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Abstract

In this thesis, we consider problems on the isomorphic classification and quasiequiv-

alence properties of mixed (F)-, (DF)- power series spaces which, up to isomorphisms,

consist of basis subspaces of the complete projective tensor products of power series

spaces and (DF)- power series spaces.

Important linear topological invariants in this consideration are the m-rectangle

characteristics, which compute the number of points of the defining sequences of the

mixed (F)-, (DF)- power series spaces, that are inside the union of m rectangles. We

show that the systems of m-rectangle characteristics give a complete characterization

of the quasidiagonal isomorphisms between Montel spaces that are in certain classes

of mixed (F)-, (DF)- power series spaces under proper definitions of equivalence. Us-

ing compound invariants, we also show that the m-rectangle characteristics are linear

topological invariants on the class of mixed (F)-, (DF)- power series spaces that consist

of basis subspaces of the complete projective tensor products of a power series space

of finite type and a (DF)- power series space of infinite type. From these invariances,

we obtain the quasiequivalence of absolute bases in the spaces of the same class that

are Montel and quasidiagonally isomorphic to their Cartesian square.



M-DİKDÖRTGEN KARAKTERİSTİKLERİ VE KARIŞIK (F)-, (DF)-

UZAYLARININ EŞDÖNÜŞÜMLERİ ÜZERİNE

Can Deha Karıksız

Matematik, Doktora Tezi, 2014

Tez Danışmanı: Prof. Dr. Vyacheslav P. Zakharyuta

Anahtar Kelimeler: doğrusal topolojik invaryantlar, bileşik invaryantlar,

m-dikdörtgen karakteristikleri, karışık (F)-, (DF)- uzayları, bazlarn sanki denklikleri.

Özet

Bu tezde, kuvvet serisi uzayları ve (DF)- kuvvet serisi uzaylarının tam projektif

tensör çarpımlarının baz altuzaylarına eş yapılı olan karışık (F)-, (DF)- kuvvet serisi

uzaylarının eş yapı sınıflandırmaları ve sanki denklik özelliklerine dair problemler in-

celenmiştir.

Bu incelemedeki önemli doğrusal topolojik invaryantlar, karışık (F)-, (DF)- kuvvet

serisi uzaylarını tanımlayan dizilerin m adet dikdörtgen içinde kalan noktalarını hesap-

layan m-dikdörtgen karakteristikleridir. İlgili denklik tanımları altında, m-dikdörtgen

karakteristik sistemlerinin, bazı karışık (F)-, (DF)- kuvvet serisi uzayları sınıflarına

ait Montel uzayları arasındaki sanki diyagonal eşdönüşümleri tamamen karakterize

ettiği gösterilmiştir. Bileşik invaryantlar kullanılarak, m-dikdörtgen karakteristikleri-

nin sonlu tipli kuvvet serisi uzayları ve sonsuz tipli (DF)- kuvvet serisi uzaylarının

tensör çarpımlarının baz altuzaylarına eş yapılı olan karışık (F)-, (DF)- kuvvet serisi

uzayları sınıfı üzerinde doğrusal topolojik invaryantlar olduğu ispatlanmıştır. Bu in-

varyantlar aracılığıyla, aynı sınıfa ait, Montel ve kendisiyle Kartezyen çarpımlarına

sanki diyagonal olarak eş yapılı olan uzaylarda mutlak bazların sanki denkliği elde

edilmiştir.
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CHAPTER 1

Introduction

In this thesis, we aim to characterize isomorphisms between certain classes of locally

convex spaces. Linear topological invariants are powerful tools in this regard, as they

are a way to distinguish non-isomorphic spaces.

By an isomorphism between two locally convex spaces X and Y , we mean that

there exists a continuous linear map from X into Y that is one-to-one, onto, and with

a continuous inverse. The spaces X and Y are then called isomorphic, denoted by

X ' Y . If X is a class of locally convex spaces and Γ is a set with an equivalence

relation ∼, then γ : X → Γ is called a linear topological invariant if X ' Y implies

γ(X) ∼ γ(Y ) for all X, Y ∈ X .

Results on isomorphic classification of non-normable locally convex spaces and re-

lated problems were initiated by the introduction of the approximative dimensions by

Kolmogorov ( [23]) and Pe lczyński ( [29]). Shortly after, variations of the approximative

dimensions called the diametral dimensions were introduced by Bessaga, Pe lczyński,

Rolewicz ( [1]) and Mityagin ( [25]), and these invariants were proven to be more

convenient for certain classes of locally convex spaces.

Definition 1.0.1 Let U and V be absolutely convex sets in a locally convex space X

such that V ⊂ cU for some constant c > 0. Then, for every n ∈ N, the nth Kolmogorov

diameter of V with respect to U is defined by

dn(V, U) = inf
L∈Ln

inf{ρ > 0 : V ⊂ ρU + L},

where Ln denotes the collection of all subspaces of X with dimension less than or equal

to n. Then, the diametral dimensions of X are defined by

Γ(X) = {(ξn) : ∀U ∃V lim ξndn(V, U) = 0} ,

Γ′(X) =

{
(ξn) : ∃U ∀V lim

ξn
dn(V, U)

= 0

}
.
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These invariants were especially useful for the classes of Köthe spaces with a regular

basis, where the Köthe spaces are defined as follows.

Definition 1.0.2 A matrix A = (ai,p)i,p∈N of non-negative numbers satisfying

(i) for each i ∈ N there exists p = p(i) such that ai,p > 0,

(ii) ai,p ≤ ai,p+1 for all i, p ∈ N,

is called a Köthe Matrix. For a Köthe matrix A, the locally convex space K(A) of

all sequences ξ = (ξi)i∈N with the locally convex topology generated by the system of

seminorms {||.||p : p ∈ N}, where

||ξ||p =
∑
i∈N

|ξi|ai,p <∞,

is called the Köthe space defined by A.

For any Köthe matrix A = (ai,p)i,p∈N, K(A) is a Fréchet space, that is, a complete

metrizable locally convex space. Also, for a Köthe matrix A = (ai,p)i,p∈N with non-zero

terms, we have the isomorphism

K(A) ' proj←pl1 ((ai,p)i∈N) .

A sequence (xn) in a locally convex space X is called a (Schauder) basis, if for each

x in X there is a unique sequence of scalars (tn) such that x =
∑
tnxn, where the

sum converges in the topology of X. Moreover, (xn) is called an absolute basis if for

each continuous seminorm p on X there exists a continuous seminorm q on X and a

constant C > 0 such that ∑
|tn|p(xn) ≤ Cq(x)

for every x ∈ X. Every Fréchet space with an absolute basis is isomorphic to a Köthe

space. From Grothendieck-Pietsch theorem, K(A) is nuclear if and only if for every

p ∈ N there exists q ∈ N, q ≥ p so that

∞∑
i=1

ai,p
ai,q

<∞.

Since any basis in a nuclear Fréchet space is an absolute basis by Dynin-Mityagin

theorem, any nuclear Fréchet space with a basis is isomorphic to a nuclear Köthe

space.

2



An important subclass of Köthe spaces are the power series spaces, which are defined

as follows.

Definition 1.0.3 For any positive sequence a = (ai)i∈N,

Eα(a) = projλ<αl1(exp(λa))

where −∞ < α ≤ ∞, is called a power series space of finite type if α <∞, or a power

series space of infinite type if α =∞.

If the sequence a increases to infinity, then Eα(a) is a Schwartz space. Without loss of

generality, we only need to consider

E0(a) = proj←p l1(exp(−1

p
a)), E∞(a) = proj←p l1(exp(pa))

for representing power series spaces, since any power series space of finite type is

isomorphic to E0(a) and for every strictly increasing sequence (λp)p∈N with limλp = α

we have Eα(a) = K(A) where A = (exp(λpai))i,p∈N.

Many concrete spaces in analysis are isomorphic to power series spaces. As impor-

tant examples, let A(D) denote the space of analytic functions in the unit disk on the

complex plane and A(C) denote the space of entire functions on the complex plane,

both endowed with the topology of uniform convergence on compact subsets. Then,

A(D) is isomorphic to a power series space of finite type and A(C) is isomorphic to

a power series space of infinite type. Also, the space of infinitely differentiable func-

tions on the interval [0, 1], denoted by C∞[0, 1], is isomorphic to the space of rapidly

decreasing sequences, denoted by s, and defined by

s = E∞((log i)i∈N).

The isomorphic classification of power series spaces were considered by Mityagin

and, for Schwartz power series spaces, the following result was shown in [25] by using

diametral dimensions and their computation in terms of their defining sequences.

Proposition 1.0.1 For positive sequences a = (ai)i∈N and b = (bi)i∈N both monotoni-

cally increasing to infinity, the following statements are equivalent:

(i) E0(a) ' E0(b).
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(ii) E∞(a) ' E∞(b).

(iii) There exists a constant C > 1 such that 1
C
ai ≤ bi ≤ Cai for all i ∈ N.

Mityagin also investigated the isomorphic classification of non-Schwartz power series

spaces in [26], [27], and later in [28], by analysing the counting functions

Na(u, v) = |{i ∈ N : u ≤ ai ≤ v}| , 0 ≤ u ≤ v <∞,

where |S| denotes the number of elements of a given set S if S is a finite set and equal

to ∞ if S is an infinite set, and obtained the following criterion.

Proposition 1.0.2 For positive sequences a = (ai)i∈N and b = (bi)i∈N, the following

conditions are equivalent:

(i) E0(a) ' E0(b).

(ii) E∞(a) ' E∞(b).

(iii) There exists a constant R > 0 such that for any u, v, 0 ≤ u ≤ v <∞,

Na(u, v) ≤ Nb(Ru,
v

R
), Nb(u, v) ≤ Na(Ru,

v

R
).

A related question in isomorphic classification of locally convex spaces is whether

a locally convex space has the quasiequivalence property, that is, if any two bases in a

locally convex space are quasiequivalent.

Definition 1.0.4 Two bases (en) and (fn) of a locally convex space X are called

quasiequivalent if the operator T : X → X where Ten = tnfσ(n) for some sequence

of scalars (tn) and a bijection σ : N→ N for every n ∈ N is an isomorphism.

It was shown by Dragilev ( [14], [15]) that A(D) has the quasiequivalence property.

Mityagin has shown in [26] that nuclear power series spaces have the quasiequivalence

property. Zakharyuta has shown in [34] that Schwartz power series spaces have the

quasiequivalence property. The quasiequivalence property for arbitrary power series

spaces was then shown by Mityagin in [27].

Dragilev has also considered nuclear Fréchet spaces in the classes (d1) and (d2) with

regular basis, where regular bases and the classes (d1) and (d2) are defined as follows.
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Definition 1.0.5 A basis {ei : i ∈ N} in a Fréchet space E is called regular if there

is a sequence of seminorms {||.||p : p ∈ N} generating the topology of E such that

||ei||p
||ei||p+1

≥ ||ei+1||p
||ei+1||p+1

for all i, p ∈ N.

Definition 1.0.6 Let X be a Fréchet space with an absolute basis (en)∞n=1 and a system

of seminorms {||.||p : p ∈ N} defining the topology of X. Then, X said to belong in class

(d1) if there exists p such that for every q there exists r and n0 such that

||en||2q ≤ ||en||p||en||r, n ≥ n0.

X said to belong in class (d2) if for every p there exists q such that for every r and n0

||en||2q ≥ ||en||p||en||r, n ≥ n0.

As examples of spaces in these classes, any power series space of finite type belongs

in class (d2), and any power series space of infinite type belongs in class (d1).

It was shown by Dragilev in [16], by using the diametral dimension Γ(X), that

nuclear Fréchet spaces in classes (d1) and (d2) with regular basis have the quasiequiv-

alence property. Crone, Robinson ( [9]), and Kondakov ( [24]), has later shown that

the diametral dimension Γ′(X) distinguishes regular bases, hence any nuclear Fréchet

space with a regular basis has the quasiequivalence property. Djakov has shown in [10]

that equivalence of characteristics can be used instead of equality in the proof of Crone

and Robinson, which provided a new method in the consideration of linear topological

invariants.

In the case of distinguishing spaces without a regular basis, the diametral dimen-

sions are not very efficient as the following example, due to Rolewicz ( [30]), shows.

Example 1.0.1 The cartesian product A(D) × A(C) has no regular basis and A(D)

and A(D)× A(C) are non-isomorphic. However, Γ′(A(D)) = Γ′(A(D)× A(C)).

To investigate Köthe spaces without a regular basis, more generalized linear topo-

logical invariants were constructed Zakharyuta in [35], [36] and [37]. Subsequently, new

geometrical invariants named compound invariants were introduced by Zakharyuta
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in [38], [39] and [40], where the asymptotic behaviour of Kolmogorov n-diameters of

certain absolutely convex sets that are geometrically constructed (by taking intersec-

tions, convex hulls, etc.) from given bases of neighborhoods of zero, called synthetic

sets, were analysed and shown to be equivalent to the generalized invariants in [36]

and [37]. Also, by considering characteristics other than Kolmogorov n-diameters, and

using interpolational methods in geometric constructions, new linear topological in-

variants were introduced by Zakharyuta, and used in joint papers by Chalov, Djakov,

Terzioğlu, Yurdakul and Zakharyuta ( [3], [4], [6], [7], [11], [12], [33]) for the isomor-

phic classification of cartesian products and tensor products of power series spaces, and

more generally, the power Köthe spaces of first type, that is, the class of spaces

E(λ, a) = K

(
exp

((
−1

p
+ pλi

)
ai

))
,

where λ = (λi)i∈N and a = (ai)i∈N are sequences of positive numbers, containing carte-

sian and projective tensor products of power series spaces. An important invariant in

the consideration of power Köthe spaces of first type is the m-rectangle characteristics,

introduced by Chalov in [2] for the isomorphic classification of certain classes of Hilbert

spaces, which compute the number of the points (λi, ai) that are inside the union of

m-rectangles.

Definition 1.0.7 let λ = (λi)i∈N and a = (ai)i∈N be sequences of positive numbers and

let m ∈ N. Then, the function

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣∣
m⋃
k=1

{i : δk ≤ λi ≤ εk , τk ≤ ai ≤ tk}

∣∣∣∣∣
defined for δ = (δk), ε = (εk), τ = (τk) and t = (tk) such that 0 ≤ δk ≤ εk ≤ 2,

0 < τk ≤ tk <∞, where k = 1, 2, · · · ,m, is called the m-rectangle characteristic of the

pair (λ, a).

Compound invariants were also used in joint papers by Goncharov, Terzioğlu and

Zakharyuta in [18], [19] and [20] for the isomorphic classification of complete projective

tensor products of power series spaces with the (DF)- power series spaces, where the

(DF)- power series spaces are defined as follows.

Definition 1.0.8 For a sequence of positive numbers a = (ai)i∈N,

E ′0(a) = indq→ l1(exp(
1

q
ai))

6



is called a (DF)- power series space of finite type, and

E ′∞(a) = indq→ l1(exp(−qa))

is called a (DF)- power series of infinite type.

(DF)- power series spaces are ultrabornological (DF)-spaces since they are countable

inductive limits of Banach spaces. Note that (DF)- power series spaces are not neces-

sarily the duals of power series spaces, such an identification is true only in the case of

nuclearity of the corresponding power series space.

Problems on isomorphic classification and quasiequivalence of bases of a wider class

of spaces

G(λ, a) = proj←p
(
indq→ l1 (ω(p, q))

)
, (1.1)

where ωi(p, q) = exp ((p− qλi) ai) for sequences of positive numbers λ = (λi)i∈N, a =

(ai)i∈N, which includes the basis subspaces of the tensor products

E∞(c)⊗̂πE ′∞(d),

were investigated by Chalov, Terzioğlu and Zakharyuta in [5], and it was shown that

for each m ∈ N, the corresponding m-rectangle characteristic is a linear topological

invariant for this class under some equivalence.

In this thesis, we consider problems on isomorphic classification of the mixed (F)-,

(DF)- spaces

Gα,β(λ, a) = proj←p
(
indq→ l1

(
ωα,β(p, q)

))
(1.2)

for α, β ∈ {0,∞} with p, q ∈ N and ωα,β(p, q) = (ωα,βi (p, q))i∈N when

(1) ω∞,∞i (p, q) = exp ((p− qλi) ai),

(2) ω0,∞
i (p, q) = exp

((
−1
p
− qλi

)
ai

)
,

(3) ω0,0
i (p, q) = exp

((
−1
p
λi + 1

q

)
ai

)
,

(4) ω∞,0i (p, q) = exp
((
pλi + 1

q

)
ai

)
,

where λ = (λi)i∈N, a = (ai)i∈N are sequences of positive numbers.

These classes, up to isomorphisms, consist of basis subspaces of projective tensor

products E∞(c)⊗̂πE ′∞(d), E0(c)⊗̂πE ′∞(d), E0(c)⊗̂πE ′0(d), E∞(c)⊗̂πE ′0(d) respectively,

where c and d are sequences of positive numbers.

7



In Chapter 2 we establish the notation and give preliminary results. In Chapter 3,

we obtain criteria for quasidiagonal isomorphisms between the spaces in each of the

four classes above. In Chapter 4, we present the m-rectangle characteristics and re-

lated equivalences, and show that the systems of m-rectangle characteristics completely

characterize the quasidiagonal isomorphisms between the spaces in each of these four

classes. In Chapter 5, by using compound invariants, we prove that the m-rectangle

characteristics are linear topological invariants for each m ∈ N on the class of spaces (2)

when ω0,∞
i (p, q) = exp

((
−1
p
− qλi

)
ai

)
. In Chapter 6, we show the quasiequivalence

of absolute bases for the spaces in the class (2) that are Montel and quasidiagonally

isomorphic to their Cartesian square.

8



CHAPTER 2

Preliminaries

2.1 Mixed (F)-, (DF)- Spaces

We consider the classes of mixed (F)-, (DF)- spaces

Gα,β(λ, a) = proj←p
(
indq→ l1

(
ωα,β(p, q)

))
(2.1)

for α, β ∈ {0,∞}, with p, q ∈ N, and ωα,β(p, q) = (ωα,βi (p, q))i∈N, when

(1) ω∞,∞i (p, q) = exp ((p− qλi) ai),

(2) ω0,∞
i (p, q) = exp

((
−1
p
− qλi

)
ai

)
,

(3) ω0,0
i (p, q) = exp

((
−1
p
λi + 1

q

)
ai

)
,

(4) ω∞,0i (p, q) = exp
((
pλi + 1

q

)
ai

)
,

where λ = (λi)i∈N, a = (ai)i∈N are sequences of positive numbers.

Here, l1
(
ωα,β(p, q)

)
denote the weighted l1-spaces

l1
(
ωα,β(p, q)

)
=

{
x = (ξi)i∈N : ||x||p,q =

∞∑
i=1

|ξi|ωα,βi (p, q) <∞

}
.

For each p ∈ N, we put Xp :=
⋃
q∈N l1

(
ωα,βi (p, q)

)
, equipped with the inductive topol-

ogy, that is, the finest locally convex topology for which the inclusion maps

iq : l1
(
ωα,β(p, q)

)
→ Xp

are continuous. Then, Xp is an inductive limit for each p ∈ N. We have Xp+1 ⊂ Xp

for every p ∈ N, hence we define the projective limit

Gα,β(λ, a) = proj←p Xp

9



and endow it with the projective topology, that is, the coarsest topology for which the

inclusion maps

πp : Gα,β(λ, a)→ Xp

are continuous.

Gα,β(λ, a) is a Montel space, that is, a quasibarrelled space in which every bounded

set is relatively compact, if and only if (ai)→∞.

For the spaces Gα,β(λ, a) in the classes (1)− (4), the coordinate basis {en : n ∈ N},

where en are the sequences which are zero at each coordinate except the nth coordinate

and one at the nth coordinate, is an absolute basis. A subspace of G(λ, a) that is

generated by a subset of the coordinate basis is called a basis subspace (or step subspace

as in [17]).

Lemma 2.1.1 Any space in one of the classes (1) − (4) is isomorphic to a space

Gα,β(λ, a), where λ and a satisfy the conditions

ai ≥ 1,
1

ai
≤ λi ≤ 1. (2.2)

Proof. For any space Gα,β(λ̃, ã), take

(λi, ai) =


(

max
{

1
1+ãi

, λ̃i

}
, 1 + ãi

)
if λ̃i ≤ 1,(

1, 1 + λ̃iãi

)
if λ̃i > 1.

For example, if we consider a space G∞,0(λ̃, ã) in the class (4) where ω∞,0i (p, q) =

exp((pλi + 1
q
)ai), then we have the inequalities(

pλ̃i +
1

q

)
ãi ≤

(
pλi+

1

q

)
ai ≤

(
pλ̃i +

1

q

)
ãi + 2p

for every p, q ∈ N, which imply that the identity map and its inverse map are contin-

uous, hence the identity map is an isomorphism between G∞,0(λ̃, ã) and G∞,0(λ, a).

The other cases can be obtained similarly.

2.2 Projective Spectra of (LB)-Spaces

Any space Gα,β(λ, a) of the form (2.1) can also be considered as a projective spec-

trum X =
(
Xp, π

r
p

)
where Xp = indq→l1(ωα,β(p, q)) and the connecting maps πrp are

inclusions. In this case, X is a strongly reduced spectrum of complete Haussdorff

10



(LB)-spaces. Hence, the spaces Gα,β(λ, a) have the following property that is men-

tioned in [31] and stated in [32] (Proposition 3.3.8) as follows.

Proposition 2.2.1 Let X = (Xn, %
n
m) and Y = (Yn, σ

n
m) be two strongly reduced spec-

tra of complete Haussdorff (LB)-spaces, and T : Proj X → Proj Y a continuous linear

map. Then there is a morphism of locally convex spectra T̃ : X̃ → Y, where X̃ is a

subsequence of X , such that T = Proj X . In particular, Proj X ' Proj Y implies that

X and Y are equivalent.

By this proposition, if T : Gα,β(λ, a) → Gα,β(λ̃, ã) is a continuous linear operator,

then for every r ∈ N there exists p ≥ r and a continuous linear map Tr such that we

have the following commutative diagram:

Gα,β(λ, a)
T - Gα,β(λ̃, ã)

indq→ l1(ωα,β(p, q))

πp

?
Tr- inds→ l1(ω̃α,β(r, s))

π̃r

?

For each r ∈ N, Tr is continuous if and only if Tr ◦ iq is continuous for every q ∈ N.

So, for each q ∈ N, by applying Grothendieck’s factorization theorem, we get s ∈ N

and a continuous linear operator Tr,q so that the following diagram commutes:

indq→ l1(ωα,β(p, q))
Tr- inds→ l1(ω̃α,β(r, s))

l1(ωα,β(p, q))

iq

6

Tr,q -

-

l1(ω̃α,β(r, s))

ĩs

6

2.3 Power Series Spaces and (DF)- Power Series

Spaces

The spaces Gα,β(λ, a) with the corresponding weight sequences ωα,β(p, q) for the cases

(1)− (4) are isomorphic to power series spaces or (DF)- power series spaces under the

following conditions.

Proposition 2.3.1 Given the sequences of positive numbers λ = (λi)i∈N and a =

(ai)i∈N, the following statements are equivalent:
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(i) G∞,∞(λ, a) ' E∞(a).

(ii) G0,∞(λ, a) ' E0(a).

(iii) G0,0(λ, a) ' E ′0(a).

(iv) G∞,0(λ, a) ' E ′0(a).

(v) limi→∞ λi = 0.

Also, the following statements are equivalent:

(i) G∞,∞(λ, a) ' E ′∞(a).

(ii) G0,∞(λ, a) ' E ′∞(a).

(iii) G0,0(λ, a) ' E0(a).

(iv) G∞,0(λ, a) ' E∞(a).

(v) inf{λi : i ∈ N} > 0.

In the case when a space Gα,β(λ, a) is not isomorphic to a power series space or a

(DF)- power series space, Gα,β(λ, a) is said to be a mixed (F)-, (DF)- space.

Given two sequences of positive numbers a = (ai)i∈N and ã = (ãi)i∈N, we denote by

a � ã, if there exists a constant α > 1 such that

1

α
ai ≤ ãi ≤ αai, i ∈ N.

For Schwartz power series spaces and (DF)- power series spaces, we have the following

criteria for isomorphisms.

Proposition 2.3.2 If a = (ai)i∈N and ã = (ãi)i∈N are sequences of positive numbers

monotonically increasing to ∞, and θ, ϑ ∈ {0,∞}, then

(i) Eθ(a) ' Eθ(ã)⇔ a � ã,

(ii) E ′ϑ(a) ' E ′ϑ(ã)⇔ a � ã.

Also, E0(a) is never isomorphic to E∞(ã), and Eθ(a) and E ′ϑ(ã) are not isomorphic if

one of the sequences a or ã is not bounded.
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The statements (i) and (ii) is due to Mityagin ( [25]). The fact that a power series

space of finite type cannot be isomorphic to a power series space of infinite type is a

well known result which is shown by using diametral dimensions. To show that Eθ(a)

and E ′ϑ(ã) are not isomorphic if one of the sequences a or ã is not bounded, assume

contrarily that Eθ(a) and E ′ϑ(ã) are isomorphic, where one of the sequences a or ã is not

bounded. Since Eθ(a) is a Fréchet space , it admits a fundamental sequence of bounded

sets if and only if it is normable. (See [22], Corollary 12.4.4) As E ′ϑ(ã) is a (DF)-space,

both spaces should admit a fundamental sequence of bounded sets. However, one of

the sequences a or ã is not bounded, so one of the spaces is not normable, which is a

contradiction. Therefore, Eθ(a) and E ′ϑ(ã) cannot be isomorphic if one of the sequences

a or ã is not bounded.

2.4 Tensor Products of (F)- and (DF)- Spaces

Given two Hausdorff locally convex spaces E and F , we denote by E⊗̂πF the complete

projective tensor product of E and F , that is, the completion of the finest locally

convex topology on E ⊗ F for which the canonical bilinear map ⊗ : E × F → E ⊗ F

is continuous.

The tensor products E∞(c)⊗̂E ′∞(d), E0(c)⊗̂E ′∞(d), E0(c)⊗̂E ′0(d) and E∞(c)⊗̂E ′0(d)

are isomorphic to spaces in classes (1)− (4), respectively. For example, E∞(c)⊗̂E ′∞(d)

can be considered as a space of the form (2.1) where

ωi(p, q) = exp(pck(i) − qdl(i))

for some bijection N→ N× N that sends i ∈ N to (k(i), l(i)) ∈ N. If we take

ai = max{ck(i), dl(i)}, λi =
dk(i)

ai
,

then this space is isomorphic to a space in class (1) with ω∞,∞i (p, q) = exp((p−qλi)ai).

Actually, the spaces in the classes (1) − (4), up to isomorphisms, consist of basis

subspaces of the projective tensor products

(1) E∞(c)⊗̂E ′∞(d)

(2) E0(c)⊗̂E ′∞(d)
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(3) E0(c)⊗̂E ′0(d)

(4) E∞(c)⊗̂E ′0(d)

respectively, where c = (ci)i∈N and d = (di)i∈N are sequences of positive numbers.

Let us show the above claim for the spaces that are in class (1) where ω∞,∞i (p, q) =

exp ((p− qλi) ai). The claim for the spaces in the classes (2) − (4) can be obtained

analogously. For this purpose, we need the following proposition which can be found

in [22] (Theorem 15.4.2, Corollary 15.5.4).

Proposition 2.4.1 (a) If E = proji∈I Ei and F = projj∈J Fj are reduced projective

limits of Haussdorff locally convex spaces, then

E⊗̂πF ' proj(i,j)∈I×J Ei⊗̂πFj.

(b) If E and F be Haussdorff locally convex spaces such that F is normable and

E = indi∈I Ei is an inductive limit of locally convex spaces, then

E⊗̂πF ' indi∈I Ei⊗̂πF.

Now, let G∞,∞(λ, a) be a space in the class (1) with ω∞,∞i (p, q) = exp ((p− qλi) ai).

Then, we have

G∞,∞(λ, a) = proj←p indq→ l1 (exp(pci − qdi)) ,

where ci = ai and di = λiai. Considering the cross norms for tensor products of l1

spaces, we have the natural isomorphism

l1(exp(pci))⊗̂πl1(exp(−qdi)) ' l1(exp(pcj − qdk)),

where (j, k) ∈ N× N. Hence, G∞,∞(λ, a) is isomorphic to a basis subspace of

X := proj←p indq→
(
l1(exp(pci))⊗̂πl1(exp(−qdi))

)
.

For each p ∈ N, l1(exp(pci)) is a Banach space and indq→ l1(exp(−qdi)) is an inductive

limit, hence by Proposition 2.4.1 (b),

indq→
(
l1(exp(pci))⊗̂πl1(exp(−qdi))

)
' l1(exp(pci))⊗̂πindq→ l1(exp(−qdi)),

which implies that

X ' proj←p
(
l1(exp(pci))⊗̂πindq→ l1(exp(−qdi))

)
.
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Then, by Proposition 2.4.1 (a), we obtain

X ' proj←p l1(exp(pci))⊗̂πindq→ l1(exp(−qdi)) = E∞(c)⊗̂πE ′∞(d).

Therefore, G∞,∞(λ, a) is isomorphic to a basis subspace of E∞(c)⊗̂πE ′∞(d).

2.5 Quasidiagonal Isomorphisms

Two locally convex topological vector spaces X, X̃, with respective absolute bases

{xi}i∈N and {x̃i}i∈N, are called quasidiagonally isomorphic, denoted by X
qd
' X̃, if

there exists a locally convex space isomorphism T : X → X̃ such that

Txi = tix̃σ(i)

for a sequence of scalars (ti), and a bijection σ : N → N. If such a quasidiagonal

isomorphism exists, then the bases {xi}i∈N and {x̃i}i∈N are called quasiequivalent. X

is said to be quasidiagonally embedded in X̃ if X is quasidiagonally isomorphic onto

its image in X̃.

If T is a quasidiagonal isomorphism such that ti = 1 for all i ∈ N, then X and

X̃ are called permutationally isomorphic, denoted by X
p
' X̃. If T is a quasidiagonal

isomorphism such that σ(i) = i for all i ∈ N, then X and X̃ are called diagonally

isomorphic, denoted by X
d' X̃.

The following proposition is a well known result ( [36], [40]), which is shown by

using Cantor-Bernstein-Schröder theorem.

Proposition 2.5.1 Given the mixed (F)-, (DF)- spaces X and X̃ of the form (2.1),

if X is quasidiagonally embedded in X̃, and X̃ is quasidiagonally embedded in X, then

X
qd
' X̃.

2.6 Hall-König Theorem

In order to construct quasidiagonal embeddings, we will need the following theorem

from combinatorics, referred to as Hall-König Theorem, which can be found in [21].
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Theorem 2.6.1 Suppose that for each i of a system of indices I corresponds a finite

subset Si of a set S. Then, there exists an injection σ : I → S such that σ(i) ∈ Si if

and only if

|
m⋃
j=1

Sij | ≥ m

for any choice of m distinct indices i1, . . . , im.
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CHAPTER 3

Criteria For Quasidiagonal

Isomorphisms

In this section, we establish criteria for the quasidiagonal isomorphisms between Montel

spaces Gα,β(λ, a) that are in the classes (1)− (4) in terms of certain properties of their

defining sequences λ and a. The following criteria for quasidiagonal isomorphisms

between the spaces G∞,∞(λ, a) belonging to class (1), where

ω∞,∞i (p, q) = exp ((p− qλi) ai) ,

was given in [5].

Proposition 3.0.2 For Montel spaces G∞,∞(λ, a) and G∞,∞(λ̃, ã), the following con-

ditions are equivalent:

(i) G∞,∞(λ, a)
p
' G∞,∞(λ̃, ã)

(ii) G∞,∞(λ, a)
qd
' G∞,∞(λ̃, ã)

(iii) there exists a bijection σ : N→ N such that

ai � ãσ(i),

and for any subsequence (ik) of N,

(λik)→ 0 ⇐⇒ (λ̃σ(ik))→ 0.

For the spaces G0,∞(λ, a) that are in class (2), where

ω0,∞
i (p, q) = exp

((
−1

p
− qλi

)
ai

)
,

17



we show that analogous criteria hold for quasidiagonal isomorphisms. For this purpose,

we need the following lemma.

Lemma 3.0.3 For any subsequence ν = (ik) of N,

(i) (λik)→ 0⇒ X(ν) ' E0(a(ν)),

(ii) inf{λik : ik ∈ ν} > 0⇒ X(ν) ' E ′∞(a(ν)),

where a(ν) = (aik) and X(ν) is the basis subspace of G0,∞(λ, a) corresponding to

{eik : ik ∈ ν}.

Proof. Let ν = (ik) be a subsequence of N. If (λik)→ 0, then there exists N ∈ ν such

that λik ≤ 1
pq

whenever ik ≥ N . Hence, we obtain the inequalities

−2

p
≤ −1

p
− qλik ≤ −

1

p
, ik ≥ N,

which imply that the identity map

I : G0,∞(λ, a)→ E0(a)

is a homeomorphism. Therefore, we have

G0,∞(λ, a) ' E0(a).

If we assume inf{λik : ik ∈ ν} > 0, then there exists δ > 0 such that λik ≥ δ for

every ik ∈ ν. Hence, we have the inequality

−1

p
− qλik ≤ −qδ,

which implies that the identity map

I : E ′∞(a)→ G0,∞(λ, a)

is continuous. Given p, q ∈ N, if we choose s ≥ 2q, then we have the inequality

−s ≤ −1

p
− qλik ,

which implies that the inverse map I : G0,∞(λ, a)→ E ′∞(a) is also continuous. There-

fore, we have

G0,∞(λ, a) ' E ′∞(a).
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Proposition 3.0.4 For Montel spaces G0,∞(λ, a) and G0,∞(λ̃, ã), the following are

equivalent:

(i) G0,∞(λ, a)
p
' G0,∞(λ̃, ã).

(ii) G0,∞(λ, a)
qd
' G0,∞(λ̃, ã).

(iii) There exists a bijection σ : N→ N such that

ai � ãσ(i), (3.1)

and for any subsequence (ik) of N,

(λik)→ 0 ⇐⇒ (λ̃σ(ik))→ 0. (3.2)

Proof. The implication (i)⇒ (ii) follows trivially from the definitions of quasidiagonal

and permutational isomorphisms.

In order to show (ii) ⇒ (iii), let T : G0,∞(λ, a) → G0,∞(λ̃, ã) be a quasidiagonal

isomorphism. Then, there exist scalars (ti) and a bijection σ : N→ N so that

Tei = tiẽσ(i),

where {ei : i ∈ N} and {ẽi : i ∈ N} are the coordinate bases for G0,∞(λ, a) and

G0,∞(λ̃, ã), respectively.

To show that (λik) → 0 ⇔ (λ̃σ(ik)) → 0 for any subsequence (ik) of N, assume

contrarily that (λik) → 0 ⇔ (λ̃σ(ik)) → 0 does not hold for some subsequence (ik).

Then, we can find a subsequence ν of (ik) such that either

λ(ν) → 0 and inf{λ̃(σ(ν))} > 0, or, λ̃(σ(ν)) → 0 and inf{λ(ν)} > 0.

If λ(ν) → 0 and inf{λ̃(σ(ν))} > 0, then by Lemma 3.0.3,

X(ν) ' E0(a(ν)) and X̃(σ(ν)) ' E ′∞(ã(σ(ν))).

However, by proposition 2.3.2, E0(a(ν)) cannot be isomorphic to E ′∞(ã(ν)) since a(ν) is

not bounded. So, X(ν) is not isomorphic to X̃(ν), which contradicts the assumption that

T is an isomorphism. Similarly, we obtain a contradiction in the case when λ̃(σ(ν)) → 0

and inf{λ(ν)} > 0, hence (λik)→ 0⇔ (λ̃σ(ik))→ 0 holds for any subsequence (ik).
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To show that ai � ãσ(i), assume contrarily that ai � ãσ(i) does not hold for

the bijection σ coming from the quasidiagonal isomorphism. Then, there exists a

subsequence (ik) such that either
ãσ(ik)
aik

→ ∞ or
aik
ãσ(ik)

→ ∞. For the case when

ãσ(ik)
aik
→ ∞, we can find a subsequence ν = (ikl) of (ik) so that either

(
λikl

)
→ 0,

or inf{λikl : ikl ∈ ν} > 0. If
(
λikl

)
→ 0, then

(
λ̃σ(ikl )

)
→ 0, so by Lemma 3.0.3,

X(ν) ' E0(a(ν)) and X̃(σ(ν)) ' E0(ã(σ(ν))). X(ν) ' X̃(σ(ν)) since T is an isomorphism,

hence E0(a(ν)) ' E0(a(σ(ν))). This implies, by Proposition 2.3.2, that aν � ãσ(ν),

which is a contradiction since
ãσ(ν)
aν
→ ∞. For inf{λikl : ikl ∈ ν} > 0, we can find

a subsequence η of ν such that inf{λ̃σ(ikl )
: ikl ∈ η} > 0. Then, by Lemma 3.0.3,

X(η) ' E ′∞(a(η)) and X̃(σ(η)) ' E ′∞(ã(σ(η))). We have X(η) ' X̃(σ(η)) since T is an

isomorphism, so E ′∞(a(η)) ' E ′∞(ã(σ(η))). This implies, by Proposition 2.3.2, that

aη � ãσ(η), which contradicts the assumption that
ãσ(η)
aη
→∞. We can similarly obtain

a contradiction for the case when
aik
ãσ(ik)

→∞. Therefore, ai � ãσ(i).

(iii) ⇒ (i) We can assume, without loss of generality, that σ(i) = i and ai = ãi

since G0,∞(λ, a)
p
' G0,∞(λ, ã) if a � ã. So, in order to show that the identity map

I : G0,∞(λ, a)→ G0,∞(λ̃, ã) is continuous, we have the following commutative diagram:

G0,∞(λ, a)
I - G0,∞(λ̃, ã)

indq→ l1(exp((−1

p
− qλi)ai))

πp

?

- inds→ l1(exp((−1

r
− sλ̃i)ãi))

π̃r

?-

l1(exp((−1

p
− qλi)ai))

iq

6

-

-

l1(exp((−1

r
− sλ̃i)ãi))

ĩs

6

Considering the properties of projective and inductive topologies, we can observe

from the diagram that I is continuous if

∀r∃p∀q∃s I : l1(exp((−1

p
− qλi)ai))→ l1(exp((−1

r
− sλ̃i)ãi))

is continuous. Hence, we need to show

∀r∃p∀q∃s∃C exp((−1

r
− sλ̃i)ãi) ≤ C exp((−1

p
− qλi)ai).
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Since (λik) → 0 ⇔ (λ̃σ(ik)) → 0 for any subsequence (ik) of N, we can find a

nondecreasing function ϕ : (0, 1] → (0, 1] such that limt→0+ = 0, and λi ≥ δ implies

λ̃i ≥ ϕ(δ) for every δ ∈ (0, 1].

Taking arbitrary p, q, r with r < p < q, choose δ ∈ (0, p−r
rpq

) and let s > q
ϕ(δ)

. For

λi ≥ δ, we have λ̃i ≥ ϕ(δ), and hence

−1

r
− sλ̃i < −

1

p
− sλ̃i ≤ −

1

p
− sϕ(δ) < −1

p
− q ≤ −1

p
− qλi.

For λi < δ,

−1

r
− sλ̃i < −

1

r
< −1

p
− qδ < −1

p
− qλi.

Thus, we have the inequality

exp((−1

r
− sλ̃i)ai) ≤ exp((−1

p
− qλi)ai),

which implies that I is continuous. Similarly, one can show that I−1 is also continuous.

Therefore, I is an isomorphism and G0,∞(λ, a)
p
' G0,∞(λ̃, ã).

The criteria for quasidiagonal isomorphisms between spaces G0,0(λ, a) belonging to

class (3), where ω0,0
i (p, q) = exp

(
(−1

p
λi + 1

q
)ai

)
, is given in [8] as follows.

Proposition 3.0.5 For Montel spaces G0,0(λ, a) and G0,0(λ̃, ã), the following condi-

tions are equivalent:

(i) G0,0(λ, a)
p
' G0,0(λ̃, ã)

(ii) G0,0(λ, a)
qd
' G0,0(λ̃, ã)

(iii) there exists a bijection σ : N → N, a constant ∆ > 1, and a strictly decreasing

function Ψ : [1,∞)→ R+, Ψ(t)→ 0 as t→∞ such that

ai � ãσ(i),

for any subsequence (ik) of N

(λik)→ 0 ⇐⇒ (λ̃σ(ik))→ 0,

and
1

∆
λi ≤ λ̃σ(i) ≤ ∆λi for λi ≥ Ψ(ai).
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We obtain analogous criteria for quasidiagonal isomorphisms between spaces

G∞,0(λ, a) belonging to class (4), where ω∞,0i (p, q) = exp
(

(pλi + 1
q
)ai

)
. For this pur-

pose, we need the following lemmas.

Lemma 3.0.6 For any subsequence ν = (ik) of N,

(i) inf{λik : ik ∈ ν} > 0⇒ X(ν) ' E∞(a(ν)),

(ii) (λik)→ 0⇒ X(ν) ' E ′0(a(ν)),

where a(ν) = (aik), and X(ν) is the basis subspace of G∞,0(λ, a) corresponding to

{eik : ik ∈ ν}.

Proof. Let ν = (ik) be a subsequence of N such that inf{λik : ik ∈ ν} = δ > 0.

Consider the identity map

I : X(ν) → E∞(a(ν)).

Then, we have the following diagram:

X(ν) I - E∞(a(ν))

indq→l1
(
ω∞,0(p, q)

)
πp

?
- l1

(
exp

(
ra(ν)

))
π̃r

?

l1
(
ω∞,0(p, q)

)
iq

6 -

For any r ∈ N, choose p so that r ≤ pδ. Then, for any q ∈ N, we obtain

r ≤ pδ ≤ pλik < pλik +
1

q
, ik ∈ ν.

Hence, we have

∀r∃p∀q∃C exp(raik) ≤ C exp

((
pλik +

1

q

)
aik

)
, ik ∈ ν,

which implies that I is continuous. Similarly, one can obtain

∀p∃r∃q∃C exp

((
pλik +

1

q

)
aik

)
≤ C exp(raik),
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hence the inverse of I is also continuous. Therefore, I is an isomorphism.

If ν = (ik) is a subsequence of N such that λik → 0, then for the identity map

I : X(ν) → E ′0(a(ν))

we have the following diagram

X(ν) I - E ′0(a(ν))

indq→l1(ω∞,0(p, q))

πp

?

-

l1

(
exp

(
1

s
a(ν)

))ĩs

6

l1(ω∞,0(p, q))

iq

6 -

Hence, I is continuous if

∃p∀q∃s∃C exp(
1

s
aik) ≤ C exp(pλik +

1

q
)aik), ik ∈ ν,

which is true, since for any p, q ∈ N if we choose s > q, then we have

1

s
<

1

q
< pλik +

1

q
.

Also, the inverse of I is continuous if

∀p∀s∃q∃C exp(pλik +
1

q
)aik) ≤ C exp(

1

s
aik), ik ∈ ν.

For any p, s ∈ N there exists i0 ∈ N such that pλik ≤ 1
2s

for ik ≥ i0, since limλik = 0.

By choosing q < 2s we obtain

pλik +
1

q
<

1

2s
+

1

2s
=

1

s
, ik ≥ i0,

which implies that the inverse of I is continuous. Therefore I is an isomorphism.

Lemma 3.0.7 Let the Montel spaces G∞,0(λ, a) and G∞,0(λ̃, ã) be quasidiagonally iso-

morphic. Then, there exists a bijection σ : N→ N and a positive constant β such that

(i) ai � ãσ(i),

(ii) for any subsequence (ik) of N,

(λik)→ 0⇔ (λ̃σ(ik))→ 0,
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(iii) for any subsequence (ik) of N, where limλik and lim λ̃σ(ik) exist and are positive,

1

β
≤ lim

λ̃σ(ik)

λik
≤ β.

Proof. Let T : G∞,0(λ, a)→ G∞,0(λ̃, ã) be a quasidiagonal isomorphism. Then, there

exist scalars (ti), and a bijection σ : N → N so that Tei = tiẽσ(i), where {ei : i ∈ N}

and {ẽi : i ∈ N} are coordinate bases for G∞,0(λ, a) and G∞,0(λ̃, ã), respectively.

In order to show (ii), assume contrarily that (λik)→ 0⇔ (λ̃σ(ik))→ 0 does not hold

for some subsequence (ik). Then, we can find a subsequence ν of (ik) such that either

(λi)i∈ν → 0 and inf{λ̃i : i ∈ σ(ν)} > 0, or (λ̃i)i∈σ(ν) → 0 and inf{λi : i ∈ ν} > 0. If

(λi)i∈ν → 0 and inf{λ̃i : i ∈ ν} > 0, then X(ν) ' E ′0(a(ν)) and X̃(σ(ν)) ' E∞(ã(σ(ν))) by

Lemma 3.0.6. By Proposition 2.3.2, E ′0(a(ν)) is not isomorphic to E∞(ã(ν)) since a(ν) is

not bounded, hence X(ν) is not isomorphic to X̃(ν), which contradicts the assumption

that T is an isomorphism. Similarly, we obtain a contradiction in the case when

(λ̃i)i∈σ(ν) → 0 and inf{λi : i ∈ ν} > 0, hence (λik) → 0 ⇔ (λ̃σ(ik)) → 0 holds for any

subsequence (ik).

In order to show (i), assume contrarily that ai � ãσ(i) does not hold for the bijection

σ coming from the quasidiagonal isomorphism. Then, there exists a subsequence (ik)

such that either
ãσ(ik)
aik
→∞ or

aik
ãσ(ik)

→∞. For the case when
ãσ(ik)
aik
→∞, we can find

a subsequence ν = (ikl) of (ik) so that either λikl → 0, or inf{λikl : ikl ∈ ν} > 0. If

λikl → 0, then λ̃σ(ikl )
→ 0, so by Lemma 3.0.3,

X(ν) ' E ′0(a(ν)) and X̃(σ(ν)) ' E ′0(ã(σ(ν))).

We have X(ν) ' X̃(σ(ν)) since T is an isomorphism, hence E ′0(a(ν)) ' E ′0(a(σ(ν))).

This implies, by Proposition 2.3.2, that aν � ãσ(ν), which contradicts the assumption

that
ãσ(ν)
aν
→ ∞. If inf{λikl : ikl ∈ ν} > 0, then we can find a subsequence η of ν

such that inf{λ̃σ(ikl )
: ikl ∈ η} > 0. Then, by Lemma 3.0.3, X(η) ' E∞(a(η)) and

X̃(σ(η)) ' E∞(ã(σ(η))). We also have X(η) ' X̃(σ(η)) since T is an isomorphism, so

E∞(a(η)) ' E∞(ã(σ(η))). This implies, by Proposition 2.3.2, that aη � ãσ(η), which

contradicts the assumption that
ãσ(η)
aη
→ ∞. We can similarly obtain a contradiction

in the case when
aik
ãσ(ik)

→∞. Therefore, ai � ãσ(i).

24



In order to show (iii), let (ik) be a subsequence of N such that (λik) → Λ and

(λ̃σ(ik))→ Λ̃, where Λ, Λ̃ are positive numbers. Since T is continuous, we have

∀r∃p∀q∃s∃C |ti| exp

((
rλ̃σ(i) +

1

s

)
ãσ(i)

)
≤ C exp

((
pλi +

1

q

)
ai

)
, i ∈ N.

Taking the logaritms of both sides, and dividing by ai, we obtain

ln |ti|
ai

+

(
rλ̃σ(i) +

1

s

)
ãσ(i)

ai
≤ lnC

ai
+

(
pλi +

1

q

)
.

Using (i) and rearranging terms, we get

ln |ti|
ai
≤ lnC

ai
+ pλi −

r

α
λ̃σ(i) +

1

q
− 1

αs
. (3.3)

Also, since T−1 is continuous, we have

∀r′∃p′∀q′∃s′∃C ′ exp

((
r′λi +

1

s′

)
ai

)
≤ C ′|ti| exp

((
p′λ̃σ(i) +

1

q′

)
ãσ(i)

)
.

Taking the logarithms of both sides, dividing both sides by ai, using (i) and rearranging

terms, we get

− lnC ′

ai
+ r′λi − p′αλ̃σ(i) +

1

s′
− α

q′
≤ ln |ti|

ai
. (3.4)

From the inequalities (3.3) and (3.4) we obtain

0 ≤ lnC

ai
+

lnC ′

ai
+ (p− r′)λi +

(
p′α− r

α

)
λ̃σ(i) +

(
1

q
+
α

q′

)
−
(

1

s′
+

1

αs

)
.

This inequality holds for all ik, hence if we take ik → ∞, then aik → ∞, (λik) → Λ

and (λ̃σ(ik))→ Λ̃, then we have the following inequality

0 ≤ (p− r′)Λ +
(
p′α− r

α

)
Λ̃ +

(
1

q
+
α

q′

)
−
(

1

s′
+

1

αs

)
.

By fixing the quantifiers so that they satisfy the inequalities

r′ < p′ < q′ < s′ < r < p < q < s, r > 2p′α2, q′ >
1

p′Λ̃
,

the above inequality gives
Λ̃

Λ
≤ p− r′

r
α
− 2p′α

,

where the right hand side is a positive constant. By using the continuity of T−1 again

to fix r′′, p′′, q′′, s′′ such that

r < p < q < s < r′′ < p′′ < q′′ < s′′, q >
1

pΛ
, r′′ > 2p,
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we similarly obtain
Λ̃

Λ
≥ r′′ − 2p

p′′α− r
α

,

where the right hand side is again a positive constant. Therefore, if we take a positive

constant β, so that β > max{ p−r′
r
α
−2p′α

,
p′′α− r

α

r′′−2p
}, then

1

β
≤ lim

λ̃σ(ik)

λik
≤ β.

Proposition 3.0.8 For Montel spaces G∞,0(λ, a) and G∞,0(λ̃, ã), the following are

equivalent:

(i) G∞,0(λ, a)
p
' G∞,0(λ̃, ã),

(ii) G∞,0(λ, a)
qd
' G∞,0(λ̃, ã),

(iii) there exists a bijection σ : N → N, a constant ∆ > 1, and a strictly decreasing

function Ψ : [1,∞)→ R+, Ψ(t)→ 0 as t→∞ such that

ai � ãσ(i),

for any subsequence (ik) of N

(λik)→ 0 ⇐⇒ (λ̃σ(ik))→ 0,

and
1

∆
λi ≤ λ̃σ(i) ≤ ∆λi for λi ≥ Ψ(ai).

Proof. (i) ⇒ (ii) is trivial since any permutational isomorphism is a quasidiagonal

isomorphism by definition.

In order to show (ii) ⇒ (iii), let T : G∞,0(λ, a) → G∞,0(λ̃, ã) be a quasidiagonal

isomorphism. Then, there exist scalars (ti) and a bijection σ : N→ N so that

Tei = tiẽσ(i),

where {ei : i ∈ N} and {ẽi : i ∈ N} are the coordinate bases for G∞,0(λ, a) and

G∞,0(λ̃, ã), respectively. Then, by Lemma 3.0.7, ai � ãσ(i) and for any subsequence

(ik) of N, (λik) → 0 ⇔ (λ̃σ(ik)) → 0. To show the existence of a constant ∆ and a
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function Ψ, by Lemma 3.0.7, take a positive constant β so that for any subsequence

(ik) of N where limλik and lim λ̃σ(ik) exist and are positive,

1

β
≤ lim

λ̃σ(ik)

λik
≤ β.

Let us define the set

S = {i ∈ N :
1

β2
λi < λ̃σ(i) < β2λi},

and the function ψ : [1,∞)→ (0,∞), where

ψ(t) = sup{λj : j ∈ N\S, aj ≥ t},

which is monotonically decreasing by definition. If N\S is a finite set, then ψ can be

extended so that ψ(t) → 0 as t → ∞. For the case when N\S is infinite, assume

that (λi)i∈N\S does not go to 0. Then, there exists a subsequence ν of N\S so that

(λi)i∈ν → Λ for some Λ > 0, which implies that there is a subsequence η of ν where

inf{λ̃σ(i) : i ∈ η} > 0, hence we can find a subsequence (ik) of η such that λ̃σ(ik) → Λ̃

for some Λ̃ > 0. As (ik) is a sequence in N\S,
λ̃σ(ik)
λik

/∈
(

1
β2 , β

2
)

for any ik, which

implies that lim
λ̃σ(ik)
λik

/∈ [ 1
β
, β], contradicting our initial assumption. So, (λi)i∈N\S → 0,

which implies, by definition of the function ψ, that ψ(t)→ 0 as t→∞.

Since ψ is a monotonically decreasing function where ψ(t) → 0 as t → ∞, we

can take a strictly decreasing function Ψ : [1,∞) → (0,∞) so that Ψ(t) > ψ(t)

for all t ∈ [1,∞) and Ψ(t) → 0 as t → ∞. So, whenever λi ≥ Ψ(ai), we have

λi > sup{λj : j ∈ N\S, aj ≥ ai}, which implies that i ∈ S. Therefore, by taking ∆

such that ∆ ≥ β2, we obtain

1

∆
λi ≤ λ̃σ(i) ≤ ∆λi for λi ≥ Ψ(ai).

To show (iii) ⇒ (i), assume that there exists a bijection σ : N → N, a strictly

decreasing function Ψ : [1,∞) → (0,∞) where Ψ(t) → 0 as t → ∞, and there exist

constants α,∆ > 1 so that 1
α
ai ≤ ãσ(i) ≤ αai for all i ∈ N, (λik) → 0 ⇔ (λ̃σ(ik)) → 0

for any subsequence (ik) of N, and 1
∆
λi ≤ λ̃σ(i) ≤ ∆λi for λi ≥ Ψ(ai).

Consider the operator P : G∞,0(λ, a)→ G∞,0(λ̃, ã) defined as Pei = ẽσ(i). To show

the continuity of P , for any r choose p so that p > α∆r, and for any q choose s so that

s > 2αq. Then, since ai � ãσ(i),(
rλ̃σ(i) +

1

s

)
ãσ(i) ≤

(
rλ̃σ(i) +

1

s

)
αai.
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For λi ≥ Ψ(ai), (
rλ̃σ(i) +

1

s

)
αai ≤

(
r∆λi +

1

s

)
αai

=
(
α∆rλi +

α

s

)
ai

<

(
pλi +

1

q

)
ai.

For λi < Ψ(ai), ai → ∞ as i → ∞, which implies that Ψ(ai) → 0 as i → ∞ since Ψ

is decreasing. Hence (λi)→ 0, which implies
(
λ̃σ(i)

)
→ 0, that is, there exists N such

that λ̃σ(i) <
1
rs

whenever i ≥ N . So, for i ≥ N where λi < Ψ(ai), we have the estimates(
rλ̃σ(i) +

1

s

)
αai ≤

(
r

(
1

rs

)
+

1

s

)
αai

=
2α

s
ai

< pλiai +
2α

s
ai

<

(
pλi +

1

q

)
ai.

By these estimates, one can show that P is continuous. Continuity of P−1 can be

shown similarly. Therefore, P is a permutational isorphism.
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CHAPTER 4

m-rectangle Characteristics and

Quasidiagonal Isomorphisms

In this section, we give the definitions of m-rectangle characteristics and necessary

equivalences, and we show that under these equivalences, the systems of m-rectangle

characteristics give a complete characterization of quasidiagonal isomorphisms between

the spaces that are in classes (1)− (4).

Let λ = (λi)i∈N and a = (ai)i∈N be sequences of positive numbers and let m ∈ N.

Then, the function

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣∣
m⋃
k=1

{i : δk ≤ λi ≤ εk , τk ≤ ai ≤ tk}

∣∣∣∣∣
defined for δ = (δk)

m
k=1, ε = (εk)

m
k=1, τ = (τk)

m
k=1 and t = (tk)

m
k=1 such that 0 ≤ δk ≤

εk ≤ 2, 0 < τk ≤ tk <∞, where k = 1, 2, · · · ,m, is called the m-rectangle characteristic

of the pair (λ, a).

Given another couple of positive sequences λ̃ = (λ̃i) and ã = (ãi), and a fixedm ∈ N,

the functions µ
(λ,a)
m and µ

(λ̃,ã)
m are said to be equivalent, denoted by µ

(λ,a)
m ∼ µ

(λ̃,ã)
m , if

there exists a strictly increasing function ϕ : [0, 2]→ [0, 1] with ϕ(0) = 0 and ϕ(2) = 1,

and a positive constant α such that the inequalities

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m

(
ϕ(δ), ϕ−1(ε);

τ

α
, αt
)

µ(λ̃,ã)
m (δ, ε; τ, t) ≤ µ(λ,a)

m

(
ϕ(δ), ϕ−1(ε);

τ

α
, αt
)

hold where ϕ(δ) = (ϕ(δk))
m
k=1, ϕ−1(ε) = (ϕ−1(εk))

m
k=1, τ

α
= ( τk

α
)mk=1, αt = (αtk)

m
k=1 for

all collections of parameters δ, ε, τ, t.
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The systems of characteristics
(
µ

(λ,a)
m

)
m∈N

and
(
µ

(λ̃,ã)
m

)
m∈N

are said to be equivalent,

denoted by
(
µ

(λ,a)
m

)
∼
(
µ

(λ̃,ã)
m

)
, if the function ϕ and the constant α can be chosen so

that the inequalities above hold for all m ∈ N.

It is shown in [5] that with this definition of equivalence, the systems of m-rectangle

characteristics gives a complete characterization of quasidiagonal isomorphisms be-

tween Montel spaces G∞,∞(λ, a) belonging to class (1), where

ω∞,∞i (p, q) = exp ((p− qλi)ai) ,

as given in the following theorem.

Theorem 4.0.9 For Montel spaces G∞,∞(λ, a) and G∞,∞(λ̃, ã),

G∞,∞(λ, a)
qd
' G∞,∞(λ̃, ã) ⇐⇒

(
µ(λ,a)
m

)
∼
(
µ(λ̃,ã)
m

)
.

We obtain ana analogous result for Montel spaces G0,∞(λ, a) belonging to class (2),

where ω0,∞
i (p, q) = exp

(
(−1

p
− qλi)ai

)
.

Theorem 4.0.10 For Montel spaces G0,∞(λ, a) and G0,∞(λ̃, ã),

G0,∞(λ, a)
qd
' G0,∞(λ̃, ã) ⇐⇒

(
µ(λ,a)
m

)
∼
(
µ(λ̃,ã)
m

)
.

Proof. Let G0,∞(λ, a) and G0,∞(λ̃, ã) be quasidiagonally isomorphic Montel spaces.

Then, by proposition 3.0.4, there exists a bijection σ : N→ N so that

(λik)→ 0⇔ (λ̃σ(ik))→ 0

for any subsequence (ik) of N, which implies that for every δ ∈ (0, 1], λ̃σ(i) ≥ ε1 > 0

for some ε1 > 0 if λi ≥ δ, and λi ≥ ε2 > 0 for some ε2 > 0 if λ̃σ(i) ≥ δ. If we define

the functions φ1 : (0, 1] → (0, 1] and φ2 : (0, 1] → (0, 1] by φ1(δ) = infi∈Sδ λ̃σ(i) where

Sδ = {i : λi ≥ δ}, and φ2(δ) = infi∈S̃δ λi where S̃δ = {i : λ̃σ(i) ≥ δ}, then φ1 and φ2 are

monotonically increasing functions such that φ1(δ) → 0 and φ2(δ) → 0 as δ → 0. So,

we can take a function φ(δ) : (0, 1]→ (0, 1] with

φ(δ) < min{φ1(δ), φ2(δ)},

that is strictly increasing, and φ(δ) → 0 as δ → 0. Taking φ(1) < 1, one can extend

φ to a function ϕ : [0, 2] → [0, 1] which is strictly increasing, ϕ(0) = 0, and ϕ(2) = 1.
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As ϕ is strictly increasing, its inverse ϕ−1 : [0, 1] → [0, 2] also exists. So, from the

construction of the function ϕ, we have the inclusions Sδ ⊂ S̃ϕ(δ) and S̃δ ⊂ Sϕ(δ), which

imply

{i : δ ≤ λi ≤ ε} ⊂ {i : ϕ(δ) ≤ λ̃σ(i) ≤ ϕ−1(ε)} (4.1)

{i : δ ≤ λ̃σ(i) ≤ ε} ⊂ {i : ϕ(δ) ≤ λi ≤ ϕ−1(ε)} (4.2)

for any δ, ε.

Also, ai � ãσ(i) by Proposition 3.0.4, so there exists α > 1 such that the inclusions

{i : τ ≤ ai ≤ t} ⊂ {i :
τ

α
≤ ãσ(i) ≤ αt} (4.3)

{i : τ ≤ ãσ(i) ≤ t} ⊂ {i :
τ

α
≤ ai ≤ αt} (4.4)

hold for any τ, t.

As σ is a bijection, the inclusions (4.1)-(4.4) imply the inequalities

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m (ϕ(δ), ϕ−1(ε);
τ

α
, αt),

µ(λ̃,ã)
m (δ, ε; τ, t) ≤ µ(λ,a)

m (ϕ(δ), ϕ−1(ε);
τ

α
, αt),

for any m ∈ N. Therefore,
(
µ

(λ,a)
m

)
∼
(
µ

(λ̃,ã)
m

)
.

Now assume that
(
µ

(λ,a)
m

)
∼
(
µ

(λ̃,ã)
m

)
. For every i ∈ N, consider the sets

Si = {j : ϕ(λi) ≤ λ̃j ≤ ϕ−1(λi),
ai
α
≤ α̃j ≤ αai}.

If we take distinct indices i1, . . . , im, then∣∣∣∣∣
m⋃
k=1

Sik

∣∣∣∣∣ =

∣∣∣∣∣
m⋃
k=1

{j : ϕ(λik) ≤ λ̃j ≤ ϕ−1(λik),
aik
α
≤ α̃j ≤ αaik}

∣∣∣∣∣
= µ(λ̃,ã)

m (ϕ(δ), ϕ−1(ε);
τ

α
, αt)

≥ µ(λ,a)
m (δ, ε; τ, t)

for δ = (λik), ε = (λik), τ = (aik) and t = (aik), where the last inequality holds since

the m-rectangle characteristics are equivalent. Also,

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣∣
m⋃
k=1

{j : λik ≤ λj ≤ λik , aik ≤ αj ≤ aik}

∣∣∣∣∣ ≥ m,

since

{i1, · · · , im} ⊂
m⋃
k=1

{j : λik ≤ λj ≤ λik , aik ≤ αj ≤ aik}.
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Hence, |
⋃m
k=1 Sik | ≥ m for any distinct indices i1, · · · , im, and we can apply Theorem

2.6.1 to obtain an injection σ : N → N, where σ(i) ∈ Si for every i ∈ N. Thus,

T : G0,∞(λ, a)→ G0,∞(λ̃, ã) defined as Tei = ẽσ(i), for respective coordinate bases {ei}

and {ẽi}, is a quasidiagonal embedding by Proposition 3.0.4.

As the inequality µ
(λ̃,ã)
m (δ, ε; τ, t) ≤ µ

(λ,a)
m (ϕ(δ), ϕ−1(ε); τ

α
, αt) also holds since the

systems of m-rectangle characteristics are equivalent, we can repeat the same argument

to obtain a quasidiagonal embedding S : G0,∞(λ̃, ã) → G0,∞(λ, a). Therefore, by

Proposition 2.5.1, we have G0,∞(λ, a)
qd
' G0,∞(λ̃, ã).

In order to show similar characterizations of quasidiagonal isomorphisms between

the spaces in the classes (3) and (4) in terms m-rectangle characteristics, we need to

have a slightly different definition of equivalence as follows.

For any m ∈ N, we again call the m-rectangle characteristics equivalent, and denote

in this case by µ
(λ,a)
m ≈ µ

(λ̃,ã)
m , if there exists a constant c > 1, a strictly decreasing

function Ψ : [1,∞) → (0,∞) where Ψ(ξ) → 0 as ξ → ∞, and a strictly increasing

function ϕ : [0, 2] → [0, 1] where ϕ(0) = 0, ϕ(2) = 1, and ϕ(ξ) < ξ
c

for all ξ ∈ [0, 2],

such that the inequalities

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m (Φ1(δ, τ),Φ2(δ, ε, τ);
τ

c
, ct) (4.5)

µ(λ̃,ã)
m (δ, ε; τ, t) ≤ µ(λ,a)

m (Φ1(δ, τ),Φ2(δ, ε, τ);
τ

c
, ct) (4.6)

hold for all collections of parameters δ, ε, τ, t, where ϕ(δ) = (ϕ(δk)), ϕ
−1(ε) = (ϕ−1(εk)),

τ
α

= ( τk
α

), αt = (αtk), and the functions

Φ1(δ, τ) = (Φ1(δk, τk)) and Φ2(δ, ε, τ) = (Φ2(δk, εk, τk)),

defined as

Φ1(δk, τk) =


δk
c

if δk ≥ Ψ(τk),

ϕ(δk) if δk < Ψ(τk),

Φ2(δk, εk, τk) =

 cεk if δk ≥ Ψ(τk),

ϕ−1(εk) if δk < Ψ(τk).

The systems of characteristics
(
µ

(λ,a)
m

)
m∈N

and
(
µ

(λ̃,ã)
m

)
m∈N

are then called equiva-

lent, denoted by
(
µ

(λ,a)
m

)
≈
(
µ

(λ̃,ã)
m

)
, if the constant c and the functions Ψ, ϕ can be

chosen so that the inequalities above hold for all m ∈ N.
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It is shown in [8] that with this equivalence, systems of m-rectangle characteris-

tics completely characterise the quasidiagonal isomorphisms between Montel spaces

G0,0(λ, a) belonging to class (3), where ωi(p, q) = exp
(

(−1
p
λi + 1

q
)ai

)
, as given in the

following theorem.

Theorem 4.0.11 For Montel spaces G0,0(λ, a) and G0,0(λ̃, ã),

G0,0(λ, a)
qd
' G0,0(λ̃, ã) ⇐⇒

(
µ(λ,a)
m

)
≈
(
µ(λ̃,ã)
m

)
.

For Montel spaces G∞,0(λ, a) belonging to class (4), where

ωi(p, q) = exp

(
(pλi +

1

q
)ai

)
,

we obtain an analogous result as follows.

Theorem 4.0.12 For Montel spaces G∞,0(λ, a) and G∞,0(λ̃, ã),

G∞,0(λ, a)
qd
' G∞,0(λ̃, ã) ⇐⇒

(
µ(λ,a)
m

)
≈
(
µ(λ̃,ã)
m

)
.

Proof. Suppose that G∞,0(λ, a)
qd
' G∞,0(λ̃, ã). Then, by Proposition 3.0.8, there

exists a bijection σ : N→ N, a strictly decreasing function Ψ : [1,∞)→ (0,∞) where

Ψ(ξ)→ 0 as ξ →∞, and there exist constants α,∆ > 1 so that 1
α
ai ≤ ãσ(i) ≤ αai for all

i ∈ N, (λik)→ 0⇔ (λ̃σ(ik))→ 0 for any subsequence (ik) of N, and 1
∆
λi ≤ λ̃σ(i) ≤ ∆λi

for λi ≥ Ψ(ai).

Since (λik) → 0 ⇔ (λ̃σ(ik)) → 0 for any subsequence (ik) of N, as in the proof of

Theorem 4.0.10, we can find a function ϕ : [0, 2] → [0, 1] which is strictly increasing,

ϕ(0) = 0, ϕ(2) = 1, and we have the inclusions

{i : δk ≤ λi ≤ εk} ⊂ {i : ϕ(δk) ≤ λ̃σ(i) ≤ ϕ−1(εk)},

{i : δk ≤ λ̃σ(i) ≤ εk} ⊂ {i : ϕ(δk) ≤ λi ≤ ϕ−1(εk)},

for any δk, εk. Choosing a constant c such that c > max{α,∆}, the construction of the

function ϕ allows us to take ϕ(ξ) ≤ ξ
c

for all ξ ∈ [0, 2].

So, let us fix δk, εk, τk, tk and take any i ∈ N so that δk ≤ λi ≤ εk and τk ≤ ai ≤ tk.

Then, since 1
α
ai ≤ ãσ(i) ≤ αai and c > α, we have τk

c
≤ ãσ(i) ≤ ctk. Also, if δk ≥ Ψ(τk),

we have λi ≥ Ψ(ai), which implies that 1
∆
λi ≤ λ̃σ(i) ≤ ∆λi. Since c > ∆, by the

definitions of functions Φ1 and Φ2, Φ1(δk, τk) ≤ λ̃σ(i) ≤ Φ2(δk, εk, τk). If δk < Ψ(τk),
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then δk ≤ λi ≤ εk implies ϕ(δk) ≤ λ̃σ(i) ≤ ϕ−1(εk). So, by the definitions of functions

Φ1 and Φ2, Φ1(δk, τk) ≤ λ̃σ(i) ≤ Φ2(δk, εk, τk). From these inequalities, we obtain the

inclusions

{i ∈ N : δk ≤ λi ≤ εk, τk ≤ ai ≤ tk} ⊂

{i ∈ N : Φ1(δk, τk) ≤ λ̃σ(i) ≤ Φ2(δk, εk, τk),
τk
c
≤ ãσ(i) ≤ ctk}.

Thus, for every m ∈ N, δ = (δk), ε = (εk), τ = (τk) and t = (tk), we have the inequality

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m (Φ1(δ, τ),Φ2(δ, ε, τ);
τ

c
, ct).

By a similar argument, one can also show

µ(λ̃,ã)
m (δ, ε; τ, t) ≤ µ(λ,a)

m (Φ1(δ, τ),Φ2(δ, ε, τ);
τ

c
, ct).

For this purpose, we may need to choose a different constant ∆ and a different function

Ψ which exist from the quasidiagonal isomorphism, and then take the maximum of the

corresponding constants and functions.

As these inequalities hold for all m ∈ N, the system of characteristics is equivalent,

that is, (µ
(λ,a)
m ) ≈ (µ

(λ̃,ã)
m ).

Now suppose that
(
µ

(λ,a)
m

)
≈
(
µ

(λ̃,ã)
m

)
. Then, there exists a constant c > 1, a

strictly decreasing function Ψ : [1,∞) → (0,∞) where Ψ(ξ) → 0 as ξ → ∞, and a

strictly increasing function ϕ : [0, 2] → [0, 1] where ϕ(0) = 0, ϕ(2) = 1, and ϕ(ξ) < ξ
c

for all ξ ∈ [0, 2], such that the inequalities (4.5) and (4.6) hold for any m ∈ N.

As c > 1 and Ψ is a strictly decreasing function where Ψ(ξ)→ 0 as ξ →∞, for any

k ∈ N, there exists νk ∈ N0 such that

1

cνk+1
< Ψ(ck−1) ≤ 1

cνk
.

So, let us define the following sets

Nl,k =

{
i ∈ N :

1

cl+1
≤ λi ≤

1

cl
, ck−1 ≤ ai ≤ ck

}
, k ∈ N, l = 0, 1, · · · , νk − 1,

Nνk,k =

{
i ∈ N : λi ≤

1

cνk
, ck−1 ≤ ai ≤ ck

}
, k ∈ N

Ñl,k =

{
i ∈ N :

1

cl+2
≤ λ̃i ≤

1

cl−1
, ck−2 ≤ ãi ≤ ck+1

}
, k ∈ N, l = 0, 1, · · · , νk − 1,

Ñνk,k =

{
i ∈ N : λ̃i ≤ ϕ−1

(
1

cνk

)
, ck−2 ≤ ãi ≤ ck+1

}
, k ∈ N,
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which are finite subsets of N since a and ã tend to infinity.

Hence, for each i ∈ N, there is a finite subset Si = Ñl,k if i ∈ Nl,k for k ∈ N,

l = 0, 1, · · · , νk. For distinct indices i1, · · · , im, the inequality (4.5) implies that∣∣∣∣∣
m⋃
j=1

Sij

∣∣∣∣∣ ≥ m,

so we can apply Theorem 2.6.1 to obtain an injection σ : N→ N such that σ(i) ∈ Si for

every i ∈ N. Then, the operator P : G∞,0(λ, a)→ G∞,0(λ̃, ã) defined as Pei = ẽσ(i) is a

quasidiagonal embedding by Proposition 3.0.8. Similarly, one can find a quasidiagonal

embedding P̃ : G∞,0(λ̃, ã)→ G∞,0(λ, a). Therefore, by Proposition 2.5.1,

G∞,0(λ, a)
qd
' G∞,0(λ̃, ã).
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CHAPTER 5

Invariance of m-rectangle

Characteristics

In this section, we prove that the m-rectangle characteristics are linear topological

invariants for the spaces G0,∞(λ, a) in class (2) where ω0,∞
i (p, q) = exp

(
(−1

p
− qλi)ai

)
,

that is, G0,∞(λ, a) ' G0,∞(λ̃, ã) implies µ
(λ,a)
m ∼ µ

(λ̃,ã)
m for every m ∈ N. For this

purpose, we will need the following characteristic that was first used in the construction

of compound invariants in [13].

Let X be a locally convex space and U , V be absolutely convex sets in X. Then,

the β-characteristics of V and U , denoted by β(V, U), is defined by

β(V, U) = sup{dimL : L is a finite dimensional subspace of spanV , U ∩ L ⊂ V }.

The β-characteristics have the following useful properties.

Remark 5.0.1 For absolutely convex sets U , V , Ũ , Ṽ of X, and α > 0,

(a) β(αV, U) = β(V, 1
α
U),

(b) if V ⊂ Ṽ and Ũ ⊂ U , then β(V, U) ≤ β(Ṽ , Ũ).

For a locally convex space X with an absolute basis e = {ei : i ∈ N} and a sequence

a = (ai)i∈N of positive numbers, the set

Be(a) =

{
x =

∞∑
i=1

ξiei ∈ X :
∞∑
i=1

|ξi|ai ≤ 1

}

is called the weighted l1-ball with the weight sequence a with respect to the basis e.

Weighted l1-balls have the following geometrical properties.

36



Proposition 5.0.13 Let X be a locally convex space with an absolute basis e = {ei}i∈N
and a(j) = (a

(j)
i ) be sequences of positive numbers for j = 1, · · · ,m. Then,

Be(c) ⊂
m⋂
j=1

Be(a(j)) ⊂ mBe(c), Be(d) = conv

(
m⋃
j=1

Be(a(j))

)
,

where c = (ci)i∈N and d = (di)i∈N are sequences such that ci = max{a(j)
i : j = 1, . . . ,m},

di = min{a(j)
i : j = 1, . . . ,m}.

The following proposition, which can be found in [13], provides a method for com-

puting the β-characteristics of weighted l1-balls in terms of their weight sequences.

Proposition 5.0.14 For sequences of positive numbers a = (ai)i∈N and b = (bi)i∈N,

β(Be(a), Be(b)) = |{i ∈ N : ai ≤ bi}|.

In order to estimate the m-rectangle characteristics with β-characteristics of certain

weighted l1-balls, we will use the following sets. Given an isomorphism

T : Gα,β(λ̃, ã)→ Gα,β(λ, a),

where α, β ∈ {0,∞}, consider the coordinate basis e = (ei)i∈N of Gα,β(λ, a), and the

image of the coordinate basis ẽ = (ẽi)i∈N of Gα,β(λ̃, ã) under the isomorphism T , and

denote it by f = (fi), where fi = T ẽi, i ∈ N. Then, e and f are absolute bases in

Gα,β(λ, a), so we define, for all p, q ∈ N, the sets

Ap,q =

{
x =

∞∑
i=1

ξiei ∈ G0,∞(λ, a) :
∞∑
i=1

|ξi|ωα,βi (p, q) ≤ 1

}
,

Ãp,q =

{
x =

∞∑
i=1

ηifi ∈ G0,∞(λ, a) :
∞∑
i=1

|ηi|ω̃α,βi (p, q) ≤ 1

}
,

which are weighted l1-balls in Gα,β(λ, a), that is,

Ap,q = Be(ωα,β(p, q)) and Ãp,q = Bf (ω̃α,β(p, q))

for every p, q ∈ N.

Lemma 5.0.15 If Gα,β(λ, a) ' Gα,β(λ̃, ã), then for every r ∈ N there exists p ≥ r

such that for every q ∈ N there exists s ≥ q and a constant C > 1 so that the following

inclusions hold:

Ap,q ⊂ CÃr,s, Ãp,q ⊂ CAr,s.

37



Proof. Let T : Gα,β(λ̃, ã) → Gα,β(λ, a) be an isomorphism. Then, their projective

spectra are equivalent by Proposition 2.2.1, hence for every r ∈ N, there exists p ∈ N

and a continuous linear operator Tr so that the following diagram commutes:

Gα,β(λ̃, ã)
T - Gα,β(λ, a)

indq→ l1(ω̃α,β(p, q))

π̃p

?
Tr- inds→ l1(ωα,β(r, s))

πr

?

For each r ∈ N, Tr is continuous if and only if Tr ◦ ĩq is continuous for every q ∈ N.

So, for each q ∈ N, applying Grothendieck’s factorization theorem, we get s ∈ N and a

continuous linear operator Tr,q such that the following diagram commutes:

indq→ l1(ω̃α,β(p, q))
Tr- inds→ l1(ωα,β(r, s))

l1(ω̃α,β(p, q))

ĩq

6

Tr,q -

-

l1(ωα,β(r, s))

is

6

Therefore, for every r ∈ N there exists p ∈ N, and for every q ∈ N there exists

s ∈ N, so that the operator Tr,q : l1(ω̃α,β(p, q))→ l1(ωα,β(r, s)) is continuous, that is,

∀r∃p∀q∃s∃C ||Tx||r,s ≤ C||x||p,q, x ∈ l1(ω̃α,β(p, q)). (5.1)

Since T−1 is continuous, by (5.1), ∀r∃p∀q∃s∃C ||T−1x||r,s ≤ C||x||p,q. So, if we take

x ∈ Ap,q, then
∑∞

i=1 |ξi|ω
α,β
i (p, q) ≤ 1 where x =

∑
ξiei. Hence, ||x||p,q ≤ 1, which

implies ||T−1x||r,s ≤ C. Also,

T−1x = T−1(
∑

ηifi) = T−1(
∑

ηiT ẽi) =
∑

ηiẽi.

Hence ||T−1x||r,s =
∑
|ηi|ω̃α,βi (r, s) ≤ C, which implies that x ∈ CÃr,s. Therefore,

∀r∃p∀q∃s∃C Ap,q ⊂ CÃr,s. (5.2)

Since T is continuous, by (5.1), ∀r′∃p′∀q′∃s′∃C ′ ||Ty||r′,s′ ≤ C ′||y||p′,q′ . So, if we

take x ∈ Ãp,q, then
∑∞

i=1 |ηi|ω̃
α,β
i (p′, q′) ≤ 1 where x =

∑
ηifi. Define y =

∑
ηiẽi.

Then, ||y||p′,q′ =
∑∞

i=1 |ηi|ω̃
α,β
i (p, q) ≤ 1. Hence, ||Ty||r′,s′ ≤ C ′||y||p′,q′ ≤ C ′. Also,

Ty = T (
∑

ηiẽi) =
∑

ηiT ẽi =
∑

ηifi = x.
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So, the seminorms satisfy

||Ty||r′,s′ = ||x||r′,s′ =
∑
|ξi|ωi(r′, s′) ≤ C ′,

where x =
∑
ξiei, which implies that x ∈ C ′Ar′,s′ . Therefore,

∀r′∃p′∀q′∃s′∃C ′ Ãp′,q′ ⊂ C ′Ar′,s′ . (5.3)

In order to show that G0,∞(λ, a) ' G0,∞(λ̃, ã) implies µ
(λ,a)
m ∼ µ

(λ̃,ã)
m for every

m ∈ N, we need the following main lemma.

Lemma 5.0.16 Let G0,∞(λ, a) ' G0,∞(λ̃, ã), and m ∈ N. Then, there exists a strictly

increasing function γ : [0, 2] → [0, 1] where γ(0) = 0 and γ(2) = 1, a decreasing

function M : (0, 1]→ (0,∞), and a constant α > 1 such that

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m

(
γ(δ)− M(δ)

τ
, γ−1(ε) +

M(ε)

τ
;
τ

α
, αt

)
(5.4)

for all δ = (δk), ε = (εk), τ = (τk) and t = (tk) where 0 < δk ≤ εk ≤ 1 and

0 < τk ≤ tk <∞, k = 1, · · · ,m.

Proof. Assume that G0,∞(λ, a) ' G0,∞(λ̃, ã), and take m ∈ N. In order to show

inequality (5.4), we estimate the m-rectangle characteristics with the β-characteristics

of some specific weighted l1-balls that are constructed as follows.

By using Lemma 5.0.15 repeatedly, we can choose a chain of positive integers

rm+1 < pm+1 < r′m+1 < · · · < rk < pk < r′k < · · · < r0 < p0 < r′0

< s′0 < q0 < s0 < · · · < s′k < qk < sk < · · · < s′m+1 < qm+1 < sm+1

< n1 < · · · < nj < · · · (5.5)

with the additional conditions that each integer in the chain is at least two times

greater than the previous one, and 2r′0nj < nj+1 for each j ∈ N, so that we have the

inclusions

Apk,qk ⊂ CÃrk,sk , Ãr′k,s′k ⊂ CApk,qk , k = 0, · · · ,m+ 1,

Ap0,nj ⊂ CjÃr0,nj+1
, Ãr′0,nj ⊂ CjAp0,nj+1

, j ∈ N, (5.6)

for some constants C, depending on m, and Cj, j ∈ N.
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Let δ = (δk), ε = (εk), τ = (τk) and t = (tk) where 0 < δk ≤ εk ≤ 1 and

0 < τk ≤ tk < ∞, k = 1, · · · ,m. If we reorder δk so that δ1 ≤ · · · ≤ δm, and define

the sequence (ζj)j∈N0 by ζ0 = 1, ζj = 1
nj

for j ∈ N, then there exist finite subsequences

(νk) and (jk) of N0 such that

ζνk ≤ δk < ζνk−1, ζjk+1 < εk ≤ ζjk , k = 1, · · · ,m. (5.7)

For each k = 1, · · · ,m, we define the following sets

U
(k)
1 =

 Ap0,njk−1
, jk > 2

Ap0,q0 , jk = 1, 2
,

U
(k)
2 = exp

(
τk

2pk

)
Ap0,q0 ,

U
(k)
3 = exp(−2qm+1tk)Apm+1,qm+1 ,

U
(k)
4 = Apk,qk ,

V
(k)

1 = Ap0,nνk ,

V
(k)

2 = exp

(
−τk

2pm+1

)
Apm+1,qm+1 ,

V
(k)

3 = exp(2qktk)Ap0,q0 ,

V
(k)

4 = Apk,qk ,

Ũ
(k)
1 =


1

Cjk−2
Ãr′0,njk−2

, jk > 2

1
C
Ãr′0,s′0 , jk = 1, 2

,

Ũ
(k)
2 =

1

C
exp

(
τk

2pk

)
Ãr′0,s′0 ,

Ũ
(k)
3 =

1

C
exp(−2qm+1tk)Ãr′m+1,s

′
m+1

,

Ũ
(k)
4 =

1

C
Ãr′k,s′k ,

Ṽ
(k)

1 = CνkÃr0,nνk+1 ,

Ṽ
(k)

2 = C exp

(
−τk

2pm+1

)
Ãrm+1,sm+1 ,

Ṽ
(k)

3 = C exp(2qktk)Ãr0,s0 ,

Ṽ
(k)

4 = CÃrk,sk .

These sets are, by definition, weighted l1-balls, that is,

U
(k)
θ = Be

(
u

(k)
θ

)
, v

(k)
θ = Be

(
v

(k)
θ

)
, Ũ

(k)
θ = Bf

(
ũ

(k)
θ

)
, Ṽ

(k)
θ = Bf

(
ṽ

(k)
θ

)
,
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where we denote by u
(k)
θ =

(
u

(k)
θ,i

)
i∈N

, v
(k)
θ =

(
v

(k)
θ,i

)
i∈N

, ũ
(k)
θ =

(
ũ

(k)
θ,i

)
i∈N

, and

ṽ
(k)
θ =

(
ṽ

(k)
θ,i

)
i∈N

, their respective weight sequences, for every k = 1, · · · ,m and

θ = 1, · · · , 4.

The inclusions (5.6) imply that Ũ
(k)
θ ⊂ U

(k)
θ and V

(k)
θ ⊂ Ṽ

(k)
θ for all k = 1, · · · ,m,

θ = 1, · · · , 4. If we define the following sets

U =
m⋂
k=1

conv

(
4⋃
θ=1

U
(k)
θ

)
, V = conv

(
m⋃
k=1

(
4⋂
θ=1

V
(k)
θ

))
,

Ũ =
m⋂
k=1

conv

(
4⋃
θ=1

Ũ
(k)
θ

)
, Ṽ = conv

(
m⋃
k=1

(
4⋂
θ=1

Ṽ
(k)
θ

))
,

then, we have the inclusions

Ũ ⊂ U, V ⊂ Ṽ .

So, by remark 5.0.1, we have

β(V, U) ≤ β(Ṽ , Ũ). (5.8)

However, these sets are not necessarily weighted l1-balls, hence it may not be possible

to compute their β-characteristics with some corresponding weight sequences. In order

to overcome this, we apply Proposition 5.0.13 to obtain the inclusions

Be(c) ⊂ V, U ⊂ mBe(d), Ṽ ⊂ 4Bf (c̃), Bf (d̃) ⊂ Ũ , (5.9)

for the sequences c = (ci)i∈N, d = (di)i∈N, c̃ = (c̃i)i∈N, d̃ = (d̃i)i∈N, where

ci = min
k=1,...,m

{
max
θ=1,...,4

{
v

(k)
θ,i

}}
, di = max

k=1,...,m

{
min

θ=1,...,4

{
u

(k)
θ,i

}}
,

c̃i = min
k=1,...,m

{
max
θ=1,...,4

{
ṽ

(k)
θ,i

}}
, d̃i = max

k=1,...,m

{
min

θ=1,...,4

{
ũ

(k)
θ,i

}}
.

Then, by Remark 5.0.1, the inclusions (5.9) imply that

β(Be(c), Be(d)) ≤ β(V,
1

m
U) and β(Ṽ , Ũ) ≤ β(4Bf (c̃), Bf (d̃).

Hence, by (5.8) and Remark 5.0.1, we have

β(Be(c), Be(d)) ≤ β(4mBf (c̃), Bf (d̃)). (5.10)

Now we show that, with this construction of weighted l1-balls, we have the desired

estimates. First, we claim that µ
(λ,a)
m (δ, ε; τ, t) ≤ β(Be(c), Be(d)).
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Using Proposition 5.0.14, and considering the definitions of the weight sequences c

and d, we get

β(Be(c), Be(d)) = |{i ∈ N : ci ≤ di}|

=

∣∣∣∣{i ∈ N : min
k=1,...,m

{
max
θ=1,...,4

{
v

(k)
θ,i

}}
≤ max

k=1,...,m

{
min

θ=1,...,4

{
u

(k)
θ,i

}}}∣∣∣∣
=

∣∣∣∣∣
m⋃
k=1

m⋃
l=1

{
i ∈ N : max

θ=1,...,4

{
v

(k)
θ,i

}
≤ min

θ=1,...,4

{
u

(l)
θ,i

}}∣∣∣∣∣
≥

∣∣∣∣∣
m⋃
k=1

{
i ∈ N : max

θ=1,...,4

{
v

(k)
θ,i

}
≤ min

θ=1,...,4

{
u

(k)
θ,i

}}∣∣∣∣∣
Note that u

(k)
4 = v

(k)
4 , so we have{

i ∈ N : max
θ=1,...,4

{
v

(k)
θ,i

}
≤ min

θ=1,...,4

{
u

(k)
θ,i

}}
=

3⋂
θ=1

{
i ∈ N : v

(k)
θ,i ≤ u

(k)
4,i , v

(k)
4,i ≤ u

(k)
θ,i

}
.

Hence,

β(Be(c), Be(d)) ≥

∣∣∣∣∣
m⋃
k=1

3⋂
θ=1

{
i ∈ N : v

(k)
θ,i ≤ u

(k)
4,i , v

(k)
4,i ≤ u

(k)
θ,i

}∣∣∣∣∣ .
Since µ

(λ,a)
m (δ, ε; τ, t) = |

⋃m
k=1 {i ∈ N : δk ≤ λi ≤ εk, τk ≤ ai ≤ tk}|, the claim is true if

the inclusions

{i ∈ N : δk ≤ λi ≤ εk, τk ≤ ai ≤ tk} ⊂
3⋂
θ=1

{
i ∈ N : v

(k)
θ,i ≤ u

(k)
4,i , v

(k)
4,i ≤ u

(k)
θ,i

}
hold for all k = 1, · · · ,m, which we show as follows.

Given k ∈ {1, · · · ,m} and i ∈ N, if λi ≥ δk, then, since pk < p0, pk > 2, nνk > 2qk

from (5.5) and ζνk ≤ δk by (5.7), we have the estimates

0 <
1

pk
− 1

p0

<
1

pk
<

1

2
, nνk − qk >

nνk
2

=
1

2ζνk
≥ 1

2δk
≥ 1

2λi
,

which imply that

1

pk
− 1

p0

≤ λi (nνk − qk)

⇒ − 1

p0

− nνkλi ≤ −
1

pk
− qkλi

⇒ exp

((
− 1

p0

− nνkλi
)
ai

)
≤ exp

((
− 1

pk
− qkλi

)
ai

)
⇒ v

(k)
1,i ≤ u

(k)
4,i .

Hence,

{i ∈ N : λi ≥ δk} ⊂
{
i ∈ N : v

(k)
1,i ≤ u

(k)
4,i

}
. (5.11)
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If λi ≤ εk, then, since p0 > 2pk, njk > 2r′0njk−1 > 2pknjk−1 from (5.5) and ζjk ≥ εk

by (5.7), we have the estimates

1

pk
− 1

p0

>
1

2pk
, njk−1 − qk < njk−1 <

njk
2pk

=
1

2pkζjk
≤ 1

2pkεk
≤ 1

2pkλi
,

which imply for jk > 2 that

λi (njk−1 − qk) ≤
1

pk
− 1

p0

⇒ − 1

pk
− qkλi ≤ −

1

p0

− njk−1λi

⇒ exp

((
− 1

pk
− qkλi

)
ai

)
≤ exp

((
− 1

p0

− njk−1λi

)
ai

)
⇒ v

(k)
4,i ≤ u

(k)
1,i .

For jk ≤ 2, we have p0 > pk and qk > q0 from (5.5), so the inequality

− 1

pk
− qkλi ≤ −

1

p0

− q0λi

is satisfied for all λi. From these inequalities, we obtain

{i ∈ N : λi ≤ εk} ⊂
{
i ∈ N : v

(k)
4,i ≤ u

(k)
1,i

}
. (5.12)

If ai ≥ τk, we have the inequalities

1

2pm+1

<
1

pm+1

− 1

pk
<

1

pm+1

− 1

pk
+ λi (qm+1 − qk)

since pk > 2pm+1 and qm+1 > qk from (5.5), so we obtain

τk
2pm+1

<

(
1

pm+1

− 1

pk
+ λi (qm+1 − qk)

)
ai.

By rearranging terms and taking the exponential function of both sides, we get

exp

(
τk

2pm+1

)
exp

((
− 1

pm+1

− qm+1λi

)
ai

)
< exp

((
− 1

pk
− qkλi

)
ai

)
.

Then, by the definitions of the weight sequences, we have v
(k)
2,i ≤ u

(k)
4,i . Hence,

{i ∈ N : τk ≤ ai} ⊂
{
i ∈ N : v

(k)
2,i ≤ u

(k)
4,i

}
. (5.13)

If ai ≥ τk, we also have the inequalities

1

2pk
<

1

pk
− 1

p0

<
1

pk
− 1

p0

+ λi (qk − q0)
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since p0 > 2pk and qk > q0 from (5.5), and we obtain

τk
2pk

<

(
1

pk
− 1

p0

+ λi (qk − q0)

)
ai.

By rearranging terms and taking the exponential function of both sides, we get

exp

((
− 1

pk
− qkλi

)
ai

)
< exp

(
− τk

2pk

)
exp

((
− 1

p0

− q0λi

)
ai

)
.

So, by the definitions of the weight sequences, we have v
(k)
4,i ≤ u

(k)
2,i . Hence,

{i ∈ N : τk ≤ ai} ⊂
{
i ∈ N : v

(k)
4,i ≤ u

(k)
2,i

}
. (5.14)

If ai ≤ tk, since pk < p0, qk > q0 from (5.5) and λi ≤ 1 by lemma 2.1.1, we have the

inequalities

0 <
1

pk
− 1

p0

< qk, 0 < (qk − q0)λi ≤ qk − q0 < qk,

which imply that
1

pk
− 1

p0

+ (qk − q0)λi < 2qk,

and we obtain (
1

pk
− 1

p0

+ (qk − q0)λi

)
ai < 2qktk.

By rearranging terms and taking the exponential function of both sides, we get

exp(−2qktk) exp

((
− 1

p0

− q0λi

)
ai

)
< exp

((
− 1

pk
− qkλi

)
ai

)
.

By the definitions of the weight sequences, we have v
(k)
3,i ≤ u

(k)
4,i . Hence,

{i ∈ N : ai ≤ tk} ⊂
{
i ∈ N : v

(k)
3,i ≤ u

(k)
4,i

}
. (5.15)

For ai ≤ tk, we also have the inequalities

0 <
1

pm+1

− 1

pk
< qm+1, 0 < (qm+1 − qk)λi ≤ qm+1 − qk < qm+1

since pm+1 < pk, qm+1 > qk from (5.5) and λi ≤ 1 by lemma 2.1.1, and we get(
1

pm+1

− 1

pk
+ (qm+1 − qk)λi

)
ai < 2qm+1tk.

By rearranging terms and taking the exponential function of both sides, we get

exp

((
− 1

pk
− qkλi

)
ai

)
< exp(2qm+1tk) exp

((
− 1

pm+1

− qm+1λi

)
ai

)
.
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By the definition of the weight sequences, we have v
(k)
4,i ≤ u

(k)
3,i . Hence,

{i ∈ N : ai ≤ tk} ⊂
{
i ∈ N : v

(k)
4,i ≤ u

(k)
3,i

}
. (5.16)

From the inclusions (5.11)-(5.16), we obtain

{i ∈ N : δk ≤ λi ≤ εk, τk ≤ ai ≤ tk} ⊂
3⋂
θ=1

{
i ∈ N : v

(k)
θ,i ≤ u

(k)
4,i , v

(k)
4,i ≤ u

(k)
θ,i

}
.

Therefore,

µ(λ,a)
m (δ, ε; τ, t) ≤ β(Be(c), Be(d)). (5.17)

Now, we claim that

β(4mBf (c̃), Bf (d̃)) ≤ µ(λ̃,ã)
m

(
γ(δ)− M(δ)

τ
, γ−1(ε) +

M(ε)

τ
;
τ

α
, αt

)
for some strictly increasing function γ : [0, 2] → [0, 1] where γ(0) = 0 and γ(2) = 1,

decreasing function M : (0, 1]→ (0,∞), and constant α > 1.

Using Proposition 5.0.14 and considering the definitions of the weight sequences c̃

and d̃, we obtain

β(4mBf (c̃), Bf (d̃)) =
∣∣∣{i ∈ N : c̃i ≤ 4md̃i}

∣∣∣
=

∣∣∣∣{i ∈ N : min
k=1,...,m

{
max
θ=1,...,4

{
ṽ

(k)
θ,i

}}
≤ 4m max

k=1,...,m

{
min

θ=1,...,4

{
ũ

(k)
θ,i

}}}∣∣∣∣
=

∣∣∣∣∣
m⋃
k=1

m⋃
l=1

{
i ∈ N : max

θ=1,...,4

{
ṽ

(k)
θ,i

}
≤ 4m min

θ=1,...,4

{
ũ

(l)
θ,i

}}∣∣∣∣∣
Also, for any k, l = 1, . . . ,m, we have{

i ∈ N : max
θ=1,...,4

{
ṽ

(k)
θ,i

}
≤ 4m min

θ=1,...,4

{
ũ

(l)
θ,i

}}
=

4⋂
θ=1

4⋂
ρ=1

{
i ∈ N : ṽ

(k)
θ,i ≤ 4mũ

(l)
ρ,i

}
⊂

3⋂
θ=1

{
i ∈ N : ṽ

(k)
θ,i ≤ 4mũ

(l)
4,i, ṽ

(k)
4,i ≤ 4mũ

(l)
θ,i

}⋂{
i ∈ N : ṽ

(k)
4,i ≤ 4mũ

(l)
4,i

}
(5.18)

Now, using the sets on the right hand side of the inclusion (5.18), we construct the

corresponding m-rectangles.

If ṽ
(k)
1,i ≤ 4mũ

(l)
4,i, then

1

Cνk
exp

((
− 1

r0

− nνk+1λ̃i

)
ãi

)
≤ 4mC exp

((
− 1

r′l
− s′lλ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get

λ̃i ≥
1
r′l
− 1

r0

nνk+1 − s′l
− ln(4mCCνk)

ãi(nνk+1 − s′l)
.
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Since r0 > 2r′l, nνk+1 > 2s′l, nνk+1 > nνk , and nνk+2 > 2r′lnνk+1 by the choice of the

chain (5.5), we obtain the inclusions

1
r′l
− 1

r0

nνk+1 − s′l
>

1

2r′l(nνk+1 − s′l)
>

1

2r′lnνk+1

>
1

nνk+2

= ζνk+2,

ln(4mCCνk)

ãi(nνk+1 − s′l)
<

2 ln(4mCCνk)

nνk+1ãi
=

2ζνk+1 ln(4mCCνk)

ãi
<

2ζνk ln(4mCCνk)

ãi
,

which imply that

λ̃i ≥ ζνk+2 −
2ζνk ln(4mCCνk)

ãi
. (5.19)

Let ṽ
(k)
4,i ≤ 4mũ

(l)
1,i. We need to consider the cases jl > 2 and jl ≤ 2 separately due

to the definition of ũ
(l)
1,i. For jl > 2, we have

1

C
exp

((
− 1

rk
− skλ̃i

)
ãi

)
≤ 4mCjl−2 exp

((
− 1

r′0
− njl−2λ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get

λ̃i ≤
1
rk
− 1

r′0

njl−2 − sk
+

ln(4mCCjl−2)

ãi(njl−2 − sk)
.

Since njl−2 > 2sk and 1
rk
− 1

r′0
< 1

rk
< 1

2
by the choice of the chain (5.5), the above

inequality implies

λ̃i <
2
(

1
rk
− 1

r′0

)
njl−2

+
2 ln(4mCCjl−2)

ãinjl−2

<
1

njl−2

+
2 ln(4mCCjl−2)

ãinjl−2

= ζjl−2 +
2ζjl−2 ln(4mCCjl−2)

ãi
. (5.20)

For jl ≤ 2, the inequality ṽ
(k)
4,i ≤ 4mũ

(l)
1,i implies

1

C
exp

((
− 1

rk
− skλ̃i

)
ãi

)
≤ 4mC exp

((
− 1

r′0
− s′0λ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get[(
1

r′0
− 1

rk

)
+ (s′0 − sk) λ̃i

]
ãi ≤ ln(4mC2).

Since rk < r′0 and s′0 < sk, the left hand side of the above inequality is negative for all

i ∈ N, hence the inequality holds for all i ∈ N. As λ̃i ≤ 1 for all i ∈ N by Lemma 2.1.1,

and ζ0 = 1, for jl ≤ 2, we have{
i ∈ N : ṽ

(k)
4,i ≤ 4mũ

(l)
1,i

}
=
{
i ∈ N : λ̃i ≤ ζ0

}
= N.
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Take a strictly increasing function γ : [0, 2] → [0, 1] so that γ(0) = 0, γ(2) = 1,

and γ(ζj) = ζj+3 for all j ∈ N0. Since γ is strictly increasing, γ−1 exists, it is strictly

increasing, γ−1(0) = 0, γ−1(1) = 2, and γ−1(ζj) = ζj−3 for all j ≥ 3. Also, take a

decreasing function M : (0, 1]→ (0,∞) so that

M(ζj) ≥ 2αmax {ζj ln(4mCCj+1), ζj−2 ln(4mCCj−2)}

for all j ∈ N0, where the constant α will be chosen explicitly later in the proof to

simultaneously satisfy other inclusions. Then, ṽ
(k)
1,i ≤ 4mũ

(l)
4,i implies

λ̃i ≥ ζνk+2 −
2ζνk ln(4mCCνk)

ãi
by (5.19),

= γ(ζνk−1)− 2ζνk ln(4mCCνk)

ãi
since γ(ζj) = ζj+3,

≥ γ(ζνk−1)− M(ζνk−1)

αãi
since M(ζνk−1) ≥ 2αζνk ln(4mCCνk),

> γ(δk)−
M(δk)

αãi
since δk < ζνk−1 by (5.7).

Therefore, for any k, l = 1, . . . ,m, we have{
i ∈ N : ṽ

(k)
1,i ≤ 4mũ

(l)
4,i

}
⊂
{
i ∈ N : γ(δk)−

M(δk)

αãi
≤ λ̃i

}
. (5.21)

If we consider the inequality ṽ
(k)
4,i ≤ 4mũ

(l)
1,i, then for jl > 2,

λ̃i ≤ ζjl−2 +
2ζjl−2 ln(4mCCjl−2)

ãi
by (5.20),

= γ−1(ζjl+1) +
2ζjl−2 ln(4mCCjl−2)

ãi
since ζjl−2 = γ−1(ζjl+1),

≤ γ−1(ζjl+1) +
M(ζjl)

αãi
since M(ζjl) ≥ 2αζjl−2 ln(4mCCjl−2),

< γ−1(εl) +
M(εl)

αãi
since ζjl+1 < εl ≤ ζjl by (5.7).

For jl ≤ 2, ṽ
(k)
1,i ≤ 4mũ

(l)
4,i implies λ̃i ≤ ζ0 = 1. Since ζ3 ≤ ζjl+1 for jl ≤ 2, γ−1 is

increasing and ζjl+1 < εl, we have

γ−1(ζ3) = ζ0 ≤ γ−1(ζjl+1) < γ−1(εl).

Hence, λ̃i ≤ γ−1(εl) + M(εl)
αãi

. Therefore, for any k, l = 1, . . . ,m, we have

{
i ∈ N : ṽ

(k)
4,i ≤ 4mũ

(l)
1,i

}
⊂
{
i ∈ N : λ̃i ≤ γ−1(εl) +

M(εl)

αãi

}
. (5.22)

47



Let us choose the constant α so that

α > 4r′0 max
{

ln(4mC2), 2sm+1

}
. (5.23)

If ṽ
(k)
2,i ≤ 4mũ

(l)
4,i, then

1

C
exp

(
τk

2pm+1

)
exp

((
− 1

rm+1

− sm+1λ̃i

)
ãi

)
≤ 4mC exp

((
− 1

r′l
− s′lλ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get

τk
2pm+1

≤ ln(4mC2) +

[(
1

rm+1

− 1

r′l

)
+ (sm+1 − s′l) λ̃i

]
ãi.

Since r′l > rm+1, sm+1 > s′l by (5.5) and λ̃i ≤ 1 by Lemma 2.1.1, we have the inequalities

0 <
1

rm+1

− 1

r′l
< sm+1, 0 < (sm+1 − s′l)λ̃i ≤ sm+1 − s′l < sm+1,

which imply that
τk

2pm+1

≤ ln(4mC2) + 2sm+1ãi.

As ãi ≥ 1 by Lemma 2.1.1, we get

τk ≤ 2pm+1

(
ln(4mC2) + 2sm+1

)
ãi.

From (5.23), we have τk ≤ αãi. Thus, for any k, l = 1, . . . ,m we have{
i ∈ N : ṽ

(k)
2,i ≤ 4mũ

(l)
4,i

}
⊂
{
i ∈ N :

τk
α
≤ ãi

}
. (5.24)

If ṽ
(k)
4,i ≤ ũ

(l)
2,i, then

1

C
exp

((
− 1

rk
− skλ̃i

)
ãi

)
≤ 4mC exp

(
− τl

2pl

)
exp

((
− 1

r′0
− s′0λ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get

τl
2pl
≤ ln(4mC2) +

[(
1

rk
− 1

r′0

)
+ (sk − s′0) λ̃iãi

]
.

Since r′0 > rk, sk > s′0 by (5.5) and λ̃i ≤ 1 by Lemma 2.1.1, we have the inequalities

0 <
1

rk
− 1

r′0
< sk, 0 < (sk − s′0)λ̃i ≤ sk − s′0 < sk.

which imply that

τl ≤ 2pl ln(4mC2) + 2skãi.
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As ãi ≥ 1 by Lemma 2.1.1, we get

τl ≤ 2pl
(
ln(4mC2) + 2sk

)
ãi.

From (5.23), we have τl ≤ αãi. Thus, for any k, l = 1, . . . ,m, we have{
i ∈ N : ṽ

(k)
4,i ≤ 4mũ

(l)
2,i

}
⊂
{
i ∈ N :

τl
α
≤ ãi

}
. (5.25)

Let ṽ
(k)
3,i ≤ 4mũ

(l)
4,i. Then

1

C
exp (−2qktk) exp

((
− 1

r0

− s0λ̃i

)
ãi

)
≤ 4mC exp

((
− 1

r′l
− 1

s′l
λ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get[(
1

r′l
− 1

r0

)
+ (s′l − s0) λ̃i

]
ãi ≤ ln(4mC2) + 2qktk.

Since r0 > 2r′l and s′l > s0 by the choice of the chain, we have(
1

r′l
− 1

r0

)
+ (s′l − s0) λ̃i >

1

r′l
− 1

r0

>
1

2r′l
.

Without loss of generality, we can take tk ≥ 1 since ai ≥ 1 by Lemma 2.1.1. We also

have r′0 > r′l, sm+1 > qk by the choice of the chain (5.5), so we obtain

ãi ≤ 2r′l
(
ln(4mC2) + 2qktk

)
≤ 2r′l

(
ln(4mC2) + 2qk

)
tk

≤
(
2r′0 ln(4mC2) + 4r′0sm+1

)
tk

≤
(α

2
+
α

2

)
tk = αtk

Thus, for any k, l = 1, . . . ,m, we have{
i ∈ N : ṽ

(k)
3,i ≤ 4mũ

(l)
4,i

}
⊂ {i ∈ N : ãi ≤ αtk} . (5.26)

Let ṽ
(k)
4,i ≤ 4mũ

(l)
3,i. Then

1

C
exp

((
− 1

rk
− skλ̃i

)
ãi

)
≤ 4mC exp (2qm+1tl) exp

((
− 1

r′m+1

− 1

s′m+1

λ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get[(
1

r′m+1

− 1

rk

)
+
(
s′m+1 − sk

)
λ̃i

]
ãi ≤ ln(4mC2) + 2qm+1tl.
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Since rk > 2r′m+1 and s′m+1 > sk by the choice of the chain (5.5), we have(
1

r′m+1

− 1

rk

)
+
(
s′m+1 − sk

)
λ̃i >

1

r′m+1

− 1

rk
>

1

2r′m+1

.

Without loss of generality, we can take tl ≥ 1. We also have r′0 > r′m+1, sm+1 > qm+1

by the choice of the chain, hence we get

ãi ≤ 2r′m+1

(
ln(4mC2) + 2qm+1tl

)
≤ 2r′m+1

(
ln(4mC2) + 2qm+1

)
tl

≤
(
2r′0 ln(4mC2) + 4r′0sm+1

)
tl

≤
(α

2
+
α

2

)
tl = αtl

Thus, for any k, l = 1, . . . ,m, we have{
i ∈ N : ṽ

(k)
4,i ≤ 4mũ

(l)
3,i

}
⊂ {i ∈ N : ãi ≤ αtl} . (5.27)

From the inclusions (5.21)-(5.27), we obtain

3⋂
θ=1

{
i ∈ N : ṽ

(k)
θ,i ≤ 4mũ

(l)
4,i, ṽ

(k)
4,i ≤ 4mũ

(l)
θ,i

}
⊂ Rk,l (5.28)

for any k, l = 1, . . . ,m, where

Rk,l =

{
i ∈ N : γ(δk)−

M(δk)

max{τk, τl}
≤ λ̃i ≤ γ−1(εl) +

M(εl)

max{τk, τl}
,

max{τk, τl}
α

≤ ãi ≤ αmin{tk, tl}
}
.

If ṽ
(k)
4,i ≤ 4mũ

(l)
4,i, then

1

C
exp

((
− 1

rk
− skλ̃i

)
ãi

)
≤ 4mC exp

((
− 1

r′l
− s′lλ̃i

)
ãi

)
.

Taking the logarithm of both sides and rearranging terms, we get[(
1

r′l
− 1

rk

)
+ (s′l − sk) λ̃i

]
ãi ≤ ln(4mC2) <

α

2r′0
.

If k < l, then rk > 2r′l and s′l > sk by the choice of the chain (5.5). Hence,(
1

r′l
− 1

rk

)
+ (s′l − sk) λ̃i >

1

r′l
− 1

rk
>

1

2r′l
,

which implies that ãi < 2r′l
α

2r′0
< α since r′l < r′0. So,{

i ∈ N : ṽ
(k)
4,i ≤ 4mũ

(l)
4,i

}
⊂ {i ∈ N : ãi ≤ α} .
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If k ≥ l, then rk < r′l and s′l < sk by (5.5), hence(
1

r′l
− 1

rk

)
+ (s′l − sk) λ̃i < 0.

So the inequality ṽ
(k)
4,i ≤ 4mũ

(l)
4,i is satisfied for all i ∈ N. Therefore,{
i ∈ N : ṽ

(k)
4,i ≤ 4mũ

(l)
4,i

}
⊂ Sk,l (5.29)

for all k, l = 1, . . . ,m, where

Sk,l =

 {i ∈ N : ãi ≤ α} , k < l,

N, k ≥ l.

Now, we claim that Rk,l ∩ Sk,l ⊂ Rl,l. Since the claim is trivially true if k = l

or Rk,l ∩ Sk,l is empty, take k, l such that k 6= l and the intersections Rk,l ∩ Sk,l are

nonempty.

If k > l, then δk ≥ δl by the reordering of δ. Since γ is increasing and M is

decreasing, we have γ(δk) ≥ γ(δl) and M(δk) ≤ M(δl), which imply the following

inequalities

γ(δk)−
M(δk)

max{τk, τl}
≥ γ(δl)−

M(δl)

max{τk, τl}
≥ γ(δl)−

M(δl)

τl
,

γ−1(εl) +
M(εl)

max{τk, τl}
≤ γ−1(εl) +

M(εl)

τl
.

From these inequalities, we obtain Rk,l ⊂ Rl,l. Hence,

Rk,l ∩ Sk,l = Rk,l ∩ N = Rk,l ⊂ Rl,l.

For k < l, take i ∈ Rk,l ∩ Sk,l. Then, ãi ≤ α since i ∈ Sk,l. As 1
ãi
≤ λ̃i by lemma

2.1.1, we have 1
α
≤ λ̃i. Also, since γ is increasing,

γ(δl)−
M(δl)

τl
< γ(δl) < γ(1) = γ(ζ0) = ζ3 =

1

n3

.

So, if we take n3 > α, which is possible since α depends only on m, we get

γ(δl)−
M(δl)

τl
<

1

n3

<
1

α
≤ λ̃i.

With this estimate for λ̃i from below, and the estimates for λ̃i and ãi that come from

the fact that i ∈ Rk,l, we obtain that i ∈ Rl,l. Therefore, Rk,l ∩ Sk,l ⊂ Rl,l for all

k, l = 1, . . . ,m.
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From the inclusions (5.18), (5.29) and (5.28), we have{
i ∈ N : max

θ=1,...,4

{
ṽ

(k)
θ,i

}
≤ 4m min

θ=1,...,4

{
ũ

(l)
θ,i

}}
⊂ Rk,l ∩ Sk,l ⊂ Rl,l

for all k, l = 1, . . . ,m. Hence,

β(4mBf (c), Bf (d)) ≤

∣∣∣∣∣
m⋃
k=1

m⋃
l=1

{
i ∈ N : max

θ=1,...,4

{
ṽ

(k)
θ,i

}
≤ 4m min

θ=1,...,4

{
ũ

(l)
θ,i

}}∣∣∣∣∣
≤

∣∣∣∣∣
m⋃
l=1

Rl,l

∣∣∣∣∣
= µ(λ̃,ã)

m

(
γ(δ)− M(δ)

τ
, γ−1(ε) +

M(ε)

τ
;
τ

α
, αt

)
. (5.30)

From (5.10), (5.17) and (5.30), we obtain

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m

(
γ(δ)− M(δ)

τ
, γ−1(ε) +

M(ε)

τ
;
τ

α
, αt

)
.

Remark 5.0.2 The function γ in the proof of Lemma 5.0.16 satisfies

γ(ξ) ≤ ξ ≤ γ−1(ξ), ξ ∈ [0, 1].

For ξ = 0, we have γ(0) = 0 = γ−1(0). For ξ ∈ (0, 1], there exist νk ∈ N0 such

that ζνk+1 < ξ ≤ ζνk . As γ is increasing, we have γ(ζνk+1) < γ(ξ) ≤ γ(ζνk). Since

γ(ζj) = ζj+3, we get γ(ξ) ≤ ζνk+3 < ζνk+1 < ξ. Since γ−1 is also increasing, we obtain

ξ < γ−1(ξ).

Theorem 5.0.17 If G0,∞(λ, a) ' G0,∞(λ̃, ã), then µ
(λ,a)
m ∼ µ

(λ̃,ã)
m for every m ∈ N.

Proof. Let G0,∞(λ, a) ' G0,∞(λ̃, ã) and m ∈ N. Then, by Lemma 5.0.16, there exists a

strictly increasing function γ : [0, 2]→ [0, 1] where γ(0) = 0 and γ(2) = 1, a decreasing

function M : (0, 1]→ (0,∞), and a constant α > 1 such that

µ
(λ,a)
2m (δ, ε; τ, t) ≤ µ

(λ̃,ã)
2m

(
γ(δ)− M(δ)

τ
, γ−1(ε) +

M(ε)

τ
;
τ

α
, αt

)
for all δ = (δk), ε = (εk), τ = (τk) and t = (tk) where 0 < δk ≤ εk ≤ 1 and

0 < τk ≤ tk < ∞, k = 1, · · · ,m. So, we can take a strictly decreasing function

Ψ : (0, 1]→ (0,∞) such that

Ψ(ξ) >
2M(ξ)

γ(ξ)
, ξ ∈ (0, 1].
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Given δ = (δk), ε = (εk), τ = (τk) and t = (tk), k = 1, . . . ,m,

µ(λ,a)
m (δ, ε; τ, t) =

∣∣∣∣∣
m⋃
k=1

{i ∈ N : (λi, ai) ∈ Pk}

∣∣∣∣∣ ,
where Pk = [δk, εk]× [τk, tk]. If we define the following sets

P ′k =


[δk, εk]× [τk, tk] , τk > Ψ(δk),

[δk, εk]× [Ψ(δk), tk] , τk ≤ Ψ(δk) ≤ tk,

∅ tk < Ψ(δk),

P ′′k =


∅ τk > Ψ(δk),

[δk, ε
′
k]× [τk,Ψ(δk)] , τk ≤ Ψ(δk) ≤ tk,

[δk, ε
′
k]× [τk, tk] , tk ≤ Ψ(δk),

where

ε′k =

 max {εk,Ψ−1(τk)} , τk ≥ Ψ(1),

1 τk < Ψ(1),

then, Pk ⊂ P ′k ∪ P ′′k for every k = 1, . . . ,m. Hence,∣∣∣∣∣
m⋃
k=1

{i ∈ N : (λi, ai) ∈ Pk}

∣∣∣∣∣ ≤
∣∣∣∣∣
m⋃
k=1

{i ∈ N : (λi, ai) ∈ P ′k ∪ P ′′k }

∣∣∣∣∣ .
By applying Lemma 5.0.16, we obtain∣∣∣∣∣

m⋃
k=1

{i ∈ N : (λi, ai) ∈ P ′k ∪ P ′′k }

∣∣∣∣∣ ≤
∣∣∣∣∣
m⋃
k=1

{
i ∈ N :

(
λ̃i, ãi

)
∈ P̃ ′k ∪ P̃ ′′k

}∣∣∣∣∣ ,
where

P̃ ′k =


[
γ(δk)− M(δk)

τk
, γ−1(εk) + M(εk)

τk

]
×
[
τk
α
, αtk

]
, τk > Ψ(δk),[

γ(δk)− M(δk)
Ψ(δk)

, γ−1(εk) + M(εk)
Ψ(δk)

]
×
[

Ψ(δk)
α
, αtk

]
, τk ≤ Ψ(δk) ≤ tk,

∅ tk < Ψ(δk),

P̃ ′′k =


∅ τk > Ψ(δk),[
γ(δk)− M(δk)

τk
, γ−1(ε′k) +

M(ε′k)

τk

]
×
[
τk
α
, αΨ(δk)

]
, τk ≤ Ψ(δk) ≤ tk,[

γ(δk)− M(δk)
τk

, γ−1(ε′k) +
M(ε′k)

τk

]
×
[
τk
α
, αtk

]
, tk ≤ Ψ(δk).

Take a strictly increasing function ϕ : [0, 2]→ [0, 1] so that ϕ(0) = 0, ϕ(2) = 1, and

ϕ(ξ) ≤ min

{
γ(ξ)

2
, γ

(
2

3
ξ

)
,

1

αΨ(ξ)
,

1

Ψ
(
γ
(

2
3
ξ
))} , ξ ∈ (0, 1]. (5.31)
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If τk > Ψ(δk), then since Ψ(δk) >
2M(δk)
γ(δk)

and ϕ(δk) ≤ γ(δk)
2

by (5.31), we have

γ(δk)−
M(δk)

τk
> γ(δk)−

γ(δk)

2
=
γ(δk)

2
≥ ϕ(δk).

Also, since δk ≤ εk and Ψ is decreasing,

τk > Ψ(δk) ≥ Ψ(εk) > 2
M(εk)

γ(εk)
,

which implies that

γ−1(εk) +
M(εk)

τk
< γ−1(εk) +

γ(εk)

2
.

As γ(εk) ≤ γ−1(εk) by Remark 5.0.2 and ϕ(εk) < γ
(

2
3
εk
)

by (5.31), we have

γ−1(εk) +
M(εk)

τk
< γ−1(εk) +

γ−1(εk)

2
=

3γ−1(εk)

2
≤ ϕ−1(εk).

Hence, for τk > Ψ(δk),

P̃ ′k ⊂
[
ϕ(δk), ϕ

−1(εk)
]
×
[τk
α
, αtk

]
.

One can show similarly that the same inclusion holds if τk ≤ Ψ(δk) ≤ tk. Therefore,

for any k =, 1 . . . ,m, we have{
i ∈ N :

(
λ̃i, ãi

)
∈ P̃ ′k

}
⊂
{
i ∈ N : ϕ(δk) ≤ λ̃i ≤ ϕ−1(εk),

τk
α
≤ ãi ≤ αtk

}
. (5.32)

Let
(
λ̃i, ãi

)
∈ P̃ ′′k . Then, ãi ≤ αΨ(δk) by the definition of P̃ ′′k . As λ̃i ≥ 1

ãi
by

Lemma 2.1.1 and ϕ(δk) ≤ 1
αΨ(δk)

by (5.31), we have

λ̃i ≥
1

αΨ(δk)
≥ ϕ(δk).

Also, by the definition of P̃ ′′k ,

λ̃i ≤ γ−1(ε′k) +
M(ε′k)

τk
.

We have the cases when ε′k = εk, ε
′
k = Ψ−1(τk) or ε′k = 1.

If ε′k = εk, then εk ≥ Ψ−1(τk), so Ψ(εk) ≤ τk since Ψ is decreasing. Hence,

1

τk
≤ 1

Ψ(ε′k)
<

γ(ε′k)

2M(ε′k)
,

which implies that

γ−1(ε′k) +
M(ε′k)

τk
< γ−1(ε′k) +

γ(ε′k)

2
.
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As γ(ε′k) ≤ γ−1(ε′k) by Remark 5.0.2 and ϕ(εk) < γ
(

2
3
εk
)

by (5.31), we have

γ−1(ε′k) +
M(ε′k)

τk
<

3

2
γ−1(ε′k) =

3

2
γ−1(εk) ≤ ϕ−1(εk).

If ε′k = Ψ−1(τk), then τk = Ψ(ε′k), so

1

τk
=

1

Ψ(ε′k)
<

γ(ε′k)

2M(ε′k)
.

Hence,

γ−1(ε′k) +
M(ε′k)

τk
< γ−1(ε′k) +

γ(ε′k)

2
≤ 3

2
γ−1(ε′k) =

3

2
γ−1

(
Ψ−1(τk)

)
.

Without loss of generality, we can take τk ≥ 1
εk

since µ
(λ,a)
m (δ, ε; τ, t) = µ

(λ,a)
m (δ, ε; τ ′, t)

for τ ′ = (τ ′k) where

τ ′k =

 1
εk
, τk <

1
εk
,

τk, τk ≥ 1
εk
.

So, since Ψ−1 is decreasing and γ−1 is increasing, we have

γ−1
(
Ψ−1 (τk)

)
≤ γ−1

(
Ψ−1

(
1

εk

))
,

which implies that

γ−1(ε′k) +
M(ε′k)

τk
<

3

2
γ−1

(
Ψ−1

(
1

εk

))
.

Since ϕ(εk) ≤ 1

Ψ(γ( 2
3
ξ))

by (5.31), we get

γ−1(ε′k) +
M(ε′k)

τk
< ϕ−1(εk).

If ε′k = 1, then

γ−1(ε′k) +
M(ε′k)

τk
= γ−1(1) +

M(1)

τk
> 1

since γ−1(1) = 2 and M(1)
τk

is positive. As α > 1, we have ϕ(1) ≤ 1
αΨ(1)

. Also, without

loss of generality, we can take τk ≥ 1
εk

. Hence, we have

εk ≥
1

τk
>

1

Ψ(1)
>

1

αΨ(1)
≥ ϕ(1),

which implies that ϕ−1(εk) > 1. As λ̃i ≤ 1 by Lemma 2.1.1, we have

λ̃i ≤ γ−1(ε′k) +
M(ε′k)

τk
, which implies that λ̃i ≤ ϕ−1(εk).

Thus, for any k =, 1 . . . ,m, we have{
i ∈ N :

(
λ̃i, ãi

)
∈ P̃ ′′k

}
⊂
{
i ∈ N : ϕ(δk) ≤ λ̃i ≤ ϕ−1(εk),

τk
α
≤ ãi ≤ αtk

}
. (5.33)
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From (5.32) and (5.33), we obtain

m⋃
k=1

{
i ∈ N :

(
λ̃i, ãi

)
∈ P̃ ′k ∪ P̃ ′′k

}
⊂

m⋃
k=1

{
i ∈ N : ϕ(δk) ≤ λ̃i ≤ ϕ−1(εk),

τk
α
≤ ãi ≤ αtk

}
,

which implies that

µ(λ,a)
m (δ, ε; τ, t) ≤ µ(λ̃,ã)

m

(
ϕ(δ), ϕ−1(ε);

τ

α
, αt
)
.

By interchanging (λ, a) and (λ̃, ã), we similarly get a strictly increasing function ϕ̃,

and a constant α̃ so that

µ(λ̃,ã)
m (δ, ε; τ, t) ≤ µ(λ,a)

m

(
ϕ̃(δ), ϕ̃−1(ε);

τ

α̃
, α̃t
)
.

Taking the minimum of the functions ϕ, ϕ̃, and the maximum of the constants α, α̃,

we obtain

µ(λ,a)
m ∼ µ(λ̃,ã)

m .
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CHAPTER 6

Quasiequivalence of Bases

As an application of m-rectangle characteristics, we obtain the quasiequivalence of

absolute bases in Montel spaces G0,∞(λ, a) that are in class (2), where

ω0,∞
i (p, q) = exp

(
(−1

p
− qλi)ai

)
, such that G0,∞(λ, a)

qd
' G0,∞(λ, a)×G0,∞(λ, a).

Proposition 6.0.18 Let X = G0,∞(λ, a) and X̃ = G0,∞(λ̃, ã) be Montel spaces such

that X
qd
' X2 and X̃

qd
' X̃2. Then, X ' X̃ implies X

qd
' X̃.

Proof. Assume that X = G0,∞(λ, a) and X̃ = G0,∞(λ̃, ã) are Montel spaces such that

X
qd
' X2, X̃

qd
' X̃2 and X ' X̃.

First, we show that X can be quasidiagonally embedded in X̃3. By Theorem

5.0.17, X ' X̃ implies µ
(λ,a)
1 ∼ µ

(λ̃,ã)
1 . Hence, there exists a strictly increasing function

ϕ : [0, 2]→ [0, 1] with ϕ(0) = 0 and ϕ(2) = 1, and a positive constant α so that

µ
(λ,a)
1 (δ, ε; τ, t) ≤ µ

(λ̃,ã)
1

(
ϕ(δ), ϕ−1(ε);

τ

α
, αt
)
, (6.1)

for all parameters δ, ε, τ, t. Taking ε = ϕ(1), where ε ∈ (0, 1), we define the following

sets

Nj,k =
{
i ∈ N : ϕj(ε) ≤ λi ≤ ϕj−1(ε), αk ≤ ai ≤ αk+1

}
, j, k ∈ N0,

Ñj,k =
{
i ∈ N : ϕj+1(ε) ≤ λi ≤ ϕj−2(ε), αk−1 ≤ ai ≤ αk+2

}
, j, k ∈ N0.

Then, the inequality (6.1) implies that

|Nj,k| ≤ |Ñj,k|, j, k ∈ N0. (6.2)

So, if we define the following sets

Nk =
∞⋃
j=1

Nj,k, Ñk =
∞⋃
j=1

Ñj,k, k ∈ N0,
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then, for every k ∈ N0, the multi-valued functions Sk : Nk → Ñk, defined by

Sk(i) = Ñj,k if i ∈ Nj,k,

satisfy the conditions of Hall-König Theorem (Theorem 2.6.1). Hence, for each k ∈ N0,

there exists an injection σk : Nk → Ñk such that σk(i) ∈ Ñj,k whenever i ∈ Nj,k.

If we set N (θ) =
⋃∞
k=0N3k+θ for θ = 0, 1, 2, then the maps σ(θ) : N (θ) → N defined

by

σ(θ)(i) = σk(i) if i ∈ N3k+θ, k ∈ N0,

are also injective. Hence, we can define an injective map σ : N→ N3 by

σ(i) = σ(θ)(i) if i ∈ N (θ), θ = 0, 1, 2.

From the construction of the sets Nj,k and the injection σ, we obtain ai � ãσ(i), and

(λik) → 0 ⇔ (λ̃σ(ik)) → 0 for any subsequence (ik) of N. Hence, by Proposition 3.0.4,

X can be quasidiagonally embedded in X̃3.

By the assumption X̃
qd
' X̃2, we have X̃

qd
' X̃3, hence X can be quasidiagonally

embedded in X̃. By interchanging X and X̃, we can analogously show that X̃ can be

quasidiagonally embedded in X. Therefore, by Proposition 2.5.1, we have X ' X̃.

Corollary 6.0.19 If G0,∞(λ, a)
qd
' G0,∞(λ, a)× G0,∞(λ, a), then the absolute bases in

G0,∞(λ, a) are pairwise quasiequivalent.
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