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Abstract: Graphene/epoxy nanocomposite coatings were formulated by applying 

different dispersion and preparation methods to determine whether the coatings might 

be a potential gas barrier material for irradiated graphite waste which is known to 

release radioactive gases like tritium (3H2). Helium was used as a substitute gas for 

tritium and the gas permeability was measured with the use of a helium leak detector. 

The dispersion and fabrication techniques influenced the abillity of the coatings to 

reduce the helium gas permeability. Characterisation of the graphene nanoplatelets and 

the composite morphology showed that the dispersion techniques influenced the 

graphene nanoplatelet geometry which reduced the aspect ratio of the platelets. The 

results showed that by incorporating 2 wt% graphene into the epoxy matrix, combined 

with a multilayer fabrication method, reduced the helium gas permeability by 83% 

when compared to the reference epoxy samples. Modelling the gas permeability 
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according to the tortuous path theory confirmed the aspect ratios which were estimated 

by the microscopic methods and particle size analysis.  

*Corresponding author, e-mail address: louis.vanrooyen@necsa.co.za, Tel. number: 
(+27) 12 305 6123, Fax number: (+27) 12 305 6377 

1 Introduction 

Graphite moderated nuclear reactors have been operational since the mid-20th century 

and some are already in the process of being decommissioned and many still need to be 

decommissioned because they are now reaching the end of their proposed operational 

service life. From the decommissioning process of these reactors, large volumes of 

irradiated graphite waste will be generated which is estimated to be in the region of 

250 000 tonnes and will require safe immobilisation and appropriate disposal methods 

[1,2]. The irradiated graphite waste generated from this decommissioning process 

contains radionuclides which are produced due to the neutron activation of impurities 

present in the graphite [1,3,4]. The main problematic radionuclides present in the 

irradiated graphite are tritium (3H), carbon-14 (14C), and chlorine-36 (36Cl). These 

problematic radionuclides are released over time due to diffusion from the graphite 

structure in gaseous form (3H2, 14CO2, 14CH4, and 36Cl2) with the main activity being 

produced by the tritium and carbon-14 [5], which will make it difficult to store 

irradiated graphite waste in confined spaces, like proposed underground storage 

repositories. Of these radionuclides, tritium gas will most likely permeate faster than 

the other radioactive gases due to its small molecular size. 

Polymers are being researched as a viable option to immobilise low level irradiated 

graphite waste from gas-cooled graphite moderated nuclear reactors after being 

dismantled due to their versatile properties when compared to more traditional 

methods like Portland cements [3,6]. The impregnation of this waste with epoxy resin 
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can be effective in limiting the leaching of radionuclides from the graphite structure 

[7,8]. However, most polymers tend to exhibit poor gas barrier properties when 

compared to other materials like metals [9–11]. Therefore, radioactive gases like 

tritium can easily permeate through these polymeric structures over time, which poses 

the threat of accumulation in underground repositories. 

Fortunately, these properties can be improved by the incorporation of fillers which 

possess a platelet-like geometry and high aspect ratio [12]. Through the incorporation 

of nano-sized particles into a pure polymer matrix, and through proper dispersion and 

orientation of these particles, significant reduction of the gas permeability can be 

achieved [12–28]. These fillers create a tortuous path or maze which restricts the 

migration of the diffusing gas molecules through the polymer matrix by increasing the 

path length.  

Graphene exhibits this platelet structure and has recently attracted a lot of interest in 

the field of barrier applications due to its unique property enhancement ability 

[17,19,29,30]. Graphene nanoplatelets are impermeable to gases such as helium if the 

platelets contain no defects [31–33] and is already being applied in coatings as barriers 

against the release of toxic substances [31,34]. If this is the case, then graphene nano-

polymer composite coatings might be useful in limiting the release of radioactive gases 

like tritium (3H) from irradiated graphite waste.  

In a previous study done, glass flake filled epoxy showed promising results as a possible 

barrier coating to limit or prevent the release of tritium gas [4]. The advantage that 

graphene nanoplatelets possess over glass flakes is that the aspect ratio is significantly 

higher which according to theory should make the graphene nanoplatelets more 

effective to reduce the gas permeability with smaller loadings than glass flakes. 
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However, the effect of settling and agglomeration can seriously limit the effectiveness of 

the coating to limit or prevent the release of tritium or other radioactive gases if the 

appropriate coating method is not applied [35].  Graphene nanoplatelets have been 

observed in practice to settle during gelation of the epoxy resin due to gravity [36,37] 

and also tend to re-agglomerate due to strong van der Waals forces [38] which can 

further limit the barrier performance of the composite coating. 

Therefore, the aim of this research was to prepare graphene/epoxy nano-composite 

coatings and determine how the preparation methods would influence the gas 

permeability of the composite coating. Helium gas was used as a substitute gas for 

tritium due to safety reasons and also the cost of tritium gas. Helium is similar in size to 

hydrogen and has been used as a substitute gas to measure the permeation of hydrogen 

through composite membranes due to helium permeating faster than hydrogen 

[4,39,40]. Modelling of the helium gas permeability data was done according to the 

tortuous path theory to determine how the filler loading and dispersion influences the 

helium gas permeability and diffusion of the graphene/epoxy composite coating. 

2 Experimental 

2.1 Graphene composite coating formulation 

Graphene nanoplatelets in powder form (xGnP grade M-25) were obtained from XG 

Sciences (USA), with a carbon content of 99.5%, average diameter of 25 µm, and 

thickness between 6 - 8 nm.  The base epoxy resin was a Bisphenol F-based epoxy resin 

(Araldite LY5082) and the hardener consisted of isophorone diamine (Araldite HY5083) 

produced by Ciba-Geigy. The resin exhibited a very low viscosity and the gel time is 

about 3 h, which make it ideal to coat large surfaces such as irradiated graphite from 
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nuclear reactors. The resin to hardener mixing ratio was 100:23 by weight which 

corresponds to the stoichiometric ratio. 

Graphene platelets, which are similar to carbon nanotubes, are generally dispersed into 

polymer resins with the use of direct, mechanical, or sonication mixing techniques [37]. 

Therefore, mechanical mixing with a conventional blender from Russel-Hobbs 

(700 Watts), ultrasonic mixing with an ultrasonic bath (100 W), and manual mixing by 

hand were applied to disperse the graphene into the epoxy resin. Incorporation of the 

graphene nanoplatelets was done according to weight fraction (wt%) of the total resin 

and hardener system. The loadings of graphene nanoplatelets incorporated into the 

epoxy resin were at 1, 2, 3, 4, 6, and 10 wt%. Solvent dispersion was considered with 

loadings above 3 wt% due to the graphene increasing the viscosity of the mixture which 

prevented the other mixing techniques to be utilised. The solvents used for chemical 

dispersion of the graphene platelets were dichloromethane (DCM) and tetrahydrafuran 

(THF) obtained from Sigma Aldrich, Germany and N, N-dimethyl formamide (DMF) from 

Associated Chemical Enterprises, South Africa. 

2.2 Permeation sample preparation 

2.2.1 General 

The doctor blade1 sheets were prepared at an approximate thickness of 2 mm and the 

moulded discs and multilayer sheets at an approximate thickness of 4 mm. Disc 

permeation specimens with a diameter of 45 mm were machined from the doctor blade 

and multi-layered sheets to fit the permeation cell, whereas the moulded disc specimens 

                                                        
1 Doctor blades are used in paint and ceramic technology to prepare thin films and to evaluate the degree of dispersion of 

additives like pigments. A doctor blade works on the principle that a substrate (normally glass, metal, or plastic) is 

moved under a blade with an adjustable height, from a stationary position, to produce a thin film or sheet (Aegerter, 

M.A., Mennig, M., 2004. Sol-gel technologies for glass producers and users. Springer. pp 89-92) 
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were moulded in polyethylene moulds with a diameter of 45 mm. Reference Araldite 

epoxy resin samples were prepared as doctor blade sheets and moulded discs to 

compare the helium gas permeability of the composite samples to unfilled epoxy resin, 

by mixing 100 g of epoxy with 23 g of hardener by hand for 2 min whereafter the 

appropriate sheet and disc samples were prepared.   

2.2.2 Doctor blade sheets 

Sheets were prepared with graphene loadings incorporated into 100 g of epoxy resin. 

Mechanical, ultrasonic, and manual mixing were used to incorporate 1 wt% loadings 

while mechanical mixing was used to incorporate 2 and 3 wt% loading of graphene 

platelets. After mixing, 23 g of hardener was stirred in by hand for 2 min. The composite 

mixture was poured on polyethylene sheets and dragged under the Meier blade to get a 

uniform sheet thickness of 2 mm. The sheets were left for 7 days to cure at room 

temperature. 

2.2.3 Moulded discs 

Moulded discs were prepared with the aid of solvent mixing to incorporate higher 

loadings of graphene nanoplatelets. The loadings of graphene nanoplatelets 

incorporated were 4, 6, and 10 wt%. The graphene nanoplatelets were initially 

dispersed in 50 ml of a selected solvent using ultra-sonication for 20 min and then 

mixed into 100 g of the epoxy resin. The composite/solvent mixture was further 

sonicated for 2 h at 50 °C. The solvent was evaporated off with a Buchi rotary 

evaporation system, allowed to cool and hardener was added and stirred for 2 min. The 

composite mixture was then poured into polypropylene moulds and cured in an oven at 

50 °C for 15 h. 
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2.2.4 Multilayer sheets 

The graphene/epoxy composite multilayer sheets were prepared by brushing thin 

individual layers of graphene epoxy on top of another to create a stacked “sandwich” 

type structure. The graphene platelets (0.251 g) were dispersed into the epoxy resin 

(10 g) with a loading of 2 wt% which was sonicated for 5 h at 50 °C. Once cooled and 

hardener added, a layer would be applied and allowed to dry before another was 

applied on top of the previous layer until the required thickness of 4 mm was achieved. 

The sonication mixing with smaller amounts of epoxy resin sufficiently dispersed the 

graphene nanoplatelets. 

2.3 Helium permeation measurements 

In the past few years, helium leak detectors have been regularly utilised as a quick 

method to determine the gas permeability of various polymers and composite materials 

[4,9,23,27,28,33,41–45]. The helium gas permeation flux was measured using a 

specially designed permeation cell which was attached to a Leybold L200+ helium leak 

detector which could only detect a minimum helium flux measurement of 

2.3 × 10-12 mol.m-2.s-1. Afrox (African Oxygen Limited) helium 5.0 (99.999%) gas was 

used as the permeation test gas. The helium gas flow into the top part of the permeation 

cell was verified with a gas flow meter at 50 ml.min-1, with the bottom part being 

evacuated with the vacuum pump unit in the helium leak detector to create a pressure 

differential on the opposite end of the composite membrane. All measurements were 

performed up to 28 000 s at 295 K. A detailed description of the permeation setup and 

cell is given in [4].  



8 
 

The helium leak rate (J*) of the graphene/epoxy coatings was measured in mbar.l.s-1 but 

converted to Pa.m3.s-1 as to calculate the helium gas flux (J, mol.m-2.s-1) from the 

following equation: 

𝐽 =  
𝐽∗

𝐴𝑅𝑇
 (1) 

Where, A is the surface area (0.0013 m2), R the gas constant (8.315 J.K-1.mol-1) and T the 

temperature (295 K). 

2.4 Composite structure and graphene nanoplatelet characterisation 

The graphene epoxy composite morphology was evaluated by the use of microscopy, 

X-ray difffraction, and Microfocus X-ray tomography techniques. High resolution 

Scanning Electron Microscopy (SEM) imaging was performed on a JEOL JSM-6380LA 

Field Emission Gun (FEG) SEM to give an indication of the degree of dispersion of the 

graphene nanoplatelets in the epoxy resin. The samples were viewed at a beam 

intensity of 20 kV and were sputter coated with gold to improve the imaging quality. 

Transmission electron microscopy (TEM) was performed with a JEOL-Jem 2100 with a 

beam intensity of 200 kV to evaluate the shape and form of the graphene platelets in the 

epoxy resin. Ultra-thin sections of the graphene/epoxy nanocomposite samples were 

cut to a thickness of 50-70 nm using a Leica EM UC6 ultra-microtome and a Diatome 

diamond knife at room temperature. The prepared sections were collected on a 

200 mesh copper (Cu) grid for viewing with the TEM. Calibrated images were captured 

electronically with a Gatan Ultrascan camera and Digital Micrograph software.   

Micro-focus X-ray tomography was performed on a Metris XT H 225L to determine the 

degree of dispersion and arrangement of the graphene nanoplatelets in the epoxy resin 

[46]. 
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Wide angle X-ray diffraction (WAXD) was conducted on sampled sections from the 

prepared sheets to determine how the mixing techniques influenced the structure 

formation and dispersion of the graphene nanoplatelets in the composite structure. The 

analysis was performed with a Bruker D8 advance diffractometer from Bruker scanning 

the samples in 2ϴ range between 15 and 30° at a stepsize of 0.04° using Cu Kα 

irradiation at 40 kV.  

Particle size analysis was performed on the graphene nanoplatelets using a 

Micromeretics Saturn Digisizer II particle size analyser. The graphene nanoplatelets 

(0.025 g) were dispersed in 20 cm3 isopropanol (ACE) and Triton X (Sigma Aldrich) was 

used as a dispersing agent. Thereafter, the prepared samples were sonicated for specific 

time intervals and the samples added drop wise into the instrument to obtain an 

obscuration of 18% to perform measurements.  

Atomic Force Microscopy (AFM) was performed with a modified Digital Instruments 

Nanoscope, Veeco, MMAFMLN-AM (Multimode) AFM at the National Centre for Nano-

structured Materials based at the Council for Scientific and Industrial Reaserch (CSIR, 

South Africa) to determine the platelet thickness of the graphene nanoplatelets. The 

tapping mode was used to probe the deposited graphene nanoplatelets at ambient 

temperature of 23 °C. The graphene nanoplatelets were deposited on silicon wafers 

after being dispersed in chloroform by sonication for 30 min and manual stirring by 

hand. 
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3 Results and discussion 

3.1 Mixing techniques 

The mixing techniques and coating preparation methods were chosen in order to reflect 

real-world conditions and to determine whether the composite coatings could act as an 

efficient gas barrier. Normally, coating formulations would be prepared under ideal 

laboratory conditions to achieve optimum performance, but this might not suffice in 

practice when applied to large areas of irradiated graphite waste. Therefore, the 

graphene/epoxy composite samples were prepared as doctor blade sheets, moulded 

discs, and multilayer sheets as to reflect the same features of a resin coated on a 

substrate. With increased loadings the viscosity of the graphene epoxy mixtures also 

increased due to the low bulk density of the graphene nanoplatelets. This was the main 

limitation with each mixing technique to disperse the graphene platelets in the epoxy 

resin. 

3.2 Helium permeability of coatings 

3.2.1 Permeation measurements 

3.2.1.1 Doctor blade sheets 

Permeation experiments were performed on doctor blade samples with concentrations 

of 1 wt% graphene nanoplatelets which were dispersed by mechanical, ultrasonic, and 

manual mixing. From the helium permeation results it can be clearly seen that for most 

of the samples, the incorporation of graphene nanoplatelets into the epoxy matrix 

reduced the helium permeation when compared to the pure epoxy matrix (Fig 1). 
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Figure 1: Helium flux measurements of the doctor bladed samples filled with (a) 1 wt% graphene nanoplatelets and the (b) mechanically 
dispersed sheets, (c) moulded discs with higher loadings of graphene nanoplatelets, and the (d) multilayer sheet. 
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However, the dispersion method applied also influenced the efficiency in reducing the 

helium permeation as noticed with the mechanical and manual mixing techniques 

reducing the helium permeation more than the ultrasonic dispersion for 30 min 

(Fig 1a). Examination of the composite coating morphology by SEM further showed that 

the doctor blade sheet (1 wt%) which used sonication to disperse the graphene 

nanoplatelets exhibited highly agglomerated regions and settling which confirmed why 

the sheet showed very little reduction of the helium permeation (Fig 2). This re-

agglommeration of the platelets compromised the barrier structure and hence no 

significant reduction was observed. The length of the sonication time was most likely 

insufficient to cause adequate separation of the graphene nanoplatelets. The manual 

mixing method showed a surprising result as this method was expected to perform the 

worse out of the three mixing techniques, but reduced the helium permeation almost 

the same as the mechanical mixing method.
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Figure 2: SEM image of the doctor blade sheet morphology which was prepared by ultrasonic dispersion with the higly agglomerated 

area further magnified.  

Bottom Top 
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Above 1 wt% loading, using the manual and ultrasonic mixing methods, we were unable 

to disperse the graphene nanoplatelets, with only the blender managing up to 3 wt% 

loading. The loading of 2 wt% exhibited the best reduction of the helium permeation for 

the doctor blade sheets which appeared to be the percolation threshold seeing that from 

the 3 wt% loading the helium permeation began to increase slightly (Fig 1b). The 

mechanical mixing produced better dispersion of the graphene nanoplatelets with 

random orientation, but it also appeared to have reduced the size of the graphene 

platelets (Fig 3).
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Figure 3: SEM images of (a) mechanical mixed doctor blade sheet (2 wt%) morphology and (b) graphene platelet size reduction 
indicated in yellow area 
 

b a 
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3.2.1.2 Moulded discs 

Moulded disc samples were prepared with the aid of solvents to incorporate higher 

loadings of graphene nanoplatelets at 4, 6, and 10 wt% due to the mechanical, ultrasonic 

and manual mixing techniques not being able to mix such high loadings. Permeation 

tests could not be performed on the moulded disc samples which were prepared at 6 

and 10 wt% loadings due to the samples being too porous so that the helium leak 

detector was unable to achieve proper vacuum to initiate any measurements.  With the 

evaluation of the 4 wt% disc samples the helium permeation increased when compared 

with the epoxy reference sample, which may be attributed to the use of solvents 

adversely affecting the curing of the epoxy resin (Fig 1c).  

3.2.1.3 Multilayer sheet 

Incorporation of 2 wt% graphene platelets into the epoxy resin showed to be a good 

loading to reduce the helium permeation and therefore, a loading of 2 wt% graphene 

nanoplatelets was selected to prepare the multilayer sheets. The multilayer sheet 

samples reduced the helium permeation an order of magnitude more than the reference 

sample (Fig 1d). The SEM images of the multilayer sheet morphology, which also used 

sonication to disperse the platelets, showed that the platelets were better dispersed and 

smaller than 10 µm (Fig 4). This was confirmed with TEM images which also showed 

that the particles were smaller than 10 µm and even went down to 2 um (Fig 5). This 

indicated that longer sonication times not only helped with improving the dispersion, 

but further reduced the size of the graphene nanoplatelets. 
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Figure 4: SEM images of the (a) 2 wt% multilayer sheet morphology showing (b) graphene platelets with an aproximate diameter of 
10 µm  

a 

b 
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Figure 5: TEM image of the 2 wt% multilayer sheet showing dispersed particles smaller than 10 µm 
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To confirm whether this was the case, particle size analysis was performed on the 

graphene nanoplatelets (Fig 6) and it could be seen that with longer sonication times 

the particle size does become smaller compared to the graphene nanoplatelets 

dispersed at shorter times. This variation in particle size was also observed by Chong 

and Taylor [47].  

 

Figure 6: Particle size analysis performed on graphene nanoplatelets dispersed in IPA 

showing how the particles become finer with extended periods of sonication. 

 

Due to the density difference between the graphene and epoxy matrix, the graphene 

nanoplatelets could be attenuated to show how the platelets were dispersed in the 

epoxy matrix of the multilayer sample with the aid of microfocus x-ray tomography 

(Fig 7a). From the observation it could be seen that the nanoplatelets were well 

dispersed in the epoxy matrix and exhibit a random orientation with respect to the 

permeation direction (Fig 7b-c). Measuring the size of some of the particles confirmed 
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that the particles became smaller as was observed with the SEM and TEM imaging of the 

multilayer sample (Fig 7d). 
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Figure 7: X-ray tomogram showing a section of the (a) multilayer sample and the attenuated graphene nanoplatelets dispersed in 
the matrix. Closer view of some of the (b) individual layers and (c) the graphene nanoplatelets in the multilayer sheet. (d) 
Measurements of the platelets in 2-dimensional perspective. 

d 30 µm 
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3.2.2 Determining the diffusion and permeability coefficients 

To determine the helium gas diffusion (D) coefficients and steady state flux (J0) of the 

graphene/epoxy nanocomposites the following one-dimensional variation of Fick’s law 

of diffusion was applied with the appropriate boundary conditions [4,13,23,45,48]: 

𝐽 =  𝐽0  
√

4𝑑2

𝜋𝐷𝑡
∑ 𝑒𝑥𝑝 

∞

𝑥=0

 [− 
𝑑2

4𝐷𝑡
(2𝑥 + 1)2] (2) 

where J is the calculated helium gas flux and J0 is the steady-state helium gas flux 

(mol.m-2.s-1), d is the sample disc thickness (m), t the time (s), and D is the diffusion 

coefficient (m2.s-1). 

In the earlier stages of gas diffusion, Equation 2 can be simplified to the following form 

as an approximation: 

𝐽 ≅ 𝐽0
√

4𝑑

𝜋𝐷𝑡

2

 𝑒𝑥𝑝  (−
𝑑2

4𝐷𝑡
) 

(3) 

 

The diffusion coefficient (D) and the steady-state helium flux (J0) were graphically 

determined by plotting the linear form (Equation 4); ln(J√t) against 1/t and fitting the 

results to a linear trend line [4].  

𝑙𝑛(𝐽√𝑡)  ≅  −(
𝑑2

4𝐷
)

1

𝑡
  +   𝑙𝑛 𝐽0 √

4𝑑

𝜋 𝐷
 (4) 

The helium gas flux measurements from the permeation experiments showed good 

correlation with the linear fit of Eq 4 with very little statistical deviation which allowed 

for the accurate calculation of the diffusion co-efficient (D), steady-state flux (J0), and 

the permeability co-efficient (P) of the prepared composite samples (Table 1). The 
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helium permeability coefficient (P, mol.m-1.s-1.Pa-1) was determined from the following 

equation: 

𝑃 =
𝐽0 𝑑

∆𝑝
 

(5) 

where J0 is the steady state helium gas flux (mol.m-2.s-1), ∆p is the differential gas 

pressure (Pa) and d is the thickness (m) of the composite membrane. 
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Table 1: Calculated values of the permeation flux data according to the one-dimensional Fickian equation 

Loading 
(wt%) 

 Sample  Mixing 
method 

 
Steady-state 

helium flux, J0 
(mol.m-2.s-1) 

 
Diffusion 

coefficient, D 
(m2.s-1) 

 
Permeability coefficient, P 

(mol.m-1.s-1Pa-1) 
 Linear fit (R2) 

 
   

         

0  Doctor blade  Manual  7.55 × 10-8  2.49 × 10-10  1.91 × 10-15  0.982 

1  Doctor blade  Manual  5.14 × 10-8  0.89 × 10-10  1.28 × 10-15  0.991 

1  Doctor blade  Ultrasonic  7.23 × 10-8  1.34 × 10-10  1.76 × 10-15  0.976 

1  Doctor blade  Mechanical  4.67 × 10-8  1.27 × 10-10  1.26 × 10-15  0.991 

2  Doctor blade  Mechanical  3.73 × 10-8  0.78 × 10-10  1.08 × 10-15  0.997 

3  Doctor blade  Mechanical  4.54 × 10-8  0.79 × 10-10  1.14  × 10-15  0.991 

0  Moulded disc  Manual  1.76 × 10-8  2.49 × 10-10  1.04 × 10-15  0.988 

4  Moulded disc  THF  7.83 × 10-8  5.28 × 10-10  4.04 × 10-15  0.995 

4  Moulded disc  DCM  5.02 × 10-8  3.20 × 10-10  2.25 × 10-15  0.992 

4  Moulded disc  DMF  2.37 × 10-8  1.17 × 10-10  1.25 × 10-15  0.999 

2  Multilayer  Ultrasonic  0.38 × 10-8  0.47 × 10-10  0.18 × 10-15  0.990 
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3.2.3 Degree of exfoliation 

Analysing the graphene nanoplatelets and the prepared composite sheets with WAXD is 

a useful technique to determine the degree of exfoliation of the nanoplatelets in the 

epoxy morphology [36]. The XRD diffraction patterns of the graphene platelets showed 

a distinct peak at 2ϴ = 26.4 ° which corresponds to the same peak for pure graphite 

(Fig 8a). The patterns for the composite sheets (1 wt%) prepared by mechanical and 

manual mixing showed a lower intensity peak than the sheets prepared by sonication 

(Fig 8b) which indicate that the graphene platelets were better dispersed with these 

techniques and hence the reduced helium permeation. Based on the peak position, the 

d-spacing did not show any significant changes. The pattern of the multilayer sample 

showed a slight shift in the intensity peak when compared to the mechanical mixing 

technique with the same concentration (2 wt%)(Fig 8c). This suggests that the platelets 

were slightly better dispersed in the multilayer sample as opposed to the mechanically 

prepared sample. The amorphous halo, peaked at 18° of 2ϴ, is independent in position 

from both the preparation method and graphene content. This broad peak can be 

attributed to the formation of small clusters with some molecular orientation therein 

[49].  
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Figure 8: X-ray diffraction patterns of (a) the graphene powder and a comparison of the 

mixing techniques at (b) 1 and (c) 2 wt% graphene concentrations. 

 

3.3 Modelling 

The relative permeability (Rp) was utilised as a normalisation factor due to the different 

sample preparation techniques that were applied and to determine to what extent the 

gas permeability was reduced. The Rp was calculated from the following equation: 
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𝑅𝑝 =
𝑃𝑐

𝑃0
 

(6) 

where Pc is the permeability coefficient of the composite polymer, and P0 is the 

permeability coefficient of the pure polymer. 

According to the tortuous path theory, the way these particles are dispersed and 

orientated in the epoxy matrix determines how effectively the nanoplatelets will restrict 

the movement of the gas molecule through the epoxy matrix. This effectively turns the 

polymer matrix into a maze which prolongs the diffusion of the gas molecules by 

increasing the tortuosity factor of the composite polymer matrix if the platelets exhibit 

high aspect ratios and are properly orientated perpendicularly to the permeation 

direction.  

To describe the effect the tortuous path has on the relative gas permeability (Rp), the 

following equation may be applied: 

𝑅𝑝 =
𝑃𝑐

𝑃0
=

1 − 𝜙

𝜏
 

(7) 

where Pc is the permeability coefficient of the composite polymer, P0 is the permeability 

coefficient of the pure polymer, ϕ is the nano-platelet loading (expressed in  volume 

fraction,), and τ is the tortuosity factor. The weight percentage of the composite samples 

was converted to volume fraction (ϕ) using the density of the graphene as 2.2 g.cm-3. 

The tortuosity factors selected for this study are compiled in Table 2 and have been 

successfully applied by other researchers to estimate how these nano-platelet fillers 

influence the gas permeability of polymer composite materials [26,43,50–53]. By 

substituting the tortuosity factors from the models into Eq 7 the influence of the 
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nanoplatelets on the relative gas permeability and diffusion coefficient can be 

estimated. The models that were chosen for this study consider the geometry of the 

platelets to be ribbons or discs [22,54–57]. 

Table 2: Summary of the tortuosity factors used to model the relative permeability 

Model 
Filler 
geometry 

Filler 
dispersion 

Aspect 
ratio 

Tortuosity factor (τ) 

Nielsen [57] Ribbon Regular array w/t 1 +
𝛼𝜙

2
 

Lape/Cussler-regular 
array[22] 

Ribbon Regular array w/t 1 +
𝛼2𝜙2

4
 

Lape/Cussler-
random array[22] 

Ribbon Random array w/t (1 +
𝛼𝜙

3
)

2

 

*Bharadwaj[54]  Ribbon 
Random array 
and orientation 

w/t 1 + [
𝛼𝜙(2𝑆" + 1)

6
] 

**Fredrickson-
Bicerano[55]  

Disc Random array d/t 4[(1 + 𝑥 + 0.1245𝑥2)/(2 + 𝑥)]2 

Gusev-Lusti[56]  Disc Random array  d/t 𝑒𝑥𝑝 [(
𝛼𝜙/

3.47
)

0.71

] 

*Factor S” is incorporated with θ being the angle between the obstructing filler and penetrant flow.  

𝑆 =
3𝑐𝑜𝑠2𝜃 − 1

2
 

 

**Factor 𝑥 is incorporated. 𝑥 = 𝜋𝛼𝜙/[2 ln (
𝛼

2
)] 

 

The relative permeability of the samples were plotted against the corresponding 

graphene volume fraction and compared with the model predictions (Fig 9). From the 

results it can be seen that the multilayer technique was the most effective to reduce the 

helium permeability due to better orientation and dispersion of the graphene 

nanoplatelets. This technique reduced the helium permeability by 83% when compared 

to the other dispersion and fabrication techniques (Table 3). However, the models did 

not correlate with any of the relative permeability values of the prepared samples when 

the theoretical aspect ratio from the supplier’s specifications was used (ca 4000).  
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Figure 9: Relative permeability values compared to model predictions using the 

theoretical aspect ratio = ca 4000 

 

Table 3: Comparison of the relative helium permeability reduction 

Loading (wt%) 
 Sample  Mixing method  Helium permeability 

reduction (%) 

1  Doctor blade  Manual  32.92  

1  Doctor blade  Ultrasonic  7.83  

1  Doctor blade  Mechanical  34.44  

2  Doctor blade  Mechanical  43.68  

3  Doctor blade  Mechanical  40.38  

2  Multilayer  Ultrasonic  82.63  

 

Therefore, the thickness of the graphene nanoplatelets was determined with AFM 

imaging (Fig 10). From the AFM measurements (Table 4) it showed that the graphene 
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nanoplatelets which were dispersed with sonication showed better seperation of the 

platelets than manual stirring of the graphene nanoplatelets in the chloroform.   

 

Figure 10: AFM image of graphene nanoplatelet demonstrating how the platelet 

thickness was measured. 

 

Table 4: AFM measurements made of graphene nanoplatelet thickness according to the 
dispersion method 

Measurement  Manually stirred dispersion  
Ultrasonic dispersion for 30 

min 
1  78.683   17.070 
2  104.802   11.808 
3  49.608   12.534 

Average  77.7  13.8 
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Using the diameter from the SEM images (10 µm) and the average thickness of the 

graphene nanoplatelets from the AFM measurements (Table 4), the aspect ratios were 

estimated as ca 128.2 for the manually stirred and ca 714.28 for the ultrasonic 

dispersion. The estimated aspect ratios were found to be significantly lower than the 

expected theoretical aspect ratio. Other researchers have also found the aspect ratio to 

be significantly lower when modelling the rheological properties of graphene 

nanoplatelets dispersed in epoxy resin [38].   

To confirm these estimated aspect ratios, the relative permeabilities were plotted as a 

function of the aspect ratio and compared with the models for the specific loading of 

graphene nanoplatelets (Fig 11). The estimated aspect ratio of the multilayer and 

mechanical prepared samples (4 vol%) showed good agreement with the Bharadwaj 

model (S=0) (Fig 11a). At a loading of 2 vol% (Fig 11b), the mechanical and manually 

dispersed samples also showed close correlation with the Bharadwaj model (S=0).  The 

other models assume perfect allignment parallel with the substrate surface in the 

polymer matrix, whereas the Bharadwaj model introduces an S-factor which 

compensates for orientation of the platelets. The S-value of 0 indicates a random 

orientation of the platelets which was observed with the microfocus x-ray tomography 

for the multilayer sample. In comparison with the other models, the Bharadwaj model 

was the most accurate at describing the aspect ratio and the helium permeability 

reduction of the graphene/epoxy composite samples. The model also indicates that if 

the orientation can be improved to where S = 1, then the relative permeability can be 

reduced even further.
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Figure 11: Comparison between the experimental relative permeability (Rp) and the theoretical model predictions as to verify the 
estimated aspect ratios for the composite samples containing (a) 4 vol% and (b) 2 vol% graphene.  
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4 Conclusion 

With this study graphene/epoxy resin composite coatings were prepared and helium 

gas permeation experiments were performed to evaluate if the coatings might be an 

effective barrier material to limit or prevent the release of tritium or other radioactive 

gases. The incorporation of graphene into the epoxy matrix did reduce the helium gas 

permeability; however, this was also dependent on how the graphene was dispersed in 

the polymer matrix and the sample preparation method. The techniques utilised were 

done so as to show how basic methods might be effective in actual practice of dispersing 

the graphene in an epoxy matrix and applied on a substrate surface to reduce the gas 

permeability. It was found that the multilayer technique combined with long sonication 

times reduced the helium gas permeability by 83%.  The physical observations made by 

the characterisation methods were confirmed by modelling the gas permeability with 

the tortuous path theory. The Bharadwaj model was effective in confirming the 

calculated aspect ratio of the doctor blade sheets which were manually and 

mechanically dispersed and also that of the multilayer sample. Furthermore, the model 

accurately described the random orientation of the graphene platelets in the polymer 

matrix. Therefore, the graphene epoxy composite coatings might be considered as a 

possible method to limit the release of radioactive gases like tritium. However, 

confirmation studies on the long term durability will be required and how to improve 

the coatings even further with regards to dispersion of the graphene nanoplatelets.   
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