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ABSTRACT

The closed form expressions for the stress intensity

factors due to concentrated forces applied to the surfaces

of a half plane crack in an infinite body are used to generate

solutions for distributed loads in this geometry. The stress

intensity factors for uniformly distributed loads applied'"over

a rectangular portion of the crack surface are given in closed

form. An example of non-uniformly distributed loads which

can be treated numerically,is also included. In particular,

combinations of normal and shear stresses on the crack which

simulate the case of loading at an angle to the crack front

are considered. The resulting stress intensity factors are

combined with the strain energy density fracture criterion

for the purpose of predicting the most likely direction of

crack propagation. The critical value, S , of the energy
O

density factor can then be used for determining the allowable

load, on a specimen with a crack front not perpendicular to

the tensile axis.
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INTRODUCTION

As one of the most common types of flaws, the surface

crack has generated a good deal of interest [1]. The extreme

difficulty of treating numerically'the region of intersection

of the crack front with a free surface has been demonstrated

in [2]. Additional, more fundamental, research is indicated

for three-dimensional crack problems so that a better under-

standing of the nature of their exact elasticity solutions

can be obtained. This paper considers some problems which

can be solved exactly and which may contribute to this under-

standing.

. The basic geometry considered is identical to that of the

plane.strain semi-infinite crack problem. In three-dimensions

it is described as a half plane crack in an infinite material.

The body is continuous except for a discontinuity along the

entire half of the xz-plane for which x<0. A three-dimension-

al view of the geometry is given in Figure 1. There are.two

sources for the stress intensity factors due to concentrated

forces on the crack. The solution-for the components P and

Q parallel to the y- and x-axes, respectively (on the upper

crack surface; on the lower surface the directions are oppo-

site those on the upper surface) has been obtained in [3] from

the solution in [4]. The solution for the remaining component,

R, parallel to the z-axis has been given in [5]. The expres-

sions will be,given in the next section.
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As will be seen by examining the solutions, unless the

loads on the crack are normal to the surfaces, there will be

a mixture of the three basic modes of crack deformation. In

this case, the energy release rate approach of the classical

theory of fracture mechanics is no longer applicable since it

is for a crack propagating in a self-similar manner. In order

to apply the results for the stress intensity factors, a frac-

ture criterion proposed in [6], which uses the crack front

strain energy density field, will be used. This criterion

predicts that crack growth will occur in the direction of

minimum strain energy density at a load which produces a cer-

tain critical value of the strain energy density along this

direction. Under predominantly mode I loading, the energy

density associated with volume change along this direction is

found to be greater than that of distortion or change in shape.

The results are qualitatively similar to some which have

been obtained experimentally for a nearly longitudinal shear

loading [?]. That is, they predict that the surface of crack

extension makes an angle with the initial crack front. In

two-dimensional plane problems, the new crack surface always

contains the initial crack front.

Caution should be used in making physical predictions

based on these results. The energy density criterion gives

the expected fracture direction for the current geometry.

Once the crack begins to extend from the most highly stressed

segment of the crack front zone, the geometry, and hence the
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entire solution, is altered. In a recent dissertation [8],

however, there are results which show that for some materials,

the solution based on initial geometry can be used after crack

extension has significantly changed the geometry. Therefore,

it does not seem unlikely that the present results will hold

for some materials and give an explanation for the tilting of

the crack growth relative to the initial crack front.



STRAIN ENERGY DENSITY THEORY

The strain energy density in the neighborhood of the

crack front is given by

d W S
dV = F

where p is the distance from the z-axis, the crack front. The

factor S represents the intensity of the energy density field,

dW/dV. Because of geometric and material uncertainties in

real situations, equation (1) is used only outside of a core

region having a finite radius p = PQ(Z) as shown in Figure 1.

The actual size of this region depends on the crack tip radi-

us and will not be elaborated on here since the present analy-

sis assumes a sharp crack.

The factor S, appearing in equation (1), which is used in

the fracture criterion is related to the stress intensity fac-

tors by

S — a lr 2 _L o a Irlr 4-Q lr 2 .L- a 1/-2 (p \
"~d-i-ii^-i T £ c L - | / 2 ' * * - ~ ] i " - o c i ' O p O ' 3 ' 3 Q \ £- /

The coefficients in equation (2) are dependent on the shear

modulus, vi, Poisson's ratio, v, and the angle e of the usual

cylindrical coordinates (p,e,z) through
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= (l+cose)(3-4v-cose)

= -2sine(l-2v-cos6)

(3)

) - .(l+cose)(l-3cose)

I6ya33 = 4

The fracture criterion based on the strain energy density

concept may be stated as follows [6]:

(1) The crack grows in a direction for which S reaches
•'!

a minimum, i.e.,

|f = 0, f|f > 0 at e = ec (4)

where 9 is the angle between the plane of the orig-c

inal crack and the segment of new crack growth.

(2) The crack growth begins when S reaches a critical

value S , i.e.,
(_*

S(klsk2,k3) = Sc at e = (5)

where S is a material parameter.

Under conditions in which the opening mode of crack de-

formation is predominant, it is found that the portion of the

minimum value of S which is associated with/change of volume
-6-



is larger than the portion due to change of shape. The con-

verse is true of the maximum values of S, which associates

the maxima with the von Mises yield condition of plasticity,

A detailed discussion of this can be found in [9].
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CONCENTRATED LOAD ON THE CRACK

Consider an infinite body containing the half plane crack

shown in Figure 1 with a concentrated force having components

(Q,P,R) acting at the point (-a,0 ,0) of the upper crack sur-

face and a concentrated force (-Q,-P,-R) at point (-a,0~,0)

of the lower crack surface. The stress intensity factors for

the components, P and Q, ar,e given in [3]j and those for the

remaining component, in [5]. They may be expressed in the

form

(Qf-,(z/a)
_L

-̂ [Qfp(z/a) + Rf-(z/a)]} (6)~

= ̂  {Rfn(z/a) + 1^- CRf9(z/a) + Qf-(z/a)]}TT <i cL -L ^—V £- j

where the functions which describe the variation of the stress

intensity factors along the crack front are given by

(7)

For the case when the forces are applied to the points

(-a,0±,z ) instead of (-a,0~,0), one need only replace z by
0



z-z in equations (6).

In order to simulate the case of stresses acting at an

angle e to the crack front, the relations

P = -| F(l+cos26)
C. I

Q = 0 (8)

R = - ̂  Fsin2g

will be used. These are the relations which give the compo-

nents of stress on a plane oriented as shown in Figure 2 in

a state of uniform stress. This point will be brought up again

in the section on distributed loads; for now, equations (8) are

a way of expressing the forces in terms of a single parameter,

F, which can be interpreted as the product of the stress vec-

tor on the surface and a small element of area of the surface.

It is a straightforward calculation, given g, to substi-

tute from equations (8) into (6) into (2), and then to locate

the angle 6 for which S is a minimum. The result of thisc

calculation is shown in Figure 3 for 0 = 45° (P=-R, Q=0) and

v=0.30. The angle, 6 , which gives the direction of expected

crack propagation increases as points further out along the

z-axis are considered until, ultimately, the effect of the

force disappears, and the crack does not extend. For negative

values of z, the behavior is the same except that the angle,
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6 , is negative. The sketch in Figure 4 shows the directions
O

of the forces, P and R, and the expected direction of crack

growth at each point of the crack front.

Crack growth begins at z=0, for the minimum value of S at

that point reaches S first as-the forces are increased. The

first growth alters the geometry and casts doubt on further

application of this analysis. However, the work reported in

[8] on two-dimensional theory and experiment shows that the

predictions based on initial geometry may be used, at least

for the materials tested, well after the geometry has been

altered. Thus, the directions of growth indicated in Figures

3 and 4 may be accepted with caution until growth has pro-

ceeded quite far. Since the central portion of the crack be-

gins to run first, it would be expected to grow more than

other portions. Thus, Figure 4 could be made to represent

the new crack front shape if the lines showing the direction

of crack growth were made to decrease in length as z increases

in magnitude. This gives a qualitative description of new

crack surface similar to that observed in [73-
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DISTRIBUTED STRESSES ON THE CRACK

The solutions given by equations (6) and (7) of the pre-

vious section may be used as Green's functions to generate

stress intensity factors for arbitrary distributions of

stress on the crack surfaces. The formulation of general

equations involving double integrals proceeds in the usual way.

Of interest here is the case where the stresses on the surfaces

of the crack are given by constants,

Txy = -q> Tyz

on the rectangular region -b^x^O, -a<_z<_a shown on Figure 5 and

are zero everywhere else. In this case the integrals may be

evaluated in closed form, and the results can also be used to

generate numerical solutions for the case of variable applied

stresses. Limiting special cases are presented in the Appendix,

After performing the required integrations, the solution

for the case of stresses applied uniformly to a rectangular

portion of the crack surfaces may be written as

kl =

k2 = {qPl + T7 CqP2 - rP3]}

k3 = ¥* {rPl + f^T [rP2 - qP3

where F, , F0, F, depend on z,a,b through
1 d * -11-



^ \ « ™.« / I _. I *-t \ r\ i •-, i *^^ *. / D- 8gn(|z|-a)/||z|-a| S( z _ a

(11)

in which the functions g-,, g? , g~ are given by

g-,(ri) = 2/2̂ " arctan - + log 1+n">/^ + 2arctan(/2^+l)
n

2arctan(/2~n"-l)

g?(n) = log n " + arctan(/2^+l) + arctan(/2~^-l)
l+n+/2n'

(12)

g-Cn) = 2/2̂  + J log
J

. - arctan(/2~n-l)

onand the signum function, sgn(z), is +1, 0, or -1 depending

whether the argument, z, is positive, zero, or negative, re-

spectively.

By such standard techniques as superposition and change of

coordinates, equations (10) to (12) can be used to obtain the

stress intensity factors due to uniform stresses on an arbi-

trary rectangular portion of the crack surfaces. For a rec-

tangle of sides c and d in the z- and x-directions, respec-
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tively, which is centered about the point (-XO,O,ZQ), all that

is required is to replace

P±(z,a,b), i = 1,2,3

of equations (10) by

Pi(z-zo> f> xo + I> - Fi(z-zo> f> xo - f>>

where it should be noted that x >_ d/2, and that for x = d/2,

the second term vanishes.

An arbitrary distribution of stress on the crack surfaces

may be approximated by piecewise constant stresses, and the

above solution applied for each rectangular subportion of the

surfaces. This technique will be applied in a numerical ex-

ample in the next section.
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FRACTURE ANGLE FOR DISTRIBUTED STRESSES

The solution given by equations (10) - (12) in the pre-

vious section may be used to generate solutions for arbitrary

distributions of stress on the crack surfaces. Return again

to the uniform stress state illustrated in Figure 2. The

standard procedure for solving a crack problem is to compute

the stress at the location of the crack (the xz-plane) in an

uncracked body, and to apply the opposite of these stresses

to the crack in an otherwise unloaded body. In this case the

stresses on the xz-plane are

a = p = 4 o (1+COS2B)
«/

tyz = r = - | o sin2g (13)

v

and, to solve the crack problem, one must apply the opposite

stresses,

°y = "p

to the crack surfaces.

Equations (10) - (12) may be applied directly in the case

for which
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a(x,z) =

' a , for -b<x£0 and -a<z<a

>. 0 , otherwise

(15)

The parameters given by equations (13) and (15) then determine

the stress intensity factors for various values of 3, b/a,

and v. Once the stress intensity factors are known, the lo-

cation of the minimum value of the strain energy density can

be found as before. Figures 5 and 6 show the variation of

the direction of crack growth for v = 0.3, b/a = 0.5 and 2.0,

and several values of 3. For negative z, the angle, 9 , isc

negative with the same variation in magnitude. The crack is

thus expected to run nearly.straight ahead near the center of

the rectangular area, but then to tilt near the ends so that

the crack tends to grow toward,a state in which its new crack

growth plane is closer to perpendicular to the applied stress

vector. Increasing g, the angle of loading, increases the

tilting of the new surface. Figure 7 shows more clearly the

effect of changing the area of load application. For v = 0.3

and B = 30°, increasing b/a (i.e., increasing the three-dimen-

sional character of the problem) increases the crack angle e
O

within the loaded segment of the crack front. On the remainder

of the crack front the larger values of b/a seem to stretch

out the curves to peak later and decay more slowly after peak-

ing. Decreasing b/a (which may be considered effected by in-

creasing a toward the two-dimensional case) gives a pronounced

peak at z=a, the end of the loaded portion of the crack front.
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Except in the neighborhood of this point, the angle 6 de-

creases to zero as b/a decreases.

As a second illustration, the same rectangular area of

application of stress is used, but the stress varies over the

area and becomes zero on three sides. The form used is

2
( a (1 + )(l - |T-),.-b<x<0 and -a<z<am D • ' — —

a =< (16)

.. 0, otherwise

The calculations described previously are repeated for the

same parameters, (v = 0.30, b/a = 0.5, 2.0, e = 10°, 30°, 50°)

with the results shown in Figures 8 and 9- The physical in-

terpretation is the same as before, but it may be noted that

the tilting of the crack plane begins earlier.
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FRACTURE LOADS FOR DISTRIBUTED STRESS

The most severely loaded portion of the crack front is

at the midpoint of the loaded region. Expressions (11) sim-

plify considerably for z=0 to give the strain energy density

at that point as .

+ (r/a)2[gl(b/a) + |̂  g2(b/a)]
2} . (1?)

As a-*-°°, the two-dimensional result

S = f^j a2{(l-2v)(p/a)2 + (r/a)2} (18)

is recovered.

The criterion of fracture, equation (5) gives the fracture

stress in terms of the critical value, S , of the strain en-

ergy density factor. The two-dimensional result is

L-l/2_/2b {(l-2v)(p/a)2 + (r/a)2} ̂ ^ (19)
L*

and the three-dimensional one,

ac = {(l-2v)(p/a)2[g l(b/a)] ;

(r/a)2[gl(b/a) + |̂  g2(b/a)]
2}~1/2 (.20)
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Using relations (13), the two- and three-dimensional fracture

stresses may be represented as in Figure 10. This shows an

initial decrease of the critical applied stress and then an

unlimited increase as the angle, 3, of the load is increased.

The infinite fracture stress at 3=90° is to be expected, for

the load is then parallel to the crack surface. As the length,

2a, of the rectangular area of load application decreases, the

fracture stress increases from the two-dimensional value.

Again, this is expected because as the area increases, loads

are being added to the surfaces of the crack. This effect is

present in the two-dimensional case, and can be partly sepa-

rated from the three-dimensional effects. In Figure 11, the

three-dimensional fracture stresses have been normalized by

the two-dimensional values. When this is done the increasing

values of 3 lead to steadily decreasing values of a /a , in-c o

dicating greater three-dimensional effects when the load is

nearly perpendicular to the crack. Figure 12 shows how little

the angle 3 affects the ratio of the three- to the two-dimen-

sional fracture stress.
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CONCLUSIONS

Using either the concentrated load solution of equations

(6) and (7) or the uniform load solution of equations (10),

(11), and (12), it is possible to compute stress intensity

factors for arbitrary distributions of stress on the faces

of a half plane crack. For those cases considered in this

paper, a tilting of the crack plane as the crack extends is

predicted. The tilting is a change from a flat to a curved,

non-cylindrical surface, which on a small scale is approxi-

mately flat and at a non-zero angle to the initial crack,

front. Such results appear experimentally [73 in shear load-

ing. For purely shear loading (P=Q=0) the procedure followed

here predicts no tilting. However, in the experimental set-

up of [•?]> it is quite likely that some normal loading existed

to keep the specimen from turning under application of the

loads. Refer to [7] for drawings and photographs of the ex-

periment. Thus, there is qualitative agreement of the experi-

ment with this analysis.
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APPENDIX: SPECIAL CASES

The basic solution is given by equations (10), (11), and

(12) for a uniform distribution of equal and opposite stresses

applied to a rectangular area of the crack surfaces.

Line load parallel to z-axis. By superposition, the

solution for uniform stresses on a rectangle bounded by

z = ±a, x = -b, x = -c (Ob) is obtained. If then the limit

c-»-b is taken while holding, the total load, 2aP, 2aQ, 2aR, con-

stant, the solution for a load uniformly distributed along

the line y=0, x = -b, |z| £ a is obtained. The stress inten-

sity factors are given by equations (10) and (11) (with p,q,r

replaced by P,Q,R) except that in place of g-^, g2, g^ as

given by equations (12), the derivatives

g-[(.n) = /- arctan(-)

(21)

are used.

Line load along x-axis. If the side of the rectangle

of length 2a is shrunk to zero while the total load, bP, bQ,

bR, is held constant, the case of a line load on the segment

(-a,o) of the x-axis is obtained. The stress intensity fac-

tors are
-21-



± PG,(b/|z|)
n—r -L

= - - - •fQG1(b/|z|) + f^CQG
2ir2/| z I

- Rsgn(z)G3(b/|z|)]} (22)

2ir2/| z |

- Qsgn(z)G(b/|z|)]}

where

= 2g2(n)

G2Cn) = g2Cn) - 2ng2(n) (23)

= g3Cn) -

Point loads. From either of the two previous special

cases the solution for the case of point loads (equations

(6) and (7)) can be recovered by holding the total load con-

stant while decreasing the length of the line to zero.

Two-dimensional problems. The length of the line paral-

lel to the z-axis on which loads are applied to produce

stress intensity factors given as described prior to equa-

tions (21) can be increased indefinitely. It can be verified

-22-



that the two-dimensional results

= P / l k = Q / I k = R / l
TT • as K2 TT • a'5 K3 T a

are recovered.

A second two-dimensional result is obtained by letting

a+°° in equations (10), (11), and (12). This corresponds to

uniform stresses on the entire strip y=0, -b<x<0, | z | <°° of

the surfaces of the crack and gives the stress intensity

factors

^ = ^ p/2b, k2 = ^ q/2b, k3 = ^ r/2b (25)
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Figure 2: The stresses on an oblique plane in a state of
uniform stress.
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Figure 3: Directions of crack extension as a function of dis-
tance along crack front for concentrated forces.
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Figure 5: Directions of crack extension as a function of dis-
tance along crack front for uniform stresses applied to a bx2a
rectangular portion of the crack surfaces, b/a = 0.5-
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Figure 6: Directions of crack extension as a function of dis-
tance along crack front for uniform stresses applied to a bx2a
rectangular portion of the crack surfaces, b/a = 2.0.
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Figure 7: Effect of proportions of uniformly loaded rectangle
on the expected directions of crack growth. g = 30°.
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Figure 8: Effect of non-uniform distribution (equation (16))
of stress on a bx2a portion of the crack surfaces on the direc-
tions of crack extension, b/a = 0.5.
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Figure 9: Effect of non-uniform distribution (equation (16))
of stress on a bx2a portion of the crack surfaces on the direc-
tions of crack extension, b/a = 2.0.
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Figure 10: Fracture value of applied stress for the uniform
stress case vs. angle of load.
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Figure 11: Fracture stress normalized by the two-dimensional
value vs. angle of load.
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Figure 12: Normalized fracture stress vs. proportions of the
rectangular area of application of uniform stresses.
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