
Journal of

Classical

Analysis

Volume 5, Number 2 (2014), 115–128 doi:10.7153/jca-05-10

MAPPING PROPERTIES OF BASIC HYPERGEOMETRIC FUNCTIONS

ÁRPÁD BARICZ AND ANBHU SWAMINATHAN

Dedicated to Professor Tibor K. Pogány

on the occasion of his 60th birthday

Abstract. It is known that the ratio of Gaussian hypergeometric functions can be represented
by means of g -fractions. In this work, the ratio of q -hypergeometric functions are represented
by means of g -fractions that lead to certain results on q -starlikeness of the q -hypergeometric
functions defined on the open unit disk. Corresponding results for the q -convex case are also
obtained.

1. Introduction

Let D be the open unit disk in the complex plane, that is, D = {z ∈ C : |z| < 1}.
The Gaussian hypergeometric function (see [4]) F(a,b;c; ·) = 2F1(a,b;c; ·) is defined

by

F(a,b;c;z) = ∑
n>0

(a)n(b)n

(c)n

zn

n!
,

where a , b are complex numbers and c ∈ C \ {0,−1,−2, . . .}, and (λ )n is the Poch-

hammer symbol defined by (λ )n = λ (λ + 1) . . .(λ + n− 1) , (λ )0 = 1, n ∈ N . In the

sequel, the parameters a , b and c will be treated as real parameters unless otherwise

specified. The g -fraction expansion for the ratio of two hypergeometric functions is

given in [18], see also [27, p. 337–339], as

F(a + 1,b;c;z)

F(a,b;c;z)
=

1

1−
(1−g0)g1z

1−
(1−g1)g2z

1−
(1−g2)g3z

1− . . .

. (1.1)

It is known that 0 6 gn 6 1 holds only when −1 6 a 6 c and 0 6 b 6 c . For 0 6 gn 6 1,

the continued fraction that appears on the right side of (1.1) is called a g -fraction. We

refer to [18] for further details on this and various other ratios of Gaussian hypergeo-

metric functions. Note that the continued fractions which are ratios of Gauss hyperge-

ometric functions can be studied in fact as Stieltjes functions. Since the reciprocal of

Stieltjes functions are in the class of Pick functions [6, 7], it will be of interest to study
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116 Á. BARICZ AND A. SWAMINATHAN

the conditions under which the ratios of various hypergeometric type functions are in

the class of Pick functions. For example, the reciprocal function 1/ f of the function

f (z) =
logΓ(z+ 1)

zLogz
, z ∈ C\ (−∞,0].

which is the holomorphic extension of the function defined on the positive real axis is a

Pick function [7]. More information on the study of Pick functions can be found in [8].

We also recall that the sequence {ak}k>0 of non-negative real numbers with a0 =
1, is called a Hausdorff moment sequence if there is a probability measure (or positive

Borel measure) µ on [0,1] such that

ak =

∫ 1

0
tkdµ(t), k > 0 or, equivalently F(z) = ∑

k>0

akzk =

∫ 1

0

dµ(t)

1− tz
.

Note that such F is analytic in the slit domain C \ [1,∞) and also belongs to the set

of Pick functions. For the study of such moment problems, we suggest the interested

readers to refer [3, 17, 27]. In particular, we note that Pick functions were studied by

Nevanlinna using a moment problem [3], see also [17].

In this paper we collect the following lemma which is quite useful for further

discussion.

LEMMA 1.1. [27] For a real sequence {an}n>0, the followings are equivalent:

(1) {an}n>0 is totally monotone sequence, i.e.,

∆kan =
k

∑
j=0

(−1) j

(

k

j

)

an+ j > 0 for all k,n > 0 .

(2) {an}n>0 is a Hausdorff moment sequence, i.e., there exists a positive Borel mea-

sure µ on [0,1] with an =

∫ 1

0
tndµ(t) for all n > 0 .

(3) The power series ∑
n>0

anzn is analytic in D and has the analytic continuation for

all z ∈ C\ [1,∞)

∫ 1

0

1

1− tz
dµ(t) =

a0

1−
(1−g0)g1z

1−
(1−g1)g2z

1−
(1−g2)g3z

1− . . .

,

where gn ∈ [0,1] for all n > 0.

Note that the equivalence of (2) and (3) is stated in [27, Theorem 69.2] whereas

that of (1) and (2) is stated in [27, Theorem 71.1]. The main objective of this work is

to identify some members of the class of Pick functions. By virtue of Lemma 1.1, it
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is clear that finding g -sequence of a function will lead to finding members of the class

of Pick functions. Thus, in this paper we are interested in the characterization of the

ratios of basic hypergeometric functions so that the corresponding continued fractions

lead to the geometric properties of Pick functions. The paper is organized as follows. In

the next section we present some new results on the quotients of basic hypergeometric

functions by following some ideas of Küstner [18] on Gaussian hypergeometric func-

tions, while in section 3 we study the generalized starlikeness (introduced by Ismail et

al. [14]) and convexity of basic hypergeometric functions by using the results of sec-

tion 2. These results complement the main results from [1, 14, 18]. The last section is

devoted for concluding remarks.

2. Some ratios of basic hypergeometric functions

The basic hypergeometric function φ of Heine is defined as

φ(a,b;c;q,z) = 2φ1(a,b;c;q,z) = ∑
n>0

(a,q)n(b,q)n

(c,q)n(q,q)n
zn,

where the q -shifted factorials are

(σ ,q)n =
n

∏
j=1

(1−σq j−1), n > 0, (σ ,q)0 = 1,

and it is assumed that 0 < q < 1. Note that for q ր 1 the expression (qa,q)n/(1−q)n

tends to (a)n = a(a+1) . . .(a+n−1), and thus the basic hypergeometric series reduces

to the well-known Gaussian hypergeometric function. More precisely, we have

lim
qր1

φ(qa,qb;qc;q,z) = F(a,b;c;z) = ∑
n>0

(a)n(b)n

(c)nn!
zn.

Now we focus on the problem proposed at the end of the introduction. To start with, the

following result given in [13] (see also [20, p. 320]) is stated as a preliminary result.

LEMMA 2.1. [13] For the basic hypergeometric function φ(a,b;c;q,z) we have

φ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

1

1−
d1z

1−
d2z

1−
d3z

1− . . .

,

where dn = dn(a,b,c,q) is given by

dn =



















qk (1−aqk)(b− cqk)

(1− cq2k)(1− cq2k+1)
for n = 2k + 1

qk (1−bqk+1)(a− cqk+1)

(1− cq2k+1)(1− cq2k+2)
for n = 2k + 2

, (2.1)

where k ∈ {0,1, . . .}.
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Note that the continued fraction relation given above means, by definition, that

at z = 0 the difference of the analytic function on the left hand side and of the n th

approximant of the continued fraction on the right hand side has a zero of order at

least n or, in the terminating case, if dn+1 and subsequent coefficients vanish, that this

difference is zero.

For the interested reader on this result and various other continued fraction expan-

sions, [11, 13, 14, 15, 27] and references therein may be useful. In particular, the above

continued fraction can be obtained as a limiting case of a continued fraction available

in [11, p. 488].

Now, we present an application of Lemma 2.1 by using the idea of [18, Theorem

1.5].

THEOREM 2.1. Let q ∈ (0,1) and a,b,c > 0 be such that cq 6 a 6 1 and cq2 6

bq 6 1. Then, for a non-decreasing function µ0 : [0,1]→ [0,1] with µ0(1)−µ0(0) = 1

we have

φ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

∫ 1

0

1

1− tz
dµ0(t) for all z ∈ C\ [1,∞). (2.2)

Proof. Let us consider the sequence {σn}n>0, defined by σ0 = 1 and for all n > 1

σ2n−1 = qn−1 a− cqn

1− cq2n−1
, σ2n = qn b− cqn

1− cq2n
.

From the definition of dn in Lemma 2.1 it can be seen that dn = (1−σn)σn−1 holds

for all n > 1. Now, we let gn = 1−σn . This gives

φ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

1

1−
(1−g0)g1z

1−
(1−g1)g2z

1−
(1−g2)g3z

1− . . .

and by the hypothesis of the theorem we have cq2n−1 6 aqn−1 6 1 and cq2n 6 bqn 6 1

for all n > 1, and thus 0 6 gn 6 1 for all n > 1, and clearly 0 6 g0 6 1. In this case, the

above given continued fraction is called infinite g -fraction. Now, according to Lemma

1.1, that is, [27, p. 263, Theorem 69.2], the coefficients in the power series expansion at

z = 0 of the analytic function in the left hand side of the above continued fraction are the

Hausdorff moments of a non-decreasing function on (0,1) , with infinitely many points

of increase (with the total increase of 1). Thus, there exists a function µ0 : [0,1]→ [0,1]
that satisfies 0 = µ0(0) 6 µ0(s) 6 µ0(t) 6 µ0(1) = 1 for 0 < s < t < 1 and its range

containing infinitely many points such that

φ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

∫ 1

0

1

1− tz
dµ0(t) for all z ∈ C\ [1,∞),

by analytic continuation, with µ0(t) = µ0(a,b;c;q,t) , and the integral being in the

sense of Riemann-Stieltjes. �
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REMARK 2.1. By substituting a by qa, b by qb and c by qc, and tending with

q to 1−, Theorem 2.1 becomes the following: if c+1 > a > 0 and c+1 > b > 0, then

there exists a non-decreasing function µ0 : [0,1] → [0,1] with µ0(1)− µ0(0) = 1 such

that
F(a,b + 1;c + 1;z)

F(a,b;c;z)
=

∫ 1

0

1

1− tz
dµ0(t) for all z ∈ C\ [1,∞).

This result is a natural companion to the results given by Küstner [18, Theorem 1.5].

Moreover, if we substitute a by aq in Theorem 2.1 and then we change there a

by qa, b by qb and c by qc, and tend with q to 1−, we obtain the following result: if

c > a > 0 and c + 1 > b > 0, then there exists a non-decreasing function µ∗
0 : [0,1] →

[0,1] with µ∗
0 (1)− µ∗

0 (0) = 1 such that

F(a + 1,b + 1;c + 1;z)

F(a + 1,b;c;z)
=

∫ 1

0

1

1− tz
dµ∗

0 (t) for all z ∈ C\ [1,∞).

This is a result given by Küstner [18, Theorem 1.5] for c > a > −1 and c > b > 0.

Finally, we would like to mention that taking into account the above discussion,

our Theorem 2.1 is actually a slight modification of a result obtained recently by Agrawal

and Sahoo [1, Theorem 2.3].

The following result is an immediate consequence of the above theorem.

COROLLARY 2.1. Under the hypothesis of Theorem 2.1, φ(a,b;c;q,z) 6= 0 , for

all z ∈ C .

The following result on the geometric properties of an analytic function f is useful

for further discussion.

LEMMA 2.2. [18, 21] Let µ : [0,1]→ [0,1] be non-decreasing with µ(1)−µ(0)=
1 . Then the function

z 7→

∫ 1

0

z

1− tz
dµ(t)

is analytic in the cut-plane C\ [1,∞) and maps both the open unit disk D and the half-

plane {z ∈ C : Re z < 1} univalently onto domains that are convex in the direction of

the imaginary axis. If further

∫ 1

0
tdµ(t) > 0 then the same holds for

z 7→
∫ 1

0

1

1− tz
dµ(t).

Here, by a domain convex in the direction of the imaginary axis we mean that

every line parallel to the imaginary axis has either connected or empty intersection with

the corresponding domain. For details regarding this and related geometric properties,

we suggest the interested readers to refer [9].

The next result deals with convexity in the direction of the imaginary axis of some

quotients of basic hypergeometric functions. The idea of the proof of this interesting

result is taken from [18, Theorem 1.5]. We note that, quite recently some similar results

were obtained by Agrawal and Sahoo [1] via the same approach.
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THEOREM 2.2. Let q ∈ (0,1) and a,b,c > 0 be such that cq 6 a 6 1 and cq2 6

bq 6 1. Then the functions

z 7→
φ(a,qb;qc;q,z)

φ(a,b;c;q,z)
, z 7→

φ(aq,bq;cq2;q,z)

φ(a,b;c;q,z)
, z 7→

φ(aq,bq;cq2;q,z)

φ(aq,b;cq;q,z)
,

z 7→
φ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)
, z 7→

zφ(a,qb;qc;q,z)

φ(a,b;c;q,z)
, z 7→

zφ(aq,bq;cq2;q,z)

φ(a,b;c;q,z)
,

z 7→
zφ(aq,bq;cq2;q,z)

φ(aq,b;cq;q,z)
, z 7→

zφ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)

are analytic in C\ [1,∞) and each function map both the open unit disk D and the half

plane {z ∈ C : Re z < 1} univalently onto domains that are convex in the direction of

the imaginary axis. Further, if a 6= c, then the same result holds for

z 7→
φ(a,b;c;q,qz)

φ(a,b;c;q,z)
and z 7→

zφ(a,b;c;q,qz)

φ(a,b;c;q,z)
.

Proof. By using Theorem 2.1 we obtain

φ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

∫ 1

0

1

1− tz
dµ0(t) for all z ∈ C\ [1,∞),

which gives

zφ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

∫ 1

0

z

1− tz
dµ0(t) for all z ∈ C\ [1,∞).

Now, let µ1(t) =

∫ t

0

sdµ0(s)

λ
, where λ > 0. By using µ0(1)− µ0(0) = 1 we find that

1 + λ

∫ 1

0

z

1− tz
dµ1(t) = 1 + λ

∫ 1

0

z

1− tz

1

λ
tdµ0(t)

=

∫ 1

0

1

1− tz
dµ0(t) =

φ(a,qb;qc;q,z)

φ(a,b;c;q,z)
.

Setting λ = d1 as given in (2.1), we write

φ(a,qb;qc;q,z)

φ(a,b;c;q,z)
= 1 + d1

∫ 1

0

z

1− tz
dµ1(t), z ∈ C\ [1,∞). (2.3)

By using Heine’s contiguous relation [10, p. 22]

φ(aq,b;cq;q,z)−φ(a,b;c;q,z) = z
(1−b)(a− c)

(1− c)(1− cq)
φ(aq,bq;cq2;q,z)

we obtain

d1zφ(aq,bq;cq2;q,z) = φ(a,bq;cq;q,z)−φ(a,b;c;q,z). (2.4)



MAPPING PROPERTIES OF BASIC HYPERGEOMETRIC FUNCTIONS 121

Combining this with (2.3) we obtain that

d1z
φ(aq,bq;cq2;q,z)

φ(a,b;c;q,z)
= d1

∫ 1

0

z

1− tz
dµ1(t), z ∈ C\ [1,∞)

and hence

z
φ(aq,bq;cq2;q,z)

φ(a,b;c;q,z)
=

∫ 1

0

z

1− tz
dµ1(t), z ∈ C\ [1,∞), (2.5)

where according to [18, Remark 3.2] the function µ1 : [0,1] → [0,1] is also non-

decreasing with µ1(1)− µ1(0) = 1. On the other hand, from the continued fraction

expansion of the ratio φ(a,bq;cq;q,z)/φ(a,b;c;q,z) given in Theorem 2.1, we can

write

φ(aq,bq;cq2;q,z)

φ(aq,b;cq;q,z)
=

1

1−
d1z

1−
d2z

1−
d3z

1− . . .

where dn = dn(aq,b,cq,q) = (1− gn−1)gn satisfying 0 6 gn 6 1 for all n > 1. Note

that for this we need the conditions cq2n+1 6 bqn 6 1 and cq2n 6 aqn 6 1 for all n > 1,
however since q ∈ (0,1) these are certainly satisfied because of the hypothesis of this

theorem. Hence for the same conditions on a, b and c given in the hypothesis of the

theorem, there exist a non-decreasing function µ2 : [0,1]→ [0,1] with µ2(1)−µ2(0) =
1 for which we have

φ(aq,bq;cq2;q,z)

φ(aq,b;cq;q,z)
=

∫ 1

0

z

1− tz
dµ2(t), for all z ∈ C\ [1,∞).

On the other hand, observe that by using the contiguous relation (2.4) we obtain

φ(a,bq;cq;q,z)

φ(a,b;c;q,z)
=

1

1−d1
zφ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)

and thus the quotient

φ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)
=

φ(bq,aq;cq2;q,z)

φ(bq,a;cq;q,z)
=

φ(α,β q;γq;q,z)

φ(α,β ;γ;q,z)
,

where α = bq, β = a and γ = cq, can be rewritten as

φ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)
=

1

1−d1(α,β ,γ)
zφ(αq,β q;γq2;q,z)

φ(α,β q;γq;q,z)

=
1

1−d2(a,b,c)
zφ(aq,bq2;cq3;q,z)

φ(aq,bq;cq2;q,z)

.



122 Á. BARICZ AND A. SWAMINATHAN

Continuing in this way we obtain

φ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)
=

1

1−
d2z

1−
d3z

1−
d4z

1− . . .

,

where dn = (1− gn−1)gn satisfying 0 6 gn 6 1 for all n > 2. Thus, there exists a

non-decreasing function µ3 : [0,1] → [0,1] satisfying µ3(1)− µ3(0) = 1 such that

φ(aq,bq;cq2;q,z)

φ(a,bq;cq;q,z)
=

∫ 1

0

z

1− tz
dµ3(t), for all z ∈ C\ [1,∞). (2.6)

Thus, we have verified that the functions µ0, µ1, µ2 and µ3 satisfy the conditions of

Lemma 2.2, and thus the first eight functions in this theorem indeed satisfy the assertion.

The last part of the theorem follows from (3.4) of Theorem 3.1, whenever c 6= a . �

We note that the first and fifth ratio given in Theorem 2.2 can be obtained as par-

ticular cases of some of the continued fractions given in [15]. In [15], J -fractions

for some q -hypergeometric functions were given which are represented by analogous

Stieltjes transforms related to a probability measure µ(t) . See also [15, Theorem 4.1]

for another continued fraction for the ratio φ(a,b;c;q,z)/φ(aq,bq;cq;q,z) . While in-

troducing the associated Askey-Wilson polynomials in [16, p. 215], the ratios of two

8φ7 generalized basic hypergeometric polynomials (see [4, 10] for the details of this

technical term) are given with a representation of a measure, which under certain lim-

iting conditions are similar to the ratio given in (2.2) of Theorem 2.1. In particular,

equation (4.18) in [16] is used to conjecture that the 8φ7 generalized basic hypergeo-

metric function given in the denominator has no zeros for z ∈ D . Note that a similar

result for the limiting case leading to 2φ1 is proved in Corollary 2.1.

3. Geometric properties of basic hypergeometric functions

The continued fraction expansion for the ratio of two basic hypergeometric func-

tions that is obtained in the previous section can have some interesting applications. We

exhibit one such application in this section. The following definition is given in [14]: an

analytic function f is said to belong to the class PSq of generalized starlike functions

if for all q ∈ (0,1) and z ∈ D we have

∣

∣

∣

∣

z(Dq f )(z)

f (z)
−

1

1−q

∣

∣

∣

∣

6
1

1−q
,

where

(Dq f )(z) =
f (z)− f (qz)

z(1−q)
, z 6= 0, (Dq f )(0) = f ′(0).
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We note that for q ր 1, the class of functions PSq reduces to S ∗ , which is the class

of functions that map the unit disk D conformally onto a domain which is starlike with

respect to the origin. The function

Gq(z) =
1− z

1 + qz
= 1 +

1 + q

q
∑
n>1

(−q)nzn

is a Carathéodory function which maps D onto the disk given by
∣

∣

∣

∣

w−
1

1−q

∣

∣

∣

∣

<
1

1−q
. (3.1)

Moreover, the function Kq , which is the solution of the differential equation

z(DqKq)(z)

Kq(z)
= Gq(z),

is extremal in the class PSq. Note that the function Kq plays the role in the class PSq ,

equivalent to the role played by the Koebe function z 7→ z/(1− z)2 in the class S
∗ .

The next result gives sufficient and necessary conditions for a function to belong to the

class PSq.

LEMMA 3.1. The necessary and sufficient condition for a function f to be in the

class PSq is f (0) = 0, f ′(0) = 1 and | f (qz)/ f (z)| < 1 for all z ∈ D and q ∈ (0,1).

For all the above results and further properties related to the class PSq we refer the

interested reader to [14]. See also [25] for some continued fraction expansion related to

Gq. In [24] certain conditions on the Taylor coefficients of PSq are discussed. We also

note that recently in [1, 2, 26] the authors introduced the so-called q -close-to-convex

functions and q -starlike functions of order α and obtained conditions under which the

basic hypergeometric functions are in q -close-to-convex family, as well as determined

the order of q -starlikeness of basic hypergeometric functions. As far as we know these

are the only results available in the literature about the class PSq and thus it is worth

to deduce some new results in this topic. Our first main result of this section is the

following theorem.

THEOREM 3.1. Let a,b,c,q∈ (0,1) satisfy the following conditions: ab 6 c 6 a,

c 6 b and

4ac(1−c)2(1−q)(b(1−q)+q(1−b)) > (q(1−b)(c−2a+ac)−(1−c)(1−q)(ab+c))2.
(3.2)

Then, for |z| < 1 we have zφ(a,b;c;q,z) ∈ PSq .

Proof. Let us consider the notation f (z) = zφ(a,b;c;q;z). From Lemma 3.1, it

is enough to prove that | f (qz)| < | f (z)| for |z| < 1. We use the following contiguous

relations given in [13] (see also [15])

z(1−a)(1−b)φ(qa,qb;qc;q,z)= (1− c)[φ(a,b;c;q,z)−φ(a,b;c;q,qz)],
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(1−a)(c−abz)φ(qa,qb;qc;q,z)= a(1− c)φ(a,b;c;q,z)− (a− c)φ(a,qb;qc;q,z).

Some computations concerning the above two relations give the following identity

φ(a,b;c;q,qz)

φ(a,b;c;q,z)
= 1−

a(1−b)z

c−abz
+ z

(1−b)(a− c)φ(a,qb;qc;q,z)

(c−abz)(1− c)φ(a,b;c;q,z)
. (3.3)

From (3.3) and Theorem 2.1, we have

f (qz)

f (z)
=

qφ(a,b;c;q,qz)

φ(a,b;c;q,z)
= q

(

1−
a(1−b)z

c−abz
+ z

(1−b)

(c−abz)

(a− c)

(1− c)

∫ 1

0

1

1− tz
dµ0(t)

)

,

(3.4)

where µ0(t) is defined as in Theorem 2.1. To prove that zφ(a,b;c;q;z) ∈ PSq, we need

to show that
∣

∣

∣

∣

q

(

1−
a(1−b)z

c−abz
+ z

(1−b)

(c−abz)

(a− c)

(1− c)

∫ 1

0

1

1− tz
dµ0(t)

)∣

∣

∣

∣

< 1. (3.5)

For |z| 6 r < 1, by applying the triangle inequality to the left side of (3.5), it is enough

to prove,

1 +
a(1−b)r

c−abr
+

r(1−b)(a− c)

(c−abr)(1− c)

1

1− r
<

1

q
, 0 6 r < 1.

This reduces to proving

Ar2 + Br +C > 0, 0 6 r < 1,

where

A = a(1− c)
(

b(1−q)+ q(1−b)
)

,

C = c(1− c)(1−q) and B = q(1−b)(c−2a + ac)− (1− c)(1−q)(ab+ c).

Since a > 0, c,b,q ∈ (0,1) we have that A > 0 and hence, we are left to prove B2 6

4AC . This is nothing but (3.2) and the proof is complete. �

REMARK 3.1. After the substitutions a ↔ qa, b ↔ qb, and c ↔ qc the condition

3.2 in Theorem 3.1 becomes

4qa+c(1−qc)2(1−q)
(

qb(1−q)+ q(1−qb)
)

> (q(1−qb)(qc −2qa + qa+c)− (1−qc)(1−q)(qa+b + qc))2,

that is,

4qa+c

(

qb + q
1−qb

1−q

)

>

(

q
1−qb

1−qc

qc −2qa + qa+c

1−q
−qa+b−qc

)2

.
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Thus, in the limiting case q ր 1 Theorem 3.1 becomes the following: if a,b,c > 0,
q ∈ (0,1) satisfy the following conditions a + b > c > a , c > b and 4c2(b + 1) >

(ab−2bc−2c)2, then for |z| < 1 we have that z 7→ zF(a,b;c;z) is starlike. It is worth

to mention that other conditions for the parameters a,b,c on univalence, starlikeness

and convexity of the normalized Gaussian hypergeometric functions were obtained by

many authors, see for example [12, 19, 22, 23] and the references therein.

COROLLARY 3.1. If q∈ (0,1) and a,b,c satisfy the conditions as in Theorem 3.1

along with the condition |c−ab|< 2|c| , then the function z 7→ zφ(c/a,c/b;c;q,abz/c)
is in PSq .

Proof. Let h(z) = zφ(c/a,c/b;c;q,abz/c) . Now using

φ(c/a,c/b;c;q,abz/c) =
(z;q)∞

(abz/c;q)∞
φ(a,b;c;q,z)

given in [10, p.10], we get

∣

∣

∣

∣

h(qz)

h(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

qzφ(c/a,c/b;c;q,abqz/c)

zφ(c/a,c/b;c;q,abz/c)

∣

∣

∣

∣

=

∣

∣

∣

∣

1−abz/c

1− z

zφ(a,b;c;q,qz)

φ(a,b;c;q,z)

∣

∣

∣

∣

.

Note that here (α,q)∞ means limn→∞(α,q)n. Now, applying Theorem 3.1 with the

hypothesis |c − ab| < 2|c| , we get that the right hand side of the above equality is

bounded by 1 and Lemma 3.1 guarantees that h is in PSq . �

Now, by using the idea of the well-known Alexander duality between starlike and

convex functions it is of interest to define the class of generalized convex functions

PCq . We note that if q ր 1, then the class PCq reduces to the class of functions that

map the open unit disk onto convex domain.

DEFINITION 3.1. Let PCq be the class of functions defined by f ∈ PCq ⇐⇒
zDq( f )(z) ∈ PSq .

From the definition of PCq , the following results are immediate.

THEOREM 3.2. Let a,b,c,q ∈ (0,1) satisfy the following conditions: abq 6 c 6

a, c 6 b, and

4acq(1− cq)2(1−q)(b(1−q)+ 1−bq)

> (q(1−bq)(c−2a +acq)− (1− cq)(1−q)(abq+ c))2.

Then, we have that

z 7→
(1− c)(1−q)

(1−a)(1−b)
φ(a,b;c;q,z) ∈ PCq.

COROLLARY 3.2. Let a, b and c satisfy the hypothesis of Theorem 3.2. Then for

q ∈ (0,1) , φ(qa,qb;qc;q,z) 6= 0 , for all z ∈ C .
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We note that in [14] the following result is obtained using the continued fraction

results for a circular domain given in [27].

THEOREM 3.3. Let c > a, b < 1 , and

sup
|z|6r<1

{∣

∣

∣

∣

w(1− z)−az(1−b)

c−abz

∣

∣

∣

∣

+ |w(1− z)|

}

6
1−q

q
,

where

w =
(a− c)z(1−b)

(c−abz)(1 + a−2c +(c−1)(2Rez)+ (1−a)|z|2)
.

Then, zφ(a,b;c;q,rz) ∈ PSq .

Theorem 3.1 is different from Theorem 3.3 in the sense that the conditions given

in Theorem 3.1 are easier to formulate than the conditions given in Theorem 3.3. In

order to obtain the results in Theorem 3.3, the authors of [14] have used the result of

[27, p. 341] which is related to Theorem 11.1 of [27] for circular domain. In Theorem

3.1, instead of this result, a different idea of [27, p. 341] which is related to Theorem

69.2 of [27] is applied which leads to a different result. Note that Theorem 3.3 deals

with a particular domain, whereas Theorem 3.1 has no restriction on the variable z . We

also observe that Theorem 3.1 has c < a whereas Theorem 3.3 has c > a and hence

these two results are different.

4. Concluding remarks

A. Theorem 3.1 is obtained using one ratio given in Theorem 2.1. Using other ratios

in Theorem 2.2, many other interesting cases can be obtained. We restrict only

to the single case, in order to show the application of the results in Section 2

and to avoid deviating from the main objective of the work. It is also worth to

mention that Theorems 2.1 and 2.2 are natural companions of [1, Corollary 2.8],

[1, Theorem 2.10] and [1, Theorem 2.13]. Moreover, we note that substituting

a by qa, b by qb and c by qc, and tending with q to 1−, Theorem 2.2 offers

many other results which complement those of Küstner [18, Theorem 1.5].

B. Replacing z by real x and writing Φ(a,b;c;q,z) as Φ(qa,qb;qc;q;x) it can be

seen that the ratio
φ(qa,qb+1;qc+1;q,x)

φ(qa,qb;qc;q,x)
has the representation

φ(qa,qb+1;qc+1;q,x)

φ(qa,qb;qc;q,x)
=

1

1−
d1x

1−
d2x

1−
d3x

1− . . .

, (4.1)
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where dn = dn(a,b,c,q) is given by

dn =















qk+b (1−qk+a)(1−qk+c−b+1)

(1− cq2k)(1− cq2k+1)
for n = 2k + 1,

qk+a (1−bqk+1)(1−qk+c−a+1)

(1− cq2k+1)(1− cq2k+2)
for n = 2k + 2,

where k ∈ {0,1,2, . . .}. In [5], for a > c > 0, b > 0, and x,q ∈ (0,1) the Turán

type inequality

φ(qa+2,qb;qc+2;q;x)

φ(qa+1,qb;qc+1;q;x)
>

φ(qa+1,qb;qc+1;q;x)

φ(qa,qb;qc;q;x)

is obtained. Note that the ratios given in either side of the inequality can have

the continued fraction expansion given by (4.1). However, the continued frac-

tions cannot be compared as they do not converge to the same limiting functions

in general. Hence finding a suitable method relating these continued fractions

would help in finding Turán type inequalities for various ratios given in Theorem

2.2.
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