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Abstract 

Aluminium alloy syntactic foams reinforced with iron hollow spheres were produced by low pressure, 

liquid phase inert gas infiltration technique. Four Al alloys (Al99.5, AlSi12, AlMgSi1 and AlCu5) and 

Globomet grade iron hollow spheres were used as matrix and reinforcing material, respectively. The 

produced composite blocks were characterised according to the ruling standard for compression of 

cellular materials in order to ensure full comparability. The compressive test results showed plastic 

yielding and a long, slowly ascending plateau region that ensures large energy absorption capability. 

The proper selection of the matrix material and the applied heat treatment allows for a wide range of 

tailoring of the mechanical properties. For design purposes, the full-scale finite element method 

(FEM) model of the investigated foams was created and tested on Al99.5 matrix foams. The FEM 

results showed very good agreement with the measured values (typically within 5% in the 

characteristic properties and within 10% for the whole compression curve). 

 

Keywords: metallic foam, compressive strength, metal matrix composite, hollow sphere, absorbed 

energy 

 

1. Introduction 

Metal matrix syntactic foams (MMSFs) consist of a metallic matrix material and a set of hollow 

spheres. MMSFs were developed for lightweight structures, requiring high strength and energy 

absorbing capacity [1]. The matrix material is usually an aluminium alloy (light and low cost), but 

nowadays high strength iron based matrices are also investigated [2-11]. As filler material, 

commercially available mixed-oxide ceramic [12-15], metallic [12] or SiC [16, 17] hollow spheres are 

frequently applied, however Taherishargh et al. have been made efforts for the application of low 

cost perlite filler as well [18-20]. 

The professional literature mainly focuses on the production and mechanical properties of MMSFs. 

For example, Lehmhus and Weise et al investigated the mechanical behaviour of hollow glass 

microspheres-iron matrix syntactic foams. In particular, the strain-rate sensitivity response at three 

different strain rate levels was studied by taking into account the influence of type and volume 

fraction of glass spheres. The materials’ behaviour was found to be very similar to that of the metal 

matrix [2, 6-8]. Castro and Nutt produced steel based MMSFs, filled with ceramic hollow spheres by 

gravity fed and mechanical pressure infiltration. In the case of gravity fed infiltration the simple 

compression behaviour of the MMSFs was studied, and a TRIP steel syntactic foam exhibited the 

highest compression strength and energy absorption capacity [4]. In the case of mechanical pressure 

infiltration the basic mechanical properties of a ferritic and a pearlitic steel MMSF were studied 

under compression loading. The pearlitic foam had greater compression strength and energy 

absorption capacity than the ferritic [5]. The research group of Rabiei studied composite metal foams 

(CMFs) produced by gravity casting technique. The foam was comprised of steel hollow spheres 

packed into a random dense arrangement, with the interstitial space infiltrated with a casting 

aluminium alloy. The composite displayed superior compressive strength (~65 MPa within 10-50% 

strain range) and energy absorption capacity (~30 MJm-3 at 50% strain) [21-24]. Rabiei et al also 



published CMFs produced by powder metallurgy. The CMFs were built up from the combination of 

carbon steel or a 316L grade stainless steel matrix and hollow spheres respectively. The energy 

absorption at densification for carbon steel samples ranged from 18.9 to 41.7 MJm-3 and for the 

stainless steel sample it was 67.8 MJm-3 [3, 22]. Later the effect of loading rate and spheres size were 

also taken into account: the smaller hollow spheres performed better at each loading rate level up to 

8 ms-1 [25]. The fatigue properties of Al-steel and steel-steel CMFs under cyclic compression were 

also described in details [11]. 

Besides iron based matrices and / or hollow spheres numerous other investigations on the 

compressive properties of Al based, ceramic hollow sphere filled MMSFs have been published. Balch 

et al investigated the load partitioning in MMSFs by diffraction techniques and found that the best 

performance can be achieved if the matrix yield strength and hollow spheres crush strength are 

equal [26, 27]. Dou and Wu et al investigated the quasi-static and high strain rate response of 

cenosphere-pure aluminium MMSFs. The foams exhibited distinct strain rate sensitivity, with peak 

strengths increased from ~45-75 to ~65-120 MPa, and energy absorption capacity increased by ~50-

70% [28-30]. Goel et al studied the same material pair of varying densities and cenosphere sizes at 

different strain rates (0.01…10 s-1). The plateau stress, densification strain, energy absorption and 

strain rate sensitivity parameter as a function of relative density, strain rate and cenosphere size 

have been reported [31-33]. Luong et al investigated the quasi-static and high strain rate 

compressive properties of Al4032 / cenosphere composites. While the matrix did not show any strain 

rate sensitivity, the composite showed higher strength and energy absorption capability at higher 

strain rates [34]. Mondal et al performed wide range of materials testing such as classical quasi-static 

[35], high strain rate [32] or elevated temperature compression [36] tests, wear tests [37, 38] and 

finite element analyses [39]. Palmer et al studied the mechanical properties of MMSFs incorporating 

45 and 270 μm ceramic microspheres in Al1350, Al5083 and Al6061 alloy matrices. The produced 

foams remained intact at strains up to 50% despite significant fracturing, resulting in high and 

repeatable strain energies [40]. Kiser et al investigated the mechanical response of a family of 

ceramic microballoons reinforced Al matrix MMSFs under both uniaxial and constrained die 

compression loadings. The energy absorption capacity (160±70 MJm-3) found to be extremely high in 

comparison with values that are typical of metal foams [41]. Beside classical MMSFs (as a base for 

comparison) [42] Tao et al produced Al particle toughened MMSFs by pressure infiltration. With the 

introduction of Al particles, the ductility and the compressive strength increased by ~30%. As a result, 

the specific energy absorption capacity was also increased by ~80% [43]. Subsequently, MMSFs with 

bimodal ceramic hollow spheres were produced and studied. The MMSFs had ~10% higher porosity, 

which led to 8% higher densification strain [44]. Zhang and Zhao investigated the mechanical 

response of four types of Al based MMSF with different sphere sizes and densities under static and 

dynamic conditions. The plateau strength and the energy absorption of the MMSFs were largely 

determined by the volume fraction of Al and to a lesser extent by the properties of the ceramic 

spheres [45]. Although the most common matrix materials are Al and steel, other perspective 

matrices, such as Mg [46-50], Zn [51, 52] and Ti [53, 54] alloys were also studied. 

The modelling of the structure of MMSFs has been also discussed in professional literature. The 

reconstruction of the structure is often supported by X-ray tomography [55-60] and relies on 

analytical approaches (for example by Zsoldos et al [61]). Bardella and Genna published papers on 

the determination of the elastic properties of syntactic foams [62-64]. These articles are based on 

three phase unit cell models considering the matrix – wall – porosity structure of syntactic foams. 



Marur has published a very similar approach [65]. A three phase concentric sphere model was used 

to estimate the effective elastic constants, and the results were compared to other theories and 

experimental data. In a subsequent paper Marur took into account the influence of weak interfaces 

between the inclusion (hollow spheres) and the matrix [66]. Later the applicability of the formulae 

and the conclusions were also confirmed by numeric methods [67]. Porfiri and Gupta focused on the 

development of a model to estimate the elastic constants for syntactic foams as function of particle 

wall thickness, size, and volume fraction. The model can be used to predict the Young’s modulus of 

MMSFs containing microballoons of a wide range of wall thickness and volume fraction [68]. Based 

on their experimental work [69, 70], Rohatgi and his research group presented a model that can 

predict peak stress, plateau stress, densification strain, and composite density of hollow ceramic 

sphere-reinforced MMSFs subjected to unconstrained compression. The results showed good 

agreement with the experimental data available in literature [71]. Kiser et al gave a prediction for the 

crush strength of MMSFs in constrained upsetting condition, with an effective strength that depends 

on the relative wall thickness [41]. 

According to the above mentioned research contributions the aims of this paper are (i) to give details 

about the mechanical properties of Al alloy based, Fe hollow sphere reinforced MMSFs; (ii) to 

describe a full-scale finite element method (FEM) model able to follow the compressive properties of 

the produced MMSFs. 

 

2. Materials and experimental methods 

Four types of MMSF were produced by low pressure inert gas assisted infiltration technique. The 

applied matrices were Al alloys, their measured chemical compositions are listed in Table 1. For this 

investigation a PhillipsXL-30 type electron microscope (SEM) equipped with an EDAX Genesis energy 

dispersive X-ray spectroscopy (EDS) analyser was applied. 

 

Table 1. Chemical composition of the applied matrix materials (only the significant elements are 

tabulated, measured by EDS) 

Matrix 
Main components (wt%) Closest standard 

equivalent [72]  Al Si Fe Mg Cu Other 

Al99.5 99.5 0.1 0.1 - - 0.3 Al1050 
AlSi12 86.0 12.8 0.1 0.1 - 1.0 A413 
AlMgSi1 97.0 1.1 0.5 1.1 - 0.3 Al6082* 
AlCu5 95.0 - - - 4.5 0.5 Al2011 

*Closest alloy, except the Mn content (should be 0.4…1.0 wt%). 

 

Globomet (GM) grade hollow pure Fe spheres were applied as filler material (supplied by Hollomet 

GmbH, Dresden, Germany [12]). The nominal diameter of the hollow spheres was 1.92±0.07 mm 

(obtained by measuring 1000 hollow spheres on an Olympus SZX 16 type stereo microscope). Their 

average wall thickness was 23±0.6 μm, while their density was 0.093 gcm-3. The actual diameter 

distribution of the spheres followed Gaussian distribution as it is plotted in Fig. 1a. The volume 



fraction of the reinforcement was maintained at ~65 vol%, by continuous tapping of the mold [73, 

74]. A typical macro photograph and a SEM image about the surface of the hollow spheres are 

presented in Fig. 1b and Fig. 1c respectively. 

 

 

Fig. 1. Diameter distribution of the hollow spheres (a); macro photograph (b) and SEM image (c) 

about the surface of the hollow spheres 

 

For the infiltration process, a special mold was developed and fabricated (Fig. 2). The mold (#7) was 

coated by a thin graphite layer (FormKote T-50; Everlube Products, Peachtree City, GA) and filled 

halfway by the hollow spheres (#6) during continuous tapping in order to achieve ~65% volume 

fraction [73, 74]. Subsequently, the hollow spheres were fixed in position by a 316L stainless steel net 

(#5) and placed in a furnace (Lindberg / Blue M) for pre-heating (300°C for 0.5 h). Meanwhile, the 

matrix material was melted and heated above its melting point by 50°C in a Power-Trak 15-96 

induction furnace. In the next step, the molten matrix material (#4) was poured into the mold, on the 

hollow spheres. Subsequently, the inert gas (Ar) was injected into the system through a pressure 

reducer and the upper pipe system (#1 and #2) at 400 kPa infiltration pressure. A steel plate (#3) was 

placed into the way of the gas to break its flow and produce turbulent gas flow. The gas from the 

space between the hollow spheres was exhausted through the Al2O3 mat (#9) stuffed pipe (#8) at the 

bottom of the mold. After solidification and cooling, the mold was opened by machining (milling) and 

the MMSF block was removed. The density of the blocks were measured by Archimedes’ method, 

with measured densities of 1.41 gcm-3, 1.42 gcm-3, 1.60 gcm-3 and 1.72 gcm-3 for the Al99.5, AlSi12, 

AlMgSi1 and AlCu5 foams, respectively. 

 



 

Fig. 2. Schematic sketch of the infiltration system 

 

The produced blocks were solution treated (at 520°C for 1 hour, water cooled). Because of the 

natural aging (or cold aging) nature of the Cu containing Al alloys, the compression tests were done 

immediately after the cooling to avoid any effect of natural aging. The AlMgSi1 and AlCu5 specimens 

were tested in aged condition too (two step T6 treatment (i) homogenisation at 530°C for 1 hour, 

water cooled and (ii) aging at 170°C for 14 hours, water cooled) Again, the specimens were tested 

just after the aging step. Six cylindrical specimens for compression tests were machined from each 

block. Both the diameter (D) and the height (H) of the specimens were 14 mm (H/D=1). The 

specimens were designated according to their matrix and heat treatment (for example, AlMgSi1-GM-

O stands for a specimen with AlMgSi1 matrix and ~65 vol% Globomet grade hollow spheres) in 

solution treated condition. Two typical optical microscope (Olympus PMG3) images are shown in Fig. 

3. 

 

 



Fig. 3. Typical optical microscope images of Al99.5-GM-O type MMSF at (a) low and (b) higher 

magnification 

 

In summary 36 compression tests (4 solution treated and + 2 aged matrices, 6 specimens for each 

combination) were done. The compression tests were performed on a MTS 810 type universal testing 

machine in a four column tool at room temperature. The surfaces of the tool were hardened to 45 

HRC, ground and polished. The specimens and the tool were lubricated with anti-seize material with 

MoS2 content. The deformation rate was maintained at 0.01 s-1 (quasi-static condition). During the 

tests the engineering stress – engineering strain curves were registered and processed according to 

the ruling standard for the compression tests of cellular materials (DIN50134:2008 [75]). 

 

3. Results and Discussion 

3.1. Compressive properties 

A typical engineering stress – engineering strain curve is shown in Fig. 4 (the initial part of the curve is 

magnified in the inset figure). Compared to the typical graphs of ceramic hollow sphere reinforced 

MMSFs, the curve shows some significant difference [76-80]. Most importantly the curve does not 

have any local maximum, therefore expressed compressive strength cannot be defined. This is 

caused by the plastic behaviour of the Fe hollow spheres in comparison to the brittle like failure 

mechanism of the ceramic ones. 

 

 

Fig. 4. Typical stress – strain curve of MMSFs showing the characteristic properties 

 

Therefore, instead of the compressive strength the yield strength (σY (MPa)) was determined 

(similarly to the conventional (0.2%) proof strength, but at 1% strain). At this strain and stress level, 

macroscopic cracks can be observed on the surface of the specimens in the vicinity of the hollow 

spheres. According to this, an absorbed energy level required to initialise the fracture process can be 



calculated as the integral of the curve up to 1% (the area under the curve up to 1%, W1% (MJm-3)). 

The slope of the initial part of the graph is the structural stiffness (S (MPa)). The MMSFs showed 

continuously increasing plateau region, in which case the plateau strength (σplt (MPa)) can be derived 

as the average between two distinguished strain ratios (10% and 40% were selected as limits 

according to the recommendations of the standard [75]). An overall absorbed mechanical energy (W 

(MJm-3)) as the area under the whole curve can also be integrated. The above-mentioned mechanical 

properties are the characteristic properties of the produced MMSFs and they were monitored in the 

case of all produced material types. In order to have a better insight to the effect of matrix material 

the average curves with their scatters are plotted in Fig. 5a. 

 

 

Fig. 5. Effect of the matrix material (a) and the T6 heat treatment (b) on the stress – strain curve 

 

Compared to the unalloyed, Al99.5-GM-O MMSF, the alloyed matrices ensured higher mechanical 

properties. All the characteristic properties increased significantly due to the solid solution hardening 

mechanism. The most effective alloying element was the Cu, because of its large diameter difference 

compared to Al. According to this, the matrix strength had strong influence on σY and σplt. The 

difference can be significant, for example, the yield and plateau strength can be increased from ~25 

MPa to ~65 MPa and from ~35 MPa to ~75 MPa in the case of solution treated Al99.5 and AlCu5 

matrices, respectively. The effect of the matrix material on the W1% and W absorbed mechanical 

energy values showed the same trends. The W values varied within wide ranges, from ~1800 MJm-3 

in the case of Al99.5 matrix up to ~3800 MJm-3 in the case of AlCu5 matrix. 

The effect of T6 heat treatment is presented in Fig. 5b for AlMgSi1 and AlCu5 matrices. In general, 

the T6 heat treated specimens showed significantly higher yield strength values, generally by ~30%, 

than the specimens with solution heat treatment. Compared to the samples with solution treated 

pure aluminium matrix (~25 MPa) about four times higher yield strength can be achieved by T6 

treated AlCu5 matrix (~100 MPa). Moreover, the aged specimens also had higher plateau strength 

values than the solution heat treated ones, as it is expected. The absorbed energy values (W1% and 

W) followed the beneficial effect of the yield and plateau strengths and increased proportionally. It 

should be noted that, by the hardening effect of the aging process the matrix material has lost some 

of its ductility and became more brittle and sensitive to cracks. This is associated to the increased 



scatter stripe around the average values of the second part of the stress – strain diagrams, showing 

more probabilistic behaviour than in more ductile cases. 

During the compressive tests, different failure mechanisms can be observed in the case of iron 

sphere reinforced foams. Compared to the MMSFs with ceramic spheres, there was no crack plane 

and the specimens had plastic deformation in all cases [76, 77]. This observation is supported by the 

metallographic examinations of compressed specimens, shown in Fig. 6. A high level of plastic 

deformation of the spheres and matrix material can be observed in the figure. The spheres crushed 

(black arrow) because of the increasing mechanical pressure, and the matrix tried to follow the 

deformation of the spheres (white arrow). 

 

 

Fig. 6. Polished cross section of a compressed MMSF (AlCu5-GM-O) 

 

In summary, by the application of iron spheres, plastically deformable MMSFs can be produced. 

Moreover, the mechanical properties can be varied within wide ranges by the proper application of 

different aluminium alloy matrix materials and heat treatments. The measured properties of the 

investigated MMSFs are summarised in details in Table 2. 

 

Table 2. The average and scatter values of the investigated characteristic properties 

Designation σY (MPa) W1% (MJm-3) S (MPa) σplt (MPa) W (MJm-3) 

Al99.5-GM-O 26 ± 1 52 ± 5 1090 ± 3 37 ± 2 1772 ± 108 
AlSi12-GM-O 35 ± 3 57 ± 7 2369 ± 52 58 ± 3 2870 ± 169 
AlMgSi1-GM-O 38 ± 5 71 ± 7 2041 ± 61 63 ± 7 3066 ± 370 
AlCu5-GM-O 66 ± 9 102 ± 17 3227 ± 88 74 ± 27 3662 ± 1244 
AlMgSi1-GM-T6 51 ± 6 95 ± 9 2730 ± 47 83 ± 8 4038 ± 373 
AlCu5-GM-T6 98 ± 9 124 ± 20 3424 ± 75 141 ± 21 5356 ± 1451 

 

3.2. FEM model 



The FEM modelling of the MMSFs also has a distinguished importance in the effective and economic 

design points of view. The full-scale modelling of foams is a hard task because (i) these models are 

built up from numerous cells, cell walls, junctions, that requires large number of elements and nodes, 

(ii) the elements often have irregular shapes, (iii) the spaces between the individual hollow spheres 

are quite small, and therefore the meshing process is complicated. Due to the mentioned problems 

unit cells are modelled in most cases, however full-scale models can ensure better agreement with 

the measured values, and the results are more reliable. 

In our work, FEM models for unconstrained compression tests were developed, applied and 

compared to the measured values. The first problem was the proper, probabilistic distribution of the 

hollow spheres. For this purpose a program, based on a random number generator was developed. 

The input parameters were: (i) the volume fraction of the hollow spheres, (ii) the diameter 

distribution of the hollow spheres and (iii) the volume that should be fulfilled. The output was a 

randomly generated distribution of the hollow spheres in the desired volume and shape (Fig. 7a). The 

geometric model was built in Creo Parametric 2.0., the meshing was performed in Hypermesh (with 

the assistance of QI optimised automatic mesh generator). The preferred elements were four node 

tetrahedrons with average side length of 0.4 mm. The wall thickness of the hollow spheres (modelled 

by three node triangular shell elements) was set to 23 μm. The meshed model is presented in Fig. 7b. 

The model was subjected to unconstrained compression in between slowly moving (0.01 s-1) rigid 

plates. The time step was set to 0.035 s and the test run at ambient temperature. Due to the careful 

lubrication (and to reduce the running time), the model assumed m=0.2 shear friction (Kudo) 

coefficient between the specimens and the plates. 

 

 

Fig. 7. Distribution of the hollow spheres (a) and the complete, meshed model (b) 



 

The simulation was run on Marc Mentat 2013 environment (with domain decomposition, 8 threads). 

The model was compressed up to ε=50% and similar to the real measurement the stress – strain 

curves were calculated. The model was tested on the Al99.5-GM-O specimens and in the case of free 

compression as the most common loading mode for foams. As input values, the flow curve of the 

isotropic matrix and filler material are needed. The former was measured by Watts-Ford test [81] 

(Fig. 8a), while the latter (due to its small contribution to the properties) was assumed to be elastic – 

ideally plastic with the Young’s modulus of 210 GPa and with the flow strength of 300 MPa [82] 

respectively. The base value of the Young’s modulus should be modified due to the relatively large 

porosity of the sphere walls (Fig. 1b.). For this purpose the equation proposed by Ramakrishnan and 

Arunachalam was applied [83]. 

𝐸 = 𝐸0
(1−𝑝)2

1+𝜅𝐸
 eq. 1. 

Where E is the modified Young’s modulus, E0 is the initial Young’s modulus (210 GPa), p is the 

porosity of the cell wall (estimated as 24% after optical microscopic investigations and image 

analysis) and κE is a constant in terms of the Poisson’s ratio (ν0=0.3) of the fully dense material, 

defined by eq. 2. 

𝜅𝐸 = 2 − 3𝜈0 eq. 2. 

The evaluation of the equations above – based on the basic and modified values – results in E=95.9 

GPa as input Young’s modulus of the spheres for the model. The flow strength of the sphere’s wall 

was also modified, according to eq. 3, suggested by of Liu et al [84]. 

𝜎 = 𝐾(1 − 𝑝)𝑛𝜎0 eq. 3. 

Where σ is the modified flow strength, σ0 is the initial flow strength, p is the porosity, K is a material 

constant (K=0.48 was assumed based on [84]), and n is a material exponent (n=1 is for metals with 

good plasticity as Cu, Sn, pure Fe and n=1.5 for metals with poor plasticity, like Ti for example). The 

evaluation of eq. 3 lead to σ=109.4 MPa, in the case of n=1. Because of the already complicated 

model, perfect bonding and load transfer between the hollow spheres and the matrix material was 

assumed, as the simplest case. The result of the simulation is shown in Fig. 8b. 

 



 

Fig. 8. Flow curve of Al99.5 matrix (a) and the result of the simulation (Al99.5-GM-O) 

 

Fig. 8b. represents excellent agreement between the measured and the simulated curves for Al99.5-

GM-O foams. For better comparison, the measured and calculated values of the characteristic 

properties are listed in Table 3. All the characteristic properties are within a 3% range, except the 

W1% energy, that exceeds 6%, but it is still could be considered as a good agreement. As it can be 

observed in Fig. 8b the calculated curve runs within the scatter band of Al99.5-GM-O specimens, 

except near to ~10% strain. The largest difference in the stress – strain curve occurs at ε=11%, the 

difference between the calculated and measured stress is 2.8 MPa (9.3%). In summary, the proposed 

model is applicable to perform calculations during the design process in virtual environment. 

However, the model can still be improved by the better estimation of the porosities’ effect in the 

hollow sphere walls and the matrix and by the analysis of the interactions between the spheres and 

the matrix metal. The model should be also tested and validated on different matrix material that 

will be reported in a future communication. 

 

Table 3. Comparison of the measured and simulated characteristic properties (Al99.5-GM-O) 

 σY (MPa) W1% (MJm-3) S (MPa) σplt (MPa) W (MJm-3) 

Measurement 26 ± 1 52 ± 5 1090 ± 3 37 ± 2 1772 ± 108 
Simulation 26.1 55.6 1105.0 37.9 1816.2 

Difference (%) 0.38 6.92 1.38 2.43 2.48 

 

Besides the mechanical properties, the deformation mechanism was also followed during the 

simulation. Again, excellent agreement with the real measurements was found, as it is illustrated in 

Fig. 9 at the end of the upsetting test (ε=50%). 

 



 

Fig. 9. The deformed shape of Al99.5-GM-O specimen (a) after the test and (b) after the simulation 

(ε=50% in both cases) 

 

4. Conclusions 

From the above detailed investigations and results the following conclusions can be summarized. 

 Low pressure, inert gas assisted infiltration technique is suitable method for the production 

of hollow iron sphere reinforced MMSFs with various Al alloy matrix materials. 

 The recorded engineering stress – engineering strain curves showed plastic yielding and long, 

slowly ascending plateau region that ensures large energy absorption capability; this 

establishes MMSFs as important candidates for energy absorbing applications. 

 The matrix material and the heat treatment have a strong influence on the mechanical 

properties of the MMSFs; by their proper selection, the characteristic properties can be 

varied within wide ranges. 

 The results of the successfully built, complete and full-scale FEM model gives excellent 

agreement compared to the measured values for Al99.5-GM-O MMSFs in free compression. 

The measured values are typically within 5% in the case of characteristic properties and 

within 10% for the whole curve. 
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Figure captions 

Fig. 1. Diameter distribution of the hollow spheres (a); macro photograph (b) and SEM image (c) 

about the surface of the hollow spheres 

Fig. 2. Schematic sketch of the infiltration system 

Fig. 3. Typical optical microscope images of Al99.5-GM-O type MMSF at (a) low and (b) higher 

magnification 

Fig. 4. Typical stress – strain curve of MMSFs showing the characteristic properties 

Fig. 5. Effect of the matrix material (a) and the T6 heat treatment (b) on the stress – strain curve 

Fig. 6. Polished cross section of a compressed MMSF (AlCu5-GM-O) 

Fig. 7. Distribution of the hollow spheres (a) and the complete, meshed model (b) 

Fig. 8. Flow curve of Al99.5 matrix (a) and the result of the simulation (Al99.5-GM-O) 

Fig. 9. The deformed shape of Al99.5-GM-O specimen (a) after the test and (b) after the simulation 

(ε=50% in both cases) 

 

  



Table captions 

Table 1. Chemical composition of the applied matrix materials (only the significant elements are 

tabulated, measured by EDS) 

Table 2. The average and scatter values of the investigated characteristic properties 

Table 3. Comparison of the measured and simulated characteristic properties (Al99.5-GM-O) 

 


