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Abstract. In the present work, the Crank-Nicolson implicit scheme for the numerical solution of nonlinear Schrodinger 
equation with variable coefficient is introduced. The Crank-Nicolson scheme is second order accurate in time and space 
directions. The stability analysis for the Crank-Nicolson method is investigated and this method is shown to be 
unconditionally stable. The numerical results obtained by the Crank-Nicolson method are presented to confirm the 
analytical results for the progressive wave solution of nonlinear Schrodinger equation with variable coefficient. 
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INTRODUCTION 

Consider the following nonlinear Schrodinger (NLS) equation with variable coefficient [1], 
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where the coefficients of 1 2 3,   and  are nonzero values.  Equation (1) is in dimensionless form where 
,U U  is a complex value function.  The second term and the forth term represent the dispersion effect and 

the variable coefficient, respectively.  The third term is the nonlinear term which measures the strength of the 
nonlinearity relative to wave dispersion.  The nonlinearity is focusing when 2 0  and defocusing when 2 0 .  
The  is a smooth function which decreases exponentially for sufficiently large . 

When 3  equals to zero, the equation (1) is well known as the nonlinear Schrodinger (NLS) equation.  The NLS 
equation is the simplest representative equation describing the self-modulation of one-dimensional monochromatic 
plane waves in dispersive media [2].  The NLS equation appears in many branches of physics and applied 
mathematics. Recently, the mathematical modeling of blood flow through a stenosed artery governed by the NLS 
equation has been studied by several researchers [3]-[5].  This equation describes the modulation of amplitude 
waves in a thin stenosed elastic tube.  The study of the effect of stenosis on blood flow in arteries becomes important 
since the NLS equation is able to describe and give a better understanding of the dynamics of the circulatory system 
in the human body and give more insight into the medical field. 

The study of exact and numerical solution of the NLS equation has been a great interest of many researchers. 
The NLS equation is one of the nonlinear partial differential equations that can be solved analytically for a limited 
set of initial conditions. Demiray [6] studied analytical solution to the dissipative NLS equation by using the 
hyperbolic tangent method and he found that the dissipative NLS equation decaying amplitude in the time 
parameter. 
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Since the analytical solutions for the NLS equation are limited, numerical methods have become important in 
order to understand the physical behavior of the equation.  Many researchers are devoted to study the numerical 
solution of NLS equation.  Numerous numerical methods have been investigated such as the discrete Adomian 
decomposition [7], the finite difference [8], the finite element [9] and the multi-symplectic Runge-Kutta [10]. 

In the present work, we proposed the Crank-Nicolson implicit method for solving the NLS equation with 
variable coefficient.  The truncation errors for the present method are second order in time and space directions.  The 
stability analysis shows that the present method is unconditionally stable and satisfies discrete conservation laws. 
The numerical results obtained by the present method are compared with the exact solutions [1].  It shows that the 
Crank-Nicolson method is compatible with the analytical result. 

Our paper is organized as follows: in Section 2, we will introduce the Crank-Nicolson implicit method to solve 
the NLS equation with variable coefficient.  We investigated the stability analysis for equation (1) in Section 3.  In 
Section 4, we present the numerical results and compared them with the analytical results.  Section 5 ends this paper 
with a conclusion. 

 
 

THE CRANK-NICOLSON IMPLICIT METHOD 
 
 
The analytical solution of the equation (1) mention U  as a function of  and , ,U  where both  and 

are continuous variables.  For the finite difference method, we seek approximation n
mU  to the original function 

,U  at a set of points m , n  on a rectangular grid in the 2-dimensional plane,  and , where 0m m
, 0n n ,  and  are the grid spacing in  and , respectively.  For simplicity, 0  and 0  are set to be 

0 0  and 0 0  in our following discussion. 
The main idea of Crank-Nicolson implicit method is to produce the same order of truncation error in  and  

variables.  For this reason, the forward difference for  derivative in equation (1) is replaced with the backward 
difference approximation, this gives 
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for some y  in , .  The  derivative in equation (1) is the usual central difference approximation, 
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 for some x  in , .  Then the equation (1) can be written as 
1
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Equation (4) is the implicit backward difference equation at the thn  step in  with the truncation error of order 
2O .  For the backward difference equation at the 1 thn  step in , the equation (4) becomes 
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The order of the error in  and  variables can be made equal by taking the average of equation (5) and forward 
difference equation for equation (1) [11], this gives 
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where the truncation error is of order 2 2O .  Rearrange the above expression, yield the difference equation 
for the Crank-Nicolson implicit method: 
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with 2r . 

The solution for the above difference equation (7) is sought in the region ,m nM M N  
,...,m M M , 0,1,2,...,n N .  Since equation (1) is a boundary value problem, so the values of U  at time,  

step, 0n  are known.  The right-hand side of equation (7) consists of both of the known values U  at time step n  
as well as the unknown values U  at time step 1n .  In order to solve the above equation (7), we apply the 
Functions Arguments which can be referred to using MATLAB package. 
 
 

STABILITY ANALYSIS 
 
 

In this section, we investigate the stability analysis of the Crank-Nicolson implicit method that we have 
discussed in Section 2.  First, we linearized the NLS equation with variable coefficient (1). We later obtained the 
difference equation by applying the Crank-Nicolson implicit method to the linearized NLS equation.  To analyze the 
stability of the numerical scheme, we use Fourier series method which leads to the analysis known as von-Neumann 
stability test. 

The most common linearization methods are Taylor's series expansion, optimal linearization method and global 
linearization method.  In this paper, we adopt the method of Taylor's series expansion.  Consider the function f U  

of a single variable U .  Suppose that U  is a point such that 0f U .  The point U  is called equilibrium point of 

the system *U f U .  By expanding the NLS equation with variable coefficient (1) in Taylor series expansion of 

f U , this gives the linearized NLS equation with variable coefficient, 
* 2 *

*
1 32* 0.U Ui U      (8) 

Employing the Crank-Nicolson implicit method to the linearized NLS equation with variable coefficient (8), we 
have the difference equation,  

* 1 * 1 * 1 * * *3 31 1 1 1
1 1 1 1 1 1,2 2 2 2 2 2

n n n n n n
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with 2r .  For the von-Neumann method, a harmonic decomposition is made of the error E  at grid points at 

a given time level, leading to the error function 
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where the frequencies j  and j  are arbitrary.  To investigate the error propagation as time increases, it is 

necessary to find a solution of the finite difference equation which reduces to i xe  when time is zero.  Apply 
equation (10) into equation (9) and the n

mE  satisfies the same finite difference equation, so we get 
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Substitute n nk i mh
mE e e , equation (11) becomes 
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Cancellation of nk i mhe e  leads to 
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The quantity, ke  is called the amplification factor.  For stability, 1ke , for all values of h .  Clearly, the 
modulus is at most one for all positive values of r .  Thus, the Crank-Nicolson implicit method is unconditionally 
stable according to linear analysis.  However, in the actual condition, the simulation may become unstable because 
nonlinear terms may play a dominant role in the dynamics. 

 
 

RESULTS & DISCUSSION 
 
 
In this section, we apply the scheme of equation (7) to solve equation (1).  Furthermore, we also compared our 

proposed Crank-Nicolson implicit method with the exact solution of NLS equation with variable coefficient.  In 
comparing the numerical results with the exact results, we calculate the maximum absolute error, L  at certain m  
which is defined as 

max .exact numericalL U U          (14) 
The exact solution for the NLS equation with variable coefficient (1) is given by [1] 

1/2

2
3 1

1 0

, tanh exp ,
2

U a a i K h s ds    (15) 

where 12 K  and 2 2
1 2K a .  The coefficients of 1, 2 3  and  can be obtained in [1].  The 1h  

is the stenosis function which is defined as sech 0.30 .  In order to obtain a numerical solution, we need the initial 
condition by assuming (1) 0  in equation (15), (2) spatial step, 0.01,(3) travelling wave profile step, 

0.01  and (4) artificial boundary conditions, , 2 ,5 0U U .  The numerical results are presented over 

the travelling wave profile interval 2,5  and the space interval 6,1  by choosing the parameter as 1,  2.a K  
 

TABLE (1).  Maximum absolute errors of the NLS equation with variable coefficient (1) at 0.01, 0.01 for 
different . 

Travelling wave profile,  0.0 1.0 1.50 2.00 2.50 3.00 
L  0.2630 0.2790 0.2818 0.2781 0.2790 0.2754 

 
 

79 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  103.31.34.2

On: Mon, 23 Feb 2015 07:52:04



 
FIGURE 1.  Crank-Nicolson solution of the NLS equation with variable coefficient (1) with space  at certain travelling 

wave profile . 
 
 

 
FIGURE 2.  Exact solution of the NLS equation with variable coefficient (1) with space  at certain travelling wave profile 

. 
 
The maximum absolute errors, L  between the exact and numerical solutions of the NLS equation with variable 

coefficient are shown in Table (1).  Figure 1 depicts the Crank-Nicolson implicit solution for the NLS equation with 
variable coefficient.  It is seen that the numerical solution in Figure (1) is exactly the same as the exact solution in 
Figure (2) in terms of position and amplitude. 
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TABLE (2).  Maximum absolute errors of the NLS equation with variable coefficient (1) at 0.01, 0.01 for 
different . 

Space,  -6 -4 -2 0 1 
L  0.4403 0.2839 0.2462 0.0000 0.0703 

 
 

 
FIGURE 3.  Crank-Nicolson solution of the NLS equation with variable coefficient (1) with travelling wave profile  at 

certain space . 
 
 

 
FIGURE 4.  Exact solution of the NLS equation with variable coefficient (1) with travelling wave profile  at certain space 

. 
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Table (2) illustrates the maximum absolute errors, L  between the numerical and exact solutions of the NLS 
equation with variable coefficient with different .  The maximum absolute errors in Tables (1) and (2) are quite 
large for most of the cases. This is due to the number of spatial grid points are less and the step size of travelling 
wave profile is large. In Table (2), for 0,  the maximum error is small because it is the initial condition.  To 
maintain the stability and to achieve the high accuracy of the approximation solution, the number of spatial grid 
points must be large and the step size of travelling wave profile must be small. However, this numerical scheme 
required large computational cost if number of grid points for spatial or travelling wave profile increases. 
Comparing Figures 3 and 4, it is shown that the numerical results show good approximation with the analytical 
results.  However, this numerical scheme required extremely large computational cost. 

 
 

CONCLUSION 
 
 
The Crank-Nicolson implicit method with second order accurate in time and space direction is proposed for 

solving the NLS equation with variable coefficient.  This method is shown to be unconditionally stable for the 
linearized NLS equation with variable coefficient. Numerical tests presented for the NLS equation with variable 
coefficient show that our method is in agreement with the analytical method. 
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