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ABSTRACT 

 Maleic anhydride (MA) grafted poly(lactic acid) (PLA) coupling agents (MAPLA) 

were prepared by reactive processing. The amount of peroxide initiator and MA was 

changed in a relatively wide range. Coupling efficiency was checked in PLA/wood 

composites as a function of grafting degree, coupling agent and wood content. The 

analysis of the results showed that chain scission takes place in PLA during reactive 

modification. The occurrence of grafting could not be proved by FTIR spectroscopy, but a 

detailed NMR analysis showed that the degree of grafting depends on the amount of both 

reactants; a maximum of 2.5 MA groups/PLA chain could be grafted under the conditions 

used in the study. The functionalized polymer proved to be an efficient coupling agent in 

PLA/wood composites. Efficiency increased with increasing number of functionality and 

coupling agent amount. Coupling resulted in increased strength and reinforcement. 

Acoustic emission analysis of deformation processes supported by microscopy proved that 

the dominating local deformation process is the fracture of the fibers, but small extent of 

debonding also occurs in neat, uncoupled composites. The prevention of debonding by 

coupling resulted in the improved performance of the composites. Local processes initiate 

the immediate failure of the composite irrespectively of their mechanism. 

 

KEYWORDS: poly(lactic acid) (PLA), wood reinforcement, maleated PLA, coupling, 

local deformations, failure mechanism 

 

1. INTRODUCTION 

 The application of natural fiber reinforced composites increases with a very high 

rate all over the world. Most of these materials are based on commodity polymers and 

used in the building and automotive industry [1]. However, the application of biopolymers 
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increases even faster due to the increasing environmental awareness of the public [2]. 

Poly(lactic acid) is one of the polymers which penetrated the market very rapidly because 

of its advantageous properties. It is produced from natural feedstock, compostable, have 

good stiffness and strength, and increasing production capacities even decreased its price 

recently [3]. Besides its advantages PLA has also some drawbacks thus it is modified by a 

variety of methods including reinforcement with natural fibers [4,5]. The preparation of 

PLA/wood fiber composites offer the possibility of achieving an advantageous property 

profile at a reasonable price.  

 The wood flour used for the reinforcement of thermoplastics usually consists of 

relatively large particles with dimensions exceeding those of traditional fillers by orders of 

magnitude. An average size of several 100 m is not uncommon for these materials. The 

dominating deformation mechanism is often debonding in particulate filled and short fiber 

reinforced composites. Debonding stress depends on particle size interfacial adhesion 

determined by the surface energy of the components [6]. As a consequence, large wood 

particles with small surface energy [7] easily debond from the matrix polymer under the 

effect of external load, which results in the formation of voids and premature failure [8,9]. 

Debonding was shown to be the dominating micromechanical deformation process in 

PP/wood composites not containing a coupling agent [8,9]. Interfacial adhesion is claimed 

to be weak also in PLA/wood composites by a number of authors [10-17], but the question 

is contradictory, since the detailed analysis of interfacial interactions indicated relatively 

strong adhesion between PLA and wood [18]. The study of micromechanical deformation 

processes proved that the dominating deformation mechanism is the fracture of the fibers, 

confirming further the existence of strong interfacial adhesion, but other mechanisms, like 

debonding or fiber pull-out also occurred simultaneously. Coupling does not improve 

composite properties further if adhesion is strong and the fracture of the fibers is the 
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dominating failure process, but eliminating the other two processes could lead to improved 

composite strength. 

 Interfacial interactions are modified in numerous ways in polymer/wood 

composites. Although physical methods like mercerization [19,20] or plasma and high 

energy radiation [21,22] were claimed to be beneficial, chemical coupling is the most 

frequent method to improve composite properties. Functionalized polymers, mainly 

maleated PP and PE, are frequently used in polyolefin composites [20,23-25], but other 

compounds are also applied quite often to achieve coupling. Silanes are claimed to 

improve interfacial adhesion, but the results published are often questionable and the 

chemistry is unclear [26,27]. Much more successful are isocyanates [28,29]  and triazines 

in PVC and PS composites [30,31], while N,N-(1,3-phenylene dimaleiimide) (BMI) 

proved to be successful coupling agent not only in several polymer/filler micro and 

nanocomposites [32,33], but also in PLA/wood composites [34].  

 In spite of the successful application of various compounds as coupling agents, one 

of the most obvious routes to improve interfacial adhesion in PLA/wood composites 

seems to be the preparation and use of maleic anhydride modified PLA (MAPLA). As 

mentioned above, the approach proved to be very efficient in polyolefin composites 

[23,35-39]. The preparation of MAPLA has been done in two different ways. Carlson et 

al. [40] as well as Zhu et al. [41] grafted maleic anhydride to PLA with peroxide initiation 

in the melt, in an extruder. Plackett [42], on the other hand, modified the polymer in 

solution with a different peroxide and the same approach was followed by Wu [43] as 

well. All four groups reported the successful modification of PLA with MA, various 

amounts, between 0.6 and 1.0 wt%, of MA was attached to the PLA chains. However, the 

effect and efficiency of the functionalized polymer proved to be different and the results 

contradictory. The modulus of PLA/natural fiber composites containing MAPLA 
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increased with fiber content in all cases that is not very surprising. Strength, on the other 

hand, was often smaller than that of the uncoupled composite indicating poor interfacial 

adhesion [42,44]. Quero [45] and Avella [46], however, observed the increase of 

composite strength upon the application of the functionalized polymer.  

 Considering the contradictory reports on the effect of functionalized PLA on the 

properties of PLA/natural fiber composites, the goal of our study was to prepare MAPLA 

with different degree of functionalization and investigate its effect on the mechanical 

properties and failure mechanism of PLA/wood composites. The effect of various 

parameters on the mechanical properties of the composites and on deformation and failure 

processes was followed by various methods and the relevance of changing failure 

mechanism for practice is also discussed briefly in the final section of the paper.    

 

 

 

2. EXPERIMENTAL 

2.1. Preparation of the functionalized polymer 

 The polymer used in the grafting experiments was the Ingeo 3251 D grade of 

NatureWorks (USA). It is offered for injection molding purposes and has an MFI of 35 

g/10 min measured at 190 C and 2.16 kg load. The polymer contains less than 2 % D 

isomer and its density is 1.24 g/cm
3
. Maleic anhydride (furane-2,5-dion) was purchased 

from Aldrich and it was used without further purification. 2,5-di(t-butylperoxy)-2,5-

dimethylhexane (Luperox 101, Arkema, France) was applied as initiator in the grafting 

experiments. MAPLA was prepared by reactive extrusion using a Rheomex 3/4" singe 

screw extruder attached to a Haake Rheocord EU 10 V driving unit. Zone temperatures 

were set to 160-170-180-190 C, while screw speed was 30 rpm. PLA was dried before 
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extrusion in a vacuum oven at 120 C for 4 hours. Maleic acid and the initiator were 

dissolved in 20 ml acetone and added to the dry granules. The homogenized material was 

placed into an oven at 80 C for 5 min to evaporate acetone. Strands of 2 mm thickness 

were extruded, pelletized and dried in a vacuum oven to remove unreacted maleic 

anhydride. The functionalized polymer produced was characterized by FTIR and NMR 

spectroscopy and its MFI was also measured. FTIR spectra were recorded on a Bruker 

Tensor 27 apparatus in the wavelength range of 4000-400 cm
-1

 with a resolution of 2 cm
-1

 

and 16 scans. Varian NMR system operating at 400 MHz of 
1
H resonance with a 5 mm Z-

gradient double resonance probe was used to record NMR spectra. Deuterated chloroform 

was used as solvent to prepare solutions from 15-20 mg solid material in 0.6 ml solvent. 

All samples dissolved without residue. The signals of the solvent was used as reference 

(7.27 ppm on the 
1
H and 77.40 ppm on the 

13
C scale). A relaxation delay of 16 s and 4 s 

acquisition time with detection of 256 transients were used for the single pulse 
1
H 

measurements because of the large dilution used. Standard parameters and 2 s relaxation 

time were applied for two dimensional(
1
H-

13
C) heteronuclear single quantum correlation 

(HSQC) and heteronuclear multiple quantum correlation (HMQC) analysis. All 

measurements were carried out at 25 °C. 

 

2.2. Materials 

 The PLA used for composite preparation was the Ingeo 4032D grade (Mn = 88500 

g/mol and Mw/Mn = 1.8) purchased from NatureWorks (USA). The grade is recommended 

for extrusion by the producer. The polymer (<2% D isomer) has a density of 1.24 g/cm
3
, 

while its MFI is 3.9 g/10 min at 190 °C and 2.16 kg load. The Filtracel EFC 1000 

(Rettenmaier and Söhne GmbH) wood fiber was used as reinforcement. The fiber has an 

average particle size of 210 m and an aspect ratio of 6.8. Particle characteristics were 
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determined quantitatively by laser light scattering, but also by image analysis from SEM 

micrographs.  

 

2.3. Compounding 

 Both poly(lactic acid) and the fibers were dried in vacuum oven before composite 

preparation (110°C for 4 hours and 105 °C for 4 hours, respectively). The components 

were homogenized using a Brabender W 50 EHT internal mixer at 180 C, 50 rpm for 10 

min. The polymer and the coupling agent was added first into the internal mixer and 

melted, then after a few seconds of homogenization the wood flour was introduced and 

mixing was continued for 10 min. Two series of experiments were carried out to check the 

effect of the functionalized polymer (MAPLA) on properties. In the first, the amount of 

coupling agent with various grafting degree was changed from 0 to 20 wt% at 30 vol% 

wood fiber loading. In the second wood content was varied from 0 to 60 vol% at different, 

constant MAPLA contents changing from 0 to 20 vol% in 5 vol% steps. The homogenized 

material was compression molded to 1 mm thick plates at 190 C for 5 min using a 

Fontijne SRA 100 machine. All specimens were kept in a room with controlled 

temperature and humidity (23 °C and 50 %) for at least one week prior further testing. 

 

2.4. Characterization 

 Mechanical properties were characterized by the tensile testing of specimens cut 

from the 1 mm thick plates. The measurements were done at 5 mm/min cross-head speed 

and 115 mm gauge length using an Instron 5566 apparatus. Micromechanical deformation 

processes were followed by acoustic emission (AE) measurements. A Sensophone AED 

40/4 apparatus was used to record and analyze acoustic signals generated during tensile 

testing. The particle characteristics of wood and the structure, as well as the deformation 
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mechanism of the composites were studied by scanning electron microscopy, SEM (JEOL 

JSM-6380 LA). Micrographs were recorded on tensile fracture surfaces. Compression 

molded films of about 150 m thickness were used for the polarization optical microscopy 

(POM) study. Films containing 5 vol% wood flour were broken in tensile and then 

micrographs were recorded on the broken surfaces.  

 

3. RESULTS AND DISCUSSION 

 The results are discussed in several sections. Grafting experiments and the 

resulting structure are presented in the first section followed by the evaluation of the 

efficiency of the obtained material next. The effect of coupling on mechanical properties 

and local deformations is presented in the following section, while fracture mechanism 

and consequences for practice are discussed in the last. 

 

3.1. Grafting 

 Attempts were made to functionalize PLA with maleic anhydride before. 

Modification was done under various conditions, both in the melt and in solution. We 

decided to use reactive processing because of its simplicity and the absence of solvents. 

We used the concentrations of the reactants reported before as optimal for grafting, i.e. 0.5 

wt% peroxide and 2 wt% MA, as reference, and changed their amount in a wider range 

around these values. Grafting is a chemical reaction which modifies chain structure, but 

side reactions may also take place in the melt. Besides attaching functional groups to PLA, 

molecular weight may be also changed by scission or cross-linking. Viscosity is 

proportional to molecular weight, thus such chemical changes can be followed by 

rheology. The MFR of the polymer is plotted against the amount of maleic anhydride at 

0.5 wt% peroxide content in Fig. 1. The peroxide itself decreases MFR slightly indicating 
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cross-linking or at least branching. The presence of MA results in considerable decrease in 

viscosity indicating the occurrence of chain scission reactions. The non-linear correlation 

indicates that MFR reaches a saturation value, but it is far beyond the range of MA 

concentrations used, if it exists at all. A very similar correlation is obtained if MFR is 

plotted against peroxide content which was changed in the range of 0 and 1.5 wt% at 2 

wt% MA content (not shown). The results confirm the degrading effect of MA and chain 

extension in the presence of the peroxide. The existence of a saturation value is indicated 

here as well. The results of the two series indicate that chemical reactions take place in the 

melt indeed, but they do not prove in any way that grafting occurs. 

 We expected to prove grafting by chemical analysis. FTIR and NMR spectroscopy 

were used by others to analyze reaction products. Zhou [41] and Avella [46] observed a 

shoulder at 1850 cm
-1

 on the FTIR spectra of modified PLA and assigned it to the 

anhydride group of MA. Based on their results they claimed successful grafting. The FTIR 

spectra of neat PLA and two of the grafted products prepared with the largest amount of 

the reactants are shown in Fig. 2. The spectra are completely identical indicating the lack 

of grafting. However, the bands identified by the two groups are present also in MA thus 

the observed shoulder might result from improper purification. 

 The NMR spectrum of the product prepared with 2 wt% MA and 1.5 wt% peroxide 

is presented in Fig. 3. The assignment of the signals was done by two dimensional homo 

and hetero nuclear correlation measurements supported by literature references [47,48]. 

The number of hydroxyl groups can be determined by the integration of signal c and from 

the value obtained we can determine the molecular weight of the sample. The number of 

attached MA groups was calculated from the integral of signals d and e, since neat PLA 

does not have signals in this region. Our assignment of signals and the calculation of 

attached MA groups differs from that of Orozco [47] and Quero [41], the first group 
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included chain end hydroxyls appearing at 4.28 ppm into the integral, while the second 

calculated the number of attached MA groups from signals appearing at 2.25 ppm 

belonging to free MA molecules.  

 The recorded NMR spectra and the calculations indicated that we succeeded in 

grafting MA groups onto the PLA chain. The number of MA groups attached to PLA 

increased with increasing amount of MA in the reaction mixture. However, at 0.5 wt% 

peroxide content grafting degree is very small and it reaches saturation at about 0.6 

chain/PLA molecule around 2.0 wt% MA content (not shown), and the spectra indicate 

also the presence of free MA in the product. On the other hand, as Fig. 4 shows, grafting 

degree increases continuously with increasing amount of peroxide at 2 wt% MA content. 

The maximum number of MA groups is 2.5/PLA chain under the conditions used; further 

experiments are needed to check if grafting degree can be increased even further by 

adding more peroxide to the reaction mixture. We hoped, however, that the degree of 

grafting achieved is sufficient for effective coupling. 

 

3.2. Coupling efficiency 

  After establishing the fact that grafting occurred indeed, we wanted to check the 

efficiency of the obtained functionalized polymer as coupling agent. MAPLA was 

prepared with 2 wt% MA and the proper amount of peroxide to obtain polymers with 

various degree of grafting from 0.2 to 2.4 MA/PLA chain in sufficient amounts for the 

coupling experiments. Composites were prepared at 30 vol% wood content with different 

amounts of MAPLA and mechanical properties were determined. The modulus of the 

composites remained practically unchanged or decreased slightly (not shown), thus we 

present the composition dependence of tensile strength instead which is known to show 

changes in the strength of interfacial adhesion rather sensitively [39]. In Fig. 5 tensile 
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strength is plotted against the amount of MAPLA added to the composites. The figure 

clearly shows that strength increases with increasing amount and functionality of the 

coupling agent confirming that grafting was successful.  

 Fig. 5 also shows that the increase in strength with functionality is not linear and a 

larger step can be observed when we go from grafting degree 1.6 to 2.4 MA group/chain. 

The number of MAPLA samples is not sufficiently large to claim that 2.4 MA 

groups/molecule is so much more beneficial than the rest; further experiments are under 

way to determine the effect of grafting degree on coupling efficiency more accurately. 

However, the fact of coupling is proved unambiguously. One might consider the effect of 

coupling on composite strength small, but we must call the attention here to the fact that 

interfacial interactions were proved to be strong already in the neat PLA/wood composites 

without any modification. Coupling can prevent only the debonding and/or pull-out of 

very large wood particles, but MAPLA seems to do this quite efficiently. 

 

3.3. Properties and reinforcement 

 Testing the effect of interfacial interactions at a single composition may lead to 

false conclusions, thus we measured mechanical properties as a function of wood content. 

This approach allows us to determine the reinforcing effect of the fibers quantitatively and 

analyze deformation mechanism. The uncertainty related to the effect of the degree of 

grafting on coupling efficiency led us to select the functionalized polymer with 1.6 MA 

groups/PLA chain for further experiments. The amount of coupling agent was changed 

between 0 and 20 wt% in 5 wt% steps in this series of experiments. The modulus of all 

composites increased with increasing wood content as expected and in accordance with 

previous experience stiffness did not change much with increasing amount of coupling 

agent (not shown). 
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 The tensile strength of PLA/wood composites is plotted against wood content in 

Fig. 6. The effect of coupling is clearly seen in the figure. Strength decreases quite steeply 

in the neat polymer, while it changes much slower as the amount of coupling agent 

increases in the composite. The larges strength is achieved with the largest amount of 

functionalized polymer. The results also show that the effect approaches saturation, further 

increase in the amount of MAPLA would not result in larger strength. 

 The effect of reinforcement can be expressed quantitatively with the help of an 

appropriate model. Such a model was developed earlier to describe the composition 

dependence of the tensile yield stress [49], tensile strength [50] and fracture properties 

[51] of particulate filled and short fiber reinforced polymers. The model for strength 

simplified for small deformations can be expressed as 

 



 Bexp

5.21

1
0



    (1) 

where  and 0 are composite and matrix strength, respectively,  the volume fraction of 

wood in the composite and B is a parameter expressing reinforcement; parameter B is 

related to interfacial adhesion. The model takes into account the effect of matrix properties 

(0), that of decreasing effective load-bearing cross-section with increasing wood content 

(1-)/(1+2.5) and interactions [exp(B)]. Parameter B shows the extent of reinforcement, 

the load carried by the dispersed component. Parameter B can be determined relatively 

easily from the linearized form of the equation. Rearrangement and plotting reduced 

composite strength against filler content gives a straight line with the slope of B. 

 Parameter B is plotted against the amount of the functionalized polymer in Fig. 7. 

The values range from 2.2 to 2.5, a range which seems to be small, but the value of B 

depends also on matrix stiffness. It is reasonably large for the relatively stiff PLA already 

in the neat polymer and increases even further upon coupling. The figure also shows that 
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reinforcement approaches a saturation value indeed, as concluded by the visual 

observation of Fig. 6. 

 The composition dependence of modulus or strength does not offer any 

information about the local deformation processes taking place around the particles during 

deformation and the interpretation of SEM micrographs is usually difficult, the 

conclusions drawn are often doubtful. Acoustic emission measurements, on the other 

hand, detect signals resulting from local processes and their analysis at least indicate the 

dominating process taking place in the material. The dominating process usually 

determines the final performance of the material. Cumulative number of signal traces 

[8,9,52] are presented in Fig. 8 for composites containing 20 vol% wood at different 

MAPLA contents. The shape of the traces indicate strong interaction (see initiation strain) 

and fiber fracture as the dominating local deformation process [9,18,52-54]. Initiation 

strain and thus also initiation stress increases[39] with increasing MAPLA content 

indicating better stress transfer at larger amount of coupling agent. Initiation stress 

determined from plots like those presented in Fig. 8 is plotted against wood content in Fig. 

9. The figure clearly shows that initiation deformation and stress increases with increasing 

MAPLA content proving that the synthesized functional polymers are efficient coupling 

agents indeed. 

 

3.4. Fracture mechanism, consequences 

 Earlier studies have shown that various local deformation processes take place 

during the deformation of PLA/wood composites. Debonding, fiber pull out and the 

fracture of the fibers were observed to occur simultaneously. Depending on their aspect 

ratio, the fibers may fracture parallel or perpendicular to their axis. Only good interfacial 

adhesion can result in fiber fracture as the dominating local deformation process. 
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However, in this case composite strength is determined by the inherent strength of the 

fiber and cannot be improved by coupling. On the other hand, the results presented in 

previous sections showed an increase in strength with coupling which was even larger than 

in our previous effort to improve interfacial adhesion by coupling [BMI]. The only 

reasonable explanation for the effect is that several local deformation processes take place 

during the loading of the material indeed. Debonding stress is inversely proportional to 

particle size and depends on interfacial adhesion as well. Debonding is initiated at small 

stresses for large particles and week interaction and it leads to immediate failure because 

of the small deformability of PLA. We can assume safely that we prevented the debonding 

of large particles by using the functionalized polymer and thus increased composite 

strength. 

 Although never conclusive, microscopy might support our assumption further. A 

polarization optical and a SEM micrograph are shown in Fig. 10 for a composite 

containing 30 vol% wood and 15 wt% MAPLA. The micrographs are representative, most 

of the others recorded send a very similar message. The fracture of a particle is clearly 

seen in the POM (indicated by the circle) and broken fibers appear on the SEM 

micrograph. No trace of debonding or pull-out can be observed in the composites 

containing any of the coupling agents, at least on the micrographs recorded. Based on 

microscopy we can safely state that in the composites containing MAPLA fiber fracture is 

the dominating failure process indeed. 

 We claimed above that local deformation processes lead to immediate failure after 

their initiation. In order to substantiate this statement, we plotted composite strength 

against the initiation stress determined by acoustic emission (Fig. 11). A very close 

correlation is obtained which is independent of the amount of filler or coupling agent in 

the composite. However, the actual values are not, more MAPLA leads to larger initiation 
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stress and larger composite strength (see points at the upper right corner of the figure). The 

correlation proves very strongly that controlling local deformation process is the only way 

to improve composite strength. The figure also confirms indirectly that debonding must 

take place in the neat, uncoupled composite and in those containing small amount of 

MAPLA, otherwise composite strength could not be increased at all. Besides modifying 

interfacial adhesion, composite properties can be changed also by the proper selection of 

the reinforcing component (particle characteristics, inherent strength). 

 

4. CONCLUSIONS 

 The analysis of the results obtained in experiments to produce poly(lactic acid) 

functionalized with maleic anhydride showed that chain scission of PLA takes place 

during reactive modification. The occurrence of grafting could not be proved by FTIR 

spectroscopy, but a detailed NMR analysis showed that the degree of grafting depends on 

the amount of both reactants; a maximum number of 2.5 MA groups/PLA chain could be 

grafted under the conditions used in the study. The functionalized polymer proved to be an 

efficient coupling agent in PLA/wood composites. Efficiency increased with increasing 

number of functionality and coupling agent amount. Coupling resulted in increased 

strength and reinforcement. Acoustic emission analysis of deformation processes 

supported by microscopy proved that the dominating local deformation process is the 

fracture of the fibers, but small extent of debonding also occurs in neat, uncoupled 

composites. The prevention of debonding by coupling resulted in the improved 

performance of the composites. Local processes initiate the immediate failure of the 

composite irrespectively of their mechanism.  
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7. CAPTIONS 

Fig. 1 Effect of the maleic anhydride concentration of the reaction mixture during 

reactive processing on the melt flow rate of the resulting functionalized 

polymer. Peroxide content: 0.5 wt% 

Fig. 2 FTIR spectra of the neat PLA polymer and two reaction products. a) neat 

polymer, b) 4 wt% MA and 0.5 wt% peroxide, c) 2 wt% MA and 1.5 wt% 

peroxide. 

Fig. 3 
1
H NMR spectrum of the graft copolymer produced with 2 wt% MA and 1.5 

wt% peroxide and the assignation of the peaks. 

Fig. 4 Effect of peroxide content on the degree of grafting at 2 wt% MA content of 

the reaction mixture. 

Fig. 5 Dependence of composite strength on the amount and functionality of 

MAPLA at 30 vol% wood content. Symbols: () 0.2, () 0.7, () 1.6, () 

2.5 MA group/PLA chain. 

Fig. 6 Tensile strength of PLA wood composites plotted against wood content at 

various coupling agent concentrations. MAPLA functionality: 1.6 MA 

group/chain. Symbols: () 0, () 5, () 10, () 15, () 20 wt% MAPLA. 

Fig. 7 Effect of MAPLA content of PLA/wood composites on the reinforcing effect 

of wood (parameter B, see Eq. 1). 

Fig. 8 Influence of MAPLA content on the cumulative number of signal traces of 

PLA/wood composites containing 20 vol% wood. MAPLA functionality: 1.6 

MA groups/chain. 

Fig. 9 Dependence of the initiation stress of local deformations on wood and 

MAPLA content. MAPLA functionality: 1.6 MA group/chain. Symbols: () 
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0, () 5, () 10, () 15, () 20 wt% MAPLA. 

Fig. 10 Microscopic evidence of fiber fracture in PLA/wood composites at 15 wt% 

MAPLA content. a) POM, 5 vol% wood, b) 20 vol% wood. 

Fig. 11 Correlation between composite strength and the initiation stress of the 

dominating local deformation process. Symbols: () 0, () 5, () 10, () 

15, () 20 wt% MAPLA. 
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Csikós, Fig. 1 
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Csikós, Fig. 2 
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Csikós, Fig. 3 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

Csikós, Fig. 4 
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Csikós, Fig. 5 
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Csikós, Fig. 6 
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Csikós, Fig. 7 
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Csikós, Fig. 8 
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Csikós, Fig. 9 
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Csikós, Fig. 10 
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Csikós, Fig. 11 
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