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Abstract The Kozeny–Carman equation has achieved widespread use as a standard

model for estimating hydraulic conductivity of aquifers. An empirically modified form

applicable in shallow formations called Csókás’ formula is discussed, which is based on

the relation between the effective grain-size and formation factor of freshwater-bearing

unconsolidated sediments. The method gives a continuous estimate of hydraulic conduc-

tivity along a borehole by using electric and nuclear logging measurements without the

need of grain-size data. In the first step, synthetic well-logging data sets of different noise

levels are generated from an exactly known petrophysical model to test the noise sensi-

tivity of the Csókás’ method and to assess the degree of correlation between the results of

Csókás’ and Kozeny–Carman model. In the next step, borehole logs acquired from Hun-

garian sites are processed to make a comparison between the Csókás’ formula and the

Kozeny–Carman equation including grain-size data measured on rock samples. The hy-

draulic conductivity logs derived separately from the Csókás’ and Kozeny–Carman for-

mulae show reliable interpretation results, which are also validated by the Hazen’s formula

and statistical factor analysis. The fundamental goal of Professor Csókás’ research was to

derive some useful hydraulic parameters solely from well-logging observations. This idea

may be of importance today since the input parameters can be determined more accurately

by advanced measurement techniques. Hence, the Csókás’ formula may inspire the hy-

drogeophysicists to make further developments for a more efficient exploration of

groundwater resources.
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Department of Geophysics, University of Miskolc, Miskolc-Egyetemváros 3515, Hungary
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1 Introduction

Hydraulic conductivity is one of the most important hydraulic rock properties in solving

hydrogeophysical problems. By definition, it is the rate of flow under unit hydraulic

gradient through unit cross-sectional area of aquifer, which depends not only on the type

and structure of rock matrix but also the properties of fluid that fills the pore space. In

hydrogeology the hydraulic conductivity is normally determined from laboratory mea-

surements or well-site aquifer tests. However, these information are quite local which

should be extended to the whole length of the borehole or as good to a bigger measurement

area. Ground geophysical surveying methods are used to investigate some related quan-

tities from which the lateral variation of hydraulic conductivity can be detected acceptably.

Several types of well-logging probes are available also in boreholes to measure electrical,

nuclear and acoustic properties of the surrounding rocks that are useful to estimate the

vertical distribution of hydraulic conductivity. The hydraulic information acquired from

several wells can be correlated by means of surface geophysical measurements. The

similarity and expandability of hydraulic conductivity data obtained from different sources

were discussed by Zilahi-Sebess et al. (2007). During the geological site characterization

of low and intermediate radioactive waste deposit in Bátaapáti (South-West Hungary) it

was experienced that the shape of permeability curves obtained from well-logging mea-

surements correlates properly with that of hydrogeological pumping tests. The well-log

derived hydraulic conductivity standardized to hydrogeological information can be related

to some physical quantities measured by surface geophysical methods. However, the hy-

draulic conductivity estimated from ground geophysical observations is valid only for the

investigated block, which depends on the spatial distribution of porosity, too. The suitable

hydrogeophysical methods and several applications in estimating hydraulic conductivity

can be found in Rubin and Hubbard (2005) and Kirsch (2009).

In shallow clastic sediments the evaluation of hydraulic conductivity requires the pre-

liminary knowledge of porosity and grain-sizes. In the absence of direct geophysical

measurements one is confined to measure some related physical parameters or to take rock

samples from the borehole to extrapolate hydrogeological information for a local area.

Several regression relationships are available in the literature, e.g. between porosity and

bound-water saturation and permeability or between Stoneley wave slowness and per-

meability, to make satisfactory predictions, but the values of regression coefficients must

usually be set to each area particularly. In order to avoid core sampling, Professor Csókás

(1995) worked out a comprehensive interpretation method to give an estimate to perme-

ability and hydraulic conductivity of unconsolidated freshwater-bearing formations based

purely on well-logging data. By incorporating the field experiments of Alger (1971), the

Hazen’s effective grain-size is possible to be substituted by the Archie’s formation factor

which can be measured directly from well logs. The derived formula including porosity

and true resistivity of aquifers gives a continuous estimate to hydraulic conductivity for the

entire length of the borehole. Additional to it, the Csókás’ method comprises the deter-

mination of critical filtration velocity, which can be used to estimate the highest value of

sand-free yield in the knowledge of filter radius and effective layer-thickness. The hy-

drogeophysical parameters estimated by the Csókás’ method provide with valuable in-

formation for groundwater exploration and help to establish a suitable technique for

exploiting underground water resources.

As a continuation of Professor Csókás’ research, in this paper, a comparative study is

made between the Csókás’ and the grain-size based Kozeny–Carman model. The Csókás’

method is first applied to synthetic well-logging data sets to test the noise sensitivity of
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parameter estimation and to quantify the accuracy of interpretation results. Then, the re-

processing of a Hungarian data set published previously by Professor Csókás is made to

compare the Csókás’ and Kozeny–Carman methods. At last, a new Hungarian case study is

shown to demonstrate that hydraulic conductivities estimated by the Csókás’ method are in

close agreement both with laboratory measurements and independent results of multi-

variate statistical (factor) analysis of borehole logs. The authors recommend the Csókás’

method primarily for hydrogeophysicists to expand hydraulic test data for the whole length

of a borehole or correlate them between several wells drilled in the groundwater investi-

gation site.

2 The Kozeny–Carman equation

The Darcy’s equation is one of the basic equations in hydrogeology which describes the

flow of a fluid through a porous formation

ou

ot
¼ � j

Ul
rp; ð1Þ

where j (m2) denotes permeability, U (v/v) is porosity, l (Ns/m2) is dynamic viscosity, u
(m) is the relative displacement vector of the fluid and p (N/m2) is the pore pressure.

Hydraulic conductivity K = jqg/l (m/s) as a related quantity expresses the ease with

which the fluid flows through the pore system, which is influenced by several properties of

the rock matrix and pore fluid such as density (q) and viscosity of pore-filling fluid,

distribution of grain-sizes, amount of porosity and degree of water saturation in primary

porosity rocks (g (cm/s2) is the normal acceleration of gravity). In the first approximation,

the connection between hydraulic conductivity and grain-size is represented by a simple

empirical formula (Hazen 1892)

K ¼ CHd2
10; ð2Þ

where CH is the Hazen’s empirical coefficient (in the interval of 0.4 and 10), d10 is the

representative grain diameter at 10 % cumulative frequency relative to which the one-tenth

part of the sample is finer by weight. A more reliable approach was suggested by Kozeny

(1927), which was later modified by Carman (1937). According to the Kozeny–Carman

(hereafter KC) model the rock with intergranular porosity is considered to be an assembly

of capillary channels in which the Navier–Stokes equation satisfies. The following form of

the KC equation is one of the most widely used formulas for the estimation of hydraulic

conductivity (Bear 1972)

K ¼ qwg

l
d2

180

U3

1� Uð Þ2
; ð3Þ

where d (cm) is the dominant grain diameter, U (v/v) is the porosity of formation and qw

(g/cm3) is the density of pore-fluid (K is given in units of cm/s). In Eq. (3) the term of U3/

(1 - U)2 characterizes the compactness of the rock. The dominant grain diameter can be

derived from those representative values of the grain-size distribution curve for which the

10 % and 60 % parts of the sample are finer by weight, respectively (Juhász 2002)
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d ¼ d10 þ d60

2

ffiffiffiffiffiffiffi

d10

d60

r

; ð4Þ

where d60 is the grain diameter at 60 % cumulative frequency. Rock samples can be taken

from boreholes to measure the grain-size and the amount of porosity can be estimated by

well log analysis. The correlation between grain-size and porosity should be found before

well logs are applied to calculate the continuous curve of hydraulic conductivity by

Eqs. (3)–(4) along the borehole axis. The knowledge of the hydraulic conductivity is of

great importance in the determination of water reserves as well as in the management and

protection of groundwater supply. Equation (3) is considered as a standard calculation

method to estimate hydraulic conductivity. The accuracy of the estimation is highly limited

of course by the uncertainty of the related parameters. The estimation error of hydraulic

conductivity normally is one (or one and a half) order of magnitude, thus it is the change of

hydraulic conductivity that can be preferably evaluated by geophysical methods than its

absolute value.

3 The Csókás’ method

In the absence of core samples one should rely on borehole logging data for the estimation

of petrophysical properties of rocks. Csókas (1995) worked out a deterministic procedure

Fig. 1 Alger’s empirical relation
between formation factor and
dominant grain-size
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to extract hydraulic conductivity of freshwater formations only from well logs. The

starting-point in formulating the Csókás’ (hereafter CS) model is the assumption of the KC

equation. On the other hand, it is also assumed that there is an empirical connection

between some types of well logs and hydraulic conductivity. A constraint relation sug-

gested by Alger (1971) connecting the dominant grain-size to the Archie’s formation factor

forms the bridge between well-logging measurements and hydraulic conductivity of

aquifers.

In rocks saturated fully with water the formation factor (F) is defined as the ratio of the

resistivity of rock (R0) to that of the pore-water (Rw)

F ¼ R0

Rw

: ð5Þ

Alger (1971) found a direct proportionality between the formation factor and grain-size

of freshwater saturated sediments in the laboratory, which is opposite of that experienced

in the oilfields (i.e. in brine saturated rocks). The Hazen’s effective grain diameter (d10)

determined from sieve analysis was empirically related to the formation factor of un-

consolidated sediments

d10 ¼ Cd lg F; ð6Þ

where Cd is a site-specific constant. The value of Cd = 5.22 9 10-4 in Eq. (6) was pro-

posed for not too poorly sorted sediments with a formation factor less than 10. This

condition is normally fulfilled in shallow clastic aquifers. Alger (1971) suggested an in-

terpretation methodology based on Eq. (6) by using different types of well-logging suits

adapted from the oilfield to evaluate freshwater-bearing shaly sands. The regression Eq. (6)

is illustrated in Fig. 1, where the Pearson’s correlation coefficient r ¼ covðd10;FÞ=ðrd10
rFÞ

indicates a strong relation between the variables.

The dominant grain-size in Eq. (3) can be defined as the diameter of a homo-disperse

conglomerate of grains the surface of which equals to that of the real sample with actual

grain-size distribution and same density. The value of dominant grain-size can be given

from the grain-size distribution curve. Additional to Eq. (4), there exist several formulae

for the estimation of dominant grain diameter. The uniformity coefficient U = d60/d10 as a

shape parameter describing the form of the grain-size distribution curve quantifies the

degree of uniformity in a granular material. Kovács (1972) connected the uniformity

coefficient of sands to dominant grain-size (d) as d/d10 = 1.919�lgU ? 1. For poorly sorted

sediments (U [ 5), quantity U is inversely proportional to the logarithm of hydraulic

conductivity. For not so badly sorted sands (2.0 B U B 2.5) the previous equation takes

the form as

d ¼ 1:671 � d10: ð7Þ

By combining Eqs. (5)–(7) one can obtain

d ¼ 1:671 � Cd lg
R0

Rw

: ð8Þ

The determination of hydraulic conductivity requires the preliminary knowledge of

effective porosity and shale volume of groundwater formations. Archie (1942) suggested

the following empirical formula developed from laboratory measurements made on nu-

merous samples
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F ¼ a

Um ; ð9Þ

where m is the cementation exponent (in poorly compacted sediments m *1.5–1.7) and a

is the tortuosity coefficient (a *1). The study of Alger (1971) showed that the formation

factor depends not only on the porosity, but also on the resistivity of pore-water and grain-

size in freshwater saturated sediments with primary porosity. Ogbe and Bassiouni (1978)

coupled the tortuosity factor with porosity and formation factor

a2 ¼ R0

Rw

U

� �1:2

: ð10Þ

The constants a and m in Eq. (9) represents the textural properties of the rock. They are

unvarying or only slowly varying with depth and are treated as zone parameters in well log

interpretation. The effective porosity in shaly sands younger than Tertiary can be calcu-

lated as Ue = U (1 - Vsh) where the porosity can be extracted from gamma–gamma or

neutron–neutron measurements and the shale volume (Vsh) can be estimated from the

natural gamma-ray intensity log (Larionov 1969)

Vsh ¼ 0:083 23:7 iGR � 1
� �

; ð11Þ

where iGR is the natural gamma-ray index. Equation (11) does not depend on the water

type, but cautions should be made in rocks including radioactive non-clay minerals or

fractures filled with uranium- or thorium rich water. Dispersed clay particles also can

considerably modify the resistivity of pore-water, which then affects the formation factor

appearing in Eq. (6).

The hydraulic conductivity appears in Eq. (1) which was properly modified by Kovács

(1972)

K ¼ 1

5

g

t
U3

1� Uð Þ2
d

a

� �2

; ð12Þ

where a is the average shape factor of sample particles in the range of 7 and 11 for sands

(the average is 10). The kinematic viscosity of water t (m2/s) can be expressed in the

function of formation temperature, thus the ratio of gravity acceleration and kinematic

viscosity for the water in Eq. (12) is g/t = 5.517 9 104�Ct (m/s), where Ct is a tem-

perature dependent constant calculated as Ct = 1 ? 3.37 9 10-2T ? 2.21 9 10-4T2

(where T is given in units of �C). Pirson (1963) published another form of the Kozeny

equation used to predict permeability

j ¼ 1

5

U3

1� Uð Þ2
1

a � S

� �2

; ð13Þ

where S (m2/m3) denotes the specific surface of the rock. By comparing Eqs. (12) and (13)

the following identical equation can be derived

d

a

� �2

¼ 1

a � S

� �2

: ð14Þ

Gálfi and Liebe (1981) summarized several empirical relations between the specific

electric resistance and hydraulic conductivity for sands and gravels. In freshwater-bearing
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sediments the electric current is hardly conducted through the spaces between the grains,

but mainly on the surfaces of particles. Thus, the resistivity is inversely proportional to the

specific surface. By assuming that the sedimentary rock is composed of spherical particles

the specific surface can be calculated as

S ¼ 6
1� Uð Þ

d
; ð15Þ

The combination of Eqs. (8) and (15) gives

S2 ¼ 36 1� Uð Þ2

1:671 � Cd � lg R0

Rw

� �2
: ð16Þ

The hydraulic conductivity can be calculated by the CS model on the basis of Eqs. (10),

(12), (14) and (16) in units of m/s

K ¼ Ck

U3

1� Uð Þ4
lg R0

Rw

� �2

R0

Rw
U

� �1:2
; ð17Þ

where Ck ¼ 855:7 � CtC
2
d is a proportionality constant. According to Csókás (1995) good

aquifers are characterized by hydraulic conductivities K (m/s) [ 10-6, while aquitards are

indicated by K (m/s) \ 3 9 10-8. The uniqueness of the CS formula resides in the fact that

all parameters in Eq. (17) can be derived from borehole geophysical logs therewith a

continuous (in situ) estimate can be given for hydraulic conductivity along a borehole.

4 Validation by factor analysis

The CS method-based hydraulic conductivity can be validated by laboratory measurements

or aquifer tests. Its feasibility can also be demonstrated by making a comparison with

independent well-logging data processing methods. The highest accuracy and reliability

can be normally achieved when all suitable logs are processed simultaneously. Multivariate

statistical methods usually employ several well logs and large statistical samples to provide

an optimal solution. In this study, the shale volume is estimated from the simultaneous

processing of nuclear and resistivity logs. Then an empirical connection between shale

volume and hydraulic conductivity is used to calculate the vertical distribution of the

hydraulic conductivity of groundwater formations. The advantage of the factor analysis

approach is that it utilizes all types of well logs sensitive to the presence of shale in one

interpretation procedure instead of using a single log, e.g. natural gamma-ray intensity data

in Eq. (11), which normally gives less reliable results.

Factor analysis is traditionally used to reduce the dimensionality of multivariate sta-

tistical problems (Lawley and Maxwell 1962). Additionally, it can be used to enhance

information on latent variables hidden in the data set. Factor analysis has been used both in

hydrocarbon (Szabó 2011; Szabó and Dobróka 2013; Puskarczyk et al. 2014) and

groundwater exploration (Szabó et al. 2014). The statistical procedure is applicable to

transform numerous geophysical data types into smaller number of variables called factors.

As a result, a few factors explain the determinant amount of total variance of measurement

data, which can be connected to petrophysical properties of the observed geological
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structure. Consider the decomposition of the N-by-K standardized data matrix D including

different types of well-logging data

D ¼ FLT þ E; ð18Þ

where F denotes the N-by-M matrix of factor scores, L is the K-by-M matrix of factor

loadings, E is the N-by-K matrix of residuals, M is the number of extracted factors (T

indicates the operator of matrix transpose). The factor scores as elements aligned in the

first column of matrix F represent the well log of the first factor, which explains the largest

part of variance of the well-logging data. The individual weights of each data type asso-

ciated with the factors are given in the matrix of factor loadings, which practically measure

the degree of correlation between the factors and original data. Since the factors are

assumed to be uncorrelated, the covariance matrix of observed data can be written in the

following form

R ¼ 1

N
DTD ¼ LLT þW; ð19Þ

where W ¼ ETE=N is the diagonal matrix of specific variances. In case of W ¼ 0 the

problem reduces to the solution of an eigenvalue problem, which is equivalent to principal

component analysis. Otherwise matrices L and W are estimated jointly by optimizing the

following objective function (Jöreskog 2007)

XðL;WÞ ¼ tr(R-LLT �WÞ2 ¼ min: ð20Þ

After solving Eq. (20) the factor scores can be calculated by the hypothesis of linearity

(Bartlett 1953)

FT ¼ LTW�1L
� ��1

LTW�1DT: ð21Þ

After the rotation of factor loadings the factor logs can be compared to parameters of the

petrophysical model. Regression tests performed after factor analysis may reveal the re-

lationships between the factors and petrophysical properties of rocks.

An empirical formula suggested by Szabó et al. (2014) provides an estimate of shale

volume in North-East Hungarian shallow sediments

Vsh ¼ 27:4e0:015 F0
1 � 26:5; ð22Þ

where F01 is the first factor scaled into the interval of 0 and 100. Sallam (2006) found a

nonlinear regression relation between shale volume and hydraulic conductivity derived

from hydraulic pumping tests. In this paper, shale volume calculated from Eq. (22) is

substituted into Sallam’s empirical formula to get hydraulic conductivity in units of m/day

K ¼ 49:79e�12:51�Vsh : ð23Þ

The above procedure is tested in a North Hungarian data set (Sect. 7), which provides as

reference for comparing it to the CS method. It can be mentioned that other type of

statistical approaches can also be used to derive unmeasurable parameters of the petro-

physical model. In iterative inversion procedures the model parameters (i.e. porosity, water

saturation, shale content, matrix volume etc.) are estimated simultaneously. The advantage

of inverse modeling is that the estimation errors of petrophysical parameters are also given,

which characterize quantitatively the accuracy and reliability of inversion results. The
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hydraulic conductivity can be derived from the results of inverse modeling by using proper

empirical equations.

5 Synthetic modeling experiment

The CS method is first tested in a simulated geological environment. Synthetic well logs

are calculated on a petrophysical model that has exactly known parameters. Two groups of

model parameters are distinguished, i.e. layer- and zone parameters. The former vary layer-

by-layer, while the latter are practically unvarying in the processing interval (groundwater

zone). The layer parameters are porosity (U), shale volume (Vsh), sand volume (Vsd), grain

size at 10 % relative frequency (d10) and dominant grain size (d). The porous formations

are fully saturated with freshwater, thus the water saturations of the flushed (Sx0) and

uninvaded zones (Sw) are set to unity (100 %), respectively. The model describes an

unconsolidated sedimentary formation made up of five homogeneous beds (tracks 6 and 8

in Fig. 2). The second and fourth layers represent coarse-grained sandy aquifers and the

other ones show silts with low permeability. Hydraulic conductivity is calculated from well

logs such as natural gamma-ray intensity (GR), spontaneous potential (SP), neutron-neu-

tron intensity (NN), bulk density (qb), shallow and deep resistivity (Rs, Rd).

The layer parameters are related to well-logging data by means of empirical modeling

equations. The following set of probe response equations modified to fully saturated shaly

sands can be used to calculate the theoretical values of borehole logging data (Alberty and

Hashmy 1984)

Fig. 2 Synthetic well logs contaminated with 5 % Gaussian distributed noise and results of hydraulic
conductivity estimation
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SP ¼ SPshVsh � C � lg Rmf

Rw

1� Vshð Þ; ð24Þ

GR ¼ GRsd þ
1

qb

VshGRshqsh þ VsdGRsdqsdð Þ; ð25Þ

qb ¼ Uqmf þ Vshqsh þ Vsdqsd; ð26Þ

NN ¼ UNNf þ VshNNsh þ VsdNNsd; ð27Þ

Rs ¼
V

1�0:5 Vshð Þ
sh

R
1=2
sh

þ Um=2

aRmf

� �1=2

 !" #�2

; ð28Þ

Rd ¼
V

1�0:5 Vshð Þ
sh

R
1=2
sh

þ Um=2

aRwð Þ1=2

 !" #�2

; ð29Þ

Uþ Vsh þ Vsd ¼ 1: ð30Þ

The zone parameters with their chosen values appearing in Eqs. (24)–(29) are specified

in Table 1. Equation (30) is a constraint relation called the material balance equation,

which can be used to specify the relative fractions of rock constituents per unit volume of

rock and to reduce the number of unknowns by deriving one parameter (normally Vsd) from

the other ones. In the next step, quasi measured well logs are generated by adding different

Table 1 Parameters of the petrophysical model

Zone parameter Definition Symbol Value (unit)

Gamma-ray intensity Shale GRsh 160 API

Sand GRsd 25 API

Spontaneous potential Shale SPsh 0 mV

Sand SPsd 15.53 mV

Temperature constant C 70

Neutron–neutron intensity Shale NNsh 4.8 kcpm

Sand NNsd 7.2 kcpm

Pore-fluid NNf 3.1 kcpm

Bulk density Mud-filtrate qmf 1.0 g/cm3

Shale qsh 2.55 g/cm3

Sand qsd 2.65 g/cm3

Electric resistivity Mud-filtrate Rmf 9 ohm-m

Pore-water Rw 15 ohm-m

Shale Rsh 2 ohm-m

Textural parameters Cementation exponent m 1.5

Saturation exponent n 1.9

Tortuosity factor a 1.0

Hydraulic parameters Dynamic viscosity l 0.019 Pa s

Acceleration of gravity g 981 cm/s2
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amount of noise to the (noiseless) synthetic data. The hydraulic conductivity is calculated

first by the KC model based on Eq. (3), then it is estimated separately by the CS formula

using Eq. (17). In the latter case, constant Ck is chosen as 3.2587 9 10-4. An example

result of hydraulic conductivity estimation is shown in Fig. 2. In the first five tracks the

input well logs are plotted, which are contaminated with 5 % Gaussian distributed noise. In

the following track the vertical distributions of grain-sizes and in track 8 the compositions

of rocks are represented. The estimated hydraulic conductivity curves can be compared in

track 7, which show a close agreement between the results of the CS and KC methods.

The discrepancy between the estimation results of the CS and KC procedures is mea-

sured by three different quantities. The data distance quantifies the deviation between the

noiseless and noisy (quasi measured) well-logging data sets. Since the measurement data

have different magnitudes and measurement units the relative data distance is introduced as

Dd ¼
1

P � N
X

P

p¼1

X

N

k¼1

d
ð0Þ
pk � d

ðnoisyÞ
pk

d
ðnoisyÞ
pk

 !2
0

@

1

A

1=2

�100 ð%Þ; ð31Þ

where d
ð0Þ
pk and d

ðnoisyÞ
pk are the k-th noiseless and noisy data in the p-th depth, respectively.

The model distance measures the overall misfit between the estimated hydraulic conduc-

tivity logs

Dm ¼
1

P

X

P

p¼1

lg KðKCÞ
p � lg KðCSÞ

p

lg K
ðCSÞ
p

 !2
0

@

1

A

1=2

�100 ð%Þ; ð32Þ

where KðKCÞ
p and KðCSÞ

p denote the hydraulic conductivity in the p-th depth estimated by the

KC and CS methods, respectively. If well-logging or other derived data sets are considered

as samples of random variables, the tools of classical statistics can be applied to quality

control purposes. In this study, the Pearson’s correlation coefficient is used to determine

the strength of relationship between the hydraulic conductivity logs

r ¼
cov KðKCÞ;KðCSÞ� �

cov KðKCÞ;KðKCÞð Þcov KðCSÞ;KðCSÞð Þ½ �1=2
; ð33Þ

where cov denotes the sample covariance operator. If r is close to unity, the correlation

between the two logs is strong. It is concluded from the demonstrated example that the

result is as noisy as input data. The accuracy of hydraulic conductivity depends on the

uncertainty of well-logging data.

The accuracy of well logs is usually different depending on the probe type, technical

data of well-logging operation, drilling environment and actual geological setting. To

simulate the conditions of real measurements, the synthetic (noiseless) data are con-

taminated by different amount of noise. These data sets are separately processed to test the

noise sensitivity of the interpretation procedure. In this particular case, the experiment may

give valuable information on the accuracy of permeability estimation. The k-th synthetic

datum is contaminated with random noise by

d
ðnoisyÞ
k ¼ d

ð0Þ
k 1þNðl; rÞð Þ; ð34Þ

where N is a Gaussian distributed random number, l is the expected value chosen as 0, r
is the standard deviation proportional to the level of data noise. The scale parameter of the
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probability distribution function was chosen as 1/100 part of noise level (%). Each com-

puter run produces a noisy data set the noise level of which deviates around an overall error

calculated by Eq. (31). In this experiment, the synthetic data generated by Eqs. (24)–(29)

are contaminated with 1–10 % Gaussian distributed noise. For simulating non-Gaussian

data distributions, two additional data sets are involved that contain outliers (three times

higher amount of noise is added randomly to the 1/6 part of the Gaussian distributed data).

The numerical results of hydraulic conductivity estimation can be found in Table 2.

Relative data distances calculated by Eq. (31) are listed in the first column. Model distance

defined in Eq. (32) increases proportionally with the data distance. The correlation coef-

ficient based on Eq. (33) shows only a slight decay with the increase of noise level. It is

also observable that the correlation between the CS and KC model-based hydraulic con-

ductivities is still strong with extreme noises and non-Gaussian distributed data. It is shown

that the CS method gives consistent results, but the accuracy of hydraulic conductivity

largely depends on the amount of data noise. The final results given by the CS method are

close to those of the KC method, thus, it is rather the data noise that affects the accuracy of

the solution than modeling errors the influence of which is relatively smaller. The synthetic

experiments confirm the reliability of the CS procedure.

6 Case study I

The CS method has been tested earlier in Well K-564 drilled for Jászberény City’s

Waterworks in Hungary (Csókás 1995). Natural gamma-ray intensity (GR), spontaneous

potential (SP), short normal and lateral apparent resistivity logs (Ra) were recorded with

analogue logging equipment in the 320 mm diameter borehole (at a scale of 1:200). The

measured signals were squared originally by the author by performing electrofacies ana-

lysis. The zone parameters of probe response functions can be found in Table 3. The SP

log is applied to estimate the resistivity of pore-water (Rw = 1.75�Rwe), where the

equivalent water resistivity (Rwe) calculated throughout the logging interval is 6.9–

9.3 ohm-m. The Ra log is corrected for the effect of mud-filtrate resistivity and borehole

diameter to give an estimate to formation resistivity R0, formation factor F and porosity U.

The input well logs (tracks 1–3) and necessary derived parameters (tracks 4–5), grain-sizes

(track 6) and volumetric rock composition (track 8) are plotted in Fig. 3. The CS formula-

derived hydraulic conductivity log can be found in track 7. The interpretation result is

Table 2 Results of noise sensitivity tests

Noise level Data distance (%) Model distance (%) Correlation coefficient

0 % Gaussian (noiseless) 0 0.04 1.00

1 % Gaussian 1.01 0.85 1.00

2 % Gaussian 1.99 1.47 0.99

3 % Gaussian 3.05 2.06 0.99

4 % Gaussian 4.01 2.78 0.99

5 % Gaussian 5.02 3.58 0.99

10 % Gaussian 10.06 6.31 0.98

5 % Gaussian (incl. outliers) 8.97 4.31 0.98

10 % Gaussian (incl. outliers) 20.83 7.31 0.96
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confirmed by hydraulic conductivity estimates calculated by Eqs. (2)–(3). The Hazen’s

equation is used in the form as K = 116�d2, where the dominant grain-size d is given in the

units of cm (the same quantity is plotted in the units of mm in track 6 of Fig. 3). The result

of CS method correlates acceptably with those of the Hazen’s and KC formulae.

The deviation between the hydraulic conductivity curves is maximum one-half order of

magnitude. The model distance between the K(CS) and K(KC) logs is Dm = 13 %, while it is

9.8 % between the results of the CS and Hazen’s methods. The depth intervals of

41.0–47.5 m and 48.0–52.0 m were designated for water production. As a result of well

log analysis, the flow rate in permeable intervals was estimated as 632 l/min according to

the CS procedure, which was confirmed by hydraulic pumping test data suggesting an

optimal discharge rate of 550 l/min (Csókás 1995).

Fig. 3 Well logs of measured quantities and hydraulic conductivity estimated in borehole K-564

Table 3 Zone parameters applied in borehole K-564

Zone parameter Definition Symbol Value (unit)

Gamma-ray deflection Shale GRsh 47 mm

Sand GRsd 0 mm

Spontaneous potential Constant C 1.5

Temperature Formation Tf 15 �C

Density Mud qm 1.1 g/cm3

Electric resistivity Mud Rm 9.31 ohm-m

Mud-filtrate Rmf 10.31 ohm-m

Hydraulic parameters Dynamic viscosity l 0.019 Pa s

Acceleration of gravity g 981 cm/s2
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7 Case study II

The second test well named Baktalórántháza-1 is located in Szabolcs-Szatmár-Bereg

County, North-East Hungary. The primary aim of the geophysical survey was the inves-

tigation of the geological structure for the purpose of hydrocarbon exploration. Although

neither oil nor gas was found, the borehole was still remained remarkable in the aspect of

prospecting thermal water resources. Lower Pannonian deposits are varying in the logged

interval such as gravel, clayey sand, clayey silt, clayey marl and bituminous clay. The

depth level of 240 m is the boundary of Pleistocene and Pannonian periods.

Natural gamma-ray intensity (GR), spontaneous potential (SP), shallow resistivity (RS),

gamma-gamma (GG) and neutron-neutron (NN) logs are available in the interval of

240–460 m as they are illustrated in tracks 1–4 of Fig. 4. Grain-size data are also provided

from laboratory measurements made on 118 rock samples. The significant values of the

grain-size distribution curves (d10, d60, d) are plotted by different colors in track 6. The

zone parameters are listed in Table 4. The data set was previously processed by factor

analysis to give an estimate to shale content, which was also confirmed by laboratory data

(Szabó et al. 2014). The shale volume is extracted from well logs by using the local

relationship between the shale volume (track 8) and first factor (track 5) based on Eq. (22).

Then, an approximate solution for the distribution of hydraulic conductivity is given by

Eq. (23). For the application of the CS and KC methods a porosity is calculated from

Eq. (27), where the values of zone parameters can be read from the NN versus GG

crossplot (Table 4). In the knowledge of porosity and shale volume, the sand volume (Vsd)

can be calculated from Eq. (30). The volumetric rock composition is illustrated in the last

track. The CS method requires the prior knowledge of formation factor, which is normally

Fig. 4 Well logs of observed quantities and hydraulic conductivity estimated in borehole Baktalórántháza-1
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derived from SP and R0 logs. In the lack of some related quantities, the Humble-formula is

used to calculate formation factor (F = 0.62/U2.15). The KC method cannot discard the

measurement of grain sizes. Thus, the hydraulic conductivity is estimated only to that

places where the rock samples have been previously taken from the borehole. On the

contrary, the CS method gives an estimate to hydraulic conductivity without grain-size

data along the entire length of the borehole. The results of hydraulic conductivity esti-

mation can be seen in track 7. The CS method-based hydraulic conductivity log shows the

highest degree of variation, because the porosity is calculated from a rather noisy neutron

log. For seeking a smoother solution, it is recommended to calculate porosity from another

source, e.g. by the inversion of all suitable well logs.

The numerical results show that the result of CS method is in close agreement with that

of the KC procedure. The model distance is Dm = 3.4 % averaged for the places of

recovered rock samples. The Pearson’s correlation coefficient between the CS and KC

model-based hydraulic conductivities is r = 0.96. The hydraulic conductivity estimated by

the combination of multivariate factor analysis and Sallam’s method also fits acceptably to

that of the CS procedure, where the correlation coefficient is r = 0.72 and the model

distance is Dm = 8.8 % for the logged interval. The feasibility of the CS method have been

demonstrated in shallow hydrogeological environments.

8 Conclusions

It is concluded that the Csókás’ method gives a satisfactory estimate to the vertical dis-

tribution of hydraulic conductivity in groundwater wells. In this study, it is confirmed by

the results of the Kozeny–Carman procedure. Synthetic modeling studies show consistent

solutions since the hydraulic conductivities based on the two methods keeps strong cor-

relation with increasing level of data noise. In the well-site, not only other empirical

formula or multivariate factor analysis based procedures, but also laboratory measurements

show a close agreement with the results of Csókás’ method. According to field experiences,

an optimal solution can be obtained in medium or coarse grained (well-sorted) uncon-

solidated sediments with formation factor less than 10. In case of highly cemented aquifers

the estimation results show considerable deviations from the Kozeny–Carman model. Also

in very fine grained rocks, e.g. in loess, the hydraulic conductivities show sometimes more

Table 4 Zone parameters applied in borehole Baktalórántháza-1

Zone parameter Definition Symbol Value (unit)

Gamma-ray deflection Shale GRsh 685 cpm

Sand GRsd 188 cpm

Neutron–neutron intensity Shale NNsh 4 kcpm

Sand NNsd 7.5 kcpm

Pore-fluid NNf 1 kcpm

Textural parameters Cementation exponent m 2.15

Tortuosity factor a 0.62

Hydraulic parameters Dynamic viscosity l 0.019 Pa s

Acceleration of gravity g 981 cm/s2
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than one order of magnitude difference, which may require the revision of the Alger’s

formula. The empirical relationship between the grain-sizes and formation factor is advised

to be specify in the given area. It requires the use of grain-size distributions and properly

corrected resistivity curves. Once the Csókás’ formula is validated by this empirical

equation, any interval along the borehole can be properly evaluated. The Csókás’ method

gives a continuous in situ estimate to hydraulic conductivity in typical unconsolidated

aquifers, which is of high importance in the interpolation of aquifer test data. This hy-

drogeophysical information can also be extended to larger areas by means of well-to-well

correlation techniques, which may also improve the efficiency of complex geophysical

surveys.

A tribute is paid to Professor János Csókás (1918–2000), whose borehole geophysical

methodology, presented in this paper, is hereby recommended to the community of hy-

drogeophysicists, which can be further developed by advanced measurement techniques

applicable to a more accurate observation of input parameters. Some new results have been

grown in the geophysical practice may seem to be integrated fruitfully, for instance, the

pore-space can be imaged by high-resolution micro-tomography or nuclear magnetic

resonance measurements to improve the accuracy of effective porosity (Jarzyna et al.

2012). According to the theory of electrokinetic phenomena in porous media the grain

diameters can be replaced by the effective pore radius in permeability estimation, which

shows a close empirical relation with porosity. The effective pore radius was validated in

the laboratory over a wide range of pore sizes by optical image analysis and the theory was

tested using North Sea core samples by Glover and Walker (2009). The resistivity of pore-

water and tortuosity factor included in the derivation of Csókás’ formula are key-pa-

rameters, which can be estimated with their estimation errors by the interval inversion of

well-logging data (Dobróka and Szabó 2011). Factor analysis of the same logs can give a

reliable estimate to the amount of shaliness (Szabó et al. 2014). Moreover, one of our

ongoing research studies shows that a certain statistical factor directly correlates with the

hydraulic conductivity of aquifers. The above reasons may inspire the hydrogeophysicists

to make further developments in the improvement of the Csókás’ method to increase the

efficiency of the hydrogeophysical exploration of groundwater resources.
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