EFFECTIVE MICROORGANISMS ON ORGANIC MATTER WITH CARBON AND NITROGEN MINERALISATION FOR EMPTY FRUIT BUNCHES COMPOSTING

CASSENDRA BONG PHUN CHIEN

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECTIVE MICROORGANISM ON ORGANIC MATTER WITH CARBON AND NITROGEN MINERALISATION FOR EMPTY FRUIT BUNCHES COMPOSTING

CASSENDRA BONG PHUN CHIEN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

APRIL 2015
Dedicated to my parents, brothers and friends for their love and understanding.
ACKNOWLEDGEMENTS

I want to take this opportunity to thank all the people at Institute of Bioproduct Development and Faculty of Chemical Engineering who supported and assisted me during my graduate studies in pursuit of my Master of Chemical Engineering degree. I would like to express my greatest gratitude and appreciation to my academic supervisor, Assoc. Professor Dr. Lee Chew Tin, for her encouragement, advises, critics and supports. I am also very thankful to my co-supervisors Dr. Chua Lee Suan and Prof. Dr. Mohamad Roji Sarmidi for their sincere supports and suggestions. This project would not be able to complete without their continued support and interest.

Special thanks to Pn. Siti Zulaiha Hanapi, Pn, Siti Hajar Mat Sarip, En. Aidee Kamal Khamis. Pn. Roslinda bt. Abd. Malek, Pn. Muna bte. Muhamed and all IBD members for their help and assistance with laboratory analysis to my research work. I would also like to thank Assoc. Professor Dr. Firdausi Razali for his valuable opinion and constructive suggestion for my work.

My fellow postgraduate students should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Unfortunately, it is not possible to list all of them in this limited space. Finally, I would like to express my sincere appreciation to all my family members.
ABSTRACT

This project aims to investigate the effect of Effective Microorganisms (EM) on the composting of oil palm empty fruit bunch (EFB) through organic matter degradation with carbon (C) and nitrogen (N) mineralisation by comparing the control sample (CTL) of EFB with no EM treatment and the EM-treated EFB sample (ETC). The maximum C mineralisation for CTL and ETC was recorded as 671.4 ± 86.55 mg CO$_2$ Ckg$^{-1}$d$^{-1}$ on day one and 713.5 ± 68.5mg CO$_2$ Ckg$^{-1}$d$^{-1}$ on day two respectively. ETC had C mineralisation remained significantly higher than CTL from day 28 until day 40 before falling on day 41 and became on par with CTL. The total organic matter loss was 3.75 ± 1.35% for CTL and 10.78 ± 3.77% for ETC. This resulted in a total mineralised C of 32.97 ± 2.25% and 37.7 ± 2.53% total organic carbon for CTL and ETC, respectively. For N mineralisation, the presence of NH$_4^+$ in early stage followed by NO$_3^-$ dominance on later stage indicated successful composting. CTL had final value of 0.1 and ETC had 0.04 for NH$_4^+$/NO$_3^-$ ratio. For curve fitting, first order kinetic model and first order exponential model were chosen as they were showed to better describe mineralization for recalcitrant organic matter by other studies. The first order exponential model showed better fit with p-value of 0.275 as compared to the first order model with p-value of 0.981 in this work. First order kinetic model failed to describe the N mineralisation with a high p-value of 0.989. The unfitness of models could be due to insufficient data over limited experimental time and sampling error for heterogenous materials. This study showed that both CTL and ETC were able to produce mature compost but ETC had better performance on the efficiency of EFB composting based on organic matter degradation, C and N mineralisation coupled with several others parameters (C/N, temperature, pH and microbial profile).
Projek ini bertujuan untuk menyiasat kesan Mikroorganisma Efektif (EM) atas proses pengkomposan sisa tandan kosong buah kelapa sawit (EFB) melalui penggunaan bahan organik dengan pemínernalan karbon (C) dan nitrogen (N). Sampel kawalan (CTL) yang tanpa tambahan EM manakala sampelETC ditambahkan dengan EM.Pemineralan C maksimumadalah671.4±86.55mgCO₂CKg⁻¹d⁻¹ pada hari pertamabagi CTL dan 713.5±68mgCO₂CKg⁻¹d⁻¹ pada hari kedua bagi ETC. ETC mempunyaipemineralan C yang lebih tinggi daripada CTL dari hari 28 hingga 40 sebelum ia menurun sehingga setanding dengan CTL pada hari41. BagiCTL, jumlah kehilangan bahan organik adalah 3.75±1.35% manakala ETC adalah 10.78±3.77%.Peratusan jumlah pemineralan C adalah 32.97±2.25% dan 37.7±2.53% untuk CTL dan ETC masing-masing. Bagi pemineralan N, dominasi NH₄⁺ pada peringkat awal dan NO₃⁻ pada peringkap seterusnya menunjukkan pengkomposan yang berjaya. Nilai terakhir untuk nisbah NH₄⁺/NO₃⁻ adalah 0.1 bagi CTL dan 0.04 bagi ETC. Bagi penyuaian lengkung, model kinetic terbib pertama dan model terbib pertama eksponen dipilih kerana pengajian lain telah menunjukkan kesesuaian model bagi mineralasi bahan organik yang tidak mudah dikomposkan. Model eksponen dengan p-value 0.275 adalah lebih baik dari model tertib pertama dengan p-value 0.981. Model kinetic tertib pertama didapati tidak sesuai untuk mineralisasi N dengan p-value rendah 0.989. Ketidaksesuaian model disebabkan oleh data yang tidak mencukupi, masa ujikaji yang terhad dan kesilapan persampelan. Pengajian ini menunjukkan CTL and ETC dapat menghasilkan kompos yang matang tetapi ETC mempunyai prestasi yang lebih baik dalam pereputan bahan organik, pemínrralan C dan N bersama-sama dengan parameter lain (C/N, suhu, pH dan profil mikrob).