

AN EVALUATION OF

A CONSTRAINED TEST METHOD

FOR OBTAINING FREE BODY RESPONSES
by A. Berman, N. Giansante, and F. D. Bartlett, Jr.

Prepared by
KAMAN AEROSPACE CORPORATION
Bloomfield, Conn. 06002
for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. - OCTOBER 1973

1. Report No. NASA CR-2307	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle AN EVALUATION OF A CONSTRAINED TEST METHOD FOR OBTAINING FREE BODY RESPONSES		5. Report Date October 1973
		6. Performing Organization Code
7. Author(s) A. Berman, N. Giansante, F. D. Bartlett, Jr.		8. Performing Organization Report No. $\mathrm{R}-1130$
9. Performing Organization Name and Address Kaman Aerospace Corporation Bloomfield, CT 76101		10. Work Unit No. 502-32-02-OI
		11. Contract or Grant No. NASL-11535
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546		13. Type of Report and Period Covered Contractor Report
		14. Sponsoring Agency Code
15. Supplementary Notes This is a final report.		
16. Abstract A method for obtaining free is investigated for practical f constrained structure can be con include the forces of constraint to develop linearly independent one force at a time. Techniques This report includes the de presentative aerospace vehicles computer programs developed. Th in-flight characteristics of suc	body responses from dyna asibility. The method is sidered to be a free body By measuring these for sets of forces, one can c for producing these indep velopment of the theory, (including experimental e procedure appears to be vehicles.	on a constrained structure the principle that a n by multiple forces which exciting the structure so as response of the free body to rces are discussed. imulations of tests of reescription and listing of the al method for obtaining
17. Key. Words (Suggested by Author(s)). Structural dynamics Dynamic testing and data reducti Vibrations	18. Distribu Uncla	Unlimited
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 144\quad22. Price* Domestic, $\$ 4.50$ Foreign, $\$ 7.00$

[^0]
TABLE OF CONTENTS

PAGE
LIST OF FIGURES v
LIST OF SYMBOLS vii
INTRODUCTION 1.
DESCRIPTION OF THE THEORY 3
BASIC CONCEPT 3
ANALYSIS 3
FORCES AT CONSTRAINTS 5
VARIED CONSTRAINTS 6
APPLICATION CONSIDERATIONS 8
NUMBER OF CONSTRAINTS 8
SUPPORT CHARACTERISTICS 8
ERRORS 9
TEST SIMULATION 9
SIMULATION SOFTWARE 10
COMPUTER PROGRAM ORGANIZATION- 10
SIMULATED ERRORS 11
MODELS ANALYZED 12

TABLE OF CONTENTS (C̣ontinued)

PAGE
DISCUSSION OF RESULTS 13
TWO-DIMENSIONAL ORBITER- 13
THREE-DIMENSIONAL ORBITER 14
ORBITER-BOOSTER COMBINATION 16

- TWO-DIMENSIONAL ORBITER - VERTICALATTITUDE17
BOOSTER LONGITUDINAL RESPONSE 18
IGNORED CONSTRAINTS 19
NUMBER OF CONSTRAINTS 20
VARIATION OF CONSTRAINTS 20
CONCLUSIONS AND RECOMMENDATIONS 22
GENERAL 22
ACCURACY 22
SENSITIVITY 22
PRE-TEST SIMULATION 23
POST-TEST SENSITIVITY ANALYSIS 24
IMPLEMENTATION 24
REFERENCES 26
APPENDIX 56

LIST OF FIGURES

FIGURE PAGE
1 Orbitèr Fuselage Model 27
2 Orbiter-Booster Combination Model 28
3 Frequency Response 29
4 Effect of Error on Frequency Response 30
5 Typical Deduced Frequency Response 31 *
6 Transverse Bending Response at 92 Hz 32
7 Frequency Response 33
8 Effect of 8 Error on Frequency Response,
$8.75 \times 10^{5} \mathrm{~N} / \mathrm{m}$ Restraints 34
9
Effect of ${ }_{6}$ Error on Frequency Response., $1.75 \times 10 \mathrm{~N} / \mathrm{m}$ Restraints 35
10. Effect of ${ }_{6}$ Error on Frequency Response, $8.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Constraints 36
11 Transfer Frequency Response 37
12
Transverse Bending Response at 90 Hz , $8.75 \times 10^{5} \mathrm{~N} / \mathrm{m}$ Restraints 38
13. Typical Deduced Transverse Bending Response at 90 Hz 39
14 : Transverse Bending Response at 90 Hz , $1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints 40
15 Transverse Bending Response at 90 Hz , $8.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints 41
16
Error Distribution for Free Response3D Orbiter Model, Constrained atStations . 69 and 1.66 Meters42

LIST OF FIGURES (Continued)

FIGURE PAGE
17 Frequency Response 43
18 Effect of Error on Frequency Response 44
19 Typical Deduced Frequency Response- 45
20 Transfer Frequency Response 46
21 Transverse Bending Response at 26 Hz , $1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints 47
22
Effect of Error on Frequency Response------- 48
23$1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints49
24 Effect of Error on Frequency Response 50
25 Effect of Error on Frequency Response 51
26 Effect of Error on Frequency Response 52
27 Effect of Error on Frequency Response, Constraint Structural Damping 5\% 53
28 Longitudinal Response at 445 Hz 54
29 Effect of Error on Frequency Response Obtained From Variation of Constraints Technique 55

LIST OF SYMBOLS

\mathbf{f}	applied force
$\overline{\mathbf{f}}_{\mathbf{k}}$	vector of complex amplitude of applied force
\mathbf{F}	matrix of applied forces M
number of points at which force excitation is applied	
\mathbf{N}	number of points at which response measurements are made
$\mathbf{Y}_{\mathbf{i}}$	reaction force at constraint i
Y	matrix of complex amplitudes of deflection
\mathbf{Y}	complex displacement mobility matrix relating forces and responses
ω	frequency of applied sinusoidal forces

BRACKETS

[] matrix
\{ \} column vector

SUPERSCRIPTS
-1 inverse

AN EVALUATION OF A CONSTRAINED TEST METHOD FOR OBTAINING FREE BODY RESPONSES

By A. Berman, N. Giansante, F. D. Bartlett, Jr. Kaman Aerospace Corporation

INTRODUCTION

Dynamic testing, both full scale and model, is an essential step in predicting the response of aerospace vehicles to the conditions to which they will be subjected in flight. This testing is required for modal analysis, stability and control studies and loads analyses and is applied to design verification and modification studies. The actual in-flight boundary conditions, however, cannot be exactly duplicated on the ground.

In order to simulate the free-body boundary conditions of a vehicle in flight, the usual procedure has been to support the vehicle on a system which is relatively soft so that the "rigid body" frequencies (which should be zero) are low compared to the frequencies of the deformation modes of the structure. A commonly used technique (References 1, 2, and 3) for launch vehicles consists of supporting the vehicle vertically on cables attached to its base. While tests conducted in such a manner seem to have given acceptable results, there are several disadvantages to this scheme. It is necessary to construct a tall structure capable of supporting the total weight of the vehicle. There is some uncertainty in the effects of the cable dynamics and nonlinearities on the vehicle response (Reference 2). Various cable configurations have been known to give variation in test results (Reference 1). Certain new problems arise for vehicles which are not axisymmetric. When the center of gravity varies laterally under various fuel loads, the stabilization of such a vehicle on soft supports can become a major consideration. Vehicles which require testing in more than one attitude compound these difficulties.

A procedure which could eliminate the effects of supports would be of significant benefit. It would not be necessary to use soft suspensions with the assumption that the interactions with the supporting structure are not significant. It would be possible to support the system being tested on a relatively stiff base, thus simplifying the problems of static stability and attitude variation. The
design of supporting towers would be greatly simplified and the overall cost of testing would be reduced. It is essential, of course, that such a procedure be reliable, accurate, not overly sensitive to measurement errors, and applicable to real test conditions.

There are several analytical methods which convert constrained responses into free body responses. Typical methods are presented in References 4, 5, and 6. These methods, however, are suitable only for analytical procedures where the response on infinitely rigid supports is known (or can be calculated) and where the mass matrix of the structure is available. Since such data is unmeasurable in a test, these methods are not usable.

The method which is examined here uses the measured forces of constraint to convert the measured structural responses to free body responses. The structure under test is considered to be supported on real supports, but their specific characteristics are not required since only their measured reactions are used. The procedure uses only data which are actually measured, and no quantitative assumptions are used. The basis of this method was first discussed in Reference 7.

The primary purpose of the work reported here is to evaluate the suitability of the method for use under realistic conditions and for representative aerospace vehicles. Additional purposes are to establish guidelines for usage of the methodi and to provide computer software capable of analyzing actual test data.

BASIC CONCEPT

Consider a constrained structure which is being shaken by a known force and assume that the reaction forces at the supports are known. The structure responds precisely as if it were a free body being simultaneously subjected to the actual applied forces and to the forces of constraint. Thus, a shake test in which the constraining forces are measured gives direct information about the free body response of the structure when acted upon by several forces. As will be seen below, it is possible to convert information of this type into the free body response of the system when subjected to only one force at a time. This is what: is needed to determine resonance data and to predict the effects of arbitrary loads.

ANALYSIS

The analysis assumes that the structure being studied is linear at each frequency. That is, the response is proportional to the force and the principle of superposition holds. For sinusoidal forces at a frequency, ω, applied at M points on a structure, there is defined a vector $\overline{\mathrm{f}}_{\mathrm{k}}$, which represents the complex amplitude of applied force at each of the points. Similarly, \bar{Y}_{k}, is a vector representing the complex amplitudes of the deflection at each of N points resulting from the force, \bar{f}_{k}. There is no necessity for the force points (represented in \mathcal{f}_{k}) to coincide with the response points (represented in \bar{y}_{k}). Y is the complex $N x M$ displacement mobility matrix representing the relationship between the forces and responses. \bar{f}_{k}, \bar{Y}_{k}, Y and the relationship between them are written:

$$
\bar{Y}_{k}=\left\{\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right\} \quad \bar{f}_{k}=\left\{\begin{array}{l}
f_{1} \\
f_{2} \\
\vdots \\
f_{M}
\end{array}\right\} \quad Y=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{} & \frac{\partial y_{1}}{} & \\
\frac{\partial f_{1}}{} & \frac{\partial y_{1}}{\partial} & \cdots \\
\frac{\partial f_{M}}{} \\
\frac{\partial y_{2}}{\partial f_{1}} & & \vdots \\
\vdots & & \\
\frac{\partial y_{N}}{\partial f_{1}} & & \frac{\partial y_{N}}{\partial f_{M}}
\end{array}\right]
$$

and

$$
\begin{equation*}
\bar{Y}_{k}=Y \bar{f}_{k} \tag{1}
\end{equation*}
$$

The displacement is used only for illustration, exactly the same relationships hold for velocity and acceleration. The displacements can also, with no change in the analysis, represent displacements or rotations in two or three directions at one geometrical point by allowing one element in each vector for each of these generalized displacements. Similar considerations apply to the forces (or moments). Note that there is no necessity for Y to be square, it will contain one row for each displacement measured and one column for each point at which a force is applied and, as will be seen below, one column for each constraint.

Consider, now, a matrix, F, containing several applied load vectors and a matrix, Y, containing the corresponding deflections, as follows:

$$
F=\left[\begin{array}{ll}
\bar{f}_{1} & \bar{f}_{2} \ldots
\end{array}\right]
$$

$$
y=\left[\begin{array}{ll}
\bar{y}_{1} & \left.\bar{y}_{2} \cdots\right]
\end{array}\right.
$$

and then

$$
\begin{equation*}
Y=Y F \tag{2}
\end{equation*}
$$

If F is a nonsingular matrix, then the desired result, the response of particular points to single forces, may be written

$$
\begin{equation*}
Y=y F^{-1} \tag{3}
\end{equation*}
$$

where both Y and F are measured. When the "actual" applied loads only are included in F, then Y is the mobility of the structure as tested - i.e. on the actual supports. If F includes any of the forces of constraint, then Y is the mobility of the structure with those constraints removed. If F includes all the forces of constraint, then Y is the mobility of the free body.

As stated above, F must be nonsingular and thus have an inverse. If there are M forces to be considered (including the forces at the constraints) then M sets of forces, \bar{I}_{k}, must be applied and all of these vectors must be independent. There are at least two ways that this may be done: (1) by applying an external force at each constraint or (2) by varying the constraints.

FORCES AT CONSTRAINTS

If an exciting force is applied at the k-th constraint, the force vector will be of the form

$$
\vec{f}_{k}=\left\{\begin{array}{l}
r_{1} \tag{4}\\
r_{2} \\
\vdots \\
r_{k}+f \\
\vdots
\end{array}\right\}
$$

where the r 's are measured forces of constraint and f is the applied force. The force vectors obtained by applying forces to the structure at each of the constraint points will ordinarily be independent of each other and the force matrix will, therefore, be nonsingular. In the event the force matrix is ill-conditioned, the location or characteristics of the constraints may be altered to yield a well behaved force matrix. The matrix of forces at the supports including the applied forces will be called F_{S}.

At the same time that these forces are measured, the displacements are measured at the points of interest on the structure and one column of y is formed for each column of F_{s}. Then, as above

$$
\begin{equation*}
Y=y F_{s}^{-1} \tag{5}
\end{equation*}
$$

where Y represents the deflection of each point of interest due to each of the loads applied to the structure (at the supports). This is the free body mobility matrix. This procedure must be carried out over the frequency range of interest.

If it is desired to find the response due to forces applied to the structure at points other than the support points, then the structure must be shaken at these points in addition and the forces at the constraints must be recorded. If FSA is a matrix representing the forces of constraint for each non-constraint point of excitation, then the F matrix becomes

$$
F=\left[\begin{array}{c:c}
I & 0 \tag{6}\\
\hdashline F_{S A} & F_{S}
\end{array}\right]
$$

where unit forces are applied. The inverse of this matrix involves little more than inverting F_{S} and is given by

$$
\mathrm{F}^{-1}=\left[\begin{array}{l:c}
& { }^{\frac{I}{1}}: \tag{7}\\
\hdashline-\mathrm{F}_{\mathrm{S}}{ }^{-1} \mathrm{~F}_{\mathrm{SA}} & \mathrm{~F}_{\mathrm{S}}
\end{array}\right]
$$

In practice it will often be just as convenient to invert the matrix of Equation (6) directly. Equation (7) illustrates that no numerical complications are introduced by forces at additional points.

VARIED CONSTRAINTS

Any means of varying the constraint forces such that the F matrix is nonsingular will work. Applying a force at each of the constraints was just discussed. Another possible method is to vary the constraints themselves such that the force vectors are independent.

If the structure is supported redundantly, then a procedure which would work is to shake at only one constraint and remove one constraint at a time resulting in an F matrix of the following form (where the force is applied at station l)

$$
F=\left[\begin{array}{ccccc}
f+r_{1} & f+r_{1} & f+r_{1} & f+0 & f+r_{1} \tag{8}\\
r_{2} & r_{2} & 0 & r_{2} \cdots \\
r_{3} & 0 & r_{3} & r_{3} \cdots \\
\vdots & & \vdots &
\end{array}\right]
$$

where the first column represents the measured loads when all the supports are used, the second represents the loads with constraint number 3 removed, etc.

The same effect can be achieved by varying some parameters, e.g. the stiffness, of each constraint one at a time. This would eliminate the need for redundant supports and reduce the amount of data required.

The other considerations are similar to the previous method.

APPLICATION CONSIDERATIONS

The method has attributes which make it an especially attractive candidate for practical application. These include the use of only measured data and the lack of quantitative assumptions. There are, however, as in all procedures, certain considerations involved in planning an efficient and accurate application of the method.

NUMBER OF CONSTRAINTS
At each frequency it is necessary to conduct one test for each constraint, thus it is desirable to keep this number to a minimum. While it is possible to constrain all rigid body motions with six constraining forces, there is no necessity for such complete constraint, however. During the design of a test, consideration should be given to test configurations which allow freedom of motion, e.g. in the horizontal plane and around the vertical axis. In this case, it would be necessary to shake vertically at each support and measure each of the vertical forces of constraint. In addition, any other shaker position or orientation could be used while the three vertical forces were measured.

For the design of a specific test, it is necessary to evaluate the cost of eliminating constraints compared to the reduced testing required.

SUPPORT:CHARACTERISTICS

In a theoretical sense, the characteristics of the supports are immaterial. These characteristics, however, do affect the magnitudes of the forces and displacements which will be measured. The accuracy of the various transducers (accelerometers, load cells, etc) depends on the magnitude and frequency of the quantity being measured. Thus, for the most reliable results, the supports should be designed and the transducers selected so as to operate in their most accurate region. It is not expected that this will be an extremely stringent requirement, but care must be exercised as in planning any test, to insure that the results be meaningful.

In the analysis, the constraint forces are considered to be sinusoidal and at the same frequency as the excitation force. For real supports, it is not uncommon for components of other frequencies to pollute the response. It is implicitly assumed here that any such components have been removed from the data by electronic or digital filtering or by Fopurier analysis. Obviously, highly nonlinear supports will increase the uncertainty in the data and shọuld be . avoided.

ERRORS

Any correctly derived analytical procedure will work when the input data is exact. When such methods are applied to measured data the effect of the unavoidable experimental errors is critical in the evaluation of the practicality of a particular technique. This process uses a measured force matrix containing errors, inverts this matrix and multiplies by another measured matrix also containing errors. The behavior of these errors will determine whether the methodis economically feasible. The expected accuracy of the final results compared to the accuracy of an alternate method is an important consideration.

TEST SIMULATION

A computer simulation of alternative test configurations can be an extremely useful tool in the preliminary design of any test. Such a simulation applied to this method using an approximate analytical model of the vehicle can be used to determine the sensitivity to error and the expected accuracy of the results of the various arrangements considered. It should include realistic experimental errors, approximate constraint characteristics; and vary the frequency over the range of interest.

The computer software developed under this study has been designed to serve several purposes. The programs can be used to perform a general evaluation of the feasibility of these techniques. This is the particular application made in the work reported here.

In addition, the program has been designed so as to be capable of analyzing actual test data. This facility was accomplished by dividing the software into two separate logical entities. The first develops simulated test data, the second analyzes the test data which can be either simulated or actual.

A third application of the software is for the planning of an actual test. This usage requires approximate analytical models of the structure to be tested and the constraints. The programs can be used to optimize the locations and general characteristics of the constraints and to estimate the accuracy of the resulting data.

COMPUTER PROGRAM ORGANIZATION

The portion of the software used to develop the simulated test data is itself divided into two separate programs for efficiency reasons. The first program takes as input the mass and stiffness matrices of the structure being modeled. The structural damping coefficient is also specified. This quantity is allowed to vary over the structure. If g_{i} is the damping coefficient at coordinate i then the diagonal elements of the imaginary damping matrices are given by $g_{i} K_{i j}$ and the off-diagonal elements are given by $\sqrt{g_{i} g_{j}} K_{i j}$ where $K_{i i}$ and $K_{i j}$ are diagonal and off-diagonal elements of the stiffness matrix. In addition, and as separate inputs for convenience, the support characteristics are entered. These characteristics include the stiffness, structural damping, and/or viscous damping coefficient.

These quantities, of course, would be unknown during an actual test but they must be estimated for purposes of simulation. The program computes exact values of the constrained system mobility matrices at a set of specified frequencies and writes this data on tape.

The second program uses the exact data computed by the first program and introduces specified errors (see below) to yield simulated acceleration and force measurements. The simulated test data is written on a tape in a format which is compatible with actual test data. The exact data developed in the first program may be reused. with different errors or forces. Because the first program is by far the most time consuming, this feature improves the efficiency of the simulation process.

The third program uses as input, either simulated data (as developed above) or actual (but pre-processed) test data. This program reduces the measured constrained accelerations and forces of constraint to yield the free body responses of the system.

Detailed listings of the programs, description of input formats and the various options available are given in the appendix.

SIMULATED ERRORS

In order to simulate test data for the evaluation of a numerical procedure, it is essential that the simulated data contain realistic errors.

The program has provisions for several types of errors to be simultaneously applied to each of the simulated measured accelerations and the simulated measured forces. These errors include: (1) a uniformly distributed random percentage error on amplitude between specified limits; (2) a uniformly distributed random phase angle error between specified limits; (3) a constant specified percentage bias error; (4) a uniformly distributed random amplitude error between limits (simulating system noise).

The simulated measurement errors which are estimated to be representative of the current state-of-the-art and applied in the computations were generally as follows: $+5 \%$ random error on amplitude of acceleration and force; $\pm 5^{\sigma}$ random phase error on acceleration and force; a_{2} rando $\bar{m}+2.54 \mathrm{~cm} / \mathrm{sec}^{2}$ ($+1 \mathrm{in} / \mathrm{sec}^{2}$) and a random . $01 \mathrm{radian} / \mathrm{sec}^{2}$ on translational and rōtational acceleration measurements respectively. However, several computer experiments were conducted using error values ranging to $+15 \%$ random and $+15 \%$ random phase error to test the sensitivity of the method to error.

MODELS ANALYZED

The analytical models analyzed were representations of a $1 / 15$ scale dynamic model of a space shuttle configuration (described in Reference 8). The various stiffness and consistent mass matrix formulations corresponding to each of the structures considered were obtained using NASTRAN and were supplied by NASA. In addition, structural damping coefficients of 38 and $.5 \%$ were used for the orbiter and booster fuselages respectively. The basic models studied are illustrated in Figures 1 and 2.

Several models were investigated including: an eight coordinate orbiter fuselage limited to transverse motion; a two-dimensional or 16-degree-of-freedom representation of the orbiter fuselage with each of the eight coordinates possessing a transverse and rotational degree of freedom; a three-dimensional model of the orbiter fuselage: with each point having six degrees of freedom, yielding a total of 48 degrees of freedom; a coupled orbiter and booster model consisting of 18 coordinates with each point having transverse and rotational degrees of freedom; a one-dimensional model of the booster fuselage having 10 degrees of freedom.

DISCUSSION: OF RESULTS

Computer simulations of dynamic tests were conducted to obtain the free body response of the aforementioned models. A variation of parameters was considered including magnitude and location of constraints, structural and viscous damping of the constraints and experimental error. The simulated tests were carried out at various frequencies over a spectrum of interest peculiar to each model studied.

Except when otherwise noted, the errors used were as follows: uniform random amplitude error of $+5 \%$, uniform random phase error of $+5^{\circ}$, uniform random absolute amplitude error of $+2.54 \mathrm{~cm} / \mathrm{sec}^{2}$. $\left(+1 \mathrm{in} / \mathrm{sec}^{2}\right)$ on translational accelerations and $.01 \mathrm{rad} / \mathrm{sec}^{2}$ on rotational accelerations. Also, the corresponding force random errors used were $+5 \%$ and $+5^{\circ}$. Each simulated test was run with force level \bar{s} of $4.4 \overline{5}, 22.24$, 44.48, lll.21N (1, 5, 10, 25 pounds). Each of these was repeated with different random sequences. Thus, every range of data shown in the following plots represents the extreme values obtained in 8 simulated tests. The predominance of the data was obtained using the procedure of shaking at the constraints.

For convenience the plots of acceleration response per unit force are shown without dimensions since only relative amplitudes are of interest here. However, for reference, unity represents $.0057 \mathrm{~m} / \mathrm{sec}^{2} / \mathrm{N}$ ($1 \mathrm{in} / \mathrm{sec}^{2} / \mathrm{lb}$)

A large number of simulations were computed. Only a small portion of the data for each of approximately 20% of the cases run is presented in this report. The conditions shown were selected to illustrate typical results. The remaining data, which is available (and easily duplicated), would be purely repetitive and add no new information.

TWO-DIMENSIONAL ORBITER

The two-dimensional orbiter is a relatively simple model and much of the early exploratory work was done with it. Some typical data is presented here. Figure 3 presents for reference the exact normalized acceleration amplitude frequency response and the associated phase angle of the two-dimensional orbiter in free and constrained configurations. For the constrained system, the supports consisted of both $1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ ($\left.10,000 \mathrm{lb} / \mathrm{in}.\right)$ translational springs and $1129 \mathrm{~m}-\mathrm{N} / \mathrm{rad}(10,000 \mathrm{in}-1 \mathrm{~b} / \mathrm{rad})$ rotational springs ac
stations .69 m and 1.66 m , with zero structural and viscous damping. Application of the theory to the simulated test constrained response yielded the free body characteristics of the structure. The calculated natural frequencies for the range of frequencies shown are in excellent agreement with those supplied by NASA.

Figure 4 illustrates the effect of including measurement error in the simulated measured accelerations and the simulated measured forces. The ranges of the free body response with errors included are shown superimposed on the exact or zero error free body response. The error bounds indicated at the various frequencies were the maximum and minimum values obtained from several computer runs with the same nominal error, but with different random number seeds. The consistency of results from individual simulated tests indicates the method is relatively insensitive to the level of nominal errors applied. The natural frequencies are accurately defined and the general shape of the response curve is retained even at bounds of the errors. In Figure 5 a typical simulated test frequency response is shown compared to the exact response. It is apparent that the exact response and the response deduced from test are in excellent agreement.

The amplitude of the responses of the structure at 92 Hz , which is approximately at the first natural frequency of the free system, due to a force at station 1.66 m is presented in Figure 6. The constrained response and the free body response are shown for the exact conditions. The free body responses including the effect of measurement error are indicated in the figure as ranges of values.

THREE-DIMENSIONAL ORBITER

The three-dimensional orbiter model represents a real structure with six degrees of freedom. The data presented represents the structure on six constraints and illustrates the effect of the stiffness of the supports. Figure 7 presents the constrained normalized acceleration amplitude frequency response and the accompanying phase angle for the threedimensional orbiter model restrained with $8.75 \times 10^{5} \mathrm{~N} / \mathrm{m}$ ($5000 \mathrm{lb} / \mathrm{in}$) springs in the transverse, lateral and longitudinal directions at station .69 m and 1.66 m . The exact free body responses are also shown. The result of applying, simultaneously, the several types of errors to both the simulated measured accelerations and the simulated measured force is indicated in Figure 8. Error bounds at a
particular frequency were obtained by several computer experiments at the same nominal error levels but varying the random number seed and applied force. For the error values considered the free body response does not vary significantly from the exact values. Figures 9 and 10 present similar data except that the free body response. was obtained from the constrained configuration with 1.75 x $10^{6} \mathrm{~N} / \mathrm{m}(10,000 \mathrm{lb} / \mathrm{in}$.$) and 8.76 \times 10^{6} \mathrm{~N} / \mathrm{m}(50,000 \mathrm{lb} / \mathrm{in}$. spring rates, respectively. A comparison of Figures 8, 9 and 10 reveals that, as would be expected, the free body response deduced from the constrained structure, for the zero error condition, are identical regardless of constraint configuration employed. The figures also illustrate that the larger ranges in results occur in the response regions of extreme slope. However, at these points the error bounds are incidental in defining the actual response curve.

The data shown in Figure 11 is the transfer response, the transverse acceleration at station . 31 m due to force excitation at station .69 m . The exact response of the structure at 90 Hz , which is slightly below the first natural frequency of the free system, due to a force at station 1.66 m is presented in Figure 12 for the free condition and for the restrained structure with constraints at station .69 m and 1.66 m . The results of the calculated free body responses are shown as ranges of values. Figure 13 illustrates a typical free body response converted from constrained data including measurement error compared to the exact free body response. Figures 14 and 15 present constrained and free body responses similar to Figure l3, however, the constraint spring rates were $1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}(10,000 \mathrm{lb} / \mathrm{in}$.$) and 8.75 \mathrm{x}$ $10^{6} \mathrm{~N} / \mathrm{m}(50,000 \mathrm{lb} / \mathrm{in}$.$) respectively. A comparison of$ Figures 12, 14 and 15 illustrate the significant variation in free body responses obtained from the simulated measured test data, with error, for the different support conditions considered. The results of using the lower spring rate are more consistent and vary least from the zero error response although the same nominal errors were used in the simulated measured data obtained from each support system. In regard to Figure 15, it should be noted that in the frequency response plot, Figure 10, the frequency always resulted in values below the exact. This is the only frequency at which this condition occurred.

The results of the deduced free body responses are presented as ranges of values for 'each'particular frequency at which the simulated tests were conducted. There is no apparent deterioration in the results due to this constraint condition.

To further examine the effect of experimental error on the analysis, simulated tests were performed using error levels ranging to $+15 \%$ random error on amplitude of accelerations and forces and $+15^{\circ}$ random phase error on the same parameters. Only one simulated test was run for each level of error at the indicated frequencies and the results are shown on Figure 25. Also presented in the figure are the ranges of values for the simulated test with nominal measurement error levels as described previously.

BOOSTER LONGITUDINAL RESPONSE

This model is an extremely simple one but does correspond to actual tests. Here the data is used to illustrate that damping in the supports has no ill effect on the results. Figure 26 presents the frequency response of the ten-degree-of-freedom booster fuselage in the free condition. The exact amplitude and the exact phase angle response are shown with the results including error in the simulated measured data given as ranges of values. The free body response was extracted from simulated measured constrained data which incorporated zero structural damping in the restraint system. It is apparent that the free body response is insensitive to the level of applied error, at least for the conditions investigated. Figure 27 presents data similar to that shown in Figure 26, however, the free body response was derived from simulated measured constraint data with 5\% structural damping in the supports. Further computer experiments were conducted using 20% structural damping in the restraints. The resulting error bounds superimposed on the exact free body response are effectively the same as those shown in Figure 27, therefore, the range of values for the 20% structural damping condition are not presented. Based on the number of conditions analyzed and the levels of constraint structural damping used, it appears the free body response of the structure is insensitive to the level of structural damping in the constraint system.

The exact free body response and the constrained response from which it was deduced are given in Figure 28. Also shown are the error bounds resulting from the computer experiments in which simulated measurement errors were
considered. The responses, due to force excitation at station 3.41 m , were calculated at 445 Hz which is the approximate second elastic natural frequency.

IGNORED CONSTRAINTS

The forces at each constraint must be measured in order to obtain the response of the completely free body. It is also necessary to force at each of the constraints when this procedure is being used. In practice, there may actually be constraints in directions where none had been planned. For example, a pin joint under load may exhibit a torsional restraint. The question arises as to whether this method will deteriorate if some of these forces are ignored, either accidentally or intentionally.

It is necessary to reexamine the theory to answer this question. It has been shown that the responses deduced by this method are those for the structure with those constraints removed whose reaction forces are included in the force matrix. Thus, if constraint forces exist and are ignored, the computed responses are those of the structure on those constraints only. When the ignored forces are small, they will have a small influence on the free response. This situation is quite analogous to the soft suspension concept for free body testing (where, in actuality, the forces of constraint are ignored) except that here, the remaining constraints are not required to provide static stability to the structure being tested.

Thus, when the forces of a constraint are small enough to. have a negligible effect on the free body response they may be ignored.

Several simulated tests of this condition were run using the two-dimensional orbiter model constrained torsionally as well as translationally (see Figure 3). Program 3 has a capability for masking selected channels of data on the input tape and this facility was used to ignore the torsional forces produced at the constraints. In these cases, the differences between the computed responses and the exact free body responses were too small to illustrate. These tests confirm the theoretical conclusion stated in the previous paragraph.

NUMBERS OF CONSTRAINTS

Some of the simulated tests illustrated had more constraints than necessary. Some allowed freedom in one or more directions.

The two-dimensional orbiter data presented here (Figures 3-6) actually had four constraints where only two were needed for full constraint of the system. Other tests not illustrated used only the two linear springs. There appeared to be no loss in validity through the use of redundant constraints. Redundant constraints, of course, increase the amount of testing required.

The number of constraints also appear to have no particular degrading effect on the data. The three-dimensional orbiter data (Figures 7-16) used six constraints with results as good as data obtained from lesser numbers of supports.

Allowing unconstrained motion in one or more directions also was found to have no noticeable effect on the data. The three-dimensional orbiter tests did not constrain the structure in roll and no loss in accuracy was observed.

From a theoretical point of view none of these conditions was expected to affect the final accuracy and the data obtained verified this conclusion.

VARIATION OF CONSTRAINTS

Figure 29 illustrates the result of applying the variation of constraint technique described in the theoretical development to the two-dimensional orbiter fuselage model. The data was achieved by varying the constraint spring rate while maintaining the same force excitation on the structure. Initially, the structure was restrained with 1.75 x $10^{6} \mathrm{~N} / \mathrm{m}(10,000 \mathrm{lb} / \mathrm{in}$.$) springs at station .69 \mathrm{~m}$ and 1.66 m with force excitation applied at station 1.66 m . Subsequently the spring rate at station .69 m was changed to $3.5 \times 10^{6} \mathrm{~N} / \mathrm{m}$ (20,000 lb/in.) while the spring rate and force level at station 1.66 m were held constant. Figure 29 presents the free body exact acceleration response of station 1.66 m to force excitation at the same station. Also shown are the deduced ranges of values obtained from the simulated constrained tests applying error to the measured forces and accelerations.

The results shown on Figure 29 compare favorably with those presented in Figure 4 which were obtained by the method of force application at each of the constraints while the support characteristics remained constant. On the basis of sensitivity to measurement error there appears to be no difference in the results obtained from the two methods.

CONCLUSIONS AND RECOMMENDATIONS

GENERAL

The method of obtaining free-body responses through constrained testing was investigated for practical applicability. A large number of simulations of shake tests were carried out using several representative analytical models of space shuttle components and systems. Constraint locations and characteristics were varied. The procedure appeared to work quite well (subject to considerations discussed below) and its application to actual testing is recommended.

ACCURACY

The accuracy of the deduced free-body responses is believed to be as good as or better than other procedures using soft suspension systems where the constraining forces are assumed small and are ignored. The random errors assumed in the test, simulation are believed to be within the present state-of-the-art of acceleration and force measuring systems.

For all the conditions presented, the free-body amplitude and phase data obtained versus frequency adequately defined the response curves including resonances and antiresonances.

SENSITIVITY

The data obtained suggest three general conditions under which the computed free-body response may be especially sensitive to measurement errors:
(1), At a frequency near a free body resonance which is not near a constrained resonance, larger errors occur. This is not unexpected since small responses must be converted into large ones and errors can be expected to be amplified. In general, the data has indicated that even with relatively large uncertainties, the frequency response is still well defined because it is nearly vertical in this region. This situation will only occur at a small number of lower modes, because at higher frequencies the constrained and free responses become closer to each other.
(2) Constraints which are in close proximity tend to increase the error sensitivity. This effect is due to the fact that constraints which act in the same direction and are very close to each other will tend to have nearly the same forces of constraint. This causes the corresponding
columns of the force matrix to be nearly equal and the matrix to be ill-conditioned. In general it is good policy to keep the constraints well separated when possible. However, this is not always possible, for example, when a space vehicle is in launch attitude and it is resting: on several supports at its base. Under these conditions the supports should not be considered to be independent but should be treated as a single support with up to three perpendicular force constraints and up to three moment constraints. This treatment will eliminate the ill-conditioning of the force matrix. There is one condition which should be avoided. This is when the supports are not close enough to be treated as a single support, as above, and yet not. far enough separated to yield a well-conditioned force matrix. This condition is expected to be rare.
(3) The third situation which appears to aggravate the error sensitivity is when the constraints are excessively stiff. This, also, is not unexpected. There are two reasons for this effect. First, the stiffer the supports, the further the actual response will be from the free-body response and the more the data has to be modified. Second, the stiffer the supports, the smaller the response of the structure for the same force and the greater the error to be expected in the raw data. This effect will show up in the data obtained in these simulations because of the noise type error included in addition to the percentage amplitude and the phase errors used.

The use of very stiff supports is to be discouraged, in general, if for no other reason than to reduce the exciter force requirements. In general, the supports should not be so soft that there is only a small difference between free and constrained responses because of the problems associated with static stability, etc, as discussed in the Introduction. On the other hand, they should not be so stiff that excitation of the structure will be a problem. There is a very large middle ground where the techniques studied here are especially applicable.

PRE-TEST SIMULATION

Prior to applying these procedures in an actual test, it is recommended that an approximate simulation be carried out. The computer programs supplied are perfectly suited for this purpose. The input required is.a simple model (a highly reduced NASTRAN model, for example) and very approximate characteristics of the supporting system under
consideration. The simulation will determine whether any of the conditions mentioned above will be approached and will allow the consideration of alternate supports or support locations which will improve the validity of the data.

Simulation is not essential and confidence may be had in the results if the test is set up with the sensitivity considerations, above, in mind. However, such a simulation would be an inexpensive precaution and would probably result in more valid data.

POST-TEST SENSITIVITY ANALYSIS

The program supplied will convert test data into free-body data after the test data has been calibrated and filtered and properly formulated on a tape. The particular tape format used was selected to make this preprocessing as simple as possible.

The addition of a feature to this program is recommended which will establish confidence limits on the free-body data. The procedure would be as follows: (1) the user supplies his best estimates as to the ranges of errors contained in the input data; (2) the program then automatically and randomly varies each element of input within the specified limits and produces a distribution of variances in the deduced free-body responses in a form similar to that of Figure 16. This provides an estimate of the possible error in the free-body response.

IMPLEMENTATION
The primary method considered in this report calls for shaking the system at each constraint. The literal implementation of this system may entail some problems of convenience. Unless multiple shakers are to be used, probably the most feasible method would be to install a shaker at one support, perform a frequency sweep, then move it to another support and perform another frequency sweep until all the required data was obtained. There are two disadvantages to this procedure: (1) the free-body responses cannot be obtained until all the testing has been completed; and, (2) care must be exercised to insure that the data is taken at precisely the same frequencies.

In order to implement this procedure, the supports must be designed to allow for application of the shaker. It is suggested that only linear (and no torsional) constraints be used since moment applications would not be as convenient to apply or measure. A type of constraint worth considering is the cantilever flexible beam as described in Reference 9 . It would be possible to mount a shaker directly beneath the support. Because the beam would not have the extreme flexibility requirements as in the reference, it does not have to be cantilevered but may be supported at two or more points. Another advantage to the beam support is that it is possible to easily move the shaker from one position to another by sliding it along the beam.

If several shakers are available it is possible to obtain all the data needed at one frequency before proceeding to the next frequency. This allows the possibility of a simple real time data reduction system yielding on site visualization of the free-body responses. This possibility includes the conveniences of "free-body" testing with the stability and adaptability of constrained testing.

It is recommended that a simple implementation of this technique be tested in practice and that an evaluation of more sophisticated implementation procedures be carried out for future use.

REFERENCES

1. Mixson, John S., Catherine, John J., "Comparison of Experimental Vibration Characteristics Obtained From a $1 / 5$ Scale Model and From a Full-Scale.Saturn SA-1", NASA TN D-2215, November 1964.
2. Mixson, John S., Catherine, John J., "Experimental Lateral Vibration Characteristics of a $1 / 5$ Scale Model of Saturn SA-1 With an Eight-Cable Suspension System, NASA TN D-2214, November 1964.
3. Pinson, Larry D., Leonard, H. Wayne, "Longitudinal Vibration Characteristics of a $1 / 10$ Scale Apollo/ Saturn V Replica Model", NASA TN D-5159, April 1969.
4. Przemieniecki, J.S., "Theory of Matrix Structural Analysis", McGraw-Hill Book Co., New York, 1968.
5. Dugundji, John, "On the Calculation of Natural Modes of Free-Free Structures, Journal of the Aeronautical Sciences, February 1961.
6. Berman, Julian H., Sklerov, Jerome, "Calculation of Natural Modes of Vibration for Free-Free Structures in Three-Dimensional Space", AIAA Journal, Volume 3, No. 1, January 1965.
7. Berman, A., Giansante, N., Flannelly, W.G., "Research on Structural Dynamic Testing by Impedance Methods", Volume III, USAAMRDL Technical Report 72-63C, Fort Eustis, Virginia, November 1972.
8. Thornton, E.A., "Vibration Analysis of a $1 / 15$ Scale Dynamic Model of a Space Shuttle Configuration", NASA CR-111984, Old Dominian University, Norfolk, Virginia.

9: Lukens, D.R., et al, "Dynamic Stability of Space Vehicles", NASA CR-940, Volume VI, December 1967.

Figure 3. Frequency Response

Figure 4. Effect of Error on Frequency Response

TWO-DIMENSIONAL ORBITER
Figure 5. Typical Deduced Frequency Response

THREE-DIMENSIONAL ORBITER
Figure 7. Frequency Response

THREE-DIMENSIONAL ORBITER
Figure 8.. Effect of Error on Frequency Response, $8.75 \times 10^{5} \mathrm{~N} / \mathrm{m}$ Restraints

Figure 9. Effect of Error on Frequency Response, $1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints

Figure 10. Effect of Error on Frequency Response, $8.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Constraints

Figure ll. Transfer Frequency Response

THREE-DIMENSIONAL ORBITER
Figure 13. Typical Deduced Transverse Bending Response at 90 Hz

THREE-DIMENSIONAL ORBITER
Figure 14. Transverse Bending Response at $90 \mathrm{~Hz}, 1.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints

THREE-DIMENSIONAL ORBITER
Figure 15. Transverse Bending Besponse at $90 \mathrm{~Hz}, 8.75 \times 10^{6} \mathrm{~N} / \mathrm{m}$ Restraints

Figure 17. Frequency Response

Figure 18. Effect of Error on Frequency Response

Figure 19. Typical Deduced Frequency Response

Fiqure 20. Transfer Frequency Response

ORBITER-BOOSTER COMBINATION
Figure 22. Effect of Error on Frequency Response

ORBITER-BOOSTER COMBINATION
Transverse Bending Response at 36 Hz ,
Figure 23.
NOI

Figure 24. Effect of Error on Frequency Response

Figure 25. Effect of Error on Frequency Resnonse

ONE-DIMENSIONAL BOOSTER
Figure 26. Effect of Error on Frequency Response

Figure 27. Effect of Error on Frequency Response, Constraint Structural Damping 5\%

TWO-DIMENSIONAL ORBITER
Figure 29. Effect of Error on Frequency Response Obtained From Variation of Constraints Technique

COMPUTER PROGRAM DESCRIPTION

The digital computer program was designed to test and evaluate the concepts presented in the theoretical development. The program generates simulated test data which is as realistic as possible and operates on this data to yield the free body response of the structure. The program was written using CDC FORTRAN 2.3 language and can be run on the CDC 6400 and 6600 computer.

The program is limited presently to sixty degrees of freedom. However, with slight modification this restriction can be removed depending upon the storage capacity of the computer used for program implementation.

GENERAL NOTES

All integer variables must be right justified with no decimal point.

Tape Assignments
$I T 1=1$ contains complex mobility matrices at specified frequencies. Tape ITl is used as input to, PROGRAM K2LRC.

IT2 $=2$ contains constrained complex acceleration matrices and simulated measured force data. Tape IT2 is used as input to PROGRAM K3LRC.

All input data must be in consistent units, frequency in Hertz.

Card reader used as input devices.
Printer used as output device.

PROGRAM K1LRC

INPUT

			Parameter	Definition
Card (s)	4		AK	Stiffness Matrix. Input Lower. Triangular Matrix Similar to Procedure for Mass Matrix Format (8El0.0)
Card(s)	5		G	If IC6 $\neq 0$ Input Variable Structural Damping Vector, One Element for Each Degree of Freedom Format (8E10.0)
Card	6 Columns	1-10	NCON	Number of Constraints
Card (s)	7 Columns	1-10	NCOR	Coordinate Number at Constraint
		11-20	AKR	Constraint Spring Rate
		21-30	GR	Constraint Structural Damping
		31-40	DAMP	Constraint Viscous Damping
Repeat	Card 7, One	Card	for Each	Constraint
Card	8 Columns	1-10	NF	Number of Frequencies at Which Mobility Matrices Will be Calculated
Card (s)	9		H2	Frequency Values at Which Mobility Matrices Will be Calculated Format (8El0.0) Ten Columns Per Value, Eight Values Per Card

PROGRAM KlLRC - SUBROUTINES

SYM Forms symmetric matrix from lower triangular matrix. Uses object time dimensions.
Used to form symmetric mass and stiffness matrices from corresponding lower triangular matrices. NRA is the dimensioned number of rows of the matrix and N is the order of the square matrix being considered.

MOUT2 Used to print real matrices. Uses object time dimensions. Prints maximum of 10 columns per page. Number of rows printed is the same as the number of degrees of freedom. NRA is the dimensioned number of rows of the matrix and M and N are the number of rows and columns respectively of the matrix to be printed.

MOUTC Used to print real and imaginary components of complex matrices.
Uses object time dimensions.
Prints maximum of 5 columns of real and imaginary data per page. NRA is the dimensioned number of rows of the matrix. The matrix to be printed is of order LxM.

INVC Calculates the inverse of the complex impedance matrix to yield the complex mobility matrix. Uses object time dimensions.
The original impedance matrix is destroyed. NRA is the dimensioned number of rows of the matrix and N is the order of the matrix. If the original matrix is singular $\operatorname{IERR}=-1$ is returned to the main program, otherwise $I E R R=0$.

PROGRAM K2LRC

INPUT

			Parameter	Definition
Card (s)	2		FAMP	Applied Force Vector One Force for Each Constraint Format (8Fl0.0). Ten Columns Per Value, Eight Values Per Card, Maximum of 24 Applied Forces
Card(s)	3		FAMP	This card(s) Included Only IF IC2 > 0. Applied Forces at Non-Constraint Points. Format (8Flo.0). Sum of the Number of Applied Forces at Constraint and NonConstraint Points is Limited to 24
Card	4 Columns	1-5	PCT	Uniformly Distributed (\pm) Random Percentage Error on Amplitude. Applied to Simulated Measured Constrained Acceleration
		6-10	PCTB	Constant Specified Percentage Error. Applied to Simulated Measured Constrained Acceleration
		11-15	PHE	Uniformly Distributed (土) Phase Angle Error in Degrees. Applied to Simulated Measured Constrained Acceleration
		16-20	FPCT	FPCT, FPCTB, FPHE are the same as PCT, PCTB, PHE Except Applied to Simulated Measured Forces
		21-25	FPCTB	
		26-30	FPHE	
		31-40	IZ	Random Number Seed

PROGRAM K2LRC - SUBROUTINES

MOUTC Described in Program KILRC Subroutines.
ERR2 Used to apply error to each element of a complex matrix. The errors include: a uniformly distributed random (+) percentage error on amplitude; a uniformly distributed (土) random phase angle; a constant specified percentage bias error; a uniformly distributed (+) random amplitude error (simulating system noise). Object time dimensions are used, with NRA the dimensioned number of rows. N 1 and N 2 are the number of rows and columns respectively of the matrix.

GETRAN This subroutine is from the LRC Library of Subroutines. The subroutine computes uniformly distributed random real numbers between 0 and 1.0 (For Operation on the CDC 6400 and 6600 Computers).

				Parameter	Definition
Card	2	Column	1-80	ICHC	Read only if IC4 $\neq 0$ Vector
					Indicating Which Response and Force Data to be
					Eliminated; One Element
					Per Channel
					ICHC $=0$ No Modification
					ICHC $=1$ Corresponding Data are Deleted
					Maximum of 80 . Format (80Il).
Card	3			IW	Read only if IC4 $\neq 0$ Vector
					Indicating Which Response
					Data to be Eliminated
					IW = 0 No Modification
					IW $=1$ Corresponding Data
					are Deleted. One Element
					of IW for Each Force
					Eliminated.
			.		Maximum of 24 Format
					(24II).
Card	4	Repeat	Card	for opti	ns defined.

PROGRAM K3LRC

(INPUT TAPE DESCRIPTION)

This program converts constrained test data to free-body responses. The program accepts tape input in a form which would be generated from actual test data after processing. The input tape is unformatted and contains the following records of information.

Record	Parameters	Description
1	HEADT	80 characters (10 words) of heading
	NC	Number of channels of data. Maximum of 80,60 of which may be response data
	NF	Number of channels containing force data (24 maximum); also the number of sets of data at each frequency. The remaining (NC - NF) channels contain response data (60 maximum)
	ICH	Array (NC elements), one element corresponding to each channel. 0 indicates channel contains response data. 2 indicates channel contains force data. 1 added in the program indicates data to be ignored.
2	FREQ	Frequency at which NF records were taken. Identifies data which follows.
3 (Repeated NF times)	W	Complex array (NC complex elements), each element represents complex response or force data. There are as many W arrays as number of forces (NF). Each W represents data taken under a single condition of forcing.

Records 2 and 3 are repeated until $F R E Q=-1$ to signal end of condition followed by next RECORD 1. Final condition on tape is signalled by $F R E Q=-2$.

PROGRAM K3LRC - SUBROUTINES

MMPYC Performs multiplication of two complex matrices to yield a complex matrix as the result ($C=A * B$). A is of order (LxM). B is of order (MxN) and the resulting matrix C is of order (LxN). Object time dimensions with NRA, NRB and NRC being the dimensioned rows in A, B and C, respectively.

MOUTC Defined in Program KllRC Subroutines.
INVC Defined in Program KlLRC Subroutines.
AMPHAS Converts the real and imaginary components of a complex matrix into amplitude and phase angle form. Object time dimensions with NRA being the dimensioned numbers of rows of the matrix. NROW and NFA are the actual number of rows and columns respectively of the matrix under consideration.

VARIED CONSTRAINTS PROGRAM
ZK1LRC, ZK2LRC, K3LRC

These digital computer programs were designed to test and evaluate the concepts presented in the varied constraints portion of the theoretical development. : The programs are similar to programs KlLRC and K2LRC. Both versions utilize program K3LRC to reduce the simulated constrained test data to the free body response of the structure.

The same subroutines listed under program KlLRC and K2LRC apply.

PROGRAM ZKILRC

The input data for program ZKlLRC is the same as that for KlLRC with one exception. Card(s) 7 are repeated with the modified constraint characteristics. The number of sets of constraint data equals the number of constraints. Card(s) 7 are repeated one set for each constraint.

PROGRAM ZK2LRC

The input data is the same as that for K2LRC with the exception of Card(s) 2. For program ZK2LRC, Card(s) 20 are replaced with only one card having the following data:

Parameter

Card 2 Column | $1-10$ |
| ---: |
| |
| |
| |
| |

Definition
Applied Force
Coordinate Number of Constraint at Which Force is Applied

PROGRAM ZKILRC

(VARIATION OF CONSTRAINTS)

PROGRAM 2KILRC
(VARIATION OF CONSTRAINTS)

(variation of constraints)

PROORA ZK2LRC

(variation of constraints)

PROGRAM 2K2KRC
(VARIATION OF CONSTRAINTB)


```
    PROGRAM KILRC(INPUT,OUTPUT,TAPEI)
C
    NCON IS THE NLMBER OF CONSTRAINTS
    ONE INPUT CARD PER CONSTRAINT CONTAINING
    COORDINATE NUMBER,CONSTRAINT STIFFNESS,CONSTRAINT DAMPING
    NGOR IS TME INDICES OF THE STATIONS AT WHICH THE CONSIRAINTS ARE
    LOCATED
    COMPLEX L2,Y,Ll
        DIMENSION HEADC(9),AM(60,61),G(60), 21(6.,61),GS(60),AK(60.61),
        1 NCOR(24),AKR(24),DAMP(24),GR(24),HZ(100).
* 2IROW(61),ICOL(61),IRLAB(61),ICLAB(61),Y(60,61),22(60,61)
    C NRA ON NEXT CARD MUST BE THE DIMENSIONED NUMBER OF ROWS OF MATRICES
        NRA=60
        | Il=l
            REAO FIRST CARD
        READ 1000,ICI,IC2,IC3,IC4,IC5,IC6,IC7,ICB,HEADC
    1000 FORMAT (811,9A8)
        IF (ICI.EG.9) CALL EXIT
        PRINT 1005
    1005 FORMAT 154HI KILRC KAMAN AEROSPACE CORPORATION NOV 27. 1972,
    PQINT 1006, HEADC
    1006 FORMAT (//25x,9A8//1
    IFIICI.EG. 1) GO TO 100
    READ 1010,ND,GC
    1010.FORMAT II10,7E10.0)
C MASS MATRIX
            IFIIC5 .EQ. 1) GO TO 10
    1002 FDRMAT IBELO.0)
C DIAGONAL MASS
            DO 5 l=1,ND
            DO 5 J=1,NO
            AM(I, J)=0.
            READ 1002, (AM(1,1),1=1,ND)
            GO TO 20
    C
        10 DO 15 I=1,ND
        15 READ 1002,(AM(I,J),J=1,1)
            CALL SYM (AM,ND,NRA)
        20 PRINT 1100
    1100 FORMAT (1HL/4OX,1IHMASS MATRIX//)
            CALL MOUT2 I AM,ND,ND,NRA I
C
    DO 25 1=1,ND
        25 READ:. ICJ2, (AK(I,J),J=1,I)
            CALL SYM (AK,ND,NRA)
            PRINT 120C
    12J0 FORMAT 11HI/40X,16HSTIFFNESS MATRIX//1
            CALL MOUT2 ( AK,ND,ND,NRA)
                VARIABLE DAMPING
    IF IIC6.[Q. O) GO TO 50
    READ 1002, IG(I),I=1,NDI
    PRINT 1011,IG(I),I=1,NOI
```

```
:1011 FORMAT (10x,13HDAMPING COEFS /(10x,10F10.3.))
    DO 30 I = 1.ND
        30 GS(I) = SQRTIG(II)
            OO 40 I = 1.ND
            OO 40 J = 1.ND
        40 <l|!.J) a CMPLX (AK(I,J),AK(I,J)*GSII)*GSIJ|)
            GO TO 100
C
        50 DO 60 I = 1,ND
            DO 60 J = 1,ND
        6021(I.J)=CMPLX(AKII,J),GCFAK(I,J)) !
        PRINT 1025, GC
    1025 FORMAT (//10X,27HSTRUCTURAL DAMPING COEFF. *. F6.3)
C CONSTRAINT DATA
    100 READ 1010. NCON
        OO 180 I =1,NCON
    180 READ 1010, NCORIII,AKRIIJ,GRII),DAMPIII
        PRINT 104O. (NCORII),AKR(I),GR(I),OAMP(I),I=1,NCON)
    1040 FORMAT [1HI//10X,7OHCOORDINATE SPRING RATE
        IG VISCOUS DAMPING //f(II6.1P3E20.3))
            DO 110 1 =1.NCON
            K= NCOR(I)
    110 LI(K,K)=LI(K,K) & CMPLX (AKR(I), GR(I)*AKR(I))
C
C
    REAO 1010,NF
        READ 1002, (HZ(I),I=1,NF)
        WRITE \ITII HEADC.ONF,ND,\HZ\I),I=1,NF\
        GRITE (ITI) NCON,(NCOR(II,AKR(I),DAMP(I),GRII),I={,NCON )
        DO 170 L=1,NF
        OMR =HZ(L) *6.283185
        OMR S = OMR* OMR
        IFIICS.EQ.O) GO TO 140
        DO 130 1=1,ND
        DO 130 J=1.ND
    130 22(I,J)=21(I,J)-OMRS*AM(I,J)
        GO TO 120
    140 DO 135 I=1.ND
        DO 135 J=1,ND
    135 22(I,J)=21(I,J)
        DO 150 1=1,NO
    150 22(1,1)=22(1,1)-OMRS*AM(1,1)
    120 DO 160 I =1,NCON
        K=NCOR(I)
    160 22(K,K)=22(K,K)* CMPLX( 0.0 .OMR*DAMP(I) )
    CALL INVC ( 22,Y,ND,NRA,NRA,IERR,IROW,ICOL I
        IF I IERR.EQ.O) GO TO 151
        PRINT 1015
    IO15 FORMAT IIHI/4BH IMPEDANCE MATRIX IS SINGULAR JOE TERMINATEO/I
    CALL EXIT
C PRINTED OLTPUT IS DISPLACEMENT DATA
151 PRINT 1017. HZ(L)
```

```
1017 FORMATIIHI/40X.48HDISPLACEMENT MOBILITY REAL,IMAGINARY: FREQ=
    1F10.2.6H HERTI//I
    CALL MOUTC I Y,ND,NO,NRA, O, D,IRLAB,ICLAB,TI
    190 WRITE IITl) HZ(L),(IYII,J),I=1,NO ),J=1,ND)
    170 CONTINUE
        GO TO 1
C
    END
```

SUBROUTINE SYM (A,N,NRA) FORMS SYMMETRIC MATRIX FROM LOWER TRIANGLE
DIMENSION AINRA,I,
$\mathrm{N} 1=\mathrm{N}-1$
DO 15 I $=1$. NI
$11=1+1$
$0010 \mathrm{~J}=11, \mathrm{~N}$
$10 A(I . J)=A(J, I)$
RETURN
ENO

```
        SUBRDUTINE MOUT2 (A,M,N,NRA)
        DIMENSION
    1 A(NRA.1 )
        ID=MINO(N,10)
    PRINT 1000. 11.I=1.ID)
1 0 0 0
    P0RMAT (1/5x.10112)
    PRINT 100C
    DO 1O I=1,M
    10 PRINT 1001, I,(A(1,J),J=1,|D)
1001 FORMAT (15,5x,1P10E{2.4)
    IF (10-N) 20,50.50
    20 K=N/10-1
        DO 40 L=1,K
        N1=L*10+1
        N2=10+(L+1)
        ID=MINOI N,N2 I
        PRINT 1000. II,I=NL,IDI
        PRINT 1000
        DO 30 l=1,M
    30 PRINT 1001, I,(A(I,J),J=NL,ID)
    4O CONTINUE
        IFIN2-NI 60.50.50
    60 N2=N2+1
        PRINT 1000, (1,I=N2,N)
        PRINT 1000
        OO 70 I=1,M
    70 PRINT 1001, I,(A(I,J),J=N゙<,N)
    5 0 ~ R E T U R N
        END
```

```
            SUBROUTINE MOUTC IA,L,M,NRA,IR,IC,IRLAB,ICLAB,LINE )
                            A IS COMPLEX ARRAY ($16 ON IBM ) LXM
                            IRLAB IS ARRAY OF INDICES FOR ROM (USED WHEN IR=I '
                            IGLAB IS.ARRAY OF INDICES FOR COL IUSED MMEN IC=1)
                        NRA IS DIMENSIONED NO OF ROWS IN A
                            OUTPUT FORM RE,IM X.XXXE XX, X.XXXE XX
                            LINE IS LINE NO ON PAGE OF FIRST OUTPUT LINE
            COMPLEX A(NRA.I)
            DIMENSION IRLAB(II,ICLABIII
            IC1=1
            IC2#HINO(5.M)
    10 ILI=1
    IL2=MINO 155-LINE,L )
    15 IF IIC.EQ.1) GO TO 20
        PRINT 1000, II,I=ICI,IC2 I
        GO TO }3
    20 PRINT 1000, (ICLAB(I).I=ICI.IC2)
1000 FORHAT (/ 123.4I24/1
    30 DO 50 IaILI,IL2
        IF IIR .EO.I I GOTO40
        PRINT 1010; I,(AII,J),J=ICI,IC2)
        GO TO 50
    40 PRINT 1010, IRLAB(I), (AII,JI,J=ICl,IC2)
1010 FORMAT ( I6,4X,1PSIEL2.3,1H.,ELI.3I)
    50 CONTINUE
        IF II.GE.L I GO TO }10
        IL1=1L2+1
        IL2=MINOIIL2*55,L (
        PRINT 1015
1015 FORMAT (1HZ)
    GO TO 15
    100 IF IICZ.GE.M ) GO TO 120
        ICI=IC2*I
        IC2=MINO (IC2+5,M )
        PRINT 1015
        GO TO 10
    120 RETURN
    END
```

SUBROUTINE INVC ID,A,N,NRA,NRB,IERR,IRON,ICOL`

IERR=0

DO 1 1 =1, N
DO $1 \mathrm{~J}=1, \mathrm{~N}$
1 A(I, J) $=0(\{, J)$
$M=N+1$
DO $7 \quad I=1 . N$
IROWIII $=1$
7 ICOLII $=1$
DO $20 \mathrm{~K}=1 \mathrm{~N}$
$A M A X=A(K, K)$
OO 10 I $=K, N$
$0010 \mathrm{JaK}, \mathrm{N}$
IFI CABSI A(I.J): CABS(AmAX):10.9.9
9 AMAX=A!1.J)
IC=1
$J C=J$
10 CONTINUE
$K I=I C O L(K)$
$1 C O L(X)=I C O L(I C)$
ICOL (IC) $=K I$
KIEIROWIK!
IROW(K)=IROW(JC)
(ROW(JC) =KI
IF(CABS(AMAX)) 11.12 .11
12 IERR=-1
6010100
11 DO 14, $3=1, N$
$E=A(K, J)$
$A(K, J)=A(I C, J)$
14 AIIC, JI =E
DO 15 I $=1 . N$
$E=A(1, K)$
A(I,K) =A(I,JC)
15 All.JCI=E
DO $161=1, N$
IF(I-K) 18,17,18
$17 A(1, M)=\{1.00$.
GOTO 16
$18 \mathrm{~A}(1, M)=(0.0$. $)$
16 CONTINUE
$P V T=A(K, K)$
DO $8 \mathrm{~J}=1, M$
8 A(K,J) =A(K,J)/PVT
DO 19 IEI,N
IF(I-K)21,19,21
21 AMULT=A(I.K) $0022 \mathrm{~J}=1 \mathrm{M}$
22 A(I,J) $=A(I, J)-A M U L T \neq A(K, J)$
19 CONTINUE
DO $201=1 . N$

20 AlI,K)=A(I,M)
DO 25 I=1,N
$0024 \mathrm{~L}=1 \mathrm{i} N$ IFIIROWIII-L124.23.24
24 CONTINUE
23 DO 25 J=1.N
$250(L, J)=A(1, J)$
DO 26 J=1,N
DO $28 \mathrm{~L}=1, \mathrm{~N}$ (FIICOL(J)-L) 28,29.28
28 CONTINUE
290026 I=1,N
26 A(I,L) =D(I,J)
100 RETURN
END

```
    PROGRAM K2LRC IINPUT,OUYPUT,TAPEL,TAPEZI
        FREE BODY TEST METHOD SIMULATION
            USES MCBILITY DATA FROM 'KILRC'
    ICG IS NUMBER OF DEGREES OF FREEDOM AT EACH COORDINATE
    USED IN SUBROUTINE ERRZ
    COMPLEX Y,YA
    DIMENSION HEADN( 9),HEAD( 9),INOS(24),INDX(100)
    DIMENSION HZ(100),SPR(24),FAMP(24),DAMP(24),ICHI72), INDR(20)
    DIMENSION Y(60.61),YA(60,61),GT(24),IRLAB(61),ICLAB(61)
    COMMON/SET/LRCL.LRCN.LRCIX(2)
    TAPE UNIT ITI CONTAINS DATA FROM KILRC PROGRAM
    TAPE UNIT ITZ USED FOR DATA TRANSMITTAL TO KBLRC PROGRAM
    1T1=1
    1 12=2
    NRA=60
    FR=-1
    REWIND IT2
C
    READ FIRST CARD
    READ 1000.IC1,IC2,IC3,IC4,IC5,IC6,IC7. HEADN
1000 FORMAT (6I1,12.9A8 )
            IF (IC1.EO.9) CALL EXIT
            PRINT 1002
1002 FORMAT (54H1 K2LRC KAMAN AEROSPACE CORPORATION NOV 27, 1972 )
IF (ICI.EG.1) REWINO ITI
        15 READ (ITI) HEAO,NF,ND,(HZII),I=1,NF)
            PRINT 1011, HEADN,HEAD,ND,(HZ(1),I=1,NF)
1011 FORMAT (1HI//25X,9A8//
    125x, 9A8 /25X,12,19H DEGREES OF FREEDOM /25x,23H FREQUENCIES(HZI
        20N TAPE //110X. IOF10.21)
                            TAPE \NPUT
                            CONSTRAINT SPRINGS,VISCOUS DAMPERS,STRUCTURAL DAMPING
            READ (ITI) NS,IINDS(I),SPRIII,DAMP(I),GT(II,I=I;NS I
            INPUT APPLIED FORCES AT CONSTRAINTS
        READ 130., (FAMP(II,I=1,NS)
            INPUT APPLIED FORCES AT NON-CONSTRAINT CORDINATES
            IFIIC2.EQ.O) GO TO 7
            NSI=NS*1
            NS=1C2+NS
            READ 130. (FAMP(I),I=NSI,NS I
            READ 131. (INDS(I),I=NSI,NS )
    131 FORMAT (8I10)
    130 FORMAT (8F10.0)
            DO 11 I=NSI,NS
```

```
            SPR(I)=0.
            DAMP(I)=0.
    11 GTII)=0.
    7 PRINT 1003. (INOS(I),I=1,NS)
        PRINT 1004, ( SPR(I),I=1,NSI
        PRINT 1005. (FAMP(I),I=1,NS!
        PRINT 1001, (DAMP(I),I=I,NS)
        PRINT 1008: (GTII),I=1,NS I
    1001 FORMAT (//10X,7HDAMPERS,10X,3(8F10.0)//)
    1003 FORMAT //IOX,22HCONSTRAINTS AND FORCESS //IOX.9HSTATION .5X.
    13(8110)//)
    1004.FORMAT (//10X. 6HSPRING .11X,3/8F10.01//)
    1005 FORMAT I//10X.13HAPPLIEO FORCE O 4X,3(8F10.0)//1
    1008 FORMAT (//10X,18HSTRUCTURAL DAMPING,2X,3(8F10.3)//1
C
                            INPUT ERRORS, FREQUENCIES
                            READ 1006. PCT,PCTB,PHE,FPCT,FPCTB,FPHE,II,AMPL,AMPR,AMPF
    1006 FORMAT 16F5.0.110.3F10.01
        LRCIX(1)=12*2+1
        LRCN=1
        LRCL=1
        PRINT 1007, PCT,PCTB,PHE,IL,FPCT,FPCTB,FPHE,AMPL,AMPR,AMPF
    1007 FORMAT //10X,16HMAX RAND ERROR =,F5.3.13H BIAS.ERROR =,FS.3,37H OF
        I RESPONSE MAX RAND PHASE ERROR = F5.2.16H DEG. SEED =, IlO/
        21OX,12HFORCE ERRORS, 4X,F5.3.13X,F5.3.37X,F5.2//10X,38HMAX RAND LI
        3NEAR ACCELIREAL,IMAGIERROR=EI2.4/9X,39HMAX RAND ANGULAR ACCELIREAL
        4.IMAGIERROR=E12.4/17X,31HMAX RAND FORCEIREAL,IMAGIERROR=E12.4/1)
            IF IICT.GT.O) GO 10 20
            IC7=NF
            00 10 I=1,NF
        10 1NDX(1)=1
        PRINT 100.9,NF
    1009 FORMAT (/LOX, GHALL ,I3,1X, 1GHFREQUENCIES USEDI
            GO TO }3
        20 READ 1040, (INDX(I),IEI,ICT)
            DO 12 1=1.1C7
            K={NDX(I)
        12 HZ(I)=HZ(K)
    30 PRINT 1010, (HZ(K),K=1.IC7)
    1010 FORMAT (/10X,16HFREQUENCIES USED//IIOX; 10F12.41)
        INFR=1
        OD 2 1=1.ND
        2 ICH(I)=0
        NB=NO+1
        NC =NO +NS
        OO 3 I=NB,NC
    3 ICH(I)=2
    WRITE (IT2I HEADN,NC,NS,IICHIII,I=I,NC I
    OO 500 L=1,NF
    READ (ITI) FREQ,I(Y(I,J),I=1,NDI,J=I,NO )
    IFIL.NE.INDX(INFRI) GO TO 500
                                    ELIMINATE COLUMNS AND CONVERT TO ACCL MOB
            OMR=FREQ *6.2832
            OMR S =OMR*OMR
```

```
            DO 50 J=1,NS
            F=FAMP(J)
            K=\NDS(J)
            DO 50 I=1,NO
            Y(I,J)=Y(I,K)*F
        50 YA(I,J)=-Y(I,J)#OMRS
                FORM CONSTRAINT DISP MATRIX AND ADD ERROR
                    YA,PCT,PCTB,PHE,ND,NS,IX,NRA, AMPL, AMPR,O.,ICG I
            CALL ERR2 I
C
C
            PRINT 1020, HZ(INFR)
    1020 FORMAT IIHI, 20X,71HSIMULATED MEASUREO CONSTRAINED ACCELERATION
            1 F = F10.2,3H HZ/I
            CALL MOUTC (YA ,ND,NS,NRA, O, O,IRLAB,ICLAB,5)
C ACCELERATIONS DUE TO FORCES ANO FORCES AT CONSTRAINTS
                    WITH ERRORS ON TOTAL FORCES
C ACCELERATIONS DUE TO FORCES
    60 DO 70 J=1.NS
            DO 70【I=1,NS
            I={NDS(II|
        70 Y(II,J)=-SPR(II)*Y(I,J)-(GT(II)#SPR(II)+OMR#DAMP(II)|#Y(I,J)*
        1 (0..1.)
            00 91 I=1,NS
        91 Y(I,I)=V(I,Ij+FAMP(I)
            CALL ERR2 I Y,FPCT,FPCTB,FPHE,NS.NS.IX,NRA,O..O..AMPF,O )
C
C
    PRINT 1025. HL(INFR)
    1025 FORMAT (IHI,2OX,6OHSIMULATEO MEASUREO FREE BOOY FORCE MATRIX
            1 F=. FIO.2,3H HLI I
            CALL MOUTC (Y,NS,NS,NRA, O, O,IRLAB,ICLAB,5)
    100 WRITE (IT2) HZ(INFR)
C
C ACCELERATION DATA ON TAPE
        OO 5 J=L,NS
        5 WRITE (IT2 ) (YA(I,J),I=1,ND),(Y(I,J),I=l,NS )
1040 FORMAT (8110)
    502 INFR=INFR+1
        IF (INFR.GT.ICT) GO TO 501
    500 CONTINUE
    501 WRITE (IT2 ) FR
        13 GO TO 1
            ENO
```

```
            SUBROUTINE MOUTC (A,L,M,NRA,IR,IC,IRLAB,ICLAB,LINE)
C
                            A IS COMPLEX ARRAY ($16 ON IBM ) LXM
                            IRLAB IS ARRAY OF INDICES FOR ROW IUSED WHEN IR=1 I
                                IClAB IS ARRAY OF INDICES FOR COL IUSED WHEN IC=1)
                            NRA IS DIMENSIONED NO OF ROWS IN A
                                    OUTPUT FORM RE,IM X,XXXE XX, X.XXXE XX
                                    LINE IS LINE NO ON PAGE OF FIRST OUTPUT LINE
        COMPLEX A(NRA.I)
        DIMENSION IRLAB(1).ICLAB(1)
        ICl=1
        [C2=MINO(5.M)
    10 1LI=1
        IL2=MINO (55-LINE,L )
    15 IF (IC.EQ.1) GO TO 20
        PRINT 1000, II,I=ICI,IC2 )
        GO TO 30
    20 PRINT 1000, (ICLAB(I).I=IC1,IC2 )
1000 FORMAT (/ 123.4124/)
    30 DO 50 I=ILI,IL2
        IF IIR .EQ.L I GO TO 40
        PRINT 1010,I,(A(1,J),J=ICL,IC2)
        GO TO 50
    40 PRINT 1010. IRLAB(I),(AII,J),J=ICl,IC2)
1010 FORMAT ( I6,4X,1PS(EI2.3.1H.,EII.3))
    50 CONTINUE
        IF II.GE.L I GO TO 100
        ILI=1L2+1
        IL2=MINO(IL2+55,L )
        PRINT 1015
1015 FORMAT (1HI )
    GO TO 15
    100 IF IICZ.GE.M )GO TO 120
        ICl=IC2+1
        IC2=MINO (IC2+5,M)
        PRINT }101
        GO TO }1
    120 RETURN
        END
```

SUBZJUTINE ERR2（ $\angle A, P C T, P C T B, P H E, N 1, N 2, I X, N R, A M P L, A M P R, A M P, I C 6$ I DHJEET TIME DIMENSIONS EACH ELEMENT OF A COMPLEX MATRIX，A IS MODIFIED TS INCLUDE A SMALL PHASE ERROR，PNE IDEG），A BIAS ERROK， PCTB（RATIO）ON AMPLITUDE，A UNIFORM KANDOM ERROR HAVING A－＋／－MAXIMUM OF PCT（RATIOI ON AMPLITUDE， AND A UNIFORM RANDOM ERROR HAVING A $+/-$ MAXIMUM ON AMPLITUOE THE PHASE ERROR IS ALSO RANDOMLY DISTRIBUTED
NOTE NO SYMMETRIZATION IS PERFORMED
I二 6 IS THE NUMBER OF DEGREES OF FREEDOM OF EACH COORDINATE
USES GETRANIUNIFORM DISTRIBUTIONI
LREIXII）＝ARBITRARILY SELECTED LOSITIVE INTEGER LREY＝I FOR FIRST CALL TO GETRAN
SET LREN GREATER THAN 1 FOR SUBSEQUENT CALLS TO GETRAN LREL＝I FOR UNIFORM DISTRIBUTION LशCIX（2），DUML，DUM2，NOT USED YFL＝UNIFORMLY DI STRIBUTED RANDOM NUMBER

CJMPLEX LAINR，1）
CJMHON／SET／LRCL，LRCN，LRCIX（2）
IF（PET）120．100．120
100 IF（P＝TB） 120.110 .120
110 IF（PHE） $120,140,120$
140 IF（AMPL） $120,145.120$
145 IFI AMPR $120.155,120$
155 IFI AMP I 125.135 .120
$120 P=P$ HE／57．296
DJ $130 \mathrm{~J}=1, \mathrm{~N} 2$
$K=(156+1) / 2$
K1 $=1$ こ 6
DJ $130 \quad I=1, N 1$
－ALL SETRAN（LRCIXII），LRCN．LRCL，DUMI，YFL，DUM2）
IFILXCN．EQ．IILREN＝LRCN＋1
$E=2.0 * P *\{Y F L-0.51$
AR＝24（I，J）
$A!=\left(0.0^{-1 .)}\right.$＊ $2 A(I, J)$
RI＝ABSI AR I
$72=4 B S 1$ AI
$+3=11+R 2$
IF 1マ3．E0．0．1 GJ TO 130
21 $=21 / 83$
र2 2 22／73
A1．$=4$ R－E＊AI

－ア＝A1
こQLL SETRAN（LREIX（1），LRCN，LRCL，OUMI，YFL，DJM2）
$E=1.3+2 . J \neq P C T *(Y F L-0.5)+P C T B$
Aマ＝AてもE
4I＝4I＊E
EALL GETRAN（LRCIX（1），LRCN，LRCL，DUMI，YFL，DJMZ）
C

IF IICG.EQ. O I GO TO 170
IF1 1-K 1 175.175.185
$175 \mathrm{AMP}=A \mathrm{MPL}$
CO 10170
185 AMP $=A M P R$
170 t=2. (YFL-. 5) *AMP*R1
$A R=A R+E$
CALL GETRANILRCIX(I),LRCN,LRCL, DUMI, YFL, DUM2)
E=2.*(YFL-.5) *AMP*R2
AI=AI $+E$
160 LA|I,JI= CMPLX (AR,AI)
IF IC6.EQ. O SO TO 130 .
IF. II.NE. KI 16010130
$k=k+1 C 6$
Kl=K1 1 IC6
130 CONTINUE
135 RETURN
END

```
            PROGRAM K3LRCIINPUT,OUTPUT,TAPEZI
            COMPLEX W,WF,WR,Y,WFINV,WFI
            DIMENSION W(80), HEADC(9), HEADT( 9),ICH(80),ICHC(80), IN(24),
            1 WF(24,25),WR(60,24),Y(65,24),ICHNO(60),WFINV(24,25),'.
            2 IROW(25),ICOL(25),WF1(24,25)
C
    IAPE UNIT ITI CONTAINS DATA FROM FREBOOY PROGRAM
            1T1=2
C READ FIRST CARD
    1.READ 1000,ICI,IC2,IC3,IC4,IC5,ICG,IC7,ICB,HEADC
    1000 FORMAT (811.9A8)
        IF (ICI.EQ.9) CALL EXIT
        PRINT 1005
    1005 FORMAT (54HI K3LRC KAMAN AEROSPACE CORPORAIION NOV 27 1972,
            IF. (ICl.EO.1) REWIND ITI
                READ FIRST TAPE RECORD
            READ (ITI) HEADT,NC,NF,(ICH(II,I=1,NC)
            NIX=0
            NCA=NC
            NFA'=NF
C
            PRINT 10IC. HEADCOHEAOT
                                    PRINT HEADINGS
    1010 FORMAT ///20X,9AB//2OH TAPE HEADING----. 9A8 )
            PRINT 1015. NC,NF
    1015 FORMAT //20X,2OHNUMBER OF CHANNELS = .16,10X,18HNUMBER OF FORCES =
            1.14)
            IF (ICG.EO.O) GO TO 50
C MODIFY TAPE DATA
    READ 1020,ICHC.IW
    1020 FORMAT (8011)
            DO 10 1=1,NC
            IF (ICHC(II.EQ.O) GO TO 10
            NCA=NCA-1
            IF (ICH(I).EQ.2) NFA=NFA-1
            ICH(I)=1
        10 CONTINUE
            NIX=NF-NFA
            IF(NIX.EQ.O) GO TO 30
            IX=0
            DO 20 1=1,24
            IF(IW(I).GT.O) IX=|X+1
        20 CONTINUE
            IF (IX.EQ.NIX) GO TO 30
            PRINT 1025, NIX,IX
    1025 FORMATI//IOX,4OHINCORRECT NUMBER OF DATA SETS ELIMINATEO . I5.
            I GHREQUIRED. .I5.IOHDESIGNATEOI
            CALL EXIT
C
                                    PRINT MODIFICATIONS
        30 PRINT 1030,NCA,NFA, (I, IWIII,I=l,NIXI
    1030 FORMAT 12OH MODIFIED TO , 20X,[4, 28X, 14//20X,34HDATA SETS EL
            IIMINATED = 1. KEPT = 0 /' 7X,12(15,3H=.12)/7X,12(!5,3H=.12I)
C
    50 PRINT 1035,
    |I,ICH{I|,I=1,NC)
```

```
    1035 FORMAT I//20X,7OHCHANNEL DEFINITIONS, a O RESP DATA, = 1 NOT U
        ISED, = 2 FORCE DATA // 7X,12II5,3H=,12I/7X.12I15,3H=.|2)/
        27X,12115,3H=,121/7x.12115,3H=.12:/7X,1211503H=,12)!
C
        NROW=0
        DO 60 1=1.NC
        IF IICHIII.NE.OI GO TO 6O
        NRON = NROW+1
        ICHNO(NROH) = I
        60 CONTINUE
        IF(NROW.GT.60) PRINT 1036
    1036 FORMAYIIOX,34M----TOO MANY RESPONSE CHANNELS---- I
        CALL EXIT
    310 REAO (ITI) FREO
        IF (FREQ.GE.OI SO TO 90
        IF IFREQ.EO.-I) GO TO 1
        REWINO ITI
        GO TO 1
C
        90 NH=0
            ICOLO=0
    100 NW=NW* I
        |F{NW.GT.NFI GO TO 200
        READ \ITI| (WII|,I=1,NC)
        IFINIX.EQ.OI GO TO 120
        IFIIH(NH).NE.O\ GO TO 100
C DISTRIBUTE TAPE DATA
    120 ICOLO=ICDLO+1
        IROWF=0
        IROWR=0
        DO 150 I = 1,NC
        If {ICH(I)-1) 130.150.140
    130 IROWR=IROWR+1
        WR(IROWR,ICOLOI=W(II
        GO 10150
    140 IRONF=IROMF+1
        NF(IROWF,ICOLO)=W(I)
    150 CONTINUE
        GO TO }10
C
    200 IFIIC2.NE.2) GO TO 250
C PRINT FORCES
        IFI ICB.NE. OI GOTO 340
        PRINT 105I,FREO
    1051 FORMAT /1HI.///10X,12H FREQUENCY = G14.4//10X,31HFORCE MATRIX
        IAMP,PHASE(DEG) //1
        OO 341 \=1,NFA
        00;341 J=1.NFA
    341 WF1|1,J)=WF{1,J)
        CALL AMPHAS ( WFI,NFA,NFA , 24 )
        CALL MOUTC IWFI,NFA,NFA,24,0,O,ICHNO,ICHNO,7,ICB )
        GO TO 250
    340 PRINT 1050, FREO
1050 FORYAAT /1HI,///10X,12H FREQUENCY = G14.4//10X,31HFORCE MATRIX
```

```
            IREAL. IMAGINARY //I
    320 CALL MOUTC (HF,NFA,NFA,24,0,0.ICHNO,ICHNO,7,ICB )
    250 CALL INVC IWF,WFINV,NFA,24,24.IERR,IROW,ICOL)
        IF (IERR.EQ.O) GO TO 210
        PRINT 1040
    1040 FORMAT (///10X.45H--------- FORCE MATRIX NNT INVERTIBLE-------- I
    GO TO 1
    210 CALL MMPYC IWR,WFINV,Y,NROW,NFA,NFA,60,24,60 1
                CALCULATIONS COMPLETE
C
                        PRIMT OUTPUT COMPLETE
                    PRINT OUTPUT
        IF IIC2.NE.2I GO TO 260
        IFI ICB.NE.O I GO TO 261
        CALL AMPHAS I WFINV,NFA,NFA,24 I
    261 PRINT 1055,FREO
    1055 FORMAT /IHI///10X,12H FREQUENCY = G14.4//10X,23HINVERSE OF FORCE
        IMATRIX //1
        CALL MOUTC IWFINV,NFA,NFA,24,O,O,ICHNO,ICHNO,T,ICS,
    260 IF IIC2.EO.OI GO TO 330
C
        IFI IC8.NE. O I GO TO 270
        PRINT 1061,FREO
    1061 FORMAT /1HI.///12H FREQUENCY = GL4.4//10X,45HCONSTRAINED RESPONSE
        1 MATRIX AMP,PHASE (DEG) /1.)
        CALL AMPHAS ( WR,NROW,NFA .60)
        GO TO 280
    270 PRINT 1060, FREQ
1060 FORMAT (1H1,///12H FREQUENCY = G14.4//10X,45HCONSTRAINED RESPONSE
    I MATRIX REAL. IMAGINARY //I
    280 CALL MOUTC (WR,NROW,NFA,60,1,0,ICHNO,ICHNO,T,IC8)
    330 IF I IC8 .NE. O I GO TO 300
        PRINT 1071,FREO
107L FORHAT /1HL,///12H FREQUENCY = G14.4//10X.43HFREE BODY RESPONSE M
    IATRIX AMP,PHASE(DEG) /1)
        CALL AMPHAS (Y,NROW,NFA .60)
        GO TO 290
    300 PRINT 1070.FREO
1070 FORMAT 1/H1.///12H FREQUENCY = G14.4//10X.43HFREE BODY RESPONSE M
    IATRIX REAL, IMAGINARY //I
    290 CALL MOUTC IV,NROW,NFA,60,1,O,ICHNO,ICHNO,T,ICB )
        GO TO. }31
        ENO
```

```
SUBROUTINE MMPYC \(\mathcal{A}, B, C, L, M, N, N R A, N R B, N R C\) I
            A,B,C COMPLEX MATRICES \(\mid=16\) ON IBM :
            \(C=A \not B \quad\) AISLXM, HISMXN, CISLXN
            NRA,NRB,NRC DIMENSIDNED ROWS IN A,B,C
    COMPLEX A(NRA,1), B(NRB,I). C(NRC,1)
    \(00100 \quad 1=1, L\)
    DO \(100 J=1, N\)
    \(C(1,1)=(0.0,0.0)\)
    DO \(100 \mathrm{~K}=1 . \mathrm{M}\)
100 C(I,J) \(=C(I, J)+A(I, K) * g(K, J)\)
    RETURN
    END
```

SUBROUTINE MOUTC (A,L,M,NRA,IR,IC,IRLAB,ICLAB,LINE)

```
C
    A IS COMPLEX ARRAY (*IG ON IBM ) LXM 
        ICLAB IS ARRAY OF INOICES FOR COL IUSED WHEN IC=1)
                        NRA IS OIMENSIONED NO OF ROWS IN A
        OUTPUT FORM RE,IM X.XXXE XX, X.XXXE XX
        LINE IS LINE NO ON PAGE OF FIRST OUTPUT LINE
        COMPLEX A(NRA,I)
        DIMENSION IRLAB{I),ICLAB(1)
        ICl=1
        IC2=MINO(5,M)
    10 ILI=1
        IL2=MINO 155-LINE,L I
    15 IF (IC.EQ.1) GO TO 20
    PRINT 1000. (I.I=ICI,IC2 I
    GO TO 30
    20 PRINT 1000, (ICLAB(I),I=ICI,IC2 )
1000 FORMAT (/ 123,4124/)
    30 DO 50 I=ILI,IL2
        IF IIR .EQ.I I GO TO 40
        PRINT 1010, I,(AII,J),J=ICl,I(2)
        GO TO 50
    40 PRINT 1010, IRLAB(I),IA(I,JI,J=IC1,IC2 )
1010 FORMAT ( 16,4X,IPS(E12.3,1H.,E11.3))
    50 CONTINUE
        IF II.GE.L I GO TO }10
        LLI=1L2*1
        IL2=MINO(IL2*55.L I
        PRINT 1015
1015 FORMAT (IHI)
    GO TO 15
    100 IF IICZ.GE.M ) GO TO 120
    IC1=1C2+1
    IC2=MINO (IC2+5,M )
    PRINT 1015
    GO TO 10
    120 RETURN
    ENO
```

 SUBRDUTINE INVC ID,A,N,NRA,NRE,IERR,IROW,ICDL,
 COMPLEX A,D,AMAX,E,PVT,AMULT
 DIMENSION A(NRB,1),D(NRA,1),IROW(1),ICOLI1)
 IERR=0
 DO 1 I=1,N
 DO 1 J=1,N
 1 A(I,J)=D(I,J)
 M=N+1
 DO }7\mathrm{ I=1.N
 IROW(IIEI
 7 ICOL(I)=1
 DO 20 K=1,N
 AmAX= A(K,K)
 DO 10 1=K,N
 DO 10 J=K,N
 IF(CABS\ A(I,J))- CABS(AMAX)I10,9.9
 9 AMAX= A\II.JI
 IC=I
 JC=J
 10 CONTINUE
KI=ICOL(K)
ICOL(K)=ICOL(IC)
ICOL(IC)=KI
KI=|ROW(K)
IROW(K) =1 ROW(JC)
[ROW(JC)=KI
[F(CABS(AMAX)] 11.12.11
12 IERR=-1
GO TO 100
11 00 14 J=1,N
E=A(K,J)
A(K,J)=A(IC,J)
14 AllC,JI=E
DO 15 I=1.N
E=A(I,K)
A(I,K)=A(I,JC)
15 A(I,JC)=E
DO 16 I=1.N
IF(1-K) 10,17,18
17 A(I,M)=(1.,0.)
GO TO 16
18 A(I,M)=(0..0.)
1 6 CONTINUE
PVT=A(K,K)
OO 8 J=1,M
A(K,J)=A(K,J)/PVT
DO 19 I=1,N
IF(1-K)21.19.21
21 AMULT=A(I,K)
DO 22 J=1,M
22 A(I,J)=A(I,J)-AMULT*A(K,J)
19 CONTINUE
DD 20 1=1.N

```
\(20 A(I, K)=A(I, M)\)
DO \(25 \quad 1=1, N\) DO \(24 \mathrm{~L}=1, \mathrm{~N}\) IFIIROWIII-LI24.23.24
24 CONTINUE
23 DO 25 J=1,N
25 D(L,J)=A(I,J)
DO \(26 \mathrm{~J}=1\), N
DO 28 L=1,N IF(ICOL(J)-L) 28.29 .28
28 CONTINUE
29 DO 26 I=1, N
26 A(I,L) \(=D(I, J)\)
100 RETURN
END
    DIMENSIDN YINRA,I )
    DO \(1 \quad I=1\), NRON
    DO \(1 j=1, N F A\)
    \(A I=Y(I, J) *(0,-1\),
    \(A R=Y(I, J)\)
    IFI AI.EQ.O.J.AND.AR.EQ.O.O GOTO 2
    \(A M=S O R T\) ( \(A R * A R+A I * A I\) )
    \(A I=A T A N 2\{A|, A R| * 57.2958\)
    GO TO 1
\(2 A M=0\).
1 VII,JI= CMPLX|AM,AI I
    RETURN
    END
```

C
COMPLEX L2,Y,2L,Z2A,23
DIMENSIDN HEALC(9),AM(60,61),G(60), 21(60,61),GS(60), AK(OU,01),
I NCOR(24,24),AKR(24,24),DAMP(24,24),GR(24,24),H2(100),
2IROW(61),ICOL(61),IRLAB(61),ICLAB(61),Y(60,61), 22(60,61),<3(<4)
DIMENSION L2A(0.0.61)
C ARA ON NEXT CARC MUST BE THE DIMEASIONED NUMBER OF ROLS GF MAIKILES
NRA=60
IT 1=1
C READ FIRST CARD
1000 FORMAT (811,9A8)
IF (ICL.EW.9) CALL EXIT
PRINT LUUS
1005 FORMAT 154HL KILRC KAMAN AEROSPACE CORPORATION DEC 14, 1472 I
PRINT 1006, HEACC
1006 FORMAT I//25X,9AB//I
IFIICI .EG. L) GO TO 100
REAC 1010,NO,GC
1010 FORMAT (110,7E10.0)
C MASS MATRIX
IFIICS .EQ. II GU TO 10
1002 FORMAT (8E10.0)
C
OO 5 I= N,NU
OD 5 J=1,ND
5 AMII,JI=0.
REAC 1002, (AM(I,I),I=1,NO)
GO TO 20
C
10 00 15 L=1,ND
15 REAC lUO2.(AM(1,J),J=1.1)
CALL SYM (AM,ND,NRA)
20 PRINT LINU
1100 FORMAT (IHL/40X,1LHMASS MATRIX/|)
CALL MUUT2 I AM,NC,ND,NRA I
C
DO 25 L=L,ND
25 REAC LUU2, (AKII,J),J=1,I)
CALL SYM (AK,NU,NKA)
PRINT 12UU
1200 FORMAT (LHL/4UX, LOHSTIFFNESS MATR[X//)
CALL MOLTZ I AK,ND,ND,NRAI

```
```

C
IF IICG.EO. OI GO TO 50
READ 1002, (G|I|,|=1,ND)
PRINT 101L,(GII|,I=1,ND)
1011 FORMAT (1CX.13HDAMPING COEFS /(10X,10F10.3))
DO 30 I = l.ND
30 GS(II = SORTIGIII)
0040 1 = 1,ND
DO40 J = 1.ND
40 21(I.J)= CMPLX (AK(I,JI,AK(I.J)*GS(I|*GSIJ))
G0 10 100
C
CONSTANT STRUCTURAL DAMPING
50 DO 60 I = 1,ND
0060 J=1,NO
60 L1(I,J)=CMPLX(AK\I,J),GC\&AK\I,J))
PRINT 1025. GC
1025 FORMAT (//10X,27HSTRUCTURAL DAMPING COEFF. =. F6.3)
C
100 PRINT 1050
1050 FORMAT (IHI///10X,2IHCONSTRAINT VARIATIONS///)
READ 1010. NCON
OO 125 J=1,NCON
OO 125 I=1,NCON
125 READ 1010. (NCORII,J).AKRII,JI.GRII,J),DAMP(I.JI)
OO 110 J=1,NCON
PRINT 1040, (NCORII,J),AKR(I,J),GRII,J),DAMP(I,JI,I=I,NCON I
110 PRINT 1060
1060 FORMAT (/////)
C
FREQUENCY DATA
READ 1010,NF
READ 1002, (HZ(I),I=1,NF)
WRITE (ITI) MEADC,NF,ND,(HZ\I),I=1,NFI,NCON
OO 170 L=L.NF
WRITEIETI\ HLIL)
OMR=HZ{L)*6.283185
OMRS = OMR*OMR
IF(ICS.EO.O) GO TO 140
DO 130 I=1,ND
DO 130 s=1,ND
130 22(1,J)=2L(I,J)-OMRS*AM(I,J)
GO TO 120
140 00 135 I=1,NO
OO 135 J=1.ND
135 22(1,J)=21(I!,J)
DO 150 1=1.ND
150 22(I,I)=22(I,I)-OMRS*AM(I,I)
120 UO 170 11=1,NCON
WRITE (ITII INCOR(I,II),AKRII,II),DAMP(I,III,GR(I,III,I=I,NCON I
DO 160 I=1.NCON
K =NCOR\I,II\
Z3(I)= 22(K,K)
160 L2(K,K)=22(K,K)*CMPLX (AKRII,III*OMR*DAMP(I,II)*GR(I,III*
1AKR
,I\!\
1040 FORMAT I //10X.TOHCOORDINATE SPRING RATE STR DAMPIN

```
```

 IG VISCOUS DAMPING ///II16.1P3E20.3)///1
 C
152 22A(1,.J)=22(1,J)
CALL INVC I L2A,Y,NO,NRA,NRA,IERR,IROW,ICOL I
IF (IERR.EO.O) GO TO 151
PRINT 1015
1015 FORMAT IIHI/48H IMPEDANCE MATRIX IS SINGULAR JOR TERMINATED/I
CALL EXIT
C PRINTEO OUTPUT IS DISPLACEMENT DATA
C
151 PRINT 1017, HZ(L)
1017 FORMATIIHI/4OX,48HDISPLACEMENT MOBILITY REAL.IMAGINARY FREO=
IF10.2,6H HERTZ/1I
CALL MOUTC (Y,ND,ND,NRA, O, O,IRLAB,ICLAB,7)
DO 162 I=1,NCON
K=NCOR\I.1I!
162 22(K,K)=23(I)
190 WRITE (ITI) (IYII,J),I=1,ND),J=1,ND)
170 CONTINUE
GO TO 1
C
END

```

SUBROUTINE SYM (A,N,NRA)
DIMENSION AINRA,I I
NI \(=\mathrm{N}-1\)
DO \(151=1\), N1
\(11=1+1\)
DO \(10 \mathrm{~J}=11, \mathrm{~N}\)
10 A(I.J) =A(J.I)
RETURN
ENO
```

 SUEROUTINE MOUT2 (A,M,N,NRA)
 DIMENSION
 1 A(NRA,1)
 IO=MINO(N,10)
 PRINT 1000. (1.I=1.IDI
 1000 FORMAT (/5x,10112}
PRINT 100C
DO 10 I=1.M
10 PRINT 1001, 1,(A1I,J),J=1,10)
1001 FORHAT II5.5X.1PIOE12.4)
IF (ID-N) 20,50,50
20}K=N/10-
00 40 L=1,K
NL=L*10+1
N2=10*(L+1)
ID=MINOI N.N2 \
PRINT 2000, (I,I=N2,ID)
PRINT 1000
DO 30 I =1,M
30 PRINT 1001,I.(A(I,J),J=NL,ID)
4O CONTINUE
IF(N2-N) 60,50,50
60 N2=N2+1
PRINT 1000, 11,I=N2,NS
PRINT 1000
00 70 1=1.M
70 PRINT 1001. I.(AII,J),J=N2,N)
5 0 ~ R E T U R N
ENO

```
```

 SUBROUTINE MOUTC (A,L,M,NRA,IR,IC,IRLAB,ICLAB,LINE)
 C
A IS COMPLEX ARRAY (*16 ON IBM) LXM
IRLAB IS ARRAY OF. INDICES FOR ROW (USED WHEN IR=I)
ICLAB IS ARRAY OF INDICES FOR COL IUSED WHEN IC=1I
NRA IS DIMENSIONED NO OF ROWS IN A
OUTPUT FDRM RE,IM X.XXXE XX, X.XXXE XK
LINE IS LINE NO ON.PAGE OF FIRST OUTPUT LINE
COMPLEX A(NRA,I)
DIMENSION IRLAB(1).ICLABIl)
IC1=1
IC2=MINO(5,M)
10 1Ll=1
IL2=MINO (55-LINE,L I
15 IF (IC.EQ.1) GO TO 20
PRINT 1000, II,I=ICI,IC2 I
GO TO }3
20 PRINT 1000, {ICLAB(I),I=ICI,IC2)
1000 FORMAT (/ 123.4124/1
30 DO 50 I=ILI,IL2
IF IIR .EO.1) GO TO 40
PRINT 1010,I,(AII,J),J=ICL,IC2)
GO TO 50
40 PRINT 1010, IRLAB(I).IA(I,J),J=IC1,IC2)
1010 FORMAT ({6.4X,1P5(EI2.3.1H.,E11.31)
SO CONTINUE
IF |I.GE.L I GO TO }10
ILI=1L2+1
IL2=MINOIIL2*55.L I
PRINT 1015
1015 FORMAT (1HI)
GO TO 15
100 IF IICZ.GE.M) GO 10 120
IC1=IC2+1
IC2=MINO (IC2*5,M)
PaINT 1015
GO TO 10
120 RE TURN
END

```
```

 SUBROUTINE INVC ID,A,N,NRA,NRB,IERR,IRON,ICDL,
 A = INVERSE DF D ORIGINAL MATRIX D IS DESTROYED
 COMPLEX A,O,AMAX,E,PVT,AMULT
 OIMENSION AINRB,II,O(NRA,I),IROWIII,ICOLILI
 IERR=0
 DO 1 I=I,N
 OO 1 J=2,N
 1A(I,.d)=D(1, J)
 M=N+1
 DO }7\mathrm{ IEI,N
 IROW(I)=I
 7 1COLII)=1
 OO 20 K=1,N
 AMAX=A(K,K)
 DO 10 I=K,N
 OO 10 J=K,N
 IF(CABS(A(I,J))-CABS(AMAX)I10,9.9
 9 AMAX= AII,JI
 IC=|
 JC =J
 10 CONTJNUE
KI=ICOL(K)
1COL(K)=ICOLIIC)
ICOL(IC)=KI
KI=IROW(K)
[ROW(K) = IROW(JC)
1ROW(JC) =K!
(F(CABS(AMAX)) 11.12.11
12 IERR=-1
GO TO }10
11 DO 14 J=1,N
E=A(K,J)
A(K.J)=A(IC.J)
14 AIIC,JI=E
OO 15 I=1,N
E=A(I,K)
A(I,K)=A(I,JC)
15 A(1,JC)=E
DO 16 1:1,N
[F(I-K) 18,17.18
17A(I,M)=(1.,0.1
GO TO 16
18 A(I,M)=(0..0.)
1 6 CONTINUE
PVT=A(K,K)
DO 8 J=1,M
OA(K,J)=A(K,J)/PVT
00 19 I=1 N
IF(1-K)21,19,21
21 AMULT=A(I,K)
00 22 J=1 ,M
22 A(I,J)=A(I,J)-AMULT*A(K,J)
19 CONTINUE
OD 20 I=1,N

```
\(20 A(I, K)=A(I, M)\)
DO 25 1=1, \(N\)
DO 24 LEI in
IF(IROW(I)-LI24.23,24
24 CONTINUE
23 DO \(25 \mathrm{~J}=1, \mathrm{~N}\)
25 D(L.J)=A(I.J)
DO \(26 \mathrm{~J}=1, \mathrm{~N}\)
\(0028 \mathrm{~L}=1, \mathrm{~N}\)
IF!ICOL!J!-L) 28.29.20
28 CONTINUE
290026 1=1.N
26 A(1,L)=D(I,J)
100 RETURN
ENO
```

C PHOGRAM LKZLRCIINPUT,OUTPUT,TAPEI,TAPEZI
C FREE BUUY TESI METHOD SIMULATION
VARIATION OF CUNSTRAINT CHARACTERISTICS
uSES MOBILITY DATA FRCM 'LKILRC*
ICG IS NUMBER UF UEGREES OF FREEDOM AT EACH COORDINATE
USED IN SUBKOUTINE ERR2
COMPLEX Y,YA,YI
OIMENSION HEALN(91,HEAOI 91,INDS\241,INOX(1001
OIMENSION HLCLOJI,ICH\84I,INDR(20)
DIMENSION Y(6U,OI),YA(60,61),IRLAB\G1),ICLAB(6I)
DIMENSIUN SPR(24,241,DAMP(24,24),GT(24,24),Y1(60,61)
COMMON/SET/LRCL,LRCN,LRCIX(2)
C
TAPE UNIT IT\& CONTAINS DATA FROM KILRC PROGRAM
TAPE UNIT IT2 USED FOR DATA IRANSMITTAL TO K3LRC PROGRAM
IT1=1
IT 2=2
NRA=60
FR=-1
REWIND IT2
C
C
KEAC FIRST CARD
1 READ 1OOU,IC1,IC2,IC3.IC4.ICE,IC6.IC7. HEADN
l000 FORMAT (O11,12.SAE I
IF (ICL.EW.g) CALL EXIT
PRINT 1OUZ
1002 FORMAT (54ML KLLRC KAMAN AEROSPACE CORPORATION OEC 2U, 1972 1
IF (ICL.EWOI) REWIND ITL
15 REAC (ITI) HEAU,NF,ND,(HZII),IEI,NF),NS
PRINT LU11, HEAON,HEAC,ND,(HZ(I),I=1,NF)
1011 FORMAT (LHL//25X.9A8//
125X, 9AX /25x,I<,19H DEGREES OF FREEDOM /25X,23H FREUUENLIES(HC)
2ON TAPE //(1UX, LUF 10.21)
INPUT APPLIEC FORCE AT CONSTRAINT
REAC 140 , F,NFS
140 FORMAT (FIU.U,110)
C
INPUT ERRORS, FREQUENCIES
REAC LUUG, HCT,PCTB,PHE,FPCY,FPCTB,FPHE,IL,AMPL,AMPK,AMLF
1006 FORMAT IOF5.N.11U.3F10.01
LRCI*X(1)=12*2*1
LRCN=1
LRCL=1
PRINT LUU7, HLT,PCTB,PHE,IZ,FPCT,FPCTB,FPHE,AMPL,AMPK,AMPF
1UO7 FORMAT 1/LUX,1OFMAX RAND ERROR =,F5.3.13H RIAS FRROR =,F5.3,,7H UR
1 RESPONSE MAX RAND PHASE ERROR = F5.2.16H DEG. SEEU = . IIU/

```
```

 210X,12HFORCE ERRORS, 4X,F5.3.13X,F5.3,37X,F5.2/110X,38MMAX RAND LI
 3NEAR ACCELIREAL,IMAGIERRDR=EI2.4/9X,39HMAX RAND ANGULAR ACCELIREAL
 4.IMAGJERROR=E12.4/17X.31HMAX RAND FORCE(REAL.IMAGIERROR=E12.4//)
 IF IIC7.GT.O\ 60 T0 20
 ICT=NF
 DO 10 I=1,NF
 10 (NDX(1)=1
 PRINT 1009.NF
 1009 FORMAT (/10X, 4HALL .I3.IX, 16HFREQUENCIES USEDI
 GO TO 30
 20 READ 1040, (INDX(I),I=1,IC7)
 DO 12 I=1,IC7
 K={NOX(I)
 12 H2(I)=H2(K)
 30 PRINT 10IC. IHZ(K),K=1.IC7)
 1010 FORMAT (/10X,16HFREQUENCIES USED//(10X. 10F12.4))
 INFR=1
 DO 2 I= 1,NO
 2 ICH(I)=0
 NB=ND+1
 NC =NO +NS
 OO 3 I=NB,NC
 3 ICHIII=2
 WRITE (IT2) HEADN,NC,NS,(ICHIII,I=I,NC)
 C
0O 500 L=1,NF
IF(L.NE.INOX(INFR)) GO TO 500
TAPE INPUT
C
CONSTRAINT SPRINGS,VISCOUS DAMPERS,STRUCTURAL OAMPING
READ (ITI) FREO
OMR FFREQ *6.2832.
OMRS = OMR = OMR
DO 21 LL=1,NS
PRINT 1016,FREQ
1016 FORMAT I///39H CONSTRAINT CHARACTERISTICS FOR FREQ=,FT.2,3H H2/)
REAO (ITI | |INDS(I),SPRII,LLI,DAMPII,LLI,GTII,LLI,I=I,NS)
IF(L.NE.1) GO TO }
PRINT 1003. (INDSIII,I=1,NS)
PRINT 1004. (SPRII,LLI,I=1,NSI
PRINT 1001, (OAMP(I,LL),I=1,NS)
7 READ \ITI| |(VIII,j).I=1,NO),J=1,ND)
ELIMINATE COLUMNS ANO CONVERT TO ACCL MOB
OO 21 1=1,ND
Y(I,LL)=YI(I,NFS)*F
21 YA(I,LL)=-Y(I,LL)*OMRS
1001 FORMAT (//10X,7HDAMPERS,10X,3(8F10.0)//)
1003 FORMAT (//10X,9HSTATION .5X,3(8110)//1
1004 FORMAT (//10X, GHSPRING .11X,3(8F10.0)//)
PRINT 1005,F,NFS
1005 FORMAT ///10X,13HAPPLIEO FORCE , 4X,F10.1,3X,IOHCOOROINATE,I3//1
C
FORM CONSTRAINT DISP MATRIX ANO ADD ERROR
CALL ERR2 I YA,PCT,PCTB,PHE,ND,NS,IX,NRA,AMPL,AMPR,O..ICG I
IF IICG.EQ.O) GO TO 60
PRINT IO2C. HZ(INFR)

```
```

 1020 FORMAT (IH1,2OX,71HSIMULATED MEASURED CONSIRAINED ACCELERATION
 1 F F F F10.2.3H H2/1
 CALL MOUTC (YA ,ND,NS,NRA, O, O,IRLAB,ICLAB,5)
 ACCELERATIONS OUE TO FORCES AND FORCES AT CONSTRAINTS
 WITH ERRORS ON TOTAL FORCES
 c
ACCELERATIONS OUE TO FORCES
60 00 70 J=1.NS
C FORCES AT CONSTRAINTS
00 70 1II=1,NS
IG I={NDSIII)
IY(t,j)*(0..1.)
OO 91 J=1,NS
DO 91 I=1,NS
IF(NFS.NE.INDS(I) I GO TO 91
Y(I,J)=Y(I,J)+F
91 CONTINUE
CALL ERRZ \& Y,FPCT,FPCTB,FPHE,NS,NS,IX,NRA,O..O.,AMPF,O I
IF IIC4.EQ.OI GO TO }10
PRINT 1025, HZIINFRI
1025 FORMAT IIHI,20X,6OHSIMULATED MEASURED FREE BODY FORCE MATRIX
I F = F10.2.3H H2%)
CALL MOUTC I Y,NS,NS,NRA, O, O,IRLAB,ICLAB,5 I
l00 WRITE (IT2) HZIINFRI
C
C ACCELERATION DATA ON TAPE
9 OO 5 J=1,NS
5 WRITE;(IT2) (YA(I,J),I=1,ND),(Y(I,J),I=1,NS)
1040 FORMAT (8110)
502 INFR=INFR+1
IF IINFR.GT.ICTI GO TO 501
500 CONTINUE
501 WRITE IIT2 I FR
13 GO TO 1
END

```

SUBROUTINE.MOUTC IA,L,M,NRA,IR,IC,IRLAB,ICLAB,LINE I.
```

 A IS COMPLEX ARRAY (*I6 ON IBM) LXM
 IRLAB IS ARRAY OF INDICES FOR ROW IUSED WHEN IR=I,
 ICLAB IS ARRAY OF INDICES FOR COL \USED HHEN IC=1)
 NRA IS DIMENSIONED ND OF ROWS IN A
 OUTPUT FORM, RE,IM. X.XXXE XX, X.XXXE XX
 LINE IS LINE NO ON PAGE OF FIRST OUTPUT LINE
    ```
        COMPLEX A (NRA,1)
        DIMENSION IRLAB(1).ICLAB(1)
        IC1=1
        IC2=MINO (5.M)
    10 141=1
    IL2=MINO (55-LINE,L, I
    15 IF (IC.EQ.1) GO TO 20
    PRINT 1000, II,I=ICI,IC2. I
    GO TO 30
    20 PRINT 1000, IICLABIII.I=ICI.IC2 I
1000 FORMAT \(1 / 123,4124 / 1\)
    30 DO 50 I=ILI,IL2
        IF IIR EEQ.I I GO TO 40
        PRINT 1010, I, (A(I, J), J=IC1,IC2)
        GO TO 50
        40 PRINT \(1010, I R L A B(I), I A(I, J), J=I C 1, I C 2)\)
1010 FORMAT (16.4X,1PSIE12.3.1H.,E11.3II
    50 CONTINUE
        IF II.GE.L I GO TO 100
        ILI=1L2*I
        IL2=MINOIIL2+55.L)
        PRINT 1015
1015 FDRMAT 11 HI I
    GO TO 15
    100 IF (IC2.GE.M) GO TO 120
        IC1=IC2+1
        1C2=MINO (IC245,M)
        PRINT 1015
        GO TO 10
    120 RETURN
    ENO
```

 SUB\JUTINE'ERR2 (LA;PCT,PCTB,PHE,NL,N2,IX,NR,AMPL,AMPR,AMP,ICG)
 OHJECT TIME DIMENSIONS
 EACH ELEMENT OF A COMPLEX MAIRIX, A IS MODIFIED TJ
 INCLUDE A SMALL PHASE ERROR, PNE (DEGI, A BIAS ERROR,
 PCTB (RATIOI ON AMPLITUDE:A UNIFORM RANDOM ERROR
 HAVING A +/- MAXIMUM OF PCT IRATIOI. ON AMPLITUDE,
 AND A UNIFORM RANDOM ERROR HAVING A +/-
 MAXIMUM ON AMPLITUDE
 THE PHASE ERROR IS ALSO RANDOMLY DISTRIBUTED
 NOTE NO SYMMETRIZATION IS PERFORMED
 IE6 IS THE NUMBER OF DEGREES OF FREEDOM OF EACH COORDINATE
 USES GETRANIUNIFORM DISTRIBUTIONI
 LRCIXII)=ARBITRARILY SELECTED LOSITIVE INTEGER
 LREY=1 FOR FIRST CALL TO GETRAN
 SET LRUN GREATER THAN I FOR SUBSEQUENT CALLS TO GETRAN
 LRCL=I FOR UNIFORM OISTRIBUTION
 LQCIX(2).DUML.DUM2. NOT USED
 YFL=UNIFORMLY DISTRIBUTED RANDOM NUMBER
 CJMPLEX <AINR,1\
 CJMMON/SET/LRCL,LRCN,LRCIX(2)
 IF(PET) 120.100.120
 100 IF(P:TB) 120.110.120
110 {F(PHE) 120.140.120
140 IF (AMPL) 120.145.120
145 IFI AMPR I 120.155.120
155 IF| AMP I 120.135.120
120 P=PHE/57.296
0) 130 J=1.N2
K=(156+1)/2
K1=Iこ6
D] 130 I:1,NL
ZALL SETRAN(LRCIXII),LRCN,LRCL,OUMI,YFL,DUM2)
IFILREN.EQ.1)LREN=LRCN+1
E=2.0*P* (YFL-0.5)
4マ=24(I.J)
4I=(0..-1.)* ZA\I,J)
21: ABSI AR I
२2= ABSI AI)
23=21\&R2
IF 1R3.EQ.O.1 GJ TO 130
R1=21/R3
R2=22/R3
AL=4R-E\&AI
AI=AI+E*AR
42=41
SALL GETRAN(LREIX(1),LRCN,LRCL,DUML,YFL,DJM2)
E=1.J*2.J*PCT*(YF\&-J.5)*PCTB
4マ=4マ*E
A|=A1*E
EALL GETRAN(LRCIX(1),LREN,LRCL,DUMI,YFL,DJM2)
AMP ERROR DIST IN PROPIIRTION TO RATIOS OF REAL ANO IMAG TO IREAL+IMAGI

```
```

 IF IICG.EO. O I GO TO 170
 IFI I-K, 175.175.185
 175 AMP=AMPL
CO TO }17
185 AMP=AMPR
170 t=2.* (YFL-.5 I*AMP*RL
AR=AR+E
CALL GETRANILRCIX(I),LRCN,LRCL,DUM1,YFL,DUM2I
E=2.*(YFL-.5) \#AMP\#R2
A|=A| +E
160 LA(I,J)=.CAPLX (AR,AI)
IF I ICG.EQ. O) GO TO 130
IF. II.NE. KI I GOTO \$30
K=K+IC.6
Klakl+IC6
130 CONTINUE
135 RETURN
END

```
CORPCRATION NCV 27, 1972
KILRC \(3 / 13 / 73\) 2-DIM ORBITER 10,000 LBIIN AT COORDINATES 5,13
kllre kaman agrospace
    00900080H~OOONOn

0

        \(000040=0\) HNFOOOOO

    \(0000^{\circ}\)







    *

        NoAño




        \(\cong\)


        \(\pm\)
    \(\stackrel{\sim}{\sim}\)





\(\cdots \infty\)
n








\[
\begin{aligned}
& \text { 옹웅웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ }
\end{aligned}
\]
\[
\begin{aligned}
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \circ
\end{aligned}
\]
\(\infty\)
- nio on ononion oncnis
\[
\begin{aligned}
& 0
\end{aligned}
\]


\footnotetext{


 \(\dot{1} \dot{\rightarrow} \dot{\rightarrow}\)






}
19
SEED =
KILRC 3/13/T3 2-OIP ORBITER 10.003LEIIN AT COOROIMATES S.13
IO OEGEES OF FREEDOM
FREOUENCIESIMRICN TAPE
10 OEGRESS
FREOUEMCIESTHRICN TAPE
\[
92.00
\]
KILRC 3/13/T3 2-OIP OREITER L0.00JLEIN AT COORDIMATES S. 13

K3LRC kAmAN aEROSPACE CORPGRation ncv 271972

\begin{tabular}{llll} 
FREQUENCY \(=\) & 92.00 \\
& FORCE MATRIX & AMP.PHASE(DEG)
\end{tabular}
\({ }_{-0.1}^{-0.3}\)
2


\subsection*{92.00}
inverse of force matrix
\(\underset{\sim}{\sim}\)

\(-n\)

1
\(=\)


 - \(\dot{\sim}\)
\begin{tabular}{|c|}
\hline \\
\hline \\
\hline
\end{tabular}











POSTMASTER : If Undeliverable (Section 158

\begin{abstract}
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958
\end{abstract}

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.
TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

\section*{SPECIAL PUBLICATIONS: Information} derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.```


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

