BUG ALGORITHM TO GUIDE WHEELCHAIR MOTION BASED ON OFFLINE ELECTRO-OCULOGRAPHY SIGNAL

ANWAR AHMED HUSSEIN AL-HADDAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

DECEMBER 2013
To my beloved father, mother, wife, son, and daughter.
ACKNOWLEDGEMENT

First and foremost, I would like to thank supervisor, Associate Professor Dr. Rubita binti Sudirman for the precious guidance and advice. She inspired me greatly to work in this study. Besides, I would like to thank my co-supervisor Mr. Camallil Omar for his support and recommendation.

The author is so grateful and would like to express his gratefulness to Universiti Teknologi Malaysia (UTM) and Ministry of Higher Education Malaysia for supporting and funding this study. The appreciation also goes to the Biomedical Instrumentation and Electronics Research Group (BMIE) especially Dr. Norlaili Mat Safri and other members for their advices to improve this study.

I would also like to take this opportunity to thank my research assistances, Muhammad Rashid bin Jimin and Koo Yin Hui for their help in the hardware and software of the wheelchair. Without them, it would be difficult for me to complete this research during the duration of the study.

Lastly, thanks to all my family members who gave me the support and the encouragement throughout the study.
ABSTRACT

Certain disabled persons are not able to control the common powered wheelchair using joystick due to their limb movement restrictions. Hence, lots of current researches have studied other alternatives to control the powered wheelchair. Electrooculography (EOG) eye tracking control is one of the most ordinary alternative means to control the wheelchair because it offers a more natural mode to guide the wheelchair. Yet, it cannot be realized because users are normally not allowed to look around the surrounding environment during wheelchair motion. This is because the eye movements control the wheelchair while the user needs to look up to move forward, right to turn right, left to turn left and down to stop the wheelchair. In addition, this method exhausts the user due to the concentration needed during the navigation process. In this study, an automatic navigation approach alongside the manual method is proposed to guide the wheelchair by means of offline EOG signal. The automatic mode navigates the wheelchair from initial point to goal point while avoiding obstacles by employing Bug2 algorithm. Bug algorithms guide the robot from its starting point towards a preset goal point and avoid obstacles detected by sensors, and they do not require any other information about the environment in the navigation process. The EOG signals are measured, recorded, and analyzed using a biomedical measurement system (KL-720). The desired goal point direction and distance are calculated by analyzing horizontal and vertical gaze angles obtained. The hardware of the powered wheelchair is developed and modified so that it can be controlled automatically using EOG signal. The simulation done showed that Bug algorithms are able to guide the wheelchair to the desired destination based on only EOG signal. The new technique allows the user to look around without restraints, while the wheelchair is navigated automatically to the desired goal point.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Project Background 1
1.2 Problem Statement 2
1.3 Objectives 2
1.4 Scopes of Study 2
1.5 Project Significance 3
1.6 Thesis Organization 4

2 LITERATURE REVIEW 5

2.1 Introduction 5
2.2 Powered Wheelchair 5

2.2.1 Automatic Wheelchair Sensory 6
2.2.2 Powered Wheelchair Motion Guide Approaches 10

2.2.2.1 Joysticks Based 10
2.2.2.2 Sip and Puff Based 11
2.2.2.3 Voice Based 12
2.2.2.4 Vision and Head Gesture Based
2.2.2.5 EEG Based
2.2.2.6 EMG and EOG Based

2.3 Electrooculography (EOG)
2.3.1 Anatomy and Physiology of Human Eyes
2.3.2 Configuration and Muscles Physiology of Human Eyes
2.3.3 Movement Properties of Human Eyes
2.3.4 Eye Movement Signal Potentials
2.3.5 Electrooculography Signal Recording

2.4 Path Finding Algorithms
2.4.1 Dijkstra’s Algorithm
2.4.2 Heuristic Search Algorithms
2.4.3 Bug Algorithms
2.4.3.1 Bug2 Algorithm
2.4.3.2 Tangent-Bug Algorithm

2.5 Summary

3 METHODOLOGY
3.1 Study Planning
3.2 EOG Signal Measurement System
3.2.1 Tools and Experimental Setting
3.2.2 Experimental Setup for EOG Signal Measurement
3.2.3 EOG Signal Process and Analysis
3.3 Goal Point Distance and Position Measurements
3.4 The Wheelchair Hardware
3.4.1 Arduino Uno Board
3.4.2 Motor Driver
3.4.3 Sensor
3.4.4 Rotary Encoder
3.5 Software Developments and Implementations
3.5.1 Design of Initial Turning Direction
3.5.2 Sensors Control
3.5.3 Motors Control 60
3.5.4 Rotary Encoder Control 61
3.5.5 Bug2 Programming 63
3.5.6 Tangent-Bug Programming 64
3.6 Summary 66

4 RESULT AND DISCUSSION 67
4.1 Measurement of EOG signal 67
4.2 Tangent-Bug and Bug2 Algorithms Simulation and Comparison 73
4.3 System Software Calibrations 77
4.3.1 Turning Direction Based on Gaze Angle 77
4.3.2 Reading Distance from IR Sensors 78
4.3.3 Controlling Wheelchair Motor 79
4.3.4 Reading Pulse of Rotary Encoder to Calculate Travelled Distance 80
4.3.5 Wheelchair Motion Guide 81
4.4 Summary 85

5 CONCLUSION AND RECOMMENDATION 87
5.3 Conclusion 87
5.4 Recommendation for Future Work 88

LIST OF PUBLICATIONS 89
REFERENCES 91
Appendices A-F 101 - 172
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>List of connections from KL-72001 main unit to KL-75003 EOG module</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Change of d values based on the change of β and α values, at fixed $h = 150$ cm</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>α threshold values</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>β threshold values</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Motor driver input values to control speed and direction</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Result of wheel rotation and wheelchair movement</td>
<td>79</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Wheelesley wheelchair</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Sensors placement of Wheelesley</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Robotic wheelchair with sensor configuration</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>SENA wheelchair</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Ghost echo problem with sonar sensor</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Wheelchair joystick controls (a) Common joystick (b) Finger control</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(c) Touchpad drive control (d) Board with buttons control</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Wheelchair Specialty Controls: (a) Chin-control, (b) Head Control</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Sip-and-Puff wheelchair control method</td>
<td>11</td>
</tr>
<tr>
<td>2.9</td>
<td>Vision based wheelchair control</td>
<td>13</td>
</tr>
<tr>
<td>2.10</td>
<td>Wheelchair control based on EEG signal</td>
<td>14</td>
</tr>
<tr>
<td>2.11</td>
<td>HCI system input screen interface</td>
<td>16</td>
</tr>
<tr>
<td>2.12</td>
<td>Anatomy and parts of the human eye</td>
<td>17</td>
</tr>
<tr>
<td>2.13</td>
<td>The muscle physiology of the eye</td>
<td>18</td>
</tr>
<tr>
<td>2.14</td>
<td>Signal of eye movement potentials ; i) Downward eye movement, ii)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Upward eye movement, iii) Leftward eye movement and iv) Rightward eye</td>
<td></td>
</tr>
<tr>
<td></td>
<td>movement (Connell, 2007).</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>EOG electrode placement on the subject face</td>
<td>21</td>
</tr>
<tr>
<td>2.16</td>
<td>EOG horizontal signal produced from eye movement with different</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>angles (Kherlopian et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Gaze angle representation in the EOG measurement system</td>
<td>22</td>
</tr>
<tr>
<td>2.18</td>
<td>Blink detection by the EOG measurement system</td>
<td>23</td>
</tr>
</tbody>
</table>
2.19 Dijkstra’s algorithm: notice that all nodes are visited in terms to find the shortest path 24

2.20 A close-up of a path planned using Field D* showing individual grid cells, (Ferguson and Stentz, 2005) 25

2.21 M-line representation 27

2.22 Navigation process based on Bug2 algorithm 28

2.23 Illustration of robot equipped with range sensor concept 29

2.24 Navigation process based on Tangent-Bug algorithm 29

2.25 Paths for Bug algorithms on setting (A) 30

2.26 Paths for Bug algorithms in setting (B) 31

3.1 Flow chart of the study 34

3.2 KL-720 biomedical measurement system 35

3.3 Block diagram of EOG acquisition and processing 36

3.4 KL-75003 EOG module connection with KL-72001 main unit 38

3.5 (a) Disposable EOG electrode with Ag/AgCl, (b) Electrodes, (c) KL-79101 5-Conductor Electrode Cable 39

3.6 Electrode placements 40

3.7 Oscilloscope showing EOG signal measurements 40

3.8 The subject at an exact distance (d) from the wall with the arrangement for the EOG recording system, which demonstrates five points of view 41

3.9 The subject at an exact distance (d) from the wall with the arrangement for the EOG recording system, which demonstrates gaze angle points 41

3.10 EOG measurement experimental setup 42

3.11 Goal point angle measurement (Side view) 43

3.12 Goal point distance measurement (Top view) 44

3.13 Available goal points to be targeted by the user 45

3.14 Arduino Uno board 49

3.15 MD30B motor driver 50
3.16 Motor driver interface with Arduino Uno
3.17 Block diagram of IR sensor
3.18 GP2Y0A21YK0F Sharp IR sensor
3.19 IR sensor interface with Arduino Uno
3.20 IR Sensor holder on the wheelchair
3.21 Mouse rotary encoder
3.22 Encoder interface with Arduino Uno
3.23 Rotary encoder and its holder
3.24 Flow chart diagram for controlling the wheelchair based on EOG signal
3.25 Outline of the wheelchair inputs and outputs
3.26 Work flow chart of the project
3.27 Graph of output voltage to distance of reflective object
3.28 Position of crossing IR sensors at the wheelchair
3.29 Pulse width modulation signal
3.30 Rotary encoder and roller configuration at wheelchair
3.31 Shaft is rotating clockwise
3.32 Shaft is rotating counter clockwise
3.33 Navigation behavior in Bug2 algorithm
3.34 Navigation behavior in Bug2 algorithm
4.1 EOG output waveform of center-rest point (C)
4.2 EOG output waveform of blink (B)
4.3 EOG output waveform of upward eye movement (U)
4.4 EOG output waveform of downward eye movement (D)
4.5 EOG output waveform of leftward eye movement (L)
4.6 EOG output waveform of rightward eye movement (R)
4.7 EOG output waveform of −10 ° horizontal gaze angle
4.8 EOG output waveform of −20 ° horizontal gaze angle
4.9 EOG output waveform of -30° horizontal gaze angle
4.10 EOG output waveform of -40° horizontal gaze angle
4.11 Virtual map and navigation process (case A)
4.12 Virtual map and navigation process (case B)
4.13 Virtual map and navigation process (case C)
4.14 Bug2 algorithm simulation (tactile sensor)
4.15 Tangent-Bug algorithm simulation (range sensor)
4.16 Initial State before the program is executed, all LEDs are off
4.17 “Left” red LED turns on when $\alpha = -20^\circ$
4.18 “Forward” yellow LED turns on when $\alpha = 0^\circ$
4.19 “Right” green LED turns on when $\alpha = 20^\circ$
4.20 (a) Two green LEDs switch on when no obstacle detected within 35 cm, (b) An obstacle detected less than 35 cm by left sensor, (c) An obstacle detected within 35 cm by right sensor
4.21 Serial monitor of Arduino Uno boot loader
4.22 Wheelchair motion
4.23 The wheelchair moves forward from initial state
4.24 The IR sensors sense obstacle within the range. Wheelchair stops and boundary following behavior is triggered
4.25 After sensing an obstacle, the wheelchair turns left to avoid the obstacle
4.26 The wheelchair stops when obstacle is no longer detected
4.27 The wheelchair turns right to follow the boundary of the obstacle
4.28 The wheelchair begins to turn right
4.29 The wheelchair detects the obstacle again and avoids it
4.30 Wheelchair meets the M-line again and starts to follow the path
4.31 The wheelchair reaches the goal point then stops
4.32 60° detection area
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KL-720 biomedical measurement system</td>
<td>101</td>
</tr>
<tr>
<td>B</td>
<td>Arduino UNO microcontroller data sheet</td>
<td>114</td>
</tr>
<tr>
<td>C</td>
<td>Enhanced motor driver (MD30B) data sheet</td>
<td>116</td>
</tr>
<tr>
<td>D</td>
<td>Sharp IR GP2Y0A02YK0F range sensor data sheet</td>
<td>120</td>
</tr>
<tr>
<td>E1</td>
<td>Programming code of initial turning direction based on eye gaze angle</td>
<td>122</td>
</tr>
<tr>
<td>E2</td>
<td>Programming code of reading signal from IR sensor</td>
<td>125</td>
</tr>
<tr>
<td>E3</td>
<td>Programming code of controlling motors</td>
<td>129</td>
</tr>
<tr>
<td>E4</td>
<td>Programming code of reading pulse signal from rotary encoder</td>
<td>131</td>
</tr>
<tr>
<td>E5</td>
<td>The complete navigation programming code for Bug2</td>
<td>132</td>
</tr>
<tr>
<td>F</td>
<td>The Complete MATLAB Code for Tangent-Bug</td>
<td>140</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

NFIC - New Freedom Initiative Act
ALS - Amyotrophic Lateral Sclerosis
EMG - Electromyography
EOG - Electrooculography
EPW - electric-powered wheelchair
IR - Infrared
EEG - Electroencephalography
BCI - brain-computer interfaces
HCI - Human Computer Interfaces
ECG - Electrocardiogram
ERG - Electroretinogram
CSV - Comma Separated Values
GUI - graphical user interface
PWM - pulse-width modulations
USB - Universal Serial Bus
CW - clockwise rotation
CCW - counterclockwise rotation
GND - Ground
IRED - Infrared Emitting Diode
PSD - Position Sensitive Detector
CHAPTER 1

INTRODUCTION

1.1 Project Background

The New Freedom Initiative Act (NFIC) approximated that, aged and disabled individuals whom necessitate for wheelchair are more than 100 million global. The common powered wheelchairs; that are guided using joystick, are not handy for the disabled with limb movement restrictions such as spinal cord injury and amyotrophic lateral sclerosis (ALS). Hence, an alternative approaches are investigated to help those disabled and elderly who cannot use the manual powered wheelchair. These alternative approaches concentrated on guiding the wheelchair by means of other body signals and other body parts that are not defected.

Among the guiding approach substitutes are: controlling a wheelchair by means of head gestures suggested by Wei (2004), (Matsumotot et al., 2001), Nakanishi et al. (1999) and Kuno et al. (2001); guiding by means of voice recognition by (Levine et al., 1999; Cagigas and Abascal, 2004); a guide based on the Electromyography (EMG) signal proposed by Felzer and Freisleben (2002) and Moon et al. (2005); and Electrooculography (EOG) eye tracking control presented in the literature by Mazo (2001).
1.2 Problem Statement

The EOG eye tracking guide presents a more likely and natural manner to control the wheelchair. Still, it is neglected, for the reason that the wheelchair user is not capable to look or gaze at the nearby atmosphere throughout the navigation route, which is very exhausting for the user’s eyes. Hence, several researchers such as Hashimoto et al. (2009) and Tsui et al. (2008) attempted to rise above this difficulty by utilizing the EMG signal, which control direction; in addition to the EOG signal, which control speed to guide the wheelchair. In this research, the powered wheelchair is guided by means of eye gazes and blinks. Bug algorithm is utilized to navigate the wheelchair automatically to the desired goal point.

1.3 Objectives

This study aims to assist those people with serious disabilities to advance their mobility and substantially enhance their living quality. The main objective of this study is to guide the wheelchair motion based on EOG signal. Yet, the wheelchair user will be able to look around and surround, due to the hands-free control system that uses only eyes gaze and blinks to control the powered wheelchair. For this to be achieved, the following objectives need to be attained:

1. Develop powered wheelchair hardware and software, which can be controlled based on EOG signal.

2. Record, and analyze eye movements by means of the EOG signal measurement system.

1.4 Scopes of Study

A wheelchair motion guide based on EOG signal is a recent study topic. EOG offers a lot of possibilities and functions beside the wheelchair motion guide is a promising research area. The scope of this study contains:
1. Review on powered wheelchairs and approaches used to control them, including EOG signal which is applied in this study. The EOG signal used in this research is offline signal.

2. Study and compare path finding algorithms including Bug algorithms, which are implemented in our project. Bug2 and Tangent-Bug are simulated, and the wheelchair is guided automatically by means of Bug2 algorithm.

3. Development of the automatic wheelchair’s hardware, and software. Hardware includes sensors, motor drivers, rotary encoder, microcontroller, and the interface among these parts with the wheelchair. While software includes programming the microcontroller to read all inputs and also to utilize the Bug algorithm.

4. Investigate the eye movement tracking and recording based on the EOG signal measurement system. Also, utilize the gaze angles and blinks measured to control the wheelchair automatically and manually.

1.5 Project Significance

A new automatic controlling method is introduced beside the common manual method. In the automatic controlling mode, the user gazes at the desired destination, then blink to send the signal to the wheelchair to start navigating. Bug2 algorithm is utilized to control the wheelchair in automatic guide mode.

This work is conducted especially to rise above the drawback of the typical powered wheelchair controlled based on EOG signal. The user can enjoy looking at the neighboring environment freely during the wheelchair motion process.
1.6 Thesis Organization

After acknowledging the requirement to fulfill the perception of this study, this thesis has been written and accumulated with the optimum effort in terms to attain the ease of the reader. This report includes six chapters with the brief outline of each chapter as stated as follows:

Chapter 1 serves as an introduction to this research; it includes the background of the project, problem statements, objectives of the research, and scopes of the study.

After that, Chapter 2 provides literature reviews from previous research work from other researches on powered wheelchair motion guides, path finding algorithms and EOG signal.

And Chapter 3 has been utilized to explain and discusses the methodology applied in this project, including the project planning and measurements of EOG signal; the hardware, and software of the wheelchair; as well as calibration and development of the controlling method based on Bug2 algorithm.

In Chapter 4, the findings and simulation of this project are demonstrated and examined together with the indication to strengthen the results of the study.

The last chapter, particularly Chapter 5 ceases the entire contents of this thesis and provides the conclusions and recommendations on researches that may be directed at the time ahead.
REFERENCES

