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ABSTRACT

An analytical technique is developed to solve nonlinear three-dimensional,

transverse and axial combustion instability problems associated with liquid-

propellant rocket motors. The Method of Weighted Residuals is used to deter-

mine the nonlinear stability characteristics of a cylindrical combustor with

uniform injection of propellants at one end and a conventional DeLaval nozzle

at the other end. Crocco's pressure sensitive time-lag model is used to des-

cribe the unsteady combustion process. The developed model predicts the tran-
sient behavior and nonlinear wave shapesas well as limit-cycle amplitudes

and frequencies typical of unstable motor operation. The limit-cycle ampli-

tude increases with increasing sensitivity of the combustion process to pres-

sure oscillations. For transverse instabilities, calculated pressure wave-

forms exhibit sharp peaks and shallow minima, and the frequency of oscillation

is within a few percent of the pure acoustic modefrequency. For axial in-

stabilities, the theory predicts a steep-fronted wave moving back and forth

along the combustor.
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SUMMARY

An approximate analytical technique has been developed for the solution

of nonlinear three-dimensional, transverse and axial combustion instability

problems that are frequentlyobserved in liquid-propellant rocket motors.

This theory is an extension and generalization of previous analyses, which

could analyze either transverse or axial instabilities in liquid combustors

with quasi-steady nozzles, to the practical situations of three-dimensional
instabilities in combustors with conventional DeLaval nozzles. Unlike the

quasi-steady nozzle, the presence of a conventional nozzle imposes restric-

tions upon the behavior of both the amplitudes and phases of the oscillations

at the nozzle entrance plane. The Method of Weighted Residuals is used to

determine the nonlinear stability characteristics of a cylindrical combustor

with uniform injection of propellants at one end and a conventional nozzle

at the other end. Crocco's pressure sensitive time-lag model is used to

describe the unsteady combustion process. The developed model can predict

the transient behavior and nonlinear wave shapes as well as limit-cycle ampli-
tudes and frequencies typical of unstable motor operation. These results

establish the relationship that exists between the resulting instability (i.e.,

waveform, final amplitude and final frequency), the combustion parameters

(i.e., interaction index, n, and time-lag, _), and the chamberMachnumber

and length-to-diameter ratio. Results indicate that the limit-cycle ampli-

tude increases with increasing sensitivity of the combustion process to pres-

sure oscillations. For transverse instabilities, calculated pressure waveforms

exhibit sharp peaks and shallow minima, and the frequency of oscillation is

always within a few percent of the frequency of one of the chamber's acoustic

modes. For axial instabilities, the theory predicts the presence of a steep-

fronted wave moving back and forth along the combustor. In both cases calcu-
lations of pressure and velocity perturbations at the nozzle entrance plane

showthat the approximation to the nozzle boundary condition is very good.

The theory described in this report represents the final stage in the develop-

ment of a unified nonlinear theory for the solution of general three-dimen-

sional, transverse and axial combustion instability problems.



INTRODUCTION

Observation of the behavior of unstable rocket motors indicates that

combustion instability can be divided into two categories; that is, linear

and nonlinear instabilities. Linear instabilities are spontaneous in nature,

and they are usually an outgrowth of the randomcombustion and flow fluctua-

tions present in the system. On the other hand, nonlinearly unstable motors

require the introduction of a finite amplitude disturbance to produce (or
trigger) combustion instability. In either case the instability, after a

transient period, reaches a limiting maximumamplitude (i.e., limit-cycle

amplitude) at which it oscillates with a given frequency that is usually
close to the frequency of one of the chamber's acoustic modes. Pressure

measurementstaken during test firings of unstable motors indicate that the
limit-cycle waveforms of transverse instabilities are non-sinusoidal; that is,
they exhibit sharp peaks and flattened minima.I On the other hand, experi-

mental observations of axial instabilities indicate the presence of shock-
2

like steep-fronted waves in the chamber. These results indicate that non-

linearities need to be considered in the theoretical treatment of combustion

instability.

Any analytical treatment of combustion instability should be capable of

solving nonlinear multi-dimensional combustion instability problems without

exceeding memory core limitations of current computers and without requiring

excessive computation time. To be of practical use, such a solution technique

should be conceptually simple and easily adaptable for use by industry. This

report describes the development and use of such a numerical solution tech-

nique.

Work on this problem has been in progress during the past several years,

and due to its complexity, the problem had to be tackled ir_ stages. In ear-

lier investigations by these authors theories describing the nonlinear beha-

vior of longitudinal 3'4 and transverse 5'6 instabilities in liquid combustors

with quasi-steady nozzles were developed. These theories, which were based

upon the application of the Method of Weighted Residuals (MWR), successfully



predicted the transient behavior, nonlinear waveforms, and limit-cycle ampli-
tudes of longitudinal and transverseinstabilities in unstable liquid rockets.

This report is concerned with the developmentof a generalized nonlinear
theory that will be capable of analyzing three-dimensional, transverse and
axial instabilities in the morepractical situations where the combustors

are attached to conventional nozzles. Obviously, this generalized theory

will encompassthe above-mentioned investigations as special cases. Contrary

to the quasi-steady nozzle case, the presence of a conventional nozzle imposes

both amplitude and phase boundary conditions that must be satisfied by the

solutions of the problem at the nozzle entrance plane. The generalized the-

ory presented herein also provides a better description of the unsteady flow

field in the vicinity of the nozzle entrance plane.

The application of the theory presented herein will be demonstrated

by considering the nonlinear stability of a liquid-propellant rocket combus-

torwithuniforminjection of propellants at one end and a conventional noz-
zle at the other end. Crocco's pressure sensitive time lag model7 is used to

describe the unsteady combustion process. In the sections to follow, the de-

velopment of the wave equation for the analysis of nonlinear combustion in-

stability in liquid rockets will be briefly described, the solution of this

nonlinear wave equation will be outlined, and typical results will be present-
ed and discussed. User's Manuals and program listings for the computer pro-

gramsused to solve these problems are included as appendices to this report.

Asmn(t), Bgmn(t)

SYMBOLS

time-dependent amplitudes in series given by Eq. (6)

A (t)
P

time-dependent amplitudes in series given by Eq. (9)

boundary residual

bgmn

C

complex axial acoustic eigenvalue

velocity of sound, ft/sec

3



CO , CI, C2, C 3 coefficients of linear terms in Eqs.(12)

Dl, D2 , D3, D 4
coefficients of nonlinear terms in Eqs. (12)

residual of Eq. (i0)

imaginary unit,

J
m

_, m

Bessel function of the first kind, order m

axial and tangential mode numbers, respectively

n

P

r

pressure interaction index

* * *2

dimensionless pressure, yp /Po Co

dimensionless radial coordinate, r /R c

R
C

Rp (r)

S
Inn

t

U

V
-@

%

chamber radius, ft

radial acoustic eigenfunction in Eq. (9)

dimensionless transverse mode frequency

t
dimensionless time,

dimensionless axial Velocity, u /c°

dimensionless velocity vector, V /c o

unsteady combustion mass source

Y complex nozzle admittance



Z

Za n(Z),Zp(Z)

Y

dimensionless axial coordinate, z*/R*
C

axial acoustic eigenfunctions

ratio of specific heats

ordering parameter

azimuthal coordinate

tangential acoustic eigenfunction in Eq. (9)

dimensionless density, p /Pc

dimensionless pressure sensitive time lag,

velocity potential

T

(%/c o)

Subscripts :

evaluated at the nozzle entrance

n radial mode number

r, t, z, partial differentiation with respect to r, t, z, or

respectively

r, i real and imaginary parts of a complex quantity, respec-

tively

0 stagnation quantity

Superscripts:

perturbation quantity, differentiation with respect to

argument 5



-- steady state quantity

dimensional quantity, complex conjugate

approximate solution

ANALYSIS

Development of the Wave Equation

To keep the problem as simple as possible, yet still physically mean-

ingful, the following assumptions are made. The gas phase in the combustor

is assumed to consist of a single constituent which is thermally and caloric-

ally perfect. Transport phenomena, such as diffusion, viscosity, and heat

conduction are neglected. The momentum interchange between the liquid and

gas phases is neglected (see Appendix A for a discussion of this assumption),

and the specific stagnation enthalpy of the unburned propellant is assumed

constant throughout the chamber. The presence of burning propellant drops

is represented by a distribution of unsteady mass sources 7 and it is also

assumed that the Mach number of the combustor's mean flow is small and that

the waves have moderate amplitudes.

As a result of the last two assumptions, the governing conservation

equations may be combined and the unsteady flow in the combustor can be de-

scribed by a single nonlinear wave equation. The derivation of this equation

appears in Refs. 8 and 9, where it was assumed that each perturbation quanti-

ty and the mean flow Mach number were of O(e), where ¢ is an ordering para-

meter that is a measure of the wave amplitude. After neglecting all terms of

0(c3) or higher and combining equations, one obtains the following nonlinear

partial differential equation that describes the behavior of the velocity po-

tential, _, of the combustor disturbance:

V2@ - _tt = 2_'V@t + 7(V'i)_t + 2V_'V_t + (7 " 1)_t v2_ + W' (1)m

Equation (1) is the desired wave equation_ and it is similar to the inhomo-

geneous wave equation solved by Maslen and Moore lO in a related study on non-

linear acoustics. This equation accounts for the following effects: (1) the

6



effect of a steady state flow on the wave motion (viz., the first two terms

on the right-hand side), (2) the coupling between the gas dynamical oscilla-

tions and the unsteady combustion process (viz., the last term on the right-

hand side), and (3) the second order nonlinearities of the gas dynamical

processes (viz., the third and fourth terms on the right-hand side).

In addition to satisfying Eq. (i), the desired solutions must satisfy

rigid wall boundary conditions at the injector end of the chamber and at the

chamber walls, while a nozzle admittance condition must be satisfied at the

nozzle entrance. These boundary conditions are given (in a cylindrical coor-

dinate system) by:

=Oatr =i
r

=Oat z =0
Z

+ _Y_t = O at z = z (2)= e

The nozzle admittance, Y, is a complex number defined by

Y = Y + iY. = (u'/p') (3)
r I Z : Z

e

where u _ is the dimensionless axial velocity perturbation and p_ is the di-

mensionless pressure perturbation.

It should be pointed out that due to the absence of an appropriate

nonlinear nozzle admittance boundary condition, the solutions of the problem

are required to satisfy a linear nozzle admittance. Although inconsistent

with the nonlinear wave equation, the linear nozzle admittance condition is

used herein with the hope that the solution techniques developed herein will

also be applicable when nonlinear nozzle admittance conditions become avail-

able. Also, the relative importance of nozzle nonlinearities is not known

at the moment and it is quite possible that the linear nozzle boundary condi-

tion used herein adequately describes the flow conditions at the nozzle en-

trance.

The unsteady combustion process is represented by mass sources distri-

buted throughout the volume of the chamber, and the response of the mass

sources to pressure oscillations is assumed to be described by Crocco's pres-

sure sensitive time-lag hypothesis 7 The mass source perturbation, W t• m'

is then given by: 5'8



W_=-_u _zzd_[_t(r,e,z,t) _ _t(r,@,z,t -#)] (4)

where n is the pressure "interaction index" that describes the sensitivity of

the combustion process to pressure oscillations, and T, commonly referred to

as the sensitive time-lag, is the part of the total combustion time-lag during

which the combustion process is sensitive to pressure oscillations. The un-

steady combustion response described by Eq. (4) is linear and the comments

made above regarding the use of a linear nozzle admittance boundary condition

are also applicable to this case.

Substituting Eq. (4) into Eq. (1) and expressing the resulting equation

in a cylindrical coordinate system yields the following wave equation:

_rr + 1 _r + 1r "_ _@e + _zz - _tt
r

2

- 2_r_rt - -_ _@_@t - 2_z_zt
r

_ (_ _ l)_t(_rr + ir _r + -_i _@@ + _zz)
r

dG
- 2U_zt - _t _z

+ #n _zzdli[_t(r, @,z,t) - _t(r,@,z,t - #)] = 0 (5)

The combustor and nozzle geometries considered in this study, as well as the

cylindrical coordinate system used in writing Eq. (5), are shown in Fig. i.

Method of Solution

Since Eq. (5) has no known closed-form mathematical solution, it is

necessary to resort to the use of either exact numerical solution techniques

or approximate analytical techniques. For multi-dimensional problems, the

exact numerical solution techniques generally exceed the computer storage

capacities, therefore an approximate solution technique is used herein.

The experience of previous investigators in the fields of structural stabili-

ty and aeroelasticity indicates that an approximate solution technique known

as the Method of Weighted Residuals II' 12 may be effective in the solution

of this nonlinear wave equation.

In order to employ the Method of Weighted Residuals in the solution

on Eq. (5), it is first necessary to express the velocity potential, _, as an
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N

approximating series expansion, _. The question naturally arises as to what

form of series expansion should be used. Inasmuch as the experimentally ob-

served pressure oscillations during combustion instability usually resemble

the natural acoustic modes of the chamber, the velocity potential, _, is ex-

panded in terms of the natural acoustic modes of the chamber with unknown

time-dependent amplitudes.

In previous analyses 3'6 of related problems the approximate solutions

were expressed in terms of the acoustic modes for a cylindrical chamber with

solid wall boundary conditions at both the injector and the nozzle ends.

Consequently, the approximation of the flow conditions at the nozzle entrance

was poor. In the present analysis a better approximation to the flow at the

nozzle entrance is obtained by expanding the velocity potential in terms of

the acoustic eigenfunctions for a chamber with a solid wall boundary condition

at the injector end and a nozzle admittance condition at the other end. This

removes both the two-dimensionality and the quasi-steady nozzle restrictions

imposed upon the previous investigations.

The velocity potential, _, is therefore approximated by the following

series expansion:

=_{A ran(t)sin me + Bgmn(t)cos m_ Z_mn(Z) Jm(Smn r) (6)

gmn

where the A's and B's are unknown complex functions of time, and the Z's are

the complex axial acoustic eigenfunctions. The complex form of the axial

acoustic eigenfunctions is given by

Z_n(Z ) --cosh(ib_ z) (7)

where the bgm n are the axial acoustic eigenvalues which must satisfy the

following transcendental equation:

2 2 2 cos 2 (bgmnZe) 0 (8)sin2(b mnZe) +  (Smn + b mn) =

Equations (7) and (8) are obtained by linearizing Eq. (5) and solving the re-

sulting equation for the case of no mean flow or combustion (i.e., the acous-

tic case) subject to the boundary conditions specified in Eq. (2). Each

term in the above expansion exactly satisfies the solid wall boundary condi-

tions at the injector end (i.e., at z = O) and at the chamber wall (i.e., at

iO



r = i); however, due to the unknowntime dependenceof Eq. (6) the nozzle

admittance condition imposedat z = ze is not exactly satisfied by the indi-
vidual terms. Including both the sin meand cos m9 terms in the expansion for

allows for the possibility of either spinning or standing wave solutions.
In order to simplify the algebra involved in the application of the

Method of Weighted Residuals, the developmentof the associated computer

program, and the presentation of the results; the expansion of the velocity

potential is written as a single summationas follows:

N

= _ Ap(t)Zp(Z)%(9)Rp(r) (9)
p:l

where the A's are the unknowntime-dependent amplitudes. In order to use
P

Eq. (9) a correspondence must be established between the index, p, in Eq. (9)

and the mode-numbersg, m, and n in Eq. (6). Such a correspondence is given

in Tsble i for a three modeseries consisting of the spinning first tangential

(IT) mode (_ = O , m = i, n = i), the spinning second tangential (2T) mode

(L = O, m = 2, n = i), and the first radial (iR) mode (_ = O, m = O, n = 1).

Table i

CorrespondenceBetweenEq. (6) and (9) for a Three-ModeSeries

p Mode 6(p) m(p) n(p) AP

l 1T 0 1 1 A0ll(t)

2 IT 0 i l Boll(t)
3 2T 0 2 i A (t)

021
4 2T 0 2 1 B021(t)

5 IR 0 0 i hool(t)

P

sin 9

cos 9

sin 29

cos 29

i

Before proceeding with the analysis, the wave equation (i.e., Eq. (i))

must be modified for use with the assumedcomplex solution given by Equation

(9). This modification is necessary because only the real part of the assum-

ed solution is physically meaningful. It can easily be shownthat if _ =

+ iY is a solution to Eq. (i), the real part, _, is not a solution to Eq. (i).

11



This failure of _ to satisfy Eq. (i) is due to the presence of the nonlinear

terms in this equation. It can also be shown, however, that a modified wave

equation can be constructed for which the real part of its solution satisfies

the original wave equation (i.e., Eq. (1)). This modified wave equation is

given by:

!

E(_) V2_ - _tt - 2_ • V_ t - _(V._) @t - Wm

4- i i) [_tV2_ +{(1 _. 2_.q_ _ _tq _ ]

where _* is the complex conjugate of _. The derivation of this equation is

discussed in Appendix B. Thus, the Method of Weighted Residuals will be used

to obtain approximate solutions to Eq. (lO) ( i.e., _ = _ + i_) from which the

real part, _, will be taken as the approximate solution of Eq. (1).

In order to obtain a solution, the unknown time-dependent mode-amplitudes

(i.e., Ap(t)) are determined by the following mathematical procedure. The as-

sumed series expansion, _, (i.e., Eq. (9)) is substituted into the wave equation

(i.e., Eq. (lO)) to form the equation residual, E(_). Similarly, substituting

the series expansion into the nozzle boundary condition (i.e., the last of Eq.

(2)) yields the boundary residual, B(_). In the event that these residuals

are both identically zero, the solution is an exact solution. The residuals
N

E(_) and B(_) represent the errors incurred by using the approximate solution,
N

According to the modified version of the Method of Weighted Residuals,

developed by the authors in Refs. 5 and 8, the residuals E(_) and B(_) must

satisfy the following orthogonality conditions:

Z

e 2w i

_ _ _ E(_)Z_.(z)®j(e)Rj(r)rdrdSdz

0 0 0

12

2w 1

0 0

B(_)Zj(Ze)e j(e)Rj(r)rdrde = 0

j = i, 2, ...N



where in the present study the complexconjugate of the axial eigenfunction,
Z*., is used in the weighting functions. The chosen weighting functions must

O
correspond to the terms that appear in the assumedseries solution; that is,

Eq. (9)-

Evaluating the spatial integrals in Eq. (ii) yields the following system

of N complex ordinary differential equations to be solved for the unknown tom-

amplitude functions, Ap(t):plex

N d2A

{C0(j,p)----_ +Cl(j,p)A (t)+ [C2(j,p)- nC3(j,p) _ dA__Z
dt2 P dt

p=l

d[A(t - N N
+ nC3(j'P) dt } +_

p=l q=l

{DI(J ,p,q) Ap

dAq dAq }+h(J,P,q)A d--V+D (j,p,q)A :o

d--_+ D2 (J 'P'q)Ap-_

j = i, 2, ... N

The coefficients appearing in the above equations are determined by evaluating

the various integrals of hyperbolic, trigonometric, and Bessel functions that

arise from the spatial integrations indicated in Eq. (ii). A user's manual for

the computer program COEFFS3D used to calculate these coefficients is given in

Appendix C.

The time-dependent behavior of an engine following the introduction of

a disturbance is determined by specifying the form of the initial disturbance

and then following the subsequent behavior of the individual modes by numerical-

ly integrating Eqs. (12). Once the time-dependence of the individual modes is

known_ the velocity potential, 7, is calculated from Eq. (9). The pressure

perturbation at any location within the chamber is related to the real part of

(i.e., _) by the following second-order momentum equation (see Refs. 5 and 8):

i_'2 i N2 _9 IN2
_' = -_[_t + u(Z)_z + 2(_r +-2_e + _z ) - 2-_t] (13)

r

13



A user's manual for the computer program, LCYC3D, which obtains numerical so-

lutions of Eqs. (12) and (13) is given in Appendix D.

In summary, the theory presented in this section represents a two-stage

simplification of the original problem. In the first stage the problem has been

reduced to the solution of a single nonlinear, partial differential equation

(i.e., Eq. (i)). In the second stage the solution was expanded in a series of

acoustic modes with time-dependent coefficients and the Method of Weighted

Residuals was used to replace the solution of the nonlinear partial differential

equation with the solution of a system of nonlinear, ordinary differential

equations (i.e., Eq. (12)). Typical numerical solutions of these equations will

be presented and discussed in the following section.

RESULTS AND DISCUSSION

The generalized three-dimensional theory introduced in the previous

section has been used to obtain both linear and nonlinear data for pure trans-

verse modes and pure longitudinal modes for rocket motors with conventional

nozzles. Nonlinear data for the first tangential (1T) mode and the first lon-

gitudinal (LL) mode has also been obtained for combustors with quasi-steady

nozzles for comparison with the results of the previous two-dimensional theories.

Linear Solutions

Before proceeding with the nonlinear analysis, it was desired to obtain

numerical solutions of the linearized equations (i.e., Eqs. (12) with D1 = D2 =

D 3 = D4 = O) in order to determine how closely the approximate solutions satis-

fied the nozzle boundary condition. The linear solution is also needed for com-

parison with the corresponding nonlinear results. The linear solutions were

obtained by assuming a one-mode series expansion oonsisting only of the mode

under consideration. Due to the presence of the retarded variables (i.e.,

d[Ap(t - _)]/dt) in Eqs. (12), it is necessary to specify the initial ampli-

tudes over the interval -_ _ t _ O. In this study the initial values were

chosen such that the nozzle boundary condition was exactly satisfied during

this initial time period. Solutions were obtained for values of n and _ on

the neutral stability limit (see Appendix E for the determination of neutral

stability limits) for various conventional nozzle configurations. The nozzle

admittance was expressed in the form, Y = Ae i_, where A is the amplitude fac-

14



tot and _ is the phase shift. The pressure perturbation, p'. and the axial

u' at the nozzle entrance were calculated numericallyvelocity perturbation, ,

for several values of the nozzle phase shift, _. These calculated values were

then used to compute the ratios (u'/p')Z_Ze,_ which were then compared with the

specified nozzle admittance values. These results are shown in Tables (2) and

(3) where An and _n are the computed values of the amplitude factor and phase

shift, respectively. These results show that the approximation to the nozzle

boundary condition is very good for both the 1T and 1L modes; that is, the

maximum error in the amplitude ratio is about 5% and the maximum error in

phase is approximately 0.5 degree. These results are in contrast with previous

theoretical investigations where the representation of the unsteady flow con-

ditions in the vicinity of the nozzle entrance was very poor.

Table 2. IT Mode Linear Solutions (Numerical).

m
(Degrees)

0

0

0

45

45

45

9o

90

9o

135

135

135

180

18o

18o

225

225

225

A = 0.02

.2 ¸

1.7

2.2

1.2

1.7

2.2

1.2

1.7

2.2

1.2

1.7
2.2

1.2

1.7

2.2

O. 66416

O. 55001

O. 64710

O. 66137

O. 544')0

O. 63665

0.62507

O.512'52

0.59758

0.57746

0.47274

0.55353

o.54825

o.45oo3

0.53121

o.55357
0.45677

0.54292

Error at Nozzle

A -A
n

A

-.o29

.003

.o34

-. 031

•001

.o32

-.o31
-. 001

.o28

1.2

1.7
2.2

(Degrees)

o.4

0.4

0.4

0.5

0.5

0.5

o.3

0.3

0.3

-O.i

-0.i

-0.I

-0.4

-0.4

-0.4

-.o31
-.004

.o23

-.030

-.oo4

.022

-. o3o
-. oo3

.o24

-0.4

-0.4

-0.5
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27o

270

27O

315

315

315

1.2

1.7
2.2

1.2

1.7
2.2

0.58854

0.48787

O.58090

0.63362

O.526O2

0.62368

-.o29
.001

, o28

-.o29

.oo3

.032

-0.3

-0.3

-0.3

o.i

o.i

o.i

Table 3. IL Mode Linear Solutions (Numerical).

(Degrees)

45

45

45

9o

9o
9o

135

135

135

18o
18o

18o

225
225

225

270

270

270

A = 0.02

315

315

315

o.6
1.0

1.4

o.6
1.0
1.4

o.6

1.0
1.4

O.6
1.0

1.4

O.6
1.0

1.4

o.6
1.0

1.4

o.6
1.0

1.4

n

1.44680

1.01686

1.37491

1.42414

0.99216
i.32746

1.33681

0.92275

1.23131

1.23678

0.85007

1.14229

1.18443
o.81682
1.1119o

1.2o963
0.84176

1.15854

1.29571

0.91003

1.25539

Error at Nozzle

A -A
n

A

-0.048

0.002

0.049

-o.o48
O.001

O.047

-0.046
-0.001

0.042

-0.044

-0.002

O. 038

-0.043
-0.003

0.036

o.6
1.0

1.4

1.39320

0.98248

1.34523

-0.043

-0.001

0.039

-0.044

0.001

0.044

-0.046

0.003

0.049

_n -

(Degrees)

0.4

0.4

0.4

o.5

0.5

0.5

0.3

0.3

0.3

-0.i

-0.i

-0.i

-0.4
-0.4

-0.4

-0.5

-0.5

-0.5

-0.3

-0.3

-0.3

0.i

0.i

0.i
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Nonlinear Solutions

Nonlinear solutions have been computed for both the IT mode and the 333

mode. For the IT mode calculations a three mode series expansion consisting

of the IT, 2T (second tangential), and IR (first radial) modes was used. These

are the same modes that were included in the series expansion used in the pre-

vious two-dimensional transverse instability studies. 5'6 In these studies it

was shown that convergence was obtained with this three mode series ; that is,

the addition of higher transverse modes (i.e., 3T, 4T, etc.) to the basic series

had little effect on the solution. The IL mode computations were made using a

series consisting of the first five longitudinal modes (i.e., IL, 2L, 3L, 4L,

and 5L). It has been shown by Lores and Zinn 3'4 that convergence is obtained

with this five-mode series.

Transverse Mode Solutions. Nonlinear solutions have been computed for

rocket combustors with quasi-steady nozzles (i.e., real admittances) and also

for nozzles with complex admittances. The quasi-steady nozzle solutions were

generated for comparison with the results of the previous two-dimensional the-
13

ory. 5 For this case the nozzle admittance is given by:

y : z_ci
r 2_ e

y = 0
l

For nozzles with complex admittances the admittance was expressed in the form,

Y = Ae iq°. For both cases limit-cycle amplitudes and waveforms have been com-

puted for both standing and spinning first tangential instability. This re-

quired three series terms to describe standing instability and five series

terms to describe spinning instability. Typical computation times on a Uni-

vac 1108 computer to reach a limit-cycle were one minute for a standing wave

and two minutes for a spinning wave.

Wall pressure waveforms (r = i) were computed at the injector face

(z = O) and at the nozzle entrance (z = ze) for three azimuthal locations,

8 = O °, 8 = 45° , and 8 = 90o • The initial conditions for standing waves were

chosen such that a pressure anti-node occurred at 8 = 0°. Injector pressure

waveforms for both standing and spinning instability are shown in Fig. 2 for

combustors with quasi-steady nozzles. These waveforms exhibit sharp peaks

17
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and shallow minima; they are nearly identical in shape to those calculated
5,6

using the previous two-dimensional tlleory. Co1_pariso_ of iujector amd

nozzle pressure waveforms (0 = 0°) shows that there is very little variation

in pressure with axial position. These waveforms are in qualitative agree-

ment with the results of pressure measurements taken during test firings of

i
unstable rocket motors.

To check the accuracy of the approximation of the nozzle boundary

condition, wall pressure and axial velocity waveforms were calculated at the

nozzle entrance. The error at the nozzle boundary (z = z ) is shown for non-e

linear standing and spinning IT mode instabilities in Fig. 3. Here the axial

velocity perturbation, u', and the product of the quasi-steady nozzle admit-

tance and the pressure perturbation, Yr p' are plotted as a function of time.

The latter quantity is the axial velocity perturbation that would be obtained

at the nozzle entrance if the nozzle boundary condition were exactly satis-

fied (i.e., the nozzle admittance condition requires that u' = Yr p' at z = Ze )"

Most of the discrepancy between the two curves is due to a slight phase shift

between pressure and velocity and the second harmonic distortion of the pres-

sure waveform resulting from thenonlinearities of the system. The nozzle

boundary condition is satisfied in an average sense, however, for the ratio

of the velocity amplitude (peak-to-peak) to pressure amplitude (peak-to-peak)

is very close to the required value, Y •r

In another study, limit-cycle amplitudes were calculated as a function

of n and _ for standing IT mode instability. Values of n in the linearly un-

stable region were chosen for below resonant (7 = 1.9), resonant (7 = 1.706),

and above resonant (7 = 1.5) conditions. The resulting amplitudes are compared

with those obtained with the two-dimensional theory in Fig. 4. This figure

shows that the three-dimensional theory predicts a slightly higher limit-cycle

amplitude than the two-dimensional theory for chambers with quasi-steady nozzles.

Figure 4 also sh_.$s that the three-dimensional theory, like the previous

two-dimensional one, cannot predict triggering of IT mode instability by the

introduction of finite amplitude disturbances. This result was expected since

it was shown in Refs. 6 and 8 that the second order (i.e., 0(¢2)) theory can

predict triggering only for pure radial modes (m = O, n = i, 2 ...). Such

triggering limits for the IR mode are discussed in Ref. 9. It has also been

19
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shown, however, that triggering of IT mode instability can be described when

the 0(¢ 3) terms are retained in the analysis. 8'14 The third order theory

given in Refs. 8 and 14 is limited to a single mode in the approximating

series expansions. A more general multi-mode third-order theory is now under

development and the results will be presented in a future publication. It

is also suspected that nonlinear unsteady combustion effects (not included in

the present analysis) may play an important role in the triggering phenomenon.

For nozzles with complex admittances a study was conducted to determine

the effect of the nozzle phase shift, _, upon the limit-cycle amplitudes and

waveforms for both standing and spinning IT mode instability. The effect of

nozzle phase shift on the nonlinear pressure and velocity waveforms at the

nozzle entrance plane is shown in Fig. 5 for spinning waves. This figure

shows that, while _ has little or no effect on the pressure waveforms, the

phase and shape of the velocity waveforms is strongly dependent on _. The

effect of _ on the limit-cycle amplitude for standing IT mode instability is

shown in Fig. 6. For a given value of n and _ (in the linearly unstable re-

gion for the 1T mode), Fig 6 shows a sinusoidal variation of limit-cycle am-

plitude with _ having a maximum amplitude at about _ = 200 ° and a minimum am-

plitude at about _ = 20 °. In this connection, it should be pointed out that

according to linear results nozzle damping is a maximum at _ = 0° and a mini-

mum at _ = 180°; thus the observed shifts must be due to nonlinearities.

In order to determine how well the solutions approximate the nozzle

boundary condition, the amplitude ratio and phase shift between pressure and

velocity at the nozzle entrance have been calculated from the nonlinear solu-

tions and have been compared with the specified nozzle admittance condition.

Since the waveforms are non-sinusoidal, an approximate amplitude ratio, A ,
O

was calculated by taking the ratio of peak-to-peak velocity amplitude to

peak-to-peak pressure amplitude. The approximate phase shift, _c was calcu-

lated from the following formula"

tp - tu]Pc = T x 360 (15)

is the average of an ascending zero-crossing and the following de-

is a similar average

where t
P

scending zero-crossing for the pressure perturbation, t
U
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for the velocity perturbation, and T is the period of oscillation. The re-

sults of this study are shown in Fig. 7 for both standing and spinning waves.

For standing waves the calculated amplitude ratios are seen to be consistent-

ly higher than required by the nozzle admittance condition (dashed line),

while for spinning waves the calculated amplitude ratios are lower than re-

quired. For both standing and spinning waves the calculated phase shifts are

in excellent agreement with the imposed phase shifts. This study shows that

the three-dimensional theory provides a good approximation to the nozzle

boundary condition for the IT mode, considering that the nonlinear solutions

are being forced to satisfy a linear boundary condition.

Lonsitudinal Mode Solutions. Letting m and n equal zero in Eq. (6)

and using a series consisting of the first five longitudinal modes (i.e., 6 =

i, 2, ... 5), limit-cycle solutions were calculated for quasi-steady nozzles

as well as for nozzles with complex admittances. The longitudinal mode so-

lutions required somewhat longer computation times than the transverse mode

solutions; the time required to reach a limit cycle was from three to four

minutes on the Univac i108 computer.

Longitudinal mode solutions for chambers with quasi-steady nozzles

were compared with the solutions previously obtained by Lores and Zinn 3'4

using a one-dimensional theory. Pressure waveforms at the injector face

are compared for both resonant and off-resonant conditions in Fig. 8 which

shows excellent agreement between the two theories. Pressure and velocity

waveforms at the nozzle entrance as well as injector face pressure waveforms

are shown in Fig. 9 for quasi-steady nozzles, while Fig. i0 shows waveforms

at the nozzle entrance for nozzles with complex admittance (_ = 45 ° and

= 90o). In each case the results indicate the presence of a steep-fronted

pressure wave moving back and forth in the chamber. This behavior is in
2

agreement __th experimental observations of axial instabilities. The

relation between pressure and velocity waveforms at the nozzle entrance is

a fairly good approximation to the nozzle admittance condition (see Figs. 9

and i0) in spite of the highly nonlinear waveforms. The results of this

investigation indicate that the three-dimensional nonlinear theory is appli-

cable to longitudin_l instabilities as well as transverse instabilities. The

theory can also be u_ed to investigate the nonlinear behavior of combined
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longitudinal-transverse instabilities, although no results for instabilities

of this type are presented in this report.

CONCLUDING REMARKS

A general three-dimensional second-order nonlinear theory has been

developed for predicting the linear and nonlinear behavior of combustion in-

stability in liquid-propellant rocket combustors. This theory contains previous

analyses of transverse and longitudinal instabilities as special cases. Further-

more it extends the previous analyses which were applicable only to combustors

with quasi-steady nozzles, to the more practical cases of combustors with con-

ventional DeLaval nozzles. The present theory can be used to predict the sta-

bility characteristics of longitudinal, transverse and combined longitudinal-

transverse modes for various liquid-propellant rocket motor designs.

Results obtained for combustors with quasi-steady nozzles are in excel-

lent agreement with the predictions of previous theories for both transverse

and longitudinal instabilities. For combustors with conventional nozzles the

limit-cycle amplitude varies sinusoidallywith nozzle phase shift, _, having a

maximum value at _ = 200 ° and a minimum value at _ = 20 ° . The nozzle phase

shift has a strong effect on the axial velocity waveforms at the nozzle entrance

while having only a minor influence on the nonlinear pressure waveforms. In

both cases, the nonlinear theory developed in this paper provides a good approx-

imation to the unsteady flow conditions at the nozzle entrance plane. This is

in contrast to the previous theories which provided a relatively poor approxi-

mation to the nozzle boundary condition.

The results presented in this report establish the relationship that

exists between the resulting instability (i.e., waveform, final amplitude, and

final frequency), the combustion parameters (i.e., interaction index, n, and

time-lag $), and the chamber Mach number and length-to-diameter ratio. These

results indicate that the limit-cycle amplitude increases with increasing sen-

sitivity of the combustion process to pressure oscillations. For transverse

instabilities, calculated pressure waveforms exhibit sharp peaks and shallow

minima, and the frequency of oscillation is alwayswithin a few percent of the

frequency of one of the chamber's acoustic modes. For axial instabilities, the

theory predicts the presence of a steep-fronted wave moving back and forth

along the combustor. In both cases the calculated pressure waveforms are in

3O



good qualitative agreementwith available experimental data.
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APPENDIX A

MOMENTUM INTERCHANGE BETWEEN LIQUID AND GAS PHASES

The results presented in this report were obtained under the assumption

that the momentum interchange between the liquid droplets and the burned gases

is negligible. This assumption will now be relaxed for the special case of

uniformly distributed combustion, and it will be shown that this momentum

interchange is an important stabilizing effect.

Analysis

The momentum equation for two-phase flow was derived in Ref. 8 and is

given by:

_V

--- + V.vV + = -. . 7vp -(v  L)(c+ wm)P (A-l)

where _V and _L are the gas and liquid velocity, respectively. The term on the

right-hand-side of Eq. (A-I) represents a momentum source to the gas produced

by the burning liquid drops. This momentum source consists of two parts: (i)

the force necessary to accelerate the evolved gases from the droplet velocity

to the gas velocity (i.e., the term -Wm( _ - _L)) and (2) the aerodynamic drag

of the droplets (i.e., the term-C(_- _)).

In order to derive a wave equation for the velocity potential ¢ it

is necessary to make the following assumptions: (i) the drag term is negli-

gible compared with the acceleration term, (2) liquid velocity fluctuations

are negligible, and (3) the combustion is uniformly distributed throughout the

chamber. Neglecting the drag term, perturbing, and neglecting third order quan-

tities gives the following expression for the momentum source perturbation, M':

(A-2)

This is simplified further by neglecting the liquid velocity perturbation,
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introducing the velocity potential, and using the steady-state relation,

Wm= du/dz, to obtain:

M" = _ __d_V_ (A-3)
-_ dz

Finally, the assumption of uniformly distributed combustion gives d_/dz =

constant which yields:

i ]4 Tz _ (A-4)

Perturbing the left-hand-side of Eq. (A-I), introducing the velocity potential,

and combining with Eq. (A-4) gives:

V[ _ __p + d_ i V_.V _ 1 2 ]_-[+ " + _z Tzz_ +_ -_t = o (A-5)

which can be integrated to obtain:

- dG_ 1 1 2 ]p" = -T @t + U@z +_zz + _ V@.V_ - _t (A-6)

Equation (A-6) is similar to Eq. (13), where the additional term dN/dz)_

arises from the droplet momentum source. Following the procedure outlined

in Ref. 8, the momentum equation given by Eq. (A-6) is combined with the con-

tinuity and energy equations to obtain the desired wave equation:

= - d_ l)@tV2 _V2@ - @tt 2UCzt + (T + l)_z_ t + 2V@'9_ t + (Y - + Wm" (A-7)

Comparing Eq. (A-7) with Eq. (i) shows that the droplet momentum source
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appears only in the second term on the right-hand-side of this equation,

where the factor y in Eq. (1) becomes (Y + l) in Eq. (A-7).

Applying the Method of Weighted Residuals to obtain approximate solutions

to Eq. (A-7) yields a set of ordinary differential equations identical to Eqs.

(12) where the coefficient C2(j,p) is now given by:

Z Z

<4e }C2(j,p) = _(Z)ZpZjdz + (y + i) _-nazp0_"u_ + yYZp(Ze)Zj(z e) X
O

X _w@ @.de_R R.rdr

PJ Jo pJ
(A-S)

Equation (A-8) is readily obtained from Eq. (C-3) by replacing y in the second

term by y + i.

Linear Stability Limits

Linear stability limits for the IL mode were calculated by the method

described in Appendix E for the following two cases: (i) the droplet momen-

tum source was included in the analysis and (2) the droplet momentum source

was neglected. The results were compared with the linear stability limit

calculated by Mitchell 15 on a plot of interaction index, n, versus stretched

time-lag, _, where _ = m_/w (see Fig. A-I). This figure shows excellent agree-

ment between the results of Mitchell (solid curve) and the present theory

(circle symbols) when the droplet momentum source is included. Neglecting the

droplet momentum source shifts the stability curve to much lower values of n

(dashed curve), which indicates that the droplet momentum source is an impor-

tant stabilizing effect.

Nonlinear Solutions

In the second-order analysis presented in this report, the droplet momen-

tum source affects the nonlinear solutions primarily by increasing the linear

stability of the system. This is readily shown in Fig. (A-2) where the limit-

cycle amplitude is plotted as a function of the displacement, 8n, above the

neutral stability limit. By plotting the limit-cycle amplitudes in this manner,
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the effect of the shift in the neutral stability curves is removed so that

only the nonlinear effect of the momentum source is seem. Figure A-2 shows

that, for equal displacements above the neutral stability limits, including

the droplet momentum source results im a slightly smaller limit-cycle a_pli-

tude. This difference in limit-cycle amplitude is negligible for most practi-

cal purposes.

For combustors with uniformly distributed combustion it has been shown

that the droplet momentum source is am important effect which is easily in-

corporated into the present analysis. Consequently the computer programs

based on this theory include the droplet momentum source as an optional feature

(see Appendices C, D, and E).

For chambers with non-uniform combustion distributions, Eqs. (A-6) and

(A-7) are no longer applicable; however, the droplet momentum source can be

takem imto account in the following manner. Using the present theory with

the droplet momentum source omitted, the neutral stability limit, nl(_), is

calculated and the limit-cycle amplitudes are determined as a function of 8n

as in Fig. A-2. In addition, the limear stability limit, n2(_) , is calculated

using a linear theory which includes the droplet momentum source and is not

restricted to uniformly distributed combustion (such as in Ref. (15)). Assum-

ing that the nonlinear effect of the droplet momentum source is also small for

non-uniformly distributed combustion and using the values of 8n and n2(_) cal-

culated above, the desired plot of limit-cycle amplitude as a function of n

is readily obtained.
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APPENDIX B

USE OF COMPLEX VARIABLES IN THE SOLUTION OF

NONLINEAR DIFFERENTIAL EQUATIONS

It is often convenient to use complex variables in the solution of the

linear equations which arise in acoustics, combustion instability and related

fields. In this case the solution is expressed in complex form, and the real

part represents the physically meaningful solution. However, care must be

used when applying this technique in the solution of nonlinear equal,ions. The

difficulties that are encountered in applying the complex variable technique

to nonlinear problems will be illustrated by analyzing the following simplified

example. Consider the nonlinear wave equation given by:

V2_ - _tt = _@t (B-l)

A complex solution of Eq. (B-l) of the form _ = _ + iy would be useful only

if its real part, _, satisfies Eq. (B-I), which would be the case if the equa-

tion were linear. However, straightforward substitution of _ = _ + iy into

Eq. (B-I) and separating its real and imaginary parts yields the following

equation for _ :

V2_ - _tt = _°_at- YYt (B-2)

indicating that the real part, _0, does not satisfy Eq. (B-I) because of the

extra term,-YYt' appearing on the right hand side. In order to eliminate

this extra term, the form of the original differential equation (i.e., Eq.

(B-I)) must be modified.

Since Eq. (B-I) supposedly describes some physical phenomenon, and

since only the real part of the complex solution is physically meaningful,

then the nonlinear term _t should really be expressed as the product Re(_) X
9_ 9_ _ 96

Re(¢t) which is equivalent to (_@t + _t + @ _t + ¢ @t )/4" Substituting this

expression into Eq. (B-I) yields:
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2 * * 95

¢ - Ctt = ¼[@_t + _¢t + @ Ct + @ Ct ] (B-3)

Substituting @ = _ + iy into Eq. (B-3) and separating its real and imaginary

parts yield:

2

%t =

2

VY- Ytt = 0

(B-4)

which shows that the real part of the solution of Eq. (B-3) satisfies the de-

sired equation (i.e., Eq. (B-I)) and the imaginary part satisfies a homogeneous

linear wave equation. This technique was applied to the solution of nonlinear

combustion instability problems (i.e., to Eq. (i)), and the resulting modified

wave equation was solved using the Method of Weighted Residuals. Due to the

approximate nature of the Method of Weighted Residuals, however, the resulting

solution contained an error term which grew without limit. Consequently, the

above procedure had to be modified in order to obtain satisfactory solutions

of Eq. (i) using the Method of Weighted Residuals.

An alternate technique is to modify Eq. (B-I) such that both the real

and imaginary parts satisfy the original equation. This can be done by re-

placing terms of the form _t with Re(_)Re(_t) + ilm(_)Im(_t) ; using the

relations:

( *)( _t + _t ) ¼[ ]Re(_)Re(@t ) _ + _ * * * *= 2 2 = _t + _t + _ _t + _ _t

•

ilm(@)Im(_t) : -i 2 : -_ _t - @@t - _ _t + $ _t

in Eq. (B-l) gives:

V _ - _tt : (i - i)(_ t + _ _t ) + (i + i)(99 t + _ %t ) (B-6)

Substituting _ = _ + iy into Eq. (B-6) and separating into its real and im_gi-
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nary parts gives:

2

(B-7)

2
V V - Vtt = _t

which shows that both _ and V satisfy Eq. (B-l). Applying this method to the

solution of Eq. (1) yields the modified wave equation (i.e., Eq. (10)) used in

the present investigation.
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APPENDIX C

PROGRAM COEFFS3D : A USER 'S MANUAL

Statement of the Problem

Program COEFFS3D calculates the coefficients of both the linear and non-

linear terms which appear in Eqs. (12). These coefficients are required as

input for Program LCYC3D (see Appendix D) which numerically integrates this sy-

stem of equations. The coefficients that are required depend on the choice of

terms to be included in the series solution for _ (see Eq. (9)), therefore

this information must be provided as input to Program COEFFS3D. The output

of Program COEFFS3D is either punched onto cards or stored on drum (FASTRA_D)

for input to Program LCYC3D.

The coefficients to be calculated are functions of various integrals

of hyperbolic, trigonometric, and Bessel functions and are given by the follow-

ing expressions :

z 2w i
e

CO(j,p) = Z Z dz ® @ de R R.rdr (C-l)PJ P J PJ

0 0 0

z Z
e e 2w i

Cl(j,p_..= Smn(P_ zz* dz- ZZ dz+Z (Ze_Zj(Ze_ eS.d_ RR.rdrPJ P J P,_ P J
0 0 0 0 (C-2)

z Z
e e

t {- *

C2(j,p) = {2 _ U(Z)ZpZj dz + _ J _zdUZpZ.*jdz + yYZp(Ze)Z j(ze) }

O 0

(C-3)

2w i

x _ ®pGj d8 _ R R'rdrp j

0 O

Z
e 2w i

C3(J,P) = {7 _ d_ *z.PJ PJ
O 0 0

(c -4)
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Dl(j,p,q) = ½(i - i) {T1

Z Z
e e

PqJ
0 0

y -1

z
e

__ z-zz__z]}pqJ
0

D2(j,p,q)= ½(z+ i) {Tz

Z Z
e e

_zz_z__z+_[;
PqJ

0 0

Z" *" 'Z* dz
p[Zq) j

Z
e

P qJ
0

D3(j,p, @ = ½(1 + i) {T1

z
e

z*zz__z+_ [
PqJ

0

Z
e

I<_.z.z_._z
qJ

0

+y-i
2

Z
e

m_
0

q3

Z
e

V
Z*Z*Z*

dz + T2 [
P q J

Z
e

0

where

9_ i 9n

T1 = _ @ ®. de _R'R'R.rdr + _
PqJ Pq3

0 0 0

T2 = _8 ® _. d@ _R R R.rdr
PqJ PqJ

0 0

Z
e

-1

0

1

®'8'@ _ dr %/ - i S2 (p)P qj d8 RRR.pqJ r 2 mn
0

x S@ @ e de _R R R.rdr
PqJ PqJ

0 0

(c-_)

(c-6)

(C-7)

(c-8)
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In the equations on the prior page the notation of Eq. (9) is used; that is,

a single index (i.e., j, p, or q) is used to identify a particular series term

rather than the mode numbers used in Eq. (6). The index j identifies the

equations in which a given coefficient appears which corresponds to the weight-

ing function used in deriving that equation. For the coefficients of the linear

terms (i.e., the C's) the index p identifies the amplitude function which the

coefficient multiplies. For coefficients of the nonlinear terms, (i.e., the D's)

p identifies the factor which is not differentiated with respect to time, (i.e.,

Ap or _ ), while q identifies the differentiated factor (i.e. dAp/dt or dAp*/dt.

Due to the complex nature of the axial eigenfunctions, the above coefficients

are complex numbers.

Structure of the Numerical Calculations

A flow chart for Program COEFFS3D is shown in Figure (C-I). The program

can be divided into five major sections: (i) input, (2) calculation of the

complex linear coefficients, (3) calculation of the complex nonlinear coeffi-

cients, (4) obtaining coefficients of the equivalent uncoupled real system,

and (5) output.

The inputs to the program include the various parameters describing

the chamber geometry, the nozzle boundary condition, the modes included in the

approximating series expansion, and various control numbers, as well as the

roots of the Bessel functions.

In the second section the axial acoustic eigenvalues are calculated by

means of Subroutines EIGVAL and FCNS, and the integrals of the products of

two axial eigenfunctions are computed by means of Subroutines AXIALI and UBAR.

The integrals involving radial and tangential eigenfunctions are evaluated by

using the orthogonality properties of these functions. The complex linear co-

efficients are then calculated according to Eqs. (C-I) through (C-4) and are

normalized by dividing by Co(J, j).

In the third section the integrals of products of three Bessel functions

are calculated using Subroutines RADIAL and JBES, while similar integrals in-

volving azimuthal eigenfunctions and axial eigenfunctions are computed using

Subroutines AZIMTL and AXIAL2 respectively. The normalized complex nonlinear

coefficients are obtained from Eqs. (C-5) through (C-8) by dividing by Co(J, j).

In the fourth section the normalized complex coefficients are used to
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obtain the coefficients for the equivalent system of real differential equations

obtained by separating the real and imaginary parts of the complex equations.

Since the axial eigenfunctions are non-orthogonal, the resulting system of

equations may be coupled in the second derivative terms. Therefore, a matrix

inversion procedure is used to obtain the coefficients of an equivalent system

which is not coupled in the second derivatives.

In the last section the computed values of the coefficients are either

printed out, punched onto cards, or stored on drum (FASTRAND file) as desired.

Input Data

The input data consists of the chamber parameters (i .e., ratio of speci-

fic heats, steady state Mach number, and length-to-diameter ratio), the nozzle

admittance ratio, various control numbers, and information indicating which

modes are included in the approximate series expansion. Regarding the latter

information_ each term in the series is identified by the integer variable J.

The nature of each terra is specified by the four integers L(J), M(J), N(J),

and NS(J), and each term is given a four character name NAME(J). In this

manner the coefficients are identified by the integers J associated with the

modes involved rather than the corresponding axial, azimuthal, and radial

mode numbers.

The following comments pertain to the detailed description of the input.

The location number refers to columns of the card. Three formats are used for

input: "A" indicates alphanumeric characters, "I" indicates integers, and

"F" indicates real numbers with a decimal point. For the "I" and "F" formats

the values are placed in fields of five and ten locations, respectively, and

the numbers must be placed in the rightmost locations of the allocated field.

No. of

Cards

i

i

Location Type Input Item

1-72 A TITLE

i-i0 F GAMMA

ii-20 F UE

21-3o F RL9

31-40 F ZCOMB

Comments

Title of Case

Ratio of specific heats, y.

Steady state Math number at

nozzle entrance_ u •
e

Length-to-diameter ratio,

L/D--

Lenth of combustion zone,

Zc/z e •
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No. of

Cards Location Type

41-45 I

46-50 I

1-5 I

6 -i0 I

Input Item

NDROPS

NOZZLE

NJMAX

NONLIN

11-15 I NEGL

16-20 I NOUT

46

If NEGL = i:

i i -lO SM1

11-20 F SM2

End of input for NEGL = i.

If NOZZLE = I:

NJMAX 1-5 I

6 -15 F

16-25 F

End of Input for NOZZEE = 1.

NJMAX 1-5 I

6 -i0 I

J

_L(J)

J

L(J)

Comments

If O: droplet momentum

source neglected. If i:

droplet momentum source

included.

If O: quasi-steady nozzle, r

If i: conventional nozzle.

Number of series terms (com-

plex). (NJMAX g i0)

If O: linear terms only.

If i: linear and nonlinear

terms.

If O: Nonzero coefficients

calculated.

If i: Small coefficients

neglected.

If O: printed output only.
If i: printed and written

into FASTRAND file.

If 2: FASTRAND only.

If 3: card output only.

Linear coefficients with

absolute value less than

SMlneglected.

Nonlinear coefficients with

absolute value less than

SM2 neglected.

Integer which identifies

series term.

Amplitude factor of nozzle

admittance, A.

Phase of nozzle admittance, _.

Integer which identifies
series term.

Axial mode number, _.

(e L(J) lO)



No. of

Cards Location T__ Input Item

11-15 I M(J)

16-20 I N(J)

21-25 I NS(J)

26-30 A NAME(J)

Comments

Tangential mode number, m.

Radial mode number, n.

(O_(J)_5)

NS(J) = i: ®. = sin(me)

NS(J) = 2: ®_ = cos(me)
J

Four character name.

The first card gives a title (maximum 72 characters) used to identify

the run. The second card gives the chamber parameters (i.e., _, [e, L/D, Zc) ,

determines whether the droplet momentum source is included in the analysis

(see Appendix A), and specifies the type of nozzle (quasi-steady or conven-

tional). If a quasi-steady nozzle is specified the nozzle admittance is cal-

culated using Eqs. (14), and no further information concerning the nozzle is

required. The contol numbers are given on the third card. Due to computer

storage limitations the series expansion is limited to ten terms, thus NJMAX

i0. The control number NEGL gives the option to neglect all coefficients

with absolute value smaller than a given number, thus allowing a considerable

saving in computation time when the equations are numerically integrated by

Program LCYC3D. It has been found that neglecting coefficients with absolute

value smaller than 0.i (i.e., SMI = SM2 = 0.i) reduces the computation time

by half and has a negligible effect on the resulting solutions. For conven-

tional nozzles a series of NJMAX cards is read which gives the nozzle ad-

mittance (amplitude and phase) for each term in the series. This is followed

by another series of NJMAX cards giving the mode numbers for each series term.

The proper input for program COEFFS3D will be illustrated with the

following example. Suppose the velocity potential _ is expressed in terms of

the first tangential (IT), the second tangential (2T), and the first radial

(IR) modes. It is also desired to investigate instability of the spinning

type, therefore both sin(me) and cos(me) terms are included in the series.

However, for the IR mode (m=O) there is no corresponding sin(me) term, there-

fore the resulting series will contain five terms. A nozzle admittance of

A = 0.02 and _ = 45 ° will be assumed for each term in the series, and coeffic-

ients smaller than 0.i as well as the droplet momentum source will be neglected.
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The output data will be punched on cards. A sample input for this case is

given in Table (C-l) below.

Table C-I. Sample Input.

S 6 7 t tO II I_ I] b4 t5 II lY I0 _ _ ]1 _2 _3 _J ?S _ _r _ 2t 30 31 _ 33 _ _ _ 3T _ _ _0 al SO

I_-M,121TI,I_.I_IIsl_l,'l,_l_,l='l,,,l_lI 11I I I I l I I I I I I I i I I 1I 1I l"l"l"l"l"l'l"l'lI ! 1

Iltl I I"t.lzl 1t I I I I Io1.121I I I I I 11ol.Isl t I I I I I 1=1.Iol11I 1olt 1I 1_ l
• 9 t0 It I] I) 14 IS 16 IT Ill 19 _0 _1 _ _3 _ 35 _ _7 711 _I _0 31 _ 13 _ 3S 31 37 m /_ _0 ,It _ _ 6J _S N ,IT 4 _ SOISlI11 1151111IJ.lI I I1_-II I I _111I III III I I I11 I11 I I Ili I III I I I
6 ! tO II It 13 18 IS 16 It 10 19 ;tO |t t_ _$ |4 ;_$ ]_ _7 I'll _ XI _11 _12 3_ ?,d 15 ]J )7 34 39 _G II 4,? I:J dd _lS 46 It 48 i@ I 5_11".I I I I I I I 1ol.I_-II I I I 111ol.I_.1I I I I I [ [ I I I I I I I I 1I I I 11I I I I I I 1

IIII _ __-__`_`°_"_;_]"_._°_°_"_`_-_._-_°_"_"_._"
....................... '..... '...... I"I]'t" I"I"l'l"l"]"l'l]....... I"1]]" "I111 Izl'l I I I I 1ol.Io_1I I I I I lYsl.Ioll II1 I I'1"1"1

I}11 I_1'1I I _`°_'_:_]_._.`_°_"_'_'___°_._._-_°_7_]:_-_"_-_

I111 1.1I 1I I I 1ol.Iol=lI I I I I 14_I.IolI I I I I I I l I"1"1"1"1"1'°1...... I"1............................. '................. II I'l"l]'l]]

1111I_1I I 111Iol.1o1_1I 1I I I I+i_I.1oti I I I I I I I 11t I I t I111

£ 0 1 Z B o _. _.

I11t 13111I IolI I I Izl I I I I_1I I I I_11.1o1_1_1I I I 1I I I 11I I I I I I I I I I I I

Illl I'_1I I I IolI I I lzl I I I I_[[ I I IzII_lol_l_lt I 1I I I I 1I I I I I I t 1
0 0 "1 2, goo I

After the last card in the sequence described above is read, the program

is executed and control returns to the input section. Thus, several cases can

be executed on the same run. If no further cards are given the run is termi-

nated.

In addition to the above card input, roots of the Bessel functions S
ran

which give zero slope at r = 1 and the associated values Jm(Smn) are needed for

these calculations. These values were taken from Ref. (16) for m = O, 1,...8

and n = 1,2...5; they are automatically put into the program by means of a DATA

statement, which is an integral part of the program.
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Complex Linear Coefficients

For NDROPS = 0 the complex linear coefficients are computed from Eqs.

(C-l) through (C-4) and are stored in the complex array CC(KC,NJ,NP). For

NDROPS = i the coefficients C2(j,p) are computed from Eq. (A-8).

In order to calculate these coefficients the following information is

needed: (i) the axial acoustic eigenvalues, bgmn , (2) the steady state Mach

number distribution, u(z), (3) the orthogonality properties of the trans-

verse eigenfunctions, and (4) the integrals of products of two axial eigen-

functions. The calculation of these quantities is described below.

Axial Acoustic Ei_envalues. The axial acoustic eigenvalues are deter-

mined by n_unerically solving the transcendental equation given by Eq. (8).

bgmn = i_gmn + iY.This is done by first substituting Cgmn + and Y = Yr m

into Eq. (8) and separating real and imaginary parts. This yields a pair

of simultaneous equations of the form:

f(_,9 = o

g(e,_) = 0

(c-9)

where

f(e,_) = ( 2 _ 2)r (e,1]) - 4_(e,_])

r mn _ 2) _ 4YrYie_J G(e,_)

(C-IO)
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g(¢,_) = (¢2 . _2)H(¢,_ ) + ¢_F(e,_)

(C-il)

and

F(¢,_) = sin2(¢Ze)COSh2(_Ze) - cos2(¢Ze)Sinh2(_Ze )

G(¢,_) = cos2(¢Ze)COsh2(_Ze ) - sin2(¢Ze)Sinh2(_Ze ) (c-J2)

H(¢,_) = sin(eZe)COS(¢Ze)Sinh(_Ze)COsh(_Ze)

In the above equations the subscripts on ¢ and _ have been omitted.

Equations (C-9) are solved by Subroutine EIGVAL using Newton's Method

for two unknowns. 17 In this method successive approximations to the roots

are generated by the recursion formulas:

¢i+I = _i- L J(f,g)Ji

cgf. - fg_l
_i+l = _i- [ J(f,g) Ji

(C-13)

where the Jacobian J(f,g) is given by:

J(f'g) = fcg11 - gefD
(c-J4)
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and the subscripts indicate partial differentiation with respect to e and 0"

The quantities f, g, f¢, f_, ge' g_ are calculated by the Subroutine FCNS.

The iteration is started by assuming the following values for ¢ and 0:

¢o Cm + a cos(8)

7]0 = a sin(8)

(c-15)

where for 6 = O: =0
m

a = iOA/z e

and for 6 # O:

8 = @/2 + 45 (degrees)

Cm : $_17/Ze

(C-16)

a = A/z e

8 = _ + 90 (degrees)

The iteration is terminated when the errors A¢ and A_ are smaller than 10 -7 .

If the iteration fails to converge after 40 iterations or the Jacobian

vanishes a warning message is printed. FORTRAN listings of Subroutines

EIGVAL and FCNS are given at the end of this appendix.

Steady State Mach Number Distribution. The steady state Mach number

distribution is calculated by means of Subroutine UBAR which must be sup-

plied by the user. This distribution must be of the form shown in Fig.

(C-2) where the Mach number varies from zero at the injector face (z = O)

to its maximum value at the end of the combustion zone (z = z ) and remains
c

constant until the nozzle entrance (z = z ) is reached. Thus the Mach
e

number is given by

= • (O<z <z )
C

(c-17)
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_(z)=_ (zo_z_z e)e

wlqere U(O) = 0 and U(Zc) = i. Although the function U(z) may be arbitrary,

the results presented in this report were obtained using a linear Mach num-

ber distribution in the combustion zone (i.e., uniformly distributed com-

bustion). Thus the function U(z) in the listing of UBAR provided herein is

given by:

u(_.)= z/zc (c-18)

In addition to the Mach number distribution (NOPT = i), the first (NOPT = 2)

and second (NOPT = 3) derivatives are also calculated.

40
.4
O
o

q)

40
aS
40
u_
I

40
co

|

Z Z
C e

Axial Coordinate, z

Figure C-2. Steady-State Mach Number Distribution.
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Orthogonality of Transverse Ei_gnfunctions. The tangential eigen-

functions have the following orthogonality properties:

nsin(mpS)Sin(mjs)d8 = coS(mpS)eos(mjS)d8 = 0

.iJ

=_ m =m #0
P 8

"12_cos(m e)eos(m.e)de = 2.n m = m. = 0
J o P .3 P .3

 sin( e)cos( e)de = o for all m and m.
P J

(C-19)

For the special case of m = m. = O the integral involving sines vanishes.
P

The orthogonality property of the radial eigenfunctions is given by:

R R.rdr = 0 n _ nj = m )p J p (mp j

R R.rdr = mn = n =

%n

(C-20)

Since the tangential integrals vanish when mp # m.0 it is not necessary to

calculate the radial integrals for m _ m 4. These orthogonality properties
P_ J

used to calculate the integrals, .vl_w ®p@jde and ._J_RpRjrdr, which
are appear

in Eqs. (C-I) through (C-4). For a series containing pure transverse modes

only (g = 0), it is easily seen that all of the linear coefficients vanish

except those corresponding to p = j, yielding a system of equations which

are not coupled in the linear terms.

Axial Integrals. The integrals of products of two axial eigenfunctions

are calculated by Subroutine AXIALI. According to the value of the input

parameter NOPT these integrals are calculated as follows:
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NOPT = i:

NOPT = 2:

NOPT = 3:

NOPT = 4

ze . ' sinh[i(bp + b_)Ze]

sinh[i(b - bj)Ze]
+ P ._ - }

i(b b .)
P J

Z Z

I 'e#* _b21o e *
Z Z.dz = Z Z.dz

o PJ P PJ

Z
e

du Z .dz
Zp j

0

(evaluated numerically)

Z

I' eu(z)ZPZ_ "dz
O

(evaluated numerically)

(C-21)

(c-22)

The last two integrals, which involve the mean flow Mach number, are eval-

uated by means of Simpson's Rule. A FORTRAN listing of AXIALI is provided

at the end of this appendix.

Complex Nonlinear Coefficients.

The complex nonlinear coefficients are calculated from Eqs. (C-5)

through (C-8) and are stored in the complex arrays, CDI(NJ,NP,NQ),

CD2(NJ,NP,NQ), CD3(NJ,NP,NQ), and CD4(NJ,NP,NQ).

In order to calculate these coefficients, the various integrals of

axial, azimuthal, and radial eigenfunctions must be evaluated. Since many

of the azimuthal integrals are zero they are evaluated first, and the re-

maining integrals are computed only if the corresponding azimnthal integral

is nonzero. The subroutines used to calculate these integrals are described

in the following paragraphs.

Azimuthal Integrals. The azimuthal integrals are calculated by Sub-

routine AZIMTL according to the value of NOPT as follows:

2n

NOPT = i : [  peqejdeJo

54



NOPT = 2 :

These integrals are easily evaluated analytically; for most values of p, q,

and j they are zero. The nonzero integrals are readily expressed in terms

of the following integrals:

cos(mpe)cos(mqe)cos(mje)de = _r/2 for m.=m +m,
J P q

]11 =]II. + m _ or
P J q

m : m. + m (C-23)
q J P

2_

[ cos(m e)sin(mqe)sin(mje)de= _/2
Jo P

for m = m + m. or
q P J

m. = m + m (C-24)
J P q

rrcos(mpe)sin(mqe)sin(m3e)_ e = -rr/2 for m = m + m. (C-25)
P q J

where m_, m , and m. are nonzero. If any one of the tangential mode numbers
q J

is zero (corresponding to a radial mode) the following values are obtained:

2_

Io cos(mpe)cos(he)co_(mje)de = 2_

= TT

m =m =m. =0
P q J

mp = 07 m = m •q j'

mq = O_ mp = mj;

(c-26)

m. =0 7 m =m
J P q
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   oos( e)sin( e). in(mje)de = _ m = O, m = m. (C-27)
P q J

Subroutine AZIMTL consists of two sections. In the first section the

azimuthal integral is expressed as the product of a constant factor and one

of the basic forms given in Eqs. (C-23) and (C-24). The second section is

essentially a series of logical tests to determine if the mode numbers, mp,

mq, and m.j satisfy any of the conditions for Eqs. (C-23) through (C-27). If

any of these conditions is satisfied the appropriate value is multiplied by

the corresponding factor determined in the first section and the product is

assigned to the output variable (i.e., RESULT), otherwise the value zero is

assigned.

Radial Integrals. Subroutine RADIAL calculates the radial integrals

which appear in Eqs. (C-5) through (C-8) according to NOPT as follows:

NOPT = i :

NOPT = 2 :

NOPT = 3 :

R R R.rdr
PqJ

o

_o i
R R R._r
Pqj-

_R .rdrJR "m

oPqJ

where the R's are the Bessel functions, Jm(Smnr). These integrals are com-

puted numerically using Simpson's Rule with i00 subdivisions. In calculating

the integrands the derivatives of the Bessel functions are given by:

i< (s 0 _ 0] for m= 1,2,3,...

(c-28)
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The integrand of the second integral (NOPT = 2) is indetermi_late at the lower

limit of integration. However a limit exists, denoted by L, which vani_hes

with the following exceptions:

T,: Sr (p)/2

T.= S (q)/2

T,= S (j)/2

for m = i, m -- m. = 0
P q O

for m = i, m = m. = 0 (C-29)
q P J

for m. = i, m = m = 0
J P q

All of the calculation_ in Subroutine RADIAL are carried out in double

precision arithmetic. The results are given as a single precision number.

Subroutine JBES computes the double precision Bessel functions which are

needed for the above calculations. A description of this subroutine and a

program listing are given in Chapter 23 of Ref. (18).

Axial Integrals. The integrals of the products of three axial eigen-

functions (see Eqs. (C-5) through (C-8)) are computed by Subroutine AXIAL2

according to the input parameters NOPT and NCONJ. The three basic forms

are specified by NOPT as follows:

NOPT = i :

NOPT = 2 :

NOPT = 3 :

z

Z Z Z.dz

o PqJ

Z
e

• ZpZZjdz
O

z

Z Z Z.dz

o PqJ

When NCONJ = i these basic forms are calculated; these are the form_ appearing

in the expression for DI(J, p, q) (see Eq. (C-5)). For NCONJ = 2 the second

function in the integrand is replaced by its complex conjugate to obtain the
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integrals appearing in the expression for D2(j,p,q). The integrals appearing

in the expressions for D3(j,p,q) and D4(j,p,q) are obtained by setting

NCONJ = 3 and NCONJ = 4 respectively.

The basic forms are calculated from the following analytical formULas:

zr e -_ -,r _"_"( -"_ " _ Ze
Z Z Z.dz = q

J
P q J # _ i(bp, + + bj*)

O
bq

+

i(bp + bq - bj)

+

+

sinh[i(bp - b_ + b$)Ze]

i(bp. - b +q bj)

sinh[i(bp - bq - bj)*Ze] }

i(bp -b - *q bj)

(C-30)

z

,,e , • .Z Z Z.dz
o PqJ

z

oe " .
.dz

ZpZqZj

+

i sinh[i(bp + b + bj)Ze]
- -Kbb { cl

P q i(bp + bq + bj)*

-]si_h(b+b -b)ze
t.. P q j,,

i(bp + bq - bj)

sigh(b,,p -bq+bj)Ze]
+i(bp-bq bj)

si_h(b-b -b_.)zl
I.. p Q "x-'_ ej }

i(bp - bq - bj)

z

e *
= - b 2 _ Z Z Z dz

PJo PqJ

(C-31)

(C-32)
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The remaining forms are obtained from Eqs. (C-30) through (C-32) by replacing

the appropriate eigenvalues with their complex conjugates; thus, for NOPT = 2

bq is replaced by bq, for NOPT = 3 bp is replaced with bp, and both bp and

b are replaced by their conjugates for NOPT = 4.
q

FORTRAN listings for Subroutines AZI_L, RADIAL, and f_IAL2 az'e given at

the end of this appendix.

Coefficients for E_uivalent Real System.

Equations (12) are a system of complex differential equations to be

solved for the unknown complex amplitude functions, A(t). In order to solve

these equations numerically they must first be separated into their real and

imaginary parts. This is done by assuming that Ap(t) = Fp(t) + iGp(t), sub-

stituting into Eqs. (12), and separating real and imaginary parts to obtain

an equivalent system of real differential equations that describe the behavior

of the F's and G 's. Since these e_lations contain twice as many utG_nown
P P

functions (i.e., Fp(t) and O (t)) as Eqs. (12), it is convenient to re-indexP
the unknown functions and their coefficients as follows:

Fp(t) _ B2p_l(t)

(t) )Gp : B2p(t

(C- ]3)

Thus the B's with odd indices correspond to the real parts, F (t), :,o_dthe
P

B's with even indices corre_pond to the imaginary parts, Gp(t). Th<_ corre-

sponding set of differential[ equation_: is given by:

2N d 2B

dt 2
p.1

t _ dB

[ ]+ c1( .. ,t) + c:2(j,p) _ _.c3(a,_ ) _2dt +
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-}+ ydt p

p=l q=l

j = 1,2,3, ...2N (C-34)

! I I ! I

The real coefficients in Eqs. (C-34) (i.e., C0,Ci,C2,C3, and D ) are related

to the complex coefficients in Eqs. (12) (i.e., C0,...C3, D1,...D 4) as

follows:

I

Ck(2j-i , 21o-1) = Re [Ck(j,p) ]

!

Ck(2j-1 , 2p)

!

Ck(2J, 21o-1)

=-Im[Ck(J,p) ]

= Im [Ck(j,p) ]

(c-35)

I

Ck( 2j, 21o) = Re [Ck(j,p) ]

for k = 0,1,2,3, j = 1,2,...N, p = 1,2,...N and:

[ ]D (2j-l,2p-l,2q-l) = Re Dl(j,p,q) + D2(j,p,q) + D3(j,p,q) + D4(j,p, q)

!

D (2j-1,2p-1,2q)

I

D (2j-l, 2p,2q-1)

= Im [-Dl(j,p,q) + D2(j,p,q) - D3(j,p,q) + D4(j,p,q) ]

= Im [-Dl(j,p,q) - D2(j,p,q) + D3(j,p,q) + D4(j,P,q) ]

I

D (2j-l, 2p,2q) = Re [-Dl(j,p,q) + D2(j,p,q) + D3(J,p, q) - D4(j,p,q) ]

(c-36)
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D (2j,2p-l,2q-l) = Im Dl(j,p,q) + D2(j,p,q) + D3(j,p,q) + D4(j,P,q)

l

D (_j_2p-l,2q) = Re[D1(j,p,ql-D21j p,q +  31j,p,ql-D41j,p,q ]

I

D (2j,2p,2q-l)

l

D (2j _2p,2q)

for j : 1,2,...N, p = 1,2,...N, q : 1,2,...N. The linear coefficients

are stored in the arrays CI(NJ,NP) for k = 0 and C(KC,NJ,NP) for k = 1,2,3.

The nonlinear coefficients are stored in the array D(NJ,NP,NQ).

In general Eqs. (C-34) are coupled in the second derivatives; that is,

they are of the form:

2N d2B

{Co(J'P)--_dt 2 } = gj(BI,B2_'''B2N)

p=l

(C-37)

l

where there are two or more CO terms in each equation. This coupling results

from the non-orthogonality of the axial eigenfunctions. In order to numeri-

cally integrate Eqs. (C-34), they must be decoupled by transforming to the

form:

d2B.

___l=

dt 2
fj(BI,B2,...B2N)

in which only one second derivative appears in each equation.

(C-38), it is seen that Eq. (C-37) can be expressed as

(C-38)

Using Eq.

!

Col = g (C-39)

l

where CO is the 2N X 2N matrix of coefficients of the coupled system, f is
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the columnmatrix corresponding to the right-hand-side of the decoupled

system, and g is the columnmatrix corresponding to the right-hand-side of

the coupled system. To decouple Eqs. (C-37), therefore, Eq. (C-39) is solved

for f, thus:

f _-colg (c-4o)

Colwhere is the inverse of the matrix CO . Performing these operations and

equating the coefficients of like terms in f and Colg gives the following

relations:

2N
!

ci(j,p): Col(j'k)Ci(k'P)
k=l

2N

D(j,p,q) = _Col(j,klD'(k,p,q)

k=l

i = 1,2,3

(C-41)

N N

where C. and D are the corresponding coefficients of the decoupled system.
I

The matrix inverse, CO I, is computed by the subroutine GJR, which is a

standard Univac 1108 library program, and is stored in the array CI(NJ,NP).

A listing of GJR and instructions for its use are given in Ref. (19).

The calculation of Ci(j,p) and D(j,p,q), which are the coefficients for

the equivalent set of real, decoupled equations, is the final step in the

computations performed by COEFFS3D. The coefficients are stored in the arrays

C(KC,NJ,NP) and D(NJ,NP,NQ), replacing those computed from Eqs. (C-35) and

(C-36). The output of these coefficients is described below.

According to the value of the control number NOUT, the coefficients

calculated by Program COEFFS3D are printed, punched onto cards, or stored on

drum (FASTRAND). These three output modes will now be discussed indivi-

dually.

Printed Output. Since the printed output cannot be used as input to
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Program LCYC3D,the option "printed output only" (NOUT= O) is only used for

checkout purposes. Printed output can also be obtained in conjunction with

the drum storage mode(NOUT= i). Since the printed output format can only

accommodatefive series terms (complex), it should only be used for NJMAX_ 5.

The first page of printed o_tput gives a restatememt of the input para-

meters. This page is headedby the title of the case (TITLE) which is fol-

lowed by the ratio of specific heats (GAMMA),the steady state Machnumber

at the nozzle entrance (UE), the length-to-diameter ratio (L/D), and the

length of the combustion zone as a fraction of the chamber length (ZCOMB).

After statements concerning the presence or absence of the liquid droplet

momentumsource and the type of nozzle considered, a restatement of the input

parameters J, L(J), M(J), N(J), NS(J), and NAME(J)which describe the terms

in the series expansion of _ is given. This tabulation also includes addi-

tional parameters neededby ProgramLCYC3D: Smn, the dimensionless frequen-
cy of the mode(SMN); Jm(Smn),the associated value of the Bessel function
(JM(SMN)); the real part (EPS) and the imaginary part (ETA) of the axial

acoustic eigenvalue; and the real part (YR) and imaginary part (YI) of the
nozzle admittance.

The mext three pages give the decoupled linear coefficients, Cl(j,p) ,

C2(j,p) , and C3(j,p). These coefficients are presented in the matrix format
with the rows corresponding to the index j and the columns corresponding to

the imdex p. The remaining pages give the decoupled nonlinear coefficients

D(j_p,q) for each value of j. Here the rows correspond to the index p and

the columns correspond to the index q.

A sample printed output for the five term series used in the sample

input is given in Tables (C-2) through (C-4).

Drum Storage. When available drum storage, such as the FASTRAND system

used with the Univac !!08_ is the most conveniemt means of storing the out-

put of Program COEFFS3D. In the absence of such a system, the program can

be easily modified to store the coefficients on magnetic tape. In either

case magnetic tape can be used as a back-up file or for permanent storage

of the data. The control statements needed to execute these procedures

depend upon the computer facilities being used and cannot be described in

63



I-4
"4 ,,4 ,,,,4 "4 "_

t,4 "4 _ "4 "4

I

*-I

Z

Z
Z

Q_

-I

o.i

I!

:E
0
U
N

0
C
0
C'
Un

i!

_3

-I
r'_
W
I-
U
_J

0 -I
C_J

• bJ
Z

bJ
II U

LsJ
0

X

I--
o Z
_/ bJ

• 3.
0

_J
• C J

Q

>-

l--
_J

0 0 0 0 0

('%1 (%J I_ _ g_
_.. _t _ ,..4 ,-4 C'_

q_ 0 .-4 ,..4 ,._

-) ,"

Z
_,-

Z

J

-)

,<

• • _ _ •

0 _ 0 0

C_ C_ 0 0 0

6_



©

+_

I

0o _
o o o
o

o o o
o

o
o
o
o o

o

0

o
o

_ ° _ ° °0 0 C) 0 Q 0 0

o o o _ _ ° o _ ° o0 0 0 _ _ 0 0

• • " • • . O_ • •

o _ _ o o _ _ _ _ o

o° _ _
o

o _ _ ° o _ _ ° o_ o o o o

_ _ ° _ _ °

o

f_

0°

m c

.,J

65



0 _ _P o o o o o _ 0
I _ _ o o o o o _) o

o o s-s

(_ _ e-_ o o 0 O
O _ o o r-_ o o 0 O

I@

!

o
o
o

o
o

o

o
o
o
o
o

o
o
o
o
o
o

o
o
o
o
o
o

oo

o

o
o

c3
o
c_

o
o
o
o
o

c_

oo.

o

0

o
o

o
o

o
o
o
o

0

©
4_

u_

I

r-t

[-_

o _ o _ ° _ _ o_ _ _ °o _ _ o o o o°

,-e
I

o o _ _ _ ° o _ o°
0 0 _1 0 0 0 0 0 0

m

n_
0
L_

7

" ° g N _ g o g o_-- 0 0 0 -e

o

nn 0 C C eO r.- o

_. ," • ; •
bJ
i,.i

bJ I !
J

0

0
-4

o o _ o o o o _ _ °

,.e

66



this manual.

Card Output. When a drum or magnetic tape storage is not available,

punched card output can be used (NOUT = 3). This method becomes unwieldy,

however, when a large number of coefficients is involved since only one co-

efficient can be punched on a card. The format for both drum and card out-

put is the same and is given below:

Number

of Cards Location Type Output Item Cormments

i i-i0 F GAMMA

11-20 F UE

21-30 F ZE

31-40 F ZCOMB

Same as for input.

Same as for input.

Dimensionless chamber length,

(2L/D).

Same as for input.

NJMAX/2

NJMAX/2

41-45 I NDROPS

46-50 I NJMAX

1-5 i j

6-i0 I L(J)

ll-15 I M(J)

16-20 I N(J)

21-25 I NS(J)

26-35 F s(J)

36-45 F SJ(J)

46-50 A NAME(J)

1-5 I J

6-i5 F YR

16-25 F YI

26-35 F EPS

36-45 F ETA

Same as for input.

Number of unknown functions,

B (t) (see Eq. (C-34))
p

Same as input.

TT

Root of Bessel function, S
mn

Associated value of Bessel

function, Jm(Smn ) .

Same as input.

Same as input.

Real part of nozzle admit-

tance, Y .
r

Imaginary part of nozzle

admittance, Y..
i

Real part of axial eigen-

value, _.

Imaginary part of axial

eigenvalue, _.
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Number

of Cards Location Type Output Item Comments

I

KmX(1)

i

re&x(2)

1

K X(3)

i

I-5 i K X(1)'

1-5 I NJ

6-i0 I NP

i1-25 F C(I,NJ,NP)

1-5 I KMAX(2)

1-5 I NJ

6-10 I NP

11-25 F C(2,NJ, NP)

1-5 I KMAX(3)

1-5 I NJ

6-10 I NP

11-25 F C(3,NJ,NP)

1-5 I KMAX(4)

Number of nonzero linear

coefficients of type _l(j,p).

Index, j.

Index, p.

Linear coefficient,_l(j,p).

Number of nonzero linear

coefficients of type C2(j,p).

Index, j.

Index, p.

Linear coefficient, C2(j,p).

Number of nonzero linear

coefficients of type C3(j,p).

Index, j.

Index, p.

Linear coefficient, C3(j,p).

Number of nonzero nonlinear

coefficients.

m x(4) 1-5 I NJ Index, j.

6-10 I NP Index, p.

11-15 I NQ Index, q.

16-30 F D(NJ,NP,NQ) _onlinear coefficient,

D(j ,p,q).

The first card of output gives the chamber parameters 7, Ue' L/D, and

Zc/Ze; the droplet momentum source control number, NDROPS; and the number

of unknown real functions (i.e., Bp(t)), NJMAX. This is followed by

NJMAX/2 cards (the number of unknown complex functions, A (t)) describing
P

the terms included in the series expansion of _. The next NJMAX/2 cards

gives the complex nozzle admittance (Yr and Y.) and the corresponding com-
i

plex axial eigenvalue (¢ and _) for each complex series term. The linear

coefficients are given in three sets of cards. The first card in the set

gives the number of coefficients of the given type, while the remaining
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N

cards _ive the indices j and p and the coefficient Ci(j_p). The next card

gives the number' of nonlinear coefficients and is followed by cards giving

the indices j, p, q and the corresponding coefficient D(j_p_q). Both linear"

and nonlinear coeffieiemts are given in a field of ]5 spaces with six deci-

mal places. FoI' _GL = O omly the nonzero coefficients (absolute value

greater than 10 -5 ) are given, while for NEGL = i only linear coefficients

with absolute value greater than SMI and nonlinear coefficients with abso-

lute value greater tham SM2 are given.

A sample card output produced by the sample input of Table (C-I) is

given in Table (C-5) below.

Table C-5. Sample Card Output.

1. 20000 .20000 .1.. oo'ooo _1.. ooooo 0 .1.0

I lll lilt Io111I l_.!I II I_.1II I lit I I I_-i.i_[_-l_-l_-l_lI ] i i.l._l_'l_.l_lTlI_lot_-l_.ll
) $ _ IO I1 I_r lJ i,i t) 16 II II )_ ;to _1 _ ;r_ Zl 25 26 _., ]1 29 _o 3_ ,Iv )3 _ )5 _ 31 M _ i0 ,or ,i;* 4] a4 ,IS 48 4? M 4fl _ S1

fill JzJI I I IoII I I Ill I I I I_II I I Izli I kl. l_ki=l_l_iI I i I-ls[sI-tl_JTJI_IoI_I_I

l lll I_II I I lol I I I l_JI I I I_ I I I i_ i i !3l.lo_i*i_l+_I i ! I.I+I_!_!_ioli_loi_l_l,
3 j_ _ 7 TO II It 13 la I$ 16 I_ 1i 19 _0 _1 _2 7) _4 _S 26 _t 28 _'q 30 31 3.! 33 34 3S 36 3_ 34q 3_ 40 41 12 43 ad 45 _i4 ,l? M 4q_ _0 $|till l lllolllll_lllll_lllll_lll i_l.loi_lsl_l÷!I LI l.l÷l_l_l_lolI_Io121_I
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FORTRAN Listing.

C
C

C
C
C
C

C
C

C
C
C

C
C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C

C
C
C
C

C
C

C
C
C
C

C
C
C
C

C
C
C

THIS PROGRAM COMPUTES THE COEFFICIENTS WHICH APPEAR

IN THE DIFFERENTIAL EQUATIONS WHICH GO_JEF_ THE MODE-AMPLITUDE

FUNCTIONS. THESE COEFFICIENTS ARE STORED ON DR_ OR

PUNCHED ONTO CARDS FOR INPUT INTO PROGR_ LCYC3D.

THE FOLLOWING INPUTS ARE REQUIRED"

THE TITL,_ OF THE CASE.

GAMMA IS THE SPECIFIC HEAT RATIO.
UE IS THE STEADY STATE MACH NUMBER AT THE NOZZLE ENTRANCE.

RLD IS THE LENGTH-T0-DIAMETER RATIO.

ZCOMB IS THE LENGTH OF THE REGION OF I_IFOI_LY DISTRIBUTED

COMBUSTION, EXPRESSED AS A FRACTION OF THE CHAMBER L_IWGTH.

NDROPS DETEP_INES THE PRESENCE OF DROPLET MOMENTUM SOURCESs

NDROPS -- 0 DROPLET MOMENTUM SOURCE NEGLECTED.

NDROPS © I DROPLET MOMENTUM SOURCE INCLUDED.
NOZZLE SPECIFIES THE TYPE OF NOZZLE USEDS

NOZZLE = O QUASI-STEADY.

NOZZLE = I CONVENTIONAL NOZZLE.

FOR CONVENTIONAL NOZZLE"

AMPL IS THE NOZZLE _%MPLITUDE RATIO.

PHASE IS THE NOZZLE PHASE SHIFT.

NOHAX IS THE NUMBER OF MODE-AMPLITUDE FUNCTIONS IN THE ASSUMED

SERIES SOLUTION. NUMAX MUST NOT EXCEED I0o

THE COEFFICIENTS COMPUTED ARE DETEY_,II_ED BY NONLIN AS FOLLOWS."

NONLIN = 0 LINEAR COEFFICIENTS OKLY,

NONLIN -- I BOTH LINEAR AND NONLINEAR COEFFICIENTS.

COEFFICIENTS TO BE NEGLECTED ARE DETEP_INED BY NEGL

AS FOLLOW Sz

NEGL = 0 TEBMS SMALLE_ THAN 0-00001 ARE NEGLECTED.

NEGL v I LINEAR TE_HS _4ALLER THAN SMl AND NONLINEAR

TERMS SMALLER THAN _/q2 ARE NEGLECTED.
THE OUTPUT IS DETERMINED BY NOUT AS FOLLOWS:

NOUT = 0 PRINTED OUTPUT ONLY.

NOUT R I PRINTED AND STORED ON DRUM (FASTRAND FILE),

NOUT = 2 FASTRAND FILE ONLY.

NOUT _ 3 CARD OUTPUT ONLY.

EACH MODE-AMPLITUDE IS ASSIGNED AN INTEGER J.

THE MODE IS SPECIFIED BY THE INDICES L(,J), M(J)* AND N(,J),

L(,J) IS THE AXIAL MODE NUMBER AND MUST NOT EXCEED IO-

M(J) IS THE AZIMUTHAL MODE NIIdBER AND MUST NOT EXCEED 8-

N(J) IS THE RADIAL MODE NUMBER AND MUST NOT EXCEED So

THE INTEGER NS(J) IS ASSIGNED AS FOLLOWS"

NS m 1 A-FUNCTION SIN(M*THETA) * COSH(I*BtZ)

NS " 2 B-FUNCTION COS(M*THETA) * COSH(I*B*Z)

NAME(J} IS A FOUR-CHARACTER NAME.
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C

C

C

C
C

DINENSION L(10)* N(10)* N_E(10)* S(IO)* S_J(lO)* TITLE(80)_

1 RJR00T(10*5)* R.JVAL(10, 5), C1(20*20)* C(3,20*20)*

2 D( 20* 20, 20 )* AHPL(10)* PHASE(10)* AZI(2)*
3 BE51(9,9.9)* BE52(9*9.9)* BE53(9.919)*

4 V(2)* ,.JC(20)* T5(3.',20)* TSQ(20). Kt'}._uX(4)

CONPLI'_ CRSLT* CI* ZF_,,.I. ZEFI* ZEP2* CZE* CAZ. CtLAD*
1 Gl* DCOEF* CGAH* CA;(* B(IO)* BC(IO)* YNOZ(IO)*
¢> CN0_(10)* CSSg(10)* T_NINT(2)* FU_DINT(3)*
3 #_.XINT(4*3)* CC(4.10*10), CDI(10* I0. I0)*

4 CD2(IO*IO*IO)* =euX(4). Tie T2* DI* D2* D3* D4_
5 CD3¢I0.10.10)* CD4(IO*IO*IO)

COM_0N B /BI..K2/ tic 10), N5(10)

DATA INPUT.

PI " 3.1415927
51'I1 " 0o00001

5)12 = 0-00001
CI == (0"0.1"0)

INPUT ROOTS AND VALUES OF BESSEL FUNCTIONS*

DATA ((R.JR00TCI,d), d = 1.5)* I = 1,9)/
1 3.83171* 7.01559* I0.17347. 13-32369, 16-47063,

2 1.84118, 5.33144, 8-53632, 11.70600. 14-86359,
3 3-05424* 6.70613. 9*96947* 13-17037, 16.34752,
4 4.20119_ 8.01524, 11.34592_. 14-58585, 17.78875,
5 5.31755. 9-28240* 12.68191. 15-96411, 19-19603,
6 6-4156:_* 10.51986, 13-98719. 17.31284, 20.57551,

7 7-50127, II-73494, 15-26818, 18-63744. _-1-93172,

8 8-57784, 12.93239, 16-52937. 19-94185. 23-26805,

9 9-64742, 14*11552, 17-77401, 21.22906, 24.587201
DATA ((RJUAL(I*J)* J = 1,5)* I " 1.9)/

1 -0.40276, 0.30012, -0.24970, 0-21836. -0-19647,

2 0°58187* "0-34613_ 0-27330_ -0-23330* 0-20701*
3 0.48650* -0*31353, 0-25474, "0.22088, 0-19794,
4 0-43439, "0.29116, 0-24074* -0-21097. 0-19042,

5 0*39965* -0.27438. 0.22959. -0-20276. 0.18403,
6 0-37409. -D.26109. 0*22039* -0-19580, 0.17849,
7 0-35414* -0.25017, 0-21261* -0-18978. 0-17363,
8 0-33793. -0.24096* 0.20588, -0-18449. 0.16929,
9 0-32438* -0.23303, 0"19998. -0"17979J, 0-16539/

INPUT PAR/_ETERS.

4 READ (5*5000* END • 600) (TITLE(I)* I = 1, 72)
READ (5.5001) GP-"_IMA* UE* RLD* ZCOMB* NDROPS. NOZZLE
IF (G.qI_;HA) 600, 600* 8

8 READ (5*5004) N_'0AX* NONLIN* N._-.GI..* NOUT
IF (NEGL -EQ* 1) READ (5*5005) 5_11. 5N2
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C

C

¢

C

¢
C

C
C
C

C
C

C

IF (NOZZLE oEQ_ 1) GO TO 5
COMPUTE ADMITTANCE FOR QUASI-STEADY NOZZLE.

Y = (GP_MA - 1.0) * UE/(2.O * G_MA)
DO 3 O = I,, N,._P_X

P_PL(d) = Y
PHASE(d) = 0.0

3 CONTINUE
GO TO */

5 DO 6 I = 1, NJMAX
READ (5,5003) O, AMPLfd), PHASE(d)

6 CONTINUE

7 DO 10 I = 1. NJMAX

READ (5a5002) d, L(O)a M(O), N(d)a NS(d), NP.ME(d)

10 CONTINUE

DO 12 O = I, N,._P.X

THETA " PHASE(d) * PI/180.0
YR = PbIPL(O) * COS(THETA)

YI = _PL(O) * SIN(THETA)
YNOZ(O) ffi C_PLX(YR, YI)

12 CONTINUE

ZE = 2-0 * F,LD
CZE = CMPLX(ZE_O.0)
CG_:_i = CMPL.X(GP/_IMAaO-0)

CAX = CGAH
IF (NDROPS .EQ. I) CAX = CGAM + (I-0,0-0)

ASSIGN ARRAYS FOR ROOTS OF BESSEL FUNCTIONS.

DO 20 d = IJ NJMAX

IF ((M(O) .EQ- O) .AND. (N(O) -EQ- 0)) GO TO 15
MM = M(O) + I
NN = N(J)

S(d) = RdROOT(MM,NN)

SO(d) = RJVAL(MMaNN)

GO TO 25

15 S(d) = 0.0

SO(d) ffi 1*0
25 SSQ = S(d) * S(d)

CSSQ(J) = CMPLX(SSQ*O.O)

20 CONTINUE

CALCULATE AXIAL ACOUSTIC EIGENVALUES.

FIND MAXIMtI_ _M-.UES OF L(d), M(O), AND N(d).

KN = 0
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C
C
C
C
C

C
C

C
C

C
C

LMAX = 0

l_f_X =' 0
NMAX " 0
DO 30 O = l* N,JMI_X
IF (LCO) -GT- LMAX)
IF (M(O) *GT- MM.,e_)
IF (NCd) ,GT, t_._X)
IF (N(O) ,NE. N(I))

30 CONTINUE
LM_ = LM_X + 1
_AX = MM_ + 1

LI_AX = L(O)
MMAX = M(0)
NlCAX = N(O)
KN= 1

COMPUTE EI GENVALUES-
DO 40 d = I. NONAX
LL = L(J)
S_N = S(..I)
yNvlpt. = ALv_p].,(,J)
YPHASE = PHASE(J)
CALL El GVAL(LL_ 5EN_ G_HI_A;ZEaY_PLtYPNASE_ CRSLT)
B(O) = CRSLT
BC(O) = CONOG(CRSLT)

40 CONTINUE

CALCULATE LINEAR COEFFICII_TS°

DO 100 NO = I* NJMAX
DO I00 NP = I* No'MAX

ZERO COEFFICI ENT ARRAYS-
DO 105 HC = 1_ 4
CC(KC*NO*NP) = (0,0.0*0)

105 CONTINUE

0RTHOGONALITY PROPERTY OF TANGENTIAL EIG_NFUNCTIONS-
IF ( NS(NP) .NE. NS(NO) ) GO TO IO0
IF (M(NP) *NE* M(NJ)) GO TO 100
IF (M(NO) *E@-.O) GO TO 112
_% = PI

GO TO 120
I12 IF (NS(NO) .EQ. I) GO TO I00

b.Z = 2-0 * PI

0RTHOGONALITY PROPERTY OF RADIAL EIGENFUNCTIONS.
120 IF (N(NP) .NE. N(NJ)) G0 TO 100

IF (SCNP)) 125. 122, 125
125 S0M = H(NJ) t M(NO)

SSQ = S(NP) $ S(NP)
SOS@ = SO(NO) $ SO(NO)
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C

C

C

C
C

C
C

C
C
C

C
C

C
C
C

RAD = (SSQ- SON) _, SOSQ/(2.O _,.SSQ)
GO TO 127

122 RAD = 0.5

CALCULATE AXIAL INTEGRALS*
127 DO 130 NOPT = 1, 4

CALL AXIAL I (NOPT, NPJNO, UEJ ZE*ZCOHBJ CRSLT)

AX(NOPT) = CRSLT
130 CONTINUE

EVALUATE FUNCTIONS AT NOZZLE END.
ZEJ = CCOSH(CI*BC(NJ)VCZE)
ZEPI = CC0$H(CI_B(NP)*CZE)

ZEP@-= CI * B(NP) • CSINR(CI_B(NP)_CZE)

C_Z = CHPLX(#_Z,O°0)

CRAD = C_PLX(RAD, O.O)

COEFFICIENT OF THE SECOND DERIVATIVE OF A(P).

CC(I,NO,NP) ffi AX(1) * CAZ * CRAD

COEFFICIENT OF A(P).

CC(2,NJaNP} = (CSSQ(NP)*AX(1) - AX(2) + Z-EP2*ZEO) * CAZ. * CRAD

COEFFICIENT OF THE FIRST DERIVATIVE OF A(P)°

CC(3,NJ, NP) = (CAX*AX(3)÷ (£*0,0°0)*AX(4)
I + CGA/_*YNOZ(NP)_ZEPI_ZEO) • CAZ * GRAD

COEFFICIENT OF THE RETARDED DERIVATIVE OF A(P)=

CC(4,NO, NP) = CGAI_ • AX(3) • CAZ • CRAD

IO0 CONTINUE

NOI_ALIZE LINEAR COEFFICIENTS.

DO 140 NO = I, NJI_AX

CNOI_I(NJ) = CC(I,NJJNJ)

DO 140 NP = 'I, NJHAX

DO 140 KC = 1, 4

CC(HCaNj,NP) = CC(HC*NJ*NP)ZCNORM(NJ)
140 CONTINUE

COHPUTE NONLINEAR COEFFICIENTS.

IF (NONLIN ,EQ* 0) G0 TO 402
61 = (CGPJM - (1°0,0o0)) * (0*5,0°0)

CONPUTATIONS OF BESSEL INTEGRALS WHEN ALL SERIES TEI_1S HAVE THE

SANE RADIAL NODE NLHBER N(U).
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C

C

C

C

IF (KN ,EGo 1) GO TO 170
DO 150 MP • 1. MMAX

DO 150 MO ,, l. MMA,X
DO 150 Md " 1. MMP.X
BESI(MP,MQ*Md) " 0o0
BESR(MPaMQ*MJ) " 0"0

BES3(MP,MQ*MJ) " 0"0
LI " MP- |

L2 " MQ - 1

L3 " MJ - 1
LM - L1 + L2
LN ,, L1 ÷ L3

MN ,, L2 + L3
IF ((L3*EQ*LM) *0R* (L2.EQ.LN) *0R. (LI-EQ.MN))
GO TO 150

160 IF (NMAX *EG* O) GO TO 165

AI " RJR00T(MP_NM_)
A2 - RJR00T(MQ*NMAM)
A3 " B, JH00TCMJ, NMAX)
GO TO 167

165 Pl " 0"0
A2 " 0,0
A3 " 0"0

167 CALL RADIAL(I_LI*L2*L3*AI*A2*A3aRESULT)
BE$1(MF*M_*MJ) " RESULT

CALL RADIAL(2*L I*L2,L3*AI*A2*A3*RESULT)
BES2(MP*MQ,MJ) " RESUL'_

CALL RADIAL(3*LI*Le.L3*AI.Ae*A3*REStLT)
BES3(NP*NQ,Nj) - RESULT

150 CONTINUE

170 DO 200 NJ " 1. N,JMAX
DO 200 NP = 1. N,JMAX

DO 200 NQ " 1. NJMAX

CDI(N,J*NP*NQ) " (0-0.0-0)
CD2(NJ*NPaNQ) ffi (0.0.0-0)

DO 210 d " 1. 2

CALL AZIKTL(,J. NP. NQ. NJ. RESULT)
AZI(,J) = RESULT

TANINT(d) ,I CMPLX(RESULT*0*0)
210 CONTINUE

IF (P_.I(I)) 220, 225* 220

225 IF (P_I(2)) 220, 200, 220

220 IF (KN -EQ. O)

LI ffiM(NP)

L2 - M(NQ)

GO TO 222

GO TO 160
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C

C

C
C

C
C
C

C

C

L3 = M(NJ)

A! = S(NP)
A2 " S(NQ)

A3 " S(NJ)
GO TO 244

_-22 MP ,, M(NP) + I

MQ = M(NQ) + I

MO " M(NJ) + I

RADINT(1) = CMPLX(BESI(MP, MQ,MO),0.O)

RADINT(2) = CMFLX(BES2(MP*MQ,MJ)*0-0)

RADINT(3) = CMPLX(BES3(MP*MQ*MJ)*0.0)

244 DO 240 ,J = I* 3

IF (KN -EQ- 0) GO TO 2/42
CALL RADIAL (O,LI,L2,L3, AI,A2*A3, BESLE.T)
RADINT(J) = CMPLX(RESULT, 0.0)

242 DO eao NC = 1,4

CALL A,XIALE(O*NC*NP, NQ*NJ*ZE* CRSLT)
AXINT(NC*O) = CRSLT

240 CONTINUE

DO 250 O " 1.4

TI " 61 * CSSQ(NF) * AXINT(J,I)
T2 = Gl * A,XINT(J, 3)
DI " A_INT(J,I) * TANINT(1) * I_DINT(3)

D2 "= AXINT(O,I) * T;_NINT(2) * RADINT(2)

D3 ,, AMINT(O, 2) * TANINT(1) * I_DINT(I)
D4 = (T2 - TI) * T;%NINT(1) * RADINT(1)

DCOEF ,= (0-5.0o0) * (DI + D2 + D3 + D4)/CNOBM(NJ)
IF (O -EQ. I) CDI(NO, NP, NQ) = (I-0,-I-0) * DCOEF

IF (O -EQ. 2) CD2(NO,NP, NQ) = (1-0,1-0) * DCOEF

IF (J oEQo 3) CD3(NJ*NP*NQ) = (1°0.1,0) * DCOEF

IF (0 -EQ° 4) CDO(NO*NP*NQ) 'ffi (I°0,'I°0) * DCOEF

250 CONTINUE

200 CONTINUE

CALCULATE COEFFICIENTS FOR EQUIVALENT REAL SYSTBV/,

402 DO 350 NO = 1. NJMAX
NEWO = (2 * NO) - I

NEWJI = NEWO + I

DO 350 NP = 1. NOMAX
NEWP = (2 * NP) - 1

NEWPI = NEWP + 1

COEFFICIENTS OF LINEAR TERMS.
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C
C

CCR • REAL(CC(I_,NJ*NP))
CCI " AIH_G(CC(I.Nd*NP))

CI(NEt_J*NEWP) " CCR
CI(NEtJJaNE_PI) =-CCI
CI(NE_JI_,NEWP) - CCI

CI(NEW,JIIN£_PI) • CCR
DO 360 KC = 1.3
CCR = REAL(CC(KC+IsN,JaNP))
CCI =' AII_PG(CC(KC+I*NJINP))
C(KC_NE_tdaNEWP) " CCR

C(KC,PNE_dJNE_Pt) = -CCI
C(KCaNE_,JIaNEWP) = CCI
C(KC*NEW,JI*NE_PI) = CCR

360 CONTINUE

COEFFICIENTS OF NONLINEAR TEI:_S.
IF (NONLIN *EQ- 0) GO TO 350

IX) 3?0 N@ - 1-* N,JHAX
NE_Q = (2 =_ NQ) - I
NE_/QI = NEWQ + 1
CDIR = REAL(CDI(N,J*NP_,NQ))

CDII = AIHAG(CDI(N,J. NP.NQ))
CD2R = REAL(CD2(NO*NP.NQ))

CD_-I " AIMAG(CD2(Nd*NP*NQ))
CD3R = REAL(CD3(Nd*NPaNg))
CD3I = AINAG(CD3(NJ*NP*N@))
CDZaR = REP.L(CDZa(NJ.NP.NQ)_
CD41 = AIMAG(CD4(NUJNP*NQ))

D(NE_J*NE_P*NE_Q) = CDIR + CD2R + CD3R ÷ CD4R
D(NEWO*NE_P*NEWQI) • -CDII + CD2I - CD31 + CD41
D(NEW,J*NEWPI,NE_Q) " -CDII - CD2I + CD3I ÷ CD4I

D(NEWd*NEWPIJ, NE_/QI) = -CDIR ÷ CD2R ÷ CD3R- CD4R
D(NEW,JI*NEWPJ, NE_Q) • CDII + CD2I + CD3I + CD'qI
D(NEI_,JI*NE_PaNEW@I) -- CDIR- CD2R ÷ CD3R- CD4R

D(NE_,JI_,NE_PIsNE_Q) = CDIR + CD2R- CD3R- CDZaR
D(NE_JI.NEWPI_NE_@I) • -CDII + CD21 v CD3I - CD41

370 CONTINUE

350 CONTINUE

COI_PUTE COEFFICIENTS FOR THE EQUATIONS _HICH ARE DECOUPLED
IN THE SECOND DERIVATIVESo

DO 405 KC • 1_ 4
KHAX(KC) • 0

405 CONTINUE

CALCULATE INVERSE OF THE NATRIX Cl(I.d)o
0HAX = NONAX

78



C

C

C

C
C

C
C

C

C

C

C
C
C

C
C

NJMAX .= 2 i. NJHAX

V(l) = l
CALL GJR( CI, 20, 20,NJMAX,'0_. $ .500, JC, V)

USE INVERSE TO CALC_ATE DECOUPLED COEFFICIENTS°

DO 410 NP -- I. N_AX

LINEAR COEFFICIENTS.
DO 420 NO = 1, NOHAX

DO 420 KC = 1, 3
T$(KC,NO) = 0o0
DO 420 H = la NOHAX

TS(KC*N.J) == TS(KC, N.J) ÷ CI(N0,K) • C(KC,KaNP)

420 CONTINUE
IX) 430 NO = 1. NOHAX

DO 430 HC = 1. 3
C(KC*NO,NP) = T$(HC*NO)

AB$VAL == ABS(C(KC*NO*NP))

IF (ABSV.4L *GE- SHI) KHAX(KC) = KMAX(KC) + !

430 CONTINUE

NONLINEAR COEFFICI E.NTS*

IF (NONLIN -EQ* 0") GO TO 410
DO 415 NQ = I* N_I'A,X

DO 440 NO = l. NOMAX
TSQ(NO) = 0-0
DO 440 K == 1* N_"JAX
TSQ(N0) = TSQ(N0) + CI(N0aH) • D(K*NPaNQ)

440 CONTINUE

DO 445 NO = 1. Nu'HAX
D(NJ*NP*NQ) == TSQ(N0)
ABSVAL = ABS(D(NO*NP*NQ))
IF (ABSV-_...GE, S/dE) KMAX(4) -I_AX(4) + 1

445 CONTINUE
415 CONTINUE

410 CONTINUE

OUTPUT.

IF (NOUT .GE. 2) GO TO 455

PRINTED OUTPUT,
VRITE (6.6001) (TITLE(I). I = 1. 72)
WRITE (6*6002) GAHMA* UE* RLD* ZCOMB

IF (NDROPS -EO* O) WRITE (6.6020)
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IF (NDR0P5 *EQ* |) WRITE (6*6021)

IF (NOZZLE *EQ* 0) WRITE (6*6012)

WRITE (6_ 6004)

DO 310 O = I* OMA,X

WRITE (6*6003) NAI_E(J)* O* L(O)* M(O)* N(O)* NS(d)s

I S(O)_ SO(J)* B(J). YNOZ(O)

310 CONTINUE

IF (NONLIN *EQo 0) WRITE (6.6013)

OUTPUT OF LINEAR COEFFICIENTS*
DO 320 KC = 1* 3

IF (KC *EQ* 1) WRITE (6*6005)
IF (KC *EQ* 2) WRITE (6*6006)

IF (KC *EQ* 3) WRITE (6*6007)
WRITE (616008) (Oa O = I* NOt'lAX)

WRITE (6J, 6014)

DO 320 NO = I* NON_X

I#RITE (6*6009) NO* (C(KC_NJaNP)* NP = I_ NONAX)
320 CONTINUE

OUTPUT OF NONLINEAR COEFFICIENTS*
IF (NONLIN -EQ- 0) 60 TO 450-
DO 400 NO = I* N_IA,X

WRITE (6*6010) NO

WRITE (6.6011) (O* O = I* NOHAX)
WRITE (6*6015)

DO 400 NP = I* NOMAX

WRITE (6*6009) NP_ (D(NO*NP, NQ)* NQ = 1_ NONAX)
400 CONTINUE
452 IF (NOUT .E@. 0) GO TO 4

455 IF (NOUT oE@. 3) GO TO 480

WRITE COEFFICIENTS ON FASTRAND FILE.

WRITE (9,7001) G_b1MA, UE, ZE, ZCONB, NDROPS, NONAX

IX) 450 d = 1, OHM

WRITE (9,7002) O, LCO)* H(J)* N(J)* NSCO)* S(O)* SO(O),
I NANE(J)

450 CONTINUE

IX) 457 O = 1, JMAX
WRITE (9*7006) J* YNOZ(J)* BOO)

457 CONTINUE

IX) 460 KC = 1. 3
WRITE (9*7003) HHAX(KC)
IX) 460 NO = 1, NOHAX
IX) 460 NP • I* NJMJ_X
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C

C

C

ABSVAL == ABS(C(KC*NJ*NP))
IF (ABSVAL oGEo 5MI) WRITE (9*7004}

460 CONTINUE
N,JJ NP* C(KC*NJ*NP)

WRITE (9,7003) KMAX(4)

IF (NONLIN -EQ- 0) 60 TO 4
DO 470 NJ = I* NdMAX

DO 470 NP = 1. NOMAX
DO 470 NQ = I* NdMAX

ABSVAL = ABS(D(NO*NP*NQ))

IF (ABSUAL *GE* SM2) WRITE (9.7005) NO* NP* NQ* D(NO*NP*NQ)

470 CONTINUE
GO TO 4

PUNCHED CARD OUTPUT*

480 PUNCH 7001 GAMMA, UE, ZE, ZCOMB, NDROPS, NOHAX

DO 482 d = I* OMAX
PUNCH 7002 ,J, LCO), M(O), N(O), NS(O); S(,.1)_ S.J(O)J

1 NAME(d)

48S CONTINUE

DO 464 J = 1, JMAX

PUNCH 7006 d. YNOZ(O). B(d)
464 CONTINUE

DO 466 KC = 1. 3
PUNCH 7003 KMtOuX(KC)

DO 466 NJ = 1, NOMAX
DO 486 NP = 1. NOMAX
ABSVAL = ABS(C(KC,NO,NP) )

IF (ABSV*%I. *GE* SMI) PUNCH 7004
486 CONTINUE

NO, NP. C(KC, NO,NP)

PUNCH 7003 KMAX(4)
IF (NONLIN .EQ. O) 60 TO 4

DO 468 NO = '1, NOMAX
DO 488 NP " 1. N,JMAX

DO 468 NQ " I, NOMAX

ABSVAL = ABS(D(NO*NP*NQ))

IF (ABSVAL *GEo SM2) PUNCH 7005 NO* NP, NQ, DCNJ, NP, NQ)
48,8 CONTINUE

60 TO 4

ERROR EMIT
500 IF (OC(l)) 510, 510, 520

510 JC(I) = AB5(OC(I))
%;RITE (6,6017) de(1)
60 TO 4
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520 WRITE (6,6018) JC(I)

GO TO 4
600 CONTINUE

FOP.NAT SPECI FI CATIONS*
5000 FOI_AT (72A1)

5001 FOI_AT (4F10.0,215)
5002 FORMAT (515,11,A4)
5003 FO_AT (I5,2F10-0)
5004 FOP-MAT (415)

5005 FORMAT (2FI0.0)
6001 F01:_AT (IHI, IX,72AI//)

6002 FORMAT (2X,8HGAMMA = ,FS.2, LX, LHUE = ,F5*2,5_,6HL/D = mF6*5,
1 5X, SHZCOMB = *F5.2/)

6003 FORMAT (2X*A4* 51 5,6F10° 5/)

6004 FORMAT (2X////2X*29RNAME J L M N NS*TX*3HSMN*_X*
1 7HJM(.F_N) _, 71* 3HEPS* 7X* 3HETA* 8M* 2HYR* 81* 2HY|//)

6005 FOF_AT (tHi*45H DECOUPLED COEFFICI_T OF B(P)t C(I*J*P)///)

6006 FORMAT (IHI*44H DECOUPLED COEFFICIENT OF THE DERIVATIVE OF*
1 6H B(P)I,LX,6HC(2,J,P)///)

6007 FORMAT (IHI, 39H DECOUPLED COEFFICIENT OF THE RETARDED,
1 20R DERIVATIVE OF B(P)=,LX, SHC(3,.J,P)///)

6008 FOI:_1AT (71* IH1_,18,9I IR)
6009 FOFLMAT (_X//21*13*31*10F12*6)

6010 FOF_AT (1HI*Z_2H DECOUPLED COEFFICIENT OF B(P) '_ DB(Q)/DT*
1 19H IN EQUAT10N FOR B(*12*IH)///)

6011 FORMAT (71*1H0*I8*9112)

6012 FORMAT (2X, 19HQUASI-STEADY NOZZLE/)

6013 F0_AT (2X//2_*_41"ILINEAR COEFFICIENTS ONLY)
6014 FORMAT (4X, IHO)

6015 FORMAT (4X. IHF)

6017 FORMAT (IHI*31H OVERFLOW DETECTED* LAST ROW = *I5)

6018 FORMAT (IHl*34H SINGULARITY DETECTED* LAST RON == *I5)
6020 FORMAT (2X*'DROPLET MOMENTUM SOURCE NEGLECTED'/)

609-I FORMAT (2X*'DROPLET MOMENTDM SOURCE INCLUDED'J)

7001 FORMAT (4F10.5,215)
700_ FORMAT (5IL, 2F10-5*IXaA4)
7003 FORMAT (I5)
7004 FORMAT (215_F15.6)
7005 FORMAT (315,F15.6)

7006 F0_AT (15,4FI0.5)

END
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C

C

C

C

C

C

C
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C

C

¢
C

¢

¢

¢

¢
C

SUBR0 UTI NE EI G VPl. (L, 5F_B GAMMA, Z Es YAM PL, YPHA SE, RESTS. T)

COMPLEX RESULT
COMMON /BL_IJ GSQ* ABSQ, ALBET, SMNSQ

THIS SUBROUTINE COMPUTES THE COMPLEX AXIAL ACOUSTIC EIGENV_LUES
FOR A CYLINDRICAL CHAMBER WITH A NOZZLE _D STORES THEM IN
RESULT.

THE EIGENUP/_UE5 ARE COMPUTED BY ME_5 OF NEWTONS METHOD.

THE INPUT PAP_ETER5 ARE AS FOLLOWS_

L IS THE _XI'AL MODE Nt_BER.

5MN IS THE DIHENSIONLESS ACOUSTIC FREQUENCY.

G_MA IS THE SPECIFIC HEAT P_TIO.

ZE IS THE LENGTH-T0-RADIUS RATIO.

YAMPL 15 THE NOZZLE AMPLITUDE FACTOR,

YPHASE IS THE NOZZLE PHASE SHIFT IN DEGREES.

PI = 3.14159_7

ERR = 0°0000001

IF (YP_PL) 5* 60* 5
CPI.CULATE CONST_TS*

5 PHASE = YPHASE * PIll80*0
ALPHA = YAMPL * COS(PHASE)

BETA = YAMPL * SIN(PHASE)
GSO = GAMMA • GAMMA
P_S@ = (ALPHA * ALPHA) - (BETA * BETA)

PJ_BET .. ALPHA • BETA
5MNSQ = 5HN * 5MN

ASSIGN INITIal1. GUESS FOR EIGENUALUE.

IF (L .EQ. O) 60 TO 45

RL=L

PHI = PI/_*O ÷ PHASE

XM = _ * PI/ZE.
A = YAMPL/ZE

X0 = XM + A*COS(PHI)

YO = A$SIN(PHI )

GO TO 47

• 5 PHI = PIlZ_.0 + 0*5*PHASE

A = YAMPL W, 10*01ZE

X0 = A * COS(PHI)

YO = A • SIN(PHI)

ITERATION USING NEWTONS METHOD FOR A SYSTEM OF TWO EOUATIONS
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C
C

IN T'WO UNMNOWNS.
471.1 " 0

X=XO

Y = YO

40 C._M,,.L FCNS(X-Y., ZE,* F. G. FX. F'Y. GX,. GY)
IF (LI ,EQ. 40) GO TO 50
R.JFG = (FX * GY) - (GX • FY)

IF (RJFG) 20# 30, 20
oO DELTAX = (-F * GY ÷ G _t FY)/RJFG

DELTAY == (-G '(' FX 4- F $ GX)/R.JFG

LI == L| + |
X = X + DELTAX
Y • Y + DEI, TAY

TEST FOR CONVERGENCE.
IF (ABS(DELTAX) .6E. ERR .0R- ABS(DELTAY) .GE. ERR)

60 TO 10
60 TO 40

WARNING MESS_GE5

30 WRITE (6s6005)
60 TO 10

50 WRITE (6,6006)
GO TO lO

CASE OF HARD WALL (YAMPL = 0)*

60RL • L

X m RL * PI/ZE

Y • 0*0

l0 RESULT • CMPLX(X,Y)

C

C FORMAT 5PECIFI CATIONS.

6005 FORMAT (2.XIIPX, 16HOACOBIAN IS ZERO/l)

6006 FORMAT (P.X//2X, 35HFAILED TO CONVERGE IN 40 ITERATIONSI/)
RETURN

END
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C

C
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C
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SUBROUTINE FCNS(X*Y_ ZEJ F_ G* FXI FY* GXa GY)

THIS SUBROUTINE COMPUTES THE FUNCTIONS F(X#Y) AND G(X.Y)

AND THEIR PARTIAL DERIVATIVES NITH RESPECT TO X AND Yo

COHMON /ELKI/ GSQi ABSQJ ALBET* SHNSQ

COMPUTE THE TRIGONOHETRIC FUNCTIONS_ THE HYPERBOLIC FUNCTIONS

_uND THEIR SQUARES.

I = 1
ARGX = Z E * X
ARGY = Z E * Y

10 SX = SIN(ARGX)
CX = COS(ARGX)
SHY = SINH(AROY)

CRY == COSH(ARGY)

IF (I -EQ- 2) GO TO 20

SXSQ = .%X, SX

CXSO = CX * CX

SHYS@ = SHY * SHY
CHYS@ = CHY * CHY
ARGX = 2.0 * ARGX

ARGY = 2.0 * ARGY
I -" 2
G0 TO tO

COMPUTE TRANSCENDENTAL FUNCTIONS AND THEIR DERIVATIVES

20 FF = (SXSO * CHYSQ) - (CXSQ * SHYSO}

GG = (CXSQ * CHYSQ) - (SXSQ # SHYSQ}
HH = 0-25 * SX • SHY
FFX = Z E * SX * CHY
GGY = ZE $ CX * SHY

FFY = -GGY
GGX = -FFX
HHX = 0.5 * GGY

HHY = 0.5 _ FFX

COMPUTE FACTORS

X'YSQ = (X * X) - (Y * Y)

XY =X*Y
SHNXY = SPINSQ + XYSO

FI = (ABSQ * SHNXY) - (4-0 * ALBET • XY)

F2 = (ALBET * S/dNXY) + (&BS@ • XY)

GI =, (ABS@ * S/qNXY) + (4-0 • ALBET • XY)

FXI - (2-0 * X • ABSO) - (4.0 * ALBET * Y)
FX2 - (2.0 _' X * ALBET) + (ABSO * Y)

FYI = (-2.0 * Y i A_3SQ) - (4-0 * ALBET • X)

F'Y'2 = (-2.0 * Y * ALBET) + (ABSO _, X)
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C
C

C

C
C

C

GX! s (2.0 • X • ABSQ) + (4.0 • ALBET • Y)

GYI - (-2-0 • Y • ABSQ) + (4.0 • ALBET • X)

COMPUTE F(X*Y) AND G(X*Y)

F = (XYSQ _ FF) - (4-0 _ XY # HH)
1 + GSQ S ((F! * GG) ÷ (4-0 * F2 • HH))

G - (XYSQ • HH) + (XY • FF)

1 + GSQ • ((F2 • GG) - (GI * BH))

COMPUTE THE PARTIAL DERIVATIVES OF F ,aND G

FX = (2-0 # X • FF) ÷ (XYSQ * FFX)
1 -4o0 • ((Y • HH) + (X¥ • HHX))
2 + GSQ _1, ((FXI • 66) + (F! • GG_;)

3 + (4.0 • FX2 v HB) + (4-0 * F2 • HHX))
FY -- (-2.0 • Y * FF) + (XYSQ * FFY)

l -4.0 • ((X • HH) + (XY 8 HHY))

2 + GSQ • ((FYJ • GG) + (FI • GGY)
3 + (4.0 • FY2 • HH) + (4.0 • F2 v HHY))

GX ,, (2.0 * X • HH) + (XYSQ * HH,X)
1 ÷ (Y • FF) ÷ (XY • FFX)

2 ÷ 6SQ $ ((FX2 • GG) + (F2 • GGX)
3 -(GXI • HH) - (G| • HH_))

GY - (-_.0 • Y • HH) + (_YSO • HHY)

1 + (X • FF) + (XY • FFY)
2 + GSO • ((FY2 • GG) ÷ (F2 • GGY)
3 -(GYI • RH) - (GI • HHY))

RETURN
END
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C

SUBROUTINE AXIAL 1 (NOPT*NP#NJ, UE* ZE* ZCOMBa RESULT)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
(0sZE) OF THE FOLLOWING FUNCTIONS ACCORDING TO THE VALUE
OF NOPT=

NOPT = 1

NOPT = 2
NOPT = 3
NOPT = 4

Z(NP) * ZC(NJ)
ZPP(NP) * ZC(NJ)
UP * Z(NP) * ZC(NJ)

U * ZP(NP) * ZC(NJ)

IN THE ABOVE EOUATIONS=

Z(NP) IS THE AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NP.

Z(NJ) IS THE AXIAL ACOUSTIC EIGENFUNCTION OF INDEX NJ.
ZC I5 THE COHPLEX CONJUGATE OF THE AXIAL EIGENFUNCTION.

ZP AND ZPP ARE THE FIRST AND SECOND DERIVATIVES OF THE
AXIAL EIG_FUNCTIONS RESPECTIVELY.

U IS THE STEADY STATE VI'10CITY DISTRIBUTION AND UP IS ITS
AXIAL DERIVATIVE.

THE VELOCITY DISTRIBUTION IS COMPUTED BY THE SUBROUTINE UB_R.

REAL

COMPLEX
1

COMMON

HAG

CI# CZE, BP, BJ, TI, T2, CH, FI# F2_, F3, CZ, ARG,

SI, SP-, 53, RESULT, FUNCT(500)# B(10)
B

CI = (0.0-1°0)

CZE = CMPLX(ZE,0=0)
BP = B(NP)

BJ = CONjG(B(NJ))

IF (NOPT -GT. 2) GO TO 50

CALCULATE INTEGRALS BY MEANS OF ANALYTICAL EXPRESSIONS FOR
NOPT = I AND NOPT = 2o
ARG = (BP + B.J) * C I
MAG = CABS(ARG)

IF (HAG) 20_ 25., 20

20 TI " C5INH(ARG*CZE)/ARG
GO TO 30

25 TI = CZE
30 ARG - (BP - BJ) * CI

MAG • CABS(ARG)
IF (NAG) 35, 40, 35

35 T2 = CSINH(ARG*CZE)/ARG
GO TO 45

40 T2 = CZE

45 RESULT = (TI + T2) * (O*S*O-O)

IF (NOPT -EQ° 2) .RESULT = -B(NP) * B(NP) * RESULT
60 TO 100
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C

C

C

C

C

C

N1R_ERICAL EVALUATION OF INTEGRALS FOR NOPT m 3 AND NOPT " 4*

COMPUTE STEP SIZE FOR SIMPSON INTEGRATION.

50 N = 50
RN= N

RESULT _ (0-0.Oo0)

I C = Z COMB

IC = 2 - IC

DO 90 J = I* IC

IF (J ,EQ, I) H = ZCOMB _ ZE/RN

IF (L/ oEQ. 2) H = (I*0 - ZCOMB) _ ZEIRN

IF (J °EQ. I) Z0 s 0.0

IF (O .EQ. 2) Z0 = ZCOMB • ZE

NPI = N÷ I
CH = CMPLX(H*0-O)

COMPUTE "I N TEGRAN D5 *

DO 60 1 '= I* NPI

STEP = I - I

Z = (STEP * H) + Z0

IF ((I.EQ.I) .AND. (J.EQ.2)) Z = Z + H/IO0.O
IF (NOPT .E@. 3) CALL UBAR(2tUE_ZEaZCOMB, ZaF)
IF (NOPT .EQ. 4) CALL UBAR(I_UEaZE_ZCOMB*Z*F)

FI - CMPLX(FaO*O)
CZ = CMPLX(Z,0o0)

ARG = C I • BP

IF (NOPT .EQ* 3) F2 = CC05H(ARG*CZ)

IF (NOPT -EQ- 4) F2 = ARG _ CSINH(ARG_CZ)

ARG = Cl _ BJ

F3 = CCOSH¢ARG_CZ)

FUNCT(1) = FI • F2 • F3
60 CONTINUE

PERFORM SIMPSON INTEGRATION*
NMI=N- 1
Sl = FUNCT(I) + FUNCT(NPI)

52 = (0-0,0-0)

S3 = (0-0,0*0)

DO 70 I = 2. N, 2

52 ,, 52 + Ft_CT(I)

70 CONTINUE
DO 80 I = 3, NMIa 2
53 m 53 ÷ FUNCT(1)

80 CONTINUE

RESULT = RESULT +

1 CH * (Sl + (4.0,0.0).5o-+ (2-0,0.0).53)/(3.0,0.0)
90 CONTINUE

100 CONTINUE

RETURN

END
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SUBROUTINE UBAR(NOPT* UE, ZE*ZCOMB*Z,RESL_T)

THIS SUBROUTINE CALCtLATES THE STEADY STATE V_I.OCITY

DISTRIBUTION FOR UNIFORMLY DISTRIBUTED COMBUSTION COMPLETED AT
Z == ZCOMB • ZE _IHERE.*

UE IS THE EXIT MACH NI_BER°

ZE IS THE DIMENSIONLESS LENGTIIo

z IS THE AXIAL COORDINATE,

IF NOPT = 1 THE DISTRIBUTION IS CALCULATED°
IF NOPT = 2 THE DERIVATIVE IS CALCULATED*
IF NoPT = 3 THE SECOND DERIVATIVE I5 CALCULATED°

ECZ = ZCOMB $ ZE

GO TO (10,20,30)* NOPT
10 IF (Z .LEo ECZ) RESULT = UE • Z/ECZ

IF (Z -GT. ECZ) RESULT = DE

GO TO aO
20 IF (Z oLEo ECZ) RESULT = UF_JECZ

IF (Z .GTo ECZ) RESULT = 0.0
GO TO 40

30 RESULT = 0-0
40 CONTINUE

RETURN

END
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SUBROUTINE AZ IMTL(NOPT* NP* N@* NJ* RESULT)

DIMENSION NFCN(3}* 56(2)
C0NNON /ELK2/ H(|O), N$(IO)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
(0_, 2'I'PI) OF THE FOLLOWING FLRCTION5 ACCORDING TO THE VALUE

OF NOPTZ

NOPT = I TH(NP) _' TR(N@) _' TH(NJ)

NOPT s 2 THPCNP) _' THP(N@) _' THCN,J)

IN THE ABOVE EQUATIONS!
THCNP), THCNQ)* AND THCN,.I) ARE THE TANGEZqTIAL EIGENFUNCTIONS
AND NP* NQ_, AND NJ ARE THEIR INDICES-
THP IS THE DERIVATIVE OF THE TANGENTIAL EIGENFUNCTIONS-

IF N$ n ! TH '= SIN(M*THETA)

IF NS s o. _ = C0S(M*THETA)

RESIST = 0.0

FACTOR = 1.0
Pl = 3.14|-5927

DISTINGUISH BETWEEN SINE5 AND COSINES°
DO 10 K| = I* 3
NFCN(K1) = !

10 CONTINUE
IF (NS(NO)°EQ-2) NFCN(3) . O.

IF (NOPT .EQ. 2) GO TO 20
IF (NS(NP).EQ.2) NFCN(1) = 2

IF (N$(NO)*EQ-2) NFCN(2) = 2

GO TO 30
20 IF (N$(NP)oEQol) NFCN(I) = 2

IF (NS(NQ)-EQ-I} NFCN(2) = R

DO 40 KI = 1,2
SG(KI) = 1-0

IF (NFCN(KI) .EQ- 1) SO(K1) = -1"0
40 CONTINUE

FACTOR = 5G(1) • SG(R) * M(NP) • M(NQ)

30 N SUM = 0

DO 50 KI = I, 3

NSUM = NSUM + NFCN{KI)

50 CONTINUE
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C

C
C

C

IF ((NSUM .EQ. 3) .OR. (NStiVl .EG. 5))
IF (NSLI_ .EQ, _) GO TO TO
IF (NS_ .EQ. 6) GO TO 80

60 TO 60

70 KOPT = 2

IF (NFCN(1) .EQ. 2)

GO TO 74

72 LL = M(NP)

= MCNQ)

NN = M(N,J)
GO TO 90

T4 IF (NFCN(2) .EQ. R)
GO TO 78

T6 LL = M(NQ)

HM = MCNP)

NN = M(NJ)

GO TO 90

T8 LL = M(NJ)

MM = M(NP)

NN = M(NQ)

GO TO 90

60 TO TR

GO TO 76

80 KOPT = I

LL = M(NP)

= M(NQ)

NN = M(NJ)

COMPUTE VALUES OF THE INTEGRALS-

90 IF ((LL.NE,O) -AND- (MM.NE*0) -AND- (NN*NE*O)) GO TO I0!

GO TO 103

101 LM = LL + MM
LN = LL + NN
MN = MM + NN

IF ((NN.EQ,LM) .OR, (MM.EQoLN)) RESLLT- PI/2.O
IF (LL ,EQ. MN) GO TO 102

GO TO 104
102 IF (KOPT .EO. I) REStLT = I_I12.0

IF (KOPT .EQ. 2) RESULT = -PI/R.O

GO TO 104

103 IF ((LL.EO.O) .AND. (MM.EQ.0) .AND. (NN.EO.O)) GO TO lOS
IF ((KOPToEO.I) .AND° (NN.EO°O) .AND. (LL.E0eMM)) RESULT = PI

IF ((KOPT. EQ.I) .AND. (MM.EQ.O) oP/qD- (LL.EQ.NN)) RESULT = PX

IF ((LL -E@, O) ,AND, (MM ,EG, NN)) RESULT = PX

GO TO lOa

I05 IF (KOPT -EO. I) RESULT = 2*0 * PI

104 CONTINUE

RESULT = FACTOR S RESULT
60 CONTINUE

RETURN

END
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SUBROUTINE RADI AL(NOPT*L,M, N, A* B, C* REStLT)

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL
(0,|) OF THE FOLLOWING PRODUCTS OF THREE BESSEL FUNCTIONSi

NOPT = 1 OL(AVR} _. JM(B'_R) $ JN(CSR) $ R

NOPT ,. 2 JL.(A.I.R) _. JM(BVR) ._ .JN(CSR)IR

NOPT = 3 .JPL(ASR) ._ OPM(B_R) $ JN(C_R) ._ R

OL IS TilE BESSEL Ft_CTION OF FIRST KIND OF ORDER L
.JPL I5 THE DERIVATIVE OF .JL _;ITH RESPECT TO R
L_ M, N ARE NON-NEGATIVE INTEGERS
A, B, C ARE-REAL Nt_BER5

DIMENSION FUNCT(200)
DOUW-E PRECISION DN, DH, DSTEP, DR, ARGI, ARGO, ARG3,

1 BE511 BES_, BES3, BESH, BESLI PROD_

R Ft_iCT, BESLIM, 51, SR, 53

NN = 100
DN = NN

DH s I-OIDN

NPI = NN ÷ 1

DO 10 I = I, NPI
DSTEP = I - 1
DR = DH $ DSTEP

ARGI = A '_ DR

ARG2 = B _' DR

ARG3 = C $ DR

CALL 0BES (N* ARG 3, BES3, $ 500)
IF (NOPT oEQ. 3) GO TO 101
CALL OBES(L*ARG I, BESI, $500)

CALL OBES(M,ARG2, BES2, $500)

GO TO 102
101 IF (L .EQ- 0) GO TO I03

CALL JBES(L+ I,_RG i, BESH, $500)

CALL JBES(L- l, ARG I* BESL, $500)

BESt " A =_ (BESL - BESil)/2.O

GO TO tO4

103 CALL OBES(I,_RGI,BESI,$500)
BESI ,= -BE51 $ A

104 IF (M -EQ- 0) GO TO 105

CALL OBES(M÷ I,_RG2, BESH, $500)

CALL OBES(M-|,ARG2,,_E5La$500)

BES2 ,= B v (BESL - BESH)/2.O

GO T0 102
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C

I05 CALL JBES(I,ARG2, BES2,$500)

BES2 = -BES2 • B

102 PROD = BE51 _' BE52 v BE53

IF (NOPT .EQ. 2) GO TO II0

FUNCT(1) = PROD _' DB

GO TO I0

II0 IF (I -EQ. I) GO TO III

FUNCT(1) = PROD/DR

GO TO 10

I11 BESLIM = 0.0

IF ((L.EQ.I) .AND. (M.EQ.O) .AND. (N.EQ.0))

IF ((L.EQ.O) .AND. (M.EQ.I) .AND. (N.EQ.O))

IF ((L.EQ.0) .AND. (MoEQ.O) .AND. (N.EQ.I))

FUNCT(I) = BESLIM

I0 CONTINUE

NM I = NN - I
51 = FUNCT(1) ÷ FUNCT(NPI)

SO- = 0.0

S3 = 0.0

DO o-O I = 2, NN, 2

S2 = 52 + FUNCT(1)

20 CONTINUE
DO 30 I = 3. NMI* 2
S3 " 53 + FU%ICT(1)

30 CONTINUE

RESULT = Did ,I, ¢S1 + 4.0'1'S2 + 2.0'1'S3)/3-0
GO TO 501

500 *JRITE (6, 6000)

6000 FORMAT ( IHI* 10HERROR JBES)
501 CONTINUE

RETURN

END

BE-_-IM = A/o-.O

BESLIM = BI2.0

BESL.IM = C/2-0
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SUBROUTINE AXIALE(NOPT, NCON,J*NP_ NQ*NJ*ZE* RESULT}

THIS SUBROUTINE CALCULATES THE INTEGRAL OVER THE INTERVAL

(0JZE) OF THE FOLL0_ING FUNCTIONS ACCORDING TO THE VALUES
OF NOPT AND NCONO_

FOR NCONJ = 1 AND=

NOPT = | Z(NP) * Z(NQ) * ZC(NJ)

NOPT = R ZP(NP) * ZP(NQ) * ZC(NJ)

NOPT = 3 ZPP(NP) * Z(NQ) * ZC(NJ)

FOR NCONJ ,_ 2 AND:
NOPT = ! Z(NP) * ZC(NQ) * ZC(NJ)
NOPT ,, 2 ZPCNP) * ZPC(NQ) * ZC(N,J)

NOPT = 3 ZPP(NF) * ZC(NQ) * ZC(NJ)

FOR NCONJ = 3 AND-

NOPT = I ZC(NP) * Z(NQ) * ZC(NJ)

NOPT = 2 ZPC(NP) * ZP(NQ) * ZC(NJ)

NOPT ffi3 ZPPC(NP) * Z(NQ) * ZC{NJ)

FOR NCONJ ffi4 AND"

NOPT = I ZC(NP: * ZC¢NQ) * ZC(NJ)

NOPT = 2 ZPC(NP) * ZPC(NQ) * ZC(NJ)

NOPT = 3 ZPPC(NP) * ZC(NQ) * ZC(NJ)

IN THE ABOVE EQUATIONS:

Z(NP), Z(NQ), AND Z(NJ) ARE THE AXIAL ACOUSTIC EIGENFUNCTION5

AND NP, NQ, AND NJ ARE THEIR INDICES.

ZP IS THE FIRST DERIVATIVE OF THE AXIAL EIGENFUNCTIONS.

ZPP 15 THE SECOND DERIVATIVE OF THE AXIAL EIGENFUNCTION5o

ZC AND ZPC ARE COMPLEX CONJUGATE5 OF Z AND ZP RESPECTIVELY°

REAL

COMPLEX
I

COMMON

HAG

CI, CF. CZE. BP. BQ. BJ. SUM. RESULT.

ARG(4)e FUNCT(4). B(IO)

B

CALCULATE INTEGRALS BY MEANS OF ANALYTICAL EXPRESSIONS,

C! _ (0oO. I°O)

CF = (0-25,0-0)

CZE " CMPLX(ZE*O-0)

BP " B(NP)

BQ -- B(NQ)

BJ = CONJG(B(NJ))

IF ((NCONU °EQ- 2) °OR° (NCONJ .EQ- 4)) BQ " CONJG(BQ)

IF (NCONJ .GT° 2) BP " CONJG(BP)

ARC(1) ffi(BP + BQ + BO) * CI
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ARG(2) = (BP + BQ- BJ) v CI

ARG(3) = (BP - BQ + BJ) _' CI
ARG(4) = CBP - BQ- BJ) • CI
DO 10 0 = 1.4
NAG = CABS(ARG(J))

IF (MAG) 12. 15. 12
12 FUNCT(O) = C5INH(ARG(J)_CZE)/ARS(,J)

GO TO 10

15 FUNCT(,J) = CZE
tO CONTINUE

IF (NOPT .EQ. 2) GO TO 30
$I_ = FUNCT(1) + FUNCT(2)+ FUNCT(3) ÷ FUNCT(ZI)
RESULT = CF = 51.I_

IF (NOPT .EQ. 3) RESIST = -B1 _ • BP • RESULT
GO TO 50

30 $1_ = FUNCT(1) + FUNCT(2) - FUNCT(3) - FUNCT(_)

RESULT = -CF • BP • BQ '_ SUN

50 CONTINUE
RETURN
END

95



APPENDIX D

PROGRAM LCYC3D: A USER'S MANUAL

General Descri_tiqn

Using the three-dimensional second-order theory described in this report

Program LCYC3D calculates the nonlinear stability characteristics of a cylin-

drical combustion chamber with distributed combustion and a conventional noz-

zle. The response of the burning rate to pressure oscillations is described

by Crocco's time-lag model. For given values of the operating parameters

(i.e., n, @, Y, u , and L/D), a given series expansion, and a given initial
e

disturbance Program LCYC3D integrates Eqs. (C-38) to obtain the time behavi-

or of theu  own mode-amplitudefunctions(i.e.,Bj(t)) Fromthisinfor-
mationa time history of the pressure oscillation is determined. The program

determines the final amplitude of the pressure oscillation attained in a

linearly unstable engine (i.e., limit-cycle amplitude). Since the second-

order analysis does not predict "triggering", however, the threshold ampli-

tude above which a finite amplitude disturbance can trigger instability in a

linearly stable engine (i.e., triggering limit) is not calculated by Program

LCYC3D. For either transient or limit-cycle conditions, the program prints

out time histories of both pressure and axial velocity perturbations from

which the amplitude, frequency, and wave shapes can be determined. The op-

!ion to produce plotted output using a CALCOMP plotter is also provided.

Program Structure

A flow chart for Program LCYC3D is given in Fig. (D-I). This program

performs the following operations: (i) reads the input data, (2) calculates

the initial conditions, (3) numerically integrates the differential equations,

(4) tests for limit cycles (optional), and (5) prints and plots the resulting

solutions.

The inputs to the program include the data generated by Program COEFFS3D,

the combustion parameters n and _, various control numbers, and a description

of the initial disturbance. The data from COEFFS3D is read first and then

printed out. Next the space dependent coefficients appearing in the series

96



C Input 1
from

OKFFS3D
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Figure D-I. Flow Chart for Program LCYC3D.
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expansions for _t_ _e' and _z are computed and printed out. These coeffi-

ciemts are calculated by Subroutine PHICFS for use in the _omputation of' the

pressure and axial velocity perturbations. The remaining input data is the_

read, and following program execution, control is returned to this point (see

Fig. D-I) so that several cases (i.e., different values of n and _) may be

run for a given set of coefficients generated by COEFFS3D.

After input of the initial amplitudes of the real parts (i.e., B2j_l(t))

of the complex amplitude functions, the initial amplitudes of the imaginary

parts (i.e., B2j(t)) are calculated such that the nozzle admittance condition

is satisfied for -_ _ t _ O. These amplitudes are then printed out. Next

the integration step-size, At, is calculated such that the interval

-_ _ t _ O is divided into NDIV equal increments. Assuming a sinusoidal

initial disturbance, the initial amplitudes of B2j_l(t ) and B2j(t ) are used

to calculate these functions and their derivatives at each of the NDIV + i

discrete points in -7 _ t _ O. These values are needed in order to start the

numerical solution of the differential equations (i.e., Eqs. (C-38)). The

initial values of the amplitude functions are stored in the array U(I,J)

where the index I varies from I (t = -_) to NDIV + i (t = O) and the index

J identifies the function. The corresponding initial values of the pressure

and velocity perturbations are then printed out. This section also calcu-

lates the coefficients C2(j,p) - nC3(j,p) and nC3(j,p) which are the coeffi-

cients of dBp/dt and d[Bp(t- @)]/dt in Eqs. (C-38).

After the starting values are calculated, Eqs. (C-38) are solved using

a modified form of the fourth order Runge Kutta method. Sturting at t = 0

(I = NDIV+I), the amplitude functions at t + At are calculated, using the

Subroutine RHS to evaluate the functions fj(BI,B2,...B2N ) om the right hand

sides of Eqs. (C-38). The amplitude functions and the coefficients from

PHICFS are then used to compute the pressure and axial velocity perturbations

by Subroutine PRSVEL. The values of the amplitude functions at t + At are

stored in U(I + l,J), while the pressure and axial velocity perturbations are

stored in the arrays PRESS(NPRES) and AXVEL(NPRES) where NPRES specifies the

locations in the chamber where the data is calculated. Pressure data at one

location (specified by NLOC) is also stored in the array PRS(I + i). After

checking for maximum and minimum values of U(I,J) and PRS(1), the data may
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be printed out _f NTEST = O and TSTART _ t _ TQUIT) or stored in plot arrays

as desired. The time is then increased by At (i.e., I is increased by i) and

the calculations are repeated. This process continues until 250 integration

steps have been computed (t = 250_t), after which transfer is made to the

limit-cycle section.

In the limit-cycle section a test for a limit-cycle is made if NTEST = i.

If the test is satisfied, NTEST is set to zero so that no further tests will

be made and the results can be printed or plotted. In either case the final

values (for 250-NDIV _ I _ 250) replace the initial values (for i _ I

NDIV+I) in the arrays U(I,J) and PRS(1), I is again assigned the value NDIV+I,

and another 250 integration steps are calculated. This process continues un-

til one of the following conditions is satisfied: (i) NTEST = 0 and t > TQUI_

(2) a limit-cycle is reached and t > TQUIT, and (3) more than 250 cycles of

the pressure oscillation have been computed (MAXNO > 500). At this point the

numerical calculations are termimated and the time history of the pressure

amplitude (maxima and minima) are printed out and/or plotted as desired.

As can be seen from Fig. D-I the output is not confined to a single

section of the program but is produced in several different sections. Thus

data is printed out or plotted shortly after it is calculated, which greatly

reduces the amount of core storage required. All plots are generated by Sub-
20

routine GRAPHS which uses standard Umivac 1108 plot routines.

FORTRAN listings of Program LCYC3D and Subroutines PHICFS, PRSVEL, RHS,

and GRAPHS are provided at the end of this appendix.

Input Data

A precise definition of the input data required to run the computer

program is given below. This input data consists of three parts: (i) the

control number NOUTCF, (2) the parameters and coefficients generated by Pro-

gram COEFFS3D and (3) the data describing the cases to be run (see Fig. D-l).

For each input case the following information must be provided: (i) the

combustion parameters n and 7; (2) a series of control numbers; and (3) infor-

mation describing the initial disturbance.

The control number NOUTCF determines whether the coefficients from

COEFFS3D will be printed, and it appears on the first card of input. This
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card is followed by the coefficient deck generated by COEFFS3D and the data

describing the cases to be run. Since the coefficient data has already been

described in Appendix C, it will be omitted from the following detailed des-

cription of the input. As in Appendix C the location number refers to the

columns of the card. Again three formats are used for input: "A" indicates

alphanumeric characters, "I" indicates integers, and "F" indicates real num-

bers with a decimal point. For the "I" formats the values are placed in

fields of five locations, while a field of ten locations is used with the

"F" formats. In either case the numbers must be placed in the rightmost

locations of the allocated field.

No. of

Cards Location Type Input Item

i 1-5 I NOUTCF

1-72 A TITLE

i-i0 F EN

11-20 F TAU

21-30 F H

31-40 F TSTART

41-50 F TQUIT

i

I

i 1-5 I NTEST

6-10 I JMODE

Comments

If O: coefficients are not

printed out.

If i: linear coefficients

only are printed Qut.

If 2: all coefficients are

printed out.

Title used to label plots.

Interaction index, n.

Time-lag, _.

Time-increment for numerical

integration, At . *

Time at which output of solu-

tions begins.

Time at which output of solu-

tions ends.

If O: compute transient beha-

vior.

If I: compute limit-cycle be-

havior.

Identifies the amplitude func-

tion used to test for limit-

cycles.

* This value is adjusted slightly by the program to divide the interval

-_ _ t _ 0 into NDIV equal parts.
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No. of
Cards Location Type +Input Item Comme nt s

11-15 I NLOC

16-20 I NTERMS

21-25 I NPZ

26-30 I NOUT

Determines location for wall

pressure maxima and minima.

If i: z = O, 8 = 0 °

If 2: z = O, e = 45 °

If 3: z = O, e = 90o

Number of anTplitude functions

given initial values.

Determines how secondary

instability zones are handled.

If O: all instability zones

retained.

If i: secondary zones elim-

inated.

Determines output.

If O: printed output only.

If i _ NOUT g 6: both print-

ed and plotted output, NOUT

gives number of last plot

produced.

If i _ NOUT g 6 the following two cards are read:

i i-i0 F YHI(1)

11-20 F YHI(5)

21-30 F YLAB(1)

31-40 F YIAB( 5)

Maximum ordinate for pressure

plots.

Maximum ordinate for velocity

plots.

Interval for ordinate labeling

of pressure plots.

Interval for ordinate labeling

of velocity plots.

i i-5 I ITICY(1)

6-10 I ITICY(5)

11-15 I NFIRST

16-20 I NOMIT

Number of ordinate tic marks

for pressure plots.

Number of ordinate tic marks

for velocity plots.

Gives the number of the first

plot produced.

If O: amplitude plot produced.

If i: amplitude plot omitted.
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No. of
Cards Loc___atio____nType

End of input for i _ NOUT m 6.

NTERMS

.Input Item

1-5 I J

6-15 I AST

16-25 I ACT

Comme nts

Identifies complex amplitude

function.

Amplitude of sin(wt) term in

initial conditions.

Amplitude of cos(wt) term in

initial conditions.

The input data describing the cases to be run is given on a series of

three or more cards. These cards are preceded by a title card which gives

a title (TITLE) to be used to identify any plots produced by the run. This

title appears before the first plot generated and does not appear on the

printed output. The title card is included only for the first case of the

run; on all subsequent cases it is omitted.

The first card of the series gives the interaction index, n, and the

time-lag, _, for the motor under consideration (EN and TAU); the time-

increment, At, used in the numerical integrations (H); and the times (TSTART

and TQUIT) at which output begins and ends. For all cases considered in this

report a time-increment (dimensionless) of H = 0.050 was used, which gives

about 70 steps per cycle for the IT mode. For _ = 1.7 this input value was

adjusted by the program to obtain H = 0.04857 which divides -_ _ t _ 0 into

35 equal parts. For transient cases (NTEST = O) printed output is given for

TSTART m t _ TQUIT. When the limit-cycle behavior is calculated (NTEST = i),

TSTART and TQUIT are measured from the time at which the limit-cycle is

reached, tLC. Thus the limit-cycle solutions are printed out for

(tLC + TSTART) _ t m (tLC + TQUIT). Two or three cycles of limit-cycle data

for the IT mode are obtained with TSTART = 0 and TQUIT = iO. For plotted

output, the time axis is always iO units long, therefore (TQUIT - TSTART) > 10

to obtain plots.

The second card of the series gives the control numbers, NTEST, JMODE,

NLOC, NTERMS, NPZ, and NOUT. The task to be performed by Program LCYC3D is

specified by NTEST. If NTEST = 0 the transient behavior (growth or decay) of

the pressure oscillation is determined, while for NTEST = i the program
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searches for a limit-cycle amplitude. JMODEidentifies the "principal"

series term, the amplitude function used in the limit-cycle test. This is

usually the lowest frequency mode(i.e., IT or IL) in the approximating

series expansion. NLOCgives the location at which the amplitude-time his-

tory (maximaand minima) of the wall pressure perturbation is calculated.

The numberof complex series terms A.(t) receiving initial values is speci-
J

fled by NTERMS,while all other series terms are initially zero. The para-
meter NPZdetermines how the secondary instability zones (phantom zones) are

handled by Program LCYC3D. For NPZ= i the phantomzones are eliminated by

dropping the combustion terms for a given modewhen _ > _cut where:

2w 2w S +-
"lout = @ 2

Z
e

(D-l)

A similar procedure was used in the axial instability studies by Lores and

Zinn. 3 The transverse instability data presented herein was obtained with

NPZ = O, while NPZ = i was used in the axial instability studies to facili-

tate comparison with the results of Ref. (3). The last control number NOUT

determines which plots, if any, are produced. For NOUT = O no plots are

produced. For i g NOUT _ 6, NOUT gives the number of the last plot produced,

where the plots are numbered as given in Table D-I below:

4

Table D-I. Numbering of Plots.

No. of Plot Quantity Axial Azimuthal

(NPLOT) Plotted Location Coordinate

i Pressure Injector 0 °

2 " " 45 °

3 " " 900

4 " Nozzle 0 °

5 Axial Velocity " 0 °

6 Nozzle Boundary " O °

Term
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The nozzle boundary term given on the last plot is discussed, later in this

appendix.

If plots are produced, two additional cards are needed to give the max-
imumand minimumvalues of the variables to be plotted, YHI(NPLOT)and

YLO(NPLOT);the intervals for ordinate labeling (YLAB(NPLOT));and the num-

ber of ordinate tic marks, ITICY(NPLOT). All of the plots are symmetric

about the time-axis so that YLO(NPLOT)= -YHI(NPLOT),and ITICY(NPLOT)must

be negative to obtain the centerline. Since the ordinate scales and labeling
are the samefor all pressure plots (NPLOT= 1,2,3,4) this data is read for

NI°LOT= i only; likewise the data for the last two plots is read for NPLOT=

5 only. In addition NFIRSTgives the numberof the first plot produced,

giving additional control over the _umberof plots produced. NOMITdeter-

mines whether a plot of pressure amplitude versus time (location specified

by NLOC)is produced.

The remaining cards give the initial amplitudes of the complex series

terms, Aj(t), needed to start the numerical integration. Only the amplitudes

of the real parts, B2j_l(t), are given on these cards, while the amplitudes

of the imaginary parts, B2j(t), are determined from the nozzle admittance
condition. For each value of J the amplitudes ASTand ACTare assigned to

the arrays AS(NP)and AC(NP)where NP= 2J - i. The computation of the

amplitudes of the imaginary parts, AS(NP+ l) and AC(NP+ i)_ is discussed

later. The initial values of the series terms are then calculated from the

formula:

Bp(t) = AS(NP)sin(Wpt) + AC(NP)coS(_pt) (-¢ _ t _ O) (D-2)

where Wpis the acoustic frequency. The derivatives, dBp/dt, are also re-
quired for starting the numerical integration; they are obtained simply by
differentiating Eq. (D-2).

Theproper input for pure standing and pure spinning single-mode initial

disturbances is given as follows. For a standing mode, only the cos(mg) terms

are retained in the series and NTERMS= i. A single card is read giving the

amplitude of the initial disturbance. For a spinning mode,both sin(m0) and
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cos(me) terms are included in the series expansion. It is convenient to pair
these terms such that the index J corresponds to a sin(me) term and J + i

corresponds to a cos(me) term. For an initial disturbance of amplitude A

spinning in the counterclockwise direction (e increasing), NTERMS= 2 and

two cards are read giving the following data:

J : AST= A and ACT= O

J+l: AST= 0 and ACT= A

(D-3)

In both cases above initial a_litudes are required only for the mode initi-

ally present, and the initial amplitudes of all other modes included in the

series expansion are zero.

The proper input for Program LCYC3D will be illustrated with the follow-

ing example. Assuming that the velocity potential _ is expressed in terms of
.

the IR, IT, and 2T modes , it is desired to determine the limit-cycle beha-

vior of a linearly unstable engine (n = 0.57486, _ = 1.7, Ue = 0.2, L/D = 0.5)

with a nozzle admittance of A = 0.02 and _ = 45 °. Sample input is given for

the case of a spinning IT mode disturbance of amplitude 0.3. The principal

series term is the cos(me) term for the IT mode (i.e., Boll(t)) , thus JMODE

= 2. Plots are desired for the pressure, axial velocity, and nozzle boundary

condition at the nozzle entrance, thus NOUT = 6 and NFIRST = 4.

To run the case described above the data deck must be assembled as

follows. The card specifying NOUTCF is followed by the coefficient deck

produced by Program COEFFS3D; in this example it contains the information

given in the sample output for COEFFS3D shown in Appendix C. The coefficient

deck is followed by the data for the case to be run as shown in the sample

input below:

%6

This is the same case used to illustrate Program COEFFS3D.
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Table D-2. Sample Input.

Io till2 _3 * i_ _6 t_ ,a l, _0 2:32 21 2J 2_ 2. 3x 2! 70 _ 31 32 23 )d Is _ 2_ 31 37 _o 4z _ *3 _4 aS 46 4' 4

I0 II 12 IS ta t3 16 17 10 Iql 3t 31 27 3) ;18 23 _ 27 31 _ so 31 32 33 214 31 _ S7 311 _1 _10 41 4_1 l) 44 43 46 IT 441 44 So

I f I Io1.13171_t81_1,1I I I I I I_l.lzl I I I I l 1o1.1ol51I i I 1 I 1 Iol.Io1I 1] 1I I_l_l-.Iol
t2 13 II t_ T8 I? :3 I_ 20:1 32 _S 3¢ ._S 2f* 27 21 3_ _ St 22 33 _.l SS _ _1_ _1 39 40 41 ii_ 43 _ 43 411 47 _ • _1

lllll_lll I Izl I I I l_lill 1_1II 1 Iol I I I I_1I I I I I I I I I I I I I 1I I lJ 11-
I0 || 12 IS ]4 13 li I, 1| It _0 31 32 _) _4 33 _i 3? _11 I 2_ So 31 _r_ _ _ld _LS _ 3_ _l _ dKI 41 _1_ 43 _d 43 4_ 47 _1_ 411 0_ $1I I I I I l L]_1.I_lll Ill Iol.Iol_JI 1I I 1I lo,.l_[I I I I I loIoIo1_-I[ I I 1[ I I 1] I

II 1-1_1_1I I-l_l-_ill _ 1I]1ol II I Ill I If I111 III 1 I I 1111 lillll I
[ i 1 i LLIi i i _°_.._*.i_._i._-_._]3.]22_;_-_2_-_s_°[_-]3s_-_-_-i_°]_]_3]-_-_-_-_"

i0 _) 12 *] 14 ;S 16 )7 II 1t _0 21 33 23 24 23 _6 ]_ 2| _1 _,_ 31 3_ 33 _ _ _ 2? _ S¢_ 40 41 4_ ,13 44 is _ 4_ _ 41 so _1..

I1 i I I_1I I I I 11 ]ot.lo] ] t I I I I Ioi.l_l I I I I I I I I I I I I I I I I i I I I I I I I I

Coefficients in Series for _t' @_' and _z"

As seen from Eq. (13) the real parts of the time _nd space derivatives

of the velocity potential (i.e., _t' _r' _' _z ) are needed in order to com-

pute the pressure perturbation. Differentiating the complex series expan-

sion givem by Eq. (9) and evaluating at the chamber wall (r = i) gives the

following expansions:

N N
dA

@t = _._dt Zp(Z)_p(_)Rp (i)= ZCt(P,Z,_)--_dt

p=l p=l

(n-4)

N N
!

_ = _ Ap(t)Zp(Z)_p(_)Rp(1)= Z C_(p,z,_)Ap(t)

p=l p=l

(D-_)
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N N

_z = _Ap(t)Zp(Z)®p(8)Rp(1)= Z Cz(p,z,8)Ap(t)

p=l p=l

(D-6)

where the complex coefficients Ct, C , and Cz are functions of z and 9. The

quantity, Cr' is not needed since _r = 0 at the chamber wall. The complex

coefficients Ct, C8, and Cz are calculated by Subroutine PHICFS and are

assigned to the variables, CI, C2, and C3 respectively. The coefficients in

the series expansions for the corresponding real parts (i.e.,_t, _8' _z ) are

related to the complex coefficients by:

Ct (2p-l, z, e) = Re Ct(P, z, e

Ct (2p, z, 8) = -l_Ct(P, z, 8)]

(D-7)

where similar relations hold for C and C . The real coefficients are stored
8 z

in the arrays CFT(NPRES, NP), CFTH(NPRES, NP), and CFZ(NPRES, NP) where NPRES

determines the location in the chamber as given in Table D-3 below:

Table D-3. Chamber Locations for Pressure Calculations.

Axial Azimuthal

NPRES Location (z) Location (8)

i 0 0 °

2 0 45°

3 0 90°

4 z 0 °
e

5 z 45 °
e

6 z 90°
e

Initial Amplitudes

The initial amplitudes of the real parts of the complex series terms

(i.e., B2j_l(t)) are specified in the input to the program. The initial
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amplitudes of the imaginary parts (i.e., B2j(t)) , however, are calculated

such that the nozzle admittance condition is satisfied for -_ m t m 0. This

is done by introducing the linear expressions for u" and p" into the nozzle

admittance relation and assuming periodic solutions. This yields a set of

linear algebraic equations relating the amplitudes of the real and imaginary

parts of the complex series terms. For given values of the amplitudes of the

real parts, AS(NP) and AC(NP), these equations are solved to obtain the ampli-

tudes of the imaginary parts, AS(NP + i) and AC(NP + i). The following for-

mulas are used in this calculation.

_ 2
AS(NJ + i)=-(r2a I rla 2) / (al2 + a2)

2
Ac(NJ+ i) --(rlaI + r2a2)/ <_ + a2)

(D-S)

where

(D-9)

and

aI = (1 + yYrUe)CFZ(NPRES,NJ+I) - yYi_jCFT(NPRES,NJ+I)

a2 = VYrWjCFT(_m_S, NJ+m) + W_i_eC;Z(_rms, NJ+l)

a3 = -(m + 7Yr{e)CFZ(_mRSS,NJ) + 7YiWjC;T(NP_S, NJ)

a4 = yYrWjCFT(NPRES,NJ) + YYiUeCFZ(NPRES,NJ)

(D-IO)

In Eqs. (D-8) through (D-10) w. is the acoustic frequency and CFT and CFZ are
J

io8



the coefficients in the series for _t and _z computed previously. The above

conditions are applied at a pressure anti-node for each series term, there-

fore NPRES = 4 (z = ze, e = 0 °) for a cos(me) term and NPRES = 6 (z = Ze, 0 = 90°)

for a sin(me) term.

For nozzles with phase shifts of _ = 9O° and _ = 270 ° the quantity
2 2

aI + a2 vanishes and Eqs. (D-8) become indeterminate. In these cases the amp-

litudes of the imaginary parts are given by:

AS(NJ+ l) : AC(NJ)

AC(NJ+ l): AS(NJ)

(D-II)

which provides a good approximation to the nozzle admittance condition.

Integration of the Differential E_uations

For purposes of numerical integration Eqs. (C-38) are written as an

equivalent system of first order differential equations as follows:

dB

B (D-12)
dt j

dB. •

= fjdt (Bp, Bp) (D-13)

where the dependent variables are now B. and B.. These equations are solved
J J

numerically using the fourth order Runge-Kutta method. Due to the presence

of retarded variables in Eqs. (D-12) and (D-13) the formulas (see Ref. 21)

used in the Runge-Kutta method must be slightly modified.

The appropriate formulas for applying the Runge-Kutta method to problems

involving a time-delay are readily obtained by considering a single equation

of the following form:

d__x: f(x,t) + g[x(t - _)]
dt

(D-14)
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Noting that at amy step of the integration the value of x(t - _) has already

been determined from previous steps, the function g can be considered to be a

known function of time g(t).

Since x(t) is computed only at discrete points Xn(tn) it is desired that

the retarded variable x(t n - _) will coincide with such previously computed

points. This can be accomplished by choosing the step-size At such that it

divides the time-lag _ into k equal increments. Thus _ = kAt and the Runge-

Kutta formulas which apply to Eq. (D-14) can now be written as:

= + kI + 2k 2 + 2k 3 + k4xn+ I x n

k I = {f(xn,tn) + g(Xn_k)}At

k 2 = {f(x n + kl/2, t n + At/2) + g(Xn_k+½)}At

k 3 = {f(x n + k2/2, t n + At/2) + g(Xn_k+½)}At

k 4 : {f(x n + k 3, t n + At) + g(Xn_k+l)}At

(D-L5)

Equations (D-15) are readily extended to handle the system of equations given

by Eqs. (D-12) and (D-13). It is seen from Eqs. (D-15) that k values of the

dependent variables prior to the initial values are needed to start the inte-

gration.

Although the initial wave shape can be an arbitrary fumction of time, it

is assumed that initially the mode-amplitudes are sinusoidal functions of time

oscillating with the natural frequency wj. Thus each mode-amplitude function

is expressed in the following form:

Bj(t) = AS(J)sin(wjt) + AC(J)cos(wjt)

(D-16)
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Bj(t) = Wj_AS(J)cos(Wjt) - AC(J)sin(_jt)]

where -@_ t _ O.

In Program LCYC3Dboth the functions Bj(t) and the derivatives Bj(t) are

stored in the samearray U(I,J). The Bj(t) (N functions) are stored in the
first half of the array (i _ J g N), while the remaining space (N + i _ J _ 2N)

is usedto storethevaluesof B](t). Thusfor a givenvalueof j (i j

Bj(t) is stored in U(I,J) and B_(t) is stored in U(I,J + N). In addition the

retarded variables B_(t - _) are stored in the array RV(J,K) as follows:
J

RV(J,I) = Bj(t - _)

RV(J,2) = RV(J,3) = Bj(t - _ + Atl2)

f

RV(J,4) = Bj(t - _ + At)

(D-17)

The values• of Bj(t - _ + At/2) are computed from Bj(t - _), Bj(t - _ + At),

and Bj(t - _ + 2At ) using a three-point interpolation•

Pressure and Axial Velocity Perturbations

From the calculated time dependence of the series terms Program LCYC3D

computes the dimensionless pressure perturbation, p', with the aid of Eqs.

(D-4) through (D-6) and either Eq. (13) for NDROPS = 0 or Eq. (A- 6 ) for

NDROPS = i. The pressure is calculated at the injector face (z = O) and the

nozzle entrance plane (z = Ze) for three angular positions along the peri-

phery of the chamber (i.e., r = i; e = 0 °, 45 °, 90°). The results are stored

in the array PRESS(NPRES) where NPRES gives the location according to Table

• u" is calcula-D-3 The axial velocity perturbation at the nozzle entrance, e'

ted for @ = O °, 45 ° , 9O° using the relation u • = _z and Eq. (D-6), and the

results are stored in AXVEL(K), where K = NPRES-3. In addition the quantity,

ReL-_Y_tJ, is calculated at the nozzle entrance for@ = O O and assigned to

the variable YPHI. From Eq. (2) it is seen that YPHI is the axial velocity
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at the nozzle entrance (i.e., u_) if the nozzle admittance condition is exactly
satisfied. Since the solutions generated by ProgramLCYC3Dare approximate,

the difference betweenu" and YPHI is a measureof the accuracy of this approx-
e

imation at the nozzle boundary.

Maximum and Minimum Values

In order to determine the transient behavior and limit-cycle amplitudes

it is necessary to follow the growth or decay of the amplitudes of the series

terms and the pressure perturbation. The maxima and minima of the principal

series term (specified by JMODE) are assigned to the array UMAX(MAXNO) where

MAXN0 is a counter variable. For the pressure perturbation, maximum and mini-

mum values at the location specified by NLOC are stored in PMAX(MAXP), and the

corresponding times of maximum and minimum are stored in TIMAX(MAXP). Since

the solutions are calculated only at discrete points, the maximum and minimum

values are computed using a three-point interpolation scheme.

Calculation of Limit-CyclgAm_litude

A limit-cycle amplitude is calculated by specifying an initial disturbance

and continuing the step-by-step integration of Eqs.(D-l_ and(D-19 until a

periodic solution is obtained; that is, the amplitude of the oscillation

remains essentially constant. The test for convergence to a limit cycle is

performed upon a single series term, usually the most important term in the

series, in the following manner. After the first 500 integration steps,

usually about 10 cycles for the IT mode, the amplitude of the principal series

term A1 is compared with its amplitude after 250 integration steps A O. If

the change in amplitude lA 1 - AOI is greater than the maximum permissible

change e, the calculations are continued and the change in amplitude during

the next 250 integration steps is calculated. The process is repeated until

I Ak - Ak_l I < e at which point the computation is terminated. The amplitudes

used in the above calculations are determined by averaging the absolute values

of UMAX(MAXNO) over the last two complete cycles for each 250 integration

steps. A value of e = 0.OO1 is used in Program LCYC3D which gives sufficient

accuracy for most cases.
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Print.edOutput. The printed output produced by Program LCYC3D consists

of the five sections discussed below.

Section i is a restatement of the input from Program COEFFS3D. It in-

cludes the following information: (a) the ratio of specific heats (GAMMA),

the mean flow Mach number at the nozzle entrance (UE), the dimensionless

chamber length (ZE), the length of the combustion zone as a fraction of the

chamber length (ZCOMB), and the number of series terms (real) NJMAX; (b) a

statement regarding the presence or absence of the droplet momentum source;

(c) the parameters which describe and identify each term in the series expan-

sion; (d) the nozzle admittance (YR and YI) and the axial acoustic eigenvalue

(EPS and ETA) for each series term; (e) the nonzero linear coefficients,

C(KC, NJ, NP); and (f) the nonzero nonlinear coefficients, D(NJ, NP, NQ).

The nonlinear coefficients are omitted from the output for NOUTCF = i, and

no coefficients are printed out for NOUTCF = O.

Section 2 gives the coefficients needed for computation of the wall

pressure waveforms; that is, the coefficients in the series for _t' _e' and

_z" These are given for each of the NJMAX series terms at each of the six

locations specified by NPRES (see Table D-3).

Section 3 gives the initial amplitudes (AS(J) and AC(J)) of all series

terms included in the assumed initial disturbance. This section also states

whether the limit-cycle behavior is calculated and whether plots are produced.

Section 4 gives the time-dependent solutions for the following quantities:

(a) the injector pressure perturbation at e = 0 °, 45 ° , 90°; (b) the nozzle

pressure perturbation at e = 0 °, 45 °, 90°; (c) the nozzle axial velocity

0°perturbation at e = , 45 °, 90°; and (d) the nozzle boundary term, Re -_Y_t

at e = O °. This output is given in two parts: (i) the initial values for

-_ _ t g 0 and (2) the solutions for t.m _ t _ tf, where t.l and tf are deter-

mined by the input parameters TSTART and TQUIT (see discussion on Input). On

the first page of each part a heading gives the interaction index, n, and the

time-lag, 7, and the chamber parameters, y, Ue' and L/D.

Section 5 gives the time history of the pressure amplitude (maximum and

minimum values) for the chamber location specified by NLOC. This information
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is printed as an array of number pairs giving the value of the pressure maxi-

mum or minimum (upper number) and the corresponding time of maximum or minimum

(lower number). This information is useful in determining the growth (or decay)

rate of the transient solutions, and it provides a check on the convergence of

the solution to a limit-cycle.

Plotted Output. According to the values of NOUT and NFIRST the pressure

and axial velocity waveforms given in Section 4 of the printed output may be

plotted using a Calcomp plotter. The data over the dimensionless time interval

for printed output, t i m t _ tf, is plotted in sections of i0 units in length

beginning at t = ti. Thus for each quantity plotted, N plots are produced

where N is the largest multiple of iO contained in the interval ti _ t _ tf.

The data left over (i.e., for t i + ION _ t _ tf) is not plotted. All quantities

to be plotted for a given time interval are plotted before proceeding to the

next time interval.

The data given in Section 5 of the printed output (pressure maxima only)

is also plotted if NOUT > 0 and NOMIT = O. The abscissa and ordinate ranges

for this plot are not specified in the input, but are calculated such that

all of the data falls within these ranges. This plot is always the last plot

produced.

All of the above plots are scaled to fit on standard P_" ii"ve x paper

and scissor-lines are plotted for trimming plots to this size. The data is

plotted as individual points using a small circle symbol, and all of the values

computed during the given time interval are plotted. Before the first plot is

produced the identifying title (see Input) is printed.

San_le Output. The following sample output illustrates the printed and

plotted output produced by Program LCYC3D for the sample input given in Table

D-2.

i14



Table D-4. Sample Output, Sectiom i.

GAMJ4A = 1,200 UE = .200 ZE = 1.0000_

DROPLET MOMENTUH SOURCE IS NEGLECTED

NAME d L M N NS SMN JMISM_)

AOll 1 0 1 1 1 1.84118 ,5B187
BOIl 2 0 1 1 2 1,84118 .58187
A021 3 0 2 1 1 3.05_2_ .48650
B021 4 0 2 1 2 3.05424 .q8650
BOOt 5 0 0 1 2 3.83171 -._0276

d YR YI EPS ETA

I .01;1; .01_i4 .08122 .19;51
2 .n1414 .OIWI4 .0B122 .19;51

,01_1_ .01_14 .lOb17 .25115
4 .01_1_ .01_I_ .I0b17 .25_15
5 .01;14 °O1_lq °11993 .28170

NUMBER OF COEFFICIENTS C{X,NJ,NP) IS 10

C(1, 1, 1) = 3.39060
ell, 2, 2) = 3.39060
C(1, 3, 3) : 3.39060
C(1, 4, _) = 3,390B0

C(l, 5, 5; = 9.33021
C(I, 6p bi = 9.33021
C(1, 7, 7) = 9.35021
Ctl, 8, 8) = 9,33021
Ctl, 9, 9} = l_,6B_gl

C(l,lOplt_) = 14,68_91

NUMBER OF COEFFICIENTS C(2,NJ,NP; IS I0

C(2, lp 1) = .2b153
C{2, 2, 2) = .2b153
C(2, 3, 3} : .26153
C(2, 4, _1 : .2b153
CIz, 5, 5) : ,26457
C{2, 6, o) : ,26457
C{2, 7, 7) : ,26457
Ci2, 8, B) : .26457
Ct2, 9, 9) = .2665_
Ct2,1OPl_) : ,2665_

NUMBER OF COEFFICIENTS CI3,NJ,NP) IS I0

C¢3, 1, 11 : .24000
CI3, 2, 21 = .2_000
CL3, 3, 3) = .2_000
C_3, 4, _) : .2_000
C(3, 5, 5) : .24D00
Ct3, b, b) : .2_000
CL3, 7, 7) : .2_000

ZCOMB : 1,00 NJHAX : 10
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Table D-4. (Continued)

CI3, 8p 8) : ,24000
CL3, 9p 91 : o2_000
CI3tlOtlO) : ,2_000

NUMBER OF COEFFLCIENTS D(NJ,NP,NQ) IS

D| I) I) 7) = -1,7350_

DL I) 1) 9) = -2,33866
D( I, 3, 5) = 1,7350_
0¢ lw 5) 3) : 1._9783
DL 1, 7, 1) : -1,49785
OL le 9, 1) = -1.95281
DL 2p 2, 8) : -I,75505
D( 2p 2.10) = -2.33867
Ot 2e 4. 6) : 1.73505

Ot 2e 6t _) = 1,4978_
Ol 2e 8, 2) = -1,49784
D| 2plOp 2) = -1,962R2
D{ 3P le 5) = 1,7350_
D¢ 3, 3e 7} = 1.7350_
OL 3e 3, 9) = -2,33866
0¢ 3e 5e 1) = 1°49783
OI 3p 7, 3) = 1._9783
O( 3e 9e 5} = -I°96281

De _, 2, b) = 1,73505
De _e _e bl = I,75505
O{ *, _,iO) = -2.33867
O( _t b, 2) : 1,_978_
DL _, 8, 4) : 1,4978_
D{ _,10, 41 : -I.g6282

D{ 5, I, 3] : -1,13133
OL 5, 5, I) : -1,13135
O| 5, 5, 9) : -3.07465
D( 5, 9, 5) : -2,81865
D{ 6p 2, 4) = -1,13132
OI 6, 4, 2) = -1.15132
O( 6, 6,10) : -3.07469
O{ 6,10, 6) : -2,81868
D{ 7e I," I} : 1,13135

O& 7, 3, 3) = -i.13135
Dt 7, 7, 9) : -3,07465
OI 7_ 9, 7) = -2,81865
D{ 8, 2, 2) : 1,13132
De 8, 4, _) : -1,13132
D{ 8e 8,10] : -5.07469
D{ 8,10, 8) : -2,81868
D( 9p I, 1) : 1.04087
D( 9, 3, 3) : I,04087
Ol 9, 5, 5) : -.21090
D( 9, 7_ 7) = -.21090
DL 9, 9, 9) = _,1878_
DIIO, 2, 2) = 1.0_087
_¢10, 4, _) : 1.04087

D|IO, 6, o) : -.21091
OllO, 8, _l : -.21091
OIlOmlOelU) = _,18793

5O
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Table D-5. SampleOutput, Sectiom 2.

COEFFICIEt_TSFORCOMPUTATIONO_WALLPRESSUREWAVE_ORMS

COEFFICIENTSIN SERI{SFOR:

THETA TIME THETA AXIAL

d Z ¢DEGR_ES) DERIVATIVE DERIVATIVE DERIVATIVE

1 ,000 ,0 ,0000000 ,581R70n .O00000U
2 ,000 ,0 ,O000UO0 ,0000000 ,OOOUOOU

3 ,000 ,0 ,5818700 .OOnONOn ,O000000
,000 ,0 ,0000000 .O00000n ,OOuuOOU

5 ,000 ,0 ,0000000 ,973090n ,O00uOOU

b ,000 ,0 ,OOO0000 .NO00000 .O00oOOU
7 .000 .0 ._865000 .O00000n .O00000u

8 ,000 ,0 ,0000000 ,0000000 ,UOOUOOU
9 ,000 ,0 -,40276D0 ,O00000N .O00000U

iO .000 ,0 ,0000000 ,O000NO0 .O0_O00U

I ,000 WS,0 ,_11WW_2 ,_11_W2 ,O000000

2 o000 _5,0 .O000000 .O00nO00 .0000000
3 ,000 _5,0 ,_IIWW_2 -,_ll_W2 .O0000ou

• 000 _5.0 ,O000000 .O0oooOn ,O0OuOOO

5 ,000 _5.0 ,_865000 -,0000000 ,O00000U
b ,000 _5.0 ,0000000 ,0000000 ,UO0000U
7 .000 _5.0 -.O000000 -.9730n00 .oooooou

8 .000 _5.0 ,0000000 .O0_ooOn .O000000
9 ,000 _5,0 -,_027b00 ,OOOoNO0 ,0000000

I0 .000 _5.0 .0000000 ,O00000n ,O00000u

1 ,O00 90,0 ,5818700 -,O00000n ,0000000
2 .000 90,0 ,0000000 ,ooqooon .O00uooo
3 ,000 90,0 -,O000000 -,5818700 ,O000000

.000 90.0 ,0000000 .0OO000n ,0000000
5 ,000 90,0 -,O000000 -.9730000 .0000000
b ,000 90,0 .O000000 ,O00000n .0000000
7 ,000 90,0 -,w865000 ,0000001 .OOO0000
8 ,000 90.0 .0000000 ,O00000n .0000000

9 ,000 90.0 -._027600 .O00000n .0000000
iO .000 90.0 ,0000000 ,0000000 ,0000000

I 1.000 o0 .0000000 .5909575 .0000000
2 1.000 .0 .0000000 .0092405 .0000000

3 1.000 .0 .5909575 .OOnooon .0181736
1.000 ,0 .0092_03 .O00000n .0185766

5 1,000 ,0 ,O000DO0 ,9981g5q ,O00UO00
b 1,000 ,0 ,O000uo0 ,0261690 .OOOdOOU
7 1.000 ,0 ,wggog7g .oonNoon .0251885

8 1,000 ,0 ,01308_5 ,OOnOOOn _0263938
9 _,000 ,0 -,_158379 ,O00oOOn -,026Z_28

_0 1.000 ,0 -,01375_6 .0000000 -,0278051

1 1.000 ,5.0 ._178700 ._17870N .0128507

2 1.000 w5.0 .0065539 .0065559 .0131356
3 1,000 _5,0 ,_178700 -,_17_700 .0128507
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Table D-5. (Continued)

4

5
6

7
8
9

10

I

2
3

5
{o
7
8
9

_U

1.000 _5.0 .0065339 -.0065339 .0131356
1.000 wS.0 .W990979 -.0000000 .0251885
1,000 _5.0 .01308_5 -.nOnOOOn .0263938
|,000 _5,0 -,0000000 -o998|95q -,go00000
1,000 _5.0 -,0000000 -.026169N -,O00UOOU
1.000 _5,0 -,41583Z9 ,OOOO000 -.0261428

t.O00 W5,O -,01375W6 .O00oO00 -,0278051

1.000 90.0 .5909575 -.OONNqOO .0181736
1.000 90.0 .0092_03 -,O000NO0 .0185766
1.0OO 90.0 -,O000OUO -.5909575 -,UOOOOOO
1,000 90,0 -,O000OO0 -,0092_03 -.O00OOOU

1,000 90.0 -.0000000 -,998195Q -.O00000U
1,000 90,0 -,O0000OO -,0261690 -,OOOO00U
1.000 90.0 -,_990979 .0000001 -,0251885
I,O00 90,0 -,01308W5 ,0000000 -,0263938

1.000 90.0 -._158379 .000000, -.0261_28
1o000 90.0 -.01375_6 .0000000 -.0278051

Table D-6. Sample Output, Section 3.

LNI[IAL COHDITIONS ARE OF THE CORM:

Uil,d) = ACIJ)=COS(FREG=T) + ASIJ)=SINiFREQtT)), * EXPIDAMP*T)

d DAMPING CREGWlEHCY ACid) ASld)

I ,00000000 1,8_118000 ,ooonoooo .30_00000

2 .00000000 1.8_118000 -.30278619 -,00209_w7

3 .00000000 1.8_118000 .30000000 .oonono00

.00000000 1.8_118000 -.00209_7 .30278619

THE LIMIT-CYCLE BEHAVIOR IS CALCULATED,

THIS RUN PRODUCES PLOTTED OUTPUT,
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FORTRAN Listing

C

C
C
C

C
C

C
C

C
C

C
C
C
C

C
C

C
C
C

C
C

C
C
C

C
C
C

C
C

C
C
C

C
C

C
C

C
C

C
C
C

C
C
C

C
C
C

C
C

C

THIS PROGRAM CALCULATES THE NONLINEAR BEHAVIOR OF

TRANSVERSE, AXIALa OR COMBINED LONGITUDINAL-THANSUERSE

INSTABILITIES IN A CYLINDRICAL COMBUSTION CHAMBER WITH

UNIFORM PROPELLANT INJECTIONJ DISTRIBUTED COMBUSTION

PROCESSJ AND A CONVENTIONAL NOZZLE- THE COMBUSTION PROCESS

IS DESCRIBED BY CROCC0'S TIME-LAG MODEL. BOTH TRANSIENT'

AND LIMIT-CYCLE SOLUTIONS ARE CALCULATED-

THE FOLLOWING INPUTS ARE REgUIRED:

(1) THE CONTROL NUMBER1 NOUTCF-

(2) THE COEFFICIENTS FROM PROGP_ COEFFS3D-

(3) THE DATA DECK-

NOUTCF DETERMINES PRINTOUT OF COEFFICIENTS.

IF NOUTCF = 0 COEFFICIENTS ARE NOT PRINTED OUT-
IF NOUTCF = I LINEAR COEFFICIENTS ONLY ARE PRINTED 0UT_

IF NOUTCF = 2 ALL COEFFICIENTS ARE PRINTED 0UT.

THE DATA DECK CONSISTS OF THE FOLL0_ING CARDS:

FIRST CARD:

EN IS THE INTERACTION INDEX-
TAU IS THE TIME LAG,

R IS THE INTEGRATION STEP SIZE,

TSTART IS THE TIME AT WHICH OUTPUT STARTS.

TOUIT IS THE TIME AT WHICH COMPUTATIONS ARE TERI_INATED,

SECOND CARD;

NTEST IS TASK CONTROL NI._BER-"

IF NTEST = 0 COMPUTE TRANSIENT BEHAVIOR-

IF NTEST = 1 COMPUTE THE LIMIT-CYCLE BEHAVIOR,

0MODE IS THE NODE-AMPLITUDE USED TO TEST FOR LII_IT-CYCLES,
NLOC DETERMINES THE LOCATION OF THE WALL PRESSURE MAXIHA
AND MINIMA,"

IF NLOC = I LOCATION IS Z = 0_ THETA = 0 DEGREES.

IF NLOC = 2 LOCATION IS Z = 0a THETA = /45 DEGREES-

IF NLOC = 3 LOCATION IS Z = 0, THETA = 90 DEGREES°

NTERMS IS THE ND_BER OF TERMS GIVEN INITIAL VALUES-
NPZ DETERN.INES HOW SECONDARY STABILITY ZONES (PHANTOM

ZONES) ARE HANDLED,
IF NPZ = 0 PHANTOM ZONES ARE RETAINED,
IF NPZ = 1 PHANTOM ZONES ARE ELIMINATED,

NOUT IS THE OUTPUT CONTROL ND_.BER.

IF NOUT = 0 PRINTED OUTPUT ONLY-

IF NOUT • 0 BOTH PRINTED AND FLOTTED OUTPUT, NOUT
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C
C
C

C
C
C
C

C
C

C
C
C
C

C
C
C

C
C
C
C

C
C
C

C
C

1

3
4

5
6
7
8

9

DETERMINES THE NUMBER OF THE LAST PLOT
PRODUCED,

DATA FOR SETTING UP PLOTS (THIRD AND FOURTH CARDS)_

YHI(1) I5 THE MAXIMUM ORDINATE FOR PRESSURE PLOTS.

YHI(5) I5 THE MAXIMUM ORDINATE FOR VELOCITY PLOTS.

NOTE: THE ORDINATE SCALES F0E PRESSURE AND VELOCITY PLOTS

ARE SYMMETRIC ABOUT ZERO.

YLAB IS THE INTERVAL FOR ORDINATE LABELING FOR ABOVE PLOTS.

ITICY 15 THE NUMBER OF ORDINATE TIC MARKS F0R ABOVE PLOTS.

NOTE: ITICY SHOULD BE NEGATIVE FOR PRESSURE AND VELOCITY PLOTS

TO OBTAIN CENTERLINE.

NFIRST IS THE NUMBER OF THE FIRST PLOT PRODUCED.

NOMIT DETERMINES WHETHER AMPLITUDE FLOT I5 PRODUCEDI

XF NOMIT = 0 AMPLITUDE PLOT IS PRODUCED.

IF NOMIT .. | AMPLITUDE PLOT IS OMITTED.

INITIAL AMPLITUDES OF F-FUNCTIONS (REMAINING CARDS)I

AS(J) IS THE AMPLITUDE OF THE SINE TERM°

AC(O) IS THE AMPLITUDE OF THE COSINE TERM.

COMPLEX

DIMENSION

COMMON

1
2

COMMON
COMMON

DATA

!

2

3

4

5

6

YNOZ(IO)* B(10), Cl* C2, C3, CPHIT(10)* CSUM* A

L(10)* N(10)* 5(I0)* NAME(10)* AS(20)* AC(20)*

U(250*Z_0). AA(4)* Y(40), FZ(a,Z_0). YPC40)* UZ(40),

CP(3.20,20), FRQI(20)* DMPI(20)* UM*%X(500)*UAUG(100),
Z(6)* ANGLE(6)* THETA(6)* CFT(6*20)* YI(20)*

CFTH(6*20)* CFZ(6*20)* PRESS(6)* AXVEL(3)* YR(20)*

TPLOT(500)* YPLOT(6*500)* DUMMYT(500)* DUMMYY(500),

IBUF(3000)* ITT(a)* ITYI(7)* ITY2(7)* ITY3(7)_

ITY4(7)* ITY5(6)* TAUCUT(20)* ITY6(8)*

ITP(3), TITLE(12)* PR5(500)* TI(500)* PMAM(500).

TIMAX(500)* YL0(6)* YHI(6)* YLAB(6)* ITICY(6)

RV(20*a)* C(3,20.20)* D(20,/400)*

KPMAX(3*20)* IC(3,20,20)* KP_AX(20)*

IDP(20* 400)* I DQ( 20,/400)

/BLK2/ M(10)* N5(10)* SJ(10)* B

/BLK3/ N4MAX* NLMAX* G_MHA* COEF(3* 20)

ITTI'DIMENSIONLES5 TIME* T'/*

IT_II'INJECTOR PRESSURE PERTURBATION* THETA = 0'I*

ITY2/'INJECTOR PRESSURE PERTURBATION* THETA = 45'/*

ITY3/' INJECTOR PRESSURE FERTUF_BATION* THETA " 90'/*

ITY4/'NOZZLE PRESSURE PERTURBATION. THETA = 0'/*

ITYSI'NOZZLE AXIN.. VI'_u0CITY* THETA = 0'I*
ITY6/'NOZZLE B-C, (RE(-GAMMA_Y_PHIT)) AT THETA = 0'/*
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C

C
C
C

C
C
C

C
C
C

C

C
C

C

7 ITP/'FRESSURE PEAKS'/

LAST = 250
ERR = 0-00I

TDEL = 10.0
NPT = 0
PA(1) = 0.0

.,_(2) = 0.5
A_(3) = 0.5
,¢u_(4) = 1.0

PI = 3.1415927

READ (5-5003) NOUTCF

THIS VERSION OF LCYC3D READS THE COEFFICIENT DATA FROM

A FASTRAND FILE GENF__ATED BY PROGH_.M COEFFS3D- TO READ

THIS DATA FROM CARDS, USE READ "(5, XXX}() INSTEAD OF
READ (9,XXXX) 1N THIS SECTION.

INPUT OF MOTOR PARAMETERS AND NUMBER OF TERMS.

READ (9,5001) G/%MMA, UE, ZE, ZCOMB, NDROP5, NUMAX

WRITE (6,6001) GIkMMA, UE, ZE, ZCOMB, NOMAX

IF (NDROP5 -EQ- 0) WRITE (6,6030)

IF (NDROP5 .EQ- I) WRITE (6,6031)

NU ffi2 * NJMPJ_

_vlX = NU'MAX/2

RLD = 0.5 * ZE

WRITE (6,6002)

INPUT OF DESCRIPTION OF 5ERIES EXP_SION-

DO I0 K = I, JMX

READ (9,5002) NO, L(Nj), M(NJ), N(NJ), N5(NJ), 5(NO), SO(NO),

I NAME(NO)

WRITE (6,6003) NAME(NO), NO, L(NO), M(NO), N(NO), NS(NJ),

I S(NO), S0(NO)

10 CONTINUE

WRITE (6,6010)

DO 15 K = I, JMX

READ (9,5010) O, YNOZ(J), B(O)

WRITE (6,6015) O, YNOZ(O), B(O)

NO = (2 * O) - 1
YR(NO) = REAL(YNOZ(O))

YI(NJ) = AIMAG(YNOZ(J))

YR(NO+I) ffiYR(NO)

YI(NJ+I) = YI(NO)

15 CONTINUE
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C

C

C

C

C
C

C
C

ZERO LINEAR COEFFICIENT ARRAYS.

DO 20 KC = 1, 3

DO eO NO = Is 20

DO 20 NP ffi 1* 20

C(KC, NO, NP) '= 0.0
CP(HCsNO, NP) = 0o0

20 CONTINUE

ZERO NONLINEAR COEFFICIENT ARRAY.

DO 30 NO = 1, _-0
DO 30 NPQ = I* 400
D(NOsNPQ) = 0"0

30 CONTINUE

INPUT OF LINEAR COEFFICIENTS°

DO 40 KC " ls 3
READ (9*5003) HMAX
IF (NOUTCF oGT. 0) WRITE (6*6004) KCs 14MAX
IF (KM_0( *EO. 0) GO TO 40

DO 45 K = t, KMA.X

READ (9s5004) NO* NP* CP(KCsNJ*NP)

IF (NOUTCF *GT* 0) WRITE (6s6005) KCs NO, NPs CP(KC*NOsNP)

45 CONTINUE

40 CONTINUE

INPUT OF NONLINEJ%R COEFFICIENTS*

READ (9*5003) NLMA_(

IF (NOUTCF -EQ° 2) WRITE (6*6006) NLMAX

IF (NLMAX *EQ* 0) G0 TO 50

DO 52 NO = Is 20
KPQM_%X(NJ) = 0

52 CONTINUE
IX) 55 K = l* NLMAX

READ (9,5005) NO, NP* NQs DT

IF (NOUTCF -EQ- 2) WRITE (6s6007) NO, NP* NQ* DT

KPQMAX(N.J) = KPP=MAX(NO) ÷ i

KPQ '= KP(;_AX(NJ)

IDP(N0sKPQ) = NP

IDQ(NOsKPQ) = NQ
D(NO*KPQ) = DT

55 CONTINUE

50 CONTINUE

CALCULATE SPATIAL COORDINATES FOR PRESSURE COMPUTATIONo

DO 51 NFRES = Is 3

Z(NPRES) = 0.0

RTHETA = NPRES - I
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C

C
C

C
C

_%NGLE(NPRES) = RTHETA * 45.0

THETA(NPRES) = RTHETA * PI/4.0

Z(NPRES + 3) = ZE

ANGLE(NPRES + 3) = ANGLE(NPRES)

THETA(NPRES + 3) = THETA(NPRES)

51 CONTINUE

CALCULATE COEFFICIENTS FOR PRESSURE TIME HISTORIES,

DO 53 NPRES = 1, 6

DO 53 J = 1, JMX

NP = (2 * U) - I

ZI = Z(NPRES)

ANG = THETA(NPRES)

CALL PHI CFS(J,Z I, ANG, CI, C2, C3)

IF (NPRES oEQ. 4) CPHIT(O) = C1

CFT(NPRES, NP) = RE_(CI)

CFT(NPRES,NP+I) = -AIMAG(CI)

CFTH(NPRES, NP) = REAL(C2)

CFTH(NPRES, NP+I) = -AIMAG(C2)

CFZ(NPBES,NP) = RE_%L(C3)

CFZ(NPRES, NP+I) = -AIMAG(C3)

53 CONTINUE

OUTPUT OF COEFFICIENTS FOR PRESSURE TIME HISTORIESo

WRITE (6,6020)

DO 56 NPRES = I, 6

WRITE (6,601a)

DO 56 O = I, NOM;tX

WRITE (6,6021) J, Z(NPRES), /%NGLE(I_PRES),

I CFT(NPRES, J), CFTH(NPRES, J)* CFZ(NPRES, J)

56 CONTINUE

READ (5,5000) TITLE

ZERO INITIAL VALUE AND FREQUENCY ARRAYS.

5 DO 57 K = I, NOMAX

AS(K) = 0-0

AC(K) = 0-0

FRQI(K) = 0-0

57 CONTINUE

READ C0*._BUSTION AND CONTROL PARAMETERS.

READ (5,5006, END = 300) EN, TAU, H, TSTART, TQUIT

READ CONTROL NUMBERS°

READ (5,5008) NTEST, JMODE, NLOC, NTERMS, NPZa NOUT
0MODE = 42 * JMODE) - I
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JPMODE = JMODE + NJMAX

IF (NOUT *GT* O) NPT = !

IF (NOUT -EQ* O) GO T0 9

READ DATA FOR SETTING UP PLOTS*

READ (5,5009) YHI(1), YHI(5), YLAB(1)* YLAB(5)

READ (5,5008) ITICY(1)* ITICY(5)* NFIRST, NOMIT

9 DO 58 K = I* NTERMS

INPUT INITIAL AMPLITUDES FOR F-FUNCTIONS-

READ (5, 5007) J* AST, ACT

NJ = (2 * J) - I

AS(NJ) = AST

ACCNJ) = ACT

CALCULATE FREQUENCY AND DAMPING.

RL = L(U)

AX = RL _' PI/ZE

AXSQ = AX • AX

SSQ " SCd) * SCJ)

FRQ|(NJ) = 5QRT(SSQ + AX5Q)

DMPI(NJ) = 0.0

FRQI(NJ÷I) = FRQI(NJ)

DMPI(NJ+I) = DMPI(Nd)

CALCULATE INITIAL AMPLITUDES FOR G-FUNCTIONS.

IF (FRQI(Nd)) 58, 58- 581

581 GYRU = GAMMA*YR(NJ)*UE

GYIF = GAMMA*YI(NJ)_FRQI(NJ)

GYRF = GAMMA_'YR(NJ)_FRQI(NJ)

GYIU = GAMMA*YI(NJ)_'UE

NPRE5 = 4

IF (NS(J) .EQ. I) NPRE5 = 6

A! '= (I*0 + GYRU)*CFZ(NPRES,NJ+I)

I - GYIF*CFT(NPRES, NJ+ I)

A2 = GYRF_'CFT(NPRES, NU÷I) + GYIU*CFZ(NPRES, NJ+I)

A3 = -(I*0 + GYRU)*CFZ(NPRESaNJ) ÷ GYIFVCFT(NPRES, Nj)

Aa = GYRF*CFT(NPRES, NJ) + GYIU*CFZ(NPRES, NJ)

DET = A:*AI ÷ Ae*A2

IF (DET *LT* 0.0000301) G0 TO 583

RI ,, A34,AC(NJ) - A44,AS(NJ)
R_- ,, -A4,I, AC(NJ) - A3*AS(N,J)
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C

C

C
C
C

C

C
C

AC(NJ÷I) = (RI*AI + R2*A2)/DET

AS(NO+I) = -(R2*AI - RI*A2)/DET

GO TO 58

583 AC(NJ+I) = -AS(NO)

AS(NO+I) = AC(NJ)

58 CONTINUE

OUTPUT OF INITIAL AMPLITUDES,

WRITE (6.6016)

DO 590 O = 11 NJMA,X

IF (AS(J)) 591, 592, 591

592 IF (AC(O)) 591, 590. 591

591 WRITE (6,6017) J* DMPI(J), FRQI(O), AC(J), AS(.])

590 CONTINUE

IF (NTEST .EQ. 0) WRITE (6,6025)

IF (NTEST -EQ- I) WRITE (6,6026)
IF (NPZ .EQ. I) WRITE (6,6028)

IF (NOUT -GE'. I) WRITE (6*6027)

DO 59 KC = I, 3

DO 59 NO '= I, I0

KI_i%X(KC,NJ) = 0

59 CONTINUE

IF (NPZ .EQ. O) GO TO 605

DO 602 d " I, JMX

NO = (2 * J) - I

I_ = L(J)

AX = BL * PI/ZE

AXSQ = AX * AX

SSO = S(J) * S(J)

OMEGA = SQRT(SSQ + AXSQ)

TAUCUT(NJ) = 2.0 * PI/0MEGA

TAUCUT(N,J+I) = TAUCUT(N,J)

602 CONTINUE

IX) 604 NJ = I- N..IMAX

DO 60/4 NP = I, NJMiq_X

IF (TAU -GT- TAUCUT(NP))

604 CONTINUE

CP(3, NJ, NP) ,. 0-0

COMPUTE LINEAR COEFFICIENTS FOR GIVEN VALUES OF EN AND TAU.

605 DO 60 NJ = 1, NJMAX
DO 60 NP = 1, NJMAX
CT = CP(I*NO, NP)
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0

C
C
C

IF (CT) 61, 62. 61
61 KPMAX(I,Nd) = KPM_(I*NO) ÷ 1

KP = KPMAX(I*NJ)

IC(I*NJ*KP) = NP

C(I*NJ*KP) = CT

62 CT = CP(2*NjJNP) - _..N*CP(3*NJJNP}
IF (CT) 63. 64, 63

63 KPMAX(2,N,J) = KFM.AX(2,N,J) + 1
KP = KPM_X(2, Nd)

IC(2*N.J*HP) = NP
C(2,NJ*KP) = CT

64 CT = EN * CP(3sNJ*NP)

IF (CT) 65* 60, 65

65 KPMC_X(3.NJ) = KPM_X(3, NJ) + !
KP = KPMAX(3,N.J)
1C(3*NJsKP) = NP

C(3*NJ*EP) = CT
60 CONTINUE

NDIV = 1-0 + TAU/H
RN - NDIV
H = TAU/RN
H6 = H/6-0

WRITE (6*6008) EN, TAU* GAMMA* UE* RLD
WRITE (6, 6009)

WRITE (616022) (ANGLE(J), J = 1.6), (t_NGLE(J), J = 1,3)

WRITE (6,6012)

NPI = NDIV + 1
DO 70 I = I, NPI

NSTEP = I - NPI

RSTEP = NSTEP
TIME = RSTEP * H

TI(I) = TIME
IX) 75 d = 1, NJMAX

dP = d + NdMAX

IF (AC(O)) 751, 753, 751

"/53 IF (AS(J)) 751. 752, 751

"/52 U(l*d) = 0-0

U(I*JP) = 0-0

G0 TO 75
751 ARG = FRQ£(J) * TIME

FSIN = SIN(AI_G)

FCO5 = COS(ARG)

FEXP = EXP(Dt_PI(J)*TIME)

U(I,J) = (AS(O)*FSIN + AC(J)*FCOS) * FEXP
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0

C

C

C

C
C

C

U(I,JP) = ((AS(J) * FCOS) - (AC(j) * FSIN)) * FRQI(J} * FEXP
I + DMPI(J) * U(I,J)

75 CONTINUE
CALCULATE INITIAL VALUES OF PRESSURE AND VELOCITY,
DO 704 NPRES = I, 6

DO 702 J = I, NJHAX

COEF(I,J) = CFT(NPRES, J)

COEF(2, J) = CFTH(NPIRES, J)

COEF(S,J) = CFZ(NP_ES,.J)

702 CONTINUE

DO 703 J = l, NU

Y(J) = U(I,j)

703 CONTINUE

UBAR = 0-0

IF (NPRES -GT- 3) UBAR = UE

I._S = 0-0
IF ((NDROPS-EQ.I)-AND. (NPRES-LT-a)) LIMS = UE/(ZE*ZCOMB)

CALL PRSVEL{UBAR, UMS, Y,P, VTH, VZ)

PRESS(NPRES)[ = P

IF (NPRES -GT- 3) AXVI_u(NPRES - 3) '= VZ

70/4 CONTINUE

PRS(I) = PRESS(NLOC)

CALCULATE INITIAL VALUES OF NOZZLE B-C,

CSUM = (0-0,0-0)

DO 710 J = I- JMX

JP = NjMAX + (2 * J) - 1

FT = Y(JP)

GT = Y(JP+I)

/% - CMPLX(FT, GT)

CSUM = CSUM + YN0Z(J) * CPHIT(J) * A

7 I0 CONTINUE

SIAM = REAL ( CSUM )
YPHI = -GAMMA * SUM

WRITE (6,6011) NSTEP, TIME, (PRESS(O), U = 1,6)-

I (AXUEI..(J), J '= 1,3), YPHI

70 CONTINUE

WRITE (6,6008) EN, TAU, G_MA, UE, BLD

WRITE (6,6022) (ANGLE(J), J = 1,6), (ANGLE(J), J = 1,3)

LINE = 8

K= 0

MAXN0 = 0

MAXP = 0

IF (NOUT .EQ- O)

JPLOT = 0

TM|N = TSTART

GO TO 100
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C

C

TP.AX = TSTART + TDEL

YLO(1) = -YHI(1)

DO 90 d = 2,4

YHI(.J} = _HI(I}

YL0(U) = YLO(1)
YLAB(J) = YLAB(1)

ITICY(O) = ITICY(1)
90 CONTINUE

YL0(5) = -YHI(5)
YHI(6) = YHI(5)

YL0(6) = YL0(5)

YLAB(6) = YLAB(5)

ITICY(6) = ITICY(5)

****$***.4.*** N_ERICAL CALCbLATIONS SECTION ****$*****$*********$

I00 I = NPI

RUNGE-KUTTA IN'IEGRATION SCHEI_.E.

I05 NSTF_P = (I - NPI + (LAST - NFI) * K)

RSTEP = NSTEP
TIME = IqSTEP * H

TI(I) = TIME

DO II0 .J = Is Nd_AX

JP = J + NJF'AX
RV(dal) = U(I-NDIV*J_)

RV(J, Zl) = U(I-NDIV+I,JP)

RV(J, 2) = 0-375"I_V(0, I) + 0*75*_V(J, 4) - 0-125*U(I-NDIV+2, JF)

_V(J-3) = RV(J.,2)

I I0 CONTINUE

DO 120 d = I, NU

Y(J) = U(I,J)

120 CONTINUE

CALL RHS(NU* I,Y-.YP)
DO 130 d = I, NU
FZ(I.,J) = YP(J)

130 CONTINUE
DO 140 II - 2,4

DO 144 d = 1,'_U
UZ(.J) = Y(.J) + AA(II) • I_ • FZ(II-I,J)

144 CONTINUE "

CALL PJ_K(NU* I I, UZ*YP)
DO I_;8 O = Is NU
FZ(II,O) = YPC,J)

148 CONTINUE

1/40 CONTINUE

DO 150 d = t_ NU

U(I÷L,,J) = Y(,J) + (FZ(I,,J)+2o0*(FZ(2*O)+FZ(3*U)) + FZ(4*J)) * H6

150 CONTINUE
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C

C

C
C

C

'C

CALCULATE PRESSURE TIME HISTORIES,
DO 154 NPRE5 = la 6

DO 152 O = 1, NOMAX

C0EF(IsO) = CFT(NPRES*,J)

C0EF(2s,J) = CFTH(NPRESJ,J)
COEF(3,,J) - CFZ(NPRES, J)

152 CONTINUE

UBAR .= 0-0

IF (NPRES .GT. 3) UBAR = UE

UKS = 0-0

IF ((NDROPS-_Q-I) -AND. (NPRES.LT-4)) t_S" UE/(Z]P.*ZCOMB)
CALL PRSVEL( UBA_, UMS, Y, P, U_H, _Z)

PRESS(NPRE5) = P

IF (NPRE5 .GT* 3) AMUEL(NPRES- 3) = VZ

154 CONTINUE

PRS(I) = PRESS(NL0C)

CALCULATE VALUES OF NOZZLE B-C.
CSUM .. (0-0,0-0)

DO 650 ,J = I, OMX

,JP " N,JMAX + (2 * ,J) - I

FT = Y(OP)

GT = Y(OF+I)

A = CMFL}((FT, GT)

CSUM = CSUM + YNOZ(,J) 4' CPHIT(,J) * A

650 CONTINUE

SUM = 5EAL(CSUM)

YFHI = -GAMMA * SUM

DETERMINE MAXIMA AND MINIMA OF PRINCIPAL MODE-AIK, PLITUDE

FUNCTION FOR USE IN DETERMINING LIMIT-CYCLE BEHA_)IORo

IF (U(I,OPF:ODE) * U(I+I,UPMODE)) 170, 170, 160

170 FDEN = U(I,JPF.0DE) - U( I+ I,,JPMODE)

IF (PDEN) 171* 160, 17|
1"/1 PP = U(I,UFMODE)/PDEN

PA = (PP - I-0) * PP * 0-5

PB = I-O - (PP * PP)

PC " (FP + I-0) W' PP * 0.5

MAXNO = MAXNO + I

I._,AX(MAXNO) = PA*U(I-I,JM.ODE) ÷ PB*U(I,,JMOD[) + PC*U(I+I,,JMODE)

IF ([_AXN0 -GE- 500) G0 TO 250
160 CONTINUE

DETERMINE MAXIMUM AND MINIMUM PRESSURE AT LOCATION SPECIFIED
BY NLOC,

DPL " PRS(I) - PR5(I-I)

DPS = PRS(I-I) - PR5(l-2)

IF (DPL*DP5) |73, 173, 175

173 PNUM = PRS(I-2) - PRS(I)
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C

C
C
C

C

C
C

C
C

PDEN = 2.,0 * (PRS(I-2) + PRS(I) - 2.0,tPRS(I-I))
IF (PDEN) 174s 175a 1"I4

174 PP = PNUF,/PD._

FA = (PF - I-0) * PP * 0-5
PB = 1-0 - (PP * PP)

PC = (PP + 1.0) * PP * 0-5
b_AXP = b_.,_XP + I

PMAZ(MAXF) = PA*PRS(I-2) + FB*PRS(I-I) + PC*FRS(I)
TIMAR(F_A}_P) = TI(I-I) + FF*H

IF (F, AXP -GE. 500) GO TO 250
175 CONTINUE

IF (NTEST oEQ. I) GO TO 155

IF (TIHE oLT. TSTART) GO TO 155

IF ((NOUT *EQ. 0) .OR. (NOUT .GT. 6)) GO TO 156

IF (THAX *GT- TQUIT) G0 TO 156

IF ((TIb_E *GT. Ti_AX) .OR° (OPLOT .GR. 500)) GO TO 1000

OPLOT = OFLOT + 1

FILL TIHE ARRAY FOl:i PLOTTING.
TPLOT(OFLOT) = TIFE

FILL INOECTOR P_ESSURE ARRAYS FOR PLOTTING (THETA = Oa 45, 90)
DO 1001 0 = I_3

YPLOT(,J*OPLCT) = PRESS(O)
1001 CONTINUE

C

C FILL NOZZLE PRESSURE ARRAY FOR PLOTTING (THETA ffi O)
YPLOT(II.,JPLOT) = PRESS(4)

C

C

C
C

C

FILL NOZZLE AXIPL UELOCITY ARRAY FOR PLOTTING (THETA ffi O)
YPLOT(5_,JPLOT) = AXVEL(I)

FILL NOZZLE B.C. ARRAY FOR PLOTTING (THETA = O)-
YPLOT(6_OPLOT) = YPHI

GO TO 156
C

1000 NUH = ,JPLOT
C
C
C

C

C

PLOT TIldE HISTORIES.

DO 1020 NPLOT = NFIRST_ NOUT

OPLOT = 0
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C
C

I010

C

ASSIGN PLOTTING FAS_ETERS.

YMIN = YLO(NFLGT)
YF.'AX = YHI(NPLOT)

NTICY = ITICY(_PLOT)

DELY = YLAB(NPLOT)

ELIMINATE FOII_ TS

DO 1010 d = I, NUM

IF ((YFLOT(NPLOTs.J) .LT. YMIN) .OR.

I GO TO I010

OPLOT = UFLOT + I

D[A_.MYT(OPLOT) = TFLOT(U)

DUMMYY(UFLOT) = YPLO_qNFLGTa,J)

COW TI N UE

THAT ARE OUT OF THE ORDINATE I_GE.

(YPLOT(NPLOT#O) .GT-

IF (OPLOT -EO- O) GO TO 1020

GO TO (I011, I012, I013,1014, I015,1016)* NPLOT

YMAX))

C

C PLOT INOECTOR PRESSURE AT THETA = 0 DEGREES.
1011 CALL GRAPHS( I BUF, 3000, 4,.JPLOT, 1 I,NTI CY, _I_..AR, YMA_XI 11'_IN, YMIN,

1 I TT, I TY 1 • 21,41, DUI_I_Y T, DUMMYY, 2 • Oa Di_LY, TI TL E)

GO TO 1020
C

C PLOT INOECTOR PRESSURE AT THETA = 45 DEGREES-
1012 IF (M(.JMODE) .EQ- O) GO TO 1020

CALL GI_APHS( I BUF* 3000* 4, .JFLOT* 1 I,NTI CYa 1"MAX* YM.AX* THIN* YMIN*
1 I TT* I TY2* 21,42, DL_.MY T, DU_MYY* 2- 0* DKI, Yr.TI TLi_)

GO TO I020

C
C PLOT INUECTOR PRESSUfiE AT THETA = 90 DEGREES.

1013 IF (_(O_ODE) -EO. O) GO TO 1020
CALL GRAPRS( I BUF* 3000* 4, UFLOT, 1 I*NTI CY, TMA._* YMA_* THIN* YF_I N*
1 I TT* I TY 3* 21 • 42* DU_'_YT- DL_YY* 2.0* DI_.¥* TI TL E)

GO TO 1020

C

C PLOT NOZZLE PRESSURE AT THETA = 0 DEGR_'ES-
1014 CALL GRAPHS( I BUF, 3000* 4, JPLOT, 1 1, N TI CY* Tr_A_, YF.'A/I* TMIN* YMIN*

I I TT* I TY4* 21.39* D_I_Y T* Dtl_F.'YY* 2-0. D_LY, TI TLE)

GO TO 1020
C
C PLOT NOZZLE A]_IAL UELOCITY AT THETA = 0 DEGREES.

1015 CALL GRAPHS(IBUF*3000*4*UFLOT* II*NTICY*TF,,A_.*Y_AX*TMIN*YMINJ,

1 I TT* I TY 5. 21 * 32, D t_liv_Y T* DIJMFIYY, 2- 0_' DF.LY* TI 7LE)
GO TO 1020

C

C PLOT NOZZLE B.C. AT THETA = 0 DEGREES.
1016 CALL GRAPHS(IBUF, 3000, 4*,JFLOT, 11*NTI CY* TMA_*YMA,X* II_IN*YMIN*

1 I TT* I TY6* 21, 44* DU_.YT* D_MYY, 2- O, DELY* TITLE)
C

1020 CONTINUE



C
C
C

C

C
C
C

C

C
C

REASSIGN PLOTTING FAF,_.HETLRS FOR NEXT SE_ OF PLOTS*

OPLOT = 0

Tb_IN == TmAz

TMAX = TMA,X + TDEL

156 WRITE (6J6011) NST£P, TIME, (FRESS(O)J O = 1.6)*
1 (AXVELCJ)J ,J = 1,3)J YPHI

LINE = LINE + 1

157 IF (TIHE .GT- TQUIT) GO TO 250
IF (LINE *LT- 52) GO TO 155

WRITE (6_6013)
WRITE (6_602E) (/_NGLE(O)* O = ls6)J' (ANGLE(O)1 O = 1_3}

LINE " 4

155 I ffi I + 1

IF (I .LT. LAST) , GO TO 105

TEST FOR LIMIT CYCLE.
K = K + I
IF ((NTEST -E0, O) .0R. (MAXN0 .LT. 80))

UTOT = .0,0

DO 180 O = 0_ 3
,JHAX = I_,._P;NO - O

UTOT = UTOT ÷ ABS(I._AX(,JMAX))

180 CONTINUE

UAVG(K) = UTOTI4,0

IF (K ,EQ, I) GO T0 190

CHANGE = UAUG(K) - UAVG(K-I)
ABSCHG = ABS(CIIANGE/UAVG(K) )

IF (ABSCHG *GT- ERE) GO TO 190

T_- = TIHEI2-O

ITM = 2*IT_ + 2

I_ = ITM

TSTART = TI_ + TSTART

TQUIT = TM + TQUIT

IN = TSTART

TI_AX = TSTART + TDEL

NTEST s 0

GO TO 190

RE-ASSIGN ARRAYS,
190 DO 200 I = I, NPI

ILAST = LAST - NPI + I
PRS(I) = PRS(ILAST)
TI(1) = TI(ILAST)
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C

C
C

C

C"

C

DO 200 ,J ffi 1, NU
U(I_..J) ffi U(ILAST,.J)

200 CONTINUE

G0 TO 100

,I,************ PRESSURE MAXIMA AND MINIMA PRIN'_OUT ****************

250 t#RITE (616023) Z(NLOC), ANGLE(NLOC), MAXP
LINE = a

DO 255 OST ffi I, MAXP, 8

OSTART = JST

OSTOP = OST + 7

IF (,JSTOP -GT. M_P) JSTOF = MAXP

WRITE (6,602/4) (PMAX(,J), ,J = ,'START, ,.}STOP)

WRITE (6,6024) (TIM*aM(J), ,J = OSTA_T, ,JSTOP)
WRITE (6,6014)

LINE = LINE + 3
IF (LINE .LT- 52) GO TO 255
LINE = 0

WRITE (6,6013)

255 CONTINUE

IF ((NOUT .EQ. O) .0R. (NOMIT -EQ. I)) GO TO 5

DETEF_,INE LARGEST UALUE OF PMA_(.
/_MPMAX ffi 0.0

DO 260 O = 1, MAXP

IF (PMAX(J) .LT. /kMPMAX) GO TO 260

AMPMAX ffi PMAX(J)
26O CONTINUE

RANGE OF PLOT AND COORDINATE LABELING,
ITM ': AMPMAM + 1.0

AMPMAX = ITM

ITM = 1-0 + TIMAX(MAXP)/50.0

TMAX = I TM * 50

DELX = TMPJ(/IO-O

DELY - _MPM;_X/IO-O

ELIMINATE NEGATIVE UALUESo

,PLOT ,= 0

DO 262 ,J = l, MAXP

IF (PMAX(,J)) 262, 264, 264
264 JPLOT = JPLOT + I

Dt_MYT(,JPLOT) = TIMAX(J)

DUMMYY(,JPLOT) = PMAX(O)

262 CONTINUE

138



C

C

C

C

PLOT VALUES°
CALL GI_PH S( I BUF• 3000• 4• ,JFLOTs l 01 • l 01 • THAX• AM PHAX• 0 ° 0, 0 ° 0•
I I TT• I TP• 21J 14. DI_MYT. DL_I_YY • DELX• DELY• TITLE)

GO TO 5

TURN OFF PLOTTING ROUTINE.

IF (NPT .E@. I) CALL SHPARG300

C

C ************* RF._D FOP_AT SPECIFICATIONS

C

5000 FOF_AT (12A6)

5001FOP_AT (4F10.0.215)

5002 FORtdAT (515•2FIO*5•IX•A4)
5003 F0r_AT (15)

5004 FORMAT (215.F15.6)

5005 FORMAT (315aF15°6)

5006 FORI_AT (5FI0_O)

5007 FORMAT (I5.2FI0°0)

5008 FOP_AT (715)

5009 FOR_.'AT (7FI0-0)

5010 F0r_AT (15•4FI0.5)

C

C

C

6001FORMAT

I

2

6002 FOR_AT

I

6003 FO_AT

6004 FORMAT

6005 FOBF, AT

6006 FORMAT

6007 F0_AT

_=_,,t=_,_,_,,_=.,_**WRITE FORMAT SPECI FI CATIONS

6008

I

2

3

6009 FORMAT

6010 FORMAT

6011 FORMAT

6012 FORMAT

6013 FORMAT

6014 FOt_AT
6015 FORI<,AT

6016 FORHAT

1

2

3

NSa 7X_ 3H SIdN., 3(•

(IHI•9H GAMMA = •F5.3•5X•5HU£ = •F5o3•

5X•5HZE = •FS.5•SX•SHZCOMB = •F5-2•
5X_,8HNdMAX = •I2//)

( P_.X•29HNAH E d L M N

7H,.;M (SMN)/)
(2X_A4• 51 5.2F10°5)

(IH0•26H NUMBER OF COEFFICIENTS
(P_iRHC(•II_IH••I2_IH•_I2•4H) =

(1H0•38H NUHBER OF COEFFICIENTS
(2X•2HD(•I2• IH,,IP-•IH,•I2•4H) =

FORMAT(IHI•45H COMBUSTION FAR_C_qETER5s

IPX, IIHTIME-LAG = •FT°5/2X, IVHMOTO_ PAR_ETERS:•I9X•
8HGA/qMA = •F7,5•23H EXIT [_ACH NUMBER = •F7°5,

22H LENGTH/DIP_ETER = •F7,5//)

(P.X•ISHINITIAL C0NDITION5t/)

( IH0• 5X• IH,J• 8X• 2HYR• 8X• 2HYI • 7X• 3HEPS• 7_,_ 3HETA//}
(2)_, I 5•F12° 5• 10FIO- 5)

(_Ho)
(lldl)
(IH)

( 2X_ I 5• _FIO. 5)
(IHI•36H INITIAL CONDITIONS ARE OF THE FORH://

2X_49HU(I•,J) = AC(O)_COS(FRE-'Q'I'T) + AS(,J)_$IN(FREi_I'T}}•

14H * EXP(D_P_T)///6X• IHO•8_•THD_C_PING•
6X_9HFREQUENCY_ lOCi• 5HAC(d)• 10X• 5HAS(O)��)

C(*II•IOH•NO•NP) 15_15/)

•FIO.5)

D(N,J•NP*NQ) 15•15/)

•FIO, 5)
INTERACTION INDEX = .,F7°5•
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6017 F0 F_MAT

6020 FORMAT
1

2

3
4

6021 FORMAT

6022 FO [@',A T

l
2

3
4

6023 FOf_AT

1
6024 F0t_. AT

6025 FO I'iMAT

6026 FO BM_.AT

6027 FO F_.AT

6028 F0 P_AT

6030 FORMAT

6031 F01_T

END

(2X* I 5, 4FI 5"8/)
(1H1J46H COEFFICIENTS FOR COMPUTATION OF I_ALL PRESSUREa

IOH _AUEFOF.MS///143X,271dCOEFFICII_NTS IN SIKRtES FO_$//

22Xa 5HTHETA, 10X, aHTIMEI IOXI 5HTHETA, 10X, 5HAXI AL/
6X, IHJ, 9X, IHZ., 3X*9H( DEGREES)* 5X* 10HDERIVATI VE*

5X* 10HDERIVATIVE* 5X, 10HDERIVATIVE//)

(2X, I 5" FI0* 3* FI2- is 3FI 5.7)

( 26;_* 17HIN,JECT0_ PRESSURE, 14X, 1 5HNOZZLE PI_f..SSURE*

12X#21HNOZZLE AXIAL VELOCITYI3X,/4HSTEP, SX.p4HTIME,

FS*O#5H DEG-*FS*0, SH DEG-*F5*0*SH DEG**

F5=O*5H DEG°*F5°O*5H DEG-,F5*O*SH DEG.,

F5*0*5H DEG-._F5-0,5H DEGo_,F5*0.,SH DEG*.,,GX.,,/4HYPHI//)

(IHI*38H PRESSURE MAXIMA AND MINIMA ATZ Z ffi.PF5,2*

I1H THETA = ,F4,I/19H VALUES COMPUTED= ,I3//)

(IH * 7X, SFI 3*6)

( 2X//2X, 37HTHE TRANSIENT BEHAVIOR I S CALCULATED.)

(2X//2X,39HTHE LIt_IT-CYCLE BEHAVIOR IS CALC[.LATED.)

(2X//2X, 33HTHIS RUN PRODUCES PLOTTED OUTPUT.)

(2X//2X,'THE PHANTOM ZONES ARE ELIMINATED.')

(2X*'DROPLET MOMENTUM SOURCE IS NEGLECTED'/)

(2X,'DROPLET MOMENTt_ SOURCE IS INCLUDED'/)
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C
C
C
C

C
C

C
C
C

C
C
C

C
C

C

C

SUBROUTINE PHICFS(NF*ZITHETA, CTJCTH*CZ)

THIS SUBROUTINE COF_PUTE5 THE COEFFICIENTS NEEDED TO

CALCULATE THE _ALL PRESSURE PERTURBATION.

NP I5 THE INDEX OF THE COF_PLEX SERIES TE_4.

Z IS THE AXIAL LOCATION.

THETA I5 THE A_IMUTHAL LOCATION,

CT I5 THE COEFFICIENT IN THE SERIES FOR THE TIME DERIVATIVE OF
THE VELOCITY POTEI_TIAL.

CTH IS THE COEFFICIENT IN THE SERIES FOR THE THETA DERIVATIVE
OF THE VELOCITY POTENTIAL,

CZ IS THE COEFFICIENT IN THE SERIES FOR THE AXIAL DERIVATIVE

OF THE VELOCITY POTENTIAL,

C0M PL EX

COMMON

CI* CZ* CAXI* CAXIZ* CRAD* CAZI* CAZITH*
B(10)* CT* CTH* C3

/BLKE/ M(10), N5(10), 50(10), B

CI = (O'O*I.O)

CZ = CMPLX(Z*0-0)

CAXI = CC05B(CI * B(NP) * CZ)

CAXI3 - CI * B(NP) * CSINHKCI * B(NF) * CZ)
CRAD = CMPLX(SO(NF),O.O)
EM = M(NP)

ARG = EM * THETA

FSIN = SIN(ARG)

FC05 = C0$(ARG)

AZI = FC05

IF (NS(NP) .EQ- I) AZI = FSIN

AZITH = EM * FCOS

IF (NS(NP) .EO. R) AZITll = -EI_, * FSIN

CAZI = C_.PLX(_.ZIaO.O)

CAZITH = CMPL_(AZITH. 0.0)

CT = C_7_I *CARI * CRAD

CTH = CAZITH * CAXI * CRAD

CZ = CAZI * CAXI3 * CRAD

RETURN
END
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C
C
C
C
C
C

C
C
C
C
C
C

C

C

C

SUBROUTINE PRSVEL(UBARa _S,Y_, P* 9THa VZ)

THIS SUBROUTINE COMPUTES THE WALL PRESSURE AND VELOCITY.

UBAR IS THE LOCAL AXIAL STEADY STATE MACH NUMBER,

UHS 15 THE DERIVATIVE OF THE HACH NUMBER FOb THE CASE
WHEN DROPLET HOHE_Tt_ SOURCES ARE INCLUDED.

Y IS THE ARRAY CONTAINING VALUES OF THE MODE-AMPLITUDE

FUNCTIONS AND THEIR DERIVATIVES.

P IS THE VALUE OF THE WALL PRESSURE PERTURBATION,

VTH IS THE TANGENTIAL COMPONENT OF VELOCITY AT THE WALL,

VZ IS THE A_XIAL COMPONENT OF UP._0CITY AT THE WALL,

DIMENSION

COMMON
Y(/40), SLY(4), SUHSQ(3)
/BLK31 NOHA_(, NLMAX, G_I_A, COEF( 3, 20)

DO 10 I = la 4

SI_(I) = 0-0
10 CONTINUE

DO 20 I = I* 4

DO 20 0 = I* NOMAd(
OY= O

IF (I .EQ- I) ,JY = ,.I + N,J_IAX
II = I

IF (I .EO- 4) II = I

SU_(I) = SUH(I) + Y(OY) * C0EF(IIa0)
20 CONTINUE

PLIN = SUM(1) + UBAR*SUH(3) + tJHS*SLI_(4)
PNL = 0-0
IF (NLI_.AX .EQ. 0) GO TO 40

DO 30 I = 1. '3

SIJ_SQ(I) = SUI_(I) * SUH(I)
30 CONTINUE

PNL = 0-5 • ($UI_SQ(2) + SUHSQ(3) - SLI_SQ(I))

_0 P = -GAMHA _. (FLIN + PNL)
VTH = SUH(2)
VZ = SUH(3)

RETURN
_D
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C

C

SUBROUTINE RHS(NU, II*U, UP)

DIHENSION
COMMON

1
2

COMMON

U(NU), UP(NU)

RV(20,4), C( 3, 20_ 20 )1 D(20,400),

KPMA;_(3,20)J IC(3120,20)J KFQMAX(20),
I UP(E0,400), I DU(20,400)
/BLK3/ NJMAX, NLMAX, GAMMA, COEF(3, 20)

DO 10 NO = 1, N,JHAX

NJP = NO + NJMAX
UP(NO) = U(N,JP)

SL! = 0.0
St.2 = 0-0
SZ.3 = 0-0
SNL = 0*0

MAX = KPMAX(I,Nj)
IF (MAX -EQ° 0) GO TO 25
DO 20 KF = 1, MAX

NP = IC(IJNO,KP)
SLI = SLI + (C(I,NO,KP) * U(NP))

20 CONTINUE
25 MAX = KPMAX(2, NO)

IF (MA_ -EQ* O) GO TO 35
DO 30 KP = I- MAX

NPP = IC(2,NO.,KP) + NOMAX

SL2 = SL2 + (C(2, NO,KP) * U(NPP))
30 CONTINUE
35 MAX = HPMAX(3,N,J)

IF (MAX -EQ- O) GO TO 45

DO 40 KP = I, MAX

NP = IC(3, N.J*KP)

SL3 = SL3 + (C(3,NO,KP) * RV(NP, II))

40 CONTINUE

45 IF (NLHAX *EQ° 0) GO T0 55
MAX = KPOF, AX(NJ)

IF (MAX .EQ- O) GO T0 55

DO 50 KPQ = I* MAX

NP -- IDP(NJ,KPQ)
NQP = IDQ(NO,KPQ) + N,JMAX

SNL = SNL + (DCNO,KFQ) * U(NP) * U(NQP))
50 CONTINUE
55 UP(N.JP) = -(SLI + SL2 + SL3 + SNL)
10 CONTINUE

RETURN
END
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COMPILER(FLD=ABS}
SUBROUTINEGRAFHS(IBUF,NLOC.LDEU,NTOTJNTICX.NTICY,

I X_AX,YI_cO_J ZMI_. YI_IN J lTI TLX. I TI TLY,LTI TLX,LTI TLY. RARRAY,

2 YARRAY, DELX, DELY, TI TL E)

C

C IDENTIFIER _E_ING

C

C IBUF: ADDRESS OF BUFFER AREA FOR PLOT ODTPUT

C NLOCI NUF.BER OF LOCATIONS IN BUFFER AREA ¢_=EO00)
C LDEVS LOGICAL DEVICE NUMBER FOR PLOT

C NTOT: NUMBER OF POINTS TO BE PLOTTED

C NTICX: NI_BER OF TIC _.AFhiS ON ABSCISSA C_'=2)
C NTICY: NUMBER OF TIC MARKS ON ORDINATE (;,,,2)
C XMAXt UPPER LI_.ilT OF ABSCISSA DOF_AIN

C YMAX= UFFER LIFIT OF ORDINATE RANGE

C XMIN| LOWER LII_IT Of ABSCISSA DO_.AIN

C Y_IN: LONER LIt_IT OF ORDINATE RANGE
C ITITLX: ABSCISSA LABEL

C ITITLY: ORDINATE LABEL

C LTITLX: NU[_BER OF CHARACTERS IN ITITLX

C LTITLY: NL_.BER OF CHARACTERS IN ITITLY
C XARRAY= ABSCISSA POINTS IN TERI_S OF XMIN-XMAX COORD'S
C YARRAY: ORDINATE POINTS IN TERMS OF YMIN-YMAX COORD'S
C DELX:

C
C DELY:

C
C TITLE!

C
C

INTERVALS OF ABSCISSA TIC MARK LABELING

IN TERMS OF XMIN-XI_,AX COORDINATES

INTERVALS OF ORDINATE TiC F,ARK LABELING
IN TER_.S OF YMIN-YF, AX COORDINATES

LABEL FOR THE _HOLE RUN

TY PE

INTEGER

INTEGER
INTEGER

INTEGER

INTEGER

INTEGER

REAL
REAL

REAL
REAL.

FXELDATA ARRAY

FIELDATA ARRAY

INTEGER

I N TEGER
REAL ARRAY
REAL ARRAY

REAL

REAL.
FI ELDATA ARRAY

DIMENSION IBUF(NLCC}..XARRAY(NTOT}_.YARI_AY(NTOT)_.ITITLX(1),

1 I TITLY( I},YDIT(IO0}

DIF_ENSION TITLE(1)

C

C FIXED BASIC pARP/_ETERS
C

LOGICAL ZERO

DEFINEZE_0=NDEC.LT.O.AND-ABS(FPN) -LT-. 5

I .OR.NDEC-GT. 0.AND-ABS(FFN) .LT- 5.* 10._*(-NLEC- I)

DEFINE DNDEC=NDEC-FLD(O, 36, ZERO)*NDEC-FLD(O, 36, ZERO}

DEFINE I FIX (FANG)= INT(FARG+. 5}
DATA d/I/

DATA HEIGHT/. 105/

DATA INTEQ/I/

DATA APSCIS/8°/

DATA ORDINA/6. /

DATA ICODE/-I/

144



C

DATA TO I_.AR/l • /

DATA BOTF, AR/1 • 5/
RE/M. LEFMAR

DATA LEFMAR/Io9/

DATA RYTMAR/I.I/

DATA FACT/1./
DATA MAgi 5/I/

DATA MLINE/I/

DATA HTLABI. 1051

C
C
C

C
C
C

19

19 INITIAL COKPUTATION OF DERIVED PARAMETERS

_D INITIAL PLOT5 CALL
20 SKIPS PRELII_INARIES FOR END AND SUBSEQUENT CALLS

3

2

33

C

C RESET ORIGIN
C
C

20

2019

GO TO (19,20),0

YDIT(1) = 3.119.

TICKLE = HEIGHTI2.

ROTFAC = - 3.I14. * HEIGHT - 4./7. * HEIGHT
STARTL = 6 * HEIGHT ÷ ROTFAC + TICKLE

5EPLAB = 5TARTL + 1*5 * HEIGHT

_tMBLH = 0-070
REAL LABSEF
LABSEP = 4. * HEIGHT

ASTART = o_. , HEIGHT
DO I I = E, 100

YDIT(I) = YDIT(I - 1) + (2 * MOD(I,E) ÷ I)/19.

YDIT(IO0) = YDIT(IOO) + .5

CALL PLO T5( I BUF,NLO C, LDEV )
CALL FACTOR(I°)

d= 2
CALL SYMBOL (HEIGHT. 36 * HEIGHT + 5-5,HEIGHT, TITLE, 270*,72)
CALL PLOT(I-, - -5, - 3)
DO 2 I = 1,100

CALL PLOT(O**YDIT(I),3 - MOD(I,O.))
DO 33 I = l, XO0

YDIT(I) = YDIT(I) - ABSCI5- RYTMAH

XPAGE ffi BOTMAR ÷ 0RDINA
G0 TO 2019

XPAGE = BOTMAR + 0RDINA ÷ TOPMAR

CALL _HERE(RXPAGE, RYPAGE, FACT)
YPAGE = RYPAGE - LEFMAR

CALL PLOT(XFAGE, YP_GEJ - 3)
CALL FACTOR(FACT)
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C
C

C
C
C

DRAW AXES AND LABELING MAXIS TIMES

DO 100 I ffi I*b}AXIS
100 CALL EYAXI S

C

DRAW POINTS, OPTIONAL CEI_TERLINE, AND PAGE SCISSORLINE

MLINE TIMES

DO 200 I = I,i_LINE

@O0 CALL MYLINE

RETURN

C

C E_NTRY POINT SHPARG

C TERMINATE PLOTTING SEQUENCE

C
C

ENTRY SHPARG

CALL WHERE( RXFAG E, RYPAGE, I }
CALL PLOT( RXPAG E, RYPAGE. 999 )
RETURN

C
C
C
C

SUBROUTINE MYAXIS (INTERNAL)

II

12

113
114

SUBROUTINE I_YA_I S

STARTL = 6 * HEIGHT + ROTFAC + TICKLE

IMAX R IFIX((YF, AX - YMIN)/DELY)

TICSEP = 0RDINA/(ABS(NTICY) - 1)
CALL DENDEC(YMAX* DELYsNDEC)

K " 1

N R (ABS(NTICY)/IMAX) - I + MOD(ABS(NTICY)_E)
DO 9 I s 0, IIqAX
GO TO (11,12),K

IF(2 * I*LT.IMAX)GO TO 12

CALL _LAB( 0.* I TI TLY*LTITLYJHTLAB)

K= 2

FPN = YMAX - I * D_LY

IF(ZERO)FPN _ O.

"rMID Ic I-

XPAGE = - I * ORDINA/I_AX - *5 * HEIGHT
IF(FPN) 113. 122. 118

IF(NDEC- 2)I15,11Z_,I12

YPAGE " STARTL
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813
814

GO TO 112

115 IF(NDEC - 1)117.116.112

116 YPAGE = 5TARTL - HEIGHT

GO TO 112
I17 IF(ABS(FPN) - I00.)I19. I16. I16

119 IF(ABS(FPN) - I0-)120,121.121

120 YPAGE = 5TAIRTL - 3 * HEIGHT

GO TO 112

121 YPAGE = STABTL - 2 * HEIGHT

GO TO lift
122 YPAGE = STARTL - 4 * HEIGHT

GO TO 112

118 IF(NDEC - 2) 123.116,112
123 IF(NDEC - I)125110-4.112

124 IF(FPN - I0.)121. I16*I16

125 IF(FPN - I0-)122*120.126

19-6 IF(FPN - I00.)120.10-I*127

127 IF(FInN - I000-)121Jl16. 128

128 IF(FPN - I0000-)I16*I141114

112 NNDEC = DNDEC

CALL NL_'IBER(XPAGE*YPAGE*HEIGHT* FPN* 270- *NNDEC)

XPAGE = - I * (ORDINA/II_AX)

DO I0 JJ = I.N
YPAGE ,= TICKLE * TMID

CALL PLOT(XPAfiE*YPAfiF._, 3)
YPAGE '= YPAGE * ( - 1 + I/I_AX * -5)

CALL PLO T ( XPAG E* Y PAGE* 2 )
IF(I/IMAX) I I0, 110.9

II0 YPAGE -- 0

CALL PLOT(XPAGE.YPAGE., 3)

XPAGE = XPAGE - TICSEP

CALL PLOT(XPAGE* YPAGE*2)

TMID = -5

I0 CONTINUE

9 CONTI NUE

K = 1
INAX = IFIX((XMAX - XMIN)/DELX)

TICSEP = ABSCIS/(NTICX - I)

XPAGE = - ASTART - ORDINA

CALL DENDEC(X_AX* DELX,NDEC)

DO 28 I = O*_IAX

STARTL = - I * ABSCIS/IMAX

GO TO (24,25)*K

24 IF(2 * I.LT.IF_AX)G0 TO 25

CALL AXLAB( 270., I TI TLX*LTITLX,HTL_B)

K= 2

XPAGE = - ASTART - ORDINA

0-5 FPN = XMIN ÷ I * DELX

IF(ZERO)FPN = O.

I F( FPN._613. 822.818

IF(NDEG - 0-)815,81"I.,,23

YPAGE = 5TAHTL + I0.17. * HEIGHT

GO TO 23

815 IF(NDEC- I)817.816.23
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816 YPAGE = 5TARTL + 25./14. * HEIGHT

G0 TO 23

817 IF(ABS(FPN) - I00.)819,816,816

619 IF(ABS(FPN)- I0.)820,821,821

820 YPAGE = STARTL + 11./14. * HEIGHT
GO TO 23

821 YPAGE = STAIqTL + 9.17. * HEIGHT

GO TO 23
822 YPAGE = STARTL + 2./7. * HEIGHT

GO TO 23
618 IF(NDEC - 2)623,816,23

823 IF(NDEC - I)825,824J23

824 IF(FPN- I0-)821a816,816

625 IF(FPN - I0-)822,820.826

626 IF(FPN - 100*)620s821a827

827 IF(FPN- 1000-)821.616.828

628 IF(FPN - 10000.)8161614J'814

23 NNDEC = DNDEC

28 CALL NLI_BER(XPAG E* YPAGE* HEI GHT* FPN* 270o s NNDEC)
N = (NTICX/IMAX) - I + MOD(NTICX. 2)

DO 26 I = IMPJ(_Os - I

TMID = I.

YPAGE = - I * ABSCIS/IMAX

DO 07 dd = I*N

XPAGE = - ORDINA- TICKLE * TMID

CALL PLOT(XPAGE*YPAGEs 3)
XPAGE = XPAGE + (TICKLE + FLD{O*36aI*NE.O) * TICKLE) $ TMID
CALL PLOT(_PAGE*YPAGE* 2)

IF(1) I II,26, III
III XPAGE = - ORDINA

CALL PLOT(XPAGE*YPAGE* 3)
YPAGE = YPAGE + TICSEP
CALL PLOT(XPAGEaYPAGEa 2)

TMID = *5

27 CONTINUE
26 CONTINUE

RETURN
C

C
C
C
C

17

SUBROUTINE HYLINE (INTERNAL)

SUBROUTINE HYLINE

ITOP = IFIX((ABSCI5 + RYTMAR + -5)/11. • 99.)

IBOT = IFIX(RYTMAR/II* * 99°)

DO 17 I = IJNTOT

XPAGE = (YARRAY(1) - YNAX)/(YMAX - YMIN) * ORDINA

YPAGE = (XMIN - XARRAY(I))/(X_AX - XMIN) * ABSCIS

CALL SYMBOL(XPAGE*YPAGE, SYMBLH, INTEQ., 270o_ ICODE)
IF(NTICY.GE.0)G0 TO 22
XPAGE • - 0RDINA/2,

YPAGE = - ABSCl5

CALL PLOT(XPAGE,YPAGE, 3)

DO 18 I • IBOT*ITOP
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18

22

21

C

CALL PLOT(XPAGE*YDIT(1)*3 - MOD(I*2))
XPAGE = TOFMAR

YPAGE ffi - ABSCI5 - RYTMAR - .5

CALL PLOT(XPAGE, YPAGE, 3)

DO 21 I = 1,100
CALL PLOT(XPAGE*YDIT(1),3 - MOD(I*2))

RETURN

SUBROUTINE .a0(LAB (INTERNAL)

30

31

13

15

14

5UBROUTIN E AXLAB(ANGLE, I BCD, NCHARX,HEI GHT)
DIMENSION IBCD(7)

LOGICAL S

INTEGER OSQ/' S'/

K = 2

NCHAR = NCHARX

S = -FALSE°

IF(ABS(ANGLE>.GT..I)GO TO 30

XPAGE = - 0RDINA/2, - NCHAB * HEIGHT/2
YPAGE = 5EPLAB

GO TO 31

XPAGE = - 0RDINA - LABSEP

YPAGE = - ABSCIS/2, + NCHAR * HEIGHT/2

LSTART = 6 * MOD(NCHAh, 6) - 12

IF(LSTART.EO. - 12)LSTART = 2a

LOOK = NCHAR/6 + I-I

IF(LSTART.EQo - 6)G0 TO 13

IF(FLD(0. IS,'sS').EQ.FLD(LSTART. 12,1BCD(L00K)))G0 TO 15
G0 TO 14

IF(FLD(Os6.',')-NE-FLD(30s61IBCD(LOOK- I)))GO TO 14

IF(FLD(O*6,'S').NE.FLD(Oa6,1BCD(LOOK)))GO TO 14
NCHAR = NCHAR - I
S = .TRUE.

CALL 5YM BOL ( XPAG E* YPAG E* HEIGHT* I BCD_ ANGL E, N CHAR)

IF(S)CALL SYMBOL(999.,999.,2 * HEIGHT/3, QSQ, ANGLE, 2)
RETURN

C
C
C

C _

SUBROUTINE DENDEC (INTERNAL)

5

7

SUBROUTINE DENDEC(QMAX, DELQ, NDEC)

IF(INT(ABS(QMAX)).GE. IO)GO TO 5

IF(P*MOD(ABS(QMAX - DELQ)**I)oGE..01)G0 TO 7
NDEC = I

RETURN
NDEC = - !

RETURN

NDEC = 2

RETU_

END

149



APPENDIX E

USER'S MANUAL FOR THE LINEAR STABILITY

PROGRAMS: LINSOL AND LSTB3D

General Description

Two auxiliary programs, LINSOL and LSTB3D, calculate the linear stability

characteristics of a cylindrical combustion chamber with distributed combus-

tion and a conventional nozzle. For given values of the operating parameters

(i.e. n, _, y, _ , and L/D) and a given nozzle admittance (i.e , A and _),' e

Program LINSOL calculates the growth rate, A, and the frequency, _, of a

given acoustic mode. For given values of _ Program LSTB3D calculates the

corresponding values of n and w for neutral stability (A = 0). These programs

are based on an analytical solution of the linearized version of Eqs. (12).

After a discussion of the linear analysis, Programs LINSOL and LSTB3D will be

described.

Linear Analysis

For a single acoustic mode, dropping the nonlinear terms in Eqs. (12)

yields the following linear equation:

d[A(t- _)]
d2---_A CIA + (C2 nC3)_t + nC 3 = 0
dt 2 + - dt

(E-l)

where A(t) is the unknown complex amplitude function for the mode under con-

sideration and the coefficients are obtained from Eqs. (C-l) through (C-4)

by dividing by CO . Thus the coefficients are complex numbers given by:

Z

e

Z'(Ze)Z*(Ze) - _o Z"Z*dz

el : s2 + (E-2)

mn _z e .ZZ dz

O
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C2 =

z z
e e

2]' G(z)Z'Z* ,y]_ d_ * Z*(Ze)dz + _'zZZ dz + xYZ(Ze)
o o

ze .

o ZZ dz

c3=

Zezz*dz
o

(E-4)

where the droplet momentum source has been neglected. When the droplet

momentum source is included, the y in the second term of Eq. (E-3) is re-

placed by y + i (see Appendix A).

The linear solutions are determined by substituting a solution of the

form:

A(%) = ae (A+iw)t

into Eq. (E-I) and separating real and imaginary parts to obtain:

-A S
w2 = Clr + A2 + (C2r - nC3)A - C2iw + C3ne (Acos_ + wsin_) (E-6)

A =- { Cli + (C2r -'n'C3)w + nC3e-AYwc°sw_

2w + C2i - nC3e-A_sinw9 }

(E-7)

where CI = Clr + iCli , C2 : C2r + iC2i , and C3 is always real. The above

equations are solved numerically by Program LINSOL to obtain the growth rate,

A, and the frequency, w, for given values of n and 9.

The equations describing the neutral stability limits are obtained by

substituting A = 0 into Eqs. (E-6) and (E-7). Solving the resulting equations
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2
for n and w gives:

n = C2r + Cli/w (E-8)

C3(I - cos wV)

2 + w(nC 3 sin w_ (E-9)= Clr - C2i)

which are solved numerically by Program ISTB3D.

Program LINSOL

Program Structure• A flow chart for Program LINSOL is given in Fig. (E-I).

This program consists of the following major sections: (i) input, (2) calcula-

tion of the coefficients CI, C2, and C3, (3) iterative solution for A and w,

and (4) output.

Input. The input data required by Program LINSOL includes: (i) a title

for the run, (2) the chamber parameters Y, u , L/D, and Zc/Ze, (3) severale

control numbers, (4) the nozzle admittance, (5) the mode under consideration,

and (6) the values of n and _ for the cases to be run. This data is described

in the following table where the location number refers to the columns of the

card and the following three formats are used: alphanumeric characters (A),

integers (I), and numbers with a decimal point (F). For the "I" formats the

values are placed in fields of five locations, while a field of ten locations

is used with the "F" formats. In either case the numbers must be placed in

the rightmost locations of the allocated field.

No. of

Cards Location Type Input Item Comments

i 1-72 A TITLE Title of run.

i i-i0 F GAMMA Specific heat ratio, y.

11-20 F UE

21-30 F RLD

Steady state Mach number

at nozzle entrance,
e

Length-to-diameter ratio,

Ze/2.
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1
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I _Su_r°ut_neIFCNS EIGVAL
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Calculate
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Parameters
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A1 _wI

Compute
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Output
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No

Compute
_&_

I IncreaseKbyl

Figure E-I. Flow Chart for Program LINSOL.
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No. of
Cards Location Type

31-40 F

41-45 I

46-50 I

Input Item

ZCOM_

NDROPS

NOZZLE

51-55 I NOPT

F YAMPL

If NOZZLE = i :

i i-i0

11-20 F YP_SE

End of input for NOZZLE = i.

1 1-5 I L

6-10 I M

Comments

Length of combustion zone,

Ze/Z e •

If O: droplet momentum

source neglected.

If i: droplet momentum

source included.

If O: quasi-steady nozzle.

If i: conventional nozzle.

If i: all coefficients in-

cluded.

If 2: imaginary parts

neglected.

Amplitude factor of nozzle

admittance, A.

Phase of nozzle admittance,

11-15 I N

16-20 I NCASES

Axial mode number, %

(o L lO).

Tangential mode number, m

Radial mode number_ n

(0 N 5).

Number of cases to be run

(NCASES _ 100).

NCASES i-i0 F TAU Time-lag, 9.

11-20 F EN Interaction Index, n.

The title on the first card should identify the mode under consideration.

On the second card of input all quantities are the same as those given in the

input to COEFFS3D (see Appendix C) except NOPT. NOPT gives the option to

neglect the imaginary parts of the coefficients CI and C2 which are an order

of magnitude smaller than the corresponding real parts. Neglecting these
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4_

imaginary parts (NOPT = 2) yields linear solutions consistent with the non-

linear solutions obtained when the small coefficients are neglected (NEGL = i

in input to COEFFS3D). The values of n and T for the cases to be run are

given on a series of NCASES cards. These cards are all read and the values

of _ and n are stored in the arrays TAU(J) and EN(J) before any computations

are made.

In addition to the above card input, the acoustic frequencies S are
mn

also needed for these calculations. As in Program COEFFS3D these values are

given in a DATA statement, which is an integral part of the program.

Calculation of CI, C2, and C3. In this section the coefficients C1, C2,

and C3 appearing in Eqs. (E-_) and (E-7) are calculated using Eqs. (E-2)

through _E-4). As in Program COEFFS3D the axial acoustic eigenvalues necess-

ary for these computations are calculated by Subroutines EIGVAL and FCNS, and

the integrals of the products of two axial eigenfunctions appearing in Eqs.

(E-2) through (E-4) are computed by Subroutines AXIALI and UBAR. Listings of

these subroutines are given in Appendix C.

Iterative Solution for A and w. Equations (E-6) and (E-7) are of the

form:

2 +
a_ = Clr

A = g(A,W)

(E-IO)

where the quantity f(A,w) is small compared to Clr and A is small in most

cases. Starting with an initial guess of

: js2Wl mn 2
Z
e

(E-ll)

AI = 0
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Eqs. (E-10) are solved iteratively using the following recursion formulas:

w2k+l: Clr+ f(Ak'%)

Ak+ I = g(Ak,W k)

(E-12)

At each step of the iteration the quantities AA and gw are calculated, where

--lAk+l- Akl

(E-13)

and the computations are terminated when k = 40 or when 6A and gw are less

than ¢ = 10 -6 . The process usually converges in less than 15 iterations.

Output. The output generated by Program LINSOL consists of a restate-

ment of the input data followed by the calculated results in tabular form.

For each case the tabulated results give the values of _ and n (TAU and EN),

the corresponding values of the growth rate A and the frequency w (LAMBDA

and OMEGA), and the number of iterations (ITER). When ITER is 40 the last

values of A and w are given followed by the warning message "FAILED TO CONVERGE."

Sample Input and Output. A sample input for the IT mode is given in

Table E-I followed by the resulting output in Table E-2.

Program LSTB3D

Program Structure. A flow chart for Program LSTB3D is given in Figure

(E-2). This program consists of the following major sections: (i) input,

(2) calculation of the coefficients CI, C2, and C3, (3) iterative solution

for n and • for neutral stability, and (4) output.
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Table E-I. Sample Imput for LINSOL.

_1"1_ lt_o_{E[.l'' l"["["l ......[[ ["['I"I"I"I"FI"L'I"I"I"II ' ........_. [1 ["I'1"1" ""'l[_[ .................L__T_-_'"_]-[-I

t ill i J']_'_._l ]"i']']'l"]'lo_"_}"l°]"_"l"F]'_ol.7;Fr"FFF"I'I;'I;]:jo]"]"FI7o1"]"i7"_1'Fl'F_l'l
{i._i_i_I.I_.I.._._._..i._i..i_i._r_i_°i_._77.i_"_77l_°I_i"I_i_.i_i._._i7.'j7.._._._i.i7.I_._.i_.i_
l llllollll I II.[_.[I[II'_I_LHJJJJJ.AhLUilI]IIIII]J.J__LUIIIII]U1

I I I 1I I I 1_.1.1',-tI I I I I I Io1.1_1|1 II III II1 1111111 I I I I I I I I I II1 II11 I1'

[IIIIIII_[71_IIIIoI.I_I_I_I_IIIIIIIIIIIII-IllllllIIII177777,7777--H7
I ] I II]I'] _i_._].]7_.]_77_i._._"_7_7..]_._7_7_]._°_.]._°_.]_,_._-_7.,_77._._].]77_._7.,_-_"_._

l lllllil_l.lolll lol.I_l_l_l_llllliilIlllllllllllllllll l-liliillll!ll

IIIIII[I_I.I_IIIIII_'I_IIIIIIIIIIIIIIIIIIIIIIIIIIII[IIIIIIII

Table E-2. Sample Output for LINSOL.

IT MODE.

DROPLET MOMEHTUH SOURCE NEGLECTED

GAMMA • 1-20 UE • -20 L/D -

AMPL - 002000 PHASE m 45.0

°50000 Z C0_¢B • 1o00

TAU EN LAMBDA OMEGA ITER

1.400 -50000 --01789 1.86593 7

10400 *58396 o00000 1-87005 V

1.400 ,60000 ,00339 1.67078 7

1.700 -50000 -.00975 1.63602 ?

10700 -54490 -o00000 1-63612 6

1.700 -60000 *01176 1.63616 7

2-000 -50000 -*01537 1.60691 8

2.000 -57562 *OOOOO 1.80410 8

2.000 .60000 *00487 1.80322 8
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Figure E-2. Flow Chart for Program LSTB3D.
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Input. The input data required by Program LSTB3D is basically the same

as required by Program LINSOL. The first two cards, which give the title of

the case, the chamber parameters, and the control numbers_ are identical in

content and format to those required by LINSOL. The third card gives the

mode numbers _, m, and n and is followed by a card giving the nozzle admittance

if a conventional nozzle is specified. The last card gives the values of

for the cases to be run. A detailed description of this input is given below.

No. of

Cards Location Type

i 1-72 A

1 1-40 F

41-55 I

1 1-15 I

If NOZZLE = 1 :

1 1-20 F

End of input for NOZZLE = i.

1

Input Item

TITLE

GAMMA, UE,

RLD, ZCOMB

NDROPS,

NOZZLE _ NOPT

L, M, N

Comments

See input for LINSOL.

See input for LINSOL.

See input for LINSOL.

See input for LINSOL

YAMPL, YPHASE See input for LINSOL.

i-i0 F TAUMIN Smallest value of Y.

11-20 F TAUMAX Largest value of 9.

21-30 F DELTAU Increment in 9.

The last card gives the values of _ which are used in the computation of

the neutral stability limit. Thus computations are begun for 9 = TAUMIN, _ is

increased by increments of DELTAU, and computations are terminated when

_ TAUMAX.

After completion of the computations program control returns to the read

statement for the nozzle admittance, thus neutral stability curves can be cal-

culated for several different nozzles for the same set of chamber and mode

parameters.

Calculation of CI, C2, and C3. The calculation of the coefficients CI,

C2, and C3 appearing in Eqs. (E-8) and (E-9) is performed in the same manner as
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given in program LINSOL.

Iterative Solution for n and w. The values oi' n and w for neutral sL:_bil-

ity are calculated for each value of 9 by solving Eqs. (E-8) and (E-9) using

the following iteration scheme:

nk=

C2r + Cli/_ k

c3(i - cos_k÷)

Wk+12 = CI r + mk(nkC3sinwk } _ C2i)

(E-14)

The iteration is started by using m I =/_ir and is stopped when k = 40 or

An and A_ are less than ¢ = 10 -6 . Convergence is usually obtained in less

than 20 iterations.

_. The output generated by Program LSTB3D consists of a restatement

of the input data followed by the calculated results in tabular form. For

each value of _ in the range TAUMIN _ _ _ TAUMAX, the tabulated results give

the value of _ (TAU), the corresponding values of n and m for neutral stabil-

ity (EN and OMEGA), and the number of iterations (ITER). If ITER is 40 the

last values of n and w computed are given followed by the warning message

"FAILED TO CONVERGE."

San_le Input and Output. A sample input for the IT mode is given in

Table E-3 and is followed by the resulting output in Table E-4.

Table E-3. Sample Input for LSTB3D.

i.i17r(ljl]171i.l.i.i.iTiT.l........ i-1-i-17   t" "lTI'l"i'l'1717'l"i77
[-[_TIYl,-l._ililfll_l._llllllllol._ll l lltl_l.lotlillolllll_llll-[iY

(111 Ioll I I I_1I I I I_[ I I I I 1 I I I I I I 11 [11 I 1II I I IIIIL ITTTT_-FtTF_
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Table E-4. Sample Output

IT MODE,

DI_OPLET MOMENTUM SOURCE NEGLECTED

GAMMA = 1.20 UE = -20 RLD =

AMPL = -02000 PHASE = 45-00

for LSTB3D.

• 50000 Z COMB = 1.00

TAU F--N OMEGA ITEB

• 60000 1"66353 2*03102 6

"70000 1-31671 1.99646 6

• 80000 1-08482 1-96911 6

-90000 .92333 1-94663 6

I'00000 "80765 1-92753 6

1"10000 "72330 1"91089 6

1"20000 "66137 1"89605 6

1-30000 .61616 1-88255 6

1"40000 "58396 1.87005 6

1-50000 -56230 1-85827 6

1"60000 "54961 1"84702 5

I*70000 "54490 1-83612 5

1"80000 .54769 1-82542 6

1"90000 "55785 1"81479 ?

2-00000 "57562 1-80410 8

2"10000 "60157 1"79325 8

2-20000 "63666 1"78210 9

2-30000 -68221 1-77055 10

2-40000 -74006 1-75847 II

2-50000 -81258 1-74575 13

2-60000 -90278 1-73224 14

_-70000 1-01446 1-71783 17

2-80000 1.15226 1-70240 21
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FORTRAN Listim_s

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

THIS PROGRAM COMPUTES THE DAMPING (LAMBDA) AND FREQUENCY
(O_EGA) FOR GIVEN VALUES OF THE INTERACTION INDEX (EN) _-ND
THE TIME-LAG (TAU). THIS PROGR_ IS BASED ON AN ANALYTICAL
SOLUTION OF THE COHPLEA DIFFERENTIAL EQUATION.

THE FOLLOWING INPUTS ARE REOUIRED;

FIRST CARDt
THE TITLE OF THE CASE.

SECOND CARD=
GAMMA I5 THE SPECIFIC HEAT R_TIO.
UE IS THE STEADY STATE MACH Nt_BER AT THE NOZZLE _TR/_CE.
RLD IS THE LENGT_i-TO-DIA'_ETER RATIO,
ZCOMB IS THE LENGTH OF THE COMBUSTION _-ONE_ EXPRESSED

AS A FRACTION OF THE CHAMBER LENGTH.
NDROPS DETERMINES THE PRESENCE OF DROPLET MOMENTUM SOURCES1

NDROPS = 0 DROPLET MOMENTUM SOURCE NEGLECTED.
NDROP5 = I DROPLET MOMENTt_ SOURCE INCLUDED,

NOZZLE SPECIFIES THE TYPE OF NOZZLE USED=
NOZZLE • 0 OUASI-STEADY
NOZZLE = t CONVENTIONAL NOZZLE

NOPT SPECIFIES THE SOLUTIONS DESIRED,
NOPT = 1 COUPLING COEFFICIENTS INCLUDED,
NOPT " 2 COUPLING COEFFICIENTS NEGLECTED*

THIRD CARD (FOR CONVENTIONAL NOZZLE ONLY)=
YAMPL IS THE AMPLITUDE OF THE NOZZLE ADMITTANCE*
YPHASE IS THE PHASE OF THE NOZZLE ADMITTANCE*

FOURTH CARDS

THE _IODE IS SPECIFIED BY THE INDICES L, M, AND N.
L I S THE AXIAL MODE NUMBER AND MUST NOT EXCEED I0.

M IS THE AZIMUTHAL MODE NUMBER AND MUST NOT EXCEED 8*
N IS THE RADIAL MODE NUMBER AND MUST NOT EXCEED 5.
NCASES IS THE NUMBER OF CASES TO BE RUN.

REMAINING CARDS=
TAU IS THE TIME LAG,
EN IS THE INTERACTION INDEX.

COMPLEX
I

DIMENSION
I

3
REAL

COMMON B

YNOZ* RESULT* B(IO)* BC* AX(4)* CI* CZE*
CGN_* ZEJ* ZEPI* ZEP2. CC* CD* CE_ CSS@* CA:(
TITLE(72),
R,JR00 T( 10.5)*
D(5)* 0MEGA(100)*
EN(IO0)* TAU(IO0)

L_BDA(I00)
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C
C

C

C

C

C
C
C

C

ERR- 0.000001
PI = 301415927

CI = (0.0,1.0)

INPUT BOOTS AND VALUES OF BESS_L. FUNCTIONS*

DATA ((RJR00T(IaJ)* O = 1,5)* I = 1*9)/

3-83171. 7-01559. I0-17347, 13-32369, 16-47063,
1.84118. 5-33144* 8.53632, II.70600* 14o86359,

3*05424* 6*70613* 9-96947_ 13- I'/037- 16o34752a
4.20119* 8-01524* 11.34592a 14-58585. 17.78875.
5*31755* 9.28240, 12-68191, 15-96411, 19-19603,

6-41562, 10-51986. 13-98"/19, 17-31284, 20.57551,
7*50127* 11-73494* 15.26818. 18-63744* 21.93172,
6*5"/784* 12-93239, 16-52937, 19-94185, 23*26805*

9-64742, 14.11552, 17.77401, 21*22906, 24*567201

INPUT PARP/_ ETEBS.
READ (5,5000) (TITLE(1), I = 1, 72)
READ (5,5001) G_MA* UE* RLD* ZCOHB* NDROPS* NOZZLE* NOPT

IF (NOZZLE oEQ- 1) GO TO 5
COMPUTE AD_1ITTANCE F0B QUASI-STEADY NOZZLE*
YP/_PL R (G_MA - 1.0) * UE/(2*0 * GAleNA)

YPHASE t 0-0
GO TO 7

5 READ (5*5002) YAHPL, YPHASE

7 READ (5*5003) L* M* N* NCASES

THETA ffi YPHASE * Pill80*0
YR " Y_PL * COS(THETA)
YI " YN_PL * SIN(THETA)

YNOZ a CI_PLX(YR, YI)

ZE " 2*0 * RLD
CZE s CIqPLX(ZE.O.O)

CGAH = CHPLX(G_MA.O.O)
CAX = CGAM
IF (NDROPS .EQ* 1) CAX = CGAN + (1*0,0*0)

DO 10 J = 1, NCASES
READ (5* 5002) TAU(J)* EN(J)

10 CONTINUE

ASSIGN ARRAYS FOR ROOTS OF BESSEL FUNCTIONS*

IF ((N *EQ* O) .AND. (N *EQ* 0)) 60 TO 15
HNmM + 1

NN m N

S_IN m BJBOOT(NN*NN)
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C
C
C

C
C
C

C

C
C

C

GO TO 20
[5 S,_N = 0.0

20 SSQ = 5HN * _.N
CSSQ t CMPLX(SSQ*OoO)

CALCULATE AXIAL ACOUSTIC EIGENVALUESo

C_M..L EIGU_.(L* SF, N*GP_.t_A*ZE, YAMPL*YFHASE_, RESL_.T)
B(I} = HESULT

BC • CONJG(RESULT)

DO I00 NT = I* 4

CALL AXIALI(NTI I* I* UE*Z_ZCOI_B*RE$ULT)

AXCNT) = RESULT

100 CONTI/_ UE

v*_**_v***v* CALCULATE UALUE5 AT NOZZLE ENTRANCE _V**_*_*******V

ZEO • CCOSH(CI*BC*CZE)
ZEPI • CCOSH(CI*B(I)*CZE)

ZEP_- CI * B(I) * CSINH(CI*B(I)*CZE}

CC = (CSSQ*AX(1) - AX(2) ÷ ZEP2*ZEO)IAX(1)

CD • (CAX*AX(3) ÷ (2.0. O.O}*AX(4)

t + CGAM*YNOZ*ZEPI*ZEO}IAX(X)

CE • CG.,_.'_,,I,P._(3)/PO_(1)

D(I} = _EAL(CC)

D(3) = REAL(CD)
D(5) = REAL(CE)
IF (NOPT -EQ* R) GO TO 50

D(_) = AI_AG(CC)

D(4) = AI_AG(CD)

GO TO 55

50 D(2) = 0-0

D(4) = 0-0

****** CALCULATION OF DAMPING AND FREOUENC_ **********************

55 WRITE (6.6001) (TITLE(1), I = I- 72}

IF (NDROPS -E_)* O) WRITE (6*6020)

IF (NDROPS .E@. 1) tVI_ITE (6,60E1)

IF (NOPT .EQ. 2} _RITE (6,6015}

WRITE (6*6002) GAF..MA* UE, RLD_ ZCOI_I._
IF (NOZZLE -EO. O) WRITE (6.6012)

WRITE (6.6005) YAMPLm YFHASE
WRITE (6,6011)

LINE = 14
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C

C

C

C

C

C

C

CALCULATE INITIAL GUESSES FOR FREQUENCY.
RL z L
AXI ,, RL * PI/ZE

AXSQ = AXI * AXI

SSQ • SMN * S_N

FRQ = $QRT(..c, SQ + AX$_)

C

C

C

DO 200 0 = I* NCASES

C2R = D(3) - EN(O) + D(5)
C3 = EN(d) * D(5)

LAMBDA(I) = 0-O
OMEGA(l) = FRQ

K = I

9-I0 X = LAMBDA(K)

Y = 0HEGA(K_
XT = )( * TAU(J)

YT = Y V TAU(0)

= E_p(-XT)
SN = $IN(YT)

CS = COS(YT)
_5Q = X * X

WSQ = D(I) + XSQ + 02R*X - D(_)*¥
I + C3*E.X*(X*C5 4. Y*SN)

A ,' D(2) + C2R*Y + C3*EX*Y*CS

BB = E.O*Y + D(4) - C3*EZ*SN

OMEGA(K+I) = SQRT(kSQ)

LAHBDA(K+|) = -A/BB

IF (K .EQ. 40) GO TO 216

DX = ABS(LAMBDA(K+I) - LAI_BDA(K))

DY = _BS(0MEGA(K+I) - 0MEGA(K))

K = K + I

IF ((DX .LT. ERR) .AND. (DY .L;, ERR)) GO TO 217

GO TO 210

216 _RITE (6,6009) TAU(O), EN(J)* LAHBDA(K)* OMEGACK)* K
GO TO 220

217 ;RITE (6*6008) TAU(O), EN(.J)* L_BDA(K)* OMEGA(K)* K

220 LINE = LINE + 2
IF (LINE .LT. 54)

WSITE (6,6007)
WRITE (6,601 I)

LINE = 4

GO TO 200

200 COt_ TINUE
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C

C
C
C

C
5000
500 l
5002
5003

C

C
6001
6002

6005

6007

6008

6009

6011

6012

6015
6020
6021

RF__D F0 R_AT5

FORMAT (72A1)
F0 RI_.,AT (4F10.0.31 5)

F0 F_IAT (2FIO°0)

F0 F4HAT (415)

_RITE

FOFa'_T

FORIqA_

l

FORI_T

FOR_tT

FOP,H_T

F0 _ _T

F01_AT

l

FORJ_tT

FOP,H_T

FOF_._T
FORMAT

F0 P_ATS
(IHIslX, TEA1/)
(2XaSHG.'_,_F.'A = ,FS-2, SX-51dD_ = ,FSo2, SX,6HLID " ,F8..5,

5X,SHZC0_.'B = ,F5.2/}

(2X-THP.._FL = _,F8°5,5X-8HPHP, SE = ,F6°I/)
(IH)

( 2X- F_*3, F8 * 5, 2FIO* 5, 1 6/)
(2_,F5'*3, FS.5,2FIO.5,16,5_, 18HF_ILI_D TO CONVFRGE/)

( 2X//I/4X, 31d'l'._U_,6X- 2H_N_,/._X, 6HL.a._BDP,, 5X,_ 5H0i_ EG._,
2X, 4HI'_ER/)

(2Z- 19HgUASI-STE_DY NOZZLE/)

(2X, 24HCOUFLING TEI_$ N_GL _:C_ED/)

(2_, 'D_OPLET _O_,_'I_TI._ SOURCE NEGLECTED*/)

(2X, * DROFLET I_O_P._TIJH SOURCE INCLDDED_/)

"L
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

THIS PROGRAM COMPUTES THE LINEAR STABILITY LIMITS CONSISTENT
NITH THE THREE-DIMENSIONP/, SECOND-0RDER THEORY.

THE FOLL0_ING INPUTS ARE REQUIRED$

FIRST CARD:
THE TITLE OF THE CASE.

SECOND CARD_
GAMMA IS THE SPECIFIC HEAT RATIO.
UE IS THE STEADY STATE MACH NUMBER AT THE NOZZLE ENTRANCE.
RLD IS THE LENGTH-T0-DIAMETER RATIO.
ZCOMB IS THE LENGTH OF THE COMBUSTION ZONEa EXPRESSED
AS A FRACTION OF THE CHAMBER LENGTH.
NDROPS DETERMINES THE PRESENCE OF DROPLET M0_ENTt_ SOURCES|

NDROPS _ O DROPLET MOMENTt_ SOURCE NEGLECTED.
NDROPS n I DROPLET MOMENTUM 50URCE INCLUDED.

NOZZLE SPECIFIES THE TYPE OF NOZZLE USEDz
NOZZLE = 0 QUASI-STEADY

NOZZLE " I CONVENTION_%L NOZZLE
NOPT SPECIFIES WHICH SOLUTION WILL BE COMPUTED.

NOPT t I COUPLING COEFFICIENTS INCLUDED.

NOPT m 2 COUPL_NG COEFFICIENTS _EGLECTED.

THIRD CARDS
THE MODE IS SPECIFIED BY THE INDICES L, M* AND N*
L IS THE AXIAL MODE NUMBER AND MUST NOT EXCEED I0.
M IS THE AZIMUTHAL MODE NUMBER AND MUST NOT EXCEED 8o
N I5 THE RADIAL MODE NUMBER AND MUST NOT EXCEED 5-

FOURTH CARD (IF CONVENTIONAL NOZZLE):
YAMPL IS THE AMPLITUDE OF THE NOZZLE ADMITTANCE.
YPHASE I5 THE PHASE OF THE NOZZLE _ITTANCEo

REMAINING CARDSt
TAUMIN IS THE MINIMt_1 VALUE OF THE TIME-LAG.
TAUMAX IS "THE MAXIHUM VALUE OF THE TIME-LAG.
DELTAU IS THE INCR_ENT IN TIME-LAG.

COMPLEX

I
DIMENSION

I
2
COMMON

YNOZ, RESULT, B(IO), BC, AX(4), CI, CZE_

CGAM, ZEJ, ZEPI, ZEP2, CC, CD, CE_ CSSQ_ CAX
TITLE(72),
RJROOT( IO, 5},
OMEOA_O0), EN¢IO0)
B
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C

C

C
C

C

C

C

C

C

C
C
C
C

C

ERR • 0-000001
PI = 3.1415927

Cl = (0.0.1.0)

INPUT ROOTS P.ND VALUES OF BESSEL FUNCTIONS.

DATA ((RJROOT(I,J)* J = 1,5)* I = 1*9)/
I 3-83171_ 7.01559* 10.17347, 13-32369. 16-47053,

2 1.84118, 5.33144_ 8.53632* II-70600* 14-86359_
3 3,,05424* 6°70613. 9-96947* 13. 17037*, 16o34752J,
4 4*20119* 8-01524. 11-34592. 14.58585, 17-78875,

5 5.31755, 9*28240* 12.68191, 15-96411. 19-19603,

6 6*41562* 10-51986. 13-98719. 17-31284. 20*57551*

7 '/*50127* 11-73494. 15-26818, 18-63744, 21-93172,
8 8*57784* 12-93239, 16o52937, 19-94185. 23*26605*
9 9.64742. 14-11552, 17-77401, 21-22906, 24*58720/

INPUT PAR#_ETERS*

READ (5.5000) (TITLE(I)* I = 1. 72)

READ (5.5001) GP/¢MA* UE* RLD, ZCOHB* NDROP$* NOZZLE_ NOPT
READ (5,5002) L* M* N

8 IF (NOZZLE -EQ. I) GO TO 5

COMPUTE ADMITTANCE FOR QUASI-STEADY NOZZLE-

YAMPL = (GAMMA- 1.0) .I. UFJ(2.0 _. GAMMA)
YPHASE = 0-0
601"07

5 READ ( 5* 5003* END = 300) YAMPL* YPHASE

7 READ (5*5003, END = 300) TAUMIN, TAUHAX* DELTAU

THETA = YPHASE • PIll80.0
YR = YAMPL * COS(THETA)
YI - YAMPL # 5IN(THETA)
YNOZ = CMPLX(YR*YI)

ZE = 2.0 * RLD
CZE • CMPLX(ZE*0*0)

CG/LH = CMPLX(GAMMA*0*0)
CAX = CG,_

IF (NDROPS -EQ* I) CAX = CG._J + (I*0.0.0)

ASSIGN ARRAYS FOR ROOTS OF BESSEL FUNCTIONS.

IF ((M .EQ. 0) .AND. (N .EQ* 0)) GO TO 15
I'_] = M + 1

NN= N

_N = RJROOT(MM,NN)

G0 TO 20
15 SHN = 0.0

_0 SSQ = SHN * SMN
CSSQ = CMPLX(SSQ*O-O)
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C

C

C
C

C
C

C

C

C
C

C
C
C

C

CALCULATE AXIAL ACOUSTIC EIGENUALUES-
CALL EIGVALCL* S;'IN*GP_wIMA*ZE*YP_'IPL*YPHASE*RESULT )
B(|) = RESL_T
BC = CONJG(RESULT)

**$**V******* CALCULATE AXIAL INTEGRALS ****V*****$***************

DO 100 NT = 1. 4
CALL AXIALI(NT* 1* I*UE*ZE*ZCONB*RESULT)
AX(NT) = RESULT

100 CONTINUE

************* CALCULATE VALUES AT NOZZLE ENTRANCE ,$,v**v$**$*****

ZEJ = CCOSH(CI*BC*CZE)
ZEPI = CCOSH(CI*B(I)*CZE)
ZEP2 • CI * B(I) * CSINH(CI*B(I)*CZE)

CC = (CSS@*AX(I) - AX(2) + ZEP2*ZEJ)tAX(I)

CD " (CAX*AX(3) + (2o0,0,0)*AX(4)
1 + CGAM*YNOZ*ZEPI*ZEJ)IAX(1)

CE = CGP/4*AX(3)/AX(1)

CI = REAL(CC)
DI = REAL(CD)
E = REAL(CE)
IF (NOPT -EQo 2) 60 TO 50
C2 = AINAG(CC)

D2 = AIMAG(CD)

GO TO 55

50 C2 = 0.0
D2 = 0*0

*********** CALCULATION OF LINEAR STABILITY LIMIT ******

55 0MEGA(I) = S@RT(CI)

WRITE (6.6001) (TITLE(J)* O • 1.72)

IF (NDROPS "E0. 0) WRITE (6*6025)
IF (NDROPS .EQ. 1) WRITE (6.6026)
IF (NOPT .E0. 2) WRITE (6,6022)

VRITE (6.6002) GAI._NA. DE, RLD, ZCOMB
IF (NOZZLE oEQo 0) WRITE (6.6012)
VRITE (6*6005) YAMPL. YPHASE
%JRI TE (6.6010)
LINE • !2

TAt] = TAUMIN

370 IF (TAU .GT- TAUMAX) 60 TO 8
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C

C

C

C
C
C

C

K" 1
310 WT = OMEGA(K) ,I, TAU

BB " (DI + C2/0MEGA(K))/E
E]N(K) = BB/(I.0 - COS(WT))

G .. (EVEN(K)_SIN(_T) - D2) =_ 0HEGA(K)
0HEGA(K+I) = SgRT(CI + G)
IF (K .EQ. 40) GO TO 316

IF (K .EQ. 1) GO TO 311
DN ,, ABS(EN(K) - EN(K-I))
DW " ABS(0HEGA(K+I) - 0HEGA(K))

IF ((I_ .LTo ERR) .AND° (DW =LTo ERR)) GO TO 31"/
311K.. K + 1

60 TO 310

316 WRITE (6,6013) TAU, EN(K), 0HEGA(K)m K
60 TO 318

317 WR|TE (6,6014) TAU* EN(K), 0HEGA(K)* K

318 LINE = LINE + 2

TAU = TAU ÷ DELTAU
IF ((LINE *LT- 60) oOR. (TAU -6T- TAUMAX)) 60 TO 370
WRITE (6,6015)

WRITE (6,6010)
LINE = 6

GO TO 370

300 CONTINUE

READ FOREATS
5000 FORHAT (72A1)

5001 FORHAT (_Fl0.Oa315)
5002 FORHAT (315)
5003 FOR_AT (3FI0.O)

C
C WRI TE FORHATS

6001 FOF_AT (IHI, IX*72AI/)

6002 FORHAT (2X, SHG_IHA = *F5.2*SX*SHUE = _F5-2mSX*GHRLD = *F8.5*
I 5X*8HZCOHB = *F5-2/)

6003 FORH_T ( 21* A4* 51 5* 4F 10 • 5/)

6005 FORHAT (2X*THAHPL = *FS-5*SX, SHPHASE = ,F7-2/)
6007 FOI_AT (IH )
6008 FORHAT (IH0)

6010 FORHAT (21//81* 3HTAU* 81, 2HEN, 5X J. 5HOMEGA, 6X_, 4HI TER/)
6012 FORHAT (2XJI9HOUASI-STEADY NOZZLE/)

6013 FOI_AT (P-_*3FI0.S, II0, SX, 19H FAILED TO CONVERGE/)
6014 FORHAT (2X, 3F10.5,110/)
6015 FORHAT (IHI)

6022 FORHAT (2X,24HCOUPLZNG TERPIS NEGLECTED/)
6025 FORHAT (2X* 'DROPLET EOHENTUH SOURCE NEGLECTED'/)

6026 FORHAT (2X_ ' DROPLET MOMENTal SOURCE INCLUDED'/)
END
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