρ1
>

cosh ρ0

sinh ρ0

where 2l sinh ρ1 = |Ω| and 2s(S) sinh ρ0 = |S| = 4π(g − 1) (since V ⊆ Ω ( S). To conclude the
proof of Proposition 2.1.6 we take

ε0(S) = 1
2min{ε1(S), 1

4(g − 1) ,
1
4((cosh ρ0

sinh ρ0
)2 − 1)}.2

Remark 2.2.4. From the expression of ε0(S) we observe that if (Sn) be a sequence inMg, then
ε0(Sn) tends to zero only if s(Sn) tends to zero. The computations in the proposition also show
that for any Ω ⊆ S diffeomorphic to a disc or to an annulus one has

λ0(Ω) ≥ 1
4 + 2ε0(S).

2.2.5 Proof of Theorem 2.1.4
The proof at this point follows the same lines as that of [O-R, Théorèm 0.2] and we refer

[O-R] for the details. We take ε0(S) as in Proposition 2.1.6. Consider the space E 1
4 +ε0(S). Recall

that Eλ is the direct sum of the eigenspaces of the Laplacian with eigenvalues less than or equal
to λ. Let f 6= 0 ∈ E 1

4 +ε0(S). The nodal set Z(f) of f is defined as f−1(0). Recall that G(f) is the
subgraph of Z(f) obtained by suppressing those connected components which are zero homotopic
on S. Each component of S \ G(f) is an open surface, may be equal to S when G(f) is empty.
The sign of f on a component of S \ G(f) can be defined as follows. There is a finite collection
of disjoint closed topological discs (Dj) with ∂Dj

⋂
Z(f) = φ such that each component of Z(f)

which is zero homotopic is contained in one of the Dj ’s. Therefore each component of S \ G(f)
is a union of a component of S \Z(f) with a finite number of those Dj ’s. Define the sign of f on
such a component to be the one of f on the corresponding component if S \Z(f). Now we denote
the union of all components with positive (resp. negative) sign as C+(f) (resp. C−(f)). As a
consequence of the construction, the surfaces C+(f) and C−(f) are incompressible. As recalled
earlier, an open subset of a surface S is called incompressible if the fundamental group of any of
its connected components maps injectively into π1(S). The union of the connected components
of C+(f) (resp. C−(f)) which are neither discs nor rings is denoted by S+(f) (resp. S−(f)).
The surfaces S±(f) may be empty or disconnected but by construction when they are nonempty,
they are incompressible.

Denote the Euler characteristic of S+(f) (resp. S−(f)) by χ+(f) (resp. χ−(f)). (we use
the convention that the Euler characteristic of the empty set is zero). The incompressibility
property of S+(f) and S−(f) gives that χ+(f) + χ−(f) is greater than χ(S). By definition, we
have χ±(f) ≤ 0 with equality only if S±(f) is empty.

Lemma 2.1.5 The Euler characteristic of at least one component of S \ G(f) is negative.
Proof. Let us suppose by contradiction that for some f 6= 0 ∈ E 1

4 +ε0(S), each component
Si, 1 ≤ i ≤ m of S \ G(f) has non-negative Euler characteristic. So, each such component is
homeomorphic either to an open disc or to an open annulus. Since f ∈ E 1

4 +ε0(S) the Rayleigh
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quotient of f , R(f) is ≤ 1
4 + ε0(S). Therefore, since G(f) has measure zero, for at least one

component, say S1, one has

R(f |S1) =
∫
S1
‖ Of ‖2∫
S1
f2 ≤ 1

4 + ε0(S).

Now we shall calculate the Rayleigh quotient R(f |S1) and show that our choice of ε0(S) leads
to a contradiction.

Let us assume that S1 is homeomorphic to an open disc. The case when S1 is an annulus
can be dealt with similarly. Since f is smooth and f |∂S1 = 0 we can choose, by Sard’s theorem,
a sequence (εn) of regular values of f converging to 0. Then the level set {x ∈ S1 : f(x) = εn}
is a smooth submanifold of S for n large enough. Furthermore one of the components of this
level set confines a domain Dn ( S1 homeomorphic to a closed disc with smooth boundary such
that S1 \ Dn has arbitrarily small area. Now we consider the Rayleigh quotient, R(fn|Dn) of
the function fn = f − εn restricted to the region Dn. This function vanishes on ∂Dn. As εn
converges to 0, R(fn|Dn) converges to R(f |S1). Thus for any δ > 0, in particular for ε0(S)

2 , we

can find εn small enough such that R(fn|Dn) ≤ 1
4 + ε0(S) + ε0(S)

2 <
1
4 + 2ε0(S). Now since Dn

is a closed disc with smooth boundary which is contained in S1 ⊆ S, it follows from the Rayleigh
quotient characterization of the first Dirichlet eigenvalue of Dn that R(fn|Dn) ≥ λ0(Dn). By
Remark 2.2.4 we have λ0(Dn) ≥ 1

4 + 2ε0(S). This is a contradiction when n is sufficiently large.
2

So some component of S \ G(f) has negative Euler characteristic. This component is a
component of S±(f). Thus we obtain:

χ+(f) + χ−(f) < 0.

Now we start with some definitions and complete the proof.

Definition 2.2.6. According to the sign of f on Si, we denote this component as Si+(f) or
Si
−(f). For each such surface with negative Euler characteristic, we consider a compact core,

i.e. a compact surface Ki
±(f) ⊂ Si

±(f) such that the inclusion is a homotopy equivalence. We
then define the surface Σ+(f) (resp. Σ−(f)) as the union of the compact cores Ki

+(f) (resp.
Ki
−(f)) and of those components (if any) of the complement S \

⋃
Ki

+(f) (resp. S \
⋃
Ki
−(f)),

which are annuli. Therefore, Σ+(f) (resp. Σ−(f)) is obtained from
⋃
Ki

+(f) (resp.
⋃
Ki
−(f)

), by adding (if any) the annuli between the components of
⋃
Ki

+(f) (resp.
⋃
Ki
−(f)). We

call Σ(f) = Σ+(f)
⋃

Σ−(f), the characteristic surface of f , while Σ+(f) (resp. Σ−(f)) is
called the positive (resp. negative) characteristic surface of f . The definition of these surfaces
depend uniquely on the choice of compact cores and those are well defined up to isotopy. By
construction the Euler characteristic of Σ+(f) (resp. Σ−(f)) is χ+(f) (resp. χ−(f)). It is clear
that Σ+(−f) = Σ−(f) and Σ−(−f) = Σ+(f).

Continuation of the proof of Theorem 2.1.4.

Let m denote the dimension of the space E 1
4 +ε0(S). Theorem 2.1.4 will follow from the

inequality m ≤ (2g− 2). Let S(E 1
4 +ε0(S)) denote the unit sphere of E 1

4 +ε0(S) (for some arbitrary
norm) and let P(E 1

4 +ε0(S)) be the projective space of E 1
4 +ε0(S) i.e. the quotient of S(E 1

4 +ε0(S))
by the involution f → -f .
For each integer i with 2− 2g ≤ i ≤ −1, we denote

Ci = {f ∈ S(E 1
4 +ε0(S))|χ+(f) + χ−(f) = i}.
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According to the lemma and its consequence above, S(E 1
4 +ε0(S)) =

⋃−1
2−2gCi. On the other hand,

each Ci is invariant under the antipodal involution. Let Pi be the quotient of Ci under the
antipodal involution. The projective space P(E 1

4 +ε0(S)) is the union of the sets Pi.

Lemma 2.2.7. For any integer i, 2− 2g ≤ i ≤ −1, the covering map Ci → Pi is trivial.

Proof. Let f ∈ Ci.We use the notations introduced in the definition of characteristic surface
of f : Si±(f) is a connected component of negative Euler characteristic of S±(f) and Ki

±(f) is
a compact core of Si±(f). We may assume that the compact core has been chosen in such a way
that any connected component of Z(f) that is contained in some Si±(f) is indeed contained in
the interior of the corresponding Ki

±(f).
For any function g ∈ E 1

4 +ε0(S) close enough to f , and for each i, Ki
±(f) is contained in

a component Sl±(g) of S±(g). Fix a neighborhood V (f) of f in S(E 1
4 +ε0(S)) such that these

inclusions occur on each surface Ki
±(f).

We will show that for any g ∈ Ci ∩ V (f), the characteristic surfaces Σ+(f) and Σ+(g)
(resp. Σ−(f) and Σ−(g)) are isotopic. Choose the compact cores Ki

±(g) of surfaces S±(g) so
that when Ki

±(f) is contained in Sj
±(g), it is also contained in the interior of Kj

±(g). Now
observe that if two components of the boundaries of surfaces Kj

+(f) are homotopic in S then
the homotopy between them is achieved by an annulus contained in Σ+(f), by the definition of
the characteristic surface. Since this annulus joins two curves of Kj

+(g) by the definition of the
characteristic surface again, it is contained in one of the connected components Σ+(g) too.

We deduce from this that each connected component of Σ±(f) is contained in a connected
component of Σ±(g) (of the same sign). Since Σ+(f) and Σ−(f) are incompressible in S, they are
incompressible in Σ+(g) and Σ−(g) respectively. In particular, their Euler characteristic satisfy

χ+(f) ≤ χ+(g) and χ−(f)) ≤ χ−(g);

these inequalities can be equalities if and only if the surfaces Σ+(f) and Σ+(g) (resp. Σ+(f) and
Σ+(g)) are isotopic. But since g ∈ Ci, we have

χ+(f) + χ−(f) = i = χ+(g) + χ−(g).

Thus Σ+(f) and Σ+(g) are isotopic. The same holds for Σ−(f) and Σ−(g).
Since the isotopy class of Σ+(f) and isotopy class of Σ−(f) are locally constant on Ci, they

are constant on each connected component of Ci. Finally we observe that the functions f and
−f can not be in the same connected component of Ci. This is because then Σ+(f) and Σ−(f)
would be isotopic. But two disjoint and incompressible surfaces of negative Euler characteristic
contained in S can not be isotopic. Thus the covering map in Lemma 2.2.7 is trivial. 2

Continuation of the proof of Theorem 2.1.4

We conclude the proof of the Theorem following a method of B. Sévennec [Se]. The double cov-
ering S(E 1

4 +ε0(S))→ P(E 1
4 +ε0(S)) is associated to a cohomology class β ∈ H1(P(E 1

4 +ε0(S)),Z/2Z).
Each covering Ci → Pi is described by the Cech cohomology class, β|Pi . Since each of this cover-
ing is trivial, we have β|Pi = 0. Since P(E 1

4 +ε0(S)) is the union of Pi and since there are at most
2g−2 of them, we have: β2g−2 = 0([Se, Lemma 8]). Since β has orderm in the Z/2Z-cohomology
ring of P(E 1

4 +ε0(S)), we have m ≤ 2g − 2.2

2.3 Systole and the Laplace spectrum
In this section we study the eigenvalues of the Laplacian as functions on the moduli space.

Recall that the moduli space Mg is the space of all closed hyperbolic surfaces of genus g up
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to isometry. Mg can be compactified to a space Mg by adding the moduli spaces of (not
necessarily connected) non-compact finite area hyperbolic surfaces with area equal to 4π(g− 1).
In this compactification a sequence (Sn) in Mg, with s(Sn) → 0, converges to S∞ ∈ Mg0,n0

(with 2g0− 2 +n0 = 2g− 2) if and only if for any given ε > 0 the ε-thick part (Sn[ε,∞)) converge
to S∞

[ε,∞) in the Gromov-Hausdorff topology. Recall that the ε-thick part of a surface S is
the subset of those points of S where the injectivity radius is at least ε. Recall also that the
injectivity radius of a point p ∈ S is the radius of the largest geodesic disc that can be embedded
in S with center p.

It is a classical result that for any i, λi is a continuous function on Mg (see Chapter 5).
Moreover, it is shown in [C-C] that eigenvalues less than 1/4 are continuous up to ∂Mg. We
shall discuss results of this type in Chapter 3. In this section we focus on the following. For a
fixed i we shall study the behavior of λi(Sn) when Sn ∈Mg tends to a point in ∂Mg. Recall

Vi = { lim
n→∞

λi(Sn) : (Sn) is a sequence inMg converging to a point in ∂Mg

such that the limit exists}.

In [R3] Randol showed a limiting behavior of λ2g−2 over some special family. Now we apply
Theorem 2.1.4 to prove the following,

Claim 2.1.8 λ2g−2(Sn) tends to 1
4 if and only if s(Sn) tends to zero. In particular V2g−2 = {1

4}.
Proof. By Theorem 2.1.4, if λ2g−2(Sn) tends to 1

4 then ε0(Sn) tends to zero. For the other
direction we use Buser’s construction. By the definition of the systole, there is a closed geodesic
τ on S such that the length of τ is equal to s(S). Now from the Collar Theorem (ref. [Bu]) of L.
Keen[K] (see also [R2]) and the explicit computations in [Bu, p. 219] we see that for any ε > 0
and any i ≥ 1 we have δ > 0 such that whenever s(S) < δ, we can find at least i disjoint annuli in
the collar neighborhood of τ of length such that the first Dirichlet eigenvalue of each of the annuli
is ≤ 1

4 + ε. The corresponding eigenfunctions are orthogonal. Hence we have λi−1(S) ≤ 1
4 + ε.

Therefore using Theorem 2.1.4 for an i ≥ 2g − 1 we obtain the convergence λi(Sn)→ 1
4 .2

Now we show that such a limiting behavior is not true in general for i ≤ 2g − 3. Moreover
Claim 2.1.9 For any 1 ≤ i ≤ 2g − 3, there exists Λi(g), 0 < Λi(g) ≤ 1

4 such that Vi =
[0,Λi(g)].

Before starting the proof we recall the definition of Teichmüller space, Tg. It is the space of all
marked closed hyperbolic surfaces of genus g. Let S ∈ Tg. Given a pair of pants decomposition of
S, we have a coordinate system on Tg, the Fenchel-Nielsen coordinates. Mg is the quotient of Tg
by the action ofModg, the Teichmüller modular group. SinceModg acts properly discontinuously
on Tg, Tg → Mg is a ramified topological covering. Thus the pre-composition of this covering
map with λi yields a map, also denoted by λi, from Tg to R. We shall use the same notation for
a point in Tg and its image inMg too.

Proof. We shall prove the claim for i = 1. The proof for 1 ≤ i ≤ 2g − 3 is similar. We choose
a pair of pants decomposition P of a S ∈ Tg and consider the corresponding Fenchel-Nielsen
coordinates (lP j , θP j) on Tg. Here lP j ’s denote the length coordinates and θP j ’s denote the twist
coordinates (ref. [Bu]). We fix two geodesics γ and γ

′ among the boundary geodesics of the
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pants decomposition P. Thus the length functions lγ and lγ′ respectively of γ and γ′ are among
lP j ’s. Suppose that the pants decomposition is chosen in such a way that γ is non-separating
and γ′ is separating.

First we prove that Vi is not empty. From a construction of P. Buser [Bu, Theorem 8.1.3]
it follows that if 0 < δ < 1

24 then λ2g−3(S) < 1
4 for any S ∈ Tg with lP j(S) < δ for all j (the

number 1
24 has no particular significance other than ensuring this condition). We fix one such δ

and consider one M ∈ Tg such that lP j(M) < δ for all j. Now consider a sequence of surfaces
(Sn) ∈ Tg such that (lP j , θP j)(Sn) = (lP j , θP j)(M) for all (lP j , θP j) except lγ and the lγ(Sn)
coordinate decreases to zero as n goes to infinity. Then (Sn) converges to a point S∞ ∈ ∂Mg.
By our choice of δ (for M) and since the number of components of S∞ is exactly one, it follows
from [C-C, Theorem 0.1] that 0 < limn→∞λ1(Sn) = λ1(S∞) = p < 1

4 . Now consider another
sequence (S′n), constructed in the same way as (Sn) except by varying the coordinate lγ′ instead
of lγ . In this case the limiting surface of the sequence (S′n) has two components. So using [C-C]
again limn→∞λ1(S′n) = 0. Thus we see that 0 and p ∈ V1, proving that V1 is not empty.

Next we prove that whenever some 0 < c ≤ 1
4 is in V1, the whole interval (0, c] is contained

in V1. Since c is in V1 we have a sequence (Pn) in Mg such that limn→∞λ1(Pn) = c. Up to
extracting a subsequence, we might assume that (Pn) converges to P∞ ∈ ∂Mg. Then P∞ is
a finite area connected (since c > 0) non-compact hyperbolic surface of type (g′ ,m) (where
g
′ + m

2 = g). For some marking of Pn, there is a pants decomposition of S, γ1, ..., γk, ..., γ3g−3
such that γ1, ..., γk are exactly those curves on Pn whose lengths tends to zero. Consider the
corresponding Fenchel-Nielsen coordinates (li, θi)i=1,2,..,3g−3 on Tg. These coordinates induce
coordinates on Tg′ ,m which will be denoted by the same notation. In these coordinates we can
choose representatives of Pn in Tg such that (lin, θin)(Pn) converges to (li∞, θi∞) for i > k and
for i ≤ k, lin converges to zero. Next, using the Buser construction ([Bu, Theorem 8.1.3]), we
choose a N∞ ∈ Tg′ ,m such that λ1(N∞) = ε < c. Then by [C-C, Theorem 0.1] for any sequence
(Nn) inMg converging to N∞ in ∂Mg, one has limn→∞λ1(Nn) = ε. In particular we consider
the sequence (Nn) such that (li, θi)(Nn) = (li, θi)(N∞) for i > k and (li, θi)(Nn) = (li, θi)(Pn)
for i ≤ k. Then limn→∞λ1(Nn) = ε.

At this point we construct a path σn inMg joining Pn and Nn for each n. Let us consider the
path given by the coordinate axes i.e. the path first goes along the li axes from li(Pn) to li(Nn)
for each i = k + 1, k + 2, .., 3g − 3 in the increasing order and then the same for θi’s. Finally for
any t ∈ [ε, c] we apply the continuity property of λ1 onMg to get a surface Qn on σn such that
λ1(Qn) = t. By construction each point on σ, in particular Qn, has (li, θi)(Qn) = (li, θi)(Pn)
for i ≤ k and all other (li, θi)(Qn) are bounded by the corresponding coordinates of P∞ and
N∞. Hence Qn converges to a point Q∞ ∈ ∂Mg and since λ1(Qn) = t for each n we have
limn→∞λ1(Qn) = t. Therefore V1 contains [ε, c] and ε being arbitrary, the whole of (0, c]. That
Λi(g) ≤ 1

4 follows from the last claim. 2

2.4 Non-compact finite area hyperbolic surfaces.
In this section we study non-compact finite area hyperbolic surfaces. Recall that Tg,n denotes

the Teichmüller space of all marked hyperbolic surfaces with finite area and of geometric type
(g, n). Given any pair of pants decomposition of any S′ ∈ Tg,n one can consider the Fenchel-
Nielsen coordinates on Tg,n. Fix one such coordinate system on Tg,n. Denote by Tg,n0 the set
of all surfaces in Tg,n all of whose twist parameters are equal to zero. Recall that each surface
in T 0

g,n carries an involution ι which when restricted to each pair of pants is the orientation
reversing involution that fixes the boundary components. This involution induces an involution
on each eigenspace of the Laplacian. The eigenfunctions corresponding to the eigenvalue −1 are
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called antisymmetric and the corresponding eigenvalue is called an antisymmetric eigenvalue.
We denote the i-th antisymmetric cuspidal eigenvalue of S by λo,ci(S).

We observe that in Proposition 2.1.6 we have considered domains in S which are diffeomorphic
either to discs or to annuli. Since S is compact, the domains have compact closures. Now for
S0 ∈ Tg,n, we may have nodal domains whose closure is not compact. To tackle this problem
we consider only those domains which are diffeomorphic either to discs or to annuli and where
respective boundary curves are not homotopic to puncture. For any such disc or annulus, the
Cheeger’s inequality is still true (ref. [Cha]). The computations in Lemma 2.2.1 then apply.
Therefore for any Ω ⊆ S0 diffeomorphic either to a disc or to an annulus whose boundary curves
are not homotopic to a puncture, we have an explicit constant ε0(S0) > 0 such that

λ0(Ω) ≥ 1
4 + 2ε0(S0) > 1

4 + ε0(S0).

Theorem 2.4.1. For any S0 ∈ Tg,n0 there exists an explicit constant ε0(S0) > 0, depending only
on the systole of the surface S0, such that λo,cg (S0) > 1

4 + ε0(S0).

Proof. The proof proceeds along the same lines as that of Theorem 2.1.4. We choose ε0(S0) as
above and consider Eo

1
4 +ε0(S0), the subspace of C∞(S0), spanned by the anti-symmetric cuspidal

eigenfunctions with eigenvalue ≤ 1
4 + ε0(S0). Then we use the same arguments as in Theorem

2.1.4 to prove that the dimension of Eo
1
4 +ε0(S0) is less than g. First for f 6= 0 ∈ Eo

1
4 +ε0(S0) we

consider the subgraph G(f) of Z(f) obtained by suppressing those components of Z(f) which are
bounded and homotopic to a point in S0 (equivalently, those which are contained in a bounded
disc in S0). Next we consider the components of S0 \ G(f) with their signs attached as defined
in 2.2.5. Denote by F(ι) the fixed point set of the isometry ι. The set F(ι) divides S0 into two
isometric components S1 and S2. Each Si is a non-compact finite area hyperbolic surface with
geodesic boundary and genus 0. Each puncture of S0 gives rise to two ideal points, one on ∂S1
and another on ∂S2.

Claim 2.4.2. For any f 6= 0 ∈ Eo
1
4 +ε0(S0) each component of S0 \ G(f) is contained in one of the

Si’s and is incompressible there.

Proof. By antisymmetry of f with respect to ι we have F(ι) ⊆ Z(f). Since each bounded
component of F(ι) is incompressible therefore F(ι) ⊆ G(f). Hence the claim follows.2

Now we can argue as in the proof of Lemma 2.1.5 to conclude that the Euler characteristic
of at least one component of S0 \ G(f) is negative. In fact using the symmetry of G(f) with
respect to ι, the Euler Characteristic of at least one component of Sj \ G(f) is negative for each
j = 1, 2. Next we consider the unit sphere S(Eo

1
4 +ε0(S0)) and the projective space P(Eo

1
4 +ε0(S0))

over Eo
1
4 +ε0(S0). Define χ+(f) (respectively χ−(f)) as the sum of the Euler characteristic of the

components of S1 \ G(f) with positive sign (respectively negative). Consider the decomposition
of S(Eo

1
4 +ε0(S0)) into sets

Ci = {f ∈ S(Eo
1
4 +ε0(S0)) : χ+(f) + χ−(f) = i}

The arguments in Lemma 2.2.7 can be applied. Using the incompressibility of components of
S1 \ G(f) the possible values of χ+(f) + χ−(f) are at most (g − 1) (since χ(Si) = 1 − g) for
any f ∈ Eo

1
4 +ε0(S0). Exactly the same arguments as in Lemma 2.2.7 work to prove that for any

integer i, the covering map Ci → Pi is trivial. We conclude that the dimension of Eo
1
4 +ε0(S0) is

≤ g.2



Chapter 3

Behavior of eigenpairs on converging family of hy-
perbolic surfaces

In this chapter we study the behavior of eigenpairs on a converging sequence of hyperbolic
surfaces. We shall first recall the notion of convergence of a sequence of hyperbolic surfaces in
Mg,n. Then we consider a sequence (Sm) inMg,n that converges to S∞ ∈ Mg,n. We consider
an eigenpair (λm, φm) of Sm such that λm → λ∞ as m → ∞. Then we recall two results, one
due to G. Courtois and B. Colbois and another one due to D. Hejhal. These two results focus on
the case λ∞ < 1

4 . Then we recall two more results, one due to Lizhen Ji [Ji, Theorem 1.5] and
another one due to Scott Wolpert [Wo, Theorem 3.4] that concerns the same question without
the particular restriction λ∞ < 1

4 . However, Wolpert’s result has the assumption λ∞ > 1
4 . In

the last section we focus on the case of small cuspidal eigenpairs. Motivated mainly by the last
two results mentioned above we prove that the same conclusions as in these two theorems hold
in this particular case.

3.1 Convergence of hyperbolic surfaces
Recall thatMg,n is the moduli space of hyperbolic surfaces of genus g with n puncture up to

the equivalent relation of isometry. We begin with a noncompact, finite area hyperbolic surface
S of geometric type (g, n) i.e. S ∈Mg,n. The Laplace spectrum of such a surface is composed of
two parts: the continuous part and the discrete part [I]. The continuous part covers the interval
[ 1
4 ,∞) and is spanned by the Eisenstein series with multiplicity n. Eisenstein series E’s are not
eigenfunctions although they satisfy

∆E(., s) = s(1− s)E(., s),

because they are not in L2. For this reason, they are generalized eigenfunctions. The discrete
spectrum consists of eigenvalues. They are distinguished into two parts: the residual spectrum
and the cuspidal spectrum. An eigenpair (λ, f) is called residual if f is a residue of meromorphic
continuations of Eisenstein series. Such λ and f are then called a residual eigenvalue and a
residual eigenfuction. The residual spectrum is a finite set contained in [0, 1

4 ). On the other
hand, an eigenpair (λ, f) is called cuspidal if f tends to zero at each cusp. In this case λ and f
are respectively called a cuspidal eigenvalue and a cuspidal eigenfuction. These eigenvalues with
multiplicity are arranged by increasing order and we denote λcn(S) the n-th cuspidal eigenvalue
of S. For an arbitrary Fuchsian group Γ, it is not known whether the cardinality of the set of
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Chapter 3. Behavior of eigenpairs on converging family of hyperbolic surfaces

cuspidal eigenvalues of H/Γ is infinite. However a famous theorem of A. Selberg says that it
is the case when Γ is arithmetic. Any cuspidal eigenpair (λ, f) with λ ≤ 1

4 is called a small
cuspidal eigenpair and in that case, λ and f are respectively called a small cuspidal eigenvalue
and a small cuspidal eigenfunction.

The setMg,n carries a topology in which two surfacesH/Γ andH/Γ′ are close when the groups
Γ and Γ′ can be conjugated inside PSL(2,R) so that they have generators which are close. With
this topologyMg,n is not compact. However it can be compactified by adjoining ∪iMgi,ni ’s for
each (g1, n1), ..., (gk, nk) with 2

∑k
i (gi − 2) +

∑k
i ni = 2g − 2 + n. In this compactification a

sequence (Sn) ∈Mg,n converges to S∞ ∈Mg,n if and only if for any given ε > 0 the ε-thick part
(S[ε,∞)
n ) converges to S[ε,∞)

∞ in the Gromov-Hausdorff topology. Recall that the ε-thick part of a
surface S is the subset of those points of S where the injectivity radius is at least ε. Recall also
that the injectivity radius of a point p ∈ S is the radius of the largest geodesic disc that can be
embedded in S with center p.

Now we recall another point of view of this convergence which is convenient for our purpose.
Let Sm = H/Γm and let 0 < c0 < 1

2 be a fixed constant. Let xm ∈ S
[c0,∞)
m . Up to a

conjugation of Γm in PSL(2,R), one may assume that the point i ∈ H is mapped to xm under the
projection H→ H/Γm. Then up to extracting a subsequence we may suppose that Γm converges
to some Funchsian group Γ∞. We say that the pair (H/Γm, xm) converges to (H/Γ∞, x∞) where
x∞ is the image of i ∈ H under the projection H→ H/Γ∞. Let S∞ be the hyperbolic surface of
finite area whose connected components are the H/Γ∞’s for different choices of base point xm in
different connected components of S[c0,∞)

m . The surface S∞ does not depend, up to isometry, on
the choice of the base point xm in a fixed connected component of S[c0,∞)

m . One can check that
(Sm)→ S∞ inMg,n.

Convergence of functions
Fix an ε > 0 and choose a base point xm ∈ S[ε,∞)

m for each m. Assume that the pair (H/Γm, xm)
converges to (H/Γ∞, x∞) where, for each m ∈ N ∪ {∞}, the point i ∈ H maps to xm under the
projection H→ H/Γm.

For a C∞ function f on Sm denote by f̃ the lift of f under the projection H → H/Γm.
Let (fm) be a sequence of functions in C∞(Sm) ∩ L2(Sm). One says that (fm)converges to a
continuous function f∞ if f̃m converges, uniformly over compact subsets of H, to f̃∞ for each
choice of base points xm ∈ S[ε,∞)

m and for each ε < ε0 (ε0 is the Margulis constant)
In the following, for a function f ∈ L2(S), we shall denote the L2 norm of f by ‖f‖. Also,

for f ∈ L2(V ) and U ⊂ V , we denote the L2-norm of the restriction of f to U by ‖f‖U . A
function f will be called normalized if ‖f‖ = 1. An eigenpair (λ, φ) will be called normalized if
φ is normalized.

3.1.1 Results of G. Courtois-B. Colbois and D. Hejhal
We shall discuss the results due to G. Courtois-B. Colbois [C-C] and D. Hejhal [H]. These

results consider behavior of eigenvalues that limits strictly below 1
4 .

G. Courtois-B. Colbois’s result

Let (Sm) be a sequence in Mg that converges to S∞ in Mg. Let S∞ has k eigenvalues
0 = λ0(S∞) = ... = λi(S∞) < λi+1(S∞) ≤ ... ≤ λk−1(S∞) < 1

4 where 0 appears as many times
as the number of components of S∞. For each m ≥ 1 let Sm has km eigenvalues 0 = λ0(Sm) <
λ1(Sm) ≤ ... ≤ λkm(Sm) < 1

4 . The result of Courtois-Colbois [C-C, THÉORÉM 0.1] is the
following theorem.
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3.1. Convergence of hyperbolic surfaces

Theorem 3.1.2. (Courtois-Colbois)
For all m large, km ≥ k. Moreover, for 1 ≤ i ≤ k,

lim
m
λi(Sm) = λi(S∞) and, for k < i ≤ km, lim

m
λi(Sm) = 1

4 .

Authors carefully study the distribution of norms of eigenfunctions inside pinching tubes.

D. Hejhal’s result

In [H] D. Hejhal considers a similar situation. Using the convergence of the Green’s functions
of these surfaces, he proves the following result.

Theorem 3.1.3. (Hejhal) Let (Sm) be a sequence in Mg that converges to S∞ in Mg. Let
λ∞ < 1

4 be an eigenvalue of S∞ with multiplicity k. Then there exists exactly k normalized
eigenpairs (λ1

m, φ
1
m), ..., (λkm, φkm) of Sm such that limmλ

i
m = λ∞, for each 1 ≤ i ≤ k, and each

φim converges uniformly over compacta to a normalized λ∞-eigenfunction on S∞.

3.1.4 Results of L. Ji and S. Wolpert
Now we recall the results due to Lizhen Ji [Ji] and Scott Wolpert [Wo].

L. Ji’s result

Lizhen Ji considers a family of closed hyperbolic surfaces (Sl) in Mg that converges to
S∞ ∈ Mg. His method of comparison of functions on different surfaces is a bit different than
ours (the one discussed above). To compare the functions on the surfaces Sl and S0, Ji considers
the harmonic map of infinite energy πl : S0 → Sl constructed by M. Wolf [W]. The main theorem
in [Ji] concerning convergence of eigenpairs is the following theorem that we quote using our set
up i.e. we consider a sequence (Sm) ∈ Mg that converges to S∞ ∈ Mg and use the notion of
convergence of functions defined in 3.1.

Theorem 3.1.5. ([Ji, Theorem 1.2]) Let (λm, φm) be an eigenpair of Sm with L2-norm equal
to 1. Assume that λm → λ∞ as m→∞.
1. If ‖φm‖9 0 then, up to extracting a subsequence, (φm) converges to a non-zero λ∞-eigenfunction
φ∞ on S∞.
2. If ‖φm‖ → 0 then the followings hold:
(a) The limit λ∞ = 1

4 + t2 ≥ 1
4 for some t ≥ 0.

(b) There exist constants Km →∞ such that, up to extracting a subsequence, (Kmφlj ) converges
to a non-zero function ψ∞ on S∞ as j →∞.
(c) The function ψ∞ satisfies ∆0ψ∞ = ( 1

4 + t2)ψ∞.
(d) There exists constants a1, ..., a2m and possibly a λ∞-cuspidal eigenfunction φ such that

ψ∞ =
2m∑
i=1

aiEi(.;
1
2 + it) + φ (3.1)

where Ei(.; 1
2 + it) (1 ≤ i ≤ 2m) is the Eisenstein series associated to the i-th puncture of S∞

and 2m is the total number of punctures of S∞.
(e) If λ∞ = 1

4 + t2 is not an eigenvalue of S∞, then

ψ∞ =
2m∑
i=1

aiEi(.;
1
2 + it) 6= 0.
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Chapter 3. Behavior of eigenpairs on converging family of hyperbolic surfaces

His proof involves estimates of distribution of mass ‖φm‖ of φm with respect to the thin/thin
decomposition of Sm when Sm → S∞.

S. Wolpert’s result

The situation for Scott Wolpert is different. He focuses on sequence of generalized eigenpairs
(λm, φm) of (Sm) when λm → λ∞ < ∞ and λ∞ > 1

4 . Recall that a generalized eigenpair
(λm, φm) is a pair such that

∆mφm = λmφm

where φm satisfies at most polynomial growth rate in each cusp (see [Wo]). Main result of [Wo]
concerning convergence behavior of φm is the following theorem that we quote with our notations.

Theorem 3.1.6. ([Wo, Theorem 3.4]) Let(λm, φm) be a generalized eigenpair of (Sm) such
that λm → λ∞ <∞ and λ∞ > 1

4 . Let Sm → S∞ in Mg,n. There exists a constant c0 such that
if ‖φm‖Sm[c0,∞) are bounded then for any α with 0 < α < 1, up to extracting a subsequence, (φm)
converges to a generalized λ∞-eigenfunction on S∞ in the C2,α-topology. Furthermore for each
c, lim ‖φm‖Sm[c,∞) = ‖φ∞‖S∞[c,∞) .

Scott Wolpert studies, like Lizhen Ji, the distribution of mass of eigenfunctions with respect
to thick/thin decomposition of surfaces. Methods used, however, are quite different.

3.2 Convergence of small cuspidal eigenpairs
In this section we study the behavior of sequences of small cuspidal eigenpairs (λn, fn) of

Sn ∈ Mg,n when (Sn) converges to the surface S∞ ∈ Mg,n. We prove the following theorem
which has close resemblance with the results mentioned above. However, our result does not
follow from any of those.

Theorem 3.2.1. Let Sm → S∞ in Mg,n. Let (λm, φm) be a normalized (L2-norm of φm is 1)
small cuspidal eigenpair of Sm. Assume that λm converges to λ∞. Then one of the following
holds:
(1) There exist strictly positive constants ε, δ such that lim sup ‖φm‖S[ε,∞)

m
≥ δ. Then (φm), up

to extracting a subsequence, converges to a λ∞-eigenfunction φ∞ on S∞.
(2) For each ε > 0 the sequence ‖(φm)‖

S
[ε,∞)
m

→ 0. Then, up to extracting a subsequence, (φm)
converges to the zero function on S∞. Moreover, there exists constants Kmj →∞ such that, up
to extracting a subsequence, (Kmφm) converges to a linear combination of Eisenstein series and
(possibly) a cuspidal λ∞-eigenfunction on S∞.
The later possibility arises only when: S∞ ∈ ∂Mg,n and λ∞ = 1

4 .

To prove Theorem 3.2.1 we need to understand how the mass (L2 norm) of a small eigen-
function is distributed over the surface, and in particular how it is distributed with respect to
the thin/thick decomposition which we explain now.

3.2.2 The thick / thin decomposition of a hyperbolic surface

Let S ∈ Mg,n. Recall that for any ε > 0, the ε-thin part of S, S(0,ε), is the set of points
of S with injectivity radius < ε. The complement of S(0,ε), the ε-thick part of S, denoted by
S[ε,∞), is the set of points where the injectivity radius of S is ≥ ε. By Margulis lemma there
exists a constant ε0 > 0, the Margulis constant, such that for all ε ≤ ε0, S(0,ε) is a disjoint union
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3.3. Mass distribution of small cuspidal functions over the thin part

of embedded collars, one for each geodesic of length less than 2ε, and of embedded cusps, one
for each puncture. The collar around a geodesic of length ≤ ε is called a Margulis tube. For
definitions of collars and cusps we refer to Chapter 1.

3.3 Mass distribution of small cuspidal functions over the thin
part

Our goal is to study the behavior of sequences of small cuspidal eigenpairs (λn, fn) of Sn ∈
Mg,n when (Sn) converges to S∞ ∈Mg,n and finally to prove Theorem 3.2.1. For this we need to
understand how the mass (L2 norm) of a small eigenfunction is distributed over the surface, and
in particular how it is distributed with respect to the thin/thick decomposition. Let S ∈ Mg,n.
Recall that for any ε ≤ ε0 the ε-thin part, S(0,ε), of S consists of cusps and Margulis tubes. We
separately study the mass distribution of a small cuspidal eigenfunction over these two different
types of domains.

3.3.1 Mass distribution over cusps
For 2π ≤ a < b consider the annulus P(a, b) = {(x, y) ∈ P1 : a ≤ y < b} contained in a cusp

P1 and bounded by two horocycles of length 2π
a and 2π

b . We begin our study with the following
lemma.

Lemma 3.3.2. For any b > 2π there exists K(b) <∞ such that for any small cuspidal eigenpair
(λ, f) of P1 one has

‖f‖P(b,∞) < K(b)‖f‖P(2π,b). (3.2)

If λ < 1
4 − η for some η > 0 then there exists a constant T (b, η) <∞ depending on b and η such

that for any small eigenpair (λ, f) one has

‖f‖P(b,∞) < T (b, η)‖f‖P(2π,b). (3.3)

Furthermore, K(b), T (b, η)→ 0 as b→∞.

Proof. We begin with the first part. Since f is cuspidal inside P1 it can be expressed as

f(z) =
∑
n∈Z∗

fnWs(nz) (3.4)

where s(1− s) = λ and Ws is the Whittaker function (see [I, Proposition 1.5]). The meaning of
(2) is that the right hand series converges to f in L2(P1) and that the convergence is uniform
over compact subsets. Recall also that for n ∈ Z∗ the Whittaker functions is defined by

Ws(nz) = 2(|n|y) 1
2Ks− 1

2
(|n|y)einx

where Kε is the McDonald’s function and that for any ε (see [Le, p. 119])

Kε(y) = 1
2

∫ +∞

−∞
e−y coshu−εudu (3.5)

whenever the integral makes sense. From the expression it is clear that the functions (Ws(n.))
form an orthogonal family over P(a, b) (independent of the choices of a and b). Hence (1) will
follow from the following claim.
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Claim 3.3.3. Let s ∈ [ 1
2 , 1]. Then for any b > 2π there exists K(b) <∞ such that for all n ∈ Z∗

‖Ws(nz)‖P(b,∞) ≤ K(b)‖Ws(nz)‖P(2π,b).

Furthermore, K(b)→ 0 as b→∞.

Proof. From the expression of Ws we have

‖Ws(nz)‖P(a,b) = 2π
(∫ b

a

4|n|yKs− 1
2
(|n|y)2 dy

y2

)
.

To prove the claim we may suppose that n ≥ 1. Our next objective is to obtain bounds for the
functions Ks− 1

2
(y) for s ∈ [ 1

2 , 1]. We start from the above integral representation of Kε(y). We

write Kε(y) = 1
2{c(ε, y) + d(ε, y)} where

c(ε, y) =
∫ 1

−1
e−y coshu−εudu (3.6)

and
d(ε, y) =

∫ −1

−∞
e−y coshu−εudu+

∫ ∞
1

e−y coshu−εudu. (3.7)

Now we treat c(ε, y) and d(ε, y) separately.
Bounding c(ε, y):
We have

c(ε, y) =
∫ 1

−1
e−y coshu.e−εudu ≤ eε.

∫ 1

−1
e−y coshudu = eε

∫ 1

−1
e−y(1+u2

2! +u4
4! +...)du

= eε.e−y
∫ 1

−1
e−y(u2

2! +u4
4! +...)du ≤ 2eε.e−y

∫ 1

0
e−y

u2
2! du.

Since e
yu2

2 > 1 + yu2

2 for u > 0, we have:∫ 1

0
e−y

u2
2! du <

∫ 1

0

du

1 + yu2

2
= 2
y

tan−1(y2) ≤ 2
y
.
π

2 .

Therefore
c(ε, y) ≤ 2πeε e

−y

y
.

To obtain a lower bound, we write∫ 1

−1
e−y coshu.e−εudu ≥ e−ε.

∫ 1

−1
e−y coshudu = e−ε

∫ 1

−1
e−y(1+u2

2! +u4
4! +...)du

= 2e−ε.e−y
∫ 1

0
e−y(u2

2! +u4
4! +...)du.

Since for all u ∈ (0, 1] one has

u2

2! + u4

4! + ... < u(1
2 + 1

4 + 1
8 + ...) = u.
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Hence
c(ε, y) ≥ 2e−ε.e−y

∫ 1

0
e−uydu = 2e−ε e

−y

y
(1− e−y).

Combining the above two inequalities

2e−ε e
−y

y
(1− e−y) ≤ c(ε, y) ≤ 2πeε e

−y

y
.

Bounding d(ε, y):

d(ε, y) =
∫ −1

−∞
e−y coshu−εudu+

∫ ∞
1

e−y coshu−εudu

=
∫ ∞

1
e−y coshu−εudu+

∫ ∞
1

e−y coshu+εudu.

Now for any u > 1,
u2

2! + u4

4! + ... > γ0u
2 > γ0u

where γ0 =
∞∑
n=1

1
(2n)! .

Thus
d(ε, y) = e−y

∫ ∞
1
{e−y(u2

2! +u4
4! +...)−εu + e−y(u2

2! +u4
4! +...)+εu}du

≤ e−y
∫ ∞

1
{e−yγ0u−εu + e−yγ0u+εu}du

= e−y

y

(
e−(yγ0+ε)

γ0 + ε
y

+ e−(yγ0−ε)

γ0 − ε
y

)
.

Thus combining the estimates for c(ε, y) and d(ε, y) we obtain

2e−ε e
−y

y
(1− e−y) < Kε(y) < 2πeε e

−y

y
+ e−y

y

(
e−(yγ0+ε)

γ0 + ε
y

+ e−(yγ0−ε)

γ0 − ε
y

)
.

Let
δ(ε, y) = e−(yγ0+ε)

γ0 + ε
y

+ e−(yγ0−ε)

γ0 − ε
y

.

Observe that for ε < 1 and y ≥ 2
γ0

δ(ε, y) < 4 cosh 1
γ0

e−γ0y = δ0(y).

So, for y ≥ 2
γ0

large enough

2e−ε e
−y

y
< Kε(y) < e−y

y

(
2πeε + δ0(y)

)
. (3.8)

Going back to the expression of Ws, for s ∈ [ 1
2 , 1], we find:

1
2π ‖Ws(nz)‖2P(2π,b) =

∫ b

2π
4nyKs− 1

2
(ny)2 dy

y2 =
∫ b

2π
4nKs− 1

2
(ny)2 dy

y
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≥
∫ b

2π

4n
b
Ks− 1

2
(ny)2

dy >
16ne1−2s

b

∫ b

2π

e−2ny

(ny)2 dy = 16ne1−2s

n2b

∫ b

2π

e−2ny

y2 dy

= 16ne1−2s

n2b

(∫ b
2

2π

e−2ny

y2 dy +
∫ b

b
2

e−2ny

y2 dy

)
>

16ne1−2s

n2b

(∫ b

b
2

e−2ny

y2 dy

)

= 16e1−2s

nb

e−nb

n b
2

4
{1 +O(e−nb + 2

b
)}

i.e.

‖Ws(nz)‖2P(2π,b) > 2π 16e1−2s

nb

e−nb

n b
2

4
{1 +O(e−nb + 1

b
)} (3.9)

Also,
1

2π ‖Ws(nz)‖2P(b,∞) =
∫ ∞
b

4nyKs− 1
2
(ny)2 dy

y2 =
∫ ∞
b

4nKs− 1
2
(ny)2 dy

y

≤
∫ ∞
b

4n
b
Ks− 1

2
(ny)2

dy ≤ 4n(2πe(s− 1
2 ) + δ0(b))2

b

∫ ∞
b

e−2ny

(ny)2 dy

= 4(2πe(s− 1
2 ) + δ0(b))

2

nb

e−2nb

2nb2 {1 +O(1
b

)}

i.e.

‖Ws(nz)‖2P(b,∞) ≤ 2π 2(2πe(s− 1
2 ) + δ0(b))

2

nb

e−2nb

nb2
{1 +O(1

b
)} (3.10)

In the last inequality, we used the following estimate from [Le, Section 3.2]:∫ t2

t1

e−2αy

y2 dy = e−2αt1

2αt12 {1 +O(e2(t1−t2) + t1
−1)}

with an absolute constant for the O-term for α > 1.
Comparing (3.9) and (3.10) we get, for any n ∈ Z∗

‖Ws(nz)‖P(b,∞) ≤ K(b)‖Ws(nz)‖P(2π,b) (3.11)

where

K2(b) = e2s−1

8 (2πe(s− 1
2 ) + δ0(b))2e−|n|b

(1 +O( 1
b ))

1 +O(e−|n|b + 2
b )
.

From the expression it is clear that K is bounded independent of n, b (once b is large enough)
and s ∈ [ 1

2 , 1]. So we obtain the claim by choosing some b > 2
γ0

sufficiently large (once and for
all) such that the O-terms in the expression of T are small enough. It is also clear from the
expression that when b→∞, K(b)→ 0. This proves the Claim 3.3.3 and hence the first part of
Lemma 3.3.2.

Now we prove the second part. Let λ < 1
4 − η for some η > 0 and let (λ, f) be a residual

eigenpair. The Fourier expansion of f inside P1 has the form

f(z) = f0y
s +

∑
n∈Z∗

fnWs(nz) = f0y
s + g(z) (3.12)
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3.3. Mass distribution of small cuspidal functions over the thin part

where s(1 − s) = λ, s ∈ (0, 1
2 ) (see [I]) and g(z) =

∑
n∈Z∗fnWs(nz). Since f0y

s and g are
orthogonal and since the first part can be applied to g, one needs only to prove the lemma for
the term f0y

s. So we calculate:∫ c

a

y2s dy

y2 = 1
1− 2s

(
1

a1−2s −
1

c1−2s

)
.

Therefore, for b > 2π,
‖f0y

s‖2P(b,∞) = 1
( b

2π )1−2s − 1
‖f0y

s‖2P(2π,b). (3.13)

The lemma is satisfied by T2(b, η) such that

T 2
2 (b, η) = max

(
K2(b), 1

( b
2π )1−2s − 1

)
.

From the expression it is clear that T2(b, η) depends only on two quantities: b and 1
2 − s. Since1

2 − s >
√
η > 0, 1

( b
2π )1−2s−1 → 0 when b→∞. This proves the second part.

3.3.4 Mass distribution over Margulis tubes
Now we study the distribution of the mass of a small eigenfunction over Margulis tubes. Let

γ be a simple closed geodesic of length lγ = 2πl. Recall that Ca denotes the collar around γ
bounded by two equidistant curves of length a. Any f ∈ L2(C1) can be written as a Fourier
series in the θ-coordinate:

f(r, θ) = a0(r) +
∞∑
j=1

(
aj(r) cos jθ + bj(r) sin jθ

)
. (3.14)

The functions aj = aj(r) and bj = bj(r) are defined on [−cosh−1( 1
lγ

), cosh−1( 1
lγ

)] and are called
the j-th Fourier coefficients of f (in C1). When f is a λ-eigenfunction, aj and bj are solutions
of the differential equation

d2φ

dr2 + tanh r dφ
dr

+ (λ− j2

l2cosh2r
)φ = 0. (3.15)

We set [f ]0 = a0(r) and [f ]1 = f− [f ]0. The following lemma concerns the distribution of masses
of [f ]0 and [f ]1 inside C1.

Lemma 3.3.5. For any lγ < ε ≤ ε0 there exist constants T1(ε), T2(ε) <∞, depending only on ε,
such that for any small eigenpair (λ, f) of C1 the following inequalities hold:

‖[f ]1‖Cε < T1(ε)‖[f ]1‖C1\Cε (3.16)

and
‖[f ]0‖Cε0\Cε < T2(ε)‖[f ]0‖C1\Cε0 . (3.17)

Therefore, for any lγ < ε ≤ ε0 and any small eigenpair (λ, f) of C1 one has

‖f‖Cε0\Cε < max {T1(ε0), T2(ε)}‖f‖C1\Cε0 . (3.18)

If λ < 1
4 − η for some η > 0 then there exists a constant T0(ε, η) <∞, depending only on η and

ε, such that
‖[f ]0‖Cε < T0(ε, η)‖[f ]0‖C1\Cε . (3.19)

Furthermore, T1(ε), T0(ε, η)→ 0 as ε→ 0.
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Before starting the proof of the above lemma we make a few observations about the solutions
of (3.15). The change of variable u(r) = cosh

1
2 (r)φ(r) transforms (3.15) into

d2u

dr2 =
(

(1
4 − λ) + 1

4cosh2r
+ j2

l2cosh2r

)
u. (3.20)

Let sj (resp. cj) be the solution of (3.20) satisfying the conditions: sj(0) = 0 and s
′

j(0) = 1
(resp. cj(0) = 1 and c′j(0) = 0). Since (3.20) is invariant under r → −r one has: sj(−r) = −sj(r)
and cj(−r) = cj(r) for all j ≥ 0. Therefore there exists t > 0 such that sj > 0 and c′j > 0 on
(0, t]. Now we prove the following claim.

Claim 3.3.6. Let L > 0. Let g : [0, L]→ R be a C2-function which satisfies the inequality:

d2g

dr2 > δ2g

for some δ > 0. If g′(0) ≥ 0 then g(r)
cosh δr is a monotone increasing function of r in (0, L].

Proof. Observe that (
g(r)

cosh δr

)′
= g

′(r) cosh δr − δg(r) sinh δr
cosh2(δr)

.

Consider the function H defined on [0, L] by

H(r) = g
′
(r) cosh δr − δg(r) sinh δr.

Since g is a C2 function H is continuous on [0, L]. Observe that the claim follows if H(r) > 0 in
(0, L]. Now for any r ∈ (0, L]

H
′
(r) = g

′′
(r) cosh δr − δ2g(r) cosh δr = (g

′′
(r)− δ2g(r)) cosh δr > 0.

Therefore for r > 0, H(r) > H(0) = g
′(0) ≥ 0. Hence the claim.2

Proof of Lemma 3.3.5. We need to estimate, for lγ ≤ t < w ≤ 1, the quantities:

‖[f ]1‖2Cw\Ct = lγ

∫ −Lt
−Lw

( ∞∑
j=1

α2
j + β2

j

)
dr + lγ

∫ Lw

Lt

( ∞∑
j=1

α2
j + β2

j

)
dr

and
‖[f ]0‖2Cw\Ct = lγ

∫ −Lt
−Lw

α2
0dr + lγ

∫ Lw

Lt

α2
0dr

where α0(r) = cosh
1
2 (r)a0(r), αj(r) = aj(r)cosh

1
2 (r), βj(r) = bj(r)cosh

1
2 (r) and Lu = cosh−1( ulγ ).

Since sj is odd and cj is even, for any symmetric subset U ⊂ [−L1, L1], sj and cj are orthogonal
in L2(U). Now αj and βj are linear combinations of sj and cj for j ≥ 1 and α0 is a linear com-
bination of s0 and c0. Therefore, since sj and cj are orthogonal, it is enough to prove the lemma
with sj and cj instead of [f ]1 and with s0 and c0 instead of [f ]0. We detail the computations
for sj . The computations for cj are similar. Let us choose ε such that lγ < ε < ε0. The lemma
reduces to find K1(ε),K2(ε) < ∞, depending on ε, and K0(ε, η) < ∞, depending on ε, η (> 0),
such that

‖sj‖Cε < K1(ε)‖sj‖C1\Cε , ‖s0‖Cε0\Cε < K2(ε)‖s0‖C1\Cε0

44



3.3. Mass distribution of small cuspidal functions over the thin part

and
‖s0‖Cε < K0(ε, η)‖s0‖C1\Cε .

Let η < 1
4 − λ and set δ0 = √η and set for j ≥ 1, δj = 1. Notice that l cosh r < 1 on [0, L1).

Hence by (3.20) sj : [0, L1)→ R satisfies the inequality:

d2sj
dr2 > δ2

j sj .

Hence by Claim 3.3.6 hj(r) = sj(r)
cosh r , for j ≥ 1, is strictly increasing on (0, L1). The same is true

for h0 = s0(r)
cosh δ0r

(even when δ0 = 0).
We begin with the proof of the second part of the Lemma. So we assume η > 0. For 0 ≤ a < b

consider the integral: ∫ b

a

s2
0(r)dr =

∫ b

a

h2
0(r)cosh2(δ0r)dr.

Since h0 is strictly increasing we have

h2
0(a)

∫ b

a

cosh2(δ0r)dr <
∫ b

a

s2
0(r)dr < h2

0(b)
∫ b

a

cosh2(δ0r)dr. (3.21)

Now choosing a = 0 and b = Lε the last inequality in (3.21) gives

‖s0‖2Cε < 2lγh2
0(Lε)

∫ Lε

0
cosh2(δ0r)dr. (3.22)

Next choosing a = Lε and b = L1 the first inequality in (3.21) gives

‖s0‖2C1\Cε > 2lγh2
0(Lε)

∫ L1

Lε

cosh2(δ0r)dr. (3.23)

Therefore
‖s0‖Cε < T0‖s0‖C1\Cε (3.24)

where
T 2

0 = sinh 2δ0Lε + 2δ0Lε
sinh 2δ0L1 − sinh 2δ0Lε + 2δ0(L1 − Lε)

. (3.25)

We see that T0 depends only on ε, δ0 and lγ . Now Lε = cosh−1( εlγ ) = log( εlγ +
√

( εlγ )2 − 1).
Therefore, for ε and δ2

0 = η > 0 fixed, and lγ small

T 2
0 < K0

1
ε−2δ0 − 1 ,

and the constant K0 is independent of lγ as soon as lγ is small compared to ε. Thus we can
choose T0(ε, η) independent of lγ satisfying (3.24). This proves (3.19)

For sj , j ≥ 1, exactly the same computations for s0 work with δ0 replaced by δj = 1. Hence
in this case our constant,

T 2
1 (ε) < K1

1
ε−2 − 1 ,

depends only on ε. This proves (3.16).
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Now we prove (3.18). Since s0 : [0, L1]→ R+ is strictly increasing we have:∫ Lε0

Lε

s2
0(r)dr < s2

0(Lε0)(Lε0 − Lε) and
∫ L1

Lε0

s2
0(r)dr > s2

0(Lε0)(L1 − Lε0).

Combining the two inequalities we obtain

‖s0‖Cε0\Cε < T2(ε)‖s0‖C1\Cε0 (3.26)

where
T 2

2 (ε) = Lε0 − Lε
L1 − Lε0

< K2

( log 1
ε

log 1
ε0

− 1
)
. (3.27)

The constant K2 is independent of lγ as soon as lγ is small compared to ε. Thus we can choose
T2(ε) independent of lγ satisfying (3.26). This proves (3.18).

3.3.7 Applications
Let S be a finite area hyperbolic surface with n punctures. Denote by Pi the standard

cusp around the i-th puncture. Recall that Pi’s have disjoint interiors and that each of them is
isometric to the half-infinite annulus P1 (see 1.1.2). Applying Lemma 3.3.2 in each Pi separately
we obtain the following corollary which will be useful in our analysis.

Corollary 3.3.8. For any 0 < ε < ε0 there exists T (ε) < ∞, depending only on ε, such that for
any small cuspidal eigenpair (λ, f) of S one has

‖f‖
S

(0,ε)
c

< T (ε)‖f‖
S

(0,1]
c \S(0,ε]

c
. (3.28)

If λ < 1
4 − η for some η > 0 then for any 0 < ε < ε0 there exists T1(ε, η) < ∞, depending only

on ε and η, such that for any λ-eigenfunction f of S one has

‖f‖
S

(0,ε)
c

< T1(ε, η)‖f‖
S

(0,1]
c \S(0,ε]

c
. (3.29)

Furthermore, T (ε) and T1(ε, η) tends to zero as ε→ 0.

Using this corollary and (3.18) we deduce the following

Corollary 3.3.9. For any 0 < ε < ε0 there exists a constant L(ε) <∞, depending only on ε, such
that for any small cuspidal eigenfuction f of S one has

‖f‖S[ε,∞) < L(ε)‖f‖S[ε0,∞) . (3.30)

Now we give a new proof of the following theorem of D. Hejhal [H].

Theorem 3.3.10. Consider a sequence (Sm) ∈ Mg,n converging to S∞ ∈ Mg,n. Let (λm, φm)
be a normalized small eigenpair of Sm such that λm → λ∞. If λ∞ < 1

4 then, up to extracting a
subsequence, φm converges to a normalized λ∞-eigenfunction φ∞ of S∞.

D. Hejhal’s proof uses convergence of Green’s functions of Sm to that of S∞. Our approach
is more elementary and uses the above estimates on the mass distribution of eigenfunctions over
thin part of surfaces.

Proof of Theorem 3.3.10. First we prove that, up to extracting a subsequence, φm
converges to a λ∞-eigenfunction φ∞ of S∞. By Theorem 3.2.1 (which will be proven in §3) it is
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3.4. Proof of Theorem 3.2.1

enough to prove that there exist ε, δ > 0 such that ‖φm‖S[ε,∞)
m

≥ δ up to extracting a subsequence.
We argue by contradiction. Suppose that for any ε > 0 the sequence ‖φm‖S[ε,∞)

m
→ 0 as m→∞.

Let η > 0, such that λm < 1
4 − η for all m ≥ 1. By Lemma 3.3.5 we have

‖φm‖Cε < max{T0(ε, η), T1(ε)}‖φm‖C1\Cε . (3.31)

Therefore from (3.29) and (3.31) we have

‖φm‖S(0,ε)
m

< max{T0(ε, η), T1(ε), T1(ε, η)}‖φm‖S[ε,∞)
m

. (3.32)

Hence if ‖φm‖S[ε,∞)
m

→ 0 as m → ∞ then ‖φm‖ → 0 as m → ∞. This is a contradiction to the
fact that each φm is normalized i.e. ‖φm‖ = 1.

Next we prove that ‖φ∞‖ = 1. By uniform convergence over compacta, in each cusp and in
each pinching collar, the Fourier coefficients of φm will converge to the corresponding Fourier
coefficients of φ∞. Therefore, by (3.16), (3.19) and (3.29), φm’s are uniformly integrable: for any
δ > 0 there exist ε > 0 such that for all large values of m

‖φm‖S[ε,∞)
m

> 1− δ. (3.33)

Hence ‖φ∞‖ = 1. This finishes the proof. 2

3.4 Proof of Theorem 3.2.1

Let (Sm) be a sequence inMg,n which converges inMg,n to S∞. Let Γm,Γ∞ be such that
Sm = H/Γm and S∞ = H/Γ∞. Recall that the convergence Sm → S∞ means that for any fixed
positive constant ε1 ≤ ε0 (ε0 is the Margulis constant) and a choice of base point pm ∈ S[ε1,∞)

m ,
after conjugating Γm so that the projection H → H/Γm maps i to pm, (H/Γm, pm) converges
to a component (H/Γ∞, p∞) of S∞. We begin by fixing some ε < ε0 and pm ∈ S[ε,∞)

m . In the
following we assume that ε1, pm, Γm, p∞ and Γ∞ satisfy the previous statement.

To simplify notations we shall assume that only one closed geodesic γm gets pinched as
Sm → S∞ ∈ ∂Mg,n. In particular the limit surface S∞ (which may be disconnected) has two
new cusps. Denote the standard cusps of Sm by P1(m), P2(m), ...,Pn(m) and the limits of these
in S∞ ∈ ∂Mg,n by P1(∞),...,Pn(∞) and denote by Pn+1(∞),Pn+2(∞) the new cusps which
arise due to the pinching of γ. The cusps Pi(∞) for 1 ≤ i ≤ n will be called old cusps.

Recall that we have a sequence of small cuspidal eigenpairs (λm, φm) of Sm = H/Γm such
that the L2-norm of φm is 1 and λm → λ∞ ≤ 1

4 .

Notation 3.4.1. In what follows dµm will denote the area measure on Sm for m ∈ N ∪ {∞}
and dµH will denote the area measure on H. The lift of f ∈ L2(Sm) to H under the projection
H→ H/Γm, defined as above, will be denoted by f̃ .

By Green’s formula one has:∫
Sm

|∇φm|2dµm = λm

∫
Sm

|φm|2dµm = λm.

Let K ⊂ H be compact. One can cover K by finitely many geodesic balls of radius ρ. If ρ is
sufficiently small then each of these balls maps injectively to Sm since Γm → Γ∞. Therefore,
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Chapter 3. Behavior of eigenpairs on converging family of hyperbolic surfaces

since ‖φm‖ = 1 ‖φ̃m|K‖ is bounded depending only on K. From the mean value formula of Fay
(see Chapter 1) there exists a constant Λ(λ∞, ρ) such that for λm close to λ∞,

|φ̃m(q)| ≤ Λ(λ∞, ρ)
∫
N(K, ρ2 )

|φ̃m|dµH

for each q ∈ K where N(K, r) denotes the closed neighborhood of radius r of K in H. Next we
use the gradient bound for eigenfunctions of the Laplacian (see Chapter 1) to obtain a uniform
bound for ∇φ̃m on N(K, ρ2 ). This makes (φ̃m|K) an equicontinuous family. So, by Arzela-Ascoli
theorem, up to extracting a subsequence, (φ̃m) converges to a continuous function φ̃∞ on K. By
a diagonalization argument one may suppose that the sequence works for all compact subsets
of H. Therefore, up to extracting a subsequence, φ̃m → φ̃∞ uniformly over compacta. By this
uniform convergence it is clear that φ̃∞ is a weak solution of the Laplace equation: ∆u = λ∞u.
Therefore, by elliptic regularity, φ̃∞ is indeed smooth and satisfies

∆φ̃∞ = λ∞φ̃∞.

Also by the convergence φ̃∞ induces a function φ∞ on S∞ that satisfies

∆φ∞ = λ∞φ∞.

However, φ∞ may not be an eigenfunction since it could be the zero function. In order to
discuss this point, we shall consider two cases according to whether the L2-norm ‖φm‖S[ε,∞)

m
of

the restriction of φm to S[ε,∞)
m is bounded below by a positive constant or not.

Case 1: ∃ ε, δ > 0 such that lim sup ‖φm‖S[ε,∞)
m

≥ δ.

We may assume that lim ‖φm‖S[ε,∞)
m

≥ δ. Then by the uniform convergence of φ̃m → φ̃∞
over compacta, ∫

S
[ε,∞)
∞

φ2
∞dµ∞ = lim

mj→∞

∫
S

[ε,∞)
mj

φ2
mjdµmj ≥ δ > 0.

Therefore φ∞ is not the zero function and its L2 norm is less than 1. Therefore it is a λ∞-
eigenfunction.

Case 2: For any ε > 0 the sequence ‖φm‖S[ε,∞)
m

→ 0.

Then we will prove the following statements:
(i) S∞ ∈ ∂Mg,n,
(ii) λ∞ = 1

4 and
(iii) ∃ constants Km such that, up to extracting a subsequence, (Kmφ̃m) converges uniformly
to a function which is a linear combination of Eisenstein series and (possibly) a 1

4 -cuspidal
eigenfunction.

(i) Suppose by contradiction that S∞ ∈ Mg,n. Then all the cusps of S∞ are old cusps. Let
s(S∞) denote the systole of S∞. Then, for 0 < ε < s(S∞)

2 and for m large enough, we have
S

(0,ε)
m ⊂ ∪ni=1Pi(m). Therefore, applying Corollary 3.3.8, the assumption ‖φm‖S[ε,∞)

m
→ 0 implies

that ‖φm‖ → 0. This is a contradiction since each φm is normalized. Thus S∞ ∈ ∂Mg,n.
(ii) follows from Theorem 3.3.10.

48



(iii) Fix some ε, 0 < ε < ε0. Choose constants Km ≥ 1 such that∫
S

[ε,∞)
m

|Kmφm|2dµm = 1.

Therefore the sequence (Km) must diverge to∞. Now we use the mean value formula of Fay and
the gradient bound from Chapter 1 along with Corollary 3.3.9 to obtain that, up to extracting
a subsequence, (K̃mφm) converges on compacta to a function φ̃∞. By continuity, φ̃∞ satisfies

∆φ̃∞ + 1
4 φ̃∞ = 0.

Moreover, φ̃∞ induces a function φ∞ on S∞ that satisfies

∆φ∞ + 1
4φ∞ = 0. (3.34)

Using the uniform convergence over compacta we have∫
S

[ε,∞)
∞

φ2
∞dµ∞ = lim

m→∞

∫
S

[ε,∞)
m

Kmφ
2
mdµm = 1.

Therefore φ∞ is not the zero function. From Lemma 3.3.2 and Lemma 3.3.5 (3.16) we deduce
that φ∞ satisfies moderate growth condition [Wo, p. 80] in each cusp. It is known that for any
λ ≥ 1

4 the space of moderate growth λ-eigenfunctions of S∞ is spanned by Eisenstein series and
(possibly) λ-cuspidal eigenfunctions (see §3 in [Wo]). In particular, φ∞ is a linear combination
of Eisenstein series and (possibly) a cuspidal eigenfunction. This finishes the proof of (iii).2





Chapter 4

Small cuspidal eigenvalues of a hyperbolic surface
with finite area

In this chapter we try to understand a conjecture from [O-R] on the number of small cuspidal
eigenvalues for a surface inMg,n. We shall try to attack the problem using two tools. First one
is the topological properties of nodal sets and nodal domains of small cuspidal eigenfunctions.
The second is the result about convergence of small cuspidal eigenpairs on converging family of
hyperbolic surfaces that is proved in Chapter 3. Using these tools we show in Theorem 4.1.1 that
there exists an open, unbounded subset of Mg,n on which the (2g − 1)-th cuspidal eigenvalue
λc2g−1 is > 1

4 .

4.1 A conjecture of Otal-Rosas
Cuspidal eigenvalues are not very well understood. For an arbitrary Fuchsian group Γ it is

not known whether the number of cuspidal eigenvalues of H/Γ is infinite. In a famous theorem,
A. Selberg proved that this is indeed the case for Γ arithmetic. Tempted by this result, Selberg
conjectured that this should be the case for any hyperbolic surface of finite area. However, in
[P-S], Philips and Sarnak has shown that Selberg’s conjecture is very unlikely to be true. We
shall not go any further into this topic. Rather we focus only on small cuspidal eigenvalues. In
[O-R] Jean-Pierre Otal and Eulalio Rosas formulated the following:

Conjecture (Otal-Rosas [O-R]) Let S ∈Mg,n. Then λc2g−2(S) > 1
4 .

This conjecture is motivated by the following two results.
Proposition (Huxley [Hu], Otal [O]) Let S be a finite area hyperbolic surface of genus 0

or 1. Then S does not carry any small cuspidal eigenpair.
Proposition (Otal [O]) Let S be a finite area hyperbolic surface. Then the multiplicity of

a small cuspidal eigenvalue of S is at most 2g − 3.
For any N ∈ N and t ∈ R>0 we define the sets

Ctg,n(N) = {S ∈Mg,n : λcN (S) > t}.

With this notation the conjecture can be formulated by saying that

C
1
4
g,n(2g − 2) =Mg,n.

Our methods can not reach the conjecture. However, we prove the following theorem.
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Theorem 4.1.1. C
1
4
g,n(2g − 1) is an open, unbounded subset ofMg,n.

First we consider the subsetMg,1 ∪M0,n+1 of ∂Mg,n =Mg,n \Mg,n that consists of those
surfaces on which a unique closed geodesic that divides the surface into two surfaces, one of genus
g with one puncture and another one of genus zero with n+ 1 punctures, has been pinched. We
prove the following proposition that proves the second assertion of Theorem 4.1.1.

Proposition There exists a neighborhood N (Mg,1 ∪M0,n+1) of Mg,1 ∪M0,n+1 in Mg,n

such that λc2g−1(S) > 1
4 for each S ∈ N (Mg,1 ∪M0,n+1) i.e.

N (Mg,1 ∪M0,n+1) ⊂ C
1
4
g,n(2g − 1).

Now we briefly sketch a proof of the proposition. We argue by contradiction. Let (Sm) be a
sequence inMg,n that converges to S∞ inMg,1 ∪M0,n+1 ⊂ ∂Mg,n such that λc2g−1(Sm) ≤ 1

4 .
For 1 ≤ i ≤ 2g − 1 and for each m, we choose a small cuspidal eigenpair (λim, φim) of Sm such
that
(i) {φim}

2g−1
i=1 is an orthonormal family in L2(Sm),

(ii) λim is the i-th eigenvalue of Sm.
For 1 ≤ i ≤ 2g − 1 let (λim) converges to λi∞ as m → ∞. By Theorem 3.2.1 there are two

possible types of behavior that the sequence (φim) can exhibit. Either, for each 1 ≤ i ≤ 2g−1 the
sequence (φim) converges to a λi∞-eigenfunction φi∞ on S∞, or for some i the sequence (λim, φim)
satisfies condition (2) in Theorem 3.2.1. However, in our case we have the following lemma:

Lemma 1 For each i, 1 ≤ i ≤ 2g − 1, up to extracting a subsequence, the sequence (φim)
converges to a λi∞-eigenfunction φi∞ of S∞. The limit functions φi∞ and φj∞ are orthogonal for
i 6= j i.e. S∞ has at least 2g − 1 small eigenvalues. Moreover none of the φi∞ is residual.

Then we count the number of small eigenvalues of S∞ using [O-R] to conclude that at least
one of φi∞ is nonzero on the component of S∞ of type (0, n + 1). This leads to a contradiction
by Huxley [Hu] or [O, Proposition 2].

We complete the proof of Theorem 4.1.1 by proving the following lemma using Theorem 2.
Lemma 2 C

1
4
g,n(2g − 1) is an open subset ofMg,n.

4.2 Proof of Proposition
Recall that we argue by contradiction. We assume that there is a sequence Sm ∈ Mg,n

converging to S∞ ∈Mg,1 ∪M0,n+1 ⊂ ∂Mg,n such that λc2g−1(Sm) ≤ 1
4 . For 1 ≤ i ≤ 2g− 1 and

for each m we choose small cuspidal eigenpairs (λim, φim) of Sm such that
(i) {φim}

2g−1
i=1 is an orthonormal family in L2(Sm),

(ii) λim is the i-th eigenvalue of Sm.
Theorem 3.2.1 provides two possible behaviors of the sequence (φim). However in our case we

have Lemma 1.

Proof of Lemma 1

By uniform convergence of φim to φi∞, we have ‖φi∞‖ ≤ 1. To prove the first two statements
of the lemma it is enough to prove that, for 1 ≤ i ≤ 2g − 1, ‖φi∞‖ = 1 because this will imply
that φi∞ is not the zero function and that (φim) is uniformly integrable over the thick parts: for
any t > 0 there exists ε such that for all m one has,

‖φm‖S[ε,∞)
m

> 1− t.

52



4.2. Proof of Proposition

To prove that, for each 1 ≤ i ≤ 2g− 1, ‖φi∞‖ = 1 we argue by contradiction and assume that for
some 1 ≤ i ≤ 2g − 1, ‖φi∞‖ = 1− δ. To simplify the notation, denote the sequence (λim, φim) by
(λm, φm) and the limit (λi∞, φi∞) by (λ∞, φ∞). By Corollary 3.3.8 the functions φm are uniformly
integrable over the union of cusps of Sm: for any t > 0 there exists ε > 0 such that for all m one
has:

‖φm‖S(0,ε)
m,c

< t. (4.1)

Since S∞ ∈Mg,1 ∪M0,n+1 there is only one closed geodesic, γm ⊂ Sm, whose length lγm tends
to zero. For any l ≤ 1 and for m large enough such that lγm < l denote by Clm ⊂ Sm the collar
around γm bounded by two equidistant curves of length l. In view of the uniform integrability
inside cusps (4.1), there exists ε0 > 0 such that for any ε ≤ ε0 there exists m(ε) such that for
m ≥ m(ε) we have:

‖φm‖Cεm >
δ

2 . (4.2)

Now we distinguish again two cases depending on whether λ∞ < 1
4 or λ∞ = 1

4 . If λ∞ < 1
4

then we have a contradiction since ‖φ∞‖ = 1 by Theorem 3.3.10. Hence we may suppose that
λ∞ = 1

4 . So, by theorem 3.2.1 either φ∞ is the zero function or, for instance by [I, Theorem 3.2],
φ∞ is cuspidal. Now recall that by lemma 3.3.5 we have uniform integrability of [φm]1: for any
t there exists ε such that for all m:

‖[φm]1‖Cεm < t.

Hence by (4.2), there exists ε1 such that for any ε ≤ ε1 the exists m1(ε) such that for m ≥ m1(ε)
one has:

‖[φm]0‖Cεm >
δ

4 (4.3)

In particular, if c(ε,m) = supz∈Cεm |[φm]0| then, since area of Cεm is less than 1, we have for any
ε ≤ ε1 and m ≥ m1(ε):

c(ε,m) > δ

4 . (4.4)

Now we prove that [φm]1 is uniformly small inside Cεm. More precisely,

Lemma 4.2.1. Let ε be such that 0 < ε < 1. There exists a constant K <∞, independent of ε,
and m2(ε) ∈ N such that for m ≥ m2(ε) and z ∈ Cεm:

|[φm]1|(z) < K
ε

1
2

1− ε .

Proof. Consider the expansion of φm inside C1
m with respect to the Fermi coordinates (see

??):

φm(r, θ) = am0 (r) +
∞∑
j=1

(
amj (r) cos jθ + bmj (r) sin jθ

)
. (4.5)

Here, for each j ≥ 0, (amj , bmj ) are the j-th Fourier coefficients of φm inside C1
m and are defined

for all |r| ≤ L1,m. Recall that, for any ε ∈ [lγm , 1] we denote by Lε,m the number cosh−1( ε
lγm

).
Recall also that since φm is a λm-eigenfunction, amj and bmj satisfy (3.15) with 2πl = lγm and
λ = λm. Therefore, for j ≥ 1, one can express:

(1) amj (r) = am,jsm,j(r) + bm,jcm,j(r)

(2) bmj (r) = am,j
′
sm,j(r) + bm,j

′
cm,j(r) (4.6)
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where sm,j(r) and cm,j(r) are the two linearly independent solutions of (3.15) with l = l(γm)
and λ = λm.

Recall that sm,j(r)cosh
1
2 (r) and cm,j(r)cosh

1
2 (r) satisfy:

d2u

dr2 =
(

1
4cosh2r

+ j2

l2cosh2r

)
u.

Since, for r ≤ Lε,m, l2cosh2r ≤ 1 by Claim 3.3.6, for each j ≥ 1, there exists strictly increasing
functions hm,j : [0, L1,m]→ R>0 and km,j : [0, L1,m]→ R>0 such that

(i) sm,j(r)
√

cosh(r) = hm,j(r) cosh jr

(ii) cm,j(r)
√

cosh(r) = km,j(r) cosh jr. (4.7)

We denote by Pn+1(∞) and Pn+2(∞) the two new cusps of S∞ that appear as the limit of C1
m

as m→∞. Now, let us assume:

supz∈∂Pn+1(∞)∪∂Pn+2(∞)|φ∞|(z) <
t

4 .

Then, by the uniform convergence of φm to φ∞ over compacta, we have a N ∈ N such that for
m ≥ N and z ∈ ∂C1

m:
|φm|(z) <

t

4 .

By (4.5) for any j ≥ 1:

|amj |(±L1,m) = 1
π
|
∫ 2π

0
φm(±L1,m, θ) cos jθdθ| ≤ t

2 . (4.8)

Similar calculations for bmj provide: |bmj |(±L1,m) ≤ t
2 . Recall that sm,j is odd and cm,j is even.

So by (4.6) and (4.7):

(i) amj (L1,m) + amj (−L1,m) = 2bm,jkj(L1,m) cosh jL1,m√
coshL1,m

(ii) amj (L1,m)− amj (−L1,m) = 2am,jhj(L1,m) cosh jL1,m√
coshL1,m

. (4.9)

Therefore, by (4.8) and (4.9):

(i) |bm,j |kj(L1,m) cosh jL1,m√
coshL1,m

<
t

2

(ii) |am,j |hj(L1,m) cosh jL1,m√
coshL1,m

<
t

2 . (4.10)

Therefore, for any r ≤ L1,m:

|amj |(r) = |am,jsm,j(r) + bm,jcm,j(r)| < |am,j |sm,j(r) + |bm,j |cm,j(r).

The last term of the inequality is

|am,j |hm,j(r)
cosh jr√

cosh r
+ |bm,j |km,j(r)

cosh jr√
cosh r

< t
cosh jr√

cosh r

√
coshL1,m

cosh jL1,m
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since hm,j and km,j are strictly increasing functions (by (4.10)). Similarly,

|bmj |(r) < t
cosh jr√

cosh r

√
coshL1,m

cosh jL1,m
.

Hence

|[φm]1|(r, θ) < 2t
∞∑
j=1

cosh jr√
cosh r

√
coshL1,m

cosh jL1,m
. (4.11)

Since, for j ≥ 1, the function cosh jr√
cosh r is strictly increasing, for any r ≤ Lε,m :

∞∑
j=1

cosh jr√
cosh r

√
coshL1,m

cosh jL1,m
<

∞∑
j=1

cosh jLε,m√
coshLε,m

√
coshL1,m

cosh jL1,m
(4.12)

Now fix an ε such that 0 < ε < 1. Observe that Lε,m = log( ε
lγm

+
√

ε2

l2γm
− 1). So, for m large

such that lγm is small compared to ε:

∞∑
j=1

cosh jLε,m√
coshLε,m

√
coshL1,m

cosh jL1,m
< K

′
∞∑
j=1

εjε−
1
2 = K

′ ε
1
2

1− ε (4.13)

where the constant K ′ can be chosen independently of ε as soon as m is larger than some number
m2(ε) ∈ N. Therefore, by (4.11) and (4.13), for m ≥ m2(ε) and (r, θ) ∈ Cεm

|[φm]1|(r, θ) < 2tK
′ ε

1
2

1− ε . (4.14)

This proves the lemma.2

Now fix ε < ε1 (see (4.3)) such that K ε
1
2

1−ε <
δ
4 and choose m ≥ max{m1(ε),m2(ε)}. Then by

Lemma 4.2.1 and (4.4): for each z ∈ Cεm

c(ε,m) > |[φm]1|(z). (4.15)

So the parallel curve αm with distance r0 (≤ Lε,m) from γm such that c = |[φm]0|(r0) has the
property that φm has constant sign on it. In other words, the nodal set Z(φm) does not intersect
this curve. This is a contradiction to the next lemma.

Lemma 4.2.2. Let S be a noncompact, finite area hyperbolic surface of type (g, n). Let γ be a
simple closed geodesic that separates S into two connected components T1 and T2 such that T1
is topologically a sphere with n+ 1 punctures and T2 is topologically a genus g surface with one
puncture. Let f be a small cuspidal eigenfunction of S. Then the zero set Z(f) of f intersects
every curve homotopic to γ.
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cusps

Proof. Recall that Z(f) is a locally finite graph [Ch]. Let us assume that Z(f) does not
intersect some curve τ homotopic to γ. We have S \ τ = T1 ∪ T2 and all the punctures of S are
contained in T1. Consider the components of T1 \ Z(f). Recall that since f is cuspidal Z(f)
contains all the punctures of S and therefore these components give rise to a cell decomposition
of a once punctured sphere. The Euler characteristic of the component F containing τ as a
puncture is either negative or zero (since γ and each component of Z(f) are essential; see [O]).
Each component of T1 \ Z(f) other than F (at least one such exists since g changes sign in T1)
is a nodal domain of f and hence has negative Euler characteristic [O]. Also Z(f) being a graph
has non-positive Euler characteristic. Let C+ (resp. C−) be the union of the nodal domains
contained in T1 which are different from F and where f is positive (resp. negative). Denote by
χ(X) the Euler characteristic of the topological space X. Since the Euler characteristic of a once
punctured sphere is 1, by the Euler-Poincaré formula one has:

1 = χ(F) + χ(C+) + χ(C−) + χ(Z(f)).

This is a contradiction because the right hand side of the equality is strictly negative.2
Now we prove that φ∞ is not a residual eigenfunction. It is clear from the uniform convergence

that φ∞ is cuspidal at the old cusps. If φ∞ is a residual eigenfunction then the only possibility
is that φ∞ is not cupsidal at one of the two new cusps. Let us assume that φ∞ is residual in
Pn+1. Then, for sufficiently large t, φ∞ has constant sign in Ptn+1. Therefore, by the uniform
convergence φm|S[ε,∞)

m
→ φ∞|S[ε,∞)

∞
it follows that, for all m large, φm has constant sign on a

component of ∂C
1
t
m. Since this component is homotopic to γm this leads to a contradiction to

Lemma 4.2.2 as well. This finishes the proof of Lemma 1.2

Continuation of Proof of Proposition

Let us denote the two components of S∞ by N1 and N2 such that N1 ∈ Mg,1 and N2 ∈
M0,n+1. Lemma 1 says that S∞ must have at least 2g − 1 many small cuspidal eigenvalues.
By [O-R, Théoréme 0.2] the number of non-zero small eigenvalues of N1 is at most 2g − 2. In
particular, the number of small cuspidal eigenvalues of N1 is at most 2g − 2. Thus for some
i, 1 ≤ i ≤ 2g − 1, φi∞ is not the zero function when restricted to N2 i.e. φi∞ is a cuspidal
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eigenfunction of N2. This is a contradiction because N2 does not have any small cuspidal
eigenfunction by [H] or [O]. 2

Remark 4.2.3. The arguments in the proof of Proposition are applicable to more general settings.
In particular, let (Sm) be a sequence in Mg,n that converges to S∞ ∈ ∂Mg,n. Let (λm, φm) be
a normalized small eigenpair of Sm. Let λm → λ∞ as m tends to infinity. The arguments show
the following: If lim infm→∞‖φm‖ < 1 then there exists a curve αm, homotopic to a geodesic of
length tending to zero, on which, up to extracting a subsequence, φm has constant sign.

4.2.4 Proof of Lemma 2

Now we prove Lemma 2 which says that C
1
4
g,n(2g − 1) is open inMg,n.

We argue by contradiction and assume that there exists a S ∈ C
1
4
g,n(2g − 1) such that every

neighborhood of S contains points fromMg,n\C
1
4
g,n(2g−1). In other word, there exists a sequence

(Sm) ⊆ Mg,n that converges to S and, for all m, λc2g−1(Sm) ≤ 1
4 . For 1 ≤ i ≤ 2g − 1, let us

denote by φim a normalized λci (Sm)-cuspidal eigenfunction such that {φim}
2g−1
i=1 is an orthonormal

family in L2(Sm). Since we are considering small eigenvalues, up to extracting a subsequence,
the sequence (λci (Sm)) converges. For simplicity we assume that, for 1 ≤ i ≤ 2g−1, the sequence
(λci (Sm)) converges and denote by λi∞ its limit. Observe that, for 1 ≤ i ≤ 2g − 1, λi∞ ≤ 1

4 .
Now, since S ∈ Mg,n by Theorem 3.2.1, up to extracting a subsequence, (φim) converge to λi∞-
eigenfunction φi∞ of S. Since Sm converges to S in Mg,n, one has: ‖φi∞‖ = 1 by the result
about uniform integrability inside cusps in Corollary 3.3.8. Hence {φi∞}

2g−1
i=1 is an orthonormal

family in L2(S) so that the (2g − 1)-th cuspidal eigenvalue λc2g−1(S) of S is below 1
4 . This is a

contradiction because by our assumption S ∈ C
1
4
g,n(2g − 1). 2





Chapter 5

Maximization of λ1 over closed hyperbolic surfaces
of fixed genus

In this chapter we consider λ1 as a function on the moduli space Mg of closed hyperbolic
surfaces of genus g. It is a bounded continuous functio. In this chapter we discuss the question
whether λ1 can take values more than 1

4 or not. Using similar topological arguments as those
used in Chapter 2 we prove that the question has a positive answer in genus two case.

5.1 Each λi is bounded
Recall that for a closed hyperbolic surface S the set of eigenvalues, spectrum, of S is a discrete

set:
0 = λ0(S) < λ1(S) ≤ λ2(S) ≤ ... ≤ λn(S) ≤ ...∞

where each number in the above sequence is repeated according to its multiplicity as an eigenvalue
and λi(S) denotes the i-th eigenvalue of S. We review quickly a proof of the classical result that,
for each i, λi is continuos and bounded. The Theorem of Lizhen Ji, stated in Chapter 3, provides
the following:

Theorem 5.1.1. Let (Sn) be a sequence of surfaces in Mg that converges to S∞ which also
belongs toMg. Let (λn, φn) be a normalized eigenpair of Sn and let λn tends to λ∞ <∞. Then
λ∞ is an eigenvalue of S∞. Moreover, there is a normalized λ∞-eigenfunction φ∞ such that, up
to extracting a subsequence, φn → φ∞ uniformly.

Therefore, for any i, λi is a lower semi-continuous function onMg. A technic used in [C-C]
can be adapted to obtain the following:

Theorem 5.1.2. Let S be a closed hyperbolic surface of genus g. Let Sn ∈ Mg such that (Sn)
converges to S. Let λi be the i-th eigenvalue of S. Then, for any ε > 0, there exists m(ε) ∈ N
such that, for n ≥ m(ε), each Sn has at least i many eigenvalues below λi + ε.

Hence λi indeed is a continuous function.
Recall that systole of a hyperbolic surface S is defined to be the infimum of lengths of closed

geodesics on S. A result of Ber’s implies that the set It = {M ∈ Mg : s(M) ≥ t} is compact.
Hence by continuity: λ1 is bounded on It. On the other hand, a construction of Buser [?, p-219]
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shows that for any chosen ε > 0 there is a δ > 0 such that λ1(S) ≤ 1
4 + ε for any S ∈ Mg \ Iδ.

Therefore λ1 is bounded. So we may consider the quantity

Λ1(g) = supS∈Mg
λ1(S).

5.2 Surfaces with large λ1

For a fixed genus g consider the quantity:

Λ1(g) = sup
S∈Mg

λ1(S).

Arguments in the previous section show that Λ1(g) is finite for all g. In [B1] P. Buser poses the
problem of positivity of the limit

Λ = lim
g→∞

Λ1(g).

In [B2], using methods from analytic number theory, he proves that Λ ≥ 3
16 . Later in [BBD]

Buser, M. Burger and J. Dodziuk construct closed hyperbolic surfaces S such that λ1(S) ≥ 1
4 − ε

for any small preassigned ε > 0. In [B-M] R. Brooks and E. Makover consider the quantity

Λa = infΓλ1(H/Γ)

where Γ is an arithmetic subgroup. For any ε > 0, they construct a larger class of closed
hyperbolic surfaces S such that λ1(S) ≥ Λa − ε. It was already observed in [B1] that Λ ≤ 1

4 .

5.3 Closed hyperbolic surfaces of genus 2

In view of the above results one is tempted to conjecture that Λ ≥ 1
4 . This will certainly be

true if one could prove that Λ1(g) ≥ 1
4 . In this section we prove that such an inequality is true

when g = 2, i.e. we have

Theorem 5.3.1. Λ1(2) > 1
4 .

Proof. We argue by contradiction and assume that Λ1(2) ≤ 1
4 . Therefore, for any S ∈M2:

λ1(S) ≤ 1
4 . By [O-R] for any S ∈ M2: λ2(S) > 1

4 . Hence to a surface S ∈ Mg one can assign
the first non-constant eigenfunction φS without any ambiguity. We assume it is normalized. Let
Z(φS) denote the nodal set of φS . Since φS is the first eigenfunction, by Courant’s nodal domain
theorem, S \Z(φS) has exactly two components. As in previous Chapters, we denote by C+(φS)
(resp. C−(φS)) the component of S \ Z(φS) where φS is positive (resp. negative). From [O,
Proof of Proposition 2] we have the following equality:

χ(S) = χ(C+(φS)) + χ(C−(φS)) + χ(Z(φS)). (5.1)

Since S has genus 2: χ(S) = −2. Also, by [O, Lemma 1] (see Chapter 1), χ(C+(φS)) and
χ(C−(φS)) are strictly negative. So (5.1) implies that χ(Z(φS)) = 0. This means that Z(φS)
consists either of a unique simple closed curve that divides S into two tori with one hole or of
tree simple closed curves that divide S into two pair of pants (see below).
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Therefore we have the following:

Claim 5.3.2. Any S ∈ Mg has a neighborhood N (S) such that for any S′ ∈ N (S) the nodal set
Z(φS′ ) is isotopic to Z(φS).

Proof. Let Z(φS) consists of only one curve. Denote the two nodal domains by T1 and
T2. Let φS has positive sign on T1. So necessarily φS has negative sign on T2. Now consider a
tubular neighborhood TS of Z(φS). By Theorem 5.1.1 we have a neighborhood N (S) of S such
that for any S′ ∈ N (S), φS′ has positive sign on T1 \TS and negative sign on T2 \TS . Therefore,
Z(φS′ ) ⊂ TS . Now the the claim follows from the fact that Z(φS′ ) is incompressible. This same
arguments can be applied to the second possibility i.e. when Z(φS) consists of three curves that
divide S into two pair of pants. This finishes the claim. 2

Therefore, there exists S ∈ M2 such that Z(φS) consists of only one curve if and only if for
all S′ ∈M2, Z(φS′ ) consists of only one curve. Now we prove that this is not possible.

Claim 5.3.3. There exist a surfaces S1 and S2 in M2 such that Z(φS1) consists of only one
curve and Z(φS2) consists of three curves.

Proof. We shall prove existence of a surface S1 ∈M2 such that Z(φS1) consists of only one
curve. Same arguments work to show existence of a surface S2 ∈M2 such that Z(φS2) consists
of three curves.

Consider a sequence of surfaces (Sn) in M2 that converges to S∞ ∈ M1,1 ∪M1,1 ⊂ ∂M2.
Therefore on Sn the marked geodesic γn gets pinched. We also assume that each Sn has an
orientation reversing isometry ι which fixes γn pointwise. Since the number of components of
the limit surface S∞ ∈M2 is exactly two, by [C-C], λ1(Sn)→ 0. Now under the action of ι one
has two possible behavior for φSn . If, for some n, φn is skew invariant under ι then γn ⊂ Z(φn)
since γn is fixed under ι. Therefore we may assume that φSn is invariant under ι.
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By Lizhen Ji’s theorem (see Chapter 3), the sequence φSn , up to extracting a sequence,
converges to the constant function on each component of S∞ (observe that the limit function is
also invariant under the isometry which makes it non-zero on both the components). Thus for
any small ε > 0 there exists n(ε) ∈ N such that Z(φSn) does not intersect S[ε,∞)

n for n ≥ n(ε).
Therefore Z(φSn) must be contained inside the pinching collar around γn for n ≥ n(ε). Now
observe that Z(φSn) is simple because λ1(Sn) is small. Also, by Courant’s nodal domain theorem,
it should disconnect the surface. Hence Z(φSn) is isotopic to γn for n ≥ n(ε). This proves the
lemma. 2

Next we consider the set

Bg(t) = {S ∈Mg : λ1(S) > t}.

With this notation Theorem 1 reads as B2( 1
4 ) 6= ∅. Now we prove the following lemma.

Lemma 5.3.4. B2( 1
4 ) is an unbounded, open subset ofM2 which disconnectsM2.

Proof. We have already made the observation that B2( 1
4 ) is open and non-empty. Now we

prove that B2( 1
4 ) is disconnecting. We argue by contradiction and assume that M2 \ B2( 1

4 ) is
connected. Observe that, for any S ∈ M2 \ B2, λ1(S) is simple (since λ2(S) > 1

4 ). Now we
consider two surfaces S1 and S2 inM2 provided by Claim 1 such that Z(φS1) is not isotopic to
Z(φS2). As before we connect them by a path η insideM2 \ B2( 1

4 ). Using the same arguments
as before we must have a surface S ∈ M2 such that Z(φS) is not simple. Hence at least one
of the components of S \ Z(φS) has non-negative Euler characteristic. Hence λ1(S) > 1

4 . This
contradicts our assumption. Now, B2( 1

4 ) can not be bounded because there are paths in Mg

that joins S1 and S2 and avoids any bounded subset. Hence B2( 1
4 ) is unbounded. This finishes

the lemma. 2
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Riemann de petit rayon d’injectivité. Comment. Math. Helv. 64 (1989), no. 3, 349 - 362.

[Cha] Chavel, Isaac; Eigenvalues in Riemannian geometry. Pure and Applied Mathematics, 115.
Academic Press, 1984.

[Ch] Cheng, Y., Eigenfunctions and nodal domains. Comment. Math. Helv. 51 (1976), 43-55
[D-P-R-S] Dodziuk J., Pignataro, Randol B., Sullivan D., Estimating small eigenvalues of Rie-

mann surfaces, Contemp. Math. vol 64, Amer. Math. Soc. Prevedence, RI, 1987, pp 93-121.
[F] Fay, J. D.; Fourier coefficient of the resolvent for a Fuchsian group. J. Reine Angew. Math.

293, 143-203 (1977).
[G-T] Gilbarg, David; Trudinger, Neil S.; Elliptic partial differential equations of second order.

Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[H] Henrot, Antoine; Extremum problems for eigenvalues of elliptic operators. Frontiers in Math-

ematics. Birkhäuser Verlag, Basel, 2006.

63



Bibliography

[He] Hejhal, D. ; Regular b-groups, degenerating Riemann surfaces and spectral theory, Mem-
oires of Amer. Math. Soc. 88, No. 437, 1990.

[Hu] Huxley, M. N.; Cheeger’s inequality with a boundary term, Commentarii Mathematici
Helvetici 58 (1983).

[I] Iwaniec, H., Introduction to the Spectral Theory of Automorphic Forms, Bibl. Rev. Mat.
Iberoamericana, Revista Matemática Iberoamericana, Madrid, 1995.

[J] Judge, C.; Tracking eigenvalues to the frontier of moduli space. I; J. Funct. Anal. 184 (2001),
no. 2, 273- 290.

[Ji] Ji, Lizhen; Spectral degeneration of hyperbolic Riemann surfaces. J. Differential Geom. 38
(1993), no. 2, 263 - 313.

[K] Keen, L.; Collars on Riemann surfaces, Discontinuous Groups and Riemann Surfaces, Ann.
of Math. Studies No. 79, Princeton University Press, Princeton, NJ, 1974, 263 - 268.

[Le] Lebedev, N. N., Special Functions and their Applications. Dover Publications, New York,
1972.

[O] Otal, Jean-Pierre, Three topological properties of small eigenfunctions on hyperbolic sur-
faces. Geometry and Dynamics of Groups and Spaces, Progr. Math. 265, Birkhäuser, Bassel,
2008.

[O-R] Otal, Jean-Pierre; Rosas, Eulalio; Pour toute surface hyperbolique de genre g, λ2g−2 >
1/4. Duke Math. J. 150 (2009), no. 1, 101 - 115.

[P-S] Philip, R. S. , Sarnak, P.; On cusps forms for co-finite subgroups of PSL(2,R), Invent.
Math. 80 (1985), 339 - 364.

[R1] Randol, B.; Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull.
Amer. Math. Soc. 80 (1974), 996-1000.

[R2] Randol, B.; Cylinders in Riemann surfaces, Comm. Math. Helv. 54, 1979, pp. 1-5.
[R3] Randol, B.; A remark on λ2g−2, Proc. Amer. Math. Soc. 108 (1990), 1081-1083.
[Sch] Schmutz, P.; Small eigenvalues on Riemann surfaces of genus 2, Invent. Math. 106 (1991),

121-138.
[Se] Sévennec, Bruno; Multiplicity of the second Schrödinger eigenvalue on closed surfaces. Math.

Ann. 324 (2002), no. 1, 195 - 211.
[S-W-Y] Schoen, R.; Wolpert, S.; Yau, S. T.; Geometric bounds on the low eigenvalues of a

compact surface. Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii,
Honolulu, Hawaii, 1979), pp. 279 - 285.

[W] Wolf, M.; Infinite energy harmonic maps and degeneration of hyperbolic surfaces in Moduli
spaces, J. Differential Geometry 33 (1991) 487-539

[Wo] Wolpert, S. A.; Spectral limits for hyperbolic surface, I, Invent. Math. 108 (1992), 67 - 89

64


	Introduction
	Chapter 1 Eigenvalues and eigenfunctions of the Laplacian of hyperbolic surfaces
	1.1 The Laplacian on hyperbolic surfaces
	1.1.1 Cylinders
	1.1.2 Cusps

	1.2 Eigenvalues of the Laplacian
	1.2.3 Variational estimates
	1.2.6 Two geometric inequalities

	1.3 Eigenfunctions of the Laplacian
	1.3.7 Local bounds for eigenfunctions
	1.3.10 Fourier expansions of eigenfunctions on cylinders and cusps


	Chapter 2 Geometric lower bounds on eigenvalues of hyperbolic surfaces
	2.1 Hyperbolic surfaces with small eigenvalues
	2.2 Proof of Proposition 2.1.6
	2.2.5 Proof of Theorem 2.1.4

	2.3 Systole and the Laplace spectrum
	2.4 Non-compact finite area hyperbolic surfaces

	Chapter 3 Behavior of eigenpairs on converging family of hyperbolic surfaces
	3.1 Convergence of hyperbolic surfaces
	3.1.1 Results of G. Courtois-B. Colbois and D. Hejhal
	3.1.4 Results of L. Ji and S. Wolpert

	3.2 Convergence of small cuspidal eigenpairs
	3.2.2 The thick / thin decomposition of a hyperbolic surface

	3.3 Mass distribution of small cuspidal functions over the thin part
	3.3.1 Mass distribution over cusps
	3.3.4 Mass distribution over Margulis tubes
	3.3.7 Applications

	3.4 Proof of Theorem 3.2.1

	Chapter 4 Small cuspidal eigenvalues of a hyperbolic surface with finite area
	4.1 A conjecture of Otal-Rosas
	4.2 Proof of Proposition
	4.2.4 Proof of Lemma 2


	Chapter 5 Maximization of lambda 1 over closed hyperbolic surfaces of fixed genus
	5.1 Each lambda i is bounded
	5.2 Surfaces with large lambda 1
	5.3 Closed hyperbolic surfaces of genus 2


