
172 CHIMIA 2015, 69, No. 4 Laureates: Junior Prizes, sCs FaLL Meeting 2014
doi:10.2533/chimia.2015.172 Chimia 69 (2015) 172–175 © Schweizerische Chemische Gesellschaft

*Correspondence: I. J. Koenkaa

Tel.: +41 61 267 1061
E-mail: yoelk@tx.technion.ac.il
aDepartment of Chemistry
University of Basel
Spitalstrasse 51, CH-4056 Basel
bDepartment of Analytical Chemistry,
Physical Chemistry and Chemical Engineering
University of Alcalá
Ctra. Madrid-Barcelona Km 33.6
Alcalá de Henares 28871, Madrid, Spain

Instrumentino: An Open-Source Software
for Scientific Instruments

Israel Joel Koenka§*a, Jorge Sáizb, and Peter C. Hausera

§SCS-Metrohm Award for best oral presentation

Abstract: Scientists often need to build dedicated computer-controlled experimental systems. For this purpose,
it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards
and associated integrated software development environments provide affordable yet powerful solutions for the
implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is,
however, a challenge to write programs that allow interactive use of such arrangements from a personal computer.
This task is particularly complex if some of the included hardware components are connected directly to the
computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore
developed to allow the creation of control programs for complex systems with minimal programming effort. By
writing a single code file, a powerful custom user interface is generated, which enables the automatic running of
elaborate operation sequences and observation of acquired experimental data in real time. The framework, which
is written in Python, allows extension by users, and is made available as an open source project.

Keywords: Arduino · Computer-control of experiments · Data acquisition · Graphical user interface ·
Purpose-made instruments · Python

1. Introduction

Experimental scientists are often con-
fronted with the need to build purpose-
made instruments and experimental sys-
tems for investigating new scientific phe-
nomena. Building such systems however,
requires a range of technical skills, such as
machining, electronics and computer pro-
gramming, in which many scientists are not
proficient. For this reason universities em-
ploy technical staff to assist in the building
process. But while a mechanical workshop
is common, and an electronics engineer is
often available, the required programming
efforts are usually left to the scientists
themselves to fulfill. This has been real-
ized by industry, and visual programming
environments (such as LabVIEW) have
been made available to alleviate some of
the difficulties of programming electroni-
cally controlled hardware. Unfortunately,
these tools are often very expensive and

not always sufficiently easy to use.
In the past few years, a new trend

has emerged among experimental scien-
tists.[1–13] More and more research groups
are inspired by the open-source hardware
world, incorporating open-source micro-
controller platforms in their systems,
Arduino[14] being the best known of these.

Arduinos are small electronic printed
circuit boards, carrying a programmable
microcontroller that allows users to eas-
ily operate attached electronic devices by
setting and reading voltage levels on its
output and input pins. The Arduino pro-
gramming environment provides all that
is necessary to set the voltage levels in a
predetermined sequence, but very little to
interactively control the system or allow
the user to monitor the acquired data in real
time. This is usually essential for an exper-
imental system. Moreover, experimental
set-ups often require hardware units that
are connected directly to the computer (e.g.
through a USB port) and cannot be inter-
faced through an Arduino. The need for an
easy way to create graphical user interface
(GUI) programs for custom experimental
set-ups was identified in our group, which
led us to develop Instrumentino.

Instrumentino is an open-source frame-
work for developing custom GUI programs
to control experimental systems and instru-
ments, while requiring only a minimal pro-
gramming effort. The user only needs to
provide a single system configuration file
in which details about the set-up are given.

The outcome is a fully functional and user-
friendly graphical control program for that
system which is comparable to commer-
cial products. It allows the user to graphi-
cally control each individual component
in the system, and to orchestrate their op-
eration to create elaborate and automatic
running sequences. Moreover, it graphi-
cally presents real-time acquired data, and
automatically saves it for later analysis.
Importantly, Instrumentino enables the si-
multaneous operation of several hardware
controllers, which do not necessarily have
to be Arduino boards.

Instrumentino was written in Python, a
popular high-level programming language
that is easier to learn and understand than
most traditional languages (such as C).
Python has also the advantage of being
platform-independent. Free online courses
to introduce non-programmers to the world
of Python are available.[15]

Initially, Instrumentino was developed
to answer the system control needs of our
research group, in particular to operate
purpose-made capillary electrophoresis
instruments. Soon it became the standard
for system control in our group, and more
than a dozen projects have been realized
in a relatively short time. A publication on
Instrumentino has appeared in Computer
Science Communications.[16] The source
code is available at the GitHub repository
hosting service,[17] and user-contributed
additions may be deposited there as well.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by edoc

https://core.ac.uk/display/42924704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Laureates: Junior Prizes, sCs FaLL Meeting 2014 CHIMIA 2015, 69, No. 4 173

ponents, accompanied by the information
required for their operation. Appropriate
Python classes describe the components
and are provided with the essential infor-
mation such as pin numbers, voltage rang-
es etc. If an appropriate class is not already
present, it has to be added to Instrumentino.
Once a new class has been added to the
Instrumentino source code repository, ev-
eryone can use it, which is one of the ben-
efits of being an open-source project.

The second list contains meaningful
basic actions that the system is required
to perform. These are short pieces of
Python code (functions) that achieve ba-
sic tasks. For example, running the action
‘Pressurize’ (see Fig. 2) tells the system to
set a certain pressure for a given amount of
time, after which the pressure is released.
Both the pressure and the time to wait are
given as arguments to the action function.
The user may define many actions with dif-
ferent levels of complexity to account for
all of the functionalities of the set-up.

These two lists contain the core infor-
mation on the system and represent all the
required programming effort. The exact
technical details on how to correctly define
these lists can be found in documents and
examples in the Instrumentino directory
on GitHub.[17] The outcome is an execut-
able Python file, which when run, starts
a customized GUI program for the set-up
defined.

4.2 The Graphical User Interface
Instrumentino was designed to provide

a system-dependent GUI in a uniform for-
mat, using the information given in the sys-
tem configuration file. The main window is
divided into three sub-windows (views) as
shown in Fig. 2: the component view, the
automation view and the log view.

4.2.1 The Component View
The first view from the left is the com-

ponent view, which provides the most ba-
sic way to access the components of the

2. Controlling/Monitoring Physical
Properties

To clarify how Instrumentino is used,
a simple example system in which an
Arduino is employed is given in Fig. 1. The
dashed parts of the figure represent option-
al hardware connected via a USB interface
to the computer. A more complicated ex-
ample including third-party controllers is
given elsewhere.[16] The example instru-
ment is a small box, in which the tempera-
ture and pressure need to be controlled.
These physical properties can be set in a
closed system, by using a thermostat and
a pressure controller respectively, both of
which can be electronically controlled via
an Arduino.

The way to electronically control a
physical property is to combine a sensor
and an actuator in a closed feedback loop.
A proportional-integral-derivative (PID)
thermostat, for example, is composed of
a thermometer (sensor) and a heating el-
ement (actuator), which in this example
are operated directly by the Arduino. The
temperature is read using an analog input
pin (pin A1) and the heating element is pe-
riodically turned on and off to reach the
desired value using a digital pin (pin D2).
The PID control feedback loop for the ther-
mostat is closed in the Arduino itself, i.e.
the actuator is controlled by the software
running on the Arduino according to the
measured sensor signal.

Another example is the control of pres-
sure with a dedicated electronic pressure
controller (e.g. OEM-EP, Parker–Hannifin,
Cleveland OH, USA). The desired pressure
can be set via the Arduino by supplying a
voltage between 0 and 5 V proportional
to the pressure within the possible range
(1000 and 2000 mbar in the example), so
0, 2.5 and 5 volts will result in 1000, 1500
and 2000 mbar pressure respectively. Since
most Arduino boards do not have analog
output pins, an external digital to analog
converter (D/A) converts a PWM (Pulse
Width Modulation) digital signal from
pin D3 to an analog voltage for the pres-
sure controller. The actual pressure can be
read from the pressure controller, similar
to the temperature, as an analog signal (in-
put pin A0).

3. PC-Arduino Interaction

The physical properties in the exam-
ple are controlled and monitored by the
Arduino I/O pins. In order to let the user
issue commands to the Arduino, a program
(called a Sketch in the Arduino environ-
ment) was written to run on the Arduino
which constantly listens to incoming tex-
tual commands from the USB port of the
computer and acts upon them. The Sketch

was called Controlino to imply that it lets
the user control an Arduino from the PC.
For example, when the user types in ‘Read
A0’ or ‘Write D3 0’, Controlino reads the
voltage level on analog pin A0 and sends it
back via the same serial connection, or sets
pin D3 to 0 volts respectively. In the ex-
ample, this would have the effect of read-
ing the pressure, or setting it to its minimal
value of 1000 mbar. On the PC side, the in-
teraction is automated with Instrumentino.

4. How Instrumentino Works

Instrumentino is a software platform,
written in Python, for developing custom
GUI programs to control scientific instru-
ments. It releases the user from dealing
with low-level technical details such as pin
numbers and voltage levels.

4.1 The Python Description File
An experimental system may involve

numerous components of different kinds,
and each component in turn may control
one or more experimental variables. The
thermostat and pressure controller in the
example (Fig. 1) are quite simple, having
only one variable each (temperature and
pressure respectively). Each of these vari-
ables are characterized by their operating
range and their physical units (e.g. 1000–
2000 mbar or 0–100 °C), and the required
electrical connections for each parameter
consist of two pins (an input pin and an
output pin). This information is all that is
necessary for translating high-level user
commands such as ‘set the pressure to 2000
mbar’ to the low-level operation of setting
pin D3 to output 5 volts. This information
is provided to Instrumentino through a text
file, which is written in Python and called
the System Configuration File.

The system configuration is displayed
on the left in Fig. 2. As can be seen, the
system configuration data is composed of
two parts. The first is a list of system com-

DIGITAL SIGNALS

ANALOG SIGNALS

USB CONNECTION TO PC

Digital pins D3 D2 D1 D0• • • Experimental Setup

PID Thermostat

Pressure Controller
Analog pins A3 A2 A1 A0• • •

THIRD PARTY CONTROLLER THIRD PARTY HARDWARECONTROL SIGNALS

D/A

Fig. 1. A simple experimental system, composed of a thermostat and a pressure controller, which
are controlled via an Arduino.

174 CHIMIA 2015, 69, No. 4 Laureates: Junior Prizes, sCs FaLL Meeting 2014

have many overlaid traces, it was made
possible to turn their visibility on or off
by clicking on the matching entry in the
graph legend (in the example, the trace of
‘Property3’ is toggled off). All traces are
plotted on a common vertical axis, reflect-
ing the current values as a percentage of
the relevant variable range. In case of bi-
polar variables (e.g. –50 to +100), positive
results are plotted as solid lines and nega-
tive results as dashed lines (for the ranges
0 to +100 and 0 to –50 respectively). This
allows to maintain a common zero point
on the percentage scale for all variables, as
otherwise the display can be very confus-
ing. A set of graph orientation controls (not
shown in Fig. 2) allows the user to freeze
the timeline and zoom on different areas of
interest in the graph.

Like the automation view, the log view
can host either a graphical signal log or a
textual operation log (not shown) which re-
cords the user’s operations (e.g. ‘run meth-
od 1.mtd @ 09:30, 1/1/2015’). The outputs
of both logs are automatically saved as .csv
and .txt files respectively, using the current
date and time as the file name. The signal
log can later be opened in any spreadsheet
program to view the raw data. For the sake
of simplicity digital signals are not shown
on the screen but their values are saved in
the signal log file.

system. Each component is given a tile in
which all of its controllable variables are
shown with their current values (e.g. as
read through the Arduino). The values of
analog variables such as pressure and tem-
perature can also be set in text boxes within
the ranges defined in the system configura-
tion file. Digital on/off-signals are shown
as radio buttons and can also be set. It is
also possible that a single component of
the system may have several variables of
different kinds.

4.2.2 The Automation View
The next view from the left is the au-

tomation view, in which Methods and
Sequences can be defined and run. Methods
and Sequences present two levels of auto-
mation. A Method is an extendable list of
the actions defined in the system configu-
ration file. The arguments given to the ac-
tion functions (e.g. pressure and time) can
be set by the user in matching text boxes,
shown alongside the name of the action.
In this way, an elaborate method can be
defined to achieve a desired experimental
goal. Once defined, a Method can be saved
as a .mtd file for later use. This allows the
user to define a library of Methods in order
to save time and effort.

The next level of automation is the
Sequence mode. A Sequence is simply a

list of Methods from the user’s Method li-
brary. Each item in the list can be defined
to be repeated several times if necessary
in order to build long operational runs that
may last days or even months. This is par-
ticularly useful when certain experimental
parameters need to be optimized. A series
of Methods can be made to cover the rel-
evant parameter space and automatically
run without user intervention. Once fin-
ished, the overall results can be analyzed
by inspecting the log view.

4.2.3 The Log View
The rightmost view is used to present

the user with graphical and textual records
of the usage of the experimental system. As
long as the software is running, experimen-
tal data of system variables (e.g. pressure,
temperature) is recorded on the computer
and plotted in an overlaid manner as a time
series. The log view in Fig. 2 shows the
temperature and pressure traces after the
example Method was started at 09:30. The
temperature, which had been set to 40 °C
in the first entry, increased over time from
25 °C and was followed by two pressure
steps of 1500 and 1750 mbar (50 and 75%
respectively).

Each trace is given a different combina-
tion of color and line thickness for distinc-
tion. As a highly complicated system may

Configuration file (Python)

Pressurize (pressure, time)
SetPressure (pressure)
Sleep (time)
SetPressure (1000)

Action list

Component list
PressureController (2, 3, [1000,2000], 'mbar')

Graphical User Interface
Component View
Pressure Controller
Pressure:
Set to:

1500.00 mbar
1500.00 mbar

Sequence
1 C:\1.mtd Repeat: 2

Method
1 Thermostat temp (ºC): 40.00

Log View

⇅
File System

⇅C:\1.mtd
⇅

Thermostat (1, 0, [0,100], 'ºC')
AnotherComp (InPin, OutPin, range, units)

Thermostat (temperature)
SetThermostat (temperature)

AnAction (param1, param2)
Action Body
...

Thermostat
Temperature:
Set to:

25.00 ºC
25.00 ºC

Another Component
Property 3:
Set to:

Property 4:

00.00 units
00.00 units

◉ On ◎ Off

2 Pressurize pressure (mbar):
time (s):

1500.00
60.00

3 Pressurize pressure (mbar):
time (s):

1750.00
60.00

2 C:\2.mtd Repeat: 1

3 C:\3.mtd Repeat: 15

C:\1.seq C:\usageLog.txt
C:\signalLog.csv

Automation View
Pressure, [1000,2000] mbar
Temperature, [0,100] ºC
Property3, [0,100] %

100

80

60

40

20

0
09:30 09:31 09:32 09:33

09:33, Jan 1, 2015

USB TO CONTROLLERS

STOP

Fig. 2. Schematic diagram of how Instrumentino is used to control the example system in Fig. 1.

Laureates: Junior Prizes, sCs FaLL Meeting 2014 CHIMIA 2015, 69, No. 4 175

5. Current Systems Employing
Instrumentino

As mentioned earlier in the text, most
of the projects using Instrumentino so far
have concerned capillary electrophoresis
instruments, built for different purposes.
This includes dual-channel portable in-
struments for the analysis of fireworks[7]
(Fig. 3) and for the environmental analysis
of surface water near an old mine, a sta-
tionary system for unmanned automatic
wastewater monitoring, a system for in-
vestigating electrophoresis dynamics by
using an array of detectors, a system for
handling sub-microliter sample volumes,
and systems for on-line pre-concentration
of diluted samples. Instrumentino has also
been chosen to be used in projects outside
our lab, such as for an automated coulo-
metric micro-titrator, a low-cost apparatus
for measuring thermo-mechanical rock
properties, and even for teaching students
in physics teaching labs.

Fig. 3. Photograph of the dual-channel por-
table CE system.[7]

Besides simplifying the construction
and operation of purpose-made experi-
mental arrangements, another possible
benefit of using Instrumentino is cost sav-
ings. Instruments which are commonly
used in laboratories and are usually bought
from commercial suppliers may be built
in-house at significantly lower cost. For
example, an electronic control box for four
mass flow controllers (MFC) was built in
our group for as little as 50 CHF, while a
similar commercial product would have
cost about 1,000 CHF. MFCs are used in
many laboratories for the exact setting of
gas flows towards a reaction or measure-
ment chamber. Each MFC (e.g. from MKS
Instruments, Andover MA, USA) has a
connector with analog input and output
pins for setting the desired mass flow and
reporting the current flow value respective-
ly. These devices can be controlled by an
Arduino as easily as the pressure control-
ler of Fig. 1. Therefore, an Arduino-based

interface was constructed in our group to
control up to four MFCs simultaneously
as seen in Fig. 4 and this has been used
for different purposes. The design can
easily be extended to more MFCs (e.g.
up to 16 different MFCs when using an
Arduino Mega[18]). In combination with
Instrumentino this control box enables the
user to control the gas flows in software to
conduct experiments automatically.

6. Conclusions

Open-source hardware and software
enables researchers with limited exper-
tise in electronics and programming to
construct complex apparatus, offering op-
portunities for substantial cost savings to
research labs.[6] Instrumentino is one of
many such tools to assist in the building
of custom-made and routinely used appli-
ances for conducting research. Since its
development it has been incorporated in
many projects, enabling their quick real-
ization, and it has drawn the attention of
peers elsewhere. As a free open-source
project, Instrumentino has the potential to
grow. The authors invite fellow experimen-
tal scientists to join the open source devel-
opment of Instrumentino, for a greater mu-
tual benefit.

Acknowledgements
The authors are grateful for finan-

cial support by the Swiss National Science
Foundation through grants 200020-149068 and
IZK0Z2-157622/1.

Conflicts of interest
The authors have declared no conflict of

interest.

Received: January 14, 2015

[1] G. C. Anzalone, A. G. Glover, J. M. Pearce,
Sensors 2013, 13, 5338.

[2] E. T. da Costa, M. F. Mora, P. A. Willis, C. L.
do Lago, H. Jiao, C. D. Garcia, Electrophoresis
2014, 35, 2370.

[3] C. Galeriu, The Physics Teacher 2013, 51, 156.
[4] G. Gasparesc, ‘36th International Conference

on Telecommunications and Signal Processing
(TSP)’, 2013, p. 340, DOI:10.1109/
tsp.2013.6613948,

[5] J. A. Kornuta, M. E. Nipper, J. B. Dixon, J.
Biomech. 2013, 46, 183.

[6] J. M. Pearce, Science 2012, 337, 1303.
[7] J. Sáiz, M. T. Duc, I. J. Koenka, C. Martín-

Alberca, P. C. Hauser, C. García-Ruiz, J.
Chromatogr. A 2014, 1372, 245.

[8] J. Sáiz, M. Thanh Duc, P. C. Hauser, C. Garcia-
Ruiz, Electrophoresis 2013, 34, 2078.

[9] A. H. Shajahan, A. Anand, ‘International
Conference on Energy Efficient Technologies
for Sustainability (ICEETS)’, 2013, p. 241.

[10] M. Thanh Duc, P. Thi Thanh Thuy, P. Hung
Viet, J. Sáiz, C. Garcia Ruiz, P.C. Hauser, Anal.
Chem. 2013, 85, 2333.

[11] V. Velusamy, K. Arshak, O. Korostynska, A. Al-
Shamma’a, Key Eng. Mat. 2013, 543, 47.

[12] G. S. Zahn, C. Domienikan, R. P. M. Carvalhaes,
F. A. Genezini, ‘XXXV Brazilian Workshop On
Nuclear Physics’, 2013, p. 141.

[13] M. Zolkapli, S. A. M. Al-Junid, Z. Othman,
A. Manut, M. A. Mohd Zulkifli, ‘International
Conference on Technology, Informatics, Ma-
na ge ment, Engineering and Environment
(TIME-E 2013)’, 2013, p. 43.

[14] Arduino, http://www.arduino.cc, retrieved Jan.
2015.

[15] B. Klein, online Python course, http://www.
python-course.eu/, retrieved Jan. 2015.

[16] I. J. Koenka, J. Sáiz, P. C. Hauser, Comput.
Phys. Commun. 2014, 185, 2724.

[17] I. J. Koenka, Instrumentino repository, https://
github.com/yoelk/Instrumentino, retrieved Jan.
2015.

[18] Arduino Mega, http://arduino.cc/en/Main/ardu-
inoBoardMega, retrieved Jan. 2015.

D/A D/A D/A D/A

Flow ➡

Mass
Flow

Controller Flow ➡

Mass
Flow

Controller Flow ➡

Mass
Flow

Controller Flow ➡

Mass
Flow

Controller

DIGITAL SIGNALS

ANALOG SIGNALS
Fig. 4. Schematic dia-
gram of the electrical
connections for an
MFC control box.

http://www.ingentaconnect.com/content/external-references?article=0173-0835(2013)34L.2078[aid=10572871]
http://www.ingentaconnect.com/content/external-references?article=0173-0835(2014)35L.2370[aid=10572875]
http://www.ingentaconnect.com/content/external-references?article=0173-0835(2014)35L.2370[aid=10572875]
http://www.arduino.cc,retrieved
http://www.arduino.cc,retrieved
http://www.arduino.cc,retrieved
http://www.python-course.eu/
http://www.python-course.eu/
http://arduino.cc/en/Main/ardu-

