

SD 72-SA-0133-7

TRACKING & DATA RELAY SATELLITE SYSTEM CONFIGURATION & TRADEOFF STUDY

VOLUME VII TELECOMMUNICATIONS SYSTEM SUMMARY

90241 D С alifornia Δ o d в n u F ο

2

SD 72-SA-0133-7

PART I FINAL REPORT

TRACKING & DATA RELAY SATELLITE SYSTEM CONFIGURATION & TRADEOFF STUDY

VOLUME VII TELECOMMUNICATIONS SYSTEM SUMMARY

T. E. Hill TDRS STUDY MANAGER

OCTOBER 1972

Downey

SUBMITTED TO GODDARD SPACE FLIGHT CENTER NATIONAL AERONAUTICS & SPACE ADMINISTRATION

Lakewood

1 2 2 1 4

IN ACCORDANCE WITH CONTRACT NAS5-21705

90241

California

ľ

Boulevard,

Space Division North American Rockwell

PRECEDING PAGE BLANK NOT FILMED

.

FOREWORD

This report summarizes the results of Part I of the study conducted under Contract NAS5-2107. Tracking and Data Relay Satellite Configuration and Systems Trade-off Study - 3-Axis Stabilized Configuration. The study was conducted by the Space Division of North American Rockwell Corporation for the Goddard Space Flight Center of the National Aeronautics and Space Administration.

The study is in two parts. Part I of the study considered all elements of the TDRS system but emphasized the design of a 3-axis stabilized satellite and a telecommunications system optimized for support of low and medium data rate user spacecraft constrained to be launched on a Delta 2914. Part II will emphasize upgrading the spacecraft design to provide telecommunications support to low and high, or low, medium and high data rate users, considering launches with the Atlas/Centaur and the Space Shuttle.

The report consists of the following seven volumes.

1.	Summary	SD 72-SA-0133-1
2.	System Engineering	SD 72-SA-0133-2
З.	Telecommunications Service System	SD 72-SA-0133-3
4.	Spacecraft and Subaystem Design	SD 72-SA-0133-4
5.	User Impact and Ground Station Design	SD 72-SA-0133-5
6.	Cost Estimates	SD 72-SA-0133-6
7.	Telecommunications System Summary	SD 72-SA-0133-7

Acknowledgment is given to the following individuals for their participation in and contributions to the conduct of this study:

M.A.	Cantor	North American Rockwell	System Engineering and Spacecraft Design
A.A.	Nussberger	11	Electrical Power
W.C.	Shmill _	**	
R.E.	Oglevie	11	Stabilization and Control
A.F.	Boyd	**	"
R.N.	Yee	н	Propulsion
A.D.	Nusenow	11	Thermal Control
T.F.	Rudiger	11	Flight Mechanics
J.W.	Collins	11	Satellite Design
P.H.	Dirubach	**	Reliability
W.F.	Deutsch	п	Telecommunications Design
S.H.	Turkel	11	Operations Analysis
A. Po	røter	**	Cost
A.P.	Anderson	n	Integration
T.T.	Noji	AIL-Division of Cutler-Hammer	Telecommunications Design
L. Sw	artz	11	II.
D.M.	DeVito	The Magnavox Company	Telecommunication System Analysis
D. Ca	rtier	11	Ground Station Design
R.H.	French	"	Operations Analysis
G. Sha	aushanian	и	User Transponder Design

.

Section

VOLUME I

1.0	S UMMARY	ε		•	•								1-1
	1.1	SYSTEM (CONCEPT					•			•		1-3
	1.2	SATELLI	TE LAUNCH	AND	DEPLO	OYMEN	т.			•			1-7
		1.2.1	Deployu	nent	Analys	sis .	•					•	1-7
		1.2.2	Launch	Anal	ysis								1-8
		1.2.3	Launch	and	Deploy	ymen t	Pro	file					1-11
	1.3	TELECOM	MUNICATIO	NS D	ESIGN	•		•	•			•	1-13
		1.3.1	Telecom	muni	catio	ns Sy	stem	Anal	ysis				I-13
		1.3.2	Telecom	muni	catio	ns Su	bsys	tem D	esigr		•		1-25
		1.3.3	Telecom	muni	catio	ns Re	lay I	Perfo	rmano	e.	•	•	1-29
	1.4	SPACECRA	AFT MECHA	NICA	L AND	STRU	CTUR	AL DE	SIGN				1-35
	1.5	ELECTRI	CAL POWER	SUB	SYSTEI	м.	•	•		•			1-51
	1.6	ATTITUDI	E STABILI	ZATI	ON AND	D CON	TROL	SUBS	YSTEN	1.			1-54
	1.7	AUXILIA	RY PROPUL	SION	SUBSY	STEM				•			1-57
		1.7.1	Reactio	n Coi	ntrol	Subs	ystei	m.		•			1-57
		1.7.2	Apogee	Moto	r	. • .	•	•			•	•	1-60
	1.8	THERMAL	CONT ROL	•	•	•	•	•			•		1-60
	1.9	RELIABII	LITY .	•	•		•	•	•		•		1-64
	1.10	USER TRA	NSPONDER	DES	I GN			•				•	1-66

1.10.1 LD	R Transpo	nder	•						•	1-66
1.10.2 MD	R Transpo	on de r	•			•	•	•		1-66
1.11 NETWORK OPE	RATIONS A	ND C	ONTI	ROL .	•				•	1-68
1.12 TDRS GROUND	STATION									1-77
1.13 RECOMMENDAT	IONS .	•			•	•				1-82

VOLUME II

2.0	SYS TEM	ENGINEER	RING .		_									21
	2 1	MICCION	ANATYO	тс .	•	•	• •		•	•	•	e	•	7-1
	4 .1	LIT 22 TOW	ANALI 5	15.	•	•	•	•	•	•	•	•		2-1
		2.1.1	Netwo	rk Cou	nfigu	ration	ı.		•	•		•		2-1
		2.1.2	TDRS	Opera	tional	l Plar	ι.	•	•	•			٠	2-6
		2.1.3	Perfo	rmanc	e Sens	sitiv:	ity .	,		•	•	•		2-19
		2.1.4	TDRS	0n-0rl	bit Pa	ayload	i Cap	babi	lity	7				2-21
		2.1.5	Launc	h and	Deplo	yment	: Pro	fil	e	•		•		2-22
		2.1.6	Launc	h and	Deplo	oy men t	: Tin	neli	ne					2-27
	2.2	NETWORK	OPERAT	IONS A	AND CO	ONT ROL					•	•		2-33
		2.2.1	TDRS	System	m Cond	ept .					•			2-33
		2.2.2	Prima	ry Sys	stem E	Elemer	its a	ind	Thei	lr (pera	tion	al	
			an	d Fund	ctiona	al Int	erfa	ices			•		•	2-37
		2.2.3	TDRSS	Funct	tional	l Anal	ysis.	1						2-48
		2.2.4	TDRS	Opera	tional	. Phas	e Se	que	nce	of	Even	ts		2-113
	2.3	SYSTEM R	ELIABI	LITY	ANALYS	SIS .		•	•	•	•	•		2-139

-

v

Page

VOLUME III

.

Section

Sectio	n					Page
3.0	TELECOMMUN	NICATIO	DNS SYSTEM ANALYSIS		-	3-1
	3.1 REI	LAY SYS	TEM REQUIREMENTS AND CONSTRAINTS	•	•	3-1
		3.1.1	Design Goals			3-1
		3.1.2	System Design Criteria			3-1
		3.1.3	Telecommunication System Description .		ż	3-3
	3.2 TH	E INTER	FERENCE PROBLEM	•		3-4
	-	3.2.1	Radio Frequency Interference			3-6
		3.2.2	"Trash Noise" and Its Effect on the	•	•	
			TDRS Channels			3-11
	-	3.2.3	The TDRS User Propagation Path			3-16
	3.3 FRE	EQUENCY	SELECTION .			3-21
		3.3.1	Frequency Trades	•	•	3-21
		3.3.2	Frequency Plan	-		3-25
	3.4 MOI	ULATIC	N AND CODING	•	•	3-25
		3.4.1	Impact of Forward Error Control on	•	•.	5-25
			the Medium and Low Data Rate Users			3-25
	3	3.4.2	Voice Coding for Manned Users of the	•	•	J-2J
	_		Tracking and Data Relay Satellite System			3_33
	3.5 REL	AY SYS	TEM PERFORMANCE ANALYSIS	•	•	3_32
	3	3.5.1	Forward (Command) Link Communications	•	•	10-11
	-		Performance			2 20
		3.5.2	Return (Telemetry) Link Communications	•	•	3-39
			Performance			n //
	3	153	TDPS Tracking Porformance	•	•	3-44
	-	1.5.4	Pseudo-Pandom Codo Accudattion and	•	•	3-51
	-		Tracking			
	1	155	Mannad Haan Denfermen	•	•	3-6/
	36 055	ノ・ノ・ノ アロロ ロ N C ロ	c	·	•	3-70
	J.O KEP	ERENCE	3			
4 0	TDRS TELEC		CATTON CURCUCTIN			
710		FCOMMI	NICATION SUBSISIEM	•	•	4-1
	4.1 166		Design Carle 1 Cutter 1	•	•	4-7
	4	1 2	Design Goals and Criteria	٠	•	4-7
	4 40 TET	FC0100	NECHTION GROUPS and Constraints	•	٠	4-10
	4.2 164	ACOMMU	NICATION SYSTEM DESIGN DESCRIPTION	•	•	4-12
	4	· · · · ·	Frequency Plan	•	•	4-12
	4	· · ∠ • ∠	Functional Description	•	•	4-22
	4	-4-3	Telecommunications Subsystem Size, Weight,	1		
	1. 2		and Power Summary	•	٠	4-30
	4.3 LOW	DATA	RATE LINK	•	•	4-32
	4	.3.1	Return Link		•	4-32
	4	.3.2	LDR Antenna		•	4-61
	4	.3.3	LDR Transponder		•	4-68

-

Page

Sect	ion
------	-----

.

.

	4.3.4	Performance Specification for LDR			
		Transponder			4-81
	4.3.5	Size, Weight, and Power Summary for			
		LDR Transponder	•		4-86
4.4	MEDIUM I	DATA RATE LINK	-	•	4-87
	4.4.1	MDR System Analysis and Trades	•	•	4-87
	4.4.2	MDR Antennas	•	٠	4-95
	4.4.3	MDR Transceiver	•	•	4-100
	4.4.4	Performance Specification for MDR			
		Transponder	•	•	4-110
4.5	TDRS/GS	LINK	•	•	4-119
	4.5.1	System Analysis and Trades	•	•	4-119
	4.5.2	TDRS/GS Link Antenna	•	•	4-124
	4.5.3	TDRS/GS Transceiver	•	•	4-128
	4.5.4	Performance Specification for the			
	,	TDRS/GS Link Transponder	•	•	4-146
	4.5.5	Size, Weight, and Power Summary of			
		TDRS/GS Link Transponder	•	•	4-150
4.6	FREQUENC	SOURCE	٠	•	4-151
	4.6.1	System Analysis and Tradeoffs	-	•	4-151
	4.6.2	Detailed Description of the Frequency			
	1 ()	Source	•	•	4-153
	4.6.3	Performance Specification for the TDRS			
		Frequency Source	٠	•	4~157
	4.0.4	Size, weight, and Power Summary for			
1. 7		TURS Frequency Source	٠	•	4-161
4./	/ 7 1	Machanizatian Trades	•	•	4-162
	4.7.1	Detailed Deceription of TTLC Termine law	·	•	4-163
	4.7.2	Performance Specification for the TDDC	•	•	4-103
	4./.3	Tracking Telemetry and Compand Subsustan			6 170
	474	Size Meight and Bouer Summary for TTC	•	•	4-170
4.8	TDRS TRA	CKING/ORDER WIRE TRANSPONDED	•	•	4-1/2
4.0	4.81	System Analysis and Trades	•	•	4-173
	4.8.2	Detailed Description of TDRS Tracking	•	•	4-1/5
	4.0.2	Order Wire			4-175
	4.8.3	Performance Specification for TDRS	•	•	4-175
		Tracking/Order Wire Transponder			4-177
	4.8.4	Size. Weight, and Power Summary for the	•	•	4-1/7
		TDRS Tracking/Order Wire Transponder			4-179
4.9	Ku-BAND	BEACON	•	•	4-179
	4.9.1	System Description .	•	•	4-179
	4.9.2	Performance Specification of the	•	•	- 1 , j
		Ku-Band Beacon		-	4-181
	4.9.3	Size, Weight, and Power Summary of the	-	•	. 201
		Ku-Band Beacon			4-181
			•	•	

L

.

VOLUME IV

Section		Page
5.0	SPACECRAFT MECHANICAL AND STRUCTURAL DESIGN .	5-1
	5.1 TDRS BASELINE CONFIGURATION	5-2
	5.1.1 Deployed Configuration	5-2
	5.1.2 Launch Configuration .	5-2
	5.2 SPACECRAFT BODY STRUCTURE	5-6
	5.3 ANTENNA MECHANICAL DESIGN .	5-9
	5.3.1 MDR Antennas	5-9
	5.3.2 LDR UHF-VHF Array Structural	
	Construction	5-9
	5.3.3 TDRS/GS Antenna	5-10
	5.3.4 TT&C Antennas	5-10
	5.3.5 Ku- and S-Band Tracking/	
	Order Wire Antennas .	5-13
	5.4 SOLAR ARRAY PANELS AND DRIVE MECHANISM	5-13
	5.4.1 Solar Panels	5-13
	5.4.2 Drive Mechanism .	5-14
	5.5 SUBSYSTEMS INSTALLATION	5-14
	5.6 ACCESSIBILITY AND SERVICING PROVISIONS	5-21
	5.7 MASS PROPERTIES	5-21
	5.8 SUBSYSTEM INTEGRATION	5-21
6.0	ATTITUDE STABILIZATION AND CONTROL SUBSYSTEM (ASCS) .	6-1
	6.1 PERFORMANCE REQUIREMENTS	<i>(</i>)
	6.2 DISTURBANCE TOROUFS AND MOMENTUM STORAGE	0-1
	REQUIREMENTS	6.0
	6.2.1 Solar Pressure Torques	()
	6.2.2 Antenne Gimballing Disturbances	0-3
	6.2.3 Momentum Storage Requirements	0-8
	6.3 SYSTEM MECHANIZATION TRADE CTUDIEC	6-8
	6.3 1 Transfer Orbit and Deplement Bi	6-13
	6.3.2 Op-Orbit Phase Terror and Deployment Phase .	6-13
	Momentum Storeno Sub-units mult	<
	6.3.3 Attitudo Determination of	6-15
	Trades	6 00
	6.4 BASELINE SYSTEM DESCRIPTION	6-22
	6.4.1 Spin Stabilized Control Main	0-25
	6 4 2 Three-Avia Stabilized Control Mode	6-25
	6.5 APS Performance Requirements	b-30
	6.5.1 Propellent Popularity	6-33
	6.5.2 Thruster Performents	6-33
	6.5.3 Penetien let 2-161	6-36
	G.J.J REACTION JET COnfiguration.	6-39

.

SD 72-SA-0133

-

Page

7-1

	7-1	APS REQUI	REMENTS AND CRI	TERIA				7-1
	7-2	ANALYSIS	AND TRADE STUDI	ES				7-2
	7-3	SUBSYSTEM	DESIGN			•	•	7-7
		7.3.1	Description	•	• •	•	•	7_7
		7.3.2	Performance	•	•••	•	•	7-7
	7-4	DESIGN CC	NSIDERATIONS	•	•••	•	•	7-0
		7.4.1	Operating Life	•	• •	•	•	7 16
		7.4.2	Thrust Vector	Alienmer	•••	•	•	7-10
		7.4.3	Performance Ve	witiout: urrRiimei	ille e form	•	٠	7-17
	7-5	APOCEE MO	Terrormance ve	LILICAL.		•	•	·/-+1/
	, ,	A OUL NO	· · ·	• •	•••	•	•	/-1/
8.0	ELECTRI	CAL POWER	SUBSYSTEM (EPS)	• •	•	•	•	8-1
	8.1	EPS SUMMA	RY					8_1
		8.1.1	Alternative Co	ncente .	•	•	•	0-1
		812	Requirements	acepts.	•	•	٠	0-5
		813	FDS Decorintia	•••	•	•	•	0-10
	8 2	DDTMADV D	OWER CENERATION		• •	•	•	8-13
	0.2	0 7 1	Color GENERALION	ASSEMBL	.х.,	•	٠	8-15
		0.2.1	Solar Array F	unction	and			• • • •
		0 1 1	Description	• •	•	•	•	8-15
		0.2.2	Solar Array As	sembly (haracte:	risti	cs.	8-18
		0.2.3	Operational Con	nstraint	s and			
	0 0		Growth Conside:	rations	• -	•	•	8-20
	0.3	ENERGY ST	ORAGE ASSEMBLY	• •	•	•	•	8 - 22
		8.3.1	Function and De	escripti	.on ,	•	•	8 –22
		8.3.2	Assembly Chara	cteristi	.cs .	•	•	8-24
		8.3.3	Growth Conside	rations	٠	٠	٠	8-26
	8.4	POWER CON	DITIONING ASSEMI	BLY				9_ 76
		8.4.1	Function and De	ecrinti	•	•	•	0-20
		8.4.2	Power Condition	-der -per	, in the second	•	•	0-20
			Assembly Chara	torioti				0 00
		8.4.3	Operational Con	etroint	a and	•	•	8-28
		01410	Growth Consider	istiane	s and			• • •
	8.5	DISTRIBUT	ION CONTROL AND	ALIONS	ACCEMPT	• v	•	8-30
	0,5	8 5 1	Function and D	/ WIKING	ASSEMBI	JY.	•	8-31
		852	Association and De	scripti	on .	•	•	8-31
	9 4	C.J.Z	ASSEMDLY CADADA	teristi	CS .	•	•	8-31
	Q+O	VOTCE TDAY	BATTERY CAPABIL	ITY OF	TDRS			
		VOICE IRA	• • • • • •	• •	•	٠	•	8-33
		• • •						
9.0	THERMAL	CONTROL	••••	•. •	•	•	•	9-1
	9.1	REQUIREME	NTS					9_1
		9.1.1	Mission Require	ements	•	•	•	Q_1
		9.1.2	Heat Rejection	Loade	•	•	•	9_1 9_1
		9.1.3	Temperature I.1	nits	•	•	•	0-1
		9.1.4	Design Constra	ints and	• Proble	• n <u>A</u> mo	•	0 /
				anteo antu	TTOUTH	u AĽCi	ab.	274

.

Section

7.0

.

,

PROPULSION SYSTEM .

٦

Page

9-7 9-7 9-10 9-13 9-13 9-15 9-15

9-15 9-16 9-16 9-18 9-22 9-22 9-23 9-23

10 - 1

10-1 10-2 10-5 10-5 10-13 10-13 10-13 10-15 10-15

10-18 10-24

11-1

11-1 11-1 11~5

11-7 11-7 11-15 11-19

12 - 1

12-1

Section	•						
	9.2	SYSTEM DESCRIPTION					
		9.2.1 Louver Radiator	•	•	•	•	•
		9.2.2 Multilaver Insul	• ation	•	٠	•	•
		9.2.3 Thermal Control	Coost	. .	•	•	•
		9.2.4 Equipment Company	Coati	ngs	•	٠	•
	9.3	ALTERNATE CONCEPTS	lent r	lacer	nent	•	•
	•••	9.3.1 Bassive Decis	•	•	•	•	•
		9 3 2 Verichle Content	•	•	•	•	٠
		Paddata	ance	Heat	Pipe		
	94	SUBSYSTEM THEDRAL CONTROL	•	•	•	•	•
	2.7	0 / 1 ADO	•	•	•	•	•
		2.4.1 APS	•	. .	•		•
		9.4.2 Solar Array Pane	1	•	•	•	
		9.4.3 Antennas .	•	•	•	•	
		9.4.4 Apogee Motor	•	•	•	•	
		9.4.5 Excess Power Dis	sipat.	ion	•	•	
	9.5	SYSTEM DEFINITION .	•	•	•		
						-	•
10.0	RELIABI	LITY	•				
		•		-	-	•	•
	10,1	DEFINITIONS		_			
	10.2	RELIABILITY GOALS AND CRITI	ERTA .	•	•	•	•
	10.3	SUBSYSTEM ANALYSTS		•	•	•	•
	-	10.3.1 Telecommunication	• •	•	•	•	•
		10.3.2 Structure and Mod	ah an du	•	•	•	•
		10.3.3 Attitude Control	cnanic	28	•	•	•
		10.3 / Auxilians Draw 1			•	•	•
	·	10.3.5 Flootnigel Ber	sion s	subsy	stem	(APS).
		10.3.5 Electrical Power		•	•	•	•
	10 /	SINCLE EATLUDE DOINT CONTROL		•	•	•	•
	10.4	SINGLE FAILURE POINT SUMMAP	RY.	1	•	•	•
	10.2	RELIABILITY PROGRAM FOR IMP	PLEMEN	TATI	ON PH	IASE	•
		VOLUME V					
11.0	USER SP	ACECRAFT IMPACT		•		•	•
	11.1	USER SPACECRAFT TRANSPONDED	R CON	CEPTS	3		
		AND TRADES					
		11.1.1 LDR Transponder	•	•	•		•
		11.1.2 MDR Transponder	•	•	•	1	•
	11.2	USER SPACECRAFT TRANSPONDED	R MECI	• 4 4 1 1 7	ለጥተረጉ	י ז	•
		11.2.1 LDR Transponder	K MEG	1.2211 1.2.	ALION	N	•
		11.2.2 MDP Transponder	•	•	•		•
	11.3	CONCLUSIONS	•	•	•		•
			•	•	•		•
12.0	TDRS GR	DUND STATION DESIGN	•	•	· •	•	•
	12.1	REQUIREMENTS AND CONSTRAINT	TS				
		12.1.1 Unlink Requirem	ente ·	• and C	'onets	, roint	•
		12.1.2 Downlink Require	ement	s and	, una el		

•

.

12-1 Downlink Requirements and Constraints . . . 12-3 ٠ .

Section	•			Page
	12.2	TDRS GROUND STATION	•	12-4
		12.2.1 TDRS GS Antenna Subsystem .	•	12-4
		12.2.2 Antenna Site Analysis	•	12-5
	12.3	ANTENNA SITE ISOLATION ANALYSIS	•	12-6
	12.4	Ku-BAND GROUND STATION ANTENNA	•	12-6
		12.4.1 TDRS Ground Station Receiver		
		Front End		12-8
		12.4.2 TDRS Ground Station FM		
		Demodulator and Demultiplexer.	•	12-8
		12.4.3 TDRS Ground Station LDR		
		Processing	•	12-9
		12.4.4 TDRS Ground RF Transmitter .	•	12-9
		12.4.5 TDRS Ground Station		
		FDM Multiplexing	•	12-9
		12.4.6 TDRS Ground Station		
		Frequency Source		12-10
		12.4.7 TDRS Ground Link Backup Mode .	۵	12-10
	12.5	DESIGN CONSIDERATIONS		12-11
		12.5.1 Signal Categories	•	12-11
		12.5.2 LDR Command/Tracking (Uplink).		12-11
		12.5.3 LDR Telemetry		12-13
		12.5.4 LDR/MDR Tracking (Downlink) .		12-13
		12.5.5 MDR Command (P/BU)/Uplink Voice		
		(P/BU)/Tracking		12-13
		12.5.6 MDR Telemetry (P/BU)		12-14
		12.5.7 TDRS Order Wire	•	12-14
		12.5.9 MDP Dormlink Voice (D/BU)		
		(Manned Maar)		10 17
		12 5 9 TDRS Command/Tracking (P/RII)	•	12-17
		12.5.0 TDRS Telemetry (P/BU)	•	12 17
		12.5.11 TDRS Tracking (Downlink) (P/NI)	•	12-17
		12.5.12 Ground Station/Network	•	.12-17
		Communications		1210
	12.6	CONCEPT DESCRIPTION	•	12-19
	1	12.6.1 LDB Command/Tracking (Unlink)	•	12-19
		12.6.2 LDR Telemetry	•	12-20
		12.6.3 LDR/MDR Tracking (Downlink)	•	12-20
		12.6.4 MDR Command (P/BU)/Unlink Voice	•	16-61
		(P/RU) Tracking		17_71
		12.6.5 MDR Telemetry (P/BU)	•	12-21
		12.6.6 TDRS Order Wire	•	12-21
		12.6.7 MDR Downlink Voice (P/BU)	•	16-22
		(Manned User)		12-22
		12.6.8 TDRS Command/Tracking (P/BU)	•	12-22
		12.6.9 TDRS Telemetry (P/BU)	•	12-23
		12,6,10 TDRS Tracking (Downlink) (P/RI)	•	12-23
		12.6.11 Ground Station/Network	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Communications .		12-23
		12.6.12 Demodulation Tracking Unit	-	12-23
		12.6.13 Modulation Unit	-	12-25
		12.6.14 Control and Monitor Subsystem.	-	12-26
	12.7	CONCLUSIONS AND RECOMMENDATIONS	•	12-31

SD 72-SA-0133

~

VOLUME VI

Section					•					Page
13.0	COSTI	NG .								12_1
	13.1	INTRODU	CTION	-	• •	•	•	•	•	10 1
		13.1.1	Cost Anal	veie	•	•	•	•	•	13-1
		13 1 2	TDEC Dro	.9513	Cost R	• 	•	•	•	13-1
		13.1.2	IDROG FIG	gram	UOSE E	stimai	tes.	•	•	13-1
	13.2	TDRSS B	ASELINE DE	SCRIP	TION	•	•	•		13-3
		13.2.1	TDRSS Ope	ratio	nal Co	ncept				13-3
		13.2.2	TDRS Desi	gn Co	ncept	•				13-5
		13.2.3	TDRS Tech	nical	Chara	cteris	stics	•	•	13-5
	13.3	TDRSS CO	OSTING REO	UTREM	FNTS		., ,			17 5
		13.3.1	Costine G	round	Puloa	•	•	•	•	10 5
		13 3 2	Costing U		. Kules	•	•	•	٠	13-5
		13 3 3	Costing w	OIK D	геакао	wn sti	ucture	•	٠	13-9
		19,9,9	schedules	•	•	•	•	•	•	13-10
	13.4	SPACECR	AFT COST A	NALYS	IS.	•	•			13-14
		13.4.1	Cost Meth	odolo	gy.	•	•			13-14
		13.4.2	Alternate	Cost	Model	s Desc	ription			13-15
		13.4.3	TDRS Cost	Esti	mates	Based	on Alte	rnate	-	
	*		Cost Mo	dels	•	•	•	•	. •	13-17
		13.4.4	Selected	TDRS	Cost M	odels	•	•	•	13-19
	GLOSS.	ARY .		•	•	•	•	•	•	13–25
	APPEN	DIX 13A.	SAMSO/NR	NORM	ALIZED	COST	MODEL		•	13A-1

VOLUME VII

-

14.0	TELECO	MMUNICA	TIONS	SYSTEM	i SUMM	ARY					14-1
	14.1	INTRODU	CTION	•	•	•	•		•	•	14-1
	14.2	SYSTEM 14.2.1 14.2.2 14.2.3	SERVIC LDR H LDR H MDR I	CE AND Return Forward Link Pe	PERFOI Link l Link rforma	RMANCE ance	SUMM.	ARY	• • •	•	14-4 14-4 14-6 14-8

Se	С	t	1	on
~~~	~			MALE.

P	a	g	e
-	_	-	_

ī,

14.3	LINK BUDGET		14-12
	14.3.1 LDR Return Link Budget .		14-12
	14.3.2 LDR Forward Link Budget.	•	14-14
	14.3.3 MDR Return Link Budget	•	14-14
	14.3.4 MDR Forward Link Budget.	•	14-17
	14.3.5 TDRS/GS Return Link Budget		14-17
	14.3.6 TDRS/GS Forward Link Budget .	•	14-20
	14.3.7 Tracking/Order Wire	•	14-24
	14.3.8 Ku-Band Beacon	•	14-24
14.4	SUBSYSTEM TERMINAL CHARACTERISTICS		14-24
	14.4.1 TDRS Telecommunication Subsystem		14-24 14-24
	14.4.2 User Transponder Design.	-	14-26
	14.4.3 Ground Station Terminal Characteristics	•	14-33

î,



## ILLUSTRATIONS

Figure		Page
14-1	Components of the TDRS Telecommunication System	. 14-1
14-2	LDR Return Link Performance Achievable Bit Rate,	
	Range Error, and Range Rate Error	• 14-5
14-3	LDR Forward Link Performance Achievable Data Rate;	
	Range Error and Range Rate Error	• 14-7
14-4	MDR Return Link Performance	• 14-7
14-5	MDR Forward Link Performance	14-10
14-6	System Noise Temperature Vs Noise Temperature	11 10
	of Parametric Amplifier	• 14-19
14-7	CNR Calculation in TDRS/GS Forward Link	14-22
14-8	Telecommunications Subsystem Block Diagram	14-27
14-9	LDR Transponder	. 1/_31
14-10	MDR Transponder	- 14-J1
14-11	Cround Station	• <u>14-31</u>
⊥⊸⊥⊥⊥		• 14-35

## TABLES

14-1	Telecommunications Service Requirements
14-2	System Frequency Plan
14-3	LDR - Return Link Budget
14-4	LDR - Forward Link Budget at UHF
14-5	MDR Return Link Budget (S-Band)
14-6	MDR Return Link Budget (Ku-Band)
14-7	MDR Forward Link Budget
14-8	TDRS-to-Ground Station Return Link Budget
14-9	Ground Station-to-TDRS Forward Link Budget
14-10	TDRS Tracking/Order Wire Transponder and Ku-Band
	Beacon Link Budgets
14-11	Telecommunication Transponder Characteristics
14-12	Telecommunication Subsystem Size, Weight, and
	Power Summary
14-13	Ground Station Telecommunications Characteristics

ċ

xiv

Table

Page

.



#### 14.0 SUMMARY OF THE TDRS TELECOMMUNICATION SYSTEM

#### 14.1 INTRODUCTION

This volume summarizes the baseline TDRSS Telecommunication System including the TDR Satellite Telecommunication Subsystem, User Spacecraft Terminal, and the Ground Based Terminal as illustrated in Figure 14-1. Detailed analysis and description of the Telecommunication Subsystem is included in Volume III, and User Spacecraft Impact and the Ground Station are combined in Volume V of this Part I Final Report. The topics covered are:

- System Service and Performance Summary showing the link support, modes of operation, and link performance to the Low Data Rate and Medium Data Rate User Spacecraft.
- Link Budget Calculation to show a typical computation for each space-tospace and space-to-ground link including the assumptions used in each calculation.
- Summary of subsystem terminal characteristics including the Spaceborne Telecommunication System, User Spacecraft Terminal, and Ground Station.

The overall telecommunications service requirements are shown in Table 14-1, and the overall working frequency plan is shown in Table 14-2.



Figure 14-1. Components of the TDRS Telecommunication System (Typical = One TDRS Satellite)

Description	LDR User	MDR User	Manned User (Shuttle)
Number of users	Forward: Minimum of 1 Return: 20	Minimum of 1	Minimum of 1
Frequency	Forward: VHF, UHF, S-band Return: VHF	S- or X- or Ku-band	S-band, VHF-band
Communications requirement	Forward: 100 to 1000 bps	Forward: 100 to 1000 bps	Forward: 2 kbps 1 or 2 voice at 19.2 kbps
	Return: 1 to 10 kbps	Return: 10 to 1000 kbps	Return: 76.8 kbps 1 or 2 voice at 19.2 kbps
Constraints	Linear transponder in return link	Linear TDRS transponder return link	'User antenna gain = +3 dB
	High RFI	Variable frequency	BER Voice: 10-3 Data: 10 ⁻⁴
	Flux density (IRAC): VHF $\leq$ -144 dBw/m ² /4 khz UHF $\leq$ -150 dBw/m ² /4 khz S-band $\leq$ -154 dBw/m ² / 4 khz	'Flux density (IRAC): S-band $\leq$ -154 dBw/m ² /4 khz X-band $\leq$ -150 dBw/m ² /4 khz Ku-band $\leq$ -152 dBw/m ² / 4 khz	•User transmit power = 16 dBw
	'EIRP = +30 dBw/channel (VHF, UHF)	$BER = 10^{-5}$	
	= +41 dBw/channel(S)		
	$.BER = 10^{-5}$		

# Table 14-1. Telecommunications Service Requirements (as per SOW)

14-2

SD 72-SA-0133

Space Division North American Rockwell



	Links	Frequency	Channel Bandwidth
	• LDR	400.5 to 401.5 MHz	1 MHz 4 - 250 Khz channels
ırd Link	• MDR S-band Ku-band	2025 to 2120 MHz 14.6 to 15.2 GHz	95 MHz channel 4 - 100 MHz channels
Forwa	• TDRS/GS Ku-band VHF S-band	13.4 to 13.64 GHz 148.26 MHz 2200 to 2290 MHz	240 MHz 90 MHz
	• Tracking/Order Wire	2066 MHz	
	• Ku Beacon	15.0 GHz	
	• LDR	136 to 138 MHz	2 MHz (20 users multiple accessed/TDRS)
Link	• MDR S-band	2200 to 2300 MHz	20-10 MHz slots in 5 MHz steps or 100 MHz
птп	• Ku-band	13.6 to 14.0 GHz	4-100 MHz channels
Ret	• TDRS/GS Ku-band VHF S-band	14.6 to 15.2 GHz 136.11 MHz 2025 to 2110 MHz	200 or 600 MHz channel 85 MHz
	• Tracking/Order Wire	2249 MHz	

Table 14-2. System Frequency Plan

,

,



### 14.2 SYSTEM SERVICE AND PERFORMANCE

#### 14.2.1 LDR Return Link

The Adaptive Ground Implemented Phased Array (AGIPA) is the primary mode with F-FOV approach as a back-up for LDR return link functions. This approach provides multiple access support to twenty simultaneous LDR users per TDR satellite. The service characteristics are:

Function	AGIPA Mode	F-FOV Mode
• Telemetry Data No RFI -160 dBm/Hz	13.7 - 20 kbps 5.61 - 16 kbps	4.8 kbps 0.9 kbps
• Voice No RFI -160 dBm/Hz	Yes Yes	Yes No
• Range Error No RFI meter -160 dBm/Hz meter	0.91 - 0.76 1.45 - 0.909	1.2
• Range Error No RFI cm/sec -160 dBm/Hz cm/sec	0.99 - 0.623 0.56 - 0.47	0.8 1.2

Figure 14-2 presents the LDR return link performance as a function of RFI level. The assumptions used in calculating the curves are:

AGIPA Mode	F-FOV Mode
∆. PSK	∆ PSK
4.0	4.0
-169.3 -0.5	-173.1 -0.5
16.8	16.8
30.2	30.2
-1.0	-1.0
4.7	4.7
9.9	9.9
48.8	48.8
5 -18	
	AGIPA Mode △ PSK 4.0 -169.3 -0.5 16.8 30.2 -1.0 4.7 9.9 48.8 5 -18

Note: 1. Improvement in signal-to-interference ratio as compared to F-FOV was determined in a RFI model analysis in study.





Figure 14-2. LDR Return Link Performance Achievable Bit Kate, Range Error, and Range Rate Error



#### 14.2.2 LDR Forward Link

An electronically steered array provides a high gain beam for each of two channels. Alternatively one element can be used to provide a beam covering the entire thirty-one degrees (0.54 rad) field of view (F-FOV mode). The configuration supports: (1) two simultaneous users in steered array mode, or (2) one user in steered array mode and one user in F-FOV mode. The service characteristics are:

Function	Steered Array M <b>ode</b> (+30 dBw)	F-FOV Mode (+24 dBw)
Command Data No RFI -160 dBm/Hz	2100 bps 179 bps	650 bps 42 bps
Voice No RFI -160 dBm/Hz	Yes Yes	Yes Yes
Range Error No RFI meter -160 dBm/Hz meter	4.2 13.2	7.5 26.1
Range Rate Error No RFI cm/sec -160 dBm/Hz cm/sec	0.4 0.6	0.72 1.13

Figure 14-3 presents the LDR forward link performance as a function of RFI. The assumptions used in calculating the curves are:

	Steered Array Mode	F-FOV Mode
Modulation	$\triangle$ PSK	Δ PSK
EIRP at 31°(.54 rad) FOV, dBw Data Voice	30 36	24 24
Losses-Space & Scan, dB -Polarization, dB	-178.1 -3.0	-178.1 -3.0
User Antenna Gain, dBi Unmanned Manned	-3.0 0	-3.0 0
System Noise Temp., dB	26.8	26.8
$\Delta$ CNR Degradation, dB	-0.25	-0.25
Design Margin, dB Data Voice	3.0 11.2	3.0 1.1
$E_{b}/N_{o}$ for data, dB	9.9	9.9
C/N _o for voice, dB/Hz	48.8	48.8





Figure 14-3. LDR Forward Link Performance Achievable Data Rate, Range Error, and Range Rate Error



14.2.3 MDR Link Performance

I

The MDR transponder on the TDRS provides dual frequency operation in both the forward and return links. S-band is provided to support current users with minimum impact. Ku-band is provided to support future high performance users. The RF interface with the MDR users is provided by two 6.5 feet (2 m) dishes to simultaneously support two S-band users, two Ku-band users, or S-band and one Ku-band user.

Space Shuttle support is provided by the MDR transponders with the following capabilities:

	Forward link	One data link at 2 kbps
		One data link at 2 kpbs plus one voice link at 19.2 kbps
		One data link at 2 kbps plus two voice links each at 19.2 kbps
	Return link	One data link at 76.8 kbps
		One data link at 76.8 kbps plus one voice link at 19.2 kbps
		One data link at 76.8 kbps plus two voice links each at 19.2 kbps
The	capability for scient	ific user support (Spec MDR) is:
	Forward link data rate	1000 bps (S or Ku~band)
	Return link data rate	10 kbps with 7 dBw EIRP at S- or Ku-band 1 MBps with 27 dBw EIRP at S- or Ku-band

Figures 14-4 and 14-5 present the MDR return and forward link performance as a function of user S/C ERP and antenna gain respectively. The assumptions used in calculating the curves are:





Figure 14-4. MDR Return Link Performance





Figure 14-5. MDR Forward Link Performance

14-10



	Item	Spec S-Band MDR User	Manned MDR User	Spec Ku-Band MDR User
	TDRS EIRP, dBw	41.0	41.0/47.0(4)	45.8
	Space loss, dB	192.0	192.0	208.1
NK	Other losses (1) dB	1.1	1.1	1.1
ARD LI	User antenna gain, dBi	Gu	3.0	G _u
FORM	User system noise temp., dB	29,1	27.3 (2)	33.5 (3)
	Design margin, dB	3.0	3.0	3.0
	C/N _o available dB/Hz	44.4+G _u	49.2/55.2	28.7 + G _u
	temp. (5), dB	26.2	26.2	26.2
К	Space loss (5) dB	191.1	191.1	191.1
LIN	Other losses (1) dB	1.6	1.1	1.1
IRN	FEC coding gain (6)	4.7	4.7	4.7
ΈTI	Design margin, dB	3.0	3.0	3.0
F	TDRS antenna gain, dBi	30.9	30.9	30.9

- (1) Combined polarization, pointing and  $\Delta$  CNR degradation
- (2) Uncoded paramp
- (3) Tunnel diode amplifier
- (4) 6 dB increased EIRP for voice mode
- (5) Values selected at a point where the product of loss and system temperature maximizes.
- (6) Forward error control (R = 1/2, K = 7 convolutional code; Viterbi decoder).



#### 14.3 LINK BUDGET

#### 14.3.1 LDR Return Link Budget

The LDR return link operates in the 136-138 MHz VHF band, and uses an adaptive process called AGIPA in its primary mode, and F-FOV as a backup mode. The link performance was calculated as shown in Table 14-3 using the following expression to compute the achievable data rate (H):

$$H = \frac{P_{u} (FEC)}{CNR \left[ N_{i} + \frac{1}{\Delta SIR} \left( RFL_{o} + M_{o} + D_{o} \right) \right]}$$
(1)

Where:

CNR = required CNR

N_i = input thermal noise density at TDRS

 $P_u = (EIRP)_{User} \times G_{TDRS} \times L_T = received user power at TDRS$ 

 $L_t$  = all losses including space, polarization, and scan

FEC = forward error control

 $\triangle$  SIR = improvement in signal-to-interference ratio provided by AGIPA

RFI_o = unintentional interference signal power density

M_O = intentional multipath interference signal from desired and other in-band LDR users

$$= \frac{1}{CR} \left\{ K \left[ \frac{4 P_u}{5c} + \frac{n-1}{20} \times R \times P_u \right] \right\}$$

CR = PN chip rate

- K = an attenuation factor proportional to the reflection coefficient = 1.0
- n = the number of users/channel = 20
- R = the ratio of average multipath contribution of other users to the desired signal power ( $\approx 7$  dB for the 1976 user s/c distribution)
  - = 2h/300; h = user altitude = 300 km (worst case for multipath)

 $D_0$  = intentional direct interference signal from other in-band LDR users

$$=$$
 (n-1) P_u/CR

The sample link calculation was computed for an  $RFI_0$  of - 160 dBm/Hz, and user EIRP of + 4 dBw. The  $\triangle$  SIR improvement is a minimum value based on results of an RFI model analysis conducted during the study.

The calculation shows that even in the relatively large RFI environment of -160 dBm/Hz that AGIPA (with minimum adaptive processing gain) provides over 5 kbps of data, and/or voice with considerable margin. The F-FOV mode can support approximately 1 kbps of data but requires higher EIRP to support voice.



		AGIPA	Mode	F-FC	V Mode
		Data	Voice ⁽¹⁾	Data	Voice(1)
Modulation		∆psk	₫PSK	₽DSK	⊿PSK
User EIRP	dBw	4.0	7.0(2)	4.0	7,0 ⁽²⁾
TDRS a <b>nt</b> enna gain (peak)	dBi	16.8	16.8	16.8	16,8
Losses - space + scan(7)	dB	-169.3	-169.3	-173.1	-173.1
- polarization	dB	- 0,5	- 0.5	- 0.5	- 0.5
Received power	dBw	-149.0	-146.0	-152,8	-149.8
System noise temperature	dB	30.2	30, 2	30,2	30.2
Noise density - thermal multipath Other direct signal RFI _O Total noise density	dBw/Hz dBw/Hz dBw/Hz dBw/Hz dBw/Hz	-198.4 -200.7 -196.7 -190.0 -188.4	-198.4 -200.7 -196.7 -190.0 -188.4	-198.4 -200.7 -196.7 -190.0 -188.4	-198.4 -200.7 -196.7 -190.0 -188.4
TDRS ACNR degradation(3)	dB	-1,0	-1.0	-1.0	-1.0
C/N.	dB-Hz	38.4	41,4	34.6	37.6
FEC coding gain(5)	$\mathrm{dB}$	4.7	4.7	4.7	4.7
Available C/N _o (w/o AGIPA process gain) E _b /No ⁽⁶⁾	dB-Hz	43. l 9. 9	46.1 	39.3 9.9	42 <b>.</b> 3 
AGIPA process gain ⁽⁴⁾	dB	4. 3(9)	4.3(9)		
Achievable bit rate	dB bps	37.5 5610		 871	
Required C/N _o for voice	dB-Hz		48.8	<b></b> .	48.8
Design margin	dB		1.6		-6.5(10)

#### Table 14-3. LDR - Return Link Budget

#### NOTES

- 1. Voice is delta modulated, 19.2 kbps at  $P_e = 10^{-3}$  and requires a C/N₀ of 48.8 dB-Hz.
- 2. Manned user assumed to have directional antenna with 0 dBi gain.
- 3. A CNR degradation ( $\Delta$ CNR) of 1.0 dB assumed for the TDRS transponder.
- 4. Worst case AGIPA processing gain included. Actual AGIPA performance in RFI model has shown 5 to 18 dB signal-to-interference ratio improvement over F-FOV approach.
- 5. Coding gain achieved with Forward Error Control (FEC) using Rate 1/2 constraint length 7 with a Viterbi decoder.
- 6.  $E_b/N_o = 9.9$  for  $\triangle PSK$  at  $P_e = 10^{-5}$ .
- 7. Worst case combination of space and scan losses since they do not maximize at the same spacecraft aspect angle.
- 8. Chip rate (CR) =  $10^6$  bps.
- 9. AGIPA processing gain of 6.5 dB as compared to F-FOV approach, or 4.3 dB is compared to nonadaptive AGIPA.
- 10. For equivalent performance as AGIPA, the EIRP must be increased (7.0 + 6.5 + 1.6) to 15.1 dBw or 32.4 watts.

## Space Division North American Rockwell

#### 14.3.2 LDR Forward Link Budget

The LDR Forward Link operates in the 400.5 - 401.5 MHz UHF band, and provides two forward channels for voice and/or data. Both channels can operate in a high gain steerable beam mode, or one channel can be operated in a low gain F-FOV mode. Sample link calculations have been made, as shown in Table 14-4, for both data and voice transmissions in both steerable beam and F-FOV modes, using the following expression for command data rate (H):

$$H = \frac{P_{u}}{CNR \left\{ N_{i} + RFI_{o} + \frac{1}{CR} \left[ \frac{4 P_{u}}{cR} \right] \right\}}$$
(2)

where the parameters are as defined for equation (1).

In the calculation, the worst case combination of the space loss and scan loss have been used, since the individual worst cases do not occur simultaneously.

The link calculation shows that in the presence of -160 dBm/Hz RFI environment that peak command data of 272 bps and 76.8 bps can be supported in the steerable beam and F-FOV modes, respectively. Voice can be supported in the AGIPA mode with over 10 dB margin, but will require forward error control coding gain of 4.4 dB in the F-FOV mode to provide a margin of 3 dB.

14.3.3 MDR Return Link Budgets.

The MDR return link power budgets for S-band (spec user and manned user) and Ku-band are presented in Tables 14-5 and 14-6, respectively. The objective here is to develop an estimate for the required user EIRP for various levels of mission support. To compute the EIRP required, the following equation was used:  $EIRP_{required} = \left(\frac{C}{N_0}\right)_{required} + Boltzmanns Const. (-228.6 \frac{dBw}{o_{K} - Hz}) + TDRS System$ Noise Temperature + Path Loss + Other Losses - TDRS Antenna Gain + Forward Error Control + Design Margin.

The required  $(\overline{N_0})$  is based on the type of service and performance desired over the link. The values for TDRS system temperature and path loss were chosen for the point where their combined effect is maximum. Other losses referred to are the combination of pointing, polarization and TDRS  $\Delta$  CNR degradation. A forward error control coding gain of 4.7 dB was added to the link budget so that the system will have maximum return link performance with minimum impact on the user EIRP requirements.

With the exception of the manned user the transmit power  $P_T$  required is expressed in terms of  $dBw-G_u$ , where  $G_u$  is the user antenna gain. The required  $P_T$  then will decrease as the user antenna gain increases. For example, the 1 Mbps link requires a  $P_T$  of 27.6 dBw-Gu; if the user antenna gain is on the order of 20.7 dBi then  $P_T$  is on the order of 7 dBw or 5 watts. For the manned user  $G_u$  is fixed at 3 dBi, thereby fixing the shuttle required  $P_T$  somewhere between 11.79 and 46.44 dBw depending on the service required.

	Steerable	e Beam Mode	F-FO	V Mode
	Data	Voice ⁽¹⁾	Data	Voice
Modulation Transmitter Power, dBw TDRS Antenna Gain (peak) dBi Transmit Line Losses (2), dB EIRP (peak), dBw Losses - Space & Scan (3), dB - Polarization, dB User Antenna Gain, dBi Received Power, dBw System Noise Temp., dB Noise Density - Thermal, dBw/Hz - RFI, dBw/Hz Total Noise Density, dBw/Hz TDRS △ CNR Degradation (5), dB Available C/No, dB	△ PSK 13.0 21.0 1.0 33.0 -178.1 -3.0 -151.1 26.8 -201.8 -197.8 -190.0 -189.1 -0.25 37.25		<ul> <li>△ PSK</li> <li>13.0</li> <li>15.0</li> <li>1.0</li> <li>27.0</li> <li>-178.1</li> <li>-3.0</li> <li>-3.0</li> <li>-157.1</li> <li>26.8</li> <li>-201.8</li> <li>-197.8</li> <li>-190.0</li> <li>-189.1</li> <li>-0.25</li> <li>31.75</li> </ul>	$\triangle PSK$ 13.0 15.0 1.0 27.0 -178.1 -3.0 0.0(4) -154.1 26.8 -201.8 - (4) - (4) - (4) -201.8 -0.25 47.45
E _b /N _o (6), dB Design Margin, dB Achievable Bit Rate, dB bps Required C/N _o for voice	9.9 3.0 24.35 272.0	10.65 48.8	9.9 3.0 18.85 76.8	-1.35(8) 48.8

Table 14-4. LDR - Forward Link Budget at UHF

Notes: (1) Voice is delta modulated, 19.2 kpbs at Pe =  $10^{-3}$  and requires a C/N_o of 48.8 db-Hz.

- (2) No diplexer required in dual VHF-UHF antenna design.
- (3) Worst case combination of the space loss and scan loss since they do not maximize at the same spacecraft aspect angle.
- (4) For the manned user, a directional antenna providing O dBi gain toward the TDRS satellite has been assumed, and rejecting all interference signals.
- (5) A CNR degradation ( $\triangle$  CNR) of 0.25 dB assumed for the TDRS transponder.

(6) 
$$E_{\rm b}/N_{\rm o} = 9.9$$
 for PSK at Pe =  $10^{-5}$ .

- (7) CR = (Chip Rate) = 167 kcps.
- (8) Total margin must include +1.35 dB plus the desired design margin.





	MDR User			Manr			
Item	10 kbps ¹	1000 kbps 1	Analog TV ²	Data ³ (76.8 kbps)	Data + 1 Voice4	Data + 2 Voice	Analog TV
C/N _o required, dB-Hz FEC coding gain, dB	49.9 4.70	69.9 4.70	87,54	57,59 4,70	58,175 4,70	58.506 4.70	87,54
Path loss ⁷ , dB System temperature 7 dB	45.2	65.2 191.1	87.54 191.1	52,89 191,1	53.47 191.1	53.80 191.1	87.54 191.1
Boltzmann's const, dBW/°K-Hz Pointing loss, dB	-228.6	-228.6	-228.6	26.2 -288.6	26.2 -228.6	26.2 -228.6	26.2 -228.6
Polarization loss, dB Guser, dBi	0.5 G ₁	0.5 Gu	0.1 0.5 Gu	0,1 0,5 3,0	0.1 0.5 3.0	0,1 0,5 3.0	0.1 0.5
GTDRS, dBi ACNR degradation, dB	30.9 1.0	30.9 1.0	30.9 1.0	30.9 0.5	30.9 0.5	30.9 0.5	30,9 0.5
System margin, dB Required FIRP_dBw	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Transmit power ⁸ , dBw	7.6 - G _u	27.6 27.6 - G _u	49.94 49.94-G _u	14.79 11.79	15.37 12.37	15.70 12.7	49.44 46.44

Table 14-5. MDR Return Link Budget (S-Band)

NOTES

1  $\Delta PSK; BER = 10^{-5} (E_b/N_o = 9.9 dB)$ 

2 Commercial quality (S/N)o = 40 dB; BW = 4.5 MHz

3  $\Delta PSK; BER = 10^{-4} (E_b/N_0 = 8.7 dB)$ 

4 Voice is delta modulated at 19.2 kbps; carrier modulation is  $\Delta PSK$  (BER = 10⁻³; C/N₀ = 48.8 dB-Hz)

5 Combine value of data (C/N₀ = 57.59) and one voice (C/N₀ = 48.8)

6 Combine value of data (C/N_o = 57.59) and two voice (C/N_o = 51.8)

7 This value is selected at the point where the product of the path loss and system temperature is maximum

8 Transmit power into antenna

Table 14-6. MDR Return Link Budget (Ku-Band)

ltem	10 kbps ¹	1000 kbps ¹	Analog TV ²
C/N _o required, dB - Hz FEC coding gain, dB Effective C/N _o , dB - Hz Path loss ³ , dB System temperature ³ , dB	49.9 4.7 45.2 208.1 26.7	69.9 4.7 65.2 208.1 26.7	87.54 
Boltzmann's const., dBw/°K - Hz	-228.6	-228.6	-228.6
Pointing loss, dB G _{user} , dB GTDRS, dB ACNR degradation, dB System margin	0.1 G _u 47.1 0.5 3.0	0.1 G _u 47.1 0.5 3.0	0.1 Gu 47.1 0.5 3.0
Required EIRP, dBw	7.9	27.9	50.2

1  $\triangle$  PSK; BER = 10⁻⁵ (E_b/N₀ = 9.9 dB)

2 Commercial quality  $(S/N)_0 = 40 \text{ dB}_7 \text{ BW} = 4.5 \text{ MHz}$ 

3 This value is selected at the point where the product of path loss and system temperature is maximum.



The sensitivity of the system noise temperature  $(T_s)$  to the noise temperature  $(Te_1)$  of the parametric amplifier for the MDR S-Band Receiver was also computed and is shown in Figure 14-6. The expressions used for the curve are:

$$T_{s} = T_{a} + T_{r}$$

$$T_{r} = T_{o} (L_{1}-1) + Te_{1} (L_{1}) + Te_{2} (L_{1})/G_{1} + \dots \dots (3)$$

$$= 116 + 1.4 Te_{1} + 12.6 = 128.6 + 1.4 Te_{1}$$

Where the parameters used in the equation are defined in the block diagram in the same figure. The antenna temperature  $(T_a)$  of 234° K is the worst case temperature as seen by the MDR receiver. For the predicted device temperature of 50° K for the 1974 time period, the resultant system noise temperature is 26.15dB or 410° K. On the other hand if a conservative design employing existing (1972) technology of 100° K is used, the system noise temperature increases by only 0.5 dB.

14.3.4 MDR Forward Link Budgets

The forward link power budgets for the Medium Data Rate user is presented in Table 14-7 for three generic user types; namely, the spec (or scientific) MDR user operating at S-band, the Manned user (Space Shuttle), and the Spec-MDR user operating at K_u-band. In the table, the available carrier-to-noise density ratio  $(C/N_0)$  was computed to assess the overall performance of each. The expression used to compute  $(C/N_0)$  is as follows:

$$\left(\frac{C}{N_0}\right)_{Available} = EIRP - Free Space Loss + User Antenna Gain - (Other Losses* + Boltzmanns Constant(-228.6 dBw)+ User System Noise Temperature)0 K-Hz$$

* Other losses comprise pointing, polarization, and TDRS  $\Delta$  CNR degradation losses.

For the MDR S- and Ku-band Spec user,  $C/N_o$  is in terms of dB-Hz +  $G_u$  (the user antenna gain), implying that any addition of user gain produces a corresponding increase in  $C/N_o$ . For the Spec MDR S-band user, the required maximum forward link support of 1 Kbps can be achieved with a system margin of 8.7 dB +  $G_u$  (dB). Likewise, the Spec MDR Ku-band user can be provided with forward link support of 75 X  $G_u$  bps (i.e., if the MDR user spacecraft carries a Ku-band antenna having a gain of 20 db (100) the forward link data rate which can be supported is 7.5 kbps.)

The manned user link has a C/N_o of 53.4 db-Hz available. As can be seen from the table, forward error control coding is required to support 1 data link (2 kbps) and 2 voice links (each at 19.2 kbps).

14.3.5 TDRS-to-Ground Station Return Link Budget

The TDRS-to-Ground Station return link operates in the 14.6 to 15.2 GHz Ku-band, and must operate in the presence of rain in the earth's atmosphere. This link has a margin of 7.5 dB during normal, clear weather operation, and an additional 10 dB power amplification is provided for operation in rain.

ltem		MDR S-Band User		Manned User (S	pace Shuttle)	MDR Ku-Band User			
Modulation Transmitter power TDRS antenna gain Transmit line losses EIRP	ower d'Bw la gain d'B e losses d'B d'Bw		5 3 0	⊿PSK 12.5/18.5 29.8 1.3 41.0/47.0 ⁷		∆PSK -2.( 48.1 1.0 45.1	D L		
Losses Space Pointing Polarization User antenna gain Received power System noise temperature Thermal noise density TDRS <u>A</u> CNR degradation Available C/N ₀	dB dB dB dBi dBw dB dBw/Hz dB dB-Hz	-192.0 -0.1 -0.5 G _u -151.6 + G _u 29.1 -199.5 -0.25 47.65 + G _u		-192.0 -0.1 -0.5 3.0 -148.6/-142.6 27.3 ¹ -201.3 -0.25 52.45/58.45		-192.0 -0.1 -0.5 3.0 -148.6/-142.6 27.3 ¹ -201.3 -0.25 52.45/58.45		-20 -0. -0. Gu -16 33. -19 -0.1 31	8.1 5 $5^{3.6+G_{u}}$ $5^{5}$ 5.1 $2^{5}$ .25+G _u ⁶
Support Requirements		100 bps ²	1000 bps	-Data ³ Data + 1 Voice ⁴		Data + 2 Voice ⁴	BER = 10 ⁻⁵ (⊿PSK)		
C/N _o required Data rate achievable	dB−Hz bps	29.9	29.9 39.9		49.6 	52.4 	6 68.4 × Gu		
Design margin	dB	17.75 + G _u	7.75 + G _u	10.75	8.85	6.05	3.0		

Table 14-7. MDR Forward Link Budget

- 1
- 2
- Noise temperature with an uncooled paramp. For  $\triangle PSK$  with a BER =  $10^{-5}$  ( $E_b/N_o = 9.9$  dB) Data = 2 kbps  $\triangle PSK$  with BER =  $10^{-4}$  ( $E_b/N_o = 8.7$  dB) 3
- Voice is delta modulated at 19.2 kbps; carrier modulation is  $\Delta PSK$  (BER = 10⁻³; (C/N₀ = 48.8 dB-Hz) 4
- Tunnel diode amplifier 5
- A 1.0 ft (.3 m) antenna at Ku-band provides about 28.5 dB gain (i.e., a factor of about 800) providing an achievable bit rate 6 of about 55 kbps
- Increased EIRP used for voice mode only 7



NOTES



Space Division North American Rockwell



This link is sized for the worst case of transmitting TV to the GS, using FDM/FM. The index of modulation is 0.94 using a phased locked demodulator at the GS.  $\hfill \bullet$ 

The link power budget is computed using the following equation:

$$P_{TDRS} = (CNR_o) (KT_S B) \simeq T_T$$

$$G_{TDRS} = G_{GS}$$

where:

- T_S = system noise temperature, including the antenna and receive thermal temperaturs
- KT_SB = system noise power

GTDRS= three foot (0.91m) aperture at TDRS

 $G_{GS}$  = sixty foot (18.3m) aperture at GS

- ✓ T = total losses including space, pointing, polarization, transmit line (component losses)
- B = RF bandwidth
- $CNR_{O}$  = CNR required for FM

The resultant link budget is shown in Table 14-8, and shows that a TDRS transmitter power of 2.75 watts is required for operation in rain, and 0.275 watt for clear weather operation.

14.3.6 Ground Station-to-TDRS Forward Link Budget

The CNR required for the GS-to-TDRS-to-User link was computed using the tandem link equation to determine the required CNR for the GS-to-TDRS portion of the tandem link using the following equation:

$$CNR_F = \left(CNR_{TDRS} \times CNR_{GS}\right) / \left(CNR_{TDRS} + CNR_{GS} + 1\right)$$

where:

CNR_F = final CNR required CNR_{TDRS} = CNR required in the space-to-space link CNR_{GS} = CNR required in the ground-to-space link

The results of the CNR's computation are shown in Figure 14-7 for the LDR and typical MDR modes, and are used in Table 14-9 to compute the TDRS transmit power requirement for this link. Since the MDR-TV requires the largest transmit power, it has been used to size the transmitter using the following link equation:

$$P_{TDRS} = (CNR_F) (KT_SB) \propto_T$$

$$G_{TDRS} G_{GS}$$



### Table 14-8. TDRS-to-Ground Station Return Link Budget

Modulation	FDM/FM
CNR Required	OdB (1)
RF Bandwidth	600. MHz (2)
GS System Noise Temperature	25.2 dB (3)
Thermal Noise Power	-115.6 dBw
GS Antenna Gain	67.9 dBi (4)
Losses - Space	-208.1 dB
- Pointing	-1.0 dB
- Polarization	-0.5 dB
- Transmit Line/Others	-1.0 dB
Rain Margin	17.5 dB (5)
EIRP Required at TDRS	44.6 dBw
TDRS Antenna Gain	40.3 dBi
TDRS Transmit Power Req'd.	4.3 dBw
	2.75 watt - for rain
	0.275 watt - for clear weather

Notes: (1) FM modulation with modulation index of 0.94 with phase locked demodulator.

(2) For TV transmission.

,

- (3) Two uncooled paramps in cascade each with Te of  $130^{\circ}$ K.
  - $T_s = T_a + (L_1-1)$  To  $+ L_1$  Te  $+ (L_1 Te_2/G_1) + ...$ = 18 + (0.43) 290 + 1.43¹x 130¹ + (1.43 x 130/100) = 329^oK = 25.2 dB
- (4) 18.3 m aperture with 75% efficiency
- (5) Rain margin provides operation in 25 mm/hr rainfall rate.





Figure 14-7. CNR Calculation in TDRS/GS Forward Link

Parameter	LDR Data	LDR Voice	MDR Data	MDR - Shuttle Data + 2 Voice
Modulation	ΔPSK	ΔPSK	ΔPSK	ΔPSK
Data Rate, kbps	1.0	19.2	2.0	115.0
CNR Required (1), dB	7.0	9.0	2 <b>.</b> 0	3.0
RF Bandwidth, MHz	1.0	1.0	100.0	100.0
System Noise Temperature (2), dB	33.6	33.6	33.6	33.6
Thermal Noise Power, dBw	-135.0	-135.0	-115.0	-115.0
TDRS Antenna Gain, dBi	39.6	39.6	39.6	39.6
Losses: Space, dB Pointing, dB Polarization, dB Atmospheric, dB Transmit Line/Others, dB	-207.2 -1.0 -0.5 -0.4 -5.9	-207.2 -1.0 -0.5 -0.4 -5.9	-207.2 -1.0 -0.5 -0.4 -5.9	-207.2 -1.0 -0.5 -0.4 -5.9
Rain Margin (3), db	17.5	17.5	17.5	17.5
EIRP Required, dBw	64.9	66.9	79.9	80.9
GS Antenna Gain (4), dBi	67.0	67.0	67.0	67.0
GS Transmit Power Required, dBw	-2.0	-0.1	12.9	13.9
GS Transmit Power Required, watts	0.63	1.0	19.5	24.5

### Table 14-9. Ground Station-to-TDRS Forward Link Budget

NOTES: (1) See Figure A-7 for the required CNR for the GS/TDRS link.

- (2) Uses mixer front end.
- (3) Rain margin provides operation in 25mm/hr rainfall rate.
- (4) Sixty feet (18.3m) aperture with seventy-five percent efficienty



where:

т _S	#	system noise temperature, including antenna and receive thermal temperature
кт _s в	=	system noise power
GTDRS	=	three foot (0.91m) aperture at TDRS
G _{GS}	=	sixty foot (18.3m) aperture at GS
∽T	-	total losses including space, pointing, polarization, transmit line (component losses)
В	=	RF bandwidth

#### 14.3.7 Tracking/Order Wire Link Budget

The Tracking/Order Wire Transponder operates in the S-band spectrum and provides three associated telecommunication functions, viz:

- Tracking and position location of the TDR satellite using trilateration ranging with two remote GS and the TDRS GS.
- Order wire receiver to establish order of priority access to the S-band MDR channel.
- S-band beacon for S-band MDR users employing steerable antenna

Typical link calculations were made for both forward and return link operations as shown in Table 14-10.

14.3.8 Ku-Band Beacon Link Budget

The Ku-band beacon is used as a source by Ku-band MDR users with steerable antennas to acquire and track the TDRS satellite. This beacon can also be used by the GS as a pilot signal to coherently lock its frequency source, in the event the normal mode where the TDRS locks-on to the GS pilot signal cannot be established. The sample link calculation is shown in Table 14-10 for the TDRS to user case to size the transmitter requirements.

14.4 SUBSYSTEM TERMINAL CHARACTERISTICS

14.4.1 TDRS Telecommunication Subsystem

The TDRS Telecommunication System includes the Telecommunication Service System, and the Tracking, Telemetry and Command (TT&C) System. A functional block diagram of the Telecommunication System is shown in Figure 14-8 and includes:

- LDR Transponder
- MDR #1 Transponder
- MDR #2 Transponder

	Trackin Wire Tra	Ku-Band	
	Forward	Return	Beacon
Transmitter Power, dBw	3.0	$16.0^{(1)}$	1.5
Transmit Antenna Gain, dBi	14.5	3.0(1)	12.0
Transmit Losses, dB	-3.0	-3.0	<del>-</del> 0.5
EIRP, dBw	14.5	$16.0^{(1)}$	13.0
Losses: Space, dB Polarization, dB	-191.0 -1.0	-192.4 -1.0	-208.1 -1.0
Receive Antenna Gain, dBi	43.0	12.0	_{30.0} (5)
Received Power, dBw	-135.0	-165.4	-166.1
Thermal Noise Density, dBw/Hz	-206.8	-201.1	-203.8
System Noise Temperature, dB	21.8	27.5 ⁽²⁾	24.8
TDRS ACNR Degradation, dB	-0.5	-0.5	-
Available C/N _o , dB-Hz	(3) 71.8	35.2	37.7
$E_{\rm b}/N_{\rm o}$ , dB-Hz		9.9	
Design Margin, dB		5.0	5.0
Achievable data rate, dB		20.3	32.7
Achievable data rate, bps		2100.0	

Table 14-10. TDRS Tracking/Order Wire Transponder and Ku-Band Beacon Link Budgets

(1) Assumed Space Shuttle as user. Notes:

(2) Transistor with Te = 360 K
(3) For C/N = 71.8 dB-Hz and a chip duration of 2x10⁻⁶ sec the one way ranging error (ΔR) for the TDRS/GS link is 7x10⁻² meters.

Space Division North American Rockwell

- (4) This is more than adequate to provide order wire service.
- (5) Assumes that a high performance Ku-Band MDR user will have at least 30 dBi antenna gain.



- TDRS/GS Transponder
- Frequency Source
- Tracking/Order Wire Transponder
- Ku-Band Beacon
- TT&C

The major characteristics of the Telecommunication System are shown in Table 14-11, and a size, weight, power summary is shown in Table 14-12.

#### 14.4.2 User Transponder Design

14.4.2.1 LDR Transponder on User S/C

A simplified schematic block diagram of the LDR transponder is shown in Figure 14-9. The receiver is designed to tune to any one of four UHF carrier frequencies used by the two TDRSs. The carrier in the forward link is phase modulated by a 167 Kchip/sec pseudonoise (PN) sequence to discriminate against multipath and to distribute the signal energy radiated from the TDRS to conform to the IRAC requirements. A 1 Mchip/sec PN sequence is used in the return link to permit code division multiple access of 20 LDR users through a common channel in the TDRS with sufficient process gain to achieve a specific level of performance for any one user in the face of nineteen interfering users. The use of PN sequences in both the forward and return links provides a vehicle for deriving range information.

The data is delta PSK modulated with convolutional encoding to save power through error control. The demodulation process in the receiver is rather straightforward. The transmitter, except for the PN modulation, is a standard transmitter configuration.

A preliminary estimate of the size and prime power requirements of the user LDR transmitter and receiver are: transmitter - power. 16 watts; size, 225 in³(3700cc); and receiver - power, 12 watts; size, 195 in³ (3200cc).

The characteristics of the LDR user terminal are summarized in the following:

LDR User Terminal Characteristics

Forward Link	
•Data Rate	100 bps to 1000 bps
•Carrier frequency	400.5 to 401.5 MHz (4 - 250 KHz channels)
• PN Modulation	167 Kchips/sec
•Code Length	Short - 2047 chips Long - Eleven 2047
One DN Cade Sequence	

•One PN Code Sequence To All Users



^{14-27, 14-28} 

Parameter	LDR Transponder	MDR #1 & #2 Transponder	TDRS/GS Transponder
Antenna	Dual Freq. (VHF/UHF) Quad-Array Gain: 15 dBi (VHF) 21 dBi (UHF)	<ul> <li>Dual Freq. 2 meter dish</li> <li>Cassegrain for Ku-band</li> <li>Prime Focus for</li> <li>S-band</li> <li>Gain: %30.2 dBi (S)</li> <li>%48.3 dBi (Ku)</li> </ul>	'Ku−band 0.9 meter dísh 'Gain: %40 dBi
Receiver • Frequency • Type • Bandwidth	<ul> <li>136 - 148 MHz</li> <li>Linear</li> <li>2 MHz/channel x 8 channels</li> </ul>	2.2-2.3 or 13.6-14.00 GHz Linear 20-10 MHz tuneable in 5 MHz steps or 100 MHz wide band at S-band; and 4-100 MHz at Ku-band S-band paramp ( $T_e = 50$ K) + transistor ( $T_e = 360$ K) Ku-band paramp ( $T_e = 100$ K)	<pre>2.2-2.3 or 13.4-13.6 GHz Linear 240 MHz Mixer (NF = 6 dB)</pre>
Transmitter 'Frequency 'Bandwidth 'Transmitter RF Power	<ul> <li>400.5-401.5 MHz</li> <li>1 MHz</li> <li>5 or 20 watts/channel x 8 channel (4 channels per each forward link</li> </ul>	<ul> <li>2.025-2.12 or 14.6-14.8 and 15.0-15.2 GHz</li> <li>95 MHz at S and 4 selectable 100 MHz at Ku</li> <li>S-band: 14 or 56 watts Ku-band: 0.56 watts</li> </ul>	<ul> <li>2.025-2.11 or 14.6-15.2 GHz</li> <li>200 or 600 MHz</li> <li>2.75 or 0.275 watts</li> </ul>

## Table 14-11. Telecommunication Transponder Characteristics

.

Space Division North American Rockwell



Subsystem	S	ıze	Wei	ight	Pov	wer
	in.	em	łb	kg	Peak	Average
LDR						
Receiver (4)	8×7×.5	20.2x17.8x1.27	7.6	3.5		7.93
1.F. Summing Network	4x7x0.5	10,2×17.8×1.27	1,3	0.6		1.14
Transmitter (4)	10x2,62x1,12	25.4x6.7x2.84	4.5	2.0	137.6	34.40
Trans, Divider Network Antenna incl stem unit and support link	10x7.5x2.25	25.4×19.0×5.7	5.1 31.6	2.31 14.35		11.40
Receiver	12x8x4	30.5x20.4x10.2	8,8	4.0	6.2	6.2
Transmitter	6x4,50x10	15.3×11.4×25.4	13.0	5.9		47 5
S-band Kurband					190.0*	47.5
Antenna, incl. support strut			33.96	15.4	24.0	7,0
Receiver	12x8x4	30.5x20.4x10.2	8.8	4.0		6.2
Transmitter	6x3.75x10	15.3x9.5x25.4	11.0	5.0		
S-band					180.4 ¹	45.1
Ku-band		•	22.04	15 4	24.0	13.2
Antenna, incl. support strut			35.96	15.4	24.0	1. ]
TDRS/GS Bassiver	0.5.71	22 9,12 7,10 2	47	2 14		5.25
Typnowitter	7×6 5×4	$17 8 \times 16 5 \times 10 2$	6.0	2.14	49.02	11.0
Antenna	170,044	11.0010.0010.0	1/ 95	6 75	95	11.5
	10,10,2	25 4x25 4x5 1	5.6	2.5		4.8
TTAC	TOXTONE	23. (ALS. (AS. 1	5.0	215		
Processor	6.2x4.5x5.4	15.7×11.4×13.7	9,6	4.4	10.0	10.0
Transceiver	5.5×5.5×2.63	14×14×6.7	4.0	1.8	4.5 ³	0,5
Antenna			3,0	1.36		
TDRS TRACK'G/ORDER WIRE						
Transponder	8x4x0.5	20.3x10.2x1.3	5.4	2.5		7.9
Antenna			0.3	0.1		
Ku-BAND BEACON						
Beacon	4x3x3	10.2x7.62x7.62	3,6	1.6		8.3
Anterna			0.3	0.1		
DC CABLING			13.3	6.04		
RF CABLING	75 feet	(22,9 meters)	4.9	2,2		
WAVEGUIDE			5.0	2.3		
Totals		<u> </u>	240.17	109.4		l
Two MDP/s in S-bawl 256 (					256 0	
One MDR in Ku-band, one in S-band					224.1	
Two MDR's in Ku-band						191.1
NOTES						
The noise waration						
<ol> <li>During rain at ground station, add 10 dB to transmitter power</li> </ol>						

Table 14-12. Telecommunication	Subsystem Size	. Weight.	and Power	Summary
--------------------------------	----------------	-----------	-----------	---------

3 Transmitter (4 watts) not used "on station"







Figure 14-10. MDR Transponder



Return Link

- Data Rate
- Carrier Frequency
- PN Modulation
- Code Length

136 MHz (1 channel)
1 mchip/sec
Short - 2047 chips (gold sequence)
Long - Sixty-six 2047 (gold
 sequences in serial)

100 bps to 10,000 bps

- Unique Code Sequence For Each User (TDRS Access is CDMA)
- The 167 Kchip/sec PN chip rate in the forward link is necessary to distribute the signal energy to conform to IRAC requirements.
- A short PN code is used during the code acquisition phase to limit the maximum acquisition time to 40 sec.
- A long code is switched in after code acquisition to provide unambiguous ranging over a two-way range uncertainty of 40,000 Km.
- A 1 Mchip/sec PN chip rate in the return link is necessary to provide multiple access of 20 users per TDRS with sufficient process gain to meet the required level of performance.
- The return link code configuration is designed to maintain code synchronization with operating at different data rates.

14.4.2.2 MDR Transponder on User S/C

The MDR terminal receiver is a single channel S-band receiver. The carrier in the forward link is modulated by a single 5 Mchip/sec PN sequence during the code acquisition phase to distribute the signal energy radiated from the TDRS to conform to IRAC requirements. During the ranging phase a second PN sequence of 500 Kchip/sec rate is module-2 added to the first. A 500-Kchip/sec PN code generator synchronized to the uplink 500-Kchip/sec code is used to modulate the downlink carrier.

In both manned and unmanned users the data is delta PSK with convolutional encoding for error control. In the manned user case, the data and delta modulated voice can be time division multiplexed to quadraphase multiplexed to form a serial data stream. A simplified schematic diagram of the MDR transponder is shown in Figure 14-10.



A preliminary estimate of the size and prime power requirements for the user MDR transmitter and receiver are: transmitter – power, 33 watts; size, 240 in³ (4000cc) and receiver – power, 12 watts, size 205 in³ (3400cc).

The following is a summary of the characteristics of the MDRU terminal.

MDR User Terminal Characteristics

Forward link

- . Data rate⁽¹⁾ 100 bps to 1000 bps
- . Carrier frequency(1)2025 to 2120 MHz (2 channels). PN modulation5M chips/sec. Code lengthShort: 16,383 chips (gold sequence)
- Long: Forty 16,383 gold sequences in serial
- . PN code sequence' common to both users
- . Ranging code Rate: 500 Kchips/sec; length: 65,535 chips

Return link

- Data rate⁽¹⁾
  Carrier frequency⁽¹⁾
  10 kbps to 1000 kbps
  2200 to 2300 MHz
- . PN modulation is transponded 500 Kchip/sec PN modulation
- . Unique frequency channel for each of 2 users
- (1) Ku-band service operates at a carrier frequency of 14.6 to 15.2 and 13.6 to 14.0 GHz for the forward and return link, respectively; the forward link PN chip rate is on the order of 50 Mcps and the return link data rate is in excess of 1 Mbps.
  - . A 5 Mchip/sec PN chip rate in the forward link is required to distribute the signal energy to conform to the IRAC requirements.
  - . A short code is used during the code acquisition phase to limit the maximum acquisition time to 33 sec.
  - . A long code is switched in after code acquisition to provide unambiguous ranging over a two-way range uncertainty of 40,000 Km.
  - . The ranging code is used to limit the code for ranging purposes while still providing enough resolution to derive the required accuracy.
  - . A 65,535 code length is necessary to provide ambiguous ranging.
  - . The PN modulation in the return link is the 500 Kchip/sec PN code which can be transponded in the user for ranging purposes only.

14.4.3 Ground Station Terminal Characteristics

A functional block diagram of the TDRS Ground Station is shown in Figure 14-11. The components of the ground station telecommunication equipments are: RF front end, AGIPA processor, demodulator/tracking unit, and modulator. Its major characteristics are summarized in Table 14-13.



## Table 4-13. Ground Station Telecommunications Characteristics

RF Front End	
• Antenna (2)	60 Feet (18.3m) parabolic dish, 75% efficient with >70 dB front-to-back ratio
• Receiver (2)	• 600 MHz front end with paramp ( $T_e = 100$ K)
	<pre>Demux - 40 LDR user; 4 MDR users, 2 Tracking and Telemetry, and 2 order wire</pre>
Transmitter (2)	• Mux - 2 LDR, 2 MDR, TDRS Command, pilot
	<pre>Transmit Power = 60 watts/TDRS</pre>
AGIPA Processor	'l processor/LDR user including a mini- computer for each processor
	• Uses PN Code to separate desired from interference signal
	Uses adaptive spatial and polarization information to filter interference signals
Demodulator/Tracking Unit	<ul> <li>Extract NRZ-L bit stream from PN APSK input</li> </ul>
	' Search and synchronize to desired PN code
	• Extract desired telemetry data
	• Extract range data
Modulator	$^{\bullet}$ Convert NRZ-L data stream to $\Delta$ coded PCM, PN coded
	Bi-phase modulate onto appropriate sub- carrier
	<ul> <li>Provide start pulse for the receiver tracking circuit</li> </ul>

Page intentionally left blank

· . . .