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Abstract:This paper proposes a modified particle swarm optimization considering time-varying acceleration coefficients

for the economic-emission load dispatch (EELD) problem. The new adaptive parameter is introduced to update the

particle movements through the modification of the velocity equation of the classical particle swarm optimization (PSO)

algorithm. The idea is to enhance the performance and robustness of classical PSO. The price penalty factor method is

used to transform the multiobjective EELD problem into a single-objective problem. Then the weighted sum method is

applied for finding the Pareto front solution. The best compromise solution for this problem is determined based on the

fuzzy ranking approach. The IEEE 30-bus system has been used to validate the effectiveness of the proposed algorithm.

It was found that the proposed algorithm can provide better results in terms of best fuel cost, best emissions, convergence

characteristics, and robustness compared to the reported results using other optimization algorithms.

Key words: Economic-emission load dispatch, fuzzy satisfying method, particle swarm optimization, Pareto front

solution, weighted sum method

1. Introduction

Nowadays the awareness of environmental pollution is increasing around the world. Many campaigns and

promotions have been launched to reduce the environmental pollution as well as greenhouse gases. Among the

major contributors of environmental pollution is the burning of fossil fuel in power generation [1]. Hence, it is

crucial to minimize the amount of emission releases from power generation.

Traditionally, power generation is determined solely based on minimizing fuel cost (called economic load

dispatch) [2]. However, regarding the awareness of environmental issues, the emission amount releases (i.e.

SOX , NOX) by thermal power generation should be considered in power dispatch. In [3,4], the economic load

dispatch problem was solved considering the emission level as a constraint, but it cannot provide the tradeoff

information between fuel cost and emission amount. By considering the emission level of the power generation,

the electric power dispatch problem becomes a multiobjective optimization problem that requires optimization

of fuel cost and emission amount simultaneously [5].
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There are two different ways to solve economic-emission load dispatch (EELD) problems. The first ap-

proach is called the multiobjective optimization method, directly applied to multiobjective optimization prob-

lems. Algorithms such as modified adaptive θ -particle swarm optimization (MA θ -PSO) [6], θ -multiobjective

teaching learning based optimization (θ -MTLBO) [7], hybrid multiobjective optimization (MO-DE/PSO) [8],

and strength Pareto evolutionary algorithm (SPEA) [9] have been applied for EELD problem. The second

approach is transforming the multiobjective problems into single-objective problems by using the price penalty

factor (PPF) approach. In this approach, the weighted sum method (WSM) is commonly applied to obtain a

Pareto optimal solution [10]. The modified bacterial foraging algorithm (MBFA) [11], charged system search

algorithm (CSS) [12], genetic algorithm (GA) [13], and gravitational search algorithm (GSA) [14] have been

used to solve EELD problems based on this approach. In addition, the conic scalarization method (CSW) was

first implemented in [15] for EELD problems and can be an alternative approach to the WSM.

In multiobjective problems, no single solution can be found, and thus a set of possible solutions called

nondominated solutions (or Pareto front solutions) should be obtained in order to satisfy the desired objective

function (i.e. total fuel cost and emission amount). In [14,16,17], the best compromise solution (in the set

Pareto front solution) was obtained by implementing fuzzy set theory. It can help the system operator choose

the best compromise solution among multiple solutions obtained by the multiobjective optimization method.

In the literature, the PSO algorithm is widely applied in power system optimization problems [18–20].

This is due to the advantages of PSO such as less complexity, fast convergence, and free-derivative algorithm.

However, the classical PSO algorithm may converge at local minima, especially for complex problems with

multiple local minima. Many PSO variants were proposed in [21–25] in order to enhance the searching capability

of classical PSO.

In this paper, a new variant of PSO named modified particle swarm optimization considering time-

varying acceleration coefficients (MPSO-TVAC) is proposed for the EELD problem. A new adaptive parameter

is introduced for updating the particle movement in order to prevent the particle being trapped at a local

solution (premature convergence). The PPF approach is adopted to transformed the multiobjective EELD

problem into a single-objective problem. Then the weighted sum method is applied in order to capture a set of

Pareto front solutions. The best compromise solution is obtained by using fuzzy set theory. The results found

by the MPSO-TVAC algorithm are compared with the results obtained by other algorithms in the literature.

This paper is arranged as follows. Section 2 describes the mathematical formulation of the EELD problem.

Section 3 reviews some PSO algorithms and explains the proposed MPSO-TVAC. Section 4 describes how to

apply MPSO-TVAC for solving the EELD problem. The performance analysis and the comparison study with

the results of existing algorithms are provided in Section 5. Section 6 draws the conclusions.

2. Problem formulation

2.1. Objective functions

2.1.1. Economic load dispatch problem

The main objective of this problem is to distribute the power demand to the scheduled generator at a minimum

total fuel cost (FC ). With Ng scheduled generators to operate, the total FC can be formulated as

FC =

Ng∑
i=1

FCi(Pi) =

Ng∑
i=1

(aiP
2
i + biPi + ci), (1)
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where Pi = real power output of ith generator (MW); ai , bi , and ci = fuel cost coefficients of the ith generator;

and FCi = fuel cost for the ith generator.

The fuel cost characteristics of the thermal generator are shown in Figure 1 (solid line).
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Figure 1. Fuel cost and emission function of the thermal generator.

2.1.2. Emission dispatch problem

The main objective of this problem is to distribute the power demand to the scheduled generator at minimum

total emission amount (EM ) caused by the thermal generator (i.e. SOX , NOX). The total emission amount

can be modeled as a combined quadratic and exponential function as shown in Figure 1 (dashed line) and

formulated as [26]:

EM =

Ng∑
i=1

EMi(Pi) =

Ng∑
i=1

10−2(αiP
2
i + βiPi + γi) + ξi exp(λiPi)t/h, (2)

where αi , βi , γi , ξi , and λi = pollution coefficients of the ith generator, and EM i = emission amount for

the ith generator.

2.2. System and operational constraints

The minimization of both problems is subjected to the following constraints:

Power balance constraints: The total generated power must be equal to the total power demand (PD)

and transmission loss (PL) as given in Eq. (3).

Ng∑
i=1

Pi = PD + PL (3)

There are two methods that can be used to calculate the transmission loss: the power flow method [27] and the

B-coefficients method (Kron’s formula) [23]. In this paper, the B-coefficients method is adopted in line with the

previous research done in [12,16,26] based on following formula:

PL =

Ng∑
i=1

Ng∑
j=1

PiBijPj +

Ng∑
i=1

Bi0Pi +B00, (4)
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where Bij , Bi0 , and B00 = the loss coefficient matrix.

Generation limit constraints: The power output of the scheduled generator is limited by the minimum

limit (Pmin
i ) and maximum limit (Pmax

i ) for stable operation as follows:

Pmin
i ≤ Pi ≤ Pmax

i . (5)

2.3. Economic-emission load dispatch problem

The total fuel cost and emission amount in Eqs. (1) and (2) should be minimized simultaneously in order to

satisfy both objectives mentioned in Section 2.1. Figure 1 shows the behavior of the fuel cost and emission

characteristics of the thermal generator. These two conflicting objectives give a set of possible optimal solutions

instead of one optimal solution. Therefore, this problem can be solved by transforming the multiobjective

optimization problem into a single-objective function by using the appropriate PPF [14]. The PPF is used to

blend the emission level into cost level as described in [28]. The new objective function (OF ) for the EELD

problem can be formulated as:

MinOF = k × FC + (1− k)× ppf × EM (6)

where k = weight factor for total fuel cost (FC ) and total emission (EM ).

A set of Pareto front solutions can be produced by assigning the weight factor k between 0 to 1 [12,14,29].

If k is set to 1, OF represents the minimizing fuel cost only, whereas if k is set to 0, OF is to minimize emission

only.

The minimization of Eq. (6) is subjected to the constraints in Eqs. (2) to (4). The k value is increased

from 0 to 1 by an increment step of 0.1 in order to achieve the set of Pareto front solutions. This set of solutions

called Pareto front solutions can provide multiple solutions to the decision-makers in order choose a desired

solution based on their preferences. In addition, the best compromise solution can be selected based on fuzzy

set theory as explained in the next section.

2.4. Best compromise solution based on fuzzy theory

To help the system operator make a balanced decision between two objectives in the multiobjective EELD

problem, the best compromise solution can be determined by using the fuzzy satisfying method. In this approach,

each objective function (Fi) will be transformed into a fuzzy set (membership function) to represent the degree

of membership in fuzzy sets based on a value within 0 to 1 [30]. It can be calculated by using the following

equation:

µ(Fi) =


1 Fi ≤ Fmin

i

Fmax
i −Fi

Fmax
i −Fmin

i
Fmin
i < Fi < Fmax

i

0 Fi ≥ Fmax
i

, (7)

whereFmin
i and Fmax

i = the lower and higher value of each Fi , respectively; µ(Fi) = 1 and means the

membership function is completely satisfied with the sets; and µ(Fi) = 0 and means the membership function

is unsatisfied with the sets.

The sum of the membership function for all objective functions is computed in order to evaluate each

solution in satisfying N number of objectives. Each membership function can be normalized with respect to
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M number of nondominated solutions and represented as a fuzzy cardinal priority ranking (µk) as follows:

µk =

∑N
i=1 µ

k
Fi∑M

k=1

∑N
i=1 µ

k
Fi

, (8)

where i = number of objective functions (i= 1,2,. . . N) and k = number of nondominated solutions (k=

1,2,. . . ,M).

Therefore, the best compromise solution among the nondominated solutions is selected according to the

highest value of . (Max µk ; (k= 1,2,. . . ,M)).

3. Proposed MPSO-TVAC algorithm

3.1. The PSO algorithm

PSO is one of the metaheuristic methods that is widely implemented in optimization problems. This population-

based approach was first introduced by Kennedy and Eberhart in 1995 [31]. The principle operation of PSO is

inspired by the behavior of fishes schooling and birds flocking.

In PSO, a population consists of a number of particles that represent the possible solution. Every particle

will move around dth dimensional solution space for finding an optimal solution. The movement of a particle

is guided by it best personal experience (pbest) and best group experience (gbest). In the j th iteration, the ith

particle in a population has memorized its own position and velocity, presented as vector xj
i = [xj

i1 ,x
j
i2 ,. . . ,x

j
id ]

and vji = [vji1 , v
j
i2 ,. . . ,v

j
id ], respectively. Thus, the particle will be updated according to the previous experience

based on the following equations:

vj+1
id = wjvjid + c1r1(pbest

j
id − xj

id) + c2r2(gbest
j
d − xj

id), (9)

xj+1
id = xj

id + vj+1
id , (10)

where r1 and r2 are independent random numbers between 0 and 1. c1 and c2 are the cognitive acceleration

coefficient and the social acceleration coefficient, respectively. pbest is the individual best position represented as

pbest ji = [pbest ji1 , pbest
j
i2 ,. . . , pbest

j
id ]. gbest is the group best position or the global best position represented

as gbest jd= [gbest j1 , gbest
j
2 ,. . . , gbest

j
d ]. w is the inertia weight factor and can be calculated using Eq. (11)

[32]:

wj = wmax −
(
wmax − wmin

jmax

)
× jj = 1,2,. . . itermax, (11)

Wherewmin and wmax = the initial and final inertia weights, respectively, and jmax = maximum iteration

number.

The inertia weight should vary linearly from 0.9 to 0.4 during the iterative process as suggested in [32,33]

for better exploration and exploitation of the global search.

3.2. Review of PSO-TVAC algorithm

Since the parameter selection of c1 and c2 affects the performance of the PSO algorithm, PSO with time-varying

acceleration coefficients (PSO-TVAC) was proposed in [34] where the value of the c1 coefficient decreases while
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the value of c2 decreases linearly according to the iteration number. The varying of these coefficients is calculated

as follows:

c1(j) = c1i + (c1f − c1i)×
j

jmax
, (12)

c2(j) = c2i + (c2f − c2i)×
j

jmax
, (13)

wherec1i and c1f = the initial and final values of the cognitive coefficient andc2iand c2f = the initial and final

values of social coefficient.

3.3. Proposed MPSO-TVAC

To improve and enhance the performance and robustness of the aforementioned PSO, MPSO-TVAC is proposed.

An adaptive parameter is introduced into Eq. (9) for updating the particle movement and is defined as a best

neighbor particle (rbest). The idea is to enhance the exploration and exploitation of the algorithm by providing

extra information to each particle.

In this approach, each particle has its own rbest ji = [rbest ji1 , rbest
j
i2 ,. . . , rbest

j
id ], which is randomly

selected from the best position (pbest) of other particles. The pseudocode for determining an adaptive rbest i

value for the ith particle is shown in Figure 2.

 

for i=1:Npop                              * Npop is the population size 

 k=fix(rand(0,1)×Npop +1)  * random fixed number between 1 and Npop 

      for  k=i 

            k= fix(rand(0,1)×Npop +1)* to avoid the selection of its own pbest value  

      end 

      rbesti=pbestk       * Defined rbest value for ith particle 

end 

 

Figure 2. Pseudocode for determining rbest value.

Presenting an adaptive parameter in Eq. (9), the new updated velocity can be formulated as follows:

vj+1
id = wjvjid + c1r1(pbest

j
id − xj

id) + c2r2(gbest
j
d − xj

id) + c3r3(rbest
j
id − xj

id), (14)

wherec3 = the acceleration coefficient that pulls the particle towards rbest.

As mentioned in [31], a high value of c1 and small value of c2 in early iterations will push the particle

to move the entire solution space and high values of c2 and small values of c1 in later iterations will pull the

particle to a local solution (premature convergence).

Therefore, in MPSO-TVAC, the values of c1 and c2 vary according to the iteration number, similar as

PSO-TVAC, by using Eqs. (12) and (13), while the value of c3 varies according to the following equation:

c3(j) = c1 × (1− exp(−c2 × j)). (15)
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Presenting the best neighbor particle (rbest) and TVAC approach for all acceleration coefficients in Eq. (14)

will encourage every particle to converge at the global/near-to-global solution. The extra information provided

by the rbest parameter enhances the searching behavior and avoids convergence at local solutions. Therefore,

the proposed algorithm can improve the solution quality and produce consistent results after different trials.

4. MPSO-TVAC algorithm for solving EELD problems

The implementation step of the MPSO-TVAC algorithm for EELD is discussed in this section. The following

steps should be performed in order to determine the optimal generator output considering the minimization of

fuel cost and emission amount simultaneously.

Step 1: Input data required for EELD problem.

Step 2: Initialize the MPSO-TVAC parameters such as acceleration coefficients (c1i , c1f , c2i , c2f , and

c3), inertia weight (wmax and wmin), population size (Npop), and maximum iteration ( jmax).

Step 3: Define the problem variables. In EELD, the real power output (Pid) is a problem variable

in the dth dimension. The ith particle for each generator is randomly generated according to Eq. (5) as

Pid = Pmin
id + rand× (Pmax

id − Pmin
id ).

Step 4: Evaluate the fitness function. Each possible solution is evaluated based on the given fitness

function. The fitness function is to integrate the OF in Eq. (6) with the penalty function in order to meet the

real power demand constraint in Eq. (3). It is required to be minimized and formulated as follows:

Fitness f(Pi) =

Ng∑
i=1

OFi + α× abs

(
Ng∑
i=1

Pi − (PD + PL)

)
, (16)

where α = the penalty factor for satisfying the real power demand constraints.

Step 5: Based on the calculated fitness function the pbest, gbest, and rbest values are determined as

explained Section 3.

Step 6: The particle movement (for the next iteration) is updated by utilizing Eqs. (14) and (15).

Step 7: Constraint handling. If the updated position (P j+1
id ) is violating the generation limit in Eq. (4)

it will replace its limit value as follows:

P j+1
id =


P j
id + vj+1

id if Pmin
d ≤ P j+1

id ≤ Pmax
d

Pmin
d if P j+1

id ≤ Pmin
d

Pmax
d if P j+1

id ≥ Pmax
d

. (17)

Step 8: Repeat Steps 4–7 until maximum iteration is reached. Then the best optimum solution is

selected.

Step 9: In EELD, Steps 1–8 should be repeated for each value of k by changing the value of k in steps of

0.1 (0 ≤ k ≤ 1). The best results obtained are recorded in an array according to the value of k , which known

as a set of Pareto optimal solutions.

Step 10: The best compromise solution is determined based on fuzzy set theory as discussed in Section

2.4.
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5. Simulation results and discussion

To validate the performance of the proposed MPSO-TVAC, 50 different trials are carried out for each case study.

The results obtained are compared with PSO-TVAC and other algorithms in the literature. The algorithms are

performed using MATLAB 7.6 on a Core 2 Quad processor, 2.66 GHz and 4 GB RAM.

5.1. Power system benchmark

The IEEE 30-bus six-generator system [8,9] is used as a test system to validate the effectiveness of the MPSO-

TVAC algorithm. The total load demand of the system is 2.834 p.u. There are two case studies considered as

follows:

Case 1: For simplicity, the test system without transmission losses is considered in order to compare

with reported results in the literature. All data are presented in Table 1 [8].

Table 1. Fuel cost and emission data for IEEE 30 bus six system.

Gen.
Cost coefficients Emission coefficients Gen. limit
a b c α β γ ζ λ Pmin Pmax

1 100 200 10 4.091 –5.554 6.49 2.0E-4 2.86 0.05 0.50
2 120 150 10 2.543 –6.047 5.638 5.0E-4 3.33 0.05 0.60
3 40 180 20 4.258 –5.094 4.586 1.0E-6 8.00 0.05 1.00
4 60 100 10 5.326 –3.55 3.38 2.0E-3 2.00 0.05 1.20
5 40 180 20 4.258 –5.094 4.586 1.0E-6 8.00 0.05 1.00
6 100 150 10 6.131 –5.555 5.151 1.0E-5 6.667 0.05 0.60

Case 2: In this case, the same test system with transmission losses is considered. The transmission

losses are calculated according to Eq. (4). Table 2 shows the B -loss coefficient matrix for this case study [8].

Table 2. B -loss coefficients for IEEE 30 bus system.

Bij

0.1382 –0.0299 0.0044 –0.0022 –0.0010 –0.0008
–0.0299 0.0487 –0.0025 0.0004 0.0016 0.0041
0.0044 –0.0025 0.0182 –0.0070 –0.0066 –0.0066
–0.0022 0.0004 –0.0070 0.0137 0.0050 0.0033
–0.0010 0.0016 –0.0066 0.0050 0.0109 0.0005
–0.0008 0.0041 –0.0066 0.0033 0.0005 0.0244

B0 –0.0107 0.0060 –0.0017 0.0009 0.0002 0.0030
B00 0.00098573

5.2. Parameter setting

The best parameter settings for the PSO-TVAC and MPSO-TVAC algorithms used in this paper are presented

in Table 3. These values were obtained by several experiments in order to produce the best results for solving

the IEEE 30-bus six-generator system.

Table 3. Parameter setting for the selected algorithm.

Algorithm c1 c2 c3 wmin wmax Npop jmax

MPSO-TVAC c1i= 1.0 c1f = 0.2 c2i= 0.2 c2f = 1.0
c3 = c1∗ 0.4 0.9 50 500
(1-exp(−c2 ∗ j))

PSO-TVAC c1i= 1.0 c1f = 0.2 c2i= 0.2 c2f = 1.0 - 0.4 0.9 50 500
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Table 4 shows the effect of population size (Npop) of the proposed algorithm for minimization of fuel

cost and emission amount. Increasing the Npop size produced the same results. However, the simulation time

is increased according to Npop size.

Table 4. Effect of the population size using proposed MPSO-TVAC (case 2).

Npop
Best fuel cost Best emission
Cost ($/h) Emission (t/h) Time (s) Emission (t/h) Cost ($/h) Time (s)

10 606.0009 0.220934 0.90 0.194179 646.2279 0.88
20 605.9984 0.220730 1.75 0.194179 646.2072 1.75
30 605.9984 0.220729 2.69 0.194179 646.2070 2.68
40 605.9984 0.220729 3.55 0.194179 646.2070 3.53
50 605.9984 0.220729 4.47 0.194179 646.2070 4.47

5.3. Simulation results

The proposed MPSO-TVAC algorithm has been tested according to the following objectives:

i. Minimize fuel cost function only.

ii. Minimize emission function only.

iii. Minimize fuel cost and emission function simultaneously.

Table 5 presents the optimal power output for the best fuel cost and the best emission obtained by the

MPSO-TVAC algorithm. It shows that the generator output produced satisfies all the constraints in Eqs. (3)

and (5).

Table 5. The best individual fuel cost and emission obtained by MPSO-TVAC algorithm.

Power output (p.u.)
Case 1 Case 2
Best fuel cost Best emission Best fuel cost Best emission

P1 0.109721 0.406074 0.120969 0.410925
P2 0.299769 0.459069 0.286312 0.463668
P3 0.524297 0.537939 0.583557 0.544419
P4 1.016198 0.382953 0.992854 0.390374
P5 0.524298 0.537939 0.523971 0.544459
P6 0.359717 0.510027 0.351899 0.515485
Ptotal 2.834000 2.834000 2.859562 2.869330
PLoss - - 0.025562 0.035330
Cost ($/h) 600.1114 638.2734 605.9984 646.2070
Emission (t/h) 0.222145 0.194203 0.220729 0.194179

The comparison of convergence characteristics of MPSO-TVAC and PSO-TVAC for minimizing fuel cost

are shown in Figure 3 for a single run. It demonstrated that MPSO-TVAC can converge near the best solution

as compared to PSO-TVAC.
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Figure 3. Convergence characteristics of MPSO-TVAC and PSO-TVAC (case 2).

In order to minimize the combined fuel cost and emission function, the value of k in Eq. (6) is varying

from 0.0 to 1.0 with steps of 0.1 for each simulation. The results obtained by the proposed MPSO-TVAC are

presented in Table 6. Figure 4 shows the comparison of the Pareto optimal solution achieved by the MPSO-

TVAC and PSO-TVAC algorithms according to different k values. This set of solutions can be used by system

operators to choose the best solution based on their preferred objective according to the k value.

Table 6. Optimal fuel cost and emission solution using proposed MPSO-TVAC.

k
Case 1 Case 2
Cost ($/h) Emission (t/h) Cost ($/h) Emission (t/h)

1.0 600.1114 0.2221 605.9984 0.2207
0.9 604.1316 0.2066 609.6877 0.2067
0.8 610.1645 0.2005 615.5829 0.2008
0.7 615.7707 0.1976 621.3173 0.1979
0.6 620.6219 0.1961 626.4452 0.1962
0.5 624.7609 0.1952 630.9302 0.1953
0.4 628.2956 0.1947 634.8355 0.1948
0.3 631.3330 0.1944 638.2432 0.1944
0.2 633.9626 0.1943 641.2329 0.1943
0.1 636.2568 0.1942 643.8688 0.1942
0.0 638.2734 0.1942 646.2070 0.1942
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Figure 4. The optimal solution according to weight factor (case 2).

Table 7 presents the comparison of the best compromise solution achieved by MPSO-TVAC and PSO-

TVAC. It was found that the proposed MPSO-TVAC algorithm can provide lower fuel cost and emission amount
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as compared to PSO-TVAC. Moreover, the total objective function (OF ) in Eq. (6) obtained by the proposed

algorithm is smaller than that obtained by PSO-TVAC.

Table 7. The best compromise solution according to fuzzy set theory.

Output
Case 1 Case 2
MPSO-TVAC PSO-TVAC MPSO-TVAC PSO-TVAC

P1 0.261014 0.239199 0.252759 0.336156
P2 0.375496 0.417883 0.371616 0.376469
P3 0.539481 0.636733 0.565826 0.573600
P4 0.686269 0.678224 0.689033 0.645759
P5 0.539481 0.452467 0.549576 0.501686
P6 0.432258 0.409495 0.431222 0.429128
Ptotal 2.834000 2.834000 2.860033 2.862798
PLoss - - 0.026033 0.028798
Cost ($/h) 610.1645 611.2755 615.5829 621.1694
Emission (t/h) 0.200527 0.201460 0.200841 0.198514
PPF 5928.71345 5928.71345 5928.71345 5928.71345
OF 725.9048 727.90069 730.6115 732.3225

5.4. Comparison of the best results

To verify the performances of the MPSO-TVAC algorithm, the best results obtained are compared with some

reported results in the literature. In case 1, the best fuel cost and emission amount obtained by the proposed

solution are compared with the results of BB-MPSO [16], Tribe-MDE [26], MA θ -PSO [6], NSGA [9], NPGA

[9], SPEA [9], MBFA [11], and DE [35] as given in Table 8.

Table 8. The best results obtained by various algorithms (case 1).

Algorithm
The best fuel cost The best emission amount
Cost ($/h) Emission (t/h) Time (s) Emission (t/h) Cost ($/h) Time (s)

MPSO-TVAC 600.1114 0.22214 1.71 0.194203 638.2734 1.71
BB-MPSO [16] 600.1120 0.22220 - 0.194203 638.262 -
Tribe-MDE [26] 600.1114 0.22214 2.3 0.194203 638.2734 2.5
MA θ-PSO [6] 600.1114 0.2221 1.73 0.194203 638.2734 1.73
NSGA [9] 600.34 0.2241 - 0.1946 633.83 -
NPGA [9] 600.31 0.2238 - 0.1943 636.04 -
SPEA [9] 600.22 0.2206 - 0.1942 640.42 -
MBFA [11] 600.17 0.2200 1.32 0.1942 636.73 1.32
DE [35] 600.11 0.2231 - 0.1952 638.27 -
‘-’: not mentioned in the reference.

In terms of fuel cost, the best results achieved by the proposed algorithm are better than with other

algorithms and equal to the latest results obtained Tribe-MDE [26] and MA θ -PSO [6]. For the best emission

amount, the result obtained is essentially the same as the results of BB-MPSO [16], Tribe-MDE [26], and MA

θ -PSO [6].

In case 2, the comparison of best fuel cost and emission amount produced by the proposed algorithm are

presented in Table 9. It was compared with the results of BB-MOPSO [16], Tribe-MDE [26], MA θ -PSO [6],

MO-DE/PSO [8], CMOPSO [8], SMOPSO [8], and TV-MOPSO [8]. The best simulation time of the proposed
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algorithm to achieve the best fuel cost and emission amount is 1.75 s. However, the simulation time obtained

by published results is not reported in order to make a comparison.

The individual best fuel cost and emission amount achieved by the proposed algorithm is slightly better

than other algorithms and the same as the best results obtained by Tribe-MDE [26] and MA θ -PSO [6]. When

analyzing the results in Table 9, some results are violating the power balance constraints in Eq. (3), where the

value of ∆P (PD −
∑

(Pi)− PLoss) is not equal to zero. From these comparisons, MPSO-TVAC is capable of

obtaining the best results as well as satisfying power balance constraints (∆P = 0) effectively.

5.5. Robustness analysis

In order to show the consistency results produced by the proposed algorithm, 50 different trials have been

conducted for each algorithm. This analysis is important to analyze the performance of metaheuristic algorithms

like PSO due to the random number involved during optimization processes. The algorithm is more robust when

it is capable of producing consistent results (at global solutions) after several trials.

Figures 5 and 6 show the distribution of the optimal results obtained by the proposed MPSO-TVAC and

PSO-TVAC during 50 different trials. It clearly shows that the MPSO-TVAC algorithm can produce consistent

results at the lowest fuel cost and emission.
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Figure 5. Best fuel cost after 50 different trials (case 2). Figure 6. Best emission after 50 different trials (case 2).

Table 10 presents the best, mean, worst, and standard deviation (Std) values of the results obtained by

the proposed MPSO-TVAC algorithm compared with PSO-TVAC. It shows that the MPSO-TVAC algorithm

can produce lower best values as well as mean values for the total fuel cost and emission amount compared

to other algorithms. Moreover, the smallest Std obtained shows the best quality of results produced by the

proposed algorithm.

Table 10. Statistical results for minimizing fuel cost and emission function separately (case 2).

Algorithm
Fuel cost function Emission function
Best Mean Worst Std Best Mean Worst Std

MPSO-TVAC 605.9984 605.9984 605.9984 0.0000 0.194179 0.194179 0.194179 0.00000
PSO-TVAC 606.0191 606.6471 612.2694 0.9607 0.194179 0.194336 0.195164 0.000204

6. Conclusion

The MPSO-TVAC algorithm has been proposed for the EELD problem. In MPSO-TVAC, a new adaptive

parameter named rbest is introduced into the velocity equation in order to prevent premature convergence and
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improve its robustness. Moreover, the value of acceleration coefficients changes according to the iteration number

instead of a fixed value. The EELD problem is transformed into a single-objective problem by using the PPF

and a weighted sum method is applied for finding a set of Pareto solutions. Fuzzy set theory is implemented to

determine the best compromise solution. The simulation results show that the proposed algorithm has improved

the convergence characteristics and is more robust compared to PSO-TVAC. By comparing with the results

of the published algorithm, it shows that the best results obtained with MPSO-TVAC are better than those

of many other algorithms. Therefore, it can be used as an alternative approach for solving EELD problems

effectively.
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