N74-10025

NASA TECHNICAL NOTE

NASA TN D-7489

EFFECTS OF INCREASED LEADING-EDGE THICKNESS ON PERFORMANCE OF A TRANSONIC ROTOR BLADE

by Lonnie Reid and Donald C. Urasek

Lewis Research Center

Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . NOVEMBER 1973

1. Report No.	2. Government Access	on No.	3. Recipient's Catalog	No.		
NASA TN D-7489 4. Title and Subtitle			5. Report Date			
EFFECTS OF INCREASED LE	ADING-EDGE TI	HICKNESS ON	November	1973		
PERFORMANCE OF A TRANS		F	6. Performing Organiza	ation Code		
7. Author(s)			8. Performing Organization Report No.			
Lonnie Reid and Donald C. Ur		E-7076				
			0. Work Unit No.			
9. Performing Organization Name and Address			501-24			
Lewis Research Center National Aeronautics and Spac	o Administration	1	 Contract or Grant I 	No.		
Cleveland, Ohio 44135	e Administration					
<u></u>			13. Type of Report and	j		
12. Sponsoring Agency Name and Address National Aeronautics and Space	o Administration		Technical No	te		
	e Administration	•	14. Sponsoring Agency	Code		
Washington, D.C. 20546						
15. Supplementary Notes						
16. Abstract						
A single-stage transonic comp	ressor was teste	d with two rotor bla	de leading-edge	configura-		
tions to investigate the effect						
transonic blade row. The ori						
leading edge sufficiently to do						
blockage in the tip region. At				1		
overall peak efficiency of four				I I		
peak efficiency was attributed				į.		
At 70 and 90 percent of design	speed, the modi	fication had very lit	tle effect on rote	or overall		
performance.						
				(
				ľ		
17. Key Words (Suggested by Author(s))		18. Distribution Statement		Į.		
		Unclassified - v	ınlimited			
			Ì			
			}			
19. Security Classif. (of this report)	20. Security Classif. (d	of this page)	21. No. of Pages	22. Price*		
Unclassified	Uncl	assified	56	Domestic, \$3.50 Foreign, \$6.00		
	1		L	J ., V		

EFFECTS OF INCREASED LEADING-EDGE THICKNESS ON PERFORMANCE OF A TRANSONIC ROTOR BLADE

by Lonnie Reid and Donald C. Urasek

Lewis Research Center

SUMMARY

A single-stage transonic compressor was tested with two rotor blade leading-edge configurations to investigate the effect of increased leading-edge thickness on the performance of a transonic blade row. The original rotor configuration was tested with a blade leading-edge thickness that resulted in a blade gap blockage of approximately 3 percent at the tip and increased to about 4 percent at the rotor hub. The original rotor blade was modified by cutting back the leading edge sufficiently to double the blade leading edge thickness, and thus the blade gap blockage (3 to 6 percent), in the tip region.

At design speed this modification resulted in a decrease in rotor overall peak efficiency of four points. The major portion of this decrement in rotor overall peak efficiency could be attributed to the flow conditions in the outer 30 percent of the blade span. At 70 and 90 percent of design speed, the modifications had a small effect on the overall performance.

The suction-surface blade angles for the modified rotor blades are less than those for the original rotor blades, and thus for the same inlet-flow conditions the modified rotor operates at higher suction-surface incidence angles. The major portion of the increase in total loss for the thicker leading-edge (modified) blade configuration could be attributed to the increase in suction-surface incidence angle along the characteristic curves of losses versus suction-surface incidence angle for the original rotor configuration. This implies that lower losses could be obtained if the thicker leading-edge configuration was designed to operate at lower suction-surface incidence angles.

INTRODUCTION

A research program on axial-flow fans and compressors for advanced airbreathing engines is currently being conducted at Lewis. The basic objective of this program is

to provide new technology to permit reducing the size and weight of fans and compressors while maintaining a high level of performance. In support of the program experimental studies are being conducted to determine the effects of blade shape, solidity, aspect ratio, blade loading, and choke margin on efficiency and stall margin.

Results from this research program have demonstrated that transonic rotors can operate at high inlet relative Mach numbers and still achieve good efficiency and acceptable stall margin (refs. 1 and 2). This improvement in transonic rotor performance is mainly a result of proper considerations for the blade entrance region and throat area in determining the design blade shape.

A large number of present day aircraft engine designs utilize compressors with transonic rotors. For aircraft engines designed for low thrust (less than 4000 newton), the physical dimensions of the compressors are relatively small (10 to 20 cm diam). The leading edges of the rotor blades for this class of compressors may become relatively blunt due to manufacturing tolerance. Even for compressors sufficiently large in physical dimensions such that manufacturing tolerance is not a problem, the leading edges of the rotor blades may become relatively blunt during their service life due to foreign object damage and erosion by small particles. The objective of this investigation is to determine experimentally the effect of increased leading edge thickness on the performance of a transonic rotor blade. The stage used in this investigation is designated as stage 14-10 (rotor 14, stator 10). The design rotor inlet tip speed and relative Mach number are 423 meters per second and 1.4, respectively. The aerodynamic design and the overall and blade-element performance for the original configuration of this stage is reported in reference 1. For this investigation, the leading edges of the blades for rotor 14 were modified (cut back to increase leading edge thickness), and the modified rotor is designated herein as rotor 14-mod 1.

Overall and blade-element performance are compared for the two rotor configurations (rotor 14 and rotor 14-mod 1) at 70, 90, and 100 percent of design speed. The tests were conducted in the single-stage compressor facility at Lewis.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the single-stage compressor facility (fig. 1). Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow measuring orifice and into the plenum chamber upstream of the rotor. The air then passes through the experimental compressor stage into the collector and is exhausted to the atmosphere.

Test Stage

The aerodynamic design of the original stage is presented in reference 1. The overall design parameters are presented in table I. The design blade-element parameters are presented in tables II and III for the rotor and stator. The blade geometry for rotor 14 and stator 10 are presented in tables IV and V. The symbols used in this report are defined in appendix A. The equations used for calculating the overall blade-element performance parameters are presented in appendix B. The flow path is the same for both rotor configurations and is shown in figure 2. Photographs of the rotor and stator are shown in figures 3 and 4.

The original rotor configuration (rotor 14) was modified by cutting back the blade leading edges. The modified rotor configuration is herein designated as rotor 14-mod 1. The axial extent of the cutback was approximately 0.325 centimeter at the tip, and the cutback decreased linearly to zero at the hub (fig. 5). This was done by machine cutting and rounding the leading edges by hand filing. The general shape of the leading edge contour is also shown in figure 5 for blade sections at approximately 5 and 70 percent span (from tip) for both rotor 14 and rotor 14-mod 1. The rotor blade leading edge was cut back sufficiently at the tip to double the leading edge thickness and thus the blade gap blockage. The blade gap blockage is defined herein as that fraction of the blade gap occupied by the leading edge thickness (fig. 6). The blade gap blockage was increased from 3 to 6 percent at the blade tip and remained at approximately 4 percent at the hub.

Instrumentation

The compressor weight flow was determined from measurements on a calibrated thin-plate orifice that was 38.9 centimeters in diameter. The orifice temperature was determined from an average of two Chromel-Alumel thermocouples. Orifice pressures were measured by calibrated transducers.

Radial surveys of the flow were made upstream of the rotor, between the rotor and stator, and downstream of the stator. The survey probes are shown in figure 7. Total pressure, total temperature, and flow angle were measured with the combination probe (fig. 7(a)), and static pressure was measured with an 8°C-shaped wedge probe (fig. 7(b)). Each probe was positioned with a null-balancing, stream-directional sensitive control system that automatically alined the probe to the direction of flow. The thermocouple was iron/constantan. The probes were calibrated in an air tunnel. Two combination probes and two wedge static probes were used at each of the three measuring stations.

Inner and outer wall static pressure taps were located at the same axial stations

as the survey probes. The circumferential locations of both types of survey probes along with inner and outer wall static pressure taps, are shown in figure 8. The combination probes downstream of the stator (station 3) were circumferentially traversed one stator blade passage (7.5°) counterclockwise from the nominal values shown.

An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm).

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec	±0.3
Rotative speed, rpm	±30
Flow angle, deg	±1
Temperature, K	
Rotor inlet total pressure, N/cm ²	
Rotor outlet total pressure, N/cm^2	
Stator outlet total pressure, N/cm^2	
Rotor inlet static pressure, N/cm ²	
Rotor outlet static pressure, N/cm ²	
Stator outlet static pressure, N/cm ²	±0.07

Test Procedure

The stage survey data were taken over a range of weight flows at 70, 90, and 100 percent of design speed. Radial surveys were taken at three weight flows at 70 and 90 percent of design speed and at four weight flows at 100 percent of design speed. Data were recorded at 11 radial positions for each speed and weight flow.

At each radial position the two combination probes behind the stator were circumferentially traversed to nine different locations across the stator gap. Values of pressure, temperature, and flow angle were recorded at each circumferential position. At the last circumferential position, values of pressure, temperature, and flow angle were also recorded at stations 1 and 2. The wedge probes were set at midgap because previous studies showed that the static pressure across the stator gap was essentially constant. All probes were then traversed to the next radial position and the circumferential traverse procedure repeated.

At each of the rotative speeds the back pressure on the stage was increased by closing the sleeve valve in the collector until a stalled condition was detected by a sudden drop in stage outlet total pressure. This pressure was measured by a probe located at midpassage and was recorded on an X-Y plotter. Stall was corroborated by large in-

creases in the measured blade stresses on both rotor and stator, along with a sudden increase in noise level.

Calculation Procedure

Measured total pressures, static pressures, and temperatures were corrected for Mach number and streamline slope based on an average calibration for the type of probe used.

Because of the physical construction of the C-shaped static pressure wedges, it was not possible to obtain static pressure measurements at 5-, 10-, and 95-percent span from the blade tip. The static pressure at 95-percent span was obtained by assuming a linear variation in static pressure between the values at the inner wall and the probe measurement at 90-percent span. A linear variation was also assumed between the static-pressure measurements at the outer wall and the 30-percent span to obtain the static pressure at 5- and 10-percent span.

At each radial position averaged values of the nine circumferential measurements of pressure, temperature, and flow angle downstream of the stator (station 3) were obtained. The nine values of total temperature were mass averaged to obtain the stator outlet total temperature presented. The nine values of total pressure were energy averaged. The measured values of pressure, temperature, and flow angle were used to calculate axial and tangential velocities at each circumferential position. The flow angles presented for each radial position are calculated based on these mass-averaged axial and tangential velocities. To obtain the overall performance, the radial values of total temperature were mass averaged and the values of total pressure were energy averaged. At each measuring station, the integrated weight flow was computed based on the radial survey data.

The data, measured at the three measuring stations, have been translated to the blade leading and trailing edges by the method presented in reference 2.

Orifice weight flow, total pressures, static pressures, and temperatures were all corrected to sea-level conditions based on the rotor inlet conditions.

RESULTS AND DISCUSSION

The results of this investigation are presented in terms of overall performance, radial distributions of performance parameters and blade-element performance. The overall performance for the two rotor configurations (rotor 14 and rotor 14-mod 1) are compared at 70, 90, and 100 percent of design speed. The radial distributions of

several performance parameters are compared at the peak efficiency condition for each rotor configuration at design speed. Blade-element performance for the two rotor configurations are compared at 70, 90, and 100 percent of design speed for the 5, 10, 30, and 70 percent span locations. Values of total loss coefficient are presented as a function of mean camber line incidence angle as well as suction-surface incidence angle to evaluate the effect of increased suction-surface incidence angle for the same inlet flow conditions.

Since the same stator vanes are used with both rotor configurations, no comparison of stator or stage performance is made. All of the overall performance and blade-element data for the stage 14-mod 1-10 are presented in tabular form in tables VI to VIII. The definitions and units used for the tabular data are presented in appendix C.

Performance Comparisons

Overall performance. - A comparison of the overall performance for rotor 14 and rotor 14-mod 1 at 70, 90, and 100 percent of design speed is presented in figure 9. Although the modified blade leading-edge configuration was detrimental to the rotor performance at all speeds, at 70 and 90 percent of design speed the effect was small.

At design speed the total pressure ratio, total temperature ratio, and adiabatic efficiency for rotor 14-mod 1 are significantly lower than that for rotor 14 over the entire flow range. The decrease in efficiency varies from about two points (0.84 to 0.82) at the near-stall condition to approximately four points (85 to 81) at the maximum flow condition.

The peak efficiencies for rotor 14 and rotor 14-mod 1 were 0.87 and 0.83, respectively; corresponding weight flows were 29.61 and 28.30 kilograms per second. At peak efficiency conditions the pressure ratio was approximately 1.78 for both rotor configurations.

Radial distributions. - Comparison of radial distributions of total pressure ratio, element efficiency, total temperature ratio, and incidence angle with respect to the mean camber line are presented in figure 10 for the two rotor configurations for peak efficiency conditions at design speed. This comparison is made in an effort to show how the difference in overall rotor peak efficiency for the two rotor configurations manifests itself in terms of the radial distributions of these performance parameters.

The pressure ratio for rotor 14 is slightly higher than that for rotor 14-mod 1 in the tip region, but slightly lower in the hub region. Except at the 95-percent-span location, the element efficiency for rotor 14 is higher than that for rotor 14-mod 1 over the entire blade span. This difference in efficiency is about eight points at the 5- and 10-percent span locations and about four points at 30-percent span. The total temperature ratio and the mean incidence angles for rotor 14-mod 1 are consistently higher than

those for rotor 14.

These comparisons of radial distributions of performance parameters indicate that the major portion of the decrement in overall peak efficiency for rotor 14-mod 1 can be attributed to the flow conditions in the outer 30 percent of the blade span. The higher mean incidence angles for rotor 14-mod 1 are indicative of the lower weight flow.

<u>Blade-element performance</u>. - Blade-element performance is presented as a function of mean-camber-line incidence angle for the two rotor configurations in order to compare performance parameters of a given blade element at the same inlet flow conditions.

Total pressure ratio, total temperature ratio, adiabatic efficiency, loss coefficient, and diffusion factor are presented as a function of mean-camber-line incidence angle in figure 11 for the two rotor configurations. Data are presented for 70, 90, and 100 percent of design speed, at 5, 10, 30, and 70 percent span (from the rotor tip).

At design speed total pressure ratio and efficiency for rotor 14 (the original rotor configuration) are higher than that for rotor 14-mod 1 (increased blade leading edge thickness) at 5, 10, and 30 percent span for a given mean incidence angle. At 70 percent span, rotor 14 has a higher pressure ratio than rotor 14-mod 1 but the efficiencies are approximately the same. The peak element efficiency for rotor 14 is eight points higher than that for rotor 14-mod 1 at both 5 and 10 percent span and about three points higher at 30 percent span. Total temperature ratio for rotor 14 is higher than that for rotor 14-mod 1 for a given mean incidence angle at all corresponding elements (5, 10, 30, and 70 percent span). This difference in temperature ratio is largest at the low incidence angles and decreases as incidence angle increases. The loss coefficient for rotor 14-mod 1 is higher than that for rotor 14 at the same incidence angle (fig. 11) for both 5- and 10-percent span blade elements. For the 30- and 70-percent span elements, the loss coefficient, for a given mean incidence angle, is about the same for the two rotor configurations.

At 90 percent of design speed, there is good agreement in the comparison of blade-element total pressure and total temperature ratios and efficiencies for all of the radial locations. At 70 percent of design speed there is seemingly good agreement in the comparison of blade-element total pressure and total temperature ratios for all radial locations. However, at the 5- and 10-percent span locations, rotor 14-mod 1 has higher losses and lower efficiency than rotor 14. The lower energy level at the 70 percent design speed combined with the seemingly small differences in total pressure and total temperature ratios results in appreciable differences in total loss coefficient and efficiency.

Increased suction-surface incidence angles. - Because of the manner in which the blade leading edges were modified, rotor 14-mod 1 has lower leading-edge suction-surface blade angles than rotor 14 (fig. 12). Therefore, for the same inlet flow conditions, rotor 14-mod 1 operates at higher suction-surface incidence angles. To evaluate the effect of the increase in suction-surface incidence angle, the total loss coefficient is presented as a function of suction-surface incidence angle in figure 13. The data are presented for 70, 90, and 100 percent of design speed at 5, 10, 30, and 70 percent span (from rotor tip) for the two rotor configurations.

For design speed at the 5, 10, 30, and 70 percent span locations, the blade elements for rotor 14-mod 1 operate along the same general incidence angle (suction surface) loss characteristics as corresponding elements for rotor 14. For the 5- and 10-percent span blade elements, this means a substantial change in loss coefficient for a moderate (1°) change in suction-surface incidence angle. This is due to the steep slope of the incidence-angle - loss curves for blade elements at these two span locations. At 30 and 70 percent span (fig. 13), the slope of the incidence angle-loss curves are small; consequently the increase in loss coefficient due to an increase in suction-surface incidence angle is reduced. Thus at design speed, the major portion of the increase in loss for rotor 14-mod 1 (increased blade leading edge thickness) as compared with rotor 14 can be attributed to operating at a higher suction-surface incidence angle for the same inlet flow conditions.

At 90 percent design speed the two rotor configurations operate along different suction-surface incidence-angle - loss curves. For a given suction-surface incidence angle (fig. 13), the loss coefficient for rotor 14-mod 1 is less than that for rotor 14. These data indicate that for the same inlet flow conditions, there is little or no increase in loss coefficient as a result of operating at the higher suction surface incidence angles.

At 70 percent design speed, the characteristic curves for the rotor configurations are the same for the 5- and 10-percent span elements, but are somewhat different at 30- and 70-percent span elements. For the same inlet flow conditions there is an increase in loss coefficient as a result of operating at a higher suction-surface incidence angle at the 5 and 10 percent spans, but at the 30 and 70 percent spans there is little change.

The largest difference in blade leading edge thickness for the two rotor configurations is in the region of the blade tip. For a given blade loading the losses are usually highest in this region of the blade due to end-wall effects. Thus it is expected that the largest difference in element performance for the two rotor configurations would occur in the tip region of the blade. At design speed there is a substantial change in total loss coefficient due to the change in suction-surface incidence angle in the tip region. The tip region. The tip inlet relative Mach number is approximately 1.4 at design speed. For this high supersonic inlet relative Mach number, it can be expected that the losses in the tip region could be very sensitive to relatively small changes in suction-surface incidence angles. At 90 percent of design speed there is little or no change in total loss coefficient in the tip region due to the increase in suction-surface incidence angle. Even though the flow is still supersonic in the tip region, the inlet relative Mach number (approximately 1.2) is apparently low enough that the losses in this region are no longer as sensitive to the relatively small changes in suction surface incidence angle. The 90-percent of design speed results lead us to expect that losses in the tip region would also be insensitive to relatively small changes in suction-surface incidence angles at 70 percent of design speed, since the inlet relative Mach number is subsonic. The fact that the data show an increase in total loss coefficient in the tip region as a result of an increase in suction-surface incidence at 70 percent design speed could be the result of measurement inaccuracies at the low level of energy input where seemingly small differences in total pressures and total temperatures can result in appreciable differences in total loss coefficient.

Increase bow-wave strength. - An increase in blade leading-edge thickness results in a stronger external bow-wave system for supersonic inlet relative Mach numbers. A technique for calculating total pressure loss due to an external bow-wave system was developed by Klapproth in reference 3. The technique is based on a hyperbolic approximation to the form of the bow-wave system caused by the blade leading edges. The calculated loss using this technique varies linearly with leading edge thickness, or blockage, for a given supersonic inlet relative Mach number. The total loss coefficient caused by an external bow-wave system was computed, based on the technique presented in reference 3, and is shown in figure 14 as a function of leading edge blockage for an inlet relatively Mach number of 1.4.

Rotor 14 and rotor 14-mod 1 have leading-edge blockages of approximately 3 and 6 percent, respectively, at the 5 percent span location. The inlet relative Mach number at 5 percent span at design speed is approximately 1.4. From figure 14 the increase in loss coefficient for the difference in blockage (3 to 6 percent) is approximately 0.006. This is a relatively small change compared with the magnitude of the total loss coefficient (0.22 to 0.37) in this region of the blade at design speed.

CONCLUDING REMARKS

In the present investigation the suction-surface leading edge blade angle, for the modified rotor blades (increased leading edge thickness), are less than those for the original blade. Thus, for the same inlet-flow conditions, the modified rotor blades

operated at a higher suction-surface incidence angle. At design speed, the major portion of the increase in total loss for the thicker leading edge blade could be attributed to the increase in suction-surface incidence angle along the suction-surface incidence angle loss characteristic curves for the original blade (rotor 14). This implies that lower losses could be obtained if the thicker leading-edge blade were designed to operate at lower suction-surface incidence angles. However, experimental verification requires that a blade with the thick leading-edge configuration be tested at lower suction-surface incidence angles. The modified rotor configuration could not be tested at the lower suction-surface incidence angles because this would require a weight flow larger than the maximum flow for the original configuration. The larger weight flow could not be obtained with the modified configuration because of the higher losses.

Although the data for rotor 14-mod 1 does not cover as complete a range of suction-surface incidence angles as rotor 14, it does indicate the importance of proper selection of suction-surface incidence angle for blade elements with supersonic inlet relative Mach numbers. These data also provide some general guidelines for evaluating the change in performance of a transonic rotor that results from an alteration of the blade leading edges.

SUMMARY OF RESULTS

A compressor rotor blade row, with a design tip speed of 423 meters per second and a tip inlet relative Mach number of 1.4, was tested with two leading-edge configurations to investigate the effects of increased blade leading edge thickness on the performance of a transonic blade row. The rotor was first tested with a blade leading-edge thickness that resulted in a blade gap blockage of approximately 3 percent at the tip and increased to about 4 percent at the rotor hub. The rotor blade leading edge was then cut back to produce a leading edge thickness that resulted in a blade gap blockage of about 6 percent at the tip and decreased to about 4 percent at the hub. The investigation yielded the following principle results.

- 1. The increase in the blade leading-edge thickness resulted in a decrease in rotor peak efficiency of about four points at design speed, but had very little effect on efficiency at 70 and 90 percent design speed.
- 2. The major portion of the decrement in overall peak efficiency at design speed can be attributed to the outer 30 percent of the blade span. The decrement in blade-element efficiency was about eight points at 5 and 10 percent span and about four points at 30 percent span.
- 3. At design speed corresponding blade elements for both rotor configurations operated along the same general curve of loss against suction-surface incidence angle. Thus

the increase in loss as a result of increased leading-edge thickness was small compared with the increase in loss as a result of operating at larger suction-surface incidence angles.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 2, 1973,
501-24.

APPENDIX A

SYMBOLS

annulus area at rotor leading edge, 0.147 m² Aan frontal area at rotor leading edge, 0.198 m² A_f specific heat at constant pressure, 1004 J/(kg)(K) c diffusion factor D acceleration of gravity, 9.8 m/sec² g mean incidence angle, angle between inlet air direction and line tangent to blade imc mean camber line at leading edge, deg suction-surface incidence angle, angle between inlet air direction and line taniss gent to blade suction surface at leading edge, deg J mechanical equivalent of heat N rotative speed, rpm total pressure, N/cm² \mathbf{P} static pressure, N/cm² р radius, cm \mathbf{r} total temperature, K \mathbf{T} wheel speed, m/sec U air velocity, m/sec V weight flow, kg/sec W \mathbf{Z} axial distance reference from rotor blade hub leading edge, cm cone angle, deg α_{c} $\alpha_{\mathbf{s}}$ slope of streamline, deg air angle, angle between air belocity and axial direction, deg β relative meridional air angle based on cone angle, arctan (tan $\beta_m^* \cos \alpha_c/\cos \alpha_s$), $\beta_{\mathbf{c}}^{*}$ deg ratio of specific heats (1.4) γ ratio of rotor inlet total pressure to standard pressure of 10.13 N/m² δ

- δ deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
- θ ratio of rotor inlet total temperature to standard temperature of 288.2 K
- η efficiency
- $\kappa_{\mathrm mc}$ angle between the blade mean camber line and the meridional plane, deg
- k_{ss} angle between the blade suction-surface camber line at the leading edge and the meridional plane, deg
- σ solidity, ratio of chord to spacing
- $\overline{\omega}$ total loss coefficient
- $\overline{\omega}_{\mathrm{p}}$ profile loss coefficient
- $\overline{\omega}_{_{\mathbf{S}}}$ shock loss coefficient

Subscripts:

- ad adiabatic (temperature rise)
- id ideal
- LE blade leading edge
- m meridional direction
- mom momentum rise
- p polytropic
- TE blade trailing edge
- z axial direction
- θ tangential direction
- instrumentation plane upstream of rotor
- 2 instrumentation plane between rotor and stator
- 3 instrumentation plane downstream of stator

Superscript:

' relative to blade

APPENDIX B

EQUATIONS

Performance parameters are defined as follows:

Suction surface incidence angle -

$$i_{SS} = (\beta_C^{\prime})_{I.E} - \kappa_{SS}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta_c')_{LE} - (\kappa_{mc})_{LE}$$
(B2)

Deviation angle -

$$\delta^{O} = (\beta_{c}^{\dagger})_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{\mathbf{V_{TE}'}}{\mathbf{V_{LE}'}} + \left| \frac{(\mathbf{rV_{\theta}})_{TE} - (\mathbf{rV_{\theta}})_{LE}}{(\mathbf{r_{TE} + r_{LE}})\sigma(\mathbf{V_{LE}'})} \right|$$
(B4)

Total loss coefficient -

$$\overline{\omega} = \frac{\left(P'_{id}\right)_{TE} - \left(P'\right)_{TE}}{\left(P'\right)_{LE} - \left(p\right)_{LE}}$$
(B5)

Profile loss coefficient -

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{S}$$
 (B6)

Total loss parameter -

$$\frac{\overline{\omega}\cos\left(\beta_{\mathbf{m}}^{\prime}\right)_{\mathbf{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter -

$$\frac{\overline{\omega}_{p} \cos \left(\beta'_{m}\right)_{TE}}{2\sigma} \tag{B8}$$

Adiabatic (temperature-rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/1} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1} \tag{B9}$$

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/1} - 1}{\frac{\left(\mathbf{UV}_{\theta}\right)_{\text{TE}} - \left(\mathbf{UV}_{\theta}\right)_{\text{LE}}}{\mathbf{T}_{\text{LE}}^{\text{gJC}}_{\text{p}}}} \tag{B10}$$

Equivalent weight flow -

$$\frac{\mathbf{W}\sqrt[4]{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed -

$$N \over \sqrt{\theta}$$
 (B12)

Weight flow per unit annulus area -

$$\left(\frac{w\sqrt{\varrho}}{\delta}\right) / A_{an}$$
 (B13)

Weight flow per unit frontal area -

$$\left(\begin{array}{c} \underbrace{w\, \sqrt{\!\varrho}}{\delta} \end{array}\right) \!\! / \!\! A_f \tag{B14}$$

Head-rise coefficient -

$$\frac{\text{gJC}_{\text{p}}\text{T}_{\text{LE}}}{\text{U}_{\text{tip}}^{2}} \left[\frac{\text{P}_{\text{TE}}}{\text{P}_{\text{LE}}} \right)^{(\gamma-1)/\gamma} - 1 \right]$$
(B15)

Flow coefficient -

Polytropic efficiency -

$$\eta_{\rm p} = \exp \left[\frac{\left(\frac{\mathbf{P}_{\rm TE}}{\mathbf{P}_{\rm LE}} \right)^{(\gamma-1)/\gamma}}{\left(\frac{\mathbf{T}_{\rm TE}}{\mathbf{T}_{\rm LE}} \right)} \right]$$
(B17)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is one)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean defined

by eq. (B2)), deg

KIC angle between the blade mean camber line at the leading edge and the

meridional plane, deg

KOC angle between the blade mean camber line at the trailing edge and

the meridional plane, deg

KTC angle between the blade mean camber line at the transition point and

the meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to the blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines.

deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock loca-

tion of a multiple-circular-arc blade section to that of a

double-circular-arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

18

REFERENCES

- 1. Urasek, Donald C.; Moore, Royce D.; and Osborn, Walter M.: Performance of a Single-Stage Transonic Compressor with a Blade-Tip Solidity of 1.3. NASA TM X-2645, 1972.
- 2. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- 3. Klapproth, John F.: Approximate Relative-Total-Pressure Losses of an Infinite Cascade of Supersonic Blades with Finite Leading-Edge Thickness. NACA RM E9L21, 1950.

TABLE I. - DESIGN OVERALL

PARAMETERS FOR

STAGE 14-10

	.800
	.750
	.205
	.205
	.890
	.843
	.898
	.855
	.296
	.281
	. 475
WT FLOW PER UNIT FRONTAL AREA 149	
WT FLOW PER UNIT ANNULUS AREA 200	
WT FLOW 29	
RPM16100	
TIP SPEED 422	.888

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS

FOR ROTOR 14

RP 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD 1N 25,082 24,562 24,016 21,752 20,289 19,991 19,692 19,391 19,088 16,900 14,191 13,464 12,700	0UT 24.701 24.193 23.685 21.653 20.129 19.875 19.621 19.367 17.589 15.557	ABS (N 00. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	BETAM OUT 50.1 47.9 46.3 45.1 45.7 45.8 46.5 48.4 52.3 53.7	REL 1N 65.6 64.5 63.5 60.0 587.8 57.5 57.1 56.8 54.6 52.2 51.9	BETAM OUT 58.7 57.7 56.5 51.1 46.7 44.7 43.6 42.4 32.6 15.8	TOTAI 1N 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	TEMP 1.252 1.237 1.225 1.206 1.206 1.199 1.198 1.197 1.194 1.197 1.199	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RAT10 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS 1N 192.3 197.5 202.2 212.0 212.5 212.1 211.7 211.1 202.4 185.6 180.2 174.2	VEL 0UT 228.4 226.5 225.8 230.5 235.7 237.0 238.3 239.7 241.2 252.9 272.1 278.9 286.7	REL 1N 464.5 458.8 452.6 423.6 402.7 398.3 389.2 384.5 349.5 302.8 289.8 276.0	VEL 0UT 282.3 284.1 283.3 240.4 236.5 232.6 228.7 224.8 199.1 173.0 167.7 164.0	MERI 1N 192.3 197.5 202.2 212.0 212.5 212.1 211.7 211.1 210.4 202.4 185.6 180.2	D VEL OUT 146.6 152.0 156.1 162.8 165.1 165.4 165.7 166.0 167.7 166.5 165.2	TAN (N 00. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	G VEL OUT 175.2 167.9 163.2 163.2 163.2 170.0 171.5 173.9 189.3 215.2 224.7 235.4	WHEEL 1N 422.9 414.1 404.9 366.7 342.1 337.1 332.0 326.9 321.8 284.9 239.3 227.0 214.1	SPEED 0UT 416.5 407.9 399.3 365.1 343.7 339.4 335.1 330.8 326.5 296.6 262.3 253.7 245.2
RT 1 23 4 5 6 7 8 9 0 1 1 HUB	ABS M. 1N 0.584 0.6016 0.649 0.6549 0.6444 0.6447 0.5645 0.5456	OUT 0.623 0.621 0.622 0.642 0.663 0.668 0.672 0.677 0.714 0.795 0.819	IN 1.411 1.396 1.380 1.296 1.233 1.219 1.205 1.191 1.176 0.918 0.818 0.834	OUT 0.770 0.779 0.780 0.722 0.672 0.652 0.652 0.631 0.562 0.492 0.498	MERID M. IN 0.584 0.601 0.616 0.649 0.654 0.648 0.648 0.644 0.617 0.562 0.545 0.526	OUT 0.400 0.417 0.430 0.453 0.463 0.465 0.465 0.474 0.471 0.468	IN -6.70 -5.93 -5.02 -0.48 2.75 3.44 4.13 4.84 5.57 11.23 19.94 22.86 26.18	NE SLOPE OUT -6.64 -5.60 -4.53 0.09 3.15 3.75 4.44 5.10 5.76 10.86 17.81 19.75 21.77		PEAK SS MACH NO 1.588 1.570 1.558 1.533 1.509 1.504 1.498 1.498 1.447 1.298 1.224
RP 11P 1 2 3 4 5 6 7 8	PERCENT SPAN 0. 5.00 10.00 30.00 42.50 45.00 47.50 50.00	INCI MEAN 2.5 2.7 3.0 4.1 4.8 4.9 5.0 5.2	DENCE SS 0.0 -0.0 0.0 -0.0 -0.0 -0.0	7.9 7.2 6.7 6.0 6.1 6.2 6.3	D-FACT 0.537 0.518 0.507 0.517 0.536 0.540 0.544	EFF 0.725 0.772 0.812 0.888 0.913 0.917 0.920	LOSS C TOT 0.255 0.206 0.168 0.102 0.023 0.080 0.078	0EFF PROF 0.154 0.112 0.078 0.031 0.025 0.026 0.026 0.027	LOSS P TOT 0.051 0.042 0.034 0.022 0.018 0.017 0.017	PROF 0.031 0.023 0.016 0.006 0.005 0.006

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS

FOR STATOR 10

RP 11P 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD IN 24.384 23.941 23.503 21.742 20.637 20.416 20.195 19.975 19.755 18.227 16.531 16.121 15.697	OUT 24.384 23.946 23.537 21.900 20.882 20.680 20.479 20.278 20.278 20.078 18.714 17.252 16.904	ABS !N 45.14 42.9 41.3 40.0 40.4 40.7 40.8 41.0 42.3 44.8 45.8	BETAM OUT 00. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	REL 1N 45.1 42.9 41.3 40.0 40.4 40.5 40.7 40.8 41.0 42.3 44.8 45.8	BETAM OUT 0. 0. 0. 0. 0. 0. 0. 0.	TOTA 360.8 356.4 353.0 347.5 345.8 345.4 345.4 345.2 345.0 344.0 344.9	RATIO 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24	PRESS RATIO 0.956 0.966 0.973 0.980 0.978 0.978 0.977 0.977 0.973 0.955 0.942
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 250.6 249.3 249.0 256.9 257.9 259.0 260.1 271.5 287.3 292.6 298.6	VEL 0UT 176.4 181.0 184.4 190.5 191.8 192.1 192.5 196.8 196.7 194.8 191.9	REL IN 250.6 249.3 249.0 252.8 256.9 257.9 260.1 261.4 271.5 287.3 292.6 298.6	VEL 0UT 176.4 181.0 184.4 190.2 191.5 191.8 192.1 192.5 192.9 196.8 196.7 194.8	MERI IN 176.7 182.6 187.0 193.6 195.6 196.0 196.4 196.8 200.9 203.7 203.9 204.0	D VEL OUT 176.4 181.0 184.4 190.2 191.5 191.8 192.5 192.9 196.8 196.7 194.8	TAN IN 177.6 169.7 164.5 166.5 167.6 168.8 170.1 171.5 182.6 202.6 209.8 218.1	OVEL OUT 00. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP P 235 4 5 67 8 9 10 11 HUB	ABS M 1N 0.689 0.689 0.710 0.728 0.732 0.735 0.740 0.773 0.823 0.840 0.858	OUT 0.473 0.490 0.502 0.523 0.528 0.530 0.531 0.533 0.545 0.534 0.538	NLL M 1N 0.689 0.689 0.692 0.710 0.724 0.735 0.740 0.773 0.823 0.858	OUT 0.473 0.490 0.502 0.523 0.528 0.529 0.531 0.533 0.545 0.534 0.538	MERID M IN 0.486 0.505 0.520 0.544 0.552 0.555 0.556 0.558 0.572 0.584 0.585	OUT 0.473 0.490 0.502 0.523 0.528 0.529 0.531 0.533 0.545 0.544 0.538	STREAMLIN 1N -0.32 0.30 0.88 3.13 4.76 5.12 5.50 5.88 6.28 9.59 14.75 16.33	NE SLOPE OUT -0.25 0.07 0.36 1.55 2.29 2.44 2.73 2.88 3.93 5.01 5.16 5.28		PEAK SS MACH 0.00 1.075 1.046 1.027 1.022 1.036 1.045 1.045 1.045 1.144 1.282 1.332 1.394
RP TIP 1 23 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 0. 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	INC1 MEAN 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	DENCE SS -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DEV 14.4 12.8 11.7 10.2 9.8 9.8 9.7 9.7 9.7 9.1 8.9 9.0	D-FACT 0.569 0.532 0.505 0.469 0.466 0.466 0.466 0.468 0.468 0.451 0.514	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.169 0.124 0.098 0.070 0.073 0.074 0.075 0.076 0.082 0.125 0.156 0.201	OEFF PROF 0.169 0.124 0.098 0.070 0.073 0.075 0.076 0.076 0.082 0.154 0.195	LOSS P TOT 0.065 0.047 0.036 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.036	ARAM PROF 0.065 0.047 0.036 0.024 0.024 0.024 0.024 0.024 0.024 0.039 0.039

TABLE IV. - BLADE GEOMETRY FOR ROTOR 14

TABLE V. - BLADE GEOMETRY FOR STATOR 10

T.	ARLE IV BLADE	GEOMETRY FOR RO	TOR 14	1 2	ADDE V. DEREZ	abome 1100	
	PERCENT RI RO 1 RO 0. 25.082 24.701 5. 24.562 24.193 10. 24.016 25.685 30. 21.752 21.653 43. 20.289 20.383 45. 19.991 20.129 48. 19.692 19.875 50. 19.391 19.621 53. 19.088 19.367 70. 16.900 17.589 90. 14.191 15.557 95. 13.464 15.049 100. 12.700 14.541	BLADE ANGLES D KIC KTC KOC 62.89 61.15 50.70 61.63 60.18 50.30 60.36 59.00 49.68 55.88 53.60 45.06 53.42 50.38 40.63 52.94 49.75 39.58	ELTA CONE INC ANGLE 2.49 -9.441 2.73 -8.828 2.99 -7.638 4.07 -1.988 4.75 1.770 4.89 2.540 5.03 3.321 5.16 4.108 5.30 4.900 6.21 10.840 7.09 18.729 7.24 20.942 7.37 23.380	RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RADII SPAN RI RO 0. 24.384 24.384 5. 23.941 23.946 10. 23.503 23.537 30. 21.742 21.900 43. 20.637 20.882 45. 20.416 20.680 48. 20.195 20.479 50. 19.975 20.278 53. 19.755 20.078 70. 18.227 18.714 90. 16.531 17.252 95. 16.121 16.904 100. 15.697 16.485	BLADE ANGLES K1C KTC KOC 38.97 30.50 -14.36 36.70 29.29 -12.78 35.12 28.46 -11.69 33.81 28.04 -10.19 34.23 28.57 -9.85 34.52 28.86 -9.75 34.69 29.02 -9.72 34.88 29.20 -9.68 36.32 28.72 -9.12 39.28 29.09 -8.89 40.43 29.26 -8.90 41.77 29.48 -8.95	6.03 10.476 5.98 11.369
RP T I P 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKNESSES TI TM TO 0.051 0.152 0.051 0.051 0.162 0.051 0.051 0.172 0.051 0.051 0.216 0.051 0.051 0.244 0.051 0.051 0.250 0.051 0.051 0.250 0.051 0.051 0.262 0.051 0.051 0.267 0.051 0.051 0.267 0.051 0.051 0.309 0.051 0.051 0.359 0.051 0.051 0.373 0.051 0.051 0.387 0.051	0.955 2.071 2.451 0.907 2.069 2.412 0.715 2.054 2.209 0.605 2.042 2.047 0.583 2.039 2.012 0.561 2.036 1.975 0.559 2.032 1.937	3.722 3.748 3.773 3.958 4.171 4.217	RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKNESSES TI TM TO 0.051 0.279 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051 0.051 0.279 0.051	7.543 9.331 8.974 7.524 9.336 8.903 7.507 9.340 8.766 7.510 9.339 8.716 7.511 9.339 8.708 7.512 9.338 8.699 7.514 9.338 8.691 7.515 9.337 8.684 7.511 9.338 8.598 7.519 9.336 8.530	ZOC 11.422 11.423 11.424 11.424 11.424 11.425 11.422 11.422 11.421 11.421 11.421
RT: 23456789011HUB	AERO SELLING HULLAL CHORD ANGLE CAMBER 9 4.713 60.12 12.20 4.717 59.02 11.32 4.714 57.78 10.88 4.704 48.72 12.78 4.705 47.95 13.36 4.706 47.15 14.03 4.708 46.32 14.77 4.711 45.47 15.58 4.754 38.76 23.47 4.900 28.66 40.14 4.966 25.54 46.42 5.060 22.11 53.51	X \$00.101TY FACTOR PHISS 1.296 0.529 5.16 1.324 0.539 5.08 1.353 0.566 5.21 1.483 0.708 6.80 1.583 0.748 7.80 1.605 0.751 7.98 1.605 0.755 8.18 1.652 0.757 8.38 1.677 0.759 8.57 1.887 0.744 9.63 2.254 0.639 9.42 2.384 0.587 8.90 2.542 0.526 8.17	AREA RATIO 1.037 1.035 1.035 1.032 1.029 1.028 1.027 1.026 1.025 1.018 1.013 1.012	RP P 1 2 3 4 5 6 7 8 9 1 1 1 HUB	AERO SELLING TUTAL CHORD ANGLE CAMBER 4.138 19.58 53.33 4.138 18.31 49.48 4.139 17.45 46.81 44.08 4.147 16.85 44.00 4.146 16.81 44.08 4.147 16.88 44.17 4.149 16.94 44.28 4.150 17.02 44.41 4.152 17.10 44.56 4.168 16.80 45.43 4.203 17.11 48.16 4.214 17.29 49.33 4.214 17.51 50.72	X SOLIDITY FACTOR PHISS 1,297 0,600 13.73 1,320 0,600 12.40 1,344 0,600 11.44 1,450 0,600 9.85 1,542 0,600 9.85 1,542 0,600 9.77 1,558 0,600 9.77 1,575 0,600 9.77 1,592 0,600 9.77 1,724 0,706 11.33 1,901 0,825 13.56 1,950 0,862 14.44 2,000 0,904 15.5	1.178 1.159 1.144 2.1.114 5.1.101 5.1.098 9.1.095 7.1.092 5.1.085 8.1.085 8.1.091 6.1.097

TABLE VI. - OVERALL PERFORMANCE FOR STAGE 14-MOD 10

(a) 100 Percent of design speed

Parameter	Reading						
	1306	1296	1297	1298			
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT FLOW COEFFICIENT AT FLOW PER UNIT ANNULUS AREA AT FLOW ARE UNIT ANNULUS AREA AT FLOW AT ROTOR INLET AT FLOW AT ROTOR INLET AT FLOW AT ROTOR OUTLET AT FLOW AT ROTOR OUTLET ROTATIVE SPEED	1.647 1.571 1.189 1.188 0.811 0.731 0.814 0.223 0.408 30.28 40.72 64.42 64.69 65.07 67.23	1.718 1.656 1.203 1.202 0.823 0.766 0.831 0.269 0.249 0.404 3.011 40.50 64.07 64.42 64.38 66.38 16142.8	1.787 1.723 1.217 1.218 0.830 0.773 0.844 0.292 0.272 0.390 29.33 39.44 62.67 62.24 64.53 16107.9	1.610 1.735 1.226 1.227 0.316 0.752 0.833 0.275 0.370 28.18 37.90 59.96 60.20 59.58 62.44 16125.8			

(b) 90 Percent of design speed

Parameter	Reading				
	1301	1302	1304		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT HI FLOW PER UNIT RANNAL AREA HI FLOW AT ORIFICE HI FLOW AT ROTOR OUTLET HI FLOW AT ROTOR OUTLET HI FLOW AT RATAOR OUTLET ROTATIVE SPEED	1.617 1.574 1.170 0.866 0.812 0.295 0.295 0.394 133.22 179.15 26.33 26.42 26.55 27.23	1.633 1.590 1.175 1.176 0.861 0.869 0.291 0.380 129.52 174.19 25.60 25.68 26.56 14530.9 90.3	1.635 1.593 1.177 1.178 0.853 0.799 0.866 0.301 0.284 0.369 126.27 169.81 24.96 25.01 25.06 26.09		

(c) 70 Percent of design speed

Parameter	Reading					
	1307	1308	1309			
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MEMBRITUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT AT FLOW ACCEPTICIENT AT FLOW PER UNIT ANNOLUS AREA AT FLOW AT GRIFTCE AT FLOW AT ROTOR OUTLET AT FLOW AT ROTOR OUTLET AT FLOW AT STATOR OUTLET ROTATIVE SPEED	1.299 1.280 1.087 1.089 0.891 0.254 0.254 0.259 0.407 111.13 149.44 21.96 22.10 22.56 11351.3	1.324 1.357 1.096 1.097 0.873 0.822 0.895 0.273 0.261 0.371 102.60 137.97 20.26 20.34 20.85 11317.2	1.331 1.311 1.103 1.103 0.836 0.263 0.263 0.263 0.263 0.332 93.48 125.71 18.46 18.45 18.51 19.20			

TABLE VII. - BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14 MOD 1

(a) 100 Percent of design speed; reading 1306

	(a) 100 Percent	or design		0	
2 3 4 5 6 7 8 9 10	RADII IN OUT 4.562 24.193 4.016 23.685 21.753 21.653 20.290 20.129 19.693 19.875 19.390 19.621 19.088 19.367 16.899 17.589 14.191 15.557 13.465 15.049	ABS BETAM IN OUT 0.0 42.7 0.0 40.3 -0.0 38.3 0.0 44.9 -0.0 44.9 -0.0 42.3 0.0 42.3 0.0 47.3 0.0 50.	64.9 55 63.9 56 60.8 45 58.8 4 58.3 4 57.9 4 57.5 4 57.5 4 57.5 4 57.5 4 57.5 4 57.5 4 57.5 57.1 4	DUT	ATIO III .229 10 .221 10 .190 10 .190 10 .182 10 .180 10 .179 10 .177 10 .175 10 .164 10 .183 10 .194 10 .194	.08 1.654 .11 1.651 .13 1.690 .14 1.545 .14 1.518 .14 1.518 .14 1.534 .14 1.561 .15 1.600 .15 1.600 .15 1.759 .12 1.830
R 1 23 4 5 6 7 8 9 0 1	ABS VEL 1N 0UT 193.8 233.6 198.3 231.6 204.4 241.3 207.3 225.7 207.8 220.1 208.2 220.3 207.9 223.8 208.0 228.9 204.3 239.1 192.3 277.8 185.9 293.0		193.8 1 198.3 1 204.4 1 207.3 1 207.8 1 207.8 1 208.2 1 208.0 1 208.0 1 204.3 1	DUT !N 71.7 0.0 76.7 0.0 89.3 -0.0 60.2 0.0 56.0 -0.0 56.2 0.0 59.9 -0.0	OUT 158.3 4 149.6 3 159.0 3 155.3 3 155.5 3 156.6 3 154.0 3 160.7 2 204.2 2 224.8	HHEEL SPEED OUT 13.8 407.6 004.4 398.9 66.2 364.6 42.1 343.6 337.1 339.4 332.2 335.3 326.8 330.7 326.8 296.4 238.9 261.9 226.6 253.2
RP 1 2 3 4 5 6 7 8 9 10	ABS MACH NO IN OUT 0.588 0.644 0.603 0.624 0.635 0.610 0.635 0.610 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.634 0.624 0.684 0.79 0.564 0.84	1N 001 1,387 0,83 5 1,370 0,84 6 1,280 0,80 4 1,222 0,68 8 1,210 0,67 9 1,198 0,66 9 1,198 0,66 1 1,184 0,66 6 1,171 0,67 1 1,070 0,67 7 0,932 0,57	IN	CH NO OUT 0.473 0.491 0.533 0.450 0.438 0.439 0.451 0.478 0.540		MERID PEAK SS YEL R MACH NO 0.886 1.616 0.891 1.603 0.926 1.590 0.772 1.564 0.750 1.556 0.750 1.551 0.769 1.543 0.814 1.536 0.867 1.478 0.979 1.302 1.011 1.221
RP 1 2 3 4 5 6 7 7 8 9	SPAN ME 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	AN SS 5.1 1.6 5 5.4 1.6 4 1.9 2.1 3 5.4 1.9 8 5.5 1.7 10 5.6 1.6 10 5.6 1.5 5 6.0 -0.5 1	D-FACT .0 0.467 .8 0.444 .6 0.437 .5 0.515 .2 0.513 .6 0.515 .2 0.513 .6 0.490 .2 0.490 .1 0.490 .1 0.490 .1 0.512 .1 0.512	EFF LOSS TOT 0.675 0.282 0.730 0.226 0.849 0.129 0.728 0.233 0.704 0.254 0.707 0.253 0.735 0.232 0.775 0.200 0.874 0.122 0.957 0.050	0.128 0.048 0.166 0.190 5 0.193 2 0.175 0 0.146 2 0.090 8 0.054	LOSS PARAM TOT PROF 0.060 0.038 0.048 0.027 0.029 0.011 0.048 0.034 0.051 0.038 0.051 0.039 0.048 0.036 0.042 0.030 0.026 0.019 0.012 0.011 0.009 0.009

EDGES FOR ROTOR 14 MOD 1

(b) 100 Percent of design speed; reading 1296

		(/			0	,	. 0			
RP 1 23 4 5 6 7 8 9 10 11	RAI IN 24,562 24,016 21,750 20,250 19,992 19,693 19,390 19,088 16,899 14,191 13,465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621	ABS 1.000000000000000000000000000000000000	BETAM OUT 46.8 44.5 42.1 47.3 47.4 46.8 45.5 44.7 48.8	RELIN 65.1 64.1 61.1 59.0 58.6 58.2 57.8 57.6 51.0	BETAM OUT 56.0 54.5 48.7 47.3 47.7 47.5 46.5 44.7 36.3 18.7 9.0	TOTA 1N 288.8 288.7 288.1 287.5 288.3 287.9 287.9 287.9 287.9 287.9	AL TEMP RAT[0 1.251 1.232 1.208 1.200 1.198 1.194 1.193 1.195 1.197	TOTAL IN 10.08 10.11 10.13 10.14 10.14 10.14 10.15 10.15	- PRESS RATIO 1.740 1.742 1.760 1.657 1.636 1.622 1.645 1.647 1.673 1.765
R 1234567890	ABS 192.8 197.2 203.3 206.9 206.5 206.5 206.5 203.4 184.3	VEL 0UT 234.9 235.4 241.8 234.2 230.3 227.7 228.7 228.7 242.6 269.1 288.8	REL IN 458.1 451.5 420.2 400.0 396.6 397.6 387.1 383.1 350.3 350.0 292.9	VEL 0UT 287.3 289.1 271.5 235.0 231.7 228.2 227.6 229.4 213.9 182.4	MERI 192.8 197.2 203.3 206.0 206.5 206.5 206.8 206.5 190.4 184.3	D VEL 0UT 160.8 167.8 179.3 159.2 156.1 154.2 156.6 163.1 172.4 177.1	1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0	225.7	IN 415.6 406.2 367.8 342.9 338.4 332.7 327.8 227.6 239.5 227.6	SPEED OUT 409.4 400.6 366.1 344.5 340.7 335.8 331.7 327.2 297.2 252.6 254.4
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.585 0.599 0.629 0.632 0.631 0.631 0.631 0.631 0.558	0.641 0.641 0.648 0.676 0.655 0.644 0.637 0.640 0.653 0.688 0.768 0.827	REL M IN 1.390 1.372 1.282 1.222 1.211 1.197 1.183 1.170 1.069 0.929 0.887	ACH NO OUT 0.785 0.796 0.758 0.657 0.648 0.639 0.637 0.644 0.607 0.522	MERID M IN 0.585 0.599 0.620 0.629 0.631 0.631 0.631 0.631 0.578	0.439 0.462 0.501 0.445 0.436 0.436 0.438 0.438 0.458 0.506 0.516			MERID VEL R 0.834 0.85: 0.882 0.773 0.754 0.757 0.757 0.790 0.849 0.930	PEAK SS MACH NO 1.626 1.613 1.571 1.564 1.559 1.549 1.543 1.486 1.309
RP 1 23 4 5 6 7 8 9 1 0 1 1	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 50.00 52.50 70.00 95.00	INCI MEAN 3.6.26 5.6.7 5.9.24 6.7	DENCE SS 1.8 1.8 2.4 2.1 2.0 2.0 1.8 1.8 1.1 -0.2	DEV 5.5 4.7 3.6 6.7 8.1 9.3 8.8 11.3 13.4	D-FACT 0.513 0.494 0.484 0.549 0.549 0.544 0.531 0.521 0.542 0.548	EFF 0.683 0.741 0.843 0.777 0.762 0.770 0.807 0.900 0.951	LOSS C TOT 0.294 0.233 0.145 0.208 0.222 0.228 0.218 0.1184 0.104 0.067 0.040	DEFF PROF 0.187 0.133 0.061 0.140 0.157 0.160 0.160 0.129 0.071 0.062 0.039	LOSS P TOT 0.062 0.050 0.032 0.045 0.047 0.046 0.045 0.039 0.022 0.014 0.008	ARAM PROF 0.040 0.028 0.014 0.033 0.033 0.033 0.027 0.015 0.013

EDGES FOR ROTOR 14 MOD 1

(c) 100 Percent of design speed; reading 1297

	`	-,			J		U			
RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN (24.562 24 24.016 23 21.753 21 20.290 20 19.992 20 19.693 19 19.390 19 19.088 19 16.899 17 14.191 15 13.465 15	0UT ,193 ,685 ,653 ,383	[N 0.0 0.0 0.0	BETAM 0UT 53.0 49.0 46.6 48.8 48.9 49.1 49.5 50.9 53.1	REL 1N 66.1 65.1 60.0 59.7 59.2 58.4 55.5 51.8	BETAM OUT 55.5 53.9 48.7 46.6 47.2 47.1 46.4 45.0 37.2 19.3	TOTAL IN 288.7 288.7 288.1 288.0 288.1 288.0 287.8 287.8 287.7	TEMP RATIO 1.281 1.258 1.225 1.210 1.207 1.204 1.203 1.203 1.182 1.192	TOTAL IN 10.08 10.10 10.13 10.14 10.14 10.14 10.14 10.15 10.15	RAT10 1.856 1.850 1.832 1.751 1.724 1.706 1.706 1.704 1.712 1.795
RP 1 234 5 6 1 8 9 5 1	183.2 2-187.8 2-193.8 2-197.1 21197.3 21198.4 2-21198.3 21198.3 21198.3 21183.9 26	43.8 41.3 42.0 57.0 531.9 529.6 529.7 531.5 537.7 64.0	414.6 394.7 390.5 387.2 382.7 377.9 346.0 302.2	VEL 0UT 259.0 268.7 252.0 227.4 224.3 221.0 217.9 212.2 201.3 171.9	193.8 197.1 197.3 198.4 198.2 198.3 195.7	146.9 158.2 166.4 156.1 152.4 150.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0	194.6 182.1 175.7 178.3 174.8 173.6	WHEEL (N 414.2 366.5 342.0 337.0 332.5 327.4 321.7 285.4 226.8	408.0 399.2 364.9 343.6 339.4 335.6 331.3 326.4 297.1
RP: 23456789	0.554 0 0.569 0 0.589 0 0.600 0 0.600 0 0.604 0 0.604 0 0.595 0 0.557 0	0UT .660 .658 .671 .660 .646 .640 .640 .646	REL M IN 1.370 1.352 1.260 1.201 1.189 1.165 1.151 1.053 0.916 0.873	OUT 0.701 0.733 0.699 0.634 0.625 0.616 0.607 0.593 0.593 0.501 0.491	MERID M. IN 0.554 0.569 0.589 0.600 0.604 0.603 0.604 0.595 0.557 0.540	0UT 0.397 0.432 0.461			VEL R	PEAK SS MACH NO 1.641 1.627 1.616 1.589 1.578 1.571 1.551 1.510 1.522 1.236
RP 1 234 567 8 9 0 1 1	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	INCIDI MEAN 4.4 4.6 6.2 6.6 6.7 6.8 6.8 7.2 7.4 7.5	ENCE SS 2.9 2.8 3.4 3.1 3.0 2.9 2.7 2.1 0.8	DEV 5.0 4.1 3.6 6.0 7.7 8.7 9.1 12.2 13.9	D-FACT 0.589 0.548 0.535 0.567 0.566 0.569 0.579 0.555 0.574	EFF 0.689 0.744 0.841 0.826 0.814 0.809 0.813 0.816 0.911 0.948 0.980	LOSS C TOT 0.318 0.254 0.175 0.186 0.191 0.189 0.189 0.098 0.074 0.032	PROF 0.211 0.153 0.075 0.106 0.120 0.128 0.129 0.132 0.063	LOSS P TOT 0.068 0.055 0.035 0.038 0.039 0.040 0.040 0.040 0.021 0.015 0.007	PROF 0.045 0.033 0.017 0.023 0.025 0.027 0.027 0.028 0.013 0.015

EDGES FOR ROTOR 14 MOD 1

(d) 100 Percent of design speed; reading 1298

		(/					_			
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.562 24.016 21.753 20.290 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS [N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 57.8 53.7 48.6 51.0 51.8 52.0 52.2 52.2 49.0 51.7 53.6	REL IN 67.6 66.8 63.5 61.4 61.0 60.6 59.8 57.0 53.3	BETAM OUT 56.0 54.3 49.5 48.3 48.8 47.9 45.7 44.4 36.1 19.3 9.8	TOTA IN 288.9 288.9 288.0 287.9 287.9 287.9 288.0 287.9 287.8	L TEMP RAT10 1.302 1.279 1.232 1.216 1.213 1.212 1.212 1.212 1.191 1.194 1.203	TOTAL 1N 10.08 10.10 10.13 10.14 10.15 10.14 10.15 10.15	1.731 1.724 1.740 1.742 1.749 1.809
R 1 234561-8901	ABS IN 170.8 174.1 182.7 186.9 187.5 187.5 187.6 185.2 1759.4	VEL 0UT 249.4 245.4 239.6 232.2 228.0 228.5 233.4 235.4 240.6 262.2 280.2	REL 1N 448.2 441.2 410.0 390.5 386.3 381.9 377.2 373.0 296.9 283.6	VEL 0UT 237.7 248.9 244.3 219.5 214.2 209.9 204.9 195.3 172.0 168.9	MER II IN 170.8 174.1 182.7 186.9 187.2 187.3 187.5 187.6 185.2 175.2	D VEL 0UT 132.9 145.3 158.6 146.0 141.1 140.6 143.1 157.8 162.3 166.4	TAN 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0	G VEL 0UT 211.0 197.8 179.6 180.6 179.1 180.1 184.5 186.0 181.7 205.9 225.4	WHEEL IN 414.3 405.5 367.1 342.8 338.0 327.3 322.4 285.1 239.6 227.5	SPEED 0UT 408.1 399.9 365.4 344.4 340.3 335.9 331.2 327.1 296.8 262.7 254.2
RP 1 23 4 5 6 7 8 9 10 11	ABS M IN 0.515 0.525 0.563 0.568 0.569 0.569 0.569 0.562 0.5521	ACH NO 0.670 0.664 0.6624 0.632 0.634 0.634 0.655 0.678 0.743 0.798	REL M 1N 1.350 1.242 1.184 1.172 1.159 1.144 1.132 1.031 0.856	ACH NO OUT 0.638 0.674 0.675 0.609 0.594 0.583 0.570 0.562 0.550 0.488	MERID M IN 0.515 0.525 0.553 0.567 0.568 0.569 0.569 0.569 0.569 0.569	ACH NO OUT 0.357 0.393 0.438 0.405 0.391 0.390 0.398 0.402 0.444 0.460 0.474				PEAK SS MACH NO 1.671 1.663 1.648 1.621 1.615 1.611 1.595 1.549 1.335 1.255
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 50.00 52.50 70.00 90.00 95.00	INCI MEAN 5.8 6.3 7.7 8.0 8.1 8.2 8.3 8.6 8.7 9.0	DENCE SS 4.3 4.5 4.4 4.4 4.3 4.2 3.5 2.1 2.0	DEV 5.5 4.4 7.7 9.3 9.5 8.5 8.4 11.1 14.0	D-FACT 0.646 0.600 0.552 0.584 0.590 0.596 0.608 0.570 0.582 0.581	0.662 0.713 0.823 0.808 0.797 0.795 0.808 0.810 0.908 0.950 0.977	LOSS C TOT 0.366 0.304 0.183 0.199 0.214 0.205 0.206 0.108 0.074 0.039	PROF 0.255 0.198 0.095	LOSS F TOT 0.077 0.066 0.040 0.042 0.043 0.044 0.023 0.015 0.008	PROF 0.054 0.043 0.021 0.026 0.029 0.030 0.031 0.015

EDGES FOR ROTOR 14 MOD 1

(e) 90 Percent of design speed; reading 1301

,	(e) ao Perc	ent or a	eargn af	beeu, r	eaumg	1301		
24.562 24. 24.016 23. 21.753 21. 20.290 20. 19.992 20. 19.693 19. 19.390 19. 19.088 19. 16.899 17. 14.191 15.	DUT !N 193 -0.0 685 0.0 653 0.0 383 0.0 129 0.0 875 -0.0 621 0.0 589 0.0 557 -0.0	0UT 46.3 44.9 43.3 45.3 46.0 46.2 45.7 49.7	1N 66.1 65.0 62.0 60.0 59.6 59.2 58.8 58.5 55.8	BETAM OUT 52.6 52.6 48.8 45.8 45.6 44.9 44.7 43.8 37.0 17.5 8.9	TOTA IN 289.4 289.2 288.0 287.8 288.0 287.8 287.3 287.3 287.9 287.8	L TEMP RATIO 1.214 1.195 1.173 1.165 1.164 1.162 1.151 1.158 1.144 1.155 1.162	TOTAL IN 10.06 10.11 10.14 10.15 10.15 10.15 10.15	PRESS RATIO 1.699 1.672 1.636 1.590 1.577 1.551 1.556 1.557 1.546 1.626 1.679
IN 165.7 22 170.3 22 176.3 21 178.6 21 178.6 21 178.6 21 178.6 21 178.7 21 178.6 21 177.7 21 174.7 21 163.7 24	DUT IN 15.9 408.5 16.2 374.9 16.2 356.2 16.2 356.2 16.2 346.2 16.2 346.2 16.2 346.2 16.2 346.2 16.2 346.2 16.2 346.2 16.2 346.2 16.2 346.2	OUT 257.3 257.3 257.3 239.9 217.9 208.8 205.4 203.8 188.6 166.0	MER II IN 165.7 170.3 176.3 178.3 178.6 178.7 178.6 177.7 174.7 163.7	VEL 0UT 156.3 158.1 152.0 148.8 147.8 146.1 150.6 158.3 160.0	TAN IN -0.0 0.0 0.0 0.0 -0.0 0.0 0.0	G VEL 0UT 163.3 155.8 149.0 153.7 153.9 154.6 154.4 153.2 154.1 166.5 203.8	WHEEL IN 373.4 365.1 330.9 308.4 303.9 295.3 295.3 289.9 257.1 215.7 204.8	SPEED 0UT 367.8 360.1 329.4 309.8 306.0 302.1 298.8 294.2 267.6 236.4 228.9
IN 0.498 0.0513 0.533 0.5539 0.540 0.541 0.540 0.5538 0.5528 0.5528 0.493 0.493	DUT IN .624 1.222 .614 1.213 .611 1.33 .611 1.078 .604 1.066 .604 1.055 .600 1.044 .602 1.022 .614 0.935 .702 0.815	OUT 7 0.711 8 0.716 6 0.675 8 0.616 6 0.600 0.590 0 0.580 0 0.577 0 0.538 0 0.476	MERID M 0.493 0.5133 0.5540 0.5440 0.5440 0.548 0.528 0.476	ACH NO OUT 0.431 0.435 0.445 0.429 0.420 0.418 0.417 0.429 0.454 0.460				PEAK SS MACH NO 1.558 1.497 1.506 1.493 1.493 1.492 1.492 1.409 1.405
PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	4.5 2.7 6.1 3.3 6.6 3.1 6.6 3.6 6.7 3.0 6.9 2.9 7.0 2.9 7.4 2.7 7.7 1.1	7 2.7 3.7 5.2 6.1 6.5 7.5 7.8 12.0 12.2	D-FACT 0.520 0.503 0.494 0.525 0.533 0.538 0.5341 0.536 0.527 0.547 0.549	0.764 0.810 0.860 0.849 0.849 0.843 0.855 0.919 0.964	LOSS C TOT 0.224 0.172 0.116 0.130 0.142 0.144 0.151 0.139 0.084 0.050	0EFF PR0F 0.168 0.120 0.072 0.095 0.108 0.112 0.120 0.110 0.073 0.050	LOSS P TOT 0.051 0.039 0.026 0.029 0.031 0.032 0.030 0.018 0.011	PROF 0.038 0.027 0.016 0.021 0.024 0.024 0.026 0.024 0.015 0.011
	RADII 1	RADII IN OUT IN 24.562 24.193 -0.0 24.016 23.685 0.0 21.753 21.653 0.0 20.290 20.383 0.0 19.992 20.129 0.0 19.693 19.875 -0.0 19.088 19.367 0.0 19.088 19.367 0.0 14.191 15.557 -0.0 14.191 15.557 -0.0 14.191 15.557 13.465 15.049 0.0 ABS VEL IN OUT IN 165.7 225.9 408.5 170.3 220.7 402.9 170.3 217.2 374.9 178.6 214.1 352.5 178.6 214.1 352.5 178.6 214.1 352.5 178.6 214.1 352.5 178.6 214.1 352.5 178.6 212.6 45.1 177.7 212.4 340.0 174.7 215.5 310.8 178.6 212.6 345.1 177.7 212.4 340.1 174.7 215.5 310.8 163.7 244.6 270.8 158.4 259.1 258.9 ABS MACH NO REL IN OUT IN 0.498 0.624 1.227 0.513 0.614 1.213 0.533 0.611 1.078 0.539 0.611 1.078 0.540 0.604 1.065 0.540 0.604 1.065 0.540 0.604 1.065 0.540 0.604 0.604 1.065 0.540 0.604 0.604 1.065 0.540 0.604 0.745 0.778 PERCENT INCIDENCE SPAN MEAN SS 5.00 4.3 2.8 10.00 4.5 2.7 50.00 6.9 2.9 52.50 7.0 2.5 70.00 7.4 2.3 90.00 7.7	RADII	RADII ABS BETAM REL IN OUT IN OUT IN OUT SALES AND	RADII IN OUT IN OUT IN OUT 24.562 24.193 -0.0 46.3 66.1 52.6 24.016 25.685 0.0 44.9 65.0 52.6 24.016 25.685 0.0 44.9 65.0 52.6 21.753 21.653 0.0 45.3 60.0 45.8 19.992 20.129 0.0 46.0 59.6 45.6 19.693 19.875 -0.0 46.3 59.2 44.9 19.390 19.621 0.0 46.6 58.8 44.7 19.088 19.367 0.0 46.2 58.5 43.8 16.899 17.589 0.0 45.7 55.8 37.0 14.191 15.557 -0.0 49.7 52.8 17.5 13.465 15.049 0.0 51.9 52.3 8.9 ABS VEL REL VEL MERID VEL IN OUT IN OUT 165.7 225.9 408.5 257.3 165.7 156.1 170.3 220.7 402.9 257.3 170.3 156.3 178.3 216.2 356.2 217.9 178.3 152.0 178.6 214.1 352.5 212.7 178.6 148.8 178.7 213.9 348.6 208.8 178.7 147.8 178.7 213.9 348.6 208.8 178.7 147.8 178.7 212.4 340.0 203.8 177.7 347.1 174.7 215.5 310.8 188.6 174.7 150.6 163.7 244.6 270.8 166.0 163.7 158.3 158.4 259.1 258.9 161.9 158.4 160.0 ABS MACH NO REL MACH NO IN OUT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RADII IN OUT OLASS OLGOW IN OUT IN OUT IN OUT OLASS OLGOW IN OUT IN OUT IN OUT IN OUT IN OUT OLASS OLGOW IN OUT OLASS OLG	1N	RADII

EDGES FOR ROTOR 14 MOD 1

(f) 90 Percent of design speed; reading 1302

		(2) 00	. 10100	in or u	CDISII DI		_	1000		
RP 1 2 3 4 4 5 6 7 8 9 10 11	RAD IN 24.562 24.016 21.753 20.290 19.992 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 17.589 15.557 15.046	ABS 1N -0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0	BETAM OUT 50.6 48.0 45.2 47.4 47.7 48.2 48.5 48.4 50.5 52.5	REL IN 67.1 65.9 62.9 60.5 60.1 59.8 59.4 53.8 53.2	52.9 49.3 46.2 45.9 45.4 44.1 36.3 18.2 9.1	289.6 289.3 287.9 287.7 288.0 287.7 287.5 287.8 287.7 287.7	1.178 1.169 1.168 1.167 1.164 1.162 1.151 1.156 1.163	10.05 10.11 10.13 10.15 10.15 10.15 10.15 10.15	1.716 1.694 1.650 1.604 1.596 1.587 1.577 1.575 1.571 1.630
R-1254561-8951	1N 158.1 163.2 169.4 171.6 172.0 172.2 171.5	VEL 0UT 225.6 221.3 215.6 214.9 213.6 212.9 211.9 217.1 217.1 247.3	REL 1N 406.1 371.9 353.0 349.4 345.7 341.1 337.6 267.6 256.2	VEL 0UT 241.1 245.3 233.0 210.0 206.4 202.0 198.2 196.1 161.8 158.5	MERI 1N 158.1 163.2 169.4 171.6 172.0 172.2 171.5 171.8 168.4 158.2 153.6	D VEL OUT 143.1 147.9 152.0 145.4 143.8 141.8 140.9 147.7 153.7	TAN 1N -0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0	0 VEL 0UT 174.4 164.6 152.9 158.3 158.0 158.8 158.6 158.5 159.1 186.2 204.2	WHEEL 374.0 365.3 331.0 308.5 304.1 299.8 294.9 290.6 257.2 215.9 205.0	SPEED 0UT 368.4 360.3 329.5 309.9 *16.2 512.5 298.4 294.9 267.7 236.7 229.2
RP 1 2 3 4 5 6 7 8 9 0 1 1	ABS M IN 0.474 0.490 0.511 0.519 0.520 0.518 0.519 0.508 0.476 0.461	0.614 0.605 0.606 0.602 0.600 0.598 0.599	REL M 1.217 1.201 1.121 1.066 1.054 1.044 1.039 0.927 0.805 0.769	OUT 0.664 0.680 0.654 0.592 0.581 0.569 0.559 0.559 0.522 0.455	MERID M IN 0.474 0.490 0.511 0.518 0.519 0.520 0.518 0.519 0.508 0.461	OUT 0.394 0.410 0.426 0.410 0.405 0.405 0.400 0.397 0.398 0.420 0.449			MERID YEL R 0.905 0.897 0.847 0.836 0.824 0.819 0.820 0.877 1.019	1.519 1.520 1.520 1.519 1.422 1.196
RP 1 234 567 89011	PERCENT SPAN 5.00 30.00 42.50 45.00 47.50 52.50 70.00 90.00	INCI MEAN 5.3 7.0 7.5 7.6 7.7 7.8 7.9 8.4 8.6 8.8	DENCE S5 3.8 3.7 4.2 4.0 3.9 3.9 3.9 3.8 3.3	DEV 3.1 3.1 4.2 5.6 6.3 7.0 7.7 8.1 11.4 12.9 10.7	D-FACT 0.567 0.538 0.512 0.547 0.557 0.560 0.560 0.563 0.557	0.849 0.844 0.847 0.855 0.914 0.962	0.238 0.190 0.127 0.139 0.148 0.154 0.151 0.145	0.112 0.118 0.117 0.113 0.082 0.055	0.053 0.042 0.028 0.030 0.032 0.033 0.032 0.031 0.020 0.012	PROF 0.040 0.030 0.018 0.022 0.024

EDGES FOR ROTOR 14 MOD 1

(g) 90 Percent of design speed; reading 1304

RP 1 2 3 4 5 6 7 8	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 0 1 1	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 30.00 42.50	ABS M IN 0.456 0.470 0.493 0.500 0.500 0.500 0.490 0.460 0.445	ABS 1N 152.5 163.8 165.7 166.8 165.8 165.8 165.8 163.3 148.4	RAD IN 24.562 24.016 21.753 20.290 19.693 19.693 19.088 16.899 14.191 13.465
INCI MEAN 6.0 6.2 7.8 8.3	ACH NO OUT 0.614 0.611 0.604 0.595 0.598 0.598 0.599 0.604 0.687	VEL 0UT 223.6 220.9 215.3 213.2 211.5 212.2 212.4 212.5 240.0 255.3	OUT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557
DENCE SS 4.5 4.4 5.0 4.8	REL M 1.204 1.190 1.111 1.054 1.041 1.028 1.017 1.005 0.914 0.794	RELL 1N 402.6 397.1 368.9 349.6 341.2 337.4 333.4 303.7 264.2 252.6	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DEV 3.7 3.3 4.3 6.0	0.647 0.647 0.665 0.638 0.587 0.569 0.557 0.547 0.543 0.543	VEL 0UT 235.6 240.4 227.5 208.4 202.1 198.0 194.0 197.8 158.5	BETAM 0UT 51.9 49.3 46.6 47.8 48.7 49.0 49.4 49.0 48.4 51.1 53.0
D-FACT 0.579 0.549 0.526 0.547	MERID M IN 0.456 0.470 0.493 0.500 0.500 0.500 0.490 0.440 0.445	MERI IN 152.5 157.0 163.8 165.7 166.0 166.0 165.8 165.8 162.7 153.3	REL IN 67.7 66.7 63.6 61.3 60.9 60.6 57.6 54.0
EFF 0.737 0.784 0.860 0.856	ACH NO OUT 0.379 0.399 0.415 0.403 0.393 0.392 0.389 0.393 0.401 0.431	D VEL 0UT 137.9 144.0 148.0 143.2 139.4 139.4 138.1 139.2 141.1 150.5	BETAM OUT 54.2 53.2 49.4 46.6 46.4 45.2 44.6 43.7 37.4 18.0 9.1
LOSS C TOT 0.264 0.210 0.135 0.142		TAN (N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TOTA IN 289.7 289.4 287.9 287.8 287.6 287.8 287.7 287.7
0EFF PROF 0.203 0.153 0.086 0.102		0 VEL 0UT 176. 4 156. 3 157. 9 158. 8 160. 4 161. 2 160. 4 158. 9 203. 9	L TEMP RAT10 1.225 1.209 1.180 1.170 1.168 1.169 1.168 1.166 1.156 1.156
LOSS P TOT 0.058 0.047 0.030 0.031		WHEEL IN 372.6 364.8 330.6 307.9 303.1 298.9 289.3 256.4 215.2 204.4	TOTAL IN 10.07 10.10 10.13 10.14 10.14 10.15 10.15 10.15
ARAM PROF 0.045 0.034 0.019 0.022	PEAK SS MACH NO 1.545 1.536 1.547 1.542 1.541 1.540 1.541 1.542 1.428 1.200 1.129	SPEED 0JT 367.0 359.1 309.3 305.2 301.0 297.4 293.5 266.9 235.9 228.5	PRESS RAT10 1.709 1.700 1.657 1.699 1.598 1.592 1.583 1.561 1.634 1.686

EDGES FOR ROTOR 14 MOD 1

(h) 70 Percent of design speed; reading 1307

	(11) IU Ferce	int or u	corgu of	ecu, 1	caums	1001		
RP 1 23 4 5 6 7 8 9 10 11	RADII IN OU 24.562 24.1 24.016 23.6 21.753 21.6 20.290 20.1 19.693 19.8 19.390 19.6 19.088 19.3 16.899 17.5 14.191 15.5 13.465 15.0	T	BETAM OUT 33.8 34.2 33.3 35.6 38.0 38.3 36.8 38.6 43.9 47.3	55.4 64.3 61.4 59.5 59.1 58.8 58.4 55.6 52.4	BETAM OUT 53.9 52.9 50.5 46.1 43.8 42.9 35.6 17.5	TOTA IN 288.5 288.3 288.1 288.1 288.2 288.0 288.0 288.0 288.1	L TEMP RATIO 1.099 1.092 1.083 1.085 1.087 1.087 1.087 1.087	TOTAL IN 10.11 10.13 10.13 10.13 10.14 10.14 10.13 10.14	PRESS RATIO 1.302 1.300 1.286 1.285 1.287 1.284 1.278 1.283 1.287 1.368
RP 1 2345678901	ABS VEL IN 000 133.6 169 137.2 169 140.7 164 141.6 168 141.8 170 141.4 169 141.1 171 137.4 176 129.5 200 125.9 210	T	VEL 0UT 238.7 232.8 215.8 200.2 194.0 187.9 184.5 187.1 169.5 151.3 144.8	MER II 1833.6 137.2 140.7 141.6 141.5 141.4 141.1 137.4 129.5	D VEL OUT 140.5 140.4 137.4 138.1 136.9 134.8 133.2 137.1 137.1 144.3 142.7	TAN (N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	94.2 95.3 96.6 101.5 105.2 105.4 102.6 110.0 154.5	WHEEL IN 291.6 258.0 258.0 240.4 237.3 230.3 226.6 200.5 168.2	SPEED 0UT 287.2 281.0 256.8 241.6 238.9 235.1 235.0 229.9 208.7 184.4 178.6
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH 1N OU 0.399 0.4 0.410 0.4 0.421 0.4 0.424 0.4 0.423 0.4 0.423 0.4 0.423 0.4 0.423 0.5 0.375 0.6	T IN 85 0.957 88 0.945 75 0.879 87 0.835 92 0.827 94 0.818 90 0.808 95 0.726 83 0.633	0.684 0.670 0.623 0.579 0.560 0.543 0.533 0.541 0.422	MERID M IN 0.399 0.410 0.421 0.424 0.423 0.423 0.423 0.425 0.3375	0.403 0.403 0.404 0.397 0.399 0.395 0.389 0.385 0.396 0.400				PEAK SS MACH NO 1,279 1,264 1,246 1,209 1,209 1,196 1,185 1,174 1,085 0,912 0,857
RP 1 2 3 4 5 6 7 8 9 1 0 1 1	SPAN M 5.00 10.00 30.00 45.00 47.50 50.00 52.50 70.00 90.00	INC IDENCE EAN SS 3.6 2.1 3.8 2.7 6.1 2.6 6.2 2.6 6.4 2.6 6.5 2.5 6.6 2.5 7.2 2.1 7.3 0.7 7.4 0.5	DEV 3.4 5.4 5.6 5.7 6.9 10.6 12.2	D-FACT 0.366 0.374 0.369 0.392 0.413 0.431 0.436 0.415 0.425 0.457	0.789 0.845 0.899 0.891 0.880 0.854 0.856 0.932 0.972 0.987	LOSS C TOT 0.145 0.102 0.068 0.080 0.114 0.130 0.107 0.060 0.035 0.018	0EFF PROF 0.141 0.099 0.067 0.080 0.090 0.114 0.130 0.107 0.060 0.035 0.018	LOSS P TOT 0.032 0.023 0.015 0.017 0.020 0.025 0.028 0.023 0.013	PARAM PROF 0.031 0.022 0.014 0.017 0.025 0.025 0.028 0.023 0.013 0.007

EDGES FOR ROTOR 14 MOD 1

(i) 70 Percent of design speed; reading 1308

		(1) 10	I CI CC.	iic or uc	preu ph	cou, r	Juni115	1000		
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.562 24.016 21.753 20.290 19.992 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621	ABS (N 0.0 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0	BETAM OUT 42.5 39.4 38.7 40.2 41.4 42.7 43.1 43.2 47.3 49.7	REL IN 67.5 66.5 63.9 61.6 61.2 60.9 60.5 54.8 54.2	BETAM OUT 55.0 54.0 51.1 46.3 45.8 45.2 44.6 335.2 17.2 9.8	TOTA 1N 288.5 288.4 288.2 288.1 288.2 288.0 288.1 287.9 288.0 288.0	L TEMP RAT10 1.114 1.106 1.092 1.093 1.094 1.094 1.093 1.087 1.097	TOTAL IN 10.10 10.13 10.13 10.13 10.14 10.14 10.14 10.14	1.314 1.308 1.303 1.306 1.313
RP 1 2 5 4 5 6 7 8 9 1 1 1	ABS IN 120.2 123.9 127.3 128.2 128.1 128.1 127.8 125.2 118.6 115.3	VEL 0UT 165.6 165.1 161.3 167.1 166.4 166.2 165.9 167.2 174.0 195.3 204.2	REL IN 314.4 310.0 287.7 272.5 269.3 266.3 263.4 259.7 236.1 205.9	VEL OUT 212.7 216.9 200.3 184.9 178.9 173.2 168.4 168.4 168.3 134.0	MERI 1N 120.2 123.9 127.3 128.2 128.1 128.1 127.8 125.2 118.3	D VEL 0UT 122.0 127.5 125.8 127.7 124.7 122.1 119.9 126.9 136.5 132.1	TAN IN 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0	G VEL OUT 111.9 104.8 101.0 107.8 110.1 112.8 114.6 114.6 114.1 119.0 143.5	WHEEL IN 290.5 284.2 258.0 240.4 236.5 230.2 226.1 200.2 168.3 159.7	235.6 232.9 229.4
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.358 0.369 0.379 0.382 0.382 0.382 0.381 0.373 0.353	ACH NO OUT 0.471 0.471 0.463 0.478 0.478 0.477 0.481 0.503 0.567 0.593	REL M IN 0.935 0.858 0.812 0.803 0.794 0.785 0.7704 0.613 0.586	ACH NO OUT 0.605 0.619 0.575 0.532 0.514 0.498 0.484 0.483 0.449 0.403 0.389	MERID M IN 0.358 0.369 0.379 0.382 0.382 0.382 0.381 0.373 0.353	ACH NO OUT 0.347 0.364 0.361 0.367 0.358 0.351 0.344 0.351 0.384				PEAK SS MACH NO 1.320 1.305 1.285 1.224 1.224 1.227 1.216 1.203 1.108 0.933 0.876
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	INCI MEAN 5.8 6.0 7.9 8.5 8.7 8.8 9.0 9.6 9.7 9.8	DENCE S5 4.3 4.2 5.1 5.0 5.0 5.0 4.9 4.5 3.2 2.9	DEV 4.5 4.2 6.0 5.7 6.3 6.8 7.4 10.2	D-FACT 0.457 0.424 0.422 0.446 0.463 0.485 0.485 0.479 0.488 0.495	0.742 0.798 0.882 0.893 0.873 0.852 0.855 0.928 0.973 0.983	LOSS C TOT 0.204 0.154 0.090 0.189 0.129 0.131 0.073 0.038 0.025	OEFF PROF 0.199 0.151 0.089 0.108 0.129 0.145 0.131 0.073 0.038 0.025	LOSS F TOT 0.044 0.033 0.019 0.019 0.028 0.028 0.031 0.028 0.016 0.008	PARAM PROF 0.043 0.033 0.019 0.019 0.023 0.028 0.031 0.028 0.016 0.008 0.005

TABLE VII. - Concluded. BLADE ELEMENT DATA AT BLADE EDGES FOR ROTOR 14 MOD 1

(j) 70 Percent of design speed; reading 1309

						aumg 1000	
RP 1 23 4 5 6 7 8 9 10 11	RADII 1N OUT 24.562 24.193 24.016 23.685 21.753 21.653 20.290 20.383 19.992 20.129 19.693 19.875 19.390 19.621 19.088 19.367 16.899 17.589 14.191 15.557 13.465 15.049	ABS IN -0.0 0.0 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0	BETAM 0UT 59.8 53.1.1 43.7 44.9 46.0 47.2 46.9 45.0 48.4 50.8	REL 1N 70.4 69.4 66.5 64.1 63.7 63.4 63.0 55.4	BETAM OUT 59.7 57.6 51.4 47.1 47.0 46.1 45.2 43.5 34.6 17.5 9.4	TOTAL TEMP IN RATIO 288.7 1.139 288.5 1.128 288.1 1.096 288.1 1.096 288.1 1.096 288.0 1.096 288.0 1.097 288.0 1.098 288.0 1.098 288.0 1.098	TOTAL PRESS IN RATIO 10.10 1.331 10.13 1.322 10.14 1.324 10.13 1.318 10.14 1.311 10.14 1.311 10.14 1.317 10.14 1.330 10.14 1.360 10.13 1.384
R12345678901	ABS VEL IN OUT 103.5 166.3 107.5 161.2 112.4 160.4 114.9 164.7 115.2 163.1 115.4 164.3 115.6 167.1 114.6 175.0 109.1 192.9 106.3 203.3	309.0 304.8 281.6 266.8 263.9 260.4 257.4 254.8 231.2 200.8	VEL OUT 165.7 180.5 193.8 175.1 169.4 157.5 150.4 134.2 130.2	IN 103.5 107.5 112.4 114.9 115.2 115.4 115.4	96.8 120.9 119.1 115.5 113.5 111.6 114.2 123.8 128.0	TANG VEL IN OUT -0.0 143.7 0.0 128.9 0.0 105.5 0.0 115.1 0.0 117.7 0.0 120.5 -0.0 123.7 -0.0 144.4 0.0 157.5	WHEEL SPEED IN OUT 291.2 286.8 285.2 281.3 258.2 257.0 240.9 242.0 237.4 239.0 235.4 235.6 230.1 232.9 227.1 230.4 200.8 209.0 168.6 184.8 159.9 178.8
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.307 0.467 0.319 0.455 0.354 0.459 0.342 0.472 0.343 0.468 0.343 0.471 0.344 0.479 0.341 0.505 0.324 0.559 0.316 0.590	0.904 0.837 0.793 0.785 0.774 0.765 0.758 0.687 0.596	CH NO OUT 0.466 0.509 0.555 0.454 0.454 0.454 0.452 0.454 0.389 0.378	0.307 0.319 0.334 0.342 0.343 0.343	ACH NO OUT 0.235 0.273 0.346 0.342 0.331 0.325 0.320 0.320 0.357 0.373		MERID PEAK SS VEL R MACH NO 0.808 1.385 0.900 1.369 1.075 1.331 1.037 1.284 1.003 1.273 0.983 1.260 0.968 1.249 0.988 1.241 1.080 1.136 1.173 0.953 1.208 0.895
RP 1 23 4 5 6 7 8 9 1 1 1	PERCENT IN SPAN MEAN MEAN 5.00 8.10.00 8.30.00 10.42.50 11.45.00 11.50.00 11.50.00 11.50.00 11.50.00 11.90.00 11.90.00 12.	N S5 7 7.2 9 7.1 5 7.8 1 7.6 2 7.5 2 7.5 4 7.4	9.2 7.8 6.4 6.5 7.5 7.7 8.0 7.6 9.6	0.563 0.438 0.479 0.494 0.511 0.527 0.526 0.494 0.498	EFF 0.615 0.644 0.841 0.870 0.853 0.838 0.827 0.835 0.924 0.969 0.988	LOSS COEFF TOT PROF 0.364 0.356 0.323 0.317 0.134 0.132 0.116 0.116 0.133 0.133 0.151 0.165 0.161 0.161 0.083 0.083 0.045 0.045 0.019 0.019	TOT PROF 0.069 0.068 0.064 0.063 0.028 0.028 0.025 0.025 0.032 0.032 0.035 0.035 0.035 0.035 0.035 0.035

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES

FOR STATOR 10

(a) 100 Percent of design speed; reading 1306

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM (N OUT 37.3 5.0 35.0 2.9 32.7 0.9 39.6 -0.7 39.7 -1.4 39.7 -1.7 39.1 -1.7 36.7 -1.7 35.8 -2.3 38.8 4.5	IN OUT 37.3 5.0 35.0 2.9 35.0 -0.7 39.6 -0.7 39.7 -1.4 39.7 -1.7 35.7 -1.7 35.8 -2.3 38.8 4.5	TOTAL TEMP IN RATIO 354.8 0.995 349.6 1.000 342.9 1.001 340.3 0.997 339.7 0.996 338.5 0.996 338.7 0.996 335.2 1.001 340.6 1.005 343.8 1.008	TOTAL PRESS IN RATIO 16.67 0.943 16.69 0.978 17.12 0.960 15.66 0.991 15.39 1.003 15.40 1.002 15.55 0.996 15.84 0.982 16.23 0.981 17.86 0.878 18.53 0.822
R12345678901	ABS VEL 1N OUT 263.8 216.9 263.3 231.4 275.6 237.8 246.2 217.5 239.6 217.9 244.0 220.5 252.5 223.6 265.2 244.5 306.4 261.7 3:8.8 260.1	REL VEL 1N 0UT 263.8 216.9 263.3 231.4 275.6 237.8 246.2 219.3 239.5 217.5 239.6 217.9 244.0 220.5 252.5 223.6 265.2 244.5 306.4 261.7 318.8 260.1	MERID VEL IN OUT 209.7 216.1 215.7 231.1 231.8 237.8 189.7 217.4 184.4 217.8 189.4 220.4 202.3 223.5 215.2 244.3 238.6 260.9 239.9 258.7	TANG VEL IN OUT 160.0 18.9 150.9 11.5 149.0 3.7 157.0 -2.7 153.1 -5.2 153.0 -6.6 153.8 -6.6 151.0 -6.5 155.0 -9.8 192.2 20.5 209.9 26.2	0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.735 0.596 0.740 0.642 0.787 0.668 0.698 0.616 0.677 0.611 0.678 0.613 0.693 0.622 0.719 0.631 0.764 0.698 0.892 0.743 0.929 0.733	REL MACH NO IN OUT 0.735 0.596 0.740 0.642 0.787 0.668 0.698 0.616 0.677 0.611 0.678 0.613 0.693 0.622 0.719 0.631 0.764 0.698 0.892 0.743 0.929 0.733	MERID MACH NO 1N OUT 0.585 0.594 0.606 0.641 0.662 0.668 0.537 0.616 0.522 0.613 0.528 0.621 0.576 0.631 0.620 0.697 0.694 0.741		MERID PEAK SS VEL R MACH NO 1.030 0.974 1.071 0.932 1.026 0.921 1.156 0.979 1.180 0.949 1.181 0.944 1.163 0.946 1.104 0.916 1.135 0.946 1.105 1.205 1.078 1.327
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 0.6 10.00 -0.1 30.00 -1.1 42.50 5.4 45.00 5.4 47.50 5.2 50.00 4.5 52.50 1.9 70.00 -0.4 90.00 0.0	DENCE SS -5.5 17.8 -6.4 14.5 -7.3 11.1 -0.8 9.1 -0.8 8.0 -1.7 8.0 -1.7 8.0 -6.5 6.8 -6.0 13.3	D-FACT EFF 0.380 0. 0.318 0. 0.318 0. 0.321 0. 0.305 0. 0.303 0. 0.304 0. 0.309 0. 0.256 0. 0.290 0. 0.327 0.	LOSS COEFF TOT PROF 0.189 0.189 0.074 0.074 0.119 0.119 0.031 0.012 -0.008 -0.008 0.016 0.016 0.061 0.061 0.058 0.058 0.303 0.302 0.418 0.413	LOSS PARAM TOT PROF 0.071 0.071 0.027 0.027 0.041 0.041 0.010 0.010 -0.004 -0.004 -0.002 -0.002 0.005 0.005 0.019 0.019 0.017 0.017 0.079 0.079 0.107 0.105

EDGES FOR STATOR 10

(b) 100 Percent of design speed; reading 1296

		(6) 1	00 1 01	00110 01	acribit spe	.,			
RP 1 2 3 4 5 6 7 8 9 0 1 1	RAD IN 23.942 23.503 21.742 20.637 20.417 20.196 19.975 19.754 18.227 16.530 16.121	23.538 21.900 20.881 20.681 20.480 20.279 20.079 18.715 17.252	ABS IN 41.7 39.4 36.7 42.0 42.2 41.5 40.1 38.4 40.9	BETAM OUT 6.5 4.7 2.9 1.0 0.4 0.1 0.1 0.4 -0.8 4.3 5.6	41.7 6 39.4 4 36.7 2 42.0 1 42.2 0 42.2 0 41.5 0 40.1 0 38.4 -0 40.9 4	UT IN .5 361.2 .7 355.7 .9 348.0 .0 345.5 .4 345.1 .1 344.4 .1 342.6 .8 338.6	0.997 0.995 0.998 0.998 1.006	TOTAL IN 17.54 17.61 17.84 16.59 16.45 16.48 16.71 16.98 17.91	0.997 0.997 0.988
R-2545678901	ABS 1N 260.2 270.2 253.3 248.3 246.9 252.9 265.4 29:.4	VEL 0UT 205.3 215.7 217.4 202.6 201.1 200.8 202.7 205.9 217.7 23:.5 219.5	REL 1N 260.2 262.4 270.2 253.3 248.6 245.3 246.9 252.9 265.4 291.5	VEL 0UT 205.3 215.7 217.4 202.6 201.1 200.8 202.7 205.9 217.7 231.5 219.5	MERID VE IN 204 202.9 215 216.5 217 188.2 202 184.1 201 181.7 201 184.8 202 193.5 205 208.1 217 220.5 230 226.5 218	T IN .0 173.0 .0 .0 166.4 .1 161.6 .1 167.0 .8 164.9 .7 163.7 .9 162.8 .7 164.8 .1 190.7	11.0 3.6 1.4 0.4 0.3 1.4 -3.1	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.717 0.730 0.764 0.714 0.699 0.695 0.716 0.760 0.841 0.895	ACH NO OUT 0.557 0.590 0.602 0.558 0.558 0.558 0.573 0.613 0.649	REL M IN 0.717 0.730 0.764 0.714 0.699 0.691 0.695 0.716 0.760 0.841	0.557 0.557 0.590 0.602 0.562 0.558 0.558 0.564 0.573 0.613 0.649	MERID MACH IN OU 0.536 0.5 0.565 0.5 0.612 0.6 0.530 0.5 0.518 0.5 0.518 0.5 0.521 0.5 0.524 0.5 0.596 0.6 0.636 0.6	IT 153 888 888 1601 162 58 58 64 173 113			0.998 1.022
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 5.0 4.2 2.9 7.8 7.9 7.8 6.9 5.3 2.2 2.1	DENCE SS -1.2 -2.0 -3.3 1.6 1.7 -0.9 -3.9 -4.0 -2.9	DEV 19.3 16.4 13.1 10.9 10.2 9.9 9.8 10.1 8.3 13.1	D-FACT EF 0.429 0. 0.389 0. 0.387 0. 0.414 0. 0.406 0. 0.395 0. 0.385 0. 0.361 0. 0.358 0. 0.358 0. 0.443 0.	F LOSS TOT 0.131 0.064 0.107 0.061 0.033 0.011 0.012 0.040 0.067 0.218	0.064 0.107 0.061 0.033 0.011 0.012 0.040 0.067 0.218	LOSS F TOT 0.049 0.024 0.037 0.020 0.011 0.003 0.013 0.019 0.057 0.097	PROF 0.049 0.024 0.037 0.020 0.011 0.003 0.004 0.013 0.019 0.057

EDGES FOR STATOR 10

(c) 100 Percent of design speed; reading 1297

RP 1 2 3 4 5 6 7 8 9 10 11	RADII 1N 0UT 23.942 23.945 23.503 25.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM IN OUT 48.2 8. 44.0 6. 41.4 4. 43.7 1. 43.9 0. 44.1 0. 44.0 0. 44.4 1. 41.5 0. 43.4 5. 45.1 6.	1N OUT 1 48.2 8.1 4 44.0 6.4 8 41.4 4.8 4 45.7 1.4 8 43.9 0.8 4 44.1 0.4 4 44.0 0.4 4 44.4 1.4 4 41.5 0.4 8 43.4 5.8	TOTAL TEMP IN RATIO 369.7 0.991 363.3 0.999 352.8 1.000 348.5 0.998 347.7 0.996 346.4 0.998 345.8 1.000 340.5 0.999 343.2 1.004 345.1 1.006	TOTAL PRESS IN RATIO 18.71 0.958 18.69 0.973 18.57 0.971 17.75 0.970 17.48 0.979 17.30 0.985 17.30 0.988 17.38 0.988 17.38 0.986 18.22 0.914 18.93 0.860
RP 1 2 3 4 5 6 7 8 9 5 1 1	ABS VEL IN OUT 263.8 198.9 264.0 206.4 264.5 204.8 254.7 187.7 248.6 184.8 245.7 184.1 245.5 184.3 246.9 187.4 255.4 197.0 280.9 197.9 297.6 189.9	REL VEL IN OUT 263.8 198.9 264.0 206.4 264.5 204.8 254.7 187.7 248.6 184.8 245.7 184.1 245.5 184.3 246.9 187.4 255.4 197.0 280.9 197.9 297.6 189.9	198.3 204.1 184.0 187.7 179.2 184.8 176.5 184.1 176.6 184.3 176.2 187.3 191.3 196.9 204.2 196.9	TANG VEL IN OUT 196.7 27.9 183.5 23.0 174.9 17.1 176.1 4.5 172.3 2.4 170.9 1.2 170.6 1.2 172.9 4.5 169.3 1.5 192.9 19.9 210.6 20.4	WHEEL SPEED IN OUT 0.
RP: 23456789111	ABS MACH NO IN OUT 0.719 0.533 0.726 0.557 0.740 0.561 0.714 0.515 0.697 0.508 0.689 0.506 0.689 0.507 0.693 0.516 0.726 0.548 0.804 0.548 0.856 0.522	REL MACH NO IN OUT 0.719 0.533 0.726 0.557 0.740 0.561 0.714 0.515 0.697 0.508 0.689 0.507 0.693 0.516 0.726 0.548 0.804 0.548 0.856 0.522	IN 0UT 0.479 0.528 0.522 0.559 0.516 0.515 0.502 0.508 0.495 0.506 0.495 0.507 0.495 0.516 0.544 0.548 0.584 0.545		MERID PEAK SS YEL R MACH NO 1.120 1.220 1.081 1.145 1.029 1.100 1.020 1.103 1.031 1.075 1.044 1.057 1.063 1.070 1.030 1.056 0.964 1.211 0.898 1.336
RP 1 2 3 4 5 6 6 7 8 9 1 0 1 1	PERCENT INC SPAN MEAN 5.00 11.5 10.00 8.9 30.00 7.6 42.50 9.5 45.00 9.6 50.00 9.6 50.00 9.4 52.50 9.6 70.00 5.4 90.00 4.6 95.00 5.2	IDENCE SS 5.3 20.8 2.7 18.1 15.0 3.3 11.2 3.3 10.6 3.4 10.1 3.2 11.0 -0.8 9.6 -1.5 14.6 -0.7 15.0	0.488 0. 0.444 0. 0.431 0. 0.432 0. 0.477 0. 0.471 0. 0.467 0. 0.453 0.	LOSS COEFF TOT PROF 0.145 0.145 0.091 0.091 0.097 0.097 0.103 0.103 0.077 0.057 0.057 0.057 0.057 0.057 0.042 0.042 0.048 0.048 0.247 0.247 0.369 0.366	LOSS PARAM TOT PROF 0.055 0.055 0.033 0.033 0.034 0.034 0.025 0.025 0.018 0.018 0.013 0.013 0.014 0.014 0.065 0.065 0.094 0.093

EDGES FOR STATOR 10

(d) 100 Percent of design speed; reading 1298

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 23.942 23.945 23.503 23.535 21.742 21.901 20.637 20.68 20.417 20.68 20.196 20.48 19.975 20.275 19.754 20.075 18.227 18.715 16.530 17.252	ABS 1N 53.5 49.1 43.6 46.2 47.0 47.2 47.3 47.2 43.1 44.3	BETAM OUT 9.5 8.1 4.7 1.5 1.5	53.5 9 49.1 8 43.6 4 46.2 1 47.0 1 47.2 1 47.3 2 47.2 2 43.1 1 44.3 6	AM TOTA UT IN .5 376.2 .1 369.5 .7 354.8 .5 350.2 .5 349.2 .9 348.9 .3 349.0	RATIO 0.988 0.995 1.001 1.000 1.001 0.999 0.997 0.998 1.003	IN 19.08	0.974 0.983 0.987 0.978 0.981 0.978 0.913
RP 1 234567 8 9 0 1	ABS VEL 1N OUT 265.3 195.5 263.8 199.0 259.4 193.2 241.5 175.0 241.6 176.0 246.6 177.3 248.5 180.2 256.8 188.2 277.3 185.2 294.1 182.5	265.3 263.8 259.4 247.1 241.5 241.6 246.6 248.5 256.8 277.3	001	MERID VE IN OU 157.8 192 172.7 197 187.8 192 171.0 177 164.8 174 164.2 176 167.2 177 168.9 180 187.6 188 198.3 184 205.5 181	1 1N 213.3 .0 199.3 .7 178.9 .3 178.3 .9 176.6 .0 177.3 .2 181.2 .0 182.3 .2 175.3 .3 193.8	VEL OUT 32.4 28.2 15.9 4.8 5.9 7.1 8.9 4.1 20.7 19.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.716 0.519 0.532 0.722 0.526 0.689 0.484 0.673 0.475 0.689 0.485 0.695 0.493 0.728 0.521 0.791 0.511 0.843 0.501	IN 0.716 0.719 0.722 0.689 0.673 0.674 0.689 0.695 0.728 0.791	OUT 0.519 0.532 0.526 0.484 0.478 0.481 0.493 0.521 0.551 0.501	MERID MACH IN OU 0.426 0.5 0.471 0.5 0.523 0.5 0.477 0.4 0.459 0.4 0.458 0.4 0.467 0.4 0.472 0.4 0.472 0.4 0.532 0.5 0.566 0.56 0.589 0.4	T 12 27 24 84 77 81 84 93 21			PEAK SS MACH NO 1.347 1.257 1.127 1.121 1.109 1.112 1.135 1.135 1.097 1.097 1.219
RP 1 234 567 89011	PERCENT IN SPAN MEA 5.00 16. 10.00 14. 30.00 9. 42.50 12. 45.00 12. 50.00 12. 70.00 6. 90.00 5. 95.00 5.	8 10.6 0 7.8 8 3.6 0 5.8 7 6.4 7 6.5 7 6.5 4 6.2	DEV 22.3 19.8 14.9 11.4 11.3 11.7 12.0 12.5 10.4 15.2 14.9	D-FACT EFS 0.521 0. 0.487 0. 0.470 0. 0.511 0. 0.505 0. 0.497 0. 0.503 0. 0.492 0. 0.492 0. 0.498 0. 0.491 0. 0.540 0.	TOT 0.171 0.144 0.122 0.094 0.066 0.051 0.082 0.070	DEFF PROF 0.171 0.144 0.122 0.094 0.066 0.051 0.082 0.070 0.074 0.257 0.351	0.064	ARAM PRCF 0.053 0.053 0.042 0.031 0.021 0.021 0.026 0.022 0.022 0.067 0.090

EDGES FOR STATOR 10

(e) 90 Percent of design speed; reading 1301

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM IN OUT 41.2 7.6 39.9 6.1 38.3 3.0 40.3 1.7 40.9 1.3 41.2 1.0 41.5 0.5 41.0 0.8 39.7 -0.3 42.2 4.9 43.9 6.2	IN OUT 7.6 39.9 6.1 38.3 3.0 40.3 1.7 40.9 1.3 41.2 1.0 41.5 0.9 41.5 0.9 41.5 0.9 42.2 4.9	TOTAL TEMP IN RATIO 351.2 0.995 345.6 1.001 337.8 1.001 335.2 0.999 335.2 0.998 334.5 0.998 334.4 0.996 332.7 1.000 332.2 1.004 334.5 1.005	TOTAL PRESS IN RATIO 17.09 0.960 16.90 0.985 16.12 0.983 15.99 0.984 15.94 0.989 15.84 0.999 15.69 0.991 16.50 0.933 16.99 0.882
R12545678904	ABS VEL IN OUT 250.3 195.9 244.6 200.6 259.3 196.8 234.8 186.6 231.6 184.0 230.9 183.5 229.1 183.3 232.7 188.6 261.5 199.0 274.5 189.2	REL VEL IN OUT 250.3 195.9 244.6 200.6 239.3 196.8 234.8 186.6 231.6 184.0 230.9 183.5 229.0 183.3 232.7 188.6 261.5 199.0 274.5 189.2	MERID VEL IN OUT 188.2 194.2 187.5 199.4 187.7 196.5 179.2 186.5 175.0 184.0 173.7 183.4 171.5 183.2 173.0 183.2 179.0 188.6 193.8 198.3 197.8 188.1	TANG VEL 1N OUT 165.0 25.9 157.0 21.2 148.4 10.3 151.8 5.5 151.8 4.3 152.1 3.9 150.2 2.5 148.7 -0.9 175.5 16.9 190.3 20.4	0. 0. 0. 0. 0. 0. 0. 0.
RP 123456789111	ABS MACH NO IN OUT 0.698 0.538 0.686 0.554 0.679 0.550 0.668 0.515 0.656 0.514 0.653 0.514 0.667 0.533 0.755 0.560 0.795 0.529	REL MACH NO IN OUT 0.698 0.538 0.686 0.554 0.679 0.550 0.668 0.515 0.651 0.514 0.653 0.514 0.667 0.533 0.755 0.560 0.795 0.529	MERID MACH NO [N OUT 0.525 0.533 0.526 0.551 0.532 0.549 0.510 0.522 0.497 0.515 0.494 0.514 0.493 0.514 0.513 0.533 0.560 0.558 0.573 0.526		MERID PEAK SS VEL R MACH NO 1.032 1.020 1.064 0.986 1.047 0.937 1.041 0.952 1.052 0.949 1.056 0.949 1.059 0.930 1.054 0.930 1.054 0.930 1.023 1.107 0.951 1.209
RP 1 2 3 4 5 6 7 8 9 11 1	PERCENT INC SPAN MEAN 5.00 4.5 10.00 4.8 30.00 4.5 42.50 6.1 45.00 6.6 47.50 6.7 50.00 6.9 52.50 6.2 70.00 3.4 95.00 4.1	-1.6 20.4 -1.4 17.8 -1.7 13.2 -0.1 11.5 0.4 11.1 0.5 10.7 0.7 10.6 -2.6 8.9 -2.7 13.7	D-FACT EFF 0.428	LOSS COEFF TOT PROF 0.145 0.145 0.071 0.071 0.057 0.057 0.066 0.066 0.063 0.063 0.062 0.062 0.044 0.044 0.041 0.044 0.034 0.034 0.212 0.212 0.348 0.348	LOSS PARAM TOT PROF 0.054 0.054 0.026 0.026 0.019 0.019 0.022 0.022 0.021 0.021 0.020 0.020 0.014 0.014 0.013 0.013 0.010 0.010 0.056 0.056 0.089 0.089

EDGES FOR STATOR 10

(f) 90 Percent of design speed; reading 1302

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM IN OUT 45.9 8.7 40.3 3.4 42.5 1.5 42.8 1.5 43.3 1.4 43.3 1.4 43.3 1.4 43.3 5.4 44.7 6.3	IN OUT 45.9 8.7 43.2 7.1 40.3 3.4 42.5 1.9 42.8 1.5 43.3 1.5 43.5 1.4 43.3 1.4 41.2 0.2 43.1 5.4	TOTAL TEMP IN RATIO 353.3 0.997 348.1 1.001 339.1 1.002 336.3 1.002 336.6 0.997 335.8 0.999 334.7 0.999 334.5 0.999 331.0 0.999 332.6 1.004	TOTAL PRESS IN RATIO 17.25 0.965 17.12 0.979 16.72 0.986 16.28 0.983 16.19 0.983 16.10 0.985 16.00 0.988 15.99 0.989 15.94 0.987 16.55 0.931 17.08 0.885
R-254561-8961	ABS VEL 1N OUT 245.6 191.3 242.1 195.1 235.5 189.6 231.4 176.8 229.5 176.8 228.0 176.1 226.5 175.7 226.7 175.9 232.9 180.9 256.6 184.4 271.1 178.2	REL VEL IN OUT 245.6 191.3 242.1 195.1 235.5 189.6 231.4 178.8 229.5 176.1 226.5 175.7 226.7 175.9 232.9 180.9 256.6 184.4 271.1 178.2	MERID VEL IN OUT 171.1 189.1 176.4 193.7 179.6 189.2 170.5 176.7 168.5 176.7 166.1 176.1 164.4 175.7 165.0 175.8 175.1 180.9 187.4 183.5 192.8 177.2	TANG VEL IN OUT 176.2 29.0 165.8 24.0 152.3 11.2 156.3 4.7 156.3 4.5 155.8 4.3 155.4 4.2 153.5 0.6 175.2 17.3 190.6 19.4	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.681 0.522 0.676 0.536 0.666 0.527 0.656 0.498 0.656 0.491 0.643 0.491 0.643 0.491 0.666 0.509 0.739 0.517 0.783 0.497	REL MACH NO IN OUT 0.681 0.522 0.676 0.536 0.666 0.527 0.656 0.498 0.650 0.493 0.643 0.491 0.643 0.491 0.643 0.491 0.666 0.509 0.739 0.517 0.783 0.497	MERID MACH NO 1N OUT 0.475 0.516 0.493 0.532 0.508 0.526 0.483 0.498 0.477 0.493 0.471 0.491 0.467 0.491 0.501 0.509 0.540 0.514 0.557 0.494		MERID PEAK SS VEL R MACH NO 1,106 1,102 1,098 1,048 1,054 0,964 1,048 0,985 1,049 0,978 1,068 0,975 1,065 0,968 1,033 0,963 0,979 1,107 0,919 1,213
RP 1 2 3 4 5 6 7 8 9 1 1 1	PERCENT INC SPAN MEAN 5.00 9.2 10.00 8.1 30.00 6.5 42.50 8.3 45.00 8.4 47.50 8.8 50.00 8.8 52.50 8.5 70.00 5.1 90.00 4.3	SS 3.0 21.5 1.9 18.8 0.3 13.6 2.1 11.8 2.2 11.3 2.6 11.1 2.3 11.0 -1.0 9.3 -1.8 14.2 -1.1 15.1	D-FACT EFF 0.448 0. 0.412 0. 0.401 0. 0.439 0. 0.442 0. 0.440 0. 0.435 0. 0.432 0. 0.411 0. 0.439 0. 0.500 0.	LOSS COEFF TOT PROF 0.130 0.130 0.079 0.079 0.054 0.054 0.068 0.068 0.069 0.069 0.061 0.069 0.061 0.048 0.047 0.047 0.051 0.051 0.228 0.228 0.345 0.345	LOSS PARAM TOT PROF 0.049 0.049 0.029 0.029 0.019 0.019 0.022 0.022 0.022 0.022 0.015 0.015 0.015 0.015 0.015 0.015 0.060 0.060 0.088 0.088

EDGES FOR STATOR 10

(g) 90 Percent of design speed; reading 1304

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 23,942 23 23,503 23 21,742 21 20,637 20 20,417 20 20,196 20 19,975 20 19,754 20 18,227 18 16,530 17 16,121 16	OUT .945 .538 .900 .881 .681 .480 .279 .079 .715	ABS IN 47.3 44.5 41.7 42.9 43.8 44.1 44.5 44.0 42.8 45.3	BETAM OUT 9.0 7.4 3.5 2.1 2.0 2.0 2.0 1.9 0.7 5.6	RELL 1N 47.3 44.5 41.7 42.9 43.8 44.1 44.5 44.0 42.6 43.8 45.3	BETAM 0UT 9.0 7.4 3.5 2.1 2.0 2.0 2.0 2.0 1.9 0.7 5.6 6.3	TOTAI IN 354.7 349.8 339.8 336.7 335.8 336.4 335.9 335.7 330.9 332.6 334.9	TEMP RATIO 0.997 1.000 1.001 1.000 0.998 0.997 0.997 1.001 1.004	TOTAL IN 17.21 16.79 16.32 16.20 16.15 16.10 15.85 16.58 17.06	PRESS RATIO 0.970 0.981 0.981 0.983 0.983 0.983 0.983 0.984 0.984 0.929 0.889
RP 1 234 5 67 8 9 0 1	242.1 1 240.5 1 233.9 1 226.0 1 226.0 1 226.4 1 226.4 1 253.9 1	EL 0UT 88.7 92.8 84.5 73.3 71.7 71.0 70.4 77.5 77.7 73.0	REL (N 242.1 240.5 233.9 229.1 226.0 226.9 226.0 226.4 225.9 268.0	VEL OUT 188.7 192.8 184.5 173.3 171.7 171.0 170.5 177.5 177.5 177.7 173.0	MERII IN 164.2 171.4 174.5 167.8 163.0 163.0 161.3 162.9 166.6 183.1	O VEL OUT 186.4 191.3 184.1 173.2 171.6 170.9 170.4 170.3 177.5 176.8	TAN 177.9 168.7 155.7 156.0 156.6 157.8 158.3 157.3 153.3 153.3	VEL 0UT 29.5 24.7 11.3 6.4 6.1 6.0 5.6 2.3 17.5	IN 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	0.669 0 0.670 0 0.660 0 0.649 0 0.640 0 0.642 0 0.641 0 0.641 0 0.646 0	H N0 OUT .514 .529 .512 .482 .478 .476 .475 .498 .497	REL M IN 0.669 0.670 0.640 0.642 0.640 0.641 0.646 0.731	OUT 0.514 0.529 0.512 0.482 0.478 0.476 0.475 0.498 0.497 0.481	MERIO M IN 0.454 0.477 0.492 0.475 0.461 0.461 0.457 0.461 0.527 0.544	OUT 0.507 0.524 0.5! 0.481 0.477 0.476 0.475 0.498 0.498 0.478				PEAK SS MACH NO 1.115 1.067 0.989 0.983 0.987 0.991 0.992 0.980 1.113
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	INC II MEAN 10.6 9.4 8.7 9.6 8.7 9.6 9.8 9.5 5.4	DENCE SS 4.4 3.2 1.7 2.5 3.3 3.4 3.6 3.0 0.3 -1.0	DEV 21.8 19.0 13.7 12.0 11.8 11.7 11.5 9.9 14.5 15.1	D-FACT 0.453 0.421 0.423 0.456 0.455 0.459 0.458 0.456 0.407 0.460 0.514	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.115 0.074 0.074 0.078 0.070 0.072 0.070 0.066 0.008 0.236 0.339	OEFF PROF 0.115 0.074 0.074 0.078 0.070 0.072 0.072 0.070 0.066 0.008 0.236 0.339	LOSS P TOT 0.043 0.027 0.026 0.026 0.023 0.023 0.022 0.021 0.002 0.062 0.086	PROF 0.043

EDGES FOR STATOR 10

(h) 70 Percent of design speed; reading 1307

		(11)	· O I CI ·	cene or	acbigii	ppecu,	I Cuuiii	5 100.		
RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 23.942 23 23.503 23 21.742 21 20.697 20 20.417 20 20.196 20 19.975 20 19.754 20 18.227 18 16.530 17 16.121 16	OUT .945 .538 .900 .881 .681 .480 .279 .079 .715	ABS IN 29.6 29.9 29.2 30.5 32.0 33.3 33.6 32.0 33.0 35.0 36.5	BETAM OUT 4.0 2.4 -1.7 -1.4 -1.3 -1.1 -1.2 -1.5 -2.6 1.9	REL IN 29.6 29.9 29.2 30.5 32.0 33.3 33.6 32.0 36.5 39.3	BETAM OUT 4.0 2.4 -1.7 -1.4 -1.3 -1.1 -1.5 -2.6 1.9 4.6	TOTA IN 317.1 314.9 312.0 312.7 313.0 313.1 313.7 313.1 315.4	L TEMP RATIO 1.000 1.001 1.001 1.000 0.999 0.998 1.003 1.005 1.005	TOTAL IN 13.16 13.17 13.02 13.02 13.02 12.96 13.00 13.05 13.59	PRESS RAT10 0.973 0.990 0.994 0.992 0.995 0.995 0.995 0.995 0.995
RP 1 2345 61 8 9 6 1	193.0 1 192.6 1 184.8 1 188.1 1 189.1 1 188.8 1 187.2 1 189.9 1 194.9 1 219.8 2	EL 0UT 65.2 74.6 77.5 76.9 77.5 78.4 88.5 99.2	REL IN 193.0 192.6 184.8 188.1 189.1 188.8 187.2 189.9 219.9 227.7	VEL 0UT 165.2 174.6 173.4 174.8 176.1 176.9 177.5 178.4 286.7 199.2	MER II IN 167.9 166.9 161.4 162.1 160.4 157.9 155.9 161.4 176.7 176.2	O VEL 0UT 164.8 174.5 173.3 174.7 176.0 176.9 177.4 178.3 188.3 188.3 198.6	TAN IN 95.2 96.0 95.4 100.1 103.5 103.5 100.6 106.2 130.8	G VEL OUT 11.4 7.2 -5.0 -4.3 -3.9 -3.4 -3.8 -4.8 -6.7 15.9	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT
RP: 234567891011	0.557 0 0.558 0 0.537 0 0.547 0 0.548 0 0.548 0 0.543 0 0.552 0 0.569 0 0.644 0	H NO OUT .473 .503 .502 .510 .512 .514 .517 .548 .601	REL M 1N 0.557 0.558 0.537 0.547 0.549 0.548 0.543 0.552 0.562 0.668	OUT 0.473 0.503 0.502 0.506 0.510 0.512 0.514 0.517 0.548 0.5601 0.576	MER(D M 1N 0.485 0.484 0.469 0.471 0.466 0.458 0.452 0.468 0.477 0.518 0.517	ACH NO 0.472 0.502 0.501 0.506 0.509 0.512 0.514 0.514 0.516 0.548 0.548 0.575				PEAK SS MACH NO 0.557 0.562 0.537 0.601 0.630 0.628 0.628 0.645 0.815
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN -7.1 -5.2 -4.6 -3.7 -2.4 -1.2 -1.1 -2.8 -3.1 -2.5	DENCE SS -13.3 -11.4 -10.9 -9.9 -8.6 -7.4 -7.3 -9.0 -9.3 -8.3 -6.5	DEV 16.7 14.0 8.5 8.5 8.6 8.5 8.2 6.5 10.7	D-FACT 0.309 0.265 0.239 0.243 0.244 0.232 0.233 0.201 0.204 0.266	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.143 0.052 0.034 0.045 0.047 0.036 0.011 0.027 0.006 0.147 0.298	0EFF PROF 0.143 0.052 0.034 0.047 0.036 0.011 0.027 0.006 0.147 0.298	LOSS P. TOT 0.054 0.019 0.012 0.015 0.015 0.003 0.003 0.009 0.002 0.039 0.076	ARAM PROF 0.054 0.019 0.015 0.015 0.011 0.003 0.009 0.002 0.039 0.076

EDGES FOR STATOR 10

(i) 70 Percent of design speed; reading 1308

		(1) 1	O FEIC	ent or t	cargii a	peeu,	reading	1000		
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.942 23.503 21.742 20.417 20.196 19.975 19.754 18.227 16.530 16.121	OUT 23.945 23.538 21.900 20.881 20.681 20.480 20.279 20.079 18.715 17.252	ABS 1N 38.1 35.1 34.4 35.6 36.8 38.0 38.9 38.2 37.6 40.1	BETAM OUT 5.9 4.2 0.7 1.0 0.9 0.8 0.8 -0.1 5.7	REL IN 38.1 35.1 34.4 35.6 36.8 38.0 38.9 38.2 37.6 40.1	BETAM OUT 5.9 4.2 0.7 1.0 0.9 0.8 0.8 0.8 -0.1 3.2 5.7	TOTA IN 321.4 318.9 314.8 314.7 315.0 315.2 314.6 313.1 314.7 315.9	L TEMP RAT10 0.999 1.002 1.001 1.000 0.999 0.999 0.999 1.002 1.004	TOTAL IN 13.41 13.45 13.36 13.31 13.26 13.21 13.24 13.31 13.72	PRESS RATIO 0.982 0.991 0.998 0.990 0.995 0.998 0.997 1.000 0.968 0.932
R - 234561-8961	ABS 1N 183.3 178.0 185.0 181.3 179.2 181.0 188.4 209.4	VEL 0UT 149.9 156.5 155.3 156.3 156.3 166.6 178.9	REL IN 183.3 183.8 178.0 183.0 181.3 180.2 179.2 181.0 188.4 209.8 217.4	VEL 0UT 149.9 156.5 154.6 155.3 155.3 156.3 156.3 166.5 168.9	MER (1) 1N 144.3 150.4 146.9 148.9 145.2 142.0 139.4 142.3 149.4 160.6	VEL 0UT 149.1 156.0 155.3 154.5 154.3 156.3 166.6 178.2 168.0	TAN IN 113.1 105.6 100.6 106.4 108.6 111.0 112.6 111.9 114.9 135.0 145.4	G VEL OUT 15.5 11.8 2.6 2.5 2.2 2.3 2.3 -0.4 10.1 16.8	WHEEL IN	OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.524 0.528 0.514 0.529 0.523 0.520 0.517 0.523 0.547 0.612	ACH NO OUT 0.425 0.445 0.445 0.445 0.442 0.444 0.446 0.449 0.480 0.514 0.484	REL M IN 0.524 0.524 0.514 0.529 0.523 0.520 0.517 0.523 0.547	ACH NO OUT 0.425 0.445 0.445 0.443 0.442 0.444 0.446 0.480 0.514 0.484	MERID M [N 0.412 0.432 0.424 0.430 0.419 0.419 0.402 0.411 0.434 0.468 0.472	ACH NO OUT 0.422 0.444 0.445 0.443 0.444 0.446 0.449 0.480 0.513 0.481				PEAK SS MACH NO 0.708 0.667 0.635 0.665 0.679 0.694 0.703 0.694 0.720 0.720
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 1.4 -0.6 1.4 2.5 3.5 4.3 1.4 1.2	DENCE SS -4.8 -6.2 -5.6 -4.8 -3.7 -2.7 -1.9 -2.8 -4.7 -4.8 -3.8	DEV 18.7 15.9 10.8 10.7 10.6 10.6 10.5 9.0 12.1 14.5	D-FACT 0.384 0.339 0.318 0.340 0.337 0.333 0.327 0.325 0.291 0.302 0.370	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.108 0.053 0.027 0.071 0.056 0.032 0.011 0.019 -0.002 0.142 0.286	PROF 0.108 0.053 0.027 0.071 0.056 0.032 0.011 0.019	LOSS F TOT 0.041 0.020 0.009 0.023 0.018 0.010 0.004 0.006 -0.001 0.037 0.073	PROF 0.041 0.020 0.009 0.023 0.018 0.010 0.004 0.006

EDGES FOR STATOR 10

(j) 70 Percent of design speed; reading 1309

		(1)	o rerc	ent or c	icargii s	peeu,	1 caume	, 1000		
RP - 23 4 5 6 7 8 9 10 11	RADI 1N 23.942 2 23.503 2 21.742 2 20.637 2 20.417 2 20.196 2 19.975 2 19.752 1 18.227 1 16.530 1 16.121 1	OUT 23.945 23.538 21.900 20.881 20.681 20.480 20.279 20.079 8.715 7.252	ABS 1N 56.1 49.0 36.7 39.1 40.3 41.4 42.5 39.4 41.3 43.2	BETAM OUT 9.2 7.1 1.9 1.3 1.2 1.4 1.6 1.8 1.0 4.1	RELL 1N 56.1 49.0 36.7 39.1 40.3 41.4 42.5 42.1 39.4 41.3 43.2	BETAM OUT 9.2 7.1 1.9 1.3 1.2 1.4 1.6 1.8 1.0	TOTA IN 328.7 325.4 316.6 315.7 315.8 316.1 316.2 314.2 316.3	RAT10 0.989 0.994 1.003 1.000 0.999 0.999 0.998 1.001 1.003	TOTAL IN 13.45 13.37 13.40 13.42 13.35 13.30 13.25 13.48 13.79 14.02	- PRESS RAT10 0.976 0.989 0.995 0.986 0.992 0.996 0.997 0.996 0.997
R-1284561-8951	172.0 175.6 178.2 175.6 175.2 175.3 178.5 188.2 205.8	VEL 0UT 131,4 136,9 142,5 140,2 140,3 141,3 142,1 155,6 161,5 151,8	REL 1N 174.9 172.0 175.6 175.2 175.2 175.3 178.5 188.2 205.8 214.9	VEL 0UT 131.4 136.9 142.5 140.2 141.3 142.1 144.1 155.6 161.5	MERI 1N 97.5 112.7 140.7 134.0 131.5 129.3 132.5 145.4 156.7	D VEL 0UT 129.7 135.9 142.4 140.1 140.2 141.3 142.0 155.6 151.0	TAN IN 145.2 129.9 105.0 112.3 113.5 115.8 118.4 119.6 119.4 135.9	0 VEL 0UT 21.1 16.8 4.6 3.3 3.0 3.4 3.9 4.4 2.8 11.6	IN 0. 0. 0.	SPEED OUT
RP 1 23 4 5 6 7 8 9 10 11	0.487 0.505 0.513 0.505 0.504 0.504 0.514 0.545	CH NO OUT 0.369 0.385 0.405 0.400 0.400 0.403 0.406 0.412 0.446 0.446 0.446	REL M IN 0.493 0.487 0.505 0.513 0.505 0.504 0.504 0.514 0.545 0.599	ACH NO 0UT 0.369 0.385 0.405 0.400 0.400 0.403 0.403 0.412 0.446 0.462 0.433	MERID M IN 0.275 0.319 0.405 0.398 0.378 0.372 0.381 0.450 0.457	ACH NO OUT 0.364 0.382 0.405 0.400 0.400 0.403 0.406 0.411 0.446 0.461				PEAK SS MACH NO 0.973 0.850 0.668 0.710 0.717 0.732 0.748 0.752 0.752 0.860 0.938
RP 1 2 3 4 5 6 7 8 9 1 0 1 1	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 19.4 13.9 2.9 5.9 6.9 7.8 7.3 3.25 3.4	DENCE SS 13.2 7.7 -3.3 -1.3 -0.3 0.7 1.6 1.1 -2.9 -3.5 -2.6	DEV 22.0 18.7 12.1 11.2 11.0 11.1 11.3 11.4 10.2 13.0 14.5	D-FACT 0.517 0.449 0.385 0.412 0.404 0.398 0.395 0.393 0.350 0.370 0.447	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.159 0.071 0.033 0.083 0.053 0.055 0.017 0.027 0.018 0.166 0.306	0EFF PROF 0.159 0.071 0.033 0.083 0.053 0.025 0.017 0.027 0.018 0.166 0.306	LOSS P TOT 0.060 0.026 0.011 0.027 0.017 0.008 0.005 0.009 0.005 0.044 0.078	ARAM PROF 0.060 0.026 0.011 0.027 0.017 0.003 0.005 0.009 0.005 0.044 0.078

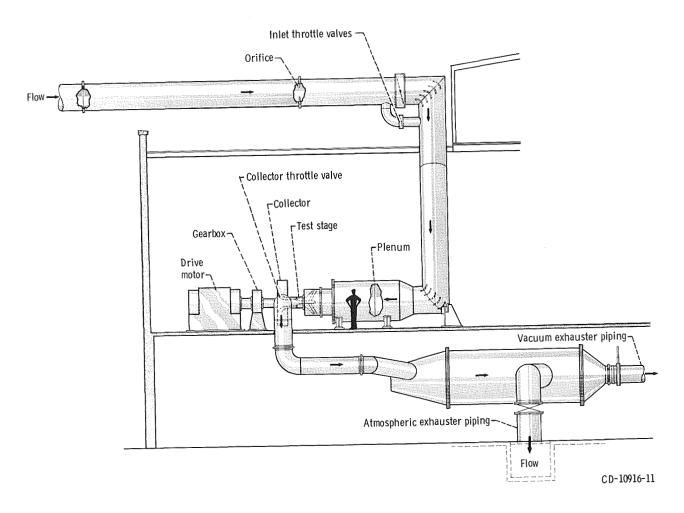


Figure 1. - Test facility schematic.

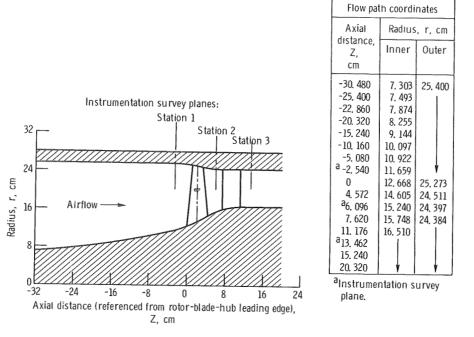


Figure 2. - Flow path for stage 14-10 showing axial location of instrumentation.

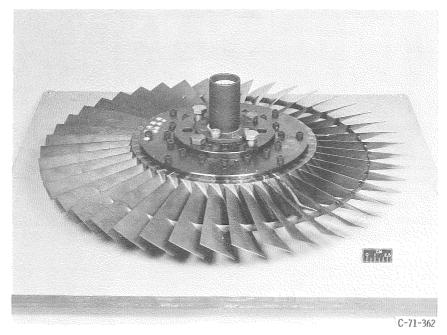


Figure 3. - Rotor 14.

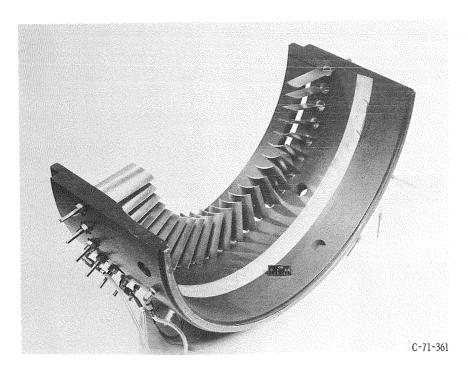


Figure 4. - Stator 10.

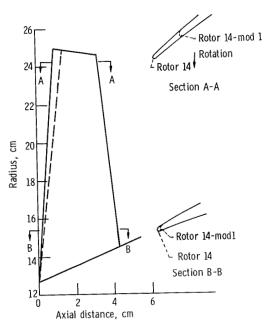


Figure 5. - Axial projection of rotor blade.

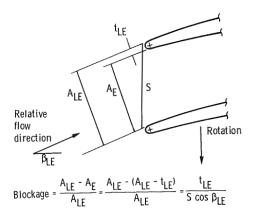
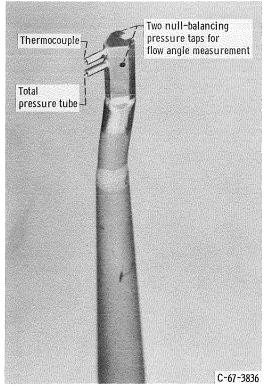
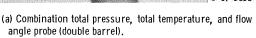
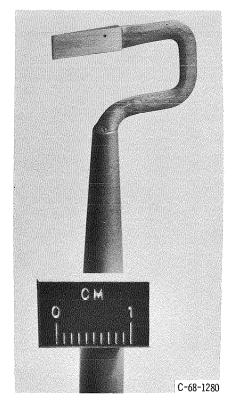





Figure 6. - Blockage due to leading-edge thickness.

(b) Static pressure probe.

Figure 7. - Survey probes.

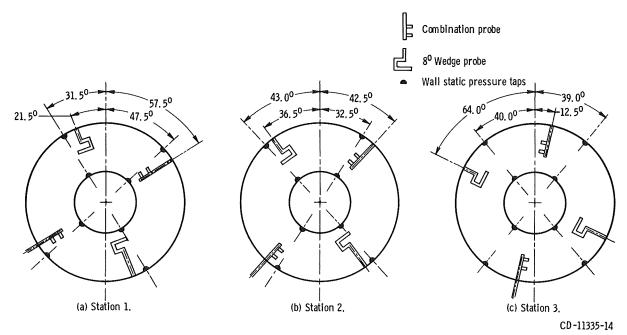


Figure 8. - Circumferential location of instrumentation at measuring stations (facing downstream).

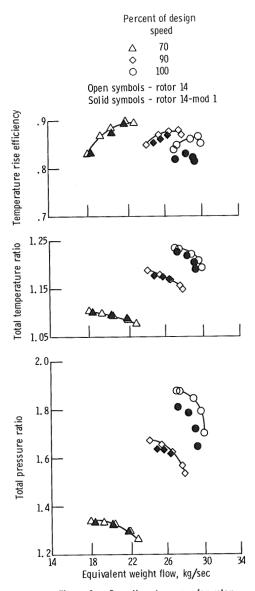


Figure 9. - Overall performance for rotor.

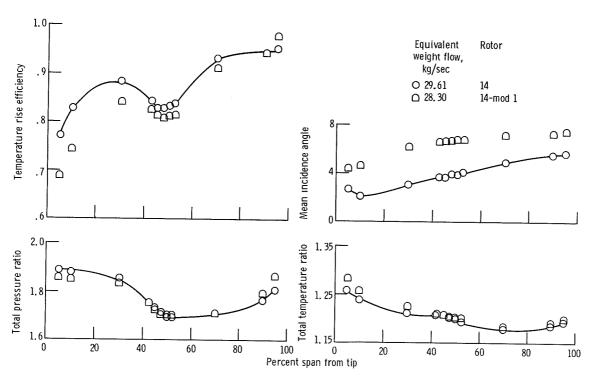


Figure 10. - Radial distribution of performance for peak efficiency at design speed.

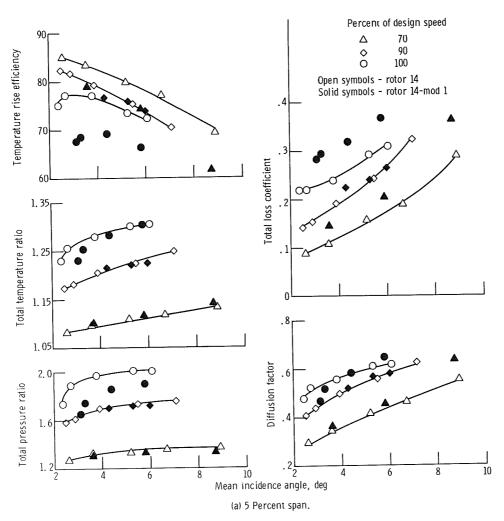


Figure 11. - Blade-element performance.

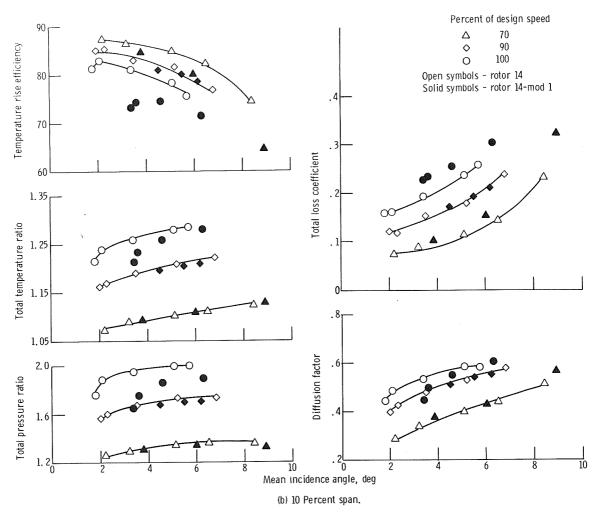


Figure 11. - Continued.

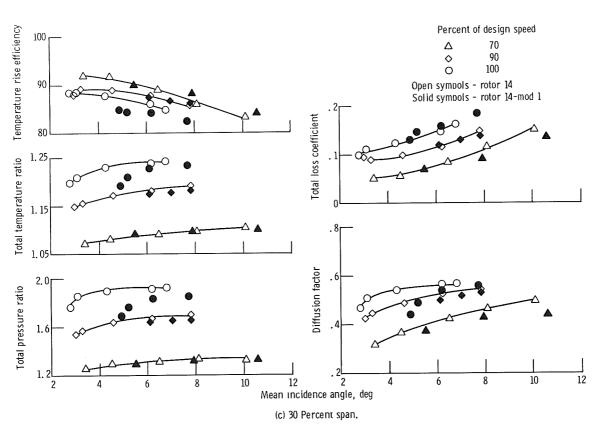


Figure 11. - Continued.

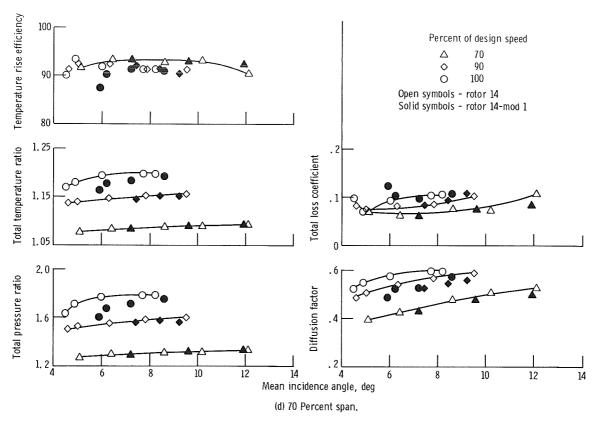


Figure 11. - Concluded.

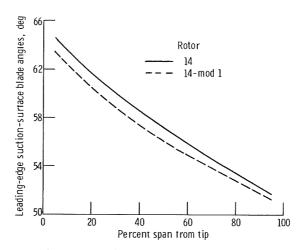


Figure 12. - Leading-edge suction surface blade angle as function of percent span.

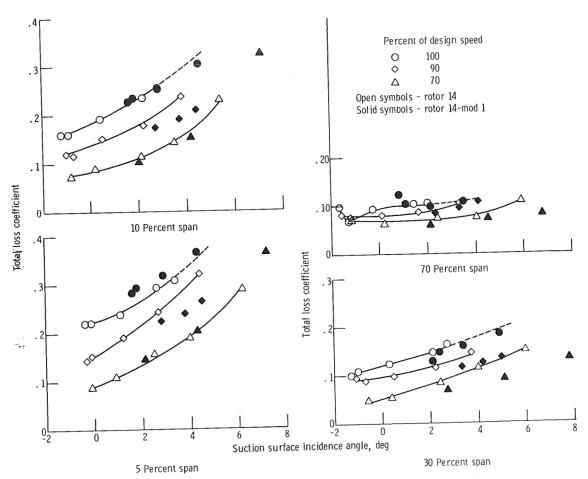


Figure 13. - Total loss coefficient as function of suction-surface incidence angle.

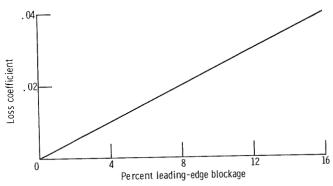


Figure 14. - Calculated loss coefficient as function of leading-edge blockage for Mach 1.4 (based on technique from ref. 3).

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546