DEVELOPMENT OF SEISMIC HAZARD ASSESSMENT FOR SUDAN

ABUBAKER MOHAMED AHMED OSMAN

A report is submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil -Structure)

Faculty of Civil Engineering
UniversitiTeknologi Malaysia

JUNE 2013
ACKNOWLEDGEMENT

First and foremost, grateful thanks to Allah S.W.T for guiding and helping me throughout the completion of this dissertation. Thanks to Allah S.W.T for giving me the strength to complete this project and the strength to keep on living.

I also would like to extend my deepest gratitude to my supervisor, Prof. Dr. Azlan Adnan for his kind assistance and advice throughout this Master Project. Not to be forgotten are other lecturers who also helped a lot during the completion of this dissertation.

For my mother, father and family, thanks for encourage and support me through thick and thin, Thank you for being my inspiration, for your understanding and most importantly for your endless love. Thanks for being with me and motivate me whether I need it.

Without all of you I will not be able to stand where I am today.

Million words of thanks for fellow friends who showed their concern and support all the way, their views and tips are useful and indeed. And all who involved directly or indirectly during this study. _Only ALLAH_ can repay all your deeds, kindness and assistance to me. Insha ALLAH, Thank you. _Unfortunately, it is not possible to list._
Sudan has a long history of earthquakes. It is known to seismologists as areas of low moderate seismic activity, because it is located within interpolates regions. These interpolate earthquakes can be found on nearly every continent; therefore Sudan is not free from earthquake activities. The seismic hazard for Sudan, following the deterministic approach is done in this report. The input for computations is represented by source catalogue. Seismic sources are parameterized using the knowledge about past seismicity and from United States Geological Survey (USGS). In this study there are two attenuation equations McGuire, 1976 and K. W. Campbell 2002, 2003 that are used to calculate the peak ground acceleration (PGA). The earthquake with maximum PGA is the maximum credible earthquake. The results shows that the minimum value of PGA is 0.000094 and locate in South-Western Sudan and the maximum value of PGA IS 0.0014 and locate in northern Sudan so large parts of Sudan lies within zone zero according to Uniform Building Code (UBC) where the PGA between 0.0 to 0.05g. Therefore the seismicity of Sudan is low to moderate. Finally, the map of deterministic seismic hazard is drawn using all pervious results.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR APPROVAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General introduction 1
1.2 Problem statements 2
1.3 Objectives of Study 2
1.4 Scope of Study 3
2 LITERATURE REVIEW

2.1 Introduction 4
2.2 Background Seismicity 5
2.3 Background Tectonics 7
2.4 Seismic Hazard Analysis 13
 2.4.1 Earthquake Magnitude 14
 2.4.2 The source-to-site distance 15
 2.4.3 Earthquake rate of occurrence 16
2.5 Mmax Estimation 16
2.6 Previous studies on seismic hazard analysis 17

3 METHODOLOGY

3.1 Introduction 22
3.2 Deterministic Seismic Hazard Analysis 24
 3.2.1 Step 1: Identification of all sources 26
 3.2.2 Step 2: Selection of source-site distance 28
 3.2.3 Step 3: Selection of Controlling Earthquakes 29
 3.2.4 Step 4: Definition of hazard using controlling earthquake 30
3.3 Ground-Motion (Attenuation) Relations 30
 3.3.1 K. W. Campbell, 2002, 2003 31
 3.3.2 McGuire, 1976 32
3.4 The Seismicity of Sudan 33
 3.4.1 Rift systems in Sudan 34
 3.4.1.1 Southern Sudan rift system (SSRS) 34
 3.4.1.2 Central African rift system (CARS) in Sudan 34
 3.4.1.3 Eastern African Rift System (EARS) in Sudan 35
3.4.1.4 White Nile rift system (WNRS) 38
3.4.1.5 Blue Nile rift system (BNRS) 38
3.4.1.6 Atbara River rift system (ARRS) 38
3.5 Comparison of the result 39

4 SEISMIC HAZARD ASSESSMENT FOR SUDAN 41
4.1 Introduction 39
4.2 Earthquake Catalogue of Sudan 40
4.3 Seismic Source Regions 41
4.4 Analysis and Result: 43
4.5 Concluding remarks 54

5 CONCLUSIONS AND RECOMMENDATIONS 57
5.1 Conclusions 57
5.2 Recommendations 58

REFERENCES 59

APPENDIXS 64
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Proposed Seismic Source Regions of Sudan and its Vicinity</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Source Area 1</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Source Area 2</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Source Area 3</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Source Area 4</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>Source Area 5</td>
<td>45</td>
</tr>
<tr>
<td>4.7</td>
<td>Source Area 6</td>
<td>46</td>
</tr>
<tr>
<td>4.8</td>
<td>Source Area 7</td>
<td>46</td>
</tr>
<tr>
<td>4.9</td>
<td>Source Area 8</td>
<td>47</td>
</tr>
<tr>
<td>4.10</td>
<td>Source Area 9</td>
<td>48</td>
</tr>
<tr>
<td>4.11</td>
<td>Maximum Magnitude</td>
<td>49</td>
</tr>
<tr>
<td>4.12</td>
<td>Source-Site Distance (R)</td>
<td>49</td>
</tr>
<tr>
<td>4.13</td>
<td>Peak Ground Acceleration (PGA) from McGuire, 1976</td>
<td>50</td>
</tr>
<tr>
<td>4.15</td>
<td>Comparison between DSHA and PSHA</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Seismicity map of Sudan area, the two rectangles show the seismicity of the study area</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Histogram showing all the events in Sudan during the period from 1910 to 2007</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Geometry of rifting recorded in the northern Nile basins of central African rift system,</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Africa stress map</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>triangular diagram of stress regime</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>various measures of distance used in strong – motion predictive relationships</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology flow chart</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Four Steps of a deterministic seismic hazard analysis</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Arial sources and associated distances</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Selection of Controlling Earthquake</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(Combination of M2 and R2 produces highest value of Y)</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Seismic rift systems in Sudan</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Seismic Hazard Map from USGS</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>PGA from probabilistic approach study</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Seismic hazard map of Sudan using deterministic approach</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Earthquake Catalogue of Sudan</td>
<td>64</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Earthquakes are broad-banded vibratory ground motions, resulting from a number of causes including tectonic ground motions, volcanism, landslides, rock burst, and man-made explosions. Of these, naturally occurring tectonic-related earthquakes are the largest and most important. These are caused by a fracture and sliding of rock along faults within the earth's crust. The study of strong earthquake ground motions and associated seismic hazard and risk plays an important role for the sustainable development of societies in earthquake prone areas. Using the hazard estimates, risk analysis yields probabilistic, estimates of the expected losses of property and lives from earthquakes hazard estimation and vulnerability of structures, facilities, and people distributed over the site.

This research aims to conduct a seismic hazard analysis that covers all of Sudan. The methodology adopted to achieve this was a deterministic approach.
1.2 Problem statements

Sudan has a long history of earthquakes. It is known to seismologists as an area of low to moderate seismic activity because it is located within intraplate regions. These intraplate earthquakes can be found on nearly every continent, so Sudan is not free from earthquake activities. There are six major rift systems passing through Sudan. All these rifts are considered to be potential for earthquake energy. However, recent medium to large earthquakes struck different portions of the Sudan, e.g., the May 20, 1990 earthquake of magnitude 7.4 in southern Sudan (the largest earthquake in Africa), the August 1, 1993 and November 15, 1993, earthquake in Northern Kordofan State with magnitudes 5.5 and 4.3, and the earthquake that struck the population of Khartoum State in August, 1993.

1.3 Objectives of Study

The aim of this research is to obtain the maximum credible earthquake for the region in North Africa through the following objectives:

1. To identify seismic source zone
2. To derive seismic hazard assessment based on deterministic seismic hazard assessment approach (DSHA).
3. To draw the map of peak ground acceleration (PGA) for Sudan based on deterministic approach.
1.4 **Scope of study**

The scope of this study is summarized in:

1. identification and characterization of all sources
2. Selection of source-site distance parameter
3. Selection of “controlling earthquake”.
4. Definition of hazard using controlling earthquake.
REFERENCES

17. "Catalog of the Seismicity of Sudan for the Period 1632 - 1994", Published by the Seismological Research Unit, National Center for Research; Sudan, 1996.

