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Since land-based biofuel production competes with conventional food production, a water-based biomass and
biofuel production from cyanobacteria offers large potential. This study investigates the application potential
of cyanobacteria for fuel production and by-products bymimicking nutrient depleted environmental conditions.
Three Baltic cyanobacteria strains (Aphanizomenon flos-aquae, Dolichospermum lemmermannii and Nodularia
spumigena) were inoculated in full nutrient levels, as well as phosphorus and nitrogen depletedmedium, before
being monitored for 14 days. For screening reasons, multiple parameters such as fatty acids, photosynthetic pig-
ments including phycobilins, biovolume, photosynthetic activity, inorganic nutrients, particulate organic carbon,
nitrogen and phosphorous were investigated every seven days. We observed a strong negative relationship be-
tween lipid content, growth and nutrient availability, resulting in high lipid and pigment production in combina-
tion with a limited growth rate in nutrient depleted treatments. Our results suggest that cultivation and harvest
of bloom-forming cyanobacteria for fuel and by-product production are feasible in Scandinavia, but strongly de-
pends on the desired compounds and biomass. Each cyanobacteria species originally has a species-specific chem-
ical fingerprint that may be modified by rearing conditions and harvesting period to meet the needs of the
consumer. This leads to important conclusions regarding future culturing conditions and biomass production
of the desired compounds.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The interest and the demand of biofuels derived from water-living
organisms skyrocketed during the last decade. Since land-based biofuel
production competeswith conventional food production, awater-based
biomass and biofuel production offers a large potential. However, the
idea of using aquatic primary producers, e.g., algae, for production of
various bio-chemicals such as lipids and antimicrobial substances, is
not new. After the end of World War II, several working groups around
the globe studied the “scientific and economic feasibility of the com-
mercial production of algae in mass cultures” [1–4].
1.1. Biofuels

For the production of biodiesel, biomethane, bioethanol and
biohydrogen, many potential biofuel sources have been identified so far
(e.g. corn, switchgrass, sugarcane, wheat). Aquatic primary producers
ience and Technology (NTNU),
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hoff).
are known to have better solar-to-biomass energy conversion efficiencies
(~2–10%) than current biofuels from land-based plants (~0.2–2% [5]) and
therefore become increasingly more and more attractive as biofuel pre-
cursors [6]. Biodiesel production from microalgae via transesterification
is regarded as one of the most efficient ways of generating biofuels and
is to present knowledge the “only current renewable source of oil [lipids]
that could meet the global demand for transport fuels” [7,8].

Although many lobbying groups have been established to govern
green energy, such as the European Algae Biomass Association (EABA)
or the Carbon Trust in the UK, the total energy content in biodiesel
and bioethanol is still less than 1% of the world's energy consumption
[9]. Consequently, the perseverative questions remain: Are these
biofuels suitable formass production? Canwe grow, harvest and extract
the required products in an appropriate and efficient way, considering
both economic and sustainable factors? What are the impacts on the
ecosystems now and in the future?

Cyanobacteria, sometimes called blue-green algae, have the advan-
tage of carrying characteristics from both algae and bacteria. Their abil-
ity to perform photosynthesis is based on their association with algae,
while thefixation of atmospheric nitrogen by several cyanobacteria spe-
cies indicates their bacterial roots. Filamentous cyanobacteria are
known to form massive blooms in the Baltic Proper during summer,
resulting in greenish carpets of biomass in the upper water layer. The

https://core.ac.uk/display/42903365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.algal.2014.05.005&domain=pdf
http://dx.doi.org/10.1016/j.algal.2014.05.005
mailto:franciska.steinhoff@ntnu.no
Unlabelled image
http://dx.doi.org/10.1016/j.algal.2014.05.005
Unlabelled image
http://www.sciencedirect.com/science/journal/


Table 1
Nutrient treatments [μM] of the experiment forD. lemmermannii, A. flos-aquae and N. spumigena for phosphorus depleted f/2 medium (−P), nitrogen depleted f/2 medium (−N) and full
nutrient treatment (f/2 medium).

Species Nutrients

Treatment P N
nitrite + nitrate

Si Nitrite

Mean SD Mean SD Mean SD Mean SD

D.lemmermanni-
i

Controla b2.00 – 144.9 6.5 26.8 0.8 b2.00 –

−P b2.00 – 1153.4 3.8 34.9 11.0 b2.00 –

−N 44.9 0.4 129.2 1.3 34.5 0.8 b2.00 –

f/2 44.8 0.5 1123.6 9.9 32.2 3.8 b2.00 –

A. flos-aquae Controla 3.77 2.5 24.5 14.8 23.0 0.2 b2.00 –

−P 2.4 0.2 1005.8 1.9 29.0 9.9 b2.00 –

−N 45.2 1.0 10.8 1.4 26.5 0.2 b2.00 –

f/2 47.7 1.2 1032.3 2.0 26.3 2.3 b2.00 –

N. spumigena Controla b2.00 – 52.9 2.5 27.0 9.8 b2.00 –

−P b2.00 – 949.3 3.8 25.0 5.4 b2.00 –

−N 38.9 0.4 41.1 0.5 24.4 0.2 b2.00 –

f/2 38.8 0.1 967.7 1.6 24.6 0.5 b2.00 –

The control shows the nutrient values before addition of artificial media. SD refers to standard deviation.
a Baltic seawater + respective species.
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three dominating species are Aphanizomenon sp., Dolichospermum sp.
and Nodularia spumigena. Regional and global climate change, as well
as human-induced nutrient over-enrichment, may lead to an increase
in growth rates, biomass and oxygen depletion. This could alter food
webs and ecosystem structures [10,11] as well as harm tourism indus-
tries in the Baltic Sea [12]. To turn the threat [13] into gain, further re-
search related to the application and harvest of cyanobacteria, as
precursors for fuel production and by-products, is pressing [14].

Since some cyanobacteria species represent the only phototrophs
capable of fixing atmospheric nitrogen, they prosper in low ratios of ni-
trogen:phosphorus supply. However, nutrient ratios and availabilities
influence cell contents. In order to obtain optimal culture conditions,
maximum biomass, or maximum output of certain lipids or by-
products, nutrient availabilities have to be determined and carefully
considered. In contrast to many other prokaryotes, cyanobacteria have
a direct correlation between growth and secondary metabolite produc-
tion [15–17]. Various types of chemical compounds and toxins are pro-
duced by cyanobacteria; Nagle et al. [18] classified 424 marine
cyanobacterial natural products (Marin Lit database [16]) resulting in
40.2% lipopeptides (amino-acid derived fragment linked to a fatty-acid
derived portion [19]), 9.4% amides, 5.6%with pure amino acid composi-
tion, 4.2% fatty acids (FA), 4.2% macrolides and 36.4% others (lactones,
indoles, esters, pyrroles and undefined substances). Biological activities
of the compounds were reported to be anticarcinogenic, cytotoxic, anti-
biotic, antifungal, and antiviral and some had either other or no activi-
ties [16]. Because polyunsaturated Ω-3 fatty acids have proven health
benefits, demand for them is rising. Presently, these compounds are
commonly extracted from natural fish and krill populations, pressing
the global fish stocks. Accordingly, the search and the market for
alternative sources are speeding up [20]. Cyanobacteria are known to
be a source of several fuel types. Hydrogen, for example, can be pro-
duced by many strains, ethanol is produced from their carbohydrates,
biogas (methane) via anaerobic digestion of their biomass, photanol,
short-chained alcohols produced by combining phototrophy and
chemotrophy in genetically engineered cyanobacteria [21] and diesel
from their FA and hydrocarbons [22]. The demand for present and
new industrial applications of cyanobacteria has set the frame for this
study.

In this study we investigated three bloom-forming cyanobacteria
strains of the Baltic Sea. Our aimwas to study: 1) whether their FA con-
tent is suitable for a potential biofuel production; 2) whether nutrient
enrichment and depletion under simulated natural radiation conditions
can change and enrich total FA content or FA composition and 3)
whether these cyanobacteria contain promising marine products, such
as lipopeptidic compounds, of importance for future industrial use.
2. Material and methods

For the experiments, cultures of the Kalmar Algal Collection (KAC,
Linnaeus University, Kalmar, Sweden) isolated from the Baltic Proper
were used. The three cyanobacterial strains Aphanizomenon flos-aquae
Ralfs ex Bornet & Flahault (KAC 15), Dolichospermum lemmermannii (P.
Richter)Wacklin, Hoffmann et Komărek (syn: Anabaena lemmermannii;
KAC 16) and N. spumigena Mertens (KAC 12) were inoculated for two
weeks at full nutrient levels (f/2 according to [23]) and salinity 7
to obtain desired biovolumes. The cultures were aerated and grown at
~450 μmol photons m2 s−1 photosynthetically active radiation (PAR
400–700 nm) similar to expected natural radiation intensities in the
upper water layer of the Baltic Proper during summer. PAR was provid-
ed by six fluorescent tubes (Osram L 36W/72-965 Biolux, Osram,
München, Germany) and logged continuously during the course of the
experiment.

Before the start of the experiment, the number of cells L−1 and the
biovolume in mm3 L−1 were analyzed and adjusted to obtain compara-
ble biovolumes [24] for all three species. Control samples for all param-
eters (FA, photosynthetic pigments including phycobilin pigments,
biovolume, photosynthetic activity, inorganic nutrients, particulate or-
ganic carbon (POC), particulate organic nitrogen (PON) as well as par-
ticulate organic phosphorous (POP)) were taken in five replicates.
Each bottle containing one cyanobacteria species was then divided
into three additional bottles, before adding nutrient solutions
(Table 1), creating three different nutrient treatments: 1. Nitrogen
depletion (−N treatment, f/2 medium without NO3

−), 2. Phosphorus
depletion (−P treatment, f/2 medium without PO4

3−) and 3. Full nutri-
ent levels (f/2 treatment, f/2 medium). Nutrient samples were also
taken in five replicates for each nutrient treatment and for each species.
After this, 180mL of the respective cyanobacteria and nutrient solutions
were distributed into 250 mL Nunc-bottles (NUNC, Numbrecht,
Germany). The bottles were subsequently placed in a thermoconstant
room at 17 °C for two weeks. Nutrients were added after seven days
to assure nutrient availabilities comparable to the initial values
(Table 1) throughout the experimental period. Sampling of all parame-
ters was done initially (Day 0) and repeated after 7 and 14 days (Day 7
and Day 14).

2.1. Fatty acid analysis

For each treatment, 20 mL from each of the five replicates was pre-
pared for FA analysis by filtration on precombusted GF/C Filters
(Whatman, Maidstone, UK), covered with dichloromethane/methanol
(2:1 v/v, Merck, Darmstadt, Germany), frozen in liquid nitrogen and



Table 2
FA profiles, TFA, ratios of monounsaturated to polyunsaturated fatty acids (MUFA:PUFA) and saturated to monounsaturated fatty acids (SAFA:MUFA) [μg mm−3] for D. lemmermannii,
A. flos-aquae and N. spumigena at Day 0, Day 7 and Day 14 for phosphorus depleted f/2 medium (−P), nitrogen depleted f/2 medium (−N) and full nutrient treatment (f/2 medium).
SD refers to standard deviation.

D. lemmermannii A. flos-aquae

Day 0 7 14 0 7

Treatment Initial −P −N f/2 −P −N f/2 Initial −P −N f/2

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

14:0 0.3 0.1 17.4 6.7 12.6 6.6 5.2 2.1 2.0 1.2 6.5 3.0 11.3 9.5 0.2 0.2 2.4 3.4 1.8 0.8 4.2 0.4
i-15:0 1.1 0.8 37.7 24.3 16.8 10.1 8.5 5.5 10.3 2.9 11.6 4.8 22.4 19.2 0.0 0.0 1.3 1.4 1.4 0.9 1.7 0.5
a-15:0 0.6 0.3 18.7 12.7 6.6 4.1 3.3 2.4 5.8 1.6 4.5 1.9 8.3 6.9 0.0 0.0 0.4 0.5 0.5 0.3 1.1 0.4
15:0 0.0 0.0 5.7 3.6 2.0 1.2 2.8 1.9 1.6 0.6 1.1 0.5 2.0 1.6 0.0 0.0 0.4 0.3 0.4 0.4 0.6 0.0
16:0 3.1 0.7 109.9 45.9 60.9 30.8 29.3 16.3 31.1 8.4 38.7 18.5 65.7 59.3 2.6 1.2 12.1 6.3 15.7 8.1 21.6 1.5
16:1(n-7) 1.3 0.3 29.0 17.8 15.2 8.6 7.8 5.7 13.1 4.7 10.4 4.4 16.4 12.0 0.1 0.0 2.5 3.1 1.8 0.9 4.6 0.7
16:2(n-4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.8 7.5 0.0 0.1 0.4 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17:0 0.0 0.0 0.3 0.6 0.6 0.5 0.0 0.0 1.3 0.6 0.6 0.3 0.6 0.6 0.1 0.0 0.3 0.1 0.0 0.1 0.0 0.1
16:3(n-4) 0.2 0.1 0.4 0.8 0.0 0.0 1.1 1.4 0.1 0.3 0.4 1.0 0.5 1.1 0.3 0.1 0.4 0.9 0.7 0.6 0.2 0.3
16:4(n-1) 0.1 0.0 0.0 0.0 0.9 1.3 0.0 0.0 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 3.8
18:0 1.8 0.3 43.6 23.2 15.4 6.7 13.3 16.6 25.4 9.4 9.7 4.3 17.9 15.1 1.4 0.6 8.2 3.7 9.9 7.4 8.0 2.9
18:1(n-9).cis + trans 0.8 0.2 26.9 12.8 12.6 6.2 7.1 7.7 9.8 3.6 7.2 3.4 14.7 12.6 0.4 0.1 2.2 1.9 3.3 1.7 7.1 6.1
18:1(n-7) 3.5 0.6 62.9 38.2 28.0 16.0 14.1 10.8 34.4 24.1 23.5 10.3 32.1 19.7 0.4 0.1 8.8 7.5 8.5 6.8 10.9 2.4
18:2(n-6) cis 0 6 0.2 27.1 11.8 14.5 5.5 8.3 5.6 5.4 3.9 8.2 3.7 10.0 6.2 0.5 0.2 1.0 0.8 1.1 0.5 2.6 1.8
18:3(n-6) & 19:0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 2.0 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.4 0.7
18:3(n-3) 0.9 0.3 42.6 23.2 66.5 25.6 29.8 11.4 8.6 5.6 35.3 16.0 43.5 26.3 2.7 1.3 2.7 2.8 5.1 3.6 19.2 7.4
18:4(n-3) 0.1 0.1 1.6 1.2 1.7 2.2 1.6 3.0 2.8 4.6 0.0 0.0 0.1 0.2 0.0 0.0 0.3 0.4 0.0 0.1 2.5 4.4
20:0 0.0 0.1 1.5 1.1 0.3 0.1 1.1 2.1 1.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.1 0.6 0.7
20:4(n-6) 0.0 0.1 1.2 0.6 1.3 0.5 0.6 0.3 1.5 1.0 0.5 0.2 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7
20:3(n-3) 0.0 0.0 0.6 0.6 1.1 0.4 0.8 0.7 1.6 3.1 0.6 0.3 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6
20:4(n-3) 0.0 0.0 0.0 0.0 1.9 2.6 0.0 0.0 5.4 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.8 1.5
20:5(n-3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.8
22:5(n-3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 1.2 2.4
24:0 0.2 0.2 0.0 0.0 1.0 1.8 0.0 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.4 0.1 1.2 0.8 0.0 0.0 0.1 0.3
22:6(n-3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7
Total Σ fatty acids 14.7 3.6 427.0 182.2 259.8 122.2 134.7 82.1 173.8 57.1 158.9 66.3 247.2 178.4 9.1 1.7 44.7 30.9 50.3 24.5 90 16.5
SAFA 7.2 2.2 234.7 115.5 116.3 58.8 63.5 45.9 79.1 22.6 72.7 32.7 156.3 85.6 4.8 2.2 26.5 14.4 29.7 16.5 38.2 13.6
MUFA 5.6 0.9 118.8 67.7 55.8 30.8 29.0 24.0 57.2 30.6 41.1 17.6 79.0 23.6 0.9 0.2 13.5 12.3 13.5 9.1 23.2 11.3
PUFA 1.9 0.7 73.4 27.7 87.8 33.0 42.2 15.2 37.4 29.3 45.1 19.0 72.1 14.4 3.5 1.6 4.7 4.6 7.1 4.3 31.9 19.6
MUFA/PUFA 2.9 1.6 0.6 0.7 1.5 0.9 1.1 0.3 2.9 1.9 0.7
SAFA/MUFA 1.3 2.0 2.1 2.2 1.4 1.8 2.0 5.3 2.0 2.2 1.6
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stored at−80 °C until extraction. For extraction, filters were homoge-
nized by ultrasonication in dichloromethane:methanol (2:1, v/v) fol-
lowing the method described by Folch et al. [25]. An internal standard
was added (23:0 FAME) prior to extraction. For gas–liquid chromatog-
raphy of FA, methyl esters were prepared from aliquots of the extracted
cyanobacteria by transesterification with 3% sulfuric acid in absolute
methanol for 4 h at 80 °C. After extraction with hexane, fatty acid
methylesters (FAMEs) were analyzed with a gas–liquid chromatograph
(HP 6890, Hewlett-PackardGmbH,Waldbronn, Germany) on a capillary
column (30m×0.25mm I.D.; film thickness: 0.25 μm; liquid phase:DB-
FFAP, J&W, Cologne, Germany) using temperature programming [26].
FAMEs were identified by comparison with known standard mixtures.
If necessary, identification of FAMEs was confirmed by gas chromatog-
raphy–mass spectrometry (GC–MS) measurements. Total lipid concen-
tration refers to the sum of total FAME.

2.2. Pigment analysis

For each treatment, 20 mL from each of the five replicates was fil-
tered on GF/F filters (Whatman, Maidstone, UK), frozen in liquid nitro-
gen and stored for two months at −80 °C before extraction and
analysis. Pigments on filters, except phycocyanin samples,were extract-
ed according to Wright and Jeffrey [27] and Wulff et al. [28] in 1.5 mL
100% methanol by ultrasonication (Vibra-cell) equipped with a 3 mm
diameter probe operating at 80% in 5 s pulses. Vialswithfiltered extracts
(0.45 μm) were transferred to a cooled autosampler and analyzed via
HPLC [27] using an absorbance diode-array detector (Spectraphysics
UV6000LP, Santa Clara, USA). The column used was a Kinetex 2.6 μm
C18, 150 × 3.00 mm (Phenomenex, Torrance, USA) equipped with a
guard column (SecurityGuard, Phenomenex C18, 4 mm × 3.0 mm,
Torrance, USA). To identify peaks, the HPLC system was calibrated
with pigment standards (DHI Water and Environment, Hørsholm,
Denmark). Identification of peaks was confirmed by online recording
of absorbance spectra (400–700 nm) as described in Jeffrey andWright
[27] and are presented as concentrations (mg L−1) or ratios (w/w) to
chlorophyll a (Chl a). For phycocyanin (PC) analysis, PC was extracted
by the thaw–freeze method according to Sarada et al. [29] and
Siegelmann and Kycia [30] and measured spectrophotometrically (UV-
2401PC, Shimadzu, Kyoto, Japan) in a quartz cuvette. The PC content
was calculated using the formula PC = (OD615 − 0.474 ∗ OD652) / 5.34
[31] where OD615 is the optical density at 615 nm and OD652 the optical
density at 652 nm, giving mg mL−1. The result was subsequently con-
verted to mg PC per biovolume of cyanobacteria (mg PC mm−3).
2.3. Filament length and growth

For each treatment, 4 mL from each of the five replicates was pre-
served with acidified Lugol's solution, kept in the dark and analyzed
within six months. Each Lugol sample was gently mixed before being
analyzed in 40× magnification (Axiovert 40CFL, micrometerocular 44
42 32 E-Pl 10×/20, Zeiss, Oberkochen, Germany) in a gridded
Sedgewick rafter (1801-G20 Wildlife Supply Company, Yulee, USA).
The length and width for each filament in 100 randomly selected
squares (100 μL) were measured and the total biovolume (mm3 L−1)
per species was calculated by considering each filament a cylinder.
The growth for each species was measured by specific growth rate
(μ day−1) and calculated according to (ln DB − ln DA) / (tB − tA)
where DA is the biovolume at the first day of the experiments and DB

the biovolume at the end, tA as day A and tB as day B. In addition, the



Table 2
FA profiles, TFA, ratios of monounsaturated to polyunsaturated fatty acids (MUFA:PUFA) and saturated to monounsaturated fatty acids (SAFA:MUFA) [μg mm−3] for D. lemmermannii,
A. flos-aquae and N. spumigena at Day 0, Day 7 and Day 14 for phosphorus depleted f/2 medium (−P), nitrogen depleted f/2 medium (−N) and full nutrient treatment (f/2 medium).
SD refers to standard deviation.

A. flos-aquae N. spumigena

14 0 7 14

−P −N f/2 Initial −P −N f/2 −P −N f/2

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

4.7 1.5 8.2 5.2 3.8 2.0 0.9 0.5 0.1 0.1 0.4 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.4 0.1
2.4 0.8 4.7 4.7 3.5 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1
0.8 0.3 1.6 1.4 2.6 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
1.1 0.6 1.1 1.2 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18.9 6.4 36.3 26.6 20.0 10.7 30.5 12.3 4.1 4.0 25.5 14.5 21.2 9.1 2.2 0.4 1.5 0.1 27.2 8.2
4.6 2.1 5.6 6.6 4.5 3.2 5.8 2.6 1.1 1.1 2.1 1.3 2.8 0.7 0.4 0.1 0.3 0.0 3.9 0.7
0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.3 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8.2 3.7 14.1 13.9 3.2 1.6 5.2 2.3 0.7 0.6 4.3 1.5 3.4 1.8 0.3 0.0 0.2 0.0 4.0 1.3
3.8 2.6 8.4 7.1 3.4 1.9 8.0 3.5 0.8 0.7 2.5 1.0 2.7 1.2 0.3 0.1 0.2 0.1 4.0 0.6

13.6 7.3 17.0 21.2 12.9 10.0 1.5 0.6 0.4 0.4 2.5 1.3 4.6 2.3 0.4 0.1 0.3 0.1 5.9 0.8
5.2 1.6 4.0 3.5 2.3 1.0 2.8 1.4 0.5 0.5 0.8 0.6 0.9 0.3 0.2 0.0 0.1 0.0 1.5 0.5
0.0 0.0 0.0 0.0 0.2 0.5 0.9 0.6 0.1 0.1 0.3 0.3 0.1 0.2 0.1 0.0 0.0 0.0 0.5 0.3
9.0 6.0 17.1 14.2 14.0 6.6 7.0 3.7 1.3 1.2 3.6 2.3 4.2 1.4 0.6 0.1 0.5 0.1 6.3 2.0
0.6 0.3 0.4 0.8 0.0 0.0 9.2 5.0 1.2 1.1 4.1 2.7 5.0 2.0 0.8 0.2 0.6 0.1 7.9 2.9
0.3 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.1
0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

73.7 30.5 119.4 104.0 71.9 36.4 71.9 30.6 10.6 9.8 46.3 21.0 45 15.7 5 0.9 9 0.4 62 11.7
36.5 12.8 66.8 53.1 34.0 19.1 36.7 14.8 5.0 4.8 30.3 16.1 25.2 11.0 2.6 0.4 1.8 0.1 32.1 9.3
22.0 11.9 31.0 34.5 20.8 14.7 15.3 6.6 2.3 2.2 7.0 3.4 10.1 3.9 1.2 0.2 0.8 0.1 13.8 0.4
15.1 7.6 21.6 18.3 17.2 6.8 19.9 10.7 3.3 2.9 8.9 5.7 10.4 4.0 1.7 0.4 1.3 0.2 16.7 5.8
1.5 1.4 1.2 0.8 0.7 0.8 1.0 0.7 0.6 0.8
1.7 2.2 1.6 2.4 2.2 4.3 2.5 2.2 2.2 2.3
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number of cells and heterocysts were counted in 30 random filaments
from each sample.

2.4. Photosynthetic activity

To measure the maximum photosynthetic activity of PSII in the
cyanobacteria, the Fv/Fm yield was measured [32] with a Pulse Ampli-
tude Modulation (PAM) fluorometer (WATER-PAM, Walz GmbH,
Effeltrich, Germany) in all treatments at each sampling day. Fv/Fm is cal-
culated according to (Fm − F0) / Fm = Fv/Fm, where Fm is the maximum
fluorescent yield and F0 the fluorescent yield before the light pulse in a
dark-adapted state. The measurements were obtained in the emitter–
detector unit of the CUVETTE version, with red LED light (650–
730 nm) optimized for cyanobacteria (WATER-ED 8, 487, Walz GmbH,
Effeltrich, Germany) and equipped with a stirring device (WATER-S,
Walz GmbH, Effeltrich, Germany) to homogenize the sample prior to
measurement [33]. For effective quantum yield measurement, 3 mL of
each sample was transferred to the quartz cuvette, kept dark for 3 min
and stirred 10 s before a light pulse of 600 ms was applied.

2.5. POC, PON & POP analyses

For each treatment, 20 mL from each of the five replicates was fil-
tered onto precombusted (400 °C for 4 h) 25 mm GF/C filters
(Whatman, Maidstone, UK) for POC/PON and additional 20 mL for
POP analysis. Filters for POP were washed prior to filtering with 0.1 M
HCl and rinsed with Milli-Q. All filters were then frozen at −20 °C and
freeze-dried for 36 h (Heto Power Dry PL3000, Thermo Scientific,
Waltham, USA). POP samples were analyzed within six months [34] at
Tvärminne Zoological Station, University of Helsinki, Finland. For POC/
PON analysis, filters were ground into fine powder (MM301, Retsch,
Haan, Germany) and analyzed in an elemental analyzer (EA 1108
CHNS-O, Fisons Instruments, Ipswich, UK) applying 2,5-bis-[5-tert-
butyl-benzoxazol-2-yl]-thiophen as a standard. Dry weight calculations
were derived from the POC, PON and POPmeasurements inmol L−1 and
the molar mass for C, N and P.
2.6. Nutrient analysis

For each treatment, 10 mL from each of the five replicates was
0.2 μm filtered (Filtropur, Sarstedt, Numbrecht, Germany) and stored
at−80 °C until analysis of inorganic nitrite, nitrate, phosphate and sil-
icate. The nutrient analysis, based on colorimetric methods [35], was
performed by the Swedish Meteorological and Hydrological Institute
(SMHI, Göteborg, Sweden).
2.7. Statistics

Data was analyzed by one-way ANOVA and Tukey's Post-Hoc test,
using SPSS software (PASW Statistics ver. 20, IBM, Armonk, USA) for
each sampling day, with either species or nutrient treatment as factor.
Homogeneity was tested with Cochran's test and, where needed, data
was transformed according to Underwood [36]. Significant differences
were set as p b 0.0005 after Bonferroni correction [37].
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3. Results and discussion

For screening reasons, we have obtainedmultiple parameters during
the experiment. Based on the direction of the present publication, we
decided to show information only relevant to potential future applica-
tions. More detailed information can be accessed in the supplementary
material provided.

3.1. Total and single fatty acids

Total lipid content rather than profile is often the main important
factor for industrial applications such as biofuel production (biomass
to fuel) [38,39]. At Day 0 of our study, average total fatty acid (TFA) con-
tent per biovolumewas lowest, but not statistically different (Table A.1)
in A. flos-aquae (9.1 μg mm−3), almost double in D. lemmermannii
(14.7 μg mm−3) and largest in N. spumigena (71.9 μg mm−3)
(Table 2). Due to optimum lipid composition and content being seldom
related to optimal industrial biomass production [40], wemodeled both
natural aswell as assumingly optimal nutrient conditions (f/2) to get in-
dications about industrial harvest and production under natural season-
al conditions. According to our obtained FA profiles (Table 2) and [41],
all three species investigated can be classified as type 4, based on the as-
sumption that cyanobacteria can be classified into four groups in terms
of their FA composition [42]. Group 4 is characterized by the presence of
the FA 18:1, 18:2, 18:3a (α-linolenic acid), 18:3γ (γ-linolenic acid) and
18:4 which relative proportions can be affected by growth conditions.
The FA 16:1 is present in low levels [41]. The most promising of the
three species investigated for biofuel production according to the TFA
content was D. lemmermannii, reaching average maximum TFA values
(Table 2) after 7 days in the P depleted treatment (427.0 μg mm−3).
Maximum TFA of A. flos-aquae was obtained after 14 days within the
N depleted treatment (119.4 μg mm−3). N. spumigena had highest TFA
initially. However, the TFA was statistically significantly higher after
14 days in the f/2 treatment and lowest under N depletion for
N. spumigena (Table A.1). The enhanced FA production under nutrient
depletion could be explained by the need for carbon storage under sub-
optimal conditions, as observed also by Siron et al. [43] and Malzahn
et al. [44]. This may prove advantageous for industrial FA production.

In contrast to biofuel production, single FA are used in the food and
pharmaceutical industry due to their inter alia antioxidant, anti-
inflammatory and anti-microbial activities [45]. The FA 14:0, 15:0,
16:0, 17:0, 18:0, 19:0, 20:0 and 24:0 are indicated in the following as
saturated FA (SAFA),16:1(n-7), 18:1(n-7), 18:1(n-9) as monounsatu-
rated FA (MUFA) and the FA 16:2(n-4), 16:3(n-4), 16:4(n-1), 18:2(n-
6), 18:3(n-3), 18:3(n-6), 18:4(n-3), 20:3(n-3), 20:4(n-3), 20:4(n-6),
20:5(n-3), 22:5(n-3) and 22:6(n-3) as polyunsaturated FA (PUFA). Of
particular interest in commercial production [45,46] and for use in sev-
eral anti-cancer and anti-heart disease drugs of the pharmaceutical in-
dustry are the monounsaturated hexadecanoic acid (16:1(n-7)),
octadecanoic acid (18:1(n-9)), polyunsaturated octadecatrienoic
acid (18:3(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and
docosahexaenoic acid (DHA; 22:6(n-3)), which are present in the
three investigated species (Table 2). Nevertheless, the amounts of es-
sential FA are known to be dependent on species and growing condi-
tions [44,47].

3.1.1. Species differences in FA
Initial values indicated that N. spumigena contained high amounts of

SAFA (51.3%), MUFA (21.6%) and PUFA (27.1%), while the proportion of
MUFA was highest in D. lemmermannii (27.8%) and lowest in A. flos-
aquae (9.9%). Results are related to the overall TFA contents (Table 2)
and indicate how the ratios of SAFA, MUFA and PUFA may develop
under certain nutrient conditions. Galhano et al. [48] observed SAFA of
61.7%, MUFA of 24.8% and PUFA of 13.5% in Aphanizomenon gracile and
SAFA of 46.3%,MUFA of 17.7% and PUFA of 36.0% in Anabaena cylindrica.
The results for both species are, in terms of SAFA, similar to our species



Fig. 1.Biovolumes [mm3 L−1] forD. lemmermannii,A.flos-aquae andN. spumigena at Day 0,
Day 7 and Day 14 for phosphorus depleted f/2 medium (−P), nitrogen depleted f/2
medium (−N) and full nutrient treatment (f/2 medium). Error bars show standard
deviation, n = 5.

47F.S. Steinhoff et al. / Algal Research 5 (2014) 42–51
before the experiment started, but vary up to four foldwithinMUFA and
PUFA. Additionally, Li et al. [49] observed 3-hydroxyl FA 12:0 and 15:1
in A. flos-aquae and 15:1 in Anabaena affinis; these FA could not be iden-
tified in our analysis but seem to be of less taxonomic value [50]. As ear-
lier studies indicate, e.g., [51], themorphological distinction of Anabaena
(Dolichospermum) and Aphanizomenon is difficult. FA results from the
present study (Table 2) and those obtained in Li et al. [52] suggest
that FA seem to be more sensitive to environmental parameters than
anticipated, leading to consequences in the FA use as characteristic
markers. Consequently, ratios between MUFA, PUFA and SAFA seem to
be highly variable for different cyanobacterial species [48], but appear
rather constantwithin certain species under comparable environmental
conditions [53].

The amount of 18:1(n-7) in D. lemmermannii and A. flos-aquae
throughout the treatments is far higher compared to N. spumigena.
The latter shows, in contrast, higher values of 18:1(n-9). Due to
18:1(n-7) being more related to bacterial metabolism [54,55], one
could suspect that D. lemmermannii and A. flos-aquae are more bacterial
related species, while N. spumigena is a more autotrophic species,
exhibiting an algal related biosynthesis. Although the FA-signal from
heterotrophic bacteria, commonly associated with the cyanobacteria,
Fig. 2. POC:PON, PON:POP and POC:POP ratios for (a) D. lemmermannii, (b) A. flos-aquae and (c
trogen depleted f/2 medium (−N) and full nutrient treatment (f/2 medium). Error bars show
might not be strong enough, interference thereof cannot be fully
excluded.

3.1.2. Treatment effect on FA
Nutrient starvation and high radiation regimes for a limited period

are known to increase the lipid yield in outdoor algal cultures [56]. In
our study, ratios of SAFA/MUFA + PUFA (Table 2) in D. lemmermannii
under f/2 and N depletion and in A. flos-aquae under N depletion are
comparable to ratios obtained by Galhano et al. [48].

As previously mentioned, there is a strong negative relationship be-
tween lipid content, growth and nutrient availability [57] leading to im-
portant conclusions for future culturing conditions and biomass
production of the desired species. The results of the present study and
of De Figueiredo et al. [58] show decreasing growth rates in
Aphanizomenon strains under P depletion and varying responses to N
depletion, which point to the carbon storage hypothesis of Siron et al.
[43] andMalzahn et al. [44]. Recent results [59] highlight the physiolog-
ical response cascade of cyanobacteria to N starvation occurring at dif-
ferent time scales, ranging from an immediate response to a long term
scaled reaction. This might indicate a connection between results ob-
tained in the present study of A. flos-aquae after 7 and 14 days and tran-
scriptome regulation of cyanobacteria.

3.2. Pigments

It is known that increased lipid content reduces other valuable com-
pounds in the biomass, suggesting that, “the high lipid containing algae
may not necessarily be the most favorable candidate organisms” [9].
Cyanobacterial pigments are characterized by high diversity and rich-
ness, which could revolutionize the industrial use of color in the near fu-
ture [60].

For total carotenoids, at Day 0 D. lemmermannii already had statisti-
cally significantly higher total pigment content than both A. flos-aquae
and N. spumigena (Table 3, Table A.1). This observation continued
after Day 7 and Day 14 in both N and P depleted treatments.

Phycobiliproteins in particular are used as fluorescent tracers and
natural dyes in the food and cosmetic industries [61,62]. Regarding
phycobiliprotein content,D. lemmermanniiwould be an excellent candi-
date with contents up to 19% of dry weight [63]. Within the carotenoid
subgroup of xanthophyll, the present cyanobacteria (Table 3) comprise
canthaxanthin, β-cryptoxanthin (except N. spumigena), echinenone,
) N. spumigena at Day 0, Day 7 and Day 14 for phosphorus depleted f/2 medium (−P), ni-
standard deviation, n = 5.

image of Fig.�1
image of Fig.�2


48 F.S. Steinhoff et al. / Algal Research 5 (2014) 42–51
myxoxanthophyll and oscillaxanthin (exceptN. spumigena). In addition,
N. spumigena contains the species-specific xanthophyll 4-keto-
myxoxanthophyll [64]. It is known that carotenoids are especially af-
fected by radiation intensity and quality [28,64,65], nitrogen source
and concentration [28], species and strain type [64] as well as growth
stage [28,66]. In this study, carotenoids in D. lemmermannii were posi-
tively affected by P depletion, A. flos-aquae by N depletion and under
full nutrients, while N. spumigena showed no response to the applied
treatments (Table 3). In particular, the zeaxanthin concentration in
D. lemmermannii increased in P depletion at Day 14. Zeaxanthin is a
radiation protective pigment and in the low biovolume concentration
(P depletion) this pigment could protect the cells from excess radiation.
In addition, N. spumigena and D. lemmermannii (former Anabaena) are
reported to contain UV absorbing pigments porphyra 334 and shinorine
[67–70].

Phycocyanin levels in mg mm−3 were not significantly different
between any of the species or treatments, nor between phycocyanin
levels, biovolumeor cell concentration (data not shown).Wehypothesize
that themethod used [29]was not optimal for extraction of phycocyanins
in these species. A new extraction method [71] has, in a later pilot study
(Karlberg et al., unpublished), been proven to better extract phycobilins
in N. spumigena (21.3 SD8.5 μg mm−3 compared to 7.6 SD2.5). The
extraction efficiency of this new method in D. lemmermannii and A. flos-
aquae is yet to be performed.

3.3. Biovolume and growth

At Day 7 N. spumigena had statistically significantly higher
biovolume than both A. flos-aquae and D. lemmermannii in full f/2
medium and N depletion, but not under P depletion. This trend contin-
ued at Day 14 and then also under P depletion (Fig. 1, Table A.1). The
higher biovolume for N. spumigena, compared to A. flos-aquae and
D. lemmermannii in all treatments on both Day 7 and Day 14, may also
be due to N. spumigena high irradiance tolerance [64,72,73]. During
the summer-blooms in the Baltic Sea, N. spumigena is distributed in
the top 5 m of the water column, Anabaena sp. (Dolichospermum sp.)
down to 10 m depth and Aphanizomenon sp. equally distributed be-
tween 0 and 20 m throughout the water column [74]. The comparably
high radiation intensities in this study may therefore have favored
N. spumigena over the other two species. However, the Fv/Fm showed
only a possible photoinhibition in A. flos-aquae and D. lemmermannii
after 14 days under P depletion, with yields of 0.08 (SD0.01) and 0.08
(SD0.01) respectively, compared to 0.27 (SD0.02) for N. spumigena
(Table A.2). Potential photoinhibition can occur when the biovolume
is low and all cells are exposed to high irradiances with no chance of
self-shading. The lower Fv/Fm in P depleted treatments could have
been a result of this effect. However, since all three species showed
low Fv/Fm under P depletion, regardless of biovolume, it is more likely
that P depletion has a strong negative effect on Fv/Fm for these nitrogen
fixating species, as phosphorus is also the limiting nutrient during
bloom conditions in the Baltic Sea [75,76]. After 14 days there was no
statistical difference in biovolume between the nutrient treatments for
either A. flos-aquae or N. spumigena (Fig. 1, Table A.1), but the negative
effect of the P depleted treatment, seen by the low Fv/Fm,was significant
for the biovolume of D. lemmermannii.
Table 4
Conclusion summary of the present study addressing the questions: which species appear to b
the most promising and which culturing conditions appear to be the most efficient.

Desired parameter/compound Species with highest values in
desired parameter/compound

Po
for

Biovolume N. spumigena 8–
FA/biovolume D. lemmermannii 1–
FA/L D. lemmermannii 1–
Pigments/biovolume A. flos-aquae 1–
Pigments/L A. flos-aquae 1–
N. spumigena had continuously positive specific growth rate in all
treatments throughout the experiment (data not shown). N. spumigena
generally has higher specific growth rate than A. flos-aquae ([73], Wulff
et al., unpublished). This may be a competitive advantage, allowing
N. spumigena to reach and maintain high biovolume and cell concentra-
tion during the bloom. A. flos-aquae exists as vegetative cells in filaments
in the water column throughout the year [77], meaning it has an advan-
tagewhen light and temperature reaches optimal levels in early summer
and need not only germinate from akinetes, as D. lemmermannii and
N. spumigena do. Although the specific growth rate for A. flos-aquaewas
negative between Day 0 and Day 7 in all treatments, it is positive
between Day 7 and Day 14. This indicates a longer acclimatization time
for A. flos-aquae and it would have been interesting to continue
the experiment (compare e.g., [59,78], Wulff et al., unpublished).
D. lemmermannii had negative specific growth rate in all treatments
throughout the experiment. Since the cyanobacteria strains were reared
at similar radiation conditions and in full nutrient medium, the negative
growth rate results cannot be linked to non-adaptation towards the light
regime, temperature ormedium. In contrast, Moreno et al. [63] observed
production rates for D. lemmermannii (former Anabaena) of up to 24
g DW m−2 per day under N depleted outdoor conditions; the highest
reported growth rate under manipulated experimental outdoor
conditions. Our study obtained up to 93.7 mg DW L−1 in N. spumigena,
61.0 mg DW L−1 in A. flos-aquae and 54.3 mg DW L−1 in
D. lemmermannii (Tables A.1 andA.3), which is comparable to the studies
of Reichert et al. [79] with Spirulina cultures.

Overall, in all treatments and on both Day 7 and Day 14, N. spumigena
had statistically significantly higher biovolume and specific growth rate
than both A. flos-aquae and D. lemmermannii, but not TFA per biovolume
(Table A.1). Highest values of TFA per biovolume were observed in
D. lemmermannii after 7 days in the P depleted treatment (Table 2). In-
creased concentration of FA under nutrient stress is common for many
microalgal genera and species, e.g., [80,81] and references therein. For
D. lemmermannii, the biovolume L−1 after 7 days under P depletion was
very low. Therefore the TFA L−1 was highest after 7 days in the N deplet-
ed treatment (~16 mg L−1) compared to A. flos-aquae and N. spumigena
and the other treatments. A. flos-aquae had highest TFA L−1 after 7 days
in f/2 (~6 mg L−1) while N. spumigena reached highest TFA L−1 in f/2
after 14 days (14 mg L−1). Naturally, these values cannot be compared
to genetically modified Synechocystis sp. with a maximum TFA of
197 mg L−1 [82]. Consequently, one has to distinguish between the use
of biomass for fuels and the use of lipids, derived from biological organ-
isms, to obtain the maximum output with a certain species.

3.4. POC, PON & POP to FA ratios with applications for energy yield

We can support the hypothesis that nutrient deficient cyanobacteria
and microalgae are favorable food for higher trophic levels regarding
their FA profiles. This finding is of special interest to applications such
as the recently introduced and seminal multi-trophic aquacultures, a
co-culturing and interaction of species with benefits for both the envi-
ronment and economy.

Earlier studies have shown (summarized in [83]) that phytoplank-
ton stoichiometry is most variable at low growth rates, with PON:POP
ratios ranging from 5 to 1000 and POC:POP from 60 to 1200. In Fig. 2,
e the most suitable for harvesting of different compounds, which harvesting period seems

tentially best “harvesting” period
desired parameter/compound

Nutrient conditions with highest
results of desired parameter/compound

14 days −N (−P, f/2)
7 days −P
7 days −N
7 days f/2
7 days f/2
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ratios of POC:PON, ranging from 5.2 to 8.5, PON:POP (5.7 to 237.4) and
POC:POP (30.4 to 1454.4) are shown for all three cyanobacteria species
and all treatments over the experimental period. According to Goldman
et al. [84], culturing phytoplankton under N depletion results in PON:
POP ratios of less than 10:1, while under P depletion, ratios of more
than 30:1 occur. In our study, POC, PON and POP differed slightly initial-
ly due to species-specific compositions, with D. lemmermannii having
statistically lowest POC and PON values and A. flos-aquae highest
(Table A.1, Table A.4). Thewide range of POC, PON and POPmight be re-
lated to low growth rates with respect to observations in phytoplank-
ton, matching nutrient input ratios at low growth rates [83].

Consumers in higher trophic levels are often constrained with re-
spect to their body C:N:P ratios while the actual primary production re-
flects the nutrient ratios of the surrounding environment [85]. The body
C:N:P is therefore influenced by the food quality constraints on growth/
reproduction, resource competition, trophic efficiency and nutrient
recycling [86]. Effects of nutrient depletion and/or full nutrient treat-
ments on stoichiometry (Table 2) and FA profiles were observed in
cyanobacteria (present study) and in the cryptophyte Rhodomonas sali-
na [87]. For industrial applications culturing and/or harvesting
cyanobacteria, it is of high relevance to consider these stoichiometry
effects. For example, D. lemmermannii contained the most FA under P
depletion, while the most TFAs were produced under N depletion in
A. flos-aquae. Likewise, R. salina [77] has shown significant differences
between nutrient treatments, with generally higher TFA and higher un-
saturated FA contents (e.g., Ω-3 and Ω-6 FA) in nutrient depleted
treatments.

3.5. Inorganic nutrients

In Table 1, the initial nutrient treatments for the different experi-
mental scenarios with the three different species are presented. Nutri-
ent conditions remained stable due to the addition of treatment-
specific nutrients, on Day 7, to all experimental bottles. Under natural
bloom conditions, the elemental content of phytoplankton can reflect
the ratio of N:P supply, while the chemico-physical context or the pres-
ence or absence of N-fixating organisms can modify this expectation
[88]. Since nutrient depleted treatments mimic reasonably natural con-
ditions before, during and after a summer bloom of the three dominant
N-fixing cyanobacteria species, with low values of both N and P, the re-
sults obtained can be used to optimize nutrient conditions within labo-
ratory or seasonal in-situ harvest, dependent on desired parameter or
compound.

3.6. Costs, feasibility and other issues

Although the presented results sound promising, we have to keep in
mind that mass cyanobacteria production is not simply extrapolating
controlled laboratory experiments to large scale outdoor production
systems [89]. There is an urgent need to develop a detailed and feasible
procedure for the production of biochemically active compounds and
secondarymetabolites of cyanobacteria [15] in cooperation with the in-
dustry. As scientists, we can only give advice and point out knowledge
gaps; the technical challenges are a different kettle of fish. The obtained
results might be of interest to an endless group of buyers, such as the
aquaculture industry, animal farms, biomass production and incinera-
tion. In addition, regulatory and commercial factors might inhibit the
large-scale deployment of algae farms for production of biofuel [90],
food additives and pharmaceuticals. Consequently, itmay have to be ex-
plored in more detail in the future. By-products of algae [91], the algae
meal, and cyanobacteria seem to be promising as feed for animals, but
toxic substances such as nodularin in N. spumigena have to be consid-
ered. Two possible solutionswere suggested by Vuori et al. [92]; remov-
ing nodularin effectively by reverse osmosis or vacuum distillation [93]
and destroying nodularin by ultraviolet and high PAR. Overall biomass
production costs of aquatic microorganisms could additionally be
optimized by usage of the remaining biomass cake as fertilizer, or to ob-
tain biogas via aerobic fermentation [94,95].

Our experiment suggests laboratory rearing, as well as harvest of
algal biomass under natural conditions, every few days or on a daily
basis, depending on their growth rates within favorable nutrient and
temperature conditions (compare [96,97]). Since the nutrient depleted
treatment worked best, it would lower the costs of the culture medium
in bioreactors.

4. Concluding remarks

From the initial results of this pilot experiment, we can draw the fol-
lowing conclusions.

The choice of species strongly depends on the desired compounds.
Each species originally has a species dependent chemical fingerprint
that may be modified by the culture conditions and harvesting period
to meet the needs of the consumer. The conclusions presented in
Table 4 only indicate that the investigated cyanobacteria could be of in-
terest for biofuel and secondary metabolites, in addition to already
existing genetically modified cyanobacteria as well as other biofuels.
Further research needs to be carried out in terms of technological feasi-
bility on large scales, outdoor bioreactors, natural occurrences, impact
on ecosystems and toxicity issues.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.algal.2014.05.005.
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