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 Desiccant composites were prepared from a polystyrene homopolymer (PS) and a 

high impact copolymer (HIPS). Five zeolites were used as adsorbents which included the 

A and X types frequently used in industrial practice. Composites containing zeolites up to 

50 vol% were homogenized in an internal mixer and then compression molded to 1 mm 

thick plates. The results proved that the water adsorption capacity of zeolites depends on 

the total volume of the pores, while the rate of adsorption on thermodynamics, on the equi-

librium constant of adsorption. On the other hand, zeolite characteristics influence the 

moisture adsorption of the composites only marginally; adsorption capacity is determined 

by zeolite content, while the rate of adsorption by the properties of the polymer. Compo-

sites prepared with X type zeolites have somewhat smaller water adsorption capacity than 

those containing their A type counterparts. The dispersion of the zeolite is very good both 

in PS and in HIPS composites. Mechanical properties are excellent mainly because of the 

good interfacial adhesion between the components. Because of their larger surface energy, 

composites containing X type zeolites have larger viscosity and they reinforce the polymer 

more than A type desiccants. Matrix properties influence mainly application related prop-

erties, reinforcement and ductility is better in HIPS than in PS composites. 

 

KEYWORDS: zeolite, desiccant composites, capacity, rate of adsorption, composite prop-

erties 

 

 

 

 

 

1. INTRODUCTION 



 3 

 

 The number of functional and smart packaging materials increases rapidly and they 

are used already in everyday practice [1-4]. The main functions targeted for various prod-

ucts are oxygen scavenging [5-7], humidity control [8-12], regulating ethylene content 

[13], antimicrobial effect [14-17], adsorption of odorous materials, or the opposite, the re-

lease of desirable aromas [18,19]. Intensive research and development work is carried out 

on these materials all over the world, but mostly in industry.  

 Controlling the humidity of packaged wares is extremely important in several are-

as. Controlled and given moisture content must be maintained in food packaging [8-10], 

while dry conditions must be achieved in pharma [11,12,20] and electronics [21]. Water 

being present in the atmosphere must be captured in the latter case which is done either by 

the adsorption or absorption of water [22]. Absorbents bind moisture either as crystal wa-

ter or they react with it chemically to form a new compound. Adsorbents are able to bind 

considerable amount of water on their very large, high energy surface. Active carbon [23], 

silica gel [24], clays [25], and zeolites [26] are often used for this purpose, but silica gels 

[27] or zeolites [28] are applied the most frequently for this purpose. The desiccant can be 

added to the packaged ware in a semi permeable satchel or incorporated into the packag-

ing material [3]. 

 In spite of the social and economical importance of active packaging materials 

controlling humidity, very little systematic work has been reported in the literature on this 

question, at least according to our knowledge. Pehlivan et al. [28] studied the water ad-

sorption of polypropylene (PP)/zeolite composites. They prepared their samples by com-

pression molding from powders and surface modified the desiccant with polyethylene gly-

col (PEG) before composite preparation. They measured significantly different adsorption 

capacities by water immersion and in an atmosphere of 100 % RH (13.5 and 24.5 %, re-
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spectively), and similar differences were observed in the rate of adsorption as well without 

unambiguous reason or explanation. Mathiowitz at al. [27] also studied PP composites 

containing zeolite treated with PEG and compared it to silica gel. Their main conclusions 

were that desiccant composites bind water and that composites prepared with the zeolite 

are more efficient that those containing the silica gel. The parameters most important for 

these functional packaging materials, i.e. adsorption rate and capacity, are difficult to ex-

tract from these papers and important factors, like the characteristics of the desiccant or 

the polymer matrix have not been investigated systematically.  

 The papers cited above and other information indicate that zeolites are very effi-

cient adsorbents of moisture. However, a single, specific zeolite is used in most studies 

[27,28], which is selected on availability or for some other reason. Zeolites may differ 

widely in characteristics. They can come from natural resources or can be produced syn-

thetically [22,29]. Many of their characteristics including pore size and volume, particle 

size, specific surface area, surface energy, the ratio of silica and aluminum atoms, etc. may 

change in a wide range and some of them must influence the rate and capacity of water ad-

sorption [30-32]. According to our knowledge, a systematic study of the effect of these pa-

rameters on the desiccant properties of functional composites has never been done before. 

Moreover, beside functional properties the composites must meet the requirements of the 

intended application and zeolite characteristics may influence the corresponding properties 

as well. Usually commodity polymers, e.g. polypropylene [33-36], polyethylene [26,37-40] 

or polystyrene [41], are used as matrices in such desiccant composites. In a previous study 

we showed that the free volume of the polymer plays an important role in the determina-

tion of the rate of moisture adsorption and polystyrene has large free volume leading to 

fast adsorption. Both glassy PS and high impact polymers (HIPS) are used as matrices for 

desiccant composites, but no attempt has been done yet to compare the performance of the 
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two types of polymers and to study the effect of the elastomer phase on desiccant and oth-

er characteristics. 

 As a consequence, the goal of our study was to carry out systematic experiments 

on desiccant composites prepared with a series of zeolites and to determine the effect of 

their characteristics on the rate and capacity of water adsorption, but also on other compo-

site properties. Two different polymers were selected for the study, a PS and a HIPS, to 

investigate the effect of the elastomer phase on composite properties.  

 

2. EXPERIMENTAL 

 

 A polystyrene homopolymer (PS, Styron 686 E, Dow, USA), and a high impact 

copolymer (HIPS, Styron 485, Dow, USA), were selected as matrix polymers in the study. 

Their most important characteristics are listed in Table 1. The series of zeolites used as 

desiccants were obtained from the Luoyang Jianlong Chem. Ind. Co., China, and they in-

cluded the most often used synthetic zeolites, i.e. 3A, 4A, 5A, 10X and 13X. The desic-

cants were thoroughly characterized with a wide range of techniques; the results are col-

lected in Table 2. Their water adsorption characteristics were determined in an atmos-

phere of 100 % relative humidity by the measurement of the weight of samples as a func-

tion of time. Their chemical composition was determined by inductively coupled plasma 

optical emission spectrometry (ICP-OES). To characterize pore size and volume samples 

were vacuumed at 300 °C for 24 hours down to 10-5 Hgmm, and water and nitrogen ad-

sorption was measured using a Hydrosorb (Quantachrome, USA) apparatus at 20 and -195 

°C, respectively. The particle size and size distribution of the zeolites were determined us-

ing a Malvern Mastersizer 2000 equipped with a Sirocco powder analyzer. The dispersion 

component of surface energy (sd) was determined by inverse gas chromatography (IGC) 
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at various temperatures by the injection of n-alkanes onto the column containing the zeo-

lites and measuring their retention times. The density of the zeolites was measured by he-

lium pycnometry.  

 Before composite preparation the zeolites were dried at 300 °C for 16 h in vacuum. 

The components were homogenized in a Brabender W 50 EH internal mixer attached to a 

Haake Rehocord EU 10 V driving unit at 190 °C for 10 min. Torque and temperature of 

mixing were recorded during homogenization and used for evaluation. 1 mm thick plates 

and 100 m thick films were compression molded from the homogenized material for fur-

ther study at 190 °C using a Fontijne SRA 100 laboratory machine. The zeolite content of 

the composites changed between 0 and 50 vol%. 

 The molecular weight of the polymers was determined by gel permeation chroma-

tography in THF using polystyrene standards. Their density was measured using a pyc-

nometer at room temperature. The water vapor transmission rate (WVTR) of the polymers 

was determined on 100 m thick films using a Mocon Permatran W1A equipment. Results 

were calculated for 20 m thickness according to industrial practice. The water adsorption 

of the composites was determined by the measurement of weight in an atmosphere of 100 

% RH on 20 x 20 x 1 mm specimens as a function of time. The zeolite content of the com-

posites was checked by thermal gravimetry (TGA). 15 mg samples were heated to 650 °C 

with 80 °C/min rate in oxygen and kept there for 5 min to burn off the polymer. Mechani-

cal properties were characterized by tensile testing using an Instron 5566 machine at 115 

mm gauge length and 5 mm/min cross-head speed on specimens with 1 x 10 mm dimen-

sions. The distribution of the zeolites in the composites and failure mechanism were stud-

ied by scanning electron microscopy using a Jeol JSM 6380 LA apparatus. Micrographs 

were recorded on fracture surfaces created during tensile testing. 

3. RESULTS AND DISCUSSION 



 7 

 

 The results are presented in several sections. First the characteristics of the zeolites 

including water adsorption are compared and evaluated according to their possible influ-

ence on composite properties. Desiccant characteristics of the composites are discussed 

subsequently, and finally the effect of the zeolites on properties important for applications 

in packaging is discussed in the last section. Brief reference is made to consequences for 

practice at the end of the section. 

 

3.1. Desiccant characteristics 

 

 The capacity and rate of water adsorption are the most important functional proper-

ties of desiccant composites. The characteristics of zeolites may change in a wide range 

and it is safe to assume that some of them influence composite properties as well. The syn-

thetic zeolites used in this study include the A and X types used most frequently in indus-

trial practice. The characteristics of the desiccants are collected in Table 2 and they in-

clude the type of compensating cations, Si/Al rate, pore size and volume and characteris-

tics related to adsorption. The type of the compensating ions and Si/Al ratio have been 

proved to influence the adsorption characteristics of zeolites quite strongly [30-32]. How-

ever, the diameter of the ions do not differ significantly in our case and although Si/Al ra-

tio changes from 1.0 to 1.4 this change is very small compared to the possible rage from 1 

to infinite. Accordingly, we do not expect these parameters to influence the water adsorp-

tion capacity of our zeolites. However, considerable difference can be seen in capacity for 

A and X types, respectively, caused by some other factor. Both pore size and total pore 

volume differ for the two types of zeolites and the surface energy of X types is also some-

what larger than that of A type zeolites. The particle size of the desiccants is very similar; 
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we did not expect and did not find any effect of this parameter on desiccant and other 

properties. 

 The water adsorption isotherm of two different types of zeolite is presented in Fig. 

1. As the figure shows, water adsorption is very fast and more than 30 % water is adsorbed 

at least by the X type zeolites. The capacity of the two zeolites differs considerably. As 

explained above the difference may result from dissimilar pore size, volume or surface en-

ergy. A detailed analysis of the results proved that the dominating factor in the determina-

tion of the water adsorption capacity of the zeolites used in this study is the total volume 

of the pores (Vt). We did not find any correlation between adsorption capacity and pore di-

ameter or surface tension, or in fact any other characteristics of the desiccant, but total 

pore volume. The relatively close correlation between the two quantities is presented in 

Fig. 2. The zeolites used form two groups according to their type and the difference in ad-

sorption capacity is about 10 %.  

 Besides capacity, the rate of water adsorption is another important attribute of des-

iccant composites. Similarly to capacity, this characteristic might be influenced by the 

type of the desiccant as well. In the determination of the rate of water adsorption we as-

sumed Fickian type adsorption and fitted the following equation to our experimental ad-

sorption isotherms 
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where Mt is time dependent weight increase, M the final water uptake reached after infi-

nite time (adsorption capacity), L the thickness of the sample, t the time of adsorption and 

a (1/s) a constant characterizing the overall rate of water adsorption. We determined the 

initial rate of adsorption from a different form of Fick's law 
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where D is diffusion coefficient. If we plot the water uptake as a function of the square 

root of time, we should obtain a straight line the slope of which, b (s-1/2), is proportional to 

the initial rate of water adsorption. Comparing all the characteristics determined for the 

zeolites to the initial rate of water adsorption we found that it is independent of most char-

acteristics and correlates mainly with the equilibrium constant of water adsorption (K) de-

fined as 

KTRG ln         (3) 

where G is the free enthalpy of adsorption, R the universal gas constant and T absolute 

temperature. The correlation is shown in Fig. 3. It is interesting to note that the zeolites 

cannot be divided into two groups and the points belonging to A and X types are located 

randomly along the correlation (see also Table 2). We can also conclude that the rate of 

adsorption changes much less with desiccant characteristics than adsorption capacity, the 

determined values are very similar to each other. The examination of the factors determin-

ing the water adsorption characteristics of zeolites showed that capacity depends quite sig-

nificantly on the type of the zeolite, but adsorption rate does not. Accordingly, we can ex-

pect also the adsorption capacity of desiccant composites to depend on the type of the zeo-

lite and X types are expected to perform better than the more common A types. 

 

3.2. Water adsorption of composites 

 

 The water adsorption isotherms of a series of composites are presented in Fig. 4. 

The comparison of the isotherms to those presented in Fig. 1 may lead to several conclu-

sions. Water adsorption in HIPS/zeolite desiccant composites can be described quite well 



 10 

by the equation based on Fick's law. The rate of adsorption is considerably slower in the 

composites, than for neat zeolites. In accordance with earlier results, adsorption capacity is 

determined mainly by the amount of zeolite present, the amount of adsorbed water seems 

to be proportional to zeolite content. Naturally, Fig. 4 alone does not allow the determina-

tion of the effect of the matrix polymer or that of the type of zeolite, but it shows quite 

well the effect of desiccant content. 

 Water adsorption capacity determined by the fitting of Eq. 1 to the adsorption iso-

therms is plotted against zeolite content in Fig. 5 in order to compare the effect of the two 

parameters, i.e. zeolite and matrix type, mentioned above. The determining role of desic-

cant content is very clear from the figure, linear correlation exists between water adsorp-

tion capacity and zeolite content. Some differences can be seen in the slope of the line de-

pending on the type of zeolite used. However, quite surprisingly, composites containing X 

type adsorb less water than those prepared with A type zeolites and the effect depends also 

on the type of polymer used. The adsorption capacity of the 13X type zeolite (,) is 

much smaller than that of the rest and the effect is more pronounced in neat PS than in the 

impact polymer. Slight differences can be seen in the other cases as well, but the influence 

of polymer and zeolite type is much weaker than in the case of zeolite 13X; in fact compo-

sites prepared from HIPS and the 10X zeolite have the same adsorption capacity as those 

containing A type zeolites. 

 Fig. 2 showed a very clear correlation between the adsorption capacity of zeolites 

and their total pore volume. The capacity of desiccant composites is plotted against the 

pore volume of the zeolite in Fig. 6 at two different desiccant contents. Contrary to the 

neat zeolites, the water adsorption capacity of the composites decreases with increasing 

total pore volume of the zeolite. Although the correlation is not very strong, it is unambig-

uous. It is quite difficult to find a plausible explanation or even a tentative one for the phe-
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nomenon; it definitely needs further study and considerations. Nevertheless, we can con-

clude that the water adsorption capacity of desiccant composites prepared from various 

zeolites depends practically only on the amount of zeolite present and only slightly on the 

type of desiccant used. The rate of moisture adsorption seemed to be somewhat larger in 

HIPS than in neat PS composites, but the differences fall within the standard deviation of 

the measurement thus the correlations are not shown here. In order to come to a definite 

conclusion about the effect of elastomer content on desiccant properties, further, more sys-

tematic experiments must be carried our as a function of elastomer content. 

 

3.3. Application properties 

 

  The rate and capacity of water adsorption are the most important functional prop-

erties of desiccant composites. However, if we want to use these composites in packaging 

for any purpose, they should meet the requirements of the specific application. These re-

quirements usually include characteristics related to processing, but also stiffness, strength 

and toughness. Mechanical properties of such composites depend very much on the inter-

facial adhesion of the components, thus interactions must be analyzed as well, especially 

since several contradictory statements have been published in the literature on this issue 

[42]. 

 Torque measured during the homogenization of the composites, which is propor-

tional to viscosity, is plotted against zeolite content in Fig. 7 for the composites prepared 

from neat PS. The correlation is the same and even the values are similar for the HIPS 

composites, in spite of the considerable difference in the molecular weight of the two pol-

ymers. The viscosity of the composites prepared with the X type zeolite is considerably 

larger than that of the materials containing the A type. Since particle sizes are very similar 



 12 

(see Table 2) irrespectively of type, the main reason must be the surface energy of the 

zeolite being substantially larger for the X than for the A type. Larger viscosity, especially 

at the large zeolite content necessary for efficient desiccation, might result in difficulties in 

processing and the steep increase of torque at 50 vol% silicate content indicates some ho-

mogenization problem, the slight aggregation of the desiccant. 

  The modulus of the polymer increases with increasing zeolite content and its com-

position dependence is independent of the type of zeolite (not shown). The stiffness of 

composites prepared with the two polymers, i.e. PS and HIPS, obviously differs from each 

other because of inherent differences in matrix properties. However, modulus is not very 

sensitive to slight differences in dispersion and/or interfacial adhesion thus the result is 

expected. On the other, hand the strength of composites prepared with the two matrices 

differs significantly as shown by Fig. 8 for two desiccants (4A and 10X). The strength of 

composites prepared from neat PS decreases slightly with increasing zeolite content 

(,). On the other hand, the tensile strength of composites based on HIPS increases 

with increasing desiccant content (,), i.e. true reinforcement can be achieved in this 

matrix polymer. The effect of A and X type zeolites also differs from each other, the rein-

forcing of the second being stronger than that of the first. The observed differences can be 

explained by the inherent property of the matrix, on the one hand, and by dissimilar inter-

facial adhesion on the other. Always larger reinforcement is achieved in soft matrices, than 

in stiff polymers, while the larger surface energy of the X type zeolite results in stronger 

interfacial interactions, leading to larger reinforcement. 

 The extent of reinforcement and the influence of adhesion can be expressed quanti-

tatively by the model developed earlier to describe the composition dependence of tensile 

strength in particulate filled composites [43] 
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where T and T0 are the true tensile strength (T =  and  = L/L0) of the composite and 

the matrix, respectively, n is a parameter expressing the strain hardening tendency of the 

matrix,  is the volume fraction of the fiber and B is related to its relative load-bearing ca-

pacity, i.e. to the extent of reinforcement, which depends among other factors, also on in-

terfacial interaction. We can write Eq. 4 in linear form 
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and the plot of the natural logarithm of reduced tensile strength against fiber content 

should result in a straight line, the slope of which is proportional to the load-bearing ca-

pacity of the filler and under certain conditions to the strength of interaction. 

 The strength of the four series of composites of Fig. 8 is plotted in the form indi-

cated by Eq. 5 in Fig. 9. We obtain straight lines indeed with slight deviations at the larg-

est desiccant content, because of slight homogenization problems mentioned earlier. The 

calculation was executed for all composites and the results are collected in Table 3. We 

can see that reinforcement is much larger in the softer matrix, as expected and predicted 

by the model used. 

 The mode of deformation and failure is also important aspects of most applica-

tions. In particulate filled composites the dominating deformation mode is debonding, the 

separation of the matrix and the filler at the interface under the effect of external load. The 

critical stress initiating debonding can be predicted by the correlation 
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where D and T are debonding and thermal stresses, respectively, E the Young's modulus 
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of the matrix, WAB the reversible work of adhesion, R the radius of the particles, while C1 

and C2 are geometric constants related to the debonding process. Using the Eq. 6 we pre-

dicted debonding stress for our composites and listed the results in Table 3. If we compare 

debonding stress to the strength of the matrix, we can see that the former is larger in all 

cases thus debonding does not occur, but the composites fail either by the yielding or frac-

ture of the matrix. These conclusions are further confirmed by SEM micrographs recorded 

on the fracture surface of composites created during tensile testing (Fig. 10). All the filler 

particles are covered by the matrix indicating good interfacial adhesion irrespectively of 

the presence or absence of an elastomer phase. Easy debonding may lead to premature 

failure, thus good adhesion and the mechanism mentioned above can be very advanta-

geous if the composites do not become brittle as a result of filling. 

 Although the 1 mm thick plates prepared and used in these experiments do not al-

low the reliable determination of impact or fracture resistance, we can estimate the ductili-

ty of our materials from the stress vs. strain traces. Relative toughness (related to the cor-

responding matrix property) is compared for all composites in Fig. 11 for two desiccants, 

4A and 10X. We can see that HIPS composites perform much better than those produced 

with the neat PS, as expected. Accordingly, if fracture resistance is an important require-

ment for the intended application, impact modified PS should be selected as matrix, since 

it performs better than the unmodified material.  

 

4. CONCLUSIONS 

 

 The systematic study of five zeolites and their desiccant PS composites proved that 

the water adsorption capacity of zeolites depends on the total volume of the pores, while 

the rate of adsorption on thermodynamics, on the equilibrium constant of adsorption. On 
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the other hand, zeolite characteristics influence the moisture adsorption of the polymer on-

ly marginally; adsorption capacity is determined by zeolite content, while the rate of ad-

sorption by the properties of the polymer. Composites prepared with X type zeolites have 

somewhat smaller water adsorption capacity than those containing their A type counter-

parts. The dispersion of the zeolite is very good both in PS and in HIPS composites. Me-

chanical properties are excellent mainly because of the good interfacial adhesion between 

the components. Because of their larger surface energy, composites containing X type zeo-

lites have larger viscosity and they reinforce the polymer more than the A type desiccants. 

Matrix properties influence mainly application related properties, reinforcement and duc-

tility is better in HIPS than in PS composites. 

 

5. ACKNOWLEDGEMENTS 

 

 The authors are indebted to Levente Kovács and Dániel Bedő for the execution of 

the WVTR measurements, to Sándor Zsolt Somogyi for sample preparation, to Krisztina 

László-Nagy and Ajna Tóth for the adsorption measurements, and also to László Bezúr for 

the ICP-OES results. The research on heterogeneous polymer systems was financed by the 

National Scientific Research Fund of Hungary (OTKA Grant No. K 101124) and on func-

tional packaging materials partly by the former Süd-Chemie AG, today Clariant, Business 

Unit Masterbatches; we appreciate the support very much. One of the authors (KR) is 

grateful also to the János Bolyai Research Scholarship of the Hungarian Academy of Sci-

ences. 

 

 

 



 16 

6. REFERENCES 

 

1. L. Summers, Intelligent Packging, Centre for Exploitation of Science and 

Technology, London, (1992). 

2. M. L. Rooney, Active food packaging, Blackie Academic & Professional, London, 

(1995). 

3. A. L. Brody, E. R. Strupinsky and L. R. Kline, Active Packaging for Food 

Applications, CRC Press, London, New York, (2001). 

4. R. Ahvenainen, Novel Food Packaging Techniques, Woodhead Publishing, Boca 

Raton, (2003). 

5. F. Charles, J. Sanchez and N. Gontard, J. Food Eng., 72, 1 (2006). 

6. Y. Byun, D. Darby, K. Cooksey, P. Dawson and S. Whiteside, Food Chem., 124, 

615 (2011). 

7. M. A. Busolo and J. M. Lagaron, Innov. Food Sci. Emerg., 16, 211 (2012). 

8. A. Shirazi and A. C. Cameron, Hortscience, 27, 336 (1992). 

9. P. V. Mahajan, F. A. S. Rodrigues, A. Motel and A. Leonhard, Postharvest 

Biol.Tec., 48, 408 (2008). 

10. Sandhya, LWT-Food Sci. Technol., 43, 381 (2010). 

11. J. G. Allinson, R. J. Dansereau and A. Sakr, Int. J. Pharm., 221, 49 (2001). 

12. K. C. Waterman and B. C. MacDonald, J. Pharm. Sci., 99, 4437 (2010). 

13. I. García-García, A. Taboada-Rodríguez, A. López-Gomez and F. Marín-Iniesta, 

Food Bioprocess Technol., 6, 754 (2013). 

14. V. Coma, Meat Science, 78, 90 (2008). 

15. L. Zema, M. E. Sangalli, A. Maroni, A. Foppoli, A. Bettero and A. Gazzaniga, Eur. 

J. Pharm. Biopharm., 75, 291 (2010). 



 17 

16. D. L. Boschetto, L. Lerin, R. Cansian, S. B. C. Pergher and M. Di Luccio, Chem. 

Eng. J., 204–206, 210 (2012). 

17. J. Chen and A. L. Brody, Food Control, 30, 306 (2013). 

18. C. Jacobsen, M. B. Let, N. S. Nielsen and A. S. Meyer, Trends Food Sci. Tech., 19, 

76 (2008). 

19. S. F. Mexis, A. V. Badeka, K. A. Riganakos, K. X. Karakostas and M. G. 

Kontominas, Food Control, 20, 743 (2009). 

20. K. Naversnik and S. Bohanec, Eur. J. Pharm. Sci., 35, 447 (2008). 

21. E. H. Wong and R. Rajoo, Microelectron. Reliab., 43, 2087 (2003). 

22. D. M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & 

Sons, New York, (1984). 

23. N. Spahis, M. Dellali and H. Mahmoudi, Procedia Engineering, 33, 47 (2012). 

24. G. Ragosta, M. Abbate, P. Musto, G. Scarinzi and L. Mascia, Polymer, 46, 10506 

(2005). 

25. Q. Liu, D. De Kee and R. K. Gupta, AlChE J., 54, 364 (2008). 

26. H. Kim, J. Biswas and S. Choe, Polymer, 47, 3981 (2006). 

27. E. Mathiowitz, J. S. Jacob, Y. S. Jong, T. M. Hekal, W. Spano, R. Guemonprez, A. 

M. Klibanov and R. Langer, J. Appl. Polym. Sci., 80, 317 (2001). 

28. H. Pehlivan, F. Özmihci, F. Tihminlioglu, D. Balköse and S. Ülkü, J. Appl. Polym. 

Sci., 90, 3069 (2003). 

29. R. T. Yang, Adsorbents: Fundamentals and Applications, John Wiley and Sons, 

New Jersey, (2003). 

30. J. C. Moise, J. P. Bellat and A. Méthivier, Micropor. Mesopor. Mat., 43, 91 (2001). 

31. E. M. Flanigen, in Introduction to zeolite science and practice, H. van Bekkum, E. 

M. Flanigen, P. A. Jacobs and J. C. Jansen, (Eds.), Elsevier Science Publishers B. 



 18 

V., Amsterdam, (2001). 

32. B. Hunger, S. Matysik, M. Heuchel, E. Geidel and H. Toufar, J. Therm. Anal., 49, 

553 (1997). 

33. R. D. Upadhyay and D. D. Kale, J. Appl. Polym. Sci., 81, 2297 (2001). 

34. F. Özmihci, D. Balköse and S. Ülkü, J. Appl. Polym. Sci., 82, 2913 (2001). 

35. D. Metin, F. Tihminlioglu, D. Balköse and S. Ülkü, Composites Part A: Applied 

Science and Manufacturing, 35, 23 (2004). 

36. J. Biswas, H. Kim and S. Choe, J. Appl. Polym. Sci., 99, 2627 (2006). 

37. J. Biswas, H. Kim, C. Yim, J. Cho, G. Kim, S. Choe and D. Lee, Macromol. Res., 

12, 443 (2004). 

38. J. Biswas, H. Kim, S. Choe, P. Kundu, Y.-H. Park and D. Lee, Macromol. Res., 11, 

357 (2003). 

39. J. Biswas, H. Kim, S. E. Shim, G. J. Kim, D. S. Lee and S. Choe, J. Ind. Eng. 

Chem., 10, 582 (2004). 

40. H. Kim, J. Biswas, H. H. Choi, G. J. Kim, D. S. Lee and S. Choe, J. Ind. Eng. 

Chem., 9, 655 (2003). 

41. S. Maaref, H. L. Frisch, G. S. Rajan, Z. Pu, J. E. Mark and G. Beaucage, J. 

Macromol. Sci. A 36, 1895 (1999). 

42. B. Pukánszky, Composites, 21, 255 (1990). 

43. B. Pukánszky, B. Turcsányi and F. Tüdős, in Interfaces in polymer, ceramic, and 

metal matrix composites, H. Ishida, (Ed.), Elsevier, New York, (1988). 

 

 

 

 



 19 

Table 1 Characteristics of the polymers used as matrix in the experiments 

 

Polymer MFRa 

(g/10 min) 

Mn 

(g/mol) 

Mw/Mn Density 

(g/cm3) 

WVTR 

(g 20 m/m2/24 h) 

vsf
b 

(cm3) 

PS   2.5 127,970 2.44 1.04 130  8 0.166 

HIPS 12.0   77,525 2.68 1.02 139  2 0.167 

a at 200 °C, 5 kg 
b specific free volume 
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Table 2 Characteristics of the zeolites used as desiccant in the study 

 

Type Cation Ion radius 

(Å) 

Si/Al ratio Particle size 

(m) 

Pore diameter 

(Å) 

Pore volume 

(cm3/g) 
M 

(%) 

K sd
a 

(mJ/m2) 

3A K+, Na+ 0.117 1.00 4.5 3.0 0.27 26.2 42.2 219 

4A Na+ 0.097 1.23 4.0 3.8 0.28 27.5 47.6 216 

5A Ca2+, Na+ 0.099 1.25 4.5 4.3 0.29 27.8 29.4 217 

10X Ca2+, Na+ 0.098 1.39 4.7 7.4 0.36 34.3 57.2 235 

13X Na+ 0.097 1.43 4.3 8.1 0.33 33.3 33.5 240 

 
a dispersion component of surface tension determined by IGC 
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Table 3 Reinforcement and debonding stress depending on interfacial adhesion 

for PS and HIPS/zeolite composites 

 

Polymer Zeolite Tensile strength 

(MPa) 

Debonding stress 

(MPa) 

Parameter B 

PS 

3A 

38.3 

51.0 1.97 

4A 50.9 2.09 

5A 50.8 2.95 

10X 51.8 3.19 

13X 51.9 2.99 

HIPS 

3A 

11.8 

36.7 4.30 

4A 36.6 4.14 

5A 36.6 4.35 

10X 37.3 5.76 

13X 37.4 5.65 
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CAPTIONS 

 

Fig. 1 Comparison of the water adsorption isotherm of two different types of 

zeolites used as desiccants in the study. Symbols: () 4A, () 10 X. 

Fig. 2 Effect of the total pore volume of the zeolite on its water adsorption ca-

pacity. 

Fig. 3 Correlation between the equilibrium constant (K) and the initial rate (b) 

of moisture adsorption. 

Fig. 4 Water adsorption isotherms of HIPS/4A desiccant composites. 

Fig. 5 Effect of zeolite content on the water adsorption capacity (M) of poly-

styrene desiccant composites. Full symbols PS, empty symbols HIPS; 

() 3A, () 4A, () 5A, () 10X, () 13X. 

Fig. 6 Correlation between the total pore volume of the zeolite and the water 

adsorption capacity of its composites. Zeolite content: () 10, () 30 

vol%. 

Fig. 7 Influence of the type of zeolite on equilibrium torque measured during 

the homogenization of desiccant composites in neat PS matrix. Symbols: 

() 4A, () 10X. 

Fig. 8 Composite strength plotted against zeolite content for polysty-

rene/zeolite composites. Effect of matrix and zeolite type. Full symbols 

PS, empty symbols HIPS; (,) 4A, (,) 10X. 

Fig. 9 Reduced tensile strength plotted against zeolite content in the represen-

tation of Eq. 2 for the composites of Fig. 7.  Full symbols PS, empty 

symbols HIPS; (,) 4A, (,) 10X. 
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Fig. 10 SEM micrographs recorded on the fracture surface of polysty-

rene/zeolite composites containing 30 vol% desiccant. The surfaces 

were created in tensile testing. a) PS/4A, b) HIPS/4A. 

Fig. 11 Composition dependence of the ductility of polystyrene/zeolite compo-

sites. Effect of matrix and zeolite type. Full symbols PS, empty symbols 

HIPS; (,) 4A, (,) 10X.  
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Kenyó Fig. 2 
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Kenyó Fig. 3 

 

 

 

 

20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

 

 

R
at

e 
o

f 
w

at
er

 a
d

so
rp

ti
o

n
, 
b

 (
1

/s
1
/2
)

Eequilibrium constant, K

5A

13X

3A
4A

10X

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

 

 

Kenyó Fig. 4 
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Kenyó Fig. 5 
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Kenyó Fig. 6 
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Kenyó Fig. 7 
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Kenyó Fig. 8 
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Kenyó Fig. 9 
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Kenyó Fig. 10 
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Kenyó Fig. 11 
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