N74-10024

NASA TECHNICAL NOTE

NASA TN D-7487

NASA TN D-7487

CASE FILE COPY

FORTRAN PROGRAM FOR PREDICTING OFF-DESIGN PERFORMANCE OF CENTRIFUGAL COMPRESSORS

by Michael R. Galvas

Lewis Research Center and U.S. Army Air Mobility R&D Laboratory Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . NOVEMBER 1973

.

•

. .

			· · · ·	
1. Report No.	2. Government Accessi	on No.	3. Recipient's Catalog	No.
A Title and Subtitle			5. Report Date	
FORTRAN PROGRAM FOR PF	EDICTING OFF-	DESIGN	November	
PERFORMANCE OF CENTRIE	UGAL COMPRES	SORS	6. Performing Organiza	ation Code
7. Author(s) Michael R. Galvas			8. Performing Organiza E -7480	tion Report No.
			10. Work Unit No.	· · · · · · · · · · · · · · · · · · ·
9. Performing Organization Name and Address	4		501-24	
NASA Lewis Research Center		1	11. Contract or Grant	No.
U.S. Army Air Mobility R&D	Laboratory			
Cleveland, Ohio 44135			13. Type of Report and	d Period Covered
12. Sponsoring Agency Name and Address			Technical No	te
National Aeronautics and Spac	e Administration		14. Sponsoring Agency	Code
Washington, D. C. 20546				
15. Supplementary Notes				
16. Abstract			· · · · · · · · · · · · · · · · · · ·	
A FORTRAN program for calc	-	- -		
with channel diffusers is pres				
overall impeller and diffuser				
equations and empirical corre				
istics and overall geometry.				
for a range of inlet velocity le				
ciency decrements, compress				
tabulated. An example case of				
mercial engine manufacturer	is presented to de	emonstrate the corre	elation with limi	ted experi-
mental data.				
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Centrifugal compressor		Unclassified - u		
Off-design performance		1		
		1		
19. Security Classif. (of this report)	20. Security Classif. (c	L of this page)	21. Noof Pages	22. Price*
Unclassified		assified	58	Domestic, \$3.50 Foreign, \$6.00
	1		1	

 * For sale by the National Technical Information Service, Springfield, Virginia 22151

-

FORTRAN PROGRAM FOR PREDICTING OFF-DESIGN PERFORMANCE

OF CENTRIFUGAL COMPRESSORS

by Michael R. Galvas

Lewis Research Center and U.S. Army Air Mobility R&D Laboratory

SUMMARY

A FORTRAN program for calculating the off-design performance of centrifugal compressors with channel diffusers is presented. Use of the program requires complete knowledge of the overall impeller and diffuser geometries. Individual losses are computed using analytical equations and empirical correlations which relate loss levels to velocity diagram characteristics and overall geometry. On a given speed line compressor performance is calculated for a range of inlet velocity levels. At flow rates between surge and choke, individual efficiency decrements, compressor overall efficiency, and compressor total pressure ratio are tabulated. An example case of performance comparison with a compressor built by a commercial engine manufacturer is presented to demonstrate the correlation with limited experimental data.

INTRODUCTION

Centrifugal compressors are frequently used in refrigeration cycles, refining systems, aircraft auxiliary systems, turboshaft engines, and other systems where lightweight compact compression is required. The off-design performance characteristics of centrifugal compressors are of interest because of the large effects that compressor component performance has on overall cycle performance and because the compressor is required to operate at off-design conditions much of the time. For turboshaft engines assuming a drive turbine inlet temperature of 1422 K and efficiency of 90 percent, a 2.6-percent loss in compressor efficiency results in a 2-percent increase in engine specific fuel consumption (SFC) and a 2.8-percent loss in engine power at design speed. These losses become more pronounced at part-power settings. In addition to good performance at off-design flow rates it is important that the compressor operate stably over the range of flows and speeds required by the engine operating envelope. The usable range of the compressor pressure ratio-mass flow characteristic is bounded by the surge and choke mass flow rates. Operation at flows less than the surge point flow should be avoided because of potentially dangerous vibrations induced by the intermittent flow reversals and power loss. Operation with the compressor choked is generally avoided because of the poor compressor efficiency and pressure ratio at the choke point. The problem undertaken in this analysis is to determine the centrifugal compressor performance characteristics over a range of rotative speeds and flow rates and predict the usable range of flow rates at which the compressor can operate. The method of analysis uses the loss correlations and equations of reference 1 with surge and choke criteria added to predict compressor operating range.

A FORTRAN program has been developed at NASA Lewis Research Center which predicts centrifugal compressor performance through utilization of empirical correlations which are related to the compressor geometry and velocity diagram characteristics. A complete knowledge of the compressor overall geometry and working fluid inlet total conditions is required for its use. Working fluid state conditions and flow properties are calculated using a mean streamline one-dimensional analysis. The program is limited to centrifugal compressors with channel diffusers operating up to their choke point. A comparison of calculated and experimental performance is given to demonstrate the correlation with limited experimental data. The experimental data presented for comparison were obtained from a compressor developed by Solar Aircraft Company, Division of International Harvester, Inc. Shock losses in the rotor are neglected. Clearance losses are considered to be inherent in the impeller losses since good performance correlation is achieved on compressors operating with reasonable clearances.

METHOD OF ANALYSIS

Input values of $(V/V_{cr})_0$ are used to determine compressor mass flow rate. (Symbols are defined in appendix A and compressor stations are shown in fig. 1.) Individual losses are calculated using velocity diagram characteristics and empirical correlations determined by the input absolute velocity level and compressor geometry. For compressors having inlet guide vanes it is assumed that the vanes are placed in a constantarea annulus having no wall curvatures or slopes. Overall compressor efficiency, total pressure ratio, and mass flow rate are tabulated for each operating point inside the predicted range for each speed line that is input. A complete discussion of the loss calculations is discussed in appendix B.

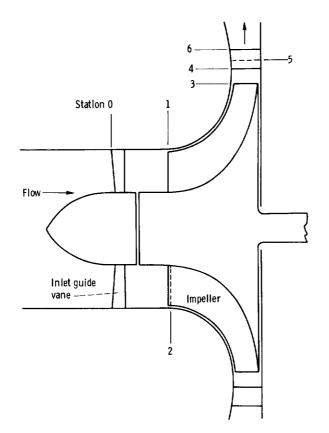


Figure 1. - Meridional cross section of compressor.

Required Information

The compressor data needed to use the FORTRAN program are the following: inducer inlet tip diameter, inducer inlet hub-tip diameter ratio, inducer inlet blade angle at the root-mean-square diameter, inducer blade blockage at the rms diameter, inducer inlet hub and tip wall slopes, inducer inlet hub and tip wall curvatures, inlet solid-body swirl angle at the rms diameter, inducer-tip to impeller-exit diameter ratio, impeller exit blade angle, impeller blade exit height, number of impeller blades at exit, vaneless diffuser diameter ratio, vaned diffuser setting angle, total vaned diffuser throat area, vaned diffuser area ratio, skin friction coefficient of the wetted surfaces, design rotative speed, and the fraction of design rotative speed for which the calculations are to be performed.

The working fluid properties and state conditions required are: inlet total pressure, inlet total temperature, inlet dynamic viscosity based on total conditions, specific heat ratio, and gas constant.

Two control variables are used to select the options of solid-body prewhirl and impellers with splitter blades. Inducer inlet hub and tip wall slopes and curvatures are all set equal to zero for compressors with inlet guide vanes.

Information which corresponds to the design speed line for the example compressor is as follows:

Compressor data
Design rotative speed, N, rpm
Inducer inlet tip wall curvature, C_{1T} , m ⁻¹ (positive around axis of rotation) 0 Inducer inlet tip wall slope, χ_{H} , deg from axial
Working fluid properties and state conditions
Specific heat ratio, γ 1.4Gas constant, R, J/(kg)(K)287.05Inlet total pressure, p'_0 , N/m²101 325Inlet total temperature, T'_0 , K288.15Inlet dynamic viscosity based on total conditions, μ'_0 , N-sec/m²1.788×10 ⁻⁵
Velocity diagram properties
Number of values of compressor inlet absolute critical velocity ratios used in calculating performance 15 Compressor inlet absolute critical velocity ratios, $(V/V_{cr})_0$ 0.47 to 0.61 Inducer inlet solid-body swirl angle at the rms diameter, α_{1MF} , deg from meridional 0 Splitter control variable, SPLT (SPLT = 0, no splitter blades; SPLT = 1, splitters)

Calculated Losses

Inlet guide vane loss. - Equations relating working fluid kinetic energy level, boundary layer, and blade geometry were developed for axial turbine stators in reference 2. These equations were used to calculate state conditions downstream of the inlet guide vanes; thus the velocity diagram characteristics were found by satisfying onedimensional continuity.

An inlet guide vane loss coefficient is calculated using the same assumptions about blade geometry and boundary layer characteristics as used in reference 3. The inlet guide vane loss is then calculated as a fraction of the ideal kinetic energy at the rms diameter.

Inducer incidence loss. - Reference 4 developed equations for optimum inducer incidence angle of centrifugal compressors with axial inlets. The optimum incidence angle is calculated from the inlet velocity diagram characteristics and blade blockage at the rms diameter assuming an incompressible working fluid. The enthalpy loss due to incidence is calculated assuming that the relative velocity component normal to the optimum incidence angle is lost. Therefore, the incidence loss is simply

$$\Delta h_{\rm INC} = \frac{W_{\rm L}^2}{2C_{\rm p}}$$

where

$$W_{L} = W_{1MF} \sin \left| \beta_{opt} - \beta_{1MF} \right|$$

<u>Blade loading loss</u>. - Boundary layer growth in the impeller is highly dependent on the diffusion of the working fluid internal to the impeller itself. Reference 5 proposed an equation for calculating the diffusion factor of the impeller based on a uniform velocity loading along the blade chord. This equation is used to calculate the impeller diffusion factor for impellers without splitters. A modified form, with reduced penalty due to aerodynamic work input, is used for impellers which have a set of splitter blades. With the diffusion factor calculated by these methods the blade loading loss was expressed as

$$\Delta h_{BL} = 0.05 D_f^2 u_3^2$$

Skin friction loss. - In addition to the losses resulting from the aerodynamic loading of the impeller blades, the impeller incurs losses due to skin friction of the impeller and shroud wetted areas. Reference 5 developed an equation for this loss based on fully developed turbulent pipe flow. In the case of impellers with splitter blade rows, the empirical constant appearing in the equation is modified to account for the higher mean channel relative velocity caused by the addition of splitters. The general equation used for skin friction loss is

$$\Delta h_{SF} = K_{DF}C_f \frac{\frac{L}{D_3}}{\frac{D_{HYD}}{D_3}} \left(\frac{W}{u_3}\right)_{av}^2 u_3^2$$

where $K_{SF} = 5.6$ for conventional impellers and $K_{SF} = 7.0$ for impellers with tandem blades.

<u>Disk friction loss</u>. - The specific loss due to windage on the compressor back face is calculated using the equation

$$\Delta h_{DF} = 0.01356 \frac{\rho_3}{w \text{ Re}^{0.2}} u_3^3 D_3^2$$

This is a form of the disk friction power loss of reference 6.

<u>Recirculation loss</u>. - Losses resulting from work done on the working fluid due to backflow into the impeller are expressed as

$$\Delta h_{\rm RC} = 0.02 \quad \sqrt{\tan \alpha_3} \, D_{\rm f}^2 u_3^2$$

This is a modification of the equation proposed in reference 5.

<u>Vaneless diffuser loss</u>. - The flow angle and Mach number variation with radius in the vaneless space are determined by numerical solution of the differential equations for vaneless space flow developed in reference 7. The equations are simplified through the assumptions of adiabatic flow and constant geometric depth passage. The radial total pressure distribution in the vaneless space is calculated using the equation derived in reference 5. When the fluid state and flow properties are determined at the vaned diffuser leading edge radius by the methods described previously, the vaneless diffuser loss is calculated from the equation

$$\Delta h_{\mathbf{VLD}} = C_{\mathbf{p}} T'_{\mathbf{3}} \left[\left(\frac{\mathbf{p}_{4}}{\mathbf{p}_{4}'} \right)^{(\gamma-1)/\gamma} - \left(\frac{\mathbf{p}_{4}}{\mathbf{p}_{3}'} \right)^{(\gamma-1)/\gamma} \right]$$

<u>Vaned diffuser loss</u>. - Curves of maximum static pressure recovery coefficient at a given area ratio were extrapolated from the test data for square throat diffusers reported in reference 8 for various combinations of vaned diffuser throat Mach number, aerodynamic blockage, and area ratio. These data were recorded for channel diffusers with symmetrical pressure loadings about the channel centerline. The vaned diffuser in a centrifugal compressor is loaded with a pressure gradient across the channel. In this analysis it was assumed that the difference in the loadings between the test diffusers of reference 8 and the compressor diffusers would have no effect on calculated diffuser recovery. A one-seventh power velocity distribution in the boundary layer along the vane-less space endwalls is used to calculate the displacement thickness representing vaned diffuser throat blockage. The value of static pressure recovery coefficient C_p^{**} corresponding to the vaned diffuser geometric area ratio, inlet Mach number, and aerodynamic blockage is extrapolated from the test data.

The vaned diffuser exit critical velocity ratio is calculated using one-dimensional continuity. Vaned diffuser loss is then calculated using the equation

$$\Delta h_{VD} = C_{p} T'_{3} \left[\left(\frac{p_{6}}{p_{6}'} \right)^{(\gamma - 1)/\gamma} - \left(\frac{p_{6}}{p_{5}'} \right)^{(\gamma - 1)/\gamma} \right]$$

Calculation of Compressor Choking Flow

Two criteria are used in the prediction of compressor choking flow: (1) inducer choke and (2) vaned diffuser choke. Reference 9 presented data on inducer choking incidence levels as functions of relative Mach number and blade angle at the rms diameter for inducer pitch-chord ratios of 0.5 and thickness-chord ratios of 0.05. These data were used to predict compressor choking flow due to inducer choke.

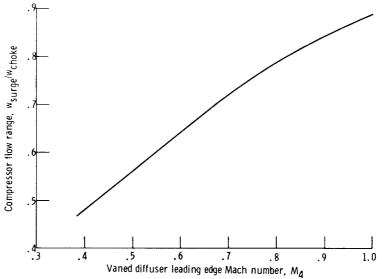
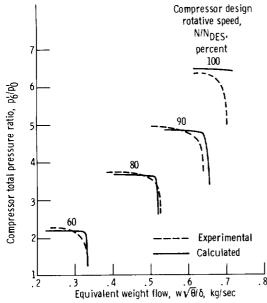
Vaned diffuser choke is predicted from one-dimensional continuity using the computed values of weight flow, total temperature, total pressure, aerodynamic blockage, and the geometric throat area. The maximum value of the one-dimensional weight flow function is calculated from the equation

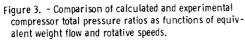
$$\left(\frac{w\sqrt{T_3}}{p_5^A 5^B 5}\right)_{max} = \sqrt{\frac{\gamma}{R}\left(\frac{2}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}}$$

At the first input critical velocity ratio where the left side of the equation equals or exceeds the right side the compressor is choked. One would expect the speed lines to have infinite slopes at the choke point. The vertical portions of the speed lines are approximated through the assumption of zero static pressure recovery in the vaned diffuser for the cases of vaned diffuser choke. The impeller characteristic should exhibit a vertical slope at the impeller choke point but this is not predicted by the correlations used.

Calculation of Compressor Surge Point

The vaned diffuser is assumed to be the component which governs the location of the compressor surge point. Examination of performance characteristics of centrifugal compressors covering a range of pressure ratios indicates that compressor flow range can be expressed as a function of the vaned diffuser leading edge Mach number. With a good impeller-diffuser throat area match the flow range will vary with the diffuser leading edge Mach number as shown in figure 2. This curve was deduced from unpublished operating range data for centrifugal compressors with design point pressure ratios ranging from 1.9 to 10.0.


Figure 2. - Compressor flow range as a function of vaned diffuser leading edge Mach number.

This section compares the results obtained by the analytical procedure described herein to the experimental results obtained with a commercially manufactured centrifugal compressor.

Figure 3 shows the comparison between calculated and experimental pressure ratios as functions of corrected flow for 60, 80, 90, and 100 percent rotative speeds. Choking flow is caused by inducer choke at 100 percent speed and by diffuser choke at the other speeds. The assumption of zero static pressure recovery at the vaned diffuser choke point permits an estimate of the flow rate at which the compressor pressure ratio characteristic becomes vertical. Experimentally, the impeller characteristic exhibits behavior similar to that of the diffuser at the choked condition. However, the multidimensional effects that characterize this behavior apparently cannot be approximated accurately with strictly one-dimensional correlations. Modifying the correlations for evaluation at the hub, mean, and tip sections and averaging the results may help to predict the gradual pressure ratio reduction in moving toward choke. The potential refinements offered by this approach have not yet been considered herein. Maximum error in predicting the choking weight flow occurs at the 90 percent speed line and is 25 percent. Maximum error in predicting the compressor operating range (w_{surge}/w_{choke}) occurs at the 80 percent speed line and is 8.1 percent.

Figure 4 shows the comparison between calculated and experimental efficiencies as

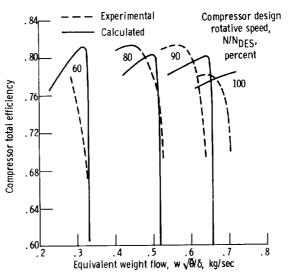


Figure 4. - Comparison of calculated and experimental compressor total efficiencies as functions of equivalent weight flow and rotative speeds.

functions of corrected flow. The worst estimate of peak efficiency occurs at the 90 percent speed line and is in error by 1.2 points. Only partial data is shown for the efficiency contour at 60 percent speed. This results because the data is replotted from a performance map that had efficiency contours and more data could not be accurately interpolated. Predicted surge point efficiencies for all speed lines are considerably lower than those experimentally measured. This can be attributed to predicted diffuser pressure recovery being lower than that attainable experimentally. Aerodynamic blockage growth may not be as rapid as that predicted by the model in moving toward surge.

Compressor efficiency increases with increasing flow until the choke point is reached. At the choke point vaned diffuser static pressure recovery decreases, resulting in a decrease in overall compressor efficiency. At the impeller choke point one would expect the impeller losses to increase substantially, resulting in a decrease in overall compressor efficiency. However, this behavior is not predicted through the use of the empirical correlations.

CONCLUDING REMARKS

This section summarizes the pertinent characteristics of the prediction method, discusses the limitations of the method, and notes the effect of the limitations on the results.

For inducers with relative Mach numbers appreciably in excess of unity the predicted compressor total pressure ratio and efficiency are greater than that attainable experimentally. This is a result of neglecting shock losses in the inducer inlet.

Predicted static pressure recovery for vaned diffusers with throat Mach numbers greater than unity will be too large. Extrapolation of the channel diffuser data used in the program is valid only in the subsonic flow regime.

The prewhirl option available in the program is for solid-body vortex swirl. This type of swirl is used primarily because it minimizes inducer inlet tip relative Mach number.

Compressor total pressure ratio and efficiency are not adequately predicted with the one-dimensional correlations when the compressor mass flow rate is limited by the impeller rather than the vaned diffuser. The predicted total pressure ratio and efficiency levels are higher than those measured experimentally.

Predicted surge point efficiencies are considerably lower than those measured on the example compressor. Correlation with experimental data from other compressors indicates that the predicted surge point efficiencies are sometimes higher and sometimes lower than the corresponding experimental values. This may be due in part to the difficulty encountered in making precise measurements at this flow condition.

FORTRAN PROGRAM

Program Input

The information required for the program is input using NAMELIST format. A sample input sheet, with the data used for generating the 100 percent speed line for the example compressor, is shown in figure 5. The definitions of the FORTRAN input variables are:

ADTH	total vaned diffuser throat area, $A_5^{}$, m^2
AL1MF	inducer inlet absolute flow angle for solid-body swirl at rms diameter,
	^{<i>α</i>} 1MF
AL3	vaned diffuser setting angle, α_4 , deg from meridional
AR	vaned diffuser area ratio, A_6/A_5
B1MFB	inducer rms blade angle, $\beta_{1\mathrm{MFb}}$, deg from meridional
B2	impeller exit blade height, b ₃ , m
B2X	impeller blade exit backsweep, β_{3b} , deg from meridional

BLOCK inducer rms blade blockage function

. 1 K																																	P	NO J	ŧζ	-	, HE	9E A									Т	AN	AL 7	51										Ť						
									Sa	аm	p	1 6	•	1r	ıp	ut	5																																											1	5466	۰.		-	OF .	
NUMBER 2	-																							1	F(DI	٦	R	A	N	;	S٦	ΓA	T	E١	M	E١	1	•																							Ι	ø	ENTI	fic I	A 1+3
2343	Ţ	ł	•	n		z le	- 14	15	18		18	T.,	20	n	72	23	24 2	5.2	t ?	78	29	30	51	52	53	14	35	.16	57	5A	14	40	L)	42	43	44		••	. 7 4	.* •	9	n s	5 1	25	35	÷ 5	55	٥ S	7.54	9 5 v	60	6	e?	530	4 03	6.6	61	68	6 V	/0 1	12	7.5	74	15 7	6 77	28
\$INPL	л		G	A J	1	-1		4	,	R	G	A	S	-	2	9 7	1	. C)5	,	P	0	2	-	1	0	1	3	2	5		,	т	0	Ρ	=	5 (88	3.		15	ς,	1	1 =	-7	' p	2 0) ()0		,	D	Ι	T		0	8	1 :	3			Γ				
MU 0=1		7	8 j	j	E-	5	,	c	I	i -		þ	0	4	,	v	þ	vic	F	=		4	7	,		4	8	,		4	9	,		5	,	• •	5	1,	,	.	5	2,	,	5	53	s[,		5	4	<u>,</u>		5	5	,	5	6	ļ		5	7,		5	8	, .	5	9
6,6	şμ	,	Ŋ	į	v	þ	R	=	1	5		þ	R	A	т	=	• 🗄	5 6	j I	4	,	L	A	M	X	=	•	5	3	1	3	,	в	2	X	=	25	5		•	Z=	=]3	3	s.	÷	h	'n	L I	DF	R	=	1	•	1	4,	В	5	=	• [o c) <u>5</u>	1				
BIMFI	≱	4	9	· ,	į	۱þя	=	2		7	,	в	L	0	c	ĸ	=[.	9	j,	A	Ţ	3	=	7	9	•	,	A	D	Т	Н	=	•	0	0	З	7	1	, i	1	oi	ų,	DI	E S	5.=	=[1	Ļ.	.,	s	P	L	Т	=	ı,	A	Ļ	I	M	F	= 0	j.	ļ				÷
CURVH																																				,												,		,		i.														
			,		÷		ļ			ļ	+							÷		i. A															,		,					ļ						ļ		•	• •	1_		+			ļ.,			•	•	L	 		· • · ·	à.
	ļ		,			ļ					,							+													, .					,		,		1				,		1				+	,											Į.		÷		
	ļ		,			ļ									.,							.															,	,	,					,						,			. ,	,										+	•	
	ļ		,			ļ					,				.,			4						,										4				,						,		÷		,		,			. ,				↓.				•-		• • •	••		
	ļ		,		+							Ļ	F -				ļ	÷	÷	÷		.						4						4			+	ŀ				۲	÷		4	+		÷		F			. ,	4		+ -		+				ļ.	÷··•			-+
	ļ		,			ļ												÷	5	ł.										4				4	,	,	,	,		ł				,							,			,	,			- +		+-		ļ	++		÷	.
			,			ļ						į.						÷		ł.		.												4	,	,		,		ł																				• •		ļ.				
						ļ	÷						• •					÷																				,		ł				÷		÷				,	,				•			•	.,		• · ·	ļ,	• •			
				÷		÷											1		•			.								•				4	,			,	٠	-	•	,		,		ł		•	•	,			• •	-4		• •	.	-+		•	•- ·-	ļ	- +		• •••••	+
					÷	÷								•					÷	÷		.						•			• •			-	•		•	,	٠	+		•		٠		ł			÷	•			•		,	•		÷		• • •	•	-		• •	•	+
			,	÷		ł											+	÷		÷		.		,						•			• •		•		÷	,	٠				,			ļ	•	٠	٠	•		ļ ,	• •	,	٠	• •		+	-•-	•	•	ŀ	+	•		
			•	٠	•	ł											+	•			•			,			•	•										,	٠	1	٠		,	٠	•	÷			ł	•	, .		••••	-	-+	•	ļ.,	•		•••	+	┝	- +	+ -		
	ŀ		•	٠		ł	•			÷							+	+	·	÷	•	.		•		••••	•	·		•	• • •			-	- +	•	•••		• •	1	٠	•	• •	٠	·	÷	•	-+	٠	•	•	ļ	•		+ -	•		+		• •	•••	ŀ	-+	••••	-+	+
			•		4	ł	•	•		4	,		•			•	ł	٠	•		•	.				•	•	•		•			• •	ł	• •		•		٠	-	-+		+	•	•	÷	·	+ -		+ -	•	-	+	-	••••		•	•	•	•	•	·	•	• •	•	•••
• • • •		• •	,	•	,	ł	·		•	٠	•		• •		•	•	1	٠		•	•	.				•	,	•		•	, .		•	1		•	•	,			•	,	,	٠	·	ł	·	•	·	•	•		• •	•	٠	• •	• •	•••	••	•	•	ł۰	•	٠	٠	• ·
• • •	1		•	٠	••	+	٠	•	٠	٠	• · ·	ł	•		•	•	.+	+		•	•	•	•			•	•	•		4			•	ł	• •	•	•	+		-	• •	•••	- +	- +		Ť				de la	•		- +	4	+ -	*-	<u></u> +∙+	•	.+.	+	-+- ·	ŀ	- •	+	•	
	ł	••	•	• •	•••	+	.	• •	*	+	•	-	• • •	1	•	- •	+		•	+	•	•	•	•		•	•	4	. .	4	• •			-+	•	•	•	• •	٠		•	•	+	•	·	ł	•	•	•	•	• ·	+•		-•	-+-	•	+ -+		-+-	-+-		ŀ	- +	•	•••	•
	ŀ	, .	,	•	٠	1	•		•	٠	•	ł	•	• • •	•	•	1	•	•	•	•	• •	•			•	•	•	+	•	• •		• •	ł	,	-	•	•	٠		-+-	•	-	•	•••	t	•		•	•••		┟→			-+-	•	ŀ	•	-+	+	+ -	t	•••	•	·	·
				•	•	ł	•	•		•	•		• •	• •	•	•	ł	•	·	•	• •	•		•	•	•	•••	• ··		•	• •		• •	1	*	•	•	••••	+	t	•••••	••	+		٠	ł	•	٠	•	ł	• •	•	•	•	+	•	- 4	•	+	+ -	• •	t۰	• •	٠	·	·
23130	,	-	•			2 13		15	10	. 0		19	20	21	22	23 2	1 2	5 21	6 2	28	29	30	ы	52	33	34	55	56	37	38	39	40	47	42	43			40	.7 4	1		.0 5	54 5	2 5	• •				, , ,		60	011	n2 e	30	4 65		67			70 7	1 72		74	15 74	6 77	
ASA-C-836	(8	Fν	•	-14	- 4	0					_	-						•	-		-		-				_	_						~			-	-		1		-	-	-	-	1				-		L	-	-			L					-	_	_	_	

CF	skin friction coefficient, C _f
CHIH	inducer inlet hub wall slope, χ_{1H}^{-} , deg from axial
CHIT	inducer inlet tip wall slope, χ_{1T}^{-1} , deg from axial
CURVH	inducer inlet hub curvature, $C_{1H}^{}$, m ⁻¹
CURVT	inducer inlet tip curvature, $C_{1T}^{}$, m ⁻¹
DRAT	inducer-tip to impeller-exit diameter ratio, $D_{1T}^{\prime}/D_3^{\prime}$
DIT	inducer tip diameter, D _{1T} , m
GAM	specific heat ratio, γ
LAMX	inducer hub-tip diameter ratio, λ
MU0	total inlet dynamic viscosity, μ'_0 , N-sec/m ²
N	compressor design rotative speed, N _{DES} , rpm
NONDES	percent compressor design rotative speed, $N/N_{ m DES}$
NVOVCR	number of input values of $(V/V_{cr})_0$
POP	total inlet pressure, p'_0 , N/m^2
RGAS	gas constant, R, $J/(kg)(K)$
SPLT	<pre>control variable for splitter calculations (SPLT = 0, conventional impeller; SPLT = 1, impeller with splitters)</pre>
TOP	inlet total temperature, T' ₀ , K
VLDRR	vaneless diffuser diameter ratio, D_4/D_3
VOVCR	values of inlet critical velocity ratio, $(V/V_{cr})_0$
Z	number of impeller blades at exit, Z_3

Sample Output

In the normal mode of operation the program performs two iterations over the range of inlet absolute critical velocity ratios which are specified. On the first iteration the compressor choking flow rate is determined. On the second iteration the printout of compressor performance at flow rates outside the usable range is deleted. A listing of the input information is tabulated for the compressor configuration studied. Then the compressor surge and choke flow rates are printed out. Finally, for each calculated point inside the operating range, compressor equivalent weight flow, total pressure ratio, total efficiency, and individual efficiency decrements are printed out. Sample output for the example compressor is as follows:

DE T AVD • 05 61 9	DETAVD • 05511 • 05511 DETAVD • 05412	DE T A V D • 05 32 2 • 05 23 9 • 05 23 9 • 05 16 3	DETAVD - 05096 - 05036 - 05036 - 04083	DETAVD • 04938 DETAVD • 34933 • 14933 • 04870
DETAVLD .02651	DETAVLD •02694 •02644 •02661	DETAVLD •02520 •02581 •02481 •02481 •32443	DETAVLD •02407 •02407 •02372 •02338	DETAVLD .02306 .02306 .32275 .32275 DETAVLD .02245
	• 770 • 02 4 4 C • 02 8 2 8 • 77 3 • 77 3 • 02 77 6 • 77 5 • 77 5	DETARC 02726 ETAT 02726 776 02128 02678 ETAT 02678 02632 eTAT 02632 eTAT	DETARC 02587 ETAT 781 02544 02544 02544 187 2503 ETAT 02503	. (82 DET ARC DET ARC . 02463 . 784 . 784 . 02425 . 785 . 785 . 02388 . 02388
CHOKE FLC CHOKE FLC 0.71 485 Detade 03603 Re ratio	45 DETADF 03546 864 DETADF 684 DETADF 03494 86 Ratio	DETADF DETADF 477 03444 477 DETADF 03397 472 DETADF 472 DETADF 63351 Re Ratio	DETADF 003307 858 DETADF 658 DETADF 0.03264 868 DETADF 648 DETADF 648 DETADF 648 C03224	TASF 0.434 5716 DETADF 5716 0.3184 PRESSURE RATIO 6.427 DETADF 5785 0.3147 PRESSURE RATIO 7456 05111 5856 0.3111
FLOM R 0-614 R 06 06	DETASF •05199 •05199 •05259 •05259 •05259	DETASF 05321 05321 05385 05384 05485 05445 05445 05445 05445 05445 05445	06EASF 06EASF 06ESSU6 06TASF 05579 0EFASF 05647 05647 076647	DETASF 05716 05716 05716 64 05785 05785 06785 06785 05856
SURGE ME C 0.616 0.616 0.616 0.03264	0.055 0.025 0.0254 0.0254 0.0526 0.0536 0.0546 0.0546	DETABL 03177 03177 0456 0456 0456 0465 0465 0465 03123 03123 04675 04675	06108L 06108L 03037 061684 05088 03078 05088 03042 03042 03042	0.1102 0.1024 0.3024 0.710 0.710 0.710 0.03000 0.719 0.719 0.719 0.719
DE TA INC •00035	DE TA INC .00037 DE TA INC .00038	DETAINC -00039 -00040 -00040 -00041 -00041	DETAINC 00042 00042 00043 00043 00044	DE TA INC • 00045 • 00046 • 00046 • 00046 • 00047
FG v	16v 16v	A A A A	A A A A A A A A A A A A A A A A A A A	DETAIGV - DETAIGV DETAIGV - DETAIGV
	SURGE FLOW RATE CHOKE FLOW RATE 0.614 0.719 WE0 0.614 WE0 0.614 WE0 0.614 WE0 0.614 WE0 0.614 ME0 0.614 0.616 PRESSURE RATIO 0.719 0.719 0.616 PRESSURE RATIO 0.616 0.485 0.616 0.485 0.616 0.485 0.70035 .03264 .030035 .02895 WE0 PRESSURE RATIO	SURGE FLOW RATE CHOKE FLOW RATE 0.614 0.519 weu PRESSURE RATIO ETAT 0.614 0.614 0.719 weu PRESSURE RATIO ETAT 0.614 DETABL 0.719 weu PRESSURE RATIO ETAT 0.0035 0.3264 .05138 .768 0.0035 .03264 .05138 .02885 .02651 0.0035 .03264 .05138 .03865 .02651 0.0037 .03233 .05199 .02885 .02651 0.0037 .03233 .05199 .03546 .07260 0.0037 .03233 .05199 .03546 .07260 0.0037 .03233 .05199 .03546 .07260 0.0038 .03259 .03546 .07260 .072604 0.0038 .03205 .03494 .0776 .02561 0.0038 .03205 .03494 .0776 .02561 0.00406 .0488 .03494 .0776 .02561	SURGE FLOW RATE CHOKE FLOM RATE CHOKE FLOM RATE CHOKE FLOM RATE 0-616 0-614 0-614 0-614 0-719 174 WEQ DETAIN 0-616 0-618 0-618 0-618 0-618 WEQ DETAIN DETAIN DETAIN 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-618 0-228 0-2285 <td< td=""><td>SURCE FLOW RATE CHOKE FLOW RATE CHOKE FLOW RATE CHOKE FLOW RATE 0.010 PERSURE RATIO TA 0.713 TG TG 0.010 DETASF 0.013 TA 0.703 TG 0.2651 0.010 DETASF 0.01303 DETASF 0.0282 DETAVLO 0.22651 0.02323 DETASF 0.03199 0.03199 0.02828 DETAVLO 0.22651 0.02323 DETASF DETASF DETARF 0.02828 DETAVLO 0.22651 0.0333 DETASF DETARF DETARF DETARF 0.22651 0.03105 DETASF DETARF DETARF 0.22551 DETAVLO 0.03105 DETASF DETARF DETARF DETARF DETAVLO 0.0465 DETASF DETARF DETARF DETAVLO DETAVLO 0.03171 DETARF DETARF DETARF DETAVLO DETAVLO 0.03171 DETARF DETARF DETAVLO DETAVLO DETAVLO <</td></td<>	SURCE FLOW RATE CHOKE FLOW RATE CHOKE FLOW RATE CHOKE FLOW RATE 0.010 PERSURE RATIO TA 0.713 TG TG 0.010 DETASF 0.013 TA 0.703 TG 0.2651 0.010 DETASF 0.01303 DETASF 0.0282 DETAVLO 0.22651 0.02323 DETASF 0.03199 0.03199 0.02828 DETAVLO 0.22651 0.02323 DETASF DETASF DETARF 0.02828 DETAVLO 0.22651 0.0333 DETASF DETARF DETARF DETARF 0.22651 0.03105 DETASF DETARF DETARF 0.22551 DETAVLO 0.03105 DETASF DETARF DETARF DETARF DETAVLO 0.0465 DETASF DETARF DETARF DETAVLO DETAVLO 0.03171 DETARF DETARF DETARF DETAVLO DETAVLO 0.03171 DETARF DETARF DETAVLO DETAVLO DETAVLO <

RATIO GAS CONSTANT 287.05 INDUCER RMS BLOCKAGE FACTOR 0.90	DIAMETER RATIO 4 Vaned diffuser setting angle 78.00				DETAVD	11760.	DETAVD	•05027		DETAVD		DETAND	.04834		DETAVD	.04881		DETAVD	•04651		DETAVD - 04 698		DETAUD	.04479		DETAVD	•04525		DETAVD			04114		DETAVD • 25445
HEAT L.4	EXIT • 561				DETAVLD	46620.	DETAVLD	•02285		DETAVLD	0.737.4		.02193		DETAVLD	.02151		DETAVLD	•02110		DETAVLD		OCTAVI D	.02034		DETAVLD	•01999		DETAVLD	66410.		01932		DETAVLD •01901
S Set	R RATIO INDUCER TIP-IMPELLER 0 Vaneless Diffuser Diameter Ratid 1.140 Rea Vaned Diffuser Area Ratid	2.10 6	OM RATE	156 ETAT 70.7	DETARC	•UC+DU ETAT	. /86 Detarc	.02384 Ftat	. 787	DETARC	ETAT	.791 Defadr	.02260	ETAT 701	DETARC	.02201	ETAT • 795	DETARC	.02144 Etat	. 795	DETARC	ETAT	.798 netaor	.02038	ETAT - 708	DETARC	.01988 FTAT	-801	DETARC	ETAT	•804 577 55	01893 •01893 ETAT	• 591	DET ARC • 01848
210	NT I O ELESS	UNCLET CRITICAL VELOCITY RATID ARRAY INLET CRITICAL VELOCITY RATID ARRAY 43 0.44 0.45 0.46 51 0.52 0.53	PERCENT NDES 90.0 E CHOKE FLOW	0.656 Pressure ratio		PRESSURE RATIO	4.863 DETADE	15468 • 03254 PRESSURE RATIO	4-846	DETADF	RAT	4.849 NETADE	.03139	PRESSURE RATIO	DETADF	.03086	PRESSURE RATIO 4.833		15801 .03034 Pressure ratio	4.814	DETADF .02985	RAT	4.814 Detade	• 02938	PRESSURE RATIO		16073 .02893 Pressure ratio	4.192	DETADF	PRESSURE RATIO	4.789 DET.OF	16264 • 02808 Pressure RATIO	381 CETADE	UE1AUF • 02768
INLET TOTAL DY 0000 DESIGN SPEED 72000.	ÍNDUCER HUB-TÍP DIAMETER RATIO Ler blade exit HT. Vaneles: •03510 uffuser throat area vaned diffuser throat area	LET CRITICAL V 0.44 0.52	FLOW RAT	0.540 PRESSU	DETASF	PRESSU	4. Detasf	. 05468 PRF550		0ETASF - 05548	PRESSU	4. Detase	.05630	PRESSU	DETASF	.05715	PRESSU	DETASE	• 05801 PRESSU	÷	DETASF	PRESSU	A.	- 05980	PRESSU	DETASE	.06073 PRFSSU		DETASF	PRESSU	••	06264 PRESSU		UETASF • 06363
INLET TGTAL TEMPERATURE 268-15 TICN CUEFFICIENT SPLT 1	E INDUCER HUB-TIP DIAMETER RU 0.5313 Impeller Blade Exit HT. Van 10tal vaned diffuser throat Area	~ ~ ~	SURGE	a n n n n n n n n n n n n n n n n n n n	DETABL	09400-	DETABL	.02926 4F0	0-563	DETABL -02883		0.574 Detari	.02841	12 E C	DETABL	.02800	HE0 0.595	DETABL	.02759 WEQ	0.605	0ETABL - 02720	- E E	0-616 Detami	.02681	ME0 0-626	DETABL	• 02643 MED	0.636	DE 1 ABL		0.646	-02570 HEQ	0.656	UE 1 ABL • 02535
5	ANGL	0+41 0+41 0-49 For v/vcr For v/vcr			DETAINC	*****	DETAINC	• 00035		DETAINC		DETAINC	16000		DETAINC	56000.		DETAINC	• 000 • 0		DETAINC .00041		DE TA I NC	E+000.		DETAINC	**000*		061A1NC		DETATAC	00046	DETAINC	00048
IMIET TOTAL PRESSURE 101325. Number of Plades 32.	INCUCEK KMS BLADE . 49.0 IMPEILEK RLADE EXIT HACKSMEEP 25.0	0.39 C.40 0.47 C.40 1.47 D.48 1.Film LFSS TPAN Surge T.Film LFSS TPAN Surge			DETAIGV	•	DETAIGV	•		UETAIGV		DETALCV	•		DETAIGV	•		DETAIGV	•		DETAIGV		0FTAIGU	•		DETAIGV	•			•	201 V 100	•	DETAICU	•

T RATIO GAS CONSTANT 287.05 INDUCER RMS BLOCKAGE FACTOR 0.90 0.90 DIAMETER RATIO 4 VANED DIFFUSER SETTING ANGLE VANED DIFFUSER SETTING ANGLE		DETAVD • 35537	DETAVD • 05289	DETAVD • 05070	DETAVD •04848	DETAVD • 24623	DETAVD • 04 705	DE TAVD • 04466	DETAVD •)4224	DETAVD • 25375
C HEAT E E X I + 4 AT E E X I + 4 - 7 C - 56 I 4 - 7 V - 4 - 7		DETAVLD •02311	DETAVLD -02243	DETAVLD •02180	DETAVLD •02121	DETAVLD • 92965	DETAVLD - 02013	DETAVLD -01963	DETAVLD •01916	DETAVLD •01872
S SM LI TIP-LI AMETE •70		•/81 DETARC •02404 ETAT	057 ARC • 02307 € TAT	• 730 DETARC • 02217 ETAT	DETARC DETARC -02131 ETAT	DETARC DETARC 02048 ETAT .799	DETARC - 01970 ETAT - 802	DETARC •01895 ETAT	DETARC 01823 6141 -596	DET ARC •01754
VINAMIC V 200179 IN ED IN ATID ELESS DIFI ELESS DIFI VANE 0-41 0-41 1 NDES	80.0 ATE 80.0 PRESSURE RATID PRESSURE RATID	5.011 DETADF 1485 DETADF 5321 03395 Pressure ratio	DETADF 03306 E RATIO	TASE DETADE 15512 03225 Pressure ratio	TASE DETADE 1641 03148 9641 03148 PRESSURE RATIO	TASF DETADF 5714 03075 Pressure Ratio 3.654	TASF DETADF 5821 -03006 Pressure ratio 3.651	TASF DETADF 5932 02941 Pressure Ratio	DETADF 02879 E RATIO 17	DETADF • 02820
F 101 SIGN 7200 7200 313 813 813 813 813 813 40 40 40 76R	SURGE FLOW RATE	9-011 DETASF - 05321 PRESSURE 1	DETASF DE • 05416 • 00 PRESSURE RATIO	DETASF • 05512 PRESSURE	DETASF • 05611 PRESSURE	DETASF • 05714 PRESSURE	DETASF • 05821 PRESSURE 3•651	DETASF • 05932 PRESSURE 1 3.648	DETASF - 06046 Pressure R 2-717	DETASF • 06164
ERATUR 90051 0051 0051 0051 0051 0051 0051 005	SLRGE	05748L 05748L 02912 0.450	DETABL • 02845 • 460	DETABL • 02780 ME0	DETABL •02717 •60	DETABL •02654 •60 •682	DETABL •02592 WEQ 0•494	DETABL .02532 Weu 0.506	DE TABL -02472 WEG 0-518	DETABL •02414
INLET TO ILTION COGE ILTION COGE 0.005 1005 0.005 0.27 0.27 0.27 0.27 FOR V/VCR FOR V/VCR		UE TA INC •00026	DETAINC •00028	DETAINC .00029	DETAINC •00031	DE TA I NC • 00032	DETAINC • 00034	DETAINC • OU035	DETAINC .00037	DETAINC • 00038
IN ET TOTAL PRESSURE INLE 101325. FRICTION NUMBER OF ELACES FRICTION 32. INDUCER RMS BLADE 49.00 IMPELLER RIADE EXIT BACKSWEEP 40.37 0.28 0.29 0.37 0.38 0.37 0.38 0.37 0.38 0.37 0.37 0.38 0.37 1 FLCW LESS THAN SURGE FOR V WIT FLCW LESS THAN SURGE FOR V MT FLCW LESS THAN SURGE FOR V		DETAIGV.	DETAIGV •	DETAIGV -	ne ta 16v	DETAIGV.	DETAIGV •	DETAIGV	UETAIGV.	DETAIGV •

MART TITAL DYNAME INLET TOTAL DYNAME (VIGCSITY AND CER RATIO 10137; STATUS STATUS FUNCTER RATIO 10137; AND CER RATIO 10137; AND CER RATIO 10137; AND CER RATIO 10137; AND CER RATIO 10130; STATUS FULLER LARE LARE LARE FULLER LARE LARE LARE LARE LARE LARE LARE	VISCOSITY SPECIFIC HEAT RATIO GAS CONSTANT VISCOSITY SPECIFIC HEAT RATIO GAS CONSTANT 287.05 INDUCER THP-INPELLER INDUCER RATIO INDUCER THP-IMPELLER EXIT DIAMETER RATIO	0.5614 DIFFUSER DIAMETER RATIO VANED DIFFUSER SETTING ANGLE 1.140 Vaned Diffuser Area Ratid Batto 2020			RATE	ETAT	• 000 DETARC DETAVID DETAVD	-02516	• 775	TARC DETAVLD	•02513 •02377 •05682 Ftat	111-	FARC DETAVLD	•02331 •02253 •05939	- 785	TARC DETAVLD	•02161 •02142 •05543	ETAT	• 73. Detarc detaven detaven	2004 .02041	.801 Detade detavio detavo	1857 • 01950	-809 AFTARE DETAVID DETAVD	01868			UETARU DETAVU DETAVU ADISOA ATTOL ASEGO			DETARC DETAVLD DETAVD
T TUTAL TEMPERATUR T TUTAL TEMPERATUR COLFFICIENT IMPELLEK BLAK IMPELLEK BLAK IMPELLEK BLAK UDDL4 UDDL5 0.14 UDDL5 0.260 0014 0.250 014 0.250 010 0.250 010 0.250 010 0.510 0.510 0.2500 0.25000 0.25000 0.25000 0.250000 0.250000000000	79 10 10	ELESS DIFI VANE	-20 0-21 0-22	PERCENT NDES 60.0	CHOKE FLOW		DETADF	• • • • • • • • • • • • • • • • • • • •		DETADF	.03750 Surf ratin	2.198	DETADF	.03576 		DETADF	.03420		2.1.77 DETADE	.03278	Z.199 DETADE	84160.	2.199 Detade		SURE RATIO	Z.198 Det and		SURE RATIO	1.814	
T 10 CUE ANG14 ANG14 ANG 2014 2014 2014 2014 2014 2014 2014 2014	ERATURE SPLT Ducer Hub-TI	0. IMPELLER BLADE EXIT HT -00510 Stal vaned diffuser th Inlet cri			SURGE FLOW 0.223		•		0+238			F			0.265			NEC 0 378			N		n		,	29			T	
	INLET TUTA Friction Cueff • 004 • shlade angle						DETAINC	+1000-		DETAINC	•00016		DETAINC	/1000-		DETAINC	61000-		DETAINC	-00021	DETAINC	•0003	DETAINC	•00025		DETAINC	00027			-00029

. .

Definitions of the abbreviated FORTRAN output variables are:

DETABL	efficiency decrement due to impeller blade aerodynamic loading, $\Delta \eta_{ m BL}$
DETADF	efficiency decrement due to disk friction, $\Delta \eta_{ m DF}$
DETAIGV	efficiency decrement due to inlet guide vane loss, $\Delta \eta_{ m IGV}$
DETAINC	efficiency decrement due to inducer incidence, $\Delta \eta_{ m INC}$
DETARC	efficiency decrement due to recirculation, $\Delta \eta_{\mathbf{RC}}$
DETASF	efficiency decrement due to skin friction, $\Delta \eta_{ m SF}$
DETAVD	efficiency decrement due to vaned diffuser losses, $\Delta \eta_{ ext{VD}}$
DETAVLD	efficiency decrement due to vaneless diffuser losses, $\Delta \eta_{ ext{VLD}}$
ETAT	compressor total efficiency, η
WEQ	equivalent flow rate, w $\sqrt{\theta}/\delta$, kg/sec

Error Messages

If the compressor choking flow rate is not reached with the specified values of inlet absolute critical velocity ratios, the operating range cannot be determined with the methods used in this analysis. When this happens, the calculated performance output is deleted and the message COMPRESSOR CHOKING FLOW HAS NOT BEEN REACHED is printed.

If the first input value of $(V/V_{cr})_0$ results in calculated weight flow greater than the compressor choking weight flow, the message VOVCR ARRAY TOO LARGE is printed.

For input values of $(V/V_{cr})_0$ much too small for the compressor of interest a velocity diagram solution at the impeller exit cannot be obtained. When this occurs the message IRRATIONAL EXIT TRIANGLE is printed. All of these problems can be corrected by making the appropriate adjustments to the VOVCR array used.

Main Program FORTRAN Variables and Corresponding Engineering Symbols

A1 a₁ A2 a₃ ACOUSR a/a'

ADTH	A ₅
AL1	^α 1Τ
AL1MF	α_{1MF}
AL2	α ₃
AL3	α ₄
ALPH1	temporary storage
ALPHA	α
AMT	M ₅
AMU	μ
AMULT	$\exp\left(\int_{r_{1H}}^{r_{1MF}} C dn\right)$
ANU	ν
AR	A ₆ /A ₅
В	B ₅
B0	B ₀
B1	β _{1T}
B1H	β _{1H}
B1MF	β_{1MF}
B1MFB	^β 1MFb
B2	ь ₃
B2X	^β 3b
BARR	array of vaned diffuser throat blockages
BLOCK	B ₁
BMULT	$\exp\left(\int_{r_{1MF}}^{r_{1T}} C dn\right)$
BOPT	^β 1MFopt
ВТ	vaned diffuser inlet blockage
CF	C _f

CHIH	x _{1H}
CHIMF	X _{1MF}
CHIT	× _{1T}
CINC	inducer choking incidence
CINC1	interpolation variable
CINC 2	interpolation variable
CINC40	choking incidence array for 40 ⁰ rms inducer blade angles
CINC 50	choking incidence array for 50 ⁰ rms inducer blade angles
CINC60	choking incidence array for 60 ⁰ rms inducer blade angles
CONST1	K _{BL}
CONST 2	K _{SF}
COSA	$\cos \alpha_{1T}$
СР	C _p
CPSTAR	C _p C _p **
CURVH	C _{1H}
CURVMF	C _{1MF}
CURVT	C _{1T}
D1H	D _{1H}
D1T	D _{1T}
D2	D ₃
DEBL	${}^{\Delta\eta}\mathrm{_{BL}}$
DEDF	$\Delta \eta_{ m DF}$
DEEXIT	${}^{\Delta\eta}{}_{ m exit}$
DEIGV	${}^{\Delta\eta}$ IGV
DEINC	$\Delta \eta_{ m INC}$
DELTA	δ
DELTAB	$\Delta \mathbf{B}$
DELTAR	$\Delta \mathbf{r}$
DELTAS	$\Delta \delta^*$

DERC	$\Delta \eta_{ m RC}$
DESF	${}^{\Delta\eta}{}_{ m SF}$
DEVD	$^{\Delta\eta} m VD$
DEVLD	$\Delta \eta_{ m VLD}$
DF	D _f
DHACT	$^{\Delta \mathrm{h}}$ act
DHAERO	Δh_{aero}
DHBL	$^{\Delta \mathrm{h}}\mathrm{BL}$
DHDF	^{∆h} DF
DHDIF	$^{\Delta \mathrm{h}}\mathrm{VD}$
DHEST	^{∆h} est
DHIGV	$^{\Delta h}$ IGV
DHINC	$^{\Delta h}$ INC
DHRC	$^{\Delta \mathrm{h}}\mathrm{RC}$
DHSF	Δh_{SF}
DHVLD	$^{\Delta \mathrm{h}}$ VLD
DHYD	D _{HYD} /D ₃
DIFLEM	M ₄ array
DMF	D _{1MF}
DRAT	D _{1T} /D ₃
EPS	E
ETAD	η_{AD}
ETAR	$\eta_{\mathbf{R}}$
EWF	$w \sqrt{\theta}/\delta$
F1	C_p^{**} at vaned diffuser area ratio of 1.2
F2	$C_p^{F^*}$ at vaned diffuser area ratio of 2.0
F3	C_p^{**} at vaned diffuser area ratio of 3.0
F4	C_p^{**} at vaned diffuser area ratio of 4.0
F5	C_p^{**} at vaned diffuser area ratio of 5.0
	-

FINT	$\int_{r_{1H}}^{r_{1MF}} C dn$
FLFUNC	$\sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}}$
FLRNG	^w surge ^{/w} choke
G1	$\gamma + 1$
G2	$\gamma - 1$
GAM	γ
GINT	$\int_{r_{1H}}^{r_{1T}} C dn$
H0	$r_{1MF} - r_{1H}$
H1	$r_{1T} - r_{1MF}$
HIS	Δh_{is}
INC	$\beta_{1MF} - \beta_{1MFb}$
J	index variable
JAN	iteration counter
К	choke indication variable
\mathbf{L}	index variable
LAMX	λ
LOD	L/D ₃
MIN	index variable
MU0	μ ₀
MWRMS	array of inducer rms relative Mach numbers
N	N _{DES}
NO	index variable
NONDES	N/N _{DES}
NVOVCR	number of values of $(V/V_{cr})_{0}$
NWRITE	output control variable

P0P	p'0
P1	^p 1MF
P1P	^p ' _{1MF}
P2	₽ ₃
P2P	p'3
P3P	p'4
P4	₽ ₆
P4PG	iteration variable
P4PL	iteration variable
PEXIT	₽ ₆
PHI	arphi
PIMF	^p 2MF
PIPMF	^p ' _{2MF}
POPP1	(p/p') _{1MF}
PP	storage variable
PPEXIT	p' ₆
PPOP1	(p'/p) _{1MF}
PR	p' ₆ /p' ₀
PREC1	array of C_p^{**} at area ratio 1.2
PREC2	array of C_p^{**} at area ratio 2.0
PREC3	array of C_p^{**} at area ratio 3.0
PREC4	array of C_p^{**} at area ratio 4.0
PREC5	array of C_p^{**} at area ratio 5.0
PTH	^p 5
PTHP	p'5
Q	Q
QAERO	q _{aero}
R	r
R0P	ρ ΄
R1	ρ_1
22	

-

R1P	ρ'_1
R2	r ₃
R2G	ρ _{3,est}
RANGE	wsurge ^{/w} choke
RARRAY	temporary storage
RE	Re
RGAS	R
RHO2	ρ ₃
RHOH	$ ho_{1H}$
RHOMF	$ ho_{1MF}$
RHOR	ρ/ρ'
RHOT	ρ _{1T}
RMRMS	w _{1MF} /a ₁
RTHP	ρ ;
RVOEST	$\left(ho V/ ho' V_{cr} ight)_2$
RVORP1	$\left(\rho \mathbf{V} / \rho' \mathbf{V_{cr}}\right)_{1}$
RVORVC	$\left(\rho V / \rho' V_{cr}\right)_{1} p'_{1} / p_{iMF}$
RVRVC4	$\left(\rho V / \rho' V_{cr}\right)_{6}$
RVRVTH	$\left(\rho V / \rho' V_{cr}\right)_{5}$
S	integral of M^3
SINA	$\sin \alpha_{1T}$
SPLT	splitter control variable
SW	w
Т0	T ₀
TOP	T'0
TOPP	T''
T1	T ₁
T1PP	T''

Т2	T ₃
T2P	T'3
T2PEST	T'3est
T2PP	T''
TALPH	tan α
THETA	θ
T OT 0	T ₁ /T ₀
TOT1	T_{2}/T_{1}
TPL	p'/p ₃
ТХ	$\eta_{\mathbf{R}} \Delta h_{\mathbf{aero}} / C_{\mathbf{p}} T_{\mathbf{o}}' + 1$
U1H	^u 1H
U1MF	^u 1MF
U1T	^u 1T
U2	u ₃
V1MF	V _{1MF}
V1T	V _{1T}
V2	v ₃
VARAL	$\Delta \tan \alpha$
VARAL1	temporary storage
VARM	ΔM^2
VARM1	temporary storage
VCR	$\left(\mathbf{v_{cr}}\right)_{0}$
VCRTH	$\left(v_{cr}\right)_{5}$
VLDRR	D ₄ /D ₃
VM1	v _{m1T}
VM1H	v _{m1H}
VM1MF	V _{m1MF}
VM2	v _{m3}
VM1MF	v _{m1MF}

VOVCR	$\left(v / v_{cr} \right)_0$
VOVCR4	$\begin{pmatrix} v/v_{cr} \\ 0 \end{pmatrix}_{0} \\ \begin{pmatrix} v/v_{cr} \end{pmatrix}_{6}$
VOVCR1	$(\mathbf{v}/\mathbf{v_{cr}})_{1}^{\mathbf{v}}$
VSL	v _{sl}
VU1H	V _{u1H}
Vu1MF	v _{u1MF}
VU1T	V _{u1T}
VU2	V _{u3}
W1H	w _{1H}
W1MF	w _{1MF}
W1MFEF	W _{1MFeff}
W1T	w _{1T}
W2	w ₃
W2OW1T	$w_3^{W_{1T}}$
WCHK	^w choke
WCR	W _{cr}
WFUNC	w√T'3/p'5A5B
W1MF	W _{1MF}
WL	w_L
WOU2	$\left(W/u_{3}\right) _{av}^{2}$
WSURGE	^w surge
WU1H	W _{u1H}
WU1MF	W _{u1MF}
WU1T	w _{u1T}
WU2	w _{u3}
X1	$\alpha - \alpha_4$

XC	K _{vu}
ХК	K _{vm}
XM	Μ
XM1	temporary storage
XM2	M ₃
XMACH	м ₅
XMARR	array of vaneless diffuser Mach numbers
Z	z ₃
ZETA	ζ

Program Listing

```
DIMENSION VOVCR(15)
  DIFENSION P3P(20)+XMARR(20)
  DIMENSION F(20),S(20)
  DIMENSION AMT(4), BARR(6), PREC1(4,6), PREC2(4,6), PREC3(4,6)
  DIMENSILN PREC4(4,6), PREC5(4,6)
  DIMENSION MWRMS(8)+CINC60(8)+CINC50(8)+CINC40(8)
  DIMENSION FLRNG(7), DIFLEM(7)
  INTEGER SPLT
 REAL LAMX+LCD+MUO+NONDES+MWRMS+INC+N
 DATA(AMT([)+[=1+4)/+2++4++6++8/
 DATA(BARR([]+[=1,6)/+02++04++06++08++10++12/
 DATA((PREC1(1, J), I=1,4), J=1,6)/.234,.244,.257,.269,.215,.224,.233,
 1.243,.207..215,.223,.232,.193,.199,.206,.212,.183,.190,.196,.202,.
 2169..176..182..188/
 DATA((PREC2(I.J).I=1.4),J=1.6)/.644..67J..696..722..620..638..656.
 1+674++590++606++623++639++562++576++590++605++538++551++564++578++
 2510++524++538++552/
 UATA((PREC3(I.J), I=1.4), J=1.6) /.782..789.796.802.750.750.756.762.
 1.768..708..716..724..732..672..680..687..695..652..648..654..660..
 2004++612++619++626/
 DATA((PREC4(I+J)+I=1+4)+J=1+6)/+842++838++833++828++8++8++8++8++75
 12 • • 756 • • 760 • • 763 • • 710 • • 713 • • 716 • • 719 • • 675 • • 678 • • 680 • • 683 • • 630 • • 635
 2 . . 640 . . 646/
 DATA((PREC5(I.J), I=1.4).J=1.6)/.878..865..852..838..832..825..818.
 1.812..78..78..78..78..78..736..735..735..734..692..694..695..696..644.
 2.647..650..652/
 DATA(CINC60(1), I=1,8)/-10.5.-5..-2..1.5.2.5.4..5..5./
 DATA(CINC50(1) + I=1+8)/-15++-7+5+-3++1+5+4++6+5+9++11+/
 DATA(CINC40(I) + I=1+8)/-20++-12++-5++1+5+5++8++11+5+14+5/
 DATA(MWRMS([).1=1.8)/.5..6..7..8..9.1..1.1.2/
 DATA(DIFLEM(I) • I=1 • 7) / • 4 • • 5 • • 6 • • 7 • • 8 • • 9 • 1 • /
 DATA(FLRNG(1),1=1,7)/.48..56..64..72..79..84..89/
 NAMELIST / INPUT/ GAM.POP.TOP.N.DIT.MUO.CF.VOVCR.NVOVCR.RGAS.
IDRAT.LAMX.B2X.Z.VLDRR.B2.BIMFB.AR.BLOCK.AL3.ADTH.NONDES.SPLT.
 2 ALIMF.CHIH.CHIT.CURVH.CURVT
1 REAC(5.INPUT)
```

```
WRITE(6.309)
 WRITE(6.315) POF.TOP.MUO.GAM.RGAS
 WRITE(6.310)
 WRITE(6,316) Z.CE.SPLT.N.ALIME.BLUCK
 WRITE(6.3)1)
 WRITE(6,317) BIMF8.LAMX.DRAT
 WRITE(6.312)
 WRITE(6.318) B2X.B2.VLDRR.AL3
 wRITE(6.313)
  WRITE(6.319) ADTH, AR
 WRITE(6.314)
  wRITE(6,320) (VOVCR(1),I=1,NVOVCR)
 PERDS=NONDES#100.
 G1=GAM+1.
 G2=GAM-1.
 CP =GAM*RGAS/G2
  B2X=+01745+82X
  AL 3=AL 3+.01745
  AL1MF=.01745+AL1MF
 CH[H= •01745*CH[H
 CHIT=+01745*CHIT
 FLFUNC=SORT(GAM/RGAS*(2./G1)**(G1/G2))
  ROP=POP/RGAS/TOP
  VCR=SORT(2.*GAM/G1*RGAS*TOP)
 UlT=3.14159*N*NONDES*D1T/60.
 NWRITE=1
 DO 18 L=1.2
 M[N=1]
2 DO 17 J=MIN.NVOVCR
 K = C
 81MF8=.01745*81MF8
 VU1T=0.
 VUIMF=0.
 VUIH=0.
 VM1H=VOVCR(J)*VCR
 U2=U1T/DRAT
 D2=D1T/ORAT
 U1H=U1T+LAMX
 D1H=D1T+LAMX
 DMF=SURT(D]T++2+(1+LAMX++2)/2+)
 UIMF=UIT+CMF/DIT
 CHIMF=(CHIT-CHIH)*(DMF-D1H)/(D1T-D1H)+CHIH
 CURVMF=(CURVT-CURVH)*(DMF-D1H)/(D1T-D1H)+CURVH
 HO = (CMF - D] + )/2.
 H_1 = (C_1T - D_MF)/2.
 FINT=H0/2.*(CURVH+CURVMF)
 AMULT=EXP(FINT)
 VM1MF=ANULT+VM1H
 GINT=(H0+H1) /6.*((2.-H1/H0)*CURVH+(H0+H1)**2/H0/H1*CURVMF+(2.-H0
1/H1)*CURVT)
 B⊁ULT=EXP(GINT)
 VMIT=BMULT=VM1H
 VM1HN=VM1H*COS(CHIH)
 VM1MEN=VM1ME*COS(CHIME)
 VMITN=VMIT*COS(CHIT)
 RHGH=KOP+(1.-VM1H++2/2./CP/TOP)++(1./G2)
 RHCMF=R0P*(1.-VM1MF**2/2./CP/T0P)**(1./G2)
 R+GT=R0P*(1.-VM1T**2/2./CP/T0P)**(1./G2)
 FCN1=KHOH*VM1HN*D1H/2.
 FCN2=RHCMF+VM1MFN+DMF/2.
```

```
FCN3=RHOT+VM1TN+D1T/2.
   Sw=(H0+H1) /6.*((2.-H1/H0)*FCN1+(H0+H1)**2/H0/H1*FCN2+(2.-H0/H1)*
  1FCN3)*6+28318
   DHIGV=0.
   V1MF=SORT(VM1MF**2+VU1MF**2)
   T1=T0P-V1MF**2/2./CP
   P1P=P0P
   POPP1=(1.-VIMF**2/2./CP/TOP)**(GAM/G2)
   P1=P1P*P0PP1
   R1F=P1P/RGAS/TOP
  R1 = R1P*(P1/P1P)**(1./GAM)
  RE=U2+D2/MU0+ROP
   ALSTAG=ALIMF/2.
  ES=0.0076/(COS(AL1MF)-.025)*(1.+COS(ALSTAG)/0.7)
  VOVCR1=VOVCR(J)
   [F[ALIMF+LT+0+001] GO TO 36
 9 VUVCR1=V0VCR1+.001
  AKE=(VCVCR1+VCR)++2/2.
  POPP1=(1.-AKE/CP/TOP)**(GAM/G2)
   AKEIC=AKE/(1.-ES)
  P10PP0=(1.-AKEID/CP/T0P)**(GAN/G2)
  P1P=P0P*P10PP0/P0PP1
  R1F=P1P/RGAS/TOP
  P1=P1P*P0PP1
  R1=R1P*(POPP1)**(1*/GAM)
  Q1=3.14159*D1T**2*(1.-LAMX**2)*VUVCR1*VCR*COS(AL1MF)/4.
  mTCHK = 0.1 + R.1
  IF(WTCHK.LT.SW) GO TO 9
  VUIMF=VOVCR1+VCR+SIN(AL1MF)
  VM1MF=VOVCR1+VCR+COS(AL1MF)
  VIMF=SORT(VUIMF**2+VM1MF**2)
  T1=T0P-V1MF##2/2./CP
   XK=VU1NF**2+2.*VM1MF**2
  XC=VU1MF/DMF+2.
  VU1T=XC+D1T/2.
  VU1H=XC+D1F/2.
  VMIT=SGRT(XK-2.*VUIT++2)
  VM1H=SORT(XK-2.*VU1H++2)
   OF IGV=ES*AKEID
36 V11=SURT(V#1T**2+VU1T**2)
  AL1=ARSIN(VU1T/V1T)
  WUIT=UIT-VUIT
  B1=ATAN(HU]T/VM1T)
  w1T=SQRT(VM1T*+2+WU1T*+2)
  WU1H=U1H-VU1H
  B1H=ATAN(BU1H/VM1H)
  W1H=SORT(VM1H**2+WU1H**2)
  A1=SGRT(GAM*RGAS*T1)
  WU1MF=U1MF-VU1MF
  WINF=SORT(VMINF**2+bUINF**2)
  RMRMS=W1MF/A1
  B1#F=ATAN(bU1MF/VM1MF)
   INC=(B1MF-B1MFB)*57.29577
  EPS=ATAN((1.-BLOCK)*TAN(B1MF)/(1.+BLOCK*(TAN(B1MF))**2))
  BOPT=B1MF-EPS
   T1PP=T1+W1MF++2/2./CP
  WCR=SURT(2.#GAM/G1+RGAS+T1PP)
   TGT0=1.-G2/G1*(W1MF/WCR)**2
  WINFEF=WIMF*COS(BOPT-BIMFB)
```

```
TOT1=1--G2/G1*(W1MFEF/WCR)**2
   TI=TIPP*TOT1
   WL=W1MF*SIN(ABS(BOPT-B1MF))
   DHINC=WL*+2/2.
   PIPMF=P1P*EXP(-DHINC/TI/RGAS)
   DEL TA=POP/101325.35
   THETA=TOP/288.15
   EWF=SW#SURT(THETA)/DELTA
   B1#F8=81#F8+57.29577
   IF(BIMF8.GE.40..AND.BIMF8.LE.50.) GO TO 71
   I=2
81 IF(RMRMS.GE.MWRMS(I-1).AND.RMRMS.LE.MWRMS(I)) GO TO 80
   [ = [+1]
   GC TC 81
80 CINC1=(RMRMS-MWRMS(I-1))/(MWRMS(I)-MWRMS(I-1))*(CINC60(I)-CINC60(I
  1-1))+CINC60(I-1)
   CINC2=(RMRMS-MWRMS(I-1))/(MWRMS(I)-MWRMS(I-1))*(CINC50(I)-CINC50(I
  1-1))+CINC50(I-1)
   CINC=CINC1+(60.-B1MFB)/10.+(CINC2-CINC1)
   IF(INC.LE.CINC) K=1
   GO TO 74
71 [=2
72 IFIRMRMS.GE.MWRMS(I-1).AND.RMRMS.LE.MWRMS(I)) GO TO 73
   [=[+]
   GC TC 72
73 CINC1=(RNRMS-HWRMS(I-1))/(MWRMS(I)-MWRMS(I-1))*(CINC50(I)-CINC50(I
  1-1))+C[NC50([-1)
   CINC2=(RMRMS-MWRMS(I-1))/(HWRMS(I)-MWRMS(I-1))*(CINC40(I)-CINC40(I
  1-1))+CINC40(I-1)
   CINC=CINC1+(50--BINFB)/10-+(CINC2-CINC1)
   IF(INC.LE.CINC) K=1
74 CONTINUE
   IF(K.EQ.1.AND.J.EQ.1) GO TO 202
   IF(K.EQ.1.AND.L.EQ.1) GO TO 18
   T2PP=T1PP+(U2**2-U1MF**2)/2./CP
   PHI=VM1MF/U2
   EPSLIM=1./EXP(8.16*COS(82X)/Z)
   VSL=SURT(COS(B2X))*U2/Z**.7
   IF((DMF/D2).GT.EPSLIM) VSL=U2*(SORT(COS(B2X))/Z**.7)*(1.-((DMF/D2-
  1EPSLIM)/(1.-EPSLIM))**3)+U2*((DMF/D2-EPSLIM)/(1.-EPSLIM))**3
   DHEST=02++2
   T2PEST=(DHEST/CP/T0P+1.)*T0P
   R2G=R1+(T2PEST/T0P)++(1./G2)
 4 RHG2=R2G
   VM2=SW/(3.14159*RH02*02*82)
   VU2=U2-VM2*TAN(B2X)-VSL
   MIN=J
   IF(VM2.LT.0..AND.L.E0.2) GG TO 200
   IF(V#2.LT.0.) GO TO 17
   IF(VU2+LT+0++AND+L+E0+2) GO TO 201
   IF(VU2.LT.0.) GO TO 17
   HU2=02-VU2
   W2=SQRT(WU2++2+VM2++2)
   IF((VSL+COS(B2X)/W2).GT.1..AND.L.E0.2) GO TO 202
   IF((VSL*COS(B2X)/W2).GT.1.) GO TO 17
   T2=T2PP-#2**2/2./CP
   A2=SORT(GAM*RGAS*T2)
   #20h1T=62/W1T
   HOU2=(PHI++2+(DMF/02)++2+W20H1T++2+(PHI++2+DRAT++2))/2.
```

```
AL2=ATAN(VU2/VM2)
  V2=SORT(VU2++2+VM2++2)
  T2P=T2+V2++2/2./CP
  DHAERO=CP+TOP+(T2P/TOP-1.)
   UAERO=CHAERO/U2**2
   DF= w1T/U2*(2/3.14159*(1.-D1T/D2)+2.*D1T/D2)
  CGNST1=0.75
   IF(SPLT.EC.1) CONST1=0.6
   DF=1.-w20w1T+CONST1#0AERO/CF
   DH8L=0.05+DF++2+U2++2
  LOD=(1.-DMF/.3048)/COS(B2X)/2.
   DFDF=+01356*RHD2+U2**3*D2**2/SW/RE**+2
   DHYD=Z/3.14159/COS(B2X)+D2/B2
  DFYD=1./DHYD+01T/D2/(2./(1.-LANX)+2.*2/3.14159/(1.+LANX)
  1*SCRT(1.+(1.+LAMX**2)/2.*(TAN(81))**2))
   DFRC=0.02*SORT(TAN(AL2))*DF**2*U2**2
   CGNST2=5.6
   IF(SPLT.EC.1) CCNST2=7.0
   DHSF=CONST2+CF+LOD/DHYD+W0U2+U2++2
   DHACT=CFAERO+DHDF+DHRC
   HIS=DHAERO-DHBL-DHSF-DHIGV-DHINC
   ETAR=HIS/DHAERO
  TX=ETAR+DHAERO/CP/TOP+1.
51 P2P=TX**(GAM/G2)*PIPMF
   P2=P2P+(T2P/T2)++(-GAM/G2)
   R_{2G=P_{2}/RGAS/T_{2}}
   IF(ABS((RH02-R2G)/RH02).GT.0.001) GO TO 4
   XM2 = V2/A2
   R2=02/2.
   AMU=1.4579E-6+T2++1.5/(T2+110.4)
   ANL=AMU/R2G
   80 = 1.
   XM=XM2
   ALPHA=AL2
   R=1.0
   F(1)=XM2**3/(1.+G2/2.*XM2**2)**(G1/2./G2)
   P3P(1)=P2P
   X M ARR(1) = X M 2
   DELTAR=(VLDRR-1.)/10.
   ZETA=CF#R2/82
   \Delta S = 0
   DC 1000 NO=2.10
   XM]=XM
   ALPH1=ALPHA
   DS=CELTAR*R2/COS(ALPHA)
   \Delta S = \Delta S + DS
   DELTAS=+037+AS++(-+2)+(V2/ANU)++(-+2)+DS
   B=B0-2.+DELTAS/B2
   DEL TAB=80-8
   VARM=-2.*(1.+G2/2.*XM**2)/(XM**2-1./COS(ALPHA)**2)*((GAM*XM**2-TAN
  1(ALPHA)**2)*7ETA/BO/COS(ALPHA)+1./BO*DELTAB/DELTAR-1./COS(ALPHA)**
  22/RJ#XM##2#DELTAR
   VARAL=1./COS(ALPHA)**2/(XM**2-(1./COS(ALPHA))**2)*((1.+G2
                                                                  *X M**2
  1)*ZETA/BO/COS(ALPHA)+1./BO*DELTAB/DELTAR-XM**2/R)*TAN(ALPHA)*DELTA
  2R
   VARM1=VARM
   VARAL 1=VARAL
   B1 = B
   B=80
```

```
AS=AS-DS
    XM=XM1++2+VARM
    XM=SORT(XM)
    TALPH=TAN(ALPH1)+VARAL1
    ALPHA=ATAN(TALPH)
    DS=DEL TAR #R2/COS(ALPHA)
    R=R+DELTAR
    \Delta S = \Delta S + DS
    DELTAS=+037*AS**(-+2)*(V2/ANU)**(-+2)*DS
    B=80-2.*DELTAS/B2
    DEL TAB=BO-B
    VARM=-2.*(1.+G2/2.*XM**2)/(XM**2-1./CDS(ALPHA)**2)*((GAM*XM**2-TAN
                                                                             Α
    1(ALPHA)**2)*7ETA/80/COS(ALPHA)+1./B0*DELTAB/DELTAR-1./COS(ALPHA)**
   22/R) + XM + + 2 + DELTAR
    VARAL=1./COS(ALPHA)**2/(XM**2-(1./CUS(ALPHA))**2)*((1.+G2
                                                                    *XM**2
    1)*ZETA/B0/COS(ALPHA)+1./BO*DELTAB/DELTAR-XM**2/R)*TAN(ALPHA)*DELTA
   2R
    VARM=(VARM1+VARM)/2.
   7 VARAL=(VARAL1+VARAL)/2.
     8=(8+81)/2.
    XM=XM1++2+VARM
     XM=SORT(XM)
     TALPH=TAN(ALPH1)+VARAL
     ALPHA=ATAN(TALPH)
     80=8
     ACCUSR=SORT(1./(1.+G2/2.*XM**2))
     RHOR=1./(1.+G2/2.*XM**2)**(1./G2)
     F(NO)=XM**3*ACOUSR*RHOR*R
     IF(NO.E0.2) S(NO)=(F(NO)+F(NO-1))*0.5*DELTAR
     IF(NO.E0.2) GO TO 8
     CALL FNTGRL(NO.DELTAR.F.S)
   8 TPL=1./(1.+GAM*CF*R2*S(NO)/COS(AL2)/B2/XM2*(1.+G2/2.*XM2**2)**(G1/
    12./62))
     PP=TPL+P2P
     P3P(NO)=PP
     XMARR(NG)=XM
     XMACH=XMARR(NO)
1000 PTHP=P3P(NO)
     IF(L.E0.1) GO TO 30
     M=2
  21 IF(XMACH.GE.DIFLEM(M-1).AND.XMACH.LE.DIFLEM(M)) GO TO 22
     M=M+1
     GC TO 21
  22 RANGE=(XMACH-DIFLEM(M-1))/(DIFLEM(M)-DIFLEM(M-1))*(FLRNG(M)-FLRNG(
    1M-1)) + FLRNG(M-1)
     WSURGE=RANGE+WC+K
     IF(EWF.LT. SURGE) GO TO 203
  30 CENTINUE
     PTH=PTHP/(].+G2/2.*XNACH**2)**(GAM/G2)
     DHVLD=CP+T2P+((PTH/PTHP)++(G2/GAM)-(PTH/P2P)++(G2/GAM))
     BT = 1 - 8
     XMACH=XMACH+COS(ABS(ALPHA-AL3))
     PTHP=PTH*(].+G2/2.*XMACH**2)**(GAM/G2)
     X1=(ALPHA-AL3)+57.29577
     WFUNC=SW#SORT(T2P)/ADTH/PTHP/8
     IF(WFUNC.GE.FLFUNC) CPSTAR=0.
     IF(WFUNC.GE.FLFUNC) K=1
IF(WFUNC.GE.FLFUNC) GD TO 14
     IF ((AR-1.2).GT.0..AND.(AR-2.).LT.0.) GO TO 10
     IF ((AR-2.).GT.O..AND.(AR-3.).LT.O.) GO TO 11
```

```
IF ((AR-3.).GT.0..AND.(AR-4.).LT.0.) GO TO 12
      IF ((AR-4.).GT.0..ANU.(AR-5.).LT.0.) GO TO 13
   10 CALL LININT(XMACH.BT.AMT.BARR.PREC1.4.6.F1)
      CALL LININT(XMACH.BT.AMT.BARR.PREC2.4.6.F2)
      CPSTAR=(AR-1.2)/.8*(F2-F1)+F1
      GC TO 14
   11 CALL LININT(XMACH, BT, AMT, BARR, PREC2, 4, 6, F2)
     CALL LININT(XMACH.BT.AMT.BARR.PREC3.4.6.F3)
      CPSTAR = (AR - 2.) * (F3 - F2) + F2
      GO TO 14
   12 CALL LININT(XMACH.BT.AMT.BARR.PREC3.4.6.F3)
     CALL LININT(XMACH.BT.AMT.BARR.PREC4.4.6.F4)
      CPSTAR = (AR - 3.) + (F4 - F3) + F3
      GG TO 14
   13 CALL LININT(XMACH.BT.AMT.BARR.PREC4.4.6.F4)
     CALL LININT(XMACH, BT, AMT, BARR, PREC 5, 4, 6, F5)
      CPSTAR=(AR-4.)*(F5-F4)+F4
   14 CONTINUE
      IF(K.E0.1.AND.J.E0.1) GG TO 202
      IF(K.EQ.1.AND.L.EQ.1) GO TO 18
      IF(K.NE.1.ANC.J.EQ.NVOVCR) GD TO 204
      PEXIT=CPSTAR*(PTHP-PTH)+PTH
      RTHP=PTHP/RGAS/T2P
      VCRTH=SORT(2.*GAM/G1*RGAS*T2P)
      RVRVTH=SW/RTHP/VCRTH/ADTH/B
      VOVCR4=.020
 100 P4PL=PEXIT/(1.-G2/G1*VOVCR4**2)**(GAM/G2)
      RVRVC4=(1.-G2/G1+VOVCR4++2)++(1./G2)+VOVCR4
      P4PG=RVRVTH*PTHP/AR/RVRVC4
      VEVCR4=V0VCR4+.001
      IF(P4PL.LT.P4PG) GO TO 100
      PPEXIT=P4PG
15
      DHCIF=T2P+CP+((PEXIT/PPEXIT)++(G2/GAM)-(PEXIT/PTHP)++(G2/GAM))
      PR=PPFXIT/POP
      ETAC=DHAERD-DHSF-CHBL-DHVLC-DHDIF-DHIGV-DHINC
      ETAD=ETAD/DHACT
      DEIGV=DHIGV/DHACT
      DEBL=D+BL/DHACT
      DESE=DHSE/CHACT
      DEDE=DFCF/DHACT
      DERC=DHRC/DHACT
      DEVLD=DHVLD/DHACT
      DEVD=DHDIF/DHACT
      DEINC=DHINC/DHACT
      IF(L.FG.2) GO TO 19
17
      CONTINUE
      IF(1.EQ.1) GO TO 18
   19 IF(NWRITE-NE-1) GG TO 35
      WRITE(6.300)
      WRITE(6.301) PERDS
      wRITE(6.302)
      WRITE(6.303) WSURGE.WCHK
      NERITE=NWRITE+1
   35 MIN=MIN+1
      WRITE(6,304)
      WRITE(6.305) EWF.PR.ETAD
      wRITE(6,306)
      WRITE(6.307) DEIGV.DEINC.DEBL.DESF.DEDF.DERC.DEVLD.DEVD
      IF(K.NE.].AND.MIN.LE.NVUVCR) GD TO 2
```

```
IF(K.EC.1.ANC.L.EC.2) GO TO 1
200 WRITE(6.400)
    MEN=MEN+1
    IFIFIN.GT.NVOVCR) GO TO 1
    66 10 2
201 WRITE(6.400)
    MIN=MIN+1
    IF(MIN.GT.NVOVCR) GO TO 1
    GG TO 2
202 WRITE(6.402)
    GG TO 1
203 WRITE(6.403) VOVCR(J)
    MIN = MIN + 1
    IFIMIN.GT.NVOVCR) GO TO 1
    GO TO 2
204 WRITE(6,308)
    GG TO 1
 18 WCHK=SN+SORT(THETA)/DELTA
    GO TO 1
300 FORMAT(59X.13H PERCENT NDES)
301 FORMAT(63X.F5.1)
302 FORMAT(45X.16H SURGE FLOW RATE, 10X, 15HCHOKE FLOW RATE)
303 FORMAT(51X.F5.3.20X.F5.3)
304 FORMAT(44X.4H WE0.10X.14HPRESSURE RATIO,10X.4HETAT)
305 FORMAT(44X,F5.3,13X,F5.3,15X,F4.3)
306 FORMAT(11X,8H DETAIGV,8X,7HDETAINC.8X,6HDETABL.8X,6HDETASF.8X,6HDE
   1TADF,8X,6HDETARC,8X,7HDETAVLD,8X,6HDETAVD)
307 FORMAT(13X+F6+5+9X+F6+5+8X+F6+5+8X+F6+5+8X+F6+5+8X+F6+5+9X+F6+5+
   18X.F6.5.9X.F6.5)
308 FORMAT(45H COMPRESSOR CHOKING FLOW HAS NOT BEEN REACHED)
309 FORMAT(21H1INLET TOTAL PRESSURE,5X,23HINLET TOTAL TEMPERATURE,5X,2
   19HINLET TOTAL DYNAMIC VISCOSITY,5X,19HSPECIFIC HEAT RATIO,5X,12HGA
   25 CONSTANT)
310 FORMAT(17H NUMBER OF BLADES, 5X, 20HFRICTION CCEFFICIENT, 5X, 4HSPLT, 5
   1X+12HDESIGN SPEED+5X+23HINDUCER RMS SWIRL ANGLE+5X+27HINDUCER RMS
   2BLOCKAGE FACTOR)
311 FORMAT(11X,24H INDUCER RMS BLADE ANGLE,5X,30HINDUCER HUB-TIP DIAME
   ITER RATIO, 5X, 40HINDUCER TIP-IMPELLER EXIT DIAMETER RATIO)
312 FORMAT(30H IMPELLER BLADE EXIT BACKSWEEP,5X,23HIMPELLER BLADE EXIT
   1 HT.,5X,32HVANELESS DIFFUSER DIAMETER RATIO,5X,28HVANED DIFFUSER S
   2ETTING ANGLE)
313 FORMAT(33X.33H TOTAL VANED DIFFUSER THROAT AREA.5X.25HVANED DIFFUS
   1ER AREA RATIO)
314 FCRMAT(47X,36H INLET CRITICAL VELOCITY RATIO ARRAY)
315 FORMAT(7x,F7.0,21x,F6.2,23x,F8.7,24X,F3.1,16X,F6.2)
316 FORMAT(7X,F3.0.20X,F4.3,15X,11,9X,F6.0,17X,F4.2,26X,F4.2)
317 FORMAT(24X.F4.1.27X.F6.4.34X.F6.4)
318 FORMAT(13X.F4.1.26X.F6.5.27X.F6.3.30X.F5.2)
319 FERMAT(47X+F7+6+28X+F4+2)
320 FORMAT(8F10.2)
400 FORMAT(1x,24HIRRATIONAL EXIT TRIANGLE)
402 FORMATIIX.21 HVOVCR ARRAY TOO LARGED
403 FORMAT(1X+34HWT FLOW LESS THAN SURGE FOR V/VCR=+F4+2)
```

Subroutine LININT(X1, Y1, X, Y, TN, MX, MY, F)

This subroutine interpolates a value of maximum pressure recovery coefficient C_p^{**} from a table of vaned diffuser throat Mach numbers and aerodynamic blockage given as input.

X1 input, vaned diffuser throat Mach number

- Y1 input, throat aerodynamic blockage
- X input array of throat Mach numbers
- Y input array of throat blockages
- TN input two-dimensional array of C^{**}_p corresponding to throat Mach numbers and blockages
- MX input, number of throat Mach numbers
- MY input, number of throat blockages
- F output, interpolated value of C_{p}^{**}

SIBFTC LININT

```
SURROUTINE LININT (X1, Y1, X, Y, TN, MX, MY, F)
      DIMENSION X(MX). Y(MY), TN(MX,MY)
      DC 1 J3=2.MX
      IF (X1.LE.X(J3)) GO TO 2
L
      J3=⊬X
2
      DD 3 J4=2,MY
      IF (Y1.LE.Y(J4)) GO TO 4
3
      J4=MY
4
      JI = J3 - 1
      J2=J4-1
      EPS1=(X1-X(J1))/(X(J3)-X(J1))
      FPS2=(Y1-Y(J2))/(Y(J4)-Y(J2))
      EPS3=1.-EPS1
      EPS4=1.-EPS2
      F=TN(J1+J2)*EPS3*EPS4+TN(J3+J2)*EPS1*EPS4+TN(J1+J4)*EPS2*EPS3+TN(J
     13+J4)*EPS1*EPS2
      RETURN
      END
```

Subroutine FNTGRL(NO, DELTAR, F, S)

This subprogram is used to integrate the function $M^3(\rho a/\rho'a')$ in the vaneless diffuser.

NOnumber of equally spaced radiiDELTARradius ratio between stationsFfunction $M^3(\rho a / \rho' a')$ Sintegral of F

No FORTRAN listing of the subprogram is available but a brief description of the method of integration is as follows:

The subprogram uses Simpson's rule in the following manner: First interval:

$$\int_{x_1}^{x_1} f(x) dx = 0$$

Second interval:

$$\int_{x_1}^{x_2} f(\mathbf{x}) d\mathbf{x} = \Delta \mathbf{x} (5f_1 + 8f_2 - f_3) / 12$$

Remaining intervals:

$$\int_{x_{i}}^{x_{i+1}} f(x) dx = \Delta x (5f_{i+1} + 8f_{i} - f_{i-1})/12$$

Lewis Research Center,

National Aeronautics and Space Administration,

and

U.S. Army Air Mobility R&D Laboratory,

Cleveland, Ohio, August 2, 1973, 501-24.

APPENDIX A

SYMBOLS

	STMDOLS
А	area, m ²
AR	area ratio
а	local acoustic velocity, m/sec
в	effective depth ratio
b	blade height or passage depth, m
С	wall curvature, m ⁻¹
C _f	skin friction coefficient
C _p	specific heat, J/(kg)(K)
с _р с**	maximum pressure recovery coefficient at a constant area ratio
D	diameter, m
D _f	diffusion factor
e _s	inlet guide vane loss coefficient
h	spacing for numerical integration
Δh	incremental compressor specific enthalpy, J/kg
К	constant
L	blade length, m
М	Mach number
N	rotative speed, rpm
n	distance along radius, m
р	pressure, N/m ²
Q	volumetric flow rate, m^3/sec
q	dimensionless enthalpy
R	gas constant, $J/(kg)(K)$
$\overline{\mathbf{R}}$	radius ratio
Re	Reynolds number based on inlet total conditions
r	radius, m
S	arc length, m

	$\Delta \mathbf{s}$	incremental arc length, m
	Т	temperature, K
	t	blade thickness, m
	u	blade speed, m/sec
	v	absolute gas velocity, m/sec
	w	relative gas velocity, m/sec
	w	mass flow rate, kg/sec
	Z	number of impeller blades
	α	absolute flow angle, deg from meridional plane
	β	relative flow angle, deg from meridional plane
	$\beta_{\mathbf{b}}$	blade angle, deg from meridional plane
	γ	specific heat ratio
	δ	ratio of inlet total pressure to standard sea-level pressure
	$\Delta \delta^*$	incremental boundary layer displacement thickness, m
	E	difference between compressor inlet relative flow angle and optimum incidence angle
	ζ	vaneless diffuser loss coefficient
	η	total efficiency
	$\Delta\eta$	total efficiency decrement
	θ	ratio of inlet total temperature to standard sea-level temperature
	λ	inducer hub-tip diameter ratio
	μ	dynamic viscosity, N-sec/m 2
	ν	kinematic viscosity, m^2/sec
	ρ	gas density, kg/m 3
	arphi	flow coefficient
	x	wall slope or streamline angle, deg from axial
Subscripts:		ots:
	act	actual
	AD	adiabatic
	aero	aerodynamic

av	average
\mathtt{BL}	blade loading
calc	calculated
choke	value at choking flow rate
cr	critical condition
DES	design
DF	disk friction
eff	effective
eq	equivalent
est	estimated
exit	exit
н	hub
HYD	hydraulic
i	iteration subscript
id	ideal
IGV	inlet guide vane
INC	incidence
is	isentropic
L	lost
m	meridional
max	maximum
MF	rms
n	normal
opt	optimum
R	rotor
RC	recirculation
SF	skin friction
\mathbf{SL}	slip
st	stagger
surge	value at surge flow rate
38	

Т	tip		
u	tangential		
v	vortex		
VD	vaned diffuser		
VLD	vaneless diffuser		
0	station just upstream of inlet guide vanes		
1	impeller inlet upstream of blade		
2	impeller inlet just downstream of blade leading edge		
3	impeller exit		
4	vaned diffuser leading edge		
5	vaned diffuser throat		
6	vaned diffuser exit		
Superscripts:			
,	absolute total condition		

" relative total condition

APPENDIX B

EQUATIONS

This section presents a more detailed discussion of the method of calculating compressor performance than was presented in the section Method of Analysis.

The equations used in calculating the flow solution through the compressor are listed here in the approximate order of solution in the FORTRAN program. The known constants are the input fluid state and thermodynamic properties, compressor geometry, and velocity diagram data. The working fluid properties and state conditions are specific heat ratio γ , inlet total pressure p'_0 , inlet total temperature T'_0 , and inlet dynamic viscosity based on total conditions μ'_0 . The velocity diagram data are compressor design rotative speed N_{DES}, the fraction of design rotative speed for which performance data is desired N/N_{DES}, the number of values of $(V/V_{cr})_0$ for which performance is to be calculated, the values of $(V/V_{cr})_0$ to be used, and the inducer solid-body swirl angle at the rms diameter α_{1MF} . The compressor data are inducer inlet hub and tip wall slopes χ_{1H} and χ_{1T} , inducer inlet hub and tip wall curvatures C_{1H} and C_{1T} , inducer inlet tip diameter \bar{D}_{1T} , inducer inlet hub-tip diameter ratio λ , inducer-inlet-tip to impeller-exit diameter ratio D_{1T}/D_3 , number of blades at impeller exit (including splitters) Z_3 , impeller blade exit angle (positive opposite to direction of rotation) β_{3b} , impeller exit blade height b₃, inducer inlet blade angle at the rms diameter β_{1MFb} , inducer inlet blockage factor calculated at the rms diameter, vaneless diffuser diameter ratio D_4/D_3 , vaned diffuser setting angle α_4 , total vaned diffuser throat area A_5 , vaned diffuser area ratio A_6/A_5 , and wetted surface friction coefficient C_f . With these known values compressor performance can be evaluated by the method described.

Calculation of Inlet Velocity Triangles and Compressor Weight Flow

Calculation of the inducer inlet velocity diagrams and weight flow are handled by two methods depending on whether the inlet is swirl-free or subject to solid-body swirl. For the swirl cases it is assumed that the inlet guide vanes are located in a constant area annulus with zero wall slope with respect to the axial direction. The inner and outer diameters of the annulus are assumed to be equal to the inducer inlet hub and tip diameters. For the swirl-free cases it is assumed that the flow orthogonal can be approximated by a radial line. These assumptions greatly simplify calculation of the velocities specified by the general velocity gradient equation. <u>Swirl-free inlets</u>. - For compressor configurations with swirl-free inlets the input value of $(V/V_{cr})_0$ is used as the hub streamline value of V/V_{cr} . The variation of inlet velocity with radius is calculated from the general velocity gradient equation simplified for swirl-free flow. This equation is (in simplified form from ref. 10)

$$V_{\rm m} = V_{\rm m1H} e^{\int_0^{\rm n} C \, dn}$$
(B1)

where V_{m1H} is the hub absolute velocity, C is the streamline curvature, and n is the distance along a radius. Streamline curvature and slope at the rms inlet diameter are approximated by linear interpolation of the input hub and tip values. The integral in the previous equation is approximated by the trapezoidal rule at the rms diameter and by Simpson's rule for unequal intervals at the tip. The numerical approximations are

1

$$\mathbf{V}_{m1MF} = \mathbf{V}_{m1H} \mathbf{e}$$
(B2)

and

$$V_{m1T} = V_{m1H} e^{\left\{ \left(\frac{h_0 + h_1}{6} \right) \left[\left(2 - \frac{h_1}{h_0} \right) C_{1H} + \frac{\left(h_0 + h_1 \right)^2}{h_1 h_0} C_{1MF} + \left(2 - \frac{h_0}{h_1} \right) C_{1T} \right] \right\}}$$
(B3)

where

 $h_0 = r_{1MF} - r_{1H}$ (B4)

and

$$\mathbf{h}_{1} = \mathbf{r}_{1T} - \mathbf{r}_{1MF} \tag{B5}$$

Static densities at the hub, rms, and tip diameters are determined from the inlet total density and the calculated velocity at each station. Velocity components normal to the annular inlet plane are calculated using the velocities and streamline angles at the three stations:

$$V_{m1n} = V_{m1} \cos \chi \tag{B6}$$

where χ is the streamline angle. Inlet mass flow is then computed using Simpson's rule for unequal intervals

$$w = 2\pi \left\{ \frac{h_0 + h_1}{6} \left[\left(2 - \frac{h_1}{h_0} \right) (\rho r)_{1H} V_{m1Hn} + \frac{\left(h_0 + h_1 \right)^2}{h_0 h_1} (\rho r)_{1MF} V_{m1MFn} + \left(2 - \frac{h_0}{h_1} \right) (\rho r)_{1T} V_{m1Tn} \right] \right\}$$
(B7)

Inlets with solid-body swirl. - For impeller inlets with inlet guide vanes producing solid-body swirl the equations presented in reference 2 for kinetic energy loss were iteratively solved for state conditions and velocities downstream of the inlet guide vanes. Conditions at the rms diameter were assumed to be representative of the flow distribution at the impeller inlet. The inlet guide vane stagger angle was assumed to be onehalf of the turning angle at the rms diameter; that is,

$$\alpha_{\rm ST} = \frac{\alpha_{\rm 1MF}}{2} \tag{B8}$$

The inlet guide vane loss coefficient was calculated from the equation

$$e_{S} = \frac{0.0076}{\cos \alpha_{1MF} - 0.025} \left(1 + \frac{\cos \alpha_{ST}}{0.7} \right)$$
(B9)

Using the input value of $(V/V_{cr})_0$ as a first approximation to the value of V/V_{cr} downstream of the inlet guide vanes at the rms diameter, the following equations are solved iteratively with successive increments in V/V_{cr} until continuity checks the calculation of equation (B7):

$$KE = \frac{\left(\frac{V}{V_{cr}} V_{cr}\right)^2}{2}$$
(B10)

$$\left(\frac{\mathbf{p}}{\mathbf{p}'}\right)_{1MF} = \left(1 - \frac{\mathbf{KE}}{\mathbf{C}_{1}\mathbf{T}_{0}'}\right)^{\gamma/(\gamma-1)}$$
(B11)

$$KE_{id} = \frac{KE}{1 - e_S}$$
(B12)

$$\frac{\mathbf{p}_{1MF}}{\mathbf{p}_{0}'} = \left(1 - \frac{\mathbf{KE}_{id}}{\mathbf{C}_{p}\mathbf{T}_{0}'}\right)^{\gamma/(\gamma-1)}$$
(B13)

$$\mathbf{p'_{1MF}} = \mathbf{p'_0} \frac{\frac{\mathbf{p_{1MF}}}{\mathbf{p'_0}}}{\left(\frac{\mathbf{p}}{\mathbf{p'}}\right)_{1MF}}$$
(B14)

$$\rho'_{1MF} = \frac{p'_{1MF}}{RT'_0}$$
(B15)

$$p_{1MF} = p'_{1MF} \left(\frac{p}{p'}\right)_{1MF}$$
(B16)

$$\rho_{1MF} = \rho'_{1MF} \left(\frac{p}{p'}\right)_{1MF}^{1/\gamma}$$
(B17)

$$Q_{1} = \frac{\pi}{4} D_{1T}^{2} (1 - \lambda^{2}) \left(\frac{V}{V_{cr}} \right)_{1MF} V_{cr} \cos \alpha_{1MF}$$
(B18)

$$w = Q_1 \rho_{1MF}$$
(B19)

When continuity is satisfied downstream of the inlet guide vanes, the impeller inlet velocity triangles are calculated. Combination of the Euler equation with the solid-body vortex equation and simple radial equilibrium equation shows that the meridional veloc-ity distribution can be expressed as

$$V_{m1} = \sqrt{K_{Vm} - 2V_{u1}^2}$$
 (B20)

Using the value of V/V_{cr} which satisfies continuity downstream of the inlet guide vanes and the input value of the rms turning angle allows solution of the constant in equation (B20). The tangential components of the inlet absolute velocity at the hub and tip are calculated from the vortex condition. Then the hub and tip meridional velocities can be determined as follows:

$$V_{u} = K_{Vu}r$$
 (B21)

where

$$K_{Vu} = \frac{V_{u1MF}}{r_{1MF}}$$
(B22)

The following general inducer inlet velocity diagram characteristics are calculated after the particular swirl-free or solid-body swirl calculations are completed:

$$V_{1T} = \sqrt{V_{m1T}^2 + V_{u1T}^2}$$
 (B23)

$$\alpha_{1T} = \sin^{-1} \left(\frac{V_{u1T}}{V_{1T}} \right)$$
(B24)

$$W_{u1T} = u_{1T} - V_{u1T}$$
(B25)

$$\beta_{1T} = \tan^{-1} \left(\frac{W_{u1T}}{V_{m1T}} \right)$$
(B26)

$$W_{1T} = \sqrt{V_{m1T}^2 + W_{u1T}^2}$$
 (B27)

$$\mathbf{W}_{u1H} = \mathbf{u}_{1H} - \mathbf{V}_{u1H} \tag{B28}$$

$$\beta_{1H} = \tan^{-1} \left(\frac{W_{u1H}}{V_{m1H}} \right)$$
(B29)

$$W_{1H} = \sqrt{V_{m1H}^2 + W_{u1H}^2}$$
(B30)

$$V_{1MF} = \sqrt{V_{u1MF}^2 + V_{m1MF}^2}$$
 (B31)

$$W_{u1MF} = u_{1MF} - V_{u1MF}$$
(B32)

$$W_{1MF} = \sqrt{V_{m1MF}^2 + W_{u1MF}^2}$$
 (B33)

$$\beta_{1MF} = \tan^{-1} \left(\frac{W_{u1MF}}{V_{m1MF}} \right)$$
(B34)

The wheel speeds used in the previous equations are obtained from the following input constants:

$$u_{1T} = \frac{\pi \left(\frac{N}{N_{DES}}\right) N_{DES} D_{1T}}{60}$$
(B35)

$$^{u}1H = ^{\lambda u}1T$$
(B36)

$$u_{1MF} = u_{1T} \frac{D_{1MF}}{D_{1T}}$$
(B37)

$$D_{1MF} = \sqrt{\frac{1}{2} D_{1T}^2 (1 + \lambda^2)}$$
(B38)

Individual Losses

<u>Inlet guide vane loss</u>. - When the inducer inlet velocity diagram characteristics have been determined by the method described in the section Inlets With Solid-Body Swirl, the inlet guide vane loss is computed using the equation found in reference 1, subject to the assumptions made in reference 3.

$$\Delta h_{IGV} = e_S KE_{id}$$
(B39)

<u>Inducer incidence loss</u>. - The equations developed in reference 4 are used to determine the optimum inducer incidence angle for incompressible flow. Compressibility effects are ignored because the incidence loss is evaluated at the rms diameter and compressibility effects are insignificant except at the hub according to reference 4. Using the input blade blockage factor at the rms diameter the optimum incidence angle is found by

$$\epsilon = \tan^{-1} \frac{(1 - B_1) \tan \beta_{1MF}}{1 + B_1 \tan^2 \beta_{1MF}}$$
(B40)

where

$$B_{1} = 1 - \frac{Z_{1}t_{u}}{2\pi r_{1}MF}$$
(B41)

The optimum relative flow angle is then

$$\beta_{\text{opt}} = \beta_{1\text{MF}} - \epsilon \tag{B42}$$

and the component of the relative velocity lost is

$$W_{L} = W_{1MF} \sin \left| \beta_{opt} - \beta_{1MF} \right|$$
(B43)

The enthalpy loss due to incidence is expressed as

$$\Delta h_{\rm INC} = \frac{w_{\rm L}^2}{2C_{\rm p}} \tag{B44}$$

and the total pressure just inside the blade row is

$$p'_{2MF} = p'_{1MF} e^{\left(\frac{-\Delta h_{INC}}{T_2 R}\right)}$$
(B45)

<u>Impeller work and losses</u>. - The impeller exit density is obtained through iteration of the impeller loss equations and calculated state properties. The enthalpy rise in the impeller is initially approximated as

$$\Delta h_{est} = u_3^2 \tag{B46}$$

and the corresponding impeller exit total temperature is then

$$\mathbf{T}_{3est}' = \left(\frac{\Delta \mathbf{h}_{est}}{C_{p}T_{0}'} + 1\right)\mathbf{T}_{0}'$$
(B47)

The impeller exit density is initially approximated to be

$$\rho_3 = \rho_{1MF} \left(\frac{T'_{3est}}{T'_0} \right)^{1/(\gamma-1)}$$
(B48)

The meridional component of exit absolute velocity is calculated from continuity

$$\mathbf{V}_{\mathbf{m3}} = \frac{\mathbf{w}}{\pi \rho_3 \mathbf{D}_3 \mathbf{b}_3} \tag{B49}$$

The tangential component of exit absolute velocity is then

$$V_{u3} = u_3 - V_{m3} \tan \beta_{3b} - V_{SL}$$
 (B50)

where the slip velocity $~V^{}_{\rm SL}~$ is calculated by the method of reference 11.

$$V_{SL} = \frac{u_3 \sqrt{\cos \beta_{3b}}}{z_3^{0.7}}$$
(B51)

The remaining state and flow properties at the exit were calculated from the following relations:

$$T''_{3} = T''_{1MF} + \frac{u_{3}^{2} - u_{1MF}^{2}}{2C_{p}}$$
(B52)

$$W_{u3} = u_3 - V_{u3}$$
 (B53)

$$W_3 = \sqrt{V_{m3}^2 + W_{u3}^2}$$
(B54)

$$T_3 = T_3'' - \frac{W_3^2}{2C_p}$$
 (B55)

$$V_3 = \sqrt{V_{m3}^2 + V_{u3}^2}$$
(B56)

$$T'_3 = T_3 + \frac{V_3^2}{2C_p}$$
 (B57)

The work loss due to blade loading is calculated from the equation

$$\Delta h_{BL} = 0.05 D_f^2 u_3^2$$
(B58)

which is given by reference 5. The diffusion factor $\, D_{f}^{} \,$ is defined as

$$D_{f} = 1 - \frac{W_{3}}{W_{1T}} + \frac{K_{BL}q_{aero}}{\frac{W_{1T}}{u_{3}} \left[\frac{Z_{3}}{\pi} \left(1 - \frac{D_{1T}}{D_{3}} \right) + 2 \frac{D_{1T}}{D_{3}} \right]}$$
(B59)

where a value of 0.75 is used for $K_{\rm BL}$ for conventional impellers and a value of 0.6 is used for impellers with splitters. A parametric study of calculated diffusion factors with a variation in the number of blades indicated that changing the constant to 0.6 would compensate for the changing solidity near the exit. The dimensionless actual head is obtained by dividing the enthalpy rise by the exit blade speed squared

$$q_{aero} = \frac{\Delta h_{aero}}{u_3^2}$$
(B60)

where

$$\Delta h_{aero} = C_p T_0' \left(\frac{T_3'}{T_0'} - 1 \right)$$
(B61)

Impeller disk friction loss is computed using the method of reference 6

$$\Delta h_{\rm DF} = 0.01356 \frac{\rho_3}{w{\rm Re}^{0.2}} u_3^3 D_3^2 \tag{B62}$$

The Reynolds number in this equation is based on impeller exit dimensions and inlet total conditions

$$Re = \frac{u_3 D_3 \rho'_1 MF}{\mu'_0}$$
(B63)

Skin friction loss is calculated from the correlation found in reference 5

$$\Delta h_{SF} = K_{SF}C_f \frac{\frac{L}{D_3}}{\frac{D_{HYD}}{D_3}} \left(\frac{W}{u_3}\right)_{av}^2 u_3^2$$
(B64)

where the mean flowpath blade length-diameter ratio is expressed as

$$\frac{L}{D_3} = \frac{1}{2} \frac{1 - \frac{D_{1MF}}{0.3048}}{\cos \beta_{3b}}$$
(B65)

The ratio of mean hydraulic-exit diameter ratio is calculated from the equation

$$\frac{D_{HYD}}{D_3} = \frac{1}{\frac{Z_3}{\pi \cos \beta_{3b}} + \frac{D_3}{b_3}} + \frac{\frac{2}{1 - \lambda} + \frac{2Z_3}{\pi (1 + \lambda)} \sqrt{1 + \tan^2 \beta_{1T} \left(1 + \frac{\lambda^2}{2}\right)}$$
(B66)

and the ratio of mean relative velocity-impeller exit velocity is determined by

$$\left(\frac{\mathbf{W}}{\mathbf{u}_{3}}\right)_{av}^{2} = \frac{1}{2} \left\{ \left(\frac{\mathbf{V}_{m1MF}}{\mathbf{u}_{3}}\right)^{2} + \left(\frac{\mathbf{D}_{1MF}}{\mathbf{D}_{3}}\right)^{2} + \left(\frac{\mathbf{W}_{3}}{\mathbf{W}_{1T}}\right)^{2} \left[\left(\frac{\mathbf{V}_{m1MF}}{\mathbf{u}_{3}}\right)^{2} + \left(\frac{\mathbf{D}_{1T}}{\mathbf{D}_{3}}\right)^{2} \right] \right\}$$
(B67)

Some studies of the effects of the addition of splitter blades on the impeller flow indicated that the mean channel relative velocity is increased in the splitter region. The ratio of mean flow path blade length and hydraulic diameter-exit diameter ratio remain virtually unchanged. Computation of the mean relative velocity ratios for an impeller both with and without splitters showed that, for splitters, the average relative velocity is about 14 percent higher than for conventional impellers. This phenomenon is accounted for by using the constant 7.0 for impellers with splitters and 5.6 for impellers without splitters.

At this point in the iteration procedure the impeller ideal enthalpy rise is calculated as follows:

$$\Delta h_{id} = \Delta h_{aero} - \Delta h_{IGV} - \Delta h_{INC} - \Delta h_{SF} - \Delta h_{BL}$$
(B68)

Defining the impeller efficiency as

$$\eta_{\mathbf{R}} = \frac{\Delta h_{\mathrm{id}}}{\Delta h_{\mathrm{aero}}} \tag{B69}$$

the state conditions at the impeller exit are calculated from the relations

$$\mathbf{p'_{3}} = \mathbf{p'_{2MF}} \left(\frac{\eta_{\mathbf{R}} \Delta h_{aero}}{C_{\mathbf{p}} T_{\mathbf{0}}} + 1 \right)^{\gamma / (\gamma - 1)}$$
(B70)

$$p_{3} = \frac{p_{3}'}{\left(\frac{T_{3}'}{T_{3}}\right)^{\gamma/(\gamma-1)}}$$
(B71)

$$\rho_3 = \frac{\mathbf{p}_3}{\mathbf{RT}_3} \tag{B72}$$

The value of ρ_3 obtained from equation (B72) is compared to the value estimated in equation (B48).

If the values do not compare within 0.1 percent, the former value is used as a new approximation and equations (B49) to (B72) are iterated until two consecutive values of exit density agree within the tolerance specified.

<u>Recirculation loss</u>. - Recirculation of the working fluid from the vaneless space back into the impeller results in additional work which is lost to the system. Reference 5 expresses this loss as a function of the impeller exit absolute flow angle, impeller diffusion factor, and impeller exit tip speed. The following modified form of the equation of reference 5 is used to calculate the recirculation loss:

$$\Delta h_{\rm RC} = 0.02 \, \sqrt{\tan \, \alpha_3} \, D_{\rm f}^2 u_3^2 \tag{B73}$$

<u>Vaneless diffuser loss</u>. - Reference 7 developed differential equations relating Mach number, flow angle, and total temperature to vaneless diffuser radius ratio through the fundamental relations of continuity, equilibrium, heat transfer, and fluid state. These equations are evaluated at ten equally spaced intervals in the vaneless space. Two iterations of the equations are performed at each station; the first iteration uses the calculated properties at the point of interest to compute the variation in Mach number and flow angle to the next point; the second iteration uses the estimated properties of the downstream point to compute the same variations. The arithmetic average of the two iterations is then used for the solution.

These equations, simplified for adiabatic flow in a geometrically constant depth radial passage are

$$\frac{1}{M^2} \frac{dM^2}{d\overline{R}} = \frac{-2\left(1 + \frac{\gamma - 1}{2}M^2\right)}{M^2 - \sec^2 \alpha} \left[(\gamma M^2 - \tan^2 \alpha) \frac{\zeta}{B \cos \alpha} + \frac{1}{B} \frac{dB}{d\overline{R}} - \frac{\sec^2 \alpha}{\overline{R}} \right]$$
(B74)

and

$$\frac{1}{\tan \alpha} \frac{d \tan \alpha}{d\overline{R}} = \frac{\sec^2 \alpha}{M^2 - \sec^2 \alpha} \left\{ \left[1 + (\gamma - 1)M^2 \right] \frac{\zeta}{B \cos \alpha} + \frac{1}{B} \frac{dB}{d\overline{R}} - \frac{M^2}{\overline{R}} \right\}$$
(B75)

where

$$\zeta = \frac{C_f r_3}{b_3}$$
(B76)

$$\overline{\mathbf{R}} = \frac{\mathbf{r}}{\mathbf{r}_3} \tag{B77}$$

$$\mathbf{B} = \frac{\mathbf{b}}{\mathbf{b}_3} \tag{B78}$$

The schedule of effective passage depth is determined by boundary layer displacement thickness growth on the end walls. The end walls in the vaneless diffuser are assumed to be parallel and have a spacing equal to the impeller exit blade height. The flow pattern between the end walls is approximated as a log spiral between adjacent calculation stations. With these assumptions the incremental flow path length is

$$\Delta S = \frac{r_2 \Delta R}{\cos \alpha}$$
(B79)

and the incremental boundary layer displacement thickness is

$$\Delta \delta^* = 0.037 \, \mathrm{S}^{-0.2} \left(\frac{\mathrm{V}_2}{\nu} \right)^{-0.2} \Delta \mathrm{S}$$
 (B80)

where

$$S = \sum_{i=1}^{n} \Delta S_{i}$$
(B81)

The effective passage depth is

$$B_{i+1} = B_i - \frac{2\Delta\delta^*}{b_3}$$
(B82)

and

$$\Delta \mathbf{B} = \mathbf{B}_{i} - \mathbf{B}_{i+1} \tag{B83}$$

Loss the total pressure in the vaneless space is computed from the following equation derived in reference 4:

$$\frac{1}{\begin{pmatrix} \frac{p'_4}{p'_3} \end{pmatrix}} = 1 + \frac{\gamma C_f}{\cos \alpha_3} \frac{r_3}{b_3} \frac{\int_1^R M^3 \frac{a}{a'} \frac{\rho}{\rho'} \overline{R} d\overline{R}}{M_3 \left(\frac{a}{a'}\right)_3 \left(\frac{\rho}{\rho'}\right)_3}$$
(B84)

The integral in equation (B84) is determined by numerical methods. Vaned diffuser leading edge static pressure is calculated from the isentropic relation using the total pressure obtained from equation (B84) and the Mach number obtained from the distribution prescribed by equation (B74)

$$p_{4} = \frac{p'_{4}}{\left(1 + \frac{\gamma - 1}{2} M_{4}^{2}\right)^{\gamma / (\gamma - 1)}}$$
(B85)

Vaneless diffuser loss is then determined by

$$\Delta h_{\rm VLD} = C_{\rm p} T_{\rm 3} \left[\left(\frac{p_4}{p_4'} \right)^{(\gamma-1)/\gamma} - \left(\frac{p_4}{p_3'} \right)^{(\gamma-1)/\gamma} \right]$$
(B86)

<u>Vaned diffuser loss</u>. - Vaned diffuser performance is predicted by use of the test data reported in reference 8. Lines of maximum pressure recovery coefficient at a given area ratio were estimated from the performance maps reported for single plane divergence diffusers with square throats. The component of the vaned diffuser leading edge Mach number parallel to the vane setting angle is used as the throat Mach number. A loss in total pressure associated with this incidence is calculated holding static pressure constant between the leading edge and throat. The throat blockage is estimated from the displacement thickness growth on the vaneless diffuser end walls. Using these conditions of throat Mach number, total pressure, and blockage the pressure recovery of the vaned diffuser is extrapolated for the specified geometric area ratio. Vaned diffuser exit static pressure is then calculated from the relation

$$\mathbf{p}_6 = \mathbf{C}_p^{**}(\mathbf{p}_5 - \mathbf{p}_5) + \mathbf{p}_5 \tag{B87}$$

The exit total pressure and velocity are determined by trial and error using estimated values of exit critical velocity ratio. The total pressure at the vaned diffuser throat is assumed to be constant across the free-stream area outside the boundary layer displacement thickness. The total pressure and velocity at the vaned diffuser exit are calculated assuming full flow across the geometric area. Starting with a low value of $(V/V_{cr})_6$ the lower estimate of exit total pressure is expressed as

$$p_{6}' = \frac{p_{6}}{\left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{V_{cr}}\right)_{6}^{2}\right]^{\gamma / (\gamma - 1)}}$$
(B88)

and the higher estimate is

$$\mathbf{p}_{6}^{\prime} = \frac{\left(\frac{\rho \mathbf{V}}{\rho' \mathbf{V_{cr}}}\right)_{5} \mathbf{p}_{5}^{\prime}}{\mathbf{AR}\left(\frac{\rho \mathbf{V}}{\rho' \mathbf{V_{cr}}}\right)_{6}}$$
(B89)

where

$$\left(\frac{\rho V}{\rho' V_{cr}}\right)_{5} = \frac{w}{\rho'_{5} \left(V_{cr}\right)_{5}^{A} 5^{B} 5}$$
(B90)

Equations (B88) and (B89) are solved using increasing values of $(V/V_{cr})_6$ until convergence is achieved. The vaned diffuser loss is then calculated from the relation

$$\Delta h_{VD} = C_p T'_3 \left[\left(\frac{p_6}{p'_6} \right)^{(\gamma-1)/\gamma} - \left(\frac{p_6}{p'_5} \right)^{(\gamma-1)/\gamma} \right]$$
(B91)

Efficiency decrements. - Decrements in efficiency caused by the individual losses are obtained from the following equations:

$$\Delta \eta_{\rm IGV} = \frac{\Delta h_{\rm IGV}}{\Delta h_{\rm act}} \tag{B92}$$

$$\Delta \eta_{\rm INC} = \frac{\Delta h_{\rm INC}}{\Delta h_{\rm act}}$$
(B93)

$$\Delta \eta_{\rm BL} = \frac{\Delta h_{\rm BL}}{\Delta h_{\rm act}} \tag{B94}$$

$$\Delta \eta_{\rm SF} = \frac{\Delta h_{\rm SF}}{\Delta h_{\rm act}} \tag{B95}$$

$$\Delta h_{\mathbf{DF}} = \frac{\Delta h_{\mathbf{DF}}}{\Delta h_{act}}$$
(B96)

$$\Delta \eta_{\rm RC} = \frac{\Delta h_{\rm RC}}{\Delta h_{\rm act}} \tag{B97}$$

$$\Delta \eta_{\rm VLD} = \frac{\Delta h_{\rm VLD}}{\Delta h_{\rm act}} \tag{B98}$$

$$\Delta \eta_{\rm VD} = \frac{\Delta h_{\rm VD}}{\Delta h_{\rm act}} \tag{B99}$$

where

$$\Delta h_{act} = \Delta h_{aero} + \Delta h_{RC} + \Delta h_{DF}$$
(B100)

Overall efficiency. - The overall total efficiency is calculated as follows:

$$\eta_{AD} = \frac{\Delta h_{aero} - (\Delta h_{IGV} + \Delta h_{INC} + \Delta h_{BL} + \Delta h_{SF} + \Delta h_{VLD} + \Delta h_{VD})}{\Delta h_{aero} + \Delta h_{RC} + \Delta h_{DF}}$$
(B101)

REFERENCES

- 1. Galvas, Michael R.: Analytical Correlation of Centrifugal Compressor Design Geometry for Maximum Efficiency With Specific Speed. NASA TN D-6729, 1972.
- Stewart, Warner L.; Whitney, Warren J.; and Wong, Robert Y.: A Study of Boundary-Layer Characteristics of Turbomachine Blade Rows and Their Relation to Over-All Blade Loss. J. Basic Eng., vol. 82, no. 3, Sept. 1960, pp. 588-592.
- 3. Rohlik, Harold E.: Analyitical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency. NASA TN D-4384, 1968.
- 4. Stanitz, John D.: Effect of Blade-Thickness Taper on Axial-Velocity Distribution at the Leading Edge of an Entrance Rotor Blade Row With Axial Inlet, and the Influence of This Distribution on Alinement of the Rotor Blade for Zero Angle of Attack. NACA TN-2986, 1953.
- Coppage, J. E.; Dallenbach, F.: Eichenberger, J. P.; Hlavaka, G. E.; Knoernschild, E. M.; and Vanke, N.: Study of Supersonic Radial Compressors for Refrigeration and Pressurization Systems. AiResearch Mfg. Co. (WADC TR-55-257), Dec. 1956.
- 6. Shepherd, Dennis G.: Principles of Turbomachinery. Macmillan Co., 1956.
- Stanitz, John D.: One-Dimensional Compressible Flow in Vaneless Diffusers of Radial- and Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer, and Area Change. NACA TN 2610, 1952.
- Runstadtler, Peter W., Jr.: Pressure Recovery Performance of Straight-Channel, Single-Plane Divergence Diffusers High Mach Numbers. Rep. N-88, Creare, Inc. (USAAVLABS-TR-69-56, AD-865300), Oct. 1969.
- 9. Rodgers, Colin: Typical Performance Characteristics of Gas Turbine Radial Compressors. Paper 63-AHGT-14, ASME, Mar. 1963.
- 10. Stewart, Warner L.: Analytical Investigation of Flow Through a High-Speed Mixed-Flow Turbine. NACA TM E51H06, 1951.
- 11. Weisner, F. J.: A Review of Slip Factors for Centrifugal Impellers. J. Eng. Power, vol. 89, no. 4, Oct. 1967, pp. 558-572.