NASA CONTRACTOR REPORT

NASA CR-2303

NASA CR-2303

ANALYSIS OF THE FEASIBILITY OF AN EXPERIMENT TO MEASURE CARBON MONOXIDE IN THE ATMOSPHERE

by M. H. Bortner, F. N. Alyea, R. N. Grenda, G. R. Liebling, and G. M. Levy

Prepared by GENERAL ELECTRIC COMPANY Philadelphia, Pa. 19101 for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1973

· · · · · · · · · · · · · · · · · · ·									
1. Report No.	2. Government Access	ion No.	3. Recipient's Catalo	t's Catalog No.					
NASA CR-2303									
4. Title and Subtitle ANALYSIS OF THE FEASIBILITY OF AN	EXPERIMENT TO MEA	SURE CARBON	5. Report Date October 197	3					
MONOXIDE IN THE ATMOSPHERE	6. Performing Organization Code								
7. Author(s) M. H. Bortner, F. N. Alyea, R. N. G. M. Levy (Barringer Research Liu	8. Performing Organization Report No.								
9. Performing Organization Name and Address	10. Work Unit No. 630-52-00-01								
General Electric Company Space Division - Space Sciences L	11. Contract or Gran NAS1-10139	t No.							
P. U. BOX 8000			13 Type of Report a	nd Period Covered					
12. Sponsoring Agency Name and Address			Contractor B	leport					
National Aeronautics and Space Adm Washington, D.C. 20546	inistration (14. Sponsoring Agenc	y Code					
15. Supplementary Notes				`.					
This is a topical report.	1. at								
16. Abstract				• • •					
An analysis has been carried	out to determine	the feasibility of	i measuring atmosp	heric carbon					
monoxide from a remote platform a	using the correlat	ion interferometr	y technique. The	Carbon					
Nonoxide Pollution Experiment (CO	PE) has been found	l to be a feasible	method for obtain	ing a global					
carbon monoxide map and a vertical	l carbon monoxide	profile. It has	been determined th	at CO					
data can be obtained with an accu	racy of 10 percent	using this techn	ique on the first	overtone					
band of CO at 2.3µ. That band h	as been found to l	e much more suite	ble than the stron	ıger					
fundamental band at 4.6 µ. Calcu	lations for both w	wavelengths are pr	esented which illu	strate the					
effects of atmospheric temperature	e profiles, invers	ion layers, groun	d temperature and	emissivity,					
CO profile, reflectivity, and atm	ospheric pressure.	The applicable	radiative transfer	theory on					
which these calculations are base	d is described tog	gether with the pr	inciples of the te	chnique.					
			<i>.</i>						
17. Key Words (Suggested by Author(s))		18. Distribution Staten	nent						
Carbon monoxide									
Atmospheric measurement		Unclassifi	ed - Unlimited						
Air pollution									
Atmospheric chemistry									
Interferometer Correlation	•								
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*					
Unclassified	Unclassifi	ed	261	Domestic, \$6.25 Foreign, \$8.75					
* For sale by the l	National Technical Infor	mation Service, Springf	ield, Virginia 22151						

I

FOREWORD

This report was prepared for NASA as part of contract NAS1-10139 with Langley Research Center under the Advanced Applications Flight Experiments (AAFE) Program. The objective of this contract is the development of the Carbon Monoxide Pollution Experiment ("COPE"). This experiment is designed to obtain data for the investigation of mechanisms by which CO is removed from the earth's atmosphere. The approach uses an orbiting platform to remotely map global CO concentrations and determine vertical CO profiles using a correlation interferometer measurement technique being developed by Barringer Research Ltd. The instrument is to be capable of measuring CO over the range .02 to 20 atm.-cm. and of measuring other trace atmospheric constituents.

The report covers one aspect of the study - the analysis of the feasibility of the experiment. A previous report was concerned with the CO problem and a forthcoming report will be concerned with the breadboard instrument - its design, fabrication and testing. The technique is, of course, suitable for the measurement of other atmospheric trace species, and such applications are currently under study.

The authors would like to express their appreciation to several coworkers who have contributed significantly to the work described herein and to related work - specifically, to S. H. Chandra who did most of the work on scintillation effects described herein; to D. N. Vachon who provided meteorological information such as that on precipitable water and cloud cover; to J. C. Burns who made numerous helpful suggestions and reviewed much of the work; to S. L. Neste who assisted with the calculations; to H. W. Goldstein who reviewed and evaluated much of the work; and R. H. Kummler who contributed many valuable suggestions in his consultation throughout the work.

iii

Page Intentionally Left Blank

TABLE OF CONTENTS

Page

1.	INTRODUCTION												
2.	ATM	OSPHERIC MODELS	3										
	2.1	Composition Models	3										
	2.2	Temperature and Pressure Models	7										
	2.3	Other Atmospheric Characteristics 1	5										
	2.4	The Effect of Scintillations 18	8										
		 2.4.1 Introduction. 2.4.2 Qualitative Explanation. 2.4.3 Criterion for "Significant" Amount of Scintillations. 2.4.4 Additive and Multiplicative Noise. 2.4.4.1 Additive Noise 2.4.4.2 Multiplicative Noise 2.4.5 Calculation of the Scintillation Effect 	8 9 1 2 2 3										
3.	SPEC	CTRAL CONSIDERATIONS 2	9										
	3.1	The CO Infrared Spectrum 2	9										
	3.2	Intensity of Reflected Solar Radiation and Earthshine 2	9										
		3.2.1Solar Reflection23.2.2Earthshine33.2.3Batio of Beflected Solar Badiation and Earthshine	9 4										
·		Intensities 3	4										
4.	RAD	IATIVE THEORY 3	7										
	4.1	Theory	7										
	4.2	Synthetic Spectrum - Fourier Transform Program 4	6										
		 4.2.1 Introduction	6 8 9 0 1										

Page

5.	CORI	CORRELATION INTERFEROMETRY										
	 5.1 Principles of Interferometry											
	5,2	Relationship Between Spectra and Interferograms										
., .,	5.3	The Measurement in the Presence of Interferents										
*****	5.4	An Example of the Use of Interferograms										
6.	CORI	RELATION TREATMENT										
	6.1	Basic Principles										
		6.1.1Instrument Output856.1.2Preprocessing856.1.3Final Processing86										
	6.2	Determination of Weights										
		6.2.1Basic Philosophy and Theory866.2.2Noises in Measurement886.2.3Derivation of Weights896.2.4Physical Origins for the Noise Terms91										
	6.3	Software										
		6.3.1Description926.3.2Values for Noise Inputs946.3.3Noise Values Based on Instrument Measurements946.3.4RA and SA for Computer Interferograms966.3.5Data Output98										
7.	RESU	JLTS 99										
	7.1	Atmospheric Transmission 99										
		7.1.1Calculation Model997.1.2Single- and Multi-line Models and Line Shapes1017.1.3CO Profile Effects1077.1.4Temperature Profile Effects1117.1.5Ground Temperature Effects1177.1.6Emissivity Effects1217.1.7Effects of Other Parameters123										
	7.2	Expansion of Overtone and Fundamental Bands 123										
	7.3	Comparative Calculations 129										

Page

	7.4	4 Limb Inversion Analysis								
	7.5	Multi-l	ine Model	Calculations	144					
		7.5.1 7.5.2	The Prog Calculati 7.5.2.1 7.5.2.2 7.5.2.3 7.5.2.4	ons Explanation of Calculations The Overtone Band The Fundamental Band Summary	144 147 147 170 177 178					
	CON	CLUSION	NS		181					
	APP	ENDIX A	Listing	g of Program Spectra	185					
7.5 Multi-line Model Calculations 1 7.5.1 The Program 1 7.5.2 Calculations 1 7.5.2.1 Explanation of Calculations 1 7.5.2.2 The Overtone Band 1 7.5.2.3 The Fundamental Band 1 7.5.2.4 Summary 1 CONCLUSIONS 1 APPENDIX AListing of Program Spectra 1 APPENDIX BListing of Correlation Function Program 2 REFERENCES 2										
	7.5.2.1Explanation of Calculations1477.5.2.2The Overtone Band1707.5.2.3The Fundamental Band1777.5.2.4Summary178CONCLUSIONS181APPENDIX AListing of Program Spectra185APPENDIX BListing of Correlation Function Program233REFERENCES249									

8.

ŕ

LIST OF FIGURES

.

. .

Figure

2.1.1	CO Profiles	5
2.1.1.A	CO Profiles	6
2.1.2	Optical Thickness as a Function of Angle from Vertical	8
2.1.3	Optical Thickness for Limb Transmission Experiment as a	_
214	Function of Grazing Altitude	.9
2.1.4	U_2 and CH_4 Profiles	12
2.1.6	Temperature Profiles	12
2.1.7	Temperature Profiles for Comparative Calculations	17
2 4 1		
2.4.1	Geometry for Consideration of Scintillations	20
2.4.2	Dependence of the Normalized Log-Amplitude variance $C_1(0)/C_2(0)$ Upon the Normalized Source Size O for Observe	
	vations from Space of a Ground-Based Source (Fried 1967b)	2.6
	valions from space of a Ground-Dasca Source (Fried, Frons).	
3.2.1	Reflected Solar Radiation and Earthshine	33
4.1.1	Geometry for Limb Conditions	39
4.1.2	Geometry for Mapping Conditions	40
4.2.1	Geometries of Atmospheric Transmission Calculations	47
4.2.2	Program SPECTRA Main Segment	52
4.2.3	Program SPECTRA First Segment (Subroutine VOIGT)	54
4.2.4	Program SPECTRA Second Segment (Subroutines	
• • •	HEIGHT, INTERP)	56
5.1.1	Interferometer and Interferometer Output	68
5.2.1	Relation of Interferogram and Spectrum	70
5,2.2	Interferogram and Spectrum of CO	72
5.2.3	Heterodyning of Interferogram	73
5.3.1	Application of Correlation Function	77
5 4 1	Spectra and Interforegram Envelopes for Three Species with	
J. T. I	Overlapping Spectra and Their Combinations	80
621	Convolution Function December Flowshort	05
0.5.1	Correlation Function Program FlowChart	70
7.1.1	Comparison of Single and Overlapping Line Absorption	
	Spectra through Standard Atmosphere	102
7.1.2	Absorption Line Profiles (P8)	104

Figure

7.1.3	Line Profile Showing Emission Peak at Center	105
<i>(</i> •1•4	(4.6 μ) (R7 Line)	106
7.1.5	Variation of Rate of Change in Absorbed Intensity Overtone (2.3 ii) (B7 Line)	108
7.1.6	Variation of Rate Change in Absorbed Intensity Fundamental	100
7.1.7	Variation of Rate of Change in Absorbed Intensity Overtone	109
7.1.8	(2.3 u). Effect of Change in Earth Emission Intensity on Predicted	110
	CO Density (4.6 μ - R7 Line)	120
7.3.1	P19 Transmission Calculations	130
7.4.1 7.4.2 7.4.3 7.4.4	Shell Model for Limb Inversion Analysis CO Concentration Models CO Optical Mass in Horizontal Transmission Paths Computed Atmospheric CO Concentrations with Simulated	134 136 138
7.4.5	Instrument Error	139 140
7.5.1	January Mean Precipitable Water (in inches) from Tuller - 1968	173
7.5.2 7.5.3 7.5.4	April Mean Precipitable Water (in inches) from Tuller - 1968 July Mean Precipitable Water (in inches) from Tuller - 1968 October Mean Precipitable Water (in inches) from Tuller -	174 175
	1968	176

· . .

LIST OF TABLES

Tables		Page
2.1.1 2.1.2 2.1.3 2.1.4	CO Profiles (cm ⁻³) Concentration Profiles Temperature Profiles (°K) Temperature Models for Comparative Calculations	4 10 13 16
3.1.1 3.1.2 3.1.3	Energy & Wavelength of Vibration-Rotation Lines of CO (2-0). Energy & Wavelength of Vibration-Rotation Lines of CO (1-0). CO Line Strengths (cm-2 atm-1)	30 31 32
7.1.1 ² 7.1.2 7.1.3	Effect of CO Profile on Absorption Effect of CO Column Density on Fractional Net Absorption Effect of CO Profiles on Derived CO Concentrations	112 113
7.1.4	(% Deviation) Effect of Profiles on Derived CO Concentrations -	114
7.1.5 7.1.6 7.1.7	Temperature Inversion (% Deviation) Effect of Temperature Profile on Absorption Effect of Ground Temperature on Absorption Effect of Ground Temperature on Apparent Absorption	115 116 118
7.1.8	of Source Radiation Effects of Emissivity on Fractional Net Absorption for	119
7.1.9 7.1.10	R7 Lines Effect of Reflectivity on Fractional Net Apparent Absorption Effect of Lorentz Half-Width on Apparent Absorption of	122 124
7.1.11 7.1.12 7.1.13	Fundamental (4.6μ) Effect of Lorentz Half-Width on Absorption Overtone (2.3μ) Effect of Bandpass on Fractional Net Apparent Absorption Effect of Bandpass on Fractional Net Apparent Absorption	125 125 126 127
7.3.1	Temperature Models and Results for Comparison Band Calculations	132
7.4.1	Limb Transmission Analysis for Standard CO Concentration	141
7.4.2	Limb Transmission Analysis for Upper Atmosphere Sink CO Concentration Model	142
7.4.3	Limb Transmission Analysis for Low Level Sink CO Concentration Model	143
7.5.1 7.5.2	Case ACase B	149 150

Table

Page

.

xi

:

ANALYSIS OF THE FEASIBILITY OF AN EXPERIMENT TO MEASURE CARBON MONOXIDE IN THE ATMOSPHERE

By M. H. Bortner, F. N. Alyea, R. N. Grenda and G. R. Liebling, General Electric Co., Space Sciences Laboratory, and G. M. Levy, Barringer Research Ltd.

1. INTRODUCTION

One of the major problems in the field of remote sensing of atmospheric pollutant concentrations consists of determining what measurements should be made and what information can be obtained from a given measurement. It is, therefore, economically advisable to simulate (to the extent possible) measurements with the computer and utilize the results to determine the most useful instrument measurements. This report describes passive measurement of pollutants via their absorption of sunlight. The simulation consists of defining a representative model atmosphere and subsequently solving the radiative transfer equation to obtain the spectrum falling on the instrument and then calculating the action of the instrument to determine the signal produced. Effects such as reflected sunlight, earthshine, atmospheric absorption and atmospheric emission must be considered in order to yield physically meaningful solutions to the equation. The specific pollutart or chemical species of interest will determine the spectral region for which the atmospheric transmission will be computed. For the case in which the instrument is an interferometer, the Fourier transform of the spectrum is then calculated to produce an interferogram. Treatment of the interferogram produces the measurement of the pollutant.

The various portions of this type of calculation are described herein as applied to the calculation of the measurement of atmospheric carbon monoxide by the correlation interferometer. The results of calculations are discussed.

The model has been used to investigate the feasibility of the use of the correlation interferometer to measure CO, to consider the usefulness of the measurement in looking for a CO sink^{*}, and to define the exact spectral band which should be used for most reliable and useful results. The measurements to be made include a mapping of CO concentrations by looking downward toward the earth and a determination of the vertical CO profile by looking at the sun through the earth's limb, as described in Section 4.

The model is the basis for a program which computes the upwelling radiation for both the mapping and the limb modes. It calculates the spectrum incident on the instrument and the resulting interferogram. Another program then is used to invert the results to obtain CO densities. The model has been used to calculate transmission to determine the range of sensitivity, the effect of various atmospheric and source parameters, and the effect of interfering species.

Bortner, Kummler, and Jaffe (1972) have reviewed the sources, sinks, and concentrations of carbon monoxide in the earth's atmosphere.

2. ATMOSPHERIC MODELS

2.1 Composition Models

The analytical work performed employed several atmospheric models involving several variations of the carbon monoxide, water, and temperature profiles and one carbon dioxide and one methane profile.

Specifically, ten CO profiles were used. These are given in Table 2.1.1 and shown graphically in Figure 2.1.1. Profile 1 is that for a constant mixing ratio of 0.1 ppm; profile 2 is that for 10 ppm up to 2 km and 0.1 ppm above that; profile 3 is that for a constant mixing ratio of 0.01 ppm; profile 4 is that representing a sink in the 20-45 km range with the mixing ratio dropping from 0.1 to 0.01 ppm over this altitude range; profile 5 is that representing a low altitude sink with an effect up to 9 km, having a mixing ratio of 0.01 ppm at 0 km and 0.1 ppm at 9 km; profile 6 represents a low altitude sink with an effect up to 1 km, having a mixing ratio of 0.01 ppm at 0 km increasing to 0.1 ppm at 1 km; profile 7 also represents a low altitude sink with an effect up to 3 km, having a mixing ratio of 0.005 ppm at 0 km and 0.1 ppm at 3 km; profile 8 represents a low altitude sink with an effect up to 1 km as in profile 6, but having a mixing ratio of 0.01 ppm up to 1 km and 0.1 ppm above. It is important for the mapping measurements to show the effects of these differences except for profile 4, the effect of which should be shown in the limb experiment. The total number densities from which the CO number densities were obtained with the above mixing ratios were taken from Bortner and Kummler (1968) in which they were derived mainly from CIRA (1965) representing mean conditions throughout the year for latitude near 30⁰.

For purposes of making calculations (Section 7.3) to compare with those of the Convair group (Ludwig, 1970) CO models 9 and 10, Table 2.1.1

TABLE 2.1.1 CO PROFILES (cm⁻³)

5.22(11) 3.82 (11) 3.42 (11) 2.08(10) 9.58(9) 6.35(11) 5.78(11) 4.72(11) 4.25(11) 1.01(11) 3.08(11) 2.72 (12) 2.43(11) 2.15(11) 4.63(10) 4.40(9) 2.08(9) 1.02 (9) 2.92 (8) 1.59 (8) 5. 35 (8) 4.55(7) 1.04(7) 1.65(6) 8.68(7) 2.28(7) 4. 12 (Ú) 6. 30 (5) 2.60(5) 21 82 (12) 6.35(12) 5.78(12) 5.22 (12) 4.72 (12) 4.25(12) 3.42 (12) 3.08(12) 2.72 (12) 2.43(12) 2.15(12) 1.01 (12) 4.63(11) 2.08(11) 9.58(10) 4.40(10) 2.08(10) 1.02 (10) 1. 59 (8) 8. 68 (8) 4. 55 (8) 2. 28 (8) 5.35(9) 2.92(8) 1.04(8) 2.60(6) 4.12(7) (1, 65 (7) 6. 30 (6) 51 2.54(11) 1.53(12) 1.37(12) 2.31(11) 2.09(12) 1.89(12) 1.70(12) 9.71 (11) 8.60(11) 4.05(11) 1.85(11) 8.33(10) 2.83(10) 1.76(10) 8.31 (9) 4.09 (9) 1.23(12) 1.09(12) 6. 36 (8) 3. 47 (8) 1. 82 (8) 9. 01 (7) 2.14(9) 1.17(9) 1.04(6) 6.59(6) 4.16(7) 1.65(7) 2.52 (6) ωI 1.27(11). 1.53(12) 1.37(12) 1.23(12) 1.09(12) 2.43(11) 4.62 (12) 9.00(11) 1.21 (12) 1.60(12) . 89 (12) 1.70(12) 9.71(11) 8. 60 (11) 4.05(11) . 85 (11) 8.33(10) 3.83(10) 1.76(10) 1.84(18) 8.31 (9) 4.09 (9) 6. 36 (8) 3. 47 (8) 1.17(9) 1.82 (8) 2.52 (6) 2.14(9) 9.01(7) 4.16(7) 1.65 (7) 6.59(6) 04(6) 2 9.71 (11) 8.60 (11) **4.** 05 (11) 1. 85 (11) 8.33(10) 3.83(10) 2.54(11) 1.22(12) 1.89(12) 1.70(12) 1. 17 (9) 6. 36 (8) 3. 47 (8) 1. 82 (8) 2.01(18) 2.31 (12) 1.53(12) 1.37 (12) 1.23(12) 1.09(12) 1.76(10) **4.** 16 (7) 1. 65 (7) 8.31 (9) 4.09(9) 2.14(9) 9.01 (7) 6.59(6) 2.52 (6) 04 (6) 9 2.54(11). 3.64(11) 9.71 (11) 8.60 (11) **4.** 05 (11) 1. 85 (11) 1.35(18) 4.62(11) 5.27(11) ((1) 20.2 7.56 (11) P. 10(11) 8.50(11) 8.80(11) 9.18(11) 9.59(11) 9.81 (11) 8.33(10) . 76 (10) 5. 62 (11) 9.84(11) 3.83(10) **4.** 09 (9) 2. 14 (9) 1.17(9) 6.36(8) 3.47(8) 8.31(9) 1.65(7) 2.52 (6) 1.82 (8) 9.01(7) 4.16(7) 6. 59 (6) . 04 (6) ŝ 2.12(18) 2.09(12) 1.89(12) 8.60(11) 1.85(11) 2.54(12) 2.31(12) 1.70(12) 1.09(12) 9.71 (11) 4.05(11) 9.58(9) 2.93(9) 1.04(9) 4.09(8) 2.14(8) 1.17(8) 6.36(7) 1.53(12) 1.37 (12) . 23 (12) 4.16(10) 3.47 (7) 1.82 (7) 9.01 (6) 1.04(5) 2.52 (5) 4.16(6) 1.65(6) 6.59(5) 41 1. 09 (11) 9. 71 (10 8. 60 (10) 4. 05 (10) 1. 85 (10) 2.54(11) 2.31(11) 2.09(11) 1.89(11) 1.70(11) 2.13(17) . 53 (11) . 37 (11) . 23 (11) 3. 83 (9) 1. 76 (9) 8.31(8) 1.17(8) 6.36(7) 3.47(7) 1.82(7) 8.33(9) 4.09(8) 2.14(8) 9.01 (6) 4.16(6) 1.65(6) 2.52 (5) 1.04(5) 6. 59 (5) m1 1.53(12) 1.37(12) 1.85(11) 8.33(10) 2.54(14) 2.31 (14) 2.09(14) 1.76(10) 5.83(19) 1.89(12) 1.70(12) 1.09(12) 9.71 (11) 8.60(11) 4.05(11) 3.83(10) 8. 31 (9) 4. 09 (9) 2. 14 (9) 1.23 (12) 1. 17 (9) 6. 36 (8) 3. 47 (8) 1.82 (8) 2.52(6) 9.01(7) 4.16(7) 1.65(7) 6.59(6) . 04 (6) 21 1.85(11) 8.33(10) 2.54(12) 2.31 (12) 2.09(12) 9.71 (11) 8.60(11) 4.05(11) 3.83(10) 2.13(18) 1.89(12) 1.70(12) 1.53(12) 1. 37 (12) 1.23(12) 1.09(12) 1.76(10) 8.31 (9) 4.09 (9) 1.17(9) 6.36(8) 3.47(8) 1.82(8) 2.14(9) 4.16(7) 1.65(7) 9.01(7) 6.59(6) 2.52 (6) . 04 (6) -1 Altitude (km) Total (cm⁻²) 2.5 3.5 1.5 0.5 ഹ ŝ 15 20 25 30 35 50 55 60 70 85 85 85 ھ 10 4 45 8 80 90 95

Figure 2.1.1 CO Profiles

and Figure 2.1.1, representing 0.025 and 0.25 ppm CO, were also treated.

The optical thickness (total number of CO molecules per cm^2 column of sight) is given for the mapping experiment in Figure 2.1.2 and for the limb experiment in Figure 2.1.3.

The CO₂ profile used is given in Table 2.1.2 and Figure 2.1.4. The CO₂ is based on a constant mixing ratio of 320 ppm. The CH₄ profile, taken from Cadle and Powers (1966) is shown in Table 2.1.2 and Figure 2.1.4, and corresponds to a constant mixing ratio of 2 ppm.

The three water profiles, corresponding to a dry⁽¹⁾, normal⁽²⁾, and a wet⁽³⁾ atmosphere, were taken from Gutnick, 1962; Oppel, 1963; and Linquist, 1965; respectively. These are given in Table 2.1.2 and Figure 2.1.5. These are equivalent to approximately 0.2, 1.5, and 3 percipitable cm H_2O_{\bullet}

The planned satellite experiment may be best carried out in a polar orbit. Without noting reasons, advantages, and disadvantages, this is excellent for the mapping experiment, but restricts the limb measurements to the polar regions. This is not a problem, however, since above the tropopause, it is to be expected that there is no appreciable latitude effect on the concentrations. Keneshea (1971) has calculated the OH concentration at different latitudes and found little variation. Since the chief CO removal mechanism at these altitudes is, in all probability, CO + OH reaction, the rate of CO removal should be about constant with latitude. The small temperature effect on the rate constant should not cause significant variation of CO with latitude.

2.2 Temperature and Pressure Models

Four specific temperature profiles were used. These are shown in Table 2.1.3 and Figure 2.1.6. Profile 1 corresponds to a cold atmosphere (AFCRL, 1966); profile 2 corresponds to an average atmosphere (AFCRL, 1966); profile 3 corresponds to a hot atmosphere (AFCRL, 1966);

Figure 2.1.2 Optical Thickness as a Function of Angle from Vertical

Figure 2.1.3 Optical Thickness for Limb Transmission Experiment as a Function of Grazing Altitude

TABLE 2.1.2 CONCENTRATION PROFILES

A 1 1	a a		 	H ₂ O	· · · · · ·
<u>(km)</u>		сн ₄	(1)	(2)	(3)
	· · ·		,		
· O	7,8 (15)	5.0 (13)	3.0 (16)	2.3 (17)	4.6 (17)
1	6.8 (15)	4.1 (13)			
2	5.9 (15)	3.7 (13)	1.2 (16)	9.9(16)	1.9 (17)
3	5.0 (15)	3.1 (13)	•		• • •
4	4.3 (15)	2.7 (13)	5.1 (15)	3.8 (16)	7.4 (16)
5	3.9 (15)	2.3 (13)			
6	3.3 (15)	2.1 (13)	1.2 (15)	1.5 (16)	2.7 (16)
7	3.0 (15)	1.8 (13)	•	ie Ie	
8	2.5 (15)	1.4 (13)	4.1 (14)	3,9(15)	8.2 (15)
9	2.2 (15)	1.3 (13)			
10	2.0 (15)	1.2 (13)	9.1 (13)	5,1 (14)	1.7 (15)
15	1.0 (15)	5.8 (12)			1. TA
20	5.0 (14)	2.9 (12)	1.8 (13)	5.9 (13)	1.5 (13)
25	2.4 (14)	1.3 (12)			*** ***
30	1.2 (14)	7.0(11)	3.4 (12)	8.4 (13)	2.8 (12)
35	6.3 (13)	4.4 (11)			
40	3.2 (13)	1.8 (11)			•
45	1.7 (13)	8.5 (10)			
50	8.2 (12)	4.2 (10)			
55	4.1 (12)	2.0 (10)		· ·	
60	2.1 (12)	1.0 (10)		· · ,	,
65	1.2 (12)	5.0 (9)			
70	5.2 (11)	2.4 (9)			
75	1.2 (11)	1,0 (9)	· · ·		
80	1.0 (11)	5.0 (8)			•
85	3.7 (10)	2.1 (8)			
90	2.0 (10)	1.0 (8)	•		
95	7.5 (9)	4.0 (7)	•		
100	3.1 (9)	1.0 (7)	· · · · ·	,	· · .

· · ·

Figure 2.1.5 H₂O Concentrations

			. <i>**</i>
			and the second
Altitude			1 .
(km)	<u>1</u>	2	<u>3</u>
			1
0	257.3	288.2	302.6
1	259.3	281.7	295.9
2	256.1	275.2	289.4
3	252.8	268.6	, 284.3
4	247.8	262.2	277.4
5	241.0	255.7	270.6
6	234.2	249.2	263.8
7	227.4	242.7	257.1
8	220.6	236.2	250.4
9	217.2	229.7	· 243.7
10	217.2	223.3	, 237.0
15	217.2	216.6	203.7
20	214.2	216.6	206.7
25	211.2 -	221.6	. 221.4
30	216.0	226.5 🐇	232.3
35	222.3	236.5	243.2
40	234.6	250.4	254.0
45	247.0	264.2	264.8
50	259.3	270.6	270.2
55	259.1	265.6	263.4
60	250.9	255.8	253.1
65	248.4	239.3	236.0
70	245.4	219.7	218.9
75	234.7	200.2	201.8
80	223.9	180.6	184.8
85	213.1	180.6	177.1
90	202.3	180.6	177.0
95	211.0	195.5	184.3
100	218.5	210.0	_ 190.7 ·
	· · · · · ·		and the second sec
1,40			· .

TABLE 2.1.3 TEMPERATURE PROFILES (^OK)

T.

5

. .

1.¹*

,

. ۰ <u>, 1</u> .· •,

. 14

profile 4 involves a low altitude inversion layer (up to 2 km), based on average values for Vandenberg AFB, June 1970 (Vachon, 1971). It is important that these variations should have no large effect on the CO measurements. Any such effects require detailed accurate supplemental measurements and make the interpretation of the data much more complex and, for practical purposes, means that many fewer data can be interpreted. Analysis of such effects is covered in subsequent sections of this report.

For calculations, described later, made to compare results of these studies with those of the Convair group (Ludwig, 1970), four other temperature models were used. These are given in Tables 2.1.4 and Figure 2.1.7 as models 5 through 11.

2.3 Other Atmospheric Characteristics

17.

In the development of the COPE experiment a number of atmospheric characteristics must be considered. Those of greatest interest are cloud cover, precipitable water, pressure, temperature, and inversion layers. A report (Vachon, 1971) was prepared which presented a base of detailed information on these characteristics which can be extended or refined.

Significant cloud cover denies the possibility of making the desired observation since radiation (of either the 2.3 or 4.6μ band of CO) does not penetrate the clouds. The amount of cloud cover has been found to vary mainly between 0.3 and 0.8 around the world. There is no part of the globe where there is not an appreciable time when the atmosphere is cloud free. An empirical formulation was developed to relate the probability of having a cloud-free line-of-sight at various look angles as a function of the frequency of occurrence of scattered, broken, and overcast cloud cover.

Data on precipitable water in the atmosphere shows variation between about 0.5 and 5 cm. Although there is considerable variation there are predictable trends for any region and season. The knowledge of these

TABLE 2.1.4 TEMPERATURE MODELS FOR COMPARATIVE CALCULATIONS

=1	275	275'		279.2	280	274.6	270.0	254.8	247.8	242.2	237.6	233.6	229.4	225.8	222.2	216.0	216.0	216.0	218.0	228.0	239.0	252.0	266.0	270.0
10	275	288		281.3		274.6	270.0	254.8	247.8	242.2	237.6	233.6	229.4	225.8	222.2	216.0	216.0	216.0	218.0	228.0	239.0	252.0	266.0	270.0
٥,١	288	288		281.3		274.6	270.0	254.8	247.8	242.2	237.6	233.6	229.4	225.8	222.2	216.0	216.0	216.0	218.0	228.0	239.0	252.0	266.0	270.0
άοl	288.16	288.16		281.3		274.6	270.0	254.8	247.8	242.2	237.6	233.6	229.4	225,8	222.2	216.0	216.0	216.0	218.0	228.0	239.0	252.0	266.0	270.0
~	288.16	288.16		281.3		274.6		267.8	261.1	254.4	247.6	240.9	234.2	227.4	.222.0	216.6	216.6	216.6	221.6	226.5	236.5	250.4	264.2	270.6
9	288.16	288.16	294.6	278.2		264.2		254.8	247.8	242.2	237.6	233.6	229.4	225.8	222.2	216.0	216.0	216.0	218.0	228.0	239.0	252.0	266.0	270.0
νI	288.16	288.16		278.2		264.2		254.8	247.8	242.2	237.6	233.6	229.4	225.8	222.2	216.0	216.0	216.0	218.0	228.0	239.0	252.0	266.0	270.0
Altitude (km)	Ground	0.0	0.15	Ŀ	1.2	2	2.68	e	4	• • •	9	2	80	6	10	12	15	20	. 25	30	. 35	40	45	50

٠,

the second s

Figure 2.1.7 Temperature Profiles for Comparative Calculations

trends now appears to be unnecessary as can be seen in later discussions (Section 7.4).

One effect which must be considered in remote sensing from a fast moving vehicle is the possibility of a Doppler shift. If there is a large velocity component in the direction of the observed radiation, there is a Doppler shift which is determined by $\Delta v = v \frac{v_s}{c}$ where v_s is the velocity component in the line-of-sight, or $\Delta \nu = \nu \frac{v}{c} \cos \theta$ where θ is the angle between the line-of-sight and the vehicle movement. In the limb experiment, the satellite may be traveling very nearly direct toward or away from the sun so that $\cos \theta \approx 1$, and v is of the order of 7×10^5 cm sec⁻¹. Thus $\frac{v_s}{c} = \frac{\Delta v}{v}$ is of the order of 2.3 x 10⁵. Thus at 2.3 μ , $\Delta \nu = 0.1$ cm⁻¹, and at 4.6 μ , $\Delta \nu =$ 0.05 cm^{-1} . These shifts are of the order of a Doppler line-width, which is the width of the line at the upper altitudes, i.e. those of interest in the limb experiment. If the technique is spectral and employs a reference cell of any sort on board this is extremely important and probably means that the technique is not suitable for the limb measurement. For the correlation interferometric technique a Doppler shift essentially appears as a phase shift which can be readily taken into account.

2.4 The Effect of Scintillations

2.4.1 <u>Introduction</u>: - Scintillations in the light intensity of a beam are introduced by atmospheric turbulence. When the light from a small light source of constant intensity passes through a long path in the atmosphere, the energy collected through a small aperture at the other end is not constant; rather it fluctuates with time. The effects of such fluctuations (usually called scintillations) on the performance of a ground-looking scanning Michelson interferometer are discussed here. The output of a scanning Michelson interferometer is normally a time varying signal. Therefore, any scintillations in the light beam, before it is collected by the Michelson inter-

ferometer, can introduce spurious fluctuations in the wave form of the interferometer output. However, the effects of scintillations will be negligible if the amplitude of these scintillations turns out to be smaller than the error of digitalization in the interferometer output wave form. First, we shall qualitatively explain why the scintillation effects will not be significant with the earth-looking interferometer. Next, we shall quantitatively determine the extent of the effect of scintillation on the interferometer data.

2.4.2 Qualitative Explanation: - It is generally said that to the eye, stars, which have an angular subtense of a hundredth arc sec or less, appear to twinkle. On the other hand, objects of larger angular subtense such as planets, which have angular subtense from several arc secs to 30-40 arc sec - do not. Consider Figure 2.4.1 and suppose that with a receiver (a telescope or the pupil of the eye) of diameter, d, on the ground we observe an object outside the earth's atmosphere, subtending an angle θ . For the purpose of scintillations, we take the height of the "top" of the atmosphere as 100 km. (The exact value of the height of the "top" is not important for the present discussion.) For an eye-pupil, $AD = d \simeq 6 \text{ mm}$ so that, if the object is a star (9 \simeq 0.01 arc sec), BC \simeq 10 mm. On the other hand, if the object is a planet ($\theta \simeq 20$ arc sec), BC $\simeq 10,000$ mm (10 meter). Thus, in the case of the planet, it is the increased number of atmospheric turbulence eddies perpendicular to the line-of-sight and within the light cone ABCD that are responsible for reducing the scintillations and stabilizing the intensity.

If we view a star ($\theta = 0.01 \text{ arc sec}$) with a 100 cm aperture telescope, then AD \simeq 100 cm and BC \simeq 100 cm, and again the number of turbulence eddies perpendicular to the line-of-sight will have increased and, consequently, scintillation will be decreased. This is, of course, an observed fact: scintillations become negligible when photo-electric measurements of the brightness of a star are made with a large aperture telescope.

The situation of an earth-looking scanning Michelson interferometer is shown in Figure 2.4.1 b. Consider an interferometer receiver of diameter, AD, 3-inches. Then for a wavelength of 2μ and resolution, $\Delta\nu$, of 0.5 cm⁻¹, the throughput is 0.006 (cm² ster), which gives $\theta \approx 6 \times 10^{-3}$ radians (= 1200 arc sec) and therefore A'D' = 600 meters and BC = 1200 meters. Even if the height of the satellite or that of the "top" of the atmosphere is different from the above values, it is quite evident that, due to the large value of θ , dimensions A'D' and BC of Figure 2.4.1 b will be very much larger than the corresponding dimensions for the case of a planet or a large aperture telescope considered above. Consequently there will be a very large number of turbulent eddies in the direction perpendicular to the lineof-sight and the effects of the scintillation will be negligible.

2.4.3 Criterion for "Significant" Amount of Scintillations: - The instrument used for this purpose will be a Michelson interferometer in which the beam of light falling on the instrument is split with a beam splitter into two mutually coherent beams which are then made to interfere with each other to produce Haidinger fringes. Light from the central region of this fringe pattern is collected by a photo detector and the output of the instrument is an electrical signal. The spectral nature of the radiations is analyzed by varying the optical phase difference between the two beams and recording the fluctuating electrical output; that is, the interferogram. The fluctuations in this recorded signal contain the information on the spectral properties of the radiations. However, the light beam falling on the instrument fluctuates in intensity. The observed interferogram will have spurious fluctuations resulting from the modulation of the interferogram by light intensity fluctuations. In Section 2.4.5, therefore, we shall investigate the influence of incident light beam intensity fluctuations upon the energy spectrum obtained with the interferometer.

2.4.4 <u>Additive and Multiplicative Noise:</u> - Before we make quantitative calculations of scintillations, we must point out the distinction between multiplicative and additive noise.

2.4.4.1 Additive Noise: - Let the amplitude of the noise be independent of the signal. This will be the case with digitization noise. For a six-bit word, the digitization noise amplitude will be: $1/2^6 = .016 \approx$ 1.6%. Under such a situation, the greater the bandwidth -- (i.e. the greater the phase difference for scanning) -- the spikier the reconstructed spectrum. Therefore, to reduce digitization noise the path difference for scanning should not be greater than that dictated by the needs of spectral resolution. Conversely, even a small <u>additive</u> error can produce large errors in the reconstructed spectrum if the bandwidth of the scan is large. Of course the greater the amplitude of the additive noise (e.g. digitization noise) the greater will be the amplitude of the spurious spikes in the reconstructed spectrum.

2.4.4.2 <u>Multiplicative Noise</u>: - The noise is multiplicative when it is dependent upon the signal level, i.e. when the amplitude of the noise is a certain fraction of the instantaneous signal. For example, let the true interferogram be $F_0(w)$ giving a true spectrum, $f_0(\lambda)$.

Then,

$$f(\lambda) = \mathcal{F}[F(\omega)]$$

where represents the usual linear operation of Fourier transform of a real signal. Let the multiplicative noise be a fraction, $\in (w)$, of the signal, F(w), where the value of fraction $\in (w)$ is a random variable. Therefore the observed interferogram can be represented as

$$F_{obs}(\omega) = F_{o}(\omega) + \epsilon(\omega) F_{o}(\omega) = [1 + \epsilon(\omega)] F_{o}(\omega)$$

Therefore the observed reconstructed spectrum will be

$$\begin{split} f_{obs}(\lambda) &= \mathcal{F} \Big[\mathbf{F}_{obs}(\omega) \Big] &= \mathcal{F} \Big[\mathbf{F}_{o}(\omega) \Big] + \mathcal{F} \Big[\in (\omega) \Big] \mathbf{F}_{o}(\omega) \Big] \\ &= f_{o}(\lambda) + \mathcal{F} \Big[\in (\omega) \mathbf{F}_{o}(\omega) \Big]. \end{split}$$

The error in the reconstructed spectrum therefore will be

$$\Delta f(\lambda) \equiv f_{obs}(\lambda) - f_{o}(\lambda) = \mathcal{F}\left[\in (\omega) F_{o}(\omega) \right].$$

But, since $\in (\omega)$ is a random variable,

$$\mathcal{F}\left[\boldsymbol{\varepsilon}(\boldsymbol{\omega}) \; \mathbf{F}_{\mathbf{o}}(\boldsymbol{\omega}) \right] \leq |\boldsymbol{\varepsilon}_{\max}| \mathcal{F}\left[\mathbf{F}_{\mathbf{o}}(\boldsymbol{\omega}) \right] = |\boldsymbol{\varepsilon}_{\max}| \cdot \mathbf{f}_{\mathbf{o}}(\boldsymbol{\lambda}) \, .$$

where \in_{\max} is the maximum likely fractional error in the interferogram. Consequently, the maximum likely error in the reconstruction spectrum will be

$$\frac{\Delta f(\lambda)}{f_{0}(\lambda)} \leq |\epsilon_{\max}|.$$

The effect of light intensity scintillations will be a multiplicative error on the observed interferogram and the reconstructed spectrum. Therefore, for example, if the scintillation amplitude is 1%, the error in the observed intensities in the reconstructed spectrum will <u>not</u> be more than 1%.

2.4.5 <u>Calculation of the Scintillation Effect</u>: - The effect of an atmospheric refractive index inhomogenity on the light propagating through turbulent atmosphere and the consequent scintillation effects have been investigated by various authors, as noted in the following discussion. We shall make use of these investigations in calculating the magnitude of the scintillation expected from an earth-looking satellite.

An exact mathematical description of atmospheric turbulence is not possible. However, with some reasonable assumptions, the problem becomes tractable. In the work of earlier investigators the atmospheric turbulence is assumed to be homogeneous and isotropic and the spectral energy distribution in the turbulence is assumed to be given by the Kolmogoroff theory. Let $C_{\ell}(\rho)$ be the convariance of the log-amplitude between two measurement points separated by a distance, ρ . Then, scintillations in a laser beam traveling through a uniform atmosphere have been calculated by Fried and Seidman (1967) showing that for $\rho = 0$, $C_{\ell}(O)$ can be written as a product of two factors:

$$C_{\ell}(O) = C_{\ell}^{S}(O) \cdot f_{O}(\Omega)$$
 Eq. 2.

where the first factor, $C_{l}^{S}(O)$, the value of $C_{l}(O)$ associated with a point source, is given by:

$$C_{\ell}^{S}(O) = \text{constant} \cdot k^{7/6} z^{11/6} C_{N}^{2}$$
 Eq. 2.2

 $(k = \frac{2\pi}{\lambda})$, λ = wavelength of light, z = path length, and C_N^2 is the refractive index structure constant). The second factor is a function of the parameter Ω (where $\Omega = k\alpha_0^2/z$, and α is the linear source size). The value of $f(\Omega)$ is given by Fried and Seidman (1967, Equation 4.12).

For the case of an earth-looking satellite, the atmosphere in the line-of-sight is not uniform and therefore C_N^2 is not a constant. Based on the data presented by Hufnagel (1964), it has been shown (Fried and Cloud, 1966) that the value of C_N^2 at an altitude, h, is given by:

$$C_N^2 = 4.2 \times 10^{-14} h^{-1/3} exp(-h/h_o)_3$$
 Eq. 2.3

where the scale height, h_o, is 3.2×10^3 meters. Fried (1967b) has made an evaluation of $C_{\ell}(O)$ and $f_n(\Omega)$ for the case of altitude dependent C_N^2 given by Eq. 2.3. Following him we can derive:

$$C_{\ell}^{S}(O) = 0.122 \text{ sec}^{11/16} \theta \left[\frac{2.3}{\lambda}\right]^{7/6}$$

where the wavelength, λ , is in microns. For $\lambda = 2.3$ microns and $\theta = 0$; $C_{\ell}^{S}(O) = 0.122$, i.e. for a point source on the ground $C_{\ell}(O) = 0.122$.

To calculate the magnitude of scintillations we first calculate the fractional intensity variance $C_{I}(O)$ from the relation (Fried, 1967a).

$$C_{I}(O) = \exp\left[4C_{\ell}(O)\right] - 1$$

thus for $C_{p}(O) = 0.122$ we get:

$$C_{1}(O) = 0.629.$$

Noting that the above value is for fractional intensity and comparing Eq. 4 of Fried (1957a) with Eq. 13-13 of Tartskii (1961), we obtain the RMS deviation of the scintillation = $\sqrt{0.629 - .79 \simeq 80\%}$.

The above RMS value of scintillation has been obtained for a point source on the ground. However, the Michelson interferometer on the satellite will have a field-of-view of, say, four degrees (which gives 3.8×10^{-3} steradians for a circular field-of-view). This increase in the field-of-view will decrease the magnitude of scintillations.

Fried has evaluated the function $f_n(\Omega) = C_\ell(\Omega)/C_\ell^S(\Omega)$ that gives the reduction in $C_\ell(\Omega)$ with increasing value of the source size parameter, Ω . This dependence of $C_\ell(\Omega)/C_\ell^S(\Omega)$ on Ω is shown in Figure 2.4.2. For our case of an earth-viewing instrument in a satellite we put Ω in a more useful form:

$$\Omega = \frac{\omega h^2 \sec \theta}{\lambda h_o}$$

where

Eq. 2.4

ω = solid angle of the field-of-view in steradians,
 h = height of the satellite orbit about the ground,
 h = scale height of turbulence (3.2 x 10³ meters),
 θ = zenith angle of the instrument with respect to the source point on the ground, and

 λ = wavelength.

To calculate the upper bound on the magnitude of scintillation we take:

 $ω = 10^{-6} \text{ steradians (for two arc minute field-of-view)}$ $h = 10^{5} \text{ meters}$ $h_{o} = 3.2 \times 10^{3} \text{ meters}$ θ = 0 $λ = 2.3 \times 10^{-6} \text{ meters}$

Thus, $\Omega \simeq 10^6$.

This is a very large value for Ω and from Figure 2.4.2 it is quite clear that the value of $C_{\ell}(O)/C_{\ell}^{S}(O)$ for $\Omega \simeq 10^{6}$ is essentially zero (less than 10^{-6}). Since $C_{\ell}^{S}(O) = 0.122$ as calculated above, $C_{\ell}(O) < 0.122 \times 10^{-6}$ therefore

$$C_{I}(O) = \exp[4C_{\ell}(O)] - 1 < 0.5 \times 10^{-6},$$

and the RMS value of scintillation amplitude will be less than 0.07%. Therefore, we conclude that, for the above described technique of measuring carbon monoxide with a Michelson interferometer on an orbiting satellite, the effects of atmospheric scintillations will be less than 0.1% in the reconstructed spectrum.

It should be noted that for calculating the upper bound for scintillation, we have already chosen the greatly exaggerated values for the parameters. For example, we have taken $w = 10^{-6}$ radians while the actual value will be 4×10^{-3} radians or greater. Similarly the height of the satellite will be much greater than 10^5 meters chosen here. For the situation in question, therefore, the conclusion is that the effect of scintillation will be negligible.

3. SPECTRAL CONSIDERATIONS

3.1 The CO Infrared Spectrum

The infrared spectrum has been discussed in detail elsewhere (Bortner and Kummler, 1971). The two bands under consideration herein are the first overtone band centered about 2.35 μ and the fundamental band centered about 4.67 u. The positions and the energies of the various rotational lines of these bands is given in Table 3.1.1 for the first overtone band and in Table 3.1.2 for the fundamental band. The line strengths of the lines of each band are given in Table 3.1.3. It can be seen that the fundamental band is stronger than the overtone by a factor of the order of 100. The fundamental is less interfered with by absorption due to other atmospheric constituents. The overtone band is capable of much simpler interpretation, being much less affected by atmospheric temperatures, ground temperatures, and ground emissivity. As seen in Figure 3.2.1 the radiation seen in this experiment in the overtone band region would consist almost exclusively of reflected sunlight while that radiation for the fundamental band region would be mainly earthshine with some effect of reflected sunlight and serious atmospheric emission effects. These factors will be discussed later.

3.2 Intensity of Reflected Solar Radiation and Earthshine

3.2.1 Solar Reflection: - The solar radiation reaching the earth and being reflected can be calculated for any wavelength as follows. From blackbody radiation tables (Bowen, 1963) the radiant intensity, J, for a 5900 K blackbody is calculated to be 9.3 x 10¹ watt cm⁻² sr⁻¹ μ^{-1} at 2.3 μ and 8.0 x 10⁰ at 4.6 μ . The average irradiance, H, incident on the earth's atmosphere (and incident on the earth's surface in the absence of any atmospheric atten-

TABLE 3.1.1ENERGY & WAVELENGTH OF VIBRATION-
ROTATION LINES OF CO (2-0)

	R BRANCH	. 2 - 0	8	P BRANCH	ſ
ປ໌ , ໄ	CM ⁻¹	λ (μ)	J - J	CM ⁻¹	λ(μ)
1-0	4263.831	2.34531	0-1	4256+211	2 • 349 51
2-1	4267+536	2.34327	1-2	4252+296	2.35167
37 Z	4271.170	2+34128	2-3	4248+311	2.35388
5- A	4614+134	2 • 33733	3= 4	4244+257	2.35842
	4210-221.	2.00146	4 - <u>`</u> J	4640.133	2 • 3 30 42
6-5	4281 • 649	2+33555	5- 6	4235.949	2.36075
7- 6	4285.300	2.33372	6- 7	4231 • 678	2.36313
8-7	4288+280	2.33194	7-8	4227.347	2+36555
9-8 10-0	4291+488	2+33019	8- 9	4222+941	2.36801
10-7	4274023	2•32849	9-10	4210+4/7	5.21925
11-19	4297+690	2•32683	10-11	4213-942	2.37307
12-11	4300 • 684	2 • 32 52 1	11-12	4209 • 337	2.37567
13-12	4303.605	5.35363	12-13	4204 • 664	2.37831
14-13	4306-454	2.32210	13-14	4199-923	2.38100
15-14	4309+231.	2•32060	14-15	4195+114	2•38373
16-15	4311 • 935	2.31914	15-16	4190-237	2•38650
17-16	431 4• 567	2 • 31 7 7 3	16-17	4185-293	2•38932
18-17	4317-125	2 • 31 63 6	17-18	4180.282	2.39218
19-18	4319+611	2.31.502	18-19	4175-203	2.39509
23-19	4322•324	2.31373	19-20	41 70 • 0 58	2.39805
21-20	4324.363	2.31248	20-21	41 64 • 845	2.40105
22-21	4326.628	2.31127	51-55	41 59 • 567	2.40410
23-22	4328+821	2.31010	22-23	41 54+221	2 - 43719
24-23	4330 • 939	2.30897	23-24	4148•810	2.41033
25-24	4332•983	2.30788	24-25	41 43 • 332	2 • 41 3 52
26-25	4334•953	2.30683	25-26	4137.788	2.41675
27-26	4336+849	2.30 582	26-27	4132-179	2.42003
28-27	4338 • 670	2.30485	27-28	4126+504	2.42336
29-28	4340 • 417	2.30393	28 - 29	4120 - 763	2.42674
39-29	4342.089	2.30304	29-30	4114-957	2 • 43016
31 - 30.	4343.686	2.30219	38-31	4109.086	2.43363
32-31	4345.208	2.30139	31-32	4103 • 150	2 • 43715
33-32	4346.654	2.30062	32-33	4097-149	2.44072
34-33	4348.026	2+29989	33-34	4091-083	2.44434
35-34	4349.321	2.29921	34-35	4384.953	2.44801
36-35	4350-541	2.29856	35-36	4078.759	2.45173
37-36	4351 685	2.29796	36-37	4072 . 501	2.45549
38-37	4352 • 753	2.29740	37-38	4066+178	2 • 45931
39-38	4353.745	2.29687	38-39	40 59 . 792	2 . 46318
40-39	4354.660	2.29639	39-40	4053+342	2 • 46710

TABLE 3.1.2ENERGY & WAVELENGTH OF VIBRATION-
ROTATION LINES OF CO (1-0)

;

	DBDANCH	1 – Ø		PBRANCH	
1 1			1 1		
J ÷J	CM ⁻¹	λ(μ) -	J - J	CM	λ.(μ)
1- 0	2147.083	4.65748	0-1	2139 428	4 • 67415
2-1	2159.858	4.64931	1-2	2135.548	4 . 682 64
3- 2	21 54. 598	4.64124	2- 3	2131.634	4.69124
A- 3	2158.301	4.63327	3- 4	2127.684	4.69994
5- 4	2161.970	4.62541	4- 5	2123.701	4.70876
5 4		4000041			
6- 5	2165.602	4.61765	5- 6	2119 683	4.71769
7- 6	2169•198	4 • 61000	6- 7	2115+631	4.72672
8-7	2172.759	4.68244	7-8	2111.545	4.73587
9- 8	2176-282	4 • 59 49 9	8-9	2107.426	4.74513
10-9	2179.770	4• 58764	9-10	2103-273	4.75449
11-13	2183-220	4.58039	10-11	2399•086	4•76398
12-11	2186-634	4.57324	11-12	2394.867	4.77357
13-12	2193.011	4 • 56619	12-13	2090 • 61 4	4.78328
14-13	2193.351	4 • 55923	13-14	2086-328	4.79311
15-14	2196+653	4 • 55238	14-15	2382.010	4•80305
16-15	2199.918	4. 54562	15-16	2077.659	4.81311
17-16	2203-145	4 • 53897	16-17	2073-275	4.82329
18-17	2206.334	4. 532 43	17-18	2068-860	4.83358
19-18	2239 . 486	4 . 52 59.4	18-19	2064.412	4.84399
20-19	2212.599	4.51957	19-20	2059.932	4.85453
21-20	2215-674	4 • 51 3 30	29-51	2055-421	4-86518
22-21	2218•710	4.50712	21-22	2050•878	4.87596
23-22	2221.708	4 • 50104	22-23	2046.303	4.88686
24-23	2224.667	4 • 49 50 5	23-24	2041 • 697	4.89789
25-24	2227 • 587	4 • 4891 6	24-25	2037-060	4.90903
26-25	2230 . 469	4 • 4833 6	25-26	2032 • 393	4.92031
27-26	2233-310	4.47766	26-27	2327.694	4.93171
28-27	2236-113	4.47205	27-28	2022.965	4.94324
29-28	2238+875	4•46653	28-29	2018-205	4.95490
30-29	2241 • 598	4 • 46110	29-30	2013-415	4•96669
31-30	2244.281	4.45577	30-31	2008 . 595	4.97860
32-31	2246.924	4.45053	31-32	2003.745	4.99065
33-32	2249.527	4• 44538	32-33	1998+865	5.00284
34-33	2252 . 389	4.44932	33-34	1993-956	5.01516
35-34	2254+611	4 • 43 53 6	34-35	1989•017	5.02761
36-35	2257.092	4 43048	35-36	1984-049	5.04920
37-36	2259 . 532	4 • 42 573	36-37	1979-051	5.25293
38-37	2261+931	4.42100	37-38	1974-025	5-06579
39-38	2264.289	4 • 41 640	38-39	1968.970	5.07880
43-39	2266•605	4 • 41 1 88	39-40	1963.886	5-39194

TABLE 3.1.3 CO LINE STRENGTHS (cm⁻² atm⁻¹)

	FUNDAMENTAL		OVERTONE		
	(Benedic	t, 1962)	(Kostkowsl	ci, 1961)	
	R	P	R	P	
0	1.970		0163		
ì	3.878	1.927	0321	0158	
2	5,643	3.707	. 0467	0303	
3	7,100	5.251	0592	. 0428	
4	8.261	6.491	. 0691	. 0527	
5	9.059	7.386	. 0760	. 0598	
6	9.482	7.920	. 0797	. 0638	
7	9.544	8.105	. 0805	.0651	
8	9.286	7.980	.0785	.0638	
9	8.760	7.591	.0742	.0604	
10	8.032	7.002	. 0682	.0555	
11	7.170	6.278	.0610	.0495	
12	6.240	5.480	.0532	.0430	
13	5.301	4.665	.0453	.0365	
14	4.400	3.876	.0376	.0301	
15	3.568	3.145	.0306	. 0243	
16	2.830	2.494	.0243	.0192	
17	2.196	1.934	.0189	.0148	
18	1.668	1.486	.0144	.0112	
19	1.241	1.091	.0107	.00828	
20	0.904	0.793	.00779	.00597	
21	0.645	0.566	.00557	.00423	
22	0.451	0.395	.00390	.00294	
23	0.309	0.290	.00268	.00200	
24	0.208	0.181	.00180	.00133	
25	0.137	0.119	.00119	.000872	
26	0.0884	0.0766	.000765	.000556	
27	0.0589	0.0483	.000486	.000350	
28	0.0349	0.0300	.000302	.000215	
29	0.0212	0.0182	.000184	.000130	
30	0.0127	0.0108	.000110	.0000770	
31	0.00743	0.00634	.0000642	.0000446	
32	0.00427	0.00364	.0000371	.0000254	
33	0.00241	0.00205	.0000209	.0000142	
34	0.00134	0.00113	.0000116	.0000078	

Figure 3.2.1 Reflected Solar Radiation and Earthshine

uation is (Thekaekara, 1971) 6.8 x 10^{-3} watts cm⁻² μ^{-1} at 2.3 μ and 5.5 x 10^{-4} watts cm⁻² μ^{-1} at 4.6 μ .

The reflected solar radiation, N, from the earth's surface is

N (watts cm⁻² ster⁻¹
$$\mu$$
⁻¹) = $\frac{\rho H}{\pi}$

The values of N are thus 2.16 x $10^{-3} \rho$ watt cm⁻² ster⁻¹ μ^{-1} at 2.3 μ and 1.68 x $10^{-4} \rho$ watt cm⁻² ster⁻¹ μ^{-1} at 4.6 μ . The intensities (in watt cm⁻¹ sr⁻¹ μ^{-1}) are shown in Figure 3.2.1 for various reflectivities.

3.2.2 Earthshine: - From blackbody radiation tables (Bowen, 1963) the radiant intensity is given for a 300° K blackbody and by the ratio

$$\frac{R_{T}}{R_{300}} = \frac{e^{1.439 \times 10^{4} \lambda \times 300}}{e^{1.439 \times 10^{4} \lambda T_{-1}}}$$

the intensities (watts cm⁻² sr⁻¹ μ ⁻¹) for 273.2 and 288 K blackbodies were calculated giving the following, as shown in Figure 3.2.1.

<u>g</u>	<u>2.3μ</u>	<u>4.6 µ</u>
273.2	2.0×10^{-8}	6.15 x 10^5
288	7.54×10^{-8}	1.11×10^{-4}
300	1.60×10^{-7}	1.71×10^{-4}

3.2.3 Ratio of Reflected Solar Radiation and Earthshine Intensities: -The ratios of reflected sunlight to earthshine at 2.3 μ are thus

the

<u>p</u> T _g :	273.2K	<u>288 K</u>	300 K
0.02	2×10^{3}	5.4 \times 10 ²	2.5×10^2
0.1	1×10^4	2.7×10^{3}	1.2×10^{3}
1.0	1×10^{5}	2.7×10^4	1.2×10^4

and the ratios of earthshine to reflected sunlight at 4.6 μ are

ŧ

	ρ T _g :	<u>273.2 K</u>	<u>288 K</u>	<u>300 K</u>
	0.02	1.78×10^{1}	3.20×10^{1}	4.95×10^{1}
• .' • •	0.1	3.56×10^{0}	6.40×10^{0}	9.90 x 10 ⁰
	1.0	3.56×10^{-1}	6.40×10^{-1}	9.90×10^{-1}

;

2

•

ł

ţ

Page Intentionally Left Blank

4. RADIATIVE THEORY

4.1 Theory

To study the feasibility of the CO density measurements and the effect of various atmospheric parameters on such measurements, calculations have been made using the radiative transfer theory described in this section. First, the physical model and solution thereof are presented and then the physical parameters and their scaling relationship with altitude are defined.

The model includes absorption and emission of photons along a ray from the source to the detector. The two geometries considered are direct solar observation - limb experiment, and absorption of the earth's albedo - mapping experiment. Provisions are made for adding earthshine to reflection of sunlight from the earth's surface. However, phenomena such as scattering resonance fluorescence and radiation trapping have been neglected. Boltzmann populations as described by the local atmospheric temperature have been assumed for the upper and lower states of all transitions and the line profiles are given by the Voigt function at all altitudes. Doppler shifts as caused by atmospheric winds and by relative motion between the atmosphere and the satellite have been neglected.

The monochromatic radiative transfer equation is given (Chandrasekhar, 1960) by:

$$\frac{dI}{dS} = \epsilon_{\nu} - I_{\nu} \alpha_{\nu}$$
 Eq. 4.1

Where:

 $I_v = \text{spectral intensity (watts/cm³-ster-cm⁻¹)}$ S = distance along ray (cm)

 ϵ_{ν} = spectral emission coefficient (watts/cm²-ster-cm⁻¹), a function of S

 α_{ν} = spectral absorption coefficient (cm⁻¹), a function of S

Formally,

$$I_{\nu} = C \exp(-\int \alpha_{\nu} dS') + \exp(-\int \alpha_{\nu} dS') \int \epsilon_{\nu} \exp\left[\int \alpha_{\nu} dS''\right] dS' \quad Eq. 4.2$$

For the limb boundary condition:

$$I_{\nu}(z) = I_{o,\nu} \exp(-\int_{o}^{z} \alpha_{\nu} dS'') + \exp(-\int_{o}^{z} \alpha_{\nu} dS'') \int_{o}^{z} \epsilon_{\nu} \exp(\int_{o}^{S'} \alpha_{\nu} dS'') dS'$$

Eq. 4.3

or

$$I_{\nu}(z) = I_{o, \nu} \exp(-\int_{o}^{z} \alpha_{\nu} dS'') + \int_{o}^{z} \epsilon_{\nu} \exp(-\int_{S'}^{z} \alpha_{\nu} dS'') dS' \qquad \text{Eq. 4.4}$$

The geometry for this situation is shown in Figure 4.1.1.

For the mapping experiment, two conditions are required. The solar energy is attenuated as it penetrates to the earth's surface. At this point, it is reflected and the total intensity increased by earthshine. The resulting flux is then further attenuated by the atmosphere until the satellite is reached. It is pointed out that atmospheric emission which is reflected by the earth into the field-of-view of the detector is negligible and therefore not included in the model. The geometry of the mapping experiment is given in Figure 4.1.2 and is described mathematically by Equation 4.5.

$$I_{\nu} = \rho_{\nu} \left[I_{o,\nu} \exp(-\int_{o}^{z_{1}} \alpha dS'') + \int_{o}^{z_{1}} \epsilon_{\nu} \exp(\int_{S'}^{z_{1}} \alpha_{\nu} dS'') dS' \right] \quad \text{Eq. 4.5}$$
$$+ I_{e} \exp(-\int_{o}^{z} \alpha_{\nu} dx'') + \int_{o}^{z} \epsilon_{\nu} \exp(-\int_{x'}^{z} \alpha_{\nu} dx'') dx'$$

Where

$$I_e = earthshine (watts/cm2-ster-cm-1)$$

 $\rho_v = earth reflection coefficient$

Equations 4.4 and 4.5 have been numerically integrated along the rays indicated in Figures 4.1.1 and 4.1.2 using Simpson's rule. The properties ϵ_v and α_v are functions of altitude which must be evaluated prior to integration. This is considered below.

On a microscopic basis, for a single rotational line (Kulander, 1964),

$$\epsilon_{\nu} = \epsilon \varphi_{\nu} = \frac{n h c \nu}{4\pi} A_{u\ell} \varphi_{\nu}$$
 Eq. 4.6

$$\alpha_{\nu} = (\alpha_{A} - \alpha_{S}) \varphi_{\nu} = (n_{\ell} B_{\ell u} - n_{u} B_{u\ell}) \frac{hc\nu}{4\pi} \varphi_{\nu} \qquad \text{Eq. 4.7}$$

where

$$\varphi_{\nu} = \text{Voigt profile (1/cm^{-1})}$$

$$n_{u}, n_{\ell} = \text{upper and lower state number densities (particles/cm^{3})}$$

$$hc\nu = \text{energy per transition (watt sec/transition)}$$

$$\alpha_{A} = \text{absorption coefficient (cm^{-1}/cm)}$$

$$\alpha_{S} = \text{stimulated emission coefficient (cm^{-1}/cm)}$$

$$A_{u\ell} = \text{Einstein coefficient for spontaneous emission}$$

$$\left(\frac{\text{Transitions}}{\text{Sec. Particle}}\right)$$

$$B_{\ell u} = \text{Einstein coefficient for absorption}$$

B_{1,} = Einstein coefficient for stimulated emission

Transitions	•	Cm-Ster	
Particle	•	Watt Sec.	

It is noted that the definition of the Einstein coefficients is arbitrary but that they are related by Kirchoff's Law for equilibrium at temperature, T.

$$\epsilon_{\nu} = B_{\nu}(T) \alpha_{\nu}$$
Eq. 4.8
$$B_{\nu}(T) = \frac{2 hc^{2} \nu^{3}}{e^{hc\nu/kT} - 1} \text{ (watts/cm^{2}-ster-cm^{-1})}$$
Thus

1 1105,

$$n_{u}A_{u\ell} = (n_{\ell}B_{\ell u} - n_{u}B_{u\ell}) B_{\nu}(T)$$
 Eq. 4.9

or

.. :

$$\frac{A_{u\ell}/B_{u\ell}}{(n_{\ell}B_{\ell u}/n_{u}B_{u\ell})} = \frac{2 hc^2 \nu^3}{\exp(hc\nu/kT) - 1}$$
 Eq. 4.10

But, at equilibrium the Boltzmann distribution is:

$$\frac{n_{\ell}}{n_{u}} = \frac{g_{\ell}}{g_{u}} \exp(hc\nu/kT)$$
 Eq. 4.11

and by comparison

$$g_{\ell}B_{\ell u} = g_{u}B_{u\ell}$$
 Eq. 4.12

$$A_{u\ell} = B_{u\ell} \cdot 2hc^2 \nu^3$$
 Eq. 4.13

The Voigt profile, φ_{ν} , is defined in terms of the Doppler and Lorentz half widths, i.e. half the line width at half the peak intensity (Armstrong, 1967).

$$\varphi_{\nu} = \frac{1}{\alpha_{\rm D}} \left(\frac{\ln 2}{\pi}\right)^{1/2} K(x, y)$$
 Eq. 4.14

K(x, y) =
$$\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\exp(-t^2)}{y^2 + (x - t)^2} dt$$
 Eq. 4.15

y =
$$\frac{\alpha_{\rm L}}{\alpha_{\rm D}} (\ln 2)^{1/2}$$
 Eq. 4.16

x =
$$\frac{(\nu - \nu_o)}{\alpha_D} (\ln 2)^{1/2}$$
 Eq. 4.17

 $\alpha_{\rm D} = \text{Doppler half width (cm^{-1})} \qquad \text{Eq. 4.18}$ $= \frac{\nu_{\rm o}}{c} \frac{2R(\ln 2) T}{M} \qquad \frac{1/2}{c} = 3.58 \times 10^{-7} \nu_{\rm o} \frac{T}{M} \qquad \text{cm}^{-1}$

 $\alpha_{\rm L}$ = Lorentz half width (cm⁻¹) Eq. 4.19

$$= \Gamma/2\pi c$$

$$\frac{1.4 \text{ p} \sigma_{12}^2 \text{N}_{O} \left(\frac{8\pi}{\text{M} \text{R} \text{T}}\right)}{2\pi^2 \text{c}}$$

Where

$$\Gamma = \text{gas collision frequency (sec}^{-1})$$

$$P = \text{pressure (dynes/cm}^2)$$

$$\sigma_{12}^2 = \text{optical collision cross-section (cm}^2)$$

$$\overline{M} = \text{reduced mass of the colliding species (gm/gm mol)}$$

$$R = \text{gas constant (erg/gm mol}^{\circ}K)$$

$$T = \text{temperature (}^{\circ}K)$$

N_O = Avagadro's number (particles/gm mol) c = velocity of light (cm/sec)

The Doppler and Lorentz widths are functions of temperature and pressure and thus are easily obtained at any point along the ray from the atmospheric properties. The integral, K(x, y), is then calculated using a subroutine developed by Armstrong (1967). It should be noted that

$$\int_{-\infty}^{\infty} K(x, y) \, dx = \pi^{1/2}$$

The emission coefficient number density product necessary for Equations 4.6 and 4.7 is most easily obtained by scaling experimentally derived line strengths which are defined as (Penner, 1959, p.20):

$$S_{\ell u} = \frac{1}{8\pi c\nu^2} \frac{N_{\ell}}{P} A_{u\ell} \frac{g_u}{g_\ell} \left[1 - \exp\left(-\frac{hc\nu}{kT}\right) \right] \qquad \text{Eq. 4.20}$$

Where

$$S_{lu} = \text{line strength } (\text{cm}^{-2} - \text{atm}^{-1})$$

$$\nu = \text{wavenumber } (\text{cm}^{-1})$$

$$\overline{P} = \text{pressure (atm)}$$

 \vec{N}_{ℓ} = lower state population for conditions where $S_{\ell u}$ is measured (particles/cm³)

$$g_{1}, g_{2} = statistical weights (2 J + 1)$$

= Einstein coefficient

Transitions Sec. Particle

Using equation 4.11 and rearranging

$$n_{u}A_{u\ell} = \frac{8\pi c \nu^{2} \vec{P}}{\left[\exp(hc\nu/kT) - 1\right]} S_{\ell u} \qquad Eq. 4.21$$

Where

 $n_u = upper state population for conditions where S_{lu} is measured.$ (particle/cm³)

But

$$\frac{\overset{n}{u}}{\overline{n}_{u}} = \frac{\overset{n}{t}}{\overline{n}_{t}} \cdot \frac{\overline{Q}}{Q} \cdot \frac{\exp(-hc\nu/kT)}{\exp(-hc\nu/kT)}$$

Eq. 4.22

Where

n_t = total number density Q = partition function E = upper state energy

Thus, combining Equations 4.19 and 4.20

$$n_{u}A_{u\ell} = 8\pi c\nu^{2}\overline{P}S_{\ell u} \frac{\exp\left(-\frac{hc\nu}{k}\left[\frac{1}{T}-\frac{1}{T}\right]\right)}{\left[\exp\left(-\frac{hc\nu}{kT}\right)-1\right]} \frac{\overline{Q}}{Q}\frac{n_{t}}{\overline{n}_{t}} \quad Eq. 4.23$$

If several lines contribute to the absorption at a specific wavenumber, the total absorption coefficient is obtained by summation. The computational algorithm then uses S_{lu} as a basis. $n_{u}A_{ul}$ from Equation 4.21 gives $(n_{l}B_{lu} - n_{u}B_{ul})$ from Equation 4.9. This, in conjunction with φ_{v} , leads to α_{v} via Equation 4.7. Equation 4.5 can then be integrated over altitude.

4.2 Synthetic Spectrum - Fourier Transform Program

4.2.1 <u>Introduction</u>: - Early in the development of this program it became necessary to devise a means for simulating the types of measurements to be performed. Because of the complexity of the atmospheric spectra, a digital computer simulation appeared most suitable.

A computer program was required which would compute the transmission spectrum of the atmosphere over some predetermined infrared region for multiple gas species with overlapping spectra, taking into account that for certain strong transitions the atmosphere is not optically thin. The program must be able to include the effects of a bandpass filter to simulate the bandpass of the measurement instrument. Since the instrument is an interferometer, rather than a spectrometer, the Fourier transform of the spectrum must be obtained to simulate the instrument output.

A computer program was written for use on the Langley Research Center - GDC computer system which computes theoretical absorption-emission spectra of the earth's atmosphere as would be observed by an exo-atmospheric detector, and the Fourier transform of the spectrum. The program permits computation of a spectrum for three possible geometric configurations. Case 2 is for use when the instrument looks directly at the sun through the earth's atmosphere. It calculates transmission, including absorption and emission of solar radiation through the atmospheric limb. Cases 1 and 3 are for use when the instrument looks downward. Case 3 calculates absorption of solar radiation reflected off the surface of the earth; while case 1 calculates transmission, including absorption and emission, of blackbody radiation emitted by the surface of the earth. Geometry of the cases considered are shown in Figure 4.2.1. Geometry case 1 is used when blackbody radiation of the earth's surface dominates solar radiation. This occurs at wavelengths greater than about 4μ . Since temperatures in the at-

Figure 4.2.1 Geometries of Atmospheric Transmission Calculations

mosphere are comparable to the surface temperature, the effects of emission within the atmosphere itself must be included in the computation of the spectrum in addition to absorption. Conversely, geometry case 3 is used when solar radiation dominates blackbody radiation from the earth's surface, which occurs below about 4μ . In this case, the source temperature is far greater than the atmospheric temperature and hence only absorption in the atmosphere need be considered.

Spectra are computed for atmospheres comprised of up to three gaseous components, having a total of 150 discrete absorption lines. Inputs to the program consist of a list of molecular absorption lines to be included in the synthetic spectrum, some thermodynamic properties of the constituent gases, the physical properties of the model atmosphere to be employed, and the limits of the spectrum to be synthesized. Since the object is to simulate the spectrum arriving at an exo-atmospheric instrument, it is also possible to superimpose a bandpass filter on the spectrum. Outputs from the program are tabulated spectra, plotted spectra and Fourier transforms, and the Fourier transform punched on cards for additional processing.

4.2.2 <u>Theoretical Problem Formulation</u>: - A detailed formulation of the problem is given in Section 4.1. The problem consists basically of computing infrared atmospheric transmission spectra as determined by absorption and emission from molecular rotational-vibrational transitions of the atmospheric constituents.

As shown in Section 4.1, the basic equation which is to be solved (Chandrasekhar, 1960) is Equation 4.4. The first term of this expression gives the absorption of incident radiation between the source and the top of the atmosphere. The second term gives the additional radiation contributed by emission in the atmosphere, as diminished by absorption by the part of atmosphere lying between the emitting part and the top of the atmosphere. This expression gives the net intensity at the top of the atmos-

phere at a single frequency. The program described herein solves this expression for enough frequency values to define a spectrum over some desired frequency range.

4.2.3 <u>Program Structure</u>: - The program solves the radiative transfer equations set forth in Section 4.1 for an input set of molecular transitions and an input model atmosphere.

Theoretical spectra may be calculated which cover frequency ranges of several hundred wavenumbers. Since at each frequency point the entire set of radiative transfer equations must be solved and integrated through the atmosphere, the problem program is clearly CPU bound. In order to keep processor time within reasonable limits, use is made of data tables, calculated initially and then combined in proper sequence to produce absorption and emission coefficients. Although this approach conserves execution time, it does so at the expense of core storage. To conserve core storage, an overlay structure is used, resulting in the following storage requirements (numbers given are thousands of words, octal):

Main segment, including I/O buffers	10
Overlayed segments	4
Common block	. 44
System, including plot routines	<u>15</u>
Total	75

This is equivalent to about 32,000 decimal locations. To further conserve storage, extensive use is made of the EQUIVALENCE statement to reuse storage locations of data tables. Some arrays are used for storage of four different tables at different points in the program.

The program is written entirely in FORTRAN IV. An overall

view of general program flow is given below, followed by a detailed description of individual components. A listing is given in Appendix A.

4.2.3.1 <u>Program Flow:</u> - As noted above, the overall construction of the program involves the generation of data tables which are combined to produce the desired absorption and emission coefficients, which are then used to compute the overall transmission. The following is a general outline of the sequence of operations in the program. These steps follow to a great extent the development of the theoretical model given in Section 4.1.

<u>Step 1</u>.- Calculate Voigt Profiles - tables of constants are calculated which are used in determining the Voigt function. Tables are calculated for varying values of the Voigt function parameters: X, the displacement between frequency of interest and the line center frequency; and Y, the ratio of Lorentz to Doppler broadening.

<u>Step 2.</u> - Calculate Atmospheric Tables - model atmosphere parameters are read in, including atmospheric temperature, pressure and species concentrations as a function of altitude. Data are read in defining the desired geometry case, and atmospheric properties are computed for points along the radiation path. Tables of constants are calculated which will be used in computing the Lorentz and Doppler widths as functions of altitude and species type.

<u>Step 3.</u> - Calculate Line Tables - line information for all molecular lines to be included in the spectrum is read in and sorted by frequency. For each line a frequency band is defined which is the frequency region in which each particular line must be considered.

Step 4. - Calculate Absorption and Emission Coefficient Factors - for each line at each altitude an absorption and (if required for the desired geometry case) an emission coefficient is calculated. The coefficients are calculated for the line center frequency.

<u>Step 5.</u> - Calculate Spectrum - for each frequency within the desired spectral region the frequency bands defined in Step 3 are searched to determine which lines must be considered at that particular frequency. For each line at each altitude a Voigt profile is calculated from the tables of Step 1, and multiplied by the absorption and emission coefficients of Step 4. Coefficients for overlapping lines are added, and the integration of equation (4.4) is performed. After completion of one frequency point the frequency is incremented by a variable amount based on the proximity of line centers. If a line center is close, then the transmission will be varying rapidly and small frequency increments are taken. Tabulations of the spectrum are printed.

<u>Step 6.</u> - Apply Filter and Take Transform - the spectrum calculated in Step 5 is multiplied by an input bandpass filter function. The resultant spectrum is then Fourier transformed to give the interferogram.

<u>Step 7.</u> - Plot - the spectrum and interferogram are plotted on a Calcomp drum plotter.

4.2.3.2 Program Routines: -

<u>Main Segment.</u> - Resident in core at all times is a short main program. This program, designated segment zero in the CDC segmentation scheme, performs no calculations, but simply calls the subroutines that perform the calculations in the proper sequence. The main segment also reserves space in blank common for the extensive arrays which will be used.

A flow chart for the main segment is given in Figure 4.2.2.

Figure 4.2.2 Program SPECTRA Main Segment

<u>Subroutine VOIGT</u>. - The Voigt profile is a molecular line shape function which results from a superposition of independent Lorentz and Doppler line broadening (Armstrong, 1967). Lorentz broadening in the atmosphere is a function of atmospheric pressure and is dominant at sea level, while Doppler broadening is temperature dependent and is dominant at high altitudes. At altitudes between these two extremes there is a continuous degree of superposition of the two effects.

The Voigt profile at a frequency, ν , for a line centered at ν_0 is a function of two variables, X and Y, given by Equations 4.16 and 4.17. For the lines which will be included in the computation of atmospheric spectra, the range of values for X and Y which can reasonably be expected to be encountered are

 $0 \leq X \leq 10^4$ $0 \leq Y \leq 24$

As noted above, the general approach in this program is to compute data tables which will be combined to produce the desired spectra. Since it is known that Voigt functions will be required later with X and Y values falling in the ranges defined above, tables of these functions are derived as indicated in Figure 4.2.3. Tables of 27 values of X and 25 values of Y are defined in a DATA statement. The Voigt function, $\Phi(X, Y)$ is computed for all 675 combinations of X and Y using a subroutine developed by Armstrong (1967). It is also known that interpolation of Voigt functions will be required. For this reason, the actual values of Voigt function are not stored. Instead, for a constant value of Y and three consecutive values of X, a quadratic function is fitted through the three corresponding values of Φ , the Voigt function. The resulting quadratic equation is

$$\Phi(X_i, Y_i) = A_{ij}(X_i)^2 + B_{ij}(X_i) + C_{ij}$$
 Eq. 4.24

The tables stored for later use are the $25 \ge 25$ tables of A, B, and C.

٠, :

. . .

- 1

Return

0 Start Calculate Voigt Functions Φ (X, Y) for Tabulated Values of X and Y

Coefficients

ŝ,

Figure 4.2.3 Program SPECTRA First Segment

Fit

Quadratic

to Voigt Functions Store Quadratic Subroutine HEIGHT. - The primary function of subroutine HEIGHT is to set up tables of atmospheric properties along the radiation path. The routine reads data which defines the molecular species to be included in the computation of the spectrum. The program will accept from one to three species. For each species a data card is required which includes the symbol of the species, e.g., CO, H_2O , N_2O , etc., the molecular weight of the species, the number of molecular lines which will be furnished for each species, and the partition function of the species. The partition function will be required in the program as a function of temperature. To facilitate this, the partition function, Q, is calculated for several temperatures from data in the JANAF Tables. It is found that over the temperature range of interest to this program, Q can be represented as a quadratic, i.e.

$$Q(T) = AT^{2} + BT + C$$
 Eq. 4.25

The coefficients A, B, and C are evaluated manually and used as inputs to the program in place of the actual partition function.

The next set of input data defines the geometric case to be considered, as shown in Figure 4.2.4. If limb transmission (case 2) is indicated, then the grazing altitude, h (KM), is defined. In case 1 the zenith angle of the observer α (degrees) is specified, while in case 3 the zenith angles of the source, α , and observer, β , are specified. The routine assigns a case number 4 to the special case of geometry case 3 where $\alpha = \beta$. This results in a shortening of computation time by a factor of two.

Data is then read which defines the model atmosphere to be employed. These data consist of a table of altitudes (KM) and tables which specify the following parameters at corresponding altitudes: temperature (degree K), pressure (millibar), and concentrations of species specified earlier (particles/cc). The set of altitudes for which these properties are specified is arbitrary, but should cover the range 0 - 100 KM and must be

Figure 4.2.4 Program SPECTRA Second Segment (Subroutines HEIGHT, INTERP)

monotonic. These data are then combined with the geometric case data to compute tables of atmospheric properties along the actual line of observation. This procedure is similar for cases 1 and 3, but different for case 2, and will therefore be described separately.

For the limb transmission case, case 2, the top of the atmosphere is defined to be 100 KM. Using this condition, and the grazing altitude, h, the total path length through the atmosphere is calculated. This path is then divided into 48 equal segments, and the altitude at the end of each segment is calculated. An interpolation is performed on the input atmospheric model tables for this altitude to obtain the atmospheric properties at this altitude. A linear interpolation is performed for the temperature parameter, while a logarithmic interpolation is performed for pressure and species concentrations. Counting the end points, this results in tables of atmospheric properties for 49 points uniformly distributed along the radiation path.

For geometry case 1, a similar approach is taken in that tables of parameters are computed for points along the radiation path. In these cases the top of the atmosphere is defined to be 96 KM. The atmosphere is divided into 48 altitude steps as follows; starting at 0 KM the first 16 steps are incremented by 1 KM each, the next 16 are incremented by 2 KM each and the third 16 by 3 KM each. The total radiation path length is computed, using the zenith angle, and the path lengths corresponding to the predefined altitude steps are calculated. Using the same interpolations as for case 2, the atmospheric properties at these altitude steps are computed. Again counting the end points, a table of atmospheric properties at 49 points along the radiation path is generated. For geometry case 3, this calculation is performed twice, for the entering and reflected radiation, using the two different zenith angles. If the zenith angles are equal, then only one table is computed, but in effect it will later be used twice.

The Doppler halfwidth is given by Equation 4.18. Since α_D will be repeatedly calculated later, considerable time can be saved if as much as

possible of this expression can be precalculated. Therefore, a table of Doppler width factors is computed for each path position, which determines T, and each species, which determines M. Hence,

DOPP(I, J) =
$$\frac{1}{C} \left(\frac{2 \operatorname{RT}_{j} \ln 2}{M_{i}}\right)^{1/2}$$
 Eq. 4.26

It is now only necessary to multiply the approximate DOPP value by $\dot{\nu_o}$, the line frequency to obtain α_D for an transition at any point in the atmosphere.

Similarly, the Lorentz halfwidth, α_L , for any line is assumed to be 0.06 cm⁻¹ at STP. Tables of α_L are therefore calculated for all points, j, along the radiation path by

$$\alpha_{\rm L}(j) = 0.06 \times \frac{P_j}{P_s} \times \left(\frac{T_s}{T_j}\right)^{1/2} Eq. 4.27$$

where

 P_s = standard pressure = 1000 mbar T_s = standard temperature = 273 $^{\circ}$ K

<u>Subroutine LINER</u>. - Subroutine LINER reads data concerning the individual lines to be included in the computed spectrum, sorts the lines by wavenumber, and computes the frequency band over which each line contributes to the spectrum.

In Subroutine HEIGHT, up to three chemical species were defined as contributing to the spectrum. Subroutine LINER reads the set of transition lines to be considered for each species. Up to 150 lines are permitted, distributed in any way among the three species. For each line it is necessary to specify the center frequency (cm⁻¹), the line strength (cm⁻² atm⁻¹) and the lower state energy (cm⁻¹).

After reading this line data, LINER sorts the lines and corresponding line data in order of ascending center frequency. A search is performed to determine the minimum line strength. For each line a frequency band is determined over which the line must be considered in computing the spectrum. The line inclusion band is determined by fitting a Gaussian line shape over each line with a nominal 0.06 cm^{-1} halfwidth. The line inclusion band is the frequency band over which the line has a strength which exceeds a previously defined minimum. This minimum is presently taken as 1% of the strength of the weakest line. If the line inclusion band is computed to be greater than $\pm 5 \text{ cm}^{-1}$, it is truncated to $\pm 5 \text{ cm}^{-1}$.

Subroutine COEFFS. - Subroutine COEFFS computes, for each line at its center frequency and for each altitude in the model atmosphere, the absorption coefficients and, if required by the geometry case being considered, the emission coefficients. Using the definitions of Einstein coefficients, the absorption and emission coefficients for line ℓ of species i at altitude h can be shown to be:

$$\alpha_{\ell,h} = \frac{\begin{bmatrix} C_{i_{h}} \end{bmatrix}}{A_{N}} \cdot e^{E_{\ell} \cdot C_{2} \cdot \left(\frac{1}{T_{o}} - \frac{1}{T_{h}}\right)} \cdot \left(\frac{\begin{pmatrix} -C_{2}\nu_{\ell} \\ T_{h} \end{pmatrix}}{\begin{pmatrix} 1 - e \\ \end{pmatrix}} \cdot S_{\ell} \cdot \frac{Q_{i_{300}}}{Q_{i_{T_{h}}}} \right) \cdot e^{\frac{1}{T_{o}}} \cdot \frac{Q_{i_{300}}}{P_{o}} \cdot \frac{P_{o}}{P_{o}} \cdot \frac{Q_{i_{300}}}{P_{o}} \cdot \frac{P_{o}}{P_{o}} \cdot \frac{P$$

	$\left[{c_{i}}_{ {i_h}} \right]$	=	concentration of species i at altitude $h\left(\frac{\text{particle}}{\text{cm}^{-3}}\right)$
	A _N	=	schematic/number
	Eł	, H	lower state energy of line ℓ (cm ⁻¹)
	C ₂	=	second Planck constant
	Т _о	=	standard temperature = 300 [°] K
	Т _h	=	temperature at altitude h ([°] K)
-	v	=	center frequency of line ℓ (cm ⁻¹)
	sł	Ξ	strength of line ℓ (cm ⁻² atm ⁻¹)
	Q,	=	partition coefficient of species i at the temperature
	΄ ¹ Τ h		at altitude h

These factors do not represent the complete absorption and emission coefficients since they are lacking the Voight line profile function. This last term will be included in the next subroutine.

<u>Subroutine SPECT</u>. - Subroutine SPECT performs the actual spectrum evaluation. For each frequency point in the spectrum, the precalculated data tables are accessed, and equation 1 is evaluated, giving the observed intensity.

In order to keep the computer running time within reasonable limits, it is necessary to restrict the total number of frequency points at which the spectrum is computed. On the other hand, it is necessary to include a number of points sufficient to maintain adequate spectral resolution, particularly in the rapidly varying regions of line centers. To satisfy these requirements, a frequency increment system was devised whereby large increments, up to 0.512 cm⁻¹ are used in those parts of the spectrum distant

from line centers, while small increments, as small as 0.001 cm⁻¹ are used in the vincinity of line centers. The frequency increment scheme operates as follows.

The first frequency point is defined by input data. After the intensity is computed, for this frequency value, as will be described below, a search is made of the table of line center frequencies to determine the closest line center, at either higher or lower frequency. The absolute value of the frequency difference between the nearest line center and the current frequency point is used in an algorithm to compute the next frequency increment. If this difference is zero, an increment of 0.001 cm^{-1} is used. At every second point from the line center the increment is doubled until a maximum of 0.512 cm^{-1} is reached at 1.0 cm^{-1} from the line center. The computed increment is added to the current frequency value, the spectral intensity is computed for the new frequency, and the process is repeated until a final frequency, defined by input data, is reached.

Each group of 100 spectral points is printed and also written on a magnetic scratch tape. This permits the computation of spectra with large numbers of points without extensive storage requirements.

At each frequency value, the spectral intensity is computed as follows. The table of line inclusion bands, determined by subroutine LINER, is searched to determine which lines must be included in the computation of the spectral intensity at this frequency. A table is made of lines to be included. For a given altitude step in the model atmosphere, the Lorentz and Doppler line widths are obtained for each line in the line inclusion table. The Lorentz width was computed in subroutine HEIGHT. The Doppler width is computed by multiplying the appropriate entry in the DOPP table, also computed in subroutine HEIGHT, by the corresponding line center frequency. The Doppler and Lorentz line widths are used to compute the X and Y parameters of the Voight function, as given in Equations 4.16 and 4.17.
These X and Y values are used in a table lookup of the Voigt function tables generated in Subroutine VOIGT, and, using a three point Lagrange interpolation, the Voigt function is evaluated for a given line at a particular frequency and position in the model atmosphere. The Voigt function is multiplied by the appropriate absorption, and if required, by the geometry case in use, the emission coefficient factors generated in Subroutine COEFFS, giving the final absorption and emission coefficients for a given line at a specified frequency and altitude. If the search of line inclusion bands indicated that more than one line must be included at this frequency, i.e., the lines overlap, this process of determining absorption and emission coefficients is repeated for each overlapping line. The absorption and emission coefficients are summed for all contributing lines to give a single net absorption or emission coefficient.

This process of computing absorption and, if required, emission coefficients is repeated for all altitude steps in the input model atmosphere, as defined in Subroutine HEIGHT. A table of absorption and emission coefficients is generated for a single frequency covering all altitude steps and including the effects of overlapping lines. The radiative transfer equation (equation 4.10) is evaluated using the tabulated coefficients, employing Simpson's rule integrations. The incident radiation for geometry case 1 is blackbody radiation from the ground. The ground temperature is taken as 288.2 ^OK, with an albedo of 1.0; however, both parameters can be varied by input data. For geometry cases 2, 3, 4, the incident radiation is solar radiation based on a solar temperature of 5800 ^OK, with an emissivity of 1.0. For geometry case 3, where incident solar radiation is reflected from the ground at an angle different from the incident angle, the intensity computed in the manner described above gives the attenuated solar radiation at ground level. The entire process is repeated for the reflected beam to give the radiation at an exoatmospheric observing platform. For geometry case 4, where solar radiation is reflected from the ground at the same angle as the incident angle,

the computed absorption is simply doubled to give the total absorption from the double pass. In both geometry cases 3 and 4, a ground reflectivity may be specified by input data. The intensity at ground level is further reduced by a factor of π to account for lambertion diffusion by the ground.

By this method the spectral intensity at a single frequency is computed. The subroutine then computes the next frequency point by the line center proximity method described above, and the entire process is repeated for the new frequency point. This procedure is continued until a stopping frequency, specified by input data, is reached.

Segment Six. - The sixth segment of this program contains three subroutines. Subroutine TRANF prepares the spectrum computed above for the Fourier transform, applies a bandpass filter function as defined in Subroutine FLTRS, and calls Subroutine FRXFM to perform the Fourier transform. Subroutine TRANF then prepares both the spectrum and interferogram for plotting.

In the description of Subroutine SPECT it was noted that the spacing between points on the frequency scale of the computed spectrum is variable rather than uniform. In order to perform the Fourier transform, however, it is necessary that the frequency spacing between points be uniform. The first task of Subroutine TRANF, therefore is to perform conversion of the spectrum to a uniform scale. The interval between the spectral limits is divided into a number of uniform divisions. The number of divisions must be a power of two, and is taken as 2^{12} unless otherwise specified by input data. The spectrum is read from the intermediate scratch tape in blocks of 100 points, as written by Subroutine SPECT. The conversion to the uniform scale between the limits of each uniform interval, i.e.:

where

- $s_{\nu_{u}} = s_{\nu'_{u}}$
- Spectral intensity of point in spectrum on uniform frequency scale
- = spectral intensity on non-uniform scale

 $v_2 - v_1 =$ one frequency interval of uniform scale

Following conversion of the spectrum to a uniform frequency scale, a filter function is applied to simulate the bandpass of a measurement instrument. Several types of filter functions are available, the choice being specified by input data. A Lorentz or Gaussian shaped filter function may be specified, in which case the input data consists of the center frequency, the peak transmittance and the half height - half width. A problem has been noted, however, in using these two functions in conjunction with the Fourier transform. Because the Lorentz and Gaussian functions asymptotically approach zero, but do not become zero in the defined spectral range, there is introduced into the Fourier transform high frequency components. These components can be eliminated by forcing the filter function to zero while still within the spectral range. This is accomplished by using a third filter function, referred to as a power function, having the form:

 $\tau_{\nu} = \tau_{\max} \cdot \left[1 - \left(\frac{\nu - \nu_{o}}{w} \right)^{2} \right]^{n} \qquad \nu - \nu_{o} < w$ $\tau_{\nu} = 0 \qquad \qquad \nu - \nu_{o} \ge w$

where the center frequency, ν_0 , the width, w, and the exponent, n, are all specified by input data. This function has the property of becoming zero within the frequency range of the computed spectrum and thereby preventing high frequency components in the Fourier transform.

In the event that a filter bandpass is required which does not fit any of these three analytic forms, it is also possible to provide input filter data in the form of the calibration curve, i.e., a table of frequencies and corresponding transmittances may be specified. Up to fifty calibration points may be specified.

It is also possible to superimpose any number of filters, using any mixture of the above filter types.

Following the application of the filters to the computed spectrum, the spectrum is written on magnetic tape for subsequent plotting. The Fourier transform of the spectrum is then computed. The Fourier transform subroutine, FRXFM, is a standard library routine based on the Cooley-Tukey algorithm, and returns the real and imaginary components of the Fourier transform. These are converted to amplitude and phase components of an interferogram by the expressions

 $A_{i} = \left(R_{i}^{2} + I_{i}^{2}\right)^{1/2} \cdot S$ $\Phi_{i} = \frac{1}{2\pi} \tan^{-1} \left(\frac{I_{i}}{R_{i}}\right)$

where

R, I = real, imaginary components of Fourier transform

S = plotting scale factor.

The computed interferogram looks much like an amplitude modulated radio signal in that it consists of a carrier wave modulated by the relatively lower frequency envelope. In the interferogram the carrier contains information concerning the spectral region for which the interferogram is computed. Since this information is already known, it is advantageous to eliminate the carrier and retain only the envelope, since this relaxes the required accuracy of the sampling point.

The elimination of the carrier is performed by "synchronously detecting" it with an input reference frequency which lies approximately in the middle of the spectrum being computed.

The delay scale for the interferogram is based on the frequency range of the initial spectrum. The delay for the first interferogram point is zero, and the delay increment for each subsequent point is

$$\Delta d = \frac{1}{\nu_f - \nu_i}$$

where

 v_i , v_f = initial, final frequencies of the computed spectrum.

The amplitude, phase and delay tables of the interferogram are written on magnetic tape for subsequent plotting. In addition, the real and imaginary Fourier transform components are punched on output data cards for subsequent use in deriving interferogram correlation functions.

<u>Subroutine SPPLOT</u>. - Subroutine SPPLOT reads the spectrum and interferogram from the magnetic tape written by previous subroutines, and generates plots of them. Plots are made on the twelve inch CALCOMP drum plotter at Langey Research Center, using the standard system library of plotting routines.

Following generation of the plotted output, program control is returned to the main segment where the entire spectrum computation process is repeated if desired.

5. CORRELATION INTERFEROMETRY

5.1 Principles of Interferometry

The use of spectral techniques for the remote measurement of concentrations of trace atmospheric species is dependent on separating out the effects of the species being measured from those of all other species present in the optical path. In techniques where a part of the spectrum is measured, the separation must be obtained by spectral resolution. Thus, some separable part of the spectrum must show an appreciable effect of the species being measured and any significant effects of other species must be such that they can be eliminated. If a different technique is used effects must still be separable but the separation criteria is no longer spectral resolution but a type of resolution peculiar to that technique. Such a technique is interferometry. In this technique the separation is accomplished by a resolution of path differences.

The instrument being developed for this program is a correlation interferometer. The following discussion will describe the basic theory of its operation. More detail on this and on the specific instrument itself will be given elsewhere (Bortner, et. al., 1973).

An interferometer is a fairly simple device (Figure 5.1.1). The essential elements are a beam splitter and two mirrors, plus a detector to measure the radiation output. Light from the source is incident on the beam splitter, B. At the beam splitter it is divided into two paths; one portion of the light goes to one mirror, M_1 ; the other portion of the light goes to the other mirror, M_2 . The two portions recombine at the beam splitter and the intensity of the light once they recombine is registered by the detector, D. The intensity of the radiation received by the detector will depend on the difference between the lengths of the paths traveled by the beams in the two arms. The length of the path F-B-M₁-B-D can be different from that of the

path F-B-M₂-B-D. If the two optical paths are exactly the same, the path difference (delay*) is zero, and there is a peak in intensity. If monochromatic radiation enters the instrument, and if the path difference is increased by one-half the wavelength, the intensity reaching the detector goes down es. sentially to zero. Then as it increases again towards one wavelength path difference, another peak occurs. This sinusoidal oscillation about a mean level repeats at intervals of one wavelength if the light is monochromatic. The instrument actually does a Fourier transformation of the spectrum of the radiation entering. The way in which the delay is scanned, the way in which the path difference is changed is in most instruments a matter of shifting one of the mirrors. This certainly does the job, but it causes some unnecessary alignment problems. One of the features of the COPE instrument is that the problem of having to scan and maintain the position of the mirror accurately is avoided by not scanning the end mirror, but, instead, scanning a plate of refractive material in one arm of the interferometer. Many interferometers have such a refractive plate, but generally it is left in a constant position. If this plate is rotated, the path length in that arm of the interferometer will vary. This will accomplish the same effect as moving one of the mirrors back and forth without the alignment problems. This is a specific advantage of the technique of this instrument. Other advantages, some of which are advantages of interferometry in general, include a large light throughput, multiplexing of spectral elements, a compact yet flexible instrument, and a handy output.

5.2 Relationship Between Spectra and Interferograms

In Figure 5.2.1 a few particular cases of the relationship between spectra and interferograms are shown. As shown on the previous figure, monochromatic spectrum produces an interferogram which is essentially a

^{*} The term "delay" refers to the temporal variation of the interferometer signal. This is related to the variation of the path difference by the scan velocity.

sinusoidal variation as the delay is scanned. If instead of a single monochromatic line there is a pair of monochromatic lines, then the two sinusoidals due to lines will beat together. Again a characteristic maximum is obtained at zero delay. As the oscillations beat together, they get out of phase and go through a minimum, then maximize again at a point characteristic of the line separation. If there are a number of regularly spaced lines, the beat patterns will all reinforce at zero delay again, but they very rapidly get out of step with each other and decay to very small values. Then there appears a point where they all reinforce again at a delay which is inversely proportional to the spacing between the lines. This is almost exactly the effect seen in the case of carbon monoxide as shown in Figure 5.2.2, which gives the actual spectrum" and interferogram. The spectrum displays fairly regularly spaced lines. There is certainly a noticeable change in the spacing from one end to the other, but it is certainly not a random spacing. As seen in the previous figure, there is reinforcement for zero delay which dies out rather rapidly, and then, at a delay which is characteristic of the spacing between the lines (about 3 cm⁻¹), the interferogram amplitude peaks up again. In general the relationship between the spectrum of the radiation and the interferogram of the radiation is given by a Fourier transformation, the cosine Fourier transformation. That is, the interferogram, apart from the constant term, is the cosine Fourier transform of the spectrum (Figure 5.2.3). The interferogram signal, as a function of path difference is given by:

 $I(\chi) = 2 \int_0^{\infty} \Pi_i \left(S_i(\sigma) \right) \cos (2 \pi \sigma \chi) d\sigma$

where

$$\sigma = \text{frequency (cm}^{-1})$$

$$S_i(\sigma) = \text{spectral input at } \sigma (\text{ergs-cm}^2 - \text{ster}^{-1} (\text{cm}^{-1})^{-1} - \text{sec}^{-1})$$

$$\chi = \text{path difference (cm)}$$

*This spectrum is that given by Plyler (1952) with the mercury emission lines omitted.

Figure 5, 2, 2 Interferogram and Spectrum of CO

. :

·. • • Figure 5.2.3 Heterodyning of Interferogram

Several relationships exist between the interferogram and the spectrum from which it is produced. The interferogram has a carrier frequency directly related to the mean frequency of the spectrum producing it. It will be amplitude and phase modulated, the amplitude and phase modulation being described by the band envelope shown. From an interferogram up to a given delay, the spectrum could be reconstructed with a resolution given inversely by the delay out to which the interferogram is obtained. So, from an interferogram from zero to 1 centimeter, inverse Fourier transformation reproduces a spectrum to resolution of one wave number (cm^{-1}) . Conversely, if the information characteristic of one wave number resolution is not needed, if the information need only be characterized by a 3 cm⁻¹ resolution, then it is only necessary to scan the interferogram out to 1/3 cm (3 millimeters) to obtain information equivalent to a resolution of three wave numbers. It is very important to do this. Significant improvements in signal to noise ratio are obtained by limiting ourselves to scanning only the portion of the interferogram which gives the best signal to noise ratio. If essentially all the information on any given species (all the effect of that species on the interferogram) occurs over a small part of the interferogram, only that range of path difference need be scanned. The operation of the correlation interferometer involves the treatment of the interferogram data directly to obtain data on species densities rather than the use of the spectrum obtained by the Fourier transform of the interferogram. With such an operation the concept of spectral resolution loses meaning. Although the spectrum which can be obtained from an interferogram has a resolution which is the reciprocal of the path difference scanned, the ability to obtain data on one species in the presence of others by direct examination of the interferogram, is not dependent on the length of path-difference scan. For example, if a scan of 0 to 2 cm were used to produce an interferogram but a given species of interest has an effect only between 1.0 and 1.2 cm, as much information on that species can be obtained by scanning from 1.0 to 1.2 cm as from 0.0 to 2.0 cm even though the

longer scan could produce a spectrum of 0.5 cm⁻¹ resolution whereas the shorter scan could not. Rather than spectral resolution, the separation of effects of various species is accomplished by a spatial resolution of path difference which is dependent on such factors as smoothness of path-difference scan.

Another relationship between the spectrum and the interferogram is that the spectrum of the incoming radiation can be severely band-limited by optical filters. If it is band-limited, and if an interferogram that would reproduce the spectrum only to a limited resolution is taken, then the spectrum could be characterized by a fairly small number of points. On the other hand, to characterize the interferogram in this form with its very rapid oscillations (the oscillations are essentially proportional to the mean frequency and not to the width) with any degree of accuracy, relatively large number of points on the order of at least one per cycle of oscillation would be needed. This would be many more points than are necessary to characterize the spectrum to a corresponding resolution. There is a lot of redundancy in the information because of the band limitation. The method used in the correlation interferometer to eliminate the redundancy is simply to take the amplitude and phase modulated sinusoid and heterodyne it down with a local oscillator, where the local oscillator is the interferogram of radiation somewhere around the mean frequency of the spectrum. By heterodyning the interferogram down with a cosine or a sinusoidal variation, the interferogram is reduced to its essential variations. This is illustrated in the bottom part of Figure 5.2.3. All the information necessary to characterize the interferogram can be retrieved by sampling a relatively small number of points, a few points for each of the much longer cycles shown in the bottom figure. There is a slight difference whether the interferogram is beat with a sinusoid at a given wavelength or a cosine; slightly different beat-down interferograms are obtained. Actually both of them are used but, through most of the remaining discussion this fact will be ignored. In generating the local oscillator for carrying out the heterodyning, radiation which passes through the same interferometer as does the

signal radiation is used. This insures that the local oscillator always has the correct phase relationship with the signal interferogram. It also relaxes some of the accuracy needed in the knowledge of the plate drive (the scan drive). If this were not done, the scan drive would have to be known accurately to within a very small fraction of the wavelength. By having the local oscillator going through the same interferometer, this problem is alleviated. Probably the main objection to interferometers is that most people think in terms of using a spectrum and in order to obtain a spectrum from the interferometer, the interferogram must be transformed. This problem is avoided completely by not looking at the spectrum at all. It is not really necessary to use the spectrum. The measurement can be made quite adequately on the interferogram itself. This is a major advantage of the correlation interferometer.

5.3 The Measurement in the Presence of Interferents

Figure 5.3.1 outlines very briefly the basic principles by which the measurement on the interferogram is made. There are essentially two problems involved in a measurement of this type. We are trying to measure the CO burden on the basis of the radiation received from a satellite. The problems in making the measurement are: (1) can the measurement be made with sufficient accuracy in view of the noise limitations, and (2) can the measurement be made under conditions where the radiation received is affected not only by the gas that we are trying to measure, in this case carbon monoxide, but is also severely affected by other gases. In fact, the radiation is much more affected by such things as water vapor and methane. Ignoring for the moment this problem of the interference species, consider how a measurement would be made. Consider an interferogram due to a target signal, say CO, such as shown. There are different ways by which one could measure the CO burden which produced this signal level. One might sit at a constant delay and measure the signal level at that point. If the CO burden were

7.7

doubled, the effect of CO on the intensity we would measure would be doubled (for the moment assuming variations are linear with the gas burden); the intensity would essentially be a measure of the carbon monoxide burden. If there were a constant noise level associated with the measurement of any point then the best point to make a measurement would be at the point where the signal level is maximum. If a finite range of delay were scanned, then the measurements made at all points would be combined to get some sort of average measurement of the carbon monoxide burden. In general, the optimum measurement that can be made in such circumstances is given by combining all the measurements, all the intensities of the various points, in a manner related directly to the intensity of the signal shape. That is a weighting function or correlation function is generated and this is multiplied together with the signal. The measurement made is the integral of the correlation function times the signal, the integral over the delay range which is scanned. It is integrated and the measurement obtained is directly proportional to, in this case, the carbon monoxide burden. The signal-to-noise ratio in such a measurement can be shown to be optimum when the correlation function looks exactly in shape like the target signal. That result holds when there are no interferents. Now consider another gas species which is affecting the signal received, for example water vapor. If a point measurement of the intensity were used, the signal received would not be simply the signal due to carbon monoxide but the sum of the signals due to the carbon monoxide and to the water vapor. Even if the carbon monoxide level were to remain the same, drastically varying measurements due to variations in water vapor might be obtained so that a very poor measurement of CO would be obtained by sitting at that point. A region where a signal is unaffected by all interferents may not be available or if it is, the signal-to-noise ratio achievable at the point might not be adequate for the measurement. This problem is handled as follows. The correlation function used is not matched exactly to the target gas signal shape. The correlation function (W) is adjusted so that when it is

cross-correlated with the interferents and the result is integrated over the range scanned, all the positive correlation regions are balanced exactly by the negative correlation regions, so that the total area under the curve, the total result of the measurement, comes out to zero as illustrated, still maintaining the correlation function as close as possible to that constraint to the signal interferogram (target interferogram) in order to still get as large a positive correlation between the correlation function and the target gas as possible. The result of the measurement is still proportional to the carbon monoxide burden. In principle, if there are a number of interferents of this sort, rejection of these interferents can still be achieved so long as we have at least as many points to describe our correlation function as we have gases which are affecting the radiation. The measurement of the target gas can be made in real time. The first gas, in this case CO, and any other gases which significantly affect the interferogram can be measured.

5.4 An Example of the Use of Interferograms

As an example of the interferograms resulting from overlapping spectra (using three imaginary species), Figure 5.4.1 shows spectra (drawn with relative frequency scale in cm⁻¹) and the major features of a portion of the interferogram envelopes for species A, B, and C, and for all combinations of them. Thus, from the spectrum of A, the lines at relative positions of 1 and 3 cm⁻¹ give a peak in the interferogram envelope at 0.5 cm; those at 1 and 6 cm⁻¹ give one at 0.2 cm⁻¹; those at 3 and 6 cm⁻¹ give one at 0.33cm⁻¹. Similarly, B gives peaks at 0.28 cm and 0.55 cm. However, in the interferograms of AB an additional effect occurs between .25 and .36 cm. This is due to the combination of the line at the relative frequency of 1 cm⁻¹ in the A spectrum and of that at 4.8 cm⁻¹ in the B spectrum. Other effects are also present in the AB interferogram due to other combinations of lines. If it is desired to determine the concentration of species C in the presence of

.79

A and B, the spectrum or the interferogram of the A-B-C mixture must be different from that of the A-B mixture. The spectra show an appreciable difference only around $v_{rel} = 5 \text{ cm}^{-1}$ where A-B-C extends about 0.2 cm⁻¹ past A-B. Thus, a .2 cm⁻¹ spectral resolution would be required to make the measurement. In the interferograms, the region around .25 cm path difference shows a variance. The region from .24 to .26 could be used to make a measurement C. Actually a larger region would be used and the effects of A and B separated out.

The spectra of A, B, and C are related to each other somewhat as those of H_2O , CH_4 , and CO in a real case, except that the latter are more complex. In that case a spectral region much affected by CO is chosen and separated out by an optical filter.

In the correlation interferometer, the path difference scan is limited principally to that portion of the interferogram which is most affected by the gas whose density is being measured (excluding that portion near zero path difference). In the case of CO that portion of the interferogram obtained with path differences between 2.70 and 3.95 mm has been selected. Since the lines in the first overtone band of CO are separated by about 3 cm⁻¹ on the average this shows up in that part of the interferogram centered at about 1/3 cm^{-1} = .33 cm = 3.3 mm. Thus, the CO spectrum is as shown in Figure 5.2.2 and the interferogram (using a spectral filter centered at 4278 $\rm cm^{-1}$) is also shown in Figure 5.2.2. In this the major effect of the CO is seen to be in the region of 0.3 cm. Taking this portion of the interferogram between 0.27 and 0.395 cm gives essentially all of the information on CO that can be obtained from the interferogram. The determination of CO is not, however, the simple measurement of this peak in the interferogram since other gases, particularly CH_A and H_2O also have some effect in this region. Thus, this peak is divided up into a number of sections, 32 in the case of our instrument. The effect of each gas on each of these 32 sections is determined in effect,

by calibration.*

Thus, in the simplest case, a portion of the interferogram affected only by H_2O is chosen to determine the amount of H_2O^{**} and the remainder of the interferogram is, in effect, corrected using these data and calibration information. CH_4 is dealt with similarly. Thirty-two different effects could be dealt with this way. Since in a real case portions of the interferogram affected by a single gas are not always available, the set of 32 simultaneous equations is solved to determine the amounts of individual gases causing the combined effects.

The output of the interferometer will be voltages, each related to the concentration (column density) of one species. The calibrations can be thought in terms of these voltages. Thus, to be able to separate out the effects of individual species it is necessary to resolve parts of the interferogram which show the effects of these species. In the A-B-C example this resolution must be of the order of 0.2 mm which is readily attainable. The spectral resolution required for a similar separation of effects would be 0.2 cm^{-1} which is not attainable with the spectrum which would be produced from the interferogram obtained with this instrument. Thus, by directly using the interferogram the effects of specific species and hence its density is measureable whereas it would not be if the interferogram were converted to a spectrum and that used for the measurement. This comparatively simple measurement can be made very much faster than can a measurement of the same

^{*}Actually, the effects of specific gases, other than that being measured (such as CO), need not be specifically known by calibration. The calibration can consist of 31 different atmospheric conditions with one amount of CO and a different amount of CO with one of these conditions. The measurement of CO is then made by determining the effect on each section of the interferogram of other gases of the atmosphere ad determined by a best fit of the 32 points.

^{**}Since the H₂O spectrum and hence its interferogram is affected by temperature, two or more portions of the interferogram must be used to take this effect into account.

species by a high-resolution spectromatic technique, whether by a spectrometer technique or by an interferometric technique which employs the Fourier transform of a interferogram obtained over a large range of path difference.

Page Intentionally Left Blank

6. CORRELATION TREATMENT

6.1 Basic Principles

6.1.1 <u>Instrument Output</u>: - The interferometer receives radiation, the spectral characteristics of which are affected by a number of parameters. We wish to measure one of these parameters (CO burden), with as high accuracy as possible and as little interference as possible from variation in the other parameters. Within the instrument, optical filters limit the range of the radiation to a fairly narrow spectral region where CO absorption has the greatest relative effect on the radiation.

The correlation interferometer operates by varying the delay between the two beams of a Michelson interferometer over a defined range. As the delay is swept, a sinusoidal type signal is generated at the detector output. This signal is both amplitude and phase modulated. The band center and width are directly related to the center and width of the optical spectral filter, while the modulations are characteristic of the more detailed spectral information.

6.1.2 <u>Preprocessing</u>: - An important function of the interferometer electronics hardware is to reduce the high sampling rate implied by the relatively high center frequency of the interferogram signal, by synchronously detecting the signal with a reference signal, (similar to the local oscillator in a homodyne system). This reference is generated from the interferogram of radiation having stable spectral characteristics. The reference radiation passes through the same interferometer system as the signal radiation, so that to a very large extent the reference derived from its interferogram is fixed in phase relative to the interferogram of any given signal radiation, regardless of any irregularities in scan, or variations in the interferometer arm lengths.

When this synchronous detection is carried out, the result is a signal containing only the information of the sidebands of the original signal, beat down to zero frequency mean. (Actually two such signals are produced, from references both in phase and in quadrature phase with the reference interferogram.) The signal's information is still band limited, by virtue of the original spectral band limitations. The signal is therefore integrated and digitized at an interval sufficient to retrieve this information, producing a preprocessed, digitized, interferogram.

6.1.3 Final Processing: - Final processing consists of applying a linear digital filter ("weighting function" or "weights") to the preprocessed interferogram. The filtering operation consists of taking the weights, one for each point of the interferogram, multiplying them together with the corresponding interferogram points, and summing the results. The weights are chosen, in a manner to be described below, so as to give a final result which is insensitive to variations in all parameters except the desired one. (The weights are also chosen to give a result which is optimized against a mixture of noises.) The result may be directly converted using a defined zero point and scale factor, to units of target gas burden (atm-cm, ppm-m), etc.

6.2 Determination of Weights

6.2.1 <u>Basic Philosophy and Theory</u>: - The determination of the weights is based on the possibility of representing any observed interferogram as a linear combination of component interferograms. The number of such component interferograms required to represent a range of actual observed interferograms to some accuracy, will depend on a number of factors depending on the range of conditions under which the interferograms are observed. The number will depend mainly on the number of parameters which vary significantly over the range of conditions, and to a lesser extent on the

degree of non-linearity in the variations of the interferograms with these parameters. (Parameters will characteristically represent factors such as water vapour burden, methane burden, and temperature profile, as well as the target CO burden).

Consider then any interferogram I within the defined range. It may be written as a linear combination of N constituent interferograms. Using the index K to define the point on the interferogram, and J to define the particular constituent interferogram we may write

$$I(k) = \sum_{j=1}^{N} q_{j} I_{j}(k)$$

The q_J 's are the strengths of the constituent interferograms in the particular interferogram observed. Let us assume one of these, q_{J1} , is the target gas burden.

Now the final processing consists of the application of a weighting function, H(k), to the interferogram. The resulting measurement is

$$M = \sum_{k} H(k) I(k)$$

$$k$$

$$= \sum_{J} q_{j} \sum_{j} H(k) I_{J}(k)$$

From this, it can be seen that if we can find weights H(k) that give

$$\begin{array}{ccc} Nk \\ \Sigma \\ k = 1 \end{array} \quad \begin{pmatrix} H(k) & I_{J}(k) \\ \phi & J \neq J1 \end{array}$$

then the measurement will be $M = q_{Jl}$, the target burden. If J varies from 1 to N, then this is a set of N equations in as many unknowns H(k) as there

are interferogram points (NK). In order for these equations to be satisfiable, there must be at least as many interferogram points as there are constituents (Nk \geq N). In the case that Nk = N, there are N linear equations in N unknowns, and the solution for the H(k) is straightforward.

In the case that there are more interferogram points than there are constituent interferograms, there are many possible weighting functions which will satisfy the N equations. It is however possible to choose a unique set of weights by considering the noises in making the measurement, and minimizing their effect on the measurement.

6.2.2 <u>Noises in Measurement</u>: - The noises operate in the following manner. The total integration time for measurement of a given point may be written D(k) (its duration, assumed unity up till now). The contribution to the final measurement for that point is actually $\Delta M(k)$.

2. 4 1

$$\Delta M(k) = \left[H(k) D(k) \right] I(k)$$

The noise contribution for that point is significant in how it can vary this from its "correct" value. The noises may or may not decrease with integration time: that is, they may be either random or synchronous with the scan. They may or may not depend on the expected level of the interferogram itself $\langle I \rangle_k$, (an RMS value for the constituent interferograms at a given point): that is, they may be either additive or multiplicative.

A discussion of various physical origins for these noises will be presented elsewhere (Section 6.2.4). However, it is sufficient at this point to be able to characterize them by four numbers, $a_1 \dots a_4$, which represent the severities of the four possible combinations of noise type:

a _l	-	Random Additive	(RA [`])
a 2	-	Random Multiplicative	(RM)
^a 3	-	Synchronous Additive	(SA)
a 4	-	Synchronous Multiplicative	(SM)

The noises will combine in an RMS manner to give the mean square noise contribution $\Delta N^2(k)$ to the measurement at a particular interferogram point, and we may write

$$\Delta N^{2}(k) = \left[H(k) D(k) \right]^{2} \times \left[(a_{1} + a_{2} < I >_{k}^{2}) / D(k) + (a_{3} + a_{4} < I >_{k}^{2}) \right]$$

= $\left[H(k) D(k) \right]^{2} G(k) .$

G(k) is an effective mean square interferogram error for point k (although it may originate through error in either H, D, or I).

6.2.3 Derivation of Weights: -

The total measurement is thus

$$M = \sum_{k} \Delta M(k) = \sum_{k} \left[HD \right] I$$

and the total squared noise is

$$N^{2} = \sum_{k} \Delta N^{2}(k) = \sum_{k} \left[HD\right]^{2} G.$$

It is possible to choose, given the various $I_{J}(k)$ and the duration D(k), those values for $\left[HD\right]_{k}$ which minimize the above noise term; subject to the con-

straint that $M = q_{J1}$, the target quantity, regardless of what values the other quantities may have (to the extent that the assumed linear representation is valid). The solution, derived elsewhere (Grenda, et al, 1971), is

$$\left[HD\right]_{k} = \sum_{J} A_{J,J1}^{-1} I_{J}(k)/G(k)$$

where A^{-1} is the inverse of the matrix.

$$A_{J,L} = \sum_{k} I_{J}(k) I_{L}(k)/G(k).$$

(Knowing D(k), H(k) = $HD_{k}/D(k)$.

A couple of points should be noted. First, the weights produced in this manner may be multiplied by an arbitrary scale factor, to give a new set of weights; however, the signal to noise ratio will remain unchanged. Secondly, if G(k), (the squared noise at a given point) is multiplied by a scale factor; (i.e. if all noise terms a are increased by the same factor), then there is no change to the weights produced. In fact, G(k) may be written as:

$$G(k) = \operatorname{const} x \left[1 + R < I^{2} \right]_{k}$$
$$R = \left[\frac{a_{2}}{D(k)} + \frac{a_{4}}{4} \right] / \left[\frac{a_{1}}{D(k)} + \frac{a_{3}}{3} \right]$$

where

represents the relative importance of the multiplicative terms with respect to the additive terms. If we assume D(k) is constant, then this one parameter will determine the weights produced; whether they optimize against multiplicative noises (R>>1), additive noises (R <<1), or some intermediate mixture. Analysis of the way R varies with the a's for reasonable values of the noises should indicate which terms will have most affect on the shape of the weights produced when varied. Similarly, it is possible to examine the relative importance of the two multiplicative terms (in the numerator). In fact, the ratio of their contribution to the total final noise is given by $a_4 \times D/a_2$. The same is true for the two additive terms. On the other hand, to examine the total contribution of both multiplicative terms in comparison to the contribution of the additive terms, it is necessary to first calculate the weights. Once this has been done the absolute importance of the four noises may then be calculated, in the same units as those in which the target burden is measured:

 $N_{1}^{2} = a_{1} \Sigma (HD)^{2}/D$ $N_{2}^{2} = a_{2} \Sigma (HD)^{2}$ $N_{3}^{2} = a_{3} \Sigma (HD < I > ^{2}/D$ $N_{4}^{2} = a_{4} \Sigma (HD < I >)^{2}$ 6.2.4 Physical Origins for the Noise Terms: - The various noise

terms may each arise due to one or more sources. Some possible sources are listed below:

RA: - Detector noise.
Photon noise.
Other electrical noises.
Digitization of integrated outputs.
RM: - Scintillation or rapid variations in target, albedo or illumination.
Random errors in derivation of reference signal.
Random variations in scan waveform.

SA: - Presence of spectral signatures which were not represented in sample used to derive weights.

Crosstalk from reference into signal channel.

SM: - Inaccuracies in carrying out multiplications (truncation of weights).

Change in scan waveform from the shape when the weights were derived.

6.3 Software

6.3.1 <u>Description</u>: - As described in detail above, processing of interferograms, either theoretical or experimental, consists of applying a linear digital filter ("correlation function" or "weights") to the interferogram. These weights are chosen so as to give a final result which is indicative of the quality of one of the atmospheric components contributing to the interferogram, and which is insensitive to variations in all other parameters. The filtering operation consists of taking the weights, one for each point of the interferogram, multiplying them together with the corresponding interferogram points, and summing the results. (The weights are also chosen to give a result which is optimized against a mixture of noises.) The results are also directly converted using a defined zero point and scale factor, to units of target gas burden (atm-cm, ppm-m), etc.

A software package has been developed for use with a large computer system to input interferograms deriving the weights for a given noise mixture, evaluate the noise severities, and to simulate measurement on interferograms using the weights.

The procedure for the determination of the weights is to accept a set of interferograms and define the delay region over which the weights are to be applied. One interferogram is designated as "nominal", and another designated as "target". Weights are derived, based on the assumption that

all interferograms except "target" represent a single value of the desired parameter (CO burden), while other parameters are varied. The interferogram designated as "nominal" is assumed to represent the same values for the other parameters as does "target"; i.e. "nominal" and "target" are assumed to differ only in the size of the target parameter.

The weights determined will then give measurements which have a zero for the target parameter value used in "nominal", and a scale of 1 for the target parameter variation between "nominal" and "target".

(In order to reduce the sizes of numbers to be handled, the nominal interferogram is subtracted from all others, so that difference interferograms are actually used. Because of assumptions of linearity, this makes no difference to the algorithm for determining the weights.)

(It may also be noted that the program actually deals with interferograms containing both inphase and quadrature phase components. They are just handled as if there were twice as many data points I(k); although an extra index is needed to reference the two components.)

Values are input to the program representing the noise levels (RA, RM, SA, SM), and the total time, T, available for measurement. (The measurement time should include any duty cycle factor which may make it shorter than elapsed time. Values for RA, etc. will be discussed later.) Based on these, the a are calculated.

The interferograms and noise parameters are then input to a subprogram which carries out the weight generating algorithm, returning the weights.

Provision is included in the program for putting out the noise components for given a_i and T, and to also put out the expression relating to the size of the noises to the parameters.

An AGC function is also carried out by the program. In the case of computer generated theoretical interferograms, the normalization is done on the basis of the interferogram value at the first point, (assumed to

be the zero delay point, proportional to the total radiation received). For interferograms generated by the actual instrument, a good deal of the AGC function is carried out by the hardware. However, a term proportional to the duration of the measurement remains (number of scans). This factor is removed for tapes generated by the NOVA by dividing all interferogram points by the total number of fringes duration of the measurement at each point, as the values are put into core. A flow chart of the program is given in Figure 6.3.1. A listing is given in Appendix B.

6.3.2 <u>Values for Noise Inputs</u>: - Values for the noise terms may be determined by either knowledge or estimation of system parameters, or else empirically by the examination of instrument generated interferograms. Conversions from the values input to the a_i , also depend on whether the interferogram set was computer or instrument generated. Certain terms depend on whether the program is running with instrument generated (INS) or computer generated (COM) interferograms.

The inputs are RMS noise levels for the following conditions:

RA - Noise for { unit (1 fringe) integration time (INS) }, interferogram unit band width (COM) units

RM - Noise for unit integration time, fractional interferogram units

SA - Noise in limit of long integration normalized to 1 fringe

normalized to 1 fringe integration units (INS)

as a fraction of DC level x 10 (COM)

SM - Noise in limit of long integration, fractional units

6.3.3 <u>Noise Values Based on Instrument Measurements</u>: - If empirical observations are available from the instrument the appropriate variations, ΔV , of measured values, V, taken under conditions of N fringes inte-

gration per point, the necessary conversions are listed below: (Time, T, used with these inputs should be the total duration of the measurement to be optimized for, in fringes.)

• • • • •

$$RA = \langle \Delta V \rangle / \sqrt{N}$$
$$RM = \langle \Delta V / V \rangle \times \sqrt{N}$$
$$SA = \langle \Delta V / V \rangle$$

6.3.4 <u>RA and SA for Computer Interferograms</u>: - In the case of computer generated interferograms, for the RA term, a system NEP for 1 Hz bandwidth may be known, along with the system throughput, T (cm² sterad), including instrument inefficiencies). The conversion to RA will depend on the the interferogram units used. These may be either watts/cm² sterad, or equivalent width of the instrument plus atmosphere transfer function. (These correspond to units in the original spectrum of watts/cm² sterad cm⁻¹, and fractional transmission, respectively.) The conversions are:

Units for Original Spectrum	Detector Limited	Photon Limited
W/cm^2 sterad cm ⁻¹	NEP/(T x DNU)	$\sqrt{2\pi N} \frac{h\nu}{T}$ DNU
Fractional Transmission	$\frac{NEP}{(T \times N \times DNU)}$	$\sqrt{2\pi h\nu/N} T/DNU$

 N_{ν} is the background radiance, in W/cm² sterad cm⁻¹, and DNU is the spectral interval at which the original spectrum was sampled when the Fourier transform was taken. (Provision is included in the program for transferring DNU along with the interferograms. If this has been done, it may be set to 1 in the above conversion.)

.96

A rough estimate for the SA term may be made for use with the computer interferograms as follows. The mean optical depth, x, may be estimated for those absorbing constituents which have not been included in the computer modelling, those constituents which might not be represented in the range of observation used to define the weights). Assuming that the spectrum of their absorption is random, then the value to be used for SA would be SA = X (giving a_3 = X times the interferogram DC level). In practice, the spectrum is never completely white. If we assume a 1/f type of variation, then RA should be decreased according to the distance of the interferogram working region from zero, a factor of 10 (implying a distance of 10² fringes from the origin) has been built into the program. Thus, for a system working N fringes from zero delay.

$$SA \sim X/(N/100)^{1/2}$$

This procedure does not work for non-random interfering spectra. If a direct estimate can be made of the interferogram amplitude due to an unaccounted interferent, as a fraction X of the DC level, then the number to use is

(It may be recalled that it is possible to decide on the basis of a_1 and a_3 whether or not the SA noise is significant in comparision to RA noise.) In terms of the inputs, the quantities to consider are listed below.

	Interferogram		
	Instrument	Computer	
QA	RA/SA √DT	4 RA/SA x WO x DNU x √DT	
QM	rm/sm√dt	rm/sm √dt	

· 97
For the computer QA term, $W\phi$ is the interferogram DC level, DNU the spectrum step if transferred with the interferogram. DT is the duration for the measurement of a single point, (fringes for the instrument, seconds for the computer interferograms).

When a Q is much greater than 1, the associated random term dominates the synchronous term, and vice versa.

6.3.5 <u>Data Output</u>: - The output of this program is a list of the target species burden in both test units of target gas burden. One test unit is the difference in species burden between the target and nominal interferograms. Since the actual burden is stored along with the interferogram, usually in atm-cm, it is possible for the program to convert the test units into burden units.

In addition to applying the correlation function and listing the target species burden for the test interferograms, as a check the correlation function is also applied to the basic set of interferograms from which the correlation function was generated.

7. RESULTS

1. Calculations have been made with several programs. Initial calculations were made with a single-line model. For each of several lines of the overtone and fundamental bands, calculations were made of absorption across the line, the line shape as a function of altitude, net absorption as a function of altitude for various CO density profiles (including sinks and various temperature profiles, integrated net absorption as a function of ground temperature and emissivity, and of other factors which influence the net intensity. With a second program, calculations were made, for the limb mode, of the effect of instrument error on the inversion of measured total CO densities in the path to obtain a CO profile. With a multi-line program which computes the spectrum incident on the instrument, generates the corresponding interferogram, and, with another program, inverts this to CO densities in the path, calculations were made to determine the sensitivity of the technique and the effects of various atmospheric parameters. · . . .

1.1.1.171

. .

· · · · · · · · ·

7.1 Atmospheric Transmission

7.1.1 <u>Calculation Model</u>: - Absorption by the CO overtone (2.3μ) and fundamental (4.6μ) bands has been studied using the computational technique described above. The geometry selected for the calculation considers a satellite observing the earth from the zenith. Consequently, lines of the fundamental band are strongly absorbed whereas those of the overtone band are relatively weak. The results then are based on a comparison between these two cases with emphasis placed on the effect of assumed atmospheric profiles on the observed signal.

Two programs for the calculation of atmospheric spectral transmission were written. One is a single line model used to calculate atmospheric transmission for a variety of conditions appropriate to the CO problem. Specifically, it was used to compare the first overtone and fundamental bands, to determine the effect of ground temperature variations, to determine the effect of variation and uncertainty ground emissivities (at specific wavelengths), to test the effect of different Lorentz half-widths, and to test the effect of low-altitude CO sinks on the transmitted signal.

The second program is a multi-line model which computes atmospheric transmission for multiple overlapping spectral lines. It has been used to calculate the spectrum incident on the instrument, and the output interferogram. A separate program establishes weighting functions and uses them to compute CO density.

The program can handle a total of 150 different lines, distributed in any way between three chemical species (CO plus any two others). Three different cases (Figures 4.1.1, 4.1.2) are incorporated in the program:

1. Ground blackbody radiation (4.6μ)

2. Limb transmission (2.3 or 4.6μ)

3. Reflected sunlight (2.3μ)

Parameters which can be varied by means of input data include the temperature and species concentration profiles of the atmosphere, ground temperature and emissivity, reflectivity, viewing angles, incident radiation angle, and grazing height.

The line overlap system operates basically as follows. For each spectral line, a "line inclusion band" is computed. This is the frequency band over which each line must be considered. The limits of each band are the distance one must go from each line center to reach a threshold intensity. This threshold intensity is defined as a preselected percentage (usually 1%) of the weakest line. For the purposes of determining these bands, a Lorentz line shape of nominal width 0.06 cm⁻¹ is assumed.

The spectrum is not computed at uniformly spaced points. The spacing varies from as low as 0.001 cm^{-1} near the line centers to as much as 0.5 cm^{-1} between lines. The actual computation of the net transmission is done by solving the basic radiative transfer equation in much the same way as previously described for the single-line calculations. The overlap of lines is represented by addition of their absorption and emission coefficients.

The complexity of the computation has resulted in a program too large to fit a 32 K word computer memory. It was therefore necessary to use an overlay system, whereby each section of the program is stored on a disc and brought into memory as needed. Using this system, the program occupies a maximum of about 24 K words. Preliminary runs using geometry case 1 and 13 CO lines had a running time of about two minutes.

7.1.2 <u>Single- and Multi-line Models and Line Shapes</u>: - The net change in intensity for the R7 line of the fundamental is given in Figure 7.1.1. This shows by the solid curve the results obtained by the single-line model and by the x's the results obtained by the multi-line model. These agree within 1% and it can be concluded that the comparison of the fundamental and overtone bands can be carried out using the single-line model.

A variety of atmospheric models were used for the computations (AFCRL, 1966). The pressure was taken from the 1966 U. S. Standard Atmosphere. Temperature and CO concentration profiles were varied as shown in Section 2. For all calculations discussed in the following pages, the conditions used, if not otherwise stated, are:

CO Profile 1

Temperature Model 2

Ground Temperature = 0 km Atmospheric Temperature Emissivity = 1.0

Figure 7.1.1 Comparison of Single and Overlapping Line Absorption Spectra through Standard Atmosphere

Reflectivity = 0.1 Bandpass = 20 cm^{-1} Lorentz Half-width (R7) = 0.06 cm⁻¹

Calculations have been made for six CO profile models (Table 2.1.1, Figure 2.1.1)

- 1. Standard (0.1 ppm)
- 2. Low Altitude Urban Source
- 3. Low CO (0.01 ppm)
- 4. High Altitude Sink
- 5. Low Altitude Sink (Effect to 9 km)
- 6. Low Altitude Sink (Effect to 3 km)

These models were used to evaluate the emission and absorption coefficient and compute the CO absorption spectrum which would be observed at an altitude of 80 km.

The absorption and emission coefficients are functions of pressure, temperature, and CO number density. This is illustrated by Figure 7.1.2 which shows the spectral absorption coefficient of the 4.6 μ P8 line as a function of altitude for the standard temperature and CO models. At low altitudes the lines are Lorentz broadened and then as altitude increases, Doppler broadening dominates. When these absorption coefficients are integrated over the atmosphere, the line profile variation with altitude is manifested by an emission peak at the center of the absorption line. This behavior is illustrated in Figure 7.1.3. Physically, earthshine is absorbed up to an altitude of about 30 km. At this point, the atmospheric temperature rises and the light flux is increased by emission. However, because the line profiles are very sharp at this altitude, the emission is observed only near the line center.

A second example of the importance of atmospheric emission is illustrated in Figure 7.1.4. Here the net change in absorbed intensity

Figure 7.1.2 Absorption Line Profiles (P8)

Figure 7.1.3 Line Profile Showing Emission Peak at Center

with altitude as integrated over the P8 line of the fundamental is shown as a function of altitude for the four temperature models and the standard CO model. Two temperature profiles have inversion layers which cause a net increase in the light flux (negative absorption). When the temperature drops there is less photon emission and the net absorption increases. For the case of the P8 line of the overtone, this behavior is not observed as shown in Figure 7.1.5. The reason for this is source temperature. In the case of the overtone, reflected sunshine dominates the intensity at the earth's surface, whereas at 4.6 μ earthshine is the dominant contributor to the ground intensity. The atmospheric temperature can be higher than the ground temperature and hence atmospheric emission becomes important.

7.1.3 <u>CO Profile Effects</u>: - The effect of CO number density profile on the intensity has been examined using the standard temperature profile and the six CO models. The results for the change of intensity with altitude for the P8 line of the fundamental are shown as a function of altitude in Figure 7.1.6. In all cases, except the urban atmosphere, the change in intensity peaks between 6 to 10 km whereas it should peak at ground level except for the low-altitude sink models. This peak is caused by a balance between the changing CO concentration and the emission. In the case of the urban atmosphere, the CO concentration profile dominates. This balance should be emphasized in that the change in absorption at 4.6 microns is not directly proportional to the CO concentration. On the other hand, similar calculations for the P8 line at 2.3 μ are a direct measure of the CO number density. This is shown in Figure 7.1.7. The difference between the two wavelengths is again caused by the effective source temperature.

These data show that absorption spectra as observed from 80 km depend on the atmospheric profiles of the absorbing species and on temperature. The temperature dependence of the spectra is controlled by the temperature of the absorbed source. For the case where earthshine is im-

Figure 7.1.5 Variation of Rate of Change in Absorbed Intensity Overtone (2.3μ) (R7 Line)

Figure 7.1.6 Variation of Rate Change in Absorbed Intensity Fundamental (4.6 µ)

and the second second

portant the absorption profiles are strongly effected by the atmospheric temperature profile. Also in this case, the change in absorption with altitude is not a direct measure of the absorbing species. On the other hand, when the absorbed source is the sun, the absorbed signal is almost independent of the temperature profile and the change in absorption with respect to altitude is directly proportional to the concentration of the absorbing species.

The results are shown in Table 7.1.1 for the six models and in Table 7.1.2 for models in which concentrations of the CO were multiples (.1, .2, .4, .8, 1., 1.6, 3.2, and 6.4) of the standard atmosphere at all altitudes.

The effect of low altitude sinks on measured CO densities is seen in Tables 7.1.3 and 7.1.4 using temperature models 2 and 4, respectively. The numbers presented are those of the percent difference of the actual CO density in the model and that calculated using the computed net absorption for that model and converting that by means of the data of Table 7.1.2. It can be seen that at 4.6 μ the errors are larger than the differences in the amounts of CO in the standard and the sink models. To improve these results, an atmospheric CO profile would have to be known for measured CO densities; this cannot be assumed to be obtainable. The errors for the temperature model 2 are less drastic than those of model 4 which has an inversion layer. The latter errors are extremely large for the 4.6 μ band.

7.1.4 <u>Temperature Profile Effects</u>: - Calculations have been made for temperature models 1, 2, 3, and 4 (Table 7.1.3 and Figure 7.1.6) using the 0.1 ppm CO model. The calculations shown in Figures 7.1.4 and 7.1.5 were made for the R7, P1, P8, and P26 lines of the fundamental band and the R7, P1, P8, and P26 lines of the overtone band, using CO model 1. The results for this are shown in Table 7.1.5. The tabulated results show a great dependence on the atmospheric temperature model for the 4.6 μ band and little dependency for the 2.3 μ band. The graphical data of Figures 7.1.4 and 7.1.5

TABLE 7.1.1 EFFECT OF CO PROFILE ON ABSORPTION

FUNDAMENTAL (4.6µ)

CO MODEL	$\frac{n_{\rm CO}(\rm cm^{-2})}{1}$	R7	P1	P8	P26
STANDARD	2.15 (18)	. 2002	. 0810	. 1700 [.]	.00104
LOW ALTITUDE SOURCE	5.21 (19)	. 6620	. 2974	. 5695	.0167
LOW CO	2.15 (17)	. 0439	. 0119	.0350	.000107
HIGH ALTITUDE SINK	2.09 (18)	.2006	. 0807	. 1703	.00102
LOW ALTITUDE SINK	1.37 (18)	.1580	. 0642	. 1335	.000614
LOW ALTITUDE SINK (3 km)	1.93 (18)	.1963	.0795	.1666	.000965

OVERTONE (2.3μ)

CO MODEL	$\frac{n_{CO}(cm^{-2})}{2}$	R7	P1	P8	P26
STANDARD	2.15 (18)	.00647	. 00144	. 00462	. 0000098
LOW ALTITUDE SOURCE	5.21 (19)	. 1226	.0299	.0953	. 000431
LOW CO	2.15 (17)	.000662	.000146	.000471	. 0000011
HIGH ALTITUDE SINK	2.09 (18)	. 00631	.00140	.00451	. 0000097
LOW ALTITÜDE SINK (9 km)	1.37 (18)	.00418	.00095	.00292	.0000037
LOW ALTITUDE SINK (3 km)	1.93 (18)	.00582	.00130	.00413	.0000068

• TABLE 7.1.2 EFFECT OF CO COLUMN DENSITY ON FRACTIONAL NET ABSORPTION

ⁿ CO ^(cm⁻²)	R7	Pl	P8	P26
2.15 (17)	.0439	.0119	. 0350	.000107
4.3 (17)	.0741	.0223	.0604	.00020
8.6 (17)	.1174	.0405	.0978	.000410
1.72 (18)	.1769	. 0692	.1496	.000820
2.15 (18)	. 2002	.0810	.1710	.00104
3.44 (18)	.2585	.1108	. 2205	.00163
6.88 (18)	. 3714	.1683	.3183	.00322
1.37 (19)	. 5292	.2470	. 4545	. 00629

FUNDAMENTAL (4.6 µ)

OVERTONE (2.3μ)

ⁿ CO ^(cm⁻²)	R7	Pl	P8	P26
2.15 (17)	. 000662	.000146	.000471	. 0000011
4.3 (17)	.00131	.000286	.000926	.0000015
8.6 (17)	.00260	.000569	.00185	. 0000032
1.72 (18)	.00518	.00115	.00369	.0000071
2.15 (18)	. 00647	.00144	.00462	.0000099
3.44 (18)	. 0102	.00228	.00729	.000014
6.88 (18)	.0197	.00455	.0142	. 000030
1.37 (19)	. 0370	.00895	.0272	.000059

TABLE 7.1.3 (EFFECT OF CO PROFILES ON DERIVEDCO CONCENTRATIONS (% DEVIATION)

FUNDAMENTAL (4.6µ)

CO MODEL	$n_{\rm CO}^{\rm (cm^{-2})}$	R7	Pl	P8	P26
HIGH ALTITUDE SINK	2.09 (18)	0.2	0.0	8.3	2.5
LOW ALTITUDE SINK (9 km)	1.37 (18)	14.6	10.5	18.0	4.9
LCW ALTITUDE SINK (3 km)	1.93 (18)	8.1	2.7	12.7	1.0

OVERTONE (2.3μ)

	service and provide the service of t		. ,	
CO MODEL	$n_{\rm CO}(\rm cm^{-2})$	R7	Pl	P8
•				
HIGH ALTITUDE SINK	2.09 (18)	3.5	4.5	3.5
LOW ALTITUDE SINK (9 km)	1.37 (18)	6.1	6.1	6.1
LOW ALTITUDE SINK (3 km)	1.93 (18)	2.7	2.7	2.7

TABLE 7.1'.4EFFECT OF PROFILES ON DERIVED(hCO CONCENTRATIONS - TEMPERA-TURE INVERSION (% DEVIATION)

FUNDAMENTAL (4.6 µ)

 CO MODEL
 n_{CO}(cm⁻²)
 R7
 P1
 P8
 P26

 LOW ALTITUDE SINK (9 km)
 1.37 (18)
 13.3
 10.4
 17.0
 0.04

 LOW ALTITUDE SINK (3 km)
 1.93 (18)
 0.9
 29.5
 32.6
 35.2

OVERTONE (2.3μ)

 CO MODEL
 n_{CO}(cm⁻²)
 R7
 P1
 P8

 LOW ALTITUDE SINK (9 km)
 1.37 (18)
 7.4
 7.4
 7.4

 LOW ALTITUDE SINK (3 km)
 1.93 (18)
 3.6
 4.7
 2.6

and a start of the second s Second second

TABLE 7.1.5EFFECT OF TEMPERATUREPROFILE ON ABSORPTION

. . . .

<u>4.6μ</u>	R7	Pl		P26
LOW TEMPERATURE	. 1613	.0677	. 1328	.000489
NORMAL TEMPERATURE	. 2002	. 0810	. 1700	.00104
HIGH TEMPERATURE	. 1942	. 0772	. 1662	.00134
INVERSION LAYER	. 1270	. 0521	. 1063	.000433

<u>2.3 µ</u>

LOW TEMPERATURE	.00660	.00152	.00462	.0000062
NORMAL TEMPERATURE	. 00647	.00144	.00462	.0000098
HIGH TEMPERATURE	. 00637	.00140	.00461	.000014
INVERSION LAYER	.00639	.00140	. 00461	.000013

show the contribution of various altitudes to the net absorption. The 2.3 μ band shows absorption as a function of altitude to be as would be expected whereas the 4.6 μ band shows much less absorption below about 5 km (and, in fact, a significant net emission in some regions) which is an important region for CO sink studies.

7.1.5 <u>Ground Temperature Effects</u>: - The calculations described above included a ground temperature of each model at 0 km. Calculations have also been made for a different ground temperature. The following cases were carried out.

Ground	Atm. T. Model	T Model Atm
288.2	2	288.2
288.2	. 1	257.3
288.2	3	302.6
288.2	4	283.2
273.2	2	288.2
284.2	2	288.2
287.2	2	288.2
289.2	2	288.2
291.2	2	288.2
308.2	2	288.2

The results of these calculations are shown in Tables 7.1.6 and 7.1.7 and in Figure 7.1.8. Drastic effects are seen for the fundamental band (4.6μ) and negligible effects are seen for 2.3μ . From Figure 7.1.8 for the R7 line of the fundamental band it can be seen that an underestimate of the ground emission by 14% (as would be caused by an underestimate of the ground temperature by 4°) causes a 12% overestimate in the CO density while a 12% over-

TABLE 7.1.6 EFFECT OF GROUND TEMPERATURE

* ON ABSORPTION COMPANY

an an tha an tha an tha an tha

FUNDAMENTAL (4.6μ)

		R7	Pl	P8	P26
LOW TEMPERATURE	257.3	. 1613	.0677	. 1328	.000489
	288.2	. 2500	. 1030	. 2117	.00104
	• •	•. ••	•	· .	•
HIGH TEMPERATURE	302.6	. 1942	. 0772	. 1662	.00134
	288.2	. 1342	.0550	. 1128	.00415
	283.2	. 1270	. 0521	.1063	.000433
INVERSION LAYER	288.2	. 1540	.0622	. 1302	.000793
	OVERTON	<u>ΙΕ</u> (2.3μ)		

R7 $\mathbf{P1}$ **P**8 P26 11 · · . 1. 10 Mil 257.3 .00660 .00152 .00462 .0000061 LOW TEMPERATURE 288.2 . 00657 .00150 .00459 .0000053 302.6 . 00637 .00140 .00461 .0000137 HIGH TEMPERATURE 288.2 .00634 .00138 .00457 .0000122 .00140 283.2 .00639 .00461 .0000128 INVERSION LAYER 288.2 .00635 .00139 .00458 .0000144

TABLE 7.1.7EFFECT OF GROUND TEMPERATUREON APPARENT ABSORPTIONOF SOURCE RADIATION

FUNDAMENTAL (4.6 µ) R7 Τg 273.2 .1337 · · · . 1866 284.2 287.2 .1971 : . 288.2 . 2002 289.2 .2033 i .2091 291.2 308.2 .2428

• • •

. 2

estimate of the earth emission (a three degree overestimate of the ground temperature) would cause about an 8% underestimate in CO density. These calculations all used the same temperature profile (2) and the same CO profile (1), varying the earth emission. When searching for sinks which cause changes in CO density of the order of 10% such errors are larger than can be tolerated. Other lines of the fundamental show similar effects. The curve for the R7 and other lines of the overtone would lie on the abscissa showing that there is no ground intensity effect on this band.

7.1.6 <u>Emissivity Effects</u>: - In calculations described above, an emissivity of 1 was used. Since certain ground areas have appreciably different emissivities, calculations have been made using emissivity values of 0.95, 0.9, 0.8, and 0.7 for the 4.6 μ band and a value of 0.7 for the 2.3 μ band, with each of the four temperature models.

Drastic effects in the fractional net apparent absorption are seen by the data in Table 7.1.8 at 4.6 μ while those at 2.3 μ are negligible. Figure 7.1.8 shows that a change (ΔI_{ν}) in ground emissivity from 1 to .9 to .8 gives changes in measured CO density of 8% and 18%, respectively. CO density is obtained from intensity changes by use of data in Table 7.1.2.

It can be seen that atmosphere and ground temperatures and ground emissivities would have to be very accurately measured to be able to interpret any CO data obtained by remote measurements at 4.6 μ . It appears that the best expected temperature data will have an accuracy of $\pm 2 K$ (Houghton and Smith, 1970; Abel, et al, 1970a; Abel, et al, 1970b). These data would not be expected to be this accurate if an inversion layer exists. Even $\pm 2 K$ would present substantial effects at 4.6 μ . Further, the ground temperature and emissivity would have to be measured accurately and would have to be known to be that of 4.6 μ , since the emissivity may vary with wavelength.

,	FOR R7 LI	NES		2 F 1	
· * . ,		、 ·	- ب	, · · .	
			· · ·		
1				· ·	· ·
TEM	PERATURE MODEL	E	4.6 μ	2.3 µ	
			161	00660	t. t.
		0 95	155	.00000	· · .
	LOW	0.9	149		
	TEMPERATURE	0.8	. 133	•	
· · ·	en 🐐 partie attende y	0.7	.113	.00657	
		۰,			
		· ·			
the second second		1	.200	.00647	
	NORMAL	0.95	. 196		
· .	TEMPERATURE	0.9	. 191		
		0.8	.180	••••••	•
anto de la		0.7	.165	.00644	
			· · ·		
			2.0.0	• .	
	NORMAL	1	. 200		
	$T_{\rm emperator} = 299.2$	0.9	. 191		
	1g = 200.2	U . (. 165		
			•		
		1	194	00637	
		0. 95	. 190	.00057	
	HIGH	0.9	. 184	·.	
• .	TEMPERATURE	0.8	. 172		•
· ·		0.7	. 156	.00634	
		1	.127	.00639	
1	INVERSION	0.95	.119	÷	• .
	LAYER	0.9	.110		
		0.8	:0886	· · · ·	,
		0.7	.0710	.00635	۰ ^۰
		•			

7.1.7 Effects of Other Parameters: - Calculations made to test the effect of reflectivity show this effect to be small for the 4.6 μ band and negligible for the 2.3 μ band. These data are given in Table 7.1.9. The effect is due to a change in source intensity with no accompanying change in atmospheric emission.

Calculations made to show the effect of Lorentz half-width on absorption. Significant effects were found for some conditions for the 4.6 μ band while the effects on the 2.3 μ band were small. Results are shown in Tables 7.1.10 and 7.1.11. This shows that the value of σ_{12}^2 in Equation 4.21 must be known to accuracies of the order of 10% for the fundamental, while for the overtone an accuracy of 50% is sufficient.

Calculations to test the effect of bandpass (the distance from the center of the line over which the absorption is integrated) were made. As expected this has an appreciable effect if too small a bandpass is taken. Data for four lines of the 4.6 and 2.3 μ bands are given in Tables 7.1.12 and 7.1.13 for bandpasses ($\nu = \nu_0$) of 20, 2, and 0.1 cm⁻¹.

7.2. Expansion of Overtone and Fundamental Bands

Using the data given in the preceeding tables, a summary may be made of the two general wavelength regions, the 2.3 μ band of the first overtone of CO and the 4.6 μ band of the fundamental of CO. All other CO bands have been found to be impractical (Bortner and Kummler, 1971).

The absorption of the 2.3 μ radiation has been found to be sufficient to produce the required sensitivities and ranges using the correlation interferometer technique for optical thicknesses appropriate to both the mapping and the limb experiments, considering nominal ambient atmospheric concentrations and reasonable fractions thereof.

The absorption of the 4.6 μ radiation is, of course, sufficient for the experiments. One difficulty arises at the higher optical thicknesses ap-

TABLE 7.1.9EFFECT OF REFLECTIVITY
ON FRACTIONAL NET
APPARENT ABSORPTION

	P	R7
FUNDAMENTAL (4.6⊔)	0.4	.2058
	0.1	.2002
	0.02	.1986
OVERTONE (2.3µ)	0.4	.00651
	0.1	.00647
	0.02	.00655

TABLE 7.1.10 EFFECT OF LORENT Z HALF-WIDTH ON APPARENT ABSORPTION OF FUNDAMENTAL (4.6 μ)

		R7	Pl	P8	P26
STANDARD CO	.06	.2002	.0810	.1700	.0010
	.09	.2387	•0905	. 2012	.0010
LOW ALTITUDE	.06	.6620	.2974	. 5695	.0167
SOURCE	.09	. 8052	.3555	.6921	.0178
LOW CO	.06	.0439	.0119	.0350	.0001
	.09	.0470	.0121	.0370	.0001
HIGH ALTITUDE	.06	.2006	.0807	.1703	.0010
SINK	.09	.2390	.0898	.2014	.0010

TABLE 7.1.11 EFFECT OF LORENTZ HALF-WIDTH ON ABSORPTION OVERTONE (2.3μ)

	·	R7	Pl	P8	P26
STANDARD CO	.06	.00647	.00144	.00462	.0000098
•	.09	.00647	.00142	.00461	.0000085
LOW ALTITUDE SOURCE	.06	.1226	.0299	.0953	.000431
	.09	.1312	.0303	.1005	.000420
LOW CO	.06	.000662	.000146	.000471	.0000011
	.09	.000649	.000140	.000457	.0000006
HIGH ALTITUDE SINK	.06	.00631	.00140	.00451	.0000097
	.09	.00631	.00139	.00450	.0000083

	· · ·	· ·		· · · · ·		
	FUN	NDAMENTAL (4.6µ)				
		R7	P 1	P8	P26	
	20	. 1613	.0677	. 1328	.00049	
LOW TEMPERATURE	2	. 1593	. 0670	. 1314	.00047	
	0.1	. 1086	.0142	. 0951	.00042	
				·		
	20	. 2002	.0810	.1700	.00104	
NORMAL TEMPERATURE	2	. 1979	. 0804	. 1682	.00102	
	0.1	.1286	.0635	.1155	.00093	
· · · ·		, •				
· .	20	. 1942	. 0772	. 1662	.00134	
HIGH TEMPERATURE	2	. 1921	.0766	.1646	.00133	
	0.1	. 1264	.0610	.1138	.00120	
•						
· .	20	. 1270	.0521	. 1063	.00043	
INVERSION LAYER	2	. 1260	.0518	. 1056	.00041	
	0.1	.0977	.0450	.0852	.00040	

TABLE 7.1.12EFFECT OF BANDPASS ON FRACTIONAL
NET APPARENT ABSORPTION

TABLE 7.1.13 EFFECT OF BANDPASS ON FRACTIONAL NET APPARENT ABSORPTION

OVERTONE $(2.3 \mu)^{-1}$

٩	Ē.		R7	Pl	P8	P26
	нт	20	.00660	.00152	.00462	.0000062
LOW TEMPERAI	URE	2	.00656	.00150	.00459	.0000053
j ĝigenakaŭ ser s	1 4 4	0.1	.00544	.00125	.00383	.0000053
a Barra		20 <i>1.4</i>	. 00647	.00144	.00462	.0000098
NORMAL TEMPERAI	URE	2	.00643	.00143	.00459	.0000089
	· · ·	0.1 g %	. 00531	.00118	.00381	.0000087
f to say		20	.00637	.00140	.00461	.000014
HIGH TEMPERAT	URE	2	.00633	.00138	. 00457	.000012
	* *	0.1	.00521	.00114	. 00378	.000012
		20	.00639	.00140	.00461	.000013
INVERSION LAYER		2	.00635	.00139	.00458	.000012
	4	0.1	.00523	.00115	.00378	.000011

propriate to the lower altitude limb measurements. Under such conditions the absorption is so strong that it is well off the linear portion of the curveof-growth with ambient atmospheric CO concentrations resulting in a loss of sensitivity in the CO measurements.

The data show that there is considerably more error in measurement at 4.6 μ of the CO column density in the important case of a low altitude sink than for the same measurement at 2.3 μ . Since a major objective of the experiment is to search for a potential low altitude sink, this indicates a definite advantage for 2.3 μ . In the case of a temperature inversion drastic errors are found in the case of a low altitude sink. Since temperature inversions are common the 2.3 μ has another distinct advantage. In general it can be said that the 4.6 μ is greatly affected by the temperature profile. This is as expected due to contribution of atmospheric emission. The 2.3 μ radiation is essentially unaffected, as is desired. Similarly the ground temperature and the ground emissivity, have larger effects (not desired) on the CO absorption signal at 4.6 μ but not at 2.3 μ .

The calculations show that, assuming measurement of CO absorption can be made on the 2.3 μ band, that band is much to be preferred over the 4.6 μ band for data interpretation. The advantages are:

Measurements of temperature of the atmosphere, ground temperature, and emissivity are not needed for 2.3 μ but accurate values are required for 4.6 μ .

The signal at 2.3 μ is affected significantly, as desired by the CO concentration in the lowest few kilometers in the atmosphere, but not significantly at 4.6 μ and in a manner very difficult to interpret.

128

1.

2.

The measurements at 2.3 μ are readily interpreted directly in terms of CO densities whereas those at 4.6 μ must be interpreted by use of an atmospheric model calculation at each point, assuming the required atmospheric data are available for the latter.

7.3 Comparative Calculations

3.

Calculations given above of predicted 4.6 μ CO band transmission showed large effects caused by inversion layers, ground temperatures and emissivities, and little effect of low-altitude sinks. It was suggested to us that other calculations (Ludwig, 1970) did not show effects of such magnitude. Further calculations were made to make a reasonably direct comparison of the computational methods. Two specific comparisons were carried out. One calculation was that of the transmission of a single line, the P19 line. The second was for several lines to be compared with the results of a band model calculation.

The single-line calculation was carried out for four temperature models, shown in Table 2.1.4 as models 5, 6, 7, and 8, and a 0.2 ppm CO model. It is not known what exact temperature model was used in the calculation to which the present ones are being compared, but it is believed that it is in the range covered by these models; the authors reporting (Ludwig, 1970, p22) those calculations merely state that they used a "representative temperature model". The results of the calculations are shown in Figure 7.3.1, which plots the transmission over the line profile (The circles showing the results of Ludwig (1970), the remaining symbols being our results for the four models.). It can be seen that there is excellent agreement between the two calculations. The only visible difference is at the line

1´30

center where the present calculations yield a 19 to 20% transmission while the calculations being compared show a 21% transmission. This small difference may be due to differences in temperature models. From .002 cm⁻¹ from the center outward, the two calculations show no appreciable difference. The integrated absorption over the line would certainly show no meaningful variation.

The other comparison which is informative is one showing the effects of a temperature inversion and of ground temperature variation. Data (Ludwig, 1970, p9) are given as models 9, 10, and 11 in Table 7.3.1. Model 10 shows the effect of a ground temperature different from the lowest atmospheric temperature, the results (Ludwig, 1970) showing a calculated signal change variation over the band of 50 and 68% for .25 and .025 ppm CO atmospheres, respectively. These can be compared with previously presented results, Table 7.1.7, of our calculations which show a 33% decrease in absorption for a single line (R7) of the same band. Model 11 shows the effect of a temperature inversion layer giving variations of signal change over the band of 42 and 55% for the .25 and .025 ppm CO atmospheres, respectively (Ludwig, 1970). These may be compared with our results, Table 7.1.5, showing changes of 37, 36, 37, and 76% for the R7, P1, P8, and P26 lines of that band, respectively.

For one case of interest, a low altitude sink model, Table 7.1.4., no data were given on the other calculations (Ludwig, 1970) to compare with ours.

It can also be noted that a graphical representation of the effect of ground temperature differences on CO calculations, Table 7.1.8., can be roughly compared to those of Ludwig (1970, p16) and seen to give reasonable agreement.

It can be concluded that the two programs give the same results, at least as nearly as we can determine with available information.

TABLE 7.3.1TEMPERATURE MODELS AND RESULTSFOR COMPARISON BAND CALCULATIONS

and the second	•			an an an 111 an t-42 at 4
• • • • • • • • • • • • • • • • • • •				
Model	<u>9</u>	10	<u>-11</u>	Reference
Signal Change				e e grafie e e
.25 ppm CO	7.14	3.59	4.1.6	
.025 ppm CO	1.35	0.43	0.61	a
Relative Signal Change	· · · ·		· . · · ·	
.25 ppm CO	1	0.50	0.58	a
•1 ppm CO	. 1	0.33	0.46	b
.025 ppm CO	1	0.32	0.45	a

· · · ·

a) Ludwig (1970)

b) This work (Tables 7.1.7 and 7.1.8)

7.4 Limb Inversion Analysis

The limb experiment has been analyzed for the effects of instrumental error on the inversion of the instrument values of total CO in the path to yield CO concentration vs altitude. The calculations have been performed for the three CO sink models to which the limb experiment is relevant. These are the constant mixing ratio model with 0.1 ppm at ground level, the upper atmosphere sink, and the low-level sink with maximum concentration at 9 km. The error sources, which have been introduced, include a random error with standard deviation of 2%, 5%, or 10% and systematic errors of $\pm 2\%$, $\pm 5\%$, or $\pm 10\%$.

For these calculations the atmosphere below an altitude, h_1 , was divided into n spherical shells (j = 1,2,--n), a distance, Δh , apart (Figure 7.4.1). The atmospheric properties within a shell are assumed to be constant. The altitude of the first shell is given by

$$h_1 = n \Delta h$$
,

and the altitude of the jth shell is

$$h_j = h_l - (j-1) \Delta h$$

The ith ray from the sun to the instrument passes horizontally through the lower edge of the ith shell (j = i). The height of this ray is

$$h_{ii} = h_i - \Delta h$$

The rays passing through the shells can be divided into lengths, a_{ij} , over which the atmospheric properties are assumed to be constant. The ongths a_{ij} are given by:

$$a_{ij} = \left\{ (r + h_j)^2 - (r + h_{ii})^2 \right\}^{1/2}$$
 if $i = j$

$$a_{ij} = \left\{ (r + h_j)^2 - (r + h_{ii})^2 \right\}^{1/2}$$

$$- \sum_{k=j+1}^{k=i} a_{ik}$$
 if $i \pm j$

A square matrix $(n \times n)$ of the elements a_{ij} can be formed.

In a shell j, the average concentration of CO is given by:

 $c_j = c(h_j - 1/2 \Delta h)$

 $\left\{ u_{i} \right\} = 2\left\{ c_{j} \right\} \begin{bmatrix} a_{ij} \end{bmatrix}$

The integrated amount of gas in a horizontal path is given by:

where

[a_ij] = square matrix of path length elements
within the shells.

The calculations were carried out with a 40 shell atmospheric model with a 2 km distance between shells. The matrix elements u_i were calculated for the three CO models in Figure 7, 4.2 (Models 1, 4, and 5 of Figure 2.1.1 and Table 2.1.1). The correlation interferometer gives an instrument output which is proportional to the total CO in the path, or u_i . In this case the known parameters will be u as a function of altitude, and the

a, elements will be known. A set of equations can then be set up to solve ij for the concentrations c.

$$\left\{c_{i}\right\} = 1/2\left\{u_{j}\right\} \left[a_{ij}\right]^{-1}$$

where $\begin{bmatrix} a \\ ij \end{bmatrix}^{-1}$ is the inverted matrix $\begin{bmatrix} a \\ ij \end{bmatrix}$.

To test for the effects of random or systematic instrument errors, the values of u were computed for each of the three concentration models from the relation $\{u_i\} = 2\{c_j\} [a_{ij}]$. These values are shown in Figure 7.4.3. The computed values were then changed by fixed amounts

- a) random error with 2%, 5%, or 10% standard deviation.
- b) systematic error of $\pm 2\%$, $\pm 5\%$, or $\pm 10\%$.

For each of these types of errors, the concentration profile was calculated and compared with the exact profile used as the original input. The results of the calculations are shown in Figures 7.4.4 and 7.4.5 and in Tables 7.4.1, 7.4.2, and 7.4.3.

Figure 7.4.4 shows the result of imposing random errors with standard deviations of 5% and 10% on the measurements of u. With measurement errors of this magnitude the computations show that it is possible to distinguish the carbon monoxide constant mixing ratio concentration profile from the concentration profile which assumes a high altitude sink. The computations with a 2% random error show the same result with a much smaller error. These data were not plotted to avoid cluttering the graph with too many points. The data are tabulated in Tables 7.4.1, 7.4.2, and 7.4.3 for the 2% random error calculations.

Figure 7.4.5 shows the result of performing the data inversion to obtain the concentration profile, when the instrument measurement of the

138

•

Computed Atmospheric CO Concentrations with Simulated Instrument Error

TABLE 7.4.1LIMB TRANSMISSION ANALYSIS FOR
STANDARD CO CONCENTRATION MODEL

		No Error	2% Random	+5% Constant
Altitudo	Shell	Mean CO Conc.	Mean CO Conc.	Mean CO Conc.
(km)	No.	$(Part./cm^3)$	$(Part./cm^3)$	$(Part, / cm^3)$
,			•	
78.0 .	43 • 3	4.835E+07	4•886E+07	5.129E+07
76.3	39•0	6.673E+97	6•606E+07	7.0075+07
74.0	38•0	9•014E+07	9•878E+07	9•465E+07
72.3	37.0	1.203E+08	1•105E+08	1 • 2 63 E+ 08
70.9	36.0	1 • 590 E+08	1 • 626E+08	1•670E+38
68•0	35.3	2•079E+08	2.017E+08	2+133E+98
66.7	34•9	2•695E+08	2+655E+08	2•830E+08
64.0	33•9	3•465E+38	3•423E+08	3+638E+08
62•3	32•0	Å• 420 E+08	4+253E+08	4•641 E+98
63.9	31•0	5• 620 E+08	6+043E+08	5•971E+08
58.0	39.9	7+195E+08	7.108E+08	7+5548+08
56.0	29.0	9•172E+08	9•382E+38	9•631E+08
54.3	28.0	1•166E+09	1 • 1 46E+09	1.2846+09
52•Ø	27.0	1 • 477E+09	1+5368+09	1 • 551 E+09
50.0	56.0	1 • 887E+39	1 • 796E+09	1•982E+09
48.9	25.0	2 · 41 7 E+09	2•383E+09	2•538E+09
46.3	24.0	3 • 1 1 1 E+ 39	3.051E+09	3•266E+09
44.3	23•0	4•089E+39	4•031E+09	4-293E+09
42.0	22.0	5• 402 E+09	5.176E+09	5•673E+09
49 • 9	21.0	7•189E+39	7.765E+09	7•548E+09
38•0	20.0	9•620E+09	1.012E+10	1•310E+10
36.3	19.0	1.296E+10	1.294E+10	1 • 361 E+ 10
34.0	18.0	1 • 7 60 E+10	1 • 809 E+10	1 • 848 E+19
32•0	17.0	2 • 40 5E+10	2•266E+10	2 • 52 5E+10
.30•0	16.0	3•283E+19	3+317E+10	3•447E+10
28.0	15.3	4•466E+10	4-292E+18	4.690 E+10
26.0	14.0	6.094E+10	6-380E+10	6+399E+10
24.3	13.0	8+335E+10	8.282E+10	8•752E+10
22.0	12.0	1•144E+11	1 • 1 42 E+11	1 • 201 E+11
23.9	11.0	1 • 574E+11	1•579E+11	1 • 6 53 E+11
18.0	13.0	2•163E+11	2+334E+11	2•271 E+11
16.0	9.0	2 • 9 58 E+11	2.874E+11	3-196E+11
14.0	8.9	4•050E+11	4.192E+11	4 • 2 52 E+11
12.0	7.3	5+ 542 E+11	5•706E+11	5+819E+11
10.0	6•0	7•556E+11	7•687E+11	7•955E+11
8•3	5.0	9•711E+11	9.867E+11	1.020E+12
6•3	4.0	1.227E+12	1+205E+12	1.288E+12
4.2	3•0	1+531E+12	1 • 522 E+12	1.608E+12
5•0	2•3	1 • 891 E+12	1.902E+12	1.986E+12
3.	1 • 3	2+312E+13	2 · 414E+12	2+428E+12

ø

÷

		CO CONCE	CR ATMOSPHERE S	SINK L
an Farana (1977) an an Araba (1977)	·*. ·	a tha e tha a chuir a c		
al Albertan an an Arban Artan	وب بر معرف بوب بر محموظ	No Error	2% Random	+ 5% Constant
Altitude	Shell	Mean CO Conc.	Mean CO Conc.	Mean CO Conc.
(km)	No.	$(Part./cm^3)$	$(Part./cm^3)$	$(Part./cm^3)$
78.0	43.3	4.885E+06	4.951E+06	5.129E+06
76.0	39.0	6+673E+06	6.449E+36	7.007E+06
7.4.3	38.0	9.014E+06	9.025E+06	9-465E±06
72.0	37.9	1.293E+07	1.254F+07	1.263E+07
70.0	36•3	1 • 590 E+07	1 • 591 E+07	1 • 670 E+07
68•3	35.0	2+079E+07	2.125E+07	2+183E+37
66.0	34.0	2.695E+07	2.803E+07	2.839E+07
64.0	33•0	3.465E+07	3.254E+07	3•638E+07
62.0	32•0	4.420E+07	4.623E+07	4.641 E+07
63.0	31.0	5•620E+07	5•591 E+Ø7	5• 901 E+07
58•0	30.9	7.195E+07	6•857E+07	7.554E+37
56.0	29.3	9.172E+07	8•751E+07	9•631E+07
54.0	28•0	1.166E+98	1 • 225E+ 08	1.2246+08
52.0	27.0	1.•477E+08	1.4965+98	1. 551 6708
50 • 0	26•0	1+8816+08	1. 7681 108	1.7022.00
48•Ø	25•0	2•417E+08	2•387E+08	2•538E+08
46.0	24.0	3-111E+08	3•098E+08.	3•266L+98
44.0	23.0	4.089E+08	3+993t+08	4.2935-00
42.0	22.0	5. 199ET08	5. 151 ET 110	8-821 F+08
40•0	21.0	0.4010.00	0.0100.00	1 0005:00
36.0	19.7	1.84915+30	1 • 208E+09	1.3921+09
34.0	18.9	2.932F+09	2.0315+03	3.9768+09
32.0	17.0	4.651 F+09	4.734F+39	4.884F+09
30.0	16.3	7•598E+09	7•715E+39	7•978E+09
28•0	15.0	1.290F+10	1.0935+13	1 2545+17
26.0	14.0	2•319E+10	2.2638+19	2.435F+10
24.0	13.0	4.162E+10	4.227E+10	4+373E+10
22.3	12.0	7 • 450 E+10	7.220E+10	7.322E+19
20.0	11.0	1.320E+11	1.308E+11	1•386E+11
18•0	10.3	2•163E+11	2•163E+11	2.271F+11
16.0	9•3	2.958E+11	2•871E+11	3.106E+11
14.0	8•0	4.049E+11	4.173E+11	4+252E+11
12•0	7.0	5•543E+11	5•271E+11	5 • 820 E+11
13•0	6•0	7•586E+11	7.982E+11	7+965E+11
8•0	5•0	9•713E+11	9•347E+11	1 • 020 E+12 📉
6•3	4.0	1.2275+12	1 • 1 72E+12	1.288E+12
4• 0	3.0	1+531E+12	1 • 521 E+12	1 • 608E+12
2•0 ÷	2.0	1 • 889 E+12	1.891E+12	1.984E+12
	1•0	2+313E+12	2.212E+12	2•426E+12
•				

TABLE 7.4.3LIMB TRANSMISSION ANALYSIS FOR LOWLEVEL SINK CO CONCENTRATION MODEL

		No Error	2% Random	+ 5% Constant		
Altitude	Shell	Mean CO Conc.	Mean CO Conc.	Mean CO Conc.		
(km)	No.	$(Part / cm^3)$	(Part /m ³)	(Patt / cm ³)		
• • • •	• •	(Faite / chi /	(L'ai to / chi j			
78.3	43.0	4.885F+07	4.886E+37	5-129F+37		
76.3	39.0	6.673F+07	6.696E+97	7.0075+07		
74-0	39.0	9-0105-07	9.8785+07	9. 4655+07		
79.0	37.0	1.2035+08	1.1058+08	1.2635+08		
70.0	31.0	1.590 5+08	1.6265+08	1.6735+08		
10.0	30.0	1.5782.00		1.010.00		
68•9	35•0	2•Ø79E+08	2.0171+08	2•183E+08		
66.3	34.0	2.695E+08	2.655£+08	S+830E+08		
64.9	33•0	3•465E+08	3+423E+08	3•638E+08		
62•0	32•0	4• 420 E+08	4-250 E+08	4+ 641 E+08		
60 • 3	31.0	5• 620 E+08	6-040E+38	5•901E+08		
58•0	30.0	7.195E+08	7.108E+08	7+5548+08		
56.0	29.0	9 • 1 72 E+08	9•382E+08	9•631E+08		
54.0	28.9	1.166E+09	1•146E+09	1 • 224E+ 09		
52.0	27.0	1 · 477E+09	1 • 536E+89	1 • 551 E+39		
59 . 0	26.0	1.887E+09	1 • 796E+09	1 • 982 E+ 09		
A8-0	25.0	2 · 41 7 F+ 99	2.383E+09	2.538F+79		
46.7	24.0	3.111F+09	3.051E+09	3.266F+09		
40-0	23.0	4.089F+09	4-231 E+09	4.243F+39		
44.0	22.0	5.402F+09	5-176E+09	5.673F+Ø9		
47.0	21.0	7•189E+09	7.765E+09	7.548E+09		
38.0	20.0	9.400 5+00	1.0105.10	1 3135.10		
36.0	19.0	1,9945+1/3	1.9945+10	1.0101-10		
34.3	19.0	1-7405+10	1 2205+10	1.3611+10		
32.0	10.0	2.4055410	2.2665+10	1.8486+10		
32.0	17.0	2.0925-10	2+2001+10	2.525E+19		
30.0	16.0	3+2032+10	3+3172+10	3-4476+10		
28.0	15•0	4•466E+10	4•292E+10	4+699E+13		
26.0	14.0	6+094E+10	6•080E+10	6+399E+10		
24.0	13•0	8+335E+10	8-282E+10	8+752E+10		
55•0	15.3	1•144E+11	1 • 1 42 E+ 1 1	1 • 201 E+11		
20.0	11•0	1•574E+11	1 • 579 E+11	1+653E+11		
18.0	13.9	2-163E+11	2+334E+11	2+271E+11		
16.0	9.0	2+958E+11	2-874E+11	3 • 10 5E+11		
14.0	8•0	4+050E+11	4.192E+11	4 • 2 52 E+11		
12.0	7.0	5• 542 E+11	5.706E+11	5+819E+11		
10.0	6•3	7•586E+11	7•687E+11	7 • 9 65E+11		
8•0	5.0	9•711E+11	9+867E+11	1.3035.10		
6.0	4.3	9+839E+11	9 · 623E+11	1-3225+12		
4.0	3.0	9+189E+11	9.3945+11	1. JJJCT 12		
2•0	2.0	7• 559 E+11	7.611E+11	7 0 0 7 27 1 1 7, 0 7 7 2 1 1		
3•	1.0	4.621 8+11	5+051E+11	7 - 7 3 1 CT 1 1 4. 8 50 FA 1 1		
				47 O J& C.T.I.I		

total CO in the path is high or low by a fixed percentage. The effects of a systematic error of \pm 10% are shown in Figure 7.4.5. The computed concentration profile deviates from that computed with no systematic error by the same \pm 10% as is present in the instrument measurement of the total CO. Similarly, the computations with systematic errors of \pm 2% and \pm 5% yield calculated concentration profiles which are in error by \pm 2% and \pm 5%, respectively.

The computations indicate that instrumental errors of the order of 10% in the measurement of the total CO in the horizontal sight path through the atmosphere do not result in significantly larger errors in the computed CO concentration profile at high altitudes. While the measurement errors are more significant in the case where an inversion in the CO concentration profile occurs (i.e. the low-level sink), they do not invalidate the limb transmission experiment at the higher altitudes. The limb experiment was primarily intended for searching for an upper atmosphere sink, and in this case the effects of reasonable measurement errors are not of sufficient magnitude to permit the upper atmosphere sink profile to be mistaken for the standard constant mixing ratio CO profile.

7.5 Multi-line Model Calculations

7.5.1 <u>The Program</u>: - The first step in the theoretical determination of the feasability of using the correlation interferometric technique for the measurement of CO levels in the atmosphere is the computation of theoretical transmission spectra of the atmosphere in the wavelength regions of interest. Theoretical spectra were calculated by a fairly elaborate computer program, developed by GE. This program has been described in greater detail by Alyea and Liebling elsewhere (Bortner, Grenda, et al, 1971) and will be described only very briefly here. The computer program has the capability of calculating atmospheric transmission spectra for up to three atmospheric constitu-

ents, with a total of up to 150 absorption lines, for three different viewing geometries:

- Ground black-body radiation including atmospheric absorption and emission.
- 2. Solar radiation reflected from the ground including atmospheric absorption only.
- 3. Limb transmission of solar radiation including absorption and emission.

Based on input molecular and atmospheric properties, the Voight profile function, absorption and emission coefficients are computed as a function of altitude for all lines which contribute at a given frequency value. Effects of overlapping lines are considered up to ± 5 cm⁻¹. These coefficients are then integrated in accordance with the basic radiative transfer equation described in Section 4 to produce observed spectra.

Additional subroutines, patterned after Cooley (1965) and Gentleman (1966) then computes the Fourier transforms of the resultant spectra. These Fourier transforms which are closely related to interferograms form the data base for the theoretical feasibility study.

This computer program was used to generate a large number of theoretical spectra and transforms of CO in the presence of H₂O. Spectra were generated in the 2.3 μ spectral region (using geometry case 2) and in the 4.6 μ region (using geometry case 1). The regions covered were 4230 -4330 cm⁻¹ and 2100 - 2200 cm⁻¹, respectively. Spectra included combinations of CO models 1, 2, 3, and 6; H₂O models 1, 2, and 3; temperature models 1, 2, 3, and 4, as described in Section 2. Ground emissivity was varied in the 4.6 μ spectra, and albedo was varied in the 2.3 μ spectra. In all, 53 theoretical spectra and transforms were computed at 2.3 μ , and 19 at 4.6 μ . Although there are many additional combinations which would have

been desirable, extremely long running time of the program (about 10 - 15 minutes on a GE 635 or IBM 360) makes a full gamut of combinations prohibitively costly.

Following generation of these theoretical Fourier transforms, analyses were performed by use of a weighting function computer program. This program, patterned after a program furnished by Barringer Research[‡] is an implementation of the weighting function concept described in detail in Section 6.

The weighting function can be considered a correlation function which, when multiplied by the Fourier transform of a spectrum gives a measurement of the CO level. Inputs to the weighting function program consist of a basic set of several Fourier transforms of spectra generated from a constant amount of CO and various combinations of other variables, e.g. temperature profile, H_2O level, etc. One of these transforms is designated as the nominal case. One additional transform is input, designated the target case, which is identical to the nominal case with the exception of a variation in the CO level. The weighting function generated from these cases is then applied to other transforms which were not included in the basic set. It is this operation of generating weighting functions from one set of data and applying them to another set which determines the feasibility of the correlation operation.

The theoretical spectra Fourier transforms described above were used in various combinations as basic sets for the weighting function program. Two groups of studies were made, at 2.3 μ and 4.6 μ . The results of these studies are described below.

Calculations were made using the principles outlined in Sections 5 and 6. The intent of these calculations is to determine the sensitivity of the method in the determination of CO densities, the accuracy to be expected in

⁺ The program was written by G. Levy of BRL.

the measurements, the effects of various atmospheric parameters, the optimum wavelength region to be used, and in general, to establish the feasibility of the technique in obtaining the data needed to determine the CO sink.

While the theoretical feasibility studies will be necessary, the establishment of the feasibility will only be accomplished after the instrument is shown to be capable of measuring CO in the atmosphere. Thus, tests of the breadboard will be made on CO and atmospheric gases to see if CO can be measured in amounts similar to those in the atmosphere together with amounts of some interferents which, where possible, are similar to those of the atmosphere. This is not an attempt at simulation but an attempt to see if CO can be measured with the breadboard and to investigate the signal-to-noise ratio, under these conditions. Tests in urban polluted atmosphere will also be used to compare breadboard measurements with those of other methods.

7.5.2 Calculations: -

a state of the strategic state of the

7.5.2.1 Explanation of Calculations: - The results are presented in tables later. If must be remembered in examining the results that the object of this work is to find the CO sink. Thus, it is important to be able to see an effect produced by a rather small variation from normal CO column density, since, although at ground level the concentration may drop off by a large factor, the total column density may only have small drops, as little as about 10%. Further non-sink areas should not appear as sinks and the accuracy for very low CO column density may be poor, as long as it is good enough to show it to be less than the normal atmospheric amount. It must be emphasized that the most accurate measurements are needed at densities near those of a normal CO profile.

and the second second

Further the results should not be affected significantly by variations in atmospheric or ground properties, e.g. atmospheric temperature profile, temperature inversion layer, ground temperature, ground emissivity, reflectivity, and the shape of the CO profile.

147

+1 *

One of the objectives of this work is to establish the types of conditions of the runs to be used in determining the weighting functions. Thus we are looking for the case giving the best results in terms of the considerations noted above.

The calculated accuracy of the calculations are dependent on the conditions which were used for determining the weighting functions. The results which are presented in the following tables will show this. Each table, noted by a letter designating the case, gives the results for all interferograms, using a specified set of interferograms to determine the weighting functions and then using these weighting functions to determine the CO density in all the interferograms. The band (wavelength) is given together with the conditions for each run.

Tables 7.5.1 through 7.5.21 give the results. Each table gives the percentage difference of the calculated value from the actual amount of CO in the model. The three-right hand columns give data on this model, and are for all cases between the heavy lines. The eight CO model numbers are those of Tables 2.1.1 and Figure 2.1.1. The number in the far right column is the number by which the concentrations of the models (over the entire altitude range) are multiplied. The resulting total optical thickness in atmosphere-centimeters is noted. Five water models were used. Models W1, W2, and W3 correspond to water models 1, 2, and 3 of Table 2.1.2 and Figure 2.1.5; that noted as 4W1 is that where water concentrations are four times those of water model 1 at all altitudes; that noted as 1.5W2 is that where water concentrations are 1.5 times those of water model 2. The column headings note the four corresponding temperature models of Table 2.1.3 and Figure 2.1.6.

Each sheet presents the results using a specific set of runs to obtain the weighting functions and gives the accuracy of the calculated CO for each interferogram of either the 2.3 or 4.6 μ band as noted. The sets TABLE 7.5.1 CASE A

	•		;						
λ = 2.3	3μ	T ₁	т ₂	T ₃	^т 4	CO ATM - CM	CO MODEL	MULTI- PLIER	TIVE CO
1.5 4	W3 W2 W2 W1 W1	164.3 69.8 157.8 2.8	83. 8	295. 1 205. 3 177. 6 170. 2 69. 1		0.0162	3		0.1
1.5 4	W3 W2 W2 W1 W1	31.5 1.9	;	132. 9 80. 7 32. 1		0. 0324	3	2	0.2
1.5 4	W3 W2 W2 W1 W1	42. 7 -53. 6	22, 8	48. 8 52. 4*		0. 0486	3	3	0.3
1.5	W3 W2 W2 W1 W1	1.5		4.2 3.3 1.9		0. 1468	6		0.9
1.5 4	W3 W2 W2 W1 W1	0.0 0.0 -18.5 0.0	5.7 0.5	0.0 -3.6 0.0 5.4 0.0	0.3	0. 1618	. 1		1
1.5 4	W3 W2 W2 W1 W1	-4.0 -1.5		-11. 8 -7. 7 -3. 8		0. 2426	1	1, 5	1.5
1.5	W3 W2 W2 W1 W1	-39. 6 -34. 4		-55.1 -48.0 -40.6		4, 3376	2		27
1.5 4	W3 W2 W2 W1 W1	-41. 6 -36. 0		-56.2 -49.3 -42.1		4. 7696	2	1, 1	30

*1.5 W 1

•

TABLE 7.5.2 CASE B

	$\frac{1}{2} \geq \frac{1}{2} \sum_{i=1}^{n}$			`r	· ;				:	
	λ = 2.	3·μ	T_1	Т ₂	Тз	T4	·	CO ATM - CM	CO MODEL	MULTI- Plier
	1.5	W3 W2	- 100, 9		<u>2.7</u> -100.4			0.0162	3	
	: 	W2 W1	-178.8 -453.6 -221.7*	-142.6	-93.4 -36.0 -148.8			and the second sec		
	15	W3		1	3.6			0.0324	.3	2
	4	W2 W1	-78,7		-39.0	:				
 			-97.6 -25.6	211 - 211 211	-64.3	<i></i>			• • • •	nga - en 1994 - 3 : 4 :
	1.5	W2 W2 W1	- 134. 3	-34, 3	-1.4			0.0486	3	3 1
	· · · · ·	W1 W3	No 200 - 14	سية دورو بريانية	-27.7*		a na a ta tana	ана с с с с с с с с с с с с с с с с с с	· · · · · · · · · · · · · · · · · · ·	- + V + + + + + + + + + + + +
	: 1.5	W2 W2	-1.0		0.7			0. 1488	• 6	
	4	• W1 W1	-1.4	ر. پېښتونې	-0.3		a star ann a			
	1.5	W3 W2			-5.8	0.9		0. 1618	1	
	. 4	W2 W1 W1	-24.5	2.0	9.4	U. 0		• •		
	1.5	· W3 W2	;, ·, ;	. ** *	-1.5	· ·		0. 2426	1	1.5
	.4	W2 W1	4.8		1.8					•.
_	-1 5	W3	0.4	 	-37.1			A 3376	2	
	·.4	W2 W2 W1	-23. 3		-31, 2				()	
		W1	-19.3		-26.6			1	- <u> </u>	
	1.5	W2 W2	-25.2		-32.9			4. 7696	.2	1.1
	4	Ŵ1 W1	-21, 2		-28, 3	:	-	f., t	2.) 1. (*) 14.	t

*1.5W1

TABLE 7.5.3 CASE C

λ₌2.3	3 μ́	T ₁	T ₂	T ₃	T ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
	W3	151.2		263.5					
1.5	W2	•		229.9			0.0162	3	
Á	W2	64.2	0.4	151,2					
4.	W1 W1	2.8	0.4	64.1			ŕ .		
	W3		st.	119.3	·		•		
1.5	W2					· ·	0.0324	3	2
4	W2	29.1		[•] 69, 7					
·4	W1 W1	1.9		29.9				,	
		39.4		· · · · · ·			· · ·	• ,•	
1.5	-W2						· 0 . 0486	3	3
•	W2	-50 0	-4.4	10.2					
4	W1 W1	- 30, 8	-4,4	62, 8°	•				
•====	W3			4.0					
1.5	W2						0. 1488	6	
	W2	1.4		. 3, 1			÷ .		
. 4	W1 W1	0.9		1.8					
	W3		, .	0.0		·			
1.5	W2			1,8			0. 1618	1	
	W2		$\begin{bmatrix} 0.0 \\ 6.0 \end{bmatrix}$		0.0				
4	W1 W1	$\begin{bmatrix} -17.0\\0.0\end{bmatrix}$	-0, 9	0.0			· · ·		
	W3			-10.7					
1.5	W2	. 1				· .	0.2426	1	1, 5
	W2	-3.9		-6, 8					
. 4	W1	-1.5		-3.7					
	· W3			-55, 3			· · ·	· · · · · · · · · · · · · · · · · · ·	
1.5	W2						4. 3376	2	
	W2 W1	-40.5		-49.2					
	W1	-35.0		-41. 1				•	
	W3		· .	-56, 6					
1.5	W2						4. 7696	2	1, 1
٨	W2 W1	-42.2		-49.6					
-	w1	-36.6		-42.6					.

*1.5 W 1

TABLE 7.5.4 CASE D

λ = 2.	3 μ	T ₁	T ₂	T ₃	T ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
1.5 4	W3 W2 W2 W1 W1	-207. 1 -40. 0 109. 2 581. 1	-45.3	-11. 4 -24. 4 2. 7 46. 0 292. 9			0.0162	3	
1.5 4	W3 W2 W2 W1 W1	-16.1 292.8		-3.3 2.9 146.2			0.0324	3 .	2
1,5 4	W3 W2 W2 W1 W1	-63, 2 40, 3	17.0	15. 9 -5. 7*			0. 0486	3	3
1,5 4	W3 W2 W2 W1 W1	0.5 66.0		1.1 1.2 30.0			0. 1488	6	
1,5	W3 W2 W2 W1 W1	-15.4 0.0 13.7 59.2	0.0 4.8	0.0 -1.9 0.0 3.0 25.8	0.5		0. 1618	1	
1,5 4	W3 W2 W2 W1 W1	-0.5 38.0		-1.5 -2.0 14.2		,	0. 2426	1	1.5
1.5 4	W3 W2 W2 W1 W1	-36, 6 -35, 9		-40.0 -40.7 -41.3			4, 3376	2	
1.5	W3 W2 W2 W1 W1	-38.5 -38.0		-41. 8 -42. 4 -43. 1			4. 7696	2	1.1

*1.5W1

152

í

TABLE 7.5.5 CASE E

λ = 2.3	μ	T ₁	Ţ ₂	T ₃	т ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
1.5 4	W3 W2 W2 W1 W1	0.0 0.0 -22.5 0.0	31, 1	0.0 -22.5 0.0 34.1 0.0			0.0162	3	
1.5 4	W3 W2 W2 W1 W1	3. 8 1. 9		2.1 1.0 -0.6			0. 0324	3	2
1.5	W3 W2 W2 W1 W1	5. 6 -4. 0	11.9	11.5 -5.5*			0.0486	3	3
1.5	W3 W2 W2 W1 W1	4. 3 1. 1		1, 8 0, 2 -3, 0			0. 1488	6	
1.5	W3 W2 W2 W1 W1	4.8 3.4 -0.1 (0.3)	4. 7 2. 7	0.6 -2.4 -1.0 1.1 -4.2	1.3		0. 1618	1	
1.5	W3 W2 W2 W1 W1	1.5 -1.7		-1.4 3.0 -6.3		Ŧ	0. 2426	1	1, 5
1.5 N 4 N	W3 W2 W2 W1 W1	-37.5 -39.4		-40.7 -41.6 -43.5			4. 3376	2	
	N3 N2 N2 N1 N1	-39. 4 -41. 3		-42. 5 -43. 4 -45. 2			4. 7696	2	1. 1

į

TABLE 7.5.6 CASE F

) = 2 3 <i>µ</i>	T,	T ₂	Ta	TA		CO	CO MODEL	MULTI-
<u></u>	3-762.1		0.0					
1.5 W	2		-18.0		· .	0.0162	3	
4 W	1 - 143.3	-48.0	37.5	· ·				
· · · · W	1 1.1		0.0					
÷ W	3		5.7					
1.5 W	2				1	0.0324	.3	2
2 W	2 108. 9		4,4	· : ·				
Ŵ	1 4.8		2.0				. :	
W	3 244.6							-
1.5 W	2					0.0486	3 .	3
4 W	2	-10.8	16.4	· · · ·				
W	1	10.0	0.6*			la de la composición de la composición Composición de la composición de la comp		
Ŵ	3		8.0		.			
1.5 W	2			: :		0.1488	6	
2 W	2 - 29.7	·· ·	5.7					. •
Ŵ	1 5.4		1, 4					
Ŵ	3 - 56. 4		6.9	:				
1.5 W	2		4.0			0. 1618	1	
4. W	2 - 20.9	-10.0	4.6	-2, 2				
Ŵ	1 4.6	0.4	0.3	1. S.				
W	3		5.0			•••		
1.5 W	2					0.2426	1	1.5
₩	2 -17.0		-2, 6					
Ŵ	1 2.7		-1.7		.,. · ·			
W	3		-36.2					
1.5 W	2			· · ·		4, 3376	2	
2 W	2 - 35, 3		-37.7			. :		
W	1 -36,4		-40.4	<i>.</i>		·		
W	3		-38, 2			\$		
1.5 W	2			•		4. 7696	2	1, 1
W ⊿W	2 -37.2		-39, 6	•				
W	1 -38.3		-42,2	e Antonia		· · · ·	· .	

*1.5 W 1

TABLE 7.5.7 CASE G

•

λ = 2.	3 ц	T ₁	T_ *	T3	T ₄		CO ATM - CM	CO MODEL	MULTI-
		<u>(1)</u>		-152 1				1. A. 1. A. 1.	
15	W2		•	-228.1			0.0162	3	
1. 7	W2	0.0	• * •	-285.8					
4	W1	-46.4	~245.2	-350.8					_
	W1	0.0		-322.0		·.			
1.1.1	W3	· · ·	4. **	-75.3		,د ۰	and the second	· · · ·	-
. 1.5	W2		· _			:	0.0324	3 5	.2
	W2	3,1		-142.4			• :		2 5.5 2
4	W1	10		161 7					•
	WI	1.0	· · ·	-101, /			• 		·
	W3	4.3					0.0404		
1.5	W2						0.0480	3	3
٨	WZ W1	-12 3	-80.7	-117 4					
4	W1		<i></i>	-75.4*					
٩.,		· ·		-17 3		• •			
15	W2			11.5			[`] 0, 1488	6	
1. 2	w2	3.5	••.	-32.5			01 2 100		
4	Ŵ1							•	
	W1	1, 1		-38.6					
2	W3	3.3		-16.9		·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1.5	W2			-24.7			0.1618	1	
	W2	2.6	-18.4	-30.8	-25.3	· .	·		
4	W1	-2.9	-25.5	-38.0	:			· .	
	VVI	<u>ر.</u>		- 30, 4					<u> </u>
	W3			-13, 8	ч. 1		0.0406	,	1 E
1.5	· W2	0.8		222 Z	·		0.2420		1.7
4	W1	0.0		-25.5			, •		
•	w1	-1.6		-27.7		·			
	Wi	14 A - 7		-42 Δ	• :	· · · ·			
1.5	W2						4. 3376	2	
	W2	-37.4	4	-43.1				. 1	:
4	W1								
	W1	-38, 6		-44.1					
	W3		· ·	-44.1	· · · ·		• • • •	·	× / ·
1.5	W2		i -				4.7696	2	1,1
•	W2	-39, 3		-44, 7					
4	W1	-10 1		- 45 7					· .
	<u> </u>			1.1		<u> </u>	<u> </u>		

*1.5 Ŵ 1

TABLE 5.7.8 CASE H

λ = 2.3	βμ	T	T ₂	T ₃	T ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
1.5	W3 W2 W2	-1075.0 -815.4		46. 6 223. 4 393. 8			0.0162	3	
. 4	W1 W1	-696.6 -29.8	-3.4	422.8 314.6					
1.5	Ŵ3 W2	-101 5		22.7			0.0324	3	2
4	W2 W1 W1	-11.9		157.6					
1.5	W3 W2 W2	-355.8				-	0. 0486	3	3
4	W1 W1	-227.8	0.6	140.9 74.0*					
1.5	W3 W2 W2	-85, 8		1.8			0. 1488	6	
4	W1 W1	0.6		33.4					
1.5	W3 W2 W2	-106,2 -78-3		0.0 18.9 37.1	21 9		0. 1618	1	
4	W1 W1	- <u>66, 2</u> 0,0	0.0	40.4 28.9					
1.5	W3 W2	50 0		-3.4	`	· · ·	0. 2426	1	1, 5
4	W2 W1 W1	-0.7		22. 2 16. 7					
1,5	W3 W2			-42.5			4. 3376	2	
4	W2 W1 W1	-38,7 -35,4		-39.5 -39.4					
1.5	W3 W2			-44.2			4, 7696	2	1.1
4	W2 W1	-40.3		-41, 3				_	-, -
	W1	-37.2		-41, 1					

.

i

°1.5 W 1

2

TABLE 7.5.9 CASE I

<u>λ</u> = 2.	3 μ·	T ₁	T ₂	. T ₃	т ₄	CO AT <u>M</u> - CM	CO MODEL	MULTI- PLIER
1.5	W3 W2 W2 W1 W1	0.0 0.0 -21.7 0.0	30.0	0.0 -21.7 0.0 32.9 0.0	-	0. 0162	3	
1.5 4	W3 W2 W2 W1 W1	1.8		0.3 -0.8 -2.4		0. 0324	3	2
1.5 4	W3 W2 W2 W1 W1	3. 0 -6. 2	9.1	8.7 -7.7*		0, 0486	3	3
1.5 <u>4</u>	W3 W2 W2 W1 W1	1.0 -2.1		-1.4 -3.0 -6.1		0. 1488	6	
1.5 4	W3 W2 W2 W1 W1	1.4 0.1 -3.3 -2.9	1.3 -0.6	-2.6 -5.5 -4.2 -2.2 -7.3	-1.9	0. 1618	1	
1.5 4	W3 W2 W2 W1 W1	-1. 8 -5.0	,	-4.7 -6.3 -9.4		0. 2426	1	1. 5
1.5 4	W3 W2 W2 W1 W1	-39.7		-42.8 -43.7 -45.5	Ţ	4. 3376	2	
1.5	W3 W2 W2 W1 W1	-41. 6 -43. 4		-44. 6 -45. 4 -47. 2		4. 7696	2	1.1

*1.5 Ŵ 1

:

157

.

	λ.= 2.	3μ,	T ₁	T ₂	T ₃	T ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
		W3	-80.0		0.0	• •				
	1.5	W2			-18.3			0.0162	3	
		W2	- 360. 5	. 10 7	$\left[\begin{array}{c} 0.0 \\ 27 \end{array} \right]$				· ·	
	4	W1 W1	14.0	-48, 1	37.1				· . [·]	
•							1.4			
	1.5	W2	:		9.0	· · · ·	· .	0 0324	3	2
		W2	170.1		8.0			0.024		
	4	W1			. · · .				. •	
•		W1	14.7		5.2		· _ ·	 		<u> </u>
		W3	-252.1				21 A. A	4 ¹ .	*	
	1.5	W2	· ·	°., .,			.	0.0486	-3	3
		W2	24.5		20.0					
	4	W1 W/1	-34, 3	-0.4	20.9 5.5%					
•					7.7		[]			
	1 5	W3	· .		14.7		·	0 1499	<u> </u>	· .
	1.9	W2	-24 4		12 0			0. 1400	0	
	4	wī			12,0					
		Wl	12.8		7.1			×*		
		W3	-63.5	· ···*	13.6		. '			
	1.5	W2			10.6			0.1618	1	1 A.
		W2	-21.5	-4.4	10.9	3.8				
	4	W1	-1.0	5, 6	12.5					
		WI	11.8		6.0		÷			÷
		W3			11.8	,	. 1 .		· · · · ,	-
	1.5	W2	11.0			•		0.2426	1	1,5
	4	W2 W1	-11, 2		9.0			·		
		W1	9.6		4.1				1	
		W/3		· ·	-21 0					
	1.5	Ŵ2			۲ , پر	•		4.3376	2	, .
		W2	-31, 1 ⁷		-33.6	· .	· ·		-	
	4	W1							•	
	······································	W1	-32.4		-36,7					·
	•.	W3			-34,6	e .	: . s		· ·	, 6
	1.5	W2	,					4:7696	2	1,1
		W2	-33, 1		-35.6				·	
	4	W1	-34 5		20 4	2		, · ·	· · · [. [
-	·		- 54, 7		- 20, 0	<u> </u>				d

TABLE 7.5.10 CASE J

TABLE 7.5.11 CASE K

λ = 2.	3μ.	Ť	1. 12	T.3	T ₄	; 	CO ATM - CM	CO MODEL	MULTI-	a de la composición de
1.5 4	W3 W2 W2 W1 W1	0.0 -44.3 0.0	-226.7	-115.2 -192.4 -252.3 -322.0 -302.6			0, 0162	3		
1.5 4	W3 W2 W2 W1 W1	1.3	4 Y TH	-58.5 -127.6 -153.7		3	0. 0324	3	2	т. т. т.
1.5 4	W3 W2 W2 W1 W1	1. 9 -14. 0	-76.8	-110.0		-	0. 0486	3	3	ан Ару Алан Алан Алан Алан Алан Алан Алан Алан
1.5	W3 W2 W2 W1	0.4		-16. 1 -31. 8 -39. 4		· · · · ·	0. 1488	6		
1.5 4	W3 W2 W2 W1 W1	0.2, -0.5, -5.8 -2.8	-19.5 -26.6	-16. 1 -24. 1 -30. 4 -38. 1 -37. 4	-25.6		0. 1618	1		
1.5	W3 W2 W2 W1 W1	-2.4		-14. 3 -24. 0 -29. 3			0. 2426	1	1.5	
1.5 4	W3 W2 W2 W1 W1	-39.5 -40.7	••	-44. 2 -44. 9 -46. 0		- - -	4. 3376	2		· · · · · · · · · · · · · · · · · · ·
1.5 4	W3 W2 W2 W1 W1	-41. 4 -42. 5	8	-45.8 -46.5 -47.5	· · · · ·		4.7696	2	1, 1	· · · · · · · · · · · · · · · · · · ·

*1.5 W 1

159 -

•

TABLE 7.5.12 CASE L

<u></u> λ = 2.	3μ	т ₁	т ₂	^T 3	т ₄	-	CO ATM - CM	CO MODEL	MULTI- PLIER
1.5 4	W3 W2 W2 W1 W1	-677.4 -166.3 138.6 623.0	105.2	-456.5 -316.9 -117.9 144.2 405.0			0. 0162	3	
1.5 4	W3 W2 W2 W1 W1	-72.0		-218, 9 -56, 4 209, 1			0. 0324	3	2
`1.5 4	W3 W2 W2 W1 W1	-210. 4 59. 7	46. 3	47. 8 - 93. 9			0. 0486	3	3
1.5	W3 W2 W2 W1 W1	-0.9 82.9		-35.9 0.0 54.2			0. 1488	6	
1.5 4	W3 W2 W2 W1 W1	-49.9 0.0 29.2 75.7	0.0 23.0	-32.4 -19.1 0.0 21.8 48.9	-0.2		0. 1618	1	
1.5 4	W3 W2 W2 W1 W1	3. 9 53. 3		-19.0 2.2 33.6			0. 2426	1	1.5
1.5	W3 W2 W2 W1	-28.6		-33. 6 -33. 2			4. 3376	2	
1.5 4	W3 W2 W2 W1	-30.7		-35, 1 -35, 5 -35, 1			4. 7696	2	1. 1
	VV I	-29.8		-55.2				·	

*1.5 W 1

TABLE 7.5.13 CASE M

λ= 2.	3μ	T ₁	т ₂	т ₃	т ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
1.5	W3 W2 W2 W1	-281, 3 -103, 1 55, 9	- 12. 2	-72.5 -86.4 -57.5 -11.4 251.8	1		0. 0162	3	
1.5	-W3 W2 W2 W1	-44.0		-30.4 -23.7		,	0. 0324	3	2
1.5 4	W1 W3 W2 W2 W1 W1	-83.0 27.3	2.4	1.2			0. 0486	3	3
1.5 4	W3 W2 W2 W1 W1	-0.2		0.5 0.6 31.3			0. 1488	6	
1.5 4	W3 W2 W2 W1 W1	-16.5 0.0 14.6 63.1	0.0 5.1	0.0 -2.0 0.0 3.2 27.5	0. 5		0. 1618	1	
1.5 4	W3 W2 W2 W1 W1	1.7 42.7		0.6 0.1 17.3			0. 2426	1	1.5
1.5 4	W3 W2 W2 W1 W1	-32. 6 -31. 9		-36.2 -37.0 -37.6			4. 3376	2	
1.5 4	W3 W2 W2 W1 W1	-34. 6 -34. 0		-38. 1 -38. 8 -39. 5			4.7696	2	1.1

161

٩

ŝ

TABLE 7.5.14 CASE N

۰ ۲	3	Т, ^т	T,	T ₂	TA	1 .11	CO		MULTI-
Λ = 2		1	2					MODEL	
1 6	W3	-1131.9		-771.8			0.0142	2	
1.9	W2 W2	- 825. 0		-746.3			0, 0102		
4	Wl	-552.0	-668. 9	-667.3	,				
	W1	313.7		-215.7				ļ	
	Ŵ3		· · ·	-339.8	· ·				
1.5	W2	242 5					0, 0324	3	2
۵	W2 W1	-363.5	n.	-328,5					
7	W1	202.7		-66, 6					
-	W3	-310.8							
1.5	W2	510,0					0, 0486	3	3
	W2								
4	W1	-121: 0	-163. 6	-165.7				:	
	VVI			-200.0					· · ·
15	W3 W2			-6.5			0 1499	6	
1.7	W2	·	1	-6.3	۰.		0, 1400	Ų.	
4	W1								
	W1	-112.4		-46, 4					
• -	W3	-28,4		0.0					
1.5	W2		<u> </u>	-3.5			0, 1618	1	
4	W2 W1	25.0		<u>[0,0]</u>	0.8				·
	W1	108.5	0.7	47.2					
	W3			25, 0					
1.5	W2						0. 2426	1	1.5
٨	W2	26.9		24.1					
4	W1 W1	07 A		53.7					
	W/3			7 1					· · · · ·
1,5	W2			1.1			4, 3376	2	
	W2	13.3		5.8					
4	W1								
·	VV I	14, 6		4, 6					· ·
15	W3 w/2			4.1			A 7606	2	,,
1.)	W2	101		28			4.1090	۷	1.1
4	W1	. U. I		2.0					
	W1	11.1		1.6					

*1.5 W 1

TABLE	7.1.1	5 EF1	FECT	OF SURFA	CE REFLE	CTIV	/ITY
	 8	-	2.3 µ	BAND	· · · ·		
اللغة (المعنى المع المعنية المعنى المعن المعنى المعنى		· · · ·		· · · · · · · · · · · · · · · · · · · ·	•		
· · ·		CASE					.'
an an 'ar.	ρ		2	<u>0.1</u>	<u>1.0</u>	· ·	
	•	Α	•	5.74	5.72	. ,	
- 	e 11 14	Β		7.99	7.96	· . . *	*
-		.°С		0.03	- 0.01		
		D		- 0.02	1.4 (r. 0.00	£ -	÷ 1
· · · · ·	*********	E	Na 200 a.	4.68	4.69		
		F		- 10.03	- 10.04	•	
· · ·	4.5 %	G	1 • • • • •	- 18.44	- 18.42		9 a.c.
ı z		H .		0.02	0.00		
		Ι		1.31	1.31	• • • • • •	
سه⊴ت دیر د. د	· · · ·	J	ne esta da la	- 4. 38	- 4.39	· ·	
•		K		- 19.48	- 19.46		•
	* * * *	\mathbf{L}	wy,	0.00	0.00		
	. i	M		- 0.02	0.00		
	•	Ν	•	- 0.04	0.00	•	
		•• •	8 (m. m.	••••••••••••••••••••••••••••••••••••••	• •	- 	* <u>*</u> *

Ξ.

•

163

.

MULTI-^T4 · CO CÓ \mathbf{T}_1 T₂ Τ3. ATM - CM MODEL PLIER : **λ** = 4.6.μ W3 3 1.5 W2 0.0162 28.3 470.0 W2 4 W1 . W1 W3 1.5 W2 0. 0324 3 2 W2 4 W1 W1 W3 1,5 W2 0.0486 3, 3 W2 4 W1 W1 W3 3.7 1.5 W2 0. 1488 6 ۱ W2 -2.8 3.8 7.7 26.4 4 W1 Wl W3 0.0 1.5 W2 0.1618 1 W2 0.0 0.0 0.0 22.3 4 W1 Wl W3 1.5 W2 0.2426 1 1.5 W2 -14.1 4 W1 W1 W3 1.5 W2 4.3376 2 W2 -102.4 -110.7 **4** ' W1 W1 W3 1.5 W2 4.7696 2 1.1 W2 4 W1 W1

TABLE 7.5.16 CASE P

TABLE 7.5.17 CASE Q

	λ = 4.	6μ	T ₁	т ₂	T ₃	T ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
-	1.5 4	W3 W2 W2 W1 W1		-430. 0		20.9		0. 0162	3	Б.
	1.5 4	W3 W2 W2 W1 W1						0. 0324	3	2
_	1.5 4	W3 W2 W2 W1 W1					:	0. 0486	3	3
_	1.5 4	W3 W2 W2 W1 W1	-6.6	1. 1 -4. 2	6. 7	-1.6		0. 1488	6	
-	1.5 4	W3 W2 W2 W1 W1	0.0	0.0 -5.1	0.0	0.0		0. 1618	1	
	1.5 4	W3 W2 W2 W1 W1		-3.9				0. 2426	1	1.5
-	- 1.5 4	W3 W2 W2 W1 W1		-108.3		-125.4		4. 3376	2	
_	1.5 4	W3 W2 W2 W1 W1						4.7696	2	1. 1

TABLE 7.5.18 CASE R

λ = 4.	б µ	т1	T.2	, T ₃	T ₄		CO ATM - CM	CO MODEL	MULTI- PLIER
1.5	W3 W2 W2 W1 W1		1729. 3		-369. 3	···	0. 0162	3	
1.5 4	W3 W2 W2 W1 W1		, , ,	، ومن ا ا		434, · · · · · ·	0. 0324	3,	2
1.5 † 4	W3 W2 W2 W1 W1		•			-	0. 0486	3	3
1.5	W3 W2 W2 W1 W1	-27.0	0. 2 -9. 2	0.0	71.0		0. 1488	6	.,.
1.5 4	W3 W2 W2 W1 W1	0.0	0.0	7.9 0.0	77.0		0. 1618	1	- · · · ·
1.5	W3 W2 W2 W1 W1		24. 8			· ·	0. 2426	1	1.5
1.5 4	W3 W2 W2 W1 W1	-~ .	- 116. 4		- 139. 7	t produktion K	4. 3376	2	
1.5 4	W3 W2 W2 W1 W1	*					4.7696	2	, 1, 1

TABLE 7.5.19 CASE S

·	1 -		1 🛫	1 -			CO	MULTI-
$\lambda = 4.6\mu$	11	2	.'3	4	1 - i	ATM - CM	MODEL	PLIER
W3 1.5 W2 W2		-619. 8		147. 1		0. 0162	3	:
4 W1		·	· .		. :	يتر من م	10 m. n. n.	
W3 1.5 W2 W2		. 1	-	4 • •		0. 0324	3	2
4 W1			• •					,
W3 1.5 W2 W2 4 W1						0. 0486	3	3 , *
W1	••	4 . <u>5</u> .		·	44 . J.4	· · · · · ·		
1.5 W2 W2	- 12. 4	-0.9	5.8	38, 1	. ,	0. 1488	6	
4 W1			•					
W3 1.5 W2		0.0				0. 1618	1	
W2 4 W1 W1	0.0	0.0	0.0	38.6	** *	·	1	-
W3 1.5 W2 W2 4 W1		0.4			:	0. 2426	1	1.5
W1			۰.				n National de la composition de la composi A composition de la co	
W3 1.5 W2 W2		107.1		- 122. 0		4. 3376	2	•.
4 W1	t.,	1 . 1				· ·		·
W3 1.5 W2 W2				r N		4.7696	2	1. 1
4 W1 W1			ъ н.	s S				

TABLE 7.5.20 CASE T

2

λ= 4.6 μ	T ₁	T ₂	T ₃	T ₄	CO ATM - CM	CO MODEL	MULTI- PLIER	
W3 1.5 W2 W2 4 W1 W1		3381. 2		7103.4	0. 0162	3	х -х	
W3 1.5 W2 W2 4 W1 W1					0. 0324	3	2	
) W3 1.5 W2 W2 4 W1 W1	•				0. 0486	3	3	
W3 1.5 W2 W2 4 W1 W1	195.4	103.2 102.0	48.2	-217.6				
W3 1.5 W2 W2 4 W1 W1	0.0	0.0	0.0	-315.3	0. 1618	1		
W3 1.5 W2 W2 4 W1 W1		-310. 9			0. 2426	1	1.5	
W3 1.5 W2 W2 4 W1 W1		-5.9		116. 4	4. 3376	2		
W3 1.5 W2 W2 4 W1 W1					4.7696	2	1. 1	

•

,

5.1 0.0 0.0 0.0

.

,

	CASE		
PARAMETER		285.2	288.2
Ground Temperature	P Q R S T	1.9 -5.1 5.2 3.2 -25.2	0.0 -5.1 0.0 0.0 0.0
Emissivity	P Q R S T	0.7 6.9 -5.4 19.6 11.7 -93.8	1.0 0.0 -5.1 0.0 0.0 0.0
Gas Temperature	P Q R S T	T ₂ -2 0.0 -4.1 0.0 -0.	T_2 0.0 -5.1 0.0 0.0 2 0.0
Relative Atmospheric Pressure	P C F S	0 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
used in obtaining the weighting functions are indicated by the rectangles around the accuracy result. It is not to be expected that the results for either band will be good in all cases and is not a matter for concern that they are not. It should be noted that the major concern is to identify a sink and to identify a source as a source. It is then possible to use weighting functions derived from more appropriate conditions to more accurately determine the CO density. This is especially true for a source region where the use of a high CO condition for the target condition in establishing weighting functions gives the high CO concentrations much more accurately. This can be seen in Case N.

. . 1 Le ser d'arte d'arte d'arte de la ser de a start a start of and and find the second 7.5.2.2 The Overtone Band: - The results for the analysis are pre-化丁乙基 安于斯林西南部市 sented in Tables 7.5.1 through 7.5.15 (cases A through N) for the overtone 50 g K 1 (2.3μ) band. Some of the results show accuracy which will fit the accuracy . 4 and the second requirements detailed above while some show inaccuracies which are too 化化物 化乙酸化物化物化物化医物 高小的现在分词 large to be acceptable. This is as expected.

1 a 4 4 and the second $(1, \dots, 2n_{j+1}) \in \mathbb{R}^{j}$ Cases A, B, C, and D use the same CO models for the base Sec. March 1991 and target cases used for determining the weighting functions. In cases A, B, and C, all runs give accuracy suitable for use with one possible exception 1 Million State State (water model 4W1, T1). Except for this one set of conditions, the model 1 The Alexander and the second cases (standard CO profile), none of the runs show any significant indication Start of a straight for an and the straight and the of a sink or source. Note that the model with a temperature inversion is and the states of enter provide à quie propriése et l 1. A. A. quite accurate. For the important situation of the low altitude sink, all runs 化化化物 医小子输卵 化加强合金 人名法德尔 法法律法法法法律 show good accuracy, all sufficient to show a lower total CO column density than the standard model, that is, a sink. The models with low CO densities 1. Mar. 2. 2. show large errors but not so large that sinks are not shown. The model with المحمد معتمد المحمد المراجع ال 1.5 times the standard CO model gives accuracies which all show significant Service and the service of the 5 35 6 5 B B C increases over the standard CO. For the models with high CO densities the results are inaccurate, up to about 50%, but such still indicate high CO den-しん うすい アリア・カイン クリア・アメリカ しょうよう たいかん 認知 強い なんかちなん しったい しょう sities and thus fulfill the purpose. For case D the results are not nearly so

good. The conditions used to determine weighting functions do not include any of the low water density models. One test run with such a model shows, for the standard CO model, a doubling of what it should be. This would indicate a source and so is unacceptable. In general, the errors are too large to be acceptable.

Case E shows the effect of using the very low CO density cases as the base runs and one standard CO model as the target run to obtain the weighting functions. The results are much the same as cases A and C. In this case all results are suitable. Cases F and G show results for similar CO models being used in determining weighting functions but with more restricted temperature conditions. The results are poor. Sinks are indicated where there are no sinks.

Case H is another case where the conditions of temperature and of water content did not cover a sufficient range. Thus large sinks are indicated where there is no sink.

Now consider cases I, J, and K, where all runs used in determining weighting functions were with models having low CO densities (.1, .2, and .3 of standard). For the case, I, where the ranges of temperature and water density employed were wide, the results are good, showing sinks and sources where they occur. With more restricted ranges, Cases J and K, the results are not good, indicating sinks where they do not exist.

For Case L, the weighting functions were obtained using the standard and the low-altitude sink models, but only one water model. Results for other water models are not accurate enough to be used.

For case M, similar results are obtained to case L. No runs with low water densities were used for weighting function obtention and results for such models were inaccurate.

For Case N, where a high CO density model was used in the set for obtaining weighting functions, just about all test runs were inaccurate. Such results are to be expected since the CO absorption curve is non-linear in part of the region used to determine weighting functions.

In Table 7.5.15 it is seen that a change in the earth's reflectivity has no significant effect on the calculated CO density. It would also be small for the 4.6μ band.

Some general conclusions can be drawn from these results. They mainly concern the conditions used in obtaining weighting functions. If such, for CO are within the range of CO where absorption is about linear, that is within the range from very low CO densities to slightly above our standard model, the results will be good within the range of water density and temperature covered in the weighting function runs and probably not good outside such range. That is, if water density models 1 and 3 are used, those for in-between water densities have the desirable accuracy, but if models 2 and 3 are used, the results for water model 1 are inaccurate. That is, interpolation gives reasonable results but extrapolation does not.

It is important to note that the variation in total water content does not vary over one area by a factor of more than about four during the year as seen in Figures 7.5.1 through 7.5.4. Thus the extremes used here are wider than those for any one region. Hence, in treating the data for any one area, weighting functions based on the range of conditions for that area can be used rather than those which bracket the range of conditions for all areas.

Conclusions about sinks and sources can also be made. These results show that sinks (even those at low altitude having only a 9% lower CO optical thickness than the standard model) are detected readily and regions of high CO concentration are also readily seen. It is also to be noted that the presence of a temperature inversion layer does not interfere with the results for this (2.3μ) band.

January Mean Precipitable Water (in inches) from Tuller - 1968 Figure 7.5.1

15 75 45 30 5 3 45 n T 3 80 80 a **1.25** 50 1.75 1.75 75 50 0 \$ 25 50 50 **5**0 20 1 -25 8 8 Ś ٩ B 30 ğ 30 1.7.91 C ł C 0 5 \mathcal{Q} 5 5.00 20. 10 8 7 ő 99 2 9 لعابح Ti Ð á ž P 8 ¢ **, 25** Z 別 2 20 E 50 ŝ 1.52 1.75 **1,**75 •50 25 L 25 9 毕 위 180 75 45 30 15 60 0 5 30 45 9

April Mean Precipitable Water (in inches) from Tuller - 1968 Figure 7.5.2

July Mean Precipitable Water (in inches) from Tuller - 1968 Figure 7.5.3

175

,

October Mean Precipitable Water (in inches) from Tuller - 1968 Figure 7.5.4

7.5.2.3 <u>The Fundamental Band</u>: - The results for the analysis for the fundamental (4.6μ) band in Tables 7.5.16 through 7.5.21 (Cases P through T). The cases employ weighting functions obtained using CO model 1 as the base runs with 1.5 x CO density of model 1 (Case S), urban CO density model (Case T), very low CO density model (Case P), and the low-altitude sink model (Case R) for the target runs. As would be expected the best results are obtained for Cases P and R. However, it is to be noted that in all cases the temperature inversion model gives poor results with sinks not detected. This is an intolerable result. If CO densities for such critical conditions are in error by 26% (Case P) or by 71% (Case R) existing sinks will not be found. Cases P and R are thought to be as reasonable as any tests that could be made for this band and other tests would be expected to show similar results.

Case O uses the temperature inversion layer run as a part of the base set in determining the weighting functions. This is not a very practical case but it does improve the results as a function of temperature. There is, however, still an overlap in the CO low altitude sink and the CO standard model results which indicate that it could not be used to see a sink.

In all 4.6 μ cases, the source runs show up with large negative errors. In most all urban model runs, negative CO densities are calculated. These are meaningless and undoubtedly smaller sources would show up as sinks. This is an intolerable situation.

Certain other tests were made to help show the effect of atmospheric and earth-surface parameter variations. Results are shown in Table 7.5.21.

Significant effects are found, even for the runs, P and R, which use better sets of runs for determining weighting functions. A few degrees difference in the ground and the 0 km atmosphere temperatures cause a few percent difference in calculated CO. A reduction of surface emissivity to 0.7 causes drastic effects. Changing the temperature model of both the

entire atmosphere and the ground by 2° produces no significant effect. This is as expected. However, a random variation with altitude of $\pm 2^{\circ}$ would produce large effects as seen in Section 7.1.4 with the single-line model. A change in the total pressure significantly changes the calculated CO since it reduces the atmospheric emission relative to the earthshine. The effects of these variations for the 2.3 μ band were shown in Section 7.1 to be small.

7.5.2.4 <u>Summary</u>: - The following summarizes the results for the two bands based on the calculations with the multi-line model. They are similar to those obtained with the single-line model.

The conclusions for the two wavelengths studied may be summarized on the basis of the following considerations.

Optical Thickness:

- 4.6: For much of the range, the absorption curve is not linear.The higher optical thicknesses may be so high that there is little sensitivity in that range.
- 2.3: The optical thickness is suitable for the range of concentrations of interest. The only limit is the upper limit of the limb experiment but it will be suitable for a sink at any reasonable expected altitude.

Interpretation:

- 4.6: Very difficult because of the need for accurate atmospheric temperature data as a function of altitude, ground temperature, and ground emissivity at 4.6 μ.
- 2.3 Data directly presented in terms of CO density.

Sensitivity to Low Altitude Sink: e ara Sensitivity to low altitude CO is very low and errors intro-4.6 duced are likely to be larger than the CO decrease effect The second production of the second production of the being sought. and the second Sensitivity at low altitude same as the similar effect at ···· 2.3: high altitude. Sinks of less than 10% CO density decrease can be detected. Sec. 1 Temperature Inversion Layer: · · · • 1.1.1 1 1 A. A. 4.6: Drastic effects on calculated CO densities prohibit detection of significant sinks. 2.3: No appreciable effect. Line Strengths: 4.6: Strong. About 1% of 4.6 lines. This is strong enough. 2.3: and the state of the . Atmospheric Emission: 4.6: Considerable emission in this band causes much variation from straight absorption model and leads to difficulty in interpretation as mentioned. 1. 1. ... Emission negligible. 2.3: Night Use: Possible. 4.6: Not likely to be possible, at least with acceptable sensitivity. 2.3: 179

Mapping Experiment:

4.6: Emission effects disastrous.

2.3: Interferents cause problems but these are overcome by technique used.

Limb Experiment:

4.6: Atmosphere optically thick at lower altitudes of interest.

2.3: Sensitivity limits altitude but altitude range reasonable.

8. CONCLUSIONS

The correlation interferometric techniques has been shown by analysis to be capable of measuring atmospheric trace species accurately. Specifically it has been shown to measure atmosphere amounts of carbon monoxide with an accuracy of better than 10%. Thus the technique should be capable of picking out CO sinks which are only 10% or less lower in CO column density using measurements which are made by determining the absorption in a part of the first overtone band of CO in the 2.3μ region of the spectrum. It has been determined that the use of this band is preferable to the use of the fundamental band in the 4.6 µ region. The latter is unsuitable because of the effect of atmospheric parameters including the atmospheric temperature profile (and the associated atmospheric emission) (see Tables 7.1.4 and 7.1.5), the ground temperature (see Tables 7.1.6 and 7.1.7), the ground emissivity at the wave lengths being used (see Table 7.1.8), atmospheric pressure and atmospheric path length. For that band, atmospheric emission causes an enhancement of the radiation which is a function of temperature and must be taken into account. If at some altitude the atmospheric temperature is greater than the ground temperature the effect of absorption below is minimized. Effectively, the instrument can not see well below an atmospheric temperature peak. Then the absorption does not follow the CO profile at low altitudes but rather there is less absorption near the ground even for CO profiles when there is more CO in that region (see Figures 7.1.6 and 7.1.7). These difficulties arise for any species with all spectral techniques which are primarily involved with radiation of wavelengths greater than about 3.5 µ. This is because of the predominance of earthshine over reflected solar radiation at these wavelengths (see Figure 3.2.1). The overtone band is not affected significantly by variaties in the parameters noted above and absorption in this band follows closely the atmospheric CO profile for any reasonable atmo-

spheric model. Atmospheric scintillations have little effect at either wavelength region.

Spectral interferents can be overcome by the correlation interferometry technique. The chief spectral interferants in the 2.3 µ spectral region are water and methane. By using the interferogram directly, carbon mon and set oxide can be accurately measured in the presence of atmospheric amounts of the these gases which would prevent accurate measurement of CO by ordinary spectral methods. In order to accomplish the interferometric measurement it is necessary to calibrate the instrument over the entire range of density of interferents for which it will be used and to do so with variation of important atmospheric parameters over which it will be used. Thus the calibration must cover the range of methane of about 2 to 5 atmosphere cm. since this is the range that is expected to be encountered and to cover the range of about 0.2 to 3 precipitable cm. of water since variations from dry to wet atmospheres include this range. Further, since the population of the rotational water levels are appreciably affected by temperature, variations corresponding to changes in atmospheric temperature profiles must be included in the calibration, thus necessitating calibration for conditions of a cold dry, a hot dry, a cold wet, and a hot wet atmosphere as well as conditions in between these.

The calibration determines the weighting function which multiplies the section of the interferogram in such a way as to minimize the effect of spectral interferents and maximize the effect of the gas to be measured (see Chapters 5 and 6). The choice of conditions used to determine the weighting functions is critical. The use of a wide range of conditions and interpolation between these gives much better results than use of a narrow range with extrapolation. In practice under flight conditions, it may be best to use a weighting function derived from a wide range of conditions to obtain an approximate measure of CO density and conditions and then use a weighting function derived from a narrower range of density and conditions to obtain a more accurate CO density measurement.

The feasibility analysis thus shows the correlation interferometry technique to be capable of the measurement from a remote platform of carbon monoxide in the atmosphere over the desired range of density. The measurement can be made in the mapping mode (observing sunlight reflected by the earth) and the limb mode (observing direct sunlight through the earth's limb). It can further be stated that the technique is applicable to a variety of other gases present in trace amounts in the atmosphere.

and the second second • • and the second and the second second ter and the second second · . . and a start of the st σ. ۰. the state of the • • •

and the second the

APPENDIX A

LISTING OF PROGRAM SPECTRA

Page Intentionally Left Blank

SEGRENTISEGI-HEIGEL, VILEZ, FXXENJ SEGRENTISEGI-HEIGEL, INTERP) SEGRENTISEGI-HEIGEL, INTERP) SEGRENTISEGI-LINEN SEGRENTISEGI-LINEN SEGRENTISEGI-LINEN SEGRENTISEGI-LINEN SEGRENTISEGI-SPECTA SEGRENTISEGI-SPECTA <tr< th=""><th>SEGMENT (SEG1, V01GT, K+KISFGMENT (SEG2, HE1GHT, INTSFGMENT (SEG3, L1NER)SFGMENT (SEG3, L1NER)SFGMENT (SEG4, COEFFS)SFGMENT (SEG5, SPFCT)SFGMENT (SEG5, SPFCT)SFF<</th><th>I.K2.K3) ERP) S.FRXFM) TRA (INPUT. OUTPUT. PUNCH. TAPES=INPUT. PUNCH. TAPES=INPUT. TAPE6=0UTPUT TAPES=INPUT. TAPE6=0 TAPES=INPUT. TAPE6=0 TAPE7=PUNCH. TAPE620 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7</th></tr<>	SEGMENT (SEG1, V01GT, K+KISFGMENT (SEG2, HE1GHT, INTSFGMENT (SEG3, L1NER)SFGMENT (SEG3, L1NER)SFGMENT (SEG4, COEFFS)SFGMENT (SEG5, SPFCT)SFGMENT (SEG5, SPFCT)SFF<	I.K2.K3) ERP) S.FRXFM) TRA (INPUT. OUTPUT. PUNCH. TAPES=INPUT. PUNCH. TAPES=INPUT. TAPE6=0UTPUT TAPES=INPUT. TAPE6=0 TAPES=INPUT. TAPE6=0 TAPE7=PUNCH. TAPE620 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7 TAPE7=PUNCH. TAPE7
SEGRENT(SEGS-LINE) SEGRENT(SEGS-LORFS) SEGRENTSAN IV PROSEAM SPECTRA (INUUT. TAFEGSOUTPUT. FORTRAN IV PROSEAM SPECTRA (INUUT. TAFEGSOUTPUT. C PRUTELLA ANOLTELLA ANOSTSICM SPECTRUM THROUGH ALTITUDES C ONTOUT IS TRANSMITTON OND INTEGRATES OVER ALTITUDES C OUTPUT IS TRANSMITTONS OND STRENGTH C OUTPUT IS TRANSMITTON OND TORES C OUTPUT IS TRANSMITTON OND TORES C </td <td>SFGMENT (SEG2.HEIGHT.INTSEGMENT (SEG3.LINER)SEGMENT (SEG3.LINER)SEGMENT (SEG4.COEFFS)SEGMENT (SEG5.SPECT)SEGMENT (SEG5.SPECT)CC<td< td=""><td>TERP) S.FRXFM) S.FRXFM) TAPE7=PUNCH. PUNCH. TAPE5=INPUT. PUNCH. TAPE5=INPUT. PUNCH. TAPE5=INPUT. TAPE6.00 TAPE7=PUNCH. TAPE6.0 PUTON MODEL PROGRAM NSMISSION SPECTRUM THROUGH ATMOSPHERE FR FOUATION AND INTEGRATES UVER ALTITUDES SPECTRUM PRINTED ON LINE PRINTER ON SPECTRUM PRINTED ON LINE PRINTEN ON SPECTRUM PRINTED ON LINE PRINTEN ON SPECTRUM PRINTEN ON LINE PRINTE</td></td<></td>	SFGMENT (SEG2.HEIGHT.INTSEGMENT (SEG3.LINER)SEGMENT (SEG3.LINER)SEGMENT (SEG4.COEFFS)SEGMENT (SEG5.SPECT)SEGMENT (SEG5.SPECT)CC <td< td=""><td>TERP) S.FRXFM) S.FRXFM) TAPE7=PUNCH. PUNCH. TAPE5=INPUT. PUNCH. TAPE5=INPUT. PUNCH. TAPE5=INPUT. TAPE6.00 TAPE7=PUNCH. TAPE6.0 PUTON MODEL PROGRAM NSMISSION SPECTRUM THROUGH ATMOSPHERE FR FOUATION AND INTEGRATES UVER ALTITUDES SPECTRUM PRINTED ON LINE PRINTER ON SPECTRUM PRINTED ON LINE PRINTEN ON SPECTRUM PRINTED ON LINE PRINTEN ON SPECTRUM PRINTEN ON LINE PRINTE</td></td<>	TERP) S.FRXFM) S.FRXFM) TAPE7=PUNCH. PUNCH. TAPE5=INPUT. PUNCH. TAPE5=INPUT. PUNCH. TAPE5=INPUT. TAPE6.00 TAPE7=PUNCH. TAPE6.0 PUTON MODEL PROGRAM NSMISSION SPECTRUM THROUGH ATMOSPHERE FR FOUATION AND INTEGRATES UVER ALTITUDES SPECTRUM PRINTED ON LINE PRINTER ON SPECTRUM PRINTED ON LINE PRINTEN ON SPECTRUM PRINTED ON LINE PRINTEN ON SPECTRUM PRINTEN ON LINE PRINTE
SEGNENTISES, INSEN SEGNENTISES, SPECT 5 SEGNENTISE, SPECT 5 SEGNENT, SPECT 5	SEGMENT (SEG3, LINER)SFGMENT (SEG4, COEFFS)SFGMENT (SEG5, SPECT)SFGMENT (SEG5, SPECT)SFGMENT (SFG4, COEFFS)SFGMENT (SFG7, SPPLOT)FORTRAN IV PROGRAM SPECCC <td< td=""><td>NS.FRXFM) CTRA (INPUT. OUTPUT. PUNCH. TAPE5=INPUT. TAPE6=OUTPUT TAPE5=INPUT. TAPE6=OUTPUT TAPE7=PUNCH. TAPE2) PTION MODEL PROGRAM NSMISSION SPECTRUM THROUGH ATMOSPHERE FR FOUATION AND INTEGRATES UVER ALTITUDES FOUATION AND INTEGRATES UVER ALTITUDES FOR PLOTTING. IF DESIRED SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTER PRINTER AND</td></td<>	NS.FRXFM) CTRA (INPUT. OUTPUT. PUNCH. TAPE5=INPUT. TAPE6=OUTPUT TAPE5=INPUT. TAPE6=OUTPUT TAPE7=PUNCH. TAPE2) PTION MODEL PROGRAM NSMISSION SPECTRUM THROUGH ATMOSPHERE FR FOUATION AND INTEGRATES UVER ALTITUDES FOUATION AND INTEGRATES UVER ALTITUDES FOR PLOTTING. IF DESIRED SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTER PRINTER AND
SFGENENT (SEGS, SPECTS) SEGENENT (SEGS, SPECTS)	SFGMFNT (SEG4 COEFFS)SEGMFNT (SEG5 SPECT)SEGMFNT (SEG5 SPECT)FORTRAN IV PROGRAM SPECC<	KS.FRXFM) TAPES=INPUT. PUNCH. TAPES=INPUT. TAPE6=0UTPUT TAPES=INPUT. TAPE6=0UTPUT TAPE7=PUNCH. TAPE6=0 TAPE7=PUNCH. TAPE6=0UTPUT TAPE7=PUNCH. TAPE6=0UTPUT TAPE7=PUNCH. TAPE6=0UTPUT CAPET PUNCH. TAPE6=0UTPUT CAPE5=ENDUCH. TAPE6=0UTPUT COR PLOTTING. TAPE6=0UTPUT CF0R PLOTTING. TAPE7=0UTPUT
SEGWANTISES:SPECTA INPUT, OUTPUT, PUNCH. SEGWANTISES:SPECTA INPUT, OUTPUT, PUNCH. SEGWANTISES:SPECTA INPUT, OUTPUT, PUNCH. SEGWANTISES:SPECTA INPUT, OUTPUT, PUNCH. SEGWANTISES:SPECTA INPUT, PUNCH. SEGWANTISES:SPECTA INPUT, PUNCH. SEGWANTISES:SPECTA INPUT, PUNCH. SEGWANTISES INPUT, INPUT, INPUT, INPUT, INPUT, INPUL, INPUL, INPUT, INP	SEGMENT (SEG5, SPECT)SEGMENT (SEG6, TPANE, FLIRSEGMENT (SEG6, TPANE, FLIRSEGMENT (SEG6, TPANE, FLIRSEGMENT (SEG6, TPANE, FLIRSEGMENT (SEG6, TPANE, FLIRFORTRAN IV PROGRAM SPECCC	KS.FRXFM) TAPES=INPUT. PUNCH. TAPES=INPUT. TAPE6=OUTPUT TAPE5=INPUT. TAPE6=OUTPUT TAPE7=PUNCH. TAPE6=OUTPUT TAPE7=PUNCH. TAPE6=OUTPUT TAPE7=PUNCH. TAPE6=OUTPUT CAPE7=PUNCH. TAPE6=OUTPUT CAPE7=OUTTON AND INTEGRATES OVER ALTITUDES ONS AND STRENGTH SPECTRUM PRIVIED ON LINE PRINTER AND SPECTRUM PRIVIED ON LINE PRINTER AND SPECTRUM PRIVIED ON LINE PRINTER AND SPECTRUM PRIVIED ON LINE PRINTER AND
SEGMENTISEGS, IPANE, FLIRS, FRXFM) SEGMENTISEGS, IPANE, FLIRE C PRDIECT COPE C TAMOSHELE, PROGRAM C COMPUTES MULT-LINE TRANSMISSION SPECTAN FROUGH ATROUGH AND AND AND AND AND AND FROMA C COMPUTES MULT-LINE TRANSMISSION SPECTAN FROUGH AND AND AND FROMA C COMPUTES MULT-LINE TRANSMISSION SPECTAN FROUGH AND AND AND AND FROMA C COMPUTES MULT-LINE TRANSMISSION SPECTAN FROUGH AND	SEGMENT (SEG6.TPANF.FLTRSEGMENT (SEG7.SPPLOT)SEGMENT (SEG7.SPPLOT)SEGMENT (SEG7.SPPLOT)CCC <td>SS.FRXFM) CTRA (INPUT, OUTPUT, PUNCH, TAPE5=INPUT, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE6=OUTPUT, - FON MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE FR EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND</td>	SS.FRXFM) CTRA (INPUT, OUTPUT, PUNCH, TAPE5=INPUT, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE6=OUTPUT, - FON MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE FR EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
SEGMENTISEGT.SPELOT) FRTRAN IV PROGRAM SPECTRA (TNULT, OUTUT, TARESOUTUT, TARESOUTUT, TARESOUTUT, TARESOUTUT, TARESOUTUT, TARESOUTUT, TARESOUTUT, TARESOUTOUT, TARESOUTO,	SEGMENT (SEGT. SPPLOT)FORTRAN IV PROGRAM SPEC222	TRA (INPUT, OUTPUT, PUNCH, TAPE5=INPUT, TAPE6=OUTPUT, - TAPE7=PUNCH, TAPE21 PTION MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES OVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
FORTRAN IV PROGRAM SPECTRA (INUUT: PUNCH, TARES-INUUT: TARES C ATMOSPHERCE BSORPTION MODEL PROGRAM C COMPUTES MULTI-LINE TRANSFER EQUATION MOD INTEGRATES OVER ALTITUDES C ANDIATIVE TRANSFER EQUATION MOD INTEGRATES OVER ALTITUDES C MPITTEN PY G. LIFALING, GENERAL ELECTRIC CO., JAN 1971 C UPUT IS TRANSMITTEN SAFE TEUM PAINTED ON LINE FRIME RAND C UNPUT IS TRANSMITTEN ON DISTENDEN C UNPUT IS TRANSMITTEN PRANTED ON LINE RAND C UNPUT IS TRANSMITTEN PAINTED ON LINE RAND C UNPUT IS TRANSMITTEN PAINTED ON LINE RAND C ALCOMPUT IS TRANSMITTING, SUBROUTINES, TO CONSERVE STRAGE C ALL CAPITATIONS ONDE IN LINEED SUBROUTINES, TO CONSERVE STRAGE 000003 COMMON CONSERVED STRANGED ON LINED SUBROUTINES, TO CONSERVE STRAGE 000003 COMMON CONSERVED STRAGED ON LINES ON LINES ON STRAUGUS ON LINES ON STRAUGUS STRAGESON 000003 COMMON CONSERVED STRAGED ON LINES ON LINES ON LINES ON LINES ON LINES ON STRAUGUS STRAGESON 000003 COMMON STRAGESON STRAGESON STRAGESON <td>FORTRAN IVPROGRAMSPEC12PF0JECTCOPE2CATMOSPHERICABSORCCATMOSPHERICABSORCCSOLVESPADIATIVETRACCNULTI-LINETRACCUTPUTSSCALSOWRITTENDNDISCCCNUTPUTSSCCNUTPUTSSCCNUTPUTSSCCNUTPUTSSCALSOWRITTENDNDISCCALLCOMPUTATIONSDONEI000003COMMONCFPEO(150)S000003COMMONCFPEO(150)S000003COMMONASSRI150SCALLPATH(ASTF2TS000003COMMONCFPEO(150)SCAAASCAAAACACAACACAACAAAACAAAACAAAACAAAACAAAACAAAACAAAACAAAACAAA<!--</td--><td>CTRA (INPUT. OUTPUT. PUNCH. TAPE5=INPUT. TAPE6=OUTPUT TAPE7=PUNCH. TAPE21 APTION MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES OVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND</td></td>	FORTRAN IVPROGRAMSPEC12PF0JECTCOPE2CATMOSPHERICABSORCCATMOSPHERICABSORCCSOLVESPADIATIVETRACCNULTI-LINETRACCUTPUTSSCALSOWRITTENDNDISCCCNUTPUTSSCCNUTPUTSSCCNUTPUTSSCCNUTPUTSSCALSOWRITTENDNDISCCALLCOMPUTATIONSDONEI000003COMMONCFPEO(150)S000003COMMONCFPEO(150)S000003COMMONASSRI150SCALLPATH(ASTF2TS000003COMMONCFPEO(150)SCAAASCAAAACACAACACAACAAAACAAAACAAAACAAAACAAAACAAAACAAAACAAAACAAA </td <td>CTRA (INPUT. OUTPUT. PUNCH. TAPE5=INPUT. TAPE6=OUTPUT TAPE7=PUNCH. TAPE21 APTION MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES OVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND</td>	CTRA (INPUT. OUTPUT. PUNCH. TAPE5=INPUT. TAPE6=OUTPUT TAPE7=PUNCH. TAPE21 APTION MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES OVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
I TAPES=INCUT. TAPEG=OUTOUT. C PFNJECT COPE TAPET=DUNCH. TAPEG=OUTOUT. C COMPUTE MUSTIFIELIC FASSFITON DEE FROMAM TAGOUCH ATMOSPHERE C COMPUTE MUSTIFIELINE FASSFITON AND INTEGRATES DVER ALTITUDES C COMPUTE MUSTIFIELINE FASSFITON AND INTEGRATES DVER ALTITUDES C STAUVES PADIATIVE TRANSFER EQUATION AND INTEGRATES DVER ALTITUDES C METTTEN BY G. LIFBLING. GENERAL ELECTRIC CO JAN 1971 C INPUT STANSMITTED SECTOUM PRINTED ON LINE PAINTER AND C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE PAINTER AND C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE AND C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE FAINTER AND C ALSO WRITTEN ON DISC FOR PLOTTING. IF DESLRED C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE FAINTER AND C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE FAINTER AND C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE FAINTER AND C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE FAINTER AND C ALSO WRITTED ON DISC FOR PLOTTING. IF DESLRED C OUTPUIT IS TRANSMITTED SECTOUM PRINTED ON LINE FAINTER AND C ALSO WRITTED ON CORE ON PLOTTING. IF DESLRED C ALSO WRITTED ON CORE ON PLOTTING. IF DESLRED C ALSO WRITTED ON CORE ON PLOTTING. IF DESLRED <t< td=""><td>112PFNJECT COPE2CCCCCCSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCWRITTEN BY G. LIFBLING.CUNTPUTS ARE LINE POSITIOCNULTITEN BY G. LIFBLING.CNULTITEN BY G. LIFBLING.CALSO WRITTEN ON DISCCOUTPUT IS TRANSMITTED SCALL COMPUTATIONS DONE I000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)2THTTEL000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)</td><td>TAPES=INPUT. TAPE6=DUTPUT TAPE7=PUNCH. TAPE21 APTION MODEL PROGRAM ANSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND</td></t<>	112PFNJECT COPE2CCCCCCSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCWRITTEN BY G. LIFBLING.CUNTPUTS ARE LINE POSITIOCNULTITEN BY G. LIFBLING.CNULTITEN BY G. LIFBLING.CALSO WRITTEN ON DISCCOUTPUT IS TRANSMITTED SCALL COMPUTATIONS DONE I000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)2THTTEL000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)000003COMMON CFFEO(150)	TAPES=INPUT. TAPE6=DUTPUT TAPE7=PUNCH. TAPE21 APTION MODEL PROGRAM ANSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
C Z FFNJECT COPE TAPE7=PUNCH, TAPE21 C ATMOSPHERIC ABSORPTION MODEL PROGRAM C SINUES MULTI-LINE TRANSMISSION SPECTRUM THROUCH ATMOSPHERE C SINUES MULTI-LINE TRANSFER EQUATION AND INTEGRATES DVER ALTITUDES C SINUES PADIATIVE TRANSFER EQUATION AND INTEGRATES DVER ALTITUDES C WRITTEN RY G. LIFBLING, GENERAL ELECTRIC CO., JAN 1971 C URTUIN RY G. LIFBLING, GENERAL ELECTRIC CO., JAN 1971 C UNTUNI S C ALL COMPUTS ARE LINE POSTTIONS AND STRENGTH C ALL COMPUTS ARE POSTTIONS AND STRENGTH C ALL COMPUTS ARE POSTTIONS AND STRENGTH C ALL COMPUTATIONS PONE IN LINKED SUBROUTINES TO CONSERVE STORAGE 000003 DONALE PEFCISION CFRECORD AND AND ALOLI POST ALLART AND ALOLI POST AND AL	22PFRJECT COPECCATMOSPHERICABSORCCCOMPUTES MULTI-LINE TRACSOLVES PADIATIVE TRANSFCWRITTEN BY G. LIFBLING.CUTPUT IS TRANSMITTED SCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE I000003COMMON CFFEO(150)000003COMMON CFFEO(150)	TAPET=PUNCH, TAPE21 APTION MODEL PROGRAM NNSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
C PFOJECT COPE C ATMOSPHERIC ASORPTION MODEL PROGRAM C COMPUTES MULTI-LICE TRANSMISSION SPECTRUM THRUGH ATMOSPHERE C C UPUTS ARE LINE POSITIONS AND STRENGTH C UPUTS STRANSMITTEN SPECTRUM PRINTED ON LINE AND C THIS TON DONE TO LING, TOR PRINTED ON LINE AND C THIS TON DONE TO LING, TOR PRINTED ON LINE AND C THIS TON DONE TO LING, THE ALABOLICATIONS, TO COMSERVE STORAGE C THIS TON DONE TO LING, TO RESERVE STORAGE C THIS TON TONE TO LING, TO CONSTRUCT STORAGE C THIS TON TONE TO LING, TO CONSTRUCT STORAGE C THIS TON TONE TO LING, TO STORAGE C THIS TON TONE TO LING, TO STORAGE C THIS TON C THIS TON C THIS TON C <td>CPF0.JECT COPECATMOSPHERICCSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCUTPUT IS TRANSMITTED SCOUTPUT IS TRANSMITTED SCALL COMPUTATIONS DONE ICOUTPUT IS TRANSMITTED SCALL COMPUTATIONS DONE I000003COMMON CFF0(150)000003COMMON CFF0(150)000003COMMON CFF0(150)2THTEL NO NO SON</td> <td>APTION MODEL PROGRAM ANSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 NIS AND STRENGTH SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND</td>	CPF0.JECT COPECATMOSPHERICCSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCUTPUT IS TRANSMITTED SCOUTPUT IS TRANSMITTED SCALL COMPUTATIONS DONE ICOUTPUT IS TRANSMITTED SCALL COMPUTATIONS DONE I000003COMMON CFF0(150)000003COMMON CFF0(150)000003COMMON CFF0(150)2THTEL NO NO SON	APTION MODEL PROGRAM ANSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 NIS AND STRENGTH SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
C COMPUTES MULTI-LINE TRANSHESTON SPECTRUM THROUGH ATMOSPHERE C SOLVES PADIATVE TRANSFER EQUATION AND INTEGRATES QUER ALTITUDES C SOLVES PADIATVE TRANSFER EQUATION AND INTEGRATES QUER ALTITUDES C SOLVES PADIATVE TRANSFICN SPECTRUM THROUGH ATMOSPHERE C NETTEN FOSTITIONS AND STRENGTH C UTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE PAINTER AND C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE PAINTER AND C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE PAINTER AND C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE PAINTER AND C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE FRANCE C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE FRANCE C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE FRANCE C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE FRANCE C ALSO WRITTEN ON DISC FOR PLOTTING. IF DESTRED C ALSO WRITTEN SPECTRUM PRINTED ON LINE FRANCE C ALSO WRITTEN SPECTRUM PRINTED ON LINE FRANCE C ALSO WRITTEN ON DISC FOR PLOTTING. IF DESTRED C ALSO WRITTEN ON DISC FOR PLOTTING. IS ALLOUGH FRANCE C ALSO WRITTEN ON DISC FOR PLOTING. IS ALLOUGH FRANCE OODOO3 OUNDAL FREFIL	CCOMPUTESMULTI-LINETRACCOMPUTESMULTI-LINETRACSOLVESPADIATIVETRANSFCWRITTENBYG.LIFBLING.CUTPUTSAELINEDSITIOCUTPUTSAELINEDSITIOCALSOWRITTENDNDISCCCTHTSTSTRANSMITTEDCCALSOWRITTENDNCALLCOMPUTATIONSDONEI000003COMMONCFPEO(150)ON000003COMMONCFPEO(150)STF2THT2THTSTF	APTION MODEL PROGRAM ANSMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 NIS AND STRENGTH SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
C COMPUTES MULTI-LINE TRANSMISSION SPECTRUM THROUGH ATMOSPHERE C SRUVES PADIATIVE TRANSMISSION AND INTEGRATES OVER ALTITUDES C SRUVES PADIATIVE TRANSMISSION AND INTEGRATES OVER ALTITUDES C WRITTEN BY G. LIFBLING, GENERAL ELECTRIC CO., JAN 1971 C UPUTIS ARENGATIONS AND STRENGTH C UNPUTS ARE LINE POSITIONS AND STRENGTH C THNDIS ARE LINE POSITIONS AND STRENGTH C THNDIS ARE LINE POSITIONS AND STRENGTH C THIS TRANSMITTED SECTRUM PRINTED ON LINE PRINTER AND C THIS TRANSMITTED SECTRUM PRINTED ON LINE PRINTER AND C THIS TRANSMITTED SECTRUM PRINTED ON LINE PRINTER AND C THIS TRANSMITTED SECTRUM PRINTED ON LINE PRINTER AND C THIS TRANSMITTED SECTRUM PRINTED ON LINE PRINTER AND C THIS TRANSMITTED SECTRUM PRINTED ON LINE PRINTER AND C THIS TRANSMITTED SECTRUM PRINTED ON LINES FROM C THIS TRANSMITTED SECTRUM PRINTED ON LINES FROM C THIS TRANSMITTED SECTRUM PRINTED ON LINES FROM C ALSO MARTANSION CREED C THIS TRANSMITTED SECTRUM PRINTED ON LINES FROM C THIS TRANSMITTED SECTRUM PRINTED ON LINES FROM D000003 THIRE PRINTE	CCOMPUTES MULTI-LINE TRACSOLVES PADIATIVE TRANSFCSOLVES PADIATIVE TRANSFCWRITTEN BY G. LIFBLING.CINPUTS ARE LINE POSITIOCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE IOOOOO3COMMON CFFFO(150)OOOOO3COMMON CFFFO(150)OOOO03COMMON CFFFO(150)	NEMISSION SPECTRUM THROUGH ATMOSPHERE ER EQUATION AND INTEGRATES UVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 NIS AND STRENGTH SPECTRUM PRINTED ON LINE PRINTER AND SPECTRUM PRINTED ON LINE PRINTER AND
C Sñives aniative transfer eguation and integrafes urek altifudes C Weitten BY G. Lifbling, General Electric Co Jan 1971 C Weitten BY G. Lifbling, General Electric Co Jan 1971 C Input is transmitten spectrum patinten on Line print C Output is transmitten spectrum patinten on Line print C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALCONTANTEN SONE IN LINES TO CONSERVE STORAGE C THIS IS MAIN CALLING PROGRAM DO00003 DONNE PRECISION CREQ DO00003 COMMON CFFFOILSO DO0003 COMMON CFFFOILSO D00003 COMMON CFFFOILSO D000003 COMMON LITTLE 1601	CSOLVES PADIATIVE TRANSFCWRITTEN BY G. LIFBLING.CWRITTEN BY G. LIFBLING.CINPUTS ARE LINE POSITIOCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE I000003COMMON CFFEO(150)0000033COMMON CFFEO(150)0000033COMMON CFFEO(150)0000033COMMON CFFEO(150)2THTEL AND ARSHIDGO2THTEL AND ARSHIDGO	ER EQUATION AND INTEGRATES GVER ALTITUDES GENERAL ELECTRIC CO JAN 1971 SPECTRUM PRINTED ON LINE PAINTER AND SPECTRUM PRINTED ON LINE PAINTER AND C FOR PLOTTING. IF DESIRED
C WPITTEN BY G. LIFBLING, GENERAL ELECTRIC_CO., JAN 1971 C INPUTS ARE LINE POSITIONS AND STRENGTH C INPUTS ARE LINE POSITIONS AND STRENGTH C OUTPUT 15 TRANSMITTED SPECTRUM PRINTED ON LINE PRINTER AND C OUTPUT 15 TRANSMITTEN SPECTRUM PRINTED ON LINE PRINTER AND C THIS IS MAIN CALLING PROGRAM C THIS IS MAIN CALLING PROGRAM C THIS IS MAIN CALLING PROGRAM C ALL COMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE D00003 DOUNDE PRECISION CFRED D00003 COMMON ERECISION CFRED D00003 COMMON ABRAILSON D00003 DIMENSION D00003 DIMENSION <tr< td=""><td>CWRITTEN RY G. LIFBLING.CCINPUTS ARE LINE POSITIOCTNPUTS ARE LINE POSITIOCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE IO00003COMMON CFPEO(150)000003COMMON ABSR(150.98).000003COMMON ABSR(150.98).2THTESO ATH CALL SO ATH</td><td>, GENERAL ELECTRIC CO JAN 1971 DNS AND STRENGTH SPECTRUM PRINTED ON LINE PKINTER AND C FOR PLOTTING, IF DESIRED</td></tr<>	CWRITTEN RY G. LIFBLING.CCINPUTS ARE LINE POSITIOCTNPUTS ARE LINE POSITIOCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE IO00003COMMON CFPEO(150)000003COMMON ABSR(150.98).000003COMMON ABSR(150.98).2THTESO ATH CALL SO ATH	, GENERAL ELECTRIC CO JAN 1971 DNS AND STRENGTH SPECTRUM PRINTED ON LINE PKINTER AND C FOR PLOTTING, IF DESIRED
C WRITTEN BY G. LIFBLING, GENERAL ELECTRIC CO JAN 1971 C INPUTS ARE LINE POSITIONS AND STRENGTH C OUTPUT IS TRANSMITTEN SPECTRUM PRINTED ON LINE PRINTER AND C OUTPUT IS TRANSMITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED C ALSO WRITTEN ON DISC FOR PLOTTING, IF DESIRED OD00003 DUDALE PRECISION CFREQ OD00003 COMMON CFREQ OD0003 COMMON PASHIFO, 981, 40(3), SPEOLISO), SPLANGSISO), SALABEG,O/, ST/AHSEG,O/, ST/AHSEG,O/, ST/AHSEG,O/, SA/AHSEG,O/	C WRITTEN BY G. LIFBLING. C TNPUTS ARE LINE POSITIO C OUTPUT IS TRANSMITTED S C ALSO WRITTEN ON DISC C ALSO WRITTEN ON DISC C ALL COMPUTATIONS DONE I 000003 COMMON CFPEO(150) 000003 COMMON CFPEO(150) 000003 COMMON ABSR(150.98). 000003 COMMON ABSR(150.98).	, GENERAL ELECTRIC CO JAN 1971 DNS AND STRENGTH SPECTRUM PRINTED ON LINE PKINTER AND C FOR PLOTTING, IF DESIRED
CINPUTS ARE LINE POSITIONS AND STRENGTHCOUTPUT IS TRANSMITTEN ON DISC FOR PLOTTING. IF DESIREDCOUTPUT IS TRANSMITTEN ON DISC FOR PLOTTING. IF DESIREDCALSO WRITTEN ON DISC FOR PLOTTING. IF DESIREDCALL CAPULATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE000003DOUDLE PRECISION CFREQ000003COMMON CFREQ000003COMMON CFREQ000003COMMON FORTISO PARTIFON AND STRUNGLISOD ENOTISOD000003COMMON FORTISOD AND STRUNGLISOD ENOTISOD000003COMMON FSTOP000003COMMON NESTAT000003DIMERSION000003INTELEINSION000003INTELEINSION000003INTELEINSION000003INTELEINSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003INTELENSION000003 <td< td=""><td>C TNPUTS ARE LINE POSITIO C OUTPUT IS TRANSMITTED S C OUTPUT IS TRANSMITTED S C ALL COMPUTATIONS DONE I C ALL COMPUTATIONS DONE I 000003 COMMON CFPEO(150) 000003 COMMON ABSR(150, 98), 000003 1 PATH(98), ATEM</td><td>DNS AND STRENGTH SPECTRUM PRINTED ON LINE PRINTER AND C FOR PLOTTING. IF DESIRED</td></td<>	C TNPUTS ARE LINE POSITIO C OUTPUT IS TRANSMITTED S C OUTPUT IS TRANSMITTED S C ALL COMPUTATIONS DONE I C ALL COMPUTATIONS DONE I 000003 COMMON CFPEO(150) 000003 COMMON ABSR(150, 98), 000003 1 PATH(98), ATEM	DNS AND STRENGTH SPECTRUM PRINTED ON LINE PRINTER AND C FOR PLOTTING. IF DESIRED
CINPUTSARE LINE POSITIONSANDSTRENGTHCOUTPUT IS TRANSMITTEN SPECTRUM PRINTED ON LINE PRINTEDCOUTPUT IS TRANSMITTEN SPECTRUM PRINTED ONCALSO WRITTEN ON DISC FOR PLOTTING. IF DESIREDCALL COMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGECALL COMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE000003COMMON CFFEOISION CFEC000003COMMON CFFEOISION CFEC000003COMMON CFFEOISION CFEC000003COMMON CFFEOISION CFEC000003COMMON CFFEOISION CFEC000003COMMON CFFEOISION CFEC2TITLE (18). ATEMP(98). CONC(3. 99). ALOK(98). DOPP(3.98).2TITLE (18). ATEMP(98). CONC(3. 99). ALOK(98). DOPP(3.98).2TITLE (18). ATEMP(98). CONC(3. 99). ALOK(98). DOPP(3.98).2TITLE (18). ATEMP(98). SFOILSO). STRUNGISO). ENCYLIGO).2COMMON LITPE(150). NITPE(3). MC(3). S1(2). S1(2). S1(2).000003COMMON LITPE(16). NITPE(3). MC(2). S3(4HSEG3.0'. S4(4HSEG4.0'.)).000003DIMENSION SI(2). S2(2). S3(2). S4(2). S1(2).000003DIMENSION SI(2). S2(2). S3(2). S4(4SEG3.0'.).000003DIMENSION SI(2). S2(2). S3(2). S4(2).000003DIMENSION SI(2). S2(2). S3(2). S4(2).000003DIMENSION SI(2). S5(2). S4(2).000003 <t< td=""><td>CTNPUTS ARE LINE POSITIOCOUTPUT IS TRANSMITTED SCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE IOO00003OUUNUN CFFEO(150)O000003COMMON CFFEO(150)0000003COMMON ABSR(150, 98).0000003COMMON ABSR(150, 98).0000003COMMON ABSR(150, 98).</td><td>DNS AND STRENGTH SPECTRUM PRINTED ON LINE PKINTER AND C FOR PLOTTING, IF DESIRED</td></t<>	CTNPUTS ARE LINE POSITIOCOUTPUT IS TRANSMITTED SCOUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCALSO WRITTEN ON DISCCALL COMPUTATIONS DONE IOO00003OUUNUN CFFEO(150)O000003COMMON CFFEO(150)0000003COMMON ABSR(150, 98).0000003COMMON ABSR(150, 98).0000003COMMON ABSR(150, 98).	DNS AND STRENGTH SPECTRUM PRINTED ON LINE PKINTER AND C FOR PLOTTING, IF DESIRED
C OUTPUT IS TRANSMITTED SPECTRUM PRINTED ON LINE PRINTED ON LISE C THIS IS MAIN CALLING PROGRAM C THIS IS MAIN CALLING PROGRAM C ALL COMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE 0000033 DOUNLE PRECISION GFREO 0000033 COMMON CFPEOISO 000003 COMMON LTYPEGISO 000003 DIMENSION SI(2), S2(2), S3(2), S4(2), S4(2) 000003 DIMENSION SI(2), S2(2), S4HSEG3,0/ 000003 IN 0000	COUTPUT IS TRANSMITTED SCALSO WRITTEN ON DISCCCCTHIS IS MAIN CALLING PRCALL COMPUTATIONS DONE I000003DOURLE PRECISION CFRE0000003COMMON CFFE0(150)000003COMMON ABSR(150, 98)000003COMMON ABSR(150, 98)2THIS S2THIS S2THIS S000001COMMON ABSR(150, 98)000003COMMON ABSR(150, 98)000003COMMON ABSR(150, 98)000003COMMON ABSR(150, 98)000003COMMON ABSR(150, 98)	SPECTRUM PRINTED ON LINE PKINTER AND C FOR PLOTTING, IF DESIRED
C ALSO WRITTEN ON DISC FOR PLOTTING. IF DESTRED C THIS IS MAIN CLING PROGRAM C THIS IS MAIN CLORE IN LINKED SUBROUTINES TO CONSERVE STORAGE 0000003 C HL COMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE 000003 COMMON CFPEOILSO) 000003 COMMON FSTAT, FSTOP 000003 COMMON LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE 000003 DIMENSION SI(2), S2(2), S4(2), S7(2), S4(2),	C ALSO WRITTEN ON DISC C THIS IS MAIN CALLING PR C ALL COMPUTATIONS DONE I 000003 DOUALE PRECISION CFRE0 000003 COMMON CFFE0(150) 000003 1 PATH(98), ATEM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FOR PLOTTING, IF DESIRED
C THIS IS MAIN CALLING PROCRAM C THIS IS MAIN CALLING PROCRAM 000003 C ALL COMPUTIONS DONE IN LINKED SUBRAUTINES TO CONSERVE STARAGE 000003 C ALL COMPULE PRECISION GREEO 000003 C ALL COMPULE PRECISION STERO 000003 C ALL COMPULE PRECISION 000003 TITLE(18), AC(3), SCONC(3, 98), ALOK(98), DOPP(3,98), 000003 C ALRANN FSTART, FSTOP 000003 C ALRUNG (150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE 000003 D ALA SLUAGE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE 000003 D ATA SI/4HSEGS,0/, SS/4HSEGS,0/, S4/4HSEG7,0/, S4/4HSEG4,0/, 000003 D ATA SI/4HSEGS,0/, S6/4HSEG6,0/, S7/4HSEG7,0/, S4/4HSEG4,0/, 000003 IN SS/4HSEGS,0/, S6/4HSEG6,0/, S7/4HSEG7,0/, S4/4HSEG4,0/, 000003 IN SI PARANT 000003 IN SAMASEGS,0/, S6/4HSEG6,0/, S7/4HSEG7,0/, S4/4HSEG4,0/, 000003 IN SAMASEGS,0/, S6/4HSEG6,0/, S7/4HSEG7,0/, S4/4HSEG4,0/, 000003 IN SAMASEGS,0/, S6/4HSEG6,0/, S7/4HSEG7,0/, S4/4HSEG4,0/, 0000003 IN SAMASEGS,0/, S6/4HSE	C THIS IS MAIN CALLING PR C ALL COMPUTATIONS DONE I 000003 DOURLE PRECISION CFREQ 000003 COMMON CFFEO(150) 000003 I PATH(98), ATEM 2 TITLE 0 0000	
C THIS IS MAIN CALLING PROGRAM 0000003 C ALL COMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE 0000003 COMMUNE PRECISION CFREQ 0000003 COMMONE PRECISION CFREQ 0000003 TITLE(18), ATEMP(98), CONC(3, 98), ALOK(98), UOPP(3,98), 000003 TITLE(18), ACOMINE, STEDIISO), STEDIISO), STEDIISO), ENCYLISO), 000003 TITLE(18), AD(3), BO(3), CO(3), ALBEUU, GFMP, GEMIS 000003 DIMMEN LITYPE(150), SI(2), S3(2), S4(2), S	C THIS IS MAIN CALLING PR C ALL COMPUTATIONS DONE I 000003 DOURLE PRECISION CFRE0 000003 COMMON CFPE0(150) 000003 COMMON ABSR(150, 98), 000003 COMMON ABSR(150, 98), 000003 COMMON ABSR(150, 98),	
000003 C ALL CIMPUTATIONS DONE IN LINKED SUBROUTINES TO CONSERVE STORAGE 000003 00001 DOURLE PRECISION CFREQ 000003 COMMON CPF0150 000003 COMMON ATEMPT 981, A127,251, B125,251, CL25,251, CONSERVE STORAGE 000003 COMMON ATEMPT 981, ATEMPT 981, CONC13, 981, ALOK1 981, DOPPT3,981, STOUGO1501, ENCVIDED1501, ENCVIDED1501, ENCVIDED1501, ENCVIDED1501, ENCVIDED1501, ENCVIDED1501, ALBEULL GFMP, GEMTS 000003 TTTLE1181, A0131, B0131, C0131, ALBEULL GFMP, GEMTS 000003 COMMON LTYPE1501, NYPE131, NLINE, NSPEC, IN, IOUT, ICASE 000003 DIMENSION SI(2), S2(2), S3(2), S4(2), S4(2), S4(2), S4(2), S4(4)SEG4,0/. 000003 DATA S1/4HSFG10/. 01 S5/4HSEG50/. S5/21, S4(2), S4(2). 000003 DATA S1/4HSFG10/. 000003 IN S5/4HSFG50/. 000003 IN S5/4HSFG5/. 000003 IN S6/4HSFG5/. 000003 IN S6/4HSFG5/. 000003 IN S 000003 IN S 000003 IN S 000003 S S 000003 <td>C ALL COMPUTATIONS DONE I 000003 DNURLE PRECISION CFREQ 000003 COMMON CFPEO(150) 000003 COMMON ABSR(150, 98). 000003 COMMON ABSR(150, 98). 2 TITLETON.</td> <td>(DGP AM</td>	C ALL COMPUTATIONS DONE I 000003 DNURLE PRECISION CFREQ 000003 COMMON CFPEO(150) 000003 COMMON ABSR(150, 98). 000003 COMMON ABSR(150, 98). 2 TITLETON.	(DGP AM
000003 DDURLE PRECISION CFREQ 000003 COMMON CFREQ150. 2 STF011501. 3 TITLE(18). 000003 COMMON FSTART. 66M5. SFC01501. 3 TITLE(18). 000003 COMMON FSTART. 000003 COMMON FSTART. 000003 COMMON LTYPE(1501. 000003 DIMENSION SI(2). 000003 INFENSION SI(2). 000003 IN 10 SALAHSEG5.0/. 000003 IN	000003 DOURLE PRECISION CFRE0 000003 COMMON CFPE0(150) 000003 COMMON ABSR(150, 98). 1 PATH(98), ATEM 2 2 275	IN LINKED SUBROUTINES TO CONSERVE STORAGE
000003 COMMON CFPE0(150) 000003 COMMON ABSR(150, 98). A(27,25). B(25,25). C(25,25). 000003 COMMON ABSR(150, 98). A(27,25). B(25,25). C(25,25). 2 TITLE(18). ATEMP(98). CONC(3. 98). ALGN(150). ENGY(160). 2 TITLE(18). AD(3). BO(3). SFO(150). STRUNG(150). ENGY(160). 3 TITLE(18). AD(3). BO(3). C(03). ALBEUU. GFMP. GEMTS 000003 COMMON ESTART. FSTOP 000003 DIMENSION SI(2). S2(2). S3(2). S4(2). S4(2). S4(2). 000003 DIMENSION SI(2). S2(2). S4(2). S4(2). S4(4)SEG4.0/. 000003 DATA 1 S5/44SEG5.0/. S5/44SEG5.0/. S7/44SEG7.0/. 000003 IN 1 S5/44SEG5.0/. S6/44SEG5.0/. 000003 IN 1 S5/44SEG5.0/. 000003 IN 1 S5/44SEG5.0/. 000003 IN 1 S 000003 IN 1 S 000004 00 000005 FEAD 000005 READ 10 S 10 S	000003 COMMON CFPE0(150) 000003 COMMON ABSR(150, 98). 1 PATH(98), ATEM 2 STE	
000003 CIMMON ABSR[150, 98], A[27, 25], R[25, 25], C(25, 25], 2 2 STEDI[90], ATEMP[98], CONC(3, 98], ALOK(98], UOPP[3,98], 2 3 TITLE[18], AD(3), SPED[150], STKUNG[150], ENGY[160], 3 TITLE[18], AD(3), BD(3), CO(3), ALBEUU, GFMP, GEMIS 000003 COMMON FSTART, FSTOP 000003 COMMON FSTART, FSTOP 000003 DIMENSION S2(2), S3(2), S4(2), S4(2), S4(4)SEG4, 0/, * 000003 DATA FFLE/4HSFGS, S2(4), S4(2), S4(2), S4(2), S4(4)SEG4, 0/, * 000003 DATA FFLE/4HSFGS, S4(4)SEG5, 0/, S7(2), S4(4)SEG4, 0/, * 000003 IN S5/4HSEG5, 0/, S6/4HSEG5, 0/, S7/4HSEG7, 0/ 000003 IN S 000003 IN S 000003 IN S 000003 IN S 000004 IDUT 6 000003 IN S 000004 IDUT S 000005 READ NUMBER C READ NDFEC	000003 C.NMMON ABSR[150, 98), 1 PATH[98], ATEM 5TF 2 TTTTELEY	
1 PATH(98), ATEMP(98), CONC(3, 99), ALOk(98), UOPP(3,98), 2 TITLE (18), STF0(150), SFF0(150), STKUNG(150), ENGY(160), 3 TITLE (18), A0(3), B9(3), C0(3), ALBEUU, GFEMP, GEMIS 000003 COMMON ESTART, FSTOP 000003 COMMON LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, 10UT, 1CASE 000003 DIMENSION S1(2), S2(2), S3(2), S4(5), S4(2), S4(4)SEG4,0/, S4/4)SEG4,0/, S4/4)SEG4,0/, S7/4)SEG5,0/, S7/4)SEG7,0/, S4/4)SEG7,0/, C 000003 DATA S1/4)SEG5,0/, S6/4)SEG5,0/, S7/4)SEG5,0/, S7/4)SEG5,0/, S7/4)SEG5,0/, S7/4)SEG5,0/, S7/4)SEG7,0/, S7/4)SEG5,0/, S7/4)SEG7,0/, S7/4)SEG7,0	1 PATH(98), ATEM 575	A127.251, B125.251, C125.251,
2 STF0(150), SPF0(150), SFKUNG(150), ENGY(160), 3 TITLE(18), A0(3), B0(3), C0(3), ALBEUU, GFMP, GEMIS 000003 COMMON ESTART, FSTOP 000003 COMMON LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, 10UT, 1CASE 000003 DIMENSION S1(2), S2(2), S3(2), S4(2), S6(2), S4/4SEG3,0/, 000003 DATA S1/44SEG1.0/, S2/44SEG2.0/, S3/44SEG3.0/, 000003 DATA S1/44SEG1.0/, S2/44SEG2.0/, S3/44SEG7.0/ 000003 DATA FFLE/44SEGS.0/, S2/44SEG2.0/, S7/44SEG7.0/ 000003 DATA FFLE/44SEGS.0/, S2/44SEG2.0/, S7/44SEG7.0/ 000003 IN = 5 000003 IN = 5 000004 IN = 5 000003 IN = 5 000004 E 000005 READ NUMBER OF SPECTRA TO BE CALCULATED		4P(98), CONC(3, 98), ALUK(98), UOPP(3,98),
3 TITLE(18). A0(3). B9(3). C0(3). ALBEUU. GTEMP. GEMTS 000003 COMMON ESTART. FSTOP 000003 COMMON LTYPE(150). NTYPE(3). NLINE. NSPEC. IN. 10UT. ICASE 000003 DIMENSION S1(2). S2(2). S3(2). S4(2). S4(4HSEG4.0/.) 000003 DATA S1/4HSEG1.0/. S2/4HSEG2.0/. S3/4HSEG3.0/. 000003 DATA TFILE/4HSEGS.0/. S6/4HSEG2.0/. 000003 DATA TFILE/4HSEGS.0/. 000003 TN = 5 000003 IN = 5 000003 IN = 6 000004 E C READ NUMBER OF SPECTRA TO BE CALCULATED		-01150), SPFD(150), STKUNG(150), ENGY(160),
000003 CIMMUN FSTART, FSTOP 000003 CUMMUN LTYPE(150). NTYPE(3), NLINE, NSPEC. IN. 10UT. 1CASE 000003 DIMENSION S1(2). S2(2). S3(2). S5(2). S4/4HSEG4,0/. 000003 DIMENSION S1(2). S2(2). S3(2). S4/2). S4/4HSEG4,0/. 000003 DIMENSION S1(2). S2(2). S3(2). S4/2). S4/2). 000003 DATA S1/4HSEG1.0/. S2/4HSEG2.0/. S3/4HSEG7.0/ 000003 DATA IFILE/4HSEGS.0/. S6/4HSEG2.0/. S7/4HSEG7.0/ 000003 IN = 5 000004 IN = 5 000004 IOUT = 6 000005 READ NUMBER OF SPECTRA TO BE CALCULATED		3), 89(3), CO(3), ALBEUU, GTEMP, GEMTS
000003 CUMMUN LTYPE(150). NTYPE(3). NLINE. NSPEC. IN. 10UT. 1CASE 000003 DIMENSION S1(2). S2(2). S3(2). S5(2). S0(2). S7(2) 000003 DIMENSION S1(2). S2(2). S3(2). S4/4HSEG3.0/. 000003 DATA S1/4HSEG1.0/. 000003 DATA S1/4HSEG1.0/. 000003 DATA S1/4HSEG5.0/. 000003 DATA FILE/4HSEG5.0/. 000003 IN FILE/4HSEG5.0/. 000003 IN 5 000004 IN 6 000005 READ NUMBER 06 C READ NUMBER	000003 COMMON FSTART, FSTOP	
000003 DIMENSION S1(2), S2(2), S3(2), S4(2), S4(2), S1(2) 000003 DATA S1/4HSEG1.0/. S2/4HSEG2.0/. S3/4HSEG3.0/. S4/4HSEG4.0/. 000003 DATA [FILE/4HSEG5.0/. S6/4HSEG2.0/. S7/4HSEG7.0/ 000003 DATA [FILE/4HSEGS.0/. S6/4HSEG5.0/. S7/4HSEG7.0/ 000003 IN = 5 000004 IN = 5 000005 READ NUMBER OF SPECTRA TO BE CALCULATED 000005 READ (IN. 1010) MSPEC	000003 COMMPN LTYPE(150). NTY	PE(3), NLINE, NSPEC, IN. IOUT, ICASE
000003 DATA S1/4HSFG1.0/. S2/4HSFG2.0/. S3/4HSFG3.0/. S4/4HSEG4.0/. 000003 1 S5/4HSFG5.0/. S6/4HSFG6.0/. S7/4HSEG7.0/ 000003 0ATA [FILE/4HSFGS/ S6/4HSFG6.0/. S7/4HSEG7.0/ 000003 1N = 5 000003 000004 10UT = 6 6 000005 READ NUMBER OF SPECTRA TO BE CALCULATED 000005 RFAD (IN. 1010) MSPEC	000003 DIMENSION SI (2), S2(2),	, S3(2), S4(2), S5(2), Su(2), S7(2)
1 S5/4HSEG5.0/. S6/4HSEG6.0/. S7/4HSEG7.0/ 000003 1N = 5 000004 1N = 5 000004 10UT = 6 000005 READ NUMBER OF SPECTRA TO BE CALCULATED 000005 READ (IN. 1010) MSPEC	000003 DATA S1/4HSFG1.0/. S2	2/4HSEG2.0/. S3/4HSEG3.0/. S4/4HSEG4.0/.
000003 0ATA TFILE/4HSFGS/ 000003 TN = 5 000004 C C READ NUMBER OF SPECTRA TO BE CALCULATED 000005 READ (TN. 1010) MSPEC	1 S5/4HSEG5.0/. S6	5/4HSEG6.0/. S7/4HSEG7.0/
000004 IN = 5 000004 IOUT = 6 C READ NUMBER OF SPECTRA TO BE CALCULATED 000005 READ (IN, 1010) MSPEC	000003 DATA TFILE/4HSFGS/	
000004 IOUT = 6 C READ NUMBER OF SPECTRA TO BE CALCULATED 000005 READ (IN. 1010) MSPEC	000003 IN = 5	
C READ NUMBER OF SPECTRA TO BE CALCULATED 000005 C READ (IN. 1010) MSPEC	000004 10UT = 6	
000005 C READ (IN. 1010) MSPEC		
000005 READ (IN. 1010) MSPEC		
	000005 READ (IN. 1010) MSPEC	

	KEAU (IN, 1030) IIILE
00	GO TO SUBROUTINE TO SET UP ARRAY OF VOIGT PROFILES
00022	CALL SEGMENT (FFILE, 3, S1, 0, 0)
)00326 C	CALL VNIGT
υu	GO TO SUBROUTINE TO READ ATMOSPHERIC MODEL DATA AND DESIRED
C	GEOMETRY AND CALCULATE TABLES OF ALTITUDES, TEMPERATURES AND
	SPECTES CONCENTRATIONS FOR DESTRED PATH
: 0	SUBROUTINE ALSO CALCULATES DOPPLER AND LOPENTZ LINEWIDTH
C	FACTOPS FOR EACH ALTITUDE AND SPECIES
00027	CALL SEGMENT (TFTLE, 3, S2, 0, 0)
00033	CALL HE IGHT
	GO TO SUBPOUTINE TO READ IN LINES. SORT. AND SET UP
. .	LIMITS FOR LINE OVERLAPPING
00034	CALL SEGMENT (IFILE, 3, S3, 0, 0)
00040	CALL LINER
	GO TO SUBROUTINE TO CALCULATE ABSORPTION AND EMISSION COEFFICTENTS
່ວ. 	FOR FACH LINF AT EACH ALTITUDE
1	CALL SECMENT LIETTE, 2, 54, 0, 01
00045	CALL COFFES
00	AT LAST READY TO COMPUTE SPECTRUM
00046	CALL SECMENT (TETLE, 3, S5, D, O)
00052	CALL SPECT
	RETURN FROM SPECTRUM CALCULATION
0	COMPUTE FOURLEP TRANSFORM OF SPECTRUM
00053	CALL SEGMENT (IFILE, 3, S6, 0, 0)
00057	CALL TRANF
U	
J	PLOT SPECTRUM AND TRANSFORM
000060	CALL SEGMENT (IFILE, 3, 57, 0, 0)
00064	CALL SOPLAT (MSPECC, MSPEC)
J	
J	ARE ANY MORE SPECTRA TO BE CALCULATED

000000	IF (MSPECC .GE. MSPEC) GO TO 150
000071	MSPECC = MSPECC + 1
000072	G0 T0 110
061 610000	
	DILIP DECOMANT 1171
000075 1030	D FORMAT (1844)
000075	ĒND
and the second a second s	
and and the second s	
······································	
and the second se	

SUBACLTINE VOIGTSUBACLTINE VOIGTSUBACLTINE VOIGTCSLBROUTINE TO SET UP TABLES CF VCIGT PROFILES FOR USE IN CCMPLTES PROFILES FOR TABULATED VALUES UF X AND YCCCMPLTES PROFILES FOR TABULA COFFICIENTS, NOT ACTUAL PROFILESCDOUBLE PRECISION CFREQCDOUBLE PRECISION CFREQCOMMCNCFREQ(150)COMMCNABSB(150, 98), A(27,25), B(25,25), C(25,25),LPATH(58), ATEMP(58), CONC(3, 98), ALOR(93), COPP((3,98),	<pre>2 STFQ(150), SPFQ(150), STRQNG(150), ENGY(160), 3 TITLE(18), AQ(3), BQ(3), CQ(3), ALBEDO, GTEMP, GEMIS COMMEN FSTART, FSTOP COMMEN LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE C TABLES OF X AND Y CCEFFICIENTS DIMENSIEN X(27), Y(25), PHI(27,25) CONTINUENCE (PUTTIN), AND 111</pre>	REAL K. KI, K2, K3 DATA X / 0.00, 0.25, C.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2 2.50, 3.00, 3.50, 4.00, 5.00, 6.00, 8.00, 10.00, 15.00, 2 20.00, 30.00, 50.00, 100.00, 500.00, 1000.00, 3 5000.00, 7500,00, 10000.00 / 0ATA Y / 0.00, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 1 3.50, 4.00, 4.50, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00, 2 12.00, 14.00, 15.00, 18.00, 20.00, 22,000, 24,00 /	C LOOP FOR EVALUATING PRCFILES C K IS VCIGT PROFILE FUNCTION DO 150 IY = $1,25$ NY = Y(IX) YY = Y(IY) = CONST * K(XX, YY)	C ALL PROFILES CALCULATEC C NOW FIT PARABCLA TC GRCUPS OF THREE X VALUES DO 200 IY \neq 1,25 DO 200 IX = 1,25 YONE = PHI(IX, IY) YTWG = PHI(IX+1, IY)	
600002 000002 000002	000002 000002	000002	CC0010 000011 000012 000012	000031 000033 000034 000034	

TANEGUS EQUATIONS IN THREE UNKNOWNS GEFFICIENTS S NE * XTHS + XTWS * XTHR HR * XCSG - XTWS * XONE TWO, + XONE * YTHR + YTWO * XTHR TWO - XTHR * YONE - YTWO * XTHR TWO - YTHR * XONE - YTWO * YTHR TWO - YTHR * XOSG - XTHS * YTHR TWO * YTHR * XOSG - XTHS * YTHO TWO * YTHS * XTHO * YTHO * YONE	
YTHR = PHI(IX+2, IY) XONE = X(IX) XTHC = X(IX+1) XTHR = X(IX+1) XTHR = X(IX+2) XOSC = XCNE ** 2 XTHS = XTHR ** 2 HAVE TFREE LINEAR SIMU UNKNCHNS ARE PARABGLA SOLVE USING DETERMINAN DEIN = XOSQ * XTWQ + X DEIN = XOSQ * XTWQ - XTHR A(IX, IY) = (YCNE * B(IX, IY) = (YCNE * C(IX, IY) = (XOSQ * 1 + YONE * 1 + YONE *	RETURN GND
000043 CCC046 C00047 000051 000052 000055 C 000057 C C C C C C C C C C C C C	000145

	CC0C05 C00005 000023 000033 000033 C00037 C00037	<pre>KEAL K,K1,K2,K3 IF (Y.LT.1.0.AND.X.LT.4.0.GR.Y.LT.1.8/(X4 IF (Y.LT.2.5.AND.X.LT.4.0) G0 T0 200 IF (Y.LT.2.5.AND.X.LT.4.0) G0 T0 200 C0 K = K2(X,Y) ZC0 K = K2(X,Y) RETURN</pre>	1.0)) GD T0 300
	000043 000046 000046	300 K = K1(X,Y) Retlan End	
:			

•

5/X**6+6•5€25/X**8		0 10 2500	
<pre>= 0.0 = 0.0 (X .6E. 1C00.0) GO TO 1C05 = 29.53125 / X**10 = 162.4218 / X**12 = 1655.7421 / X**14 01 = -(.5/X**2+.75/X**4+1.87 01 = -(.5/X**2+.75/X**4+1.87</pre>	D2 = (1DND1)/(2.*X) NCT = Y*DNO1 (Y.LE.1.0E-08) G0 TC 25CC = 1.0 = Y 20CC I = 2,50 = (X*DN01+DNC2)*(-2.)/FLGAT 02 = CN01 01 = DN (*CD(I,2)) 2000,200C,1500 = -G	= DN*YN hcT = FUNCT+C*G (ABS(G/FUNCT).LE.1.CE-08) G NTINUE = U1-1.12837917*FUNCT TURN D	
1005 UN		25000 25000 81 25000 81 8 8	
000155 000155 000156 000161 000163 000167	00215 00225 00222 002225 002230 00233 00234 002245 002245 002245 002245	000250 000251 000254 000256 000265 000265	

₈194

9E-2, 7E-7,	97400, 089/ Y2+K**2]				
C5E-1,1.C9017206E-1,2.4810520 36E-4,7.80255648E-6,1.0860693	36 5E-13/ 5,1.23407622,1.73853771,2.254 3.54476404,4.60368245,5.38746 (R/Y)+S*ATAN(S/Y)5*Y*(ALOG				
FICN K2(X,Y) K2 SICN W(10), T(10) W/4.62243670E-1,2.866755 3.24377334E-3,2.283386	<pre>4.355540995-10,2.22239 T/0.245340708,0.73747372 2.78880666,3.34765457; Y * Y 0.0 1 = 1,10 1(1)-X 1(1)+X 1(1)+X 1(1)+X 5(Y2+5**2)))*W(1)</pre>	C.3183C58E6*G			
FUNCT C00005 FUNCT REAL C00005 D1MEN C00005 CATA	C00005 C00005 C00005 C00007 C00007 C00010 C = 0 C =	000057 K2 = 000061 RETUR 000061 RETUR 000062 END			

.

COCO5 DATA T/0.24534C7C8,0.737473729,1.23407622,1.73853771,2 1 2.788806C6,3.34785457,3.94476404,4.60368245,5.3 0CO05 Y2 = Y * Y 0CC05 G = 0.0 CC007 UD 100 I = 1,10 00010 100 G = G+(1.0E0/((X-T(I))**2+Y2)+1.0E0/((X+T(I))**2+Y2))* 00070 K3 = 0.318305866**6	606937E-7,	· · ·
CC007 UD 100 I = 1,10 00010 100 G = G+(1.0E0/((X-T(I))**2+Y2)+1.0E0/((X+T(I))**2+Y2))* 00024 K3 = 0.3183058648745	2.25497400, 38748089/	
00026 RETLAN 100027 END	(1)**	
	. :	· ·
		. ·

196,

SUBRCUTINE HEIGHTSUBRCUTINE HEIGHTCREADS IN SPECIES AND MODEL ATMOSPHERE CATA AND GECMETRY CASECCCMPUTES TABLES CF PATH LENGTHS, CCNCENTRATICNS, TEMPERATURESCALSO CCMPUTES FACTORS FOR LORENTZ AND DOPPLER LINEWIDTHS02DOUBLE PRECISICN CFREQ02COMMCN CFREQ(150)02COMMCN ABSE(150, 98), A(27,25), B(25,25), C(25,25),02COMMCN ABSE(150, 98), A(27,25), B(25,25), C(25,25),03COMMCN ABSE(150, 98), A(27,25), B(25,25), C(25,25),04205COMMCN ABSE(150, 98), A(27,25), B(25,25), C(25,25),05206711LE(18), AQ(3), BQ(3), CONC(3, 92), STRONG(150), ENGY(160),07208711LE(18), AQ(3), BQ(3), CO(3), ALBECO, GTEMP, GEMIS	<pre>02 CGMMCN FSTART, FSTGP 02 CGMMCN LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE 02 CDMMCN LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE 02 DIMENSICN FMASS(3), ALTAB(5C), TEMTAB(50), CONTAB(3,50), 1 HINC(50), HTAB(100), SNAME(3), PRESTB(50), PRESS(98) 02 DATA REARTH, PI, CLIGHT, ALOSCH, GAS, FLOREN / 02 DATA FLIMB/4HLIMB/ , SUN/4HSUNL/ 02 DATA FLIMB/4HLIMB/ , SUN/4HSUNL/</pre>	C READ THREE DIFFERENT SPECIES C READ THREE DIFFERENT SPECIES C REAC IN SPECIES NAME ANC MCLECULAR WEIGHT C REAC NUMBER OF LINES OF THIS SPECIES TO BE INCLUDED C ALSO READ COFFECTENTS OF PARAGOLA DESCRIPTING PARTITION FUNCTION	02 NSEC = 0 03 NSFEC = 0 04 D0 120 I = 1,3 05 READ (IA, 1100) SNAME(I), FMASS(I), NTYPE(I), AQ(I), BQ(I), CQ(I). 05 C 06 D0 120 I = 1,3 07 D0 120 I = 1,3 08 D0 120 I = 1,3 09 State BLANK 24 IF (FFMASS(I)) 140, 120 26 I20 NSPEC = NSPEC + 1	<pre>32 C READ GECMETRY CASE AND APPRCPIATE PARAMETERS 32 140 READ (IN, 1250) WORC, NMOD, TEMP1, TEMP2, ALBEDO C READ MCCEL ATMOSPHERE CHARACTERISTICS C MCDEL MUST GO FRCM 0 TC 100 KM ALTITUDE C ALTITLCE SCALE 50 READ(IN, 1260) (ALTAB(I), I = 1, NMOD)</pre>	C TEMPERATURES 63 REAC(IN, 1260) (TEMTAB(I), I = 1, NMUD) C PRESSURES 76 READ(IN, 1300) (PRESTB(I), I = 1, NMOD) 76 C SPECIES CONCENTRATICNS
000000000000000000000000000000000000000	00000 00000 00000 00000		CC000 CCC00 CC000 C0000 C0000 CC000 C0000 CC000	00005	00000

DO 150 I = 1, NSPEC 150 REAC (IN, 1300) (CONTAE(I,J), J = 1, NMCD)	C. WRITE TITLES WRITE (10UT, 1360) TITLE WRITE (10UT, 1370) (SNAME(1), I = 1,NSPEC)	C DETERMINE GECMETRY CASE C CASE 1. LOOKING AT-BLACKBODY RADIATION FROM GROUND (4.6 MICRONS) C 2. LIMB TRANSMISSICN (2.3 OR 4.6 MICRONS)	C 9. PUUDLE FASS SUN - GRUUND - SATELLITE (2.3 MICKUNS) C 4. SAME AS 3 BUT INCIDENT AND EXIT ANGLES EQUAL	ICASE = 1 If (hcrd .eq. flimb) Icase = 2	IF (WCRD .EQ. SUN) ICASE = 3 GO TC (240, 170, 240, 240), ICASE	C LIMB CASE	170 GRAZE = TEMPI C PATHLENGTH INCREMENT IS 1/48 OF TOTAL PATH THROUGH AT MOSPHERE	C ATMOSPHERE IS DEFINED IC STOP AT 100KM ALTITUDE TPATH= SORT((REAPTH + 100.0)**2 - (REARTH + GRAZE)**2)	C ASSUME PATH IS SYMETRICAL AND CALCULATE HALF	PINC =IPATH/ 24.0 C FIRST PCINT IN PATH IS AT ICOKM	PATF(1) = 0.0	HIAE(I) = IGO.C ATEMP(I) = TEMTAB(NMGD)	PRESS(1) = PRESTB(NMOD) - PRESTB(NMOD) - PRESS(1) - PRE	180 CONC([,1]) = CGNTAB(I, N*CD)		C CUMPTUE ALITUGE AN NEW PAIN PLINI TPATH = TPATH - FINC	PALT'= SORT(TPATH**2 + (REARTH + GRAZE)**2) - REARTH HIDF(TP) = PALT *	C GOTC'INTERPCLATION ROUTINE TO GET TEMPERATURE AND C SOCIES CONCENTORIENS AT CIVEN ATTIME	200 CALL INTERP(PALT, NMCD, ALTAB, TEMTAB, PRESTB, CONTAB, NSPEC,	C DO SECEND HALF OF PATH - MIRROR IMAGE
000111	000136 000136	1	000151	000153	000156 000161	··· · ·	000171	000173		000203	000205	000207	000213	C00214	000225	000230	000231		000242	· · ·

	$00 \ 210 \ 1P = 26, 49$	PATH(IP) = PATH(IP-1) + PINC	00 220 IP = 1, 25	IPR = 50 - IP	HTAB(IPR) = HTAB(IP)	ATEMP(IPR) = ATEMP(IP)	PRESS(IPR) = PRESS(IP)	UU 220 I = 19NSFEC	FINISFEC LIMB CASE - GC TU LINEWIDTH CALCULATIONS	60 IC 360		EARTHSHINE AND CUUBLE PASS CASES	COMPUTATIONS ICENTICAL EXCEPT DOUBLE PASS CASE REQUIRES	SELUNU CALCULATIUN AT EXIT ANGLE SKIP SECOND CALCULATION IF INCIDENT AND EXIT ANGLES EQUAL		ANGLE = TEMPI	IF (ICASE .EQ. 3 .AND. TEMP1 .EQ. TEMP2) ICASE = 4	NI = 2	N2 = 45 N3 _ 1	I = SVQI	SET UP TABLE DF NOMINAL INCREMENTS	ASSLME TOP ALTITUDE OF 96KM		$00\ 250\ J = 1,3$	DO 250 K = $1,16$	AIN(11) = J	H101 = 96.0	DETERMINE PATH LENGTH FROM GROUND TO 96KM FOR GIVEN ANGLE	USING LAW GP COSINES GET CUADRATIC EQUATION	AP = 1.0 BP = -2.0 * RFARTH * CCS((180.0 - ANGLF) * (DT /180.01)	CP = REARTH **2 - (HI01 + REARTH) **2	PIOI = (- BP + SCRT(BP**2 - 4.0 * AP * CP)) / (2.0 * AP)	INCREASE ALTITUDE INCREMENTS BY RATIO OF ACTUAL PATHLENGTH TO	VERILUL FAIR LENGIN DD 270 I = 1.48	HINC(I) = HINC(I) * PICI / HTOT	CALCULATE PATH PARAMETERS FIRST POINT IN PATH IS AT GROUND
	•	210			-	-		000	י ט ע	•	Ų	ပ	ں ں	ں ر	ں ر	240					J	ن ن	245			250	274	с i	ى		•		ິ່	د	270	ບບ
•	000257	000261	000265	000267	000271	000273	000274	012300	117000	115000		• :			· .	000312	000314	000325	000326	066330			000331	000332	000334	072000	446000			000347	000357	000 362		000374	000375	

	PATH(N3)= 0.0	$HTAE(N3) = C_0O$	PRESS(N2) = PRESTB(1)	$00 \ 29C \ I = 1.0 \ SPEC$	0 · CCNC(I, •N3) = CONTAB(I, 1)		IP = I + NSEC DATH(ID) = DATH(ID - 1) + HINC(I - 1)	CALCULATE HEIGHT AT EACH PCINT IN PATH	USE LAW OF COSINES	PALT = SQRT(REARTH**2 + PATH(IP)**2 - 2.0 * REARTH * PATH(IP) *	L CUSATIONO - ANGLET TITIOUOUUT - KEANT	O CALL INTERP(PALT, NMCD, ALTAB, TEMTAB, PRESTB, CONTAB, NSPEC,	1 ATEMP, PRESS, CCNC, IP)		IF COUBLE PASS GEOMETRY REPEAT FOR SECOND PASS	GACTIND TEMPERATURE AND FRISCIVITY PARAMETERS FOR CACE 1		IF (GTEMP .EC. 0.0) GTEMP = 288.2	GEMIS = ALBEDC	IF (GEWIS .EQ. 0.0) GEWIS = 1.0		U 6U 1U (33U) 32U) IPASS	0 IFA33 = 2 NALT = 58	ANGLE = TEMP2	N3 = 50	NSEC = 49			CCMFLTE TABLES TO BE USED IN CALCULATING DOPPLER AND	LORENTZ LINEWICTHS	0 CCNSTI = SQRT(2.0 * GAS * ALOG(2.0)) / CLIGHT	<pre> CONST2 = SQRT(273.0) CON</pre>	CCNST3 = SQRT(ALUG(2.0))	DD 460 J = 1. NALT	SRTEMP = SQRT(ATEMP(J))	DO 380 I = 1, NSPEC	
	•	:	. :	:	290			U	J			310		ں	ບ່	ت	315		,	•	((225	ງ/. ດ				((, , ,	ں ر	ں ر	360		•	. '		· ·	
,	000402	0000000	0004000	00000	000411	026200	000422		ì	000427	000450	000452		-	22220	101000	C00477	00000	CCC503	0000505	000001		000517	00000	000522	000523	000524	6,0,524	2 2 2		000524	000534	000536	000543	000545	000250	

. 200

4H UEG 4H DEG GROUND BLACKBCDY RADIATION PRESS(J) , F6.3, 13X, 2HKM, 17X, 2HKM, 14X, 5HDEG K, 13X, 4HMBAR , Fö.3, , F6.3, OPEI0.3, 6X, CPEI0.4., 5X, OPEI0.4, 5X, OPEI0.41 (IHO, 8X, I3HPATH DISTANCE, 7X, 8HALTITUDE, 8X, 4 - REFLECTED SUNLIGHT /, = FLOREN * (PRESS(J)/PRSTD) * (CONST2/SRTEMP) [3X, I2, 6X, OPF7.2, 12X, F6.2, 11X, F6.2, 9X, F6.2, 6H DEG K'/ 37HSPECIES CONCENTRATIONS - PARTICLES/CC, / /, F6.3, 4H DEG GEOMETRY CASE 2 - LIMB TRANSMISSION GEOMETRY CASE 3 - REFLECTED SUNLIGHT AND REFLECTEC ANGLES EQUAL J, PATH(J), HTAB(J), ATEMP(J), REFLECTED RADIATION ZENITH ANGLE INCIDENT RADIATION ZENITH ANGLE INCIDENT RADIATION ZENITH ANGLE . F7.3, 3H KM /(TEMP * CCNST3) (CONC(1, J), 1 = 1, NSPEC)LIHTEMPERATURE, 3X, 8HPRESSURE, 8X, F5.3, A4, 5X, F1C.8, I3, 7X, 3F10.81 TEMPL, TEMP2, ALBEDO WRITE (IOUT, 1460) TEMPI, TEMP2, ALBEDO GTEMP, CEMIS, ANGLE ZENITH VIEWING ANGLE 9X, A4, 11X, A4, 11X, A4 /) (470, 490, 510, 530), ICASE GROUND TEMPERATURE EMISSIVITY SRAZING ALTITUDE A4, 5X, 12, 8X, 3F1C.8) GEGMETRY CASE GEOMETRY CASE DOPP(I,J) = CCNST1 * SRTEMP WRITE CPTICAL PATH PARAMETERS ALBEUO , F5.3 GRAZE ENCIDENT (1H1, 30X, 18A4) GROUND TEMP = SORT(FMASS(I)) IOUT, 14CO) 1440) WRITE (IOUT, 1350) I420) DO 450 J = 1,NALT 45H 12F6.2) 6E10.2) 22H 37H 34 H 20H 20H 34H 34H 37H 36H 37H 18H (IOUT, 113 こ 2 11 LOUT **ה** 550 550 550 FORMAT RETUFN FORMAT FORMAT FORMAT FORMAT FORMAT FORNAT FURMAT GO TO FORMAT FORMAT ALCR (60 10 WRI JE WRITE FORVAT WRITE G0 TC 60 10 1420 1440 1100 1250 260 300 1350 1360 1370 1460 1400 530 550 380 400 470 490 510 450 000704 000574 000634 000656 00004 00004 407000 000554 000564 000573 000624 000646 000655 000000 000671 CCC 703 000 704 000704 00C 704 00004 COC704 000 704 000104 000551 000647 į

34H REFLECTED RADIATION ZENITH ANGLE , F6.3, 4H DEG , 8H ALBEDC , F5.3) CN D 2 000104 1 1 ; 1 İ i 1 ţ į ١ ì -; ÷ ; 1 ;

SUBRCUTINE INTERP (PALT, NMOD, ALTAB, TEMTAB, PRESTB, CONTAB, 1 NSPEC, ATEMP, PRESS, CCNC, IP) 5LBROUTINE TO DO INTERPCLATIONS OF MODEL ATMOSPHERE CATA TO GET PARAMETERS ALCNG PATH DIMENSION ALTAB(50), TEMTAB(50), CONTAB(3,50), CONC(3,98), 1 ATEMP(98), PRESTB(50), PRESS(98)	<pre>INTERPCLATE TO GET TEMPERATURE AND SPECIES CONCENTRATIONS DO 200 IK = 1, NMOD IF (PALT .GE. ALTAB(IK)) GC TO 200 LINEAR TEMPERATURE INTERPOLATICN LINEAR TEMPERATURE INTERPOLATICN ATEMP(IP) = ((FALT - ALTAB(IK-1)) * (TEMTAB(IK) - TEMTAB(IK-1)) I</pre>	<pre>LOGARITHMIC INTERPOLATION CF PRESSURE PRESS(IP) = (PALT - ALTAB(IK-1)) * I (ALOGIO(PRESTB(IK)) - ALOGIO(PRESTB(IK-1))) 2 / (ALTAB(IK) - ALTAB(IK-1)) 3 + ALOGIO(PRESTB(IK-1)) PRESS(IP) = 10.0 ** PRESS(IP)</pre>	LOGARITHMIC INTERPOLATION CF SPECIES CCNCENTRATIONS DO 150 IS= 1, NSPEC IF (CCNTAB(IS,IK) .NE. 0.0 .AND. CONTAB(IS,IK-1) .NE. 0.0)	CONC(IS,IP) = 0.0 GO TC 150 GO TC 150 CONC(IS, IP) = (PALT - ALTAB(IK-I)) * (ALTGB(IS, IK))- ALUGIO(CONTAB(IS, IK-I))) (ALTAB(IS) - ALTAB(IK-I)) + 2 (ALTAB(IK) - ALTAB(IK-I)) +	50 CONC(IS, IP) = 10.0 ** CCNC(IS, IP) CONTINUE GO TO 250 CONTINLE SO RETURN	
000016	000011 000011 000022	000637 066103	000110	000124 CC0130 000130	000200 000207 000212 000212 000215	000216

SUBROUTINE LINER RCUTINE TO READ IN SPECTRAL LINES, SORT AND SET UP LIMITS FOR LINE CVERLAPPING DOUBLE PRECISION CFREQ	COMMCN CFREQ(150) COMMCN ABSB(150, 98), A(27,25), B(25,25), C(25,25), COMMCN ABSB(150, 98), A(27,25), B(25,25), C(25,25), 1 PATH(58), ATEMP(58), CONC(3, 58), ALOR(98), DOPP(3,98), 2 STFQ(150), SPFQ(150), STRUNG(150), ENGY(160), 3 TITLE(18), AQ(3), BQ(3), CQ(3), ALBEDO, GTEMP, GEMIS	COMMEN FSTART, FSTOP COMMEN LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE	DIMENSICN IXST(150), STRT(150), ENGT(15C), LTYPT(150) DIMENSICN FNAMT(150), FNAME(150) DOUBLE PRECISICN DTEMP PERCNT = 1.0	READ IN SPECIFIED NUMBER OF LINES FOR EACH SPECIES ASSIGN SPECIES ID NUMBER TO EACH LINE AND COUNT LINES NLINE = 0 DU 150 IT = 1,NSPEC NL = NTYPE(IT)	NSIDE = NLINE + I NLINE = NLINE + NL DO 145 I = NSTAR, NLINE READ (IN, 1200) FNAMT(I), TEMP, STRT(I), ENGT(I) CFREC(I) = TEMP DO 150 I = NSTAR, NLINE LTVPT(I) = IT CONTINUE	SET UP DUMMY INDEX TABLE SHOWING ORIGINAL LINE SEQUENCE DO 2C5 I = 1, NLINE IXST(I) = I SET UP TABLE OF FREQUENCY BANDS TO BE CONSIDERED FOR EACH LINE	FIRST PREAME ALL LINES IN INCREASING UNCER UP LENIER FREQUENCY N2 = NLINE N1 = NLINE N2 = N2 - 1 N2 = N2 - 1 N2 = N2 - 1 00 210 1 = 1, N2
υυ			: ب د	ບ ບ ບ	140 145 150 170		۰ : ۲ · ۲ · ۲
0000	20002	00002 00002	00002 00002 00002 00002	30004 30005 30005	0012 0015 0015 0035 0035	0045	00052 00053 00056 00056

C ASSUME NUMINAL LUKENIZ FALF-HALFWIUIH UF V.VO VM-I 000143 WICIF = 0.06	C ENERGY VALUES OCO120 ENGY(J) = ENGT(I)	C LINE STRENGTHS 000116 STRChG(J) = STRT(I)	C NEW SURI KEST UT INUIVILUAL LINE FARAMETERS 000112 UO 220 J = 1, NLINE 000114 I = IXST(J)	NTEMP = TXST(1) TXST(1) = TXST(1+1) TXST(1) = NTEMP TXST(1) = NTEMP TXST(1) = NTEMP TXST(1) = NTEMP TXST(1) = NTEMP TXST(1) = NTEMP TTST(1) = NTEMP TTST(1) = NTEMP TTST(1) = NTEMP TTST(1) = NTEMP TTST(1) = NTEMP TTST(1) = TTST(1) TTST(1) = TTST(1) TTST(1) = TTST(1) TTST(1) = TTST(1) TTST(1) = TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		000100 000101 000112 000112 000112 000124 000124 000131 000131 000131 000131 000131 000131
C ASSUME NUMINAL LUKENIZ FALF-HALFWIVIH UF V.VO VM-I AAA143 - HIFTL - A A4	CLINE TYPE000121LTYPE(J) = LTYPT(I)CLINE hameCLINE hame000124220C0N11NLEFNAME(J) = FNAMT(I)000124220C0N11NLECNOW FINC WEAKEST LINECNOW FINC WEAKEST LINECNOM FINC WEAKEST LINEC0001301F(STRCNG(I))0001311F1F(STRCNG(J))000135240240J = 2.NLINE0001352401F(STRCNG(J))0001352401F(STRCNG(J))0001352401F(STRCNG(J))0001360001351F(STRCNG(J))0001371F1FSTRCNG(J)0001360001351F(STRCNG(J))0001371F1FSTRCNG(J)0001360001351FSTRCNG(J)0001371F1FSTRCNG(J)0001360001311FSTRCNG(J)000141000014C000141C000141C000141C000141C000141C000141C000141C000141C000141C000141C000041C000041C000041C000404C000404C000404 <td>CENERGY VALUES0C0120CENERGY VALUESCLINE TYPELIVE F(J) = ENGT(I)CLINE NAMECLINE NAMECLINE NAME000123Z20CNOM FINC WEAKEST LINE000124Z20CNOM FINC WEAKEST LINE000125FNAMT(I)CNOM FINC WEAKEST LINE000126D0 240 J = ZNLINE000131TEMP = STRCNG(I)000133TEMP = STRCNG(I)000131TEMP = STRCNG(J)000133TEMP = STRCNG(J)000134CONTINUE000135CANTINUE000136THESSELD STRENGTH DEFINED AS PERCENTAGE OF WEAKEST LINE000141CALCULATE FREQUENT AS INPUT DATA000141CALCULATE FREQUENT AS PERCENTAGE OF WEAKEST LINE000141CALCULATE FREQUENT AS PERCENTAGE OF WEAKEST LINE000141CALCULATE FREQUENT AS PERCENTAGE OF WEAKEST LINE000141THA ESH = PERCENT AS THATES HALLO</td> <td>000116CLINE STRENGTHS000116STRChG(J) = STRT(I)CENERGY VALUESCENGT(I) = ENGT(I)CLINE TYPECLINE AMECLINE MAME(J) = FNAMT(I)CCON11NLECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINEC000130CTEMP = STRCNG(J)CCONTINUECCONTINUECCONTINUECDO 240 J = 2.NUINECCONTINUE</td> <td>ASSUME NOMINAL LORENTZ FALF-HALFWIDTH OF 0.06 CM-1</td> <td></td> <td></td>	CENERGY VALUES0C0120CENERGY VALUESCLINE TYPELIVE F(J) = ENGT(I)CLINE NAMECLINE NAMECLINE NAME000123Z20CNOM FINC WEAKEST LINE000124Z20CNOM FINC WEAKEST LINE000125FNAMT(I)CNOM FINC WEAKEST LINE000126D0 240 J = ZNLINE000131TEMP = STRCNG(I)000133TEMP = STRCNG(I)000131TEMP = STRCNG(J)000133TEMP = STRCNG(J)000134CONTINUE000135CANTINUE000136THESSELD STRENGTH DEFINED AS PERCENTAGE OF WEAKEST LINE000141CALCULATE FREQUENT AS INPUT DATA000141CALCULATE FREQUENT AS PERCENTAGE OF WEAKEST LINE000141CALCULATE FREQUENT AS PERCENTAGE OF WEAKEST LINE000141CALCULATE FREQUENT AS PERCENTAGE OF WEAKEST LINE000141THA ESH = PERCENT AS THATES HALLO	000116CLINE STRENGTHS000116STRChG(J) = STRT(I)CENERGY VALUESCENGT(I) = ENGT(I)CLINE TYPECLINE AMECLINE MAME(J) = FNAMT(I)CCON11NLECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINECNOM FINC WEAKEST LINEC000130CTEMP = STRCNG(J)CCONTINUECCONTINUECCONTINUECDO 240 J = 2.NUINECCONTINUE	ASSUME NOMINAL LORENTZ FALF-HALFWIDTH OF 0.06 CM-1		
	C LINE TYPE 000121 LIYPE(J) = LTYPT(I) C LINE NAME 000123 C C LINE NAME 000124 Z20 C NOM FINC WEAKEST LINE C NOM FINC WEAKEST LINE C NOM FINC WEAKEST LINE 000126 Z40 J = Z.NLINE 000130 TF (STRCNG(I)) 000131 TEMP = STRCNG(J) 000135 Z40 J = Z.NLINE 000131 TEMP = STRCNG(J) 000135 Z40 CONTINUE 000135 Z40 CONTINUE C THRESPCLD STRENGTH GEFINED AS PERCENTAGE OF WEAKEST LINE	CENERGY VALUES0C0120CENGY(J) = ENGT(I)CLINE TYPECLINE TYPECLINE NAME000124Z20CUNM FINC WEAKEST LINE000124Z20CNOM FINC WEAKEST LINE000125TEMP = STRCNG(I)CNOM FINC WEAKEST LINE000126TEMP = STRCNG(I)000127C000128Z401(1100000000000000000000000000000000000	000116CLINE STRENGTHS000116STRT(G(J) = STRT(L)CENERGY VALUESCENERGY VALUESCLINE TYPECLINE TYPECLINE TYPECLINE AMECLINE AMECNON FINC WEAKEST LINECNON FINC WEAKEST LINECNON FINC WEAKEST LINECNON FINC WEAKEST LINECNON FINC BAKEST LINECNON FINC BAKEST LINECNON FINC BAKEST LINECDO0130IF (STRCNG(J) - GT. TEMP) GC TC 240CDO0135TEMP = STRCNG(J)CDO0135CTEMP = STRCNG(J)CDO0135CDO130IF (STRCNG(J) - GT. TEMP) GC TC 240CDO0135CDO130CDO130CDO130CDO130CDO130CDO130CDO0135CDO130CDO130CDO130CDO130CDO130CDO130CDO130CDO130CDO130CDO130C<	THRESH = PERCNT * TEMP / 100.0 CALCULATE FREQUENCY AT WHICH EACH LINE REACHES THRESHULD) ن ا	000141
C CALCULATE FREQUENCY AT WHICH EACH LINE REACHES THRESHULD	C LINE TYPE 000121 LTYPE(J) = LTYPT(I) C LINE NAME 000123 E C LINE NAME 000124 220 C NOM FINC WEAKEST LINE C NOM FINC WEAKEST LINE 000126 J C NOM FINC WEAKEST LINE 000130 D12 240 000135 Z40 TEMP STRCNG(J) 000135 Z40 TEMP STRCNG(J)	C ENERGY VALUES 0C0120 ENGY(J) = ENGT(I) C LINE TYPE 0000121 LITYPE(J) = LTYPT(I) C LITYPE(J) = LTYPT(I) 000123 ENAME(J) = FNAMT(I) C LINE NAME 000124 220 C00125 FNAME(J) = FNAMT(I) C FNAME(J) = FNAMT(I) 000124 220 C00125 C0NTINLE C NOM FINC WEAKEST LINE 000126 D1 240 J = 2.NLINE 000135 TEMP = STRCNG(J) GT 240 000135 Z40 CONTINUE	000116LINE STRENGTHS000116STRCNG(J) = STRT(I)CENERGY VALUESCENERGY VALUESCLINE TYPECLINE TYPECLITYPE(J) = LTYPT(I)CLITYPE(J) = LTYPT(I)CLINE AME000121CCLINE AME000123ENAME(J) = FNAMT(I)CCONTINLE000124Z20CONTINLESTRCNG(I)000130C1F(STRCNG(J))000131TEMP = STRCNG(J)CONTINLECONTINLE000132Z40CCONTINLE000133TEMP = STRCNG(J)G00134S40CONTINLEC00134CONTINLE	THRESPCLU STRENGTH CEFINED AS PERCENTAGE OF WEAKEST LINE desired percentage is input data thresh = percnt * temp / 100.0	ບບ	000141
C THRESHCLD STRENGTH DEFINED AS PERCENTAGE OF WEAKEST LINE C DESIRED PERCENTAGE IS INPUT DATA 000141 THRESH = PERCNT * TEMP / 100.0 C CALCULATE FREQUENCY AT WHICH EACH LINE REACHES THRESHOLD	000121 LINE TYPE 01121 LTYPE(J) = LTYPT(I) C LINE NAME C LINE NAME 000123 FNAME(J) = FNAMT(I) 000124 220 C NOM FINC C NOM FINC WEAKEST LINE 000126 TEMP = STRCNG(I) 000130 IF (STRCNG(J) • GT • TEMP) GC TC 240	CENERGY VALUES0C0120ENGY(J) = ENGT(I)CLINE TYPECLINE TYPELIYPE(J) = LTYPT(I)CLINE AME000123CCLINE MAME000124220C00124220C00124220C00124220C00126CTEMP = STRCNG(I)0001301717(STRCNG(I)) - GT TEMP) GC TC 240	000116CLINE STRENGTHS000116STRCNG(J) = STRT(I)5STRCNG(J) = STRT(I)5ENGT(J) = ENGT(I)5ENGT(J) = ENGT(I)5LINE TYPE000121LITYPE(J) = LTYPT(I)5ENAMT(I)6LINE NAME000123C5FNAME(J) = FNAMT(I)6CONTINLE0001242207NOM FINC WEAKEST LINE0001200001246NOM FINC WEAKEST LINE0001211 F (STRCNG(J) .GT. TEMP) GC TC 240	TEMP = STRCNG(J) CONTINUE	240	000135
000135 TEMP = STRCNG(J) 000135 240 CUNTINUE C THRESPELD STRENGTH DEFINED AS PERCENTAGE OF WEAKEST LINE C DESIRED PERCENTAGE IS INPUT DATA C DESIRED PERCENTAGE IS INPUT DATA 000141 THRESH = PERCNT * TEMP / 100.0 C CALCULATE FREQUENCY AT WFICH EACH LINE REACHES THRESHOLD	000121 C LINE TYPE LTYPE(J) = LTYPT(L) C LINE NAME C LINE NAME C LINE NAME C LINE NAME C LINE NAME C LINE NAME C NOM FINC WEAKEST LINE C NOM FINC WEAKEST LINE C NOM FINC WEAKEST LINE	CENERGY VALUES0C0120ENGY(J) = ENGT(I)CLINE TYPECLINE TYPECLITYPE(J) = LTYPT(I)CLINE NAME000123CCNAME(J) = FNAMT(I)000124CCNOM FINC WEAKEST LINE000126CCNOM FINC WEAKEST LINE	000116CLINE STRENGTHS000116STRCNG(J) = STRT(I)CENERGY VALUES000120CCLINE TYPECLINE TYPE000121CCLINE AME000123ENAME(J) = FNAMT(I)000124Z20CNOM FINC WEAKEST LINE000126CCNOM FINC WEAKEST LINE	UU 240 J = Z,NLINE IF (STRCNG(J) .GT. TEMP) GC TC 240	;	151000
000131 IF (STRCNG(J) .GT. TEMP) GC TC 240 TEMP = STRCNG(J) .GT. TEMP) GC TC 240 000135 TEMP = STRCNG(J) CONTINUE C THRESHCLD STRENGTH CEFINED AS PERCENTAGE OF WEAKEST LINE C THRESHCLD STRENGTH CEFINED AS PERCENTAGE OF WEAKEST LINE C DESIRED PERCENTAGE IS INPUT DATA C CALCULATE FREQUENCY AT WHICH EACH LINE REACHES THRESHOLD	CLINE TYPE000121LTYPE(J) = LTYPT(I)CLINE NAMECLINE NAME000123FNAME(J) = FNAMT(I)000124220C0NTINLE	CENERGY VALUES0C0120ENGY(J) = ENGT(I)CLINE TYPECLINE TYPECLITYPE(J) = LTYPT(I)CLINE AMECLINE AMECLINE AMECCON11NLECCON11NLE	000116LINE STRENGTHS000116STRChG(J) = STRT(I)CENERGY VALUESCENERGY VALUESCENERGY(J) = ENGT(I)CLINE TYPECLINE TYPECLINE TYPECLINE TYPECLINE AMECLINE AMECCON11NLECCON11NLE	NOW FINC WEAKEST LINE TEMP = STRCNG(1) DD 240 J = 2.NLINE	ں ر 	000126
CNOW FINC WEAKEST LINE000126TEMP = STRCNG(1)000130D0 240 J = 2,NLINE000131IF (STRCNG(J) .GT. TEMP) GC TC 2401F (STRCNG(J) .GT. TEMP) GC TC 240000135240 CUNTINUE000135240 CUNTINUE000135240 CUNTINUE000136240 CONTINUE000135240 CUNTINUE000136240 CUNTINUE000137000136000136240 CUNTINUE000137000136000136240 CUNTINUE000137000141000141C	C LINE TYPE 000121 LTYPE(J) = LTYPT(I)	C ENERGY VALUES C ENERGY VALUES ENGY(J) = ENGT(I) C LINE TYPE C LINE TYPE C LINE TYPE LTYPE(J) = LTYPT(I)	000116CLINE STRENGTHS000116STRChG(J) = STRT(I)CENERGY VALUESCENGY(J) = ENGT(I)CLINE TYPE000121LITYPE(J) = LTYPT(I)	LINE NAME FNAME(J) = FNAMT(I) Contince	י גר גע גע	000123
C LINE NAME (J) = FNAMT(I) 000124 220 CUNTINLE FNAME(J) = FNAMT(I) C NOM FINC WEAKEST LINE C NOM FINC WEAKEST LINE 000130 1F (STRCNG(J) •GT TEMP) GC TC 240 1F (STRCNG(J) •GT TEMP) GC TC 240 1F (STRCNG(J) •GT TEMP) GC TC 240 1F (STRCNG(J) •GT TEMP) GC TC 240 000135 240 CUNTINLE 000135 240 CUNTINLE C DESTRED PERCENTAGE IS INPUT DATA 000141 C CLULATE FREQUENCY AT WHICH EACH LINE REACHES THRESHOLD		C ENERGY VALUES C ENERGY VALUES DCO120 ENGY(J) = ENGT(I)	CLINE STRENGTHSCLINE STRENG(J) = STRT(I)CENERGY VALUESCENERGY VALUESOCOI20ENGY(J) = ENGT(I)	LINE TYPE LIYPE(J) = LTYPT(I)	აი ი	000121
000112 U0 220 J E31 NLINE 000114 I = IXST(J) 578ChG(J) = STRT(I) STRT(I) 000116 STRChG(J) = STRT(I) C ENERGY VALUES 000116 STRChG(J) = STRT(I) C ENERGY VALUES 000120 C C ENERGY VALUES 000121 C C LINE TYPE 000121 C C LINE TYPE 000123 ENGY(J) = ENGT(I) C LINE AMME 000123 CUNTINLE 000124 CONTINLE 000125 CONTINLE 000126 C C NOM FINC WEAKEST LINE 000128 CONTINLE 000129 C C NOM FINC WEAKEST LINE 000130 TEMP = STRCNG(J) 000131 F C NOM FINC WEAKEST LINE 000130 TEMP 5 GT C 240 000131 F C NOM FINC MEAKEST LINE 000135 CONTINLE C NOM FI	000112 U0 220 J = 1, NLINE 000114 I = IXST(J) C LINE STRENGTHS 000116 STRENG(J) = STRT(I)	000112 00 220 J = 1, NLINE TARAFLENS 000114 I = IXST(J)		HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER	υυι	
C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER NCA SORT REST OF INDIVIDUAL LINE PARAMETERS 000112 UO 220 J = 1, NLINE C LINE STRENGTHS 000116 C LINE STRENGTHS 000116 C LINE STRENGTHS 000111 C LINE TYPE 000121 C LINE TYPE 000121 C LINE TYPE 000121 C LINE AME 000121 C LINE AME 000121 C LINE AME 000121 C LINE AME 000121 C LINE AME 000123 220 CONTINUE 000124 220 CONTINUE 000124 220 CONTINUE 000125 C CONTINUE 000120 0 240 J = STRCNG(J) 000120 0 240 J = STRCNG(J) 000120 0 240 J = STRCNG(J) 000121 C LINE AME 000120 0 240 J = STRCNG(J) 0 240 J = STRCNG(J) 0 2014 C C CONTINUE 000130 1F (STRCNG(J) GT C 240 000130 1F (STRCNG(J) GT C 240 000130 1F (STRCNG(J) GT C 240 000131 0 C CONTINUE 000131 0 C C C CONTINUE 000131 0 C C C CONTINUE 000131 0 C C C C C C C C C C C C C C C C C C	C HAVE SORTED CENTER FREGUENCIES AND INDEX NUMBER C NCh SORT REST OF INDIVIDUAL LINE PARAMETERS 000112 UO 220 J = 1, NLINE 000114 I = IXST(J) C LINE STRENGTHS 000116 STRENG(J) = STRT(I)	C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER C NCL SORT REST OF INDIVIDUAL LINE PARAMETERS 000112 UD 220 J = 1, NLINE 000114 I = IXST(J)	C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER		210	01000
GGCIOS210CGNTINLEGGCIOS210CGNTERE FRECUENCIES AND INDEX NUMBERCNCK SORT REST OF INDIVIDUAL LINE PARAMETERS000112UO 220J = 1, NLINEUO 220J = 1, NLINE000114LINE STRENGTHSCLINE STRENGTHS000115ENERCIUJ) = STRT(1)CLINE STRENGTHS000116ENERCY VALUESCLINE TYPECENERCY VALUES000121LINE TYPECLINE TYPEC<	00CIO5210CONTINLECHAVE SORTED CENTER FRECUENCIES AND INDEX NUMBERCHAVE SORT REST OF INDIVIDUAL LINE PARAMETERSCNCW SORT REST OF INDIVIDUAL LINE PARAMETERS000112UO 220 J = 1, NLINE000114I = IXST(J)CLINE STRENGTHS000116STRENG(J) = STRT(I)	00CIO5210CONTINLECHAVE SORTED CENTER FRECUENCIES AND INDEX NUMBERCHAVE SORT REST OF INDIVIDUAL LINE PARAMETERS000112UO 220 J = 1, NLINE000114I = IXST(J)	00CIOS 210 CONTINLE C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER	IXST(I) = IXST(I+1) IXST(I+1) = NTEMP		0001000
000102 1X571(1.1) = XX57(1+1) 000103 1X571(1.1) = NTEMP 000103 1X571(1.1) = NTEMP 000112 UN SOFT REST OF INDIVIDUAL LINE PARAMETERS 000112 UN 220 J = 1, NLINE 000121 LINE STRENGTHS 000121 LINE STRENGTHS 000121 LINE TYPE UN FINC LINPT(1) 000121 LINE(J) = ENGT(1) 000121 LINE(J) = ENGT(1) 000122 UN FINC 000123 LINPE(J) = LINPT(1) 000124 Z20 000125 CONTINCE 000126 TRAFEST LINE 000127 UN FINC WEAKEST LINE 000128 CONTINCE 000129 CONTINCE 000130 TEMP = STRCNG(1) </td <td>000102IXS7(I) = IXST(I+1)000103IXST(I+1) = NTEMP000103IXST(I+1) = NTEMP000103IXST(I+1) = NTEMP000112Lave Sorted Center Frequencies and index number000112UO 220 J = 1, NLINE000114I = IXST(J)000115C LINE STRENGTHS000116STRENGTHS</td> <td>000102 [XS7(1) = IXST(1+1) 000103 [XST(1+1) = NTEMP 000103 [XST(1+1) = NTEMP C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER C NCW SORT REST OF INDIVIDUAL LINE PARAMETERS 000112 1 = IXST(J) 1 = IXST(J)</td> <td>000102 [XST(I) = IXST(I+1) 000103 [XST(I+1) = NTEMP 000103 210 CUNTINLE C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER</td> <td>\cdot NFEMP = IXSI(I)</td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td>000100</td>	000102IXS7(I) = IXST(I+1)000103IXST(I+1) = NTEMP000103IXST(I+1) = NTEMP000103IXST(I+1) = NTEMP000112Lave Sorted Center Frequencies and index number000112UO 220 J = 1, NLINE000114I = IXST(J)000115C LINE STRENGTHS000116STRENGTHS	000102 [XS7(1) = IXST(1+1) 000103 [XST(1+1) = NTEMP 000103 [XST(1+1) = NTEMP C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER C NCW SORT REST OF INDIVIDUAL LINE PARAMETERS 000112 1 = IXST(J) 1 = IXST(J)	000102 [XST(I) = IXST(I+1) 000103 [XST(I+1) = NTEMP 000103 210 CUNTINLE C HAVE SORTED CENTER FREQUENCIES AND INDEX NUMBER	\cdot NFEMP = IXSI(I)	, , , , , , , , , , , , , , , , , , ,	000100
000100 NTEMP = IXST(1) 000102 1XST(1) = IXST(1) 000102 1XST(1) = IXST(1) 000112 UST(1) = IXST(1) 000112 UST(1) = IXST(1) 000112 UST(1) = IXST(1) 000112 UST(1) = IXST(1) 000112 UST(2) - IXST(1) 000112 UST(2) - IXST(1) 000112 UST(2) - IXST(1) 000113 INC 000114 INC 000115 INC 000116 INC 000117 UST(2) - INC 000118 INC 000119 INC 000110 UNC 01114 INC 0115 INC 0116 INC 0117 INC 0118 INC 01116 INT 01117 INT 01118 INT 011110 INT 011110 INT 01111 INT 01111 INT 01111 INT 01112 INT	000100 NTEMP = IXST(1) 1X57(1) = IXST(1+1) = IXST(1+1) 000103 IXST(1+1) = NTEMP 000105 Z10 CONTINLE 000112 C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER 000112 D:0 Z20 J = 1, NLINE 000112 U:0 Z20 J = 1, NLINE 000112 U:0 Z20 J = 1, NLINE 000112 U:0 Z20 J = 1, NLINE 000114 I = IXST(J) STRCNG(J) = STRT(I)	000100 NTEMP = IXST(1) 1XS7(1) = IXST(1+1) 000103 IXST(1+1) = NTEMP 000103 Z10 CUNTINLE C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER C NCW SORT REST OF INDIVIDUAL LINE PARAMETERS 000112 I = IXST(J) 1 = IXST(J)	000100 NTEMP = IXST(1) 1XST(1) = IXST(1+1) 000103 IXST(1+1) = NTEMP 000103 IXST(1+1) = NTEMP 000103 Z10 CUNTINLE C HAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER		J	
CSupplingerLixst(1)000100NTERP1XST(1+1)0001021XST(1+1)NTERP0001031XST(1+1)NTERP000114CHAVE SOBTE CENTER FRECUENCIES AND INDEX NUMBER000114CHAVE SOBTE CENTER FRECUENCIES AND INDEX NUMBER000114CLINE STELJ000114CLINE STELJ000114CLINE STELJ000114CLINE STENGTHS000114CLINE STENGTHS000115CLINE STENGTHS000116CLINE STENGTHS000117CLINE TYPE000118CLINE TYPE000121CLINE TYPE000121CLINE TYPE000123ZOOLINE TYPE000124ZOOLINE TYPE000125CNON FILLCLINE TYPE000126CLINE TYPE000127ZOOLINE TYPE000128CNON FILLCNON FILL TERPIJOCNON FILLCNON FILLCNON FILLCCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTNUECCONTOLCCCCCC	C SwdP INCEX NUMBERS 000100 IXST(I) = IXST(I) 000102 IXST(I) = IXST(I+1) 000103 IXST(I+1) = IXST(I) 000112 UNCLOSATED CENTER FRECUENCIES AND INDEX NUMBER 000114 I = IXST(J) 000115 UNCLOSATED CENTER FRECUENCIES AND INDEX NUMBER	C SWAP INCEX NUMBERS 000100 IXS7(1) = IXST(1) 1XS7(1) = IXST(1+1) IXS7(1+1) 000103 IXS7(1+1) 000112 IAVE SORTED CENTER FRECUENCIES AND INDEX NUMBER 000112 UO 220 J = 1, NLINE 000112 I = IXS7(J)	C SWAP INCEX NUMBERS 000100 NTEMP = IXST(I) 1XST(I) = IXST(I+1) IXST(I+1) 000103 IXST(I+1) IXST(I+1) IXERCONTON IXST(I+1) IXERCONTON IXST(I+1) IXERCONTON	SWAP INCEX NUMBERS		
000074 CFREG(11) = CFREG(1+1) 000102 TX57111 = 0TFRCF 000103 TX57111 = NTFRP 000103 TX57111 = NTFRP 000112 TX8 <strengths< td=""> 000112 TX8<strengths< td=""> 000112 TX8<strengths< td=""> 000112 TX8<strengths< td=""> 1 TX7111 000113 TX8 000114 T 1 TX8 1 STRENGTHS 1</strengths<></strengths<></strengths<></strengths<>	CGC070 CFREG(11) = CFREG(1+1) 000074 CFREG(1+1) = DTEMP 000100 CFREG(1+1) = DTEMP 000100 NTEMP = IXST(1) 1XS7(1) = IXST(1+1) 000102 IXS7(1+1) 1XS7(1+1) INEMP 000103 IXST(1+1) 1XS7(1+1) INEMP 000103 IXST(1+1) 000103 IXST(1+1) 000103 IXST(1+1) 000103 IXST(1+1) 000103 IXST(1+1) 000112 IXST(1+1) 000112 I 000114 I I INDEX NUMBER 000114 I I INDIVIDUAL LINE 000114 I I INDEX NUMBER 000114 I I INDIVIDUAL LINE I INDIVIDUAL INDIVIDUAL INDIVIDUAL INDIVIDUAL INDIVIDUAL INDIVIDUAL INDIVIDUAL INDIVIDU	CCC070 CFREG(1) = CFREG(1+1) 000074 CFREG(1+1) = DTEMP 000100 CFREG(1+1) = DTEMP 000100 IXS7(1) = IXST(1) 000102 IXS7(1) = IXST(1) 000102 IXS7(1+1) = NTEMP 000103 IXS1(1+1) = NTEMP 000103 IXS1(1) = IXST(1) 000112 U0 220 J = 1, NLINE 000112 I = IXST(J	CCC070 CFREG(1) = CFREG(1+1) 000074 CFREG(1+1) = DTEMP 000100 CFREG(1+1) = DTEMP 000100 IXS7(1) = IXS7(1) 1XS7(1) = IXS7(1) IXS7(1) = IXS7(1) 000102 IXS7(1+1) 000103 IXS1(1+1)	CFREG(I) = CFREG(I+1) CFREG(I+1) = DTEMP SwøP INCEX NUMBERS		000074

000156		IF (DELF .GT. 5.0) DELF = 5.0					
0001100	260						
	ບບ	HAVE NCW DEFINED FREQUENCY BAND OVER WHICH EACH LINE MUST					
000201	J	BE CCNSIDEREC WRITE (IQUT, 1210) TITLE					
000206		00 280 J = 1, NLINE TFMP = CFRFC(J)					
000213	2 80	WRITE (IOUT, 1220) J, FNAME(J), TEMP, STFQ(J), SPFQ(J), 1					
000237 000240 000240	1210	RETURN Format (a6, 3x, F10.3, E10.4, F10.3) Format (1H1. 30x, 18A4. //. 17x. 4HLINE. 8x. 11HLINE CENTER.					
		1 6X, 19HLINE INCLUSION BAND, 11X, 13HLINE STRENGTH, 10X, 2 18HLDWER STATE ENERGY / 29X, 11HWAVENJMBERS, 6X, 3 5HSTART, 9X, 4HSTCP, 14X, 10HCM-2 ATM-1, 14X,					
000240	1220	4 IIHMAVENUMBERS /) FORMAT (5X, I3, 7X, A6,1UX, F8.3, 6X, F8.3, 5X, F8.3, 10X,					
000240							
• •	· · · ·						
•	•						
•							
	•	od solo se se sense se e en enconcerna serve se enconcerna e en en en solo sonor a serve a serve a se enconcern A serve e serve enconcerna enconcerna enconcerna enconcerna enconcerna e serve a serve a serve a serve a serve e					
·	•						
•							
	•						
• • •							
C SUBRGUTINE COEFFS C SUBROUTINE TO COMPUTE FACTORS USED IN ABSORPTICN AND C EMISSICN COEFFICIENTS C INPLTS ARE	C ENERGY CF EACH TRANSITION IN WAVENUMBERS C LINE STRENGTHS AT STP IN CP**-2 * ATM**-1 C SPECIES NUMBER CENSITIES AND TEMPERATURES AS FUNCTION C OF ALTITUDE - DERIVEC IN SUBRCUTINE HEIGHT C RATIC OF PARTITION FUNCTIONS AT T AND 30CK C PARTITION FUNCTION IS INPUT AS PARABULIC COEFFICIENTS	DOUBLE PRECISION CFREQ COPMCN CFREC(150) COPMCN ABSB(150, 98), A(27,25), B(25,25), C(25,25), COMMCN ABSB(150, 98), A(27,25), B(25,25), C(25,25), I PATH(98), AFEPF(98), CONC(3, 96), ALOR(98), COPP(3,98), 2 TITLE(18), A0(3), BO(3), CO(3), AFECO, GTEMP, GFMP, GFMP	COMMCN FSTART, FSTOP COMMCN LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IGUT, ICASE DIMENSICN EMIS(150, 49), QZERO(3) EQUIVALENCE (ABSB(1, 50), QZERO(3) DATA AN, CTWC, TZERO / L 2.6875E+19, 1.4288, 300.0 / C 2 * C**2 * H	CH = 2.0 * 2.99791E+10**2 * 6.6252E-34 * 1.0E+07 C NALT = 49 IF (ICASE .EC. 3) NALT = 98	C CALCULATE PARTITION FUNCTIONS FOR EACH SPECIES AT 300 DEG DO 150 I = 1,NSPEC 150 QZERU(I) = AC(I) * TZERO**2 + BQ(I) * TZERO + CQ(I)	DO 200 I = 1, NLINE II = LTYPE(I) TEXP = -CTHC * CFREC(I) / TZERO 6C1 = 1.0 - EXP(TEXP) F3 = CFREQ(I) ** 3	DO 200 J = 1, NALT TEMP = ATEMP(J)
--	---	---	--	--	--	--	---------------------------------------
		000002 000002 000002	00000000000000000000000000000000000000	000002 000006 00006	C00012 000014	C00024 000025 000027 000024 000044	000054 000055

RATIO DF PARTITION FUNCTIONS Q(300) / Q(T) QRAT = QZERO(IT) / (AQ(IT) * TEMP**2 + BQ(IT) * TEMP + CQ(IT))	GC2 = (CGNC(IT, J) / AN) * EXP(ENGY(I) * CTWO * 1 (1.0/TZERC - 1.0/TEMP))	TEXP = -CTWC * CFREQ(I) / TEMP	G(3) = EXP(1)EXP(3)	ABSB(1,J) = GC2 *((1.0 - GC3) / GC1)* STRUNG(1) * QRAT	SKIP EMISSICN TERM IF GECMETRY CASE 3 OR 4	GO TC (180, 180, 200, 2C0), ICASE	EMIS(I+1) = 6C2 + (6C3 / 6C1)+ CH + STRONG(I) + F3 + 0RAT	CONTINUE	RETLAN	END
J	ပ	-			J		180	200	:	:
000057	000065	000102	000120	000122		000132	000142	000153	000160	000161

SUBROUTINE SPECT SUBROUTINE TO COMPUTE SPECTRA USES TABULATED ABSORPTION AND EMISSION COEFFICIENTS, VOIGT PROFILES ANG ALTITUDES DOUBLE PRECISION CFREQ COPMEN CFREQ(150) COPMEN CFREQ(150) COPMEN ABSB(150) 1 PATH(98), ATEPP(58), CONC(3, 98), ALOR(98), DOPP(3,98)	<pre>Z TITLE(18), SIFU(150), SPFU(150), STRUNG(150), ENGY(160), TITLE(18), AQ(3), BQ(3), CQ(3), ALBECO, GTEMP, GEMIS COMMEN FSTART, FSTOP COMPEN LTYPE(150), NTYPE(3), NLINE, NSPEC, IN, IOUT, ICASE DOUBLE PRECISIEN FPEG(1C1), FREQD, DELF, DTEMP UIPENSIEN ATTEN(101), DIFF(2), XX(25), YY(25), SINGF(101) DIMENSIEN EWISC(50), ABSBC(50), LTAB(50) DIMENSIEN ABINT(50), EPH(50) DIMENSIEN YIN1(23), YIN3(23), YIN3(23) DIMENSIEN FWISC, 49)</pre>	EQUIVALENCE (ABSB(1, 50), EMIS(1, 1)) DATA XX / 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00, 2.50, 4.00, 5.00, 6.00, 8.00, 10.00, 15.00, 2 20.00, 30.00, 50.00, 100.00, 5000, 1000.00, 500.00/ DATA YY / 0.00, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 1 3.50, 4.00, 16.00, 18.00, 20.00, 24.00 /	ITAPE = 2 REWINC ITAPE READ LIMITS CF SPECTRUM TO BE CCMPUTED REAC (IN, 1570) FSTART, FSTQP NALT = 49 NSEC = 0 TLN2 = ALOGIC(2.0) ALN2 = SQRT(ALGG(2.0))	<pre>SET UP FACTORS TO BE USED UP IN VOIGT FUNCTION INTERPOLATION DO 140 I = 1,23 YINI(I) = 1.0 / ((YY(I) - YY(I+1)) * (YY(I) - YY(I+2)) YIN2(I) = 1.0 / ((YY(I) - YY(I+1)) * (YY(I+1) - YY(I+2))) YIN3(I) = 1.0 / ((YY(I) - YY(I+2)) * (YY(I+1) - YY(I+2)))</pre>
υυυ		ں در ا) <u>v</u>	C C C C
000002 000002 000002	000002 000002 000002 000002 000002 000002 000002 000002	C00002 C00002 C00002	0000003 000005 000005 000015 000017 000017	000032 000032 000034 000041

•	1	1 			•	•							:							
				 	:			:		•		•						:		
	-1)+ 0LAR		:		· · ·		MENT					· .				•	:			•
i :	#T) ISE DPS		.``			:	ACRE					!							•	
:	AC HOVE						ц Ц					:			•	••••	-			
;	AVE OTH ACE		· · ·	· .	· ! . ·	•	SABL		·	1		• • • 1	; ;				:			
•	FIEC PER SURF		· · ·	· : · ·		2 * * V	RMIS		:			• •		· ··	· .		:	÷	:	•
:	PECI PECI V IS			· · ·		ns c	E P E	:		:		•		1	· ·		;		:	
	E (E) S SI BUD' C SCI			• · · ·		ш Ц	IN I W		Sid	:		:			•	•				• •
1	0 * +3	0	SE			TANC	ETER		GROL		U Z	:	• :		، ;		1	:		
	ICN AVEN 2K U 2F U 1FPL	UARE	ICA	VITY	• •	015	ST D		INI		1 L I)	:	× o≺	000	0 1 1		ENCY		
1	11 AT * אי 288• אינר	SG	-	ISSI	·	N Z	FIR	i	Dd	; .	35 RES	·		90E 0 C I	¢	- -		EQU		
		~	ST UI				•		0	:	0 4	•	•	шш	- r	ר		~		
	2 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5		144 1144	ЕМ] * GE	URE	JF SU	INT		100	r L	CO TO		л И	C FRE		300		:R FR		
	R0 CC P H + C + + 2 1 + T = 5 8 CC RE MUST	E TO SUN M**2 9613 CM	144, 144 PERATURE	0UND EMI -12 * GE	ERATURE	EA OF SU -16	Y POINT	:	W IN ICO	111LE	E TC NEA		NLINE	OWER FRE) - CFRE		20, 300		II GP ER FR		
	IZERO CCMP = 2* H*C**2 ASE 1, T = 3, T = 58CC REFORE MUST	TANCE TO SUN 22 CM**2 49599513 CM	44, 144, 144 TEMPERATURE	* GROUND EM 890E-12 * GE	TEMPERATURE	* AREA OF SU 376E-16	UENCY POINT	ART	CTRUM IN 1CO	2,101	C. 0) GO TO TANCE TC NEA	0	AST, NLINE	AT LOWER FRE Pt-1) - Cfre	EVP) 0.001) 50	• 0-001/ 60	, •	AT HIGHER-FR	ΨÞ	· ·
	FOR IZERO CCMP)Y) = 2* H*C**2 (Y CASE 1, T = (R 3, T = 58CC OR 3, T = 58CC THEREFORE MUST	DISTANCE TO SUN 387622 CM**2 = 1.44599613 CM	2+ 144, 144, 144 JRCE TEMPERATURE	**2 * GROUND EM 190890E-12 * GE	CE TEMPERATURE	, **2 ** AREA OF SU •120376E-16	REQUENCY POINT	FSTART	SPECTRUM IN 1CO	71,12201 111LE	EC. 0) GO TO DISTANCE TC NEA	100.0	NLAST, NLINE	INE AT LOWER FRE Eq(npt-1) - CFRE	SS(TEMP)	310 , 320, 300	TENP	INE AT HIGHER FR	ATEMP	
	NTS FOR IZERO CCMP KBODY) = 2* H*C**2 METRY CASE 1, T = E 2 OR 3, T = 58CC E. THEREFORE MUST	<pre>BY DISTANCE TO SUN 6.087E22 CM**2 16 = 1.46590E13 CM</pre>	(142, 144, 144, 144 SOURCE TEMPERATURE	EPP	וווס Source temperature מר ה	uueu * C**2 * AREA OF SU = 3.120376E-16	CH FREQUENCY POINT	= I = FSTART	ATE SPECTRUM IN 100	NPT = 2,101	REQ) = 100.0	I = ILUOU I = NLAST, NLINE	T LINE AT LOWER FRE Freg(NPT-1) - CFRE	= ABS(ТЕМР) смр. т. с. с. 1. с.	MF) 310 , 320, 300) = TEMP	230 T LINE AT HIGHER FR) = ATEMP	335
	NSTANTS FOR IZERO CCMP BLACKBODY) = 2* H*C**2 GECMETRY CASE 1, T = CASE 2 OR 3, T = 58CC RFACE. THEREFORE MUST	VICE BY DISTANCE TO SUN EA = 6.087E22 CM**2 Stance = 1.46599E13 CM	TO (142, 144, 144, 144 CUND SOURCE TEMPERATURE	= GTEMP * H * C**2 * GROUND EM CCN = 1.19C890E-12 * GE	TC 150 Lar Source temperature - secc a	₹ 2000.00 * H * C**2 * AREA OF SU CCh = 3.120376E-16	R EACH FREQUENCY POINT	AST = 1 EQ(2) = FSTART	LCULATE SPECTRUM IN ICO	580 NPT = 2,101	(NFREQ .EC. 0) GO TO TEFMINE DISTANCE TC NEA	FF(1) = 100.0	320 I = NLAST, NLINE	AREST LINE AT LOWER FRE MP = FREQ(NPI-1) - CFRE	EMP = ABS(TEMP) /ATEMP T 0,001) CO	(TEMP) 310 , 320, 300	FF(]) = TEMP IC 230	AREST LINE AT HIGHER FR	FF(2) = ATEMP N = I	10 335
	CCNSTANTS FOR IZERO CCMP I(BLACKBODY) = 2* H*C**2 IF GECMETRY CASE 1, T = IF CASE 2 OR 3, T = 58CC SURFACE. THEREFORE MUST	DIVICE BY DISTANCE TO SUN AREA = 6.087E22 CM**2 Distance = 1.45599613 CM	GO TO (142, 144, 144, 144, 144, 144, 144, 144,	T = GTEMP 2 * H * C**2 * GROUND EM BBCCN = 1.19C850E-12 * GE	GO TC 150 Sular Source Temperature T - 5000 Å	I 〒 2000.0 2 ★ H ★ C★★2 -★ AREA OF SU BBCCh = 3.120376E-16	FOR EACH FREQUENCY POINT	NLAST = 1 Freq(2) = Fstart	CALCULATE SPECTRUM IN 1CO	00 580 NPT = 2,101	IF (NFREQ .EC. 0) GO TO DETEFMINE DISTANCE TC NEA	DIFF(1) = 100.0	DO 330 I = NLAST, NLINE	NEAREST LINE AT LOWER FRE TEMP = FREQ(NPI-1) - CFRE	ATEMP = ABS(TEMP) TE (ATEMP T 0.001) CO	IF (TEMF) 310 , 320, 300	DIFF(]) = TEMP	NEPREST LINE AT HIGHER FR	DIFF(2) = ATEMP JI N = 1	60 10 335
	CCNSTANTS FOR IZERO CCMP I(BLACKBODY) = 2* H*C**2 IF GECMETRY CASE 1, T = IF CASE 2 OR 3, T = 58CC SURFACE. THEREFORE MUST	C DIVICE BY DISTANCE TO SUN AREA = 6.087E22 CM**2 DISTANCE = 1.45596F13 CM	GO TO (142, 144, 144, 144	[42 T = GTEMP 2 * H * C**2 * GROUND EM] BBCCN = 1.]9C890E-12 * GE	GOTCI50 SULAR SOURCE TEMPERATURE SOLAT - SACCO	EAT 1 = 2000.00 2 * H * C**2 * AREA OF SU BBCCh = 3.120376E-16	FOR EACH FREQUENCY POINT	.50 NLAST = 1 Freq(2) = FSTART	CALCULATE SPECTRUM IN 1CO	280 00 580 NPT = 2,101	IF (NFREQ .EC. 0) GO TO DETEFMINE DISTANCE TC NEA	DIFF(1) = 100.0	DO 330 I = NLAST, NLINE	I NEAREST LINE AT LOWER FRE TEMP = FREQ(NPT-1) - CFRE	ATEMP = ABS(TEMP)	IF (TEMF) 310 , 320, 300	100 DIFF(1) = TEMP	UNEREST LINE AT HIGHER FR	310 DIFF(2) = ATEMP 	60 10 335
	C CCNSTANTS FOR IZERO CCMP C I(BLACKBODY) = 2* H*C**2 C IF GECMETRY CASE 1, T = C IF CASE 2 OR 3, T = 58CC C SURFACE. THEREFORE MUST	C DIVICE BY DISTANCE TO SUN C AREA = 6.087E22 CM**2 C DISTANCE = 1.46596F13 CM	C GG TG (142, 144, 144, 144, 144, 144)	<pre>i 142 T = GTEMP C 2 * H * C**2 * GROUND EMI C 2 * H * C**2 * GROUND EMI </pre>	GOTCI50 C SULAR SOURCE TEMPERATURE 144 T - 5000 Å	C 2 * H * C**2 * AREA OF SU BBCCh = 3.120376E-16	C FOR EACH FREQUENCY POINT	FREQ(2) = FSTART	C CALCULATE SPECTRUM IN 100	280 00 580 NPT = 2,101	C DETEFMINE DISTANCE TC NEA	DIFF(1) = 100.0	DO 330 I = NLAST, NLINE	C NEAREST LINE AT LOWER FRE TEMP = FREQ(NPT-1) - CFRE	ATEMP = ABS(TEMP)	IF (TEMF) 310 , 320, 300	300 DIFF(I) = TEMP	C NEAREST LINE AT HIGHER FR) 310 DIFF(2) = ATEMP JI N = 1	60 10 335
	C CCNSTANTS FOR IZERO CCMP C I(BLACKBODY) = 2* H*C**2 C IF GECMETRY CASE 1, T = C IF GECMETRY CASE 1, T = C IF CASE 2 OR 3, T = 58CC C SURFACE. THEREFORE MUST	C DIVICE BY DISTANCE TO SUN C AREA = 6.087F22 CM**2 C DISTANCE = 1.46599F13 CM	0055 G0 T0 (142, 144, 144, 144, 144, 144	0C65 142 T = GTEMP C 2 * H * C**2 * GROUND EM 0067 BBCCN = 1.19C850E-12 * GE	CC71 CO TC 150 C SULAR SOURCE TEMPERATURE C SULAR SOURCE TEMPERATURE	UULI 144 1 500000 C 2 * H * C**2 * AREA OF SU 0073 BBCCh = 3.120376E-16	C FOR EACH FREQUENCY POINT	0074 150 NLAST = 1 0075 Freq(2) = FSTART	C CALCULATE SPECTRUM IN 100	0100 280 00 580 NPT = 2,101	COLLO IF (NFREQ .EC. O) GO TO C DETEFMINE DISTANCE TC NEA	0111 DIFF(1) = 100.0	0113 DO 320 I = NLAST, NLINE	C NEAREST LINE AT LOWER FRE Olls temp = Freq(npt-1) - CFRE	0124 ATEMP = ABS(TEVP)	0130 IF (TEMF) 310 , 320, 300	0131 300 DIFF(1) = TEMP	UI33 GU IU 230 C NEAREST LINE AT HIGHER FR	0133 310 DIFF(2) = ATEMP 0135 JIN = 1	0136 60 10 235
	C CCNSTANTS FOR IZERO CCMP C I(BLACKBODY) = 2* H*C**2 C IF GECMETRY CASE 1, T = C IF CASE 2 OR 3, T = 58CC C SURFACE. THEREFORE MUST	C DIVICE BY DISTANCE TO SUN C AREA = 6.087F22 CM**2 C DISTANCE = 1.46599F13 CM	C 000055 C 00 TC (142, 144, 144, 144, 144 C GRCUND SOURCE TEMPERATURE	000C65 142 T = GTEMP C 2 * H * C**2 * GROUND EMI 0C0067 BBCEN = 1.19C850E-12 * GE	COCC71 COTC 150 C SULAR SOURCE TEMPERATURE	000073 BBCCh = 3.120376E-16	C FOR EACH FREQUENCY POINT	COOC74 150 NLAST = 1 COOC75 FREQ(2) = FSTART	CCOC// NFRET = 0 C CALCULATE SPECTRUM IN 1CO	COULOU WALLE (LUUI)12200 FILLE COOLOG 280 DU 58C NPT = 2,101	00C110 IF (NFREQ .EC. 0) GD TD C DETEFMINE DISTANCE TC NEA	000111 DIFF(1) = 100.0	000113 DO 320 I = NLAST, NLINE	C NEAREST LINE AT LOWER FRE 000115 TEMP = FREQ(NPT-1) - CFRE	000124 ATEMP = ABS(TEVP)	000120 IF (TEMF) 310 , 320, 300	000131 300 DIFF(1) = TEMP	UUUI33 GU IU 33U C NEAREST LINE AT HIGHER FR	000133 310 DIFF(2) = ATEMP 000135 JIN = 1	C00136 G0 10 235

<pre>1 IF EXACTLY AT LINE CENTER USE SMALLEST FREQUENCY INCREMENT 20 DELF = 1.0D-C3 60 T0 350 60 T0 350 30 CONTINUE 30 CONTINUE 35 IF (JLN .GT. 1) NLAST = JLN - 1 35 IF (JLN .GT. 1) NLAST = JLN - 1 36 COLUTATE APPROPRIATE INCREMENT FOR SMALLER AND HIGHER FREQUENCY 37 CALCULATE APPROPRIATE INCREMENT IS 0.001 CM+*-1 38 CALCULATE APPROPRIATE INCREMENT IS 0.001 CM+*-1 39 CALCULATE APPROPRIATE INCREMENT IS 0.001 CM+*-1 40 TEMP EDIFF(1) CT. DIFF(2)) TEMP = DIFF(2) 34 CALCULATE 1.00 GO TO 345 35 IF (TEMP .LT. 1.0) GO TO 345 36 CONTINUE 37 CALCULATE CALCULATE AND HIGHER FREQUENCY 39 CONTINUE 39 CONTINUE 39 CONTINUE 30 /pre>	$\begin{cases} CCLT = 5.12U-01\\ CCLT = 5.12U-01\\ CCTT = 2.12U-02\\ CCTT = 100000 + 2.00\\ CTLN2 = 10000 \\ CTLN2 = 100000 + 2.00\\ CTLN2 = 100000 \\ CTLN2 = 1000000 \\ CTLN2 = 100000 \\ CTLN2 = 100000 \\ CTLN2 = 100000 \\ CTLN2 = $	NFREQ = NFREQ + 1 NPTS = NPT NINC = 0 COMPUTE BLACK BODY SQURCE INTENSITY (IZERO) FOR NEW FREQUENCY APPROPRIATE CONSTANTS SET UP EARLIER ATZERO = (BBCCN * FREQC**3) / (EXP(1.43868 * FREQC /T) -1.0) AT NEW FREQUENCY MUST DETERMINE WHICH LINES ARE TO BE INCLUDED AT NEW FREQUENCY MUST DETERMINE WHICH LINES ARE TO BE INCLUDED SCAN LIST OF STARTING FREQUENCIES DO 360 I = 1,NLINE IF (FREGC .LT. STFQ(1)) GC TO 360 IF (FREGC .GT. SFFQ(1)) GC TO 360 IF (FREGC .GT. SFFQ(1)) GC TO 360 LINE MUST BE INCLUDED PUT INCEX NUMBER OF LINE IN TABLE
000142 000142 000142 000142 000142 000142 000142 000153 000153 000153 000153	000163 000164 000164 000202 000215 000225 300025 30005 300000000	000234 000236 000236 000250 000255 0000255 0000255 0000255 0000255 0000255 0000255 0000255 0000255 0000255 0000255 0000000 0000000 00000000

NINC = NINC + 1 LTAB(NINC) = 1 CCNTINLE IF (NINC) 365, 37C AITEN(NPT) = AIZERO * ALBEDC GO TC 580	HAVE LIST OF LINES TO BE INCLUDED AT THIS FREQUENCY MUST NCW COMPUTE ABSORPTION AND EMISSION COEFFICIENTS FGR Each Line and add together Must do for each altitude step	SET UP LOGIC FOR THREE CIFFERENT GEOMETRIES 1. LCOKING AT BLACKBCDY RADIATION FROM GRCUND (4.6 MICRONS) 2. LIMB TFANSMISSICN (2.3 OR 4.6 MICRCNS) 3. CCUBLE PASS SUN - GRCUND - SATELLITE (2.3 MICRONS) 4. SAME AS 3 BUT INCIDENT AND EXIT ANGLES EQUAL CASES 1 AND 2 HANDLED ICENTICALLY, EXCEPT FOR ADJUSTMENT OF IZERD FOR CASE 3 CCMPUTE INTENSITY AT GROUND FRCM FIRST PASS USE INTENSITY AS NEW IZERD FOR SECOND PASS FOR CASE 4 JUST DDUBLE ABSCRPTION CALCULATED IF FIRST PASS GO TC (400, 400, 350, 350), ICASE	IPASS = 1 NSEC = 0 DO 49C IM = 1, NALT FOR EACH ALTITUDE MUST INCLUDE ALL LINES IHN = IM + NSEC ABSLM = 0.0 EMSUM = 0.0 ABSLM = 0.0 ALCRN = ALOR(IHN) DO 480 ILT= 1, NINC IL = LTAB(ILT)	SKIP CALCULATION IF SPECIES HAS ZERO CONCENTRATION E.G. H20 AT HIGH ALTITUDES ABCGEF = ABSB(IL,IHN) IF (ABCGEF - EQ. 0.0) GC TQ 480 CALCULATE DOPPLER, LORENTZ WIDTHS, X, Y FOR EACH LINE IT = LTYPE(IL) DUPh = COPP(IT, IHN) * CFREC(IL) TEMP = FREQD - CFREQ(IL)
365		0 ************************************	C 4 30	υυυ υυ
000260 000261 000263 000263 000266 0002672		000272	CC0302 000303 000304 000304 000310 000314 000314	000317 000323 000324 000334

000344 Y = ALEN / DOPH 000351 C FIVE X AND Y COORDIN = ALN2) 000351 C FIVE X AND Y COORDINES. GET VOIGT FUNCTION 000351 IX = 25 000351 IX = 40 1 IX = 11 000351 IX = 11 000351 IX = 11 000352 IX = 11 000353 IX = 11 000354 CONTINUE 000355 IY = 12 000373 CONTINUE 000373 CONTINUE 000373 IY = 12 1 IY = 12 1 IY = 12 000373 CONTINUE 000373 CONTINUE 1 IY = 12 1	000343		X = ABS(TEMP) / DOPW
C C CIVEN X AND Y COORDINATES, GET VOIGT FUNCTION 1 K = 2 × NND Y IN TABLES OF STANCARD VALUES 1 K = 2 × NILL C C T 420 1 K = 1 - 1 1 K = -1 1 K = -1	000346 000347		Y = ALCEN / DOPW DOPW = 1.0/(DOPW * ALN2)
C FIND X AND Y IN TABLES OF STANCARD VALUES 000351 17 12 41 - 1 17 17 - 62 XX11) 50 7C 420 17 12 41 - 1 000351 420 CONTAU 17 12 - 1 000351 420 CONTAU 17 23 000351 420 CONTAU 17 23 000351 17 23 000351 17 23 000371 40 F 410 F 410 F 410 F 410 F 10 F 10 F		υυ	GIVEN X AND Y COORDINATES, GET VOIGT FUNCTION
00 420 I = 2,25 00 420 I = 2,25 000351 12 0 C011NLE 01 17 = 2,1 000351 420 0 C011NLE 01 17 = 2,2 000351 17 = 2,2 00 435 I = 2,23 000351 17 = 2,2 01 430 000351 17 = 2,2 01 440 000371 17 = 2,2 01 440 000371 17 = 2,2 01 440 000371 17 = 1,1 140 17 1 = 1,1 140 000371 17 = 1,1 141,1 17 1 = 1,1 141,1 000373 140 140 000373 140 140 000371 12 = 1,1 141,1 12 = 1,1 12,1 000431 12 = 1,1 14,1 12 = 1,2 1,1 000432 11 12 = 1,2 000442 11 12 = 1,2 000442 11 12 = 1,2 12 = 1,2 14 12 = 1,2 14 13 = 1,2 14 14 17 15 17 16 17 17 17 18 17 19 17 11 17<	000351	ເ	FIND X AND Y IN TABLES OF STANCARD VALUES IX = 25
000354 IF (x. GE. XX(II)) GG (T 420 000351 22 G0A114UE 000353 430 000354 17 = 23 000355 17 = 23 000356 17 = 23 000373 040 000373 430 17 1 - 1 1.0 17 1 - 1 1.1 17 1 - 1 1.1 17 1 - 1 1.1 000373 400 000374 040 000375 440 000375 440 000411 17 + 1 17 + 1 2.1 + 1 000421 12 = 17 + 1 17 = 17 + 1 2.1 + 1 000423 12 = 17 + 1 000423 12 = 17 + 1 17 = 1 - 1 12 = 17 + 1 17 = 1 - 1 12 = 17 + 1 000423 12 = 17 + 1 000424 12 = 17 + 1 17 = 1 - 1 12 = 17 + 1 17 = 1 - 1 12 = 17 + 1 000423 12 = 17 + 1 000424 12 = 17 + 1 000425 12 = 17 + 1	000352	•	$00 \ 420 \ I = 2,25$
0000351 420 60 TC 430 0000351 420 60 TC 430 0000354 D0 432 2::3 0000354 D0 432 1::2:3 0000354 D0 440 0 0000375 50 T0 440 0 0000375 60 T0 440 0 000041 T: * AIX, IY) + BIX, IY) + CIX, IY) 000411 T: * A (X, AIX, IY) + BIX, IZ)) + CIX, IZ) 000412 YALUES * A (X, IZ) + BIX, IZ)) + CIX, IZ) 000423 VONE = Y * X * A AIX, IZ) + BIX, IZ)) + CIX, IZ) * CIX, IZ) 000423 VONE = Y * X * A AIX, IZ) + BIX, IZ)) + CIX, IZ) * CIX, IZ) 000425 C NUH = X * X * A AIX, IZ) + BIX, IZ)) + CIX, IZ) * CIX, IZ) 000425 VONE = Y * X * A AIX, IZ) + BIX, IZ) + BIX, IZ) * CIX, IZ) * CIX, IZ) 000425 VONE = Y * X * A AIX, IZ) + YANA * CIX, IZ) * CIX, IZ) 000425 VONE = Y * YANA * ZIX, IZ) + BIX, IZ) * YANA 0	000354		IF (X .GE. XX(I)) GG TC 420
000351 420 CGNINCT 000355 430 1Y = 12 000373 00 440 000373 60 10 440 000373 61 0 440 000373 61 0 440 000375 440 000375 440 000375 61 0 440 000375 440 000375 61 0 440 000375 440 000423 1X + 1 000437 1X + 1 1X + 1 X + X + X + X + X + X + X + X + X + X +	1 46 000		
000364 17 23 000364 00 35 1 1 1 -1 -1 000311 1 1 -1 000313 17 1 -1 000313 60 10 40 000313 60 10 40 000313 60 10 40 000313 60 10 40 000313 60 10 40 000313 60 11 1 000313 60 11 1 000313 60 11 1 000313 60 11 12 000411 12 11 12 11 12 12 11 12 11 000423 12 12 13 14 12 12 1 1 12 1 11 12 12 1 12 1 1 12 1 1 1 12 1 1	000361	420	CONTINUE
000354 10 435 I = 2.23 000371 17 = 1 - 1 17 = 1 - 1 000373 435 CONTINUE 000375 740 10 440 000375 440 1000 = x * (x * A(IX, IY) + B(IX, IY)) + C(IX, IY) COPPUTE THRE VOIGT PRETLES FOR THREE CONSECUTIVE Y VALUES CONVENT = x * (x * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 12 = 12 + 1 000421 12 = 12 + 1 12 = 12 + 1 12 = 12 + 1 000425 CONTINE = x * (x * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 12 = 12 + 1 000437 12 = 12 + 1 12 = 12 + 1 12 = 12 + 1 000437 12 = 12 + 1 000437 12 = 12 + 1 000437 12 = 12 + 1 12 = 12 + 1 12 = 12 + 1 000437 12 = 12 + 1 12 = 12 + 1 000437 12 = 12 + 1 000437 12 = 12 + 1 000437 12 = 12 + 1 000443 12 = 12 + 1 000443 12 = 12 + 1 12 = 12 + 1 000443 12 + 12 + 12 + 10 + 10 + 10 + 10 + 10 +	000363	430	IY = 23
0003713 17 = 1 - 1 0003713 435 C010 440 0003715 17 = 1 - 1 0003715 C010 440 000407 12 = 17 + 1 12 = 17 + 1 A11X, 12) + B11X, 12) + C(1X, 12) 000421 12 = 12 + 1 12 = 12 + 1 X = A11X, 12) + B11X, 12) + C(1X, 12) 000437 12 = 12 + 1 12 = 12 + 1 X = Y(1Y) 000437 12 = 12 + 1 12 = 12 + 1 X = Y(1Y) 000437 12 = Y - YY(1Y) 000443 12 = Y - YY(1Y) 000443 12 = Y - YY(1Y+1) 000443 12 = Y - YY(1Y+2) 000445 Y - YY(1Y+2) 000445 Y - YY(1Y+2)	000364	1	00 435 I = 2,23
60 10 440 000373 435 CUNINUE 000375 400 VONE = X * (X * A(IX, IY) + B(IX, IY)) + C(IX, IY) 000407 12 = IY + 1 000407 12 = IY + 1 12 = IY + 1 12 = IY + 1 000423 12 = IY + 1 0004241 12 = IY + 1 12 = IY + 1 12 = IY + 1 000423 12 = IY + 1 11 = IY + 1 12 + 1 12 = IZ + 1 12 + 1 13 = IZ + 1 12 + 1 14 = Z + 1 12 + 1 17 = Y + Y(IY) 12) + C(IX, IZ) 000423 11 = Y - YY(IY) 17 = Y - YY(IY) 00142 18 = Y - YY(IY) 00142 19 = Y - YY(IY) 000442 11 = Y - YY(IY) 000645 000445 12 = Y - YY(IY+1) 000445 12 = Y - YY(IY+2) 0004	0003566		IF (Y 6tc. YY(IJ) 6U L 432
000373 435 CONTINUE 000373 435 CONTINUE C COPPUTE THREE VOIGT PRCFILES FOR THREE CONSECUTIVE Y VALUES 000407 12 = 1Y + 1 12 = 1Y + 1 12 = 1X + 1 12 = 1Z + 1 12 = Y - YV(1Y) 000442 13 = Y - YV(1Y+1) 000445 13 = Y - YV(1Y+1) 13 = Y - YV(1Y+1) 000445 1 = Y - YV(1Y+1) 1 = Y -	000373		60 10 440
C COPPUTE THREE VOIGT PRCFILES FOR THREE CONSECUTIVE Y VALUES 000407 VING = X * (X * A(IX, IY) + B(IX, IY)) + C(IX, IY) + C(IX, IZ) 1Z = IZ + 1 000423 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 1Z = IZ + 1 000425 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000437 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 1 = Y - YY(IY) 000443 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 1 = Y - YY(IY) 000443 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000443 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 1 = Y - YY(IY+1) 000443 VIHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000443 VIHR = X * YINJ(IY) * VONE - TI * T3 * YINZ(IY) * VTWO 1 = Y - YY(IY+2) 000445 VIHR = Z * T3 * YINJ(IY) * VONE - TI * T3 * YINZ(IY) * VTWO 000445 VIHR = Z * T3 * YINJ(IY) * VONE - TI * T3 * YINZ(IY) * VTWO 1 + TI * T2 * YINJ(IY) * VONE - TI * T3 * YINZ(IY) * VTWO 1 + TI * T2 * YINJ(IY) * VONE - TI * T3 * YINZ(IY) * VTWO 000445 VIHR = ABSUM + BACGEF = Z & A 000446 VIHR = ABSUM + BACGEF * VROF 000446 VIHR = ABSUM + BACGF * VROF VIHR + VROF 000446 VIHR = ABSUM + BACGF * VROF VIHR + V	676000	435	CONTINUE
0000375 440 VONE = X * (X * A(IX, IY) + B(IX, IY)) + C(IX, IY) 1Z = IY + 1 IZ = IY + 1 B(IX, IZ)) + C(IX, IZ) 000401 IZ = IZ + 1 B(IX, IZ)) + C(IX, IZ) 000437 VTHG = X * (X * A(IX, IZ)) + B(IX, IZ)) + C(IX, IZ) 000437 VTHG = X * (X * A(IX, IZ)) + B(IX, IZ)) + C(IX, IZ) 000437 VTHG = X * (X * A(IX, IZ)) + B(IX, IZ)) + C(IX, IZ) 000437 VTHG = Y * (X * A(IY)) 000443 VTHR = X * (X * A(IY)) 000445 VTHR = X * YINI(IY) * VTHR 000445 VTHGF = Y * YINI(IY) * VTHR 000445 VTHR = X * (X * A(IY)) * VTHR 000445 VTHR = X * YINI(IY) * VTHR 000445 VTHR 1 T * T * YINI(IY) * VTHR 000445 VTHR 1 T * T * YINI(IY) * VTHR 1 T * T * YIN	-	: ບ	COMPUTE THREE VOIGT PRCFILES FOR THREE CONSECUTIVE Y VALUES
000401 U1 = 1Y + 1 000421 UTAG = X + (X + A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000425 VTHR = X + (X + A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000425 VTHR = X + (X + A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000427 IZ + I 12 = IZ + I VIVE 000437 VEWE 12 = Y - YV(IY) NTERPCLATION 000443 VEWE 000443 VERGF = Y + YV(IY) 000443 VERGF = TZ + T3 + YINI(IY) + VDNE 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(IY) + VTHR 1 + T1 + TZ + YIN3(II) + VTHR 1 + T1 + TZ + YIN3(II) + VTHR	000375	440	VONE = X * (X * A(IX, IY) + B(IX, IY)) + C(IX, IY)
000423 I2 = 12, + 1 000425 VTHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000437 VTHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) 000437 VT = Y - YY(IY) 000442 NCW C0 THRE POINT LAGRANGE INTERPCLATION 000443 Y = YY(Y+1) 000445 Y = Y - YY(IY+1) Y = Y - YY(IY+1) Y = Y = Y + YIN2(IY) * YTWO 000445 Y = Y = Y + YIN3(IY) * YTHR Y = Y = Y = Y + YIN3(IY) * YTHR Y = Y = Y = Y + YIN3(IY) * YTHR Y = Y = Y = Y = Y + YIN3(IY) * YTHR Y = Y = Y = Y + YIN3(IY) * YTHR Y = Y = Y = Y = Y + YIN3(IY) * YTHR Y = Y = Y = Y + YN3(IY) * YTHR Y = Y = Y = Y = Y = Y + YN3(IY) * YTHR Y = Y = Y + YN3(IY) * YTHR Y = Y = Y = Y = Y + YN3(IY) * YTHR Y = Y = Y + YN3(IY) * YTHR Y = Y = Y = Y + YN3(IY) * YTHR Y = Y + YN3(IY) * YTHR	000407	•	IZ = IY + I VThG = X * (X * Δ(IX. 17) + B(IX. 17)) + C(IX. 17)
C00425 VTHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ) C00437 T1 = Y - YY(IY) T1 = Y - YY(IY) T2 = Y - YY(IY+1) 000443 T3 = Y - YY(IY+2) 000445 VPRGF = T2 * T3 * YINI(IY) * VONE - T1 * T3 * YIN2(IY) * VTWO C HAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COFFICIENTS C HAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COFFICIENTS C VPRGF = VPRCF * OPPW C VPRGF = VPRCF * OPPW C VPRGF = VPRCF * OPPW C VPRGF = VPRCF * VPROF C VPRGF = VPRCF * OPPW C VPRGF * VPROF C VPRGF * VPROF C VPRGF * VPROF C VPRGF * VPROF <tr< td=""><td>000423</td><td>:</td><td></td></tr<>	000423	:	
C NCW CO THREE POINT LAGRANGE INTERPCLATION 000443 T1 = Y - YY(1Y+1) T2 = Y - YY(1Y+2) 000445 T3 = Y - YY(1Y+2) 000445 Y - YY(1Y+2) VPRGF = T2 * T3 * YIN3(TY) * VTHR T1 * T3 * YIN2(TY) * VTHO 000456 VPRGF = T2 * T3 * YIN3(TY) * VTHR 1 + T1 * T2 * YIN3(TY) * VTHR C HAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COFFFICIENTS C SKIP EMISSION IF CASE 3 QR 4 000456 GO T0 (460, 4700, 470), 1CASE 000456 GO T0 (460, 450, 470), 1CASE 000456 GO T0 (460, 450, 470), 1CASE 000456 450 FF * VPROF 1F (NFREQ •NE. 29) GO TO 480 000536 480 CONTINUE CUC533 480 CONTINUE EMISC(1H) = EMSUM 480 CONTINUE	000425		VTHR = X * (X * A(IX, IZ) + B(IX, IZ)) + C(IX, IZ)
000445 1 * * * * * * * * * * * * * * * * * * *		د	NCW CO THREE POINT LAGRANGE INTERPCLATION
000443 13 = Y - YY(1Y+2) 000443 13 = Y - YY(1Y+2) 000445 13 = Y - YY(1Y+2) VPRGF = T2 * T3 * YINJ(IY) * VDNE - T1 * T3 * YIN2(IY) * VTHO 1 + T1 * T2 * YINJ(IY) * VDNE - T1 * T3 * YIN2(IY) * VTHO C HAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COEFFICIENTS C SKIP EMISSION IF CASE 3 QR 4 000456 C0 T0 (460, 460, 470, 470), ICASE 000450 G0 T0 (460, 460, 470, 470), ICASE 470 MBSUM = EMSUM + EMIS(IL,IH) * VPROF 000470 460 470 ABSUM + EMIS(IL,IH) * VPROF 000470 400 TI KINFEQ .NE. 29) G0 T0 480 CUC533 480 CUC533 480 CUC533 480 CUC540 490	000437	:	
000445 VPRGF = T2 * T3 * YINI(IY) * VONE - T1 * T3 * YINZ(IY) * VTWO C + T1 * T2 * YIN3(IY) * VTHR C HAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COEFFICIENTS C SKIP EMISSION IF CASE 3 QR 4 C VPRGF = VPRCF * DOPW C000450 GO TO (460, 460, 470, 470), ICASE C000470 460 F VPROF C000470 460 GO TO (460, 460, 470, 470), ICASE GO TO (460, 460, 470, 470), ICASE CO0470 460 F NPROF C000470 460 F ABSUM + EMIS(IL, IH) * VPROF C00470 470 ABSUM = ABSUM + EMIS(IL, IH) * VPROF C00533 480 CUC533 480 CUC533 480 CUC533 480 CUC540 490 ABSUM + EMSUM 480	000443		12 = 1 - 11(11+1) 13 = Y - YY(1Y+2)
1+ T1 * T2 * YIN3(IY) * VTHRCHAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COEFFICIENTSCSKIP EMISSION IF CASE 2 OR 4CSKIP EMISSION IF CASE 2 OR 4CVPRGF = VPRCF * 00PW000456VPRGF = VPRCF * 00PW000470460, 460, 470, 470), ICASE460EMSUM = EMSUM + EMIS(IL, IH) * VPROF4704801F (NFREQ •NE- 29) GO TO 480600533480CUC533480CUC533480CUC533480CUC540490ABSBC(IF) = EMSUM	000445		VPRGF = T2 * T3 * YINI(IY) * VONE - T1 * T3 * YIN2(IY) * VTWO
CHAVE VOIGT FUNCTION, CCMPUTE ABSORPTION AND EMISSION COEFFICIENTSCSKIP EMISSION IF CASE 3 OR 4CSKIP EMISSION IF CASE 3 OR 4000456VPRGF = VPRCF * 00PW000460460, 470, 470), 1CASE460EMSUM + EMIS(IL,IH) * VPROF470470, 470, 10), 1CASE600470460, 470, 470), 1CASE600471470450470, 470), 1CASE600472480470480600473480600476480600533480600534490600534490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490600536490	-	ر	I + T1 + T2 + Y[N3[IY] + VTHR
C SKIP EMISSION IF CASE 2 GR 4 000456 VPRGF = VPRCF * DOPW 000460 GO TO (460, 460, 470), ICASE 000470 460 460 EMSUM = EMSUM + EMIS(IL,IH) * VPROF 000476 470 470 ABSUM + EMIS(IL,IH) * VPROF 000476 470 480 FMIS(IL,IH) * VPROF 000476 470 470 ABSUM + ABCUEF * VPROF 000476 470 17 (NFREQ •NE- 29) 000533 480 CUC540 490 ABSUM ABSUM		ں ر	HAVE VOIGT FUNCTION. COMPUTE ABSORPTION AND EMISSION COFFEICIENTS
000456 VPRCF = VPRCF * DOPW 000460 GO 10 (460, 460, 470), ICASE 000470 460 EMSUM + EMIS(IL,IH) * VPROF 000476 470 ABSUM + ABCUEF * VPROF 000473 470 ABSUM + ABCUEF * VPROF 000476 470 ABSUM + ABCUEF * VPROF 000473 480 EMSUM + ABCUEF * VPROF 000533 480 CONTINUE 000536 EMISC(IH) = EMSUM 000536 CONTINUE 000536 EMISC(IH) = ABSUM		: ن ن	SKIP EMISSION IF CASE 2 OR 4
000460 GO TO (460, 470, 470), ICASE 000470 460 EMSUM + EMIS(IL,IH) * VPROF 000476 470 ABSLM = ABSUM + ABCUEF * VPROF 000476 470 ABSLM = ABSUM + ABCUEF * VPROF 000533 480 CONTINUE 000536 EMISC(IH) = EMSUM CCC540 490 ABSBC(IH) = ABSUM	000456		VPRGF = VPRCF * DOPW
000470 460 EMSUM = EMSUM + EMIS(IL,IH) * VPROF 000476 470 ABSUM = ABSUM + ABCUEF * VPROF 000476 470 ABSUM = ABSUM + ABCUEF * VPROF 000533 480 CONTINUE 000536 EMISC(IH) = EMSUM CCC540 490 ABSBC(IH) = ABSUM	000460		GO TO (460, 460, 470, 470), ICASE
000476 470 ABSUM = ABSUM + ABCUEF * VPROF C00501 IF (NFREQ .NE. 29) GU TC 480 CUC533 480 CONTINUE 000536 EMISC(IH) = EMSUM C00536 490 ABSBC(IH) = ABSUM	000470	460	EMSUM = EMSUM + EMIS(IL,IH) * VPROF
CUC501 IF INFREY .NE. 291 60 10 480 CUC533 480 CONTINUE 000536 Emisc(IH) = Emsum CCC540 490 ABSBC(IH) = ABSUM	.000476	470	ABSUM = ABSUM + ABCUEF + VPROF
CUC533 480 CONTINUE 000536 Emisc(IH) = Emsum CCC540 490 Absec(IH) = Absum			IT INFREM
UUU350 EMISCIIFI = EMSUM CCC540 490 ABSBC(IF) = ABSUM	000533	480	
	000530	007	EMISCITAT = EASUM ARCACITET = ARCHM
) *	

ABSORPTION AND EMISSICN COEFFICIENTS COMPUTED FOR ALL CONTRIBUTING Lines at All Altitudes Now integrate over altitude using simpsones but e	INTEGRATE ABSORPTION OVER TWO INCREMENTS	IF THIS IS CASE 3 OR 4 DO ALTERNATE INTEGRATION EXCLUDING EMISSICN GO TO (500, 500, 555, 555), ICASE	<pre></pre>	CALCULATE EMISSION AT EACH ALTITUDE, AS DIMINISHED BY ABSORPTION	15. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	EMH(IREV) = EMISC(IREV) * EXP(-TEMP) EMH(IREV) = EMISC(IREV) * EXP(-TEMP) EMH(NALT) = EMISC(NALT)	NOW INTEGRATE EMISSIGN CVER ALTITUDE N2 = NALT - 4	TEMP2 = 0.0 00 550 I = 1,N2,4 TEMP2 = TEMP2 + (EMH(I) + 4.0 * EMH(I+2) + EMH(I+4)) *	L ((PATH(I+1) - PATH(I)) * 0.66667E+5) AITEN(NPT) = AIZERO * EXP(-TEMP) + 1.0E-7 * TEMP2 GO TO 580	ALTERNATE INTEGRATION CF ABSORPTION FOR GEOMETRY CASE 3 OR 4 Temp = 0.0 DO 557 I = 1.N2, 2	<pre>IHA = I + NSEC TEMP = TEMP + (ABSBC(I) + 4.0*ABSBC(I+1) + ABSBC(I+2)) * I</pre>	IF (ICASE .AE. 4) GO TC 500 AITEN(NPT) = AITEN(NPT) * ALBEDO * EXP(-TEMP) GO TO 580	RECO ECR. SECCNO PASS
0000	, , , ,	U U U	510	ບບ ເ		230	ບບ	550	552	с 555	557	• •	ບບ
		0000546	000560		000575	000613	000615	000617 000617 000621	000635 000645	000645 000646	000652	000676 000676	

SPECTRUM WAS REACHED , NPT' = 2, NPTS) I4, 7H POINTS 2, NPTS)) NEXT 100 UNLESS END CF G0 T0 280 Ľ (SINGF(NPT), AITEN(NPT (NPTS, ((FREQ(I), AITEN(I)); [// 28H THIS SPECTRUM CCNSISTED (IH1,5X 18A4 ,5X 16HFREC(CM**-1 **INTENSITY** - CM##-1) E11.4. 2X)) STOP IF END FREQUENCY IS REACHED G0 TC 620 TC 600 START NEW PAGE EVERY 200 PUINTS [F (NFREQ .NE. 200*(NFREC/200)) 27HINTENSITY(h/CM**2 AIZERG = AITEN(NPT) * ALBECO FREQUENCY FO INTS 2× IF (FRECC .GT. FSTOP) CO WRITE (IOUT, 1560) NFREQ WRITE (IOUT, 1550) TITLE 580), IPASS (F (FRECC .LT. FSTOP) (5 (1X, FL0.4, WRITE PCINTS AND DO END CF LOOP FCR 100 1500) = FREG(101) 5 (26H (2F9.3) END FILE ITAPE I IOUT, REWINC ITAPE WRITE(ITAPE) (565. = 49 G0 TC 400 G0 TC 280 FREQ(1) RETURN WRIJE . FURMAT FORVAT FORMAT FORMAT G0 TC PASS NSEC END 1560 1570 1500 1550 600 620 560 565 580 000720 001015 000720 00C726 000764 COC774 000776 001014 001015 001015 001015 001015 000705 00013 000714 000715 000743 000766 00100 001000 000761 100100 ł

SUBPOLTINE TRANF SUBROUTINE TO CONVERT SPECTRUM CALCULATED ABOVE ON VARIABLE SUBROUTINE TO CONVERT SPECTRUM SCALE AND TAKE FOURIER TRANSFORM WAVENUMBER SCALE TO UNIFORM SCALE AND TAKE FOURIER TRANSFORM CF RESULTANT SPECTRUM ALSO PULTIPLIES SPECTRUM BY INPUT FILTER BANDPASS DATA	DOUBLE PRECISIEN CFREQ COPMEN CFREC(150) COPMEN CFREC(150) COMMEN ABSB(150, 98), A(27,25), B(25,25), C(25,25), COMMEN ABSB(150, 98), A(27,25), B(25,25), C(25,25), I PATH(58), ATEMP(58), CONC(3, 98), ALOR(98), DOPP(3,98), 2 STFQ(150), SPFQ(150), STRONG(150), ENCY(160), 3 TITLE(18), AQ(3), BQ(3), CO(3), ALBEDO, GTEMP, GEMIS	COMPENDENT STATE STATE STATE STATE STATE STATE SCAPE SCAPE SCAPE SCAPE SCAPE SCAPE STATE S	<pre>EQUIVALENCE (AFREQ(1), ABSB(1,1)), (FILTER(1), ABSB(1,56)),</pre>	DATA ENDF/4HEND /, FNCNE/4HNCNE/, PUNCH/4HPUNC/, PFCN/4HPOWE/, 1 Gauss/4+Gaus/, Flcr/4Hlore/, Cal/4Hcalc/ 1TAPE = 2	REAC FLOT LIMIT DATA CARD REAC (IN, 2000) N2PCW,FLEFT, FRIGHT, FREF, YBOT, YTOP, PWORD REAC (IN, 2010) USCALE, DSTART, DSTOP Set default cpticns Number GF PCINTS (POWER GF 2, MAX 2**12 = 4096)	IF (N2PCW .EQ. 0) N2POW = 12 NPCINT = 2 ** N2POW FNFT = NPOINT
	000002 000002 000002	000002	000002 000002 000002 000002 00002	300002 300002	00003	00037 00041 00045

000235	251	GO TC 160 Continue
	ى ں ں <u>ں</u> ر	REAC SPECTRUM FRCM TAPE AND INTERPOLATE TO PUT ON UNIFCRM WAVENUMBER SCALE Set up Loop for Uniform Frequency Scale
000235 000236 000237	253	NBLCCK = 101 NBPT = 200 IPASS = 1
000240 000242	с С 255	DO 212 IS = 2, NPOINT IS NEW ELOCK CF CATA NEECEC FROM TAPE IF (NBPT .LE. NBLOCK) GC TO 268
000245 000247 000247	υυυ	NEW BLOCK IS NEEDED FIRST TRANSFER LAST POINT CF OLD BLOCK TC FIRST POINT OF NEW Skip if This is first block IF (IPASS .EQ. 1) GC TC 258 Freg(1) = Freg(101) Spect(1) = Spect(101)
000253	ပပ	BEFORE REACING NEW BLOCK INTEGRATE REMAINDER OF OLD BLOCK Segcne = (aline(nlast) / 2.0) * (freq(nlast)**2 - flast**2) 1 + blinf(nlast) * (freq(nlast) - flast)
000320 000322 000322		IF (NLAST .GE. NBLOCK) GO TO 258 NLASTI = NLAST + 1 DO 257 I = NLASTI. NBLOCK
000377	257 258	SEGCNE = SEGCNE + (ALINE(I) / 2.0) * (FREQ(I)**2 - FREQ(I-1)**2) 1 + BLINE(I) * (FREQ(I) - FREQ(I-1)) NLAST = 1
CC0400	ບບ	
000401	ວ ບ	REAU IN NEW ELUCK UP 100 PUINTS READ (ITAPE) (NBLOCK, ((FREQ(I), SPECT(I)), I = 2,NBLOCK))
000417 000421 000427 000427 000431 000432	ې	IF THIS IS FIRST BLUCK CF SPECTRUM SET FIRST TWU PUINTS EQUAL IF (IPASS = AE. 1) GO TC 260 FREQ(1) = FREQ(2) - 0.COl SPECT(1) = SPECT(2) IPASS = 2 NLAST = 2

FLAST = AFREQ(1) SEGCNE = 0.0	<pre>FIT STRAIGHT LINE TO EACH SPECTRAL INTERVAL TO BE USED LATER FOR SPECTRAL INTEGRATION DO 262 IL = 2, NBLCCK ALINE(IL) = (SPECT(IL-1) - SPECT(IL)) / (FREQ(IL-1) - FREQ(IL)) BLINE(IL) = SPECT(IL) - ALINE(IL) * FREQ(IL)</pre>	NOW FIND CURRENT FREQUENCY POINT IN DATA BLOCK If (Afreq(IS) - Freg(Neft)) 270, 270, 285 -	IF THIS POINT AND LAST POINT ARE IN SAME INTERVAL COMPUTE INTEGRAL OVER APPROPAIATE SEGMENT OF INTEGRAL IF (NBPT .NE. NLAST) GC TO 272 SPCTRM(IS) = (ALINE(NBPT) / 2.0) * (AFREQ(IS) **2 - FLAST**2) I + PLINE(NBPT) * (AFREQ(IS) - FLAST) FLAST = AFREQ(IS) GO TO 310	<pre>IF THIS POINT AND LAST POINT ARE IN CONSECUTIVE INTERVALS INTEGRATE AND ACD APPRCFIATE INTERVAL SEGMENTS IF (hlast .eq. 1) Go TC 273 SEGCNE = (ALINE(NLAST) / 2.0) * (FREQ(NLAST)**2 - FLAST**2) 1 * BLINE(NLAST) * (FREQ(NLAST) - FLAST)</pre>	SEGTMO = (ALINE(NBPT) / 2.0) * (AFREQ(IS) **2 - FREQ(NBPT-1)**2) 1 + BLINE(NBPT) * (AFREQ(IS) - FREC(NBPT-1))	IF (NEPT .NE. (NLAST+1)) GC TO 274 SPCTRM(IS) = SEGGNE + SEGTMC FLAST = AFREQ(IS) NLAST = NBPT GO TC 310 GO TC 310	IF PCINTS INCLUDE SEVERAL INTERVALS INTEGRATE INTERVALS IN BETWEEN NBPT1 = NBPT 1 NLAST1 = NLAST + 1 SINTG = 0.0 D0 276 I = NLAST1, NBPT1 SINTG-= (ALINE(I) / 2.C) * (FREQ(I) **2 - FREQ(I-1) **2)
	260 260 260	268 268	50 50 50 50 50 50 50 50 50 50 50 50 50 5	2000 240 2000	273 273	ა ა	274 276 276
000433	000440 000440 000465	005000	000511 000513 000550 000564	000 56 4 000 56 6	000633	000701 CCC704 CCC707 0CC712 CCC713 CCC713	000714 000716 000720 000721 000721 000723

 \mathbf{i}

PCTRM(IS) = BLINE(I) $SPCTRM(IS) = SII$ $PLAST = ABPT$ $FLAST = ABPT$ $GO TC 310$ $FRECUENCY GREAT$ $TRY NEXT PCINT$ $NBFT = NBPT + 1$ $GO TO 255$ $SPCTRM(IS) = SPCSPCTRM(IS) = SPCRITE SPECTRUM (IS)WRITE SPECTRUM (IS)WRITE SPECTRUM (IS)MRITE SPECTRUM (IS)SFREC(I) = SQRT (SPC)MRITE SPECTRUM (IS)SOC SCINCE = 1.0 / SPCMINT = 0MINT = 0.00MINT = 0.00MINT = 0.00MINT = 0MINT = 0.00MINT = 0.00$	I) * (FREQ(I) - FREQ(I-1)) + SINTG NTG + SECONE + SECTWO S)	ER THAN BLUCK DATA FREQUENCY IN BLOCK	CTRM(IS) * (FILTER(IS) + FILTER(IS-1)) / 2.0 FRM(2)	N SCRATCH TAPE FOR FUTURE PLOTTING	CIES TO SINGLE PRECISION FOR PLOTTING Point 2(1) - Celf2	POINT, FLEFT, FRIGHT, YBCT, YTUP) SFREQ(I), SPCTRM(I)), I = 1,NPOINT)	RMATION AND PLOTTING SECTIONS Barringer program	POINT FRM, ZERC, N2POW)	TART - SDELF2)/ (SSTOP - SSTART) TRM(1) * SPCTRM(1) + ZERO(1) * ZERO(1)) / FNPT)	STOP - SSTART)	NPGINT	:
	L + BLINE(SPCTRM(IS) = SI NLAST = NBPT FLAST = AFREQ(I GO TC 310	FREGUENCY GREAT TRY NEXT PCINT NBFT = NBPT + 1 GO TO 255	SPCTRM(IS) = SP CONTINLE SPCTRM(I) = SPC	FINSHEC SPECTRU WRITE SPECTRUM	CCNVERT FREQUEN DO 315 I = 1, N SFREQ(I) = AFRE	REWIND ITAPE Write(Itape) (n Write(Itape) ((FOURIER TRANSFO	DO 335 I = 1,N ZERC(I) = 0.0 CALL FRXFM (SPC	G = C.C. DG = (FREF - SS ZPD = SQRT (SPC RAT = EXP (1.0	DEC = 1.0 / RAI DECCN = DEC DINC = 1.0 / (S NINT = 0	DO 380 NPD = 1	

Ŷ

BI = SPCTRM(NPC) = SPCTRM(NPD) + ZEKU(NPU) = ZEKU(NPU) DECCN = DECON = RAT BI = SQRT(BI) / ZPD = 7.0 + DECON	PHAS = ATAN2 (ZERO(NPD), SPCTRM(NPD)) / 6.2831853 G = G + DG	PHAS = G - PHAS PHAS = PHAS - AINT(PHAS)	IF (PHAS .GT. 0.5) PHAS = PHAS - 1.0		XX = XNFU = UINC IF (XX -LT. DSTART) GC TO 380	IF (XX .6T. DSTOP) GC TO 405	NINT = NINT + 1 DINT(NINT) = XX	BINT(NINT) = BI	PINT(NINT) = PHAS	WRITE INTERFEROGRAM DN, SCRATCH TAPE FOR PLOTIING	5 WRITE(ITAPE) (DSTART, DSTOP, DSCALE, NINT)	WRITE(LIAPE) ((UINI(I), BINT(I), PINI(I)), I = 1,NINI) or the trace		PUNCH INTERFERDGRAM CN CARDS IF DESIRED	IF (PWORD .AE. PUNCH) GG TC 430		FNPLN = NPUN	DPSICP = DSTART + FNPUN = DINC	WRITE (IPUN, 2200) TITLE	WALIE (IPUN, 2210) NPUN, OSTART, DPSTCP, DINC NPUN2 = NPUN / 2	00 420 I = 1, 'NPUN2	12 = 1 + 2	0 WRITE (IPUN, 2220) SPCTRM(I2-1), ZERO(I2-1), 1 Spctrm(I2), ZERO(I2), TITLE(1), I	O CONTINUE		RETURN	FCRVATS	
် ပ			َن)			ļ	• .	385	ິ 	405		ų	ں ر			,		:				420	430	မှုင	د	ບບ	•
001121 001134 001134	01142	01150	01153	01160	01164	01166	01175	52110	01176		01203	1210	, ()] (1236	11241	1242	1244	1241	01254 01270	01272	1273	01274	01317		1510		

MAT (12, 7X, 3F10 MAT (F9.4, 2F10.4 MAT (F9.4, 2F10.4) MAT (F9.3) 5F10.3) MAT (14, 15H POIN) 5H CW, F7.3 MAT (4X, 2(2X, 0PE	4, 2E10.3, 5X, A4) 5X, 3F10.4, I2) 5S, DELAY , F7.3, 7H CM TD , F7.3, 19 CM/POINT) 513.6, 2X, OPE13.6, 2X), 4X, A4, I4)			
	<pre>MAT (12, 7X, 3F10. NMAT (F9.4, 2F10.4) NMAT (F9.4, 5X, 44, 6) NMAT (F9.3, 5F10.3) NMAT (F9.3, 5F10.3) NMAT (14, 15H POINT SH CM, F7.3 NMAT (4X, 2(2X, 0PE</pre>			

SUPROUTINE FLTRS (FILTER, AFREQ, ITYPE, CENTER, MIDTH, PEAK, 1 C C	C SUBRCLTINE TO CCMPUTE FILTER FUNCTIONS GIVEN EITHER C Galssian or Lorentzian Characteristics or Calibration Curve C double precision Afred. Fwave. Center	DIPENSION FILTER(4100), AFREG(4100), FWAVE(50), FRESP(50) C CHECK FILTER TYPE GU TO (200, 300, 400, 350), ITYPE	C GALSSIAN FILTER C GALSSIAN FILTER 200 DO 220 I = 1, NPOINT BEX = (AFREG(I) - CENTER) / WIDTH 220 FILTER(I) = FILTER(I) * EXP(-(BEX * BEX)) * PEAK RETURN	C LORENTIAN FILTER 300 DU 320 I = 1, NPOINT BEX = { AFREQ(I) - CENTER) 320 FILTER(I) = FILTER(I) * (WIDTH / (WIDTH + BEX * BEX)) * PEAK RETURN	C POWER FUNCTION FILTER 350 WIDTH1 = WIDTH - 1.0 DO 370 I = 1. NPOINT DEL F = CABS(AFREQ(I) - CENTER) IF (DELF - LT WIDTH1) GO TO 355 FILTER(I) = 0.0 GO TO 370 GO TO 370	<pre>355 FILTER(I) = PEAK * (1.0 - (DELF/WIDTH)**2) ** NFPOW 370 CONTINUE RETLRN C calteration curve given - MUST convert to same frequency c scale as spectrum 400 DJ 500 If = 1. NPOINT</pre>	C FRECUENCY ARRAY POINTS BELCW FIRST OR AECVE LAST CALIBRATION C POINT PRE SET TO ZERO IF (AFPEQ(IF) .GE. FWAVE(1)) GO TO 410 FILTER(IF) = 0.0
	000016	000016	000025 000027 000051 0000051	000066 000070 000077 000106	000107 000111 000113 000133 000133	000151 000145 000150 000151	000153

000161		60 10 500
000161	410	IF (AFREQ(IF) .LE. FWAVE(NCAL)) GO TO 42C Filter(IF) = 0.c
000171		60 T0 500
000171	с 420	USE LINEAR INTERPOLATICN FOR ALL OTHER PCINTS NF = 2
000172	430	IF (AFREQ(IF) .LE. FWAVE(NF)) GO TO 450
000201		60 10 430 11 430
202000		TILIER(IT) = TILIER(IT) * (TRESP(NT) - ((TWAVE(NT) - ATKEQ(IT)) 1 * (FRESP(NF) - FRESP(NF-1)) 2 / (FWAVE(NF) - FWAVE(NF-1))))
000272	004	CUNIINUE RETURN END
	:	
•		
	:	
1		
	•	

C SUBROLTINE FRXFM(X,Y,N2POW) C SUBROUNTINE FRXFM C C COMPUTES FOURIER TRANSFORM OF SPECTRUM C	ERXFR C	C FINITE DISCRETE FOURIER TRANSFORM C IT REPLACES THE VECTOR Z=X+IY BY ITS FOURIER TRANSFORM C THE LENGTH OF THE VECTOP IS NTHPOW=2***>2004	C THE FINITE DISCRETE FOURIER TRANSFORM IS THE PRODUCT WITH C THE MATRIX WHOSE 1, J ELEMENT IS W**(I*J), WHERE C W=CEXP(2.*PI*I/NTHPOW), THE NTHPOW PRINCIPLE ROOT OF UNITY	C I.J=0NTHPOM-1 C NOTE ZERO SUBSCRIPTS HERE REFER TO FORTRAN SUBSCRIPTS=1 IN THE C CODE. I.E. THE FORTRAN SUBCRIPTS RUN FROM 1 TO NTHPOW. C DEVELCPED BY B. LANGCON AND G. SANDE FROM THE APPROACH OF	C J.W. TUKEY AND J. CCCLEY. C PRINCETCN UNIVERSITY, NCVEMBER 1965. C	<pre>keal X(2), Y(2), 1, 11, 12, 13, 14 INTEGER PASS, SEQLOC, L(13) EQUIVALENCE (NTHPOW,14), (J,J1), (N4POW,J5), (PASS,J6), I (NXTLTH,J7), (LENGTF,J8), (SEQLOC,J9), (SCALE,J10), 2 (ARG,J11), (C1,J12), (C2,L1), (C3,L2), (S1,L3),</pre>	<pre>3 (S2,L4), (S3,L5), (R1,L6), (R2,L7), (R3,L8), (R4,L9), 4 (11,L10), (I2,L11), (I3,L12), (I4,L13), (R,I) EQUIVALENCE (L13,L(1)),(L12,L(2)),(L11,L(3)),(L10,L(4)), 1 (L9,L(5)),(L8,L(6)),(L7,L(7)),(L6,L(8)),(L5,L(9)), 2 (14,110),113,L12,L11),112,12,121),(L11,L13),(L5,L(9)),</pre>	INVERTEI IF(N2POW.LT.O)INVERT=-I	IF(N2POW.LT.G)N2PUW=-N2PCW NTHFCM=2**N2PCW NAEDL-N2POW./2	IF(N4PCh-EQ-0) GD TO 3 C RADIX 4 PASSES, IF ANY.	00 2 PASS=1,N4POW NXTLTH=2**(N2PCW-2*PASS) PENCTH-2**NYTTTH	SCALE = 6.283185307/FLCAT (LENGTH) DO 2 J= 1, NXTLTH	
						000006	00000	000000000000000000000000000000000000000	000013	000021	000022 000023	000035 000035	•

000001 C1=C05 KN1480 000005 C1=C05 KN1480 000015 C1=C05 KN1480 000015 C101 KN111	00036	ARG=FLDAT(J-1) * SCALE
000000 000000 000000 000000 000000 000000	100041	C1= CDS (ARG)
000006 000005 000005 00005	00044	S1=SIN(ARG)
000055 000055 000057 000056 000057 000056 000057 000056 000056 000056 000057 000056 000057 000056 000056 000057 000056 000057 000056 000057 000056 000056 000056 000057 000056	00046	C2=C1+C1-S1+S1
000052 53=24:452.442 00025 53=24:451.452 00025 53=24:451.452 00025 10 2 56:LGC-ENCH+44 12-24:NATLH 000212 12-24:NATLH	000050	S2=C1+S1+C1+S1
0000055 000005 000007 000007 000001 000012 000014 000014 000015 000014 000015 000014 000015 000015 000115 11=r(11)=r(13) 000016 11=r(11)=r(13) 11=r(11)=r(13) 11=r(11)=r(13) 11=r(11)=r(13) 11=r(11)=r(13) 11=r(11)=r(13) 11=r(11)=r(13) 11=r(11)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13) 11=r(13)=r(13)=r(13) 11=r(13)=r(13)=r(13) 11=r(13)=r(13)=r(13) 11=r(13)=r(13	00052	.C3=C1+C2-S1+S2
000000 000011 000012 000012 000012 000012 000012 000012 000122 000112 000012 000012 000012 000012 000012	000055	S3=C2+S1+S2+C1
00004 J1=SECCC-ENGT+4 00007 8 F1=SECCC-ENGT+4 000012 8 F1(J)+(J) 000014 7=3+X1(T+ 000012 1=1(J)+(J) 000114 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000112 1=1(J)+(J) 000113 1=1(J)+(J) 000114 1=1(J)+(J) 000115 1(J)=1(F(L=E,I) 000115 1(J)=1(F(L=E,I) 000116 1(J)=1(J)=1(J) 000116 1(J)=1(J)=1(J)=1(J) 000116 1(J)=1(J)=1(J)=1(J)=1(J) 000116 1(J)=1(J)=1(J)=1(J)=1(J)=1(J)=1(J)=1(J)=	09000	DO 2 SECLOC=LENGTH,NTHPCW,LENGTH
Ja-Jawarth CCC015 Ja-Jawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 Razallawarth CCC015 CCC0	300064	J1 = SECLCC-LENGTH+J
000011 J==J=NXLLH 000012 H==ZVJJ=XVL1 CCC015 R==XVJ]=XV[14] 000114 [==YVJ]=YV[14] 000115 R==XVJ]=YV[14] 000116 [==YVJ]=YV[14] 000115 R==XVJ]=YV[14] 000116 R==YVJ]=YV[14] 000116 [==YVJ]=YV[14] 000116 X[1]==YV[14]=YV[14] 000116 X[1]==YV[14]=Y	00067	J2=J1+NXTLTH
000012 81=x1/1)=x1/19 000114 11=x1/1)=x1/19 000115 81=x1/2)=x1/19 000112 11=x1/1)=x1/19 000112 11=x1/1)=x1/19 11=x1/1)=x1/19 000112 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/19 12=x1/2)=x1/21 12=x1/2)=x1/21 12=x1/2)=x1/21 12=x1/2)=x1/21 12=x1/2)=x1/21 12=x1/2)=x1/21 12=x1/2)=x1/21 12	000071	J3=J2+hXTLTH
0000114 11=*(1,1)=*(1,3) 000115 82=*(1,1)=*(1,3) 000115 11=*(1,1)=*(1,3) 000115 11=*(1,1)=*(1,3) 000115 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 11=*(1,1)=*(1,3) 000116 11=*(1,2)=*(1,2)=*(1,2) 11=*(1,1)=*(1,1)=*(1,1) 11=*(1,1)=*(1,1)=*(1,1) 000116 11=*(1,2)=*(1,2)=*(1,2)=*(1,2)=*(1,2) 11=*(1,1)=*(1,1)=*(1,1) 000116 11=*(1,2)	006672	J4=J3+NXTLTH
CCCC075 R3=X(1)-X(13) R4=X(1)-X(14) CCC016 R3=X(1)-X(14) R5=X(1)-X(14) CC0117 [1=x(1)+Y(13) CC0125 R3=X(12)-Y(14) CC0125 R(1) = (1)-X(14) CC0125 R(1) = (1)-X(14) CC0125 R(1) = (1)-X(14) CC0125 R(1) = (1)-X(14)-C(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-	00073	R1 = X (J1) + X (J3)
000101 R4=X/121-X/141 000111 [1=Y(11)+Y(13) 12=Y(121-Y(14) 000125 [4=Y(122)-Y(14) 000126 [1=Y(122)-Y(14) 000126 [1=Y(122)-Y(14) 000126 [1=Y(12-14)] 000126 [1=Y(12-14)-1]+[1=Y(12-14)] 000126 [1=Y(12-14)-1]+[1=Y(12-14)] 000126 [1=Y(12-14)-1]+[1=Y(12-14)] 000126 [1=Y(12)-1]+[1=Y(12-14)] 000126 [1=Y(12)-1]+[1=Y(12-14)] 000127 [1=Y(12)-1]+[1=Y(12-14)] 000128 [1=Y(12)-1]+[1=Y(12-14)] 000128 [1=Y(12)-1]+[1=Y(12-14)] 000128 [1=Y(12)-1]+[1=Y(12-14)] 000129 [1=Y(12)-1]+[1=Y(12)-1]+[1=Y(12-14)] 0001217 [1=Y(12)-1]+[1=Y(12)	CC075	R2=x(J)-x(J3)
000117 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14) 000125 11=Y(12)=Y(14)=Y(12)=Y(12) 11=Y(14)=Y(12)=Y(12)=Y(12) 11=Y(14)=Y(12)	101000	R3=X(J2)+X(J4)
000117 11=*/121*/134 11=*/121*/134 000125 11=*/121*/134 11=*/121*/134 000126 11=*/121*/134 000136 11]=11+13 11]=11+13 11]=11+13 11]=11+13 11]=11+13 11]=11+13 11]=11+13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=11=13 11]=12=14 12]=12=14 12]=12=12=14 12]=12=14 12]=12=12=12=12=12=12=12=12=12=12=12=12=12=	60105	
000117 12=Y(J2)=Y(14) 13=Y(J2)=Y(14) 11=11=1 0001135 7(1,1)=11+13 0001135 7(1,1)=11+13 0001135 7(1,1)=11+13 000145 7(1,2)=52+(81-R3)=52+(1)=13 1(1,2)=52+(81-R3)=52+(1)=13 000176 7(1,2)=52+(81-R3)=52+(1)=13 7(1,2)=52+(1)=73+(12-R4) 000176 7(1,2)=52+(1)=73+(12-R4) 7(1,2)=52+(1)=73+(12-R4) 7(1,2)=52+(1)=12+13 7(1,2)=52+(1)=12+13 7(1,2)=12-13 7(1,2)=12-13 7(1,2)=12-13 7(1,2)=12-14 7(1,4)=52+(1)=72+14 7(1,4)=52+(1)=12+13 7(1,2)=12-13 7(1,2)=12-13 7(1,4)=12-14 7(1	01100	
00011/ 1==1/12/-7(14) 000126 [1==1/12]-7(14) 000126 [1=1/12]=112.844 000146 [7(1]=51=(12]=41]=51=(12.844) 000146 [7(1]=521=(12]=12]=(12.844) 000166 [7(1]=521=(12]=12]=(12.844) 000176 [7(1]=523=(12]=72=(11]=13) 7(1]=523=(12]=72=(12]=12]=(12]=13)=72=(11]=13) 7(1]=523=(12]=72=(12]=72=(12]=12]=(12]=12]=(12]=12]=(12]=12]=12=14 0000176 [7(1]=523=(12]=72=(12]=12]=12]=(12]=12]=12=13 0000176 [7(1]=523=(12]=72=(12]=12]=(12]=12]=(12]=12]=(12]=12]=12]=12=14 0000176 [7(1]=523=(12]=12]=12]=12=14 000023 [7(1]=12]=12]=12=14 000023 [7(1]=12]=12]=12=12=12=12=12=12=12=12=12=12=12=12=12=	00114	
000123 ([]=R]=R]=R 000125 ([]]=R]=R]=R 000126 ([]]=R]=R]=R 000126 ([]]=C]=R[=R]=1]=C]=R[=R]=1]=C 000126 ([]]]=S]=C]=R[=R]=R]=2=R[=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=R]=2=R[=R]=2=R[=R]=2=R[=R]=2=R]=2	11000	
000126 X(11)=K1+K3 000136 Y(11)=K1+K3 000136 Y(13)=51*(R2-14)+C1*(12+R4) X(13)=51*(R2-14)+C1*(12+R4) X(13)=51*(R2-14)+C1*(12+R4) 000166 Y(12)=52*(R1-R3)+52*(11-13) Y(14)=53*(R2+14)+C3*(12-R4) Y(14)=53*(R2+14)+C3*(12-R4) Y(14)=53*(R2+14)+C3*(12-R4) Y(14)=53*(R2+14)+C3*(12-R4) Y(14)=12+R4 000225 X(14)=12+R4 Y(14)=12+R4 Y(14)=12+R4 Y(14)=12-R4	00123	
000132T(J1)=11+13000134T(J3)=51*(R2-14)-51*(12*R4)000156T(J3)=51*(R2-14)-51*(12+R4)000156T(J2)=52*(R1-R3)+52*(11-13)000176T(J2)=52*(R1-R3)+52*(11-13)000176T(J3)=52*(R2+14)+52*(12-R4)000176T(J3)=52*(R2+14)+52*(12-R4)000123T(J3)=52*(R2+14)+53*(12-R4)000217T(J3)=52*(R2+14)+53*(12-R4)000217T(J3)=87-14000217T(J3)=87-14000217T(J3)=12-R4000217T(J3)=12-R4000218T(J3)=12-R4000219T(J3)=12-R4000223T(J3)=12-R4000231T(J3)=12-R4000232T(J3)=12-R4000233T(J3)=12-R4000233T(J4)=12-R4000234T(J4)=12-R4000244T(J4)=12-R4000245 <td>100126</td> <td></td>	100126	
00013511.13000146Y(13)=51*(R2-14)=51*(12*R4)000166Y(12)=52*(R1-R3)=52*(11-13)000176X(12)=52*(R1-R3)=52*(11-13)000176X(14)=53*(12*R4)000176X(14)=53*(12*R4)000176X(14)=53*(12*R4)000176X(14)=53*(12*R4)000176X(14)=53*(12*R4)000176X(14)=53*(12*R4)000217X(14)=53*(12*R4)000217X(14)=53*(12*R4)000217X(12)=12*R4000217X(12)=12*R4000217X(12)=12*R4000217X(12)=12*R4000217X(12)=12*R4000217X(12)=12*R4000217X(12)=12*R4000223X(12)=12*R4000224Z(001NLE000225R1(14)=12*R4000225R=X(1)+X(1+1)000256X(13+1)=X(1)-X(1+1)000225X(13+1)=X(1)-1(1+1)	00132	Y(J1)=11+13
000156 X(J3)=SI=K(RZ-[4]-SI=K(I2+4) 000166 X(J2)=S2*(R1-R3)-S2*(I1-13) 000176 X(J2)=S2*(R1-R3)-S2*(I1-13) 000176 X(J4)=S3*(R2+14)-S3*(I2-R4) 7(J4)=S3*(R2+14)-S3*(I2-R4) 7(J4)=S3*(R2+14)+C3*(I2-R4) 7(J4)=S3*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S2*(R2+14)+C3*(I2-R4) 7(J4)=S3*(R2+14)+C3*(I2-R4)+C3*(I2-R4)+C3*(I2-R4)+C3*(I2-R4)+C3*(I2-R4)+C3	100T34	
000156 % (1.2)=52*(R1-R3)-52*(11-13) % (1.4)=52*(R1-R3)-52*(11-13) % (1.4)=52*(R1-R3)-52*(11-13) % (1.4)=53*(R2+14)-53*(12-R4) % (1.4)=53*(R2+14)-53*(12-R4) % (1.4)=53*(R2+14)-53*(12-R4) % (1.4)=12-R4 % (1.4)=12-R4 % (1.4)	00136	X(J3)=C1*(R2-[4)-S1*(I2+R4)
000156 X1(J2)=SC*TITTAJ7-ST*TITTJ2 000176 X1(J4)=SC*TITTAJ7-ST*TITTJ2 000217 Y1(J4)=SC*TIT4)+C3*(12-R4) 7(J4)=SC*TR2+14)+C3*(12-R4) 7(J3)=R2-14 7(J3)=R2-14 7(J3)=R2-14 7(J3)=R2-14 7(J3)=R2-14 7(J3)=R2-14 7(J3)=R1-R3 7(J3)=R2-14 7(J3)=R1-R3 7(J3)=R1-R3 7(J3)=R1-R3 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R1-R4 7(J3)=R2-R4 7(J3)=R2 7(J3)=R2-R4 7(J3)=R2 7(J3)=	00150	
000206 000217 000216 0010 2 0010 2 000213 010 2 010 2 000231 010 4 000 2 000 4 01 1 000 2 000 4 000 2 000 4 000 4 0 0 0 0 0 0 0 0 0 0 0 0 0	90100	X1JZ1=LZ#1X1+K31=>Z#111+131 V1151=C3#f81=031+F3#f11-131
000205 000217 1 X(J3)=S3*(R2+14)+C3*(12-R4) 000217 1 X(J3)=R2-14 000225 X(J3)=R2-R4 000223 X(J4)=R1-R3 X(J4)=R2-R4 000237 X(J4)=R2-R4 000225 X(J4)=R2-R4 00027 X(J4)=R2-R4 00027 X(J4		
000216 1 X(J3)=R2-14 000223 Y(J3)=12+R4 0002231 Y(J2)=11-13 0002333 Y(J4)=R2+14 000231 Y(J4)=R2+14 000241 2 CUNTINLE 000253 0 F ADIX 4 000254 2 CUNTINLE 000255 RADIX 2 PASS, IF ANV. 000255 X(J+1)=X(J)-X(J+1) 0002255 X(J+1)=X(J)-X(J+1)	00206	X104)=C3+1X24141=S3+112=X4) Y(J4)=S3*(R2+14)+C3*([2-R4)
000217 1 X(J3)=R2-14 7(J3)=12+R4 7(J3)=12+R4 7(J3)=11-13 7(J4)=12-R4 7(J4)=12-	00216	
C00223 Y(J3)=I2+R4 C00225 X(J2)=R1-R3 Y(J2)=L1-I3 Y(J2)=L1-I3 X(J4)=R2+L4 T(J4)=I2-R4 C00251 Z CONTINLE C C C CONTINLE C C C	00217	1 X(J3)=R2-14
000225 X(J2)=R1-R3 000231 Y(J2)=I1-I3 0002337 X(J4)=R2+I4 000231 Y(J4)=R2+I4 000241 CONTINLE 1 CONTINLE 000251 3 1 SICNE CONTINLE 1 CONTINLE 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 3 1 1 2 1 3 1 2 2 2 3 1 1 2 3 1 1 2 2 2 3 1 3 1 3 1 3 1 3 1 3<	00223	Y(J3)=I2+R4
000231Y(J2)=I1-I3000233X(J4)=R2+I4000237Y(J4)=I2-R40002412 CONTINLE0002412 CONTINLE0002513 IF(N2POW-EQ.2*N4POW) GC TO 5000253RDIX 2 PASS, IF ANV.000253N0 4 J=1,NTHPOW.2000255N=X(J)+X(J+1)000260X(J+1)=X(J)-X(J+1)	00225	X(J2)=R]-R3
00233 X(J4)=R2+I4 00237 Y(J4)=I2-R4 7(J4)=I2-R4 00241 Z CONTINLE C ENC CF RADIX 4 CCC251 3 IF(N2POW-EQ.2*N4POW) GC TO 5 C RADIX 2 PASS, IF ANV. 000253 R=X(J)+X(J+1) 000255 X(J+1)=X(J)-X(J+1) 000260 X(J+1)=X(J)-X(J+1)	00231	Y(J2)=I,1-I3
000237 Y(J4)=I2-R4 000241 2 CONTINLE 000251 3 IF(N2PQW.EQ.2*N4POW) GC TO 5 CCC251 3 IF(N2PQW.EQ.2*N4POW) GC TO 5 000253 RADIX 2 PASS, IF ANY. 000255 Radix 2 PASS, IF ANY. 000255 X(J)+X(J+1) 000260 X(J+1)=X(J)-X(J+1)	00233	X(J4)=R2+I4
000241 2 CONTINLE C END CF RADIX 4 CCC251 3 IF(N2PQW-EQ.2*N4POW) GC TO 5 C RADIX 2 PASS, IF ANY. 000253 C 4 J=1,NTHPOW.2 N=X(J)+X(J+1) X(J+1)=X(J)-X(J+1) X(J+1)=X(J)-X(J+1)	100237	Y(J4)=I2-R4
CC251 C END CF RADIX 4 CCC251 3 IF(N2POW.EQ.2*N4POW) GC TO 5 C RADIX 2 PASS, IF ANY. 000253 00 4 J=1,NTHPOW.2 R=X(J)+X(J+1) X(J+1)=X(J)-X(J+1) X(J+1)=X(J)-X(J+1)	100241	2 CONTINUE
CCC251 • 3 IF(N2POW.EQ.2*N4POM) GC TO 5 C RADIX 2 PASS, IF ANY. 000253 00 4 J=1,NTHPOW.2 R=X(J)+X(J+1) J00260 X(J+1)=X(J)-X(J+1)	۔ ب	END CF RADIX 4
000253 00 4 J=1,NTHPOW.2 006255 R=X(J)+X(J+1) 000260 X(J+1)=X(J)-X(J+1)	300251 ·	3 IF(N2POW.EQ.2*N4POW) GC TO 5
000255 X(J+1)=X(J)-X(J+1) X(J+1)=X(J)-X(J+1))))	KAUIX Z PASSO IT ANTO Oo X
000260 X(J+1)=X(J)-X(J+1)		00 4 4-19NIATUM92 D-VIIJAVIIIIN
	042000	N-A.1.4.7.4.1.4.1 Y(141)=Y(1)-Y(141)

.

000264 000267 000271 000276 0003276 000300 000317 0003215 000321 000322 000322 000322 000322 000322 000322 0007 000322 0007 00	(J)*Y(J+1) 1)=Y(J)-Y(J+1) 1=1 UPF PARAMETERS FOR SGRT 6 J=1,13 6 J=1,13 1.1E.NZPOW) L(J)=2**(NZPOW+1-J) 6 J=1,13 J.1E.NZPOW) L(J)=2**(NZPOW+1-J) 6 SURT 1.1E.NZPOW) L(J)=2**(NZPOW+1-J) 6 SURT 7 J=1,12 1.1=J,12,11 7 J=J,12,12 7 J=J,12,12
000267 000271 000276 000316 000315 000317 000317 000321 000322 0007 000322 0007	+!)=Y(J)-Y(J+1) =I UP PARAMETERS FOR SORT 6 J=1,13 1.=1. 1.=1.N2POW) L(J)=2**(N2PGW+1-J) 6 ECUIVALENCE OF LI AND L(14-1) FRY SORT 7 J=J1.L2.L1 7 J=J1.L2.L1 7 J=J1.L2.L1 7 J=J5.L4.L3 7 J=J5.L6.L5 7 J=J5.L6.L5 7 J=J5.L6.L5 7 J=J5.L6.L5 7 J=J0.L11.L10 7 J=J0.L10.L10 7 J=J0.L10.L10 7 J=J0.L10.L10 7 J=J0.L10.L10.L10 7 J=J0.L10.L10.L
000271 C SET 000276 C SET 000314 C SET 000314 C SET 000315 C NUTE 000317 C SET 1J=10 000322 000322 0007 000322 0007 000322 0007 000322 0007 000323 0007 000323 0007 000323 0007 000323 0007 000322 0007 000322 0007 000322 0007 000322 0007 000322 0007 000322 0007 000322 0007 00032 0007 0007 0007 0007 0007 0007 0007 000)=F UP PARAMETERS FOR SORT 6 J=1,13 1=1 J.LE.N2POW) L(J)=2**(N2PCW+1-J) J.LE.N2POW) L(J)=2**(N2PCW+1-J) E ECUIVALENCE OF L1 AND L(14-1) FRY SORT 7 J1=1,L1 7 J1=J1,L2,L1 7 J1=J1,L2,L1 7 J1=J1,L2,L1 7 J1=J1,L2,L1 7 J1=J1,L2,L1 7 J1=J1,L2,L1 7 J1=J1,L1,L1 7 J1=J1,L1,L1,L1 7 J1=J1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1
C SFT 000276 000300 000302 000314 000314 000315 000315 000315 000314 0007 0007 0007 0007 0007 0007 0007 00	UF PARAMETERS FOR SORT 6 J=1,13 1=1 1.=1 J.E.N2POW) L(J)=2**(N2PCW+1-J) 6 CUIVALENCE DF LI AND L(14-T) E EQUIVALENCE DF LI AND L(14-T) 7 J1=1,L1 7 J1=1,L1 7 J1=1,L1 7 J1=1,L2,L1 7 J5=J4,L5,L4 7 J5=J4,L5,L4,L5,L4,L5,L4,L5,L4,L5,L4,L5,L4,L5,L4,L5,L4,L5,L5,L4,L5,L4,L5,L5,L5,L5,L5,L5,L5,L5,L5,L5,L5,L5,L5,
000276 000300 000302 000314 000315 000315 0007	<pre>6 J=1,13 1=1 1=1 1.1 1.1E:N2POW) L(J)=2**(N2PCW+1-J) E EQUIVALENCE OF LI AND L(14-1) E EQUIVALENCE OF LI AND L(14-1) E Y SORT 1 7 J=1,1L1 7 J=1,1L2 1 7 J=1,1L2 7 J=2,12,L3 7 J=3,12,L3 7 J=3,12,L3 7 J=1,1L1 7 J</pre>
CC 11/1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	J=1 J-LE.N2POW) L(J)=2**(N2PCW+1-J) E ECUIVALENCE OF L1 AND L(14-1) E FCUIVALENCE OF L1 AND L(14-1) ARY SORT J1=1,L1 7 J1=1,L1 7 J1=1,L1 7 J5=J4,L5,L4 7 J15=J0,L11,L10 7 J15=J10,L11,L10 7 J15=J10,L1110 7 J15=J10,L110 7 J15=J10,L100 7 J15=J100 7 J100 7
CC 11 FL 1	J.LE.N.2POW) L(J)=2**(N2POW+1-J) E ECUIVALENCE OF LI AND L(14-I) FRY SORT 1 J1=1,L1 7 J1=1,L1 7 J1=1,L2,L1 7 J3=J2,L3,L2 7 J4=J3,L4,L3 7 J5=J4,L5,L4 7 J6=J5,L6,L5 7 J6=J5,L6,L5 7 J6=J5,L6,L5 7 J6=J5,L6,L5 7 J6=J5,L6,L5 7 J6=J5,L6,L5 7 J1=J0,L11,L10 7 J10=J9,L10,L11,L10
C C NUTE 000314 C NUTE 000315 C NUTE 000317 000 000321 000323 000324 000 000323 000323 000323 000323 000323 000323 000323 000322 00032 000032 00002 00002 00002 00032 00003 0000	E ECUIVALENCE OF LI AND L(14-1) F Y SORT 1 1=1,L1 1 3=12,L1 1 3=32,L3,L2 1 4=13,L4,L3 1 5=14,L5,L4 1 5=14,L5,L4 1 5=14,L5,L4 1 3=12,L12,L1 1 3=12,L12,L1 1 3=12,L5,L4 1 3=12,L12,L1 1 3=12,L12,L12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 8104 000314 000315 000317 000320 000324 000324 000324 000326 0007 000326 0007 000326 0007 0007 0007 0007 0007 0007 0007 00	FY SORT FY SORT 7 J1=1.L1 7 J2=J1.L2.L1 7 J2=J1.L2.L1 7 J3=J2.L3.L2 7 J4=J3.L4.L3 7 J5=J4.L5.L4 7 J6=J5.L6.L5 7 J6=J5.L6.L5 7 J6=J5.L6.L5 7 J6=J5.L6.L5 7 J6=J5.L0.L9 7 J10=J9.L10.L11.L10 7 J10=J9.L10.L11.L10
C 81N/ 00314 C 81N/ 00315 00 1 00321 00 7 000324 00 7 000324 00 7 000325 00 7 000326 00 7 000325 00 7 000328 00 7 000328 00 7 00 7 00 7 00 7 00 7 00 7 00 7 00	RY SORT 1 1 J1=1.L1 7 J2=J1.L2.L1 7 J2=J4.L5.L4 1 J5=J4.L5.L4 7 J6=J5.L6.L5 7 J6=J5.L6.L5 7 J8=J7.L8.L7 7 J9=J8.L5.L8 7 J10=J9.L10.L11.L10 7 J11=J10.L11.L10
000314 000317 000317 000321 000321 000324 000324 000325 000326 000326 000327 000327 000327 000327 000327 000327 000327 000327 000327 000327 000327 000327 000326 000327 000320	1 7 J1=1,L1 7 J2=J1,L2,L1 7 J3=J2,L3,L2 7 J4=J3,L4,L3 7 J5=J4,L5,L4 7 J6=J5,L6,L5 7 J7=J6,L7,L6 7 J8=J7,L8,L7 7 J8=J7,L8,L7 7 J8=J9,L10,L9 1 7 J10=J9,L10,L11,L10
000317 000317 000321 000321 000323 000323 000324 0007 0007 0007 0007 0007 0007 0007 00	7 J1=1.L1 7 J2=J1.L2.L1 7 J3=J2.L3.L2 7 J4=J3.L4.L3.L2 7 J5=J4.L5.L4 7 J5=J4.L5.L4 7 J5=J5.L6.L5 7 J8=J7.L8.L7 7 J8=J7.L8.L7 7 J9=J8.L5.L8 7 J10=J9.L10.L9 7 J10=J9.L10.L9 7 J10=J9.L10.L9 7 J10=J0.L11.L10
00317 00320 00321 00321 00321 00323 00324 007 007 007 007 007 007 007 007 007 00	7 J2=J1.L2.L1 7 J3=J2.L3.L2 7 J4=J3.L4.L5 7 J5=J4.L5.L4 7 J5=J4.L5.L4 7 J5=J5.L6.L5 7 J7=J6.L7.L6 7 J7=J6.L7.L6 7 J9=J8.L9.L9 7 J10=J9.L10.L9 7 J11=J10.L11.L10
00322 00322 00322 00322 00324 00324 00322 000322 0003200000000	7 J3=J2:L3;L2 7 J4=J3.L4;L3 7 J5=J4:L5;L4 7 J5=J5:L6;L5 7 J7=J6:L7;L6 7 J8=J7;L8;L7 7 J9=J8;L9;L8 7 J9=J8;L9;L9 7 J10=J9;L10;L11;L10
00322 00321 00322 00323 00324 00325 00326 007 00326 007 007 007 007 007 007 007 007 007 00	7 J3=J2,L3,L2 7 J4=J3,L4,L3 7 J5=J4,L5,L4 7 J6=J5,L6,L5 7 J7=J6,L7,L6 7 J8=J7,L8,L7 7 J9=J8,L9,L8 7 J10=J9,L10,L9 7 7 J10=J9,L10,L11,L10 7 J11=J10,L11,L10
00321 00322 00323 00324 00324 00325 0077 00325 0077 0077 0077 0077 0077 0077 0077 00	7 J4=J3.L4.L3 7 J5=J4.L5.L4 7 J6=J5.L6.L5 7 J7=J6.L7.L6 7 J8=J7.L8.L7 7 J8=J7.L8.L7 7 J9=J8.L5.L8 7 J10=J9.L10.L9 7 7 J11=J10.L11.L10
00322 00323 00324 00325 00326 00326 00326 00321 00331 00331 00331 00332 00332 00332 00332 00332 000331	7 J5=J4.L5.L4 7 J6=J5.L6.L5 7 J7=J6.L7.L6 7 J8=J7.L8.L7 7 J9=J8.L9.L8 7 J10=J9.L10.L9 7 J11=J10.L11.L10 7 J11=J10.L11.L10
000323 000324 000325 000326 000326 000327 000327 000331 000331 000331 000332	7 J6=J5,L6,L5 7 J7=J6,L7,L6 7 J8=J7,L8,L7 7 J9=J8,L5,L8 7 J10=J9,L10,L9 7 J10=J9,L10,L1,L10
00324 005325 00326 00326 00327 00331 00331 00331 00332 0077 0077 0077 0077	7 J7=J6+L7+L6 7 J8=J7+L8+L7 7 J9=J8+L9+L8 7 J10=J9+L10+L9 7 J11=J10+L11+L10
003255 003266 00327 003330 00331 003331 003331 003332 007 007 007 007 007 007 007 007 007 00	7 JB=J7.L8.L7 7 J9=J8.L5.L8 7 J10=J9.L10.L9 7 J11=J10.L11.L10
003326 003266 00327 003331 003331 003322 00332	7 J9=J8+L9+L9 7 J10=J9+L10+L9 7 7 J11=J10+L11+L10 7 J11=J10+L11+L10
100326 00 7 100327 00 7 100331 00 7 100331 00 7 100332 00 7	7 J9=J8.L5.L8 7 J10=J9.L10.L9 7 7 J11=J10.L11.L10 7 J11=J10.L11.L10
00327 00 7 C0330 00 7 00331 00 7 00332 00 7	7 JI0=J9, L10, L9 '7 7 JII=J10, L11, L10
100331 00 7 100331 00 7 100332 00 7	7 JII=JI0,L11,L10
00331 007	
00332 00332	
	7 JI=JI2,LI3,LI2
1) - I - C - C - C - C - C - C - C - C - C	1.4.6E.JIJ 6U TU 7
100335 R=X (
100336 XIIJ	(IC) X=(-C)
11.1X X 1400	
1011 00500	
10C352 7 1J=1	[]+[]
100414 IF	F(INVERT.CT.O)RETURN
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
= 11	
00423 015	
100425 IJ	J=I.J+1 →
00426 R=	(7I)X=
C0430 X1	(IT) X=(TI)
100433 X.((JI)=R
=1 57000	
1A	

CC450	RETLAN	
•	END	
•		
1 : :		
•		
	a succession and the second	
· · ·		
	a set i san an she i sa si i san and a san a san un i san man san sa san anangi. Ina s	
r		
•		
•		
		and the second se
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
•		
	and and a set of the s	
•		· · · · · · · · · · · · · · · · · · ·
•		
		•
	1. A set of the set	

00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00013 00005 00013 00005 0005 000	F PRECISION CFREQ N CFREQUISO N CFREQUISO N CFREQUISO PATHI 981. ATEMPT 981. CONCIS. 981. DOPPT.981. PATHI 981. ATEMPT 981. CONCIS. 981. DOPPT.981. N CFREQUISO STROTSON. SFECTION N LTVE [180]. ATEMPT 991. CONCIS. 981. DOPT.981. N LTVE [180]. ATEMPT 991. STRONGLISOJ. ENGYLIGOJ. N LTVE [150]. NTVPE[3]. NLINE. NSPEC. IN. LOUT. (CASE N LTVE [150]. NTVPE[3]. NLINE. NSPEC. IN. LOUT. (CASE N LTVE [150]. NTVPE[3]. NLINE. NSPEC. IN. LOUT. (CASE N LTVE [150]. NTVPE[3]. NLINE. NSPEC. IN. LOUT. (CASE N LTVE [150]. NTVPE[3]. NLINE. NSPEC. IN. LOUT. (CASE N LTVE [150]. NTVPE[3]. NLINE. NSPEC. IN. LOUT. (CASE ALIZE PLOTTER TETHIS ARSBILL2OJ. SFREQUID). TASBIL.15]. PINTILLI. ALIZE PLOTTER TETHIS ALIZE PLOTTER TETHIS SHULT / LOO. 10.01.00.01.00.01.01.01.01.01.01.01.01.0
00055 7== 7== 00 1 00056 00 1	= 0.0 0 f=1.18.
0.0066 CAL	NDTATE (TX, TY, HGT, TITLE(I), ZERO, 4) TX + 0.48

150 CONTINUE Call Calplt (11.0, 1.0, -3) PLOT SPECTRUM OF SEMI-LOG GRID DRAW GRID	NUMAFR OF CYCLES NCYC = ALOGIO (YTOP/YBOT) CYC = NCYC CYC = NCYC CYNCH = 0.0 / CYC CINCH = 8.0 / CYC CINCH = 8.0 / CYC X AXIS LENGTH - ASSUME 10 WAVENUMBERS / INCH XLN = (FPIGHT - FLFFT) / 10.0 CALL LDGRID (XLM, CINCH, -1, NCYC, 0.0, 1.0, 10.0)	LAREL X AXIS DV = 10.0 TWIN = 2.0 CALL AXES (ZEPO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZERO, ZUENCY - CM**-1 , HGT, -18 J CALL AXES (ZEPO, ZERO, ZERO	VTEN = DELY - 0.1 TX = -0.70 MINE = -1 CALL MIMBER (TX. YTEN, HGT, DV. ZERO, MONE) TX = -0.46 CALL NUMBER (TX. DELY. HGT, YEXP. ZERO, MONE) O YEXP = YEXP + 1.0 O YEXP = YEXP + 1.0 CALL NUMBER (TX. DELY. HGT, ZERO, MONE) ANG = 90.0 CALL NOTATE (MONE, TY, HGT, UVICMAA2-CMAAA1) ANG 27)	PLOT POINTS DD 220 1 = 1. NPOINT DTEMP = (SFREG(I) - FLEFT) / 10.0
000070 000074 7 7 7 7 7	000104 000104 000105 000107 000112	000123 000123 000123 000124 000124 000124 000124 000141 000143	000153 000155 000155 000157 000157 000157 000157 00015202 000202	000206 000211

,

000220 NTEMP = (ALUGGIOLSCETEMILI) - YLADIJ * CINCH 000221 IF (1.56.1) IND = 3 000244 CALLCALPLT (DTEMP + 2.0 -31 000247 CALLCALPLT (DTEMP + 2.0 -41011, -1 000347 CALLCALPLT (D.0.0, 10.0, -31) -50 0003302 PEMUIN ITAPE (DINT(11), AINT(11), FINT(11), T 0003302 PEMUIN ITAPE (DINT(11), AINT(11), FINT(11), T 0003302 CALLCALPT (D.0.0, 10.0, -31) -50 0003302 CALLCALL ARENT -500, 10.0 -51 0003303 CALLCALL ARENT -590, 20 -50 0003304 CALLCALPT -50 -50 0003305 CALLCALPT -50 <td< th=""><th>K</th></td<>	K
000226 IND = 2 000227 TO EL (1.F.O. 1) IND = 3 000224 Call (1.F.O. 1) IND = 3 C Call (1.T.O. 1) IND SECTION C C CALL (1.T.O. 1) IND SECTION C CALL (1.T.C.O. 1) IND SECTION C CALL (1.T.C.O. 1) IND SECTION C CALL (1.T.C.O. 1) IND SECTIO	
000227 TF (1. F0. 1) NND = 3 000244 CALL CALPLT (DTEMP. 9TEMP. 7ND) 000244 CALL CALPLT (DTEMP. 0.0 3) 000247 FEAD TTAPE (DINT(1). RINT(1). PINT(1). 0003907 PEMIN ATAPE (DINT(1). RINT(1). PINT(1)). 0003907 CALL CALPT I 0.0. 1.03) 0003907 CALL CALL PLAN 0003305 CALL CALL PLAN 0003305 CALL CALPL 0.0. 1.0. 1.010) 000331 CALL CALPL 0.0. 2.0. 3) 000331 CALL CALPL 0.0. 2.0. 3) 000331 CALL CALPL 0.0. 2.0. 3) 000331 CALL CALPL 1.0.0. 0.0. 3) 000331	
000233 720 CALL CALPLT (DTEMP, BTEMP, 100) 000244 CALL CALPLT (DTEMP, 0.03) 000247 FUNT FRANSFORM PLOTTING SECTION 000247 CALD FRANSFORM ON X1, X10, X100 SCALES 000300 PEAD ITTAPE (DSTAPT, DSTOP, DSCALE, NPT) 000300 PEAD ITTAPE (DSTAPT, DSTAPT, DSTOP, DSCALE, NPT) 000300 CALL CALPLT (O.0., 1.0., 1.0., 1.0.) 0003014 CALL CALPLT (O.0., 1.0., 1.0.) 000302 CALL CALPLT (DTEM, 2.0., 1.0.) 000314 CALL CALPLT (DTEM, 2.0., 1.0.) 000314 CALL CALPLT (D.0., 1.0.) 000333 CALL CALPLT (D.0.) 000334 FON 000344 FON	
C Anvance Paper 000244 DTEMP = DTEMP + 2.0 000244 Cali Calpli (DTEMP + 2.0 C PITAP = DTEMP + 2.0 C Cali Calpli TotemP + 2.0 C PITAP = DTEMP + 2.0 C Cali Calpli TotemP + 2.0 C PITAP = DTEMP + 2.0 C PITAP = DTEMP + 2.0 C PITAPE = DTEMP + 2.0 D00361 PEAD = DTEMP + 2.0 PO00300 PEAD = TAPE = DTEMP + 2.0 D003302 PEAD = DTEMP + 2.0 D003302 PAL A E M D003303 C D003304 PEAD - E DA A E M D003305 C D003306 DA A E M C PAL A E M D003314 DODE - DSTART / DOD - SCALE D003314 DODE - DSTART / DOD - DOD - D D003314 DODE - D	
MIN1242 CANLAURE PAPER 0000244 CAIL CALPLT (DTEMP - 0.03) 0000244 CAIL CALPLT (DTEMP - 0.03) C FUIR FER TRANSFORM PLOTTING SECTION C FLOTS TRANSFORM IN X1. X10. X100 SCALES 0003300 E FUIND ITAPE (DITATE) (DITATE) FORTATION SCALES 0003300 E FUIND ITAPE (DITATE) (DITATE) FORTATION SCALES 0003300 E FUIND ITAPE (DITATE) (DITATE) FORTATION SCALE 0003300 E FUIND ITAPE (DITATE) (DITATE) FORTATION SCALE 0003300 C ALL CALPT (D.0.0. 1.003) 0003314 C DAM X X1. X10 AND X100 SCALE 0003314 C NOR X1.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
000244 CAIL CALPLT (DTEMP, 0.0, -3) C C FUIRIER TRANSFOPM PLOTTING SECTION C PLOTT RANSFOPM ON X1, X10, X100 SCALES C PLOTS TRANSFOPM ON X1, X10, X100 SCALES C PLOT TAPE 000347 PFAD (TTAPE) (TOTNT11), PLOTT11), T 000310 PFAD (TTAPE) (TOTNT11), PLOTT11), T 000310 PLOT TEGM C PLOT TEGM 0003305 C C PLOT TEGM 000314 L C PLOT TEGM 000314 L C PLOT TEGM 000314 L C PLOT TEGM 0003314 L C	
C FUIRTER TRANSFORM PLOTTING SECTION C ALSN PLOTS PHASES NO0247 READ ITTAPEI (INTIT), RINT(1), PINT(1), P 000300 C C PLOT FEGM C PLOT FEGM C PLOT FEGM 0003302 C ALL CALPLT (0.0, 1.00, 0.0, 0.0) C PLOT FEGM 0003303 C ALL CALPLT (0.0, 1.00, 0.0, 0.0) C PLOT FEGM 000314 L 000315 C ALL AY - CM - MOTA, NO XIOO SCALES 000314 NO XIO SCALES 000315 C ALL AY - CM - MOTA, NO XIO SCALES 000314 L C PONE AY ATS - CM - MOTA, NO XIO SCALES 000314 L D00325 DONO XI, XIO AND XIO SCALES D00331 C ALL AY - CM - MOTA, NO XIO SCALES <td></td>	
C FOURTER FRANSFORM PLOTTING SECTION C PLOTS PLASES SEAD NTANSFORM NTO. X100 SCALES C PLOTS PLASES SEAD NTARSFORM NTO. X100 SCALES C PLOT PLOTS PLASES NTO. X100 SCALES C PLOT PLOT FAD ITARE (DSTAPT. DSTOP. DSTOP. DSCALES. NPT) 000300 PEWIND TTARE (DSTAPT. DSTOP. DSCALE. NPT) PLOT PLOT 000300 C PLOT PLA (DSTAPT. DSTOP. DSCALE. NPT) PLOT 000300 C PLOT PLA DSTART DSCALE PLOT 000310 C C PLOT TARE (DSTART) DSCALE DNT(11). 000314 TARE DSTART DSCALE DNT(11). DSCALE DNT(11). DSCALE 000314 TARE C PLOT TARE DSCALE DSCALE DSCALE DSCALE DSCALE DS	
C FDIIRTER TRANSFORM PLOTTING SECTION C PLOTS TRANSFORM IN X1, X10, X100 SCALES C ALSO PLOTS PLASFS C ALSO PLOTS PLASFS C ALSO PLOTS PLASFS C ALSO PLOTS PLASFS C C C C C C C READ LITAFE 000300 PEAD LITAFE 000300 C C C	
C 0LOTS TRANSFNOM IN X1, X10, X100 SCALES C ALSD PLATS PHASFS X10, X100 SCALES C READ INTERFERGRAM FRIM SCRATCH TAPE 0003062 PFAUIN ITAPE (DSTAPT, DSTOP, DSCALE, NPT) 0003062 PFAUIN ITAPE (DSTAPT, DSTOP, DSCALE, NPT) 0003062 PFAUIN ITAPE (DSTAPT, DSTOP, DSCALE, NPT) 0003062 PFAUIN ITAPE (DSTAPT) / DSCALE, NPT) 0003002 C CALL CALPLT (0.0, 1.00, -3) C DAM X AXIS DSTART) / DSCALE 0003302 C DAM X AXIS 0003303 C DAM X AXIS 0003314 L DSCALE 0003314 L DOND C C DAM X AXIS DSTART) / DSCALE 0003314 L DSTOP, ZSAN, DSTART) / DSCALE 0003314 L DOND X1, X10 AND X100 SCALE 0003314 L ANIS DSTART) / DSCALE 0003314 L L ANIS 0003314 L ANIS DSCALE 0003314 L L ANIS 0003326 DN ANIN	
C a_1SN PLOTS PHASES C a_1SN PLOTS PHASES C a_2SAD INTERFERDGRAM FRIM SCRATCH TAPE 000262 $PEAD (11APE) (151APT, DS100, DSCALE, NPT)$ 000300 $PEAD (11APE) (151NT(1), RINT(T), PINT(1), T 000300 PEAD (11APE) (101NT(1), RINT(T), PINT(1)), T 000300 C C PEAD (11APE) (101NT(1), RINT(T), PINT(1)), T 000300 C C PEAD (11APE) (101NT(1), RINT(T), PINT(1)), T 000300 C C PLNT = 100, 120, -31 000310 C D00310 C D00311 C D00312 C D00314 C C CALL CALPLT (0.0, 1.00, -31) D00314 C D00315 C C CALL CALPLT (0.00, 0.00, 31) C CALL CALPLT (0.00, 0.00, 31) D00314 C C CALL CALPLT (0.0, 0.00, 31) D00325 C D00333 C D003341 C D00341 C $	
C READ INTERFEROCRAM FROM SCRATCH TAPE 0000267 RFAD (ITAPE) (DINT(I), PINT(I), PINT(I)), I 0000300 PFAD (ITAPE) (DINT(I), PINT(I)), PINT(I)), I 0000300 C C PLOT IFGM 0000310 C C Down AATS 0000314 (IFGM 0000314 IOHDELAY 0000314 IOHDELAY C PLOT IFGM DN X1, X10 AND X100 SCALES 0000314 IOHDELAY 0000314 IOHDELAY 0000314 IOHDELAY 0000314 IOHDELAY C PLOT IFGM DN X1, X10 AND X100 SCALES 0000314 IOHDELAY D000314 IOHDELAY D000314 IOHDELAY D000314 IOHDELAY D0003314 IO D000334	
C READ INTERFERDGRAM FRIM SCRATCH TAPE 000247 READ IITAPE) (IDINTII). RINT(I). PUNT(I). 000300 PEMINN TTAPE (IDINTII). RINT(I). PUNT(I). 000300 PEMINN TTAPE (IDINTII). RINT(I). PUNT(I). 000300 PEMINN TTAPE (IDINTII). RINT(I). PUNT(I). 000300 C LOT TEG 000300 C LOT TEG 000300 C LN 000310 C NCHES (0.0. 1.03) 000310 C NCHES (0.0. 1.03) 000310 C NCHES (0.0. 1.03) 000310 C NCHES (0.0. 1.010) 000314 I NON XIO SCALE 000314 I ON XI. XIO AND XIOO SCALE 000314 I NON XIO SCALE 000314 I NON XIO SCALE 000334 I NON XIO SCALE 000335 I I NON XIO SCALE	
C READ INTERFERDGRAM RTMM SCRATCH TAPE 0003267 RFAD ITAPE (DSTAPT. DSTOP. DSCALE. NPT) 0003300 FFMIND ITAPE (DINT(1). RINT(1). PINT(1). F 0003300 FFMIND ITAPE (DINT(1). RINT(1). PINT(1). F 0003302 C PLOT IAP SCALE 0003310 C DAM AXIS PSCALE 0003310 C IOHDELAY DSCALE DSTART 0003310 C IOHDELAY CM HGT 10 0003314 I IOHDELAY CM HGT 10 I 0003314 I I O CM HGT 10 I 0003314 I I I I I HGT 10 I 0003314 I I I I	
0003247 RFAD CITAPE CDSTAPT DSTAPT	
$\begin{array}{c} 000300 \\ 000300 \\ 000300 \\ 0 \\ 0 \\ 0 \\ $	
000300 FEWINN ITAPE 000300 C C PLOT IFGM C PLOT IFGM 000305 C ALL CALPLT (0.0, 1.0, -3) C DAM X AXIS 000305 C ALN = (DSTOP - DSTART) / DSCALE 000314 C INCHFS / POINT 000314 C INCHFS / POINT 000314 C ALL AKES (ZFR1, ZERT, ZER	. I = 1.NPT)
C D D	
$ \begin{array}{c} C \\ C $	
C PLOT FGM 0003002 C CALL CALL <td< td=""><td></td></td<>	
Construct Call Call Call (Call)))))))))))))))))))))))))))))))))))	
0003307 CALL CALPIT (0.0, 1.0, -3) C D9AW X AXIS 0003305 XLN = (DSTOP - DSTART) / DSCALE 000310 C INCHES / POINT 000314 C INCHES / POINT 000314 C INCHES / POINT 000314 D100 EFRO- ZEPO- FSTART) * DSCALE 000314 D100 PINC = 1.0 / (FSTOP - CM. HGT10) C D100 IOHDELAY - CM. HGT10) C D10 JOHDELAY - CM. HGT10) C D10 JOHDELAY - CM. HGT10) C D10 Z JOHDELAY - CM. HGT10) C D10 XI XIO XI JOHDELAY - CM. HGT10) C D10 Z Z JOHDELAY - CM. HGT10) JOHDELAY - CM. HGT10) C D003333 D10 JOHDELAY - CM. HGT10) JOHDELAY - CM. HGT10) JOHDENDENDENDENDENDENDENDENDENDENDENDENDEND	
C D00335 C D04W X XIS 000335 XLN = (DSTOP - DSTART) / DSCALE 000310 C TNCHFS / PINC = 1.0 / (FSTOP - FSTART) * DSCALE 000314 C FINC = 1.0 / (FSTOP - FSTART) * DSCALE 000314 C PINC = 1.0 / (FSTOP - FSTART) * DSCALE 000314 C PINC = 1.0 / (FSTOP - FSTART) * DSCALE 000314 C PLOT IOHDELAY - CM - HGT - 10) C PLOT IFGM DN <x1.< td=""> X10 AND<x100< td=""> SCALES - 10) C PLOT IFGM DN<x1.< td=""> X10 AND<x100< td=""> SCALES 000326 Dn 300 IS 1.4 - 10) 0003333 DN 300 IP 1.4 - 10) 000344 IF IP - 1 - 1 - 10) 000344 IF IP IP - 1 - 10) 000344 IF IP</x100<></x1.<></x100<></x1.<>	
000335 XLN (DSTOP DSTART) DSCALE 000310 C INCHFS / POINT (FFSTOP FSTART) * DSCALE) 000314 C INCHFS / POINT (FFTO ZFRO ZFRO XLN DSCALE) 000314 L I 10HDELAY CM HGT -10 I 000314 L I 10HDELAY CM HGT -10 I C PLOT IFGM DN X1. X10 AND X100 SCALES C DO 320 IS I 10HDELAY CM HGT -10 I C DO 320 IS I ND X10 ND X100 SCALES 000326 DO 320 IS I ND X10 ND X100 SCALES 0003333 DO IS I NPT <	
C TNCHFS / POINT C TNCHFS / (FSTOP - FSTART) * DSCALE) 000314 CALL AXES (ZFRO. ZEPO. XLN. DSTART.) * DSCALE) 000314 I IOHDELAY - CM . HGT10) C PLOT FEGM DN X1. X10 AND X100 SCALES 000326 DO 320 TS = 1.3 000326 DO 300 TS = 1.3 000333 DO 300 TS = 1.3 000334 DO 300 TS = 1.3 000335 DO 300 TS = 1.3 000336 DO 300 TS = 1.3 000333 DO 300 TS = 1.3 000334 DO 300 TP = 1.0 000344 TF (RTFMP . GT. 8.0) 000344 TF P = 1 000344 DTEMP = PINC & FTP 000344 DTEMP = PINC & FTP 000344 DTEMP = PINC & FTP	
0.0310 $PINC$ 1.0 $(FESTOP - ESTART) + DSCALE)$ 0.00314 $CALL AXES$ $ZEPO + ZEPO + XEN + DSTART + D$ 0.00314 I $IOHDELAY - CM + HGT + -10$ $IOHDELAY - CM + HGT + -10$ C $PLOT$ $IOHDELAY - CM + HGT + -10$ $IOHDELAY - CM + HGT + -10$ $IOO328$ C $PLOT$ $IOHDELAY - CM + HGT + -10$ $IOO328$ $IOO328$ $IOO328$ C $DO0328$ $DO0328$ $IOO 300$ $IS = 1 \cdot 3$ $IOO 0 \cdot 31$ $OO03326$ $DO0328$ $DO0 - 30$ $IS = 1 \cdot 3$ $IOO 0 \cdot 31$ $IOO 0 \cdot 31$ $OO03333$ $DO03333$ $DO 0 \cdot 30$ $IP = 1 \cdot NPT$ $IOP - 0 \cdot 31$ $IOP - 0 \cdot 31$ $OO03334$ $IF RMP = RINT(IP) + SMULT(IS)$ $IP = 1 \cdot NPT$ $IP = 1 \cdot NPT$ $IP = 1 \cdot NPT$ $OO0344$ $IF RMP = IP - 1$ $IP = 1 \cdot NPT$ $IP = 1 \cdot NPT$ $IP = 1 \cdot NPT$ $OO0344$ $IF RMP = IP - 1$ $IP = 1 \cdot NPT$ $IP = 1 \cdot NPT$ $IP = 1 \cdot NPT$ $OO0344$ $IF RMP = IP - 1$ $IP = 1 \cdot NPT$	
000314 CALL AXES (ZERO, ZERO, XLN, DSTART D C I C PLOT FEAM ON X1, XIO AND X100 SCALES C PLOT FEAM ON X1, XIO AND X100 SCALES 000326 DD 320 IS = 1,3 000326 DD 320 IS = 1,3 000333 DD 300 IP = 1, NPT 000334 DT 300 IP = 1, NPT 000344 FTP = RINT(IP) * SMULT(IS) 000344 FTP = IP - I 000344 DTEMP = PINC * FTP 000345 SOD CALL CALPLT (DTEMP, BTEMP, Z)	
1 10HDELAY - CM , HGT, -10) C PLOT IFGM DN X1, X10 AND X100 SCALES 000326 0 C DI 320 IS = 1.3 0003331 CALL CALPLT (0.0, 0.0, 3) 000333 DO 300 IP = 1, NPT 0003341 IF (ATEMP 6I. 8.0) ATEMP = 8.0 000344 FTP = IP - 1 000345 DTEMP = PINC * FTP 000347 DTEMP = PINC * FTP	· DSCALE · JNE · TMIN ·
C PLOT IFGM ON XI. XIO AND X100 SCALES 000326 00 C 00 000326 00 000326 00 000326 00 000331 CALL CALPLT (0.0, 0.0, 3) 000333 00 000334 00 000344 1F (RTEMP .GT. 8.0) RTEMP = 8.0 000347 01 000347 01 000347 01 000350 300 200 CALL CALPLT (DTEMP, RTEMP, 2)	
C PL(H) FEGM UN X1. X10 AND X100 SCALES 000326 Dn 320 IS = 1.3 0003231 CALL CALL CALL CALL 0003333 D0 300 IP = 1. NPT 0.0.0.3) 000334 D1 300 IP = 1. NPT 0.0.0.3) 000344 IF RTEMP = RINT(IP) * SMULT(IS) 000344 FTP = IP - 1 0.000344 DTEMP = RINC 0000347 DTEMP = PINC RTEMP. ALPLY 2000344	
000326 Dn 320 IS = 1.3 000326 Dn 320 IS = 1.3 000333 Dn 300 IP = 1. NPT 000336 RIEMP = RINT(IP) * SMULT(IS) 000341 IF (RIEMP .6T. 8.0) RIEMP = 8.0 000347 DIEMP = P - 1 000347 DIEMP = PINC * FIP 000357 300 CALL CALPLT (DIEMP, RIEMP, 2)	
0003331 CALL CALPLT (0.0, 0.0, 3) 000333 00 300 1P = 1, NPT 000334 ATEMP = RINT(1P) * SMULT(FS) 000344 IF (ATEMP .GT. 8.0) ATEMP = 8.0 000344 FTP = 1P - 1 000347 DTEMP = PINC * FTP 0003547 DTEMP = PINC * FTP 0003557 300 CALL CALPLT (DTEMP, ATEMP, 2)	
000333 00 300 1P = 1. NPT 000336 RTEMP = RINT(1P) * SMULT(1S) 000341 1F (RTEMP .GT. 8.0) RTEMP = 8.0 000344 FTP = 1P - 1 000347 DTEMP = PINC * FTP 0003547 DTEMP = PINC * FTP	
33336 RTEMP = RINT(IP) * SMULT(IS) 000341 IF (RTEMP .GT. 8.0) RTEMP = 8.0 000344 FTP = IP - 1 000347 DTEMP = PINC * FTP 000350 300 CALL CALPLT (DTEMP, RTEMP, 2)	
000341 IF (RTEMP .GT. 8.0) RTEMP = 8.0 000344 FIP = 1P - 1 000347 DTEMP = PINC * FIP 000350 300 CALL CALPLT (DTEMP, RTEMP, 2)	n an ann an an an ann an ann an ann an a
000344 FIP = 1P - 1 000347 DTEMP = PINC * FIP 000350 300 CALL CALPLT (DTEMP, RTEMP, 2)	
000347 DTEMP = PINC * FIP 000350 300 CALL CALPLT (DTEMP, RTEMP, 2) 000357 300 CALL CALPLT (DTEMP, RTEMP, 2)	
000350 300 CALL CALPLY (DTEMP, BTEMP, 2)	

	PLOT PHASES
U	
000361	CALL CALPLT (DTFMP, -1.2, 3)
000364	CALL CALPLT (0.0, -1.2, -2)
000367	· DLD = PINT(1)
000371	DO 340 IP = 1, NPT
000374	TPINT = PINT(IP)
000376	FID = ID - I
003400	DTEMP = FIP + PINC
000402	1 ND = 2
000403	DIF = DLD - TPINT
000405	IF (ABS(DIF) .6T. 0.5) I.ND = 3
000411	CALL CALPLT (DTFMP, TPINT, IND)
000414 340	0LD = TPINT
C	
0	ADVANCE PAPER
000422	DTEMP = DTEMP + 2.0
003424	CALL CALPLY (DTFMP1.33)
	TEPMINATE PLATER IF THIS IS I AST SPECTPIM
0.006.26	
000446	FND
an ang tao ang	

: 232

,

•

· 建合物 生成,一般和我们的一种不可能。

1

۰.

APPENDIX B

LISTING OF CORRELATION FUNCTION PROGRAM

.

Page Intentionally Left Blank

200			00006		130000	140000	1200000	180000	200000 200000 200000	2200000	2300000	250000	2700000	290000	310,000	3200000	340000	350000	370000	380000	390000	410000	420000(
	S.	ED	NTS	() () () () () () () () () () () () () (c(18+141+			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						"GH NOS.		· · · · · · · · · · · · · · · · · · ·	•		
[APE5=INPUT, TAPE6=OUTPUT)	INTERFEROGRAM	IGLEY IOM IFGMS STORE	GIVE MEASUREME	(14), SNEEZE(4	. SPTAB(14)		K(26)).				1.0/		:		•	•		NOS OTHER IF			•		
PUT, CUTPUT, T PEIO, TAPEII, PROGRAM	EASUREMENT CF	SYSTEM AT LAN NG FUNCTION FR	TEST IFGMS TO), W(1752), WT	2501, SPCON(3)	_), (NSC, TBLOC	K(27))		• 3HHZQ• 3HCH4	NCM, NTG, bT	ANDOM ACCESS						, TARGET IFGN	7 67 = 1 617.10			· · · · · · · · · · · · · · · · · · ·	
TAF 10N	Ţ	SU	2	641	I ST (2	(164) (64)	[11]	10CH		151	10 .	0 R/				ģ) ;						
AM WEIGHT TING FUNCT	TO SIMULATE	OR USE ON CI	S DISK S APPLIED 1), WW(2,14	14,64), L	2), TBLDCH 54), IDAT((1.1.1).W(6, TBLOCK	CON(1), TE		CH4 / 4HL	ISK, NA, Ni 10, 2, 4	IAL FILE T K, IX, 150			XWN	K. TDAT. N		INDICES.	SO TO 600	·			
TRAN IV PROGRAM WEIGHT Main Weighting Finct	PROGRAM TO SIMULATE	HIS VERSION FOR USE ON CI RDGRAM CREATES NEW WEIGH	HE FUNCTION IS APPLIED 1	ENSION H(2,64), WW(2,14	WT1(2,14,64), L	ENSIGN IX(1502), TBLOCH ENSIGN FGMR(64), IDAT(QUIVALENCE(WW(1,1,1),W) IVALENCE (NFG, TBLOCK)	(SPCON(1), TE	EGER DISK	A ILISI, H2U, CH4 / 4HL	A IN, IOUT, DISK, NA, N /5, 6, 10, 2, (NSFER SEQUENTIAL FILE T L OPENMS (DISK, IX, I50	II 0 11 1001		IZO NR = 1, NMAX	D (11) IDAT I WRITMS (DISK, IDAT, NI		D FIRST, LAST INDICES,	(NI .Eq. 0) 60 70 600	N2 - N1 + I		2 1	150 I = 3, 14
FORTRAN IV PROGRAM WEIGHT 1 CWAIT MAIN WEIGHTING FUNCT	C PROGRAM TO SIMULATE	C THIS VERSION FOR USE ON C	C UN FANDUM ACCESS DISK C THE FUNCTION IS APPLIED 1 Cr	DIMENSION H(2,64), WW(2,14	2 WTI(2,14,64), L	DIMENSIGN IX(1502), TBLOC DIMENSIGN FGMR(64), IDAT(EQUIVALENCE(WW(1,1,1,1),W) EQUIVALENCE (NFG, TBLOCK)	2 (SPCON(1), TE FOULTVALENCE (NREC - TDAI(1)	INTEGER DISK	C DATA ILISI, HZU, CH4 / 4HL	DATA IN, IOUT, DISK, NA, Ni 1 /5, 6, 10, 2, (C TRANSFER SEQUENTIAL FILE T CALL OPENMS (DISK, IX, I50	REWIND 11 Read (11) IDAT	REWIND 11	DO IZO NR = 1, NMAX	READ (11) IDAT 120 CALL WRITMS (DISK, IDAT, N	REWIND 11	C READ FIRST, LAST INDICES, TAIL DEAD (E. 6070) MJ N2 N2 (M	IF (N1 .EQ. 0) 60 TO 600		C COUNT IFGMS	NSG # 2	DO 150 I = 3, 14

. 235

000066	150	IF (NITAB(I) \cdot NE \cdot 0) NSG = NSG $+$ I	4300000
Ū	0	SPECIFY SPECIES, OBSERVATION TIME, FREQ INTERVAL, NOISES	4400000
000073		READ (IN, 5120) SPEC, TIME, DNU, (SNEEZE(L), L = 1,4)	4500000
000113			4600000
000114		IF (SPEC .EQ. H20) IS = 2	4703000
211000		IF (SPEC .EQ. CH4) IS = 3	4800000
	J		4900000
J			
	ć		0000076
221000		CALL READUS (DISK, TRIDIK, NUD, NRI	5100000
000132	•		
000134 1	160	FNAME(J,1) = TBLOCK(J)	5500000
000143		SPTAB(I) = SPCCN(IS)	5600000
000145		NFRG(I) = NFG	5700000
000147		NSCAN(I) = NSC	5800000
5	сı с	READ REST OF IFGM	5900000
00120	•	NR = NR + 1	6000009
000152		CALL READMS (DISK+ FGMR ; NND, NR)	6100000
000155		DD 180 J = 1, NWD	6200000
000157 1	180	WII(1, 1, J) = FGMR (J)	6300000
000167			6400000
111000	·	CALL READMS (OISK, FGMR , NWD, NR)	6500000
000174		D0 200 J = 1, NWD	6600000
000176 2	200	WII(2, 1, J) = FGMR (J)	6700000
000211		CALL WSHIFT (HTI, W, NSG, NA, NI, N, N2, NFRG, NSCAN)	6800000
00022·1		SPUNIT = SPTAB(NTG) - SPTAB(NGM)	6900000
000224		SPSTD = SPTAB(AGM)	7000000
J	: د		7100000
000226		W00 = 10.0	7200000
		FORM DIFFERENCE INTERFERGGRAMS	1300000
000227 C	ы		7500000
000233			7600000
0	•	SPECIFY NOISE SEVERITIES	7700000
U	; •		7800000
2		ENTRIES ARE	1900000
U	L)	SQRT(DET. AREA)/(D* X P)	8000008
U I	6 1 1	NN.	8100000
	: 		8200000
0	; ()	FRANC (DEFINED BY ((H-HO)/H) =FR/SQRT(T)	8300000
0	()		8400000
J	U		8500000

04.00000 (MEAN OPTICAL CEPTH OF UNACCOUNTED INTERFERENTS) ----CALL WHEP (W, H, N, NSG, NTG, WT, SNEEZE, SNEEZE, ARA, 2, SBYN) : WRITE (IQUT, 6030) NITAB(JJ), (FNAME(IW,JJ), IW=L,17]; SUM, (c.28 *, DNU * DNU * DT) NI, N2, TIME, DNU, (SNEEZE(I), I = 1,4) WRITE (IOUT, 6020) NITAB(JJ), (FNAME(IW,JJ), IW=1,17), SUM, : (SPTEST - SPTAB(JJ)): # 100.0 / SPTAB(JJ) а ... I = 1, 14SPIEST, SPIAB(JJ), PCI ∾ ** WRITE (ICUT, 6C80) Read List or range of ifgms to be tested CALL MESURE (W, H, 2, NSG, N, JJ, SUM) SPTEST, SPTAB(JJ) SNEEZE(1) = SNEEZE(1) + SNEEZE(1) - /(PROCESSING ERROR) DNU = 0.1592356 = (SNEEZE(3) + MOO + 0.1) INDRD, (LIST(I), = SNEEZE(2) + SNEEZE(2) SNEEZE(4) = SNEEZE(4) * SNEEZE(4) [F (IWORD .EQ. ILIST) GO TO 500 SBYN, SPEC GO TO 520 IF (SPTAB(JJ)) 380, 380, 390 NLIST = LIST(2) - LIST(1) + 1SPTEST = SPSTD + SUM * SPUNIT NOW READY TO ANALYZE IFGMS SPEC IST(I) = LIST(I - I)= 2, NLIST DO 400 JJ = 1, NSG WRITE (IOUT, 6010) WRITE (ICUT, 6100) WRITE (ICUT, 6060) WRITE (IOUT, 6080) SBYN = SQRT(SBYN) 0-0 - EQ-READ [IN. 5200) TF CDNU .EQ. (LIST(I) PCT = 0.0SNEEZE(3) GO TO 400 30 10 520 CONTINUE SNEEZE(2 CONTINUE n **NLIST** PC1 = NLIST g u_

12500000 12600000 12700000	12600CC0 12900000	13100000	13200000	13400000	13600000	13700000	13900000	14000000	14300000	14200000	14500000	14600000	14703000	10000161	15100003	15100004	15100CC5 15200000	1530000	15500000	15600000	15700030	15900000	16000000	16100000	16300000	16400000	16900001 16900002
	· · · · · · · · · · · · · · · · · · ·								and a second and the second								• SUM.		•					· · · · · · · · · · · · · · · · · · ·	F9.2 //.		F8.5, 4X, F7.2) X,7H XXXX)
	(D, NR)	• • •			ID. NR)			ID, NR)	• • • • • • • • • • • • • • • • • • •	NI N. NJ. NEDC. NCA	NLT NY NZY NYYGY NJUA			.FNAME(IW;1/; IW=1;1/) act		O / SPACT	FNAME(IW,1), [W=1,17) SPACT, PCT	- 7					•		GHIING FUNCTIONS = .	BASE IFGMS + /)	. El0.3, 6X, F8.5, 7X, .0.3,6X,F8.5,7X,F8.5,4
CONTINUE 30 570 I = 1, NLIST 2640 IFGM	VR = 3 * LIST(I) - 1 Call readms (disk, tblock, NV	DD 530 J = 1, 18 FNAME(J,1) = TBLOCK(J)	SPACT = SPCON(IS) VFRC(1) = NFG	VSCAN(1) = NSC	VR = NR + I Call Readms (DISK, FGMR , N	00 535 J = 1, NWD 11(1, 1, 1) = FGM8(1)		CALL READMS (DISK, FGMR) NW Do 540 J = 1 NWD	SAVE DESIRED SEGMENT OF IFON	VII(2, 1, J) = FGMP(J) VII UCHIET (ETT, M, 1, NA)	ALL MEALT (M. H. Z. 1. N.) All Mesure (M. H. Z. 1. N.)	SPTEST = SPUNIT + SUM + SPS1	[F (SPACT) 545, 545, 550	ARTIE (JUUI, 6030) LISILI, (Sptest, Sp	30 10 570	OCT = (SPTEST - SPACT) * 100.	<pre>KRITE (IOUT, 6020) LIST(I), (</pre>	CONTINUE	50 FU 130	510P			CRMAT (1615)	FORMAT (A3, 7X, F10.3, 5F10.	-UKMAI (A4, 64, 1412) Format (141, 314 S/N For Wei	* CHECK OF * A3 * IN	=ORMAT (/IX+I4+IX+ I74++ 2X+ =ORMAT (/IX+I4+IX+I7A4+2X+EI
520 C	20.	230	U / Z		2.0	ר בי זי זי		02	U U	540						550	555 •	570	ر د	600	ບຸ	י י י	5070 F	5120	0109		6020 6030
000472 000472	000474 000477	000502 000504	0005113	000514	000515 000517	000522	000533	000535 000540		000542	000562	000571	000574	9/5000	000620	000621	000624	000650	559000	000653	•		000655	000655	000655		000655 000655

00003004	90000 000000 000000	00000		····		· · · · · · · · · · · · · · · · · · ·	• •	· · ·	•		•	· · ·	
1691	171 172 172	~~~	1201		• • •		۰ <u>.</u>				•		
		, nî	- -										
•	• OS	E10										·	
UAL	ATH		•										
ACT	CM- 13, 8H S	N N N N	ι Σ Ω		-								
~	10.3	່ ເດີເ ທີ່ • • × >	π •		•	• •				×			
FGMS	4 4 1 1				• •		, t						
ST I	+ ATH - 13 16 - 13	4T - 0.3,			·· ·		•						
L L	FROM FROM	POIN	• ŋ			:	•.	:•				۰.	
DEN V) DED ATIO	- H	•013		•	· · · ·							
H BUR JRED JENT	JNI 15 ERROR I NCLU SERV	LTERV	•		· · ·		:			•			
+ 21 HEASU	EST (NTS AL OR	AY IN SES -			• . •		en de	•					•
A3 H1 OH H0	IH HI FOI	NOI NOI	•		•				•			•	
2×1	5X, 4 / 22 / 26†	126							· ·	;:		•	·
1	н 		•	. n 	• • •		·	· . ·	:	۰ م. ۲	• ,•		
FORMA	FORMA	•	END	•					•			•	
60 80 1	N M T H 00	. N M 1	*		•		7		,				54 °
4 4 0 0	61		1	· · -	•				, ;		•		•
0655)655	•)655		2 13 - 2 4		-		•	· · · ·		•	
ĕĕ	00	ند •	õ	-			• •.			•	•••	۰.	

.

00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	
1770	1780	1790	1800	1810	1820	1830	1840	1850	1960	1870	1880	1890	1900	1910	1920	1930	1940	1950	
SUBROUTINE WSHIFT(WI, WD,NSG, NA, NI, N, N2, NFRG, NSCAN)	CUSHET SUBROUTINE WSHIFT	C SUBRGUTIAE TO JUGGLE INPUT FROM ARRAYS	C SAVES GESIRED PART AND PUTS FIRST POINT OF EACH IFGM AT END	C 11	DIMENSION WD(NA, NSG, N), WI(2, 14, 64), NFRG(14), NSCAN(14)	C	DO 115 II = 1, NSG	FRNG = NFRG(II)	SCAN = NSCAN(II)	TFAC = 1.0 / (FRNG + SCAN)	DO 115 IR = 1, 2		DO IIO IP = NI + NZ	WD(IR, II, NPT) = WT(IR, II, IP) * TFAC	110 NPT = NPT + 1	115 CONTINUE	RETURN	END	
:					000014		000014	000015	020000	000022	000025	000026	000027	000031	000047	000053	000057	090000	

. .*

	•	SUBROUTINE DIFF(W.NA.NB.N.JQ)		:	• • • • • • • • • •	1960000
:	COIFF	SUBROUTINE DIFF				1970000
•	ა	FORMS DIFFERENCE IFGMS				1980000
	َ ں		•			19900000
010000	•	DIMENSION W(NA,NB,N)	•		and the second	20003000
00000		DO 10 J=1,NB				20100000
000011		IF(J.EQ.J0)GC TO 10	•			20200000
000012		00 20 k=1,N		•		20300000
000014		DO 20 I=1,2	•	• • • •		2040000
000015	20	K(I,J,K)=K(I,J,K)-K(I,J0,K)				2050000
000040	10	CONTINUE			to the statement of the	20600000
000043		RETURN	•	•	· · · · · · · · · · · · · · · · · · ·	2070200
000044		END		•		20800000
	:		·			
				•	· · · · · · · · ·	
		•	;		:	
		•				

! .

ì .

1

i

241

•

CMEAS	SUBROUTINE MESURE(M.H.NA.NB.N.J.SUM) Subroutine Mesure Performs Ifgm measurement	
, o	DIMENSION W(NA.NB.N),H(NA.N) Sumeo. Do 10 K=1,N Do 10 I=1,NA Sum=Sum+w(1.J.K)*H(I.K)	
: ' ; " ;	RETURN END	
•		
•		
	SUBRCUTINE WHOP(W,H,NPTS,NSG,J0,Q,A,D,ARA,MCDE,SBYN)	22100000
------------	--	---
CWHOP	SUERDUTINE WHOP	22200000
υu	COMPUTES WEIGHTING FUNCTIONS	22300000
، ر		22400000
ں <u>ں</u>	THIS SUBROUTINE CALCULATES AN OPTIMIZED WEIGHTING FUNCTION H(K) For the measurement of the strength of a target function w(jo.k)	22500000
0	IN THE PRESENCE OF DIHER SIGNALS W(J.K)	22700000
َ ں	FOR A SPECIFIED DEWELL AT EACH POINT D(K).	22800000
υ	· · ·	22900000
ن	THE FUNCTION IS THAT WHICH MINIMIZES A COMBINATION OF FOUR	23000060
ں ا	TYPES OF NOISE, EACH OF RELATIVE IMPORTANCE A(L):	23100000
: ن	L=1 PANOJM ADDITIVE	23200000
ں ،	2 [MULTIPLICATIVE	23300000
00	3 SYNCHRN- ACDITIVE	23400000
, C		000000000000000000000000000000000000000
	NSG NUMBER OF SIGNAL COMPCNANTS TO BE CONSIDERED	23700000
υ.		23800000
, د	MULE Z IF UBSERVAIIUNS ARE CUMPLEX, I UTHERWISE	23900000
ט נ	L SIGNAL CUPPUNANT INDEX K CBSERVATION PNT. I	24000000
J.	I REAL - IMAG. [24200000
:	L NOISE FACTOR (24300000
	JO INDEX OF TARGET COMPONANT	24400000
: טו		24500000
ن ن	W(I,J,K) STRENGTH OF JATH CCMPCNANT AT KATH POINT	24600000
	U(J) UVEKALL RELATIVE STRENGTH UF CCMPUNANT A(L) RELATIVE IMPORTANCE OF I≠TH NOTSF FACTOR	24700000
ÿ	D(K) D(RATION OF DESERVATION AT KATE DC NO	24900000
د د	H(1,K) WEIGHTING FUNCTION	25000000
ِ ں	SBYN SQUARE OF SIG/NOISE RATID.	25100000
ں ت		25200000
ب ر	AKAINDGANDGI ID CUKKELAIJUN MAIKIA IDEI UP DI PRUGKAMI	25400000
۔ م:ن	OUTPUTS ARE H + SBYN. EVERYTHING ELSE (EXCEPT ARA) IS INPUT	25503000
ن		25600000
; ں		25700000
د د	***************************************	25800000
, د		00000662
	METHOD A CONTRACT AND A	26000000
بر		000000000000000000000000000000000000000
 ر		20200202

30200000 0300000 26500000 6600000 6800000 27000000 2100000 7600000 8000000 9100000 92000000 96 00000 00000000 0100000 04 00 000 6400000 6700000 00000692 27200000 27300000 27400000 27509000 1700000 27800000 27900000 28100000 8200000 8300000 8400000 8500000 86.00000 870000 8800000 8900000 0000006 9300000 9400000 0000056 9700000 9800000 0000066 30500000 6300000 Q(NSG), C(NPTS), H(MODE, NPTS), ******************* WHERE ARA(J, JI) IS THE INVERSE OF THE CORRELATION MATRIX ď + A(4) G(K)=(A(1)+A(2)*R)*0 4 (A(3)+A(4)*R)+0+0 (THE INDEX I IS SUPPRESSED FOR THIS EXPLANATION) M(J) = SUM H(K) + D(K) + M(J,K) = DELTA(J,JO) (E) V + H(K)=SUM (ARA(J,J0)*H(J,K))/R001(G) THE SQUARE OF THE S/N RATIO IS ARA(J0,J0) 0X I NOI SE= SUM (H(K) ++2 + G(K)) * (2 * K))##2 ALGORITHM IS SET UP TO GIVE R.(K)=SUM(Q(J)+H.(J,K))++2 SUN W(J,K)*W(J],K)/G DIMENSION W(MODE, NSG, NPIS), ARAINSG, NSG), A(4) WHICH HAS ELEMENTS $H(I_{3}K) = I_{0} / ((A(I) + A(2))$ [F{ J.NE.JO)R=R+{Q(J)*H(I,J) THE NOISE MINIMIZED IS I DEFINE 1/G, STORE IN ¥ ¥ THE SOLUTION IS 00 10 K=1, NPTS 00 20 I=1,M00E DO 30 J=1,NSG -CONTINUE DKI = 1.0WHERE R≡0. THE 8 0 8 0 2 ت 000016 000045 000065 000016 70000 000025 000021 000023 000022

33,100000 000.009.01 // 33H THE ##\$(=##)\$ MATRIX IS SINGULAR / (), 1), K;) *H(I, K) J.K H(I,K) = SUM + H(I,K) + DKISUM=SUM+ARA(2,30)#W() CALL MINV(ARA,NSG,R) IF(R.EQ.0.)GO TO 999 SBYN=1./ARA(JO,JO) I M+(Y . C . I) M+WOS =WOS DO 80 K=1,NPTS DO 80 I=1,MODE DO 60 J=1,NSG 00 40 J1=J,NSG 00 50 K=1,NPTS 00 50 I=1,MODE APA(J,J1)=SUM SET UP MATRIX ARA(J1,J)=SUM INVERT MATRIX 00 90 J=1, NSG 6010) CALCULATE H CONTINUE WRITE (6, SUM=0. SUM=0. RETURN FORMAT STOP 2 END 08 08 000227

34,600000 15100.000 164 00 00 0 377.000000 700:000 F(ABS(BIGA)-ABS(A(IJ)))15,20,20 PERFORMS MATRIX INVERSION DIMENSION A(1), L(20), M(20) SUBROUTINE MINV(A.N.D) SUBROUTINE MINV . ., F(1-K)45,45,38 F(BICA)48,46.4 F(J-K)35,35,2 A(JK)=A(JI) BIGA=A(IJ) HOLD=-A(KI I(X) = (IX) AA(JI)=HOLD HOLD =- A (JK 4 (] [) = + 0 L D BIGA=A(KK)([-])#N=dC D020J=K + N 00201=K • N L+X-IX=I N41=C0400 D080K=1,I CONTINUE 00301=1,0 X + X + X N+XN=XN J + 7 I = C M(K)=K L+9L=1[=[(X)] X=(X)-X I = X - N 2 (X) = J =M(K) <u>(</u> (X) = 1 D=1.0 0=0=0 NKE-N CMINV 0 00003 0 0001/21 7 50000

<pre>RETURN D0551=1.N IF(I-K)50.55.50 IX=NK+I A(IK)=A(IK)/(-BIGA) CONTINUE REDUCTION D0651=1.N IJ=IJ+N IJ=IJ+N IJ=IJ+N D065J=1.N IJ=IJ+K A(IJ)=A(IK)+A(KJ)+A(IJ) CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N D075J=1.N CONTINUE KJ=KJ-N J=JC+J D0110J=1.N J=JC+J J=JC+J D0110J=1.N KI=K-N D01301=1.N KI=KJ-N D01301=1.N KI=KJ-N D01301=1.N KI=KJ-N D01301=1.N</pre>	38400000	38900000 39000000 39100000 39200000	3930000 39400000 39400000 39500000 39700000 398000000	39900000 40010000 40100000 40200000 40400000	4050000	41100000	41800000 41900000 42003000 42100000 42200000 42200000 424000000 42500000
	RETURN DO551=1,N IF(I-K)50,55,50 IK=NK+I A(IK)=A(IK)/(-BIGA) CONTINUE	REDUCTION DO651=1+N IK=NK+I IJ=I-N Dote1-1	DD65J=1.N I J=1 J+N I F((I-K)*(K-J))62,65,62 KJ=I J-I+K A(I J)=A(IK)*A(KJ)+A(IJ) CONTINUE	KJ=K-N D075J=1,N KJ=KJ+N i F(J-K)70,75,70 A(KJ)=A(KJ)/81GA CONTINUE	<pre>& (KK)=1.0/BIGA CONTINUE K=N K=N K=K-1 F(K)150.150.105</pre>	I=[(K) I=[(K) JQ=N*(K-1) JR=N*(I-1) JR=J0+J HOLD=[JK]	JI=JR+J A(JK)=-A(JI) A(JI)=HOLD J=M(K) IF(J-K)100,100,125 KI=K-N D01301=1,N KI=K1+N
	124 126 130 135	0-1-12-4	4. 10. 10 <u>10</u> 10, 10	0	4 h		

0000000	
0000000	
0000000	
0000000	
0000000	
0 N 8 0 0 H N	
<u></u>	

000254		HOLD=A(KI
067000		0+1-1111
000260		A(K])=-A(
000263	130	A(JI)=HOL
000270		GOT0100
000270	150	RETURN
000271		END

REFERENCES

Abel, P. G., Ellis, P. J., Houghton, J. T., Peckham, G., Rogers, C. D., Smith, S. D., and Williamson, E. J., Proc. Roy. Soc., London, A320, 35 (1970) a.

Abel, P. G., Houghton, J. T., Matley, J. B., and Williamson, E. J., Proc. Roy. Soc., London A320, 57 (1970) b.

AFCRL: U. S. Standard Atmosphere, 1966 Supplement, Air Force Cambridge Research Laboratory (1966).

Anding, D., Univ. of Michigan Infrared and Optical Sensor Laboratory, NAVSO. P-24499-1, "Band Model Methods for Computing Atmospheric Slant-Path Molecular Absorption," Feb. 1967.

Armstrong, B. H., J. Quant. Spect. and Rad. Transfer, 7, 61 (1967).

Benedict, W. S., Herman, R., Moore, G. E., and Silverman, S., Ap. J. 135, 277 (1962).

Bortner, M. H., Dick, R., Goldstein, H. W., Grenda, R. N., and Levy, G. M., "A Breadboard Correlation Interferometer for Development of the Carbon Monoxide Pollution Experiment,", NASA CR 112212, March 1973.

Bortner, M. H., Grenda, R. N., and Zomber, G. L., General Electric Co., SSL, 1971. Unpublished work.

Bortner, M. H., and Kummler, R. H., "The Chemical Kinetics and the Composition of the Earth's Atmosphere," General Electric Co. Report GE-9500-ECS-SR-1, July 1968.

Bortner, M. H., and Kummler, R. H., 1971. Unpublished work.

Bortner, M. H., Kummler, R. H., and Jaffe, L. S., "A Review of Carbon Monoxide Sources, Sinks, and Concentrations in the Earth's Atmosphere," NASA CR-2081, June 1972.

Bowen, T. R., "Blackbody Radiation Tables," U. S. Army Missile Command Report TN-AMSMI-RNR-1-63, May 1963.

Cadle, R., and Powers, J., Tellus 18, 176 (1966).

Chandrasekhar, S., Radiative Transfer, Dover Publ., N. Y., 1960.

CIRA: COSPAR International Reference Atmosphere 1965, North-Holland Publishing Co., Amsterdam, 1965.

Cooley, J. W., and Turkey, J. W., Math. of Computation <u>19</u>, 297 (1965).

Fried, D. L., and Cloud, J. D., JOSA 56, 1667, 1966.

Fried, D. L., JOSA 57, 1967, a.

Fried, D. L., JOSA 57, 1967, b.

Fried, D. L., and Seidman, J. B., JOSA 57, 181, 1967.

Gentlemen, W. M., and Sande, G., "Fast Fourier Transforms for Fun and Profit," Proc. 1966 Fall Joint Computer Conf., pp 563-578, 1966.

. ...

Grenda, R. N., Bortner, M. H., LeBel, P. J., Davies, J. H., and Dick, R., "Carbon Monoxide Pollution Experiment (I). A Solution to the Carbon Monoxide Sink Anomaly," AIAA Paper No. 71-1120, Joint Conf. on Sensing of Environmental Pollutants, Palo Alto, 1971.

Houghton, J. T., and Smith, S. D., Proc. Roy. Soc., London, <u>A320</u>, 23 (1970).

JANAF Thermochemical Tables, Thermal Research Laboratory, Dow Chemical Co., Midland, Mich.

Keneshea, T. J., Zimmerman, S. P., and George, J. D., "The Latitudinal Variation of Major and Minor Neutral Species in the Upper Atmosphere," 14th COSPAR Meeting, Seattle, 1971.

Kostkowski, H. J., and Bass, A. M., J. Quant. Spect. and Rad. Transfer 1, 177 (1961).

Kulander, J. L., "Non-Equilibrium Radiation," General Electric Co. Report, GE 71SDR64SD41, June 1964.

Ludwig, C. B., priv. comm., 1970.

Mertz, L., Transformation in Optics, p. 63, Wiley, N. Y. (1965).

Penner, S. S., <u>Quantitative Molecular Spectroscopy and Gas Emissiv-</u> ities, p. 20, Addison-Wesley, Reading, Mass., 1959.

Plyler, E. K., Benedict, W. S., and Silverman, S., J. Chem. Phys. 20, 175 (1952).

Tatarskii, V. I., <u>Wave Propagation in a Turbulent Medium</u>, Translated by R. A. Silverman, McGraw-Hill, N. Y., 1961.

Thekaekara, M. P., "Solar Electromagnetic Radiation", NASA SP-8805, Rev. 1971.

Tuller, S. E., Monthly Weather Rev. 96, 785 (1968).

Vachon, D. N., 1971. Unpublished work.

OU.S. GOVERNMENT PRINTING OFFICE: 1973-739-153/42

the second se

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. WASHINGTON, D.C. 20546

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546