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(F)-, (DF)- SPACES
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Thesis Supervisor: Prof. Dr. Vyacheslav P. Zakharyuta
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Abstract

In this thesis, we consider problems on the isomorphic classification and quasiequiv-
alence properties of mixed (F)-, (DF)- power series spaces which, up to isomorphisms,
consist of basis subspaces of the complete projective tensor products of power series
spaces and (DF)- power series spaces.

Important linear topological invariants in this consideration are the m-rectangle
characteristics, which compute the number of points of the defining sequences of the
mixed (F)-, (DF)- power series spaces, that are inside the union of m rectangles. We
show that the systems of m-rectangle characteristics give a complete characterization
of the quasidiagonal isomorphisms between Montel spaces that are in certain classes
of mixed (F)-, (DF)- power series spaces under proper definitions of equivalence. Us-
ing compound invariants, we also show that the m-rectangle characteristics are linear
topological invariants on the class of mixed (F)-, (DF)- power series spaces that consist
of basis subspaces of the complete projective tensor products of a power series space
of finite type and a (DF)- power series space of infinite type. From these invariances,
we obtain the quasiequivalence of absolute bases in the spaces of the same class that

are Montel and quasidiagonally isomorphic to their Cartesian square.



M-DIKDORTGEN KARAKTERISTIKLERI VE KARISIK (F)-, (DF)-
UZAYLARININ ESDONUSUMLERI UZERINE

Can Deha Kariksiz
Matematik, Doktora Tezi, 2014

Tez Danigmani: Prof. Dr. Vyacheslav P. Zakharyuta

Anahtar Kelimeler: dogrusal topolojik invaryantlar, bilesik invaryantlar,

m-dikdortgen karakteristikleri, karigik (F)-, (DF)- uzaylari, bazlarn sanki denklikleri.

(")zet

Bu tezde, kuvvet serisi uzaylar1 ve (DF)- kuvvet serisi uzaylariin tam projektif
tensor carpimlarinin baz altuzaylarina eg yapili olan karigik (F)-, (DF)- kuvvet serisi
uzaylarinin eg yapi siniflandirmalar: ve sanki denklik ozelliklerine dair problemler in-
celenmigtir.

Bu incelemedeki énemli dogrusal topolojik invaryantlar, kargik (F)-, (DF)- kuvvet
serisi uzaylarini tanmimlayan dizilerin m adet dikdortgen i¢inde kalan noktalarini hesap-
layan m-dikdortgen karakteristikleridir. Ilgili denklik tammlar1 altinda, m-dikdortgen
karakteristik sistemlerinin, bazi karigik (F)-, (DF)- kuvvet serisi uzaylar1 simflaria
ait Montel uzaylar1 arasindaki sanki diyagonal egdontigiimleri tamamen karakterize
ettigi gosterilmistir. Bilesik invaryantlar kullanilarak, m-dikdortgen karakteristikleri-
nin sonlu tipli kuvvet serisi uzaylar1 ve sonsuz tipli (DF)- kuvvet serisi uzaylarinin
tensor ¢arpimlarinin baz altuzaylarina eg yapili olan kangik (F)-, (DF)- kuvvet serisi
uzaylar1 siifi tizerinde dogrusal topolojik invaryantlar oldugu ispatlanmigtir. Bu in-
varyantlar araciligiyla, ayni siifa ait, Montel ve kendisiyle Kartezyen carpimlarina
sanki diyagonal olarak es yapili olan uzaylarda mutlak bazlarin sanki denkligi elde

edilmistir.
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CHAPTER 1

Introduction

In this thesis, we aim to characterize isomorphisms between certain classes of locally
convex spaces. Linear topological invariants are powerful tools in this regard, as they
are a way to distinguish non-isomorphic spaces.

By an isomorphism between two locally convex spaces X and Y, we mean that
there exists a continuous linear map from X into Y that is one-to-one, onto, and with
a continuous inverse. The spaces X and Y are then called isomorphic, denoted by
X ~Y. If X is a class of locally convex spaces and I' is a set with an equivalence
relation ~, then v : X — T is called a linear topological invariant if X ~ 'Y implies
Y(X) ~y(Y) for all X|Y € X.

Results on isomorphic classification of non-normable locally convex spaces and re-
lated problems were initiated by the introduction of the approximative dimensions by
Kolmogorov ( [23]) and Petezynski ( [29]). Shortly after, variations of the approximative
dimensions called the diametral dimensions were introduced by Bessaga, Pelczynski,
Rolewicz ( [1]) and Mityagin ( [25]), and these invariants were proven to be more

convenient for certain classes of locally convex spaces.

Definition 1.0.1 Let U and V' be absolutely convex sets in a locally convex space X
such that V- C cU for some constant ¢ > 0. Then, for everyn € N, the nth Kolmogorov
diameter of V' with respect to U is defined by

d,(V,U) = Lian inf{p>0:V C pU + L},
€Ln
where L, denotes the collection of all subspaces of X with dimension less than or equal
to n. Then, the diametral dimensions of X are defined by

I'(X) = {(&):VU 3V limé&,d,(V,U) =0},

X)) = {(fn):EIU 4% lim%:O}.

1



These invariants were especially useful for the classes of Kothe spaces with a regular

basis, where the Kothe spaces are defined as follows.

Definition 1.0.2 A matriz A = (a;p)ipen of non-negative numbers satisfying
(i) for each i € N there exists p = p(i) such that a;, > 0,
(11) a;p < a;piy1 for all i,p € N,

is called a Kéthe Matrix. For a Kdthe matriz A, the locally convexr space K(A) of
all sequences & = (&)ien with the locally convex topology generated by the system of
seminorms {||.||, : p € N}, where
1€l = léilaip < oo,
ieN

1s called the Kothe space defined by A.

For any Kéthe matrix A = (a;,)ipen, K(A) is a Fréchet space, that is, a complete
metrizable locally convex space. Also, for a Kéthe matrix A = (a;,); peny With non-zero

terms, we have the isomorphism

K(A) = projepll ((%’,p)ieN) .

A sequence (z,,) in a locally convex space X is called a (Schauder) basis, if for each
x in X there is a unique sequence of scalars (¢,) such that x = > t,x,, where the
sum converges in the topology of X. Moreover, (x,) is called an absolute basis if for
each continuous seminorm p on X there exists a continuous seminorm ¢ on X and a

constant C > 0 such that
> |talp(za) < Cq(x)

for every x € X. Every Fréchet space with an absolute basis is isomorphic to a Kothe
space. From Grothendieck-Pietsch theorem, K (A) is nuclear if and only if for every

p € N there exists ¢ € N, ¢ > p so that

—P < o0.
Since any basis in a nuclear Fréchet space is an absolute basis by Dynin-Mityagin

theorem, any nuclear Fréchet space with a basis is isomorphic to a nuclear Kéthe

space.



An important subclass of Kothe spaces are the power series spaces, which are defined

as follows.

Definition 1.0.3 For any positive sequence a = (a;)en,

Ea(a) = projyc,i(exp(ra))

where —oo < a < 00, s called a power series space of finite type if a < 0o, or a power

series space of infinite type if a = oo.

If the sequence a increases to infinity, then F,(a) is a Schwartz space. Without loss of

generality, we only need to consider

Eo(a) = proj., hlexp(—a). Pu(a) = profi, h(exp(pa)

for representing power series spaces, since any power series space of finite type is
isomorphic to Ey(a) and for every strictly increasing sequence (\,)peny with im A\, = «
we have E,(a) = K(A) where A = (exp(Apai)); -

Many concrete spaces in analysis are isomorphic to power series spaces. As impor-
tant examples, let A(ID) denote the space of analytic functions in the unit disk on the
complex plane and A(C) denote the space of entire functions on the complex plane,
both endowed with the topology of uniform convergence on compact subsets. Then,
A(D) is isomorphic to a power series space of finite type and A(C) is isomorphic to
a power series space of infinite type. Also, the space of infinitely differentiable func-

tions on the interval [0, 1], denoted by C*°[0, 1], is isomorphic to the space of rapidly

decreasing sequences, denoted by s, and defined by
s = Ey((logi)ien)-

The isomorphic classification of power series spaces were considered by Mityagin
and, for Schwartz power series spaces, the following result was shown in [25] by using

diametral dimensions and their computation in terms of their defining sequences.

Proposition 1.0.1 For positive sequences a = (a;)ien and b = (b;)ien both monotoni-

cally increasing to infinity, the following statements are equivalent:

(i) Eo(a) ~ Ey(b).



(ii) Ex(a) =~ Ex(b).
(11i) There exists a constant C' > 1 such that %ai < b; < Ca; for all i € N.

Mityagin also investigated the isomorphic classification of non-Schwartz power series

spaces in [26], [27], and later in [28], by analysing the counting functions
Ny(u,v)={teN:u<a; <v}, 0<u<v<o0,

where |S| denotes the number of elements of a given set S if S is a finite set and equal

to oo if S is an infinite set, and obtained the following criterion.

Proposition 1.0.2 For positive sequences a = (a;)ieny and b = (b;);en, the following

conditions are equivalent:
(i) Eo(a) ~ Ey(b).
(ii) Ex(a) >~ Ex(b).
(iii) There exists a constant R > 0 such that for any u, v, 0 < u < v < 00,

Na(u>v) S Nb(Ru7 %)7 Nb<u>v) S Na(Rua %)

A related question in isomorphic classification of locally convex spaces is whether
a locally convex space has the quasiequivalence property, that is, if any two bases in a

locally convex space are quasiequivalent.

Definition 1.0.4 Two bases (e,) and (f,) of a locally convexr space X are called
quasiequivalent if the operator T' : X — X where Te, = t,fsn) for some sequence

of scalars (t,) and a bijection 0 : N — N for every n € N is an isomorphism.

It was shown by Dragilev ( [14], [15]) that A(D) has the quasiequivalence property.
Mityagin has shown in [26] that nuclear power series spaces have the quasiequivalence
property. Zakharyuta has shown in [34] that Schwartz power series spaces have the
quasiequivalence property. The quasiequivalence property for arbitrary power series
spaces was then shown by Mityagin in [27].

Dragilev has also considered nuclear Fréchet spaces in the classes (d;) and (dy) with

regular basis, where regular bases and the classes (d;) and (dy) are defined as follows.



Definition 1.0.5 A basis {e; : i € N} in a Fréchet space E is called regular if there

is a sequence of seminorms {||.||, : p € N} generating the topology of E such that

||€z‘||p ||€z'+1’|p

eillpr1 — [lemtllps

for all i,p € N.

Definition 1.0.6 Let X be a Fréchet space with an absolute basis ()5, and a system
of seminorms {||.||, : p € N} defining the topology of X. Then, X said to belong in class

(dy) if there exists p such that for every q there exists r and ng such that
lleally < llenllyllenllr, 7 > no.

X said to belong in class (ds) if for every p there exists q such that for every r and ng
lleallg = lleallpllenllr, 7 > no.

As examples of spaces in these classes, any power series space of finite type belongs
in class (dy), and any power series space of infinite type belongs in class (d;).

It was shown by Dragilev in [16], by using the diametral dimension I'(X), that
nuclear Fréchet spaces in classes (d;) and (d2) with regular basis have the quasiequiv-
alence property. Crone, Robinson ( [9]), and Kondakov ( [24]), has later shown that
the diametral dimension I'(X) distinguishes regular bases, hence any nuclear Fréchet
space with a regular basis has the quasiequivalence property. Djakov has shown in [10]
that equivalence of characteristics can be used instead of equality in the proof of Crone
and Robinson, which provided a new method in the consideration of linear topological
invariants.

In the case of distinguishing spaces without a regular basis, the diametral dimen-

sions are not very efficient as the following example, due to Rolewicz ( [30]), shows.

Example 1.0.1 The cartesian product A(D) x A(C) has no regular basis and A(D)
and A(D) x A(C) are non-isomorphic. However, I'(A(D)) = I'"(A(D) x A(C)).

To investigate Kothe spaces without a regular basis, more generalized linear topo-
logical invariants were constructed Zakharyuta in [35], [36] and [37]. Subsequently, new

geometrical invariants named compound invariants were introduced by Zakharyuta

5



in [38], [39] and [40], where the asymptotic behaviour of Kolmogorov n-diameters of
certain absolutely convex sets that are geometrically constructed (by taking intersec-
tions, convex hulls, etc.) from given bases of neighborhoods of zero, called synthetic
sets, were analysed and shown to be equivalent to the generalized invariants in [36]
and [37]. Also, by considering characteristics other than Kolmogorov n-diameters, and
using interpolational methods in geometric constructions, new linear topological in-
variants were introduced by Zakharyuta, and used in joint papers by Chalov, Djakov,
Terzioglu, Yurdakul and Zakharyuta ( 3], |4], [6], [7], [11], [12], [33]) for the isomor-
phic classification of cartesian products and tensor products of power series spaces, and

more generally, the power Kothe spaces of first type, that is, the class of spaces

SRS

where A = (\;);eny and a = (a;);en are sequences of positive numbers, containing carte-
sian and projective tensor products of power series spaces. An important invariant in
the consideration of power Kothe spaces of first type is the m-rectangle characteristics,
introduced by Chalov in [2] for the isomorphic classification of certain classes of Hilbert
spaces, which compute the number of the points ()\;, a;) that are inside the union of

m-rectangles.

Definition 1.0.7 let A = (\)ien and a = (a;)ien be sequences of positive numbers and

let m € N. Then, the function
po (6,57 t) = U{l oSN <ep, T < a; <t}
k=1

defined for 6 = (0x), € = (ex), 7 = (1) and t = (ty) such that 0 < 0 < g < 2,
0<7 <ty <oo, where k =1,2,--- ,m, is called the m-rectangle characteristic of the

pair (A, a).

Compound invariants were also used in joint papers by Goncharov, Terzioglu and
Zakharyuta in 18], [19] and [20] for the isomorphic classification of complete projective
tensor products of power series spaces with the (DF)- power series spaces, where the

(DF)- power series spaces are defined as follows.

Definition 1.0.8 For a sequence of positive numbers a = (a;)ien,

/ . 1
E{(a) = ind, ll(exp(gai))



is called a (DF)- power series space of finite type, and
E!_(a) = ind,—, li(exp(—qa))
is called a (DF)- power series of infinite type.

(DF)- power series spaces are ultrabornological (DF)-spaces since they are countable
inductive limits of Banach spaces. Note that (DF)- power series spaces are not neces-
sarily the duals of power series spaces, such an identification is true only in the case of
nuclearity of the corresponding power series space.

Problems on isomorphic classification and quasiequivalence of bases of a wider class

of spaces
G(X, a) = proj_, (indg 1 (w(p,q)) ), (1.1)

where w;(p,q) = exp ((p — g\:) a;) for sequences of positive numbers A = (\;)ien, @ =

(a;)ien, which includes the basis subspaces of the tensor products
Ewo(c)@r B (d),

were investigated by Chalov, Terzioglu and Zakharyuta in [5], and it was shown that
for each m € N, the corresponding m-rectangle characteristic is a linear topological
invariant for this class under some equivalence.
In this thesis, we consider problems on isomorphic classification of the mixed (F)-,
(DF)- spaces
Gap(A a) = proj_, (indg b (w™(p,q))) (1.2)

for o, B € {0, 00} with p,q € N and w®?(p, q) = (W™’ (p, q))ienw When
(1) W% (p,q) = exp ((p — gAi) as),
o) b _exp( S o)a)
(3) w(p,q) = exp ( %)\z + %) al>,

) w0 —exp(( )

where A = (\;)ien, @ = (a;);en are sequences of positive numbers.
These classes, up to isomorphisms, consist of basis subspaces of projective tensor
products E,.(c)®,E" (d), Eo(c)®-E' (d), Es(c)2:E}(d), Ex(c)®E)(d) respectively,

where ¢ and d are sequences of positive numbers.

7



In Chapter 2 we establish the notation and give preliminary results. In Chapter 3,
we obtain criteria for quasidiagonal isomorphisms between the spaces in each of the
four classes above. In Chapter 4, we present the m-rectangle characteristics and re-
lated equivalences, and show that the systems of m-rectangle characteristics completely
characterize the quasidiagonal isomorphisms between the spaces in each of these four
classes. In Chapter 5, by using compound invariants, we prove that the m-rectangle
characteristics are linear topological invariants for each m € N on the class of spaces (2)
when w?’oo(p, q) = exp ((—% — q)\i> ai>. In Chapter 6, we show the quasiequivalence
of absolute bases for the spaces in the class (2) that are Montel and quasidiagonally

isomorphic to their Cartesian square.



CHAPTER 2

Preliminaries

2.1 Mixed (F)-, (DF)- Spaces
We consider the classes of mixed (F)-, (DF)- spaces

Gap(A, a) =proj,_, (indq_> I (w“’ﬁ(p, q))) (2.1)

for a, B € {0, 00}, with p,q € N, and w*(p, q) = (w?’ﬁ(p, q))ien, When

where A = (\;)ien, a@ = (a;);en are sequences of positive numbers.

Here, [ (w“’ﬁ(p, q)) denote the weighted [;-spaces
L (w*(p,q)) = {1’ = (&ien : 12llpg = Y [&lw™ (pq) < OO} :
i=1

For each p € N, we put X, := (J, i (wia”g (p, q)), equipped with the inductive topol-

ogy, that is, the finest locally convex topology for which the inclusion maps
ig (wo"ﬁ(p, 7)) = X,

are continuous. Then, X, is an inductive limit for each p € N. We have X,;; C X,

for every p € N, hence we define the projective limit
Gaﬁ()‘7 (I) = projep Xp

9



and endow it with the projective topology, that is, the coarsest topology for which the
inclusion maps

7y Gapg(N, a) = X,

are continuous.

Ga(A, a) is a Montel space, that is, a quasibarrelled space in which every bounded
set is relatively compact, if and only if (a;) — oc.

For the spaces G, (), a) in the classes (1) — (4), the coordinate basis {e, : n € N},
where e,, are the sequences which are zero at each coordinate except the nth coordinate
and one at the nth coordinate, is an absolute basis. A subspace of G(A,a) that is
generated by a subset of the coordinate basis is called a basis subspace (or step subspace

as in [17]).

Lemma 2.1.1 Any space in one of the classes (1) — (4) is isomorphic to a space

Gap(N a), where X and a satisfy the conditions

1
a;

Proof. For any space G, g( 5\ , take

max

X},1+di> i, <1,

1+a1

(Aiy ;) = -
11—|—)\a if A > 1.

For example, if we consider a space GOO,O(S\,&) in the class (4) where w*°(p,q) =

exp((pA; + %)ai), then we have the inequalities

~ 1 1 ~ 1
(p/\i + —> a; < (p)\i + —) a; < (P)\i + —> a; +2p
q q 4q

for every p,q € N, which imply that the identity map and its inverse map are contin-
uous, hence the identity map is an isomorphism between GOO,O(S\, a) and G (A, a).

The other cases can be obtained similarly. m

2.2 Projective Spectra of (LB)-Spaces

Any space Gos(\, a) of the form (2.1) can also be considered as a projective spec-
trum X = (Xp,wp) where X, = ind,,l;(w*?(p,q)) and the connecting maps ™, are

inclusions. In this case, X is a strongly reduced spectrum of complete Haussdorff

10



(LB)-spaces. Hence, the spaces G, 3(A, a) have the following property that is men-
tioned in [31] and stated in [32] (Proposition 3.3.8) as follows.

Proposition 2.2.1 Let X = (X, 0l") and Y = (Y,,00) be two strongly reduced spec-
tra of complete Haussdorff (LB)-spaces, and T : Proj X — Proj Y a continuous linear
map. Then there is a morphism of locally convex spectra T:X =Y, where X is a
subsequence of X, such that T = Proj X. In particular, Proj X ~ Proj Y implies that

X and Y are equivalent.

By this proposition, if T': G, (A, a) — GQ’B(S\, a) is a continuous linear operator,
then for every r € N there exists p > r and a continuous linear map 7T, such that we

have the following commutative diagram:

Gop(N, a) Go (N, )

Tp T

. o T, . o
ind,, I (w*?(p,q)) = ind,_, 1;(@*"(r,s))
For each r € N, T, is continuous if and only if 7} o ¢, is continuous for every ¢ € N.
So, for each ¢ € N, by applying Grothendieck’s factorization theorem, we get s € N

and a continuous linear operator 7, , so that the following diagram commutes:

. o T, . ~
mdq% ll(w "B(p, q>> — ind,_, l1<w 75(7’.75»

h(w*(p, q)) (@™ (r, s))

2.3 Power Series Spaces and (DF)- Power Series
Spaces

The spaces G, (A, a) with the corresponding weight sequences w®?(p, q) for the cases
(1) — (4) are isomorphic to power series spaces or (DF)- power series spaces under the

following conditions.

Proposition 2.3.1 Given the sequences of positive numbers X = (\;)ien and a =

(a;)ien, the following statements are equivalent:

11



(i) Gooro(M a) ~ Exla).
(ii) Goro(), a) = Ey(a).
(iii) Goo(),a) ~ El)(a).
(iv) Gooo(N, a) =~ Ei(a).
(v) Lm0 \i = 0.

Also, the following statements are equivalent:
(i) Goooo(A @) 22 EL(a).
(ii) Gooo(\, a) =~ E'_(a).

(iii) Goo(), a) ~ Eo(a).
(iv) Gooo(\ a) =~ Ex(a).
(v) inf{\; : i € N} > 0.

In the case when a space G, (), a) is not isomorphic to a power series space or a
- power series space, G (A, a) is said to be a mize -, - space.
DF)-p ies sp Gap(A, a) is said to b xed (F)-, (DF)- sp
Given two sequences of positive numbers a = (a;);eny and @ = (a;);en, we denote by

a < a, if there exists a constant o > 1 such that
1 _ .
—a; < a; < aa;, ©€N.
o

For Schwartz power series spaces and (DF)- power series spaces, we have the following

criteria for isomorphisms.

Proposition 2.3.2 If a = (a;)ien and @ = (a;)ien are sequences of positive numbers

monotonically increasing to oo, and 6,9 € {0,000}, then
(i) Ey(a) ~ Fy(a) & a =< a,
(i) Ej(a) ~ Ey(a) < a =< a.
Also, Ey(a) is never isomorphic to Ex(a), and Eyg(a) and Ej(a) are not isomorphic if

one of the sequences a or a is not bounded.

12



The statements (i) and (ii) is due to Mityagin ( [25]). The fact that a power series
space of finite type cannot be isomorphic to a power series space of infinite type is a
well known result which is shown by using diametral dimensions. To show that Ey(a)
and Ej(a) are not isomorphic if one of the sequences a or a is not bounded, assume
contrarily that Ey(a) and Ej(a) are isomorphic, where one of the sequences a or @ is not
bounded. Since Fy(a) is a Fréchet space , it admits a fundamental sequence of bounded
sets if and only if it is normable. (See [22], Corollary 12.4.4) As Ej(a) is a (DF)-space,
both spaces should admit a fundamental sequence of bounded sets. However, one of
the sequences a or a is not bounded, so one of the spaces is not normable, which is a
contradiction. Therefore, Fy(a) and Ej(a) cannot be isomorphic if one of the sequences

a or a is not bounded.

2.4 Tensor Products of (F)- and (DF)- Spaces

Given two Hausdorff locally convex spaces E and F, we denote by E®, F the complete
projective tensor product of F and F', that is, the completion of the finest locally
convex topology on E ® F' for which the canonical bilinear map ® : £ x ' - E® F
is continuous.

The tensor products E(c)®E" (d), Eo(c)QE’ (d), Ey(c)E}(d) and E(c)®Ey(d)
are isomorphic to spaces in classes (1) — (4), respectively. For example, E..(c)®@FE'’_(d)

can be considered as a space of the form ([2.1)) where

wi(p, q) = exp(pcr@y — qdi(s))

for some bijection N — N x N that sends ¢ € N to (k(i),1(7)) € N. If we take

di
a; = maX{Ck(i)7 dl(i)}, Ai = a(- )7

then this space is isomorphic to a space in class (1) with w;**(p, q) = exp((p — g\:) ;).
Actually, the spaces in the classes (1) — (4), up to isomorphisms, consist of basis

subspaces of the projective tensor products
(1) Ex(c)®EL(d)

(2) Eo(c)®EL(d)
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respectively, where ¢ = (¢;);eny and d = (d;);en are sequences of positive numbers.

Let us show the above claim for the spaces that are in class (1) where w;”*(p, q) =
exp ((p — g\i) a;). The claim for the spaces in the classes (2) — (4) can be obtained
analogously. For this purpose, we need the following proposition which can be found

in [22] (Theorem 15.4.2, Corollary 15.5.4).

Proposition 2.4.1  (a) If E = proj,c; E; and F' = proj;c; F; are reduced projective

limits of Haussdorff locally convex spaces, then
E&F =~ proj; jerxs Ei®nFj.
(b) If E and F be Haussdorff locally convex spaces such that F is normable and
E = indic; E; is an inductive limit of locally convex spaces, then
E&.F ~ indic; E;Q,F.

Now, let Goo 00 (A, @) be a space in the class (1) with w;>>(p, q) = exp ((p — qg\;) @;).
Then, we have

Goo,00(A, @) = proj_,, indy, l; (exp(pe; — qd;)),

where ¢; = a; and d; = M\a;. Considering the cross norms for tensor products of [;

spaces, we have the natural isomorphism
l(exp(pe;)) @l (exp(—qd;)) = Li(exp(pe; — gdy)),

where (j, k) € N x N. Hence, G oo(A, @) is isomorphic to a basis subspace of
X = proj,_, indg, (I1(exp(pc;)) @l (exp(—qd;))) -

For each p € N, I3 (exp(pc;)) is a Banach space and ind,_, /;(exp(—gqd;)) is an inductive
limit, hence by Proposition [2.4.1] (b),

ind,, (ll(exp<pci))®7rll(eXp(_qdi))) ~ Iy (exp(pe;))®xindy, Iy (exp(—qd;)),
which implies that

X =~ proj., ((exp(pe))@xind,, h(exp(—qdi)))

14



Then, by Proposition [2.4.1] (a), we obtain
X = proj.,, li(exp(pe;))@xindy, b (exp(—qdi)) = Ex(c)@EL (d).

Therefore, G (A, @) is isomorphic to a basis subspace of Ey(c)®,E. (d).

2.5 Quasidiagonal Isomorphisms

Two locally convex topological vector spaces X, X, with respective absolute bases
d ~
{z;}ien and {Z;}ien, are called quasidiagonally isomorphic, denoted by X L X, if

there exists a locally convex space isomorphism 7' : X — X such that
Tl'i = tl.i'g(z)

for a sequence of scalars (t;), and a bijection ¢ : N — N. If such a quasidiagonal
isomorphism exists, then the bases {z;};en and {Z; }ien are called quasiequivalent. X
is said to be quasidiagonally embedded in X if X is quasidiagonally isomorphic onto
its image in X.

If T is a quasidiagonal isomorphism such that ¢; = 1 for all ¢ € N, then X and
X are called permutationally isomorphic, denoted by X XX IfTisa quasidiagonal
isomorphism such that ¢(i) = i for all i € N, then X and X are called diagonally
1somorphic, denoted by X 2 X.

The following proposition is a well known result ( [36], [40]), which is shown by

using Cantor-Bernstein-Schroder theorem.

Proposition 2.5.1 Given the mized (F)-, (DF)- spaces X and X of the form ,
if X is quasidiagonally embedded in X, and X is quasidiagonally embedded in X, then

qd -

X~X.

2.6 Hall-Konig Theorem

In order to construct quasidiagonal embeddings, we will need the following theorem

from combinatorics, referred to as Hall-K6nig Theorem, which can be found in [21].
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Theorem 2.6.1 Suppose that for each i of a system of indices I corresponds a finite

subset S; of a set S. Then, there exists an injection o : I — S such that o(i) € S; if
and only if

for any choice of m distinct indices iy, . .., 0y.
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CHAPTER 3

Criteria For Quasidiagonal

Isomorphisms

In this section, we establish criteria for the quasidiagonal isomorphisms between Montel
spaces G g(A, a) that are in the classes (1) — (4) in terms of certain properties of their
defining sequences A\ and a. The following criteria for quasidiagonal isomorphisms
between the spaces Goo (A, a) belonging to class (1), where

w?O,OO(p7 q) = eXp ((p - q)\z) ai) )

was given in [5].

Proposition 3.0.2 For Montel spaces G (A, a) and GOO,OO(X, a), the following con-

ditions are equivalent:

(i) Gooo(N, @) & G o(N, @)
(ii) Goomo(N,a) & Goy (A, @)
(i1i) there exists a bijection o : N — N such that
a; X Qg (s),
and for any subsequence (i) of N,

(A\iy) > 0 < (S\U(ik)) — 0.

1
w?v()O(p, q) = €exp ((_]_9 - q>\2> ai) )

17



we show that analogous criteria hold for quasidiagonal isomorphisms. For this purpose,

we need the following lemma.

Lemma 3.0.3 For any subsequence v = (i) of N,
(i) (\i,) = 0= X¥ ~ Ey(a™),
(ii) inf{\;, 1ip € v} > 0= X¥) ~ E/_(a)),
where a”) = (a;,) and X" is the basis subspace of G (A, a) corresponding to
{e;, » 1 € V}.
Proof. Let v = (i)) be a subsequence of N. If (\;,) — 0, then there exists N € v such

that \;, < piq whenever 7, > N. Hence, we obtain the inequalities
2 1 1

—— < —=—q\, < ——

p p p

;g = N,
which imply that the identity map

I:Go(N a) = Ep(a)
is a homeomorphism. Therefore, we have

Go.0o(A, a) ~ Ey(a).

If we assume inf{)\; : iy € v} > 0, then there exists § > 0 such that \;, > ¢ for

every i € v. Hence, we have the inequality

which implies that the identity map
I:E (a) = Go(N a)
is continuous. Given p, ¢ € N, if we choose s > 2¢, then we have the inequality
—s < _1 — g\
p

which implies that the inverse map I : Gooo(A,a) = E’_(a) is also continuous. There-

fore, we have

Gooo(A a) ~ E. (a).
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Proposition 3.0.4 For Montel spaces Gooo(N,a) and Gooo(N, @), the following are

equivalent:
(i) Gom(N a) = Gooo(X, ).
(ii) Gopo(Ma) ™ Gono(A, d).
(iii) There exists a bijection o : N — N such that
a; X Qg (s), (3.1)
and for any subsequence (i) of N,
(Aiy) = 0 <= (o) — 0. (3.2)
Proof. The implication (i) = (i7) follows trivially from the definitions of quasidiagonal
and permutational isomorphisms.

In order to show (ii) = (iii), let T : Gooo(\, a) = Gooo(A, @) be a quasidiagonal

isomorphism. Then, there exist scalars (¢;) and a bijection ¢ : N — N so that
Te; = ti€o(s),

where {e; : i € N} and {¢; : i € N} are the coordinate bases for Gy~ (A, a) and
Gom(;\, a), respectively.

To show that (\;,) — 0 < (:\U(ik)) — 0 for any subsequence (i) of N, assume
contrarily that (\;,) = 0 < (S\U(ik)) — 0 does not hold for some subsequence (iy).

Then, we can find a subsequence v of (i) such that either
A = 0 and inf{A\“®)} >0, or, A — 0 and inf{A®} > 0.
If A*) — 0 and inf{\®)} > 0, then by Lemma ,
X ~ Ey(a®) and X)) ~ B (a0,

However, by proposition m Ey(a™) cannot be isomorphic to E’_(a®*)) since a¥) is
not bounded. So, X is not isomorphic to X ®), which contradicts the assumption that
T is an isomorphism. Similarly, we obtain a contradiction in the case when A@®) —

and inf{A\®"} > 0, hence (\;,) — 0 & (5\0(%)) — 0 holds for any subsequence (ig).
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To show that a; =< as(;), assume contrarily that a; < a,; does not hold for

the bijection ¢ coming from the quasidiagonal isomorphism. Then, there exists a

o (iy)

— 00 Or —%— — ~o. For the case when

subsequence (i) such that either Foe
o lk

“k

% — oo, we can find a subsequence v = (iy,) of (i) so that either <)‘ikz) — 0,
‘k

or inf{)\ikl s, € vy > 0. If ()‘ikz> — 0, then <)\g(ikl)> — 0, so by Lemma [3.0.3,
X® ~ Ey(a™) and XC@) ~ Ey(ale®)). X#) ~ X)) since T is an isomorphism,
hence Ey(a)) ~ Ey(a®®)). This implies, by Proposition [2.3.2] that a, < Gy,

which is a contradiction since % — oo. For inf{)\; : iy € v} > 0, we can find

X0 ~ E (a™) and X)) ~ E' (al°™). We have X ~ X©@) since T is an
isomorphism, so E’_(a™) ~ E’ (a”®)). This implies, by Proposition m that

a subsequence n of v such that inf{j\a(ikl) ik, € n} > 0. Then, by Lemma [3.0.3

a; X Gg(y), Which contradicts the assumption that % — 00. We can similarly obtain
n

aik

Ao (i)

a contradiction for the case when

— 00. Therefore, a; < G, ;).
(7ii) = (i) We can assume, without loss of generality, that (i) = i and a; = @;
since Gooo(A, @) £ Gooo(A,a) if @ < a. So, in order to show that the identity map

I Gooo(N a) = Goool\, @) is continuous, we have the following commutative diagram:

Goo(A, a) - Gooo(A, @)
) 1 . 1 T\~
ind,, l1(€Xp((—Z—) —q\;)a;)) — ind,_, ll(eXp((—; — s\;)a;))

h(expl(— = aA)a) ——— hlesp((—7 = sh)an)

Considering the properties of projective and inductive topologies, we can observe

from the diagram that [ is continuous if
1 1 .
VrapVgds I :l(exp((—= — qghi)ai)) = Li(exp((—= — sA\;)a;))
P r
is continuous. Hence, we need to show

1 < 1
VrdpVq3ds3C exp((—; — s\;)a;) < C’eXp((—]—) —q\i)a;).
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Since (A;,) = 0 < (Ao@,)) — 0 for any subsequence (i) of N, we can find a
nondecreasing function ¢ : (0,1] — (0, 1] such that lim; .o+ = 0, and A; > § implies
Xi > ¢(0) for every § € (0, 1].

Taking arbitrary p, ¢, r with r < p < ¢, choose ¢ € (0, %) and let s > ﬁ. For
Ai > 8, we have \; > ¢(0), and hence

1 ~ 1 ~ 1 1 1
—— =A< ———sA < ———5p(0) < —— —qg < —— — g\
r p p p p
For \; < ¢,
1 ~ 1 1 1
—— =S < =< —— — g0 < —— — g\
r r D P

Thus, we have the inequality

expl(—; = shias) < expl(— = \Jas)

which implies that I is continuous. Similarly, one can show that I~! is also continuous.
Therefore, I is an isomorphism and G (A, @) £ Gooo(N,d). m

The criteria for quasidiagonal isomorphisms between spaces Gg (), a) belonging to
0,0 (

class (3), where w; " (p,q) = exp ((—%/\i + %)ai), is given in [8] as follows.

Proposition 3.0.5 For Montel spaces Goo(\, a) and Goo(\, @), the following condi-

tions are equivalent:
(i) Goo(\ a) % Goo(A,d)
(ii) Goo(\ a)  Goo(h,a)

(iii) there ezists a bijection o0 : N — N, a constant A > 1, and a strictly decreasing

function W : [1,00) = RY, U(t) = 0 as t — oo such that

a; = Ag(5),

for any subsequence (ix) of N

()‘ik) -0 <— ()\a(ik)) — 0,

and
1 B
Z)\i < Aoy S AN for N > ¥(a;).
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We obtain analogous criteria for quasidiagonal isomorphisms between spaces
Goo,0(A, @) belonging to class (4), where wfo’o(p, q) = exp ((p)\i - %)ai) For this pur-

pose, we need the following lemmas.
Lemma 3.0.6 For any subsequence v = (iy,) of N,
(i) inf{\;, :ip €v}>0= X"~ E_(a¥),
(i) (N,) — 0= XW) ~ Ej(a™),
where aV) = (a;,), and X is the basis subspace of Guoo(A, a) corresponding to
{e;, i € V}.

Proof. Let v = (ix) be a subsequence of N such that inf{)\;, : i, € v} =3 > 0.

Consider the identity map
I: XY = E (™).

Then, we have the following diagram:

X

ind, [, (woo’o(p, q)) — [ (exp (ra(”)))

iq

ll (woo,O(p, Q))

For any r € N, choose p so that r < pd. Then, for any ¢ € N, we obtain
r .
T§p5§p)\lk<p)\lk+_a Zk:EV'
q
Hence, we have

1
VrapVqaC  exp(ra;,) < Cexp ((p/\ik + 5) aik) , ik €U,

which implies that [ is continuous. Similarly, one can obtain

1
VpardgdC  exp ((p)\ik + —) aik> < Cexp(ra;,),
q
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hence the inverse of I is also continuous. Therefore, I is an isomorphism.

If v = (i) is a subsequence of N such that \;, — 0, then for the identity map
I: X" = Eja™)

we have the following diagram

1

X E(')(a(”))

Tp is

. ) 1 v
ind, 1, (w>(p, q)) I (exp <ga( ))>

iq

11(w™°(p, q))

Hence, I is continuous if
1 1 ,
IpVgIs3C  exp(-a;,) < Cexp(phi, + —)ai,), ix €V,
S q
which is true, since for any p, ¢ € N if we choose s > ¢, then we have
1 1 1
- < = <p\, +—.
S q q
Also, the inverse of I is continuous if

1 1
VpVs3qaC  exp(phi, + —)ai,) < Cexp(—a;, ), i € V.
q s

For any p,s € N there exists 7y € N such that pA;, < 2% for i, > ip, since lim \;, = 0.

By choosing ¢ < 2s we obtain
p)‘ik+_<_+_:_7 ik’zim
q S
which implies that the inverse of I is continuous. Therefore I is an isomorphism. m

Lemma 3.0.7 Let the Montel spaces Goo0(X, @) and Gooo(X, @) be quasidiagonally iso-

morphic. Then, there exists a bijection o : N — N and a positive constant 3 such that
(i) a; < Qo)
(ii) for any subsequence (ix) of N,
M) = 02 (M) — 0,
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(iii) for any subsequence (i) of N, where lim \; and hm)\ ) exist and are positive,

o (ix)
Ao(i

< lim
< lim )\i

™| =

k

Proof. Let T : Gooo(\, @) = Gaoo(), @) be a quasidiagonal isomorphism. Then, there
exist scalars (¢;), and a bijection o : N — N so that T'e; = t;,(;), where {e; : i € N}
and {¢&; : i € N} are coordinate bases for Go o(A, @) and G (), @), respectively.

In order to show (ii), assume contrarily that (\;,) — 0 < (A\s,)) — 0 does not hold
for some subsequence (ix). Then, we can find a subsequence v of (i) such that either
(M)iev — 0 and inf{)\; : i € o(¥)} > 0, or (\i)ico) — 0 and inf{); : i € v} > 0. If
(Ai)iey = 0 and inf{)\; : 7 € v} > 0, then X®) ~ E/(a®) and X)) ~ E_(a"®)) by
Lemma m By Proposition m E}(a™) is not isomorphic to E(a™)) since a®) is
not bounded, hence X®) is not isomorphic to X, which contradicts the assumption
that T is an isomorphism. Similarly, we obtain a contradiction in the case when
(A\)ico) — 0 and inf{)\; : i € v} > 0, hence (\;,) — 0 & (A\,,)) — 0 holds for any
subsequence (7).

In order to show (), assume contrarily that a; < @,(;) does not hold for the bijection

o coming from the quasidiagonal isomorphism. Then, there exists a subsequence (i)

Ao (iy,)

such that either 2% 5 o0 or - — 00. For the case when — 00, we can find

Qig o (ig) ik

a subsequence v = (ir,) of (i) so that either A; — 0, or inf{\; :u, € v} > 0. If

iy , 0, then AU(Zk — 0, so by Lemma 3.0.3]

XW ~ E/( ) and X(@®) ~ E(/)(CNL(U(V))>.

We have X ~ X)) since T is an isomorphism, hence Ejj(a™) ~ E}(al®®D).
This implies, by Proposition , that a, < as(,), which contradicts the assumption
that a‘;% — oo. If inf{\; : iy € v} > 0, then we can find a subsequence n of v
such that inf{j\a(ikl) : iy, € n} > 0. Then, by Lemma [3.0.3] X ~ E_(a™) and
X)) ~ E_(aM). We also have X ~ X©@) gince T is an isomorphism, so
Ey(a™) ~ E(al?M). This implies by Proposition . that a, X< dy(,, which

contradicts the assumptlon that 22 — oo, We can similarly obtain a contradiction
an

in the case when =

( : — 00. Therefore, a; < aq(;).
D' Zk
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In order to show (7i7), let (ix) be a subsequence of N such that (\;) — A and

1k

(Aoip)) = /~\, where A, A are positive numbers. Since T is continuous, we have

- 1 1
Vrap¥q3s3aC  |t;] exp ((7’)\0(1') + —) &U(i)> < Cexp ((p)\i + —) ai> , 1€N.
§ q

Taking the logaritms of both sides, and dividing by a;, we obtain

In |¢; ~ 1\ a, In C’ 1
L + (T’)\g(i) + —) ¢ ) (p)\ + )
a; S a; a; q

Using (7) and rearranging terms, we get

In |¢; InC ~ 1 1
n| | 1 + pA; — r)\(,(i)+———. (3.3)

a; a; o' q Qs

Also, since T~! is continuous, we have

1 ~ 1
vr'Ip'Vg'3s'ACT  exp <(r’)\i + —/) ai) < C'|t;] exp ((p’)\o(z) + —,) &U(i)> )
S q

Taking the logarithms of both sides, dividing both sides by a;, using (i) and rearranging

terms, we get

R C’ 1 In |t;
1 +1'N — pads + = —E,S alul (3.4)
a; s q a;
From the inequalities (3.3]) and (3.4) we obtain
InC  InC’ N 1 1 1
0< = 4+ 2= 4 (p—r)h+ (p’a—1>>\g(i>+ <—+3,> — (—,+—>.
a; a; a q q s as
This inequality holds for all i, hence if we take i), — oo, then a;, — oo, (A;,) = A

and (A,(,)) — A, then we have the following inequality

1 « 1 1
OS(p—T’)A+<poz——>A—|— -—+=)-({5+—)-
q dq s as
By fixing the quantifiers so that they satisfy the inequalities

r<p<qd<s<r<p<qg<s, r>2pa® ¢>— A
the above inequality gives
p—r1
<—7
T =2

==

where the right hand side is a positive constant. By using the continuity of 7-! again

to fix r”,p”, q¢", s"” such that

r<p<qg<s<r’<p <q <5, q¢> " > 2p,

p_Aa
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we similarly obtain

/~\> " —2p

_r
where the right hand side is again a positive constant. Therefore, if we take a positive

1 T
p—r’ pra—g
constant 3, so that § > max T ﬁ}, then

Aaiy)
Yy

< lim

<.

|

k

Proposition 3.0.8 For Montel spaces Goo (A, a) and Gm70(5\,d), the following are

equivalent:

(i) Gooo(N @) = Gooo(\, @),

(ii) Gooo(N a) Z Goo(X, @),

(7ii) there ezists a bijection o : N — N, a constant A > 1, and a strictly decreasing

function U : [1,00) — RT, U(t) = 0 as t — oo such that
a; X Qg (s),
for any subsequence (ix) of N
(Aiy) = 0 <= (Aoip) — O,

and

1 ~
Z)\z S )\J(i) S A>\z fO’/’ /\z Z \If(az)

Proof. (i) = (i7) is trivial since any permutational isomorphism is a quasidiagonal
isomorphism by definition.
In order to show (ii) = (iii), let T : Gooo(\, a) = Goop(A, @) be a quasidiagonal

isomorphism. Then, there exist scalars (¢;) and a bijection ¢ : N — N so that
Te; = ti€s(i),

where {e; : i € N} and {¢; : i € N} are the coordinate bases for G o(), a) and
Gooﬁo(j\,&), respectively. Then, by Lemma , a; X aq(; and for any subsequence

(ix) of N, (A\,) = 0 & (S\U(Z-k)) — 0. To show the existence of a constant A and a
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function ¥, by Lemma [3.0.7] take a positive constant 5 so that for any subsequence
(i) of N where lim );, and lim S\U(ik) exist and are positive,

Ao (ir)

< li
< lim N,

<p.

| =

k

Let us define the set

1 ~
S={ieN: EAi < Aoy < BN},

and the function ¢ : [1,00) — (0, 00), where
1/’@) = Sup{)\j 1j€ N\S7 aj > t}a

which is monotonically decreasing by definition. If N\S is a finite set, then ¢ can be
extended so that ¥ (tf) — 0 as t — oo. For the case when N\S is infinite, assume
that (\;)iems does not go to 0. Then, there exists a subsequence v of N\S so that
(Ai)iev — A for some A > 0, which implies that there is a subsequence 1 of v where
inf{ A, : i € n} > 0, hence we can find a subsequence (i;) of 77 such that S\J(ik) — A
for some A > 0. As (i;) is a sequence in N\S, ;\%:“) ¢ (%,52) for any 75, which
implies that lim X%:“) ¢ [%, f3], contradicting our initial assumption. So, (X;)ienms — 0,
which implies, by definition of the function 1, that 1 (t) — 0 as t — oo.

Since 1 is a monotonically decreasing function where ¥(t) — 0 as t — oo, we
can take a strictly decreasing function ¥ : [1,00) — (0,00) so that W(t) > ¥(t)
for all t € [1,00) and ¥(t) — 0 as t — oo. So, whenever \; > U(q;), we have
A > sup{}; : j € N\S,a; > q;}, which implies that ¢ € S. Therefore, by taking A
such that A > 32, we obtain

1 ~
ZAl S /\U(i) S A)\z for )\7, Z \I!(az)

To show (ii7) = (i), assume that there exists a bijection 0 : N — N, a strictly
decreasing function W : [1,00) — (0,00) where U(t) — 0 as t — oo, and there exist
constants o, A > 1 so that éai < Qo) < aa; foralli € N, (N;,) = 0 & (S\G(ik)) — 0
for any subsequence (i) of N, and %/\i < :\U(i) < AN for Ny > U(a,).

Consider the operator P : G (A, a) — GOO’O(S\, a) defined as Pe; = é,(;). To show
the continuity of P, for any r choose p so that p > aAr, and for any ¢ choose s so that

s > 2aq. Then, since a; X ay),

~ 1 ~ 1
<T)\J(i) + —> dg(i) S (T)\g(i) + —> ad;.
S S
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For \; > ¥(a;),

~ 1 1
(r)\o(i) + —) aa; < (’I"A)\i + —) oa;
s s

= <aAr)\i + %) a;

1

For \; < ¥(a;), a; — oo as i — oo, which implies that ¥(a;) — 0 as i — oo since ¥
is decreasing. Hence (\;) — 0, which implies </~\0(,-)) — 0, that is, there exists N such

that /N\U(i) < r—ls whenever i > N. So, for i > N where \; < ¥(a;), we have the estimates
~ 1 1 1
rAs(iy + = | aa; r{— |+ - aaq
S rs S

200
< phia; + —a;
5

1
q

By these estimates, one can show that P is continuous. Continuity of P~! can be

IA

shown similarly. Therefore, P is a permutational isorphism. m
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CHAPTER 4

m-rectangle Characteristics and

Quasidiagonal Isomorphisms

In this section, we give the definitions of m-rectangle characteristics and necessary
equivalences, and we show that under these equivalences, the systems of m-rectangle
characteristics give a complete characterization of quasidiagonal isomorphisms between
the spaces that are in classes (1) — (4).

Let A = (\)ien and a = (a;);en be sequences of positive numbers and let m € N.

Then, the function
po@Gert) = Ul < hi<er, m<ai <t}
k=1

defined for § = (0x)1ty, € = (ex)iy, T = (T)j, and t = (tx)72, such that 0 < g5, <
€, <2,0< 1 <t <oo,wherek =1,2,---,m, is called the m-rectangle characteristic
of the pair (A, a).

Given another couple of positive sequences A = (5\1) and a = (a;), and a fixed m € N,
the functions uﬁr){’a) and uﬁé"” are said to be equivalent, denoted by pn({)’a) ~ M(é,a)? if

there exists a strictly increasing function ¢ : [0,2] — [0, 1] with ¢(0) = 0 and ¢(2) = 1,

and a positive constant o such that the inequalities

pdD (6, e:7,t) < pdo (90(5)7 P~ (e);

_
(@]
Nd a — T
p® (8,6 7,t) < u%’)(w@)w 1(6);57%)

hold where ¢(d) = (p(0r))i1, ¢~ (€) = (07 (Er))iles & = (Bt at = (atp)iL, for

all collections of parameters 0, ¢, 7, t.

29



The systems of characteristics (,& ’a)> and (,u% ,a)) are said to be equivalent,
meN meN

denoted by (u% ’a)) ~ (uﬁé"”), if the function ¢ and the constant o can be chosen so
that the inequalities above hold for all m € N.

It is shown in [5] that with this definition of equivalence, the systems of m-rectangle
characteristics gives a complete characterization of quasidiagonal isomorphisms be-

tween Montel spaces G (A, @) belonging to class (1), where

00,00

w; T (p,q) = exp ((p — qhi)aq),

as given in the following theorem.

Theorem 4.0.9 For Montel spaces Goooo(A, a) and G (A, @),

qd S

Goo,oo(/\;(l> ~ Goo,oo(/\ad) = (M%\,a)) ~ (MSL\,&)> )

We obtain ana analogous result for Montel spaces Gg o (A, a) belonging to class (2),

where w!™(p, q) = exp <(—% - q)\i)ai>.
Theorem 4.0.10 For Montel spaces G so(\, a) and Gooo(N, @),

G0,00()\, CL) ng GO,oo(S\, EL) — (M(/\,a)) N </L7(7,;\,a)> .

m

Proof. Let Gy (A, a) and GO,OO(S\,ZL) be quasidiagonally isomorphic Montel spaces.
Then, by proposition [3.0.4] there exists a bijection ¢ : N — N so that

()\Zk) -0 ()‘U(zk)) —0

for any subsequence (ix) of N, which implies that for every § € (0,1], Ay;) > €1 > 0
for some g1 > 0 if \; > 0, and \; > 9 > 0 for some &9 > 0 if S\O(i) > 4. If we define
the functions ¢, : (0,1] — (0,1] and ¢ : (0,1] — (0,1] by ¢1(6) = infcg, S\U(i) where
Ss={i: N\ >0}, and ¢o(d) = inf, g, A\i where S5 = {i: S\U(i) > 0}, then ¢ and ¢, are
monotonically increasing functions such that ¢;(d) — 0 and ¢2(d) — 0 as § — 0. So,

we can take a function ¢(0) : (0,1] — (0, 1] with

¢(0) < min{$1(9), ¢2(0)},

that is strictly increasing, and ¢(d0) — 0 as 6 — 0. Taking ¢(1) < 1, one can extend
¢ to a function ¢ : [0,2] — [0, 1] which is strictly increasing, ¢(0) = 0, and ¢(2) = 1.
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As ¢ is strictly increasing, its inverse ! : [0,1] — [0,2] also exists. So, from the

construction of the function ¢, we have the inclusions S5 C 5”@(5) and S5 C Se(s), which

imply

f6<h<e) C {io(d) <y <o ()} (1)
{i:6 < S\U(i) <e} C {i:p(0) <N < (e} (4.2)

for any 4, €.

Also, a; X aq(;) by Proposition [3.0.4 so there exists & > 1 such that the inclusions

{i T <a; < t} C {Z : < CNLU(Z-) < Oét} (43)

{i:7 <o, <t} C {i:—<a; <ot} (4.4)

QI%QI\]

hold for any 7, t.
As o is a bijection, the inclusions (4.1)-(4.4]) imply the inequalities

P00, e 7,) < plP(p(0), 97 (e); -, at),

POV 6,87, t) < D (p(8), 07 (e); -, at),

for any m € N. Therefore, (ug{ a)> (,ug[’d))
Now assume that (Iu,(ﬁ‘ )> ~ (,u,g;\ 2 > For every ¢ € N, consider the sets

~ a; B
Si={jp\) <N <™ (Ai),aﬁ%‘ﬁaai}-

If we take distinct indices i1, ..., ,,, then
" By a; -
U Slk = U{] 30 zk> S )\ S ()\%),j S Oéj S Oéaik}
k=1 k=1

_ T
— 1D (p(5), ¢ H(e); —at)

> @ (6,e57,)

for 6 = (N\;,), e = (N\iy), 7 = (a;,) and t = (a;, ), where the last inequality holds since

the m-rectangle characteristics are equivalent. Also,

()\a (56 Tt Azk S/\jg)\ik,aikgajga,;k} Zm,

since

{il,"' ,Zm} C U{j . )\% S )\j S )\ik,aik S Q; S alk}
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Hence, |U;~, Si,| > m for any distinct indices iy, - - , %, and we can apply Theorem
to obtain an injection ¢ : N — N, where o(i) € S; for every i € N. Thus,
T : Goso(N, @) = Gooo(X, @) defined as Te; = &,, for respective coordinate bases {e;}
and {¢;}, is a quasidiagonal embedding by Proposition [3.0.4]

As the inequality g’ (6 g 7,t) < iy a)(w(é),¢*1(5); T,at) also holds since the
systems of m-rectangle characteristics are equivalent, we can repeat the same argument

to obtain a quasidiagonal embedding S : Gooo(X, @) = Goso(A,a). Therefore, by

Proposition 2.5.1] we have Gy (A, a) < Gooo(N, ). m

In order to show similar characterizations of quasidiagonal isomorphisms between
the spaces in the classes (3) and (4) in terms m-rectangle characteristics, we need to
have a slightly different definition of equivalence as follows.

For any m € N, we again call the m-rectangle characteristics equivalent, and denote
in this case by ﬂ%’a) R u,({}’a), if there exists a constant ¢ > 1, a strictly decreasing
function ¥ : [1,00) — (0,00) where U(§) — 0 as £ — oo, and a strictly increasing
function ¢ : [0,2] — [0, 1] where ¢(0) = 0, ¢(2) = 1, and (&) < £ for all € € [0,2],

such that the inequalities

V0.7 1) < D (®1(0,7), Bo(0,,7); — ct) (45)

Ql\lolﬂ

(A“ (6,e57 1) < uly(®1(6,7), Pa(d,e,7); =, ct) (4.6)

hold for all collections of parameters d, €, 7, t, where ¢(8) = (¢(0)), ¢ () = (¢ (er)),

T = (™), at = (aty), and the functions

@1((5, 7') = ((I)l<5k>7_k:>) and @2((5,5,7’) = ((D2(6k75k77—k))7

defined as

% if 0, > U(7),
Bi(Gom) =) ¢ . k= ()
g0(5]€) if 5k < \I/(Tk),

CEL if (Sk Z \IJ(Tk),

¢2<5k78k‘77—k‘) = 1 .
©w (€k) if (Sk < \I/(Tk)

The systems of characteristics (,u% a)) and ( o a)) are then called equiva-
meN meN

lent, denoted by < o a)> (,u%\ a)>, if the constant ¢ and the functions ¥, ¢ can be

chosen so that the inequalities above hold for all m € N.
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It is shown in [8] that with this equivalence, systems of m-rectangle characteris-
tics completely characterise the quasidiagonal isomorphisms between Montel spaces
Goo(A, a) belonging to class (3), where w;(p, q) = exp ((—%)\i + %)az), as given in the

following theorem.

Theorem 4.0.11 For Montel spaces Goo(\, a) and Goo(X, @),
d - -
Goo(N a) & Gog(A,a) <= (u”)) ~ (ufﬁ"”) :
For Montel spaces G o(A, @) belonging to class (4), where
1
wi(p,q) = exp | (pAi + E)ai )
we obtain an analogous result as follows.

Theorem 4.0.12 For Montel spaces Gooo(A,a) and G o(A, @),

Gooo(Ma) L Gop(A,a) = () ~ (Mg,a))

Proof. Suppose that G (A, @) L Gooo(X,@). Then, by Proposition [3.0.8, there

exists a bijection o : N — N a strictly decreasing function ¥ : [1,00) — (0, 00) where
V() = 0as & — oo, and there exist constants o, A > 1 so that éai < Qo) < aa; for all
ieN, (\,) > 0& (:\J(ik)) — 0 for any subsequence (i;) of N, and %/\i < /N\U(i) < AN
for \; > ¥(a;).

Since (A,) — 0 < (Ay(iy)) — 0 for any subsequence (i) of N, as in the proof of
Theorem [4.0.10, we can find a function ¢ : [0,2] — [0, 1] which is strictly increasing,

©(0) =0, (2) = 1, and we have the inclusions

{i:6, <X <ed C {i:0(d) < Ao <0 e}
A

for any dy, e,. Choosing a constant ¢ such that ¢ > max{«, A}, the construction of the
function ¢ allows us to take p(§) < % for all £ € [0, 2].

So, let us fix 0, €k, T, tr and take any ¢ € N so that 6, < \; < e and 7, < a; < 1.
Then, since éai < Go(s) < aa; and ¢ > a, we have ™ < G,y < cty. Also, if 6 > U(7%),
we have \; > ¥(a;), which implies that 1), < A,y < A). Since ¢ > A, by the
definitions of functions ®; and @y, ®q1(dg, %) < 5\0(1-) < Do(Op, €4, ). I O < W(Ty),
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then 8, < \; < g4 implies ¢(0r) < Aoiy < ¢ (k). So, by the definitions of functions
¢y and Dy, Dy (O, 1) < )\ )y <@ (5k,5k,7k) From these inequalities, we obtain the

inclusions

{ieN:6, <\ <ep,m<a, <t} C

{Z eN: (I) (5k77—k) < )\ < (I)2<5k75k77_k) ? < Qg (1) S Ctk}.

Thus, for every m € N, 6 = (0y), € = (ex), 7 = (1) and t = (t;), we have the inequality

PXD (S e t) < (@ (6, 7), <I>2(6,5,T);£,ct).

m

By a similar argument, one can also show
D(5,e:m,1) < (D (5, 7), @2(5,6,7);7—0-,00.

For this purpose, we may need to choose a different constant A and a different function
U which exist from the quasidiagonal isomorphism, and then take the maximum of the
corresponding constants and functions.

As these inequalities hold for all m € N, the system of characteristics is equivalent,
that is, (™) ~ (uﬁ,’;\’&)).

Now suppose that (,A,?’”) ~ (uﬁé’f”). Then, there exists a constant ¢ > 1, a

strictly decreasing function ¥ : [1,00) — (0,00) where ¥(§) — 0 as £ — oo, and

o

strictly increasing function ¢ : [0,2] — [0, 1] where ¢(0) = 0, p(2) = 1, and ¢(§) <
for all £ € [0, 2], such that the inequalities (4.5) and (4.6) hold for any m € N.
As ¢ > 1 and VU is a strictly decreasing function where ¥(§) — 0 as £ — oo, for any

k € N, there exists v, € Ny such that

1 1
<U(F < —.

CVk+1 Cljk

So, let us define the following sets
Ny = {ieN: ,ck_lgaigck},keN,lzo,l,---,yk—l,
1eN: )\ <
1€ N: , keN, [ =0,1,--- 1 — 1,

, keN,

=
£
I
—N
QN
Jr
o
IA
P
IA

.

~ 1
iGN:Aiggo_l(—>, A2 < g, < M



which are finite subsets of N since a and a tend to infinity.
Hence, for each ¢ € N, there is a finite subset S; = ]\717;C it i € N for k € N,
l=0,1,--- . For distinct indices i1, - , iy, the inequality (4.5]) implies that

6 Si;
j=1

so we can apply Theorem to obtain an injection o : N — N such that o(z) € S; for

> m,

every i € N. Then, the operator P : Gooo(\, a) — GOO,O(S\, a) defined as Pe; = €,(;) is a
quasidiagonal embedding by Proposition [3.0.8. Similarly, one can find a quasidiagonal
embedding P : Goo,o(jx, a) = Goo (A, a). Therefore, by Proposition ,

qd S

Goo,0<)\a CL) ~ Goo,O()\a d)
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CHAPTER 5

Invariance of m-rectangle

Characteristics

In this section, we prove that the m-rectangle characteristics are linear topological

invariants for the spaces G (), a) in class (2) where w"™(p, ) = exp <(—% — q)\i)ai>,

that is, Goee(N,a) =~ Goo(X, @) implies ug,){’a) ~ ug{’&) for every m € N. For this

purpose, we will need the following characteristic that was first used in the construction
of compound invariants in [13].

Let X be a locally convex space and U, V be absolutely convex sets in X. Then,

the [-characteristics of V' and U, denoted by S(V,U), is defined by
B(V,U) =sup{dim L : L is a finite dimensional subspace of spanV,U N L C V}.
The [-characteristics have the following useful properties.
Remark 5.0.1 For absolutely convex sets U, V, U, v of X, and o > 0,
(a) B(aV,U) = B(V, V),
(b) if VCV and U C U, then B(V,U) < B(V,U).

For a locally convex space X with an absolute basis e = {¢; : i € N} and a sequence

a = (a;);en of positive numbers,; the set

B¢(a) = {x = iﬁiei € X: i |&ila; < 1}
i=1 i=1

is called the weighted [-ball with the weight sequence a with respect to the basis e.
Weighted [;-balls have the following geometrical properties.
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Proposition 5.0.13 Let X be a locally convex space with an absolute basis e = {e; }ien

and aV¥) = (agj)) be sequences of positive numbers for j =1,--- ,m. Then,

B(c) C

DL

B¢(aY)) c mB*(¢), B¢(d) = conv (U Be(a(j))) ,

j=1
where ¢ = (¢;)ien and d = (d;);en are sequences such that ¢; = max{az(j) cj=1,...,m},
d; = min{az(»j) cj=1,...,m}.

The following proposition, which can be found in [13], provides a method for com-

puting the [-characteristics of weighted [;-balls in terms of their weight sequences.

Proposition 5.0.14 For sequences of positive numbers a = (a;)ien and b = (b;)en,
B(B¢(a), B¢(b)) = [{i € N:a; < b}

In order to estimate the m-rectangle characteristics with S-characteristics of certain

weighted [-balls, we will use the following sets. Given an isomorphism
T:Gup(h a) — Gap( a),

where a, f € {0,000}, consider the coordinate basis e = (e;)ien 0f G4 5(A, @), and the
image of the coordinate basis & = (&;)ien of Gq 3(\, @) under the isomorphism 7', and
denote it by f = (f;), where f; = T¢;, i € N. Then, e and f are absolute bases in
Ga (A, a), so we define, for all p, ¢ € N, the sets

Ap,q = {J}' = Zgzez S GO,OO<>\7CL) : Z ’£Z|wza”8(p7 q) S 1} ’
i=1 i=1

Apvq = {..'If = anfl € GO,OO()\7CL) : Z |771|(’D;X7B(p7 Q) S 1} 9

=1 =1

which are weighted [;-balls in G, g(\, a), that is,
Apq = Be(WQ’B(% q)) and *’le,q = Bf(a’aﬁ(pa q))
for every p,q € N.

Lemma 5.0.15 If G,3(\ a) ~ Ga,g(S\,EO, then for every r € N there exists p > r
such that for every q € N there exists s > q and a constant C > 1 so that the following

inclusions hold:

A, CCA., A,,CCA,,.
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Proof. Let T : Gus(\, @) — Gag() a) be an isomorphism. Then, their projective
spectra are equivalent by Proposition [2.2.1] hence for every r» € N, there exists p € N

and a continuous linear operator T, so that the following diagram commutes:

T

Gas(\, @) Go (N, a)

indq% ll(d)a’ﬁ(p, Q)) 2’ ind,_, [y (waﬁ(r? 8))

For each r € N, T, is continuous if and only if 7, o Eq is continuous for every ¢ € N.
So, for each ¢ € N, applying Grothendieck’s factorization theorem, we get s € N and a

continuous linear operator 7, , such that the following diagram commutes:

indq_> ll ((Da’ﬁ(p, Q)) 2’ inds—> ll (waﬂ(r7 S))

T"“yq

L@ (p, q)) L(w™P(r, s))

Therefore, for every r € N there exists p € N, and for every ¢ € N there exists

s € N, so that the operator T}, : l;(@*?(p, q)) — l1(w*?(r, s)) is continuous, that is,
VrapVg3s3C ||Tzllrs < Cllllpg,  © € L@ (p,q)). (5.1)

Since T is continuous, by (5.1)), Vr3p¥qIs3C ||T 12|, s < C||x|pq- So, if we take
x € Ay then 0 16w (p,q) < 1 where = 3. &e;. Hence, ||z, < 1, which
implies ||[T ||, < C. Also,

T e = Tﬁl(z nifi) = Tﬁl(z ni1'e;) = Z 1i€;.
Hence ||T7'x||,.s = 32 |m:|@™?(r, s) < C, which implies that = € C'A,.,. Therefore,
Vrapvq3s3C A,, € CA,,. (5.2)

Since T' is continuous, by (p.1), Vr'3p'Ve'3s'3C" ||Ty||s < C'||yllpy .- So, if we
take z € A, , then 0% [m|@®?(p',¢) < 1 where x = Y mif;. Define y = 3 m;é.
Then, [lylly.¢ = D202, Imlf"” (p,q) < 1. Hence, ||Ty|l,e < C'llylly.s < C'. Also,

Ty=T( né)=Yy nTé=) nfi=z
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So, the seminorms satisfy

Tyl e = 2]l =D ilws(r, s') < C
where = ) &;e;, which implies that x € C' A, y. Therefore,

VT’H])IVQIHSIHCI 1211,/7(1/ C C/AT/,S/. (53)

In order to show that Gg (X a) =~ Gose(A, @) implies P~ ,u,({;\’a) for every

m € N, we need the following main lemma.

Lemma 5.0.16 Let Gy (), a) >~ GO,OO(X, a), and m € N. Then, there exists a strictly
increasing function v : [0,2] — [0,1] where v(0) = 0 and v(2) = 1, a decreasing
function M : (0,1] — (0,00), and a constant o > 1 such that

/é?”(&s;ﬂt)féugﬁ)<v<5)—-Az&a,v‘%€)+-ﬁ£§2;g,a{) (5.4)

T T
for all 6 = (), € = (ex), T = () and t = (tx) where 0 < & < ¢ < 1 and

O<m <ty<oo,k=1,---,m.

Proof. Assume that Goo(),a) =~ Gooo(),d), and take m € N. In order to show
inequality (5.4]), we estimate the m-rectangle characteristics with the S-characteristics
of some specific weighted [;-balls that are constructed as follows.

By using Lemma [5.0.15| repeatedly, we can choose a chain of positive integers

Tt < Pt < Topyq <o <Tp <Pp <713 < -+ <719 < poy <71
<Sp<qo<So<- <8< qr<Sp<- <S8 < Gni1 < Smt1

<mp <o <ng < (5.5)

with the additional conditions that each integer in the chain is at least two times

greater than the previous one, and 2r{n; < n;;; for each j € N, so that we have the

inclusions

APkan - CAT%SM Ay

k°

§ CCApgs k=0, m+1,
Apo,nj C OjATman,—l? Ar(’),nj - CjApo,nj+17 ] & N, (56)

for some constants C', depending on m, and C}, j € N.
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Let 6 = (0k), € = (ex), 7 = (7x) and t = (tx) where 0 < 6 < ¢ < 1 and
0< 7 <tp<oo, k=1,---,m. If we reorder d; so that 6, < --- < 4,,, and define

the sequence ((;)jen, by o =1, (; = n—lj for 5 € N, then there exist finite subsequences

(vx) and (ji) of Ny such that

Cyk < 5k < CVk—lu Cjk-i-l <ep < Cjk, k= 1, s, M. (57)
For each k =1,--- ,m, we define the following sets

Apo,njk—n Jk > 2

Apo,qov ]k = 172

k Tk
Uz( ) = eXp (%) Apoa0>

k

Ué) = exp(—qu+1tk)Apm+1,Qm+l’
k

Ui) = Apmqw

Vl(k) = Apo,nyk )

k —Tk
V2( ) = eXp ( ) Apm+17Qm+1>
Pm+1

VY = exp(2aits) Apy o

Ul(k) — Cjk:2 )
%Aré,soa jk = 172

~k) Tk 1

0 = Zexp (2—]%) s

" 1 i

U?E ) = E exp(—2Qm+1tk)Ar£n+1»Sin+1’

~(k) o 1 ~

U4 = aAr; B

‘/i(k) = Gy Ay, Mg+1)

k Tk i
‘/2( ) — CeXp (2p +1) ATm+1,3m+17

Vg(k) = Cexp(2qits)Arg 50,

‘/4(’“) — CA

TksSk "

These sets are, by definition, weighted [;-balls, that is,

=B (u), o =B (o), O = BT (al), 7P = B ().,
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where we denote by uék) = (ug?) , vék) = (Uékz-)) ; ’liék) = (@S@) , and
ieN "/ ieN ©/ieN
ék) = (vé?) their respective weight sequences, for every k =1
ieN
0=1,---,4.

- ,m and
The inclusions 1' imply that Ue(k) C Ug(k) and V;k C f/ak) forall k =1

=L ,m,
0=1,---,4. If we define the following sets

. erVOJUM> —mvaQ(evy>>,
0 mn<UU“> V (m (ﬂ (>>

then, we have the inclusions

Ucu, VcV.
So, by remark we have

B(V,U) < B(V,0). (5.8)

However, these sets are not necessarily weighted [;-balls, hence it may not be possible
to compute their S-characteristics with some corresponding weight sequences. In order

to overcome this, we apply Proposition [5.0.13| to obtain the inclusions

B¢(c) C V, U c mB®(d), V c 4Bf(¢), B/(d) c U,

(5.9)

for the sequences ¢ = (¢;)ien, d = (di)ien, € = (Gi)ien, d = (di)ien, where
G = k_I{nnm {eznlax {Ué?}} » di = kgllaxm {9311}.{1,4 {U(ek’) }} ’
o i, L, (0} o (o {2}

Then, by Remark , the inclusions imply that
B(B*(c), B*(d)) < B(V, U) and B(V.U) < (4B (2), B! (d).
Hence, by and Remark , we have
B(B*(c), B(d)) < B(4mB’ (), B (d)). (5.10)

Now we show that, with this construction of weighted [;-balls, we have the desired
estimates. First, we claim that p (5 g;7,t) < B(B%(c), B¢(d)).
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Using Proposition [5.0.14] and considering the definitions of the weight sequences ¢

and d, we get

B(B(c),B¢(d)) = H{ieN:¢ <d}
= {reme i, e )} < s L (w211
= UU{ZGN max {vé )} <9mi?4{ué{2}

k=11=1
m
. ) k) . (k)
> 1€ N: max {v(l}< min {u}
= kL_Jl{ o=1,..a U1 = o=i 4 L 00

Note that uflk) = vflk), so we have

3
{z’ € N: max {vé{?} < min {u(g’?}} = ﬂ {z e N: vé? < uffz-), vffi) < ué’?} .

=1,..., 0=1,....4

Hence,

p(B(c), B

m 3
U frems < o <2}

Since (5 e, t) = Upe {0 € N6 < N < e, < a; < By}, the claim is true if

the inclusions

3
iEN: S <N <epm<a; <t} C ie Nl <ulf) y®) <0
{ 07, 4z 4,3 0,i
=1
hold for all k =1, --- ,m, which we show as follows.

Given k € {1,--- ,m} and i € N, if \; > J;, then, since py < po, pr > 2, 1y, > 2qy
from (5.5) and (,, < d0x by (5.7)), we have the estimates

0<1 1<1<1 >nyk 1>1>1
— - ) Ny, — 4k = = 5c = )
Pk Po Pk 2 g 2 2<I/k 2 k 2)\1
which imply that
1 1
T —
Px Do ( g )
= —— =y, N < —— — @A
Po Pk
1 1
= exp —— —ny, N | a; | <exp —— — QA
p k
)
Hence,
{ieN: X\ >0} C {iENZUY;) Sug;)}. (5.11)
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If \; < ey, then, since py > 2py, nj, > 2r(n;,—1 > 2pgn;,—1 from (5.5) and ¢;, > ¢y
by (5.7)), we have the estimates

1 1 1

> ),
Pe Do 2pk’

1 1 1
Myt — G < My < L = < < -
et L op, 201Gy, T 2pkER T 2Pk

which imply for j, > 2 that

1 1
N (g1 —qe) < — — —
(7, )< T

1 1
= —— = @A < —— — G\
Pk Do

1 1
= exp (<_p_ - qk)\i) ai> < exp (<_p_ — njk_l)\i) ai>
k 0

Lo <)

P S U
For j, < 2, we have pg > pi and g > qo from ([5.5)), so the inequality

1 1
—— = @A < —— — QN
Dk Po

is satisfied for all \;. From these inequalities, we obtain
GeEN:\<e)cC {ieN:vff} gug’fﬁ}. (5.12)

If a; > 7, we have the inequalities

1 1 1 1 1
< - — < ——+)\i<Qm+1_Qk>
2Pm+1 Pm+1 Pk Pm+1 Pk

since pg > 2Pyt and i1 > g from (5.5)), so we obtain

T 1 1
LB ( — — + Xi (@1 — Qk)> a;-
2Pm+1 Pm+1 Pk

By rearranging terms and taking the exponential function of both sides, we get

1 1
exp T exp - — qm+1Ai | a; | < exp —— =N | a; ).
2pm+1 Pm+1 Pk

Then, by the definitions of the weight sequences, we have vgfi) < uffi). Hence,

(ieN:7, <a)C {ieN:vgﬁ? gug’ff}. (5.13)

If a; > 7, we also have the inequalities

1 1 1 1 1
— < <
20 Pk Po Pk Do



since pg > 2px and g > qo from (5.5)), and we obtain

Tk 1 1
0 ( + i (x %)) a

By rearranging terms and taking the exponential function of both sides, we get

1 1
exp <(—— — qk)\i> az-) < exp <—l) exp ((—— — qo)\,») ai) .
Dk 2p Po
So, by the definitions of the weight sequences, we have vi{? < ug? Hence,
[ieN:7, <a)C {ieN:vg? gug’f}}. (5.14)

If a; < ty, since px, < po, qr > qo from (5.5) and \; < 1 by lemma [2.1.1}, we have the

inequalities
1 1
0< — — — < @, O<(Qk—QO))\iSQk—QO<Qk7
Pt Do
which imply that
1 1
— — — + (qk — ) Ni < 2qs,
Pt Do

and we obtain

1 1
(_ — — + (g — ) )\i> a; < 2qyts.
Pt Do

By rearranging terms and taking the exponential function of both sides, we get

1 1
exp(—2qxty) exp ((—— — qo)\i) ai> < exp ((—— — qk)\i) ai> )
Po Pk

By the definitions of the weight sequences, we have U;{? < uffi). Hence,

(ieN:a<t)cC {ieN:vg’j;? gug’;?}. (5.15)

For a; < t;, we also have the inequalities

1
— — < m+1, 0 < (@m+1 — @) N < Gmt1 — @ < Q1
Pm+1 Dk

0<

since prmi1 < Py Gma1 > qx from (5.5) and A; < 1 by lemma [2.1.1} and we get

1 1
— — + (Gt — @) Ni | @i < 2¢mprts.
Pm+1 Pk

By rearranging terms and taking the exponential function of both sides, we get

1 1
exp <(—— — Qk)\z) ai) < exp(2¢m1tr) exp <(— — Qm—l-l)\i) ai) .
Pk Pm+1
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By the definition of the weight sequences, we have Ufl z) < ué ) Hence,

ﬁENzwgmM:&eNvﬁ<uw} (5.16)

From the inclusions ((5.11))-(5.16)), we obtain

3

{ieN:6G <\ <ep,m<a; <t} C ﬂ{iEN:vg;)S E“) (k) gu(k)}.
=1
Therefore,
pXD (8 g7, 1) < B(B(c), BE(d)). (5.17)
Now, we claim that
BamB! (@, 8'(@) < w3 (106) - 57100+ HL Lot

for some strictly increasing function v : [0,2] — [0, 1] where v(0) = 0 and v(2) = 1,
decreasing function M : (0,1] — (0,00), and constant o > 1.
Using Proposition [5.0.14] and considering the definitions of the weight sequences ¢

and CZ, we obtain

B(4mB?(&),Bf(d)) = |{ieN:¢<

= {z’eN: min {max {17é?}}§4m max {min {ﬁé’?}}}‘
k=1,...m | 6=1,...,4 ’ k=1,...m | 6=1,...,4 ’

.....

..........

k=11=1
Also, for any k,l =1,...,m, we have
4 4
- : ~k) | - {@}: { k) 4%
{z eN: 92??54 {UH,z } < 4m9ir11,1.1},4 Uy ; } Q q 1€N: Vg < 4mup7l
g p:

C ﬂ {Z eN: ﬁé{? < 4m714(1{1, ﬁg? < 4mﬂé{)i} m {z eN:7, Z) < 4ma!) } (5.18)

Now, using the sets on the right hand side of the inclusion (5.18]), we construct the
corresponding m-rectangles.

If Ulk) < 4mﬁz)i, then

1 1 ~\ . 1 ~\ .
o exp ((_7“_0 — n,,kﬂ)\i) ai> < 4mC exp ((_7’_2 — 3;)\2-) ai) )

Taking the logarithm of both sides and rearranging terms, we get

¥ ~w  In(mCaC,)

! ~ AN
Nyy1 =8 Ai(Nyq1 — )

45



Since 9 > 2r], Ny, 11 > 28], Ny, 41 > Ny, and n,, 2 > 2rn,, 11 by the choice of the

chain (5.5)), we obtain the inclusions

T_{ " > L > ! > !
Ny+1 — S; 2r;(nd+1 o S;) 2T2nd+1 Ny 42
In(4mCC,,) - 2In(4mCC,,)  2¢,+1In(4mCC,,) - 2¢,, In(4mCC,,)
a;(Nu+1 — S7) My +1Gi a; a;

which imply that

= Cl/k+27

?

N 2¢,, In(4mCC,,)

Ai 2 vz — (5.19)

a;
Let 1751];) < 4mﬂ§l)l We need to consider the cases j; > 2 and j; < 2 separately due

to the definition of &gl)z For j; > 2, we have

1 1 <\ . 1 <\
ol exp ((_T_k — Sk)\i> ai) < 4mCj,_s exp ((—% — njl_g)\i) ai) .

Taking the logarithm of both sides and rearranging terms, we get

1
5\' < e T n ln(4mCle_2).
T nje =8k a@i(ng_o — si)

Since nj,—» > 2s; and i — & < £ < I by the choice of the chain 1D the above

’I‘O Tk

inequality implies

1 1
2 <a - %) I 2ln(4mCle,2)

5\7; < =
nj[*? aln3172
< 1 1 2ln(4~1mC'le_2)
T —2 ATl —2
2C; o In(dmCC,; _
_ <jz—2+ C]l 2 n(dm Ji 2)' (520)

For 7, <2, the inequality fﬁ

X2

1 1 ~ 1 ~
—exp | [—— —sphi )@ | <dmCexp | | —= — sp\i ) @i | .
C Tk ro

Taking the logarithm of both sides and rearranging terms, we get

lf-) < 4mﬂgl)l implies

{(i, — l) + (50 — sk) 5\1} a; < In(4mC?).

Since r < r{ and s < sy, the left hand side of the above inequality is negative for all
i € N, hence the inequality holds for all i € N. As \; < 1 for all i € N by Lemma [2.1.1]

and (o = 1, for 5; < 2, we have
{ien:of) <amal)} ={ieN: %<6} =N
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Take a strictly increasing function 7 : [0,2] — [0, 1] so that v(0) = 0, y(2) = 1,

—1 exists, it is strictly

and v(¢;) = (j+3 for all j € Ny. Since 7 is strictly increasing,
increasing, v 1(0) = 0, v *(1) = 2, and v 1({;) = (-3 for all j > 3. Also, take a

decreasing function M : (0,1] — (0, 00) so that
M(¢;) > 2amax {(; In(4mCCjt1), (-2 In(4mCC;_2)}

for all 7 € Ny, where the constant o will be chosen explicitly later in the proof to

simultaneously satisfy other inclusions. Then, 17?;.) < 4m&f& implies

< 2C,, In(4 y
)\i 2 Cl/k+2 - Ck n<~mCC k) by ‘ )
2¢,, In(4mCC, .
= (Gymr) — 2 BECC) e () = G
M(C,, -
> Y((yo1) — M since M((y,—1) > 20, In(4mCC,,),
M6
> y(0) — (~ k) since 0y, < (y,—1 by 1}
aa;
Therefore, for any k,l =1,...,m, we have
M6 N
{i eN: o < 4ma§3} c {z €N :y(6) — MO _ )\i} . (5.21)
’ ’ aa;

If we consider the inequality fig;-) < 4m12§2, then for j; > 2,

2Gj,2 111(‘%7'”(701172) by
2le_2 1H<4mCle_2)

a;

A

IN

(20,

le—2 +

= 771(le+1) + since (j—2 = ’Y*l(leH)?

M((; .

< 7_1(<j1+1) + % sice M(CJZ) > QCYle_Q ln(4mC’C'jl_2),
M(e .

< e+ a%l) since (j41 < & < ¢, by 1i

)

For j; < 2, o¥) < 4mﬁff’)i implies \; < ¢, = 1. Since (3 < (41 for j; < 2, 471 is

i >

increasing and (j; 41 < g;, we have

YHCs) = Co < HGia) < HE).

Hence, \; < v He) + % Therefore, for any k,l =1,...,m, we have
~ M
{i eN: 3 < 4ma§l1} C {z EN: N <7 ' (a)+ ﬁ} : (5.22)
’ ’ aa;
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Let us choose the constant « so that

o > 4rg max {In(4mC?), 25,11 } . (5.23)

If 837 < 4mal), then

1 1 < 1 ~
— exp ( Tk ) exp ((- — 5m+1)\i) &1> S 4mC exp <(——/ — 8;)\1) d2> .
C 2pm+1 T'm+41 Ty

Taking the logarithm of both sides and rearranging terms, we get

Tk

1 1 -
S ln(4mC’2) + |:( - —/> + (Sm+1 - 8;) /\z:| C~L2
2pm+1

T'm+1 T
Since 1] > i1y Sme1 > S) by (5.5) and \; < 1 by Lemmal2.1.1} we have the inequalities

0<

ABY /
— = < Sm+1; 0< (8m+1 - Sl))\i S Sm+1 — 5; < Sm+1
T'm+1 rl

which imply that
Tk

2pm+1
As a; > 1 by Lemma 2.1.1] we get

< In(4mC?) + 28,410

T < 2Dmat (1n(4m02) + 23m+1) a;

From (5.23)), we have 7, < aa;. Thus, for any k,[ =1

{ZEN va)<4mu()}C{i€N:E§di}.
ot

If f;i];) < ﬁg)l, then

1 1 ~ 1 -
o exp (<_E — sk)\l-) di> < 4mC exp (_QLI;> exp <(_r_’ — sgki) ELZ-) )

(5.24)

0
Taking the logarithm of both sides and rearranging terms, we get

T 1 1 N
Q_pl S ln(4mC2) + [(a - T_/> + (Sk - 86) /\zaz:| .

0

Since 1 > 1), Sp > Sy by (5.5) and \; < 1 by Lemma [2.1.1, we have the inequalities

1 1
0<———<Sk,

0 < (s — sh)\i < sp — Sh < Sp.
i (81— sp)\i < s — sy < S,
which imply that

7 < 2p; In(4mC?) + 25,4;.
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As a; > 1 by Lemma 2.1.1] we get
7 < 2py (ln(4m02) + ZSk) a;
From (5.23)), we have 77 < aa;. Thus, for any k,l =1,..., m, we have
{ZEN v <4mu§l)} {ZGNZ 1 S&i}. (5.25)

Let o5 < 4ma}). Then

2

1 1 ~ 1 1-
— exp (—2qxty) exp ((—— — 30)\1') dz) < 4mC exp ((——, — —/)\Z) d,-) .
C 70 T, s

Taking the logarithm of both sides and rearranging terms, we get

{(l/ - l) + (57— s0) /N\z} a; < In(4mC?) + 2qyts.

(l,—i>+( —50) \i > L 1>L.

r,re 21
Without loss of generality, we can take ¢, > 1 since a; > 1 by Lemma [2.1.1, We also

have 7{, > 7], Sm41 > @& by the choice of the chain (5.5), so we obtain

a; < 2r) (In(4mC?) + 2qxt)
< (27“6 In(4mC?) + 4T68m+1) tr
< (O‘ + O‘) te = at
—_ — =
S (g5t k
Thus, for any k,l =1,...,m, we have
{z e N: 74 Z) < 4muil} Cc{ieN:a <oat}. (5.26)

Let f)fi) < 4m&§2. Then

1 1 ~ 1 1 -
— exp <<—— — sk)\i> di> < 4AmC exp (2¢m11t;) €xp ((— — — )\i> &i) .
C Tk P+l Sma

Taking the logarithm of both sides and rearranging terms, we get

1 1 N
K 1 _) + (S — 1) Az] G < I(4MC?) + 2qps it

Tm—&-l Tk
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Since 1, > 27, and s;, ., > s; by the choice of the chain (5.5)), we have

1 1 , ~ 1 1 1
- — — sk) A > - >
<7"a,n+1 Tk) " (Smﬂ Sk) , Tk 2T;n+1

Without loss of generality, we can take ¢, > 1. We also have 7 > 77, |, Smi1 > Gmt1

by the choice of the chain, hence we get

a; < m+1 (ln 4mC )+ 2qm+1tl)
< (ln (4mC?) + 2qm+1) t
< (2r0 In(4mC?) + 4r(smi1)
S P
s \gtg)h=at
Thus, for any k,[ =1,...,m, we have
{z eN: v ) < 4mu§lz} Cc{ieN:a <at}. (5.27)

From the inclusions (5.21))-(5.27)), we obtain

3
N {z e N: o) <amal), o) < 4ma§{§} C Ry (5.28)
=1

for any k,l =1,...,m, where

: M (6x) M (e)
Ry, =1i€eN:~(d —— <\ <A —_—
! {Z V(%) = max{7y, 7} e+ max{1y, 77}

max {7y, 7} <a; < amin{tmtl}} '
(67

If 81" < 4mal), then

1 1 ~ 1 -
— exp ((—— — sk)\i) Ezi) < 4mC exp <<——/ — s;)\i) di) )
C Tk rl

Taking the logarithm of both sides and rearranging terms, we get

2r;

If k <1, then r > 2r; and s; > s by the choice of the chain (5.5)). Hence,

1 1 ~ 1 1 1
(_,——>+(82—8k>)\i>—,——>

T, Tk T 2r)

which implies that a; < 2r;5% r<a since r; < (. So,
{ZEN 1)4Z <4muiZ}C{Z€N a; < a}.
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If k> 1, then r, < r] and s; < si by (5.5]), hence

1 1 ~
(_——>+(82—8k))\i<0.

T, Tk
So the inequality 174(&) < 4m114(1{1 is satisfied for all 7 € N. Therefore,
{z’ eN: i < 4ma§{1} C Sp
for all k,l =1,...,m, where

{ieN:a<a}, k<l
N, k> 1.

Sk =

(5.29)

Now, we claim that Ry; N Sk; C R;;. Since the claim is trivially true if £ = [

or Ry; NSy, is empty, take k, [ such that k& # [ and the intersections Rj; N Sy, are

nonempty.

If £ > [, then 6, > 9; by the reordering of §. Since v is increasing and M is

decreasing, we have y(dx) > v(d;) and M(d) < M(8;), which imply the following

inequalities
M () M (&)
_ > — > —
7(0r) o ey v(01) Py v(1)
_ M(g) _ M(g)
1 < A1
Y e) + i} = (e1) + _—

From these inequalities, we obtain Rj; C [;;. Hence,

Rk,l N Sk,l = Rk,l NN = Rk,l C Ru.

M ()

For k < [, take @ € Ry; N Sk;. Then, a; < o since @ € Si;. As ai <\ by lemma

m, we have £ < );. Also, since ~ is increasing,
(e

MO <80 <) =260 == o

v(01) —

So, if we take n3 > «, which is possible since a depends only on m, we get

M 1
@) 1 _

1 ~
— < \.
T ns [0

7(50 -

With this estimate for S\Z from below, and the estimates for 5\1 and @; that come from

the fact that i € Rj;, we obtain that ¢« € R;;. Therefore, Ry; N Sy; C Ry for all

kE,l=1,....,m.
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From the inclusions (5.18)), (5.29)) and ((5.28)), we have

{z eN: 9max4 {27(57]?} < 4m min4 {ﬂ(%}} C Ry NSk C Ry

-----

for all k,l =1,...,m. Hence,

B(AmB (c), B/ (d)) <

s
s
—N
o~
Mm
z
5
NS
)
"
—
N
=
——
A\
N
3
5
-2
=
—
=~
S
W—/
<

Ly Ay

B
Il
—
~
Il
MR

A
s
=

T
I

From ((5.10)), (5.17) and (5.30)), we obtain

» M) _ Me) T
i (8,657, t) < iy ® (7(5) S MO ey L%aj@t)-

T T

Remark 5.0.2 The function ~ in the proof of Lemma satisfies

() <E<AHE), £e0,1].

For £ = 0, we have v(0) = 0 = 7~ (0). For ¢ € (0,1], there exist v, € Ny such
that ¢, 11 < £ < (,,. As 7 is increasing, we have v(¢,,+1) < Y(§) < v(¢,.). Since

Y(¢;) = (s, we get Y(€) < (i3 < Cur1 < & Since 471 is also increasing, we obtain
£ <y7H9).

Theorem 5.0.17 If Gooo(N, a) =~ Gooo(A, @), then M(A N ,u,({;\’a) for every m € N.
Proof. Let Gy (), a) ~ Gooo(), @) and m € N. Then, by Lemmal5.0.16} there exists a

strictly increasing function v : [0, 2] — [0, 1] where v(0) = 0 and 7(2) = 1, a decreasing
function M : (0,1] — (0, 00), and a constant o > 1 such that

0 0.570) < 0 (100) - 25100+ L L)

m

for all § = (o), € = (), 7 = (1) and t = (t;) where 0 < J < g < 1 and
0 <1 <t <oo, k=1,---,m. So, we can take a strictly decreasing function

U : (0,1] — (0,00) such that




Given § = (0y), e = (eg), 7= (1) and t = (tx), k= 1,...,m,

KO (0,67,8) = || {i € N: (\yar) € BY|.
k=1

where Py, = [0k, k] X [Tk, tx]. If we define the following sets

p

O, en] X [Toste], 7> W(6),

Pl=1 [Brer] x [W(00),t], 7 < W(0)) < th,
\ 0 ty < U(d),
(g > U(8y),

Pl =13 [, eh] % [, 0(8,)], 7 < U(S;) < t,
0, 24] X [T t]s e < W(3),

\
where
max{sk,\IJ*I(Tk)}, Tk Z \If(l),

1 TE < ‘If(l),

then, P, C P, U P/ for every k =1,...,m. Hence,

< .

J{ieN:(\,a) e LUP
k=1

U {Z eN: ()\i,a,-) S Pk}
k=1

By applying Lemma [5.0.16, we obtain

J{ieN: (N a) e BLUP)

O{mNzoﬂgegug}

< :
k=1 k=1
where
r . .
[fy(ak) M) gy Mikk)] x [Zaty], > U(0),
Pi=q [0 = 5697 e + e | < [ M9 ot me< W) <,
L @ tk < \D(dk),
4
@ Tk > \Ij(ék)7
Bl = [v(ék) — M) 41(gh) + ijc)} X [,00(00)], < V(o) <t
| [0 = M2 (o) + MR o [0t e < ().

Take a strictly increasing function ¢ : [0,2] — [0, 1] so that ¢(0) = 0, (2) = 1, and

) (2 1 1
Sﬁ(f)émln{ 5 ’7(3§>’a\11(5)’\11(7(§g))}’ ¢ <€ (0,1]. (5.31)
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If 7, > W(0y), then since U(5;) > QQ/([S‘)“) and p(d) < 7(3’“) by (5.31)), we have

16— 2 > ) - 10 20 5 5,

Also, since 0 < ¢, and WV is decreasing,

e > U(5) > U(ey) > 2]‘74(23)

Y

which implies that

e+ T <oy + 1

As vy(ex) < v !(er) by Remark and p(ex) < v (3ex) by , we have

771(&%) + Mf_}‘jk) < 771(5’:]@) + '7_12(5k> _ 37_;(5k) < 8071(616).

Hence, for 7, > W(dy),

P, c [0(61), ¢ (ew)] X [%,atk} .

One can show similarly that the same inclusion holds if 7, < W(dy) < t;. Therefore,
for any k =,1..., m, we have

{i eN: (Aa) e 15,;} c {@ EN: () <\ < cp_l(ak),% <a < atk}. (5.32)

Let (Xi,di> € P! Then, @; < a¥(d) by the definition of P/. As \; > a% by

Lemma [2.1.1{ and ¢(d) < m by (5.31]), we have

Also, by the definition of 15,;’ ,

>

N M(g
c<oe +

We have the cases when ¢}, = ¢y, €}, = U !(73,) or ¢}, = 1.
If €} = &y, then g > U1 (73), so ¥(e;) < 74 since ¥ is decreasing. Hence,

RN . (G
T~ Wleg) o 2M(e))

which implies that




As y(g}) < v71(e},) by Remark and p(ex) < v (2ex) by (5.31)), we have

3 M (€ 3 _ 3 _ _
e+ Do) = 2 < e,

If &} = U~1(73,), then 7, = ¥(g},), so

Hence,

< D) = o (0 ().

771(62)+M( ) <771(€;€>+7(5k) .

Without loss of generality, we can take 75, > i since ,u%"a) (0,e;7,t) = #%,a) (0,e;7',t)

for 7/ = (7],) where

1 1
o a) T < aa
Tk = L
Ty Th 2 -

So, since U~! is decreasing and v~! is increasing, we have

) <ot (v (1),

P08 3 (o 2).

Since p(g) < \I/@(l%g)) by (5.31]), we get

which implies that

/

e+ M < e,

If €, =1, then
M(e})

7 =T () %1)

>1

since v71(1) = 2 and %}:) is positive. As a > 1, we have p(1) < aq}(l). Also, without

loss of generality, we can take 7, > i Hence, we have

Ep > — > > > (1),

which implies that ¢~ '(g;) > 1. As A; < 1 by Lemma we have
X <yl + w, which implies that A; < ¢~ !().

k

Thus, for any k£ =,1...,m, we have

S

{i eN: (/\a> e 15,;’} c {z EN: () <A <o lew), F <a < atk}. (5.33)
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From ([5.32)) and (/5.33]), we obtain

G{iEN:<5\¢,di>EPkU B} c G{ZGN 2(0) <N <7 (en), E <@ <oty

which implies that

< 1 (%a) “12): L at) .
H) (0,557.8) < i (9(0), 07 (0); = at)

By interchanging (A, a) and (X, @), we similarly get a strictly increasing function @,

and a constant & so that

N\ a)  ~ ~— T .
M (5,857, 1) < <¢(5),<p 1(5),5 at)

Taking the minimum of the functions ¢, ¢, and the maximum of the constants «, &,

we obtain

(A.a)

i)~ .

~ Hin
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CHAPTER 6

Quasiequivalence of Bases

As an application of m-rectangle characteristics, we obtain the quasiequivalence of
absolute bases in Montel spaces G (A, a) that are in class (2), where

w(.)’oo(p, q) = exp <(—% — q)\i)ai>, such that G (A, @) g Go0o(Asa) X Gooo(A, a).

(2

Proposition 6.0.18 Let X = Goo(), a) and X = Gooo(\, @) be Montel spaces such
that X % X2 and X £ X2, Then, X ~ X implies X e

Proof. Assume that X = Gy (), a) and X = G (), @) are Montel spaces such that
XEx2 L %2 and X ~ X.
First, we show that X can be quasidiagonally embedded in X?. By Theorem

5.0.17, X ~ X implies u?’“) ~ M?"”. Hence, there exists a strictly increasing function

¢ :[0,2] = [0, 1] with ¢(0) =0 and ¢(2) = 1, and a positive constant « so that

a ~7& — T
U 0,557.8) < i (90). 07 (0 Zoat) (6.1)

for all parameters 6,¢,7,t. Taking ¢ = (1), where € € (0,1), we define the following

sets

Njp = {ieN:¢p/(e) <N < e),af <a; <o}, jkeN,
Njp = {ieN:¢t(e) <

¥
N <@ (), 0" <a; <Y ik EN,.
Then, the inequality implies that
[Njkl < [Njl, 5,k € No. (6.2)
So, if we define the following sets

N, = U Nj,k’ Nk = U Nj,ka ke No,

J=1 Jj=1
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then, for every k € Ny, the multi-valued functions Sy : Ny — Nk, defined by
Sk(’L> = Njyk if 7 € Nj7k,

satisfy the conditions of Hall-Kénig Theorem (Theorem . Hence, for each k € Ny,
there exists an injection oy : N, — N, such that ox(i) € Nj,k whenever i € Nj .
If we set N = 32, Najq9 for 6 = 0,1,2, then the maps 0¥ : N — N defined
by
@ (i) = o1,(i) if i € Nagprg, k € Ny,

are also injective. Hence, we can define an injective map o : N — N3 by
o(i)=0cP()ifie N9 6=0,1,2.

From the construction of the sets IV;;, and the injection o, we obtain a; < a,(;, and
(A\i,) > 0= (S\U(ik)) — 0 for any subsequence (i;) of N. Hence, by Proposition m,
X can be quasidiagonally embedded in X?.

By the assumption X g X2 we have X g X3 hence X can be quasidiagonally
embedded in X. By interchanging X and X, we can analogously show that X can be
quasidiagonally embedded in X. Therefore, by Proposition we have X ~ X. m

Corollary 6.0.19 If Gy (A, a) e Go.oo(A,a) X Go (A, a), then the absolute bases in

Go.0o(A, @) are pairwise quasiequivalent.
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