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1. INTRODUCTION

The purpose of this work is to investigate stability of the spinning
Skylab control system [1, 21 by the modern decomposition-aggregation methods
[3, 4]. Such an investigation is motivated by the fact that the mathemati-
cal model of the s&stem is of high dimension and a straightforward analysis
would become bogged down in the welter of detail requiring an excessive com-
puter storage and time to complete the investigdtion. The multi-level decom-
position-aggregation approach offers to solve the stability problems 'piece-
by-piece'" and not only make more economical the computer use, but also reduce
the liability of the errors in the amalysis. Furthermore, by decomposing the
system into parts that have important physical meaning, the decomposition-
aggregation approach yields significant structural information about the be-
havior of the system, which is not generally available in a straightforward
stability investigation.

The outline of the work is divided into two parts: Theory and Applica-
tion. The part on theory presents the mathematical basis of the decomposition-
aggrégation approach - the concept of vector Liapunov functions [3, 4]. In
Section 2, it is shown how a vector differential equation of high dimension,-
which deScfibes a large dynamic SYstem,'can be decomposed into a number of
vector differential equations of lower dimensions, which represent intercon-
nected subsystems. Then, in Section 3, a method is outlined by which the
stability properties of each subsystem are aggregated into'a'single Liapunov
function. The vector Liapunov function is formed which has subsystem Liapunov
functions as components. A linear vector differential inequality is then
formed in terms of the vector Liapunov function, which represents the aggre-
gate ‘system model. The matrix of the model, which reflects both the stabilify
pfoperties of the subsystems and the nature of their interconnection is ana-

lyzed in Section 4 to conclude stabilify-bf the over-all system.
\
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The application part of the outline presents an application of the
decomposition-aggregation method to determine stability of the spinning
Skylab control system. In Section 5, equations of motion [1, 2] of the
system are-given which include both the passive stabilization by extend-
able booms with tip masses and the active stabilization by control torques
about the body fixed axes. Stability analysis of the passive control in
. Section 6, starts by decomposing the equations of motion into two sets.of
equations which describe the wobble motion and the in-plane motion. Then
two sets of equations are treated as subsystems which makes the coordinates
of the tip masses to appear explicitly in the intercomnections as structur-
ally important coupling parameters. The‘décomposition-aggregation method
is then used to determine stability of the over-all system as a function of
the coupling parameters. The entire_étability procedure can be conveniently
programmed on the digital cdmputer. The programs and their description is
given in the Appendix. In Section 7 the decomposition-aggregation method
is used to determine stability of the Skylab control systems when control
torques are used. The torques are considered as linear functions of the
.states and are applied about the corresponding body fixed axes. The unspeci-
‘fied parameters of the linear functions provide a considerable freedom which
can be used in the stabilization bf_the vehicle on the subsystem level. The
task oflestablishing stability of the entire vehicle is, therefore, increas-
ingly easier than thét in passive control. HoweVer;’how to intelligently use
the available freeddm,in the control of the subsystems and produce a higher
stability degree of the over-all system, is not yet satisfactorily’resolved.'
A solution t6 this problem represents one of the major goals of the future
efforts in development and application of the decdmposition-aggregation

methods for stability analysis of complex attitude control systems.



t
4

»

-



2. DECOMPOSITION

Decomposifion of dynamic systems can be used to overcome the ﬁlarge
size" of the stability problems. A ''large' problem is considered as con-
stltuted of coupled "smaller" problems whlch can be (when isolated) solved
efficiently in sequence. Then, the solut1ons of the '"smaller" problems
are combined together with the constralnts on couplings into an.aggregated
model which is relarively eimple to solvel Deeomposition algorithms pro?
duce con51derable sav1ng in both computer storage and the t1me requ1red to'
complete the solutlon of the or1g1nal problem Furthermore, if decomposi-
tion is performed so that the "small” problems can be phys1ca11y 1nterpreted
(e.g. motion in the pitch plane), a decompos1t10n ana1y51s may produce 1mpor-'
tant structural information about the ''large' over-all problem 1, 2].

Let us consider a continuous dynamic system S described by the vector

differential equatlon
x = £(t, x) , o (2.1)

where x(t) € R" is the state of the system S . The function f: T x R
+~ R" satisfies a global Lipschitz-condition so that the solutions x(t; t,,
xo) of (2.1) exist and are unique and continuous for all initial conditions:

t., xO) ET xR -and t €T, . The symbol- T stands for the time inter-

( 0 _ 0
val (1, + ) , where 1t 1is a number or the symbol - « , and TO is the -

semi-infinite time interval [to, + @),

*
With some obvious exceptions, lower case Roman letters denote vectors, capi-

tal Roman letters denote matrices, and Greek letters denote scalars.



We assume that the function £(t, x) in (2.1) satisfies the condition
£(t,0) =0, VteT (2.2)

and that the origin x = 0 of the state space’ R is the unique equilibrium

state of the system S . In the following development, the emphasis will be

on global stability of the equilibrium x = 0 and the uniqueness of the equi-
librium causes no reduction of generality in the results.

A crucial assumption in the following stability analysis‘is that the dy-
namic system S can be (conveniently) decomposed into s dynamic subsystems

Si and described by the vector differential equations

= gi(t, xi) + hi(t, x) ,i=1,2, ... , s.. - (2.3)

The free (uncoupled) dynamic systems Si are described by
= g’i('t‘, X)), 1=1,2,...,s : 2.4)

where x.(t)le Rni is the state of S. . Therefore (2.3) describes the mo-
tion of the interconnected (forced) subsystems S , where the function g;*
T xR i + R i corresponds to the subsystem S 1tseif, and the function
hi: T x R > R represents the action of the composite system S on the

subsystem Si .  We assume again that

g;(t, 00 =0 ,VtET ,Vi=1,2, ... ,5 (2.5) -

and X; =0 is the unique equilibrium state of the subsystem S
From (2.3) and (2.4), it is clear that the state x. (t) € Rnl of the
subsystem S is the i-th vector component of the state x(t) of the over-

all system S . Thatlis; 'x(t) eah be written as



x(t) =[x (£) xy(8) ... xz(t)]T , (2.6)

and the state space R" of the system S can be represented by the Cartesian
~product | ‘ .
n, .n,- E : S o "
RaRIxREx xRS, : 2.7)
Furthermore, each state xi(tJviof the subsystem S, can be written as

xi(t) [x. (t) xlz(t) N (t)] T T 2.8

“x._ ' are scalar components of ‘the vector. xi(t) .

where "X.., X.qp oo«
11’ 12’ ing

To illustrate the decoﬁbosition.forﬁulated abote; let us consider»ths-v
motion of a disk fixed to'a rotating shaft as'shown.on-Fig. 2:1.. The system
is regarded as a massless elastic shaft with a mass particle attached at
the center. Friction is assuied to be internal to the shaft, "If o and” w
represent deflections of the mass bartig1e$in.a coordinate system rotating
at the angular velocity w of the shaft then the linearized equétions of

.k S N ) ,
motion are - -~ S . . .

Wby * (e - M) - Zmaj

o
o

mii + b+ (c - med)y + 2mep =

]
[==]

@2.9)-

where m is the mass, b is the damping coéffitieht, and "¢ “is the stiff-

ness coeff1c1ent of the shaft

e

Equations (2 9) descrlblng the system S of F1g 2.1, can be glven in

- - Bt (UL B

the state form as

- ~ . .
. 5 . \, T - -

Ziegler, H., "Principles of Structural Stability", Blaisdell, Waltham, Mass.,
1968. e S A

*
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0 1 0 0

S, x, = X, + . X

1 1 _q% } wZ) ) %_ 1 0 2w 2

. 0 1 | 00 o '

S,: x, = X, - Xy (2.11)

2 2 _Q% - wz) _%_ 2 0 2 1

In (2.11),
X1 (1) = [Xip (8) X1, (01T, x,(8) = [x () %, ()17 (2.12)
! 11t XWX 21 *22 '

are the states of the two subsystems S1 and S2 , which are (vector) compo-

nents of the state vector
- T _ .T T
x(£) =[x (1) X1, (8) Xy (1) %, (D)1 = [x)(8) X,(©)]  (2.13)

for the entire system S .
By comparing equations (2.11) with equations (2.3), we see that the free

subsystems are described by

0 17]
S1 x1 = c 2) _E. x1
G m_
. [ o ]
S.: x, =
20 %2 2 b ~
L(r%'“’) = 1x, . (2.14)

Interactions among the subsystems are represented by the functions

h,(t, x) = X h,(t, x) = - X (2.15)
10 0 2w | & 2 0 20| 1



s d v

Since the system S 1is decomposed into two subsystems $y and S, with

apparent physiéalfinterﬁrétation,‘évshbséQUéht'sfability‘hﬁélySis'can yield

structural information-about the system. = - _ Lo i

.
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3. AGGREGATION

.....

The Liapunov direct method can be Viewed as a process by which the stabi-
lity properties of the motion in the vector space are aggrggated into a siﬁgle
scalar function - the Liapunov function. Tﬁe aggregation procedure, therefore,
produces an essential reduction in dimensionality of stability problems at the
price of a reduced accuracy in the results. It is also true that generation
of appropriate Liapunov functions can seldom be automatic and becomes increas-
ingly difficult for systems of high-dimension. Consequently, in stability ana-
lysis of large-scale systems, a.straightforward attack by a single Liapunov
function becomes cumbersome and another level of aggregation is desirable. -

After a large-scale system is decomposed into a number of interconnected
subsystems, a Liapunov fuﬁction is assigned to each isolated subsystem.rohe«
subsystem Liapunov funttions are then used as components of a vector Liapunov
function to construct the aggregate model of the over-all system. The aggre-
gate model is a linear (vector) differential inequality written in terms of the
vector Liapunov function, which can be effectively examined for stability by
known methods.

Since the subsystems are of relatively low order and often with similar
characteristics, the generafion of appropriate subsystem Liapunov functions is
not . exceedingly complex. Moreover, the decomposition of the system may be di-
rected towards producing the subsystems for which Liapunov functions with de-
sired properties are available. |

It is, however, true that the necessary properfies of subsystem Liapunov
functions for construction of the aggregate model, require stability of the sub-
systems which constrains the decomposition-aggregation stability analysis.
Furthermore, in forming the aggregate model, approximations are involfed which
increase the conservativeness of the over-all results beyong the extent intro-

11



duced on the subsystem level.

Stability properties of the subsystems are aggregated by scalar func-
) ) _

n, : : : n.
tions v, TxRY> R, such that vi(t, xi) € C(l’l)(T x R 1), which have

_the following "linear' estimates: '
nill |Xiv” f_Vi i'nlzl'lxi"l '

, ‘.’i < “"i3| lel |

l‘grad Vi'l f_ni4 ’ o : ’ » (301)

where 1 n n n are positive numbers and ||x.|]| = (x?x.)l/:
- i1 > a2z i3 T4 . ST ittt M

is the Euclidean norm of the vector x; . -In (3.1); Qi "is the total time

derivative of the function Vi(t, Xi) along the ‘motion of the- free subsystem
Si described by (2.4), that is

. 3 T .
Vi T3E Vit (grad Vi) g& - - : (3.2)

Liapunov functions vi(t, xi) with estimates (3.1) are available for
large classes of dynamic systems. For example, consider the class of_systems

with linear, time-invariant subsystems, with

gi(t’ Xi) = Pi Xi ’ (3.3)

where the Pi's are constant-coefficient, n.

i X matrices. Then, for each

subsystem there exists'a_Liapunov function of the form [3]
_ T 1/2 - _ _ o
v, = (xi H; x.) , (3:4)

whose time derivative on the trajectories of the uncoupled subsystem is given
by
12




. -1/2 [T _ . '
vi= - (1/2) v, x; Gy X; | | (3.5)

- T - I : . T
- = . . . . 3.6
where Gi Hi P; f P; Hl , GI >0 (3.6)

Direct calculations give

N1 T Al/z(Hi)

iy = Al/Z(Hi)

ngs = 7 MG )

SRR LICRITCS ’,‘ ' | (3.7)

where A and A denote the minimum and maximum eigenvalues of the indicated

matrices, respectively.
In the following Section 4,'we wili establish the fact that the existence.
of a Liapunov function with estimates (3.1) implies and is implied by the ex-
ponential stability property of the corresponding dynamic system.
Interactions among the subsystems.are assumed to satisfy the following

"connical",constraints
- . ' S , . : . ,
| [h; (&5 )| ijgl eijlllel ‘ (3.8)

where gij are nonnegative numbers. For eXample; if the interéctions are
linear, time invariant and of the form
hi(t, X) = 'Z]_ Qijxj , (3.9)
J=L
where the matrices Qij are n; x nj constant-coefficient matrices, then the

numbers gij can be taken as

Tl GO e N A
13




To form the aggregate modef of the system S wusing Liapunov functions
vi(t, xi) with estimates (3.1) and interaction constraints (3.8), we take
the total time derivative of vi(t, Xi) along the motion of the intercon-

nected subsystem S5 described by (2.3), that is,
. . T - '
v; =v; * (grad v.)" hi(t, x) ,i=1,2, ... ,s. o (3.11)

By applying inequalities (3.1) and (3.8), we can rewrite (3.11) as

Esini v
ij 17

o~

Vi S T2 M3 Yy YNy
j=1

i=1,2, ... , s . (3.12)

Now, we can define an s vector v function v: T x R? > Ri using

(3.5) , | |
| ve v, vt - | (3.13)

which has ‘as components the Liapunov functions Vs related to each subsystem
S. . The vector function v(t, x) , is called the vector Liapunov function
[1, 2]. With the notation (3.13),scalar inequalities (3.12)can be rewritten

in a vector form as

V<A . B ¢ o U I

where the s x s matrix A = (aij) has the elements aij'speCified by

a.. = -§ 1 -1

ij = “Si5 Miz M3 * 855 M51 Nig (3.15)

where‘;'(s.1j is the Kronecker delta.
Inequality (3;14)is a vector differential inequality and is referred to as
the ﬁggnegate modef of the system S . The matrix A is called the agghegate

14




matrix.

| The aggr_egéte model contains ﬁie necessary information about the ‘stabil-
ity properties of ‘the system S . .Th'e; dimension of the model is s which is°
less, or at most eqﬁal to the dimension n of thevotriginal system. This pro-
duces the desired reduction of diﬁiehsionaiity in the sfyalbility‘problelnél assoc-
lated with large-scale systems. |

For the example, taking %= %= 1 and « = 0.04 we have

"0 0~
P, = , i=1, 2,
1.0 1.0
[ 0]
le = E ’
3 0 - 0.08
Lo .
0 0] L
Qq = (3.16)
0 -0.08

G, = | [, i=1,20 7 -@an

~gives, through the application of (3.7)

-y = 147

niz =1.90

nis ? 0-26 . . 4 , ; ._, '.'4 z" ‘

R . G
From (3.10) the nimbers Eij"are fomd o be Tl e

15



819 = &5y = 0.08 . . (3.19)

Using (3.15), the elements of A are calculated as

-0.14

1

a11 < 22

= 0.11 , (3.20)

42541

and the aggregate model (3.14) becomes
-0.14 0.11
v < v : (3.21)
0.11 -0.14

How the aggregate model (3.21) can be used to conclude (exponential) sta-

bility of the original system (2.10), will be explained in the following section.

16



4. STABILITY

The purpose of this section is to show how stability of a large—scale
system can be determined from the stability of the subsystems and the nature
of their interactions. On the subsystem level, we first conclude that |
Liapunov function estimates (3.1) imply and are implied by exponential stabi-
lity of the subsystems. Then, we establish the same kind of stability for
the over-all system by demonstrating stability of the comparison (linear) -sys-
tem. |

Let us consider a free dynamic system described by the differential equa-
tion

x; = g (t, x;) , (4.1)

which represents one of the subsystems S, of Section 2.

We use the following standard definition of exponential stability [ ]:

Definition 4.1. The equilibrium state X, = 0 of the free subsystem Si A4

globally exponentially stable if and only if there exist two positive numbesrs

o and Bs Andependent of the initial conditions (to, xo) such that

||xi(t; tys x0)|| 5_qﬂ|xio|| exp[-gét - to)] ,

n.
VEE Ty, V(ty, x;0) ETxRY  (4.2)

0 ’

Exponential stability can be established by the following modification

[ 4] of the well-known Krassovskij [ 5] result:

Theorem 4.1. The equilibrium state x; =0 0f the free subsystem S5 b
globally exponentially stable if and only if there exists a function vi(t, xi)
n. . '
on TxR' with estimates (3.1).
This Theorem follows directly from Krassovskij's result when one con-

17



siders v%/z, instead of Vi This modification, however, allows a simple

construction of the aggregate model as shown in the preceeding Section 3.
Let us brove the sufficiency part (the "if" part) of Theorem 4.1. From
the estimates (3.1), it is easy to write the following scalar differential in-

equality

ViZTMi2 Mz Yyoco ~ S (4.3)

inéqualitf (4.3) can be integrated to yield
; .. | | : | : " i
Vi[t’ 'Xi(t', to, xlo)] f_Vi[toa X10] exp['niz n13(t-t0)]

+ - n. C .
' 1
VEETy, V(tg, x) ETxRY . (4.4)

By applying again estimates (3.1), we can rewrite (4.4) in terms of lei||

as
-1 -1 ‘

n.
_ ns
Yt € T0 , V(to, xio) €ET xR~ . | (4.5)

Comparing (4.5) with (4.2), we get the positive numbers o and B as’

i M1 Mi2 0 BT M2 M3 (4.6)

which are independent of initial conditions .(to,_xi This proves the suf-

0 -
ficiency part of Theorem 4.1. ‘ }
Let us now consider the system S described by (2.1) and its aggregate

model given by (3.7). -We prove the following:

Theorem 4.2. The eéuiﬁibniuﬁ state xv= 0. oﬁ’the éyAtem 'S ‘iz'gzobazzy_ax;
ponentially stabfe if the s x s aggregate matrix A = (aij) satisfies the
Anequalities ' e B ‘

18




411 312 s
- |a a o ' 1 a., - a a .
aj, <0, 11tz | 0, ..., (1|2 22 25 | 5 o
a . a . . . - ' soseiscscesessvens | )
21 %22 A
851 -8y g 4.7)

Proof. According to Definition 4.1, we should prove that'inequalities 4.7)
represent sufficient conditions for the existence of two positive numbers o
and B8 independent of the initial conditions (tO,-xo) , such that the solu-

tion x(t; tO’ xo) of equation (2.1) satisfies the following inequalityé_
Hx(ts ty, xp) || < allx)|] exp[-8(t-t] , Yt €T, (4.8)
for all (ty, x,) €T x " .
Let us consider a decrescent, positive definite, and radially unbounded

1

function v: R » R, »
vv) = bly , - o | (4.9)

where b > 0 1is a constant s-vector, as a candidate for Liapunov's function

[9] for the system S .

Taking the total time derivative along the solutions x(t; to, xo) of

(2.1), we get

SO =BVIX(E; g, X)) e - o L (4.10)

Premultiplying inequality (3.7) by bl > 0 , we obtain
. T - . . . o
AV _<_b AV . s PR o . . ‘ . . : (4.11)

Let us_réwrite (4.11)-é$

19



t~10

< V. . a. .
“j=1 Jg= B

S
- .b.la..| +
f-jél vibslas; ]

S S
Z V. Z bs a5 | : (4.12)
#
- From the definition (SQlS)of coefficients aij in the matrix A , we con-

clude that’
<0 i=j

Jls0 145, - - (4.13)

that-is, the matrix A has nbnnegative off-diagonal elements. This special
structure of A makes the conditions (4.7) necessary and sufficient [ 6] for
the existence of a vector b > 0 (bi >0,VvVi=1,2, ... ,s) and a number
8 > 0 such that

s . ‘ .
J.J.| - b; .21 bja;;28,Vi=1,2 ..., (4.14)
- | . L

ifj

la

From (4.12) and (4.14), we get

Vv € RY . (4.15)

VB, VEET, "

Integrating inequality (4.15), we obtain
1
v[x(t; tO, xo)] 5_v(x0) exp[-B(t-tO)] , Vt € T0 » Vv €R_ . (4.16)

It is left to show that inequality (4.16) implies inequality (4.8) and,
thus, global exponential stability of S . The left-hand side of inequality

20




(4.16) can be developed -as

ne-1n

v[x(t; ty, X,)] = b. V.
0’ 70 421 L1

S
_<_bm nTﬂl -Z HxiH
i=1
< by Lxes t, xd o @an

where

P TR Dy gy TR (4.18)

In developing (4.17), use is made of the estimates (3.1) and the fact that
s ,

I ollxll < ]

i=l i=1
written on the basis of the following derivation

llxillz = llxlfz. The right-hand side of (4.16) can be re-

v[x,] . V.
0 j=1 1 1

i

~
o
<

| A
=4
~1
<
H—_—

S1/2

151/2 by mp %11 f (4.19)
where
B = X by, My = mAX ny, (4.20)

In derivation (4.19), again the estimates (3.1) are used and .the well-known

21



relatlonshlp concern1ng the Euclidean norm and the absolute value norm,
SEITIES " |
: By u51ng (4 16) and (4. 18), we can rewrlte 1nequallty 4. 15) as 1nequa—
lity (4.8) with

’ beI;ll “Mz";i | (4.21)

and R defined in (4.13). This proves Theorem 4.2.
To calculate o« and B8 in (4.8), we need first to determine a-vector

b > 9; in (4.9),
v=bwv, ' L | : (4'9) s
andf(ﬁ.;l) which we can rewrite as

where. the vector c is defined as
¢l = blA . - T (4.23)

Since the coefficients aij satisfy (4.11), conditions (4.7) are neces-

sary and sufficient [ g] for existence of a positive vector b for any posi-
- tive vector b for any positive vector c . Consequéntly, one can calculate

a vector b from

T T,-1

b' = -c’A (4.24)

Now, the constant o is calculated from (4.21) and the constant 8 1is

calculated from

B = min {|a; (4.25)

- b.
JJI z i 1J
1#3
22



which is equivalent to (4.14). _
Let us consider again the specific example of Section 3. First, to con-

clude global exponential stability of the system, we verify that the aggregate

20.14  0.11° | '
A= | (4.26)
0.11  -0.14 | o

of (3.21) satisfies conditions (4.7)..

matrix

By choosing .. .
T _ .
¢ =1 11, (4.27)
and USihg (4.24), we calculate
T _ S LT T R
b® = -33.4 [1 1] . (4.28)
With'thié b , we compute o and B8 from (4.21) and (4.25) as

a=2.30,8=0.03. o B B (i12§55,~
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PART II

APPLICATIONS



5. SKYLAB MODEL

The Skylab [ 1] as an earth-orbiting manned space station, which is
designed for prolonged space flights, may be required to provide artificial
gravity environment. Therefore, Maréhall Space Flight Center of NASA initi-
ated the feasibility of spinning the Skylab about a principal axis of inter-
mediate moment of inertia and producing the artificial gravity effect [1].
Since such spin cannot be achieved without stabilization, it was hoped that
passive stability could be established by depldying masses either on cables
or extendable booms as shown on Fig. 5.1. Such configuration has the princi-
pal axis of maximum moment of inertia pointing (in the same direction as the

solar panels) to the sun.

ORBITAL
WORKSHOP

:Z':)\Gf: _ TIP MASS

COMMAND MODULE

Fig. 5.1
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A simplified model [1] of the spinning Skylab consists of a core mass
with two tip masses connected to it by flexible massless beams lying in two
different planes as shown on Fig. 5.2.

AXIS OF INSTANTANEOUS

UN
s ANGULAR MOMENTUM

Fig. 5.2 \\J

The angular velocity vector of the vehicle may be written in body-fixed

coordinates 1, 2, 3, as
Wy, W, w,+a]% ‘ < (5.1)
1 "2 73 A0 ' *

where |wi| <<1 (i=1, 2, 3) represent small perturbations about the steady
state velocity Q . Small displaéements of the two tip masses m from the
steady state are denoted by u?(i =1, 2, 3; k -1, 2) . The rotational dyna-
mics of the Skylab may be represented by a set of nine differential equations
written in terms of Wi and u? . It is possible to reduce the set of nine
equations to six equations by using the substitution

u. = u. - u. A , ' (5.2)

where u, now represents the skew symmetric mode of the elastic deformation
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and hence causes angular motion about the vehicle's steady-state attitude.
Since stability of rotational motion will be of interest, only the skew sym-
metric mode is considered.

The linearized equations of motion are

L ' . 2
( -
Lw + (I3 IZ)Qw2 + mI‘Z(u3 +Q us)_
-mr', (20u +ﬁ-$22u)=T
3 1 2 2° 1
wobble { . 2 .
motion (Il - Is) le + IZ W2 + mr3 (ﬁl - Q ul - 29112) = T2
. ... . . 2 -
mr' (w1 + sz) +m, + d3 ug + (k3 + me") u; = 0
- . _ (5.3)
I3w3 - mI‘2 (u1 - Zﬂuz) = T3
mI‘3 (le + wz) - Zmr2w3 +.mu1
spin 4 . . - 1 =
motion | * 91 U1 * kg uy - Zmw, =0
2mI‘3 (—'w1 + sz) - 4mI‘ZQw3 + ZmQu1 + m,
+d, 0, + (K, -ma) u, =0 (54)A
| 2 2 2 2 ’ )

where: Il’ I,, I, are the.principal moments of inertia in the steady state

2 73
(Il < I2 < 13) ; ki are the stiffness coefficients of the nonrotating booms;
mﬂz is the geometric stiffness introduced by spin (the overall boom stiffness

in the 1, 2, 3 directions is, therefore, k1 +Am.Q2 R k2 y k3 + mnz , respective-

1y); d. (i=1, 2, 3) are damping coefficients relating the structural damp-
1ng to elastic deformatlon velocities; Pi , -I‘i (i=1, 2, 3) are the coor-
dlnates of the two tip masses at the equ111br1um, respectlvely, and T i =

1, 2 3) are the applied torques about the body -fixed axes.
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Stability analysis of the Skylab model (5.3) will be performed separately
for two controls, namely, passive controf when all the torques are identically
Zero Ti =0 ({d=1, 2, 3) , and active control, when the torques are linear
functions of the states of the Skylab.

In stability analysis, the following Nomenclature and Physical Character-

istics of the Skylab are used:

. Nomenclature
Il’ Iz, 13, = principal moment of inertia of body about 1 coor-
. * 2 * * 2 .
dinate I1 + Zml‘2 , I2 , 13 + ZmI'2 , respectively
X _
I, = principal moment of inertia of rigid core body about
i
i body - fixed coordinate
ki’ ' = stiffness coefficient characterizing nonrotating
boom stiffness
m = tip mass of boom
Ti = applied torque about i coordinate
t = time
() =d/dt ‘ = differentiation with respect to real time t
y = ui - ui = skew symmetric mode of elastic deformations
u? = displacement of m tip mass from spinning steady
state in i direction (m =1, 2)
W, » = perturbatidn (abqut spinning steady state) velocity

about i coordinate
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T = steady-state boom dimension in 2-axis direction

from center of mass to tip mass

Ty ' = the asymmetry in the setting of the booms
Kl’ K2 _ = ratios of inertia (IZ-I:,))/I1 and (13-11)/12
respectively
1+K I I
o = 1.2 = ratio of inertia =
T-X I, I
2 1 1
y = Zmrg/ I1 = dimensionless inertia ratio
Ai = di/msz_ = dimensionless damping ratio
uy = ui/ 21‘2 = general skew symmetric coordinate
°§ = ki/mﬂ2 = dimensionless natural frequency coefficient of
boom
I3
£ =5 = dimensionless length ratio
' 2
T =qt = dimensionless time
Q = steady-state spin rate about 3 axis
W, : o
v; = hi = dimensionless wobble ratio (i =1, 2, 3)
() =d/dr = differentiation with respect to 1
subscript i = index referring to three body-fixed coordinates

i=1,23)
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]

Zml‘g/ I3 = dimensionless inertia ratio .

Iy .
= dimensionless inertia -ratio
1

Physical Characteristics

I, = 1.25 x 10° kg o’
I, = 6.90 x 10° kg n’
I, = 7.10 x 10° kg n°
r, =0
r, = 23.3m
r, =-1.53m
m = 227 kg
k; = kg = 146 N/m
. 4
k, = 7.4 x 10* N/m
. 1/2
d, = dg = 0.04 (k)
L o .1/2
d3 = 0.04 (kzm)
:Q = 0.65-1
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6. PASSIVE CONTROL

By addmg the extendable booms with tip masses to the Skylab (F1g 5.1),

the spinning vehicle meets the condition

Il < IZ.< 13 s v (6.1)

and éan be stably spun about the 3-axis. It is of interest in this section,
to study the stability properties of the system model "(5;3) when the active

control is not present, that is,
T.=0,1i=1, 2, 3. A (6.2)

In addition, the spin velocity and its perturbation Wy are controlled

separately and are not considered here. Consequently, we assume that
.w EWSEO. ‘ | (6.3)

With assumptions (6.2) and (6.3), the '"passive model'" is obtained from

(5.3) as
r D o . 2
Iwy + (I3 - L)) aw, +mr, (g + @ ug)
M, (200, + i, - 2% u) = 0
3 1 2 2
wobble {. : _
motion ) . e 2 - 20 ) =
(Il 13) Qwy + 12 Wy + mr ; (u1 2" uy Zﬂuz) = 0,
. _ . R .2 _ N
\ mr, (w1+szw2) +1m13+d3u3+ (k3+mn)u3~_0 (6.4)
( 2mr, (awy + v'vz) + miil
spin 4 +d1u1+k1u1 - 2m.§2u2=0
motion . - .
ZmI'S (-w1 + fzwz) + ZmQu1 + mu,
. 2 : _
\+d2u2+(k2-m )u, =0, : (6.5)
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An important feature of equations (5.3-4) and (6.4-5) is that when f =0,

3
they become uncoupled into two sets of equations: the wobble motion (wl,'wz, u3)
described by (5.3) or (6.4); and spin motion ONS, up, uz) described,by.(5.4)
or (6.5). ‘This suggests that the influence of the asymmetry in the arrangements
of the booms (P3 # 0) can be treated as the coupling parameter between the two
motions. In the decomposition—aggregation analysis, each motion represents a

subsystem.

Passive control equations (6.4-5) can be rewritten as follows:

"

' " '
\’1 - Klvz + Y(u3 + Us) = EY(Zul + UZ - Uz) =0

1 " v
-Kzavl + av, + Ey(ul - My T Zuz) =.0
1 1"

! 2
Vit vy tug tAgug + (03 + 1) Hg = 0 - (6.6)

1 t 1

| o 2 |
E(vy +vy) *ug + By *+oquy - 2y =0

t 1" '
E(-vy +v) *+ 2up *+ Uyt B2y + (05 - 1) uy =0, (6.7)

where the notation is introduced as in the Nomenclature. The dimensionless
parameter £ = I'3/I‘2 is the coupling parameter between the two sets of equa-
tions (6.6) and (6.7).

The state space representation of the over-all system S described by

(6.6-7), is obtained as
1
S: x (r) =P x(1), (6.8)
where the state 8-vector x(t) is chosen as
t lT
)

!
X(T) = (vl \’2 U3 US 111 ul uZ 112 (6‘9)
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and the 8 x 8 matrix P is given in Fig. 6.1.
In order to obtain the state equations (6.8), it is necessary to write

-equations (6.6-7) in the vector form
Bx (1) + Cx(1) = 0 \ (6.10)

where x(tr) is the state vector (6.9), and the 8 x 8 matrices B and C

are given by

1 0 0 y 0 0 0 -£Y
0 a 0 0 0 Ey 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
B=10 0 0 0 1 0 0 0
0 3 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
[0 -K Y 0 0 -2&y & 0]
X, 0 0 0 -Ey 0 0 -2y
0 0 0 -1 0 0 0 0
0 1 o341 A3 O 0 0 0
C =
0 0 0 0 0 -1 0 0
£ 0 0 0 o? Ay 0 -2
0 0 0 oL Vo0 0 0 -1
- £ 0 0 0 2 o214, 6.11)
The matrix P of (6.8) and Fig. 6.1 is obtained from (6.10) as
- -1 X ' '
P=-B"C. - (6.12)

The system S of equation (6.8) can be decomposed into two interconnected
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subsystems described by

ﬁﬁiiiﬁ SpF X (T) = Pyx, (r) +'€2Q11(£)_x1(r) + 8Q,(8) xp(1)  (6.13)

ol 8y x;(r) = P (1) ¥ 60 (8) 1y (1) * £°Qp(8) X,(®) (6.1)

where'thé state vectors x(t), xl(r), xz(r) of the system S and thé two sub-

systems Sl and S2 are

XI(T) | Xl('l') = (Vl V2 u3 u;)T

x(t) = 3 ] . ' ' T
X (1)) X (1) = (uguguy wp)t (6.15)

In-(6.13-14); the 4 x 4 matrices. P, and P2 correspond to the subsystems

S1 and S2 , and the 4 x 4 matrlces Qll(g) le(g) sz(g) QZl(s) repre—

sent the 1n;erconnect1ons between ‘the two subsystems:

B 1 1 171 1 __ 1 _
0 P Pz Py | Ppp TP = K r/Q-v)
1 © - i
- P; o -0 1 2 ,
p, = EU B R TR AR
1 0 0 0 1 1 .
0 1 1 1 p14 = A3 Y/(l - Y)
[L" Paz Pa3zocPaq | |
' P = %
L . |
Pgz = - (o3 +1 -v)/(A-¥)
1 BET
p44 = A3/(1 Y)
— o= 2 2
' 0 0 Py
P;; P 0 p% | »3 A
p = | P21 P22 24| PZ2=-4
2 | .
0. 0 0.1 | p=2
2 27 2 2
| 0 Pgz P43 Py | Php = 2
| 2
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11 _
97 =

11

3

11

94

11
21

12
2

C12
3

12
91

12
Q2

22
91
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91
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Az °

22
3

11
"4

X,

-

12
A2

@2y + X - 1)
(1-Y)(1-Y-€2Y)

22
Y 93

T Qv Aov-gZy)

2
Y A3

(1-y) A-v-£%7) -

+1)

€_Y

= 2v/@-y-g%y)
= v/ (1--€)

s 1)/ - g5)

= v8,/(a - EZY)  .

=>'Y(°i

=-y/(1-

+ 1)/ G - £2y)

R VAR

ZY/(I-Y-EZY) )
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B o0 o 0o 0~ qgi =- 0+ K)a/(a - £%y)
21 11 _ i 2
Q) = | |
. ) - ) 2 -2
0 0 0 0 qi% = yoz/ (1-y-E7Y)
21 21 21 21 _ 12 6.16)

In order to extract the subsystem‘ma.tfices"P1 and PZ ~independent
of the coupling parameter ¢ and obtain the decomposition of (6.8) into

: (6.13~6.14) it is necessary to use the following identities:

1 1 EZY

= +
o =
a - &y ¢ a(a-EzY)

1 1 EZY

= +

y-lvely VT ameemetn

(6.17)

The structural conflguratlon of the system S as composed of the two
subsystems S1 and S2 and the 1nterconnect10ns between them through the
coupllng parameter & can then be deplcted as in Fig. 2.

It is obvious that the system of Fig. 2 becomes that of F1g 3 when
£ =0. _

On the basis of the physical oharacteristics of the Skylab given .in o

Section 5, the matrices - Q (g) a; j=1, :2). of (6.16) can be made .indepen-
~ dent of ¢ and denoted by Qij‘ That is accomplished by neglecting the term

2y = 8.5 x 1074 (6.18)
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: EZsz (g) |

2 "2
N—
£Qq (8)
£#0 _ | | | £=0
Fig. 6. 2 4 | Fig. 6. 3
in (6.16), with respect to the terms
] -y=0.83 and «=5.5 . 4 6.19)

After this simplification, the numbers éij (i=1,2) of the norm of
the coupling niatrices Qij can be computed using |

y i, 3 =1,2 | S (6.20)

and the aggregation matrix A = (a; j) defined by (3.15), becomes a function
of the coupling parameter & only. | |
" “The Computer Program given in the Appendix, is used: to find:
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/2 ,i=1, 2,

a. ‘Subsystem Liapunov functions v, = (xEHxi)
of (3.4);

b. Numbers njj i=1,2;3j=1,2,3,4, 0f (3.7) ;

c. Numbers gij , i, j =1, 2, of (6.20);

d. Aggregation matrix A of (3.14) as a function of the coupling

_pafameter £ ; and

e. Solution of the stability inequalities (4.7) in terms of the

maximum -value _gm of ¢ .

‘~Subsystem’Liapunov's functions Vi i =1, 2, are obtained by solving

the Liapunov matrix equations

,pzﬂi +HP =G ,i=1,2 o | | (6.21)
using the direct method of solution as described in the Appendix.

The choice of the 4 x 4 symmetric matriées Gi = i i=1, 2, where
I is the 4 x 4 identity matrix,'Yields the positive definite 4 x 4 syﬁ-
metric matricés Hi ,» i=1, 2, and establishes global ésymptotiC'stability
of the subsystems Si ,1=1, 2.

Then, to construct the aggregation matrix A , the following numbers are

conmputed:
 ,7X(Hi) = 10.0811 ., M) = 51627539 , X(Gl)';'i'
| A(sz - 0.4176 ."‘, ‘> X(HZ)‘= 436;3635'_v - A(GZ)-;,l |
nyp = 3.1750 - Ny = 0.6462 .
ny, = 71.8523 L =:2°~8893
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Nz = 0.0069 | Nyz = 0.0239
g = 1626.0258 Nyg = 675.2502
_ . 2 . . . -
Ell = 0.3646¢ 512 0.7766¢&
_ : _ 2
521 = 1.8478¢ 522 = 0.5491¢ . (6.22)
Fihaliy; the aggregation matrix A is obtained as
-4 2
79.96 x 1074 + 186.75¢ 1954.268
A = . . L
| L P
392.98¢& _ -11.45 x 10 ~ + 573.86¢
(6.23)
The stability inequalities
-0.96 x 1074 + 186.75£% < 0
) . -4 . . 2; . L. ) ) ’--I‘
-0.96 x 10 ~ + 186.75¢ 1954.26¢
. 392.98¢ . . . --11.45 x 10"% + 573.86¢2 - (6.24)
are satisfied for all ¢ such that
- ; - v 26 ;
0<c<e =0.38x107°. (6.25)

The obtained range (6.25) of the coupling parameter E is small due to
the conservatlveness of the stab111ty procedure However the estlmate En
could be con51derab1y 1ncreased by a proper choice of the matr1ces G

i=1, 2, in (6.21). A meanrngful‘optlmlzatlon problem can be‘fbrmmlated as
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the maximization of £, over all matrices G . Future effort should be
dlrected ‘toward a solutlon of this optlmlzatlon problem, wh1ch can prov1de
'1mportant 1nformat10n about the trade off that ex1sts between the degrees

of the subsystem and the over- a11 system stablllty

43




7. ACTIVE CONTROL

A m1551on requlrement of the sp1nn1ng Skylab is that the 3 ax1s be p01nted
at the sun. In order to 1nert1a11y f1x the 3- ax1s 1n presence of dlsturbance
torques, attltude control torques must be applled to the vehlcle [1 12] The
control torques depend on error 51gnals that are proportlonal to the angle be—
tween the 3-axis and the solar vector. Sun sensors and rate gyros on the pre-
sent ‘Skylab can readily provide ‘the control signals 615 ®ys Wy and W, shown
on Fig. 5.2.

The linear control is postulated [12] as
T = a¢ + Bw ' v (7'1)

where T =‘[T1 T2 Ts]T is the vector of control torques; ¢ = [¢1 ¢2 ¢3]T is

the vector of angular rotations; w = [w1 2 w3 + Q] is the vector of angular
velocities; o , B are 3 x 3 matrices
o1 %2 O B11 B2 O
a = a21 azz 0 ’ B= 821 822 0 ’
0 0 0 _0 0 By (7.2)

€
[}
)
o o [
t
o bt o
)
- o o
<
+
'
o Lol o
o (=] D
o o o
©

(7.3)

44



The control law in this study is chosen as

- 2 - PR
ay, = 507 E . - all other 9ij'—_0
By = ;98 .833 = - Il??’:all other Bij =0 (7.4)
L 2 2
so that the normellzed.control torques v = [v1 2 3] - [Tl/;19~~ TZ/IIQ
T3/¥19~] are
’ 1
vy = (e + 8)¢, - 8 4y
v, = 0

Refeffing to equations (5.3) -and (514j,'fhe‘tentrel4torque VTi‘.is'used to sta-
bilize the subsystem Sl (wobble motlon), and the torque T3 is usee;tqns;e-wg
blllze the subsystem S2 (sp1n motlon) ': ' - » .'.‘ t ‘
In (7.5), e, 6, p are control parameters to be selected 1n the stab111-.
zation process. L
-Upon introducing these transformations the linearized equations 6f;ﬁbﬁion

become:
' 1 "o on '
01 - (A*K)oy - Kiéy - v(ugtug) + Ey(2ug*uy-uy) + (e+8)9, - 66, = 0
wobble

1 " 1 []
motion (1*Kep * Kuey *+ ady - Ey(uy-uy-2u,) = 0

2
-¢1 - ¢1 + uS + A3u3 + (03 .+ 1)113 = O ‘ ( (7:6)

45



1" ] 1]
B¢3 + Y(ul = 21-12) + p¢3 = 0

1 1] 1" " ‘l 2 L]
spin -2E¢, - &b, F by *ug * AUy +tojuy - 2u, +E4, =0
motion 1 RN TS U b B L B A

1" 1"

t : 1 : .-I ) ] .2 : 4
g¢1 = Zg¢2 - €¢1 + 2¢3 + 2111 + 112 + Azuz + (02 - l)uz = 0 . (7.7)

The state space representation of the overall system S described by
-(7.6-7), is obtained using the same method as in the Passive Control case and

is:
$: x (1) =Px(x) , 7.8)

where the state 1ll-vector x(t) is chosen as
1 ] t 1 1 . 1 T
X(1) = (615 ¢35 Hgs 675 05, Mgy 35 Hys My, Moy M) (7.9)
and the 11 x 11 matrix P 1is given in Fig. 7;1.
The system S of equation (7.8) can be decomposed‘into two interconnécted

subéysteﬁs described by:

wobble = g : xi(r) = Py x (1) + £°Q (B)x; (7) + EQp, (E)x,(x) (7.10)

spin S, X,(1) = P, X,(x) + EQy (E1% (1) + £2Qpp ()%, (2) (7.11)

motion
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0 0 <4 . 0o A 0
(M-1-07)%145 (1) 054y
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e s 2t 7t 2 s AL 2
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>Nu-ﬁm»-cu A u-%»..c,a ,ﬁ
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£g4 A uN-WTA. s £or 9e3 A 3-Aey
Al 4 4
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AL z ) & 3-A-T
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4 0 . 1 - : T - QB,
o .»Nu+u~o
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using the same procedure outlined in the previous section.
The state vectors x(t), xl(r),_xz(t) -of the system S and two subsys-

tems Sl and 82 are

xl(T) Xl('l') = (d)l ¢2 113 ¢:;_ ¢; u;)
x(t) = ; '

X)) | () = (g ug up g uy) (7.12)

In (7.10-11) the 6 x 6 and 5 x 5 matrices Pl’ P2 corfespond to the sub-
systems S, and S, and 6x6,6x5, 5x6 and 5x5 matrices Q; (&),
le(E), QZl(E), sz(g) represent the interconnections between the two subsys-

“tems:

0 0 0 1 0
: o o0 0 0 1 0
0 0 0 0 0 1
P. =
1 1 1 1 1 1 1
Pp1 Paz Paz Pgy Pas  Pye
1 1
0 p;, O pgy O O
1 1 1 1 1 1
| Pe1 - Pe2 P63 Pga. Pgs  Pgg |
L= mmray L, = &,
Pay 1Y Y Ps2 = K
1. -1 .
- P42 = p624='f(€+5)/(1fY) p§4 é'Kz'l ,
1 _ .2, L ~ P
Pys = - Y95/ (1Y) pgy = (+K))/ (1Y)
1 _ 1 | 1 2
p44.% P64 = 6/(1‘Y)  »_363 =‘(°3«+ l’Y)/(l'Y) "
1 1 . :
p45 = p65 = (1+K1)/(1‘Y)

1 1
p46 = p66 = ‘YA3/(1fY)
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2 2 2 .
Pp Py Pz 0 0
0 0 1 0 0
- |2 2 2
Py=ip5; Pz Pz O 2
0 0 .. 0 0o 1
< 2 2
-2 0 2 Py Pss
2 2 2
Pyj; = - Ap/ (B-@ P3; = -’80’1/(8-7);
2 2 2
Py T Y93/ (BY) - Ppze= - BA/(B-Y)
P13 = Y8,/ (B-Y) Pgy = - (05°1)
2 : 2
Pz; = o/ (8-Y) . P =4 |
0 o 0 0 0 07
0 0o 0 o 0 0
0 o 0 - 0. 0 0
Q. () =] 11 11 - 11 1. 1 11
11 Gy Gz Y3 Yz G5 Y6
1m -, 11
0 dg> 0 A5y 0 0
11 11 11 11 1 11
%1  9%2 %3 Y64 Y65 966
11 11 .Y(K1+2'Y"1)- o : 11 - 11 .(KI*Z‘Y:;I)Y
41 = %1 T 7 s = 965 = - Z
1-v) Q-v-27y) ' - @QA-y-gty)
.2
< y(e*s) Y 87

q = - : q = = - : -
2% dyeen e amaed
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ail=q
43763 ey (1-v-E)
11 _ 11 _ y§
Qi = ey =
44 >4 (1‘Y)(1‘Y‘é27)
0 0 0 0
0 0 0 0
0 0 0 0
12 12
12 12 12
457 92 93 0
12 : 12
| %1 0 0 964
2 - g2 - 2
a "% " T
2
o2 = g2 = Y92
44" %0 =TT
12 12. Y4
q = =
45 = 65 Tye2y
22 22 22
r;‘11 9 Y3 00
0 0 0 0
22 22 22
Q,(€) = {dazy 4z 433 0
o o0 0 0
22 22
(% 0 - 0 4y

22

11 __ Y%

51

1 70D
q -~
52 a(l-yg)-E"Y

Y (S’Kz)

a(1-73)~£ Y

]

11
454

12
%5 |

2 = Y30
> “ (1 ':'Ys) -7y

12 _ -'Y (1'Y3+°'i)

e
52 u(l'Ys)"E Y

12"

q EZ -
53 -“(1‘Y3)'€ Y

—

0 .

22
Qs




22 = - PY3
11 - 7
G le(or €]
&2 = Y3973
12 Qv la(evg) g5
22 - 13y
B yplelovy 4]
qli = pY .
L erlelvg) e
v(o241-y5)
22 - 1Y)
2 (rvg) la(vg) <651
B .21
0 95 0.
o 0 o
I PO SN
Q&)= 0 ap 0
6 .- 0 . 0
0 SR 21
951 52 9s3
7 I ——
Booapdy
2L - ¥3(2a-1+K))
2L - a(f5r 1)
32 a(l-y5)-g%
qm.=_h'ﬁfl f
\34 a(l'Ys)'E Y
21 _ 1-!(1-_27 -
51 L-y-g7y

2

52

22
433

A4

%2

21
53

YA].

v le-vg)-€2v]

2y
1-v-£%
L2
YO

A-y-£7y)

0o 0

21
U5 qsc

(7.13).



The following idenfity relationships were used in order to get the sub-

system matrices P1 and P2 independent of the coupling parameter ¢ :

B! 1 £’y

= +
a(l'YS)'E%Y a(l-vg) | a(l-ys)[a(l-ys)-azy}

11 2y

= +

1-y-gfy 1Y (1-Y_)(1-Y~€ZY)

(7.14)

Thekgraphical interpretation of the interconnécted subsystems Sl and
S, is the same as in Fig. 2 and 3 of the previoué'sectiqn.

Again,lon the basis of the physical characteristic of the Skylab given in
Section 5, the matrices Qij(i)(j, j =1, 2) of (7.13) can be made independent
of & and denoted by Qij . This is obtained by neglecting the term ‘Ezy =

8.5 x 10™* with respect to the terms
1-y = 0.803 and a(1~y3) = 5433 . | 5 : (7.15)
Using'thélféllowing sbeéific values of the cohéfdl parameters €, 8§, p:
e = 2.0 § =-1.0 p =1.0 (7.16)

the same computational algorithm as in the Passive Confrol case is éppiied and
the computer results are shown in the Appendix.

The choice of the 6 x 6 and 5 x 5 .identity matrices for the G matri-
ces of the first and second subsystem results in 6 x 6 and 5 x 5 positive
definite matrices H , H, and establishes the global asymptotic stability of
the subsystems. A

In order to construct the aggregation ﬁatrix' A , the f&iiowihg'numbe}s

are computed:
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A(H) = 0.4947 , A(H)) = 44.2273 A (G) =1
A(Hy) = 0.4176 , A(H,) = 427.5991 , A(G,) = 1
nyy = 0.7034 nyy = 0.6462
ny, = 6.6503 ny, = 20.6784
nyz = 0.0751 nyg = 0.0241
nyg = 62.8749 N,y = 661.6879
£, = 0.7897¢% £,, = 314.5269¢
£,) = 2.7088 £, = 222.4041¢2 (7.17)
The aggregation matrix A is obtained as
11.29 x 105 + 70.59¢2 30603, 29¢
N |
2543.19¢ -1.16 x 107> + 227734.68¢2
(7.18)
The stability inequalities
-11.29 x 1072 + 70.59¢% < 0
-11.29 x 107> + 70.59¢° 30603.29¢
2543.19¢ “1.16 x 107> + 227734.68£% | > 0
(7.19)
are satisfied for all ¢ such that
0 5_é < g, = 0.41 x 107° . (7.20)
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The obtained interval (7.20) of the coupling parameter £ “for which the

overall system is globally exponentially stable is relatively small.due to the

following reasons:

1. 'The inherent conservativeness of the stability analysis;

2. The choice of the matrices Gi., i=1, 2, is not the
"best" regarding the value of £ ; and

3. The freedom in the choice of the control parameters e,

8§, p 1is not used to the full extent.

Future research should elaborate on the points 2 and 3 and formulate an
optimization problem: Maximization of £ = over the elements of the matrices
Gi , 1 =1, 2, and the control parameters e, 8§, p . Nonsystematic numerical
experimentation with parameter values indicated a possibility of considerable

improvements in the value of En °
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CONCLUSION

A decomposition-aggregation method is outlined for stability analysis of
large-scale dynamic systems. The method takes advantage of special structural
features of the complex systems to reduce the memory and computational time re-
quirements when the stability analysis is carried out by machine calculations.
By utilizing the systemlstructure in the decqmposition procedure, the decompo-
sition-aggregation method makes explicit important structural properties of
the system. Furthermore, the method is suitable for accommodation of nonlin-
earities either in the subsystems or in their interconnections. However, the
method is inherently conservative Siﬁce a series of approximations are involved
in establishing the sufficient conditions for stability. Therefore the success
of the method should be judged satisfactory to the extent that the conservative-
ness of the results is outweighed by the computability of the method and the in-
sight that the method provides into the structural properties of complex dynamic
systems.

The decomposition-aggregation method is applied to the dynamic model of a
spinning Skylab. After the model is decomposed into the wobble and spin subsys-
tems, both the passive and the active control are considered. Such decomposi-
tion made an important structural parameter to aﬁpear as an interconnection
parameter of the two subsystems. Subsequent stability analysis was aimed at
estimating the interval of the parameter for global exponential stability. The
obtained estimates turned out to be relativély conservative since the flexibil-
ity of the decomposition aggregation method was not used to the full extent.
Moreover, several physical constraints of the control should have been removed
in order to increase the degree of stability of the subsystems and achieve a

higher degree of stability on the over-all system level. Since the outlined
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decomposition-aggregation analysis is completely computerized, the proposed
improvements can be readily incorporated in the present analysis scheme to

yield a flexible and powerful method for stability analysis of large-scale

linear and nonlinear dynamic systems.
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APPENDIX

COMPUTER PROGRAMS



~ DESCRIPTION OF THE COMPUTER PROGRAM

The program for analyzing the passive stabiiity'of the Skylab using de-
composition-aggregation method and vector Liapunov functions is realized on
the IBM 1130 computer (16 K memory) in FORTRAN language. |

In the following description the subroutines: LOC, MSTR, EIGEN, SIMQ
and MATA are IBM supplied subroutines (from IBM 1130 Scientific Subroufine
Package). Storage compression feature‘was used for'handling the arrays in
these subroutines. The three mpdes‘of storage are termed_genefal, symmetric,
and diagonal. General mode is one in which all elements of the matrix are
in storage. Symmetric mode is one in which only the upper triangular portion
of fhe matrix is retained columwise in sequential locations in storage.

(The assumption is made that thé cofresponding elementé in the lower triangle
have the same value). Diagonal mode is one in which only thé diagonal ele-
ments of the matrix are retained in sequential locations in $torage. (The
off diagonal elements are assumed to be zero). This capability has been im-
plemented using vector storage approach.

The names of the variables in the mainline program were chosen such that
they either completely match to thé.notation throughout the text, or in cases
where it was impossible to strongly indicate whatlwas meant (e.g., N1 and
ETA 1(1)). \ | '

The flowchart,.description»of the subroutines and the computer programs

are included.
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Read N and
the physical
parameters

of the.
SKYLAB

Compute the
normalized
parangters

!S.,KQ,Y?U)' 201 581,4,

i

K=1

)
1

Set up the P
matrix to
zero matrix

Set up the P
patrix for the
second subsystem

Set up the P
matrix for the
first subsystem

2er

|

|

1

Write the
K-th subsystem
matrix

Find the matrix V of
the system of linear|.
equations
PTH + wP = -G
(CALL LIAPU(P,L,N,M,V,

Write the matrix V
Read the vector
GR

Obtain the matrix G
from GR

Write the matrix
e c .
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Ohtain GC, solve for
the cigénvalues of
G and store in GD

|

Write the
eigenvalues of G
(1.e. GD)

GR(I) = -GR(1)
for 11 I = 1,2,..M

f

Solve the system of
linear equations
V:‘HR = GR
(CALL smMQ(V,GR,M,KS)

]

Obtain the H matrix
from the matrix HR
(i.e. GR)

Obtain HC
Solve for the
eigenvelues of H
- {i.e. HD)

'.
.Write the

eigenvalues -
of H

Compute
nKl, ﬂng -"K3’ 'ﬂK]‘
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:)

Write the four
gstimates
K’ ke’ k3 /.
"kl

Set ‘up Q matrix
to zero matrix

| -

Set up and write Set up and write . Set up and write Set up and write
the matrix Qll the matrix le the matrix Q22 the matrix Q21
| N ot ~ [ 1

I
Find thé matrix
QTQ result stored
in symetrig mode

1

Obtain the matrix
T
Qe

in general mode

I

Write the matrix
T
QQ

Solve for the eigen-~

values of QTQ
Store the meximum
eigenvalue in E(K)

‘ -

Write E, the
eatimates of the
norms of
coupling
matrices




Compute the elements
of the aggregation
nmatrix A (as a func-
tion of &)

Write the
aggregation
Matrix A (as a
function of

for £ = 1077
compute and write
A(1,1) and et A
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Subroutine LOC

Purpose: Compute a vector subscript for an"element in a matrix of specified
storage mode.

Usage: CALL LOC (I, J, IR, N, M, MS)

Description of parameters:

| I - Row number of element
J - Colum number of elemehtu'w
IR

Resultant vector subscriﬁt‘ ’ "“‘ o -
N - Number of rows in matrix
M - Number of colums in matrix  f'

MS - One digit nunber for storagéfmbde—of_ﬁétrixi

_:{0 j'§§n§ra1 , 1- $yﬁmetric',>a2 - diagonal

Method;

MS =0 Subscrlpt is computed for a matrlx w1th N*M elements in storage
(general matrix) :

MS = 1 Subscript is computed'for'a matrix with - N¥(N+1)/2 in storage
(upper triangle of symmetric matrlx) If element is in lower

triangular portlon, subscrlpt is correspondlng element in upper
" triangle. .

- MS =2 Subscript is computed for a matrix with N elements in storage

“{diagondl-elements of diagonal matrix). :-If élement is not on
diagonal (and therefore not:in-storage) - IR “is .set to zero.

Subroutine MSTR

Purpose: Change storage mode of a matrix
Usage: .. CALLMSTR(A, R, N, MSA, MSR)
Description. of. parameters :-

A - Name of input matrix
R - Name of output matrix

N NUmber of rows and columns in A and R et
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MSA - One digit number for storage mode of matrix A

0 - general , 1 - symmetric , 2 - diagonal

Remanks: Matrix R cannot be in the same location as matrix A . Matrix
A must be a square matrix.

Subroutine and function subprograms nrequired: LOC

Method: Matrix A is restructured to form matrix R .

MSA MSR
0 0
0 1
0 2
1 0

11

L1 2
2 0

;‘.2-;_.-' '*';1‘
2 2

Subroutine LOC1

Matrix A is moved to’matrix R

The upper triangle elements of a general matrix are used to
form a symmetric matrix

The diagonal elements of a general matrix are used to form
a diagonal matrix

A symmetric matrix is expanded to form a general matrix-
Matrix A is moved to matrix R

The diagonal elements of a symmetrlc matrix are used to form
a d1agona1 matrlx .

A diagonal matrix is expanded by msertlng missing zero ele-
ments to form a general matrix

: .;A d1agona1 matrix is, expanded by msertmg mlssmg zero ele—
. ments-to form-a symmetric matrix-

Matrix A is moved to matrix R

The same as subroutine LOC except that the symmetric mode is to be con-

sidered one in which only the upper triangular portion of .the matrix- is-reé- .

tained but row-wise in sequential locations in storage.

: l
Subroutine MSTR1 |

The same as subroutine MSTR with the same remakr about emetric mode
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Subroutine EIGEN

Purpose:  Compute eigenvalues and eigenvectors of a real symmetric matrix
Usage: CALL EIGEN (A, R, N, W)

Deseription bé paramelens :

A - Original matrix (symmetric) destroyed in computation. Resultant
eigenvalues are developed in diagonal of matrix A in descending
order

R - Resultant matrix of eigenvectors (stored columwise, in same se-
quence as eigenvalues)

- Order of matrices A and R

N
MV - Input code:
0 - Compute eigenvalues and eigenvectors
1

- Compute eigenvalues only (R need not be dlmen51oned but must still
appear in calling sequence)

Remasks : Original matrix 'A must be real symmetric‘(storage mode = 1). Matrix
A cannot be in the same location as matrix R .

Method: Diagonalization method or1g1nated by Jacobl and adapted by von Neumann
for large computers

Subroutine SIMQ

Punpobé:' Obtain solution of a set of simultanébusllinear equations, AX = B,
Usage: =~ CALL SIMQ (A, B, N, KS)

Description of parameterns:

A - Matrix of coefficients stored solumwise. These are destroyed in
the computation. Matrix is N by N .

Vector of original constants (length N). These are replacéd by
final solution values, vector X .

o5}
)

N - Number of equations and variables. N must be greater than 1.

&

Output digit:
0 - For a normal solution

1 - For a singular set of equations
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Remarks: Matrix A must be general. If matrix is singular, solution values
are meaningless. . - .

Method: Method of solution is by elimination uéing'lérgest,pivotal divisor.

Subroutine MATA.

Purpose: Premultiply a matrix by its transpose to form-a symmetric matrix.
Usage: CALL MATA (A, R, N, M, MS)

Description of parametens: -

- Name of input matrix
Name of output matrix

- Number of Tows in A

2 oz ow >
]

Number of columns.in A . Also number of rows and number of columns
of R

MS - One digit number for storage mode of matrix A

0 - general , 1 - symmetric , 2 - diagonal

Remanks: Matrix R cannot be in the same location as matrix A . Matrix R
is always a symmetric matrix with a storage mode = 1.

Subroutine and function subprogram required: LOC

Method: Calculation of (A transpose A) results in a symmetric matrix re-
gardless of the storage mode of the input matrix. The elements
of matrix A are not changed.

Subroutine LIAPU

Purpose: Expanding the Liapunov matrix equation PTH + HP = -G into a system
of linear algebraic equations.

Usage: CALL LIAPU (P, L, N, M, V)

Description of parameferns :

P - Name of input matrix

L - Auxiliary matrix consisting of integers and used to construct the
matrix V of the corresponding system of linear equations
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Remanks:

GR

Method:

Order of matrices P and L

Order of the system of linear équations, that is, order of matrix
V . Also equal to N(N+1)/2

Name of output matrix of transformed system of linear equations

The transformed system of M linear equatlons is V HR = -GR ,
where:

Vector formed from symmetric matrix G using the upper triangulérv
elements of the matrix G stored row-wise -

Vector of unknowns formed from unknown symmetric matrix 'H using
the upper triangular elements of H stored row-wise

Expansion of the matrix equation PTH + HP = -G into N*(N+1)/2
simultaneous equations, using the method developed in [7 ] and re-
fined in [ 8] . .
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04/24/73 _JOB NO. 023608

4/ 908 T e

LOG DRIVE  CART SPEC  CART AVAIL PHY DRIVE.
0000 0001 0001 © . 0000

V2 M0  ACTUAL 16K CONFIG 16K

/1 *
/7 " PASSIVE STABILITY. OF THE SPINNING SKYLAB -

// *
// FOR T o
*ONE WORD INTEGERS
%L IST SOURCE PROGRAM .
SUBROUTINE LOCl(IoJ'lR,N.M MS)
Ix=1
CX=g o
IF({MS~1) 10120'30
10 IRX=N%(JX-1)+IX
 60.TO 36 . '
20 IF(IX=JX) 22'24924 .
22 IRX=J+(I-1)%(2%N=-1)/2
.60 TOD 36 "
24 IRX 1+(J- 1)*(2*N-J)/2
- GO TO 36
30 IRX=0
IF(IX=-JX) 36432,36
32 IRX=1X
36 IR=IRX
RETURN
END

FEATURES. SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR LOC1 .
COUMMON 0 VARIABLES 6 PROGRAM 130

RELATIVE ENTRY POINT ADDRESS IS 0009 (HEX)
END OF COMPILATION
// DUP

*STORE WS UA LOC1
CART ID 0001 DB ADDR = 501F DB CNT 0009

// EJECT
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// EOR_ .
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM

SUBROUTINE MSTRL{AyRyNyMSA,MSR)
DIMENSION A(l1),R(1)
DO 20 I=1,N.
D0 20 J=1,N e
IF(MSR) 5,10,5

S IF(I-J) 10,10,20.

10 CALL LOCL(IoJsIRyNyNyMSR) .
IF(IR) 20,20,15 :

15 R(IR)=0.0
CALL LOC1(I,JyIA,N,NyMSA)
IF(IA) 20,20,18

18 R{IR)=A(1A)

20 CONTINUE
RETURN
END

FEATURES SUPPORTFD
ONE WORD INTEGEWS'

CORE REQUIREMENTS FOR MSTRI _
COMMON O VARIABLES 6 PROGRAM 110

RELATIVE ENTRY POINT ADDRESS IS 0009 (HEX)
END OF COMPILATION
// DUP

*STORE WS UA MSTRI
CART [D 0001 DB ADDR 5028 DB CNT 0008

// EJECT
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sl FOR
% LIST SOURCE PROGRAM

*ONE WORD INTEGERS
SUBROUTINE LIAPU(P,L NyM,V)
DIMENSION L(444)yP(494),V(10,10)
M=N%x(N+1)}/2"
K=0 o :
DO 10 I=1,N
DO 10 J=1,4N

10 L{J,1

11 vileJ)=0.
DO 12 I=1,N
DO 12 J=1,N
DD 12 K=1,4N
CIIsL(1,K)
IJ=L(JyK)
12 VIILIZ1J)=P(Jy1)+V(IIL1J)
DO 13 I=1,N
DO 13 J=1,M

IL=L(I,1)

13 VIIL,J)=2.%V(IL,J) o
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

- CORE REQUIREMENTS FOR LIAPU
COMMON 0 VARIABLES 10 PROGRAM 280

RELATIVE ENTRY POINT ADDRESS IS 001l (HEX)
END OF COMPILATION
// DUP

*STORE WS UA LIAPU
CART ID 0001 DB ADDR 5030 DB CNT 0012

// EJECT

t
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// _FOR

x¥

PASSIVE STABILITY OF THE .SPINNING SKYLAB

#LIST SOURCE PROGRAM

*10CS(CARD, 1403 PRINTER. . _ © . . “. .
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OO0

100
101
102
103

50

301

302

303

DEL2=0.04*S1GM2

04/24/73  PASSIVE STABILITY OF THE SPINNING SKYLAB

__REAL 11,12,13,MASS,K1,K2

DIMENSTON L{494) 4P (454),Q(4+4)5G(4s4)yH(444),6C(10), HC(IO),GR(IO)
DIMENSIUON V(10410),GD(4)+HD(4)E(4) :

DIMENSION ETAL(2)4ETA2(2),ETA3(2),ETA4(2),A(2,2)
EQUIVALENCE (P(141),Q(ls1)sGlLlel)yH{1,1)),(GC(L)4HC(L)) .
FORMAT(12)

FORMAT (/)

FORMAT(//)

FORMAT(10F12.4) .

READ N - THE ORDER OF THE SUBSYSTEM
READ(2,100) N o

READ THE PHYSICAL PARAMETARS OF THE SKYLAB
READ(2,50) _ 111IZQ13’GZQMASS'EK1’EK2p0MEGAvm_
FORMAT(8F10.0)

COMPUTE THE NORMALIZED PARAMETARS
Kl=(12-13)/11

K2=(I3-11)/12 o
ALPHA=(1.0+K1)/(1.0-K2)
GAMA=(2.#MASS#G2#G2) /1L
SIGS1=EK1/(MASS*OMEGA*OMEGA)

SIGS2=EK2/ (MASS*OMEGA*OMEGA)
SIGM1=SQRT(SIGS])

SIGM2=SQRT(SIGS2)

DEL1=0.04%*SIGM1

GAMATI=1.0-GAMA

GAMA2=GAMA1*GAMAL

WRITE(5,301)

FORMAT(*'1',10X,'STABILITY ANALYS[S OF LARGE SCALE SYSTEM USING DEC
1OMPOSITION METHOD AND LIAPUNOV FUNCTIONS'y//)

SUBSYSTEM ANALYSIS

DO 9 K=1,2

DO 5 I=14N

D0 5 J=1yN
P{144)=0.0
IF(K=1) 746,7
WRITE(5,302) ,
FORMAT (' THE FIRST SUBSYSTEM MATRIX P 1S',/)

COMPUTE THE ELEMENTS OF THE FIRST SUBSYSTEM MATRIX Pi
P(1,2)=(K1+GAMA)/GAMAL
P(1,3)=(GAMA®*SIGS1)/GAMAL
P(l,4)=(GAMA®DEL 1) /GAMAL
Pl2y1)=K2

Pl3,4)=1. 0
Pl4a,y2)=-(K1+1.0)/GAMA]L
P(4,3)=(GAMA-SIGS1-1.0)/GAMAL

P(4,4)=-DEL1/GAMA]

GO TO 8 :

WRITE(5,303)

FORMAT('1THE SECOND SUBSYSTEM MATRIX P IS'y/)

COMPUTE THE ELEMENTS OF THE SECOND SUBSYSTEM MATRIX P2
P{l1,2)=1.0

P(241)=-SIGS1

P(2,2)=-DELI

P(2y4)=2.0

P{(3,4)=1.0
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P(442)=-2.0 e 3 R

lals)

P(4,3)=1.0-SIGS2

Pl4ya)=-DEL2
‘WRITE THE CORRESPONDING SUBSYSTEM MATRIX

8 DO 16 I=1,N

16 WRITE(5,103) (P(I,J),d=14N)

.. WRITE(5,101) . _
FROM THE MATRIX P AND THE MATRIX EQUATION PTRANSPOSE*H + H*P = -G
COMPUTE THE MATRIX V OF THE TRANSFORMED SYSTEM QF LINEAR EQUATIONS
CALL LIAPU(P,LyNsM,V) '
WRITE(5,304)

304 FORMAT{(' THE MATRIX vV OF THE CORRESPONDING SYSTEM OF LINEAR EQUATI

_LONS 1S')
WRITE(5,101)
WRITE Vv MATRIX
DO 14 I=1,M

14 WRITE(5,103) (V(I,J),J=1,M)
WRITE(S5,101)
"READ _GR - VECTOR CONSISTING OF UPPER TRIANGULAR ELEMENTS

OF. MATRIX G STORED ROWISE
READ(2,104) GR
104 FORMAT(16F5.0) T
OBTAIN THE GENERAL MATRIX G (STORAGE MODE 0)
CALL MSTRYL(GRyGsN,y1,0)
 WRITE(5,109)
109 FORMAT(® THE POSITIVE DEFINITE SYMMETRIC MATRIX G ISy /)
DO 19 I=1,
19 WRITE(b,103) (GUI,4J)yJd=1,yN)
OBTAIN GC - VECTOR CONSISTING OF THE UPPER TRIANGULAR ELtMENTS
OF THE MATRIX G STORED COLUMNhISE
CALL MSTR{G,GC¢N,y0,1)
" SOLVE FOR THE EIGENVALUES OF THE MATRIX G
CALL EIGEN(GC4DyNyl) _
STORE THE EIGENVALUES OF THE MATRIX G IN THE VECTOR GOD -
CALL MSTR(GCyGDyNy1,2)
WRITE(5,101)
WRITE(5,201)
201 FORMAT(* THE EIGENVALUES OF THE SYMMETRIC MATRIX G ARRANGtD IN DEC
1REASING ORDER ARE',/)
WRITE THE EIGENVALUES OF THE MATRIX G
WRITE(5,103) GD
WRITE(5,102) ' - :
SOLVE THE SYSTEM OF LINEAR EQUATIUNS V*HR=GR,RESULT IS IN GR
DO 17 I=1,M ’ o '
17 GR{I)==-GRI(I) ‘
CALL SIMQ(V,GRyM,KS)
IF(KS-1) 30,20,30
20 WRITE(5,105)
105 FORMAT(* SINGULAR CASE')
GO T0O 15
FORM GENERAL MATRIX H FROM GR
30 CALL MSTR1(GRyHyN,1,0)
WRITE(5,4110)
110 FORMAT{? THE LIAPUNOV HATRIX H FOR THE SUBSYSTEM [S' /)
DO 21 1=1,N
21 WRITE(S,103) (H{I,J)yJd=14N)
NBTAIN HC - VECTUR CONSISTINGUF THE UPPER TRIANGULAR ELEMENTS
UOF THE MATRIX H STORED COLUMNWISE
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CALL MSTR(H,HCyN30,1)

SOLVE FOR THE EIGENVALUES OF THE MATRIX H.
CALL EIGEN(HC,DyNy1)

STORE THE EIGENVALUES OF H IN HD
CALL MSTR(HC,HD, Nvl,Z)

WRITE(5,101)
WRITE(5,202)
202 FORMAT(' THE EIGENVALUES OF THE SYMMETRIC MATRIX H ARRANGED IN DEC
1REASING ORDER ARE',/)

WRITE THE EIGENVALUES OF THE HATRIX H

WRITE(5,103) HD

WRITE(5,101)

CHECK IF ALL EIGENVALUES ARE". POSIT[VE,

DO 22 1I=1,4N

IF(HD(I)) 23,23,24

22 CONTINUE

23 WRITE(5,203)

203 FORMAT(® THE SUBSYSTEM IS NOT ASYHPTOTICALLY STABLE SlNCE H MATRIX
1 IS NOT POSITIVE DEFINITE'

. GO T0 15 .

24 WRITE(5,204) )
204 FORMAT(' ALL THE EIGENVALUES UF H MATRIX ARE POSITIVE AND THE SUBS
1YSTEM IS ASYMPTOTICALLY STABLE')

WRITE(5,101)

_COMPUTE THE FQOUR ESTIMATES FOR THE SU&§Y

ETAL(K)=SQRT(HD(N)).

ETA2(K)=SQRT(HD(1)) .

ETA3(K)=0.5%GD(N)/ETA2(K)

ETA4(K)=HD(1)/ETAL1(K)

WRITE(5,205) » -
205 FORMAT(' THE -FOUR ESTIMATES FOR_THE SUBSYSTEM ARE(J/) N

WRITE(5,103) ETAI(K)1ETA2(K)QETA3(K)9ETA4(K) :
9 CONTINUE

FINDING THE NORMS OF THE COUPLING MATRICES -

WRITE(5,206)
206 FORMAT('1%,10X,7ESTIMATING THE NORMS OF THE INTERCONNECTING MATRIC™
1ES?)
WRITE(5,102)
DO 52 K=1,4
DO 42 I=1,N

DO 42 J=1,N_

42 Q(1,31=0.0
IF(K-1) 44,43,44
43 WRITE(5,207)

207 FORMAT (' THE SELFCOUPLING MATRIX Q11 IS',/)
COMPUTE THE SELF-COUPLING MATRIX Q11
Q(1,2)=6AMA*(2,0%GAMA+K1-1.,0)/GAMA2
Q(1,3)=SIGS1*GAMA*GAMA/GAMA2
Q(194)=(DEL1*GAMA®GAMA)/GAMA2
Q(2,1)=GAMA* (K2+1.0)/ALPHA
Q(4,2)=-Q(1,2)

Q(4,3)=-Q(1,3)
Q(494)=-Q(1,4)
GO TO 49
44 TF(K=2) 46,45,46
45 WRITE(5,208)
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208 FORMAT(/////,* THE INTERCOUPLING MATRIX Q12 xs'._/)____~

[aNeNe

COMPUTE THE INTER-COUPLING MATRIX 012
Q(1,2)=2,0%GAMA/GAMA]
0(193) 'GAHA/GAMAI
Q(241)=GAMA%*({SIGS1+1.0)/ALPHA
Q(2,2)=GAMAXDEL1/ALPHA
. Q14,2)=-Q(1,2)
Q(4,3)=-Q(1,3)
GO TO 49
46 IF(K-3) 48,47,48
47 WRITE(5,210) - _ ) )
210 FORMATI{*1THE SELFCOUPLING MATRIX Q22 1S',/)
.. COMPUTE THE. SELF-COUPLING MATRIX Q22
Q(2,1)= =-GAMA*(SIGS1+1. 0)/ALPHA
Q(2,2)=-GAMAXDEL1/ALPHA
Q(4,2)=2.0%GAMA/GAMAL
Q{443)=-GAMA/GAMAL
GO T0 49
48 WRITE{S,211) _  _“
211 FORMAT(/////,* THE INTERCOUPLING MATRIX Q21 IS',/)’
COMPUTE - THE INTER-COUPLING MATRIX Q21
Q(2,1)=-(1.0+K2)
Q4,2)=(2.0%GAMA+K1~1.0)/GAMA]L
Q(4,3)=GAMA%*SIGS1/GAMAL
Q{4,4)=GAMA®DEL1/GAMAL
WRITE THE CORRESPONDING COUPLING MATRIX
49 DO 53 I=1,N
53 WRITE(5,103) (Q(14J)9J=14N)
COMPUTE THE MATRIX QTRANSPOSE*Q
CALL MATA‘Q,GC,N N o) - ) . : I
GET THE GENERAL STORAGE HDDE FUR QTRANSPOSE*Q
CALL MSTR{GCyQyNy1,0)
WRITE(5,101)
WRITE(5,212)
212 FORMATI(' Q TRANSPOSE Q IS',/)
WRITE QTRANSPOSE%*Q
DO 51 I=1,N o
51 WRITE(S5,103) (Q(I,J)yJd=1,N)}
WRITE(S5,101)
COMPUTE THE EIGENVALUES OF QTRANSPOSE*Q
CALL EIGEN(GCyDyNyl)
COMPUTE THE ESTIMATE OF THE NORM OF THE MATRIX Q
E(K)=SQRT(GC(1)) :
WRITE(S5,214) E(K)
214 FORMAT (' THE ESTIMATE OF THE NORM (OF THE MATRIX IS',F8.4)
52 CONTINUE

"AGGREGATTIOGN

WRITE(5,215)
215 FORMAT('1THE AGGREGATION MATRIX A AS A FUNCTION OF COUPLING PARAME
1TAR ZETA IS8',//)
All=-ETA3(1)/ETA2(1)
Al=E(1)*ETA4(1)/ETAL(])
Al2=E{2)*ETA4(L)/ETAL(2)
A21=E(4)*ETA4(2)/ETAL(1)
A22=-ETA3(2)/ETA2(2)
A2=E(3)*%ETA4(2)/ETAL(2)
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WRITE(5,106) ALl7A1,A12°
106 FORMAT(F12.6,' +%3FB.2, %ZETA*ZETA")20X,F8. 2,'*ZETA )
WRITE(5,101) .
WRITE(S5,107) A21,A22,A2 L g
107 FORMAT(F8.2,'*ZETA' y20X,F12.6," f!yFB.Z.!*ZETA*lETA')
ZETA=1.0E-T. S .
All,1)=A11+ZETA*ZETA%AL
A(1,2)=A12%ZETA
A(2,1)=A21*Z2ETA
A(2,2)=A22+2ETA%ZETA®A2
DETA= A(1,1)*A(2.2)—A(1.2)*A(2,1)
WRITE (5,102)
~ WRITE (5,220) ZETA
220 FORMAT(' THE AGGREGATION MATRIX A.FOR zsra—y,slo 4.'15'.//)
DO 60 I=1,2
60 WRITE(5,221) (A(I+Jd)sd=1,2)
221 FORMAT(EL2.4510X,E12.44/)
WRITE(5,102) |
WRITE(5,222) All,1),DETA | ' | ‘ oo
222 FORMAT(' A(1ly1) IS *,E12.4,"% ANC DETERMINANT OF A IS '4EL10.4s/7)
© IF(A(Ll,1)) 61,62,62 ' |
61 IF(DETA) 62,62,64
64 WRITE(5,223) ‘ '
' 223 FORMAT(' THE OVERALL svsren IS ASYMPTOTICALLY. STABLE")
GO TO 15
62 WRITE(5,224) e
224 FORMAT(' LOOK FOR SMALLER VALUE OF THE COUPLING PARAMETAR ZETAY)
15 CALL EXIT ~°°° . St
END

FEATURES SUPPORTED
ONE WORD INTEGERS
10CS

CORE REQUIREMENTS FOR o o
COMMON 0 VARIABLES -~ 410 PROGRAM . 2238

END.OF COMPILATION -

»‘// XEQ 5, -
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