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Abstract 

Supraglacial lakes (SGLs) and slush are prevalent features of Antarctic ice shelf surface hydrology and 

efficiently transfer energy to the ice by melt-albedo feedbacks (Dell et al., 2020; Moussavi et al., 

2020). There have been few efforts to quantify the energy exchanges between supraglacial 

meltwater, atmosphere, and ice (Jakobs et al., 2019), despite suggestions that low albedo surface 

features are melt hotspots (Miles et al., 2016). This study aims to quantify the extra energy absorbed 

by SGLs and slush on Nivlisen Ice Shelf (NIS), East Antarctica, over the austral summers of 2017-2020. 

First, a new method is developed for defining SGL, slush, and ice extent using a Principal 

Components Analysis (PCA) on spectral data derived from Sentinel-2 and Landsat 8 imagery. A 

surface energy balance (SEB) model is developed, following Buzzard et al. (2018) and Law et al. 

(2020), and applied across the extracted supraglacial feature extents using Global Forecast System 

meteorological data.  

The SEB model calculates the mean daily energy absorbed by lake and slush areas as ~ 8.7 MJ/m2 

and ~ 0.54 MJ/m2 for the austral summers of 2017-2020. Modelled energy balance at lake and slush 

regions is most sensitive to incident shortwave radiation, although local ice shelf processes affect 

spatial variability of sensible and latent heat fluxes. The results of the SEB model are validated by 

comparing modelled cumulative energy absorption at SGLs with inferred energy transfer derived 

from SGL volume. The Nash-Sutcliffe Efficiency value of 0.922 implies that the modelled energy 

absorption matches the inferred dataset well. Furthermore, high agreement (62 %) between the 

supraglacial feature masks, produced using different satellite data, supports further use of the PCA 

in Antarctic hydrological research.  

Overall, despite the low spatial coverage of SGLs at ~ 1.6 % of the total area, water coverage on NIS 

represents a substantial means of energy absorption. A significant finding of this study is that 

exclusion of slush in previous energy balance calculations is likely to have underestimated the net 

transfer of energy to Antarctic ice shelves. Total extra energy absorbed across the slush region in 

2019 is equivalent to that absorbed by SGLs, suggesting that slush extent can be a significant control 

on energy absorption.   

The confirmed significance of slush and SGLs for energy absorption, and the validity of the SEB 

model, support the application of methods developed in this study at pan-Antarctic scales. 

Quantification of the ice sheet-scale energy absorption by SGLs and slush would provide a baseline 

to gauge meltwater and sea level rise contribution under different atmospheric forcing projections. 

 



6 
 

1. Introduction 
1.1  Rationale 

Antarctic Ice Sheet (AIS) mass loss has increased over the last decade and now accounts for             

0.6 mm/yr of sea level rise (Shepherd et al., 2018). Mass loss from the Greenland Ice Sheet (GrIS) 

dominated the cryospheric sea level contribution in the 1990s with AIS mass loss at only 40 ± 9 Gt/yr 

(1979–1990) (Rignot, 2019). However, both GrIS and AIS have demonstrated accelerated mass loss 

since 2000 with current negative mass balances of -286±20 Gt/yr and -252±26 Gt/yr respectively 

(Shepherd et al., 2018; Rignot, 2019).  A large proportion of Antarctica’s accelerated mass loss is 

related to the growing extent and intensity of surface meltwater production (Trusel et al., 2012; Bell 

et al., 2018).  At present, 3-4 % of AIS experiences surface melt which is set to at least double by 

2050 as atmospheric warming accelerates, firn capacity decreases through wind-driven densification 

(Ligtenberg, 2011), and nunatak exposure increases (Kingslake et al., 2017; Bell et al., 2018). 

Increasing surface melt has led to the development of pervasive surface meltwater systems which 

occur in a variety of forms across Antarctic ice shelves (Dell et al., 2020; Arthur et al., 2020; Moussavi 

et al., 2020). The development of these features emphasises the importance of developing a holistic 

understanding of Antarctic supraglacial hydrology in the context of anthropogenic climate change. 

Improved understanding of supraglacial hydrology is critically important for constraining feedbacks 

between hydrology and dynamics, quantifying surface energy transfers, and projecting mass 

balance. The development of supraglacial hydrological systems, which favour through-ice shelf 

hydrofracture, may cause collapse (Glasser and Scambos, 2008), persistent acceleration, and mass 

loss from unbuttressed tributary glaciers (Berthier et al., 2012). Supraglacial hydrology formation 

and evolution can be understood by quantifying energy exchanges between the atmosphere and 

buttressing ice shelves (Jakobs et al., 2019). The impact of meltwater on energy balance is likely to 

be highest around grounding line areas of ice shelves. High net longwave radiation around nunataks, 

and high sensible heat transfer from adiabatic warming by katabatic and foehn winds, contribute to 

increased likelihood of meltwater formation at ice shelf grounding lines (Lenaerts et al., 2017; Dell et 

al., 2020). Blue ice, slush and supraglacial lakes (hereafter ‘SGLs’ or ‘lakes’) all have lower albedo 

than surrounding snow or ice and therefore enhance shortwave radiation transfer to the ice shelf 

(Zatko and Warren, 2015; Bell et al., 2018). These features form proximate to one another exerting a 

disproportionate effect on surface energy balance (SEB) despite relatively small coverage (Kingslake 

et al., 2017). The positive feedback between reduced albedo and increased melt makes SGLs and 

slush particularly significant for SEB.  
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Whilst previous research attributes enhanced ablation to lower albedo of surface meltwater, there 

have been few efforts to quantify energy exchanges between SGLs, the atmosphere, and ice (Jakobs 

et al., 2019; Law et al., 2020). The ways in which future warming will influence SGL evolution, and 

development of surface-to-bed linkages by hydrofracture, also remain poorly constrained (Leeson et 

al., 2015; Banwell et al. 2016; Koziol et al., 2017). Predictions that AIS surface hydrology will 

increasingly resemble that of Greenland (Bell et al., 2018) lack robust quantitative evidence and have 

understudied implications for ice sheet-wide mass loss predictions. The significance of supraglacial 

ice shelf features to mass balance contributes to this evident research gap.  

Existing research on mass balance contribution focuses on West Antarctica and the Antarctic 

Peninsula, leaving major uncertainties in AIS-wide predictions of direct and committed sea level rise 

(e.g. Rignot et al., 2006; Berthier et al., 2012; Rott et al., 2018). To improve predictions of future ice 

shelf stability, AIS mass loss, and associated sea level rise, surface meltwater processes on East 

Antarctic ice shelves must be better understood. Satellite-based observations and previous energy 

balance modelling have suggested that melt in East Antarctica is currently intermittent and relatively 

low (Picard et al., 2007; Tedesco, 2009; Luckman et al., 2014; Kuipers Munneke et al., 2018).  

However, more recent studies have mapped extensive supraglacial hydrological features which form 

in the austral summer on East Antarctic ice shelves such as the Roi Baudouin Ice Shelf, Amery Ice 

Shelf, and Nivlisen Ice Shelf (Stokes et al., 2019; Arthur et al., 2020; Moussavi et al., 2020). East 

Antarctic ice shelves are therefore useful for considering the importance of the positive melt-albedo 

feedback in accelerating energy transfer to underlying ice. Nivlisen Ice Shelf (70 °S, 12 °E) is 

illustrative of the increasingly prevalent surface melt on the EAIS and is used in this study to develop 

a surface energy balance (SEB) model which quantifies extra energy absorbed by lake and slush 

features (Figure 1). 



8 
 

Figure 1a. Dronning Maud Land coast, with ice shelves (white) (from ALBMAP with 5km resolution) 
and elevation contours (RAMP2 Contours, 100m). Nivlisen Ice Shelf study area outlined in black box. 

Dronning Maud Land Sector, Antarctica, (top right) from Norwegian Polar Institute accessed at 
www.npolar.no/en/ on 23/12/19. Datasets from Quantarctica dataset accessed on 23/12/2019.  

 

Figure 1b. Supraglacial features of Nivlisen Ice Shelf (70°S, 11°E), LIMA Mosaic Landsat imagery, 15 m 
resolution, false-colour, pan-sharpened, derived from bands 4, 3, 2. Tiles are mosaiced from scenes 
captured in 1999-2002. Blue ice (pale blue), grounding line (red) and streams (purple) determined 
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from Quantarctica dataset, accessed on 23/12/2019. Blue ice and stream features mapped according 
to Sentinel-2 image captured on 31/01/2019. Supraglacial lakes (dark blue) from Stokes et al., 2019.  

This study focuses on the energy balance contribution of two supraglacial meltwater features which 

are extensive across Antarctic ice shelves – supraglacial lakes and slush (Buzzard et al., 2018; Bell et 

al., 2018; Stokes et al., 2019). Accurate delineation of supraglacial features is useful to constrain 

relative SEB contribution from slush and lake features, yet to be quantified on AIS (Trusel et al., 

2015; Bell et al., 2018). A new method for lake classification on Nivlisen Ice Shelf is applied and a first 

attempt to quantify slush extent from spectral data is outlined. In light of SGL-drainage triggered ice 

shelf collapse (Banwell and MacAyeal, 2015) and observations of increased surface melt extent (Bell 

et al., 2018; Stokes et al., 2019), the SEB model developed here is a timely addition to emerging 

literature on AIS supraglacial hydrology.  

 

1.2 Approach and Aims 

This study aims to code a computationally efficient SEB model in Google Earth Engine (GEE) Editor to 

quantify the extra energy absorbed by lakes and slush on Nivlisen Ice Shelf over austral summers of 

2017-2020. Near-grounding line negative mass balance of the Nivlisen Ice Shelf (70 °S, 12 °E), 

Dronning Maud Land, East Antarctica, is sufficient to form SGLs and is therefore suitable to test SEB 

model accuracy (Figure 1). If successful for Nivlisen Ice Shelf, the model has potential applicability to 

calculate total extra energy absorbed by surface meltwater on other Antarctic ice shelves. Accurate 

quantification of SGL and slush energy balance provides a baseline to gauge evolution of meltwater 

contribution under different radiative forcing pathways and to reduce uncertainties in sea-level rise 

projections. 

This study makes a first step towards this by addressing the following objectives:  

(1) Delineate lake and slush area of Nivlisen Ice Shelf, East Antarctica 

(2) Develop a surface energy balance model (following Law et al., 2020) in Google Earth Engine  

(3) Quantify extra energy absorbed by different supraglacial features on Nivlisen over austral 

summers of between 2017 – 2020 

(4) Validate modelled energy absorption at lakes with observed lake volume between 2017 – 

2020 

Classification of lake and slush extent, using a Principal Component Analysis (PCA) of Landsat 8 and 

Sentinel-2 spectral properties in objective (1), advances previous single or band-ratio thresholding 

techniques (Fitzpatrick et al., 2013; Bell et al., 2017; Dell et al., 2020). The PCA identifies useful band 
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information which subsequently informs extraction of thresholds from spectral reflectance 

histograms. The SEB is applied to lake and slush extents, determined by threshold spectral 

reflectance values for Landsat 8 and Sentinel-2 images (Du et al., 2016). The PCA-histogram method, 

as it shall hereafter be referred to, is automated and considers all useful band information, 

minimising error and data wastage. Objective (2) adapts the one-dimensional numerical energy-

balance model, GlacierLake developed by Law et al. (2020), for the GEE environment considering 

surface energy exchanges. GlacierLake is most sensitive to the proportion of shortwave radiation 

absorbed at the surface which indicates its utility for achieving objective (3).  

Given that it takes 3.4 x 105 J/kg of latent heat to melt ice at 0 °C, the volume of liquid water on 

Nivlisen Ice Shelf is used to infer how much energy has been transferred to the ice shelf (Objective 

4). Lake water volume is calculated using a physically-based water-depth model (Sneed and 

Hamilton, 2007, Tedesco et al., 2012; Pope et al., 2016). Approximating water storage in slush 

regions is complex given non-linear variation of snowpack porosity with several physical properties 

(e.g. Techel and Pielmeier, 2011; Kinar and Pomeroy, 2015). Therefore, modelled energy transfer is 

validated with inferred energy transfer from lake volume only. Section 1.3 outlines the justification 

for applying the SEB model to Nivlisen Ice Shelf, East Antarctica, as a reference case study for model 

development.  

 

1.3 Reference Case Study for Model Development 

Several East Antarctic ice shelves experience upwards of 60 days a year of melting, facilitating 

consistent SGL and slush formation around the grounding line (Kingslake et al., 2015; Lenaerts et al., 

2017; Bell et al., 2018). Nivlisen Ice Shelf (NIS) is selected for the development of the SEB model as it 

is (i) illustrative of the increasingly prevalent surface melt on the EAIS, (ii) has large enough lakes to 

be detectable in satellite imagery and (iii) is close to the Novolazarevskaya Weather Station.   

Nivlisen Ice Shelf (70 °S, 12 °E), Dronning Maud Land, East Antarctica, covers ~7,300 km2 between 

the Djupranen and Leningradkollen ice rises (Figure 1a; Lindbäck et al., 2019). A series of smaller ice 

rises and rumples, proximate to the present-day ice shelf front, are thought to have a stabilising 

effect (Borstad et al., 2013; Holland et al., 2015). Furthermore, NIS has been relatively protected 

from thinning by basal melt due to the bathymetric Astrid ridge which diverts warm circumpolar 

deep water into the Weddell Gyre (Thompson et al., 2014). The present stability of NIS is of 

significance given that it buffers a ~27,700 km2 drainage basin with a potential global sea level rise of 

8 cm (Rignot et al., 2013). 
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NIS has large surface mass balance transitions from negative mass balance at the grounding line to 

1.8 ± 0.3 Gt/yr (1979–2010) near the ice front (Horwath et al., 2006). Near the grounding line,  

~1,200 km2 of blue ice and the Shirmacheroasen nunataks lower albedo and enhance ablation 

sufficiently to form SGLs and streams that occasionally drain into crevasses (Figure 1b; Horwath et 

al., 2006; Kingslake et al., 2015). Favourable conditions for the formation of SGLs and slush on NIS 

are also generated by foehn winds warming the ice shelf surface (Matsuoka et al., 2015). Foehn 

winds are warm downslope winds in the lee of topography which flush away cool air and generate 

high melt rates, as observed on Larsen C (Kuipers Munneke et al., 2012a). The ice surface slopes of 

9°, calculated using REMA DEM from the EAIS continental plateau towards the Dronning Maud coast, 

are sufficiently steep to drive foehn winds (Howat et al., 2019).  These conditions for generating 

surface melt are also present at other ice shelves in Dronning Maud Land.  Therefore, NIS is used as 

an indicator of the future supraglacial hydrology of East Antarctic ice shelves. 

Despite the importance of supraglacial water storage on the ice shelves for direct (meltwater runoff) 

and indirect (accelerated tributary glaciers after ice shelf collapse) mass loss, few studies have 

investigated implications of Antarctic supraglacial hydrological systems (Langley et al., 2016; Bell et 

al., 2018; Dell et al., 2020; Moussavi et al., 2020). The following section outlines previous research 

which has contributed to this growing area of understanding. Current knowledge of Antarctic 

supraglacial hydrology will be outlined before previous methods for supraglacial feature delineation 

and SEB modelling are evaluated.  
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2. Literature Review 

2.1 Theory  

The nature of supraglacial hydrology is determined by the energy available for melt (sum of 

radiative, convective, and conductive heat fluxes) and the meltwater pathway across the ice sheet 

(Figure 2). The end-member state of meltwater, its location and permanency, is significant for mass 

redistribution, ice dynamics, and contribution to sea level rise (Bell et al., 2018). Where there is high 

porosity unsaturated firn, meltwater can percolate to form slush, or refreeze within the upper ice 

shelf, creating ice lenses (Alley et al., 2019). Where the firn pack is already saturated, meltwater can 

flow laterally or form ponds in topographic depressions (Dell et al., 2020). Meltwater retained on the 

ice shelf surface generates extra loading, with implications for the stress regime and enhanced solar 

radiation absorption (Banwell and MacAyeal, 2015; Gardner and Sharp, 2010). Meltwater also 

accumulates in crevasses, thereby increasing hydrostatic pressure in the crevasse tip, facilitating 

further fracture propagation and increasing vulnerability to ice shelf collapse (Van der Veen, 2007). 

This process of hydrofracturing is a precursor to Antarctic ice shelf disintegration as demonstrated 

by the Larsen B collapse in March 2002 (Rignot et al., 2004; Glasser and Scambos, 2008). Therefore, 

surface melt accumulation contributes to multiple positive feedback processes which play a crucial 

role in the ice shelf hydrological system. 

Figure 2.  Typical supraglacial features and transport processes on an ice shelf. (1) Accumulation as 
supraglacial (SGL) lakes (Selmes et al., 2011; Banwell et al., 2013); (2) supraglacial run off (Bell et al., 
2017; Smith et al., 2015); (3) snowpack percolation and lateral diversion (Chandler et al., 2013); (4) 

snowpack percolation and storage in firn aquifers (Forster et al., 2014), or subsurface lakes (Lenaerts 
et al., 2016); (5) snowpack percolation and refreezing (Harper et al., 2012). Dolines are locally 

uplifted, empty depressions, interpreted as evidence of surface lakes that have drained through ice 
shelves via ice fractures. Adapted from Bell et al., 2018. 

Lateral diversion across 

impermeable ice layer  

(1) 

(2) 

(3) 

(4/5) 
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In contrast to the extensive research in Greenland (Selmes, 2011; Leeson et al., 2012; Fitzpatrick et 

al., 2014), there are no comprehensive observations of SGLs on a pan-Antarctic scale. A recent 

regional study uses Sentinel-2A and Landsat 8 to capture the first consistent observations of East 

Antarctic SGLs which form in clusters near the grounding line (Stokes et al., 2019). Grounding line 

lake clustering may be explained by the lower elevation and removal of snow cover by katabatic 

winds, enhancing localised albedo-driven melt (Langley et al., 2016).  Whilst ~85 % of Antarctic SGLs 

form in low elevation (<100 m) and low slope (<1 °) regions, they can exist 500 km inland and at 

elevations of >1,500 m (Trusel et al., 2015) due to proximity to low albedo nunataks (Bell et al., 

2018). Whilst the current distribution of Antarctic SGLs has not been systematically documented to 

the same extent as GrIS SGLs, implications of the presence of supraglacial melt must be considered.  

Supraglacial lakes form in regions of highest surface melt during summer months and pool in 

topographic depressions (Lenaerts et al., 2017). Depressions form on floating ice in relation to 

processes including basal crevassing, grounding-line flexure, and incomplete rebound from previous 

lake drainage events (Banwell and MacAyeal, 2015). Relative uniformity of depressions on floating 

regions indicates that lakes are formed by similar magnitudes of flexure forces (Banwell et al., 2014). 

Ice-shelf slopes of approximately 10-4 (equivalent to 5 m vertical change across 50 km) are not 

conducive to large cross-shelf transport suggesting that ice shelf SGLs predominantly grow in situ by 

albedo-melt feedbacks (Banwell et al., 2014). Quantifying the energy absorbed at SGLs on ice shelves 

is essential for predictions of lake growth and evolution.  

Supraglacial lakes present a mechanism of energy transfer from the atmosphere to the ice which is 

poorly studied. SGLs release heat to warm underlying ice, even as surface energy input decreases at 

the end of the melt season, with implications for ice rheology and fracture mechanics (Koenig et al., 

2015). Such cryo-hydrologic warming serves as a source of latent heat that contributes to surface 

energy balance, as well as heat transfer through the ice shelf (Phillips et al., 2010). However, incident 

solar radiation is the largest contributor to austral summer energy balance which generates melt 

(van den Broeke et al., 2011; Law et al., 2020). Summer melt effectively stores excess solar energy as 

liquid water which later supplies latent heat to underlying ice in autumn and winter via refreezing 

(Jakobs et al., 2019; Arthur et al., 2020).  

SGLs have lower albedo than surrounding snow or ice and are therefore assumed to become 

hotspots of enhanced melting (Miles et al., 2016; Shukla et al., 2018). The melt-albedo positive 

feedback is originally driven by meltwater refreezing in the snowpack which generates larger grains 

(~1.0 mm) than new snow (~0.1 mm). Larger grain size snow reduces backscattering of photons, and 
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therefore albedo, especially for light of near infrared wavelengths (Wiscombe and Warren, 1980; 

Jakobs et al., 2019). Increased absorption of incoming radiation facilitates greater energy transfer to 

the ice shelf surface and therefore generates more melt. The strength of the feedback is likely to be 

dependent on the intensity and duration of melt in relation to fresh snowfall events. Jakobs et al. 

(2019) make a first attempt to model the melt-albedo feedback at Neumayer station (EAIS) and 

confirm that, without accounting for this positive feedback, total melt would be 3 times lower. 

Quantification of the energy balance contribution of supraglacial features is essential for confirming 

the significance of the melt-albedo feedback. 

Implications of lower albedo SGLs for energy exchanges are conceptually included in previous mass-

balance studies. A one-dimensional model developed for GrIS demonstrates that subaqueous lake-

bottom ablation is enhanced by 110-170 % (1991-2001) compared to bare ice ablation (Luthje et al., 

2006). Supraglacial ponds on mountain glaciers are modelled to efficiently convey atmospheric 

energy to the interior of glaciers and rapidly promote the downwasting process (Miles et al., 2016). 

Ablation rates at, and proximate to, SGLs on mountain glaciers are typically one or two orders of 

magnitude greater than sub-debris ice melt rates, implying that SGLs are melt hotspots for debris-

covered glaciers (Benn et al., 2012). Miles et al. (2016) developed a free-convection model to 

quantify the extra amount of energy transferred by a pond on Lirung Glacier, Nepal. Sufficient 

energy is transferred to melt 38.4 m3/day of additional ice which is expected to cause significant 

subsidence of the glacier surface and erode the englacial drainage system (Miles et al., 2016). Whilst 

it is assumed that SGLs on the AIS will have similarly significant implications for mass loss, this is yet 

to be modelled and quantified. 

Much of the literature which emphasises the importance of surface lakes for energy balance has 

been conducted on Arctic sea ice (e.g. Pirazzini, 2009; Flocco et al., 2012). Prolific lake formation on 

Arctic sea ice is confirmed by SHEBA (Surface HEat Budget of the Arctic) to have a significant effect 

on overall SEB (Perovich et al., 2007). The proportion of solar energy absorbed by sea ice over the 

melt season is strongly related to date of melt onset (Perovich et al., 2007). Under the Community 

Climate System Model 4, melt ponds across Arctic sea ice contribute an extra 10 W/m2/day over the 

month of July (Holland et al., 2010). Although the direct radiative effects of ponds are proportionally 

small (~1.1W/m2 over each lake), modification of surface albedo by a positive feedback generates a 

net 10 W/m2 response. The radiative effects of melt ponds in a warming climate point to the 

importance of developing models capable for accurate simulation of the melt-albedo feedback. 

Predictions of expanding lake extent on ice sheets under warming atmospheric temperatures 

indicate that future SEB models will be inaccurate without a parameterisation of the extra energy 

contributed by surface meltwater.  
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Whilst existing literature demonstrates the importance of lakes for local energy balance, estimates 

of the impact of reduced albedo on overall ice shelf energy budget are suggested to be small due to 

low spatial coverage (Tedesco et al., 2012; Poinar et al., 2015; Law et al., 2020). Given that lakes’ 

minimum albedo (when they are deepest) is obtained towards the end of the melt season when 

incoming shortwave radiation flux is waning, the enhanced ablation is constrained (Leeson et al., 

2015). Therefore, many numerical models implicitly discount the melt-albedo feedback (e.g. Van den 

Broeke et al., 2008; Ettema et al., 2010). For example, Leeson et al. (2015) simulated that, by 2100, 

the increase in volume of surface melting across the GrIS would reach a modest upper limit of 6.61–

8.54 Gt/yr – only double the SGL volume in 2015. They proposed that frequent lake drainages limit 

the impact of the melt-albedo feedback on ice-sheet mass balance and thus discounted variation in 

surface albedo. To resolve questions of the significance of the melt-albedo feedback, robust 

quantitative evidence of extra energy transferred at SGLs on AIS is required.  

Slush is another pervasive supraglacial feature on Antarctic ice shelves (Buzzard et al., 2018) which 

has a lower albedo than that of snow/ice and should be accounted for in SEB modelling (Rosel et al., 

2011). Slush is a prolific transitional material found in the ablation zone which forms as porous firn 

becomes saturated by run-off or as snow is deposited in open water (Kuipers Munneke et al., 2014; 

Zatko and Warren, 2015). Given high liquid water content, slush is predicted to have similarly low 

visible-near infrared (VNIR) spectral reflectance as SGLs (Rosel and Kaleschke, 2011). Yang and Smith 

(2012) indicate that previous spectral classifications only partially discern slush from lakes and may 

fail in saturated slush areas. Slush extent must be determined both for accurate lake delineation but 

also to allow quantification of slush SEB contribution.  

Broad spatial coverage of slush on ice shelves was documented by the first Antarctic explorers as 

“thaw-water” which made traverse difficult (T.W.E. David, 1909; Bell et al., 2018). Despite the 

prevalence and persistence of slush, little research has been conducted to consider its implications 

for the broader ice shelf system. Slush areas are of interest for quantifying SEB contribution, in 

isolation and in relation to SGLs (Kingslake et al., 2017), as well as predicting ice shelf flexure 

response (MacAyeal and Sergienko, 2013; Leeson et al., 2020). It is characteristic for SGLs on 

Antarctic ice shelves to form over regions of water-saturated slush (Buzzard et al., 2018). Not only is 

slush a precursor for lake formation, but the co-existence of these low-albedo supraglacial features 

may generate a disproportionate effect on mass loss (Kingslake et al., 2017).  

Given proximity of SGLs, slush, and nunataks on Antarctic ice shelves, it is hypothesised that ice shelf 

thinning generates a positive nunatak-melt-thinning feedback (Kingslake et al., 2017). As ice shelves 

thin, greater proportions of exposed rock enhance melt due to lower albedo. Enhanced surface run-
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off increases thinning and the likelihood of shelf collapse if water accesses areas vulnerable to 

hydrofracture (De Rydt et al., 2015). Whilst water stored in slush is unlikely to generate sufficient 

water pressure to drive hydrofracture, prolific slush extent enhances rock-melt-thinning feedbacks 

and increases sites favourable for SGL formation.   

Large volumes of water stored in SGLs and slush have implications not only for enhanced energy 

absorption but also for ice shelf stability. Evolution of supraglacial systems which efficiently 

transport meltwater off ice shelves may reduce instability, as seen on Nansen Ice Shelf (Bell et al., 

2018). Contrastingly, a pan-Antarctic survey of surface drainage systems from visible satellite 

imagery (1947 – 2015) suggests that accumulation of meltwater can trigger ice shelf collapse 

(Kingslake et al., 2017). SGL filling and drainage induces localised flexure, generating fractures and 

triggering neighbouring lake drainage in a chain reaction (Banwell and MacAyeal, 2015). The near-

synchronous drainage of ~3,000 melt ponds and subsequent collapse of Larsen B Ice Shelf a few days 

later, is a frequently cited example of this behaviour (Glasser and Scambos, 2008). Where water is 

routed into upper firn, firn permeability will control the extent of lateral transport relative to vertical 

seepage into subsurface aquifers (Kuipers Munneke et al., 2012). Surface melt delivered to 

impermeable ice areas is likely to run-off downslope or pool in topographic depressions. Therefore, 

small variability in supraglacial properties and ice shelf topography strongly impact drainage 

efficiency and ice shelf stability.  

Extensive coverage, and relative lack of research, make EAIS lakes and slush of particular interest for 

quantifying energy exchanges. Quantification of the contribution of slush and SGLs to surface energy 

balance and prediction of long-term ice shelf stability require a robust method for delineating slush 

and lake extent. A variety of methods have been applied for remote supraglacial feature extraction 

which use data obtained from aircraft or satellites. Despite previous work to determine lake extent 

from spectral properties, as outlined in the following section, slush regions remain unclassified. 

Therefore, this study makes a first step, through development of an automated spectral 

classification, to delineate lake and slush extent on NIS drawing on methods previously applied in 

the sea ice literature (Rosel and Kaleschke, 2011; Flocco et al., 2012).  

2.2 Approaches for Supraglacial Lake Identification 

2.2i Remote Sensing Instruments  

Satellite-based remote sensors have transformed our understanding of ice-sheet hydrology. The 

sensors applied in water-body extraction can be divided into optical sensors, measuring reflection of 

VNIR radiation, and radar, recording radio wave returns.  
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Space-borne radar imaging instruments are useful for detecting supraglacial hydrology given their 

ability to derive backscatter returns from the shallow sub-surface (Rees, 2013). Datasets from radar 

satellite sensors, such as RADARSAT-1 (1995-2013), can function in any lighting or cloud conditions 

and reliably monitor surface features over their lifetime.  

Mapping of supraglacial hydrology lends itself to optical remote sensing given water’s distinct VNIR 

spectral signature. MODIS optical data have been widely used to document lake formation and 

drainage given daily repeat-pass measurements, but the coarse spatial resolution (250 m) limits 

utility for mapping smaller lakes (Fitzpatrick et al., 2014). Landsat 8 and Sentinel-2 optical sensors 

have high spatial resolutions (15-30 m) and have been used to derive and validate automated lake-

tracking algorithms (Williamson et al., 2017; Dell et al., 2020). Despite unequivocal utility of high-

resolution optical data, image acquisition in high-latitude regions is sparse due to frequent cloudy 

days, low revisit times, and pixel saturation. Pixel saturation, where the incident light at a pixel 

causes one of the sensor channels to respond at its maximum value, prevents detection of spectral 

change (Zhang, 2004; Burton-Johnson et al., 2016). Given these limitations, the following section 

outlines approaches to maximise the utility of available satellite optical imagery using digital post-

processing to ensure accurate surface feature mapping. 

2.2ii Previous Methods for Supraglacial Lake Extraction from Images  

Post-processing of satellite imagery is key for extracting information about supraglacial hydrology. 

The most common methods for extracting information about water bodies are single and band-ratio 

thresholds, image segmentation, and target detection methods (Jawak, 2015).   

Post-processing usually involves thresholding of a distribution of image spectral reflectance across 

wavelengths, given differential attenuation of wavelengths in water (e.g. Selmes et al., 2011; 

Williamson et al., 2017). The Normalised Water Difference Index (NDWI), a ratio involving red (B4, 

0.64–0.67 µm) and blue (B2, 0.45–0.51 µm) bands, is widely used to detect surface lakes (Eq. 1) 

(Doyle et al., 2013; Moussavi et al., 2016; Macdonald et al. 2018; Williamson et al. 2018b; Dell et al., 

2020).  

𝑁𝐷𝑊𝐼 =  
𝐵2 −  𝐵4 

  𝐵2 +  𝐵4    
                                                          (1)  

Red and blue bands are chosen given high reflectivity of water in the blue band and the contrast 

between ice and water in the red band (Yang and Smith, 2012). The thresholding of the ratio of blue 

to red surface reflectance is used to define water-covered pixels in a scene based on the principle 

that red wavelengths are attenuated more strongly than blue (Box and Ski, 2007). Higher NDWI 

thresholds may underestimate lake extents whilst lower thresholds may incorrectly identify blue ice, 
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nunataks, or shadows as SGLs (Burton-Johnson, 2016). NDWI-based indices are adjustable to remove 

background noise, whilst not affecting the target extraction, and are computationally efficient. 

However, such ratios must be manually adjusted for cloud cover and to remove coastal water, which 

introduces subjectivity error (Pope et al., 2016). Furthermore, if the common NDWI is always used 

for lake extraction, a large proportion of valuable spectral data remains unused.  

Given that a single spectral index does not demarcate lakes effectively in different environments, a 

combination of indices yields better results (Sun et al., 2012; Watson et al., 2018). For example, the 

red-blue NDWI is most successful for lakes on land whilst the green-NIR NDWI is most accurate for 

East Antarctic ice shelf features (Yang and Smith, 2012; Stokes et al., 2019).  The green-SWIR NDWI is 

found to be a particularly successful spectral index for Sentinel-2 data, enhancing water bodies and 

suppressing built-up features more efficiently than red-blue NDWI (Du et al., 2016).  This is related 

to high green band resolution (10 m) and streamlined pan-sharpening methods for downscaling the 

SWIR band. Testing of various spectral indices for a given study-site and satellite data is time-

consuming and subject to user bias. 

Accuracy of supraglacial feature extraction may be enhanced using other pixel properties in 

combination with spectral information (Jawak, 2015). For example, to overcome the challenges in 

discriminating streams from slush, a joint spectral-shape classification is applied for WorldView 3 

images over Greenland’s ablation zone (Yang and Smith, 2012). This joint classification procedure is 

26% more accurate than NDWI classification when validated against manually digitised stream 

features. However, such morphological methods would be unsuccessful for slush and lake areas 

given lack of distinctive feature geometries.  

To date, only Miles et al. (2017) have developed a method to distinguish between lake and slush 

regions on ice sheets. Miles et al. (2017) use an NDWI threshold to generate a binary combined lake-

slush mask from Landsat 8 images.  This mask was applied to Sentinel-1 radar images and histograms 

of backscatter across the lake-slush regions, returning a bimodal distribution which suggested a 

threshold value for the transition between lake to slush (Miles et al., 2017). Despite this extensive 

method to separate lake and slush regions, slush zones were subsequently eliminated in the 

analysis. 

Classification techniques, developed in the sea ice literature, involve consideration of multiple bands 

to differentiate between surface features with similar spectral signatures whilst also accurately 

removing the surrounding ocean (Flocco et al., 2012). Rosel and Kaleschke (2011) extract melt ponds 

by performing a PCA on spectral information from MODIS data which identifies spectral bands that 

best resolve surface differences. The two orthogonal principal components, which describe most 
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dataset variability, are plotted in a new co-ordinate system to show clustering of pixels which 

represent melt ponds (Figure 3). However, even the automated PCA method produces a small error 

of 0.35% related to misclassified pixels on class edges (Rosel and Kaleschke, 2011). The trade-off 

between retaining all useful information and maximising computational efficiency can be balanced 

through the application of PCA. Therefore, this report makes a first attempt to classify lake and slush 

extents on the NIS using the PCA method outlined in Section 3.1.  

 

 

Figure 3. Extracted principal components plotted in transformed co-ordinate system to identify 

dataset clustering. PCA applied to Landsat 7 ETM+ scene (120° W, 80° N) from 19 July 2001 with 

manually delineated training pixels represented by A-D. A – open water pixels, B – dry ice, C- wet 

slush, D – melt ponds. Source: Rosel and Kaleschke, 2011. 

 

2.3 Current Supraglacial Lake Energy Balance Models  

The SEB model presented here draws on previous efforts but aims to improve accuracy of the inter-

annually variable lake/slush extent input domain. Buzzard et al. (2018) presented a physically 

comprehensive model for lake development on Antarctic ice shelves accounting for firn compaction, 

saturation, and refreezing. Building on this, Law et al. (2020) developed the GlacierLake model which 

not only accounts for persistent latent heat contribution of buried lakes throughout the winter, but 

also has rapid execution times facilitating extensive model sensitivity testing. Results from 

GlacierLake are found to be most sensitive to the proportion of shortwave radiation absorbed at the 

surface. The model applied here simplifies the surface fluxes from Buzzard et al. (2018) and Law et 
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al. (2020) to maximise computational efficiency whilst retaining model sensitivity to absorbed 

shortwave radiation.  

Considering the above, this study contributes to three current research gaps: it provides (1) a new 

automated method for delineation of lake and slush extent, (2) the first SEB model coded in GEE, 

and (3) a first quantification of extra energy contribution of lakes and slush to AIS energy balance.  

The remainder of the dissertation is structured as follows:  

• the PCA-histogram method for extracting lake and slush regions from Landsat 8 and 

Sentinel-2 imagery is explained, 

• a physical description of the model is presented, outlining calculation of different energy 

fluxes, 

• the results of the numerical implementation of the model to Nivlisen Ice Shelf are reported 

and,  

• sensitivity and validation are performed to assess model performance and discuss 

applicability in future research. 
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3. Methods 

There are three main components to the methods applied in this study: i) detecting lake and slush 

areas; ii) calculating surface energy balance contribution of lake and slush; and iii) validating the lake 

SEB using total lake volume (Figure 4). First, the selected satellite data, used as the basis for feature 

delineation and SEB modelling, are outlined and justified for the purposes of this study.  

 

Figure 4. Flow chart of overall method applied in this study for quantification of energy contribution 

of SGL and slush areas on Nivlisen Ice Shelf. 

3.1  Lake and Slush Identification 

3.1i  Remote Sensing Data 

To produce an estimate for the slush and lake extent on East Antarctic ice shelves requires a 

satellite-based dataset with high-latitude coverage and sufficient spatial resolution to identify 

smaller lakes. On this basis, Landsat 8 and Sentinel-2 data were chosen, available in GEE as 

calibrated top-of-atmosphere (TOA) reflectance products.  
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The Multi-Spectral Instrument on Sentinel-2 provides optical imagery of high spatial (10 m) and 

temporal (10-day revisit) resolutions with satisfactory coverage over Antarctica (Table 1; Du et al., 

2016). Sentinel-2 is the most reliable multispectral sensor at distinguishing spectral signatures of 

SGLs and snow, on par with high resolution sensors such as WorldView and RapidEye (Watson et al., 

2018). The Sentinel-2 TOA reflectance values are divided by the quantification value of 10,000 to 

convert numbers into values that lie within the expected zero to one range. For the training of the 

new lake-slush classification developed in this study, Sentinel-2 scenes of NIS between September 

2016 and March 2020 were identified in GEE (Table S1).  

In the Sentinel-2 dataset, band 1 is reflected by aerosols and band 9 by atmospheric water vapour 

whilst band 10 identifies cirrus clouds (Konig et al., 2019). Given that bands 1, 9, and 10 are not 

indicative of surface characteristics, they are not considered in this study. Furthermore, a cloud mask 

is generated by thresholding the image property ‘CLOUDY_PIXEL_PERCENTAGE’ which identifies a 

pixel as cloudy based on the SWIR band.  A 20 % cloudy pixel threshold is set to ensure that the 

region of interest is not obscured.  

Sentinel-2 bands 
Wavelength Range 
(µm)  

Central wavelength 
(µm) 

Resolution 
(m) 

Band 1 Coastal aerosol 0.43 - 0.45 0.44 60 

Band 2 Blue 0.45 - 0.52 0.49 10 

Band 3 Green 0.54 - 0.57 0.56 10 

Band 4 Red 0.65 - 0.68 0.67 10 

Band 5 Vegetation red edge 0.69 - 0.71 0.71 20 

Band 6 Vegetation red edge 0.73 - 0.74 0.74 20 

Band 7 Vegetation red edge 0.77 - 0.79 0.78 20 

Band 8 NIR 0.78 – 0.90 0.84 10 

Band 8A Vegetation red edge 0.85 – 0.87 0.87 20 

Band 9 Water vapour 0.93 – 0.95 0.95 60 

Band 10 SWIR Cirrus 1.36 – 1.39 1.38 60 

Band 11 SWIR 1.56 – 1.65 1.61 20 

Band 12 SWIR 2.10 – 2.28 2.19 20 

Table 1. Sentinel-2 band characteristics. The satellite carries a single multispectral instrument with 13 

spectral channels which all collect data using the push-broom concept. The sensor records ten 

electromagnetic bands (0.494 – 0.945 µm wavelengths), a panchromatic band (0.443 – 0.496 µm), 

two infrared bands (1.613 – 2.202 µm) and cloud masks for opaque (QA60) and cirrus clouds (B10). 

Sentinel-2 satellite is part of the Earth Observation Mission developed by the European Space Agency 

and was launched on 23rd Jan 2015. 

Landsat 8 data is used in conjunction with Sentinel-2 for: i) high cross-compatibility between 

satellites, ii) longer continuous data record and iii) high spatial and temporal resolution. The 

Operational Land Imager (OLI) sensor is an improvement on Landsat 7’s Enhanced Thematic Mapper 

Plus (ETM+) based on radiometric resolution, signal-to-noise ratio and dynamic range (Pope et al., 
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2016; Williamson et al., 2017). Landsat 8 scenes are available over the high latitude polar regions 

with 30 m spatial resolution and 16-day revisit interval (Roy et al., 2014). Landsat 8 OLI is used as a 

level-2 Top of Atmosphere reflectance (TOA) product. Pope et al. (2016) ran a sensitivity analysis of 

path radiance to atmospheric gases, using a radiative transfer model, and demonstrated that 

atmospheric correction is not required for Landsat 8 Tier 2 data. However, the TOA reflectance 

sensitivity is not processed for thermal bands which means these bands cannot be used for SEB 

calculations (Chander et al., 2009). Furthermore, bands 1, 8, and 9 describe properties not related to 

surface characteristics or, in the case of the panchromatic band (band 8), describe combined 

information from blue, green and red visible bands. Therefore, these bands are not considered for 

the development of the Landsat 8 PCA.  

Landsat 8 scenes with < 20% cloud cover collected between November 2016 and February 2020 

covering the ice shelf extent were identified in GEE (Table S2). Each downloaded Landsat scene is 

corrected using a cloud mask which is generated using the Simple Cloud Score Algorithm 

(ee.Algorithms.Landsat.simpleCloudScore) in GEE. This algorithm assigns a cloud score to individual 

pixels based on blue band reflectance relative to other visible bands, brightness in NIR and SWIR 

bands, as well as the temperature according to thermal band 10 (Hall et al., 2010).  

Landsat 8 bands 
Wavelength (µm) Resolution (m) 

Radiometric rescaling 
coefficients 

Band 1 Coastal aerosol 0.43-0.45 30 0.0001 

Band 2 Blue 0.45-0.51 30 0.0001 

Band 3 Green 0.53-0.59 30 0.0001 

Band 4 Red 0.64-0.67 30 0.0001 

Band 5 Near infrared 0.85-0.88 30 0.0001 

Band 6 Shortwave infrared 1 1.57-1.65 30 - 

Band 7 Shortwave infrared 2 2.11-2.29 30 0.0001 

Band 8 Panchromatic  0.52-0.90 15 - 

Band 9 Cirrus  1.36-1.38 15 - 

Table 2. Landsat 8 band characteristics. The Landsat 8 OLI multispectral instrument has improved 

radiometric precision over a 12 bit range. The 12 bit data is scaled to 16 bit integers and delivered as 

level-2 data Top of Atmosphere (TOA) reflectance. Landsat 8 data is produced by the U.S. Geological 

Survey (USGS) and was launched on 11th Feb 2013. 

The Landsat 8 and Sentinel-2 scenes are clipped to the 1206 km2 lake-covered region of NIS in GEE – 

this region will henceforth be referred to as the study-site region (Figure 5). All subsequent methods 

are applied to the study-site region unless specified otherwise. With these two datasets, input 

satellite imagery for the SEB model is available at least every 3-22 days over the months of 

November to February of 2017-2020.  



24 
 

 

Figure 5. Study-site region (black rectangle) covering 1206 km2 of Nivlisen Ice Shelf (70°S, 12°E). 

Composite of three RGB Landsat 8 images 168-109 17/02/2019, 166-110 19/02/2019 and 166-109 

19/02/2019.  

3.1ii  Principal Components Analysis  

Previous single- or ratio-based spectral band methods for determining supraglacial features are 

complicated by similar spectral characteristics, extensive cloud cover, and sparse satellite data 

availability (Miles et al., 2016). User-defined band thresholds are subject to human error, and 

manual delineation methods are inappropriate for classification over broad regions. Therefore, a 

new method is developed here using Principal Components Analysis (PCA) and histogram data to 

generate a multi-band classification for lake and slush extent. This is the first automated method for 

lake and slush spectral differentiation for Antarctic ice shelves.  

The approach is comprised of four steps to delineate lake and slush extents by identifying which 

pixel properties are useful in predicting different surface characteristics. The steps are as follows:  

0            10           20            30           40           50km 
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1. Filter Sentinel-2 and Landsat 8 collections over the NIS study-site with <20% cloud cover for 

austral summers of 2017-2020 (Table S1-S2). Extract spectral band reflectances for the study 

site region across all available images.  

2. Apply PCA to pixel spectral array to convert correlated data to uncorrelated composite 

principal components (PCs).  

3. Plot histograms of spectral reflectance for best performing bands identified by PCA (Figure 

6) and extract turning points in the distribution which distinguish supraglacial features 

(Figure 7).   

4. Incorporate thresholds from best-performing bands into the GEE lake/slush extent code 

(Appendix – Code 2). Test the sensitivity of estimated lake and slush extents in the most 

recent Sentinel-2 and Landsat 8 images to ±10% variability of spectral reflectance 

thresholds.  

 

Figure 6. Workflow of the PCA-histogram method to extract spectral band thresholds for supraglacial 
feature mapping. PCA of spectral data from all available images in austral summers 2017-2020. 

Histograms of significant spectral bands are plotted based on data from most recent Landsat 8 and 
Sentinel-2 images. Extracted spectral thresholds are then applied to other images.  

 

The PCA is a method of data reduction, performed in the SPSS environment, that aims to identify a 

small number of derived variables from a larger number of original variables (Pallant, 2005). Each 

input variable is a measure of pixel reflectance for each satellite spectral band with a specific range 

of wavelengths.  

The sequence of steps undertaken for a PCA are as follows:  

1. Selection of input variables based on the spectral bands of Sentinel-2 and Landsat 8 

multispectral instrument (Table 1-2). Spectral bands which describe reflectance derived from 

atmospheric properties are not included as they do not represent surface characteristics. 

These are bands 1, 9 and 10 for Sentinel-2 and bands 1, 8 and 9 for Landsat 8.  

2. Assessment of data suitability for PCA using the Kaiser-Meyer-Olkin (KMO) measure of 

sampling adequacy and Bartlett’s test of sphericity (Jolliffe and Cadima, 2015). Given that 

the acceptable KMO range is from 0.0 to 1.0, values of 0.841 and 0.632 for Sentinel-2 and 
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Landsat 8 respectively suggest the adequacy of the dataset size for a PCA (Table 3; Babel et 

al., 2014). The Bartlett’s sphericity test value (Table 3) is significant at the 5% level 

confirming that the original spectral bands are uncorrelated and suitable for dataset 

structure detection (Pallant, 2005). 

3. Determination of the dominant PCs for describing spectral dataset variability using the 

Kaiser criterion to retain components with eigenvalues > 1.0. This ensures that the extracted 

components explain more of the variance in the dataset than any one of the original 

variables by itself.  

 Statistical Test Sentinel-2  Landsat 8  

KMO Measure of Sampling Adequacy 

 0.841 0.632 
Chi-Square 
Bartlett's Test of Sphericity 

 639107.63 12870571.00 

df 55 21 

Sig. 0.000 0.000 

Table 3. Kaiser-Meyer-Olkin and Bartlett tests to demonstrate suitability of Sentinel-2 and Landsat 8 
datasets for Principal Components Analysis. KMO tests the ratio of item correlations to partial item 

correlations. The partial item correlations should be similar to raw correlations given the assumption 
that common factors are the source of variance for different surface types. Bartlett Sphericity Test 

determines suitable dataset structure.  
 

The merits of the PCA include increased interpretability of large datasets, reduction of data loss, and 

a priori definition of uncorrelated variables (Jolliffe and Cadima, 2015). Specifically, the automated 

classification method removes the error associated with pareidolia (tendency for the human eye to 

incorrectly perceive a stimulus as a feature). Furthermore, it has potential for broad application due 

to the ability to calculate slush extent without the requirement of complex radiometric, topographic 

or speckle corrections.  

The PCA identifies which spectral bands contribute the most to variability in reflectances, and 

extracts clusters which can be interpreted to confirm the presence of distinct supraglacial features. 

The interpretation of the PCs which describe distinct parts of the ice shelf spectral variability is aided 

by training pixels. Training pixels are taken from manually delineated SGL, slush, and snow features 

on NIS from Landsat 8 image 165-110 acquired on 14/01/2020 and Sentinel-2 image 929-941 

acquired on 31/01/2019 (Figures S5-9).  

Training pixels aid qualitative interpretation of the extracted PCs and the automated method (Figure 

6) uses information from the PCA for quantitative delineation of supraglacial features. Within each 

PC, the statistically significant spectral bands are identified and the frequency distribution of pixel-

by-pixel reflectance for each band is plotted. Histograms of the constituent PC bands are then 

analysed in Python to extract turning points in the frequency distribution.  
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Histograms of spectral reflectance for each significant PC band are generated for the study-site 

region from the most recent images extracted from Sentinel-2 (929-941, 31/01/2019) and Landsat 8 

(165-110, 14/01/2020). The frequency distribution of reflectance values for each band is expected to 

represent variation from different surface features within the overall spectral signature (Figure 7). 

For a trimodal histogram distribution, with lower lake spectral reflectance values and higher slush 

and ice spectral reflectance values, the minima are extracted as threshold values (Appendix – Code 

4).  

The Python script for analysing spectral band frequency distributions and extracting thresholds goes 

through a series of processing steps (Figure 7). The histograms group pixels into bins of equal-sized 

reflectance ranges. Iterations through adjacent bins identify the greatest difference between bins 

(above a threshold prominence) as a minima or maxima (Figure 7a). The prominence value removes 

noise in the distribution so that only major turning points are identified. The distinct slush and snow 

peaks are easily identified using this method whilst the plateau of low spectral reflectance values, 

representing SGL pixels, remain uncategorised.  

The threshold spectral band reflectance, which represents the transition from lake to slush, is where 

the low-reflectance plateau terminates. The plateau value is set as the average pixel number for 100 

bins on the plateau. The plateau termination is where the difference between the number of pixels 

in one bin and the plateau average exceeds 10% of the plateau average (Figure 7b). This must be 

consistently true for 20 adjacent bins to confirm plateau termination. The code outputs minima 

across the whole frequency distribution which are threshold reflectance values identifying different 

supraglacial meltwater features (Figure 7c).  
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Figure 7. Python script processing steps applied to each spectral band identified by PCA as significant. 
Input is typical trimodal frequency distribution of spectral reflectance for each band. Step 1: code 

identifies maxima and minima, only keeps minima. Step 2: plateau termination into first prominent 
peak identified. Step 3: threshold spectral reflectance values extracted. 

Reflectance  

KEEP MINIMA ONLY 

a) Step 1: 

b) Step 2: 

c) Step 3: 
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The accuracy of the extracted thresholds is tested across all images (Tables S1-S2) to ensure that the 

thresholds are useful for delineating extents irrespective of timing of image capture. The sensitivity 

of calculated lake and slush areas to band thresholds is evaluated across all austral summer images 

by varying each band threshold by ± 10% (Section 4.2i).  

A multi-class confusion matrix is also generated as a measurement of PCA-histogram performance in 

delineating SGL, slush, and ice pixels using different satellite data. Supraglacial feature masks for 

Landsat 8 (ID: 165-110 08/01/2018 and 167-110 24/12/2018) and Sentinel-2 (ID: 080-919 

11/01/2018 and 080-929 22/12/2018) images, captured within 2-3 days of each other, are compared 

pixel-by-pixel over a 15 km2 region on NIS. Pixels which are identified in both satellite images as 

belonging to the same supraglacial class increase the measured precision of the PCA-histogram 

method. These results (Section 4.2) indicate the validity of using the derived Landsat 8 and Sentinel-

2 feature masks as an input domain for the SEB model, described in the following section. 

 

3.2  Surface Energy Balance Model  

3.2i  Source Data 

To simulate energy balance at lake and slush surfaces on the NIS, the model is forced using Global 

Forecast System (GFS) meteorological data. The Global Forecast System is a model which outputs 

gridded meteorological variables at 0.25 arc degrees resolution every 6 hours (NOAA, 2015). The GFS 

provides measurements of temperature (°C), specific humidity (g/kg), wind speed (m/s), and 

downward shortwave radiation flux (W/m2) since 01/07/2015.  

Although GFS data is forecasted without reanalysis, it is favoured over ERA-5 data which is yet to 

have uploaded radiation data into Earth Engine. The Novolazarevskaya automatic weather station 

(70°46’04” S, 11°49’54” E) has recorded in situ weather data on NIS since 1961 providing a useful 

validation dataset for forecast data. However, the weather station data is recorded too infrequently 

for initial model development. 

3.2ii Model Development 

Google Earth Engine (GEE) is used to develop and implement the SEB model. GEE is a cloud-based 

geospatial processing platform which contains archived remotely sensed images and has 

computational power to optimise synchronous dataset processing (Gorelick et al., 2017). 

Furthermore, functions in GEE use per-pixel algebraic functions which make it applicable irrespective 

of region or scale. The framework of the model, sensitivity testing to input meteorological data, and 

validation are now outlined in turn.  
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3.2iii Physical Description of the System 

Supraglacial lakes are complex systems with multiple boundary exchanges of energy and mass. 

Energy fluxes that have been previously modelled include atmosphere to lake surface, through-

water convection, subaqueous to ice, and energy advected through the system via mass transfers 

(Figure 8). The point-based energy balance model applied across lake, slush and clean ice regions 

follows the equations set out by Law et al. (2020) considering only surface energy exchanges.  

Figure 8. Schematic for supraglacial and englacial energy transfers, mass transfers and physical 
processes. This study focuses on surface energy exchanges. Processes are incorporated into energy 
balance following Buzzard et al. (2018). SW – shortwave radiation, LW – longwave radiation, QLAT – 

latent heat flux, QSEN – sensible heat flux. 

 

The energy balance of an infinitesimally thin surface layer is defined as: 

𝑄 = (1 − 𝛼)𝐹𝑆𝑊 + 𝜀𝐹𝐿𝑊 − 𝜀𝜎𝑇4 + 𝐹𝑠𝑒𝑛 + 𝐹𝑙𝑎𝑡                                      (1) 

where Q is total energy per unit area (W/m2) stored in the surface, 𝐹𝑆𝑊 is incoming shortwave 

radiation flux (W/m2), 𝐹𝐿𝑊 is incoming longwave radiation flux (W/m2), 𝐹𝑠𝑒𝑛 is sensible heat flux 

(W/m2) and 𝐹𝑙𝑎𝑡 is latent heat flux (W/m2), 𝛼 is albedo, 𝜀 is emissivity, 𝜎 is the Stefan-Boltzmann 

constant (5.67 × 10−8 W/m2K4) and T is surface temperature (K). Each of the surface energy fluxes are 

discussed and the equations representing each in the model are outlined. 
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Shortwave Radiation 

Incoming shortwave radiation flux (𝐹𝑆𝑊) is a 6-hourly forecast from GFS data. The value of 𝐹𝑆𝑊, 

obtained closest to Landsat 8 or Sentinel-2 image capture time, is extracted from the GFS dataset to 

calculate SEB.  Incoming shortwave radiation corresponding to each spectral band is calculated using 

weighting coefficients as specified in Tables 4-5 (Vanino et al., 2018). The weighting coefficient 

represents the fraction of incident solar radiation that falls within a specified range of wavelengths 

defined by satellite spectral bands. Shortwave radiation flux is assumed here to be independent of 

elevation (within a 400 m range) given that it is unlikely to vary significantly across an ice shelf 

(Luthje et al., 2006; Jakobs et al., 2019).  

Broadband surface albedo is calculated as the integration of surface reflectance across the 

shortwave spectrum (D’Urso and Calera, 2006), as shown in Equation (Eq. 2).  

α =  Σ |𝜌 ∙  𝑤|                                                                             (2)  

where α is albedo, ρ is surface reflectance for a given band, w is the weighting coefficient (Tables 4-

5).  

Multiplying reflectance by weighting coefficients gives albedo per pixel for each Sentinel-2 and 

Landsat 8 image which is used to calculate net shortwave radiation flux (Tables 4-5). The weighting 

coefficient is calculated, following Vanino et al. (2018), as:   

𝑤 =  
∫ 𝑅𝜆 ∙ 𝑑𝜆

𝑈𝑃

𝐿𝑂

∫ 𝑅𝜆 ∙ 𝑑𝜆
2.4

0.4

                                                                           (3)  

where 𝑅𝜆 is extra-terrestrial irradiance for wavelength λ (μm); and UP and LO are upper and lower 

wavelength bounds for bands, respectively. The values 0.4 μm and 2.4 μm represent the absolute 

solar spectral irradiance (Thuillier et al., 2003).  

Weighting coefficients for Sentinel-2 bands 1, 9 and 10, and Landsat 8 bands 1, 8, and 9 are not used 

in the calculation of albedo given that these bands do not describe surface reflectances.  
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Band 
Band 
Name 

Centre λ 
Spectral Width 

Δλ 
In-band solar 

spectral irradiance 
w 

   (μm) (μm) (W/m2)   

2 Blue 0.49 0.065 3594 0.1324 

3 Green 0.56 0.035 2958 0.1269 

4 Red 0.67 0.030 2508 0.1051 

5 Red Edge1 0.71 0.015 2319 0.0971 

6 Red Edge2 0.74 0.015 1929 0.0890 

7 Red Edge3 0.78 0.020 1664 0.0818 

8 NIR 0.84 0.115 1392 0.0722 

11 SWIR1 1.61 0.090 63 0.0167 

12 SWIR2 2.19 0.180 50 0.0002 

Table 4. Weighting coefficients of Sentinel-2 spectral bands for the calculation of albedo using 

Equation 2. Weighting coefficient represents the fraction of solar radiation of a particular 

wavelength as a proportion of total irradiance (Source: Vanino et al., 2018). 

 

Band Band Name Spectral range λ Spectral Width Δλ w 
  (μm) (μm)  

2 Blue 0.45 - 0.51 0.06 0.3 

3 Green 0.53 - 0.59 0.06 0.277 

4 Red 0.64 - 0.67 0.03 0.233 

5 NIR 0.85 - 0.88 0.03 0.143 

6 SWIR1 1.57 - 1.65 0.08 0.036 

7 SWIR2 2.11 - 2.29 0.18 0.012 

Table 5. Weighting coefficients of Landsat 8 spectral bands for the calculation of albedo using 

Equation 2. Weighting coefficient represents the fraction of solar radiation of a particular 

wavelength as a proportion of total irradiance (Source: Silva et al., 2016). 

 

Longwave Radiation 

The net longwave radiation (FLW) is calculated as the difference between atmospheric incoming 

longwave radiation (LIN) and outgoing longwave radiation dependent on the temperature of the 

surface (Steiner et al., 2015; Miles et al., 2016): 

𝐹𝐿𝑊 = 𝐿𝐼𝑁 − 𝜀𝑠𝑢𝑟𝑓𝜎𝑇𝑠𝑢𝑟𝑓
4                                                            (4) 

where 𝜀𝑠𝑢𝑟𝑓 is emissivity of lake and slush, 𝜎 is the Stefan-Boltzmann constant (5.67 x 10-8 W/m2/K4), 

and 𝑇𝑠𝑢𝑟𝑓 (K) is pixel surface temperature.  The emissivity coefficients (𝜀𝑠𝑢𝑟𝑓) for lake and slush 

pixels are 0.97 and 0.94 respectively following calibrated values determined by Law et al. (2020). 

Given the lack of incoming longwave radiation forecasts in the GFS dataset, air temperature at 2m is 

used as a proxy for the incoming longwave radiation (Malakar et al., 2018) according to the Stefan-

Boltzmann law (Eq. 5).  
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𝐿𝐼𝑁 =  𝜀𝑎𝑖𝑟𝜎𝑇𝑎𝑖𝑟
4                                                                 (5) 

where 𝜀𝑎𝑖𝑟 is emissivity of air, Tair is the air temperature (K) at 2 m above ice shelf surface. 

The incoming longwave radiation is calculated based on clear sky emissivity. Busetto et al. (2013) 

determine clear sky emissivity using in situ pyrgeometers on Dome C, Antarctica, which corroborate 

calibrated emissivity values.  

The right-hand term of equation 4 gives the outgoing longwave radiation. The sum of reflectance in 

the SWIR bands is converted into radiant flux emitted from a surface per unit area. Surface 

temperature of each pixel is calculated using Planck’s radiance function (Eq. 6) which converts 

surface reflectance into a temperature (Ghulam, 2010).  

𝑡(𝜆, 𝐿) =  
𝑐2

𝜆ln (
𝑐1

𝜆5𝐿
+ 1)

                                                                (6) 

where t is temperature (K), L is radiance (W/m2/sr), 𝑐1 is 1.191 x 108 (W/m2/sr), 𝑐2 is 1.438 x 104 (K 

μm) and λ is wavelength (μm) (Law et al., 2020). 

With surface and air temperature data, net longwave radiation for each lake and slush pixel is 

calculated (Eq. 4) for each available Landsat 8 and Sentinel-2 image in the austral summers of 2017-

2020.  

Sensible and Latent Heat Fluxes 

Sensible heat describes energy transferred or emitted from the ice shelf surface by change in 

temperature without a change of physical state. Firn or ice surfaces with higher sensible heat fluxes 

are more sensitive to changes in state and therefore release greater amounts of latent heat.  Latent 

heat does not affect surface temperature, but the energy exchange causes a change of physical 

state.  

Sensible (𝐹𝑠𝑒𝑛) and latent heat (𝐹𝑙𝑎𝑡) fluxes are calculated as: 

𝐹𝑠𝑒𝑛 =  𝜌𝑎 𝐶𝑝𝐶𝑇𝜐(𝑇𝑎 − 𝑇𝑠)                                                     (7)  

where ρa (kg/m3) is the density of dry air, Cp (J/K) is the specific heat capacity of dry air, CT is a 

function of atmospheric stability, ν (m/s2) is wind speed and Ta and Ts (K) are air and surface 

temperature respectively (Buzzard et al., 2018).  

𝐹𝑙𝑎𝑡 =  𝜌𝑎 𝐿𝑓𝐶𝑇𝜐(𝑞𝑎 − 𝑞𝑠)                                                      (8) 

where Lf (J/kg) is latent heat of fusion of water, qa and qs are air and surface humidities (g/kg) 

(Buzzard et al., 2018).  
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Sensible and latent fluxes are calculated using the bulk aerodynamic method with an atmospheric 

stability correction (Eq. 9), as implemented by Reid and Brock (2014) and Miles et al. (2016). 

{
𝐶𝑇 = 𝐶𝑇𝑠 (1 −

2𝑏𝑅𝑖

1 + 𝑐|𝑅𝑖|0.5
)   𝑖𝑓 𝑅𝑖 < 0

𝐶𝑇 = 𝐶𝑇𝑠 (1 + 𝑏𝑅𝑖)−2                   𝑖𝑓 𝑅𝑖 ≥ 0      

 

 

}                                   (9) 

where the constants are 𝐶𝑇𝑠 = 1.3 x 10-3, b = 20, and c = 50.986 and Ri is the bulk Richardson 

number.  

The Richardson number (Eq. 10) is the ratio of buoyancy of air, related to temperature and surface 

roughness, to the flow shear term, providing a measure of dynamic stability (Encyclopaedia 

Britannica, 2016). Flow shear describes the shear stress between layers of a fluid moving at different 

speeds. 

𝑅𝑖 =  
𝑔(𝑇𝑎 − 𝑇𝑠) 𝑧

𝑇𝑎𝜐𝑎
2

                                                             (10) 

where z is height of instruments, equal to 10 m following Law et al. (2020), and other variables 

defined as above.  

Where the air temperature exceeds the surface temperature (Ri > 0), the flow is stable unless 

disrupted by strong eddies. Where surface temperature exceeds the air temperature (Ri < 0), the air 

flow becomes dynamically unstable and turbulent. The Richardson number is calculated to be 

consistently positive over slush areas given that slush has a lower temperature than surrounding 

atmosphere. Atmospheric stability found over lakes at the grounding line degenerated into 

instability and turbulence over lakes found further towards the ice-shelf front (Section 5.2).  The SEB 

model accounts for spatial variation by calculating atmospheric stability per image pixel.  

The difference between specific humidity of a given supraglacial surface type (𝑞𝑠) and the air (𝑞𝑎) is 

applied in equation 8 to calculate latent heat. Specific humidity of the air (𝑞𝑎) is extracted from the 

GFS data at 2 m above ground for 6-hourly intervals on the day of image acquisition. Specific 

humidity at the surface of lake and slush pixels is calculated by obtaining saturation vapour pressure 

(Pa), at temperature T (K),  and consequently calculating the mixing ratio of water vapour (𝜔), in the 

method set out by Law et al. (2020). 

The temperature (K) of the surface is calculated following equation 6, using the Planck’s irradiance 

function to convert SWIR band reflectance to temperature. For each pixel with temperature, T (K), 

saturation vapour pressure, es (Pa), is calculated as: 

𝑒𝑠(𝑇) = 0.611 × 10(
7.5𝑇

𝑇+273.3
)                                                  (11) 
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Saturation vapour pressure, e (Pa), at any given pixel is applied to obtain the air mixing ratio, 𝜔 : 

𝜔 =  
𝑒𝑅𝑑

𝑅𝑣(𝑝 − 𝑒)
                                                               (12) 

where p (Pa) is pressure, Rd is the specific gas constant for dry air (J/kg K), and Rv is the specific gas 

constant for water vapour (J/kg K).  

The specific humidity of the surface, 𝑞𝑠, for calculating latent heat can then be calculated from the 

mixing ratio (Eq. 13).  

𝑞𝑠 =  
𝜔

𝜔 + 1 
                                                                     (13) 

 

Specific humidity of the air and surface, as calculated above, are incorporated into equation 8 to give 

latent heat. The above steps give values of latent and sensible heat for each pixel for inclusion in the 

overall surface energy balance calculation. 

Using the lake and slush areas delineated by the PCA-histogram thresholding, net energy balance is 

calculated as the sum of the energy fluxes across the entire lake or slush region for images captured 

in austral summers of 2017 - 2020. Average SEB for lake and slush areas is calculated as the mean of 

the energy fluxes per SGL or slush pixel over a given time period.  

 

3.3  Surface Energy Balance Model Verification & Validation     

3.3i Model Verification 

To confirm that the SEB flux calculation is sensitive to meteorological variation, GFS shortwave 

radiation, air temperature, wind speed and humidity datasets, are plotted against modelled 

shortwave and longwave fluxes for images captured at the peak of melt extent (Section 4.3).  

Sensible and latent heat fluxes are expected to vary by lower magnitudes than shortwave and 

longwave fluxes given that they are constrained by changing surface conditions. Four measurements 

of GFS data (6-hourly) from one day either side of Sentinel-2 and Landsat 8 images from mid-melt 

seasons of 2017-2020 are used to run the SEB model. Time series of output modelled shortwave and 

longwave radiation and GFS meteorological variability are plotted to highlight any lags between 

model inputs and outputs. By using the same input reflectance data from satellite images, we 

assume that the distribution of lake and slush pixels remains unchanged over each 3-day period and 

that the SEB model is sensitive to variable meteorological conditions.  
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3.3ii Model Validation 

Under the assumption that all radiative energy transferred to melt the ice shelf surface is stored in 

the internal energy of surface water, total SGL and slush water volume is a proxy for energy 

transferred.  This is a reasonable assumption given that energy transfers from other sources are 

unlikely to cause surface melt on Antarctic ice shelves (Buzzard et al., 2018). Buzzard et al. (2018) 

confirm with model sensitivity tests that ocean temperature changes at the bottom of the ice shelf 

model domain do not affect the ice shelf surface over inter-annual time scales. Heat transfer by 

precipitation is negligible (Akhoudas et al., 2020) and precipitation that falls as snow remains in situ 

rather than advecting energy into proximate basins. Although such assumptions introduce some 

uncertainty, calculation of total water volume as a proxy for energy transferred from the 

atmosphere to ice shelf is a first step for model validation.  

Slush Volume  

Slush volume is more difficult to calculate than SGL volume given its spatially and temporally variable 

porosity. Slush is a complex medium with three constituent physical states of water that interact 

with each other. Liquid water does not penetrate through snow uniformly (Coleou et al., 1998; 

Schneebeli, 1995) which makes irreducible water content volume at depth difficult to determine.  

Although slush properties have been recorded in laboratory studies (e.g. Coléou and Lesaffre, 1998; 

Marshall and Forster, 2005), sparse in situ data of slush liquid water content and, crucially slush 

depth across East Antarctic ice shelves, prevents validation of laboratory estimates. Future 

development of and data provision from sophisticated satellite sensors may facilitate direct 

measurement of slush depth. For example, the Advanced Topographic Laser Altimeter System, on-

board ICESat2, has detected previously unimaged sub-surface lake and slush zones with 

unprecedented resolution by recording individual photon return times (Markus et al., 2017). 

However, data availability over NIS from such sensors is insufficient to calculate slush depth or 

porosity. Therefore, the SEB model is validated by comparison of modelled energy transfer at lake 

pixels to inferred energy transfer from lake volume. 

Lake Volume  

Considering the control volume of a lake as a reservoir of mass and energy, the internal energy of 

the pond, S (J), available for melt is calculated:  

𝑆 = 𝑐𝜌𝑉(𝑇 − 273.15)                                                         (14) 

where c (J/kg K) is the specific heat of water, 𝜌 (kg/m3) is the density of water, T (K) is pond 

temperature and V (m3) is pond volume.  
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Density of lake water on ice sheets is assumed to be 997 kg/m3 given that it is freshwater with 

negligible impurities. Lake pixel temperature is calculated using Planck’s irradiance function (Eq. 6) 

to convert irradiance in SWIR bands to temperature.   

Lake depth retrieval is based upon the understanding that deep water absorbs more energy than 

shallow water and will reflect lower proportions of incident radiation (Arnold et al., 2014; Pope et 

al., 2016; Sneed and Hamilton, 2007; Williamson et al., 2017, 2018b). Pope et al. (2016) determine 

that optimal supraglacial depth retrieval can be derived from the Bouguer-Lambert-Beer law (Eq. 15) 

applied independently to red and panchromatic bands which are subsequently averaged. Here, 

variation in optical properties through water column with depth are approximated by red band 

spectral reflectance, L(z, 𝜆).  

𝐿(𝑧, 𝜆) = 𝐿(0, 𝜆)𝑒−(𝑔𝑧)                                                      (15) 

where L(0, 𝜆) is spectral reflectance at zero depth, g is the spectral attenuation coefficient (m-1) and 

z is depth (m). 

Written in terms of reflectance of red wavelengths, total reflectance is used to calculate depth, z, of 

each lake pixel (Eq. 13). 

𝑧 =
ln(𝛼 − 𝑅∞) − ln(𝑅𝑤 − 𝑅∞)

−𝑔
                                               (16) 

where α is lake bottom albedo, 𝑅∞ is the reflectance for optically deep water (assumed to be zero 

following Banwell et al. 2019), 𝑅𝑤 is the reflectance from the pixel of interest and g (m-1) is the 

spectral attenuation coefficient.  

The attenuation coefficient is related to losses in intensity as light propagates through a water 

column. Red band wavelengths are used given that longer wavelengths attenuate more rapidly in 

water, making lake depth estimations less sensitive to error with depth (Tedesco and Steiner, 2011). 

The recommended g value of 0.7507 m-1, for field spectra which correspond to the Landsat 8 and 

Sentinel-2 red bands (B4), is applied (Pope et al., 2016; Williamson et al., 2017). Georgiou et al. 

(2009) suggest that the range of specific spectral attenuation which may occur across different 

wavelengths leads to a variance of 9.5% in estimated lake depth. This justifies the use of a single 

spectral band for lake volume estimation. 

Lake bottom albedo (α) is calculated from the reflectance immediately proximate to identified lake 

pixels. A mask of non-lake areas is generated based on PCA band thresholds. Red band reflectance 

from lake-edge pixels is interpolated using a Gaussian function across masked lake areas to give 

predicted lake base albedo (Appendix – code 5; Banwell et al., 2014). The assumption of Gaussian 
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variability in base albedo is an improvement on previous studies that use non-variable regional 

albedo estimates (Sneed and Hamilton, 2007; Morriss et al., 2013). However, the uncertainty 

resulting from the Gaussian estimation of lake-base albedo has not yet been quantified. The overall 

assumptions with this physically-based empirical depth calculation, as set out originally by Sneed 

and Hamilton (2007), are: (i) that the surface is undisturbed by wind, (ii) the SGL is homogenous and 

(iii) that there is no sediment in the water column.  

The internal energy of SGLs across the study site, that is the sum of calculated energy (S) at each SGL 

pixel, is a proxy for energy transferred to the ice sheet (Eq. 14). Internal energy of the lake-covered 

area is calculated at each pixel to retain high spatial resolution of temperature data rather than 

using an ice-sheet average. Similarly, calculated pixel lake depths are multiplied by 900 m2 for 

Landsat 8 (30m x 30m) and 225 m2 for Sentinel-2 (15m x 15m), given the spatial resolution of 

respective satellite red bands, to quantify SGL volume per pixel. Inferred energy from lake volume is 

derived from the latest image captured in each austral summer. This is to ensure that peak lake 

volume is recorded to give an estimate of inferred energy transfer from the whole melt season.  

The inferred energy transfer from lake volume is compared to cumulative modelled energy absorbed 

by lake pixels over the whole austral summer. The cumulative sum of modelled energy transfer is 

calculated for all satellite images where meltwater is present. For days between satellite image 

acquisitions, modelled energy absorption is assumed to be equivalent to energy absorption on the 

nearest day with an available satellite image. This introduces error given that, between satellite 

image acquisitions, lake area and energy absorption will evolve (Arthur et al., 2020; Moussavi et al., 

2020). Research documenting lake evolution has potential for reducing this validation error (Arthur 

et al., 2020) but the low availability of satellite imagery over NIS provided insufficient information on 

lake evolution to extrapolate a consistent trendline between images.  

Whilst it is expected that there will be some inconsistencies between calculated lake volume and 

inferred energy transfer (Section 4.4), this approach is a first step towards model validation. A 

variety of statistical measures, including the Nash-Sutcliffe Efficiency measure, R2 value and 

normalised RMSE, are reported to evaluate model performance.  
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4. Results 

4.1 Principal Component Analysis Results 

4.1i Spectral Data Extraction and Visualisation 

Filtering the Sentinel-2 image collection over Nivlisen Ice Shelf (NIS) extracts 23 images, of which 5 

are considered useful for spectral analysis due to presence of lake and slush features and < 20% 

cloud cover (Table S1). Despite 5-day satellite revisit intervals, time between image acquisition is at 

best 21 days highlighting issues of data availability due to cloud cover. The higher frequency of 

Landsat 8 revisit intervals and longer operational period gives 45 useful images from November to 

February of 2017 – 2020 to supplement the Sentinel-2 dataset and provide a higher temporal 

resolution dataset. 

 

 Figure 9a-b. a) Spectral signatures of different surface types derived from training pixels on NIS 
31/01/2019 from Sentinel-2 (Table S3, Appendix). b) Spectral signatures of different surface types 

derived from training pixels on NIS 14/01/2020 from Landsat 8 (Table S4, Appendix). 
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The training pixels from manually delineated features in extracted Sentinel-2 and Landsat 8 images 

(Figure 9) enable qualitative PCA cluster interpretation whilst histograms of pixel reflectance 

describe total study site variability (Figures 10-11). Training pixels representing supraglacial features 

are manually selected by visual inspection of satellite imagery (Figures S5-9, Appendix). Each 

supraglacial feature can be attributed to a particular principal component confirmed by training pixel 

data. Detailed per pixel variation and aggregate patterns in reflectance from different surface types 

are described below for clean ice, slush, and SGLs in turn. 

The spectral signature of clean ice is similar across visible wavelengths but drops in the infrared 

(Lettang et al., 2013). Extracted histogram spectral data confirms this observation as the peaks in 

histograms associated with ice pixels reach reflectances of 0.8 for visible wavelengths but only 0.02 

in the infra-red wavelengths. Similarly, training pixels for manually-delineated ice regions have 

reflectance values above 0.8 for visible wavelengths but lower reflectance values for near infrared 

(NIR) and shortwave infrared (SWIR) (Figure 9). Overall, the majority of incoming shortwave 

radiation incident on snow and ice surfaces is reflected due to the high albedo of snow.  

Slush has slightly lower, but generally similar, reflectance to the clean ice cluster across all 

wavelengths (Figure 9; Wiscombe and Warren, 1980; Rosel and Kaleschke, 2011).  In regions of the 

ice shelf where snow is exposed to large volumes of liquid water, smaller snow particles melt whilst 

larger particles agglomerate and grow (Colbeck, 1982). As average grain size increases due to water 

saturation, reflectance decreases with largest declines in the red band (Lettang et al., 2013). Figure 

9b for Landsat 8 images demonstrates blue band reflectance remains relatively high whilst a greater 

proportion of red wavelengths are absorbed over slush areas. NIR and SWIR reflectances are proxies 

for emitted thermal radiation and therefore the temperature of supraglacial surface. The higher the 

reflectance values across infra-red bands relative to visible band reflectance, the larger the amount 

of emitted infra-red energy indicating warmer temperature of the surface. Training pixels from 

Landsat 8 images confirm that SWIR reflectance values for slush are similar to that of snow and ice 

surfaces implying that slush regions are not significantly warmer than surrounding snow (Figure 9b).   

Across visible wavelengths, lake pixels have low reflectance relative to slush, represented by the 

negative tail of histograms (Figures 10-11). For water on ice shelves with low sediment delivery, 

radiation absorption is lowest at ~500 nm giving lakes their bright blue appearance (Petty, 2006). 

This is confirmed in this study given that proportion of reflectance from the blue band to all visible 

bands is highest over SGL pixels for both Sentinel-2 and Landsat 8 training pixels (Figure 9). Whilst ice 

pixels are characterised by small variation in blue band reflectances, lake pixels cover a wide range 

of blue spectral reflectance values related to variable lake depth (Sneed and Hamilton, 2007; Figure 
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10-11). Deeper lakes reflect lower proportions of blue wavelengths and are represented by the 

extreme low blue reflectance values of the negative tail of histograms (Figures 10-11).  Water-

covered pixels have proportionally high SWIR reflectance values relative to other wavelengths, 

indicating that water is an efficient thermal emitter.  

The spectral characteristics of clean ice, slush, and SGLs, described by manually-delineated training 

pixels and histogram data, aid the interpretation of PCA results. Each principal component 

represents clustering in the overall spectral variability which correspond to distinct supraglacial 

surface types.   
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Figure 10a-i (above). Frequency distribution of pixel spectral reflectance data for each Sentinel-2 

image band (31/01/2019) over the study-site region. Plotted in SPSS. Bands 1, 9 and 10 are excluded 

from the analysis given that they describe non-surface reflectance. 
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Figure 11a-f (above). Frequency distribution of pixel spectral reflectance data for each Landsat 8 

image band (14/01/2020) over the study-site region. Plotted in SPSS. Band 1, 8 and 9 are excluded 

from the analysis given that they identify non-surface characteristics or surface spectral data which is 

already given in other bands (e.g. panchromatic band). 

4.1ii Principal Components Analysis – Results  

The Sentinel-2 PCA identifies seven orthogonal components which define the total spectral 

variability of the NIS study-site region (Table 6). The first two Principal Components (PCs) are 

extracted as explanatory variables which explain 71% and 25% of total variance respectively (Table 

6). The PCA derived from Landsat-8 images identifies six PCs of which the first two define 77% and 

17% of total variance (Table 7). PC1 and PC2 are selected for both Sentinel-2 and Landsat 8 given 

that these PCs have eigenvalues greater than 1 and therefore explain greater dataset variability than 

any of the individual original bands.  

Values in the component matrix indicate the magnitude and relationship between each of the 

constituent spectral bands within each PC (Tables 8-9). For Sentinel-2, VNIR bands (B2-4) are 

strongly positively correlated to PC1 whilst SWIR (B11-12) is weakly correlated, representing slush as 

bright and cool pixels (Table 8). PC2 represents pixels with low reflectance in the VNIR and high 

reflectance in the SWIR, indicating the dark but warmer surface of SGLs. Similarly for Landsat 8 

(Table 9), PC1 has high reflectance values for all visible bands (B2-5) and slightly lower SWIR (B6-7) 

reflectance, representing cool and bright pixels (i.e. slush). PC2 responds to pixels with low visible 

reflectance and is especially sensitive to low blue band (B2) reflectance values (i.e. SGLs).  

Whilst PC3 explains 2.6 % and 4.6 % of the Sentinel-2 and Landsat 8 dataset variability respectively, 

the eigenvalues are less than 1 and therefore PC3 is not considered to be useful for identifying 

significant spectral bands for feature delineation (Figure 12-13).  

The bands listed in Tables 10 and 11 are those extracted by the PCA as significant in contributing to 

the component variability at the 1% significance level. The histograms of spectral reflectance from 

each constituent band are plotted and visually inspected for a trimodal distribution (Figures 10-11). 

Frequency distributions where there were no obvious thresholds across the dataset could not be 

used for distinguishing supraglacial features. For example, the near-Gaussian distribution of Landsat 

8 green band (B3) spectral reflectances cannot be used to extract thresholds for delineation of slush 

or lake masks (Figure 11b). Sentinel-2 red edge (B8A) and SWIR2 (B12) thresholds were also 

excluded from the final SGL-slush delineation given that they describe similar dataset variability to 

the red (B8) and SWIR1 (B11) bands. Overall, the extraction of multiple spectral bands which are 

useful for distinguishing supraglacial features, confirms that the PCA is an appropriate and 

computationally efficient method for the purposes of this study.  
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Total Variance Explained 

Component Initial Eigenvalues 

  Total % Variance Cumulative % 

PC1 4.999 71.410 71.419 

PC2 1.783 25.470 96.889 

PC3 0.185 2.646 99.535 

PC4 0.028 0.403 99.937 

PC5 0.003 0.044 99.981 

PC6 0.001 0.012 99.993 

PC7 0.000 0.007 100.000 

Table 6. Total explained variance determined by Sentinel-2 Principle Components Analysis in order of 
explanatory power. PCA results determined from study-site region of Sentinel-2 available image 

scenes. 

Total Variance Explained 

Component Initial Eigenvalues 

  Total % Variance Cumulative % 

PC1 4.624 77.068 77.068 

PC2 1.077 17.956 95.024 

PC3 0.281 4.682 99.706 

PC4 0.014 0.227 99.933 

PC5 0.003 0.052 99.985 

PC6 0.001 0.015 100.000 

Table 7. Total explained variance determined by Landsat 8 Principle Components Analysis in order of 
explanatory power. PCA results determined from study-site region of Landsat 8 available image 

scenes.  

 
Figure 12. Scree plot of Sentinel-2 PCA eigenvalues. Eigenvalues explain the variance of the data 
along the new feature axes generated by the PCA. PC1 and PC2 are more successful in explaining 

more of the variance in the dataset than any of the individual spectral variables. 
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Figure 13. Scree plot of Landsat 8 PCA eigenvalues. Eigenvalues explain the variance of the data 
along the new feature axes generated by the PCA. PC1 and PC2 are more successful in explaining 

more of the variance in the dataset than any of the individual spectral variables. 

 

Component Matrix 

    PC1 PC2 

B2 Blue 0.936 -0.143 

B3 Green 0.970 -0.186 

B4 Red 0.967 -0.211 

B7 Red Edge 0.976 -0.128 

B8 NIR 0.978 -0.105 

B11 SWIR1 0.381 0.923 

B12 SWIR2 0.440 0.897 

Table 8. Rotated component matrix from Sentinel-2 PCA determining the relative contribution of 
significant spectral variables to the Principle Component. PC1 represents bright and cold pixels whilst 

PC2 represents warm and dark pixels. 

 

Component Matrix 

   PC1 PC2 

B2 Blue 0.823 -0.442 

B3 Green 0.944 -0.315 

B4 Red 0.950 -0.182 

B5 NIR 0.941 -0.122 

B6 SWIR 1 0.760 0.635 

B7 SWIR 2 0.815 0.573 

Table 9. Rotated component matrix from Landsat 8 PCA determining the relative contribution of 
significant spectral variables to the Principle Component. PC1 represents bright and cold pixels whilst 

PC2 represents warm and dark pixels. 

The spectral reflectance thresholds (Tables 10-11) for constituent bands of PC1 and PC2 are 

incorporated into GEE code to identify lake and slush pixels over the NIS (Code 1, Appendix). For the 

2019 austral summer, Sentinel-2 records maximum lake and slush extents of ~89.4 km2 and ~155 
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km2 respectively, accounting for 7.4% and 12.8% of the study-site area (Table 12; Figure 14). These 

values are on the same order of magnitude as lake (~45.9 km2) and slush (~65.5 km2) area estimates 

from Landsat 8 images in 2019 (Table 13; Figure 15). Total meltwater coverage in 2017 by SGLs and 

slush accounts for 1.2 – 1.6 % of NIS’s total area (7,300 km2) which agrees with Dell et al.’s (2020) 

calculation of 1.6% surface meltwater coverage in 2016-2017.  

 

Delineation of lake and slush regions using the PCA-histogram method can be compared to a band-

ratio thresholding method, such as the commonly used blue-red NDWI. Direct comparisons of lake 

extent calculated by NDWI and PCA indicate that NDWI (threshold = 0.2) consistently 

underestimates SGL extent by 122 % across all images from 2017 to 2020 (Figure 16). Despite 

manual selection of NDWI threshold to minimise errors of commission and omission, NDWI is unable 

to distinguish between shallow water and slush with a lower threshold and fails to identify deep 

lakes where threshold is too high (Figure 17). The use of thresholding across multiple bands by the 

PCA is justified despite increased processing complexity.  

  B2 B3 B4 B8 B11 

Lake  < 0.67 < 0.59 < 0.53 < 0.34 < 0.49 

Slush 0.67- 0.83 0.59 – 0.73 0.53 – 0.72 0.34 – 0.58 0.49 – 0.15 

Ice 0.83 – 0.90 0.73 – 0.90 0.72 – 0.80 0.58 – 0.70 0.15 – 0.30 
 

Table 10. Reflectance thresholds for surface feature spectral classification from Sentinel-2 images. 
Thresholds extracted using Python script following the method explained in Figure 7. Values to 2 s.f. 

  

  B2 B4 B5 B6 B7 

Lake  < 0.79 < 0.64 < 0.43 < 0.066 < 0.055 

Slush 0.79 - 0.86 0.64 - 0.75 0.43 - 0.63 0.066 - 0.070 0.055 - 0.076 

Ice > 0.86 > 0.75 > 0.63 > 0.070 > 0.076 
 

Table 11. Reflectance thresholds for surface feature spectral classification from Landsat 8 images. 
Thresholds extracted using Python script following the method explained in Figure 7. B3 is excluded 

because distribution only had one identifiable peak. Values to 2 s.f. 
 

 

Sentinel-2  2017 2018 (Image 1) 2018 (Image 2) 2019 (Image 1) 2019 (Image 2) 

Slush Area (km2) 36.6 23.5 104.3 86.7 155.0 

Lake Area (km2) 50.3 68.9 8.4 29.3 89.4 
 

Table 12. Lake and slush mask areas (km2) for Sentinel-2 least cloudy images for mid-austral summer 
of each year from 2017-2020. Values to 1 d.p. 

 

Landsat 8  2016 2017 2018 2019 2020 

Slush Area (km2) 0.2 17.3 50.2 65.5 51.3 

Lake Area (km2) 20.8 105.2 78.4 45.9 88.2 
 

Table 13. Lake and slush mask areas (km2) for Landsat 8 least cloudy images for mid-austral summer 
of each year from 2016-2020. Values to 1 d.p. 
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Figure 14. Lake (light blue) and slush (red) masks for NIS at the peak of the 2019 melt season. 
Background RGB Sentinel-2 image captured on 31/01/2019 

(COPERNICUS/S2/20190131T080929_20190131T080941_T32DNG). Masks delineated using spectral 
thresholds derived from PCA-histogram method (Table 10). 

 

Figure 15. Lake (light blue) and slush (red) masks for NIS at the peak of the 2020 melt season. 
Background RGB Landsat 8 image captured on 14/01/2020 

(LANDSAT/LC08/C01/T2_TOA/LC08_165110_20200114). Masks delineated using spectral thresholds 
derived from PCA-histogram method (Table 11). Image area extends beyond the mask to remain 

consistent with masks produced for all satellite and inter-annual acquisitions. 
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Figure 16. Scatterplot of lake area derived by NDWI (threshold 0.2) and PCA-histogram method to 

show strength of agreement between outputs. Linear trendline(blue dashed line) demonstrates that 

NDWI method consistently under-estimates lake area.  

 

Figure 17. Lake mask (blue) extracted at NIS grounding line using red-blue NDWI threshold of 0.2. 
Background image is Sentinel-2 RGB false colour composite acquired on 31/01/2019: 

COPERNICUS/S2/20190131T080929_20190131T080941_T32DNG. 
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4.2 PCA-Histogram Performance 

4.2i  Sensitivity Analysis 

The sensitivity of calculated lake and slush areas to ±10 % variation in band thresholds was 

evaluated for images from austral summers of 2017-2020 (Tables 14-15). For Sentinel-2 images, lake 

area is most sensitive to variation in SWIR (B11) and NIR (B8), varying by up to 31%, whilst slush area 

responds most to green (B3) and red (B4) bands (Table 14). Lake extent is most sensitive to infrared 

bands which confirms that PC2, which is most strongly correlated to SWIR (B11), represents lake-

covered areas. Lake-covered pixels are also sensitive to the blue band (B2) despite this being a less 

important variable in the PC2 cluster. The Sentinel-2 PCA component matrix (Table 8) indicates that 

visible bands are most strongly correlated to the slush cluster (PC1) which explains greatest 

sensitivity of slush to green (B3) and red (B4) bands (Table 14). It is notable that both slush and lake 

clusters are defined by, and sensitive to, infrared radiation. Whilst previous literature emphasises 

use of visible bands (Sun et al., 2012), there is scope for broader investigation into the utility of 

infrared bands for mapping supraglacial hydrology.  

The process of deriving supraglacial feature extents from Landsat 8 images demonstrates that lake 

area is most sensitive to NIR bands (B5) whereas slush regions respond significantly more to blue 

(B2) and red (B4) visible bands (Table 15). The PCA for Landsat 8 images calculates PC1, interpreted 

as slush pixels, to respond most strongly to red (B4) and green (B3) visible bands (Table 9). 

Meanwhile, the Landsat 8 PC2 is most sensitive to NIR bands (B5) which is reflected in ~20 % 

increase of lake extent in response to ±10 % variation in NIR bands (Table 15). The sensitivity of lake 

and slush areas from Landsat 8 images to threshold variability remains within reasonable limits 

across all tested bands except for the blue band (B2) threshold for slush areas (Table 15). Such large 

sensitivity of slush area to blue band threshold introduces uncertainty as to whether slush extent is 

calculated accurately or is artificially overestimated. The frequency distribution of Landsat 8 blue 

band (Figure 11a) supports this given the lack of a distinct threshold between lake and slush 

reflectance. This justifies the exclusion of the blue band threshold in delineating slush extent for 

Landsat 8 images.   
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   Lake Extent   Slush Extent   

   10% -10% Range % change 10% -10% Range % change 

Blue B2 0.654 0.572 0.082 5.65 5.74 1.52 4.22 -0.261 

Green B3 0.619 0.538 0.081 0.00 5.79 1.46 4.33 37.7 

Red B4 0.620 0.589 0.031 0.16 5.79 2.35 3.44 29.9 

NIR B8 0.811 0.370 0.441 31.0 5.65 4.66 0.989 -1.77 

SWIR1 B11 0.143 0.075 0.068 19.2 6.06 5.86 0.202 -0.705 

Table 14. Sensitivity of lake and slush extent to variation in Sentinel-2 band thresholds by ±10%. 
Range of values for upper and lower bounds calculated as well as percentage change from the 

original thresholds extracted from the histograms. Values highlighted in pale red demonstrate which 
band causes largest variation in calculated extent. All values to 3 s.f. 

   Lake Extent   Slush Extent  

   10% -10% Range % change 10% -10% Range % change 

Blue B2  0.785 0.703 0.0821 10.9 1.87 0.0017 1.87 499 
Red B4 0.751 0.734 0.0169 2.25 1.10 0.388 0.712 97.0 

NIR B5 0.817 0.681 0.137 18.2 0.376 0.0108 0.365 97.2 

SWIR1 B6 0.775 0.689 0.085 11.3 0.259 0.0334 0.225 59.8 

Table 15. Sensitivity of lake and slush extent to variation in Landsat 8 band thresholds by ±10%. 
Range of values for upper and lower bounds calculated as well as percentage change from the 

original thresholds extracted from the histograms. Values highlighted in green demonstrate which 
band causes largest variation in calculated extent. All values to 3 s.f. 

The sensitivity analysis of delineated lake and slush extents to Sentinel-2 and Landsat 8 band 

thresholds can be used to compare the utility of satellite images for the method developed here. 

Sentinel-2 based lake and slush extent estimations vary by a maximum of 31% and 38% respectively 

(Table 14). Lake and slush extent calculated from Landsat 8 images vary by a maximum of 18% and 

499% respectively (Table 15). This introduces uncertainty in use of Landsat 8 spectral data but 

uncertainty is minimised by removing the blue band (B2) from calculations of slush extent based on 

Landsat 8 images. Significant sensitivity of slush area to a proportionately small change in a single 

band threshold supports the use of multiple bands in spectral thresholding. Uncertainty in lake and 

slush delineation using the remaining red, NIR and SWIR1 bands (B4, B5, B6) is low, justifying the 

continued use of Landsat 8 images. Meanwhile, low sensitivity of feature delineation to Sentinel-2 

band thresholds favours use of Sentinel-2 images for accurate monitoring of East Antarctic 

supraglacial hydrology. However, the lower temporal resolution of Sentinel-2 images must be 

supplemented with higher frequency images from other satellites.  

After rejection of the Landsat 8 blue band (B2), the sensitivity analysis suggests that variation in 

remaining threshold band values (± 10%) on average has a proportionate effect on the calculation of 

lake and slush area (± 9.4%) (Table 14-15). Therefore, the method developed accurately identifies 

supraglacial hydrological features without over-sensitivity to any individual spectral band.  
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4.2ii   Inter-sensor Precision  

The confusion matrix measures the frequency of pixels that are identified by both Landsat 8 and 

Sentinel-2 images, captured within 2-3 days of each other, as belonging in similar or dissimilar 

supraglacial feature classes (Table 16).  The confusion matrix indicates the precision of supraglacial 

feature delineation by the PCA-histogram method using different input spectral data. Table 17 

highlights that the greatest error is associated with the discrepancies in classification of slush pixels 

between Landsat 8 and Sentinel-2 images. This indicates greater uncertainty when drawing 

comparisons between the SEB contribution of slush pixels identified by different satellite sensors. 

However, the overall agreement of feature identification between the two satellite sensors at 62%, 

calculated as the mean of all class precision values, is sufficiently high to assume that the Landsat 8 

and Sentinel-2 records can be combined (Table 17). The comparability of masks generated from 

different sensors gives a record of NIS’s surface with a higher temporal resolution. 

Table 16a-b. Multi-class confusion matrix of pixel frequency for different supraglacial features 
identified in 15km2 training region of Landsat 8 (ID: 165-110 08/01/2018 and 167-110 24/12/2018) 
and Sentinel-2 (ID: 080-919 11/01/2018 and 080-929 22/12/2018) images. Green-shaded cells 
indicate true positives i.e. where both sensors identify a pixel in the same class. Precision calculated 
as True Positive/ (True Positive + False Positive).  

  Sentinel-2  

 

  Lake Slush Ice 

La
n

d
sa

t 
8

  

Lake 0.82 0.42 0.80 

Slush  0.55 0.15 0.53 

Ice 0.91 0.50 0.88 

Average precision = 0.62 

Table 17. Precision matrix for evaluating performance of PCA-histogram feature identification 
method using different satellite sensors. Precision (to 2 s.f.) calculated as True Positive / (True 
Positive + False Positive) for each class. Pixel frequency data from Table 16a-b combined to calculate 
overall precision. Green-shaded cells correspond to precision > 50%. Yellow-shaded cells correspond 
to precision < 50%. 

  Sentinel-2 - 11/01/2018    
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  a) Lake Slush Ice Total PR 

Lake 31855 3560 0 35415 90% 

Slush  6772 4740 50244 61756 8% 

Ice 0 23327 119786 143113 84% 

Total 38627 31627 170030 237168  
Precision 82% 15% 70%   

 

  Sentinel-2 - 22/12/2018    
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4
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0
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8
  b) Lake Slush Ice Total PR 

Lake 13899 9273 0 23172 60% 

Slush  0 145 310 455 32% 

Ice 278 0 213263 213541 99% 

Total 14177 9418 213573 237168  
Precision 98% 1.50% 99%   
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4.3  Surface Energy Balance Model Results 

Austral summertime SEB is dominated by shortwave radiation transferring energy to the ice shelf 

surface, whereas longwave radiation re-radiates energy from the surface (Figures 18-19). During 

daylight hours, the latent heat flux becomes a significant source of heat loss in the SEB by 

evaporation or sublimation. The average energy flux at lake, slush and clean ice pixels is plotted for 

each meteorological data acquisition time i.e. every 6 hours (Figure 20a-d). This facilitates 

comparison of the extra energy flux for lakes and slush at different times of day to identify trends in 

sensitivity to incoming shortwave radiation.  

For the majority of the day, clean ice areas have net negative energy balance confirming high 

reflection of incoming shortwave radiation. However, energy reflected or emitted at each clean ice 

pixel is on average 2 times less than average absorption at each lake pixel (Figure 23). This 

demonstrates the importance of considering SGL and slush SEB contribution in relation to clean ice. 

All values reported in the following section have been differenced with clean ice energy contribution 

giving extra energy contributed as a result of the presence of meltwater features.  

Average extra energy absorbed at lake and slush pixels peaks at 1200 between 150-200 W/m2 and 0-

50 W/m2 respectively (Figure 20c). As expected, mean energy flux at lake and slush pixels is lowest at 

midnight varying between -20 to -100 W/m2 and -80 to -140 W/m2 respectively (Figure 20a). The 

greatest magnitude variation in average energy absorbed at pixels occurs at 0600 (Figure 20b). 

Overall, mean extra energy absorbed by lake and slush pixels at each time of day is similar between 

years, varying over the course of a day from 0 W/m2 at night to 250 W/m2 at peak insolation for lake 

pixels and 0 W/m2 at night to 100 W/m2 at peak insolation for slush pixels. The sum of these 

instantaneous mean values through time gives an overall daily energy absorption of 8.7 MJ/m2 and 

0.54 MJ/m2/day for SGL and slush areas.  
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Figure 18. Mean energy balance components at lake pixels on NIS. Instantaneous measurements of 

each energy flux recorded at 00:00, 06:00, 12:00 and 18:00. Shortwave, longwave (left hand axis), 

sensible and latent heat (right hand axis) calculated from SEB model for the most recent image from 

each austral summer 2017 – 2020. 

Figure 19. Mean energy balance components at slush pixels on NIS. Instantaneous measurements of 

each energy flux recorded at 00:00, 06:00, 12:00 and 18:00. Shortwave, longwave (left hand axis), 

sensible and latent heat (right hand axis) calculated from SEB model for the most recent image from 

each austral summer 2017 – 2020. 
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Figure 20. Mean energy balance at lake, slush and clean ice pixels at (a) 00:00 (b) 06:00 (c) 12:00 and 

(d) 18:00 for austral summers of 2017-2020. Mean energy balance at each time calculated for all 

available Landsat 8 and Sentinel-2 images as well as one day either side. 
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The SEB model calculates total energy flux to be the most sensitive to variation in shortwave 

radiation. Average daily shortwave energy flux varies synchronously with variability in GFS incoming 

shortwave raditation data (Figures 18-19). Lake and slush pixels have net positive shortwave 

radiation absorption with mean values of 13.4 MJ/m2/day and 7.2 MJ/m2/day respectively in the 

austral summer of 2019 (Figure 18-19). Lake and slush pixels have mean longwave energy transfer of 

-1.5 MJ/m2/day and -3.1 MJ/m2/day over the same austral summer (Figure 18-19). Slush is 

determined to be an important supraglacial feature for emitting longwave radiation at peak incident 

radiation times but also throughout the night (Figure 20). Overall, SGL and slush regions have a net 

positive contribution to SEB given that daily longwave emitted radiation is an order of magnitude 

smaller than absorbed shortwave radiation.  

Where net sensible heat flux is positive, energy is directed away from the surface to the surrounding 

atmosphere. Over lake and slush regions, net sensible heat flux is positive but near negligble as a 

proportion of total energy balance (Figure 18-19). Across the whole slush region, an average of    

0.49 KJ/m2/day of sensible heat energy is transferred to the atmosphere. SGLs beneath a stable air 

column (Ri > 0) emit 0.60 KJ/m2/day of sensible heat whilst SGLs beneath an unstable air column (Ri 

< 0) emit a much higher average of 420 KJ/m2/day. The intuitive explanation for this is that stronger 

winds drive continual replacement of air above the lakes, maintaining the temperature gradient and 

facilitating sensible heat emission later into the evening.   

Net positive latent heat represents a gain of thermal energy at the surface due to melting.  Negative 

values indicate heat loss through freezing. For 2019, the -400 KJ/m2 average daily loss at SGLs under 

a stable air column in the late austral summer might indicate that these lakes are in the process of 

refreezing. Meanwhile, lakes in areas where the near-surface air column is turbulent (Ri < 0) and 

unstable absorb an extra 660 KJ/m2/day due to high melting rates. The -1.12 KJ/m2 daily latent heat 

loss at slush areas is likely to be the energy required to maintain the ice crystals in interstitial water. 

The daily sum of SEB across the whole lake, slush, and ice regions is plotted through time in Figures 

21-22. The sum of SEB is calculated using GFS meteorological data for the 72-hour period around 

each image acquistion time i.e. 24 hours either side of each satellite image. Total SEB across the 

clean ice area is calculated to show the net significance of lake and slush regions for overall energy 

balance (Figure 21). The daily total energy balance for clean ice, which constitutes ~80.0 % of the 

study-site by area, dominates the energy balance of NIS. Although SGLs only constitute ~4.8 % of the 

study-site area, Figure 21 demonstrates the significant energy absorption that occurs across the 
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whole lake mask. To more clearly identify trends in SGL and slush contribution, net SEB for clean ice 

is not plotted in Figure 22.  

Total energy absorbed by the entire lake-covered area decreases over austral summers of 2017 – 

2020. Total energy absorbed across the whole slush region remains constant inter-annually. Figure 

22 clearly identifies the austral summer of 2017 as a year where a particularly high 1.6 GJ/day was 

absorbed across the whole 78 km2 lake-covered region on NIS. Meanwhile, the net energy 

absorption across the 103 km2 slush region was particularly high (up to 0.8 GJ/day) in the austral 

summer of 2019 (Figure 22). However, the mean energy absorbed at lake pixels was not especially 

high in 2017, nor was mean absorption at slush pixels especially high in 2019 (Figure 23). Inter-

annual variability in net energy absorbed across SGL compared to slush regions is not the result of 

changes in mean absorptive capacity of lake or slush pixels (Figure 23). Instead, total energy transfer 

is largely controlled by inter-annually variable lake versus slush extent which is likely the result of 

climate conditions, ice shelf topography, and firn hydrology.  

Figure 21. Daily sum of surface energy balance across whole lake, slush and clean ice regions for 

austral summers of 2017-2020. Total energy balance across whole NIS calculated for the day of 

Landsat 8 or Sentinel-2 image acquisition and one day either side. 
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Figure 22. Daily sum of surface energy balance across whole slush and lake regions for austral 

summers of 2017-2020. Total energy balance across NIS calculated for the day of Landsat 8 or 

Sentinel-2 image acquisition and one day either side. 

 

Figure 23. Daily mean energy flux at lake, slush and clean ice pixels for austral summers of 2017-

2020. Mean energy balance calculated for the day of Landsat 8 or Sentinel-2 image acquisition and 

one day either side.  Dashed line gives linear trendline across all seasons. 
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4.4  Surface Energy Balance Model Verification and Validation 

4.4i Verification of Energy Balance Model 

To verify that the SEB model is sensitive to meteorological variability, modelled output energy fluxes 

are calculated using different forecast data for the same satellite image. Figures 24-28 plot 

meteorological variability of Global Forecast System data in relation to modelled average shortwave 

and longwave radiation fluxes for lake and slush pixels. Four measurements of GFS data (6-hourly) 

from one day either side of Sentinel-2 and Landsat 8 images in mid-melt season of 2017-2020, are 

used to run the SEB model. This assumes that, whilst meteorological conditions are sufficiently 

variable to affect SEB, the distribution of lake and slush pixels remains unchanged over each 3-day 

period. The lack of direct observations of rapid SGL hydrofracture-driven drainage on NIS suggest 

that a single satellite image is representative of the surface over 3 days.  

The net modelled shortwave flux varies linearly across lake and slush areas with incoming shortwave 

radiation. Figure 27 suggests that, for Landsat 8-based SEB calculations, the sensitivity of modelled 

shortwave flux to incoming solar radiation is strongest over lake pixels. Meanwhile, modelled 

longwave flux over lake pixels is sensitive to air temperature variation. Anomalously high air 

temperatures reached on 01/02/2019 and 10/01/2018 correspond to greater longwave radiation 

absorption on average at lake pixels (less negative longwave flux values – Figures 24 and 27). Under 

warmer conditions SGLs are more efficient net absorbers of longwave radiation and therefore 

transfer more energy to NIS (Figure 26). Longwave radiation flux over lake and slush gradually 

becomes less negative from 2017-2020 (greater longwave absorption) in line with slightly increased 

air temperatures. Even with large anomalous air temperature or humidity readings (e.g. 

16/01/2017), longwave flux responds proportionately to the magnitude of meteorological forcing. 

Therefore, modelled longwave flux through time can be interpreted in the context of on-going local 

increases in air temperature.  

Modelled SEB flux is verified as being sensitive to input meteorological data with greater sensitivity 

at lake pixels compared to slush pixels. More importantly, images acquired from Sentinel-2 and 

Landsat 8 datasets are confirmed to reasonably predict surface features over the course of a 3-day 

period. Justifying the extrapolation of lake and slush masks over multiple days is essential for 

providing a longer temporal dataset for running the SEB model.  
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Figure 24. Modelled average shortwave and longwave radiation flux at lakes compared to Global 

Forecast System Data at 6-hourly intervals. Data plotted for date of Sentinel-2 image acquisition and 

one day either side. Wind speed is not displayed because variability was negligible. Timestamp in 

format YYYY/MM/DD/HH. See Table S5 for data. 

Figure 25. Modelled average shortwave and longwave radiation flux at slush compared to Global 

Forecast System Data at 6-hourly intervals. Data plotted for date of Sentinel-2 image acquisition and 

one day either side. Wind speed is not displayed because variability was negligible. Timestamp in 

format YYYY/MM/DD/HH. See Table S5 for data. 
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Figure 26. Modelled longwave radiation over lakes against air temperature using GFS and Sentinel-2 

data. As air temperature increases, net longwave radiation emission increases. Increased longwave 

radiation emission is likely the result of the temperature increase of the surface pixel. 

Figure 27. Modelled average shortwave and longwave radiation flux at lakes compared to Global 

Forecast System Data at 6-hourly intervals. Data plotted for date of Landsat 8 image acquisition and 

one day either side. Wind speed is not displayed because variability was negligible. Timestamp in 

format YYYY/MM/DD/HH. See Table S6 for data. 
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Figure 28. Modelled average shortwave and longwave radiation flux at slush compared to Global 

Forecast System Data at 6 hourly intervals. Data plotted for date of Landsat 8 image acquisition and 

one day either side. Wind speed and specific humidity are not displayed because variability was 

negligible. Timestamp in format YYYY/MM/DD/HH.  See Table S6 for data. 

 

4.4ii Validation of Energy Balance Results 

The performance of the SEB model is validated by statistically comparing the modelled extra energy 

absorbed by lakes and inferred energy transfer derived from SGL volume (Table 18). Lake volume, 

calculated following Pope et al. (2016), is scaled by specific heat capacity (4200 J/kg °C) and density 

of water (997 kg/m3) to estimate inferred energy transferred to create SGLs on Nivlisen. Calculated 

water depth per pixel is scaled by the satellite band spatial resolution to give depth per square 

metre. 

Cumulative energy absorbed over an austral summer across the whole lake region is modelled to 

vary between 0.12 GJ and 3.0 GJ for 2017-2020 (Figure 29). Total energy transfer required to form 

the observed peak lake volume varies between 0.45 GJ and 9.1 GJ for 2017-2020. The Nash-Sutcliffe 

Efficiency value of 0.922 supports the conclusion that the modelled total energy absorption at SGLs 

matches the inferred dataset well. Furthermore, the normalised RMSE, which performs well for 

small sample sizes (n < 20), has a residual variance of less than 0.5 which indicates the SEB model 

results are sufficiently accurate to predict inferred energy absorption (Chai and Draxler, 2014). 
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Measure of Model 
Performance 

Formula Value Significance Interpretation 

R2 

 

0.2588  
p = 0.11 

p < 0.05 
Linear regression model 
not statistically 
significant. 

Nash-Sutcliffe Efficiency 
(NSE) 

 

0.9221 NSE ≈ 1 
Good match of model to 
observed data (McCuen 
et al., 2006).  

NRMSE 

 

  

0.4729 
Variance < 

0.5  

Lower values indicate less 
residual variance. 
Normalised RMSE works 
for small sample size 
(Chai and Draxler, 2014).  

Table 18. Statistical measures of SEB model performance in predicting observed values of total 
energy absorption across the entire lake region on NIS for austral summers of 2017-2020. Observed 

values of total energy absorption at SGLs derived from peak lake volume (m3) using Equation 14. 
‘OBS’ – observed values and ‘MOD’ – modelled values.  

 

Regression of inferred energy stored in lake volume at the end of the melt season with cumulative 

SGL energy absorbed across the whole melt season gives the linear correlation coefficient (R2) of 

0.2588 (Figure 29). The weak correlation between modelled and inferred energy is not significant at 

the 1% level. Furthermore, Figure 29 demonstrates that inferred energy transfer is consistently an 

underestimate of the modelled energy transfer by approximately ~1.5 times which is likely a result 

of lake volume leakage (Section 5.2i). The high NSE and significant NRMSE values indicate the 

sensitivity of the SEB model to variable supraglacial conditions but uncertainty remains over the 

systematic errors causing discrepancies between modelled and inferred energy transfer. 

Figures 30a-d show cumulative trendlines derived from extrapolating modelled energy absorption 

for days without input spectral data. Over different austral summers, the best-fit trendline for 

cumulative energy absorption varies between linear, exponential and polynomial growth (Figure 30). 

Across a whole typical melt season, the cumulative energy would be expected to follow an “s-

shaped” cumulative frequency curve, as seen in Figure 30c. Figures 30a, 30b, and 30d do not follow 

the typical “s-shaped” curve indicating that the data collected in 2017, 2018 and 2020 only represent 

a section of the whole cycle of lake evolution. The evolution of lake area between satellite image 

acquisitions represents a significant source of uncertainty in this approximation method (Section 

5.2i). 
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Figure 29. Cumulative modelled surface energy balance (GJ) across whole lake region compared to 
inferred energy (GJ) transfer from peak lake volume (m3) (Equation 14). Lake volume calculated for 

the latest images in the melt season – i.e. to get maximum lake volume. Cumulative modelled energy 
calculated up until time of image capture used for lake volume calculation. 
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Figure 30a-d. Cumulative modelled energy absorption across whole lake region in a) 2016-2017, b) 

2017-2018, c) 2018-2019 and d) 2019-2020. Dashed lines are best-fit trendlines with R2 to indicate 

model trendline fit to data – a) and d) exponential trend, b) linear trend, c) polynomial order 3 trend. 

4.5 Summary of Results 

The PCA extracts two PCs which indicate the spectral bands that are useful in distinguishing SGL and 

slush pixels in Landsat 8 and Sentinel-2 imagery. Application of spectral reflectance thresholds give 

an average lake area of 53.6 km2 and average slush area of 65.6 km2 over 2017-2020. These 

estimates are more accurate than NDWI methods which underestimate SGL extent by an average of 

122% across all images. Furthermore, the PCA successfully extracts spectral band thresholds which 

not only improve accuracy, but also reduce over-sensitivity of supraglacial feature extraction to a 

single spectral band. On an average day across the austral summers of 2017-2020, the mean energy 

absorbed by lake and slush areas relative to clean ice is ~ 8.7 MJ/m2/day and ~0.54 MJ/m2/day 

(Figure 23). Mean energy absorption has remained relatively constant inter-annually indicating that 

variation in net energy transfer across the whole of NIS is driven by lake and slush extent. The 

suggestion that the variable contribution of lake and slush areas to net energy transfer to NIS is 

related to extreme meteorological conditions is discussed in Section 5.  
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5. Discussion 

5.1  Principal Components Analysis  

The PCA, determined from Sentinel-2 and Landsat 8 imagery, identifies orthogonal components 

which define the total spectral variability of supraglacial features at the NIS study-site region (Tables 

8-9). Two PCs were extracted from Sentinel-2 and Landsat 8 images as important factors for 

describing supraglacial variability. PC1, accounting for the majority of spectral variability across the 

ice shelf surface, represents the slush cluster with high reflectance in visible bands and relatively low 

reflectance in SWIR bands (Tables 10-11). PC2 is negatively correlated to visible spectral bands and 

positively correlated to SWIR (Tables 10-11). As PC2 increases, the absorption of visible bands 

increases (reflectance decreases) and temperature of the observed surface increases (high emission 

in the infrared). Such spectral properties described by PC2 are likely to represent water-saturated 

pixels which absorb most visible light and release latent heat during melting. These results are 

consistent for both Sentinel-2 and Landsat 8 satellite imagery which indicates that PCA is a useful 

method for spectral classification, regardless of the original multispectral satellite used.  
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Image Date RGB Image SGL (blue) and slush (red) mask  

31/01/2019 

  

11/01/2019 

  

28/01/2018 
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11/01/2018 

  

26/01/2017 

 

  

Figure 31. False colour RGB Sentinel-2 images compared to lake (dark blue) and slush (red) masks 

determined using PCA-histogram method. Despite evidence of cloud in some images, the PCA 

remains successful at identifying supraglacial features. 
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Image Date RGB Image SGL (blue) and slush (red) mask  

14/01/2020 

  

19/02/2019 

  

08/01/2018 
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12/01/2017 

  

26/01/2016 

    

Figure 32. False colour RGB Landsat 8 images compared to lake (dark blue) and slush (red) masks 

determined using PCA-histogram method. Despite evidence of cloud in some images, the PCA 

remains successful at identifying supraglacial features. 

5.1i  Lake and Slush Extents  

Lake and slush extent on NIS are sensitive to inter-annual variation in weather conditions (Figures 

31-32). This corroborates the finding of Dell et al. (2020) that austral summers with highest air 

temperatures are those with the greatest lake and slush extents. Lake masks derived from Sentinel-2 

and Landsat 8 images in the late austral summer identify two large elongate lake systems which hold 

up to 62.6 % of surface meltwater volume (Figure 31; Dell et al., 2020). The eastern and western 

systems are formed of a series of smaller lakes connected by supraglacial streams or slush patches 

and extend for ~16 and ~ 20 km respectively. Both lake systems terminate ~ 35 – 55km from the ice 

shelf front, most likely draining into the surrounding firn area. Under increased temperatures, the 

extent and volume of meltwater is likely to increase which may exceed the firn storage capacity, 

facilitating development of a drainage system which extends to the ice shelf front (Lenaerts et al., 

2017).  
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Evidence of this is observed in the austral summer of 2020 where lake systems delivered sufficient 

water downstream to cause firn saturation nearer the terminus. The result is a 12 km2 circular lake 

captured on 14/01/2020 (as seen in Figure 15 and Figure 32). The implications of an end-member 

state characterised by meltwater pooling, rather than efficient meltwater export, are significant for 

the future stability of NIS (Kingslake et al., 2017). As demonstrated on Nansen Ice Shelf, the potential 

to develop efficient water evacuation systems may mitigate ice shelf instability (Banwell, 2017; 

Frezzotti et al., 2017; Bell et al., 2018). The PCA-histogram method for lake delineation could 

therefore be incorporated into predictive models to estimate scenarios of ice shelf stability under 

different hydrological regimes.  

At present, however, extensive firn cover on NIS facilitates the storage of meltwater in firn-pack 

pore space. The PCA method extracts slush coverage of up to 155 km2, corroborating expectations of 

extensive water-saturated firn (Buzzard et al., 2018). Landsat 8 and Sentinel-2 images both indicate 

increased slush extent since the austral summer of 2017 (Table 12-13). Extensive slush coverage 

presumably suggests that current firn capacity is sufficient to delay the development of a 

supraglacial distribution similar to that observed on Larsen B prior to its collapse in March 2002 

(Glasser and Scambos, 2008; Banwell and MacAyeal, 2015). Although current firn capacity for water 

storage reduces likelihood of hydrofracture through the ice shelf, efficient storage of interstitial 

water in firn adds extra load. Whilst this load may not be sufficient to generate flexure forces 

capable of initiating fracture propagation (Banwell et al., 2019), the overall stress field is altered with 

unresearched implications for cross-grounding line ice flow.  

Whilst high firn capacity limits development of new lakes, existing lake systems form in the same 

locations year-on-year. Lake masks indicate that SGLs cluster around the grounding line in the early 

melt season and then gradually grow into larger water bodies which expand nearer the ice shelf 

front (Figures 31-32). As Dell et al. (2020) suggest, this is the result of lateral transfer of water across 

NIS through the austral summer. Firn facilitates lateral transport of water if it becomes isothermal or 

if it is saturated to the extent that it becomes an impermeable surface for excess meltwater to flow 

over (Kingslake et al., 2015). The distinction between unsaturated firn, with water storage capacity, 

and saturated firn, which facilitates lateral melt water transfer, is one not investigated in this study. 

However, the PCA-histogram method may be extended, using different thresholds, to categorise 

supraglacial features further into more discrete categories (e.g. different types of slush). Different 

forms of slush which transition from meltwater storage to meltwater transfer zones have varying 

implications for ice shelf hydrology. 
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For the most recent images, PCA-histogram thresholds applied to Landsat 8 out-perform Sentinel-2 

masks in identifying both stagnant and flowing water bodies (Figure 32). This may be due to the 

greater weighting of the infrared bands in the Landsat 8 PCA which would lead to greater sensitivity 

of lake masks to NIR bands. In contrast to Sentinel-2 masks, the Landsat 8 masks delineate far 

smaller areas of slush which reduces the overall recorded agreement (62%) of the PCA delineation 

method applied with different satellite data (Section 4.2ii). Slush patches are calculated from 

Landsat 8 imagery to be within 0 – 300 m of SGLs and further away from the grounding line 

compared to Sentinel-2 slush masks (Figure 31-32). Whilst these differences are likely the result of 

the thresholds used, it indicates that slush delineation remains subject to more uncertainty that SGL 

regions, as confirmed by the confusion matrix results (Section 4.2ii). Therefore, applying the PCA-

histogram method to satellite imagery from different sensors tests the reliability of results for 

different supraglacial features.  

The PCA-histogram method developed here presents a number of improvments in accurate SGL 

delineation compared to ratio-band techniques. Previous NDWI-based classification methods under-

estimate lake extent in the majority of cases, whilst large errors of commission are introduced in 

cloudy images (Williamson et al., 2017). Thin, low-altitude cloud has similar visible spectral 

characteristics to that of slush which has prevented delineation of slush extent in previous research 

using single and ratio band techniques (Pope et al., 2016; Watson et al., 2018). The PCA-histogram 

method is able to delineate lake and slush extent through cloud cover of up to 20% and without mis-

identifying cloud (Figure 33). This demonstrates the utility of considering spectral returns across a 

broader range of wavelengths.  

Furthermore, NDWI threshold is user-defined whereas the histogram thresholds across PC bands are 

automatically identified from the frequency distributions. NDWI-generated lake masks may be useful 

for individual images, but the lack of threshold consistency between images makes it difficult to 

automate a longer temporal record of lake extent. Overall, the PCA-histogram lake and slush masks 

are successful at delineating supraglacial characteristics when visually compared to underlying false-

colour composite images (Figures 31-32). 

The finding that the PCA-histogram method significantly outperforms the classic band ratio methods 

has implications for a broad spectrum of research. The automated PCA-histogram method could be 

incorporated into lake tracking algorithms, such as FASTISh (Dell et al., 2020), and applied within 

energy balance models for constraint of different supraglacial characteristics. There is also potential 

for application to other Antarctic ice shelves where cloud coverage commonly disrupts surface 
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spectral data accquisition. However, there remain various sources of error which should be 

considered and rectified before this method is applied more broadly. 

 

 

Figure 33. Lake (black) and slush (white) mask determined from PCA-histogram method on RGB 

background image for (a) 11/01/2018 Sentinel-2 image and (b) 08/01/2018 Landsat 8 image. Despite 

~20% cloud cover, masks do not misidentify clouds and some lakes are detected through clouds.  

0                     5                      10                   15                     20                  25 km 
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5.1ii Limitations of PCA-Histogram Method 

Sentinel-2 and Landsat 8 imagery are demonstrated to work successfully with the PCA-histogram 

method. The high spatial resolution of Sentinel-2 allows more accurate boundary delineation 

between SGL and slush areas. Errors related to application of Landsat 8 imagery are likely to arise as 

a result of lower spatial resolution (30 m) for each band layer. The SGL-slush boundary may occur 

within a 30 m pixel whilst spectral reflectance will be averaged over the 30 m2 pixel generating error 

in the final classification of the pixel. The selection of relevant bands using the PCA aims to minimise 

inclusion of unnecessary thresholds which would otherwise exacerbate this source of error.  

Uncertainty associated with the PCA-histogram method is smaller compared to previous single-band 

methods although some discrepancies between mapped and observed lakes remain. Visual 

inspection of the Sentinel-2 PCA-histogram lake mask against the false-colour images suggests that 

the thresholding underestimates water-covered pixels furthest from the grounding line (Figure 31). 

In these Sentinel-2 images, water-covered areas furthest from the grounding line are generally 

braided supraglacial streams rather than SGLs (Figure 31). Therefore, the inaccuracy of the PCA-

histogram method in these regions could be related to the variable contribution of the infrared 

bands due to differing temperatures of stagnant versus flowing water. Uncertainty introduced across 

infrared bands could be minimised by subsequently filtering extracted water-covered areas by 

geometry (e.g. Yang and Smith, 2012).  

The PCA-histogram method is accurate for supraglacial feature delineation using Landsat 8 imagery 

when the user can eliminate bands which are causing significant errors of omission. The 

disproportionate sensitivity of Landsat 8-derived slush extent to the blue band (B2) required user 

intervention to remove the blue band threshold. The limitation of this is that the method is no 

longer automated and subject to researcher bias. User intervention is also occasionally required to 

mask cloud shadow in Landsat 8 images. Whilst the SIMPLE_CLOUD_SCORE algorithm, provided in 

GEE, is applied to mask the cloud itself, the cloud shadow on images is not masked and may be 

misidentified as slush (Figure 32). Such errors are minimised using the PCA-histogram method, but 

uncertainty cannot be fully eliminated without high resolution ground truthing data. The greatest 

source of uncertainty is derived from the lack of ground truthing data to quantify the relative 

accuracy of different approaches. Application of the PCA-histogram method for areas with available 

in situ data would be a useful pursuit for future research.  
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5.2 Surface Energy Balance Model Discussion  

Over the austral summers of 2017 to 2020, slush and lakes begin to form around mid-November, 

corresponding to the beginning of the austral summer, and reach peak extent by Feburary in all 

years. The modelled timing of lake formation corroborates austral summer timings determined by 

the annual SEB model of Jakobs et al. (2019). Interestingly, daily mean energy flux per lake and slush 

pixel peaks earlier in January (Figure 23). An initial peak in the mean energy absorbed at each pixel is 

followed by a peak in the extent of lake and slush areas. Whilst average energy absorption is directly 

sensitive to maximum intensity of incoming SW radiation in early January, there is an indirect lagged 

effect for slush and lake extent.  

The peak in average lake energy absorption at each lake pixel may indicate a period of lake 

deepening. Further energy transfer to the ice shelf and melting facilitates the over-topping of the 

already saturated and deepened lake basin, generating subsequent increase in extent. This confirms 

the observation of Dell et al. (2020) that early austral SGL formation is controlled by air temperature 

and solar radiation, whilst late austral summer lake development is controlled by ice shelf 

topography. There is therefore a ‘trade-off’ between peak energy availability in early January and 

peak lake extent in late January, when total energy absorption capacity reaches a maximum. As the 

season progresses towards late January, input energy availability decreases limiting the energy 

absorption potential of deepened lakes. The lag between maximum input energy availability, 

maximum energy absorption and supraglacial feature extent provides insight into lake-firn 

interaction on NIS.  

Processes, whether lake over-topping or firn saturation, involved in forming NIS supraglacial 

hydrology are inter-annually variable. Mean energy absorbed by lake and slush pixels remained 

proportionately similar in 2017 and yet total energy absorbed across the lake region was up to 9 

times greater than that of slush (Figures 22-23). Such a large total absorption at lake pixels is related 

to extensive lake coverage. Meanwhile, in the austral summer of 2019, total energy absorbed across 

the entire slush region (~1 GJ/day) was as large as energy absorbed across the entire lake region 

(~1.6 GJ/day) (Figure 22). The ability of slush regions to absorb similar total energy to that of SGL 

areas during high slush years is of notable importance. Therefore, despite assumptions that SGLs are 

a predominant means by which extra energy is transferred to Antarctic ice shelves (Kingslake et al., 

2017; Jakobs et al., 2019), highly-saturated slush zones are of underestimated significance in austral 

summers where slush is spatially extensive. However, in most austral summers studied, slush areas 

contribute a far smaller proportion of energy to NIS relative to SGLs. In general, slush areas 

efficiently re-emit energy absorbed at times of peak solar insolation giving daily near-zero net energy 
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contribution (Figure 22). Net positive total energy absorption of slush regions in the austral summer 

of 2019 indicates underestimated implications of slush in particular years. This supports 

development of research into the evolution of slush and controls on its inter-annually variable 

formation. 

Water-saturated slush has implications for energy balance not only because of lower albedo but also 

because, on East Antarctic ice shelves, slush is typically a precursor for SGL formation (Buzzard et al., 

2018). Widespread slush indicates increasingly favourable conditions for lake formation with 

implications for increasing inter-annual net energy absorption. However, given that only one high 

slush extent year (2019) is recorded between austral summers of 2017 - 2020, the temporal record is 

insufficient to determine any inter-annual trend of increasing frequency in high slush years.  

The controls determining relative significance of SGL or slush areas for NIS energy balance are 

currently unknown.  Meteorological variability across the austral summers of 2017 – 2020 is 

extracted from the GFS dataset and plotted to suggest controls on proportionally high lake and slush 

years (Figures 34-37). Given confirmed sensitivity of the model to shortwave radiation, specific 

humidity, wind speed and air temperature are considered here. Specific humidity varies minimally 

between 0.001 - 0.004 g/kg and is therefore unlikely to alter overall energy flux significantly enough 

to explain inter-annual variability. Figures 38-41 show little evidence of co-variability between total 

SEB with either air temperature or wind speed. Regression of the GFS meteorological data with net 

SEB gives the strongest correlation between net lake SEB and air temperature (R2 = 0.1848), 

although this correlation is insignificant at the 5% level (Figures 38-41). Overall, the lack of significant 

trends in inter-annual meteorological variability suggests that other controls are likely to be more 

important in explaining the high lake year of 2017 and high slush year of 2019.  
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Figure 34. Rate of energy transfer over whole NIS lake region (2016-2020) and air temperature (K). 

Air temperature from GFS Data. Rate of energy transfer and GFS data collected at 6-hourly time 

stamps at 00:00, 06:00, 12:00 and 18:00. 

Figure 35. Rate of energy transfer (GW) over whole NIS lake region (2016-2020) and wind velocity 

(m/s) in the north-south direction. Wind velocity from GFS data taken in north-south orientation 

given assumption that katabatic winds flowing off the ice sheet dominate relative to east-west 

winds. Rate of energy transfer and GFS data collected at 6-hourly time stamps at 00:00, 06:00, 12:00 

and 18:00. 
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Figure 36. Rate of energy transfer (GW) over whole NIS slush region (2016-2020) and air temperature 

(K). Air temperature from GFS data. Rate of energy transfer and GFS data collected at 6-hourly time 

stamps at 00:00, 06:00, 12:00 and 18:00. 

Figure 37. Rate of energy transfer (GW) over whole NIS slush region (2016-2020) and wind velocity 

(m/s) in the north-south direction. Wind velocity from GFS data taken in north-south orientation 

given assumption that katabatic winds flowing off the ice sheet dominate relative to east-west 

winds. Rate of energy transfer and GFS data collected at 6-hourly time stamps at 00:00, 06:00, 12:00 

and 18:00. 
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Figure 39. Relationship between 

rate of energy transfer (GW) over 

whole slush region (2016-2020) 

and air temperature (K). Weak 

positive correlation and 

insignificant at the 5% level. Linear 

regression test run in SPSS.  

Figure 38. Relationship between rate 

of energy transfer (GW) over whole 

lake region (2016-2020) and air 

temperature (K). Weak positive 

correlation but significant at the 5% 

level. Linear regression test run in 

SPSS.  

Figure 40. Relationship between 

rate of energy transfer (GW) over 

whole lake region (2016-2020) and 

wind speed (m/s). Weak positive 

correlation but significant at the 

5% level. Linear regression test run 

in SPSS.  
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Modelled mean energy absorption for lake pixels is constant over the years 2017 – 2020 at each 

time of day (Figure 20). Deeper lakes are expected to be more efficient at attenuating incoming 

shortwave radiation and therefore will absorb greater proportions of incident radiation (Sneed and 

Hamilton, 2007; Banwell et al., 2012). The lack of change in mean energy absorption at lake pixels 

suggests that there has been no significant inter-annual lake deepening. Slight increases in average 

absorption at slush pixels at each time of day may suggest increasing water saturation between 2017 

– 2020 (Figure 20). However, given the relatively short time period over which the model results are 

evaluated and the lack of in situ data, this hypothesis cannot be reliably confirmed. Inter-annual 

mean energy absorption is relatively unchanged but daily SEB flux variation results indicate localised 

trends in energy transfer. Therefore, the following section outlines the significance of temporal and 

spatial variability of each of the different energy fluxes.  

The daily variability of SEB flux is controlled primarily by incident shortwave radiation confirming the 

conclusions of Jakobs et al. (2019) and Buzzard et al. (2018) that SEB models are most sensitive to 

absorbed shortwave radiation. Whilst incoming shortwave radiation reaches a peak between 1200 

and 1800, it is notable that net SEB for SGLs and slush is lower on average at 1800 than at 0600 

(Figure 20). Lower net energy transfer to NIS in the afternoon, despite incident shortwave radiation 

remaining high, is likely the result of increasing longwave radiation emission towards the end of the 

day. This is expected as the ice shelf surface re-radiates energy that has been absorbed throughout 

the day (Benn and Evans, 2014). Greater emission of longwave radiation in the afternoon counter-

acts a proportion of incoming shortwave radiation, causing net energy transfer to decrease in the 

Figure 41. Relationship between 

rate of energy transfer (GW) over 

whole slush region (2016-2020) 

and wind speed (m/s). Weak 

positive correlation and 

insignificant at the 5% level. 

Linear regression test run in 

SPSS.  

R² = 0.0591
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afternoon. At a typical lake and slush area on the Nivlisen Ice Shelf, peak energy absorption occurs 

between 0600 and 1200. 

Consistently net negative longwave radiation flux for SGL and slush regions implies greater longwave 

radiation emission than absorption. Due to lack of direct or forecasted measurements, the Stefan-

Boltzmann law uses temperature as a proxy for incident and emitted longwave radiation. Air 

temperature at 2 m (proxy for incoming longwave) is ~4 K colder than lake and slush surfaces (proxy 

for outgoing longwave) which explains negative longwave radiation budget. SGLs and slush regions 

absorb incoming shortwave radiation and efficiently re-emit longwave radiation (Benn and Evans, 

2014). However, daily longwave emitted radiation is on average two orders of magnitude smaller 

than absorbed shortwave radiation across austral summers (Figures 24, 25, 27, 28). As suggested by 

Law et al. (2020), the sensitivity of the model to incoming shortwave radiation relative to other 

fluxes should place greater emphasis on accurate measurement of solar radiation. 

Although shortwave energy fluxes dominate overall energy balance, the relative spatial variability of 

other fluxes give insight into the interaction of NIS with its atmospheric and topographic setting. 

Variable contribution of net latent and sensible heat at lake and slush areas to the overall SEB of NIS 

implies the significance of local ice shelf processes. Controlling variables may include distance from 

the grounding line, elevation, wind strength and turbulence, proximity to nunataks and variable 

strain fields (Stokes et al., 2019).  

The sensible and latent heat contribution of slush over NIS is relatively unchanged in each SEB 

calculation whilst lake pixels respond sensitively to spatial and temporal meteorological variation. 

The stability of overlying air column, parameterised in the SEB model by the Richardson number, is a 

control on SGL sensible and latent heat fluxes. An unstable and turbulent air column allows for 

substantially more sensible and latent heat to be transported away from the surface (Cohen and 

Rind, 1990). Lakes at higher elevations near the grounding line emit low amounts of sensible heat 

and are net absorbers of latent heat due to freezing (Section 4.3). There is a distinct spatial transition 

from a stable to turbulent air column moving from the grounding line towards the terminus of the 

ice shelf (Figure 42). This localised transition in near-surface atmospheric stability can be explained 

in the context of the topographic setting of NIS.  
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Figure 42. Spatial differentiation of lake pixels with negative Richardson numbers (yellow) and 

positive Richardson numbers (green) which indicate unstable (red hue) and stable (blue hue) air 

columns respectively. Wind (black arrows) is forced over nunataks generating stable air in the lee of 

the topography, nearest the grounding line (red line). RGB Sentinel-2 image from 31/01/2019. 10 m 

contours from REMA data cropped for grounded ice area. 

Tributary glaciers feed the NIS over an arc of steep topography - the Shirmacheroasen nunataks - 

before the NIS becomes ungrounded (Lindbäck et al., 2019). Elevation profiles from grounded ice 20 

km inland to the floating NIS demonstrate elevation changes of over 700 m (Figure 42). SGLs closer 

to the grounding line are in the lee of the Shirmacheroasen nunataks, sheltered from the strong 

northerly katabatic winds flowing off the EAIS. Meanwhile, SGLs closer to the ice shelf front are 

exposed to these strong winds facilitating high evaporation rates and maintaining the surface-

atmosphere temperature gradient (Figure 42). Although localised wind variability is the most likely 

interpretation for the contribution of SGLs to sensible and latent heat flux, the lack of in situ data 

available prevents construction of an accurate wind profile with height over Nivlisen.  
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The effect of katabatic winds on energy fluxes implied in this study is supported by previous 

research. Katabatic winds interact with the ice shelf surface and facilitate enhanced ablation by: i) 

removing surface snow and exposing lower albedo blue ice; and ii) enhancing near-surface 

temperatures by up to 3 K (Lenaerts et al., 2017; Moussavi et al., 2020). The turbulent air column 

above lakes ~5-10 km from the grounding line is indicative of the influence of strong katabatic winds 

creating conditions favourable to SGL formation. Meanwhile, the stability of the air column over 

lakes ~0-5 km from the grounding line, in the lee of the Shirmacheroasen nunataks, slows the 

development of SGLs. This indicates that the relationship between katabatic winds, topography, and 

meltwater production is more nuanced than a simple distance decay model based on proximity to 

low albedo features (Kingslake et al., 2017). Whilst research has previously focused on the 

significance of nunataks for longwave radiation budget, these results indicate significance of 

nunataks for localised wind disturbances and, hence, sensible and latent heat fluxes. Further 

research would be useful to better constrain the variability of nunatak-ice shelf interactions given 

the positive feedback mechanism between overall thinning of AIS and increased nunatak exposure 

(Kingslake et al., 2017).  

Attributing the spatial variability of SGL sensible and latent heat fluxes to wind patterns also explains 

the proportionally invariable fluxes from slush regions. Previous research suggests that winds only 

effect the temperature profile of slush, and therefore sensible heat flux, up to depths of a few 

centimetres (Cohen and Rind, 1991; Brandt and Warren, 1997). Brandt and Warren (1997) measured 

temperature changes through 3 m of snowpack at the South Pole Station and found that 

temperature variability was reduced by an order of magnitude at just 20 cm of depth relative to the 

surface. Meanwhile, at SGLs, a wind-generated surface disturbance is effective at driving water 

circulation. This mixing may bring cooler water at depth to the surface, steepening the atmosphere-

SGL temperature gradient and enhancing energy transfer. Therefore, the effect of katabatic winds 

on sensible and latent heat fluxes is more substantial over lakes than for slush by this heat-exchange 

mechanism. 

 

5.2i  Surface Energy Balance Model Validation 

Lake volume, used as a proxy for energy absorbed by Nivlisen Ice Shelf’s surface, is determined using 

a depth-calculation method proven to reliably reproduce field measurements (Sneed and Hamilton, 

2007; Banwell et al., 2014; Pope et al., 2016). The correlation coefficient (R2 = 0.2588) between 

modelled cumulative energy and inferred energy absorption, derived from peak lake volume, 

indicates a positive linear relationship. However, the agreement between modelled and inferred 
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datasets is not statistically significant (p > 0.01), suggesting sources of error in this validation 

method. This is likely related to the assumption that modelled energy remains constant between 

days with available spectral data i.e. there is no variability in lake area between satellite images 

captured. Recent work challenges this assumption by suggesting that short lived (<1 week) intense (> 

4 mm w.e./day) melt events are the main control on seasonal evolution of lake area (Arthur et al., 

2020). Implications of intense melt events and lateral meltwater transport on East Antarctic ice 

shelves must be better constrained for validation of SEB models.  

Modelled energy balance predicts that, on average, ~1.5 times more energy is absorbed at lake 

pixels than is inferred by calculated lake volume. The marginal overestimation of modelled to 

inferred energy absorption from lake volume indicates SEB model accuracy, as water volume 

calculated in the images is an instantaneous snapshot of water stored, and so cannot account for 

volume loss via leakage. SGL volume is variable on sub-hourly timescales by lateral transport, vertical 

infiltration or even evaporation (Arthur et al., 2020). Therefore, a degree of systematic error is 

introduced using this method of model validation.   

Given extensive firn cover on Antarctic ice shelves (Lightenberg et al., 2011), the assumed SGL base 

is unlikely to be a distinct boundary between liquid water and impermeable ice. Meltwater retention 

in firn is important as firn must be impermeable or fully saturated for SGLs to form (Buzzard et al., 

2018). The phase boundary between the saturated firn layer and lake bottom is difficult to 

determine remotely without ground truthing data. Given that saturated slush areas beneath SGLs on 

NIS also contain liquid water, the total lake volume quantified is subject to uncertainty from 

assumed depth of phase boundary and underlying slush water-retention capacity (Buzzard et al., 

2018). The recent release of ICESat-2 data shows potential for more accurately delineating 

subsurface boundaries on Antarctic ice shelves. Even if the SGL base could be better constrained 

using ICESat-2 data, water storage capacity in underlying firn would still generate a degree of error in 

lake volume estimation.  

Using SGL volume to validate the SEB model assumes that energy input from external sources, other 

than incident radiation, is negligible. This is a reasonable assumption to make given that energy 

transfers from precipitation, ocean heat transfer and geothermal sources are small for floating ice 

shelves, such as NIS (Wei et al., 2014; Lindbäck et al., 2019). Precipitation rates measured at the 

Novolazarevskaya Weather Station are low (19 mm w.e./month), altering sensible heat transfers 

negligibly. Heat flux from the base of the ice shelf derived from underlying ocean is not considered a 

significant source of energy for the melting of surface ice (Buzzard et al., 2018; Akhoudas et al., 

2020). However, warming of the Weddell Sea over recent decades (Schmidtko et al., 2014) has 
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generated up to 7 m/yr of basal melt (Lindbäck et al., 2019). Therefore, as the ice shelf thins and 

ocean temperatures increase, ice shelf temperature profile may steepen to alter surface energy 

fluxes significantly. At present, no temperature profile through a floating ice shelf in East Antarctica 

is available, limiting understanding of ocean-ice shelf thermal energy exchanges (Holland et al., 

2008; Dinniman et al., 2016). This defines a key area for future in situ research and numerical 

modelling.  

Whilst external sources of extra energy are currently considered negligible, assumptions made about 

internal transfers of energy introduce uncertainty in the conversion from lake volume to inferred 

energy absorption. Energy transferred from solar radiation is not used solely to generate melt which 

forms lake volume. Radiative energy is likely to be transferred to kinetic energy within the water 

column which in turn generates energy losses to surrounding slush through friction. Some of the 

energy transferred to generate the volume of melt observed on NIS is also lost to other internal 

processes which are unaccounted for in this empirical conversion. This also clarifies why the inferred 

energy transfer is under-estimated relative to modelled energy transfer. Sources of uncertainty 

remain in this validation method and the following section outlines limitations in the SEB model 

developed.  

 

5.2ii Surface Energy Balance Model Limitations 

The SEB model performs well in quantifying extra energy absorbed by lake and slush areas on NIS for 

Landsat 8 and Sentinel-2 images. Whilst input meteorological data is abundantly available through 

complex forecast modelling and reanalysis, satellite image acquisition is limited by revisit interval 

and cloud conditions. The lack of consistency in image availability between years (2016 – 2017 has 

13 images, 2019 – 2020 has 6 images) has implications for the interpretation of inter-annual trends. 

For example, total energy absorbed at SGLs is significantly higher in 2016-2017 which is assumed to 

be a result of greater SGL extent but may be a product of the images that were available. The 

consistency of supraglacial feature positioning in images across each austral summer suggests that it 

is unlikely that the results are skewed by available images. However, the uncertainty derived from 

lack of input data should be noted.  

As stated, meteorological input data is readily available at high temporal intervals in the GFS data 

used here. However, GFS data does not include a forecast for longwave radiation. Longwave energy 

flux is calculated using the Stefan-Boltzmann law and the difference between surface and air 

temperature at 2 m (Wang and Dickinson, 2013). Downward longwave radiation at the surface is 

affected by vertical concentration distributions of water vapour, carbon dioxide and other trace 
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gases which cannot be accounted for using an empirical conversion (Morcrette and Fouquart, 1985; 

Palchetti et al., 2008). Surface temperature is derived using Planck’s irradiance function for TOA 

reflectance data in the SWIR bands, corrected by calibration coefficients (Chander et al., 2009). The 

decoupling of TOA and surface radiation fields mean that infrared band-based estimates of 

downward longwave radiation contain large errors, particularly under cloudy conditions (Liang et al., 

2001; Talley et al., 2011). Once net longwave radiation is ingested into reanalysis datasets, such as 

ERA-5, this source of error in the SEB model would be reduced.   

The model developed here quantifies energy exchanges occurring in an infinitesimally thin surface 

layer. The results are therefore useful for quantifying the implications of the interactions between 

supraglacial features and the near-surface atmosphere. However, the energy which is eventually 

transferred to the underlying ice shelf propagates through a water column or interstitial slush pack. 

Recently developed models, such as GlacierLake (Law et al., 2020), numerically derive these surface 

processes of energy transfer at depth. The subsequent feedback effects of energy transfer processes 

at depth on surface energy fluxes is not quantified in this study, presenting a degree of uncertainty 

in SEB calculations.  

5.3 Summary of Discussion  

The discussion above highlights proportionately high lake extent in 2017 and extensive slush in 2019. 

Inter-annual variability of supraglacial feature extents and lagged timing of peak mean energy 

absorption and maximum lake extent are indicative of firn-meltwater interactions. In the austral 

summer of 2020, substantial meltwater accumulation nearer the ice shelf front suggests increasing 

firn saturation. If this meltwater persists and remains in situ, NIS will become increasingly vulnerable 

to hydrofracture-driven collapse. Conversely, if SGL systems over-top and facilitate lateral export of 

water, the ice shelf could be stabilised. The PCA-histogram method has further potential for 

delineating different slush types which would facilitate more accurate modelling of the evolution of 

ice shelf hydrology.  

The SEB results for previous austral summers are dominated by shortwave radiation flux during peak 

daylight hours whilst the warmed slush and SGLs emit longwave radiation at times of low solar 

irradiance. Spatial variation in sensible and latent heat fluxes is determined by local topographic and 

atmospheric interactions. Whilst these fluxes vary by smaller magnitudes, this confirms that the SEB 

model can account for broader ice shelf processes.  
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6. Conclusions 

 

Examination of supraglacial hydrology of ice shelves is important for understanding regional ice 

sheet mass balance, dynamics, and local energy transfer through the ice shelf (Jakobs et al., 2019; 

Leeson et al., 2020). Examples from the West Antarctic (Wilkins – Scambos et al., 2009) and the 

Antarctic Peninsula (Larsen B – Berthier et al., 2012) demonstrate potential for the evolution of 

surface meltwater distribution to enhance vulnerability to collapse and ongoing mass loss (Joughin 

et al., 2011; Rignot et al., 2013; Alley et al., 2019). It is important for ice mass loss and sea level rise 

projections to accurately constrain interactions between the atmosphere and ice shelf supraglacial 

hydrology for integration into more complex two-dimensional models of energy propagation at 

depth. This study makes a first attempt to quantify the extra energy transferred from the 

atmosphere to an Antarctic ice shelf (Nivlisen Ice Shelf) as a result of the presence of supraglacial 

lakes and water-saturated slush features. 

The generation of an accurate surface energy balance model for NIS requires differentiation 

between distinct supraglacial features. Here, the PCA identifies clusters within the spectral 

reflectance variability of the surface of NIS which are interpreted as SGLs, slush, or clean ice regions. 

Thresholds from histograms of PCA-selected spectral bands differentiate these supraglacial features 

and constrain the spatial input domain for the SEB model. Given that the PCA-histogram method is 

successful for delineation of lake and slush features on East Antarctica, future research could test 

the accuracy of this method for other case study sites. 

Following the equations set out by Buzzard et al. (2018) and Law et al. (2020), the SEB model 

developed here calculates mean daily energy absorbed at lake and slush areas as ~ 8.7 MJ/m2/day 

and ~ 0.54 MJ/m2/day across the austral summers of 2017-2020. Extra energy transferred at lake 

and slush regions is most sensitive to variability in incident shortwave radiation. As a proportion of 

net energy balance, sensible and latent heat fluxes are responsible for energy flux variability two 

orders of magnitude smaller than shortwave and longwave fluxes which corroborates estimations 

from other literature (Jakobs et al., 2019; Law et al., 2020). Although calculated lake volume, used 

for model validation, infers a net energy transfer which varies linearly with modelled energy 

absorption, the inferred energy transfer consistently underestimates extra energy absorbed by 

lakes. The volume of water stored in saturated firn beneath lake basins could represent a significant 

proportion of energy transferred to NIS which is unaccounted for in this method of empirical model 

validation.  



89 
 

A key finding from the SEB model is the significance of saturated slush for energy transfer in austral 

summers where slush is an extensive supraglacial feature. Total extra energy absorbed across the 

slush region in the year 2019 is equivalent to extra energy absorbed by SGLs, suggesting that slush 

can be a significant control on energy absorption.  In the austral summer of 2019, total extra energy 

transferred to NIS is similar to extra energy transferred in the summer of 2017 – a year with 

widespread lake coverage. Therefore, a significant finding of this study is that exclusion of slush 

regions in previous energy balance calculations is likely to have underestimated the net energy 

transfer to Antarctic ice shelves in particular years. However, extensive slush cover is only recorded 

in 2019 limiting inter-annual comparison of controls on high lake versus slush extent.  

The generation and firn-pack infiltration of meltwater to form slush, and subsequently SGLs, on 

Nivlisen Ice Shelf is found to have significant implications for transfer of energy. As Jakobs et al. 

(2019) suggest, the feedback between extensive surface meltwater coverage and enhanced 

absorption of incident radiation has implications for the sensitivity of East Antarctic ice shelves to 

future increases in radiative forcing and average temperatures. Furthermore, increased prevalence 

of surface meltwater will add extra loading to NIS with unknown implications for ice shelf stability. 

With the findings from this study, quantifying the relative contribution of lake and slush pixels, 

projections of future meltwater prevalence and East Antarctic ice shelf vulnerability to collapse can 

be more finely tuned. Accurate quantification of the SGL and slush energy balance given here is the 

starting point for predicting meltwater evolution under different radiative forcing pathways and 

reducing uncertainty in sea level projections.  
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8. Appendix 

8.1  Satellite Imagery 

Sentinel-2 Image ID Date  
Cloud 
Cover (%) 

COPERNICUS/S2/20161111T074922_20161111T074922_T32DNG 11/11/2016 58 

COPERNICUS/S2/20161111T074922_20161111T122828_T32DNG 11/11/2016 58 

COPERNICUS/S2/20161114T075922_20161114T075925_T32DNG 14/11/2016 62 

COPERNICUS/S2/20161114T075922_20161114T110349_T32DNG 14/11/2016 63 

COPERNICUS/S2/20161127T080922_20161127T080925_T32DNG 27/11/2016 61 

COPERNICUS/S2/20161127T080922_20161127T111013_T32DNG 27/11/2016 41 

COPERNICUS/S2/20161217T080922_20161217T080922_T32DNG 17/12/2016 36 

COPERNICUS/S2/20170126T080921_20170126T080920_T32DNG 26/01/2017 9 

COPERNICUS/S2/20170225T080921_20170225T080922_T32DNG 25/02/2017 21 

COPERNICUS/S2/20170327T080921_20170327T080923_T32DNG 27/03/2017 29 

COPERNICUS/S2/20180111T080921_20180111T080919_T32DNG 11/01/2018 19 

COPERNICUS/S2/20180128T075921_20180128T075920_T32DNG 28/01/2018 35 

COPERNICUS/S2/20180128T075921_20180128T080000_T32DNG 28/01/2018 66 

COPERNICUS/S2/20180307T080919_20180307T080917_T32DNG 07/03/2018 26 

COPERNICUS/S2/20180327T080929_20180327T080924_T32DNG 27/03/2018 65 

COPERNICUS/S2/20181202T080929_20181202T080923_T32DNG 02/12/2018 46 

COPERNICUS/S2/20181222T080929_20181222T080923_T32DNG 22/12/2018 0 

COPERNICUS/S2/20190101T080929_20190101T080925_T32DNG 01/01/2019 49 

COPERNICUS/S2/20190111T080929_20190111T080926_T32DNG 11/01/2019 20 

COPERNICUS/S2/20190131T080929_20190131T080941_T32DNG 31/01/2019 16 

COPERNICUS/S2/20190302T080929_20190302T080926_T32DNG 02/03/2019 56 

COPERNICUS/S2/20190908T080929_20190908T080931_T32DNG 08/09/2019 61 

COPERNICUS/S2/20191207T080919_20191207T080946_T32DNG 07/12/2019 36 

Table S1. Sentinel-2 images of Nivlisen Ice Shelf TOA reflectance extracted for austral summers of 
2017-2020 over the study-site region (Figure 5). Images with <20 % cloud cover (highlighted green) 

are deemed useful for analysis. 

 

Years  Image ID  Date  WRS Path WRS Row 

2019-2020 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20191111 11/11/2019 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20191213 13/12/2019 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20191229 29/12/2019 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20200114 14/01/2020 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20191102 02/11/2019 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20191118 18/11/2019 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20191204 04/12/2019 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20191109 09/11/2019 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20191125 25/11/2019 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20191211 11/12/2019 167 110 
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2018-2019 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20181108 08/11/2018 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20181210 10/12/2018 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20181115 15/11/2018 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20181201 01/12/2018 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20190102 02/01/2019 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20190118 18/01/2019 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20190219 19/02/2019 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20181106 06/11/2018 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20181208 08/12/2018 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20181224 24/12/2018 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20190125 25/01/2019 167 110 

     

2017-2018 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20180108 08/01/2018 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20171214 14/12/2017 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20171205 05/12/2017 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20171221 21/12/2017 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20180207 07/02/2018 167 110 

     

2016-2017 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20161102 02/11/2016 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20161204 04/12/2016 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20161220 02/12/2016 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20170105 05/01/2017 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20170121 21/02/2017 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20161211 11/12/2016 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20161227 27/12/2016 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20170112 12/01/2017 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20170213 13/02/2017 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20161116 16/11/2016 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20170119 19/01/2017 167 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20170204 04/02/2017 167 110 

     

2015-2016 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20151202 02/12/2015 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20151218 18/12/2015 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20160103 03/01/2016 165 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20151123 23/11/2015 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20151209 09/12/2015 166 110 

 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20160126 26/01/2016 166 110 

  LANDSAT/LC08/C01/T2_TOA/LC08_166110_20160211 11/02/2016 166 110 

Table S2. Landsat 8 images of Nivlisen Ice Shelf TOA reflectance extracted for austral summers of 
2017-2020 with < 20% cloud cover. Images which did not cover the study-site region of NIS are 

discarded.  
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8.2 Surface Energy Balance Model Code 
 
Code (1) – surface energy balance model for lake and slush regions on Nivlisen Ice Shelf, EAIS, using 
Sentinel-2. 
 
Landsat 8 SEB model:  https://code.earthengine.google.com/c0cffa9bca56dec2c0d7bab404b2b568 
Sentinel-2 SEB model: https://code.earthengine.google.com/79e9e6144b68f6c30d62526fb29b6db3  
 
 
// Surface Energy Balance Model for Sentinel-2 developed in 2020 for Masters of Philosophy in Polar 
Studies. Contact Scott Polar Research Institute for further information. 
 
// Permission is hereby granted to any person obtaining a copy of this documentation to make use of 
it for non-commercial purposes provided that, a) its original authorship is acknowledged and b) no 
modified versions of the source code are published.  
 
// PARAMETERS 
 
// ice_albedo = 0.65;  
// slush_albedo = 0.6; // After Buzzard et al. 2017 following Singh 2011 
// snow_albedo = 0.72; // Chen et al. 2014 study of snow albedo with snow depth 
 
// CONSTANTS 
 
// T_melt = 273.15 // (K) Melt temperature of water 
// e_ice = 0.99; // Buzzard et al. 2017 
// e_lake = 0.97; // Buzzard et al. 2017 
// e_slush = 0.985; // estimated from other emissivities and histogram data 
// steffan_boltz = 5.67*(10^-8); // W/(m^2).(K^4) Steffan Boltzmann constant 
// ro_air = 1.27; // (kg/m^3) Density of dry air 
// ro_water = 997; // (kg/m^3) Density of water 
// c_air = 1000; // (J/kgK) Specific heat capacity of dry air 
// c_water = 4217; // (J/kgK) Specific heat capacity of water 
// c_ice = 2108; // (J/kgK) Specific heat capacity of ice 
// Lf_water = 3.348*(10^5); // (J/kg) Latent heat of fusion of water 
// sgc_air = 287; // (J/kgK) Specific gas constant for dry air 
// sgc_vapour = 461; // (J/kgK) Specific gas constant for water vapour 
// rough = 10; // (m) Surface roughness 
 
/////////// FILTER IMAGE COLLECTION TO GET RELEVANT SENTINEL 2 IMAGE /////////// 
 
var imagewhole = ee.Image('COPERNICUS/S2/20190131T080929_20190131T080941_T32DNG'); 
 
// Define the visualization parameters. 
var vizParams = { 
  bands: ['B4','B3','B2'], 
  min: 0, 
  max: 11000, 
  gamma: [0.95,1.1,1] 
}; 
Map.addLayer(imagewhole,vizParams,'false colour'); 

https://code.earthengine.google.com/c0cffa9bca56dec2c0d7bab404b2b568
https://code.earthengine.google.com/79e9e6144b68f6c30d62526fb29b6db3
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var image = imagewhole.clip(geometry); 
 
//////////// USE PRINCIPAL COMPONENTS ANALYSIS THRESHOLDS TO CREATE SUPRAGLACIAL 
FEATURE MASKS //////////// 
// Delineate lake region 
var islake = image.expression( 
  'NIR < 3485 && B3 < 5985 && B4 < 5395 && B2 < 8000', { 
    'SWIR': image.select('B11'), 
    'NIR': image.select('B8'), 
    'B2': image.select('B2'), 
    'B4': image.select('B4'), 
    'B3': image.select('B3') 
  }); 
 
Map.centerObject(image,9); 
Map.addLayer(islake,{min: 0, max: 1, palette: ['000000', 'FFFFFF']},'filtered image'); 
var masklake = islake.eq(1); 
var maskedcomposite = image.updateMask(masklake); 
Map.addLayer(maskedcomposite,{min: 1, max: 1},'maskedcomposite'); 
 
var lakemask = maskedcomposite.divide(10000); 
var lakemask_swbands_out = ee.Image(lakemask).select(['B2','B3','B4','B5','B6','B7','B8','B11','B12']); 
 
// Delineate slush region 
var slushlake = image.expression( 
  '3485 < NIR && NIR < 5835 && 5985 < B3 && B3 < 7395 && 5395 < B4 && B4 < 7205 && 8000 < B2 
&& B2 < 9000', { 
    'SWIR': image.select('B11'), 
    'NIR': image.select('B8'), 
    'B2': image.select('B2'), 
    'B4': image.select('B4'), 
    'B3': image.select('B3') 
  }); 
 
Map.centerObject(image,9); 
Map.addLayer(slushlake,{min: 0, max: 1, palette: ['000000', 'FFFFFF']},'filtered image'); 
var maskslush = slushlake.eq(1); 
var maskedcompositeslush = image.updateMask(maskslush); 
Map.addLayer(maskedcompositeslush,{min: 0, max: 1},'slush maskedcomposite'); 
var slushmask = maskedcompositeslush.divide(10000); 
var slushmask_swbands_out = 
ee.Image(slushmask).select(['B2','B3','B4','B5','B6','B7','B8','B11','B12']); 
 
// Delineate ice region 
 
var iceregionmask = islake.add(slushlake); 
var iceregion = iceregionmask.eq(0); 
var icemaskcomposite = image.updateMask(iceregion); 
var icemask = icemaskcomposite.divide(10000); 
Map.addLayer(icemask,{min:0, max:1},'icemask'); 
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// Extract lake spectral band values into 2D array 
var imagebandslake = ee.Image(lakemask) 
.select(['B1','B2','B3','B4','B5','B6','B7','B8','B9','B10','B11','B12']); 
var valuesListlake = imagebandslake.reduceRegion({ 
  reducer: ee.Reducer.toList(12), 
  geometry: geometry 
}).values().get(0); 
 
var valuesList = ee.List(valuesListlake); // Cast valuesList 
var myFeatures = ee.FeatureCollection(valuesList.map(function(el){ 
  el = ee.List(el); // cast every element of the list 
  var geom = ee.Geometry(geometry); 
  return ee.Feature(geom, 
{'B1':ee.Number(el.get(0)),'B2':ee.Number(el.get(1)),'B3':ee.Number(el.get(2)),'B4':ee.Number(el.ge
t(3)), 
'B5':ee.Number(el.get(4)),'B6':ee.Number(el.get(5)),'B7':ee.Number(el.get(6)),'B8':ee.Number(el.get
(7)),'B9':ee.Number(el.get(8)),'B10':ee.Number(el.get(9)),'B11':ee.Number(el.get(10)),'B12':ee.Numb
er(el.get(11))}); 
})); 
 
// Extract slush spectral band values into 2D array 
var imagebandsslush = ee.Image(slushmask) 
.select(['B1','B2','B3','B4','B5','B6','B7','B8','B9','B10','B11','B12']); 
var valuesListslush = imagebandsslush.reduceRegion({ 
  reducer: ee.Reducer.toList(12), 
  geometry: geometry 
}).values().get(0); 
var valuesList2 = ee.List(valuesListslush); // Cast valuesList 
var myFeaturesslush = ee.FeatureCollection(valuesList2.map(function(el){ 
  el = ee.List(el); // cast every element of the list 
  var geom = ee.Geometry(geometry); 
  return ee.Feature(geom, 
{'B1':ee.Number(el.get(0)),'B2':ee.Number(el.get(1)),'B3':ee.Number(el.get(2)),'B4':ee.Number(el.ge
t(3)), 
'B5':ee.Number(el.get(4)),'B6':ee.Number(el.get(5)),'B7':ee.Number(el.get(6)),'B8':ee.Number(el.get
(7)),'B9':ee.Number(el.get(8)),'B10':ee.Number(el.get(9)),'B11':ee.Number(el.get(10)),'B12':ee.Numb
er(el.get(11))}); 
})); 
 
 
// Extract ice spectral bands into 2D array 
 
var imagebandice = ee.Image(icemask).select(['B1','B2','B3','B4','B5','B6','B7']); 
 
var valuesListice = imagebandice.reduceRegion({ 
  reducer: ee.Reducer.toList(7), 
  geometry: grid 
}).values().get(0); 
 
var valuesList3 = ee.List(valuesListice); // Cast valuesList 
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var myFeaturesice = ee.FeatureCollection(valuesList3.map(function(el){ 
  el = ee.List(el); // cast every element of the list 
  var geom = ee.Geometry(grid); 
  return ee.Feature(geom, 
{'B1':ee.Number(el.get(0)),'B2':ee.Number(el.get(1)),'B3':ee.Number(el.get(2)),'B4':ee.Number(el.ge
t(3)), 'B5':ee.Number(el.get(4)),'B6':ee.Number(el.get(5)),'B7':ee.Number(el.get(6))}); 
})); 
 
 
 
/////////////////// SURFACE ENERGY BALANCE MODEL (2020) ///////////////// 
// SEB calculates shortwave, longwave, sensible and latent energy fluxes separately 
// All elements are summed for each 30 m Landsat pixel within lake and slush regions 
// Global Forecast System Meteorological Data collected 6 hourly intervals with sufficient coverage 
over EAIS 
 
///// INCOMING SHORTWAVE RADIATION DATA ///////////// 
var dataset = ee.ImageCollection('NOAA/GFS0P25') 
                  .filter(ee.Filter.date('2017-01-27', '2017-01-28')) 
                  .filter(ee.Filter.eq('forecast_hours', 1)) 
                  .filterBounds(ee.Geometry(grid)); 
 print(dataset); 
 
var shortwaverad = dataset.select(['downward_shortwave_radiation_flux']); 
var visParams = { 
  min: 0.0, 
  max: 1230.0, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages = shortwaverad.toList(shortwaverad.size()); 
var SW_rad_list = listOfImages.get(0); 
var Image1 = ee.Image(SW_rad_list); 
print(Image1); 
Map.addLayer(shortwaverad, visParams, 'sw radiation'); 
 
 
////////// INCOMING SW RADIATION FOR EACH BAND ///////////// 
// Scalar multipliers applied here are weighting coefficients (see Tables 6 & 7) 
 
var B2_incoming = Image1.multiply(0.1324); 
var B3_incoming = Image1.multiply(0.1269); 
var B4_incoming = Image1.multiply(0.1051); 
var B5_incoming = Image1.multiply(0.0971); 
var B6_incoming = Image1.multiply(0.089); 
var B7_incoming = Image1.multiply(0.0818); 
var B8_incoming = Image1.multiply(0.0722); 
 
// GENERATE AN IMAGE ARRAY OF 1 // 
var create_1 = dataset.select(['precipitable_water_entire_atmosphere']); 
var visParams = { 
  min: 0.0, 
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  max: 1230.0, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages = create_1.toList(create_1.size()); 
var image_array_list = listOfImages.get(0); 
var image_array = ee.Image(image_array_list); 
var image_array_1 = image_array.divide(image_array); 
 
// 1 - REFLECTANCE OF SW RADIATION FOR EACH BAND LAKE PIXELS // 
 
var B2_outgoing_lake = image_array_1.subtract(lakemask.select(['B2'])); 
var B3_outgoing_lake = image_array_1.subtract(lakemask.select(['B3'])); 
var B4_outgoing_lake = image_array_1.subtract(lakemask.select(['B4'])); 
var B5_outgoing_lake = image_array_1.subtract(lakemask.select(['B5'])); 
var B6_outgoing_lake = image_array_1.subtract(lakemask.select(['B6'])); 
var B7_outgoing_lake = image_array_1.subtract(lakemask.select(['B7'])); 
var B8_outgoing_lake = image_array_1.subtract(lakemask.select(['B8'])); 
 
// REFLECTANCE OF SW RADIATION FOR EACH BAND SLUSH PIXELS // 
 
var B2_outgoing_slush = image_array_1.subtract(slushmask.select(['B2'])); 
var B3_outgoing_slush = image_array_1.subtract(slushmask.select(['B3'])); 
var B4_outgoing_slush = image_array_1.subtract(slushmask.select(['B4'])); 
var B5_outgoing_slush = image_array_1.subtract(slushmask.select(['B5'])); 
var B6_outgoing_slush = image_array_1.subtract(slushmask.select(['B6'])); 
var B7_outgoing_slush = image_array_1.subtract(slushmask.select(['B7'])); 
var B8_outgoing_slush = image_array_1.subtract(slushmask.select(['B8'])); 
 
// REFLECTANCE OF SW RADIATION FOR EACH BAND ICE PIXELS // 
 
var B2_outgoing_ice = image_array_1.subtract(icemask.select(['B2'])); 
var B3_outgoing_ice = image_array_1.subtract(icemask.select(['B3'])); 
var B4_outgoing_ice = image_array_1.subtract(icemask.select(['B4'])); 
var B5_outgoing_ice = image_array_1.subtract(icemask.select(['B5'])); 
var B6_outgoing_ice = image_array_1.subtract(icemask.select(['B6'])); 
var B7_outgoing_ice = image_array_1.subtract(icemask.select(['B7'])); 
var B8_outgoing_ice = image_array_1.subtract(icemask.select(['B8'])); 
 
// Total shortwave radiation flux across each band for lake pixels // 
 
var SW_flux_B2_lake = B2_incoming.multiply(B2_outgoing_lake); 
var SW_flux_B3_lake = B3_incoming.multiply(B3_outgoing_lake); 
var SW_flux_B4_lake = B4_incoming.multiply(B4_outgoing_lake); 
var SW_flux_B5_lake = B5_incoming.multiply(B5_outgoing_lake); 
var SW_flux_B6_lake = B6_incoming.multiply(B6_outgoing_lake); 
var SW_flux_B7_lake = B7_incoming.multiply(B7_outgoing_lake); 
var SW_flux_B8_lake = B8_incoming.multiply(B8_outgoing_lake); 
 
// Total shortwave radiation flux across each band for slush pixels // 
 
var SW_flux_B2_slush = B2_incoming.multiply(B2_outgoing_slush); 
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var SW_flux_B3_slush = B3_incoming.multiply(B3_outgoing_slush); 
var SW_flux_B4_slush = B4_incoming.multiply(B4_outgoing_slush); 
var SW_flux_B5_slush = B5_incoming.multiply(B5_outgoing_slush); 
var SW_flux_B6_slush = B6_incoming.multiply(B6_outgoing_slush); 
var SW_flux_B7_slush = B7_incoming.multiply(B7_outgoing_slush); 
var SW_flux_B8_slush = B8_incoming.multiply(B8_outgoing_slush); 
 
// Total shortwave radiation flux across each band for ice pixels// 
 
var SW_flux_B2_ice = B2_incoming.multiply(B2_outgoing_ice); 
var SW_flux_B3_ice = B3_incoming.multiply(B3_outgoing_ice); 
var SW_flux_B4_ice = B4_incoming.multiply(B4_outgoing_ice); 
var SW_flux_B5_ice = B5_incoming.multiply(B5_outgoing_ice); 
var SW_flux_B6_ice = B6_incoming.multiply(B6_outgoing_ice); 
var SW_flux_B7_ice = B7_incoming.multiply(B7_outgoing_ice); 
var SW_flux_B8_ice = B8_incoming.multiply(B8_outgoing_ice); 
 
/////// Sum of shortwave radiation budget across all spectral bands ///// 
var total_SW_lake = 
SW_flux_B2_lake.add(SW_flux_B3_lake).add(SW_flux_B4_lake).add(SW_flux_B5_lake).add(SW_flux
_B6_lake).add(SW_flux_B7_lake).add(SW_flux_B8_lake); 
 
var total_SW_slush = 
SW_flux_B2_slush.add(SW_flux_B3_slush).add(SW_flux_B4_slush).add(SW_flux_B5_slush).add(SW_
flux_B6_slush).add(SW_flux_B7_slush).add(SW_flux_B8_slush); 
 
var total_SW_ice = 
SW_flux_B2_ice.add(SW_flux_B3_ice).add(SW_flux_B4_ice).add(SW_flux_B5_ice).add(SW_flux_B6_i
ce).add(SW_flux_B7_ice).add(SW_flux_B8_ice); 
 
Map.addLayer(total_SW_lake, visParams,'shortwave lakes'); 
Map.addLayer(total_SW_slush, visParams,'shortwave slush'); 
 
// NET shortwave radiation budget for lake region // 
var sum_SW_rad_lake = total_SW_lake.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sum_SW_rad_lake, 'sum SW lake'); 
 
// AVERAGE shortwave radiation budget for lake region //   
var sum_SW_rad_lake_mean = total_SW_lake.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sum_SW_rad_lake_mean, 'mean SW lake'); 
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// NET shortwave radiation budget for slush region // 
var sum_SW_rad_slush = total_SW_slush.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sum_SW_rad_slush, 'sum SW slush'); 
 
// AVERAGE shortwave radiation budget for slush region // 
 
var sum_SW_rad_slush_mean = total_SW_slush.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sum_SW_rad_slush_mean, 'mean SW slush'); 
 
 
// NET shortwave radiation budget for ice region // 
var sum_SW_rad_ice = total_SW_ice.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
print(sum_SW_rad_ice, 'sum SW ice'); 
 
// AVERAGE shortwave radiation budget for ice region // 
 
var sum_SW_rad_ice_mean = total_SW_ice.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
print(sum_SW_rad_ice_mean, 'mean SW ice'); 
 
///////////// START LONGWAVE CALCULATION//////////////// 
 
// Import air temperature data at 2m  
var airtemp_2m = dataset.select(['temperature_2m_above_ground']); 
var visParams = { 
  min: 0.0, 
  max: 1230.0, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages_temp = airtemp_2m.toList(airtemp_2m.size()); 



109 
 

var temp_list = listOfImages_temp.get(0); 
var airtemp_image = ee.Image(temp_list); 
 
// Convert temperature in celcius to kelvin // 
var airtemp_kelvin = airtemp_image.add(273.15); 
Map.addLayer(airtemp_kelvin, visParams, 'airtemp 2m'); 
 
// Calculate temperature of pixel at lake surface using bands 11 and 12 SWIR 
 
var convert_irrad_lake = lakemask.expression( 
    '14387/(1.6*log(1+119104200/(10.485*((B11 + B12)/ (0.25*1000000)))))', { 
      'B11': lakemask.select('B11'), 
      'B12': lakemask.select('B12') 
}); 
var visParamslaketemp = { 
  min: 253, 
  max: 283, 
   palette: ['blue', 'yellow', 'red'], 
}; 
Map.addLayer(convert_irrad_lake, visParamslaketemp, 'lake temp kelvin'); 
 
// Calculate temperature of pixel at slush surface using bands 11 and 12 SWIR 
 
var convert_irrad_slush = slushmask.expression( 
    '14387/(1.6*log(1+119104200/(10.485*((B11 + B12)/ (0.25*1000000)))))', { 
      'B11': slushmask.select('B11'), 
      'B12': slushmask.select('B12') 
}); 
var visParamsslushtemp = { 
  min: 270, 
  max: 290, 
  palette: ['blue', 'yellow', 'red'], 
}; 
Map.addLayer(convert_irrad_slush, visParamsslushtemp, 'slush temp kelvin'); 
 
 
// Calculate temperature of pixel at ice surface using bands 11 and 12 SWIR 
 
var convert_irrad_ice = icemask.expression( 
    '14387/(1.6*log(1+119104200/(10.485*((B11 + B12)/ (0.25*1000000)))))', { 
      'B11': icemask.select('B11'), 
      'B12': icemask.select('B12') 
}); 
 
// Calculate incoming and outgoing longwave radiation 
// e_lake = 0.97 
// e_slush = 0.94 
// e_ air = 0.9 
// stefan_boltz = 0.0000000567 
 
var LW_in = airtemp_kelvin.pow(4).multiply(0.9).multiply(0.0000000567); 
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var LW_out_lake = convert_irrad_lake.pow(4).multiply(0.97).multiply(0.0000000567); 
 
// Calculate net longwave radiation per metre of lake area 
 
var net_LW_lake_per_metre = LW_in.subtract(LW_out_lake); 
Map.addLayer(net_LW_lake_per_metre,visParams, 'LW radiation lakes'); 
var LW_out_slush = convert_irrad_slush.pow(4).multiply(0.94).multiply(0.0000000567); 
var net_LW_slush_per_metre = LW_in.subtract(LW_out_slush); 
 
// Map net longwave radiation per metre of lake area 
Map.addLayer(net_LW_slush_per_metre,visParams, 'LW radiation slush'); 
 
// Calculate NET of longwave radiation for total lake region 
 
var sum_LW_rad_lake = net_LW_lake_per_metre.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: lakemask.geometry(), 
  scale: 20, 
  maxPixels: 1e9 
}); 
 
// Calculate AVERAGE longwave radiation for lake region 
var sum_LW_rad_lake_mean = net_LW_lake_per_metre.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 20, 
  maxPixels: 1e9 
}); 
print(sum_LW_rad_lake_mean, 'mean of LW lake'); 
print(sum_LW_rad_lake, 'sum of LW lake'); 
 
// Calulate NET longwave radiation at slush region 
var sum_LW_rad_slush = net_LW_slush_per_metre.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sum_LW_rad_slush, 'sum of LW slush'); 
 
// Calculate AVERAGE longwave radiation at slush 
var sum_LW_rad_slush_mean = net_LW_slush_per_metre.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sum_LW_rad_slush_mean, 'mean of LW slush'); 
 
// Calculate net longwave radiation per metre of ice area // 
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var LW_out_ice = convert_irrad_ice.pow(4).multiply(0.99).multiply(0.0000000567); 
var net_LW_ice_per_metre = LW_in.subtract(LW_out_ice); 
Map.addLayer(net_LW_ice_per_metre,visParams, 'LW radiation ice'); 
 
 
//////////// CALCULATE SENSIBLE HEAT FLUX  /////////////// 
 
// Extract wind speed from GFS data 
 
var wind_speed = dataset.select(['v_component_of_wind_10m_above_ground']); 
var visParams_wind = { 
  min: -64, 
  max: 54, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages_wind = wind_speed.toList(wind_speed.size()); 
var wind_list = listOfImages_wind.get(0); 
var wind_image = ee.Image(wind_list); 
Map.addLayer(wind_image,visParams_wind,'wind speed GFS'); 
 
// Wind speed multiplied by temp difference for lake regions 
 
var sens_step1_lake = wind_image.multiply(airtemp_kelvin.subtract(convert_irrad_lake)); 
var sens_step2_lake = sens_step1_lake.multiply(1275); 
 
// Wind speed multiplied by temp difference for slush regions 
 
var sens_step1_slush = wind_image.multiply(airtemp_kelvin.subtract(convert_irrad_slush)); 
var sens_step2_slush = sens_step1_slush.multiply(1275); 
 
// Wind speed multiplied by temp difference for ice regions 
 
var sens_step1_ice = wind_image.multiply(airtemp_kelvin.subtract(convert_irrad_ice)); 
var sens_step2_ice = sens_step1_ice.multiply(1275); 
 
// Calculate Richardson Number at Lake regions 
 
var rich_lake = (airtemp_kelvin.subtract(convert_irrad_lake)).multiply(98); 
var rich_lake_2 = rich_lake.divide((wind_image.pow(2)).multiply(airtemp_kelvin)); 
var mask_lake_ri_negative = rich_lake_2.gt(0); 
var lake_ri_negative = rich_lake_2.updateMask(mask_lake_ri_negative); 
Map.addLayer(lake_ri_negative, visParams, 'negative richardson for lakes'); 
 
var mask_lake_ri_positive = rich_lake_2.lt(0); 
var lake_ri_positive = rich_lake_2.updateMask(mask_lake_ri_positive); 
Map.addLayer(lake_ri_positive, visParams, 'positive richardson for lakes'); 
 
// Calculate Richardson Number at Slush regions 
 
var rich_slush = (airtemp_kelvin.subtract(convert_irrad_slush)).multiply(98); 
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var rich_slush_2 = rich_slush.divide((wind_image.pow(2)).multiply(airtemp_kelvin)); 
var mask_slush_ri_negative = rich_slush_2.gt(0); 
var slush_ri_negative = rich_slush_2.updateMask(mask_slush_ri_negative); 
Map.addLayer(slush_ri_negative, visParams, 'negative richardson for slush'); 
 
var mask_slush_ri_positive = rich_slush_2.lt(0); 
var slush_ri_positive = rich_slush_2.updateMask(mask_slush_ri_positive); 
Map.addLayer(slush_ri_positive, visParams, 'positive richardson for slush'); 
 
// Calculate Richardson Number at ice regions 
 
var rich_ice = (airtemp_kelvin.subtract(convert_irrad_ice)).multiply(98); 
var rich_ice_2 = rich_ice.divide((wind_image.pow(2)).multiply(airtemp_kelvin)); 
var mask_ice_ri_negative = rich_ice_2.gt(0); 
var ice_ri_negative = rich_ice_2.updateMask(mask_ice_ri_negative); 
Map.addLayer(ice_ri_negative, visParams, 'negative richardson for ice'); 
 
var mask_ice_ri_positive = rich_ice_2.lt(0); 
var ice_ri_positive = rich_ice_2.updateMask(mask_ice_ri_positive); 
Map.addLayer(ice_ri_positive, visParams, 'positive richardson for ice'); 
 
// Calculate Ct... If Ri < 0   lake 
 
var ct_lake_numerator = lake_ri_negative.multiply(-0.0452).add(0.0013); 
var ct_lake_denominator = (lake_ri_negative.pow(0.5).multiply(50.986)).add(1); 
var Ct_lake_ri_negative = ct_lake_numerator.divide(ct_lake_denominator); 
 
// // Calculate Ct... If Ri < 0   slush - commented because slush ri is always positive 
 
// var ct_slush_numerator = rich_slush_2.multiply(-0.0452).add(0.0013); 
// var ct_slush_denominator = (rich_slush_2.pow(0.5).multiply(50.986)).add(1); 
// var Ct_slush_ri_negative = ct_slush_numerator.divide(ct_slush_denominator); 
 
// Calculate Ct... If Ri < 0   ice 
 
var ct_ice_numerator = ice_ri_negative.multiply(-0.0452).add(0.0013); 
var ct_ice_denominator = (ice_ri_negative.pow(0.5).multiply(50.986)).add(1); 
var Ct_ice_ri_negative = ct_ice_numerator.divide(ct_ice_denominator); 
 
// Calculate Ct... If Ri > 0  lake 
 
var Ct_lake_ri_positive_step1 = (lake_ri_positive.multiply(20)).add(1); 
var Ct_lake_ri_positive = (Ct_lake_ri_positive_step1.pow(-2)).multiply(0.0013); 
 
// Calculate Ct... If Ri > 0  slush 
 
var Ct_slush_ri_positive_step1 = (slush_ri_positive.multiply(20)).add(1); 
var Ct_slush_ri_positive = (Ct_slush_ri_positive_step1.pow(-2)).multiply(0.0013); 
 
// Calculate Ct... If Ri > 0  ice 
var Ct_ice_ri_positive_step1 = (ice_ri_positive.multiply(20)).add(1); 
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var Ct_ice_ri_positive = (Ct_ice_ri_positive_step1.pow(-2)).multiply(0.0013); 
 
// Calculate sensible heat lakes (for both Ri positive and negative) 
 
var sensible_heat_lakes_negative = sens_step2_lake.multiply(Ct_lake_ri_negative); 
var sensible_heat_lakes_positive = sens_step2_lake.multiply(Ct_lake_ri_positive); 
var visParamsRineg = { 
  min: -64, 
  max: 54, 
  palette: ['green', 'yellow', 'red'], 
}; 
var visParamsRipos = { 
  min: -64, 
  max: 54, 
  palette: ['cyan','green'], 
}; 
 
Map.addLayer(sensible_heat_lakes_negative, visParamsRineg,'sensible heat lakes negative RI'); 
Map.addLayer(sensible_heat_lakes_positive, visParamsRipos,'sensible heat lakes positive RI'); 
 
// Calculate sensible heat slush (assuming that Ct is generally negative) 
 
var sensible_heat_slush = sens_step2_slush.multiply(Ct_slush_ri_positive); 
Map.addLayer(sensible_heat_slush,visParams,'sensible heat slush'); 
 
// Calculate sensible heat ice (for both Ri positive and negative) 
 
var sensible_heat_ice_negative = sens_step2_ice.multiply(Ct_ice_ri_negative); 
var sensible_heat_ice_positive = sens_step2_ice.multiply(Ct_ice_ri_positive); 
 
// Plot sensible heat for ice regions 
Map.addLayer(sensible_heat_ice_negative, visParams,'sensible heat ice negative RI'); 
Map.addLayer(sensible_heat_ice_positive, visParams,'sensible heat ice positive RI'); 
 
 
// Calculate average sensible heat slush 
var sensible_average_slush = sensible_heat_slush.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sensible_average_slush, 'mean sensible heat slush'); 
 
// Calculate average sensible heat lakes 
var sensible_average_lakes_negative = sensible_heat_lakes_negative.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
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// Calculate average sensible heat lakes 
var sensible_average_lakes_positive = sensible_heat_lakes_positive.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(sensible_average_lakes_positive, 'mean of sensible heat lakes positive'); 
print(sensible_average_lakes_negative, 'mean of sensible heat lakes negative'); 
 
// Calculate average sensible heat ice 
var sensible_average_ice_negative = sensible_heat_ice_negative.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
// Calculate average sensible heat ice 
var sensible_average_ice_positive = sensible_heat_ice_positive.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
print(sensible_average_ice_positive, 'mean of sensible heat ice positive'); 
print(sensible_average_ice_negative, 'mean of sensible heat ice negative'); 
 
 
////////// CALCULATE LATENT HEAT FLUX ////////////// 
 
var specific_hum_air = dataset.select(['specific_humidity_2m_above_ground']); 
var visParams_wind = { 
  min: 0, 
  max: 0.03, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages_humidity = specific_hum_air.toList(specific_hum_air.size()); 
var humidity_list = listOfImages_humidity.get(0); 
var specific_hum_image = ee.Image(humidity_list); 
Map.addLayer(specific_hum_image,visParams_wind,'specific humidity GFS'); 
 
var latent_step1 = wind_image.multiply(3188775); 
var latent_step2_lakes = latent_step1.multiply(Ct_lake_ri_positive); 
var latent_step2_lakes_negativeCt = latent_step1.multiply(Ct_lake_ri_negative); 
var latent_step2_slush = latent_step1.multiply(Ct_slush_ri_positive); 
var latent_step2_ice = latent_step1.multiply(Ct_ice_ri_positive); 
var latent_step2_ice_negativeCt = latent_step1.multiply(Ct_ice_ri_negative); 
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// Create image array of constant value - use precipitation image 
 
var specific_precip = dataset.select(['total_precipitation_surface']); 
var visParams_wind = { 
  min: 0, 
  max: 627, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages_precip = specific_precip.toList(specific_precip.size()); 
var precip = listOfImages_precip.get(3); 
var precip_image = ee.Image(precip); 
var image_253000000_constant = precip_image.multiply(0).add(253000000); 
 
var entire_precip = dataset.select(['precipitable_water_entire_atmosphere']); 
var visParams_wind = { 
  min: 0, 
  max: 627, 
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'], 
}; 
var listOfImages_entire = entire_precip.toList(entire_precip.size()); 
var precip_1 = listOfImages_entire.get(1); 
var precip_image_1 = ee.Image(precip_1); 
var image_5420_constant = precip_image_1.multiply(0).subtract(5420); 
 
Map.addLayer(image_5420_constant, visParams); 
Map.addLayer(image_253000000_constant, visParams); 
 
// Calculate pv 
 
var power_slush = image_5420_constant.divide(convert_irrad_slush); 
var power_lake = image_5420_constant.divide(convert_irrad_lake); 
var power_ice = image_5420_constant.divide(convert_irrad_ice); 
 
var p_v_slush = image_253000000_constant.pow(power_slush); 
var p_v_lake = image_253000000_constant.pow(power_lake); 
var p_v_ice = image_253000000_constant.pow(power_ice); 
 
// Calculate surface specific humidity (qs) (assume atmospheric pressure at sea level - 100 kPa) 
 
var numerator_surface_humidity_lake = p_v_lake.multiply(0.622); 
var numerator_surface_humidity_slush = p_v_slush.multiply(0.622); 
var numerator_surface_humidity_ice = p_v_ice.multiply(0.622); 
 
var denominator_surface_humidity_lake = (p_v_lake.multiply(-0.378)).add(1000000); 
var denominator_surface_humidity_slush = (p_v_slush.multiply(-0.378)).add(1000000); 
var denominator_surface_humidity_ice = (p_v_ice.multiply(-0.378)).add(1000000); 
 
var qs_lake = numerator_surface_humidity_lake.divide(denominator_surface_humidity_lake); 
var qs_slush = numerator_surface_humidity_slush.divide(denominator_surface_humidity_slush); 
var qs_ice = numerator_surface_humidity_ice.divide(denominator_surface_humidity_ice); 
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// Final step to calculate latent heat 
 
var latent_heat_lake = (specific_hum_image.subtract(qs_lake)).multiply(latent_step2_lakes); 
var latent_heat_lake_negative = 
(specific_hum_image.subtract(qs_lake)).multiply(latent_step2_lakes_negativeCt); 
var latent_heat_slush = (specific_hum_image.subtract(qs_slush)).multiply(latent_step2_slush); 
var latent_heat_ice = (specific_hum_image.subtract(qs_ice)).multiply(latent_step2_ice); 
var latent_heat_ice_negative = 
(specific_hum_image.subtract(qs_ice)).multiply(latent_step2_ice_negativeCt); 
 
Map.addLayer(latent_heat_lake, visParams, 'latent heat lake'); 
Map.addLayer(latent_heat_slush, visParams, 'latent heat slush'); 
Map.addLayer(latent_heat_ice, visParams, 'latent heat ice'); 
 
// Calculate average latent heat lakes 
var latent_average_lakes = latent_heat_lake.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(latent_average_lakes, 'average latent heat for lakes'); 
 
// Calculate average latent heat lakes negative Ct 
var latent_average_lakes_negative = latent_heat_lake_negative.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(latent_average_lakes_negative, 'average latent heat for lakes with negative Ct'); 
 
// Calculate average latent heat slush 
var latent_average_slush = latent_heat_slush.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(latent_average_slush, 'average latent heat for slush'); 
 
// Calculate average latent heat ice 
var latent_average_ice = latent_heat_ice.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
print(latent_average_ice, 'average latent heat for ice'); 
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// Calculate average latent heat ice negative Ct 
var latent_average_ice_negative = latent_heat_ice_negative.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
////////////////// CALCULATE TOTAL SEB ///////////////// i.e sum of SW, LW, latent and sensible heat 
fluxes (average per pixel at 10m) 
 
var SEB_lake1 = total_SW_lake.add(net_LW_lake_per_metre); 
//var SEB_lake2 = sensible_heat_lakes_positive.add(latent_heat_lake); // excluded because 
negligible effect 
//var SEB_lake3 = sensible_heat_lakes_negative.add(latent_heat_lake_negative); // excluded 
because negligible effect 
var SEB_slush = 
total_SW_slush.add(net_LW_slush_per_metre);//.add(sensible_heat_slush).add(latent_heat_slush); 
var SEB_ice = total_SW_ice.add(net_LW_ice_per_metre); 
 
//// Calculate average SEB 
var average_SEB_lake1 = SEB_lake1.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
//// Calculate sum SEB 
var sum_SEB_lake1 = SEB_lake1.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: lakemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
 
//// Calculate average SEB 
// var average_SEB_lake2 = SEB_lake2.reduceRegion({ 
//   reducer: ee.Reducer.mean(), 
//   geometry: latent_heat_lake.geometry(), 
//   scale: 10, 
//   maxPixels: 1e9 
// }); 
//// Calculate average SEB 
// var average_SEB_lake3 = SEB_lake3.reduceRegion({ 
//   reducer: ee.Reducer.mean(), 
//   geometry: latent_heat_lake_negative.geometry(), 
//   scale: 10, 
//   maxPixels: 1e9 
// }); 
//// Calculate average SEB 
var average_SEB_slush = SEB_slush.reduceRegion({ 
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  reducer: ee.Reducer.mean(), 
  geometry: slushmask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
//// Calculate sum SEB 
var sum_SEB_slush = SEB_slush.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: slushmask.geometry(), 
  scale: 10,  
  maxPixels: 1e9 
}); 
 
// Calculate average SEB ice 
var average_SEB_ice = SEB_ice.reduceRegion({ 
  reducer: ee.Reducer.mean(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
// Calculate total SEB ice 
var total_SEB_ice = SEB_ice.reduceRegion({ 
  reducer: ee.Reducer.sum(), 
  geometry: icemask.geometry(), 
  scale: 10, 
  maxPixels: 1e9 
}); 
print(average_SEB_lake1, 'mean SEB lakes'); 
print(average_SEB_lake2, 'total SEB lakes'); 
print(average_SEB_lake3, 'total SEB lakes'); 
print(average_SEB_slush, 'mean SEB slush'); 
print(sum_SEB_lake1, 'total SEB lakes'); 
print(sum_SEB_slush, 'total SEB slush'); 
print(average_SEB_ice,'mean SEB ice'); 
print(total_SEB_ice,'sum SEB ice'); 
 
/////////////////         END OF SURFACE ENERGY BALANCE MODEL 2020 //////////////// 
 
Code (2) for calculating lake/slush extent based on PCA-histogram thresholds:  

Sentinel-2 images: https://code.earthengine.google.com/a4aff4d14b437f4159d69d0a60887e46 
Landsat 8 images: https://code.earthengine.google.com/0fa5a7d0f5462ff932d21d5a5394970d  

Code (3) for calculating lake/slush extent based on blue-red normalised threshold (adapted from 

Arnold, 2019, code): https://code.earthengine.google.com/a4aff4d14b437f4159d69d0a60887e46 

Code (4) for identifying minima and maxima of histograms in Python: contact author for text file. 

Code (5) for calculating lake bottom albedo:  

Landsat 8 images: https://code.earthengine.google.com/5b124e2db14998a99a03a0788853cfef 

Sentinel-2 images: https://code.earthengine.google.com/6b03b35180ed061173a11163d4c30b64  

https://code.earthengine.google.com/a4aff4d14b437f4159d69d0a60887e46
https://code.earthengine.google.com/0fa5a7d0f5462ff932d21d5a5394970d
https://code.earthengine.google.com/a4aff4d14b437f4159d69d0a60887e46
https://code.earthengine.google.com/5b124e2db14998a99a03a0788853cfef
https://code.earthengine.google.com/6b03b35180ed061173a11163d4c30b64
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8.3  Spectral Data Histograms 

Figure S1. Blue (B2) to red (B4) NDWI ratio calculated for each pixel over the whole region from 
Sentinel-2 image captured on 31/01/2019. Pixel data binned into 400 bins. Distinct snow, slush and 

lake peaks can be identified with narrower bins.  Positive tail indicates the presence of lakes and 
implies NDWIs of > 0.2.  

 

 

Figure S2. NIR (B8) to SWIR (B11) NDWI ratio calculated for each pixel over the whole region from 

Sentinel-2 image captured on 31/01/2019. Pixel data binned into 100 bins. Distinct lake and slush 

peaks calculated at 0.93 and 0.96 respectively. Lake peak not clearly identified. 
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Figure S3. Green (B3) to SWIR (B11) NDWI ratio calculated for each pixel over the whole region from 
Sentinel-2 image captured on 31/01/2019. Pixel data binned into 400 bins. Distinct snow and slush 

peaks with positively skewed plateau indicating lake covered regions. Lakes with modified NDWI of > 
0.3 which agrees with threshold applied by Stokes et al. (2019) for East Antarctica. 

 

Figure S4. Blue (B2) to red (B4) NDWI ratio calculated for each pixel over the whole region from 
Landsat 8 image captured on 14/01/2020. Pixel data binned into 400 bins. Distinct snow, slush and 

lake peaks can be identified with narrower bins.  Positive tail indicates the presence of lakes and 
implies NDWIs of > 0.3.  
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8.4   Pixel Training Data 

  
Pixel 
No. Spectral Irradiance for Band (W/m^2) 

    B1 B12 B2 B3 B4 B5 B6 B7 B8 

 11.38,-70.49, 11.39,-70.49       

Lakes 0 7052 35 6350 4611 2314 1820 1380 1283 1042 

 1 7090 36 6416 4731 2579 2024 1550 1415 1192 

 2 7185 33 6552 4805 2637 2136 1819 1579 1325 

 3 7061 23 6283 4573 2256 1721 1343 1208 1010 

 4 7013 46 6290 4713 2731 2303 1888 1793 1527 

 5 7090 27 6476 4625 2161 1668 1181 1101 859 

 6 7187 31 6609 4899 2752 2275 1819 1649 1387 

 7 6995 38 6367 4624 2255 1782 1313 1218 981 

 8 7069 27 6392 4529 2049 1522 1127 1011 820 

 9 7125 29 6526 4901 2941 2455 2033 1860 1571 

 10 6935 42 6197 4528 2445 2010 1654 1496 1264 

 11 6982 26 6321 4521 2133 1620 1228 1100 905 

 12 7013 38 6300 4577 2374 1851 1497 1339 1157 

Slush  11.49,-70.50, 11.50,-70.49       

 13 8562 142 8287 7314 6950 6725 6498 6097 5615 

 14 8527 124 8233 7247 6789 6528 6277 5863 5382 

 15 8509 124 8213 7179 6675 6395 6172 5737 5285 

 16 8556 127 8212 7112 6413 6121 5858 5406 4892 

 17 8554 137 8257 7226 6714 6451 6208 5834 5328 

 18 8537 124 8155 7134 6568 6298 6087 5634 5116 

 19 8549 130 8192 7181 6657 6413 6174 5775 5259 

 20 8537 122 8142 7076 6422 6143 5920 5411 4910 

 21 8542 136 8187 7148 6528 6273 5997 5634 5120 

 22 8521 128 8149 7061 6293 5974 5659 5175 4666 

 23 8539 137 8241 7179 6566 6326 6076 5647 5095 

 24 8554 124 8268 7238 6721 6479 6210 5765 5305 

 25 8548 130 8260 7239 6759 6547 6260 5872 5344 

 26 8549 134 8239 7172 6593 6275 6071 5563 5145 

 27 8510 132 8181 7151 6569 6252 5973 5565 5102 

 28 8499 126 8145 7090 6430 6110 5791 5356 4910 

 29 8566 131 8272 7248 6755 6477 6238 5802 5357 

Snow/Ice 11.28,-70.47, 11.29,-70.47       

 30 9153 200 8826 7894 7902 7757 7582 7183 6620 

 31 9135 185 8808 7854 7810 7623 7460 7035 6500 

 32 9134 188 8805 7862 7780 7576 7433 6980 6453 

 33 9146 194 8823 7891 7854 7663 7516 7119 6567 

 34 9154 194 8827 7906 7906 7731 7549 7148 6612 

 35 9139 185 8751 7796 7723 7552 7361 6979 6392 

 36 9143 187 8788 7822 7728 7558 7374 6935 6404 

 37 9131 187 8770 7834 7760 7559 7429 6994 6447 

 38 9146 179 8800 7844 7773 7600 7405 6992 6450 

 39 9146 178 8811 7861 7813 7619 7479 7035 6492 
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 40 9148 198 8823 7877 7844 7677 7494 7101 6542 

 41 9147 184 8791 7866 7808 7600 7439 7045 6503 

 42 9124 185 8804 7866 7794 7631 7458 7056 6490 

 43 9145 182 8795 7853 7809 7611 7468 7070 6505 

 44 9145 185 8785 7844 7813 7634 7469 7041 6468 

 45 9137 203 8821 7901 7870 7683 7530 7122 6580 

 46 9123 177 8817 7863 7794 7595 7421 7038 6465 

 47 9135 173 8776 7835 7754 7575 7376 6954 6426 

  48 9149 190 8801 7866 7827 7655 7478 7086 6544 

Table S3. Spectral data for training pixels extracted from Sentinel-2 image captured on 31/01/2019. 

Supraglacial features were identified by manual delineation (Figures S5-9). 

 

  
Pixel 
No. 

Reflectance 

    B2 B3 B4 B5 B6 B7 

Lakes 0 0.697248 0.362151 0.102314 0.044137 0.008827 0.007496 

 1 0.641583 0.289819 0.081273 0.043376 0.010425 0.008637 

 2 0.64866 0.294652 0.08835 0.050681 0.01111 0.009626 

 3 0.682714 0.354122 0.111902 0.057492 0.013203 0.011719 

 4 0.685644 0.330037 0.11312 0.071342 0.017617 0.0156 

 5 0.617574 0.239861 0.086067 0.055095 0.011339 0.010463 

 6 0.649497 0.272013 0.088883 0.056389 0.01229 0.010654 

 7 0.583862 0.217184 0.085991 0.055285 0.011529 0.009969 

 8 0.663879 0.493382 0.299408 0.151397 0.029298 0.027624 

 9 0.713457 0.508563 0.315541 0.185908 0.038277 0.036946 

 10 0.717376 0.555364 0.414126 0.306028 0.057606 0.056693 

 11 0.618487 0.450691 0.293662 0.187658 0.038239 0.03607 

 
 

      
Slush  12 0.832627 0.702157 0.660265 0.571534 0.059356 0.058405 

 13 0.853934 0.739939 0.7173 0.640289 0.059851 0.058748 

 14 0.830268 0.670576 0.526522 0.323112 0.040256 0.038506 

 15 0.824637 0.652959 0.481853 0.261435 0.036489 0.034739 

 16 0.835443 0.685948 0.57397 0.391372 0.050986 0.047752 

 17 0.806754 0.648355 0.509933 0.339588 0.053231 0.051633 

 18 0.851842 0.711707 0.608366 0.440722 0.057758 0.054372 

 19 0.853782 0.71361 0.637093 0.510808 0.070809 0.067689 

 20 0.851728 0.722475 0.657792 0.583634 0.07568 0.073549 

 21 0.838334 0.688764 0.562365 0.340577 0.038696 0.03687 

 22 0.843281 0.703641 0.602963 0.440341 0.050719 0.047105 

 23 0.851461 0.72784 0.670652 0.567654 0.056275 0.055361 

 24 0.815162 0.645464 0.482538 0.276731 0.048436 0.045963 

 25 0.825169 0.671033 0.532496 0.310024 0.050948 0.047637 

 
 

      
Snow/Ice 26 0.980447 0.878933 0.870828 0.778217 0.059433 0.060802 

 27 0.979801 0.885173 0.884298 0.813374 0.072598 0.075375 

 28 0.927445 0.826691 0.820489 0.754056 0.072712 0.075641 

 29 0.925695 0.821479 0.819119 0.763264 0.087931 0.089377 
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 30 0.954802 0.849597 0.843167 0.769161 0.065825 0.067727 

 31 0.916944 0.813564 0.80428 0.738836 0.085458 0.085839 

 32 0.941181 0.842862 0.841606 0.791534 0.088654 0.091394 

 33 0.945709 0.840655 0.835861 0.753903 0.067423 0.06845 

 34 0.886733 0.773423 0.756567 0.684692 0.06963 0.069668 

 35 0.903284 0.79492 0.780538 0.714332 0.066091 0.067499 

 36 0.926532 0.816722 0.804014 0.727916 0.064379 0.064721 

  37 0.961423 0.860136 0.851005 0.773879 0.063884 0.065406 

Table S4. Spectral data for training pixels extracted from Landsat 8 image captured on 14/01/2020. 

Supraglacial features were identified by manual delineation (Figures S5-9). 

 

8.5  PCA and SEB Model Results and Validation 

 

 

Table S5. Meteorological data from Global Forecast System Data from day of Sentinel-2 image 

acquisition and one day either side. Cell highlighted green is the timestamp of GFS data closest to 

image capture. Sentinel-2 images selected to represent each year from 2017-2019.  

Date Time Timestamp SW incoming Air temp Specific humidity Wind speed SW flux LW flux SW flux LW flux Air temp LW flux

30/01/2019 00:00 2019/01/30/00/00 0 273.4 0.0032 3.87 0 -30.5 0 -12.6 273.4 -12.6

30/01/2019 06:00 2019/01/30/06/00 300 274.4 0.0033 2.35 73.2 -25.7 131.9 -8.1 274.4 -8.1

30/01/2019 12:00 2019/01/30/12/00 660 274.5 0.0038 1.36 154.3 -25.2 283.6 -7.5 274.5 -7.5

30/01/2019 18:00 2019/01/30/18/00 180 271.6 0.00277 2.11 42.9 -37.6 79.3 -19.9 271.6 -19.9

31/01/2019 00:00 2019/01/31/00/00 0 266.1 0.00137 2.69 0 -59 0 -41.1 266.1 -41.1

31/01/2019 06:00 2019/01/31/06/00 400 268.8 0.0019 1.65 94.1 -47.4 173.2 -29.9 268.8 -29.9

31/01/2019 12:00 2019/01/31/12/00 680 271.98 0.00279 -0.752 160 -35.5 294.8 -17.7 271.98 -17.7

31/01/2019 18:00 2019/01/31/18/00 180 268.2 0.00169 1.87 43.1 -50.9 79.5 -33.3 268.2 -33.3

 01/02/2019 00:00 01/02/2019/00/00 0 264.7 0.001 1.79 0 -63.5 0 -45.9 264.7 -45.9

 01/02/2019 06:00 01/02/2019/06/00 390 267.7 0.0017 2.34 93.2 -52 170.9 -34.5 267.7 -34.5

 01/02/2019 12:00 01/02/2019/12/00 680 277.3 0.000022 -0.35 160 -45.3 294.9 -27.7 277.3 -27.7

 01/02/2019 18:00 01/02/2019/18/00 180 266.3 0.0017 1.27 42.2 -58.1 77.8 -40.5 266.3 -40.5

 10/01/2018 00:00 2018/01/10/00/00 40 264.8 0.0018 -1.07 9.4 -109.2 17.9 -55.7 264.8 -55.7

 10/01/2018 06:00 2018/01/10/06/00 490 269.5 0.0025 -1.16 118.4 -90.9 220.7 -36.9 269.5 -36.9

 10/01/2018 12:00 2018/01/10/12/00 760 272.8 0.0035 -0.16 170.1 -77.4 341.7 -24.2 272.8 -24.2

 10/01/2018 18:00 2018/01/10/18/00 260 271.6 0.0029 0.18 63.1 -82.7 117.5 -29.3 271.6 -29.3

11/01/2018 00:00 11/01/2018/00/00 30 266.3 0.0018 1.21 7.3 -103.2 15 -48.6 266.3 -48.6

11/01/2018 06:00 11/01/2018/06/00 490 270.9 0.0026 -0.38 118.7 -85.2 220.3 -31.1 270.9 -31.1

11/01/2018 12:00 11/01/2018/12/00 760 272.9 0.0028 -0.57 184.1 -77.2 341.7 -25.1 272.9 -25.1

11/01/2018 18:00 11/01/2018/18/00 260 269.8 0.0025 0.56 63 -89.9 117.5 -37 269.8 -37

12/01/2018 00:00 2018/01/12/00/00 30 265.5 0.0015 1.25 7.3 -106.6 15 -52.5 265.5 -52.5

12/01/2018 06:00 2018/01/12/06/00 500 269.8 0.0022 0.32 120.4 -89.8 224.1 -35.6 269.8 -35.6

12/01/2018 12:00 2018/01/12/12/00 770 271.8 0.0024 -0.44 186.4 -81.9 346.3 -29.3 271.8 -29.3

12/01/2018 18:00 2018/01/12/18/00 260 268.4 0.0022 0.42 63 -95.2 117.5 -42 268.4 -42

25/01/2017 00:00 2017/01/25/00/00 0 260.8 0.001 -0.98 0 -116.1 0 -77.4 260.8 -77.4

25/01/2017 06:00 2017/01/25/06/00 430 265.4 0.0016 0.039 101.5 -94.5 188.4 -55.9 265.4 -55.9

25/01/2017 12:00 2017/01/25/12/00 710 270 0.0022 -1.09 168.6 -77.7 314.2 -39.5 270 -39.5

25/01/2017 18:00 2017/01/25/18/00 210 238.7 0.0011 -0.969 49.6 -121.4 93 -83.1 268.7 -83.1

26/01/2017 00:00 2017/01/16/00/00 0 262.3 0.0012 2.43 0 -107.4 0 -69.1 262.3 -69.1

26/01/2017 06:00 2017/01/16/06/00 430 265.7 0.0015 2.09 102 -94.9 190.2 -56.8 265.7 -56.8

26/01/2017 12:00 2017/01/16/12/00 710 271 0.0025 0.66 168.6 -74.1 314.7 -36.7 271 -36.7

26/01/2017 18:00 2017/01/16/18/00 210 267.8 0.0019 3.35 48.3 -86.8 91.8 -49.2 267.8 -49.2

27/01/2017 00:00 2017/01/27/00/00 0 267.1 0.0019 2.55 0 -89.6 0 -51.2 267.1 -51.2

27/01/2017 06:00 2017/01/27/06/00 330 268.7 0.0021 3.08 81.1 -83.9 151.4 -46.2 268.7 -46.2

27/01/2017 12:00 2017/01/27/12/00 710 270.5 0.0025 0.349 168.6 -76.4 314.7 -38.7 270.5 -38.7

27/01/2017 18:00 2017/01/27/18/00 210 267.3 0.0018 3.34 48.3 -89.1 91.8 -50.9 267.3 -50.9

GFS data SEB model lakesSEB model slush
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Table S6. Meteorological data from Global Forecast System Data from one day either side of Landsat 

8 image acquisition. Landsat 8 images are selected to represent each year from 2018-2020. 

 

 

 

 

 

 

 

 

Date Time Timestamp SW incoming Air temp Specific humidity SW flux LW flux SW flux LW flux

13/01/2020 00:00 13/01/2020/00 30 266.3 0.0018 8.1 -100.5 11.8 -111.9

13/01/2020 06:00 13/01/2020/06 490 269.7 0.0025 129.8 -88.2 192.1 -99.6

13/01/2020 12:00 13/01/2020/12 760 272.1 0.0031 202.3 -78.3 299.9 -89.7

13/01/2020 18:00 13/01/2020/18 180 270.8 0.0029 47.2 -84.2 70.9 -95.7

14/01/2020 00:00 14/01/2020/00 20 269.7 0.0026 8.24 -88.5 8.24 -99.9

14/01/2020 06:00 14/01/2020/06 330 272.4 0.0032 134.5 -78.7 135.4 -90.1

14/01/2020 12:00 14/01/2020/12 620 273.2 0.0038 250 -74.3 250 -85.8

14/01/2020 18:00 14/01/2020/18 200 272.1 0.003 82.6 -79.8 82.6 -91.2

15/01/2020 00:00 15/01/2020/00 30 266.8 0.0017 11.8 -99.5 11.8 -110.9

15/01/2020 06:00 15/01/2020/06 480 270.9 0.0024 190.2 -84.8 190.2 -96.3

15/01/2020 12:00 15/01/2020/12 750 272.8 0.003 294.5 -76.6 294.5 -88.1

15/01/2020 18:00 15/01/2020/18 220 270.8 0.0022 86.7 -84.2 86.7 -95.6

24/01/2019 00:00 24/01/2019/00 0 261.1 0.0008 0.03 -63.1 0.61 -72.7

24/01/2019 06:00 24/01/2019/06 410 265.7 0.0015 113.4 -46.7 162.4 -56.3

24/01/2019 12:00 24/01/2019/12 720 269.4 0.0019 197.9 -32.4 283.8 -42

24/01/2019 18:00 24/01/2019/18 220 265.1 0.0015 59.1 -48.9 86.5 -58.6

25/01/2019 00:00 25/01/2019/00 0 262.1 0.001 0 -60.3 0 -69.9

25/01/2019 06:00 25/01/2019/06 440 265.8 0.0015 120.9 -46.7 173.7 -53.4

25/01/2019 12:00 25/01/2019/12 720 269.9 0.0022 197.9 -30.6 284.2 -40.2

25/01/2019 18:00 25/01/2019/18 190 267.7 0.0018 50.9 -39.2 73 -48.9

26/01/2019 00:00 26/01/2019/00 0 267.1 0.0015 0 -41.6 0 -51.3

26/01/2019 06:00 26/01/2019/06 320 268.9 0.0019 86 -34.5 127.7 -44.2

26/01/2019 12:00 26/01/2019/12 540 271.9 0.0025 149.5 -22.7 215.9 -32.3

26/01/2019 18:00 26/01/2019/18 140 270.8 0.002 38.5 -27.2 56.3 -36.9

07/01/2018 00:00 07/01/2018/00 40 265.5 0.0018 10.3 -80.1 17.8 -90.7

07/01/2018 06:00 07/01/2018/06 480 269.3 0.0026 117.4 -64.9 192.9 -75.5

07/01/2018 12:00 07/01/2018/12 740 272.8 0.0035 175 -52.6 302.4 -63.3

07/01/2018 18:00 07/01/2018/18 250 270.7 0.0029 58.6 -61.5 102 -72.1

08/01/2018 00:00 08/01/2018/00 40 265.3 0.0019 8.7 -79.9 15.9 -90.6

08/01/2018 06:00 08/01/2018/06 480 270.1 0.0027 177.8 -61.6 195.9 -72.2

08/01/2018 12:00 08/01/2018/12 760 272.8 0.0034 185 -51.9 307.4 -62.5

08/01/2018 18:00 08/01/2018/18 250 270.7 0.003 60.5 -60.7 102.5 -71.4

09/01/2018 00:00 09/01/2018/00 30 266.4 0.002 7.3 -77.66 13.5 -88.2

09/01/2018 06:00 09/01/2018/06 450 270.6 0.0027 106.2 -59.6 186 -70.3

09/01/2018 12:00 09/01/2018/12 760 272.9 0.0034 177 -50.2 305.3 -60.8

09/01/2018 18:00 09/01/2018/18 260 271.3 0.0032 61.7 -57.1 105.1 -67.7

GFS data SEB model slush SEB model lakes
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    Lake Extent (km2) 

   Least cloudy image PCA NDWI 

Sentinel-2 

2017 50.3 32 

2018 68.9 49.4 

2018 8.4 3.4 

2019 29.3 11 

2019 89.4 33.9 
  

  

Landsat 8 

2016 20.8 7.9 

2017 105.2 37.5 

2018 78.4 67.8 

2019 45.9 30.3 

2020 88.2 44.7 

Table S7. Comparison of lake area calculated using NDWI (threshold 3) and PCA-histogram method.  

 

Image ID (COPERNICUS/S2/…) Date Area selected (co-ordinates) Description  Figure  

20190111T080929_20190111T080926_T32DNG 11/01/2019 11.645, -70.604, 11.798, -70.591 Lake/slush S6a 

20190111T080929_20190111T080926_T32DNG 11/01/2019 11.571, -70.524, 11.643, -70.505 Slush zone S6b 

20190111T080929_20190111T080926_T32DNG 11/01/2019 11.398, -70.533, 11.470, -70.511 Open water  S6c 

20190131T080929_20190131T080941_T32DNG 31/01/2019 11.645, -70.604, 11.798, -70.591 Lake/slush  S7a 

20190131T080929_20190131T080941_T32DNG 31/01/2019 11.398, -70.533, 11.470, -70.511 Open water  S7c 

20190131T080929_20190131T080941_T32DNG 31/01/2019 11.571, -70.524, 11.643, -70.505 Slush zone  S7b 

20181222T080929_20181222T080923_T32DNG 22/12/2018 11.376, -70.705, 11.448, -70.686 Open water  S8a 

20181222T080929_20181222T080923_T32DNG 22/12/2018 11.638, -70.499, 11.710, -70.480 Slush zone  S8b 

20180111T080921_20180111T080919_T32DNG 11/01/2018 11.643, -70.493, 11.715, -70.474 Open water  S9a 

20180111T080921_20180111T080919_T32DNG 11/01/2018 11.499, -70.523, 11.571, -70.504 Slush zone  S9b 

20170126T080921_20170126T080920_T32DNG 26/01/2017 11.746, -70.590, 11.826, -70.572 Open water  S10a 

20170126T080921_20170126T080920_T32DNG 26/01/2017 11.779, -70.536, 11.859, -70.518 Slush zone   S10b 

Table S8. Images selected from Sentinel-2 collection with polygons for manually delineated lake and 

slush areas defined. Figures refer to image cropped to area of interest and displayed with RGB bands 

in QGIS (Figures S5-9). 
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Image Date 
Average 

Daily Lake 
SEB  

Average 
Daily Slush 

SEB  

Average 
Daily Ice 

SEB  

Sum SEB 
Lake 

Sum SEB Slush Sum SEB Ice 

01/11/2016 78.93 4.73 -69.17 181706072.9 -26051.4 -3553874327 

02/11/2016 81.15 15.00 -81.03 199055290.8 -25725.8 -3729331351 

03/11/2016 101.03 2.60 -88.33 161925220.7 471568.9 -976398515.4 

03/12/2016 100.05 -2.18 -14.87 175448505.8 653060.575 -817193929 

04/12/2016 90.00 -0.43 -9.20 166630624.7 543141 -915984798.1 

05/12/2016 116.28 41.23 -12.73 194511611 881171.84 -1128625801 

10/12/2016 126.73 56.63 -15.77 179658750 575127.475 -1258650201 

11/12/2016 111.05 61.17 -21.07 199293009.2 888089.02 -1070223425 

12/12/2016 68.90 54.37 -16.53 169898698.5 -9870460.45 -2676340529 

19/12/2016 72.25 49.63 -63.40 168968321.9 -10107097 -2720309069 

20/12/2016 116.85 51.73 -64.20 186337781.9 -9047978.55 -2601114479 

21/12/2016 173.73 36.93 -60.17 435167133.1 12150928.25 -763703931.3 

26/12/2016 150.75 38.37 -10.87 487832105.8 14634890.15 -381344157.6 

27/12/2016 82.10 37.57 0.83 381582411.4 5078891.5 -527480526.3 

28/12/2016 108.75 38.13 -2.60 382906023.5 -1114480.175 -1566890706 

04/01/2017 101.30 36.30 -30.03 378715642.3 -991599.6 -1538031164 

05/01/2017 135.13 30.00 -33.30 347972471.7 -2229743.45 -1649161043 

06/01/2017 131.53 9.00 -38.13 470308312.7 4469664.375 -1406195123 

11/01/2017 141.40 8.84 -28.47 447436955.2 1445903.4 -1659164540 

12/01/2017 116.15 3.53 -40.40 490320054 9882553.07 -1088900359 

13/01/2017 102.43 51.57 -22.17 586302144.7 -538274.15 -952903691.8 

18/01/2017 98.30 72.70 -17.43 540469674 -3491532.2 -1031727980 

19/01/2017 129.00 49.80 -19.93 519717295.5 -7418732.025 -1264026366 

20/01/2017 95.38 31.20 -26.20 129209829.4 -23430689.78 -3726932414 

25/01/2017 93.18 32.97 -68.43 146417048 -11537025.4 -3232719301 

26/01/2017 100.13 26.73 -65.13 141011704.2 -10679682.35 -3108514674 

27/01/2017 81.55 -24.93 -60.90 432823614.7 -17965132.75 -1261779955 

03/02/2017 91.83 -34.63 -86.73 537187371 -17417065.28 -1111879668 

04/02/2017 81.95 -34.27 -18.77 466077421.2 -18280184.55 -1316240087 

05/02/2017 61.15 19.07 -26.83 367757139.4 -40270.84 -868738530.6 

12/02/2017 47.58 64.60 -11.10 332144445.9 -41732.6 -1034816816 

13/02/2017 73.50 65.63 -15.60 174310206.4 -69188.425 -1662269439 

       
20/12/2017 140.10 74.20 25.07 243775726.2 5147673.025 -539144120.1 

21/12/2017 144.45 77.23 21.53 240651380.1 4794017.475 -419889811.9 

22/12/2017 80.85 77.97 22.47 247283334.8 5370635.15 -529088355.9 

07/01/2018 123.18 19.77 -75.10 297473037.1 -134597552.7 -2957110535 

08/01/2018 123.83 -5.97 -71.57 305694724.6 -128367763.2 -2851835964 

09/01/2018 149.93 3.37 -72.73 302380829.8 -133302338.1 -2836605693 

31/01/2018 46.23 -6.80 -58.10 95508181.83 -42188663.33 -2912007304 

01/01/2018 50.08 -13.90 -54.83 105316740.4 -42852195.98 -2799838073 

02/01/2018 95.90 -11.37 -58.37 105314302.1 -41937713.53 -2978003734 

06/02/2018 75.93 -29.80 -74.80 128258194.4 -4488232.775 -2998291108 

07/02/2018 75.75 -36.50 -77.60 132951775.7 -5033053.025 -3192855989 

08/02/2018 51.18 -32.73 -79.13 113310505.1 -5387634.85 -3238108835 
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09/12/2018 27.20 -43.20 -88.80 179238.475 -15269875.94 -3692809372 

10/12/2018 45.03 -47.90 -87.73 149980.65 -15800305.75 -3679255592 

11/12/2018 63.15 -46.37 -79.40 286657.225 -10392709.3 -3302364498 

21/12/2018 149.38 36.47 -41.37 41471993.03 144451864.7 -2148565660 

22/12/2018 149.83 78.20 -44.03 42652225.68 145890601.2 -2257247828 

23/12/2018 59.00 83.43 -46.43 42334924.89 146366553.3 -2241428240 

23/12/2018 161.13 23.55 -18.07 188889346.3 2185010.925 -920236803.5 

24/12/2018 159.15 -2.90 -6.83 200260215.9 3113416.148 -595373612.4 

25/12/2018 150.63 -12.23 -11.03 194433312.9 2753104.825 -726945452 

10/01/2019 12.38 -47.13 -129.73 1753852.05 -168543033.4 -6046060713 

11/01/2019 11.88 -61.10 -117.50 17692194.05 -137647256.9 -5443084020 

12/01/2019 104.63 -53.60 -123.33 -422962.65 -162857490.1 -5798707826 

24/01/2019 111.40 -14.77 -17.07 424860437.3 -3089219.1 -881029056.8 

25/01/2019 103.13 19.80 -19.50 435879822.3 -661350.15 -952572883.8 

26/01/2019 24.75 16.97 -27.70 326206750 -7617512.6 -1191504504 

30/01/2019 106.13 26.43 6.03 300585136.2 279124395.8 -120888981.1 

31/01/2019 101.18 27.40 -6.47 286181115.5 120282823.7 -636970571.3 

01/02/2019 97.83 23.23 -13.30 265660146.9 86600932.6 -939721164.6 

18/02/2019 77.18 34.33 -56.57 73798.15 -317964.175 -992209932.4 

19/02/2019 71.65 42.07 -48.40 78035.1 -203243.1825 -868261647.7 

20/02/2019 106.05 48.40 -55.95 68104.775 -339351.725 -1001647450 

       
24/11/2019 62.40 35.23 -37.93 46659198.34 202031.3375 -1828137498 

25/11/2019 59.15 35.70 -39.10 44120965.18 69401.865 -1914416936 

26/11/2019 61.23 28.03 -44.83 40959804.65 -250948.75 -2185073319 

03/12/2019 86.38 43.10 -47.07 11441879.85 -637685.125 -2151985548 

04/12/2019 80.50 64.73 -35.80 13834726.4 832364.9075 -1750800741 

05/12/2019 68.85 50.97 -40.77 12193225.38 523553.925 -1864068375 

10/12/2019 139.30 -3.17 5.13 113009406.2 1712555.125 -193773618.1 

11/12/2019 139.33 -16.80 0.80 114388997.1 1551476.775 -358121788.4 

12/12/2019 95.50 -12.77 1.93 114899945.7 1590465.7 -372660318.1 

12/12/2019 141.10 35.83 16.23 224031608.9 4214131.118 234054669.8 

13/12/2019 142.25 56.53 11.53 215280865.4 3452589.875 27333530.35 

14/12/2019 141.45 58.77 15.87 219148476.3 4420803.35 229258019.5 

28/12/2019 67.53 59.37 -16.60 201515642 -67489084.08 -1056265556 

29/12/2019 67.78 60.20 -14.57 210354859.8 -61119138.58 -946325413.3 

30/12/2019 128.79 58.33 -16.70 206348824.8 -64200215.43 -1003219642 

13/01/2020 74.31 31.97 -71.50 219854331.4 -81719331.93 -1636999080 

14/01/2020 88.08 12.90 -58.90 324213986.5 -48454183.77 -1445991737 

 

Table S9. Average and net SEB model results for lake, slush and clean ice for each model run. Image 

dates correspond to Landsat 8 and Sentinel-2 image acquisition dates where < 20% cloud cover was 

found. 
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Table S10. Inferred energy (J) from peak lake volume at the end of each austral summer and 

cumulative modelled energy (J) calculated for whole lake region. Inferred energy derived from lake 

volume calculated from images listed. Cumulative energy calculated across total lake area summed 

up until same image date as used for lake volume derivation. 

Date for Cumulative 

Energy Calculation 
Image ID for Lake Volume Calculation Inferred Energy (J)

Cumulative 

Modelled Energy (J)

Landsat 8 13/02/2017 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20170213 2595374324 422964962.9

04/02/2017 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20170204 3017049206 1641747149

08/01/2018 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20180108 2120028928 522277526.7

07/02/2018 LANDSAT/LC08/C01/T2_TOA/LC08_167110_20180207 1309112202 465633619.3

19/02/2019 LANDSAT/LC08/C01/T2_TOA/LC08_166110_20190219 3494263916 743139648.2

14/01/2020 LANDSAT/LC08/C01/T2_TOA/LC08_165110_20200114 1936382291 1058112150

Sentinel 2 26/01/2017 COPERNICUS/S2/20170126T080921_20170126T080920_T32DNG 6880876877 1136679213

11/01/2018 COPERNICUS/S2/20180111T080921_20180111T080919_T32DNG 9118001284 808004393.5

22/12/2018 COPERNICUS/S2/20181222T080929_20181222T080923_T32DNG 449548085.7 1180446.7

11/01/2019 COPERNICUS/S2/20190111T080929_20190111T080926_T32DNG 2001844240 399135379.7

31/01/2019 COPERNICUS/S2/20190131T080929_20190131T080941_T32DNG 9140319035 1216075059




