IN-VIVO INDUCED ANTIGENS
OF Toxoplasma gondii AND THEIR APPLICATION
IN DIAGNOSIS OF HUMAN TOXOPLASMOSIS

BY

ATEFEH AMERIZADEH

Thesis submitted in fulfilment of the requirements
for the degree of
Doctor of Philosophy (Ph.D.)

February 2015
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

All praises to Allah for the strengths and His blessing in completing this thesis. A special appreciation goes to my supervisor, Professor Dr. Rahmah Noordin for her supervision and constant support. Her invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research. Gratitude is also due to Dr. Khoo for her assistance and wealth of knowledge. Appreciation goes to the rest of my “lab family” Mohd Hafiznur Yunus, Puan Sabariah, Syahida, Anizah, Farhanah, Teh Ay Ing, Syazwan, Chang, Izzatie, Ghazali, Fardaus, Dr. Geita, Dr. Akbar, Zohreh and Farzaneh. Sincere thanks to the administration staffs especially Ms. Fauziah, Mr Irwan, Ms. Nurul, Mr. Adli and Mr. Azam who always being helpful to me.

Last but not least, my deepest gratitude goes to my beloved family members especially my parents for their endless love, continued support and prayers; also not forgetting my fiancé for his patience and encouragement.

This study was mainly funded by Science Fund from Ministry of Science and Innovation, No. 02-01-05-SF0428 and partly by Universiti Sains Malaysia (USM) Postgraduate Student research grants No: 1001/CIPPM/8130132. Thank you also to Institute Postgraduate Studies (IPS) for giving me GRA financial support for part of my study.
To my parents
TABLE OF CONTENTS

LIST OF TABLES ... xvi

LIST OF FIGURES .. xviii

ABSTRAK ... xxii

ABSTRACT .. xxv

CHAPTER 1- INTRODUCTION

1.1 Overview of Toxoplasma gondii and toxoplasmosis .. 1

1.2 Historical background and taxonomy of Toxoplasma gondii 2

1.3 Morphology .. 4

1.3.1 Tachyzoites ... 4

1.3.2 Bradyzoites ... 6

1.3.3 Oocysts .. 7

1.4 Life cycle of T. gondii .. 9

1.5 Epidemiology ... 12

1.6 Transmission ... 13

1.6.1 Congenital transmission .. 13

1.6.2 Foodborne transmission .. 16

1.6.3 Animal to human (Zoontonic) transmission .. 19

1.6.4 Other routes of transmission .. 20

1.7 Pathogenesis of Toxoplasmosis .. 21

1.8 Strains of T. gondii ... 23

1.9 Immune response of Toxoplasmosis .. 24

1.10 Clinical presentations of Toxoplasmosis in human ... 26

1.10.1 Infection in immunocompetent individuals .. 26

1.10.2 Infection in immunocompromised patients .. 26

1.10.3 Toxoplasmosis and risk of schizophrenia .. 27
1.10.4 Infection in-utero ... 28
1.11 Diagnosis .. 28
 1.11.1 Immunodiagnosis .. 28
 1.11.1.1 Sabin-Feldman Dye Test (DT) .. 30
 1.11.1.2 Indirect Fluorescent Assay (IFA) ... 31
 1.11.1.3 Latex Agglutination Test/Indirect Agglutination Test (LA) 31
 1.11.1.4 Immunosorbent Agglutination Assay (ISAGA) 32
 1.11.1.5 Enzyme-linked immunosorbant assays (ELISA)............... 32
 1.11.1.6 IgG avidity tests ... 33
 1.11.1.7 Rapid diagnostic tests (RDTs) .. 34
 1.11.1.8 Western blot .. 35
 1.11.1.9 AC/HS test .. 36
 1.11.1.10 Toxoplasma serological profile (TSP) 37
 1.11.1.11 Recombinant antigens for serodiagnosis 38
 1.11.2 Inoculation into laboratory animal and cell culture 39
 1.11.3 Histological Diagnosis .. 39
 1.11.4 Molecular Diagnosis ... 40
 1.12 Prevention strategies ... 42
 1.13 Treatment of Toxoplasmosis ... 43
 1.14 In-vivo Induced Antigen Technology (IVIAT): Overview 44
 1.15 Statement of the problem and rationale of the study 48
 1.16 Objectives of the study .. 50

CHAPTER 2- MATERIALS AND METHODS
 2.1 Flow chart ... 51
 2.2 Materials .. 54
 2.2.1 Screening and classification of serum samples 54
2.2.1.1 Serum samples used for the part I of study... 55
2.2.1.2 Serum samples used for diagnostic sensitivity and specificity evaluation by western blot ... 56
2.2.1.3 Serum samples used in development of rapid dipstick dot test.......... 56
2.2.2 Parasite strain and growth conditions .. 57
 2.2.2.1 Maintenance of in-vitro T. gondii .. 57
 2.2.2.2 Maintenance of in-vivo T. gondii in mice .. 58
2.2.3 Common chemicals.. 58
2.2.4 Reagents for serum adsorption... 61
 2.2.4.1 Microsphere beads.. 61
 2.2.4.2 Phosphate buffer saline (PBS)... 61
 2.2.4.3 *In-vitro E.coli* XLB-blue MRF’ and T.gondii cell lysate and whole cell ... 61
 2.2.4.4 Luria-Bertani Broth (LB) .. 61
 2.2.4.5 Lysis buffer ... 62
 2.2.4.6 Protease Inhibitor cocktail .. 62
 2.2.4.7 Lysozyme ... 62
 2.2.4.8 Washing and blocking solutions for microsphere beads 63
2.2.5 Reagents for Indirect Enzyme Linked Immunosorbent Assay (ELISA) 63
 2.2.5.1 Washing solution... 63
 2.2.5.2 Blocking solution-3% BSA ... 63
 2.2.5.3 Secondary antibody solution ... 63
 2.2.5.4 Substrate solution ... 63
2.2.6 Reagents for cDNA library amplification and tittering........................... 64
 2.2.6.1 Lambda ZAP® II vector system ... 64
 2.2.6.2 Bacterial host strain ... 64
 2.2.6.3 Luria-Bertani broth (LB) ... 64
2.2.6.4 LB agar .. 65
2.2.6.5 NZY broth ... 65
2.2.6.6 NZY agar.. 65
2.2.6.7 NZY Top agar .. 65
2.2.6.8 SM buffer .. 66
2.2.6.9 MgSO₄ ... 66
2.2.6.10 Maltose .. 66

2.2.7 Reagents for cDNA library immunoscreening 66
2.2.7.1 Washing Buffer (stock solution) 66
2.2.7.2 Working washing solution (TBS-T) 66
2.2.7.3 Blocking Solution / diluent 67
2.2.7.4 Primary antibody .. 67
2.2.7.5 Secondary antibody ... 67
2.2.7.6 SuperSignal® West Pico chemiluminescent substrate 67
2.2.7.7 Kodak developer .. 68
2.2.7.8 Kodak fixer ... 68
2.2.7.9 Kodak films ... 68
2.2.7.10 IPTG (10 mM) .. 68
2.2.7.11 Nitrocellulose filter membrane 68

2.2.8 Reagents for in-vivo excision .. 68

2.2.9 Reagents for plasmid purification ... 69
2.2.9.1 LB ampicillin ... 69
2.2.9.2 Reagents for preparation agarose gel and electrophoresis 69
 2.2.9.2.1 TBE buffer .. 69
 2.2.9.2.2 Loading buffer (6X) 69
 2.2.9.2.3 Ethidium bromide ... 69

2.2.10 Reagents for real-time PCR (qPCR) .. 69
2.2.10.1 RNA preparation ... 69
2.2.10.2 cDNA preparation .. 70
2.2.10.3 Real-time PCR ... 70
2.2.11 Reagents for sensitivity and specificity test 70
2.2.12 Reagents for preparation of competent cells and cloning 70
 2.2.12.1 Magnesium chloride (MgCl₂, 100 mM) 70
 2.2.12.2 Calcium chloride (CaCl₂, 100 mM) 70
 2.2.12.3 Ampicillin stock ... 71
 2.2.12.4 Kanamycin stock ... 71
 2.2.12.5 Ampicillin agar plates .. 71
 2.2.12.6 Kanamycin agar plates ... 71
2.2.13 Reagents for expression of recombinant protein 72
 2.2.13.1 Terrific-Broth ... 72
 2.2.13.2 Salt solution ... 72
 2.2.13.3 Terrific Broth Salt Solution ... 72
 2.2.13.4 Isopropyl b-D-1-thiogalactopyranosidestock (IPTG) 800 mM 72
 2.2.13.3 Lysozyme stock (10 mg/ml)(w/v) ... 72
 2.2.13.4 DNase I (w/v) ... 73
2.2.14 Reagents for purification of recombinant protein 73
 2.2.14.1 Lysis buffer 20mM .. 73
 2.2.14.2 Lysis buffer 30mM .. 73
 2.2.14.3 Lysis buffer 40mM .. 73
 2.2.14.4 Elution buffer .. 74
 2.2.14.5 Nickel-nitrilotriacetic acid (Ni-NTA) resin 74
2.2.15 Reagents for buffer exchange .. 74
 2.2.15.1 Storage buffer .. 74
2.2.16 Reagents for SDS-PAGE .. 74
2.2.16.1 Resolving buffer ... 74
2.2.16.2 Stacking buffer ... 75
2.2.16.3 Sample buffer (5X) .. 75
2.2.16.4 Ammonium persulfate, 20% (w/v) .. 75
2.2.16.5 Running buffer ... 75
2.2.17 Reagents for Coomassie blue staining 75
 2.2.17.1 Coomassie blue staining solution 75
 2.2.17.2 Destaining solution .. 76
2.2.18 Reagents for western blot ... 76
 2.2.18.1 Western blot transfer solution .. 76
 2.2.18.2 Washing buffer .. 76
 2.2.18.3 Working washing buffer .. 76
 2.2.18.4 Blocking solution ... 77
 2.2.18.5 Primary antibody ... 77
 2.2.18.6 Secondary antibody ... 77
 2.2.18.7 Kodak RPX-Omt developer, fixer and films 77
2.2.19 Reagents for development of lateral flow dipstick dot test 77
 2.2.19.1 Colloidal gold conjugate IgM (Au-IgM) 77
 2.2.19.2 Blocking solution .. 78
 2.2.19.3 Primary antibody ... 78
2.3 Methodology ... 78
 2.3.1 Serum pre-adsorption ... 78
 2.3.1.1 Preparation of whole cell pellets of E.coli XLB-blue MRF’ and T.gondii ... 78
 2.3.1.2 Preparation of cell lysates of E.coli XLB-blue MRF’ and T.gondii ... 78
 2.3.1.3 RCDC method for determination of protein concentration ... 79
2.3.1.4 Coating of microsphere beads ... 80
2.3.1.5 Serum pre-adsorption for pooled chronic and acute sera 80
2.3.1.6 Serum pre-adsorption of individual serum samples for
diagnostic sensitivity and specificity evaluation by phage
immunoblot ... 82
2.3.2 ELISA .. 82
2.3.3 Amplification and tittering of *T. gondii* Lambda ZAP II cDNA library . 83
 2.3.3.1 Reviving and sub-plating of *E. coli* XLBlue MRF’ cells 83
 2.3.3.2 Overnight culture of *E. coli* XLBlue MRF’ cells 83
 2.3.3.3 Optimisation of cDNA library titer .. 83
 2.3.3.4 Amplification of cDNA library ... 84
2.3.4 Immunoscreening of *T. gondii* Lambda ZAP II cDNA library 85
 2.3.4.1 IPTG-impregnated nitrocellulose membrane 85
 2.3.4.2 Primary immunoscreening ... 85
 2.3.4.3 Visualization of signal by chemiluminecense substrate 86
 2.3.4.4 Clone isolation .. 87
 2.3.4.5 Secondary and tertiary screening .. 87
2.3.5 *In-vivo* excision of selected clones .. 89
2.3.6 Plasmid extraction and purification .. 90
 2.3.6.1 Procedure for extraction and purification 90
 2.3.6.2 Determination of purity and concentration of extracted
 plasmids ... 91
 2.3.6.3 Agarose gel electrophoresis to analyze extracted plasmids... 91
2.3.7 Sequencing and data analysis .. 92
2.3.8 Real time PCR (qPCR) .. 92
 2.3.8.1 RNA extraction ... 92
 2.3.8.2 Reverse Transcriptase PCR (RT-PCR) 93
2.3.8.3 Primers ... 94
2.3.8.4 Real-time PCR ... 95
2.3.8.5 Data analysis ... 95
2.3.9 Diagnostic sensitivity and specificity evaluation by phage immunoblot 96
2.3.10 Recombinant antigen .. 97
2.3.11 Preparation of competent cells of E. coli TOP10 and E. coli Bl21 (DE3) ... 98
2.3.12 Transformation of recombinant plasmid into E. coli TOP10 and E. coli Bl21 (DE3) competent cells ... 98
2.3.13 Long-term storage of recombinant plasmid .. 99
2.3.14 Expression of histidine-tagged recombinant protein 99
2.3.15 Purification of histidine-tagged expressed recombinant protein 100
 2.3.15.1 Preparation of supernatant (cleared cell lysates) under native condition ... 100
 2.3.15.2 Purification of histidine-tagged recombinant protein 101
2.3.16 Evaluation of purified recombinant protein by SDS-PAGE Gel 102
 2.3.16.1 Separating gel ... 102
 2.3.16.2 Stacking gel .. 102
 2.3.16.3 Loading of purified recombinant protein in SDS-PAGE 102
2.3.17 Mass spectrometry analysis of recombinant protein band 103
2.3.18 Buffer exchange .. 103
2.3.19 Evaluation of purified protein by western blot .. 104
 2.3.19.1 Optimization of the various parameters ... 104
 2.3.19.1.1 Protein transfer onto nitrocellulose membrane (semi-dry western blot transfer) 104
CHAPTER 3- RESULTS
3.1 Chronic sera pre-adsorption .. 109

3.2 Optimization of parameters for cDNA library immunoscreening using
pooled pre-adsorbed chronic sera ... 111
 3.2.1 Optimization of the titer of cDNA library 111
 3.2.2 Optimization of the dilution for primary and secondary antibodies .. 115

3.3 Plasmid extraction of IVIAT-identified genes using chronic sera 117
 3.3.1 Determination of plasmid concentration and purity by
 nanophotometer ... 117
 3.3.2 Determination of plasmid existence and quality by gel
 electrophoresis ... 117

3.4 Sequencing analysis of IVIAT-identified genes using chronic sera 120

3.5 Real-time PCR expression analysis of IVIAT-identified genes of
 chronic sera ... 122

3.7 Re-sequencing of three up-regulated IVIAT-identified genes of
 chronic sera ... 126
 3.7.1 Clone C3b .. 127
3.7.2 Clone C10a ... 128
3.7.3 Clone C12a ... 129

3.8 Diagnostic sensitivity and specificity evaluation of three
up-regulated IVIAT-identified genes of chronic sera by phage immunoblot. 130

3.9 Acute sera pre-adsorption .. 133

3.10 Optimization of parameters for cDNA library immunoscreening using
pooled pre-adsorbed acute sera ... 135

3.11 Plasmid extraction of IVIAT-identified genes using acute sera 138
3.11.1 Determination of plasmid concentration and purity by
nanophotometer ... 138
3.11.2 Determination of plasmid existence and quality by gel
electrophoresis ... 138

3.12 Sequencing analysis of IVIAT-identified genes of acute sera 142

3.13 Real-time PCR expression analysis of IVIAT-identified genes of
acute sera .. 147
3.13.1 Real-time expression analysis of IgM-detected genes................................. 147
3.13.2 Real-time expression analysis of IgG-detected genes 148

3.14 Re-sequencing of top three up-regulated IVIAT-identified genes of
acute sera detected by IgM and IgG ... 158
3.14.1 Clone AG17 ... 159
3.14.2 Clone AG21 ... 160
3.14.3 Clone AG26 ... 161
3.14.4 Clone AM2 ... 162
3.14.5 Clone AM11 ... 163
3.14.6 Clone AM15 ... 164

3.15 Diagnostic sensitivity and specificity evaluation of top three up-regulated
IVIAT-identified genes of acute sera by phage immunoblot 165
3.16 Preparation of recombinant proteins from clone AM15 .. 168

3.16.1 Recombinant protein TgAM15 (rTgAM15) .. 169

3.16.1.1 Expression of recombinant TgAM15 protein (rTgAM15) .. 174

3.16.1.2 Detection of presence of the histidine-tag in the rTgAM15 176

3.16.1.3 Analyzing the subjected band of rTgAM15 by

MALDI-TOF-TOF ... 178

3.16.1.4 Optimization of various parameters for diagnostic sensitivity

and specificity evaluation of rTgAM15 to detect anti-

Toxoplasma IgM by western blot ... 183

3.16.1.5 Diagnostic sensitivity and specificity evaluation of the

rTgAM15 to detect anti-Toxoplasma IgM by western blot

analysis .. 184

3.16.2 Recombinant protein TgRA15 (rTgRA15) .. 187

3.16.2.1 Expression of recombinant TgRA15 protein (rTgRA15) 189

3.16.2.2 Detection of presence of the histidine-tag in the rTgRA15. 193

3.16.2.3 Analyzing the subjected band of rTgRA15 by

MALDI-TOF-TOF .. 195

3.16.2.4 Optimization of various parameters for diagnostic sensitivity

and specificity evaluation of rTgRA15 to detect anti-

Toxoplasma IgM by western blot ... 198

3.16.2.5 Diagnostic sensitivity and specificity evaluation of the

rTgRA15 to detect anti-Toxoplasma IgM by western blot

analysis .. 200

3.17 Lateral flow dipstick dot test for rTgRA15 ... 204

CHAPTER 4- DISCUSSION

4.1 Toxoplasma specific antibodies in diagnosis ... 207

4.2 In-vivo induced antigen technology (IVIAT) .. 207
4.2.1 IVIAT-identified sequences using pooled absorbed chronic sera........ 214
4.2.2 IVIAT-identified sequences using pooled absorbed acute sera........ 219
4.3 Production of recombinant protein from clone AM15.......................... 228
 4.3.1 Diagnostic evaluation of TgAM15 by western blot 230
 4.3.2 Diagnostic evaluation of TgRA15 by western blot 230
 4.3.3 Evaluation of a rapid dipstick dot test using recombinant TgRA15 protein.. 231
4.4 Rapid tests for detection of toxoplasmosis 231
4.5 Limitations of the study and future directions 233
4.6 Conclusion ... 236

REFERENCES .. 238
APPENDICES ... 257
PUBLICATIONS ... 268
PATENT ... 269
LIST OF TABLES

3.1 The average plaque counts of amplified *T. gondii* cDNA library at different dilutions

3.2 The concentrations and purity of extracted plasmids from isolated clones of cDNA library immunoscreening using pooled adsorbed chronic sera

3.3 *T. gondii* genes identified via IVIAT using pooled adsorbed chronic sera

3.4 List of primers used for the real-time PCR analysis of target *T. gondii* genes identified by IVIAT using pooled adsorbed chronic and IgG probe

3.5 Relative mRNA expression levels of the IVIAT-identified genes using chronic sera by $2^{\Delta\Delta Ct}$ method

3.6 Diagnostic sensitivity and specificity evaluation of three top up-regulated IVIAT-identified clones from chronic sera, probed with IgG

3.7 The concentration and purity of extracted plasmids from isolated clones after cDNA library screening using acute sera and IgM probe

3.8 The concentration and purity of extracted plasmids from isolated clones after cDNA library screening using acute sera and IgG probe

3.9 *T. gondii* genes identified by IVIAT using adsorbed acute sera and IgM probe

3.10 *T. gondii* genes identified by IVIAT using adsorbed acute sera and IgG probe

3.11 List of the primers used for the real-time PCR analysis of target *T. gondii* genes identified by IVIAT using acute sera and IgM

3.12 List of the primers used for the real-time PCR analysis of target *T. gondii* genes identified by IVIAT using acute sera and IgG

3.13 Relative mRNA expression levels of IVIAT-identified genes of *T. gondii* detected by IgM using $2^{\Delta\Delta Ct}$ method (*in-vivo* over *in-vitro*) group
3.14 Relative mRNA expression levels of IVIAT-identified genes of *T. gondii* detected by IgG using $2^{\Delta\Delta C_{t}}$ method (*in-vivo* over *in-vitro*)

3.15 Detailed data for mRNA expression level of the IVIAT-identified clone AM15 by $2^{\Delta\Delta C_{t}}$ method

3.16 Diagnostic sensitivity and specificity evaluation of top up-regulated clones identified using acute sera detected by IgM or IgG

3.17 Summary of the results for diagnostic sensitivity and specificity analysis of rTgAM15 to detect anti-*Toxoplasma* IgM by western blot

3.18 Summarized results of diagnostic sensitivity and specificity evaluation of rTgRA15 to detect anti-*Toxoplasma* IgM by western blot

3.19 Lateral flow IgM dipstick dot test of rTgRA15 incubated with different negative and positive serum samples
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Taxonomical classification of Apicomplexa parasites including Toxoplasma</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Images of tachyzoites, bradyzoites and oocysts</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic drawings of tachyzoite (left) and bradyzoite (right) of T. gondii</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Summary of entire life cycle of Toxoplasma gondii</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Transmission of T. gondii to humans and animals</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>The frequency of congenital toxoplasmosis and its relation to the severity of consequences on fetus and gestational age</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>A Schematic view of IVIAT</td>
<td>47</td>
</tr>
<tr>
<td>2.1</td>
<td>Flow chart of the overall methodology of this study</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic view of cDNA library immunuscreening</td>
<td>88</td>
</tr>
<tr>
<td>3.1</td>
<td>Serum pre-adsorption of pooled chronic sera</td>
<td>110</td>
</tr>
<tr>
<td>3.2</td>
<td>Representative images of immunoblotting obtained after cDNA library screenings (primary, secondary and tertiary)</td>
<td>113</td>
</tr>
<tr>
<td>3.3</td>
<td>Representative images of optimizations of primary and secondary antibodies for cDNA library screening with adsorbed chronic sera and IgG-HRP</td>
<td>116</td>
</tr>
<tr>
<td>3.4</td>
<td>Representative gel electrophoresis images of three plasmids extracted from bacterial clones from IVIAT performed using chronic sera</td>
<td>119</td>
</tr>
<tr>
<td>3.5</td>
<td>Relative gene expression level of IVIAT-identified genes using chronic sera</td>
<td>124</td>
</tr>
<tr>
<td>3.6</td>
<td>Representative results of diagnostic sensitivity and specificity evaluation of clone C3b by phage immunoblot</td>
<td>132</td>
</tr>
<tr>
<td>3.7</td>
<td>Serum pre-adsorption of pooled acute low-IgG avidity sera</td>
<td>134</td>
</tr>
<tr>
<td>3.8</td>
<td>Representative images of optimization of primary and secondary antibodies for cDNA library screening with pooled adsorbed acute sera and IgM probe</td>
<td>136</td>
</tr>
</tbody>
</table>
3.9 Representative images of optimization of primary and secondary antibodies for cDNA library screening with pooled adsorbed acute sera and IgG probe

3.10 Representative gel electrophoresis image for 10 extracted plasmids of clones identified by IVIAT using acute sera

3.11 Relative gene expression level of IVIAT-identified genes using acute low-IgG avidity sera probed with anti-human IgM-HRP

3.12 Relative gene expression level of IVIAT-identified genes using acute low-IgG avidity sera probed with anti-human IgG-HRP

3.13 Representative photo of diagnostic sensitivity and specificity evaluation of clone AM15 by phage immunoblot

3.14 Synthetic gene (TgAM15) was cloned into NdeI /BamHI digested pET28a(+)

3.15 Synthetic gene (TgRA15) was cloned into NdeI /BamHI digested pET28a(+)

3.16 TGGT1_269830 or TGME49_269830 or TGVEG_017050: full length AM15 sequence (gene fragment insert of AM15 clone is highlighted in yellow and underlined)

3.17 Predicted protein sequences of clone AM15 (TGME_269830), RAP domain-containing protein, recombinant TgAM15 protein. Recombinant TgRA15 antigen sequence underlined and highlighted in yellow

3.18 SDS-PAGE gel photo of rTgAM15 after expression and purification

3.19 Western blot analysis of recombinant TgAM15 protein incubated with mouse monoclonal anti-histidine-HRP

3.20 Mascot protein search results for rTgAM15 (using Toxo.DB)

3.21 Mascot search results based on peptide summary report for rTgAM15 (using Toxo.DB)

3.22 Mascot protein search results for rTgAM15 (using INFORMM.DB)

3.23 Mascot search results based on peptide summary report for rTgAM15 (using INFORMM.DB)

3.24 Representative immune blot result of optimization of various parameters for IgM western blot of rTgAM15
Alignment result of DNA sequence of IgM-detected clone AM15 with DNA sequence of TgRA15

SDS-PAGE gel image of rTgRA15 after expression and purification (30°C, 4 hours, 1 mM IPTG)

SDS-PAGE gel image of rTgRA15 after expression and purification (37°C, 4 hours, 1 mM IPTG)

SDS-PAGE gel image of rTgRA15 after expression and purification (25°C, overnight, 0.1 mM IPTG)

Western blot analysis of recombinant TgRA15 protein incubated with mouse monoclonal anti-histidine-HRP

Mascot protein search results for rTgRA15

Mascot search results based on peptide summary report for rTgAM15

Representative immune blot result of optimization of various parameters for IgM western blot of rTgRA15

Representative IgM immuno blot result of rTgRA15 antigen incubated with negative and positive serum samples

Representative IgM dipstick dot test of TgRA15 recombinant antigen at different concentrations incubated with individual serum samples. The conjugate used was monoclonal IgM conjugated to gold (Au-IgM) at OD 5
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>ammonium persulphate</td>
<td></td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
<td></td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
<td></td>
</tr>
<tr>
<td>ESTs</td>
<td>expressed sequence tags</td>
<td></td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
<td></td>
</tr>
<tr>
<td>HRP</td>
<td>horse-radish peroxidase</td>
<td></td>
</tr>
<tr>
<td>i.e</td>
<td>id est (that is)</td>
<td></td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
<td></td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
<td></td>
</tr>
<tr>
<td>INFORMM</td>
<td>Institute for Research in Molecular Medicine</td>
<td></td>
</tr>
<tr>
<td>INF-γ</td>
<td>Interferon γ</td>
<td></td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-beta-D-thiogalactopyranoside</td>
<td></td>
</tr>
<tr>
<td>IVIAT</td>
<td>in-vivo induced antigen technology</td>
<td></td>
</tr>
<tr>
<td>ivi</td>
<td>in-vivo induced</td>
<td></td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
<td></td>
</tr>
<tr>
<td>NCP</td>
<td>nitrocellulose membrane</td>
<td></td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nickel-nitrilotriacetic acid</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>pfu</td>
<td>plaque forming units</td>
<td></td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative PCR</td>
<td></td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase PCR</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>Terrific-Broth</td>
<td></td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/Borate/EDTA</td>
<td></td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
<td></td>
</tr>
<tr>
<td>T. gondii</td>
<td>Toxoplasma gondii</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
<td></td>
</tr>
</tbody>
</table>
ANTIGEN ARUHAN IN-VIVO Toxoplasma gondii DAN APLIKASINYA DALAM DIAGNOSIS TOKSOPLASMOSIS PADA MANUSIA

ABSTRAK

Toxoplasma gondii bertaburan secara meluas di seluruh dunia, dengan prevalens yang tinggi di kawasan tropika. Jangkitan primer oleh T.gondii dalam wanita hamil mungkin mengakibatkan jangkitan kongenital terhadap fetus, manakala pesakit jangkitan kronik dengan system imun terkompromi adalah berisiko tinggi untuk mengalami pengaktifan kembali penyakit tersebut di sepanjang kehidupan mereka. Diagnosis bagi toksoplasmosis biasanya dijalankan melalui pengesanan antibodi IgM dan IgG yang spesifik terhadap T.gondii. Kekurangan sensitiviti dalam kebanyakan ujian IgM (khususnya bagi jangkitan kongenital) dan isu spesifisiti dalam ujian-ujian IgG dan IgM adalah masih wujud. Oleh itu, kajian perlu dilakukan untuk mengenalpasti antigen T. gondii yang boleh meningkatkan ketepatan diagnosis bagi toksoplasmosis.

Teknologi antigen aruhan in-vivo (IVIAT) adalah kaedah yang sesuai untuk mengesan antigen-antigen baru dengan nilai diagnostik, memandangkan antigen aruhan in-vivo dianggap berkait secara langsung dengan jangkitan manusia yang sebenar. Dalam kajian ini, IVIAT menggunakan saringan imun perpustakaan cDNA faj T. gondii dan prob IgG/IgM dijalankan menggunakan serum terjerap daripada pesakit yang mempunyai bukti serologi bagi jangkitan kronik dan akut. Penjerapan serum dilakukan menggunakan tiga persediaan antigen yang berbeza daripada setiap sel E.coli XL-1 Blue MRF’ dan T. gondii yang ditumbuhkan secara in-vitro; seterusnya serum terjerap tadi digunakan untuk menyaring perpustakaan cDNA faj
ekspresi *T.gondii*. Klon yang mempamerkan reaktiviti yang tinggi kemudiannya dijujuki, dan klon yang mempunyai homologi yang tinggi dengan *T.gondii* seterusnya dianalisis kadar pengekspresannya menggunakan *PCR masa-nyata* kuantitatif.

Jujukan sisipan DNA bagi klon AM15 telah di ‘custom-cloned’ ke dalam vektor ekspresi (pET28), diikuti oleh pengekspresan dan penulenan protein rekombinan (TgRA15); dan pengesahan identity oleh MALDI-TOF-TOF. Protein rekombinan TgRA15 menunjukkan 100% (15/15) sensitiviti diagnostik dan 97% (29/30)
spesifisiti diagnostik untuk mengesan antibodi IgM anti-*Toxoplasma*. Satu ‘lateral flow dipstick dot test’ menggunakan protein rekombinan TgRA15 telah dibangunkan dan ia menunjukkan 100% (27/27) sensitiviti diagnostik dan 97% (29/30) spesifisiti diagnostik untuk pengesanan IgM *Toxoplasma*.

Secara kesimpulannya, kajian ini telah mengenalpasti beberapa antigen aruhan *in-vivo* menggunakan sampel serum daripada pesakit akut dan kronik yang dijangkiti oleh *Toxoplasma*, dan prob IgM dan IgG. Antaranya, klon AM15 yang dikenalpasti menggunakan prob IgM, secara eksklusif diekspresi secara *in-vivo*. Protein rekombinan tulen TgRA15, menunjukkan sensitiviti dan spesifisiti diagnostik yang tinggi, dan ujian ‘dipstik dot’ yang dibangunkan menggunakannya menunjukkan potensi yang baik untuk diaplikasikan sebagai ujian pantas IgM bagi mengesan penyakit toksoplasmosis pada manusia.
IN-VIVO INDUCED ANTIGENS OF *Toxoplasma gondii* AND THEIR APPLICATION IN DIAGNOSIS OF HUMAN TOXOPLASMOSIS

ABSTRACT

Toxoplasma gondii is widely distributed throughout the world, with higher prevalence in tropical areas. Primary infection with *T. gondii* during pregnancy may result in congenital infection of the fetus while chronically-infected patients with compromised immune system are at higher risk for reactivation of the disease later in their life. Diagnosis of *T. gondii* infection is usually performed by detection of IgM and IgG antibodies against *T. gondii*. The lack of sensitivity in many IgM tests (particularly for congenital infection) and issues of specificities in IgG and IgM tests still exist. Thus research is still needed to identify *T. gondii* antigens that can improve the accuracy of diagnosis of toxoplasmosis.

In-vivo induced antigen technology (IVIAT) is a promising method for identification of new antigens of diagnostic value, since *in-vivo* expressed antigens are thought to be directly related to the actual human infection. In this study, IVIAT using *T. gondii* cDNA phage library immunoscreening and IgG/IgM probes were performed using pre-absorbed sera from patients with serological evidence of chronic and acute infection. Sera pre-adsorption was performed against three different preparations of antigens from *in-vitro*-grown cells of each *E. coli* XL1-Blue MRF’ and *T. gondii*; subsequently the adsorbed sera was used to screen *T. gondii* cDNA phage expression library. The strongly reactive clones were sequenced, and those with high homology to *T. gondii* were subjected to expression analysis using quantitative real-time PCR.

With IVIAT using chronic sera and IgG probe, 8 reactive clones were found to have high homology to *T. gondii* genes. Expression analysis using real-time PCR showed that SAG-1 related sequence 3 (SRS3) and two hypothetical genes were up-regulated.
in-vivo relative to their expression levels in-vitro. With IVIAT using acute sera, 29 reactive clones from each IgM and IgG immunoscreenings were found to have high homology to *T. gondii* genes. Real-time PCR expression analysis showed that 21 IgM-detected genes and 11 IgG-detected genes were up-regulated in-vivo relative to their expression levels in-vitro. Fourteen clones showed more than 10 times fold expression levels in-vivo as compared to in-vitro. An IgM detected clone (AM15) was found to be almost exclusively expressed in-vivo but not in-vitro, with 1217 fold change. Using individual serum samples, this clone showed high sensitivity (100%, n=18) and specificity (100%, n=10) for detection of *T. gondii*-specific IgM antibody. It was identified as a gene that expresses RAP (RNA associated protein) domain-containing protein (TGME49_269830).

The DNA sequence insert of AM15 clone was custom-cloned into an expression vector (pET 28), followed by expression and purification of the recombinant protein (TgRA15); and confirmation by MALDI-TOF-TOF. The TgRA15 recombinant protein demonstrated 100% diagnostic sensitivity (n=15) and 97% specificity (29/30) for detection of anti-*Toxoplasma* IgM antibody. A lateral flow dipstick dot test using TgRA15 recombinant protein was developed and it showed 100% diagnostic sensitivity (n=27) and 97% specificity (29/30) for *Toxoplasma* IgM detection.

In summary, this study has identified a panel of in-vivo induced antigens using serum samples from acute and chronic *Toxoplasma*-infected patients, and IgM and IgG probes. Among them, clone AM15 identified using IgM probe, was found to be exclusively and highly expressed in-vivo. The purified recombinant protein TgRA15, showed high diagnostic sensitivity and specificity; and the dipstick dot test developed using this recombinant antigen showed good potential for application as an IgM rapid test to diagnose human toxoplasmosis.
CHAPTER ONE
INTRODUCTION

1.1 Overview of Toxoplasma gondii and toxoplasmosis

Toxoplasma gondii is an obligate intracellular parasite from the phylum Apicomplexa. It is capable of producing life-long chronic infection in humans and warm-blooded animals especially in the tropical countries. Approximately one third of the world’s population is infected with this protozoan parasite. Environmental, cultural factors and eating habits are thought to be key contributing factors in transmission of this infection. The word Toxoplasma comes from the Greek world toxon that mean “bow” and plasmid which mean “form”. Cats and other Felidae members are the definitive hosts for this parasite where the sexual phase occurs (Dubey, 2008; Thompson et al., 2009).

Toxoplasmosis is divided into three groups; congenital toxoplasmosis, acquired toxoplasmosis and reactivated/ recrudescent toxoplasmosis. Acquired toxoplasmosis is caused by consumption of food or water contaminated with the parasite from faeces of infected cats. Congenital toxoplasmosis is the result of transmission of the parasite from infected mother to her unborn child. In immunocompetent individuals infection is usually asymptomatic and these people remain chronically infected with presence of cysts in the body especially brain. However during immunosuppression, reactivations of the disease can occur due to the conversion of slowly dividing bradyzoites into rapidly proliferating tachyzoites which may be influenced by genetic predisposition or diversity in virulence between different parasite strains (Kopecna, 2006; Dubey, 2010; Feustel et al., 2012).
1.2 Historical background and taxonomy

T. gondii was initially found in the liver and lymph of the gundi (*Ctenodactylus gundi*), a small rodent from North Africa by Charles Nicolle and Louis Manceaux in 1908 and independently by Splendore in Brazil. Then the same parasite was found by Mello in the lung of a dog in Turin Italy. He was also the first to report on acute canine toxoplasmosis (Miro et al., 2008; Ferguson, 2009). However the first case of human toxoplasmosis with the description of *Toxoplasma*-like organisms was identified in human retinal tissue by the ophthalmologist Josef Jankú from Czechoslovakia in 1923. The parasite was isolated from retinal tissue of neonates followed by additional reports on congenital infection caused by this parasite by Wolf in 1939. The life cycle of this parasite remained unknown until 1970, when several scientists found that the definitive host is the cat. Genetic diversity among *T. gondii* strains from animals and humans was first performed by Lehman in 2006 who reported geographic differences; including some strains which were found to be limited to Brazil only while others were found to be worldwide. Mapping of *T. gondii* genome was performed by Dubey in 2005 (Miro et al., 2008; Dubey 2008; Ferguson, 2009). According to the classical taxonomy, the parasite was placed in the domain Eukarya, kingdom Alveolata, phylum Apicomplexa, class Coccidia, order Eucoccidiorida, family Sarcocystidae, genus *Toxoplasma* and species *T. gondii* (Pereira et al., 2010). Figure 1.1 shows the taxonomical classification of Apicomplexan parasites including *T. gondii*.
Figure 1.1 Taxonomical classifications of Apicomplexan parasites including *Toxoplasma* (Roberts and Janovy, 2005).
1.3 Morphology

There are three infectious stages of *T. gondii*: i.e. tachyzoites (in groups or clones), bradyzoites (in tissue cysts), and sporozoites (in oocysts) (Dubey, 2008) as shown in Figure 1.2.

1.3.1 Tachyzoites

Frenkel in 1973 for the first time assigned the term “tachyzoite” (tachos = speed in Greek) to describe the rapidly multiplying stage in an intermediate host cell and in non-intestinal epithelial cells of definitive host. The term “tachyzoite” replaces the term “trophozoite” (trophicos = feeding in Greek) which was previously used. Tachyzoites have also been termed endozoites or endodyozoites. Aggregates of multiple tachyzoites are called terminal colonies, clones, or groups. The tachyzoite is a crescent shaped structure, approximately 2 by 6 µm (Figure 1.2a), with a pointed anterior (conoidal) end and a rounded posterior end. Ultrastructurally, the tachyzoite is composed of various organelles and inclusion bodies such as a pellicle (outer covering), polar rings, apical rings, micronemes, conoid, micropore, rhoptries, mitochondrion, golgi complex, endoplasmic reticulum, subpellicular microtubules, rough and smooth endoplasmic reticula, micropore, ribosomes, dense granules, nucleus, amyllopectin granules (which might be absent), and a multiple-membrane-bound plastid- like organelle which has also been called a golgi adjunct or apicoplast. The nucleus is usually situated toward the central area of the cell and contains clumps of chromatin and a centrally-located nucleolus (Dubey *et al.*, 1998; Dubey, 2010).
A) Tachyzoites stained with Giemsa
B) Cyst in the brain containing bradyzoites
C) Unsporulated oocyt
D) Sporulated oocyt

Figure 1.2 Images of tachyzoites, bradyzoites and oocysts of *T. gondii* (Robert-Gangneux and Dardé, 2012)
This proliferative form can infect every kind of nucleated cells including phagocytic and non-phagocytic cells by active transportation (Waree, 2008). Goldman in 1958 introduced endodyogeny as a specialized kind of multiplication which occurs when two progeny form inside the parent parasite. The replication of tachyzoites inside the host cells leads to damage and rupture of the cells. The release of tachyzoites into the blood stream causes intense inflammatory response and tissue infection especially for some organs such as eyes, skeletal and heart muscle. When the host immune response system takes control of infection process, the tachyzoites which are responsible for acute stage of infection transform to slowly dividing bradyzoites that are related to chronic stage of infection (Montoya and Liesenfeld, 2004; Waree, 2008; Dubey, 2010). Figure 1.3 shows the schematic image of structures of tachyzoites.

1.3.2 Bradyzoites

Frenkel in 1973 coined the term “bradyzoite” (brady = slow in Greek) to describe the slowly multiplying organism within a tissue cyst responsible for producing life-long chronic infection of the host. Bradyzoites are also called cystozoites (Figure 1.2b). A young cyst is small; 5 µm diameter with two bradyzoite inside it while others which are not so young contains thousands or hundreds of bradyzoites (Dubey, 2010). Tissue cysts with bradyzoites mostly form in visceral organs such as liver, lung and has predilection for muscular and neural tissues such as cardiac and skeletal muscles, brain and eyes (Dubey, 2010). These cysts become important in the case of immunosuppressed people in whom the cyst may rupture and release the bradyzoites which transform back to rapidly dividing tachyzoites that lead to the reactivated infection (Montoya and Liesenfeld, 2004; Lindsay and Dubey, 2009). As shown in
Figure 1.3, the internal structures of bradyzoite are similar to tachyzoite, however nucleus of the bradyzoite is located toward the posterior end; whereas in the nucleus of a tachyzoite is more centrally situated. In addition the content of the rhoptry in bradyzoite is electron dense, while those in tachyzoites are complex (labyrinthine) (Dubey, 2010).

1.3.3 Oocysts

Oocyst is the sexual form of *T. gondii*, with subspherical to spherical shape, 10 by 12 µm in diameter. Unsporulated oocysts (Figure 1.2c) can be found in the faeces of cats following completion of sexual stage in the epithelium of the feline gut; and sporulation occurs outside the definitive host within 1 to 5 days after excretion, depending upon temperature and aeration (Miro et al., 2008). Sporulated oocysts (Figure 1.2d) have sub-spherical to ellipsoidal shapes and 11 by 13 µm diameter. Each oocyst contains two ellipsoidal sporocysts, each measuring 6 by 8 µm in diameter and contains four sporozoites. When the sporocysts are digested by mammals including humans, they become infected (Montoya and Liesenfeld, 2004).
Figure 1.3 Schematic drawings of tachyzoite (left) and bradyzoite (right) of *T. gondii*. Drawings are composites of electron micrographs (Dubey *et al.*, 1998)
1.4 Life cycle of *T. gondii*

T. gondii is a parasite with a heteroxenous life cycle, requiring different animal hosts to complete its life cycle. The definitive hosts for this parasite are family of Felidae, either domestic cats or other felids such as ocelots, jaguarundi, margays, bobcats, Bengal tiger and Pallas cats. Invertebrates such as flies, earthworms and cockroaches can spread oocysts mechanically (Torda, 2001, Nutter et al., 2004). The sexual phase of *T. gondii* takes place in the gut intestinal epithelium of the cat, starting with ingestion of tissue cysts containing the bradyzoite (Figure 1.4). After that the cyst wall is digested by the gastric acid, lytic enzymes and bile of the upper digestive tract. The bradyzoites are released and invade the gut intestinal epithelium followed by bradyzoites conversion into invasive tachyzoites stage with systemic dissemination.

Meanwhile some parasites inside the epithelium pass five different stages gradually where one tachyzoite produce two daughter cells by schizogeny, together with formation of multiple merozoite around a previously divided nucleus (Dubey et al., 1998). The sexual stages (or gamete) are produced three to fifteen days after cyst ingestion. Several bi-flagellated microgametes formed through mature male gamete division, and in parallel with development of a female gamete. The sexual stage takes place only in the microwilli of the small intestine of the definitive host cell microvilli, especially the ileum. Aided by its flagella, the male microgamete fertilizes the female gamete and forms a zygote within a thick walled oocyst. Oocysts are released from the ruptured epithelial cells into the intestinal lumen of the definitive host and excreted as unsporulated oocysts into the environment via the cat faeces.
Figure 1.4 Summary of the life cycle of *T. gondii* (Ferguson, 2009)
After 1-20 days, two internal sporocysts containing four sporozoites are produced inside the oocysts. Since oocysts are very resistant to variations of environmental conditions; they can maintain their infectivity for a long time until ingested by a new host (Dubey, 2004; Jones and Dubey 2010).

Ingestion of oocysts by intermediate (non-feline) hosts including humans will result in systemic infection; while ingestion of oocysts by other felines leads to formation of sexual stages as well as systemic infection. After primary invasion of epithelial cells in a new host, the sporozoites convert to the actively proliferative tachyzoite form. Reproduction via asexual proliferation (endodyogeny) takes place in the intestinal epithelium followed by crossing of the lamina propria. The tachyzoites rapidly move from the intestinal tract to muscles and internal organs, especially the brain, to establish a latent infection which occurs by conversion of tachyzoites to the slowly replicating bradyzoites. Enclosed in the tissue cysts, the slowly replicating bradyzoites are viable for many months to many years, if not for the whole life of the host. Persistent chronic infection in tissues helps at some time point to ensure that the parasite will be transferred to a new host through consumption of raw or undercooked meat from infected animals (Dubey, 2004; Dubey, 2008; Jones and Dubey 2010). Humans are susceptible to Toxoplasma infection either through tissue cysts in undercooked meat from other intermediate hosts such as sheep, goat, cow or pigs or from ingestion of oocysts containing sporozoites in environment. The widespread prevalence of felines ensures worldwide dissemination of this parasite via environmental oocyst contamination (Dubey, 2004; Behnke et al., 2014).
1.5 Epidemiology

Toxoplasmosis is a widespread infectious disease in animals and men, with variable prevalence from country to country and also different regions of a country depending on socio-economic habits and climates. The seroprevalence of *T. gondii* infection in various regions throughout the world is up to 90% in some populations; it is often higher in areas with hot, humid climates and lower altitudes which favour survival of oocysts and appears to be lower in colder areas. Under suitable circumstances (i.e. in moist, warm soil), oocysts can survive for approximately 1 year while they do not survive well in cold, arid climates (Sukthana, 2006; Pappas *et al*., 2009; Innes 2010).

In the United State, the prevalence of this infection appears to be declining. During 1988–1994 a seroprevalence of 14.1% was found in 12–49 years persons, whereas a seroprevalence of 9.0% was found for the same age group during 1999–2004 (Nutter *et al*., 2004, Pappas *et al*., 2009). According to a report by Tenter *et al.* (2000) on *T. gondii* prevalence in women at child-bearing age (1990–2000), the rates of positive seroprevalence, were 51–72% in several Latin-American countries, 58% in Central European countries, and 54–77% in West African countries. Low seroprevalence (4–39%) was reported in southwest Asia, Korea and China as well as in cold and arid climate areas such as Scandinavian countries (11–28%). The seroprevalence of this disease was reported to be 28.3% for women in southern Thailand (Nissapatorn *et al*., 2011). Seropositive prevalence of *T. gondii* in the same country may differ among geographical regions or populations and world-wide prevalence in older populations is higher (Tenter *et al*., 2000, Pappas *et al*., 2009). It has also been reported that the seroprevalence of *T. gondii* infection in USA is less compared with that in Latin America, central Europe and sub-Saharan Africa; however the
seroprevalences in Scandinavian countries and in England are lower than in USA (Lones et al., 2001, Pappas et al., 2009). It has also been reported that toxoplasmosis is widely prevalent in animals and humans in Brazil (Dubey et al., 2012). Data for *Toxoplasma* infection in Malaysia demonstrated seroprevalence of about 30% with highest prevalence of this disease in Malays followed by Indian (Nissapatorn and Abdullah, 2004). Another study reported that chronic toxoplasmosis in Malaysia was estimated to vary from 10-50% (Nissapatorn et al., 2003).

1.6 Transmission

Infection caused by *T. gondii* commonly could be seen in many animals used for food such as, sheep, goats, rabbits, and pigs. The probable source of *T. gondii* infection, either oocysts or tissue cysts, is affected mostly by the eating habits and presence of infected domestic cats in the near environment. *Toxoplasma* infection is not passed from person-to-person, except in the case of mother-to-child (congenital) transmission, organ transplantation or blood transfusion. Human become infected in one of three main ways: foodborne by ingesting *T. gondii* tissue cysts in the undercooked meat of infected food animals; animal-to-human (zoonotic) by ingesting infectious oocysts in soil, water and other materials contaminated by infected cat faeces; or mother-to-child (congenital) through vertical transplacental transmission of tachyzoites from mothers to the fetus (Figure 1.5).

1.6.1 Congenital transmission

Congenital toxoplasmosis is caused by vertical transmission of *T. gondii* from a seronegative acutely infected pregnant woman to her fetus. The disease was reported for the first time by Wolf, Cowen and Page in a human child in 1939 (Dubey, 2008).
Figure 1.5 Transmission of *T. gondii* to humans and animals
(Robert-Gangneux and Dardé, 2012)
Different factors are associated with congenital toxoplasmosis, including climate, route of transmission, eating habits, cultural behavior, and hygienic standards. This association results in marked differences among nations and populations. For example, the prevalence of congenital infection in France and Belgium is 2–3 cases per 1000 live births, significantly higher compared with US prevalence of 1 in 10,000 to 1 in 1000 per live births. Reports from England indicates that congenital toxoplasmosis occur approximately 1 in 10,000 live births (Lebech et al., 1999; Pappas et al., 2009). Clinical manifestations of this infection in newborns are varied and can be developed at different times before and after birth. Majority of newborns infected with *T. gondii* in utero are asymptomatic at birth (70–90%) or may be unnoticed (Lebech et al., 1999). The classic triad of intracranial calcifications, chorioretinitis and hydrocephalus occurred in fewer than 10% of infected newborns.

Microcephaly or hydrocephalus may occur when intra-uterine infection results in meningoencephalitis (Lebech et al., 1999; Zhou et al., 2011). There may also be a relationship between toxoplasmosis and function of the brain, with asymptomatic infected infants exhibiting lower intelligence quotients (IQs) later in their adulthood than do their healthy counterparts (Torrey and Yolken, 2003; Jones et al., 2014). The risk of fetal infection and sequelae produced during the infant’s life is multifactorial, depending on the immunological response of the mother during parasitemia, time of maternal infection, parasite load and strain virulence (Ayi et al. 2009; Jones et al., 2014).
The possibility of fetal infection is approximately 1% when primary maternal infection happens just prior to the preconception period but ascends as pregnancy progresses. During the first trimester of pregnancy, not treated infection acquired by women results in congenital infection in 10 to 25% of infants. During the second and third trimesters of pregnancy the incidences of fetal infection are 30–55% and 60–65%, respectively (Lynfield and Guerina, 1997; Ayi et al., 2009; McLeod et al., 2009). However the consequences and sequelae are more severe when infection occurs in first trimester of pregnancy, such as miscarriage and abortion (Jones et al., 2014) (Figure 1.6). Manifestations of ocular toxoplasmosis at birth are less severe, and recurrences are fewer in those teenagers who were treated promptly early in the first year of life and in utero (Delair et al., 2011).

It has been reported that uninfected babies were born later than infected babies. In addition congenital infection was associated with increased risk of preterm delivery if seroconversion happens before 20 weeks of gestation. Latent chronic *T. gondii* infection may be reactivated in immunodeficient patients (such as HIV-infected pregnant women) and may result in congenital transmission of the parasite to the fetus. A critical step in congenital toxoplasmosis diagnosis and evaluation of the time of infection is achieved via applying laboratory techniques and monitoring the immune response (Petersen, 2007, McLeod et al, 2009).
Figure 1.6 The frequency of congenital toxoplasmosis and its relation to the severity of consequences on fetus and gestational age (www.perinatology.com/exposures/infectionlist.ht)
1.6.2 Foodborne transmission

Toxoplasmosis is considered as one of the infectious diseases associated with foodborne hospitalizations and sometimes, deaths. Undercooked meat, especially goat, lamb and pork; and raw vegetables and fruits with oocysts from soil contaminated with cat faeces are the major ways of foodborne transmission in humans. In a recent assessment regarding foodborne diseases in the United States, toxoplasmosis was reported as the second major cause of foodborne disease–related deaths and fourth main cause of foodborne disease–related hospitalizations (approximately, 4428 hospitalizations and 327 deaths annually) (Scallan et al., 2011, Jones et al., 2014). Recently researches have shown that *T. gondii* is considered as one of the five most important emerging pathogens involved in foodborne disease in the world; while in Greek toxoplasmosis was found to be one of the contributor of foodborne diseases to lost years of life, lived years with disability, and disability-adjusted lived years per million persons (9.7, 14, and 23 years, respectively) (Schlundt et al., 2004; Gkogka et al., 2011).

Foodborne transmission of toxoplasmosis can be prevented by reducing *T. gondii* in meat *via* improving meat production, sufficient cooking of meat, adequate washing of raw vegetables and fruits, prevention of any cross contamination in the kitchen, and decreasing the spread of oocysts in the environment. However, based on retail meat samples parasitologists cannot provide a true measurement of risk for fresh meat since nearly half of the pork meat and a substantial portion of chicken meat are injected with salt and water before cooking, which can kill *T. gondii* tissue cysts and the treated products are labeled as “enhanced” meat (Schlundt et al., 2004; Dubey et
Furthermore, in the United States most of the retail chickens are sold frozen; another way which can kill *T. gondii* cysts (Schlundt *et al.*, 2004; Jones and Dubey, 2012).

A live vaccine for sheep which produces protective immunity for approximately 18 months is available to protect lambs. An oral live vaccine can also prevent felines from shedding oocysts. Unfortunately, commercial cat vaccine production was discontinued because of its high cost, short shelf life, the need for a facility to keep the vaccine frozen and lack of concern among cat owners (Jones *et al.*, 2014). Thus far vaccination for human is not available.

1.6.3 Animal-to-human (zoonotic) transmission

Human contact with infected feral cats can be considered as one the main routes for transmission of toxoplasmosis. Feral cats and other members of the family Felidae may become infected either by ingesting infectious oocysts in the environment or via ingesting tissue cysts containing bradyzoites from intermediate hosts. Cats which are allowed to hunt may acquire the infection by feeding on corpse of birds or small mammals infected with *T. gondii*. After primary infection of feral cats with tissue cysts, the bradyzoites turn into tachyzoites and initiate an asexual proliferation phase which consists of several cycles of enteric endopolygeny. The terminal stages of asexual proliferation commence the phase of sexual proliferation which results in the foundation of oocysts (Sukthana *et al.*, 2003; Dubey, 2008; Torrey and Yolken, 2013).
Cats which are kept inside the houses may shed large numbers of oocysts and thereby putting their owners at a serious risk of toxoplasmosis infection. Stray cats or cats which are roaming on farms may shed their oocysts in the environmental soil or water and cause contamination which may infect livestock need for human consumption such as sheep. However, freshly passed oocysts by cats are unsporulated and, therefore, direct contact with cats usually does not lead to *T. gondii* infection. If cat faeces are removed daily from the household by the owner, then keeping of cats inside houses or flats does not provide risk of *T. gondii* infection generally (Tenter *et al*., 2000; Schlundt *et al*., 2004; Jones and Dubey, 2012).

1.6.4 **Other routes of transmission**

Congenital, foodborne and zoonotic transmission are the most common ways of *T. gondii* infection transmission. There are some other routes which *Toxoplasma* can be transmitted but they are not very common; for example blood transfusion and organ transplantation. Organ transplant recipients can develop toxoplasmosis due to transmission of the parasite with the transplanted organ from a *Toxoplasma*-seropositive donor to a *Toxoplasma*-seronegative recipient. Heart transplantation is the most common type of organ transplantation procedure that is at risk, as cysts are commonly found in the cardiac muscle (Martina *et al*., 2011; Derouin and Pelloux 2012). Reynolds *et al*. (1996) published a case report regarding a patient who received a renal transplant and died one month later after transplantation. Serologic studies identified that primary infection with *T. gondii* was the main reason for his death. It has also been reported that *Toxoplasma* can enter the human body by several other ways, including respiratory system, conjunctiva, and skin. Moreover, accidental laboratory events due to carelessness in laboratories were found as the
most common way of laboratory-acquired infections, where the personnel are in contact with contaminated glassware, needles, or particularly infected animals. There was also a case report of toxoplasmosis infection in a breast-fed infant whose mother acquired the infection (Renolds et al., 1966; Derouin and Pelloux 2012).

1.7 Pathogenesis of toxoplasmosis

Toxoplasmosis is classified into chronic and acute phases. The acute phase (early stage) is mostly associated with the rapidly dividing form (tachyzoite), while the tissue cyst is the predominant form of *T. gondii* during latent chronic infection. During early acute infection, the proliferative tachyzoites can invade every kind of nucleated host cells except non-nucleated red blood cells. Invasion of parasite into host cell is a main step in its pathogenesis.

After attachment to host cell, tachyzoite enter by active phagocytosis through the host cell’s plasmalemma. The sequential release of proteins from the apical secretary organelles of parasite (micronemes, rhoptries and dense granules) assist in attachment and invasion into host cell and in parasitophorous vacuole generation. The micronemes are responsible for recognition and adhesion to the target cell while the rhoptry enzymes (ROP proteins) are released through a slender duct to produce parasitophorous vacuole; and the enzyme discharged by dense granules result in maturing of the vacuole as a metabolically active compartment (Zhou et al., 2005; Dubey, 2008). Formation of parasitophorous vacuole, which is resistant to acidification, gives the parasite a chance to be in a safe environment for proliferation inside the cell. Their intracellular proliferation inside host cells result in necrosis and rupture of the cells. The liberated parasites subsequently invade and destroy
neighboring cells, producing larger focal lesions. Lesions or tissue necrosis could be found in many organs during acute toxoplasmosis, but mainly observed in liver, intestine, spleen, lung, pancreas and heart (Waree, 2008). If the initial Toxoplasma infection occurs in a host during pregnancy, the tachyzoites can move throughout the placenta and infect the fetus, which can result in congenital infection.

Liver is usually the first organ affected, it appears grossly swollen, with white foci randomly distributed throughout the organ. Hepatic lesions consist of necrosis and sometimes infiltration of heterophils. Large collections of tachyzoites are present in hepatocytes, resulting in the host cells degeneration (Waree et al., 2008; Bottari et al., 2014). The spleen may become swollen with pale yellow diffused necrotic foci. General necrosis is seen and fills with groups of parasites (Waree 2008). The brain of an acutely infected host is congested with microscopic hemorrhages. There is inflammatory reaction at the telencephalon and mesencephalon and T. gondii tissue cysts are seen near the lesions. Numerous mononuclear cells invade into the meninges and some mononuclear cells are seen around the vessels. With tissue cysts, the most notable feature is the complete absence of inflammatory cells (Kamerkar and Davis, 2012; Chew et al., 2012).

Around three weeks after infection, as the host mount an immune response, tachyzoites disappear from the visceral tissues and tissue cysts are formed in neural and muscular tissues (Waree, 2008). The bradyzoites in the tissue cysts multiply slowly and can persist for the life of the host (Dubey and Frenkel, 1972; Speer and Dubey, 1998).
1.8 Strains of *T. gondii*

T. gondii has an unusual population structure with three clonal lineages (I, II and III) which differ in epidemiological pattern of occurrence and virulence (Montoya and Liesenfeld, 2004). These three clonal lineages have emerged within the past 10,000 years (Su *et al*., 2003). Studies show that the type I strain is highly virulent; as a single parasite has a lethal dose regardless of the genotype of the host. Type II and III strains have a 50% lethal dose of more than 10^3 parasites and the outcome is dependent on the genetic background of the host (Mordue *et al*., 2001). Type I and II have been reported in human while type I often is associated with severe ocular and congenital disease, suggesting that it might be more pathogenic in humans. Type III has a common prevalence in animals (Montoya and Liesenfeld, 2004).

Studies on *T. gondii* isolates from Brazil showed atypical genotype that they are both genetically and biologically different from those in the USA and Europe (Vel murugan *et al*., 2008). A recent study on *T. gondii* isolates from chickens in six different African countries (Nigeria, Congo, Egypt, Burkina Faso, Kenya and Mali) revealed four genotypes. Most isolates belonged to the clonal type II and III strains with one Nigerian isolate having an atypical genotype (Vel murugan *et al*., 2008). In Malaysia, a study on wild boars of Peninsular Malaysia showed that the predominant strain of *T. gondii* is type I (Puvanesu ranan *et al*, 2013a). In another local study, type I and II strains of *T. gondii* were the main isolates from free-range farm ducks (Puvanesu ranan *et al*, 2013b). In Central and South America, types I, III, strains of *T. gondii* parasites are more prevalent (Stillwaggon *et al*., 2011).
1.9 Immune response in toxoplasmosis

T. gondii is one of the most successful parasites in the world which can produce asymptomatic life-long chronic infection inside the host. The immune response to *Toxoplasma* infection is unique, complicated and compartmented. It has the ability to acquire a balance between the immune strategies for evasion and the immune response of the host, with the aim of not only maximizing the parasite proliferation, but also at minimizing host immunopathology (Nissapatorn and Khairul, 2004). A balanced interaction between neutrophils, enterocytes, dendritic cells, and macrophages create the immune response to *T. gondii*. These interactions occur through a complicated group of molecular signaling pathways that bring about regulation and activation of cytokine responses as well as production of effector molecules.

The high level of genetic heterogeneity background may cause individual variations in immune response. In addition, *Toxoplasma* infection has the ability to spread in all the organs and tissues. Each tissue compartment possesses its own specific immune response, especially in the placenta and in the central nervous system. An additional level of complexity occurred due to the possibility of reactivation of infection which may vary with strain virulence (Waree, 2008).

During the earliest stages of infection, *T. gondii* is able to trigger non-specific response of natural killer (NK) cells, macrophage, and some other cells such as fibroblasts, endothelial or epithelial cells. This activation is necessary to limit parasite proliferation because of its cytotoxic action and to activate a specific