THE ULTRASONIC WAVES EFFECTS ON OIL-WATER EMULSIFICATION, COALESCENCE, DETACHMENT, MOBILIZATION AND VISCOSITY IN POROUS MEDIA

HOSSEIN HAMIDI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Petroleum Engineering)

Faculty of Petroleum and Renewable Energy Engineering
Universiti Teknologi Malaysia

JULY 2014
This thesis is dedicated to my beloved wife who has been a great source of motivation and inspiration. Also, this thesis is dedicated to my parents who have supported me all the way since the beginning of my studies.

Without your love and support, I would not have made this thesis possible.

I love you all.
ACKNOWLEDGEMENT

I would like to thank God for giving me this opportunity to study and for being there for me through all the difficult times. I offer my thanks to my supervisor Assoc. Prof. Dr. Radzuan Junin, for all the support and guidance he has given, all the understanding he has shown and for being a great person and an excellent supervisor.

Special appreciation goes to my co-supervisor, Dr. Muhammad Manan, Head of Department of Petroleum Engineering for his guidance and constant support. My acknowledgement also goes to all the technicians and office staffs of Faculty of Petroleum and Renewable Energy Engineering for their co-operations.

I wish to thank my wife and parents for all the encouragement during my studies.

Finally, I would like to thank all those people who I have met in my life and who have influenced me in some way and helped me through my journey of life till this point.
ABSTRACT

Ultrasonic wave technique is an unconventional EOR method, which has been of interest to researchers for more than six decades. Emulsification and demulsification are phenomena which occur at the interface of oil and water under the influence of ultrasonic waves. Therefore, the conditions in which emulsification becomes dominant over demulsification due to ultrasonic radiation in porous media should be further investigated. However, surfactants are the principal agents that enable oil and water to mix and are often the most expensive component in an emulsion. Therefore, selecting an appropriate surfactant formulation capable of mobilization of oil without significant surfactant loss due to adsorption and phase separation in the reservoir is very important. Estimation of solubilization parameters are great tools in designing economical emulsion flooding compositions. In this study, the effect of ultrasonic waves on the amount of oil and water solubilized by a unit of surfactant were investigated. It was observed that the emulsion volume and amount of oil solubilized in emulsion were increased by increasing salinity under short periods of ultrasonic wave radiation, and demulsification of the emulsion occurred after longer period of radiation. In addition, Hele-Shaw model tests were conducted to show microscopically the effect of long and short periods of ultrasonic waves’ radiation at the interface of paraffin oil and surfactant solution/brine. Diffusion of phases, formation of emulsion and gas bubbles were observed after short periods of ultrasonic waves’ radiation. However, demulsification and coalescence of surfactant solution/brine droplets inside emulsion was initiated after long periods of ultrasound radiation. Another objective of this study was to investigate directly the effect of ultrasonic waves on viscosity changes in three types of oil (paraffin oil, synthetic oil, and kerosene) and a brine sample. It was observed that the viscosity of all the liquids was decreased under the influence of ultrasonic waves in both uncontrolled and controlled temperature conditions. However, the reduction was found to be more significant for uncontrolled temperature condition cases. In addition, micro-model experiments were conducted to show other oil recovery mechanisms such as oil droplet coalescence, oil mobilization, and oil detachment from dead end pores under the influence of ultrasonic waves. The results revealed that these mechanisms happen in porous media under the influence of ultrasonic waves. Therefore, it was concluded that the use of ultrasonic waves could be suggested, not as a substitute for conventional EOR methods, but as an alternative or complimentary tool, which in certain instances may make conventional methods more effective and less costly.
ABSTRAK