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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

INVESTIGATION OF NOISE FIELD AND VELOCITY PROFILES 

OF AN AFTERBURNING ENGINE 

By Warren J. North, Fdmund E. Callaghan, and Chester D. Lanzo 

SUMMARY 

Sound pressure  levels ,  frequency spectrum, and j e t  veloci ty  pro- 
f i l e s  a r e  presented f o r  an engine-afterburner combination at various 
values of af terburner  f u e l - a i r  r a t i o .  A t  t h e  high fue l - a i r  r a t i o s ,  
severe low-frequency resonance w a s  encountered which represented more 
than hal f  t h e  t o t a l  energy i n  t h e  sound spectrum. A t  s imilar  t h r u s t  con- 
d i t ions ,  lower sound pressure l eve l s  were obtained from a current  f i g h t e r  
a i r c r a f t  with a d i f f e r en t  af terburner  configuration. The lower sound 
pressure  l e v e l s  a r e  a t t r i bu t ed  t o  resonance-free af terburner  operation 
and thereby i nd i ca t e  t h e  importance of acoust ic  considerations i n  a f t e r -  
burner design. 

INTRODUCTION 

The operation of high-perf ormance af terburner  -equipped j e t  a i r c r a f t  
from a i r p o r t s  located i n  o r  near densely populated r e s i d e n t i a l  a reas  
represents  a formidable noise problem. Much higher noise l eve l s  gen- 
e ra ted  by afterburner-equipped a i r c r a f t  have not only increased publ ic  
indignation toward j e t  noise but have a l so  created a ser ious  noise prob- 
lem t o  supporting personnel a t  engine t e s t  f a c i l i t i e s  and aboard a i r c r a f t  
c a r r i e r s .  Afterburning t h r u s t  augmentation produces higher noise l e v e l s  
pr imar i ly  because of t he  high j e t  ve loc i t i e s  associated with increased 
j e t  temperatures and secondly because of t he  increased diameter of t h e  
j e t  nozzle. 

b 
Recent invest igat ions  ( r e f s .  1 t o  3) show tha t ,  f o r  t h e  range of j e t  

pressure r a t i o s  of current  i n t e r e s t ,  noise generation r e s u l t s  l a rge ly  
from t h e  tu rbu len t  mixing of t h e  exhaust j e t  with t h e  surrounding atmos- 
phere. L i g h t h i l l  ( r e f .  4) has shown theo re t i c a l l y  t h a t  t he  over -a l l  . rad ia ted  sound power from a j e t  discharging i n t o  quiescent a i r  va r i e s  
d i r e c t l y  as t h e  eighth power of t he  j e t  ve loc i ty  and t h e  square of t h e  
j e t  diameter. Model j e t  inves t iga t ions  ( r e f .  2)  r epor t  excel lent  agree- 
ment with t h e  L i g h t h i l l  theory. Experimental inves t iga t ions  of over -a l l  , 
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sound power rad ia ted  from turbo j e t  engines ( r e f s .  1 and 2) show good 
agreement, i n  general,  with t h e  L i g h t h i l l  theory. ~ e f e r e n c e  2 shows 
some disagreement with t h e  eighth-power r e l a t i o n  f o r  f u l l - s c a l e  engines 
at low engine power and consequent low j e t  ve loc i t i e s .  This discrepancy 
at low v e l o c i t i e s  i s  p a r t i a l l y  a t t r i bu t ed  t o  t h e  f a c t  t h a t  compressor 
noise, has become an appreciable por t ion  of over -a l l  noise.  

The inves t iga t ion  of t h e  noise f i e l d  i n  t h e  v i c i n i t y  of an 
xfterburner-equipped engine reported here in  was conducted a t  t h e  NACA 
Lewis laboratory  and represents  a por t ion of a study of j e t  noise  and 
neans f o r  i t s  suppression. 

APPARATUS AND PROCEDURE 

The engine 'and af terburner  configuration used i n  t h i s  inves t iga t ion  
aas mounted beneath the  wing of a C-82 a i r c r a f t ,  as shown i n  f igure  1. 
rhe a r e a  where . the t e s t s  were conducted i s  unobstructed rearward and t o  
the s ides  of t he  a i r c r a f t  f o r ' o v e r  112 mile: The neares t  r e f l e c t i n g  
surface  other  than t he  a i r c r a f t  surfaces was located approximately 600 
f e e t  i n  f r o n t  of t h e  a i r c r a f t .  Measurements of t h e  over-a l l  sound pres-  

' 

s u r e - l e v e l  were made approximately 6 f e e t  above ground l eve l  a t  15' in=  
t e r v a l s  from t h e  j e t  ax i s  and 200 f e e t  from the  j e t  nozzle, a s  shown i n  
f i gu re  2. Sound'-pressure-level measurements were made with a General 
Radio Company Type 1551-A Sound Level Meter. The frequency d i s t r i bu t i on  
of t h e  noise was measured .at s t a t i ons  45' and 90' from the  j e t  ax i s  
( f i g .  2) a t  a  d is tance  of 200 f e e t  from the  j e t  ex i t .  The frequency 
d i s t r i b u t i o n  was .measured with a ~ r c e l ' a n d  Kjaer Audio Frequency Spec- 
trum Recorder Type 2311. The frequency range f o r  t h i s  instrument i s  
from 35 t o  18,000 cycles per second and i s  divided i n t o  27 one-third 
~ c t a v e s .  

. . 

The sound f i e l d  was surveyed by obtaining measurements of sound 
pressure l e v e l  at each of t h e  s t a t i o n s  shown i n  f igure  2 a t  r a t ed  engine . 
speed-and f o r  af terburner  f ue l - a i r  r a t i o s  from zero to. 0.0274,.which 
correspond approximately t o  engine over -a l l  f ue l - a i r  r a t i o s  of 0.015 t o  
3.042. The frequency spectrum w a s  measured a t  .one s t a t i o n  simultaneously 
with t he  over -a l l  f i e l d  survey. Each 'se t  of measurements required 
approximately 3 minutes. 

The j e t  engin& used i n  t h i s  invest igat ion w a s  an;axial-flow engine 
with' a  r a t e d  sea- level  s t a t i c  t h ru s t  of 5000 pounds and a turbine-out le t  
temperature of 690'. C .  The af terburner  used i n  the inves t iga t ion  is. 
shown i n  f igure '  3. The af terburner  was e s sen t i a l l y  32 fnches i n  diam- 

7 

e t e r ,  and 54 inches long with a fixed-area nozzle 2% i ~ c h e s  i n  diameter. . 
The flame holder was a conventional double-ring V-gutter tjrpe. 
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The to ta l -p ressure  and temperature d i s t r i bu t i ons  across t he  v e r t i c a l  
center  l i n e  of t h e  nozzle from the  j e t  ax i s  t o  t h e  nozzle l i p  were meas- 
ured with two spec ia l ly  b u i l t  water-cooled pressure  and temperature 
probes ( f i g .  4 ) .  De ta i l s  of t h e  probe t i p s  a r e  shown i n  f igure  4 (b) .  
The t i p  o r  head of t h e  pressure probe i s  e s s e n t i a l l y  a blunt-nosed wedge 
with a to ta l -p ressure  hole i n  t he  leading edge and an o r i f i c e  on each 
face  of t h e  wedge f o r  measuring flow angular i ty .  The t i p  of t he  temper- 
a t u r e  probe i s  a U-shaped platinum - platinum-rhodium thermocouple. The 
conduction e r r o r  of t h i s  couple was determined from t h e  base tempera- 
t u r e s  measured by a platinum wire connected t o  t h e  platinum-rhodium s ide  
of t he  main couple and a platinum-rhodium wire connected t o  the  platinum 
s ide  ( f i g .  4 ( b ) ) .  The probes were moved across  the  j e t  e x i t  from t h e  
j e t  center  l i n e  t o  t he  nozzle l i p  by means of an actuator  mounted on tog 
of t he  af terburner  ( f i g .  5) . 

For comparison, the  sound f i e l d -  and frequency spectrum of a current  
afterburner-equipped f i g h t e r  a i r c r a f t  were measured. These da t a  were 
obtained with t h e  e x i t  nozzle of t h e  f i g h t e r  i n  t he  same locat ion of t h e  
sound f i e l d  a s  t h e  . e x i t  nozzle .of t he  t e s t  engine previously described. 

RFSULTS AND DISCUSSION 

The af terburner  u t i l i z e d  i n  t h i s  inves t iga t ion  was constructed with 
a f ixed-area nozzle. The pumping cha rac t e r i s t i c s  of a' tu rbo je t  engine 
a r e  such t h a t ,  at  ra ted  engine speed, only one 'afterburner, f u e l - a i r  r a t i o  
y ie lds  r a t ed .  turbine-discharge temperature and hepce maximw over'-all  
engine pressure  r a t i o .  A t  lower afterb'urner f ue l -a i r  r a t i o s ,  both t h e  
turbine-discharge temperature and t h e  over -a l l  engine pressure r a t i o  

, w i l l  be decreased. Although t h i s  type of af terburner  operation i s  un- 
conventional, i't does not  a f f e c t  t h e  p r i nc ipa l  parameters of af terburner  
sound generation. 

J e t  Temperature 

Figure 6 shows t he  r e l a t i o n  between indicated probe temperatures 
and corrected j e t  t o t a l  temperatures across  the  nozzle rad ius  at  an 
af terburner  f u e l - a i r  r a t i o  of 0.0234. The j e t  t o t a l  temperature w a s  
obtained by correct ing f o r  radia t ion,  conduction, and thermocouple r e -  
covery by methods out l ined i n  references  5 and 6. The maximum t o t a l  
temperature w a s  400° higher than t h e  measured temperature at t h e  main- 
junction thermocouple. A t  t h i s  probe locat ion,  the  base-junction tem- 
pera ture  was 600° lower than t h a t  a t  t h e  main junction. 

The corrected total- temperature p r o f i l e s  f o r  t he  e n t i r e  range of 
af terburner  f u e l - a i r  r a t i o s  from zero to '  0.0274 a r e  shown i n  f i gu re  7. 
A t  t h e  higher f u e l - a i r  r a t i o s ,  t he  temperature i n  the  core of t he  j e t  i s  



seen t o  be much higher than i n  t h e  outer  regions of t h e  jet.. A t  t h e  
lower temperatures, t he  p r o f i l e  i s  uniform except a t  t h e  j e t  boundary. 
The low temperatures corresponding t o  low fue l - a i r  r a t i o s  a r e  below 
tu rb ine-ou t le t  r a t ed  temperature, as would be expected, because t.he 
engine i s  operating with constant .  exhaust-nozzle area. Rated turbine-  
o u t l e t  temperature was a t t a ined  only at  an afterburner f ue l - a i r  r a t i o  of 
0.0274. No temperature measurements were taken i n  t h e  core of the  j e t  
a t  the  maximum f u e l - a i r  r a t i o  because the  temperature of t h e  main junc- 
t i o n  w a s  approaching the  melting po in t  of platinum. 

(U 
(U 
d' 
m 

J e t  Mach Number and Velocity 

The r a d i a l  d i s t r i bu t i on  of Mach number i s  shown i n  f i g u r e  8 f o r  a 
range of af terburner  f u e l - a i r  r a t i o s  from zero t o  0.0274. The Mach num- 
be r  was a maximum near t he  nozzle l i p  and increased with increas ing fue l -  
a ir  r a t i o s .  More uniform Mach number p ro f i l e s  occur a t  t h e  higher f ue l -  
air  r a t i o s .  A s  would be expected, t h e  large var ia t ion  of Mach number 
with f u e l - a i r  r a t i o  was due t o  t h e  constant-area exhaust nozzle, because 
engine pressure  r a t i o  decreased considerably as af terburner  f u e l - a i r  
r a t i o  decreased. Constant free-stream s t a t i c  pressure across  t h e  sub- 
sonic j e t  was assumed f o r  t h e  Mach number ca lcula t ions .  S m a l l t o t a l -  . 
pressure  correct ions  due t o  j e t  swirl were necessary a t  t h e  low pressure 
r a t i o s .  

The ve loc i ty  p ro f i l e s ,  which were computed from the  temperature and 
Mach number data ,  a r e  shown i n  f i g u r e  9. A t  t h e  high fuel -a i?  r a t i o s ,  
t h e  ve loc i ty  i s  maximum and t h e  p r o f i l e  i s  near ly  f l a t  over t h e  center  
ha l f  of t h e  j e t  and decreases near t h e  l i p .  A t  t h e  low f u e l - a i r  r a t i o s ,  
t h e  ve loc i ty  p r o f i l e s  a r e  s i m i l a r  t o  the  Mach number p r o f i l e s  because 
temperature d i s t r i b u t i o n  i s  uniform across the  main por t ion  of the  j e t .  

The mass-flow-weighted average veloci ty  f o r  each af terburner  f u e l -  
a ir  r a t i o  was computed from t h e  curves of f i gu re  9, and t h e  values a r e  
shown i n  t he  following t ab l e :  

Afterburner 
f ue l - a i r  r a t i o ,  
l b  f ue l / l b  air 

0 
0075 

-0125 
0177 
0234 

.02 74 

Mass -f low-weighted 
average velocity,  

f t / s e c  

945 
970. 

I068 
1500 
1802 
2 100 
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Sound Measurements 

The frequency d i s t r i bu t i on  of t he  j e t  noise a t  45' and 90' azimuth 
angles and a t  a distance of 200 f e e t  from.the j e t  e x i t  i s  shown i n  f i g -  
ure 10, where t h e  spectrum l e v e l  (sound power per  cycle) i s  p lo t ted  a s  
a function of frequency. It i s  apparent t h a t  most of t h e  sound energy 
a t  45' azimuth angle occurs a t  frequencies below 500 cycles per second 
( f i g .  1 0 ( a ) ) ,  and a t  90' azimuth angle, most of t he  energy e x i s t s  below 

w 1000 cycles per  second ( f i g .  10(b) ) . I n  addit ion,  a t  both azimuth 
% angles, a strong resonant condition e x i s t s  a t  approximately 80 cycles 
N per second f o r  t h e  high fue l - a i r  r a t i o s .  The low frequency of t h e  

resonance i n f e r s  a longi tudinal  mode of vibration,  since t h e  correspond- 
ing wave length i s  approximately twice t he  length of t h e  engine and 
afterburner.  A t  t he  th ree  highest f u e l - a i r  r a t i o s ,  the  energy i n  t h e  
t h i r d  octave band centered around 80 cycles per second i s  approximately 
50 percent o r  more of t he  t o t a l  energy i n  t he  entire'spectrum. Since 
t h e  peak decibel  values at t he  resonant condit ion a r e  nearly t h e  same 
f o r  t he  t h r ee  highest  f ue l - a i r  r a t i o s ,  it would be expected t h a t  t h e  

v over -a l l  sound pressure l eve l  throughout t h e  e n t i r e  f i e l d  i s  g rea t l y  
influenced by t h e  resonance. The polar  diagram of t he  sound f i e l d  ( f i g .  
11) bears  out  t h i s  conclusion, since t h e  th ree  highest fue l -a i r  r a t i o s  
show only a s l i g h t  tendency of decreasing sound pressure l eve l  with 

, decreasing f u e l  flow, t h a t  i s ,  decreasing j e t  velocity.  The sudden 
reduction i n  t o t a l  sound power between a f u e l - a i r  r a t i o  of 0.0177 and 
0.0125 corresponds t o  t he  l a rge  reduction i n  t h e  resonant condition 
shown by t h e  spectrum-level curves ( f i g .  10) . 

It i s  therefore  apparent t h a t  t h e  e f f e c t  of the  resonance i s  so 
l a rge  as t o  preclude a corre la t ion of t h e  over -a l l  in tegrated sound 
power l e v e l  with t h e  eighth-power l a w  of L igh th i l l  ( r e f .  4) mentioned 
previously. However, t he  spectrum l eve l s  at t h e  45O azimuth angle were 
in tegrated with a s t r a igh t  l i n e  between 63 and 100 cycles per second, 
with resonant condit ion ignored. The over -a l l  sound pressure l e v e l  ob- 
ta ined i n  t h i s  manner i s  shown a s  a function of t he  j e t  velocity i n  f i g -  
ure 12. Also i n  f igure  12 are  several  po in t s  f o r  t h e  same engine with 
a standard t a i l  pipe. These da ta  a re  corrected t o  a diameter equal t o  
t h e  diameter of t h e  afterburner nozzle. 

The agreement between t he  two s e t s  of da ta  i s  qui te  good (wi thin  
2 db), and t h e  slopes of both curves follow approximately a 6.25-power 
l a w  of sound power with velocity.  This devia t ion from t h e  eighth-power' 
l a w  of L i g h t h i l l  i s  not believed t o  be s ign i f ican t ,  s ince only one point  
i n  the  f i e l d  i s  being considered and not t h e  t o t a l  in tegrated power. 

The undes i rab i l i ty  of the  resonance previously described cannot be 
overemphasized, not only with respect  t o  noise but  a l so  from s t ruc tu r a l  
considerations. Operation of t he  present afterburner i n  t he  resonant 

, condition resu l ted  i n  a number of fa t igue  f a i l u r e s  of t h e  flame holder. 



Fortunately, there a re  a number of remedies f o r  a l l  the  various 
modes of afterburner resonance, and production afterburners a re  usually 
resonance-free. An example of a typica l  frequency spectrum of a current 
afterburner -equipped f ighter  'airplane i s  shown i n  f igure 13. These data  
were obtained a t  the  same location and under similar atmospheric condi- 
t i ons  a s  the r e su l t s  previously given. The a i r c r a f t  incorporated the 
same type engine a s  tha t  used i n  the  previous t e s t s  but was f i t t e d  with 
a longer afterburner, which contained an inner l i ne r  and an electronically- 
controlled va,riable.-area nozzle. The spectrum levels  shown were mkas-' 
ured a t  t he  45O and 90' azimuth angles at 200 fee t .  A polar p lo t  of the (U 

cu 
sound f i e l d  i s  shown i n  f igure 14. These measurements were made a t  the dc 

M 
maximum th rus t  condition. The lack of any prominent resonances i s  quite 
apparent i n  f igure  13. As a resu l t ,  the over-all  sound pressure f i e l d  
produces lower sound pressure levels  than those obtained i n  the previous 

. . investigation. 

SUMMARY OF RESULTS 
e 

As  p a r t  of a program f o r  the  investigation of j e t  noise and means 
f o r  i t s  suppression, the sound f i e l d  about. an afterburner -equipped engine 
w a s  investigated. Afterburner j e t  velocity prof i les  are presented from 
measurements made with water-cooled temperature and pressure probes. 
The par t i cu la r  configuration tested was found t o  have a strong resonance 
of approximately 80 cycles per second f o r  a range of afterburner f uel-air  
r a t i o s  from zero t o  0.0274. The sound power of the resonance was 50 per'- 
cent o r  more of the t o t a l  energy i n  the sound spectrum. Such a condition 
i s  highly undesirable with respect t o  engine noise and s t ruc tura l  integ- 
r i t y  of the, engine and airframe. Integration of the sound spec t rm a t  
t h e  45O azimuth angle ignoring the  resonant condition gave values of 
over-al l  sound pressure leve l  which, when plotted against j e t  velocity, 
gave good agreement between afterburning and nonafterburning conditions. 

The afterburner used i n  these t e s t s  was not representative of cur- 
r en t  production. Consequently, the  sound f i e l d  of a current afterburner- 
equipped a i r c r a f t  was measured. The frequency spectrum was resonance- 
f r e e  and the  sound levels were lower than f o r  the  experimental a f te r -  
burner. 

Lewis F l ight  ~ r o p u l s i o n  . Laboratory 
Nationa1 '~dvisory Committee f o r  Aeronautics 

Cleveland, Ohio, July 8, 1954 
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Figure 1. - Location of engine and afterburner beneath wing of cargo airplane. 
8 
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Figure 2. - Location of survey s t a t ions  i n  sound f i e l d  around a i r c r a f t  t e s t  
bed. Radius, 200 f e e t .  



Figure 3. - Engine and afterburner installation. 
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(b) Close-up of probe t i p s .  

Figure 4. - Concluded. Water-cooled total-pressure and -temperature probes. 



Figure 5. - Probe actuator mounted on afterburner. 



Figure 6- - Temerature prof i les  at afterburner-nozzle exit. Fuel-air ratio,  0.0234. 
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Figure 7 .  - ~otal-temperature 'prof i l e s  at afterburner-nozzle exit .  . , . 



Figure 8. - Mach number profilea a t  afterburner-nozzle exi t .  



Radial distance, in. 

Figure 9. - Velocity profiles at afterburner-nozzle exit. 
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(a) Azimuth angle, 45'. 

Figure 10. -' Spectrum level  f o r  engine-afterburner combinatibn. Distance from je t  exit ,  200. f ee t .  



Frequency, cps 

(b) Azimuth angle, 90'. 

Figure 10. - Concluded. Spectrum leve l  f o r  engine-afterburner combination. 
Dietance from j e t  exi t ,  200 fee t .  
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Figure 11. - Polar diagram of eound f i e l d  for  engine-afterburner combination. 
Distance from jet  exit, 200 feet .  
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J e t  velocity,  f t / s e c  

Figure 12..- Variat ion of over -a l l  sound preseure l e v e l  with velocity.  
~zimuth angle, 45'; distance from nozzle, 200 feet .  
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Figure 13. - Spectrum l eve l  f o r  f i gh te r  a i r c r a f t  engine i n s t a l l a t i o n  under maximum afterburner  
t h rus t  condition. Distance from j e t  ex i t ,  200 f e e t .  
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Figure 14. - Polar diagram of sound f i e l d  f o r  f igh te r  a i r c r a f t  engine i n s t a l l a t i o n  
Under maximum afterburner th rus t  condition. Distance from j e t  exi t ,  200 f e e t .  


