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ABSTRACT
Analysis of dendritic spines is an essential task to understand
the functional behavior of neurons. Their shape variations
are known to be closely linked with neuronal activities. Spine
shape analysis in particular, can assist neuroscientists to iden-
tify this relationship. A novel shape representation has been
proposed recently, called Disjunctive Normal Shape Models
(DNSM). DNSM is a parametric shape representation and has
proven to be successful in several segmentation problems. In
this paper, we apply this parametric shape representation as
a feature extraction algorithm. Further, we propose a ker-
nel density estimation (KDE) based classification approach
for dendritic spine classification. We evaluate our proposed
approach on a data set of 242 spines, and observe that it out-
performs the classical morphological feature based approach
for spine classification. Our probabilistic framework also pro-
vides a way to examine the separability of spine shape classes
in the likelihood ratio space, which leads to further insights
about the nature of the shape analysis problem in this con-
text.

Index Terms— Disjunctive Normal Shape Model, Spine
Classification, Shape analysis, Kernel density estimation, mi-
croscopy, neuroimaging

1. INTRODUCTION
Dendritic spines are small membranous protrusions of the
dendritic shaft, and are strongly related to the functional char-
acteristics of a neuron. Dendritic spine morphology changes
are associated with neuron activities, which make the spine
shape analysis an important subject for neuroscientists. The
ability to automatically analyze the spine shapes would as-
sist neuroscientists in identifying the underlying connection
between spine shape and neuronal function.

In this paper, we propose an automated approach for den-
dritic spine shape analysis. We use recently proposed Dis-
junctive Normal Shape Models (DNSM) for feature extrac-
tion. DNSM [1] is an implicit parametric shape representa-
tion that represents a shape as a union of convex polytopes,
which are formed by intersections of half-spaces. DNSM
based shape and appearance priors have been recently intro-
duced and have been successfully applied to various segmen-

tation problems [2]. We apply the DNSM shape and appear-
ance priors based approach to segment the dendritic spines
from intensity images, and further use this parametric repre-
sentation as our feature vector.

Dendritic spine shapes are usually classified into four
groups: filopodia, thin, stubby and mushroom [3]. However,
whether to view spines as belonging to distinct shape classes
or whether to model them through a continuum of shape
variations is still an open question. Peters and Kaiserman-
Abramof pointed out that some spines were difficult to clas-
sify into traditional classes [4]. Spacek and Hartmann intro-
duced two new shape classes lying between mushroom and
stubby; and mushroom and thin [5]. Wallace and Bear argued
that spine dimension measurements from their data do not
agree with the idea of distinct shape classes [6].

As we will discuss later in this paper, spine classes are
distributed very closely, which makes the classification prob-
lem challenging. For classification purposes, we decided to
apply kernel density estimation (KDE). This nonparametric
approach naturally provides the likelihood of a spine being
member of each spine class compared to other approaches
which use techniques to produce scores which can be in-
terpreted as probabilities. Hence, our KDE-based approach
has the potential to represent complicated shape distributions
well. In addition, it also provides a natural framework to
examine the distribution of shapes, including the question
of whether the spine shapes constitute a continuum across
classes. This work is based on two-photon laser scanning
microscopy (2PLSM) images.

Major contributions of this paper are; use of the DNSM
based implicit parametric shape representation for feature ex-
traction, and development of a KDE based spine shape clas-
sification approach. Exploring the separability of spine shape
classes in likelihood ratio space is another contribution of this
research.

The rest of this paper is organized as follows: an overview
of related studies is given in section 2. Detailed methodology
is described in section 3. Experimental results are discussed
in section 4. Section 5 presents the conclusion of this study
and future work suggestions.
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2. LITERATURE REVIEW
While there are several automated approaches proposed for
dendritic spine segmentation, only a few studies address the
classification problem. Rodriguez et al. [7] applied morpho-
logical features based approach on 3D confocal laser scan-
ning microscopy (CLSM) images, and classified spines using
a decision tree. To validate the performance of their algo-
rithm, they compared their results with labels provided by
human experts. In this context, they reported intra-operator
and inter-operator variability. Rule based classifiers based
on morphological features are commonly used in the litera-
ture to identify the shapes of spines from CLSM images (Son
et al. [8] and Shi et al. [9]) and 2PLSM images (Koh et
al [10]). Ghani et al. [11] also developed a morphological
features based approach but applied state-of-the-art classifi-
cation techniques, and also reported that head diameter and
neck length are the most distinguishing features for the clas-
sification of mushroom and stubby classes.

Most of the studies reported in the literature are focused
on CLSM images, only a few of them analyzed 2PLSM im-
ages. Analyzing 2PLSM images is comparatively more chal-
lenging due to low signal to noise characteristics. The reason
behind using 2PLSM is that it allows imaging of living cells.

3. METHODOLOGY
Data description and details of the proposed approach are pro-
vided in this section. Mice post natal 7 to 10 days old animals
are imaged using 2PLSM.1 15 stacks of 3D images are ac-
quired, which are further projected to 2D using Maximum
Intensity Projection (MIP) for this study. MIP is a standard
procedure used in neuroscience studies. Dataset prepared for
this research consists of 242 spines extracted from 15 dendrite
branches. Out of 242 spines, 182 are mushroom and 60 are
stubby. Mushroom spines have long necks and large heads,
while stubby spines have very short necks (as illustrated in
Figure 1. The spines are manually classified by an expert
using MIP images, and classification algorithm outputs are
compared with those labels. Our approach uses disjunctive
normal shape models (DNSM) based algorithm for automated
segmentation of spines and feature extraction. Shape classi-
fication is performed using kernel density estimation (KDE)
based classification algorithm.

3.1. Segmentation and Feature Extraction
We define a region of interest (ROI) as an input to the seg-
mentation algorithm. ROI is selected such that spine head is
placed approximately in the center. Selected ROI is scaled to
150 pixels in the horizontal and vertical direction. Further,
ROIs are aligned in such a way that spine necks are in verti-
cal position with respect to the horizontal axis in the ROI (as
illustrated in Figure 1). Currently, this process is performed
manually. However, the spine head center can be automati-
cally located by employing the spine detection approach de-
scribed in [12] and then using Hough Circle Transform (HCT)

1All animal experiments are carried out in accordance with European
Union regulations on animal care and use, and with the approval of the Por-
tuguese Veterinary Authority (DGV).

to fit a circle in the spine. The alignment process can be au-
tomated as well by locating spine neck with respect to the
dendrite extracted using the algorithm in [11].

DNSM approximates the characteristic function of a
shape as a union of convex polytopes which themselves are
represented as intersections of discriminants (half-spaces).
The DNSM approximation to the shape characteristic func-
tion is given in Equation 1.

f(x) = 1−
N∏
i=1

1−
M∏
j=1

1

1 + e
∑D+1

k=1 wijkxk

 (1)

Where, D = 2 for 2-dimensional (2D) shapes, x =
{x, y, 1} , M is the number of discriminants, and N is the
number of polytopes. The only free parameters of the model
are wijk which determine the orientation and location of the
discriminants that define the half-spaces. Further details of
the DNSM can be found in [1].

For this study, we use the DNSM based segmentation ap-
proach discussed in [2] that exploits the parametric nature of
DNSM. It applies the DNSM based shape and appearance pri-
ors. The segmentation of spines using the DNSM shape and
appearance priors has two stages: training and testing. Dur-
ing the training stage: first, the training spine shapes are rep-
resented by their DNSM parameters. Then, the local shape
and appearance priors are constructed from the training sam-
ples. The use of local shape prior results in good segmen-
tation even when limited training shapes are available, be-
cause the method generates a rich set of shape variations by
locally combining training samples. In addition, by studying
the intensity statistics around each discriminant of the DNSM
model, the local appearance priors with better expressive ca-
pability are constructed from the training samples. Since seg-
mentation of spines require differentiating between the spine
regions and the dendritic part (both of which have similar in-
tensity levels in 2PLSM images), the use of a local appear-
ance prior is crucial. During the testing stage, the spines are
segmented by minimizing the weighted average of the shape
and appearance prior energy terms using the gradient decent.
Further details about training and testing process can be found
in [2]. This approach has several parameters which must be
adjusted for different applications: number of polytopes N ,
number of half spaces M ; and level of contribution from ap-
pearance and shape priors, γ and α. Values for these parame-
ters has been found by empirical analysis, M = 16, N = 8,
γ = 0.5 and α = 0.05. Segmentation results for a few spines
are given in Figure 1.

As discussed earlier, DNSM is a parametric shape model.
Once segmentation of the given image has been performed,
it gives M × N × 3 parameters,wijk, representing the seg-
mented image. These parameters can also be used as feature
vector to train a classifier and perform classification. In this
study, we test the potential of DNSM based feature vector for
classification of dendritic spines. We also use this parameter
space for studying the shape statistics.



Fig. 1. A few images from dataset, without segmentation
(above) and segmented images (below). First 2 spines are
labeled as Mushroom and 3rd spine as Stubby.

3.2. Classification
For classification, we perform non-parametric density es-
timation and apply a likelihood ratio test (LRT). Our non-
parametric density estimation approach is similar to [13].
Suppose that we have m features x1, x2, . . . , xm sampled
from an n-dimensional density function p(x). The Parzen
density can be estimated using Equation 2.

p̂(x) =
1

m

m∑
i=1

k(x− xi,Σ) (2)

Where, k(x,Σ) = N (x; 0,ΣT Σ) is an n-dimensional
kernel, which can be simplified using the assumption that
kernel is spherical, i.e.,Σ = σI . Applying this assumption
Equation 2 can be simplified, as given in Equation 3.

p̂(x) =
1

m

m∑
i=1

k(d(x, xi), σ) (3)

Where d(x, xi) is the `2 distance between x and xi in IRn

and k(x, σ) = N (x; 0, σ2) is the 1D Gaussian kernel. Ker-
nel size (σ) is estimated by the bracket method (also known
as the bisection method). First, we compute 1D kernel size
from each feature vector and use this m dimensional kernel
size vector to compute minimum (σmin) and maximum ker-
nel size (σmax). Finally, we apply the bracket method to com-
pute the optimal kernel size in [σmin, σmax] range by itera-
tively bisecting the interval and selecting the subinterval that
contains the optimal kernel size.

Once we have estimated the likelihood of an image be-
longing to Mushroom (lm) and Stubby (ls) classes, we can
perform classification using the LRT, as depicted in Equation
4, here M denotes mushroom and S denotes stubby class.
This approach simplifies the classification process by map-
ping an n-dimensional classification problem to 1D problem,
specifying the problem in terms of likelihood ratios.

lm
ls

Decide M
≷

Decide S
1 (4)

4. RESULTS
We compare the performance of this new feature extraction
technique with a morphological features based approach we

Table 1. Classification Results, comparison of feature extrac-
tion and classification approach

Classifier Features Accuracy

KDE
Ghani et al. [11] 79.34%
DNSM 85.54%

SVM
Ghani et al. [11] 80.17%
DNSM 84.30%

Neural Network
Ghani et al. [11] 77.69%
DNSM 85.54%

have published earlier [11]. For this purpose, we use the auto-
mated segmented images and apply the morphological feature
extraction algorithm.

In order to test the potential of our classification approach,
we compare its performance with two state-of-the-art classifi-
cation algorithms, support vector machines (SVM) and Neu-
ral Networks (NN). We used the linear kernel for SVM and
2-layer network with 193 nodes in each layer for Neural Net-
work. We compared both feature extraction schemes for all
three classifiers using 10 fold cross validation; results are pre-
sented in Table 1.

As we can see from Table 1, proposed feature extrac-
tion technique results in higher classification accuracy for all
classifiers with respect to commonly used morphological fea-
tures. We suggest that the potential of DNSM based feature
extraction approach for dendritic spine classification needs to
be further explored. Confusion matrix for DNSM features
with KDE and Neural Network classifier is given in Table 2,
which shows that KDE classifier gives relatively fair weight
to both classes. Another conclusion to draw from Table 1
is that, DNSM features combined with Neural Network or
KDE based Likelihood Ratio classification outperforms other
methods. Given the statistical description in terms of the
DNSM features, our approach works using the likelihood ra-
tio, which is the sufficient statistic for the classification prob-
lem.

As discussed earlier, whether to view spines as belong-
ing to distinct shape classes or to model them through a con-
tinuum of shape variations is still an open question. Since
our KDE based approach gives the likelihood of a spine be-
ing member of Mushroom (lm) and Stubby (ls) classes, it
can be used to examine this question in a principled man-
ner. We computed the histogram of likelihood ratios, as given
in Figure 2 and analyzed whether we see two distinct modes
or a continuum of shapes. It is evident from the presented
histogram that we do not see two clearly separable distribu-
tions but a mixture of distributions, which are closely inter-

Table 2. Confusion Matrix for DNSM features with KDE and
Neural Network classifier

Neural Network KDE

Classified as→ M S M S

M 170 12 159 23
S 23 37 12 48



Fig. 2. Histogram of likelihood ratios

linked. One can observe two classes, Mushroom and Stubby,
but there is a significant overlap between their distributions.
For analyzing the statistical significance of this framework,
we performed two-sample t-test with null hypothesis to have
same mean for both class distributions. Two-tailed test gives
us an insight that both class distributions have different mean,
meaning that there exist two distinct classes. It rejects the
null hypothesis with p-value of 1.77 × 10−29 that strongly
supports the significance of our analysis.

If we treat this problem as a classification task, best per-
formance (assuming equal priors and the probability of er-
ror as the decision criterion) can be achieved by thresholding
likelihood ratio space at “1” to perform classification. How-
ever, classifying the spines lying around this threshold is a
difficult decision since values of lm and ls are very close in
these case. Our KDE based framework provides a principled
approach to handle such spines, if values of lm and ls are not
very different, one might use the help of neuroscientists to
manually look at spines and make a decision. Further analy-
sis may also include 3D image evaluation of the spines whose
likelihoods for different classes are very close.

5. CONCLUSION
Since dendritic spine shape analysis can lead to a better un-
derstanding of the connection between spine shape changes
and neuronal activities, it is an attractive research aspect for
neuroscientists. Availability of dependable automated anal-
ysis tools can expedite this research. Methods proposed in
this paper aim to develop such tools. We propose a new spine
shape analysis framework that classifies the spines into the
groups suggested in literature. We apply the DNSM based
approach to segment the intensity images of spines and pro-
vide an interesting shape representation. Further, we use this
shape representation to estimate the density for each spine
class and apply LRT to perform classification. Experimen-
tal results confirm that DNSM based representation performs
better as compared to morphological features based analysis.
We also observed that neural network and KDE based classi-
fication algorithm combined with DNSM features outperform
other state of the methods. Our suggested framework also en-
ables the analysis of the continuum of shapes in a principled
manner. Preliminary analysis reveal that two distinct classes
exist but they are close,i.e.,signal to noise ratio (SNR) is low.
In future, we will investigate continuum of shapes in detail
and attempt to answer the question whether spine analysis
problem should be addressed as a classification problem or
not.
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