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ABSTRACT

Shared micromobility defines as the shared use of light and low-speed vehicles such as bike and

scooter in which users have short-term access on an as-needed basis. As shared micromobility, as one of

the most viable and sustainable modes of transportation, has emerged in the U.S. over the last decade.,

understanding different aspects of these modes of transportation help decision-makers and stakeholders to

have better insights into the problems related to these transportation options.

Designing efficient and effective shared micromobility programs improves overall system perfor-

mance, enhances accessibility, and is essential to increase ridership and benefit commuters. This disserta-

tion aims to address three vital aspects of emerging shared micromobility transportation options with three

essays that each contribute to the practice and literature of sustainable transportation.

Chapter one of this dissertation investigates public opinion towards dockless bikes sharing using

a mix of statistical and natural language processing methods. This study finds the underlying topics and

the corresponding polarity in public discussion by analyzing tweets to give better insight into the emerging

phenomenon across the U.S.

Chapter two of this dissertation proposes a new framework for the micromobility network to im-

prove accessibility and reduce operator costs. The framework focuses on highly centralized clubs (known as

k-club) as virtual docking hubs. The study suggests an integer programming model and a heuristic approach

as well as a cost-benefit analysis of the proposed model.

Chapter three of this dissertation address the risk perception of bicycle and scooter riders’ risky

behaviors. This study investigates twenty dangerous maneuvers and their corresponding frequency and

severity from U.S. resident’s perspective. The resultant risk matrix and regression model provides a clear

picture of the public risk perception associated with these two micromobility options. Overall, the research

outcomes will provide decision-makers and stakeholders with scientific information, practical implications,

and necessary tools that will enable them to offer better and sustainable micromobility services to their

residents.
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1. INTRODUCTION

1.1. Background

Shared micromobility is the category of transportation modes that encompasses shared-use fleets of

bikes, e-bikes, e-scooters and other small vehicles. The vehicles might be fully or partially human-powered.

The primary objective of this mode of transportation is to address the first-mile/last-mile problem mile and

shrink transit deserts in cities. In other words, shared micromobility may increase the accessibility to other

modes of transportation, including mass transit services. Mobike, a China-based dockless bike sharing

system, nearly doubled accessibility to jobs, education, and health care by filling the transit gaps in Beijing

[1]. Micromobility not only improves connection to mass transit, but also could be an alternative to personal

car trip as more than 50% of car trips made in the United States are less than five miles in length[2]. The

business model, either docked or dockless format, has gained tremendous attention in the last decade. But

questions concerning the ultimate size, scope of the system, technology acceptance, enforcement strategies,

and associated risks have also emerged.

1.2. Research Objectives

The emergence of shared micromobility in the United States requires that public and private stake-

holders must understand and evaluate the aspects of this mode of transportation. Shared micromobility en-

hances public transportation visibility, reduces the use and dependence on fossil fuel, and promotes healthy

lifestyles. Hence, it is essential for private and public stakeholders to have a better understanding of sys-

tem operations, communities’ feedback, and issues related to these systems. Therefore, it is worthwhile for

researchers and practitioners to recognize the underlying factors associated with adoption, change, and aban-

donment of such modes of transportation. A sustainable transportation mode that ensures low-cost, low-risk

and high social benefits requires a proactive planning and decision-making process. Thus, in three essays,

we examined the bike and scooter sharing program and addressed some of the common problems with these

shared-use mobility systems. As these systems evolve, we tried to address the following questions:

1. What do U.S. residents think about new modes of transportation, given the dominant car culture?

What is the best method to learn about people’s opinions/views?
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2. How could we modify the transportation network to improve people’s accessibility to these sys-

tems, increase ridership, and reduce operators’ costs? What is the alternative model to address the

old(docked-based bike and scooter sharing system) and the new and emerging one (dockless system)?

3. What are the risky behaviors associated with shared micromobility? Given the lack of comprehensive

enforcement, what are peoples’ perceptions of risky riding behaviors? How could we quantify these

risks?

1.3. Research Methodologies and Contributions

The following three studies will provide the original contributions to address these questions and

understand some aspects of shared micromobility in the United States.

Chapter 2 addresses the first set of questions, and the final product was published in Transportation

Research Record with the title “PUBLIC OPINION ON DOCKLESS BIKE SHARING: A MACHINE

LEARNING APPROACH.” Structured interviews or surveys can be affected by response bias, including the

demeanor of the surveyor, the phrasing of questions, the way an experiment is conducted, and the desires

of participants to act as a good experimental subject and to provide socially desirable responses. Hence,

opinion mining on social media data could be a complement to traditional methods, as users voluntarily

give their opinions on the subjects of interest when compared to surveys conducted where no interview is

involved. People use Twitter as a platform to express their emotions and the problems they face in using any

mode of transportation. We used natural language processing methods to determine the polarity of sentiment

and topics in their discussion.

Impact: The findings help operators, city authorities, and public stakeholders to refine insights

into public needs, preferences, experiences, and opinions on their services. The findings also suggest that

opinion mining on social media data could be a complement to traditional methods, as users voluntarily

give their feedback on the subjects of interest when compared with surveys conducted where no interview

is involved. Additionally, the user profile might influence the perception of others towards the user’s tweet.

Unlike traditional surveys, in which other participants are anonymous, online platforms, to some extent,

affect people’s opinions.

Chapter 3 describes a novel model to tackle the problems described in the second sets of questions.

The final product was published in the journal of Advanced Transportation with the title “MAXIMUM

CLOSENESS CENTRALITY K-CLUBS: A STUDY OF DOCKLESS BIKE SHARING.” Shared-use mo-
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bility options have undergone a series of developments. The most recent is referred to as the dockless

or free-floating system. Recently, it has become essential to accommodate the free-floating system. This

change comes with an increase in the coordination cost, as bicycles/scooters are no longer checked in and

out from bike sharing stations that are fully equipped to handle the volume of requests. Instead, they can

be checked in and out from virtually anywhere. Hence, we proposed a new framework for combining tra-

ditional bike stations with locations that can serve as free-floating bike sharing stations. The framework

is based on identifying highly centralized-clubs (i.e., connected subgraphs of restricted diameter). The re-

stricted diameter reduces coordination costs as dockless vehicles can only be found in specific locations.

Also, we use closeness centrality as this metric allows for quick access to dockless bike sharing while, at

the same time, optimizing the reach of service to bikers/customers.

Impact: First, we used the k-club concept, combined with closeness centrality, to identify candi-

date locations that could be geo-fenced. We also allow for weight at each node of the network and gravity

model. This modification enhances the speed of the k-club formation through the heuristic algorithm de-

vised. Second, we analyzed the exact optimization model and the heuristic devised and compared them

in computational time and solution obtained. In each k-club obtained for varying values of k riders (com-

muters) can reach to any other neighboring sites within a fixed distance (controlled by k), implying that

the virtual locations provide better accessibility to demand points. Last, we presented potential strategies

for operators to further manage the inventory by applying incentives and making bicycle collection and

rebalancing more cost-effective.

Chapter 4 explains the risky behaviors and the associated underlying factors associated. The final

product is under review by the Journal of Safety Research with the title “RISK PERCEPTION OF BICY-

CLE/SCOOTER RIDERS RISKY BEHAVIORS.” The shared mobility industry shows no sign of stopping.

However, there are public debates on the road behavior of users. Some display reckless behaviors like

fast cornering, ignoring red lights, taking shortcuts at zebra crossings, speeding, and risky maneuvering.

These scofflaw rides are not only irresponsible and a danger to other road users, but they also damage

bikes/scooters, causing increased maintenance costs, service interruptions, and customer dissatisfaction for

bike/scooter share programs. We conducted two separate surveys through the Qualtrics R© platform. Par-

ticipants were asked to rate the severity and frequency of 20 risky behaviors of riders on five Likert scales.

The risk matrix is built based on the magnitude and frequency of each risk, and ordered logistic regression

is applied to identify significant factors. Regression analysis revealed that age and income are significant

3



factors shared between both survey groups. Level of education and living in urban areas are two statisti-

cally significant factors explaining the different risky behaviors with bicycles or scooters. In general, the

survey results show that participants perceive that there is a low risk associated with reckless behaviors. It

may imply that they are exposed to fewer incidents, or the media exaggerates the news about the incidents.

Further research on other aspects of risk, such as network geometry and safety education, would help better

understand the underlying factors

Impact: We extended the literature by developing a risk-matrix associated with bike/scooter riding

behaviors. The findings offer several insights for practitioners to develop new enforcement policies and

safety education programs to enhance scooter/bicycle sharing programs and provide a safe environment for

all road users.
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2. PUBLIC OPINION ON DOCKLESS BIKE SHARING: A MACHINE

LEARNING APPROACH

2.1. Abstract

Dockless bike sharing is an emerging paradigm. Like many other technologies, it brings advan-

tages and disadvantages to communities. Further investigation into public opinion will shed light on the

impact of this technology on communities and provide input to city authorities for transportation planning.

Transportation planning processes can be enhanced by engaging the community through social media tech-

nologies. Social media like Twitter, Facebook, and other microblogging media have been used for planning,

but have not been extensively evaluated for that purpose. This study examined approximately 32, 000 posts

on Twitter to assess public opinion on dockless bike sharing systems. Using a mix of text mining and statis-

tical techniques, we examined relevant posts to determine the sentiment polarity of tweets, the underlying

topics in the tweets, and the extent of engagement and impact on the decision-making process. Results

given by two different sentiment algorithms show that there is more positive than negative polarity across

the algorithms. Also, the findings show that the underlying topics in tweets include electric scooters, private

e-hailing companies, and blockage of sidewalks, among others. The results indicate that the dockless shared

micromobility models are potentially useful in generating participation, but faced substantial technical, an-

alytical, and communication barriers to influencing decision-making 1.

2.2. Introduction

Bike sharing is a sustainable mode of transportation in many cities around the world. It brings

advantages to existing transportation networks, including increased personal mobility, reduced traffic con-

gestion, decreased fossil fuel use and dependence, increased public transit visibility, health benefits, and

increased public environmental awareness [3]. The rapid growth of bike sharing in the United States contin-

ued in 2017, showing 25% more ridership than in 2016. Two primary factors contributed to this growth:

1. increasing ridership in existing systems; and

1The material in this chapter was co-authored by Ali Rahim Taleqani, Jill Hough, and Kendall Nygard. Ali Rahim Taleqani had

primary responsibility for data collection, analysis, and interpretation of results. Ali Rahim Taleqani also drafted and revised all

versions of this chapter. This chapter appears in Transportation Research Record (Rahim Taleqani, Ali, Jill Hough, and Kendall E.

Nygard, 2019)
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2. the launch of several new and different bike share systems.

Some of these systems have a new bike sharing customer interface, commonly known as dockless bike

sharing. By the end of 2017, after several unpermitted and pilot programs, there were 25 cities and suburbs

hosting dockless programs operated by five companies: Jump, Lime, Mobike, Ofo, and Spin, as well as

some smaller companies, for example, Pace, Donkey Republic, VBike, LennyBike, and Riide. By the end

of 2017, dockless systems accounted for almost 44% of all bike sharing bikes in the United States. However,

only an estimated 4% of trips were attributed to dockless bike systems [4].

Introduced in China, dockless bike sharing is a system in which a commuter unlocks a bike with a

cell phone, rides it, parks it, and relocks it. The intent of the system is to alleviate a prominent problem with

station-based bike sharing programs, called the rebalancing problem. The practice offers enhanced conve-

nience, mobility, and reduces the negative externalities (such as reduced space available for street parking)

when compared with the traditional bike sharing model. However, various problems with dockless bike

sharing systems have been reported by news agencies [5, 6]. The major problem is that piles of bikes from

bike sharing companies are increasingly becoming a public nuisance. Parking or leaving bikes in improper

locations is aesthetically objectionable and, in some cases, clogs sidewalks, rendering them unwalkable. In

the absence of regulations, this trend may result in blocked right of ways and increases in trash, vandalism,

and many other negative consequences [7]. This study aims to evaluate the consistency of the problems

reported on by news corporations and expressed in public opinion.

Researchers, practitioners, and public and private stakeholders have often conducted surveys to cap-

ture public opinions. With the advent of the Internet and the emergence of social media, systems such as

Twitter have been used to harvest and extract subjective information from text available online. With the

brisk growth of social networks, increasing numbers of people actively engage in microblogs, Facebook,

Instagram, Twitter, and other outlets. These outlets are a communication tool for people to share their emo-

tions, opinions, news, experiences, desires, and expectations. This information can have a significant impact

on others in decision-making. Hence, the analysis of such information becomes an integral part of any public

or private enterprise [8]. The vast amount of data available in text form is relatively cumbersome to analyze

and eventually requires statistical techniques to retrieve a general summary of opinions/views. Examining

such content provides valuable information and insight about a specific topic. There are a plethora of studies

on text analysis [9]. Sentiment analysis, as a subarea of text analytics, is a computational study that includes
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detection, extraction, and classification of opinions, sentiments, emotions, and attitudes concerning different

topics expressed in textual inputs [10]. Another useful method to analyze a large volume of unlabeled text is

topic modeling, a statistical method for discovering the key and pervading themes in a vast and unstructured

collection of documents on social media networks [11].

Microblogging is an online broadcast medium typically smaller than a traditional blog. Twitter, as a

common form of microblogging, launched on July 13, 2006. Each “tweet” or “short blog” is limited to 280

characters, equivalent to the size of a newspaper headline. Twitter could also be a good source for collecting

public opinion because of the heterogeneity of users. Twitter users are from different social backgrounds,

ranging from ordinary people to professionals, and include organization representatives, celebrities, and

politicians. Thus, the tweets collected are the words of users with varying interests, which makes twitter

feeds a valuable online source of opinion. This study describes a system aimed at discovering public opin-

ions about dockless bike sharing programs as well as identifying underlying topics within the tweets. Tweets

available in the English language are used to determine public opinions and concerns about dockless bike

sharing. This study is likely the first to examine microblogging in regard to dockless bike sharing. The pri-

mary objective of this study is to assess public opinion toward dockless systems with the aid of text mining.

This study uses text-mining techniques in conjunction with statistical methods to:

• examine public sentiments toward dockless bike sharing for better city planning; and

• identify potential topics in public opinion about dockless bike sharing.

This study sheds light on the current literature to address these two issues by studying public opinion

with regard to dockless bike sharing systems using Twitter. The findings will help city officials understand

the public perception toward an emerging, and sometimes nuisance, phenomenon for better planning and

development and as a model to address other challenges.

The paper is organized as follows: First, related works are reviewed. The research methodology

and conceptual framework as well as data collection and statistical methods used in the analysis are then

discussed. The Results and Findings section presents the results of public sentiments about dockless sys-

tems. This section also includes discussion about the clustering results of public opinion on dockless bike

sharing. Then the topic modeling and the findings are described. The final section concludes the paper with

discussions and recommendations for future research. Limitations of this study are also discussed.
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2.3. Literature Review

Effective public engagement in transportation planning leverages the sense of community by bring-

ing citizens with common goals together for better decision-making. Evans-Cowley and Griffin described

various involvement techniques such as public meetings, surveys, Facebook, and Twitter. Each of these

techniques has different levels of citizen involvement and effectiveness. They concluded that although pub-

lic meetings have a higher opportunity cost - a typical meeting takes an hour of time plus travel - they often

result in low levels of citizen involvement. On the other hand, Twitter offers the lowest opportunity cost - it

takes only a few seconds - and results in medium levels of citizen involvement [12]. Online social network-

ing platforms provide a type of tool that supports interaction between groups of people sharing common

interests. For example, this study uses online social networks to discover public opinions toward dockless

bike sharing. One prominent feature of social networking tools is microblogging. A microblog is a post-

ing of a short message that can include phrases, comments, images, audios, videos, and URLs. It allows a

user to share information with their social networks. According to a Transit Cooperative Research Program

(TCRP) report, transport agencies use social media plat-forms for one or more of the following reasons:

1. timely updates;

2. public information;

3. citizen engagement;

4. employee recognition; and

5. entertainment [13].

A significant number of studies have been done in the field of sentiment analysis on Twitter dur-

ing the last decade [14, 15, 16]. Many recent studies focused on novel uses of social media platforms in

transportation. Hoang et al. examined real-time commuter feedback to capture bus-related micro events

such as an accident, missing the bus, and skipped stops [17]. In a similar approach, Wojtowicz and Wallace

assessed the role of social media in gaining a better understanding of non-routine events in transportation

management [18]. Liau and Tan used a mixture of statistical techniques to segment customers’ opinions to-

ward low-cost airlines in Malaysia. They showed that the findings could help airlines with better operational

decision-making [8]. Collins et al. evaluated commuter satisfaction using sentiment classification on 557
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tweets on Chicago’s rail transit system. They suggested that using sentiment analysis has several advantages

over traditional surveys including:

• low cost of data collection;

• real-time data collection; and

• data much more focused on user-specific needs [19].

Kaufmanand Moss suggested a “co-monitoring” approach by combining analysis of real-time social media

feeds and staff reports. The findings showed improved responsiveness as well as better partnerships between

agencies and customers. The approach also saves cost and time com-pared with traditional methods [20].

Schwitzer studies how social media portrayed public transit and examined the way that communities might

be influenced. The findings suggested planners and transit agencies have a stronger commitment to the use

of social media [21].

The second group of works focused on topic modeling. This approach is gaining increasing attention

in text-mining research. Papadimitriou et al. introduced latent semantic indexing based on spectral analysis

of the term-document matrix to retrieve information in a corpus [22]. Blei et al. explained the basic idea

of topic modeling with the probabilistic model called latent Dirichlet allocation (LDA) method to extract an

underlying set of topics [23]. Koltsova and Koltcov proposed an interval semi-supervised latent Dirichlet

allocation (ISLDA) approach to improve the LDA approach. They used a dataset of Live Journal posts

written by 2, 000 top Russian bloggers from January to April 2013. Their findings suggested that the ISLDA

is a preferable method over LDA. Also, they presented the term frequency–inverse document frequency (TF-

IDF) coherence metric for evaluating topic quality [24]. Sotiropoulos et al. combined topic modeling and

sentiment analysis algorithms with a semantically aware clustering procedure to identify the distribution of

overall public sentiment toward two U.S. telecommunication firms [25]. Steinskog et al. extended the LDA

approach by applying several pooling techniques to aggregate similar tweets. Their method alleviates the

low performance of topic modeling on tweets because of the short text format of tweets. Their findings

established that aggregating similar tweets increased the topic coherence [26]. There have been several

studies on the application of social media in transportation planning; for further readings, the review by

Rashidi et al. provides a comprehensive overview of most recent case studies [27].
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2.4. Methodology

We address the research gap from two different perspectives:

1. sentiment analysis of dockless bike sharing-related tweets; and

2. topic modeling.

The former focuses on the classification of tweets where several classifiers are trained on publicly available

datasets. Finally, the trained model is tested on the actual dataset to identify positive and negative tweets

concerning dockless bike sharing. To evaluate the classification results, we also developed an unsupervised

clustering model to check if the resulting clusters are in line with the classes found by the classifier. In the

second part, we use statistical modeling techniques to detect trending topics and events in a corpus of tweets.

2.4.1. Data Preprocessing

The analysis covered two and a half months (from May 1, 2018, to June 30, 2018) and included

32, 802 tweets in English using Twitter API. Tweets with the hashtag (#) of “dockless,” “bike sharing,” and

“bike share” are chosen as the sample in this analysis. The hashtag (#) is useful in the categorization of

tweets, and also helps simplify the process of searching for tweets. Retweets (tweets that start with “RT”)

are treated as duplicates and are removed from both sets of data. Tweets are then cleaned by removing

punctuation, special characters, digits, emoticons (such as emojis) and uniform resource locators (URLs) so

that the dataset contains only words.

Tokenization is the process of breaking up a sequence of strings into pieces called tokens. Tokeniza-

tion aims to explore the words in a sentence and identify meaningful keywords. Punctuation was removed in

the process of tokenization. Tokens can be made up of characters, numeric or alphanumeric. Following this,

stop-words are removed from the tweets. Stop-words are words from the non-linguistic view that do not

carry information. Prepositions (such as ”from,” ”to,” “after,” etc.), articles (such as “a,” “an,” and “the”)

and pronouns (such as “I,” “you,” “she,” “he,” etc.) are treated as stop-words in our work. Eliminating stop-

words helps to improve text processing performance. Next, word stemming is executed. Word stemming is

a process of transforming words into their roots. The stem, root, is often called “lexeme” by linguistics and

is the smallest unit of a word; for example, “stemming,” “stemmed,” and “stems” have the same root word:

“stem.” Lastly, capital letters are converted to lower case. Tweets are then converted into a corpus. A corpus

is a large and structured set of texts. The two sub-sections below discuss the two main techniques that are

used to summarize the public opinions of dockless bike sharing on the corpus of tweets.
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2.4.2. Feature Representation

Texts have many distinct properties. There are several ways to extract the features within a text

and present it in proper format for the classifier. TF-IDF method is a statistical measure for evaluating how

important a word is to a document in a corpus. The importance increases proportional to the frequency of an

appearance of a word in a document and is offset by the frequency of the word in the corpus. This method

converts textual data into a numerical vector which is later used in the classifier.

Unigrams, bigrams, and n-gram models, with their frequency counts, are considered as features.

N-grams are all combinations of adjacent words or letters of length n in a continuous sequence from a given

text or speech. It is widely used in text mining and natural language processing (NLP) to develop the features

for supervised machine learning techniques.

There are two primary techniques for sentiment analysis for the Twitter data:

1. machine learning; and

2. lexicon-based.

In the former approach, the model classifies public opinions into positive, neutral, or negative classes. The

sentiment polarity of a tweet is determined by comparing all the opinion words in the tweet against the

subjective words in the dictionary and aggregating these words to give a final opinion for each feature. The

lexicon method assumes that the contextual sentiment orientation is the sum of the sentiment orientation of

each word or phrase in the text. Thus it uses a sentiment dictionary with opinion words and matches them

with the data to determine polarity. Sentiment scores are assigned to the opinion words to describe how

positive, negative, or objective the words contained in the dictionary are. This study focuses on the machine

learning approach and considers three commonly used classifiers, as described in literature review:

1. naive Bayes;

2. logistic regression; and

3. support vector machines (SVM).

2.4.2.1. Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes’ theorem. The model is simple, fast, reliable,

and accurate in many NLP applications. In the context of text classification (positive or negative classes),
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the occurrence of document di depends on only two mutually exclusive events, c and not c(c̄). Therefore,

the probability that a document di belongs to a class c is calculated by the Bayes’ theorem as where p(c|di)

is the posterior probability arrived at by calculating zic.

p(c|di) =
p(di|c)p(c)

p(di)
=

p(di|c)p(c)

p(di|c)p(c) + p(di|c̄)p(c̄)
=

p(di|c)
p(di|c̄)

p(c)

p(di|c)
p(di|c̄)

p(c) + p(c̄)
(2.1)

zic = log
p(di|c)

p(di|c̄)
(2.2)

p(c|di) =
ezicp(c)

ezicp(c) + p(c̄)
(2.3)

2.4.2.2. Logistic Regression

Logistic regression classification is based on the logistic function method. The logistic function is

also called the sigmoid function. It is an S-shaped curve that can take any real-valued number and map

it into a value between 0 and 1, but never exactly at those limits. Whereas naive Bayes is a generative

model, meaning that the model calculates the joint probability distribution p(x, y), logistics regression is

discriminative in that the model learns the conditional probability distribution p(x, y).

2.4.2.3. Support Vector Machines (SVM)

SVM is another popular classification technique. SVM analyze the data, define the decision bound-

aries and use the kernels for computation which are performed in the input space. The input data are two sets

of vectors each of size m. Then each data point, which is represented as a vector, is classified into a class.

The model then finds a margin between the two classes that are far from any document. The distance defines

the margin of the classifier. Maximizing the margin reduces indecisive decisions. Aramaki et al. addressed

the problem of detecting influenza epidemics by applying text-mining techniques to tweets. Their findings

show SVM, logistics regression, and naive Bayes have the highest performance among other classifiers in

their application [28].

2.5. Results and Findings

There are 18, 999 unique users represented among the 32, 802 tweets. Of those users, 16, 688 have

enabled their locations at the account level. These locations do not necessarily represent the locations

from which the users posted the tweets because they do not frequently change the locations. At the tweet

12



Table 2.1. Tweets by location.

Location Percentage of tweets with location

The U.S. 78.9%

The U.K. 4.8%

Canada 4.2%

Australia 1.6%

India 1.4%

China 0.8%

Others (38 countries) 8.3%

Table 2.2. U.S. tweets by location share.

City Share dockless system available

Washington, D.C. 14.6% Yes

San Francisco, CA 8.3% Yes

Seattle, WA 5.2% Yes

level, there are two parameters, “place” and “coordinates,” associated with the locations that the user is

tweeting from. The parameter “place” describes a larger area whereas “coordinates” defines an exact point

location. Out of 32, 802 tweets, only 61 tweets have “coordinates” (almost 0.1%), and 1, 178 tweets have

“place” (3.6%). As shown in Table 2.1, the majority of tweets with locations are from the United States.

Table 2.2 shows that the location share of more than 5% of 929 tweets (78.9%) originated in the United

States. After removing retweets, 16, 431 tweets remained in the database. They contained 9, 853 “User

Mentions,” 16, 832 “URLs,” and 72 “Emojis” of which there were 50 positives and 22 negatives. There are

210, 979 words that contain 13, 402 unique words. Figure 2.1 illustrates the high-frequency words used in

the collection of tweets before preprocessing. It verifies the dominant theme of collected tweets which is

mainly dockless bike sharing. The average length of the tweets is 115.38 and 87.13 characters respectively,

before and after cleaning.

2.5.1. Sentiment Analysis

Since the collected tweets do not have any labels (positive or negative), so it is impossible to develop

a supervised model. Hence, we took advantage of a Stanford Twitter Sentiment Corpus [15] to develop a

supervised model. Then the trained model was applied to our dataset to classify tweets as negative or pos-

itive. This dataset has 1, 600, 000 training tweets of which 800, 000 are positive and 800, 000 are negative.

The model is then used to classify the collected tweets on dockless bikes. For further validation, we also did

the clustering to check if the supervised and unsupervised method generate the same results. The dataset is
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Figure 2.1. Word cloud illustration of tweets.

split into three subsets: training, validation, and testing with 60%, 20%, and 20% of the tweets, respectively.

This method is preferred over k-fold cross validation because of the size of the datasets.

We started the sentiment analysis by training the three supervised machine learning algorithms

(naive Bayes, logistics regression, support vector) on the Stanford dataset. Table 2.3 describes the summary

of accuracy scores for the trained models with the 10, 000 unigram feature for TF-IDF. It shows that the

logistics regression model has the highest performance within a reasonable amount of time. Therefore, we

chose it for the final assessment.

We used a varying number of n-gram features for TF-IDF to improve the performance of the model.

Figure 2.2 illustrates the accuracy of the models with an increasing number of features given n-gram. As

shown in Figure 2.2, 3-gram TF-IDF achieves the highest accuracy among other cases. The performance

in relation to CPU time is an indication of how each of these models could be practical when the size of

tweet corpus increases dramatically. However, this issue is not critical as GPU processing facilitates heavy

processing. Because the performance of the models is almost equal, we selected the model with the least

CPU time for further analysis. The logistics regression model with a 100, 000 3-gram feature was chosen

for the sentiment analysis. We tested the model on the corpus of tweets and 73.8%, 26.2% are classified as

positive and negative sentiment, respectively.

14



Table 2.3. Models’ accuracy and CPU time by the number of features.

Multi-col-row
Accuracy Time (seconds)

10,000 features 100,000 features 10,000 features 100,000 features

Logistics regression 78.18% 78.48% 32.17 36.28

Linear SVC with L1 regularization 78.04% 77.84% 459.41 448.61

Multinomial Naive Bayes 76.60% 76.62% 14.87 13.92

Figure 2.3 shows the sentiment probability distribution. Tweets are labeled either positive or nega-

tive if their probability of given class is bigger than 0.5. Therefore, the higher the probability, the higher the

confidence the tweets are labeled correctly. In total, tweets with positive sentiments have higher probability

whereas negative tweets have, on average, lower probability. In other words, the model labels the tweets as

positive with higher confidence than negative ones. Manual validation of 32, 000 tweets requires too many

resources. To facilitate the evaluation of supervised models (the classification results), we used K-means

which have been applied in a wide range of applications to cluster unlabeled tweets [29, 30]. The resultant

groups comprised of 68.4%, and 31.6% of the tweets. This is in line with the classification results in which

one group has almost 70% of the tweets. In the next step, we compare the original tweet with the results of

the classification and clustering sections.

Figure 2.2. Accuracy of n-gram TF-IDF and number of features.

As shown in Table 2.4, further investigation into classification and clustering shows some interest-

ing results. Of the labels, clustering and classification methods agree in only 61% of the cases. In some
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Figure 2.3. Sentiment polarity distribution of tweets.

instances, neither technique generates the same label. This could be due to several reasons. One might be

K-means clustering with Euclidean distance are prone to high-dimensional data as we have in this case for

TF-IDF. This could be because of the model error (row 2, 5, 6, and 7). However, in some cases, the tweets

have a different sentence structure, for example, a question in which polarity is neither positive or negative.

In some cases, the user shows agreement on a URL which contains a negative opinion toward dockless bike

sharing. Because were moved URLs during data preprocessing, the ultimate sentiment label of the tweet is

positive

2.5.2. Topic Modeling

Many people post messages about various issues on Twitter every day. The investigation of the re-

lationship between the underlying topics of different authors’ messages could yield interesting results about

peoples’ perceptions. One could, for example, find out the gender differences in the perception of individu-

als toward risks associated with genetically modified organisms [9]. In another case, one could identify the

similarities and differences among politicians on various topics [26]. Twitter has an abundance of messages,

and the enormous number of tweets posted every second makes Twitter suitable for such tasks. However,

detecting topics in tweets can be challenging because of the informal language used and because tweets

usually are less coherent than traditional documents. The community has also spawned user-generated meta

tags, like hashtags and mentions, which have analytical value for opinion mining. This paper describes

a system aimed at discovering trending topics and events in a corpus of tweets, as well as exploring the
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topics of different Twitter users and how they relate to each other. Utilizing Twitter metadata mitigates the

dis-advantages tweets typically have when using standard topic modeling methods. User information, as

well as hashtag co-occurrences, can give much insight into topics that are currently trending. Topic models

are types of statistical methods used to represent abstract and latent topics in document collections. These

probabilistic models usually present topics as multinomial distributions over words, assuming that each doc-

ument in a collection can be explained as a mixture of topics. In this paper, we use the LDA algorithm to

discover underlying topics in the collection of tweets. LDA is a generative probabilistic model of a cor-

pus and has many applications in collaborative filtering, content-based image retrieval, and bioinformatics.

Many studies described the mathematical formulation of the method in detail [23].

We applied the LDA algorithm to our dataset and the results are presented in Table 2.5. We listed

seven important topics, each of which has five sub-topics. Regardless of the word “bike,” or “city,” as they

show the overall theme of the tweets, there are some interesting sets of words about dockless bike sharing.

On one hand, there are general words such as cheap, flooding, scooter, side-walk, and threat. On the other

hand, there are proper names such as Uber, Lyft, Motivate, and Sharelock as well as city names including

Chicago and Seattle.

In the case of sub-topic “sidewalk,” users perceived sidewalk negatively, and only a minority of this

cluster have positive sentiments. With the number of tweets giving negative feedback on bikes blocking

sidewalks, it verifies the news about the negative externalities of the dockless programs. Hence city officials

should plan proactively to mitigate this problem. For example, some practices reduce these negatives:

painting areas on the ground to show proper parking places, hiring maintenance workers to take care of

abandoned bikes, calling on people to behave appropriately, or enabling a system of credit checks based on

user behaviors (by reviewing reported photos). If the user credit is lower than a certain threshold, they will

need to pay higher prices to rent a bike.

One exciting sub-topic is “scooter” which is not the focus of this study. However, in some cases,

people mention dockless scooters with dockless bike sharing. The dockless electric scooter is the second

emerging trend after dockless bike share. Scooter sharing first emerged in Santa Monica, CA, in September

2017 by scooter share startup Bird. Later, Lime, Spin, and others deployed the technology in San Diego,

CA; San Francisco, CA; San Jose, CA; Washington D.C.; and Austin, TX. The companies are expanding

quickly and are rapidly gaining popularity. This information provides an idea for bike sharing management

on how efficient, prompt replies will resolve most of the problems discussed in each cluster above.
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Table 2.4. Tweet sentiment polarity from classification and clustering.

Classification

(supervised

method)

Clustering

(unsupervised

method)

Original tweet

Positive Positive “If Portland’s bikeshare sees a big increase from go-

ing dockless in May (and I think it will), it will be

a turning point for dockless bikeshare. Urbanists

may finally stop clinging to the dock technology that

makes trips longer :)”

Negative Positive “The ‘public’ (at the moment) seems too irre-

sponsible for dockless. In interim, what abt a

lightweight infrastructure play - A wardrobe-sized

automatic/robotic locker for bldg entries. High den-

sity stacking, dispenses scooters when needed.”

Negative Negative “Considerations for dockless bikes: What happens

to bikes left as sidewalk obstacles? What happens

when bikes left against trees or other tender plant-

ings/property? Who is going to work to prevent

dockless bikes from becoming sidwalk “trash” in a

sense?”

Negative Negative “@quick13 Saw dockless bikes recently in Char-

lotte. Bikes scattered all over.”

Positive Negative “@NiceRideMN Having just been to Seattle, one

thing that caught my eye about the docklessbikes

there is the wild abandon with which the bikes get

abandoned in weird places.”

Positive Negative “So cool! @GridBikes rebalances its docks/stations

using cargo bikes! #bikeshare”

Negative Positive “#Bellevue’s dockless #bike share pilot will only

allow #e-bikes A few months after #Seattle’sbike

share pilot technically ended, Bellevue is rolling out

their own pilot program governing #dockless bike

share—and there are a few changes. Do you have...”

Table 2.5. Topics and subsequent subtopics extracted by the LDA approach.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

bike Lyft city get bike bike system

hire Uber scooter new car scooter Sharelock

world buy bike program city Austin bike

cheap Motivate company Chicago scooter people station

flooding big new pilot sidewalk Seattle thread
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2.6. Conclusions and Implications

bike sharing companies, city authorities, and public stakeholders are continually refining insights

into public needs, preferences, experiences, and opinions on their services. First, by studying Twitter-user

sentiments toward dockless bike sharing, we found more positive than negative polarity across the different

algorithms. Hence, users, in general, are satisfied with this emerging technology. Second, there are seven

main groups of topics that are discussed by Twitter users. Although these seven topics are commonly

discussed, this research can enable a deeper understanding of the sentiment underlying those seven topics.

People use Twitter as a platform to express their emotion and the problems they faced in using

any mode of transportation. Despite the difference between positive and negative polarity, bike sharing

companies should put more effort into improving the overall image of the dockless program, as people are

prone to post any disturbance on Twitter. The blockade of bikes on the side-walk plays a crucial role. bike

share companies have to come up with a practical solution, or the current popular opinion will erode to a

primarily negative perception of dockless bike sharing.

Opinion mining, as a derivative of NLP, is emerging in many fields such as customer analytics,

health care, politics, and others. As in traditional survey methods, tweets may not reflect true opinions on a

subject area. However, since social networks have become popular over the last decade, the application of

NLP to social media posts could be seen as a new approach to opinion mining. There are two things which

make the social network analysis unique:

1. people, regardless of the potential social bots, discuss subjects deliberately without being concerned

that their tweets might be analyzed. However, the survey techniques might be prone to bias due to

social desirability and impression management; and

2. in traditional methods, participants are asked specific questions whereas topic modeling gives the flex-

ibility to social network analysis for extracting various subjects without a set of predefined questions.

Transportation science has the potential to use this opinion mining approach because of the interactions be-

tween people as customers and several transportation entities. However, there are several concerns regarding

the opinion mining of social networks:

• intuitively, people usually do not post something about transportation services unless something hap-

pens. This event-triggered behavior might produce more negative views about transportation services.
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Contrary to this expectation, in this study we found more positive sentiment. Because bike sharing is

a new phenomenon, this could be a possible reason for our findings. Further analysis might be helpful

to understand the real impact of dockless systems after such systems have been fully established;

• one of the prominent issues with Twitter sentiment analysis is the quality of the tweets. Some online

posts are retweets without any additional words, emojis, or tags. These types of tweets are removed

early in the preprocessing step since they could not reveal users opinion explicitly. On the other

hand, some tweets do not have correct grammatical formats and may be missing com-mas, periods, or

correct tense. These lead to false classifications. Advanced preprocessing techniques could alleviate

this problem;

• online platforms are open to everyone. This level of flexibility could have an impact on someone’s

opinion toward a subject. Not only the tweets, but also the user profile might influence the percep-

tion of others toward the user’s tweets. Unlike traditional surveys, in which other participants are

anonymous, online platforms to some extent have exposure to others;

• a reliable source is a critical subject in the social network. Social network analysis is prone to social

bots. Social bots are to some extent autonomous agents with the intention of influencing users on

social media. Social bot detection is complicated, requiring separate research which is not the scope

of this study. In addition to bots, the frequency of a user’s tweets might also increase the bias of this

approach;

• from a transportation planning perspective, every transportation study is to some extent limited to

a geographic area. One might be broader than another. Social network analysis including Twitter,

Facebook, and others fails to address this issue adequately. Because of users’ privacy preferences,

locations are either missing or not well represented. Users may choose, at their discretion, to en-

able/disable location tracking on their devices. For example, someone may post a tweet about an

event without adding a location to the tweet - which happens in most cases - or someone may get off

a plane and tweet an opinion (complaint) at their destination about the delay at the origin. These are

just examples that call the social network analysis into question. As described earlier, less than 4% of

tweets can be linked to specific locations. Moreover, a longer observation period does not guarantee

getting better geo-tagged data. For example, for a user on a location-enabled device used to tweet
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negative comments on a topic, longer observation would likely lead to the user having more negative

tweets related to a specific location. On the other hand, a user without a geo-enabled device does not

have any impact on location-related tweets.

In conclusion, bike sharing companies, stakeholders, and city officials would have a better oppor-

tunity to understand public opinion and address the issues of concern, and in turn attract more riders or

customers, generate more profits, and provide more mobility options, if these problems are addressed. This

study provides insight into public sentiment toward emerging dockless bike share programs. Structured in-

terviews or surveys can be affected by response bias including the demeanor of the surveyor, the phrasing of

questions, the way an experiment is conducted, and the desires of participants to act as a good experimental

subject and to provide socially desirable responses [31, 32]. Hence, opinion mining on social media data

could be a complement to traditional methods, as users voluntarily give their opinions on the subjects of

interest when compared with surveys conducted where no interview is involved. Also, this study gives a

clearer picture of dockless programs with regard to topics which are broadly discussed in social networks.

Officials can identify valuable users by making proactive decisions based on the predictions of users’ future

behaviors. If bike share companies can analyze customer tweet data in real time by classifying customers’

feedback, it will help management facilitate strategic, operational activities. Opinion mining of social net-

works in transportation would be beneficial for identifying new and emerging phenomena in a community.

However, a well-designed survey questionnaire and in-depth analysis is undoubtedly required for any plan-

ning and decision-making.

There are several avenues for future research. First, clustering could be a reliable method for sen-

timent categorization in case there are no labels available. Second, photos, videos, and URLs in tweets

are a great source of information to improve the sentiment analysis model. Future works should focus on

developing methods to consider the relationship between textual inputs and other forms of data. Third,

hashtags and emojis are usually excluded in the data preprocessing step. Future studies may investigate if

hashtags and emojis have any contribution to consumer sentiments. Finally, in early 2020, the COVID-19

crisis forced some shared micromobility companies like Bird or Lime to stop operations in many markets

resulting in several layoffs. Rider safety and virus containment cited as primary reasons for such decisions.

Future research could investigate if there is any change in public sentiment toward public transportation and
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shared micromobility services. Despite these limitations, we believe that our study has contributed to this

subject, especially with regard to consumer behavior toward dockless bike sharing.
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3. MAXIMUM CLOSENESS CENTRALITY K-CLUBS: A STUDY OF

DOCKLESS BIKE SHARING

3.1. Abstract

In this work, we investigate a new paradigm for dockless bike sharing. Recently, it has become

essential to accommodate connected and free-floating bicycles in modern bike sharing operations. This

change comes with an increase in the coordination cost, as bicycles are no longer checked in and out from

bike sharing stations that are fully equipped to handle the volume of requests; instead, bicycles can be

checked in and out from virtually anywhere. In this paper, we propose a new framework for combining

traditional bike stations with locations that can serve as free-floating bike sharing stations. The framework

we propose here focuses on identifying highly centralized k-clubs (i.e., connected subgraphs of restricted

diameter). The restricted diameter reduces coordination costs as dockless bicycles can only be found in

specific locations. In addition, we use closeness centrality as this metric allows for quick access to dockless

bike sharing while, at the same time, optimizing the reach of service to bikers/customers. For the proposed

problem, we first derive its computational complexity and show that it isNP-hard (by reduction from the 3-

SATISFIABILITY problem), and then provide an integer programming formulation. Due to its computational

complexity, the problem cannot be solved exactly in a large-scale setting, as is such of an urban area. Hence,

we provide a greedy heuristic approach that is shown to run in reasonable computational time. We also

provide the presentation and analysis of a case study in two cities of the state of North Dakota: Casselton

and Fargo. Our work concludes with the cost-benefit analysis of both models (docked vs. dockless) to

suggest the potential advantages of the proposed model1.

3.2. Introduction

bike sharing systems (BSSs) have become a prominent mode of transportation around the world,

especially in urban areas. BSSs bring a number of advantages to existing transportation networks. Among

them, we note the increased personal mobility, reduced transportation costs, reduced traffic congestion,

decrease in use of and dependence in fossil fuel, increase in public transit visibility, enhancement of down-

1The material in this chapter was co-authored by Ali Rahim Taleqani, Chrysafis Vogiatzis, and Jill Hough. Ali Rahim Taleqani

also drafted and revised all versions of this chapter. This chapter appears in Journal of Advanced Transportation (Ali Rahim

Taleqani, Chrysafis Vogiatzis, and Jill Hough, 2020)
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town areas along with the economic development that follows, health benefits, and increase in environmental

awareness [33, 34, 35].

Since their introduction in Europe in the 1960s, BSSs have undergone a series of developments.

The most recent of these developments is referred to as the dockless or free-floating BSS. In a dockless

BSS, residents that are interested in using a bicycle can check out and in bicycles throughout an urban area

using nothing more than their smartphones. The bicycles are equipped with a geographic positioning system

(GPS), thus enabling users to locate the nearest available bicycle and to unlock it with the use of an app.

Riders are then allowed to drop off (check back in) the bicycle anywhere within a geographic area (referred

to as the geo-fenced area). Within that area, bicycles are allowed to be parked legally. The trip ends as soon

as the checked out bicycle is parked and securely locked anywhere in the geo-fenced area.

As is obvious from the description, dockless or free-floating bicycles offer enhanced convenience

and improved accessibility, which in turn translates to increased personal mobility, compared to conventional

bike sharing. The enhanced convenience stems from the fact that users no longer have to wait for a parking

spot to become available in a bicycle dock so as to return their bicycle after the trip (especially in heavily

trafficked areas). However, as with many other technologies, dockless BSSs also present new challenges.

The one we deal with in this work is the fact that bicycles can now be left unattended in improper positions

[36, 37]. Piles of bicycles from bike sharing companies are increasingly becoming a public nuisance and

they make the aesthetic environment of an urban area less enjoyable with clogged sidewalks that are rendered

no longer walkable. Hence, a dockless BSS development without proper control and regulation mechanisms

can result in blocked rights of way, increase in trash, vandalism, and other negatives.

The framework we develop here aims to address this issue of control while at the same time ad-

vocating for dockless bike sharing. We propose a framework that will both (i) allow users the increased

benefits of a dockless system (easy and fast access to bicycles, reduced parking space needs) and (ii) reduce

the coordination costs for controlling the sprawl of the dockless bike sharing operations by restricting the

size of the geo-fenced area.

Continuing with our motivation, a critical component to the success of every BSS is that users can

check out a bicycle within convenient walking distances [38]. This simple, yet powerful, principle guides

BSSs to offer the right number of bikes in the right locations at the right time so as to accommodate daily

commuting demands. In other words, station location and density are key factors in any BSS [39]. In the

traditional dock-based system, BSS operators are expected to rebalance bike inventory between different
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stations so as to meet (asymmetric) demands. As an example of such rebalancing operations, Chiariotti et

al. (2018) proposed a dynamic model to address the fluctuations in demands of a BSS in New York City

[40]. In a similar note, Wang et al. (2018) applied a data-driven approach for defining a safe rebalancing

range and provide rebalancing operators with the next targeted station and the number of bikes to move

[41]. Rebalancing bicycle inventory imposes extra costs associated with human and physical capital on bike

sharing programs. These costs can grow to be considerable if the system is large. Moreover, the rebalancing

problem is even more pronounced in dockless BSSs because of unrestrained parking locations [42]. Finding

the right locations for stations and rebalancing are correlative problems. According to the Department of

Transportation, a dockless program should be initiated where demand is highest and designated bike parking

areas, referred to as bike hubs, should be used to maintain some order. This policy would help mitigate the

hodgepodge of problems that can result from adopting a dockless system [43].

As our framework will optimize the reach of dockless bike sharing operations while also restricting

the size of the system, our model will also alleviate some of the problems involved with rebalancing. To

further elaborate on our model, we offer Figure 3.1. On the right, we present a conventional dock-based

BSS. The transportation network is presented with nodes and edges (representing streets), with the bicycle

docks being noted with blue rectangular nodes: observe that docks are not necessarily located in nodes only,

but can also be located along the edges of the network. On the other hand, the figure on the right shows our

proposed framework. We now allow for a geo-fenced area (represented by the shaded area) where users can

check out and in bicycles from anywhere. This allows for more people to have fast access to bicycles and

reduces the need for docks within that area. Due to that, these docks could be moved to other areas, further

than the geo-fenced area, to enable bike sharing use to other residents. In addition to that, the area where

bicycles can be dropped off anywhere is significantly decreased, making it easier for operators to find and

collect bicycles so as to rebalance their inventory. Last, we note here that the shaded area of the network on

the left forms a 2-club (i.e., a subgraph of diameter equal to 2).

We can summarize our contributions in the following three components:

• first, we use the k-club concept, combined with closeness centrality, so as to identify candidate lo-

cations that could be geo-fenced. We also allow for a weight at each node of the network: this

modification enhances the speed of the k-club formation through the heuristic algorithm devised;
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Figure 3.1. Graph without k-club (left), with k-club (right).

• then, we turn our attention to a real-world application. We present an experimental study on the

cities of Fargo and Casselton. In the study, we analyze the exact optimization model and the heuristic

devised and compare them in computational time and solution obtained. In each k-club obtained for

varying values of k, riders (commuters) are able to reach to any other neighboring sites within a fixed

distance (controlled by k), implying that the virtual locations provide better accessibility to demand

points;

• last but not least, we present potential strategies for operators to further manage the inventory by

applying incentives and making bicycle collection and rebalancing more cost-effective.

The remainder of the paper is organized as follows: the next section reviews related literature on

BSS design and discusses how those relate to the objectives of this work. Then, we provide the necessary

mathematical background, provide the definitions of all notation used, and derive the computational com-

plexity of the problem studied. The next section illustrates the mathematical formulation that can be solved

using a commercial optimization solver and also proposes a greedy heuristic to solve it. In the following

section, we discuss two computational experiments that reveal our findings in two real-world transportation

networks: namely the smaller city of Casselton, ND, and the larger city of Fargo, ND. However, due to the

size of the network in Fargo, we only test and present the results of the heuristic approach. The last section

of the paper is devoted to our conclusions and a brief overview of future plans.

3.3. Literature Review

There is a plethora of studies on bike sharing systems. These studies generally fall into three major

areas:
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1. general quantitative analysis;

2. facility location problems; and

3. redistribution problems.

The first body of literature focuses on the quantitative analysis of existing BSSs, analyzing their

characteristics, and examining empirical evidence of usage patterns in cities including Dublin [44], Beijing

[45], Montreal [46], Brisbane [47], Helsinki [48], Paris [49], Switzerland [50], and New York [51]. Nair

et al. (2012) examine several aspects of the Velib BSS in Paris, France [49]. Their findings show that

integrating transit and BSS can yield higher utilization. Bachand-Marleau et al. (2012) surveyed residents

of Montréal, Quebec, in Canada to determine the factors leading to use BSS as well as the frequency of

use [46]. Campbell and Brakewood (2017) quantify the impact that BSSs have on bus ridership in New

York City [51]. They conclude that either bike sharing members substitute bike sharing for bus trips or the

implemented BSS led to travel behavior changes of non-members. Audikana et al. (2017) studied the impact

of a BSS in a small city (less than 100, 000 residents) in Switzerland [50]. They suggested that BSS network

density along with the developed partnerships play a critical role in its success.

The second stream of literature focuses on the strategic design of BSS where the ultimate goal is

to find the locations, capacity, and coverage areas of BSSs [52]. These studies try to determine the number

and location of stations, fleet size, and network structure of the underlying BSSs. They consider various

objectives, including the maximization of demand coverage, the minimization of transportation cost, and

the minimization of the overall cost. Lin et al. (2013) address the strategic design problem by formulating it

as a hub location inventory model [53]. In their work, they consider both total costs (travel cost of users, bike

inventory costs, facility costs) and service level (bicycle lanes) in their model. The authors then propose a

heuristic method to find high-quality solutions. In a similar study, Lin and Yang (2011) propose a nonlinear

integer method to determine the optimal location, bike lanes, and routes [54]. Their model assumes a penalty

for uncovered demand but does not consider relocation (rebalancing) of bikes. Martinez et al. (2012) present

a mixed integer linear program to maximize the net revenue by simultaneously optimizing the locations of

stations, the fleet size, and bike relocation activities for a regular operation day [55]. Nair and Miller-Hooks

(2016) formulate an equilibrium network design model to address the same objective as the previous study

[56]. They propose a metaheuristic solution approach to overcome the intractability of the exact solution for

real-life, large-scale networks. In another study Reijsbergen (2016) identifies alternative locations with the
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aid of spatial data and simulation techniques: more specifically, a data-driven approach to determine how

attractive city areas are for station placement is presented [57]. The literature offers other methodologies,

that are not based on facility location models, to define the location of the stations. Garcia-Palomares et al.

(2012) develop a GIS-based model to calculate the spatial distribution of the potential demand for trips and

find the locations of bike stations by using the location-allocation modeling approach [58].

Finally, a third group of the literature is associated with the relocation of bicycles in a BSS. The

problem arises from demand imbalance leading to accumulation of bicycles at some stations (and conse-

quently, limited bicycle availability in other stations). Vogel and Mettfeld (2010) apply a system dynamic

method to model the effect of dynamic repositioning on the service level [59]. Shu et al. (2013) develop

a stochastic network flow model with proportionality constraints to determine bike flow in a bike sharing

network. They also present a numerical analysis on the Singapore BSS and find that period distribution is

the most effective for system performance [60]. Forma et al. (2015) develop a 3-step heuristic and mixed

integer linear programming model for repositioning [61]. The first step involves clustering the stations based

on geographic location and inventory levels using a heuristic method. In the second and third steps, they

employ a mixed integer linear program to find the best routes for repositioning vehicles. Alvarez-Valdes

et al. (2016) address the static repositioning problem using simulation techniques in two stages [62]. In

the first stage, they estimate the levels of unsatisfied demand for a set of stations in a given period. In the

second stage, they use the estimation as an input to their redistribution algorithm. Schuijbroek et al. (2017)

combine service level requirements and vehicle routes to rebalance the inventory [63]. They propose a

“cluster-first route-second” heuristic considering the service level feasibility and approximate routing costs

simultaneously. Yan et al. (2017) develop four planning models for leisure-based BSSs given deterministic

and stochastic demands [64]. They apply non-linear time-space network models to integrate bike reposition-

ing and vehicle routing with user dissatisfaction estimations. In a recent study, Celebi et al. (2018) propose

a hybrid approach jointly considering location decisions and capacity allocation [65]. Their goal is to find

the optimal configurations of a BSS by combining set-covering and queuing models to determine service

levels.

One of the gaps in the current state-of-the-art is that most focus only on either user accessibility or

rebalancing strategies to manage supply and demand within an urban area. As described in the Introduction

section, our contribution is to fill exactly that gap and propose a framework that allows for both high ac-

cessibility for the users and reliable and cost effective rebalancing and coordination for BSS operators. Our
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proposed model relies on the definition of a k-club from graph theory, whose definition and related literature

is offered in the next paragraphs.

Given a simple undirected graph, a k-club is a subset of vertices inducing a subgraph of diameter at

most k. These structures represent cohesive subgroups in social network analysis with common applications

in network-based data mining and clustering. Several authors have discussed mathematical formulations for

identifying k-clubs of maximum cardinality, as well as various methods to locate k-clubs within a network

[66, 67, 68]. In addition to using k-clubs, our work also focuses on the centrality of a group of a specific

structure. Group centrality, introduced by Everett and Borgatti (1999), aims to identify groups or classes of

high centrality [69]. Centrality measures the aim to characterize the importance of an element in a network.

They typically fall into three main classes [70], referred to as degree (i.e., the number of connections of

a specific element in the network), closeness (i.e., how close an element is to every other element in the

network), and betweenness centrality (i.e., how important an element is in the communications between any

two other elements in the network, assuming all such communications take place using the shortest path

between the elements).

More recently, researchers have focused on highest betweenness groups [71]. Finally, another ex-

tension of identifying highly centralized groups has to do with the added restriction that the group induces a

subgraph “motif”, such as being a complete subgraph/clique [72, 73], or inducing a star [74].

In this paper, we propose an integer programming formulation and a heuristic algorithm to find

the most centralized k-club in a transportation network based on closeness centrality. The resultant k-club

consists of a set of nodes in which the maximum traversing distance is k hops (by definition), and the total

weighted by population distance to a node in the k-club is minimized (as it will be the k-club with maximum

closeness centrality). Based on this result, a BSS operator could then enable the area covered by the k-club

as the geo-fenced area where dockless bike sharing is allowed and satisfy the following objectives:

1. maximize demand coverage (as the area obtained is the most centralized, with respect to closeness

centrality);

2. minimize distances traversed for rebalancing operations (as the geo-fenced area is of restricted diam-

eter); and
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3. offer a large, convenient geographical area for checking in/out the available bikes without need for

physical stations. As the success of a BSS heavily depends on the network of bike paths and bike

stations in the community, this is an important objective facilitated by our framework.

Most of the previous work that addresses physical bike station location problems illustrates prob-

lems including station capacity decisions and demand predictions, among others. To the best of our knowl-

edge, this paper is the first to suggest a solution to problems that have arisen from the emergence of dockless

bike sharing systems with the aid of a k-club. The ultimate goal is to locate potential hubs in a city, referred

to as k-clubs, by geo-fencing a suitably small area of a city.

3.4. Methodology

Let G(V,E) be an undirected network, with V symbolizing the vertices (intersections of the trans-

portation/biking network) and E the edges (streets in the transportation/biking network). Every node is

assumed to be assigned a non-negative parameter, wi ≥ 0, referred to as the weight at this specific location.

This weight parameter can be used to capture different aspects of the problem at hand, depending on the ap-

plication. For example, the weight of a node could capture socio-economic attributes like population, points

of interests in the vicinity, number of jobs, etc. Another possible way to model and use the weight parame-

ter is through the interactions between different pairs of origin and destination, like traffic flows (outgoing

traffic from an origin node, incoming traffic to a destination node, or simply a summation of outgoing and

incoming traffic to a specific node). In either way, we assume a distinct, non-negative number explaining

the level of attraction for that node.

We say that (i, j) ∈ E if there exists an edge starting from node i and ending in node j, in which

case we write that aij = 1. We also denote with N(i) = {j ∈ V : aij = 1} the open neighborhood of node

i. We write that the diameter of graph G is D if the maximum shortest path distance between two nodes in

the graph is D. Clearly, all pairs of nodes in the graph will be located at a distance ℓ from one another with

0 ≤ ℓ ≤ D. Let dij be the distance between two nodes i and j, and dSj = mini∈S {dij} as the distance of a

node j to a set of nodes S. Then, for any set of nodes S ⊆ V , we define a function f : V 7→ R, as

f(S) =
∑

i∈V

widSi. (3.1)
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Last, we use Pk to denote all paths of length less than or equal to k. Similarly, Pk
ij is the set of all

paths of length at most k connecting two nodes i and j (i 6= j). Clearly, we have that Pk =
⋃

i,j∈V :i 6=j P
k
ij .

The decision version of the problem we are trying to solve is provided in Definition 2. Before that,

we need to provide the definition of a k-club.

Definition 1. A set of nodes S ⊆ V is said to form a k-club if the subgraph induced by S, G[S], has a

diameter D ≤ k.

Definition 2. Given a graph G(V,E) with a nonnegative weight w : V 7→ R assigned to every node, an

integer number k, and a real number ℓ, does there exist a k-club S ⊆ V such that f(S) ≤ ℓ?

Detecting a k-club of maximum cardinality is a well-known NP-hard problem [75, 76]. Hence, it

is expected that our problem, as described in Definition 2 will also be shown to beNP-complete, rendering

the optimization version NP-hard. This is exactly what we show in Theorem 1. Before we do that, we

define 3-SATISFIABILITY (3SAT), a famous NP-complete problem.

Definition 3 (3SAT). Given m > 2 clauses C1, C2, . . . , Cm and n literals and their complements x1, x2, . . . , xn

and x1, x2, . . . , xn, does there exist an assignment such that a formula C1 ∧ C2 ∧ . . . ∧ Cm in conjunctive

normal form is true, when every clause consists of exactly 3 literals?

Theorem 1. The decision version of our problem, as described in Definition 2, is NP-complete.

Proof. The problem can be shown to be in NP , as both verifying that a subset S forms a k-club and that

f(S) ≤ ℓ can be done in polynomial time.

Now, consider an instance of 3SAT with m clauses on n literals. We will reduce it to a version

of our problem using the following gadget/transformation. First, create two nodes for every literal and its

complement (Vℓ); we connect every node by a chain of k − 1 nodes (Vℓ×ℓ) to every other node, but its

complement (this forms edge set Eℓ). Moreover, create one node for every clause (Vc); connect each node

in Vc by a chain of M − 1 nodes (Vc×ℓ) to the literals that the corresponding clause consists of (Ec), where

M >> k. Finally, assume that all nodes in Vc have a weight of 1, while all other nodes in V \ Vc have a

weight of 0. We will show that the 3SAT instance has a feasible assignment if and only if the constructed

graph G(V,E) with V = Vℓ∪Vℓ×ℓ∪Vc∪Vc×ℓ and E = Eℓ∪Ec has a k-club S ⊆ V such that f(S) ≤ m·M .

The gadget is also shown in Figure 3.2.
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Figure 3.2. An example of the gadget used to reduce an instance of 3SAT to our problem to an instance of

our problem with k = 3. For simplicity, we only show one clause, C1 = x1 ∨ x2 ∨ x4. The other clauses

would be similarly connected to the nodes-literals of Vℓ through a chain of M − 1 nodes.
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Assume that the 3SAT instance has a feasible assignment A. Then, it is easy to see that by con-

struction, the nodes corresponding to the literals in A form a k-club (let them be S). Moreover, A satisfies

all clauses, hence there exists at least one node in S that is at a distance of M from each node in Vc. Hence,

we have that f(S) ≤ m ·M .

For the other direction of the proof, assume there exists a k-club S ⊆ V such that f(S) ≤ m ·M ;

yet there exists no feasible assignment of literals to satisfy the 3SAT instance. We distinguish between four

cases:

1. S consists of exactly one node uℓ ∈ Vℓ and nodes in Vℓ×ℓ in as many as all 2n− 1 chains connecting

them to all other literals (but its complement);

2. S consists of exactly one node uc ∈ Vc and nodes in Vc×ℓ in as many as 3 chains connecting uc to the

literals clause c contains;

3. S consists of only nodes in Vc×ℓ in exactly one chain connecting a literal-node uℓ ∈ Vℓ to a clause-

node uc ∈ Vc; and

4. S consists of several nodes in Vℓ, along with the nodes in Vℓ×ℓ in all chains necessary to connect them

within k hops.

Case 1 Let uℓ ∈ Vℓ be the literal-node in S. From the nodes in the chains connecting uℓ to the other

literals (but the node corresponding to its complement), one chain can have at most k ≤ k − 1 nodes in S

and the remaining chains can have at most k−k, where 1 ≤ k ≤ ⌈k/2⌉. Now, at best, this literal can satisfy

at most m − 1 clauses (since by assumption there exists no satisfiable assignment) whereas the literal that

satisfies the remaining clause is located within a distance of k − k from S. Hence, we have:

f(S) ≥ (m− 1) ·M +M + k = m ·M + k > m ·M. (3.2)

This contradicts the assumption that S is a k-club with f(S) ≤ m ·M .

Case 2 Let uc ∈ Vc be the clause-node in S. Since we have a 3SAT instance, uc has exactly 3 chains

around it, and contains at most k ≤ k nodes from one chain with the remaining chains having at most k− k

nodes in S. The three literal-nodes connected through the chains to clause-node uc can satisfy at most m−2
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other clauses (apart from c). Hence, at best, we have:

f(S) ≥ (m− 2) ·
(

M − k +M
)

+
(

M − k + k +M
)

≥

≥ (m− 2) · (M − k +M) + (M − k + k +M) =

= (m− 2) · 2 ·M + 2 ·M = (M >> k)

= 2 (m− 1)M. (3.3)

By assumption, though, we have that f(S) ≤ m ·M , which, combined with inequality (3.3), leads

to:

2 (m− 1)M ≤ m ·M =⇒ m ≤ 2, (3.4)

which is a contradiction.

Case 3 A similar contradiction to Case 2 is obtained when k-club S consists only of nodes in Vc×ℓ. Let

the k-club be at a distance of k from the clause-node uc and at a distance of M −k−k from the literal-node

uℓ of that chain. We then have one clause at a distance of k, at most m − 2 clauses (as, otherwise, literal ℓ

satisfies all clauses, a contradiction) at a distance of M − k − k +M , and at least 1 clause at a distance of,

at best, M − k − k + k +M , leading to:

f(S) ≥ k + (m− 2) ·
(

M − k − k +M
)

+
(

M − k − k + k +M
)

=

= (m− 2) ·
(

2 ·M − k − k
)

+ 2 ·M =

= (m− 2) · 2 ·M + 2 ·M = (M >> k)

= 2 (m− 1)M. (3.5)

This leads to the same contradiction as in Case 2.

Case 4 Finally, in the last case, the k-club S is built so as to contain a series of nodes corresponding to

literals. At best, those literals satisfy m− 1 clauses (as, again, the 3SAT instance is assumed to be without
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a solution). Hence, we have that:

f(S) ≥ (m− 1) ·M + (M + k) = m ·M + k > m ·M. (3.6)

This last contradiction finishes the proof.

3.4.1. Mathematical Formulation

In this section, we present our mathematical formulation and a greedy heuristic algorithm to solve

larger scale instances. We also present some computational results on generated and real-life instances for

smaller k-clubs (k = 2, 3).

We begin this section with the definition of our variables. We will use two sets of binary variables,

defined as follows.

xℓi =











1, if node i ∈ V is at a distance of 0 ≤ ℓ ≤ D from the k-club,

0, otherwise.

yp =











1, if path p ∈ Pk is within the k-club,

0, otherwise.

We can now proceed to describe the mathematical formulation, shown in (3.7). It is based on the

maximum k-club chain formulation presented in [76]. Newer formulations for identifying k-clubs (as in,

e.g., [77]) can also be employed, but are not explored here.
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min
∑

i∈V

D
∑

ℓ=0

ℓ · wi · x
ℓ
i (3.7a)

s.t. x0i ≤ yp, ∀i ∈ p, ∀p ∈ Pk, (3.7b)

D
∑

ℓ=0

xℓi = 1, ∀i ∈ V, (3.7c)

xℓ+1
i ≤

∑

j∈N(i)

xℓj , ∀i ∈ V, 0 ≤ ℓ ≤ D − 1, (3.7d)

x0i + x0j ≤ 1 +
∑

p∈Pk
ij

yp, ∀i, j ∈ V : i 6= j, (3.7e)

xℓi ∈ {0, 1} , ∀i ∈ V, 0 ≤ ℓ ≤ D, (3.7f)

yp ∈ {0, 1} , ∀p ∈ Pk. (3.7g)

The objective function in (3.7a) aims to minimize the total weighted distance every node outside the

k-club needs to traverse until it accesses a node in the k-club. The constraint family in (3.7b) restricts that a

path can only be within the k-club if every node that belongs to it belongs in the k-club. Constraints (3.7c)

enforce that every node in the graph is at a distance 0 ≤ d ≤ D from a node in the k-club. The following

constraints, shown in (3.7d), recursively enforce that a node can be at a distance of ℓ+1 from the k-club if it

is neighboring a node that is located at a distance of ℓ itself. The constraint family in (3.7e) restricts that two

nodes can not both belong in the k-club unless there exists at least one path connecting them within k hops

or less that is in the k-club. Finally, the binary nature of all variables involved is enforced with (3.7f)–(3.7g).

3.4.2. Greedy Heuristic

The above formulation is difficult to solve, as the underlying problem was shown to be NP-hard

(with a decision version being NP-complete per Theorem 1). Hence, along with solving the formulation

using a commercial solver, we also devise a practical heuristic. In our case, we opted for a greedy heuristic

that always chooses to increase the k-club at hand by choosing a node with a maximum weight-to-distance

ratio: that is, if a node is located near many nodes with big weights, it is more prone to being selected. This

approach is shown in Algorithm 1.
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Algorithm 1: Greedy Central k-club.

1 function Greedy Central k-club (k);
Input : A graph G(V,E), weights w : V 7→ R

Output: A k-club

2 I ← V ;

3 S ← ∅;
4 while |I| > 0 do

5 forall i ∈ I do

6 forall j ∈ V do

7 dj = min
k∈S∪{i}

djk

8 end

9 ri =
∑

j∈V

wj

2dj
;

10 end

11 i← argmax
i∈I
{ri};

12 S ← S ∪ {̂i};
13 I ← {j ∈ N(S) : dij ≤ k, ∀i ∈ S};

14 end

15 return S

The backbone of the heuristic method is the spatial interaction model known as the gravity model

(as it is similar to Newton’s law of gravity). Its basic formula is as follows:

Tij =
wi ∗ wj

2dj
, (3.8)

where wi and wj are the weight parameters (or, importance) of the origin and destination locations and dij is

(as defined earlier) the distance between the origin i and destination j. In this work, we slightly change the

interaction term in the numerator given in (3.8). Starting from some origin i, we are searching all adjacent

(nearby) locations j ∈ N(i) so as to add it to the k-club being built. Since the term wi is the same for all

considered locations j (as (i, j) ∈ E), we drop it from consideration and hence are left with a ratio of the

importance of candidate location j (given in the weight parameter wj) versus the distance.

The algorithm is initialized with all nodes in the nodeset V being in the candidate list, I, and the

starting k-club, S, is empty. Then, for every node in the candidate list, we “add” it in S and calculate

the shortest paths dj from every node j to any node inside S. Then, the ratio becomes the summation of

fractions
wj

2dj
. The node with maximum ratio is indeed added in S, and the candidate list is updated with only
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neighboring nodes that satisfy the k-club criterion. A pictorial example, and its calculations are provided in

Example 15 below.

1

2

3 4 5

6

7

Figure 3.3. An example of how our greedy approach of Algorithm 1 works.

Assume that we have the graph of Figure 3.3 with weights w1 = w2 = w6 = w7 = 5, w3 = w4 =

w5 = 10, and we are looking for a 2-club. Initially, I contains all 7 nodes and S is empty.

Starting from node 1, we see that it is located at a distance of 0 from itself, a distance of 1 from

nodes 2 and 3, a distance of 2 from node 4, a distance of 3 from node 5, and a distance of 4 from nodes 6

and 7. Hence, we have that r1 = 5/20 + 5/21 + 10/21 + 10/22 + 10/23 + 5/24 + 5/24 = 16.875. In the

example, it is easy to see that exactly the same is true for nodes 2, 6, and 7.

Similarly, for nodes 3 and 5, we have r3 = r5 = 10/20 + 10/21 + 5/21 + 5/21 + 10/22 + 5/23 +

5/23 = 23.75. Finally, for node 4, we have that r4 = 10/20+10/21+10/21+5/22+5/22+5/22+5/22 =

25. Hence, we update S to include 4 (S = {4}) and the candidate list to include all nodes in the open

neighborhood of S, such that their distance to 4 is less than or equal to k = 2. (I = {3, 5}). We are now

ready to start the second iteration.

For node 3 we now have the following distances from j to S ∪ {3}: nodes 1 and 2 are located one

hop away, nodes 3 and 4 are zero hops away, node 5 is also one hop away, and nodes 6 and 7 are two hops

away. Hence, we have that r3 = 10/20 + 10/20 + 5/21 + 5/21 + 10/21 + 5/22 + 5/22 = 32.5. The key

realization here is that the distances are no longer between the candidate node and every other node in the

graph, but instead between S including the candidate node and every other node in the graph. We also note
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that node 5 will have exactly the same ratio, by construction of the example. Let us add node 3 to S (hence,

S = {3, 4}), and I = {1, 2, 5}.

For the third iteration, we have: r1 = r2 = 5/20+5/21+10/20+10/20+10/21+5/22+5/22 = 35

and r5 = 10/20 + 10/20 + 10/20 + 5/21 + 5/21 + 5/21 + 5/21 = 40. Hence, 5 is added leading to

S = {3, 4, 5}. Now, observe that N(S) = {1, 2, 6, 7}, but adding any of those nodes leads to a distance of

3 hops within S: hence, I ← ∅, and Algorithm 1 terminates with S = {3, 4, 5}.

3.4.3. Computational Results

The developed algorithm and optimization model were implemented in Python and all numerical

experiments were conducted on a Lenovo laptop with an Intel 2.50 GHz quad-core processor and 8 GB of

RAM. To diversify the experiments and fully explore the behavior of the proposed algorithm as well as the

optimization approach, two different sets of instances were considered. The first set of instances consists

of Watts-Strogatz small-world graphs with a varying number of nodes, edges, and diameter (stylized as

G1–G6). The second group are three cities (Sioux Falls, Eastern Massachusetts/EMA, and Berlin) from a

networks repository for transportation research [78]. In Table 3.1, we present the computational times as

well as information for each network (such as the number of nodes, the number of edges, and the diameter).

Table 3.1. Computational times under heuristic and optimization approach for k = 2, 3.

2-club 3-club

Graph |V | |E| D heuristic optimization heuristic optimization

G1 16 32 3 0.12 0.15 0.80 0.27

Sioux Falls 24 38 6 0.17 0.29 0.27 0.29

G2 32 64 6 0.18 0.54 0.55 0.98

G3 64 128 6 0.65 1.95 1.11 13.24

EMA 74 129 9 0.87 2.85 1.84 8.77

G4 128 256 6 3.34 12.05 4.98 70.76

G5 256 512 7 21.67 80.77 28.69 561.62

Berlin 397 644 29 88.05 87623.10 106.61 73580.04

G6 512 1024 8 161.28 473.49 243.18 2866.31

Although the computational time expectedly grows for both the commercial solver and the heuristic

as the number of nodes increases, the growth rate is much slower for the heuristic algorithm. This is verified

by Table 3.1 for identifying highly central 2 and 3-clubs. Note that, with the exception of the Berlin graph,

the heuristic approach shows a speedup that is on average 3 and 7 times faster than the exact optimization
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model for k = 2 and k = 3, respectively. The case of the Berlin network is very important. In this

transportation network, the exact optimization fails to find a solution within reasonable computational time,

and instead spends hours trying to prove optimality. This happens because the diameter of the graph is big,

and the number of binary variables in model (3.7) becomes prohibitively large.

3.5. Case Study

In this section, we investigate two case studies from the state of North Dakota, in the cities of Fargo

and Casselton. Case studies and real-world visualization are necessary to put the problem in its related

context and understand its implications. However, due to the computational complexity of our problem,

reaching a solution within reasonable computing time is challenging. Hence, the exact optimization model

of (3.7) was only solved on the (smaller) city of Casselton, whereas in the (larger) city of Fargo we only

present the results of the heuristic (as in Algorithm 1).

3.5.1. Data Description

Casselton is a city in the state of North Dakota, with a population of 2, 329 in the 2010 census. To

the best our knowledge, there is no bike sharing program planned for deployment in the near future. Figure

3.4 illustrates the overall geography of the city and the population distribution in proportionally graduated

circles.

The network for the city of Casselton was built with TIGER/Line R© road data and block population

with ArcGIS 5.0. All roads were converted to sets of vertices and edges representing intersections and road

segments, respectively. There are |V | = 400 vertices and |E| = 523 edges in the resulting graph. The block

population polygons are turned to point features for weighing the graph vertices. According to a National

Association of City Transportation Officials (NACT) report [38], to achieve an increase in ridership as well

as in overall system utility, bike sharing kiosks should be located no more than 1, 000 feet apart from one

another. Therefore, every single vertex has the potential to become a dockless bike station within 1, 000

feet. Then, each vertex is weighted based on the closeness to the population points.

For the city of Fargo, due to its size, only the greedy heuristic of Algorithm 1 was put to the test.

The population in Fargo is 105,545. At the moment, a bike sharing system is in place, with 11 stations in

the locations shown in Figure 3.5 with a triangle. The same figure also presents the geography of the city

and the population in proportional circles. The network for the city of Fargo is obtained in the same way as

the one for Casselton. The final graph contains |V | = 2989 vertices and |E| = 4302 edges, which is indeed

large-scale for the exact optimization solver.
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Figure 3.4. The geography, transportation network, and population of Casselton, ND.

All codes for solving the problem, both for the exact optimization model and the greedy heuristic

were coded in Python. For solving the optimization model, we used Gurobi 7.5 [79]. We are now ready to

present our findings in the next section.

3.5.2. Results and Findings

We investigate three measures obtained by both the heuristic and the exact optimization:

1. number of nodes selected in the k-club (cardinality);

2. population located in the selected nodes (immediate access); and

3. distance-weighted cost from all nodes to the k-club (general accessibility).

The number of nodes in the k-club represent the desirable, potentially geo-fenced, sites where a

rider could check in/out a bike. The population measure represents the number of the residents within the

k-club: they are the ones with immediate access to a location with bicycles. Finally, the distance-weighted
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Figure 3.5. The geography, transportation network, and population of Fargo, ND. The locations of the

existing eleven bike stations in Fargo are shown with a triangle in the map.

cost describes the total distance a commuter (from any location in the network) should walk to reach some

node in the k-club to get access to a bike. Therefore, as was also shown in our optimization model, lower

distance-weighted costs are preferable.

Table 3.2 summarizes the results for k ∈ {2, . . . , 9} in Casselton. The population represents the

number of residents living in the k-club. The distance-weighted cost is the actual objective function of our

optimization model. Finally, time shows the computational time required to solve the problem.

Starting from the population, in the case of exactly optimizing the formulation, it is consistently

smaller than the population covered by the heuristic approach. On the other hand, distance-weighted cost

represents the distance that the residents living outside the k-club must travel to access to designated geo-
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Table 3.2. Numerical results for Casselton.

Cardinality Population Distance-weighted cost Time (seconds)

k Alg. 1 Opt. Alg. 1 Opt. Alg. 1 Opt. Alg. 1 Opt.

2 5 5 187.31 20.04 27483.24 18387.73 11.42 705.22

3 7 6 226.48 23.02 27392.87 17403.04 12.09 929.13

4 10 12 214.33 61.04 23414.88 16116.41 15.88 1214.09

5 9 13 234.28 64.64 25384.43 15134.70 16.36 6267.38

6 14 23 282.25 128.90 23327.35 13886.10 18.42 10478.39

7 18 25 293.57 134.33 19752.91 12907.99 18.69 35906.98

8 21 38 310.87 222.63 18156.45 11723.64 19.84 59136.11

9 16 42 297.33 266.99 18638.10 11679.81 20.98 104211.74

fenced areas. The optimization model expectedly offers better results than the heuristic for all k-clubs

obtained. Finally, when looking at the computational time, it becomes clear that even in a small city like

Casselton, the exact optimization approach is prohibitively expensive, with k = 7 taking a little less than

10 hours, and k = 9 requiring more than 24 hours of computation before it terminates upon reporting a

suboptimal solution and an optimality gap of 56.8%. The heuristic though is significantly and consistently

faster, with a small uptick in computational time linear with the value of k as it increases.

Figures 3.6 and 3.7 present the solutions within the city, and show the sets of nodes selected. Both

the heuristic and the optimization approaches suggest groups of vertices located nearby – seeing as the

resulting set of nodes forms a k-club. However, the heuristic approach starts with the most populated points

in the city, and expands the set of nodes around that same point as the diameter of the set (k) increases. On

the other hand, the optimization model is more dynamic, as it tries to minimize the overall distance-weighted

cost.

We note that the heuristic is also inconsistent, as there are cases (see, e.g., k = 4 vs. k = 5) where

a solution worsens as far as the distance-weighted cost is concerned as k increases. This happens because

the heuristic of Algorithm 1 myopically chooses the “best” candidate node to add so long as it respects the

k-club diameter requirement. Because of this, the population immediately covered is bigger in the solution

from the heuristic as opposed to the optimization model. We note though that this is not necessarily good,

as it might result in locations where a high number of residents have immediate access to dockless bike

sharing, but other residents have to travel very far to access it.

In the case of Fargo, as shown in Figure 3.8, we only applied the heuristic algorithm to validate

our model, as optimizing for the values of k that would be meaningful resulted in running out of memory.
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Figure 3.6. The k-clubs obtained from the heuristic for the city of Casselton. The results are for k = 2, . . . , 9
starting from the top left (for k = 2) and ending in the bottom right (for k = 9).
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Figure 3.7. The k-clubs obtained from optimizing the model for the city of Casselton. The results are for

k = 2, . . . , 9 starting from the top left (for k = 2) and ending in the bottom right (for k = 9).
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Figure 3.8. The k-clubs obtained from the heuristic for the city of Fargo. The results are for k = 10, 11, 12,
and 20 in the top left, top right, bottom left, and bottom right, respectively.
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Figure 3.8 illustrates the k-club heuristic solutions for Fargo, for k ∈ {10, 11, 12, 20}. The potential sites

were located in a highly populated area next to the university campus. The existing 11 bike stations already

in operation in Fargo are only blocks away from the suggested the 10-club. Table 3.3 summarizes the

numerical results. It is intuitive that due to the fact Fargo has a larger overall population per block, the

corresponding numbers in the table are much larger than the ones for Casselton.

Table 3.3. Numerical results from the heuristic model for Fargo.

k Cardinality Population Distance-weighted cost

10 19 3695.08 1913079.15

11 21 3984.72 1807995.05

12 27 4808.93 1798887.10

20 71 9966.84 1513123.94

3.5.3. Cost Benefit Analysis

Equipment, installation, and maintenance are three significant costs involved in implementing a bike

sharing program. The main drawback to physical bike station systems (known as kiosk system) is their high

acquisition and operating costs. Stations are costly including tens of thousands of dollars to manufacture and

install along with several thousand dollars to acquire customized bikes. Moreover, kiosk systems mandate

constant bike rebalancing. This happens because every bike needs to be returned to a kiosk: if the kiosk

is full, the riders must find another location with available spots, resulting in higher operational cost and a

decrease in customer satisfaction.

The cost of each bike is estimated at $1,234 [80]. Assuming a cost of $1,000 on average for each

bike, the cost for a typical kiosk with 11 docks will range from $29,000 to $34,000, excluding operating

costs. Figure 3.9 shows the relationship between the cost and number of docks. These figures are even

higher at the planning stage ($55,000 per station) [81]. The optimal number of docks is another critical

factor in a bike sharing program. Increasing the number of docks leads to higher costs, and a pile up of bikes

in one location, which consequently results in higher re-balancing cost. At the same time, it leads to higher

customer satisfaction. The dockless option would at least avoid initial capital investment and pave the way

to introduce bike sharing programs to cities, without sacrificing customer satisfaction with the program.
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Figure 3.9. Equipment and installation cost vs. number of stations.

3.6. Conclusions and Implications

In this work, we discussed a new paradigm for selecting where a dockless (geo-fenced) bike sharing

system should be enabled within an urban area. This paradigm tries to solve the disadvantage of kiosk-based

bike sharing programs such as high equipment costs and costs associated with customer dissatisfaction due

to lack of bikes/docks at the desired location. Also, the proposed model offers a better solution to existing

dockless problems.

We modeled our problem as one of detecting a connected set of nodes of restricted diameter (that

is, where any two nodes are reachable within k hops using nodes inside the set), or a k-club. The goal was

to find a k-club of maximum closeness, so as to make sure that all other nodes in the transportation network

are close enough to the bike sharing locations. We showed that, as expected, the problem is NP-hard,

and provided an integer programming formulation to solve it. We also propose a greedy heuristic, which

is computationally inexpensive. As k increases for the obtained k-club, we should expect the coordination

costs to increase along side as greater values of k will imply larger geo-fenced areas. From a practical

perspective, BSS operators would have to trade off the size of the geo-fenced area (the larger, the more easily

accessible and more convenient to users) to the rebalancing costs (the smaller, the more easily coordinated

and cheaper for BSS operators).
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We also used our methods to study the resulting setup in two cities of the state of North Dakota,

Casselton (of smaller population) and Fargo (of bigger population). The potential cost savings in the dock-

less approach could decrease initial capital investments for introducing a bike sharing program in a city. It

also leads to an increase in the number of the virtual docks (capacity) without blocking streets or pedestrian

walkways. One might say that dockless bike sharing brings chaos to cities, due to the freedom of allowing

bike check in/out anywhere in a geo-fenced area. That is why our approach could mitigate the described

situation and leverage this dockless alternative, by only enabling some areas with this capability. The model

at the moment is built based on the population as the only location weight.

Future directions for our work include the following. First, we could investigate the identification

of multiple k-clubs of varying sizes within a city. This would allow BSS operators to have multiple smaller

geo-fenced areas or fewer larger geo-fenced areas to cover all bike sharing demands. As a second direction,

we should consider more ways to build the weight parameter in our framework. For example, we plan

to investigate how k-club formation and how the geo-fenced areas change as we consider city points of

interest, distance to nearby transit points, and origin-destination demands throughout the day, among others.

Next, another future avenue for our research would be to investigate more closely the interactions between

different operators (e.g., dockless bike sharing and scooter sharing, or dockless bike sharing and public

transit) with respect to different geo-fenced areas.
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4. RISK PERCEPTION OF BICYCLE/SCOOTER RIDERS RISKY

BEHAVIORS

4.1. Abstract

Bicycle and scooter use entails high safety and health risks. News stories have described the reck-

less behavior of users across the United States with the emergence of micromobility options. This paper

investigates risky behaviors associated with bicycle and scooter riding adults residing in the United States.

Two separate surveys were administered through the Qualtrics R© platform. Participants were asked to rate

the severity and frequency of 20 risky behaviors of riders on five Likert scales. The risk matrix is built based

on the magnitude and frequency of each risk and ordered logistic regression is applied to identify significant

factors. Regression analysis revealed that age and income are significant factors shared between both survey

groups. Level of education and living in urban areas are two statistically significant factors explaining the

different risky behaviors with bicycles or scooters. In general, the survey results show that participants per-

ceive that there is a low risk associated with reckless behaviors. It may imply that they are exposed to fewer

incidents, or the media exaggerates the news about the incidents. Further research on other aspects of risk,

such as network geometry and safety education, would help better understand the underlying factors. The

findings offer insight for developing new enforcement policies and safety education programs to enhance

scooter/bicycle sharing programs and provide a safe environment for all road users. The authors sincerely

acknowledge the funding provided by the Small Urban, Rural Tribal Center On Mobility which receives

funds from the U.S. Department of Transportation’s University Transportation Centers (UTC) Program.

4.2. Introduction

Shared micromobility options such as bike and scooter sharing are increasingly becoming an ac-

cessible mode of transportation in many cities and towns across the United States [82, 80, 83] . More than

207 million trips have been made on shared bikes and e-scooters since 2010. Riders took 84 million trips

in 2018, more than double the number from the previous year, mostly because of the emergence of electric

scooters [84].

City officials have a great interest in promoting sustainable shared micromobility modes for health

and environmental reasons [85]. However, the behavior of riders is a recurring theme in the public debate
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surrounding the growth of this mode of shared micromobility. In many of these discussions, the majority

of riders are characterized as displaying lawless attitudes, which are the root of individual and public safety

concerns associated with riding those vehicles. Many of these safety issues are related to unsafe riding

behaviors, including, but not limited to, operating under the influence of alcohol, maneuvering recklessly,

overloading with multiple riders, speeding, etc. The danger of risky riding to pedestrians and other road

users is amplified in urban areas (with high population densities) and nighttime [86, 87].

There were 783 cyclist deaths in 2017 in the United States, which accounted for 2.1 percent of all

traffic fatalities during the year. Seventy-five percent of pedal-cyclists who died in motor vehicle crashes

in 2017 were killed in accidents in urban areas [88]. The difference in data collection makes it challenging

to compare statistics among different types of vehicles. For bike sharing, the average collision rate was

4.33 crashes per year among operators with more than 1,000 vehicles and fewer for operators with smaller

fleets [89]. There is no reliable and consistent data available for electric scooters. For example, a pilot

study attempted to measure the safety impacts of scooter sharing by reviewing reported scooter incidents in

Multnomah County, Portland. On average, emergency room visits increased from less than one per week

before the pilot to approximately ten per week during the pilot period. However, exact numbers are difficult

to quantify because of missing data related to other types of scooters, such as mopeds and non-motorized

standing scooters. Of the entire sample of scooter-related emergency visits, 83 percent did not involve

another mode compared to 13.6 percent involving a motor vehicle and 2.8 percent involving a pedestrian.

Only one collision (0.6%) was reported involving two scooters. These statistics are difficult to be validated

because the trips were diverted from other modes such as automobiles, buses, or rail and increased the risk

of the individual riders [90]. Heesch et al. (2011) analyzed cycling accidents and found that regular cyclists

were involved in a relatively high number of traffic crashes in Queensland, Australia [91]. While most of

the accidents were not serious, the number of crashes was more elevated in Australia than in European and

Asian nations. In Australia, approximately one in 40 road crash deaths were cyclists [92]. Because cyclists

comprised only 2% of national fatalities and injuries while making less than 1% of all trips, the perception

that cycling is dangerous is not unfounded [88].

Safety involving bike and scooter riders and other road users has been a prevalent topic in research

and media reports in most countries. Some research described the conflict between motorists and cyclists

as “road wars” [93, 94, 95]. Salmon et al. suggested that such conflict is a long-standing problem, and

cyclists are 12 times more at risk of death than car drivers [96]. MacMillan et al. researched the media’s
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reporting of cyclist fatalities in London, suggesting media coverage and the way they portray various aspects

of road behaviors was a relatively vital method of preventing reckless behaviors or promoting appropriate

ones. The number of fatalities covered by The Evening Standard, one of London’s major newspapers, has

increased tenfold while the number of trips has only doubled [97]. Some research suggested that the fear

of cars and possible accidents are barriers to cycling [97, 47, 98]. The number of negative representations

of cyclists is almost double the positive ones: the former includes words like “irresponsible lawbreakers,”

“pariahs,” and “dangerous to others” and the latter “brave,” “harmless,” and “healthy” [99]. In similar

research, Bogdanowicz recognized the negative language toward cycling by media, which characterized it

as a transport mode for “eccentrics” or “tree huggers” [100]. Skinner and Rosen noted that the negative

language and hostile attitude toward cyclists are much more noticeable where cycling is rare [101].

The majority of existing studies have been conducted to help engineers and city planners design and

improve roads and intersections. Researchers asked cyclists to rate their general risk perception of a route

through a set of videos, surveys, test courses, and simulations. Each examined several network geometry and

operation-specific factors related to the safety perceptions of cyclists [102, 103, 104, 105, 106, 107, 108].

There has been no systematic study on the interactions between cyclists and other road users, particularly

in the United States. This implies the need for a more comprehensive understanding of what happens when

drivers and bicyclists interact.

Another group of studies investigated the reasons behind risky behaviors and addressed possible

determinants among different people. Reyna and Farley [109] tried to answer why adolescents may seek out

risky situations. They found that adolescents, despite conventional wisdom, generally overestimate risks.

Indeed, after the age of 14, there might be no difference between teens and adults concerning the perception

of risk [110]. Feenstra et al. [111] conducted a survey-based study to investigate the risky cycling behaviors

of adolescents from 13 to 18 years old before developing safety education programs. They found that

adolescents are capable of identifying themselves as risk-takers or not. They suggested shifting the focus

of education programs from risk perception to decreasing risky attitudes in traffic and promoting a sense

of responsibility. Shope and Bingham [112] provided a list of possible determinants to explain why young

drivers engage in more risky behavior than adult drivers such as characteristics of the behavior, abilities,

developmental factors, behavioral factors, among others.

Despite studies investigating the safety aspects of shared mobility schemes, there is little under-

standing of the perceived risk of reckless behavior from other road users’ perspectives. For example, re-
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searchers and practitioners have little empirical knowledge about how certain aspects of risk rank compared

to others, nor do they know much about road users’ fear of different types of reckless bike/scooter use. To

address this gap, this study explores multiple aspects of perceived risk associated with reckless behaviors

of bike and scooter riders. This paper aims to investigate the overall risk perception of the risky behaviors

related to bicycle and scooter riders from a general perspective, including perceptions of users and no-users.

We are also interested in examining the difference in the level of the risks associated with those using bicy-

cles versus scooters. We can summarize our contributions in the following three areas:

• first, we address risky behaviors related to two popular sustainable modes of transportation in the

United States: scooter and bicycle;

• second, we develop a risk matrix to provide better insight into the magnitude and frequency of each

risk. We use the ordered logistic regression to analyze the demographics and general cycling behaviors

and ascertain if there are any significant underlying determinants; and

• finally, we focus on the risk perceived by the general audience (users and non-users) to determine the

overall perception. We also provide feedback received from open-ended comments about real risks in

individual experiences during interactions with scooters or bicycles.

The next two sections of this paper depict the methods, the data, and the findings, respectively,

followed by the ordered logistics regression analysis section. Discussion of the variables in the statistical

models and the limitations of this study are provided. Finally, the conclusion is provided.

4.3. Methodology

In short, this study is composed of three parts. First, we explain the survey that was conducted in

March 2019 to capture the risk perception of risky behaviors of riders. Then we build the risk matrix from

the survey results for further analysis. Finally, we do a statistical analysis of the risk to identify significant

factors associated with each level of risk.

4.3.1. Survey

We designed two separate cross-sectional online self-completed surveys for each vehicle type (bikes

and scooters) to identify and assess reckless and risky behaviors of bike and scooter riders. Each survey has

three sections:

1. socio-demographics;
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2. risky behavior characterization; and

3. general riding behavior.

For risk analysis, the severity and frequency of each factor are asked using a Likert scale. Study respondents

were first asked to complete a screening question to determine eligibility: respondents had to be 18 years

old and U.S. residents). Eligible respondents then were asked to provide informed consent to complete the

survey. Those who provided the informed consent then completed a 15-question survey about the signifi-

cance and frequency of various types of risky behaviors associated with riders, overall cycling behaviors,

and demographics. Participants who did not consent were not allowed to continue to the second part. The

North Dakota State University Institutional Review Board (IRB) approved the questionnaires.

4.3.1.1. Sample Size and Recruitment

Respondents were recruited from March 1, 2019, to March 15, 2019, by Qualtrics R© panel that con-

sisted of the following criteria: residents of the United States in different geographic areas (rural, suburban,

and urban areas) and ages 18+. The inclusion/exclusion criteria were the same for both surveys. We used

the Qualtrics R© platform for participant recruitment because Qualtrics R© panel is demographically and politi-

cally representative [113]. Qualtrics R© checks every IP address and uses a sophisticated digital fingerprinting

technology to exclude duplication and ensure validity. Participants completed the survey from their own de-

vices. Upon survey completion, a unique code was used to redeem an incentive. Qualtrics R© was paid at a

rate of $6 per subject, but the actual payment amount from Qualtrics R© to respondents is unknown to us. As

is typical in web-based survey research, we employed multiple attention checks and quality screens in our

surveys. Attention checks confirmed that web-based survey respondents were reading questions carefully

and thoroughly. The Qualtrics R© panel suggested using the median time to complete the survey as the cut-off

point to determine whether respondents rushed through the survey, so we applied this criterion to the survey

as a part of the quality screening.

According to 2010 United States Census, the United States has a population of 308,745,538, of

which 76% (234,646,609) are age 18 years and older [114]. For very large population size, we can use the

following formula to calculate the sample size for the surveys.

Sample Size =
Z-score2 × StdDev× (1− StdDev)

Margin of Error2
(4.1)
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Considering a 90% confidence level, a 5% margin of error, and a 0.5 standard of deviation, the

expected sample size is 270.

4.3.2. Risk Matrix

We used a risk assessment matrix to conduct a subjective risk assessment in our model. The basis

for the risk matrix is the definition of risk as a combination of the severity of the consequences occurring

in a particular accident scenario and its frequency. To build the risk matrix, we first categorize and scale

the severity and frequency as well as the output risk index. The categorization of the severity and frequency

depends on the type of activity or the specifics of the processes involved. We categorized the frequency

and the severity into five groups. This provided the basis for constructing the plane matrix with 25 cells,

each representing a specific risk category. The relationships between all inputs and outputs for a standard

risk matrix are suggested by the U.S. National Institute of Standards and Technology, as shown in Table 4.1

[115].

Table 4.1. Assessment scale.

Likelihood Level of Severity (Impact)

Very Low Low Moderate High Very High

Very High Very Low Low Moderate High Very High

High Very Low Low Moderate High Very High

Moderate Very Low Low Moderate Moderate High

Low Very Low Low Low Low Moderate

Very Low Very Low Very Low Very Low Low Low

The application of the risk matrix is simple. After assessing the severity and frequency categories,

the risk category as one out of five groups (very low, low, moderate, high, very high) is specified using

the risk matrix. This is the basis for further risk control measures in the next section. We are interested

in identifying any relationship between the level of risk (as represented in the risk matrix) of each risky

behavior listed in Table 4.2 and explanatory variables such as sex, age, income, among others listed in Table

4.3.

4.3.3. Perceived Risk Model

Because the level of the risk, as dependent variable, is ordinal (more than two categories and the

value of each group have a meaningful sequential order), we use the ordered logistic regression method, also

known as the proportional odds model, to investigate the determinants that influence ordinary road users’
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risk perceptions of the various risky behaviors in the United States, as listed in Table 4.2. Initially, eight

explanatory variables were included as categorical variables in the perceived risk model, as described in

Table 4.3.

Table 4.2. Dependent variables.

Dependent Variables Description

Y1 Ignoring traffic signals

Y2 Riding a scooter/bicycle while under the in-

fluence

Y3 Riding at night without lights on

Y4 Distracted riding, including, but not limited

to, talking or texting on phones, eating or

drinking, or other distracting activities

Y5 Ignoring stop signs

Y6 Not yielding to pedestrians

Y7 Speeding

Y8 Swerving (riding in a zigzag)

Y9 Riding on sidewalks

Y10 Riding against traffic on the roadway

Y11 Riding the wrong way on a one-way street

Y12 Stoppie – braking too quickly resulting in a

skid or the rear tire lifting up

Y13 Wheelie – riding a scooter/bicycle with the

front wheel raised off the ground

Y14 Jumping off a curb

Y15 Passing too closely on either side of vehicles

on the road

Y16 Tailgating - riding too closely behind another

vehicle

Y17 Riding without helmets

Y18 Riding with under-inflated tires

Y19 Yelling, or making angry gestures at mo-

torists, cyclists, scooter riders, or pedestrians

Y20 Riding with a passenger
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Table 4.3. Independent variables.

Independent

Categorical

Variables

Description Levels (reference case marked with

asterisk)

X1 Age *18-24, 25-34, 35-44, 45-54, 55-64,

65-74, 75 or older

X2 Sex *Female, Male

X3 Marital Status *Divorced, Married, Separated, Single,

Widowed

X4 Education *Associate degree, Bachelor’s degree,

Graduate degree, High school diploma

or equivalent, Less than a high school

diploma, Some college, No degree

X5 Employment *Disabled, Employed full-time (40+

hours a week), Employed part-time

(less than 40 hours a week), Retired,

Self-employed, Unemployed (cur-

rently looking for work), Unemployed

(not currently looking for work)

x6 Income *below $10k, $10k-$25k, $25k-$50k,

$50k-$75k, $75k-$100k, $100k-

$125k, $125k-$150k

X7 Race *Asian American, Black or African-

American, Middle eastern American

(middle east, north Africa and the Arab

world), Native American or Alaska

native, Native Hawaiian or other pa-

cific islander, Some other race, White

American

X8 Region *Rural, Suburban, Urban

4.4. Results and Findings

4.4.1. Descriptive Analysis

Considering the initial estimate of 270, after 15 days of recruiting, 749 responses were collected,

of which 659 (329 of scooters (S) and 330 of bicycles (B)) are valid responses and eligible for use in

the analysis. A quantitative design allowed for information collected from a large number and enabled a

comparison between groups, behaviors, and outcomes. Also, some qualitative analysis was possible as a

result of one open-ended comment box within the questionnaire.
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4.4.2. Data Description

The percentage of white respondents (72% S and 85% B) is approximately representative of the

U.S. population (72% white). Black (15% S and 9% B) and Asian (4% S and 3% B) are the next two major

groups of respondents. The respondents were more than twice as likely to hold a high school diploma,

followed by some college.

Responses came from all over the United States with minimal to no responses from a couple of

states, as seen in Figure 4.1, including Hawaii and Alaska (not pictured). Using Census regional designa-

tions, there were 145 responses from suburban areas (44%), 115 responses from urban areas (35%), and

69 responses from rural areas (21%) areas for scooter survey. The bicycle survey generated 180, 79, and

71 responses from suburban, urban, and rural areas, respectively. Most respondents were in full-time em-

ployment (38% S, and 25% B). Interestingly, from the bicycle survey, the second major group with 25% of

respondents is retired, while 15% of respondents in the scooter survey have a part-time job.

Figure 4.1. Distribution of respondents by vehicle type.

Most respondents indicated they were married (47% S, 50% B). A total of 37% in the scooter survey

and 30% in the bicycle survey indicated they were single. Most respondents earn $25k-$50k (over 23% in

each survey) annually in both surveys. Respondents in the second major group in the scooter survey make

$10k-$25k while in the bicycle survey, most respondents make $50k-$75k annually.

Dill and McNeil adopted a topology developed by the City of Portland to describe the cycling

behaviors of adults. It includes four categories: “Strong and the Fearless,” “Enthused and Confident,”
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Table 4.4. Riders type by region.

Region Category Scooter Bicycle

No Way, No How: unwilling to

ride even if high-quality

(bicycle/scooter) infrastructure

is available

Rural 22 28

Suburban 32 51

Urban 32 22

Total 86 101

Interested but Concerned:

willing to ride if high-quality

(bicycle/scooter) infrastructure

is available

Rural 32 29

Suburban 68 87

Urban 42 32

Total 142 148

Enthusiastic and Confident:

willing to ride if some

(bicycle/scooter) -specific

infrastructure is available

Rural 10 8

Suburban 29 33

Urban 31 20

Total 70 61

Strong and Fearless: willing to

use scooters with limited or no

(bicycle/scooter) -specific

infrastructure

Rural 5 6

Suburban 16 9

Urban 10 5

Total 31 20

“Interested but Concerned,” and “No Way No How” [116]. We also adopted the same approach but asked

participants to describe their riding skills, as indicated in Table 4.4.

As described in Table 4.4. in all three distinct geographic areas, there is a general trend: most

respondents (more than 43%) characterize themselves as “interested but concerned,” while the “strong and

fearless” is the least selected option. This may mainly be because of the recent deployment of bike/scooter

sharing programs across the United States. The weather might be another factor that needs to be included

in future research. Interestingly, under the “strong and fearless” category, there were almost twice as many

respondents who considered themselves as “strong and fearless” in riding scooters as there were for bicycles.

This may be because of the greater ease of getting off a scooter versus a bicycle if there is an impending

crash because scooters are usually lighter and more manageable than a bicycle. Surprisingly, the number of

people who are not willing to ride a bicycle, even with high-quality infrastructure, is more than one-fourth

of respondents in both cases (scooter and bicycle).

An analysis of respondents’ bicycle and scooter riding frequency (includes both their own bikes/scooters

and sharing systems) is illustrated in Figure 4.2, which shows that 36% of respondents never rode a scooter

before, while only 3% never rode a bicycle. This might be because scooters are unavailable in some regions.

Except for the categories “Never” and “More than five years ago,” the riding profiles of respondents in both

surveys follow the same pattern.
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Figure 4.2. Bicycle/scooter riding profile.

Based on miles traveled, people rode slightly longer distances with scooters than with bicycles.

Other than that, scooter and bicycle survey responses follow the same pattern, as presented in Tables 4.5 and

4.6. These numbers also imply that most people prefer using scooters or bicycles for short trips between 1

and 7 miles. Further data analysis was conducted to understand how far riders travel by either scooters or

bicycles. On average, the most trips made by either scooters or bicycles take 16 – 30 minutes. For travel

times less than 5 minutes, the percentage of people using scooters is almost 5% higher than those who rode

bicycles. The flexibility offered by dockless scooters might lead to improved accessibility and shorter trip

times.

On average, many respondents perceive lower risk across all risky behaviors listed in the survey.

However, the distribution of responses of “low” risk is not the same across the two surveys (scooter vs.

bicycle), as illustrated in Figures 4.3 and 4.4. Riding a bike with under-inflated tires and riding a scooter

without a helmet are perceived as the highest risk activities than any other type of behavior. Surprisingly,

“riding at night without lights on” and “distracted riding” are perceived as lower levels of risk in bicycle and

scooter surveys, respectively. “Y12,” “Y13,” “Y14,” “Y19,” and “Y20” are ranked as the top least-risky
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Figure 4.3. Distribution of responses by risky behaviors (bicycle).

Figure 4.4. Distribution of responses by risky behaviors (scooter).
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Table 4.5. Traveled time/distance per trip (Bicycle).

Time (minutes)

0-5 6-15 16-30 31-50 51-75 75 N/A Total
D

is
ta

n
ce

(m
il

es
) 1 1.9% 7.7% 3.4% 2.4% 0.5% 0.0% 1.9% 17.8%

1-3 0.5% 6.3% 17.3% 10.1% 1.9% 0.5% 0.0% 36.5%

4-7 0.0% 1.9% 9.1% 8.7% 4.3% 1.4% 0.0% 25.5%

8-12 0.5% 0.0% 0.5% 4.3% 3.4% 0.5% 0.5% 9.6%

13 0.0% 0.0% 1% 2.4% 1.4% 1.9% 0.0% 6.7%

N/A 1.0% 0.5% 1.0% 0.0% 1.0% 0.5% 0.0% 3.8%

Total 3.8% 16.3% 32.2% 27.9% 12.5% 4.8% 2.4% 100.0%

Table 4.6. Traveled time/distance per trip (Scooter).

Time (minutes)

0-5 6-15 16-30 31-50 51-75 75 N/A Total

D
is

ta
n

ce
(m

il
es

) 1 5.9% 5.9% 3.2% 0.5% 0.5% 0.5% 0.0% 16.8%

1-3 2.2% 8.6% 13.5% 4.3% 1.6% 0.5% 0.5% 31.4%

4-7 0.0% 4.9% 10.3% 11.9% 3.2% 0.5% 0.5% 31.4%

8-12 0.5% 0.5% 2.7% 2.7% 2.2% 1.6% 0.0% 10.3%

13 0.0% 0.5% 1.6% 0.5% 1.6% 2.7% 0.5% 7.6%

N/A 0.5% 0.5% 0.5% 0.0% 1.1% 0.0% 0.0% 2.7%

Total 9.2% 21.1% 31.9% 20.0% 10.3% 5.9% 1.6% 100.0%

behaviors by the respondents in the two surveys. This might imply that these behaviors are least physically

possible to occur in the daily commute, which leads to a lower risk level.

Because the interpretation of coefficients in an ordinal logistic regression is hard to generalize, we

only focused on finding statistically significant variables as described in Tables 4.7, 4.8, 4.9, and 4.10.

Income and age are the top two statistically significant variables (a significance level of 0.05) for at least ten

risky behaviors (dependent variables) in both surveys. Considering the age factor, the eight risky behaviors

common between the two types of vehicles included Y1, Y5, Y6, Y9, Y10, Y11, Y15, Y16. Interestingly,

age is not a significant factor for explaining risky actions, including “Distracted riding,” Wheelie, “Riding

without helmets,” “Yelling,” and “Riding with a passenger.” From an income perspective, Y1, Y2, Y3, Y5,

Y6, Y7, Y8, and Y19 are the common significant factors for both surveys.

Considering other independent variables, being married is related to “speeding” in both surveys.

Further research needs to be done to identify cognitive and emotional factors that influence risk-taking

among people with different marital statuses. People living in urban areas have different risk perceptions

associated with vehicle types. While “Speeding” with scooters is the only risky behavior explained by the
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“urban” factor, it is a critical factor for reckless cycling behaviors such as distracted cycling, ignoring stop

signs, ignoring traffic signals, and others. The region is the least significant value across all 20 dependent

variables, implying that how people perceive risk is not dependent on location.

4.5. Conclusions and Implications

The emergence of shared micromobility systems like bike- and scooter sharing systems attract many

commuters to use these vehicles, but they are also an inconvenience to many residents because of their

reckless use. Some riders show reckless behaviors, causing a backlash against these modes of transportation.

Hence, the objective of this article was to evaluate how people perceive risk associated with a set of reckless

behaviors of scooter/bicycle riders. The motivation to conduct this research was the increasing number of

news articles about incidents related to bikes and scooters across the United States.

The results show that using scooters as a means of transportation (36 % never rode a scooter before)

is at the early stage of development in the U.S. Considering the percentage of enthusiastic and interested,

there is much more room available for scooter sharing program to be expanded. Also, the percentage of

people not sure about their scooters/bicycles riding skills draw the attention to more education program

in this respect. The short travel time either by scooter or bicycle (16-30 minutes) requires enforcement

approach should be agile and could track an individual riding behavior while using the vehicle.

In this study, eight determinants such as age, sex, income, and others were identified to explain

20 risky behaviors. In general, in both surveys, participant risk perception of each identified behavior is

relatively low. This may be because the frequency of the incidents is low in the region where participants

are located and are not observed by many residents. From the perceived risk model, age and income play a

critical role in explaining most of the risky behaviors in both surveys. Education levels differ between the

two surveys and in explaining the risky behaviors. Having a high school diploma or less made in the scooter

survey scooters and having a bachelor’s degree in the bicycle survey are dominant factors to determine the

risky behaviors. One reason might be the availability of bike sharing programs on university campuses.

However, this might change in the future as scooter sharing companies have been expanding across the

United States during the past two years.

From the open-ended question, certain behaviors are not addressed in the surveys. Riding with no

hands, holding onto vehicles, riding abreast instead of a single file are the respondents’ major concerns.

Also, respondents have observed many risky behaviors from kids, which is not the scope of this study. Not

wearing a helmet is another concern that is already on the list but frequently repeated in this section. The
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Table 4.7. Significant factors by response variables (Y1-Y10) from bicycle survey (95% significance level).

Predictor Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Age

25-34

35-44

45-54 *

55-64 * * * * * *

65-74

75 or older * * *

Gender

Male

Marital Status

Married * *

Separated

Single *

Widowed

Education

Bachelor degree * * * * *

Graduate degree

High school diploma or equivalent

Less than a high school diploma

Some college, no degree

Employment Status

Employed full-time

Employed part-time

Retired * *

Self-employed

Unemployed (currently looking for work)

Unemployed (not currently looking for work) *

Income

$10k - $25k * * * *

$25k - $50k * * *

$50k - $75k * * * * * * *

$75k - $100k *

$100k - $125k * *

$125k - $150k

Over $150k *

Race

Black or African-American

Middle Eastern American

Native American or Alaska Native * * *

Native Hawaiian or other Pacific islander

White American * * *

Other race * * * *

Region

Suburban

Urban * *
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Table 4.8. Significant factors by response variables (Y11-Y20) from bicycle survey (95% significance level).

Predictor Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20

Age

25-34

35-44

45-54

55-64 * * * *

65-74

75 or older * *

Gender

Male

Marital Status

Married

Separated

Widowed

Education

Bachelor degree * * *

Graduate degree

High school diploma or equivalent

Less than a high school diploma

Some college, no degree

Employment Status

Employed full-time

Employed part-time *

Retired

Self-employed

Unemployed (currently looking for work)

Unemployed (not currently looking for work) * * *

Income

$10k - $25k *

$25k - $50k *

$50k - $75k * *

$75k - $100k *

$100k - $125k * *

$125k - $150k

Over $150k

Race

Black or African-American

Middle Eastern American

Native American or Alaska Native * *

Native Hawaiian or other Pacific islander

White American * *

Other race * *

Region

Suburban

Urban
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Table 4.9. Significant factors by response variables (Y1-Y10) from scooter survey (95% significance level).

Predictor Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Age

25-34 *

35-44 * * * * * *

45-54 * * * *

55-64

65-74 * * *

75 or older

Gender

Male * *

Marital Status

Married *

Separated * * *

Single

Widowed

Education

Bachelor degree

Graduate degree

High school diploma or equivalent

Less than a high school diploma

Some college, no degree

Employment Status

Employed full-time * * *

Employed part-time

Retired

Self-employed *

Unemployed (currently looking for work) *

Unemployed (not currently looking for work)

Income

$10k - $25k * * * * * * * * * *

$25k - $50k * * *

$50k - $75k * * * * * * * * *

$75k - $100k

$100k - $125k

$125k - $150k * *

Over $150k

Race

Black or African-American *

Middle Eastern American

Native American or Alaska Native

Native Hawaiian or other Pacific islander

White American *

Other race *

Region

Suburban

Urban *
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Table 4.10. Significant factors by response variables (Y11-Y20) from scooter survey (95% significance

level).

Predictor Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20

Age

25-34 *

35-44 * * * * *

45-54 * * * *

55-64 *

65-74

75 or older

Gender

Male * * *

Marital Status

Married

Separated * * * * *

Single * *

Widowed

Education

Bachelor degree

Graduate degree

High school diploma or equivalent

Less than a high school diploma

Some college, no degree

Employment Status

Employed full-time

Employed part-time

Retired *

Self-employed

Unemployed (currently looking for work)

Unemployed (not currently looking for work)

Income

$10k - $25k * * * * * *

$25k - $50k * * *

$50k - $75k * * * *

$75k - $100k

$100k - $125k

$125k - $150k * *

Over $150k

Race

Black or African-American * *

Middle Eastern American

Native American or Alaska Native

Native Hawaiian or other Pacific islander

White American * *

Other race

Region

Suburban

Urban
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feedback could help future research to have a comprehensive survey questionnaire or focus on a specific

issue.

4.5.1. Limits of the Study

Though the sample size is small, the findings suggest that there are great opportunities to understand

the perceived risk of road users towards scooter and bike riders. Bigger sample size and city-level survey

would definitely help narrow down potential factors. The other avenue could be a longitudinal survey before,

and after micromobility services are available in a region. Second, since we wanted to make the survey

feasible, the number of risky behaviors listed in the surveys is limited. At the beginning of this study, little

was known about the specific risky behaviors, so we tried to cover as many as possible. From the results

of the open-ended question, more risky behaviors could be covered in future research. Third, this study did

not systematically explore riding behaviors of an individual from current behavior models, extra question

on general riding behaviors might elaborate more detail about an individual experience on use of bicycle or

scooter as well as their interactions with different aspects of transportation system like network geometry,

rights of way, public safety among others.

4.5.2. Practical Applications

4.5.2.1. Contribution to Research

First, we extend the literature on risk perception by doing two separate surveys to understand the

magnitude and frequency of risk from road users’ perspective. We also developed the risk matrix and risk

perception model to identify the significant factors explaining each risk. This work could be a starting

point to identify other possible factors that cause any risky behaviors. The risk matrix is also used to build

predictive models to characterize users’ riskiness.

4.5.2.2. Contribution to Practice

Our findings offer several insights for practitioners. This work investigates the potential risks as-

sociated with scooters and bike riders and may help city planners and system operators to set policies or

appropriate enforcement to reduce any harm from rogue riders. Second, the results of the risk matrix help

to quantify the penalties related to each risky behavior. The results also help officials to design educational

programs to mitigate any reckless behaviors.
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