NASA CR- 132349

NUMBER D3-8884

REV LTR _ A
initial release date
13 June 1972
TITLE \qquad ANALYSIS AND TESTING OF STABILITY AUCPENIATION SYSTEMS - FINAL REPORT

$$
\begin{aligned}
& \text { ATON SYSTEMS - FINAL REPORT } \\
& 3.52 \text { Ancolactifi Model }
\end{aligned}
$$

Revisions inserted (incorrect pages removed) The copy
FOR LINITATIONSIMPOSED ON THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT AND ON THE DISTRIBUTION OF THIS DOCUMENT, SEE LIMITATIONS SHEET.

MODEL

\qquad CONTRACT \qquad
ISSUE NO. \qquad ISSUED TO \qquad

 SUPERVISED BY
 APPROVED BY

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE USS. DEPAMIMENI OF COMMERCE SSR WGGFIELD, VA. 22161

PAGF
ABSTRACT 3
1.0 INIRODUCTION 4
2.0 SST WING MODEL FLUTIER SUPPRESSION SYSTEM ANALYSIS 5
2.1 Introduction 5
2.2 Equations of Motion 5
2.3 Flutter Suppression System Evaluation 8
2.3.1 Midspan Surfaces with Nominal Flutter Suppression System 8
2.3.2 Effects of Surface/Sensor Variations 12
2.3.3 SST Airplane Analysis 22
2.4 Remaining Work 22
2.5 Supporting Data 22
3.0 SST WING MODEL CONTROL SURFACE MECHANIZATION 52
3.1 Introduction 52
3.2 Control Surface Actuation System Design 53
3.2.1 Actuator Design 53
3.2.2 ElectrohydrauIic Servovalve Selection 53
3.2.3 Actuation System Installations 55
3.3 Baseline System 59
3.3.1 Baseline System Testing 59
3.3.2 Baseline System Analysis 59
3.4 Remaining Work 68
3.5 Nomenclature and Drawings 68
3.5.1 Nomenclature 69 70
3.5.2 Detail Drawings
3.5.2 Detail Drawings
4.0 B-52 AEROELASTIC MODEL RIDE CONTROL SYSTEM SYNTHESIS 77
4.1 Introduction 77
4.2 Design of Ride Control System 77
4.2.1 Phase I - Existing Control Surfaces 79
4.2.2 Phase II - Canard Surfaces 88
4.2.3 Phase III - Canard-Flaperon-Elevator Surfaces
97
97
4.3 Remaining Work 120
5.0 REFERENCES 123

ABSTRACT

This document is the final report of analyses and testing of stability augmentation systems accomplished under NASA-Langley Research Center Contract NASL10885 and is intended to be used as a working reference in future program activities. Section 2 describes the active flutter suppression analyses conducted on the NASA $1 / 17$ scale supersonic transport wing model. Results predict a 16.7% increase in model flutter true airspeed for Dr. Nissim's flutter suppression concept with outboard control surfaces and sensor locations. Mechanization of the flutter suppression system on the wing model is discussed in Section 3. The analysis, design, fabrication and testing of a subminiature electro-hydraulic actuator, weighing approximately 2 ounces and producing $41 \mathrm{in}-\mathrm{lb}$. of torque, are described. Section 4 presents the results of the ride control system synthesis for the NASA $1 / 30$ scale B-52 aeroelastic model. A ride control system design using elevator, flaperon and horizontal canards is described which reduces fuselage RMS vertical accelerations due to random gusts more than 30%.

RETRIEVAL REFERENCE WORDS:
Aeroelastic Models
Flutter Suppression Systems
Ride Control Systems

REV LTR:

1.0

INTRODUCTION
This document is the final report of analyses and testing of stability augmentation systems accomplished from 25 May 1971 to 24 May 1972 under NASA-Langley Research Center Contract NASl-10885 and is intended to be used as a working reference in future program activities.

Section 2 describes the flutter suppression system analysis conducted on the NASA $1 / 17$ scale supersonic transport wing model, and Section 3 discusses the work that was accomplished on the mechanization of the flutter suppression system. The ride control system synthesis for the NASA B- 52 aeroelastic model is discussed in Section 4.

Each section is written to be independent of the other sections. The sections discuss not only the work accomplished, but also contain a general discussion of the work remaining to complete the three work items.

SST WING MODEL FLUITIER SUPPRESSION SYSTEM ANALYSIS
Evaluation of a flutter suppression system developed by Dr. Eliahu Nissim on the NASA one-seventeenth scale supersonic transport (SST) wing model is described in this section. This work was accomplished to demonstrate active flutter mode control on the model in the Langley transonic dynamies tunnel.

2.1 Introduction

An analytical study was conducted to determine performance of the flutter suppression system on the SST wing model. A similar evaluation was conducted in 1970 with the flutter system on the 969-300 SST airplane configuration. Results of the airplane analysis are contained in Boeing document D3-8390-1 (Reference 1). This report is also contained in Section 2 of D3-8390-4 (Reference 2).

Results of the airplane analysis showed a 28 percent increase in flutter speed at Mach 0.9 over the unaugmented airplane using midspan leading and trailing edge control surfaces. Based on these results, the midspan control surface location was chosen for the mechanization of the flutter suppression system on the model for the wind tunnel demonstration. The primary objective of the current analysis was to determine if the flutter speed could be increased sufficiently for wind tunnel demonstration of the flutter suppression system. The results show that a 12.3 percent increase in flutter speed at Mach 0.9 can be attained with these surfaces, with the feedback sensors located at the inboard edge of the wing strip. Although the flutter speed improvement is less than attained on the SST airplane, the midspan control surfaces will be used for the wind tunnel tests.

The model analyses were conducted using equations of motion generated from generalized mass and stiffness data supplied by NASA. The Mach 0.9 equations were written to include the inboard and outboard, as well as the midspan, control surface locations to permit assessment of the system performance for all surface locations. The analyses described in Section 2.3 were conducted using the Nach 0.9 equations, with the assumption that ideal actuators were driving the control surfaces. To complete the analysis, effects of non-ideal actuators must be determined and the system evaluated at Mach 0.6 and 1.2.

2.2 Equations of Motion

Equations of motion were developed for the wing model for Mach 0.6, 0.9 , and 1.2 using generalized mass and stiffness data supplied by NASA. The equations were written with wind tunnel velocity and fluid mass density as explicit functions to permit variations in dynamic pressure by varying either the velocity or mass density, or both. A 95 percent freon, 5 percent air environment was assumed for the wind tunnel fluid.

The equations included six elastic degrees-of-freedom plus the two control surface displacements. The Mach 0.9 equations were subsequently revised

RIVLTR:

SECT	NO.	D3-8884
SECT	PAGE	5

to include the inboard and outboard leading and trailing edge control surfaces, with the actuator mass assumed at the inboard edge of each surface. Three separate structural mass matrices were required to properly account for the actuator mass.

In the equation generation, structural damping was assumed to be zero. Doublet-lattice unsteady lifting surface theory was used for the two subsonic conditions, and mach box theory for the Mach 1.2 condition, to obtain aerodynamic loading. The resulting complex matrices of unsteady aerodynamic coefficients were transformed through a curve fitting procedure to rational functions of the Laplace transform operator, S, with fourth order denominators. The equations were then rearranged to the form

$$
\begin{aligned}
& \left(s^{2}\left[M+\rho c_{1}\right]+s\left[D+\rho v c_{2}\right]+\left[k+\rho v^{2} c_{3}\right]\right. \\
& \left.\quad+\rho v^{2} \sum_{k=1}^{4}\left[D_{k}\right]\left[s /\left(s+v d_{k J}\right)\right]\right)\left\{q_{J}(s)\right\}=\{0\}
\end{aligned}
$$

where:

$$
\left\{q_{J}(s)\right\}=\begin{aligned}
& \text { Elastic and control surface displacement degrees- } \\
& \text { of freedom }
\end{aligned}
$$

S = Laplace transform operator
ρ Fluid mass density (95% freon, 5% air)
$V=$ Velocity of fluid relative to the wing
$[M],[K],[D]=$ Structural mass, stiffness, and damping
$\left[C_{1}\right],\left[C_{2}\right],\left[C_{3}\right]=$ Aerodynamic parameters
$\left[d_{K J}\right]=$ Lift growth parameters
$\left[D_{K}\right]=$ Aerodynamics parameters.
Numerical values of the matrix elements for the three test conditions are presented in Section 2.5. Locations of the control surfaces and doubletlattice panels are shown in Figure 2.1. The sign convention used in the equations is:

RIVLTR:

```
X - Positive aft
    Y - Positive outboard
    Z - Positive up
    Trailing edge surface displacement - Positive trailing edge down
    Leading edge surface displacement - Positive leading edge up.
```

E-sos3rit

The spanwise length of all control surfaces included in the equations is 5.88 inches (11.76 percent of the wing semispan) with 20 percent chord width on all but the inboard and midspan leading edge surfaces. These two surfaces have a constant 3.65 inch width so they could be installed in the model without cutting into the aluminum alloy plate that forms the model elastic structure.

2.3 Flutter Suppression System Evaluation

The flutter suppression system analysis initially assessed the flutter speed improvement attainable with the control law identical to that used on the airplane analysis. A block diagram of the system is shown in Figure 2.2. Feedback sensors were located at 30 percent and 70 percent of the wing chord at the center of the wing strip defined by the midspan leading and trailing edge control surfaces. The Mach 0.9 equations were expanded later to include the inboard and outboard control surface locations. This was done to permit an evaluation of system performance for the other control surfaces, including sensor location variations.

All model analyses were conducted with the sixth elastic mode omitted from the equations of motion. This was done because of the unrealistic influence of this mode on the flutter characteristics. With the sixth mode included, the dynamic pressure at which flutter occurred for the unaugmented wing was about half the dynamic pressure at flutter with the sixth modeomitted.

The flutter suppression system includes feedback variables whose amplitudes are proportional to displacements, but in phase with rates. These variables were generated for the stability analysis using phase root locus to introduce the 90° phase lead ($\mathrm{e}^{90^{\circ}}$) to displacements at all frequencies, without changing amplitude as a function of frequency.

Dynamic pressure was varied by changing the fluid mass density in all the analyses except where the SAS performance was evaluated as a function of mass density. For this analysis, wind tunnel velocity was varied to vary dynamic pressure.

2.3.1 Midspan Surfaces with Nominal FIutter Suppression System

The flutter suppression system evaluation began with the midspan control surfaces and the feedback sensors located at the center of the wing strip. The equations of motion used were for the mach 0.9 condition without actuator mass included.

A dynamic pressure root locus for the open and closed loop cases is shown in Figure 2.3. With the flutter suppression system loop open, the wing first elastic mode crosses the imaginary axis at about $136 \mathrm{lb} / \mathrm{ft}^{2}$ dynamic pressure. The dynamic pressure at flutter with the loop closed is about $159 \mathrm{lb} / \mathrm{ft}^{2}$, an increase of 16.9 percent on dynamic pressure (8.1 percent in terms of wind tunnel fluid velocity). Figure 2.4 shows the open and closed loop damping ratios for the flutter mode as a function of dynamic pressure.

PI:VLTR:

COTETNE	NO. D3-8884
SECT	PAGE 8

WHERE $\quad H_{1}=$ VERTICAL DISPLACEMENT AT 30\% WING CHORD (POSITIVE UP)
$H_{2}=$ VERTICAL DISPLACEMENT AT 70% WING CHORO (POSITIVE UP)
$\alpha=\frac{1}{\operatorname{c}}\left[H_{1}-H_{2}\right]$ (POSITIVE LEADING EDGE UP)
$\delta_{T E}=$ TRAILING EDGE SURFACE DISPLACEMENT
$\delta_{L E}=$ LEADING EDGE SURFACE DISPLACEMENT
$\bar{c}=$ WING CHORD LENGTH AT SENSOR LOCATION
$b=\bar{c} / 2$

FIGURE 2.2 FLUTTER SUPPRESSION SYSTEM BLOCK DIAGRAM

NOTES:

MID SPAN SURFACES/CENTER LINE SENSORS 묘 OPENLOOP

CLOSED LOOP

An analysis was conducted to evaluate system performance as a function of fluid mass density. Figure 2.5 shows the flutter mode damping ratio as a function of true airstream velocity for variations in mass density. Effectiveness of the flutter suppression system as a function of fluid mass density is illustrated in Figure 2.6. The flutter speed improvement decreases with increasing mass density.

2.3.2 Effects of Surface/Sensor Variations

Since the flutter speed improvement attained on the model was considerably lower than expected from the previous airplane analysis, the Mach 0.9 equations were modified to include the inboard and outboard control surfaces. The mass of each actuator was included to provide a more accurate representation of the model as it would be tested in the wind tunnel.

The revised equations were used to assess the flutter suppression system performance attainable with each set of leading and trailing edge control surfaces, with the feedback sensors located at the inboard edge, center, and outboard edge of each wing strip as shown in Figure 2.7. The control law gains used in this analysis were the same as used previously for the micispan surfaces, center sensors configuration.

Damping ratios of the flutter mode as a function of dynamic pressure for the three control surface configurations are shown in Figures 2.8, 2.9, and 2.10. Each plot shows the effect of sensor location within the wing strip. Dynamic pressure root loci for the flutter mode are presented in Figures 2.11, 2.12, and 2.13 .

Table 2.1 summarizes the results of this analysis. The outboard control surfaces, with outboard edge sensor location, provides the most improvement in dynamic pressure at flutter, 36.1 percent (or 16.7 percent increase in flutter speed assuming fluid mass density held constant). The midspan surfaces, inboard edge sensors were the next most effective surface/sensor combination with 26.1 percent increase in dynamic pressure (12.3 percent increase in flutter speed).

TABLE 2.1
EFFECT OF SURFACE/SENSOR LOCATION
ON FLUTIER DYNAMIC PRESSURE

SURFACE LOCATION	DYNAMIC PRESSURE ~ psf			
	$\begin{aligned} & \text { OPEN } \\ & \text { LOOP } \end{aligned}$	CLOSED LOOP		
		INBOARD EDGE SENSORS	CENTER LINE SENSORS	OUTBOARD EDGE SENSORS
INBOARD (BL 77.5-92.5)	135	159.5	165.	163.
MIDSPAN (BL 92.5-107.5)	136	171.5	159.5	147.
OUTBOARD $\text { (BL } 107.5-122.5)$	133	141.5	166.	181.

 - DENSITY \(=.006\) sLugs \(/ \mathrm{Ft}^{3}\)
 [) DENSITY \(=.004\) SLUGS/FT3
 () DENSITY \(=.002\) SLUGS/FT3

FIGURE 2.5 VARIATION OF FLUTTER MODE DAMPING RATIO
WITT TRUE VELOCITY (MID SPAN STRIP)

FLUTITER 2.7 LOCATIONS OF SURFACES AND SENSORS

FIGURE 2.9 VARIATION OF FLUTMIER MODE DAMPING RATIO WITH DYNAMIC PRESSURE (MID SPAN SURFACES)

FIGURE 2.11 DYNAMIC PRESSURE ROOT LOCUS

FIGURE 2.12 DYNAMIC PRESSURE ROOT LOCUS
(MID SPAN SURFACES)

FIGURE 2.13 DYNAMIC PRESSURE ROOT LOCUS (OUTBOARD SURFACES)

2.3.3 SST Airplane Analysis

A brief study was conducted to determine the effects of the flutter suppression system performance due to truncation of the mathematical model. The SST 969-300 configuration equations of motion were truncated to the first seven degrees-of-freedom from the 12 degrees-of-freedom used previously in the airplane analysis. The control surface and sensor locations, and the control law, were identical to that used previously.

The equations of motion were written with velocity and air density as explicit functions to permit varying forward velocity as a function of altitude at constant Mach number to determine flutter speed.

Figure 2.14 shows a dynamic pressure root locus for the two airplane flutter modes for the unaugmented full mathematical model and the seven degree-offreedom equations. The mode damping ratios as a function of velocity (KCAS) are shown in Figure 2.15 with the flutter suppression system loop open and closed. Although the basic airplane flutter speed was higher for the truncated mathematical model, the improvement attained with the flutter suppression system was about the same.

2.4 Remaining Work

The flutter suppression system has been evaluated on the model Mach 0.9 equations of motion with the assumption of ideal actuators driving the control surfaces. The effects of the actual actuator dynamics on system performance must be determined. To minimize mechanization difficulties, the midspan control surfaces with inboard edge feedback sensors will be used during the wind tunnel tests.

The flutter suppression system will also be evaluated at Mach 0.6 and 1.2. The equations have been derived and once the Mach 0.9 analysis is completed, the Mach 0.6 and 1.2 evaluations should be straightforward.

When the control law to be mechanized on the model is finalized, subcritical responses must be generated for correlation of wind tunnel test data with theoretical results. These responses should be generated on the most accurate mathematical model possible, including the non-ideal frequency measuring circuit required by the control law mechanization as well as actual actuator dynamics and the effects of the actuators and hydraulic lines on the wing dynamic behavior. A discussion of the control surface mechanization on the model is presented in Section 3.

2.5 Supporting Data

Numerical values of the equation of motion coefficients are presented below. The Mach 0.9 equations contain three structural mass matrices corresponding to the inboard, midspan, and outboard control surface locations with actuator mass at the inboard edge of each surface. The equations for Mach 0.6 and 1.2 contain coefficients for the midspan control surfaces only.

PIVLTR:

EFFECTS OF LEADING/TRAILING EDGE (MIDSPAN SURFACES)
FIUTITER SUPPRESSION SYSTEM ON SST 969-300 ATRPLANE FLUTHER CHARACTERISTICS FIGURE 2.15

ECDEINE	NO. n i-8884
SECT	PAGE ${ }^{\prime}$

The motion variable vector, $\left\{q_{\mathrm{j}}\right\}$, for the Mach 0.9 equations has dimension 12×1. The first six elements are the wing elastic modes; the seventh and eighth elements are inboard leading and trailing edge control surface displacements, respectively; the ninth and tenth elements are midspan leading and trailing edge control surface displacements, respectively; and the eleventh and twelfth elements are outboard leading and trailing edge control surface displacements, respectively. For the Mach 0.6 and 1.2 equations, this vector is 8×1 with the first six elements the elastic modes and the seventh and ejghth elements are the midspan leading and trailing edge control surface displacements, respectively.

The structural mass, stiffness, and damping matrices are constant for the three wind tunnel conditions, except that the Mach 0.6 and 1.2 equations have aerodynamic coefficients for the midspan control surface location only. For these two test conditions, the first six and the ninth and tenth rows and columns of the mass, stiffness, and damping matrices are to be used.

MATRIX 'M' 12×12 : INBOARD SURFACE MECHANIZATION
ROW 1
$7.2683 E \quad 02-6.1328 E-02-9.2844 E \quad 00-2.0736 E \quad 00-2.7918 E \quad 00-1.3119 E \quad 01$
$3.4121 E 01-2.4087 E \quad 02 \quad 4.3332 E 01-1.9281 E \quad 02 \quad 4.1346 E 01-6.2867 E \quad 01$
ROW 2
$-6.1327 E-02 \quad 2.7018 \mathrm{E} \quad 02-1.0920 \mathrm{E} 00 \quad 4.1373 \mathrm{E}-01-6.3935 \mathrm{E} \quad 00 \quad 8.8776 \mathrm{E}-01$ 1.1035E 01-3.9796E 01 2.953EE O1-1.0223E 02 3.6191E 01-5.0941E OL ROW 3
$-9.2844 E 00-1.0920 E 004.8665 E 02-9.3756 E-01$ 4.2988E 01 5.0809E 00
-4.5802E $01-1.836$ SE $01-3.2175 E 01-6.4271 E$ O1 4.9542E $00-5.5438 \mathrm{E} 01$
ROW 4

ROW 5
$-2.7918 \mathrm{E} 00-6.3935 \mathrm{E} 00 \quad 4.298 \mathrm{SE} 01-1.3930 \mathrm{E} 01 \quad 3.4208 \mathrm{E} 03-2.6235 \mathrm{E} 01$
$-1.9838 \mathrm{E} 02-9.0788 \mathrm{E} 02-1.8632 \mathrm{E} 02-6.0310 \mathrm{~F} 02-1.1190 \mathrm{E} 02-1.0415 \mathrm{E} 02$
ROW 6
 9.7208 E 01 7.3279E O2 2.0682E $026.8965 \mathrm{E} 02 \quad 1.8020 \mathrm{E} \quad 02 \quad 2.0033 \mathrm{E} 02$

ROW. 7
3.4121E 01 1.1035E 01 -4.5802E 01-6.4176E $00-1.9838 \mathrm{E} 02$ 9.7203E O1 $3.4758 \mathrm{E} 02 \quad 0.0000 \mathrm{E}-01 \quad 0.0000 \mathrm{E}-01 \quad 0.0000 \mathrm{E}-01 \quad 0.0000 \mathrm{E}-01 \quad 0.0000 \mathrm{E}-01$
ROW 8
 0.0000E-01 4.0587E 03 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01

ROW 9
4.3332E 01 2.953sE 01-3.2175E 01-3.1614E 01-1.8632E 02 2.0882E 02 0.0000E-01 0.0000E-01 2.8206E 02 0.0000E-01 O.OOOOE-01 0.0000E-01 ROW10

- $-1.9281 E 02-1.0223 E 02-6.4271 E 01$ 8.9813E 01 -6.0310E O2 G.8965E O2 0.0000E-01 0.0000E-01 0.0000E-01 1.6917E O3 0.0000E-01 0.0000E-01

ROW 11
$4.1346 \mathrm{E} 01 \quad 3.6191 \mathrm{E}$ O1 $4.9543 \mathrm{E} 00-9.5785 \mathrm{E} 00-1.1190 \mathrm{E} \quad 02 \quad 1.8020 \mathrm{E} \quad 02$ 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 $1.5570 E$ O2 O.0000E-O1 ROW 12
$-6.2867 \mathrm{E} \mathrm{O1}-5.094 \mathrm{E}$ 01-5.5438E $01-2.6748 \mathrm{E} 01-1.0415 \mathrm{E} 02 \quad 2.0033 \mathrm{E}^{-102}$ $0.0000 \mathrm{E}-01$. $0.0000 \mathrm{E}-01$ 0.0000E-01 $0.0000 \mathrm{E}-01$ 0.0000E-01 2.5553E 02

PEOEFNNE	NO.	D3-8884
SECT	PAGE	20

MATRIX ' M ' 12×12 : MIDSPAN SURFACE MECHANIZATION
KOW 1
7.4782 E 02 L . $0651 \mathrm{E} 01-1.4161 \mathrm{E} 01-1.9078 \mathrm{E} 01$-3.9026E 00 2.9930E-01 $3.4121 E 01-2.4087 E$ 02 $4.3332 E 01-1.9281 E \quad 02$ 4.1346E 01-6.2867E O1 ROW 2
$1.0651 \mathrm{E} 01 \quad 2.7348 \mathrm{E} 02-4.9555 \mathrm{E} 00-6.1521 \mathrm{E} 00^{-3}-3.6665 \mathrm{E} 00 \quad 2.0496 \mathrm{E} 00^{-1}$ 1.1035E 01 -3.9796E 01 2.9538E 01 -1.0223E 02 3.6191E O1 -5.0941E 01

ROW 3
$-1.4161 E 01-4.9555 E 00 \quad 4.8703 E 02 \quad 7.1738 E 00 \quad 5.9995 E 01-4.7862 E 01$
$-4.5802 E 01-1.8365 E 01-3.2175 E 01-6.4271 E O 1 \quad 4.9542 E 00-5.5438 E O 1$
RDW 4
-1.9078E $01-6.1$ S2lE 00 7.1738E 00 1.0278E 02 -4.7197E OO 5.5530E OO
$-6.4176 E 00 \quad 1.3715 E \quad 02-3.1614 E 018.9813 E \quad 01-9.5785 E \quad 00-2.6748 E$ O1
ROW 5
$-3.9026 E 00-3.6665 E \quad 00 \quad 5.9995 E \quad 01-4.7197 E \quad 00 \quad 3.5769 E \quad 03-3.1563 E 02$
-1.9838E $02-9.0788 E \quad 02-1.8632 E 02-6.0310 E \quad 02-1.1190 E \quad 02-1.0415 E \quad 02$
ROW 6
2.9929E-01 2.0495E 00-4.7362E 01 5.5530E 00 -3.1563E 02 $4.2452 E 02$

ROW 7
$3.4121 E 01$ 1.1035E 01 -4.5802E 01 -6.4176E 00 -1.9838E 02 9.7208E O1
3.4758E 02 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01

ROW 8
 0.0000E-01 4.0587E 03 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01

ROW 9
4.3332 E 01 2.9538F O1-3.2175E 01-3.1614E OL -1.8632E O2 2.0682E 02
0.0000E-01 0.0000E-01 2.8206E 02 0.0000E-01 0.0000E-01 0.0000E-01

ROW 10
$-1.9281 E 02-1.0223 E \quad 02-6.4271 E 01 \quad 8.9813 E 01-6.0310 E 026.8965 E 02$ 0.0000E-01 0.0000E-01 0.0000E-01 1.6917E 03 0.0000E-01 0.0000E-01

ROW 11
4.1346E O1 3.6191E OL 4.9543E 00 -9.5785 E OO -1.1190E 02 1.8020E O2 0.0000E-01 0.000OE-01 0.0000E-01 0.0000E-01 1.5570E 02 0.0000E-01

ROW 12
$-6.2867 \mathrm{E} 01-5.094 \mathrm{IE} 01-5.5438 \mathrm{E} 01-2.6748 \mathrm{E} 01-1.0415 \mathrm{E} 02 \quad 2.0033 \mathrm{E} 02$ 0.0000E-01 0.0000E-01 $0.0000 E-01 \quad 0.0000 E-01 \quad 0.3000 E-01 \quad 2.5553 E \quad 02$

MATRIX 'M' 12×12 : OUTBOARD SURFACE MECHANIZATION
ROW 1
 3.4121E 01-2.4087E 02 4.3332E 01-1.9281E 02 4.1346E O1-6.2867E O1 ROW 2
4.8375E 01 3.0265E 02"3.7696E OO -2.0526E 01 -6.0701E"00 1.8437E O1 1.1035E O1-3.9796E 01 2.9538E 01-1.0223E 02 3.6191E 01-5.0941E O1 ROW 3
$6.3172 \mathrm{E} 00 \quad 3.7696 \mathrm{E}$ 00 4.8063E 02 1.7884E 00 5.2397E 01 -6.8867E 01 -4.5802E 01 -1.8365E $01-3.2175 E 01-6.4271 E$ O1 4.9542E $00-5.5433 E O 1$
ROW 4
$-3.0039 E 01-2.0526 E 01 \quad 1.7884 E 00 \quad 1.0660 E 02$ "3.1106E 01-4.8080EO1
-6.4176 E 00 1.3715E $02-3.1614 \mathrm{E} 01 \quad 8.9813 E 01-9.5785 \mathrm{E} 00-2.6748 \mathrm{E}$ O1
ROW 5
$-4.1942 \mathrm{E} 00-6.0701 \mathrm{E} 00 \quad 5.2397 \mathrm{E} 01 \quad 3.1106 \mathrm{E} 01 \quad 3.5404 \mathrm{E} 03-4.6933 \mathrm{E} 02$ $-1.9838 \mathrm{E} 02-9.078 B E \quad 02-1.8632 \mathrm{E} 02-6.0310 \mathrm{E}$ O2-1.1190E O2-1.0415E O2 ROW 6
2.0901E 01 1.8437E 01-6.8867E $01-4.8080 \mathrm{E}$ O1-4.6933E 02 7.9956E O2
$9.7208 E 01 \quad 7.3279 E \quad 02.0682 E \quad 02 \quad 6.8965 E 02 \quad 1.8020 E \quad 02 \quad 2.0033 E \quad 02$
ROW 7
$3.4121 E 01$ 1.1035E $01-4.5802 E 01-6.4176 \mathrm{E} 00-1.9838 \mathrm{E} 02$ 9.7203E 01
3.4758 E 02 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01

ROW 8
-2.4087E O2-3.9796E 01-1.8365E O1 1.3715E 02-9.0788E 02 7.3279E O2 0.0000E-01 4.0587E 03 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01
-ROW' 9
4.3332 E 01 2.9538E $01-3.2175 \mathrm{E} 01-3.1614 \mathrm{E}$ O1-1.8632E 02 2.0682E O2 $0.0000 E-01$ 0.0000E-01 2.8206E 02 0.0000E-01 0.0000E-01 0.0000E-01
ROW10
$-1.9281 \mathrm{E} 02-1.0223 \mathrm{E} 02-6.4271 \mathrm{E} 01 \quad 3.9813 \mathrm{E} 01-6.0310 \mathrm{E} 02 \quad 6.8965 \mathrm{E} 02$ 0.0000E-01 0.0000E-01 0.0000E-01 1.6917E 03 0.0000E-01 0.0000E-01

ROWII

$4.1346 \mathrm{E} 01 \mathrm{3.6191E}$ O1 4.9543E $00-9.5785 \mathrm{E} \quad 00-1.1190 \mathrm{E} \quad 02 \quad 1.8020 \mathrm{E}$ O2 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.5570E 02 0.0000E-01 ROW 12
$\begin{array}{rrrrrrrr}-6.2867 E & 01 & -5.0941 E & 01 & -5.5438 E 01 & -2.6748 E & 01 & -1.0415 E^{2} \\ 0.002 & 2.0033 E & 02 \\ 0.000 & 0.0000 E-01 & 0.0000 E-01 & 0.0000 E-01 & 0.0000 E-01 & 2.5553 E & 02\end{array}$
COMPILE TIME=
0.51 SEC, EXECUTIJN TIME=
5.76 SEC,OBJECT CODE=

416

MACH 0.9

MATRIX 'D' 12×12
THIS MATRIX IS NULL.

MACH 0.9

MATRIX ${ }^{\prime} \mathrm{C}_{1}$ ' $\quad 12 \times 12$
$\begin{array}{llllllllllllll}\text { ROW } & 1 \\ 9.5461 E & 03 & 5.5596 E & 03 & 7.0879 E & 03 & 3.8111 E & 02 & 7.3005 E & 03 & -4.1397 E & 04\end{array}$ $2.7884 E \quad 04-3.6098 \mathrm{E} \quad 04 \quad 7.0287 \mathrm{E} \quad 03-1.4390 \mathrm{E} \quad 03-4.5136 \mathrm{E} \quad 03 \mathrm{l} \quad 1.7213 \mathrm{E} \quad 04$
$\begin{array}{rllllllllllll}\text { ROW } \\ 4.4723 E & 03 & 4.0766 E & 03 & 3.9739 E & 03 & -2.1366 E & 03 & -7.5908 E & 03 & 1.7285 E & 04\end{array}$ $\begin{array}{lllllllllllll}4.4723 E & 03 & 4.0766 E & 03 & 3.9739 E & 03 & -2.1366 E & 03 & -7.590 & 03 \\ 7.3211 E & 03 & 1.8704 E & 04 & -3.2236 E & 03 & 2.5318 E & 04 & -3.6786 E & 02 & 1.1730 E & 04\end{array}$

ROW 3
 $4.0344 E \quad 03-8.2189 E \quad 04 \quad 9.7307 E \quad 03-7.6626 E \quad 04 \quad 8.6543 E \quad 03-5.7523 E \quad 04$

ROW 4
$\begin{array}{lllllllllllllllllll}7.6810 E & 02 & 6.7414 E & 02 & 1.2060 E & 03 & 3.0355 E & 03 & -1.0989 E & 04 & 2.0540 E & 04\end{array}$

ROW 5
$-7.5191 E \quad 03 \quad 2.8628 E \quad 03 \quad 1.6969 E \quad 04 \quad 2.1280 E \quad 04-2.8545 E \quad 03-2.9001 E 05$ $9.0423 E \quad 04-7.0943 E \quad 05 \quad 9.9519 E \quad 04-5.7082 E \quad 05 \quad 2.3426 E \quad 03-3.3593 E \quad 05$

ROW 6
$-2.6459 \mathrm{E} \quad 03-5.8633 \mathrm{E} \quad 03 \quad 1.7116 \mathrm{E} \quad 04-8.1828 \mathrm{E}$ C3 $8.6830 \mathrm{E} \quad 04 \quad 3.5704 \mathrm{E} \quad 04$

ROW 7
1.7955E $03-7.8678 E \quad 01-7.0723 E \quad 03-4.5973 E \quad 03-7.5494 E \quad 02 \quad 9.0594 E \quad 04$
$-2.2752 \mathrm{E} \quad 04 \quad 1.5858 \mathrm{E} \quad 05-6.8065 \mathrm{E} \quad 03 \quad 1.2875 \mathrm{E} \quad 05-4.4554 \mathrm{E} \quad 03 \quad 7.3911 \mathrm{E} \quad 04$
$\begin{array}{llllllllllllll}\text { ROW } & 8 \\ 2.5366 E & 03 & 1.2065 E & 03 & 9.1141 E & 03 & -2.0548 E & 03 & 1.3974 E & 04 & 5.0738 E & 04\end{array}$
-1.9501E 04 2.672IE $05-4.4976 E \quad 04 \quad 1.4602 E \quad 05-1.6760 E \quad 04 \quad 1.3157 E \quad 05$
$\begin{array}{rlllllllllllll}\text { ROW } 9 & & & & & & \\ 2.1330 E & 03 & -8.1875 E & 02 & -5.2956 E & 02 & -4.0012 E & 03 & 1.6280 E & 04 & 4.8662 E & 04 \\ -1.9643 E & 04 & 7.8151 E & 04 & -2.5855 E & 03 & 7.8558 E & 04 & -4.3871 E & 03 & 5.7091 E & 04\end{array}$
ROW 10
$-5.6653 E \quad 03-6.5935 E 03 \quad 4.8514 E \quad 034.0797 E \quad 03 \quad 4.0065 E 04-1.2930 E 04$
$-1.6154 E \quad 04 \quad 4.6378 E \quad 04-2.154 \mathrm{BE} \quad 04 \quad 5.0687 E \quad 04 \quad 2.4103 \mathrm{E} \quad 03 \quad 1.8428 \mathrm{E} \quad 04$

ROW 11

$-1.5050 \mathrm{E} 04 \quad 5.9292 \mathrm{E} \quad 04-7.7007 \mathrm{E} \quad 03 \quad 5.6722 \mathrm{E} \quad 04 \quad 1.3131 \mathrm{E} \quad 02 \quad 3.1074 \mathrm{E} \quad 04$
$\begin{array}{llllllllllllllllllllll}\text { ROW 12 } \\ -4.9659 E & 03 & -5.5028 E & 03 & -2.2844 E & 03 & -2.0469 E & 03 & 1.5074 E & 04 & -4.1807 E & 03\end{array}$
$-5.0668 \mathrm{E} 03 \mathrm{~g} .1340 \mathrm{E} 03-4.5077 \mathrm{E} 03-2.0700 \mathrm{E} \quad 04 \quad 2.7251 \mathrm{E} 03-8.3953 \mathrm{E} 03$

MATRIX ${ }^{\prime} \mathrm{C}_{2}{ }^{\prime} \quad 12 \times 12$
ROW 1
1.6705E O3 7.9264E O2 5.4130E O1-1.4970E O1 1.3304E 03 -2.7772E O2 $-1.8203 E 03-6.5752 E \quad 02-7.9383 E \quad 02-2.2632 E \quad 03-2.9289 E \quad 02-2.5975 E \quad 03$

ROW 2
$8.8848 \mathrm{E} \quad 02 \quad 7.4688 \mathrm{E} \quad 02 \quad 3.9029 \mathrm{E} \quad 02 \mathrm{3.8410E} \quad 02 \quad 9.1696 \mathrm{E} \quad 02-2.9966 \mathrm{E} \quad 03$ $-3.5372 \mathrm{E} 02-1.7343 \mathrm{E} 03-8.0198 \mathrm{E} 01$-2.3859E $03-6.2382 \mathrm{E} \quad 02-1.7279 \mathrm{E} \quad 03$

RON 3
$3.4490 \mathrm{E} 02 \quad 4.4334 \mathrm{E} \quad 02 \quad 7.991$ OE $02 \quad 2.5519 \mathrm{E} \quad 02 \quad 2.3679 \mathrm{E} \quad 03-1.6540 \mathrm{E} \quad 03 \mathrm{ll}$ -1.4008 E O1 5.534 OE $03-5.977$ OE 02 4.7989E $03-9.9402 \mathrm{E} \quad 02 \quad 2.5925 \mathrm{E} 03$

ROW 4
$-1.6831 E \quad 02 \quad 9.2801 E \quad 01 \quad 2.7861 E \quad 02 \quad 5.0808 E 02 \quad 1.1302 \mathrm{E} \quad 02-1.9468 \mathrm{E} \quad 03$
4.8746 E O2 2.0345E $03 \quad 7.2578 \mathrm{E} \quad 02 \quad 1.7216 \mathrm{E} \quad 03-1.6800 \mathrm{E} \quad 02-3.3689 \mathrm{E} \quad 02$

ROW 5

ROW 6
$-6.5211 E \quad 02 \quad 3.1337 E \quad 02-1.1184 E \quad 03 \quad 1.3945 E \quad 02-1.3139 E \quad 04 \quad 1.1394 E \quad 04$ 2.1516E O3-8.3494E O3 1.2779E $03-2.7962 E \quad 03-7.8700 E \quad 02-3.1175 E \quad 03$

ROW 7
$\begin{array}{llllllllllllll}\text { OW } \\ 1.6465 E & 02 & 8.5615 E & 01 & 7.2780 E & 01 & 2.4389 E & 02 & -1.5685 E & 03 & -5.3703 E & 03\end{array}$ $2.5817 E \quad 03-1.0264 E \quad 04 \quad 3.7307 E \quad 02-3.3874 E \quad 03 \quad 2.7486 E \quad 02-4.8496 E \quad 03$

ROW 8
$-2.0028 \mathrm{E} \quad 03-4.7510 \mathrm{E} \quad 02-5.1813 \mathrm{E} \quad 02 \quad 1.1778 \mathrm{E} \quad 03-6.5123 \mathrm{E} \quad 03 \quad 1.0508 \mathrm{E} \quad 01$ 1.5568 C C3 2.1085E $04 \quad 2.7916 \mathrm{E} \quad 03-8.8453 \mathrm{E} \quad 03 \quad 8.9505 \mathrm{E} \quad 02$-9.5699E 03

ROW 9
$1.9987 E \quad 02 \quad 2.7050 E \quad 02-1.8201 E \quad 02 \quad 1.1540 E \quad 01-2.4154 E \quad 03-1.7568 \mathrm{E} \quad 03$ 1.5317E $03-5.3167 E 03$ L. $0223 E 03-5.1715 E 03 \quad 1.3303 E \quad 02-3.7402 E 03$
$\begin{array}{llllllllllll}\text { ROW } 10 \\ -1.2489 E & 03 & -5.6559 E & 02 & -9.4995 E & 02 & -1.3743 E & 01 & -7.4048 \mathrm{E} & 03 & 6.9657 E & 03 \\ 1.1489 E & 03 & -1.5265 E & 03 & 1.2939 E & 03 & 1.6583 E & 04 & 2.0522 \mathrm{E} & 02 & -4.2349 E & 03\end{array}$
ROW 11

| $3.5147 E$ | 02 | $3.8958 E$ | 02 | $5.1264 E$ | 01 | $7.9649 E$ | 01 | $-1.9351 E$ | 03 | $-8.4662 E$ | 01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $1.0868 \mathrm{E} \quad 03-3.1943 \mathrm{E} 03 \quad 7.3777 \mathrm{E} \quad 02-3.1029 \mathrm{E} \quad 03 \quad 4.5643 \mathrm{E} \quad 02-1.5648 \mathrm{E} \quad 03$

ROW 12
-2.8029E $02-1.1244 E \quad 02-4.9631 E \quad 02-2.4835 E \quad 02-2.9284 E \quad 03 \quad 3.9663 E \quad 03$ $3.3752 \mathrm{E} \quad 02-1.6897 \mathrm{E} 03 \quad 2.6709 \mathrm{E} 02 \quad 1.5070 \mathrm{E} \quad 03-2.9931 \mathrm{E}$ O1 6.5071E O3

MATRIX ' C_{3} ' 12×12
ROW 1
7.6010E $00<3.5711 \mathrm{E}$ OO 4.3557E 01 1.1287E OL 1.7535E 02-2.7407E 02 $-5.6567 E-01-4.3697 E 02 \quad 6.5606 E 00-5.1503 E \quad 02 \quad 2.6547 E 00-4.6098 E 02$

ROW 2
$3.4816 E \quad 00-2.7536 E \quad 00 \quad 2.3084 E \quad 01 \quad 9.3326 E \quad 00$ 1.0747E $02-1.5158 E \quad 02$
$-4.3322 E 00-1.4205 E 02-5.1231 E 00-2.6387 E 02 \quad 2.0084 E 00-3.2716 E 02$
ROW 3
$-6.1740 \mathrm{E} \quad 00-3.021 \mathrm{E}-01 \quad-6.4186 \mathrm{E} \quad 00 \quad 6.9502 \mathrm{E} \quad 00-5.1282 \mathrm{E} \quad 01-8.0458 \mathrm{E}^{-1} 00^{-}$ $1.6481 E 01 \quad 1.948$ E-01 $2.9519 E \quad 01-1.0736 E 02 \quad 3.3536 E \quad 01-2.6096 E \quad 02$

ROW 4
$-2.1837 E \quad 00-3.4294 E \quad 00-2.0895 E \quad 004.0230 E-01-2.0547 E \quad 01 \quad 3.2390 E 01$ -7.8802 E 00 $1.3042 \mathrm{E} \quad 02-2.1445 \mathrm{E} \quad 00 \quad 1.0546 \mathrm{E}$ O2 $1.8164 \mathrm{E} \quad 01-1.1626 \mathrm{E} \quad 02$

ROW 5
$-2.5177 E 01-7.2157 E-01-5.8300 E 01-7.9895 E 00-4.3329 E 02 \quad 2.2238 E 02$ $1.2963 E 02-6.5390 E \quad 02$ 1.8493E $02-7.1281 E \quad 02 \quad 1.7402 E 02-3.9391 E \quad 02$

ROW 6
$1.7939 E 01$ 1.8220E 01 5.011IE $01 \quad 2.5803 E \quad 01 \quad 3.1127 E 02-4.1082 E 02$ -1.9063 E 01 5.1092E $02-1.3536 \mathrm{E} 02 \quad 7.6645 \mathrm{E}$ O2 -2.3061E O2 7.0130E 02

ROW 7
$3.5358 \mathrm{E} \quad 00-3.8162 \mathrm{E} \quad 00 \quad 1.6843 \mathrm{E} \quad 01-6.4372 \mathrm{E}$ 00 $\quad 1.1436 \mathrm{E} \quad 02-2.1478 \mathrm{E}$ OI $-4.8563 E 02-3.0861 E 01-3.0157 E 01-2.5608 E$ OL $-4.5816 E 00-1.5379 E 01$

ROW 8
$-7.8735 \mathrm{E}-01 \quad 1.5306 \mathrm{E} \quad 00-1.1515 \mathrm{E} \quad 01-7.6126 \mathrm{E}-01-1.6044 \mathrm{E} \quad 01 \quad 6.4243 \mathrm{E} \quad 01$ -

ROW 9
R.6889E $00-4.5701 E \quad 00 \quad 2.4964 E \quad 01-2.2376 E$ OO $1.4891 E \quad 02-1.0665 E 02$ $-3.6251 E 01-4.2471 E 01-4.1502 E 02-3.5850 E$ OI -3.0731E O1-2.1311E OL

ROW 10
$\begin{array}{rllllllllll}2.3839 E-01 & 2.6990 E & 00 & -6.7166 E & 00 & -1.1133 E & 00 & -1.4352 E & 01 & 3.7953 E & 01 \\ -9.7230 E-01 & 2.7384 E & 02 & -3.2616 E & 00 & 7.0704 E & 02 & -8.8403 E & 00 & 3.0016 E & 02\end{array}$ ROW 11
$8.3398 E \quad 00$ i. $5715 \mathrm{E} \quad 00 \quad 2.8863 \mathrm{E} \quad 01 \quad 1.1887 E$ OR $1.4774 \mathrm{E} \quad 02-1.8468 \mathrm{E} \quad 02$ $-4.2305 E O C-5.3389 E 01-3.4549 E 01-4.8901 E O L-3.7377 E O 2-2.9798 E O L$

ROW 12									
$7.6270 E-01$	$2.4018 E$	00	$-2.4082 E$	00	$-3.1765 E-0 E$	$-4.1388 E$	00	$1.0087 E$	01
$-1.9160 E-01$	$3.6560 E$	01	$-7.1538 E-01$	$9.8481 E$	01	$-2.6988 E$	00	$3.2455 E$	02

```
ROW 1
-3.8963E-01 -2.658 1E-02
7.4763E-02 5.8770E-0. -1.7933E 00-5.3592E 00
    1.0733E 00 -1.8130E Ol 2.4185E 00-1.7237E OL 1.3049E 00-1.0905E Ol
```



```
ROW 3
-9.6866E-02 -3.9988E-03-1.3268E 00 -2.6053E-01 -3.0646E 00 1.0054E 01
-1.7867E 00 1.0673E 01 -4.5425E-01 6.9562E 00 9.1848E-01 2.1138E 00
\begin{tabular}{rrrrrrr} 
ROW & 4 & & & & & \\
\(8.4695 E-02\) & \(1.7019 E-02\) & \(2.0733 E-01\) & \(-4.9515 E-02\) & \(5.0360 \mathrm{E}-01\) & \(-5.8009 \mathrm{E}-01\) \\
\(7.1957 \mathrm{E}-02\) & \(2.5413 \mathrm{E}-01\) & \(-2.9475 \mathrm{E}-01\) & \(8.1360 \mathrm{E}-01\) & \(-3.1209 \mathrm{E}-01\) & \(8.0377 \mathrm{E}-01\)
\end{tabular}
ROW }
-2.3451E 00-6.4414E-01 -8.4280E 00 -2.3052E-01 -2.6573E O1 4.7544E 01
-8.9257E 00 7.3517E OO 3.4887E 00-2.1637E O1 1.1868E O1 -3.7099E O1
ROW }
-2.9784E-01 2.2923E-01 1.7037E 00 7.2501E-01 3.9927E 00 -1.6180E 01
    3.7764E 00-1.8142E 01 1.4225E 00-1.0432E 01 -1.8976E 00-3.8878E 00
```

ROW 7
7.9961E-01 1.2310E-01 1.7484E 00-3.3568E-01 6.8646E 00-6.2642E 00
$6.8414 E-01$ 9.6328E $00-2.2884 E 00 \quad 1.5128 E 01-2.4364 E 00 \quad 1.5876 E 01$
ROW 8
1.2416E-C1 3.0556E-01 1.4521E 00 5.6885E-01 5.4383E 00-1.0869E 01
$1.6544 \mathrm{E} 00-6.0650 \mathrm{E} 00 \quad 5.2786 \mathrm{E}-01 \mathrm{~L} \quad 1.1074 \mathrm{E} 00-2.1719 \mathrm{E} 00 \quad 6.6897 \mathrm{E} 00$
ROW 9
3.5254E-01-2.4632E-02 1.5462E 00-1.0479E-01 4.0278E 00-7.7825E 00
$1.4881 E 00-4.9205 E 00-9.1957 E-01-5.6152 E-01-1.8100 E 00 \quad 3.0364 E 00$
ROW 10
$-2.8069 E-02 \quad 1.3026 E-02 \quad 6.5387 E-01 \quad 1.4849 E-01 \quad 2.4038 E 00-4.4033 E 00$
$9.4530 E-01-2.2390 E 006.1045 E-039.8376 E-01-1.1272 E 00 \quad 2.0941 E 00$
ROW 11
1.7776E-01 1.0151E-01 9.8143E-01 9.2114E-02 $2.7845 E 00-6.5899 E 00$
$1.2704 E 00-1.7813 E 00-2.1070 E-01$ 1.1444E 00 -1.1267E $00 \quad 2.9155 E 00$
ROW 12
$-1.2377 E-02-1.4488 \mathrm{E}-02 \quad 1.3403 \mathrm{E}-01-8.9169 \mathrm{E}-05$ 4.4168E-01-7.2738E-01
2.3903E-01-4.2867E-01 -5.8060E-02 3.9188E-01 -2.7893E-01 4.4718E-01

MATRIX ' d_{l} '
1×12
ROW 1
$3.0000 E-03 \quad 3.0000 E-03$
3.0000E-03 $3.0000 E-03 \quad 3.0000 E-03 \quad 3.0000 E-03 \quad 3.0000 E-03 \quad 3.0000 E-03$

MATRIX ' D_{2} '		12×12								
ROW 1										
1.4513 E	01	3.2915 CO	1.5738 E	01	-1.4290E	Cl	9.9497 E	01	2.6848 E	01
-1.0380E	01	4.4485 C	-6.8389E	01	4.9389 E	02	-5.6169E	01	3.7616 E	02
ROW 2										
4.3993 E	00	4.6936E-01	-1.3576E	01	-1.0411E	01	3.9756 E	-01	1.4967 E	02
-2.3812E	01	3.9244 E 02	-3.7696E	01	3.4658 E	02	-1.0769E		2.1586 E	
ROW 3										
-8.7769E	00	-2.7055E 00	3.0759 E	01	1.5446E	01	3.6979 E	01	$-3.2677 \mathrm{E}$	02
5.942 SE	01	-5.7547E 02	$4.3259 E$	01	-5.1664E	02	4.7826 E	00	$-3.3679 \mathrm{E}$	02
ROW 4										
-1.5242E	00	-9.8026E-01	-6.3062E	00	3.0322 E	-01	-7.9325E	00	2.9946 E	
-5.2177E	00	$2.9415 E 01$	4.9833 E	00	8.8156 E		8.1611 E		$-3.0872 E$	
ROW 5										
-8.6377E	00	-5.0649E 00	3.1711 E	02	8.5604 E	01	6.4598E	02	-2.5106E	03
4.2669E	02	-3.5323E 03	1.7024 E	02	-2.7149E	03	-1.5237E	02	$-1.4452 \mathrm{E}$	03
ROW 6										
2.1308 E	01	-3.6342E 00	-4.1114E	01	-3.1982E	01	-1.3653E	02	4.8447E	02
-1.1331E	02	5.6909E 02	-5.3253E	01	$4.0959 E$	02	4.9099 E	01	2.2237E	02
ROW 7										
-4.2653E	00	$5.2496 E 00$	-9.2290E	01	$-1.1134 E$	01	-2.0177E	02	$6.1307 E$	02
-7.8175E	01	8.6153 E 02	-1.2240E	00	$6.6669 E$	02	1.5169E		3.4813 E	02
ROW 8										
6.7823 E	00	-7.6610E 00	-4.4903E	01	-2.8469E	01	-1.5105E	02	4.1634 E	02
-6.4421E	01	4.4428 O	-4.7042E	01	$2.3695 E$	02	4.5309 E		-2.1259E	01
ROW 9										
$4.6182 E$	00	6.1454E 00	-5.9905E	01	$-1.0686 \mathrm{E}$	01	$-9.3745 E$ $2.2467 E$		4.4013 E	02
-7.5779E	01	7.8273E 02	-2.0423E	01	$6.7461 E$	02	2.2467 E		4.2890 E	02
ROW 10										
6.6302 E	00	1.2609E 00	-2.0685E	01	-9.3781E	00	-6.6337E	01	1.7413 E	02
-3.7415E	01	2.0071E 02	-1.5159E	01	1.0172 E	02	2.5506 E	01	$3.1361 E$	01
ROW 11										
4.3949 E	00	$2.0971 E-01$	-3.6235E	01	-1.2319E	01	-7.6870E	01	$3.1891 E$	02
$-5.3938 \mathrm{E}$	01	4.0033 E 02	-2.2912E	01	3.3663 E	02	9.4659 E	00	2.0770 E	
ROW 12										
1.7463 E	00	8.8404E-01	-4.2975E	00	-9.9553E	-01	-1.1254E	01	3.0617 E	01
-9.6478E	00	'.6580E 01	-1.7337E	00	1.90765	01	$6.7206 E$	00	8.5784 E	00

ATCOETME	NO. D3-8884
SLCT	PAGE 3 K

```
        MATRIX 'd}\mp@subsup{2}{}{\prime
        1\times12
```


ROW 1

```
    9.0000E-03 9.0000E-03 9.0000E-03 9.0000E-03 9.0000E-03 9.0000E-03
    9.0000E-03 9.0000E-03 9.0000E-03 9.0000E-03 9.0000E-03 9.0000E-03
```

\qquad

MATRIX ' $\mathrm{D}_{3}{ }^{\prime} \quad 12 \times 12$
ROW 1
$-4.1001 \mathrm{E} 01-8.5356 \mathrm{E} \quad 00-1.3365 \mathrm{E} 02 \quad 3.0157 \mathrm{E}$ O1 $-5.7912 \mathrm{E} \quad 02 \quad 4.9503 \mathrm{E} \quad 02$
$-3.7458 \mathrm{E} 01-8.8464 \mathrm{E} 02 \quad 2.3431 \mathrm{E} 02-1.2067 \mathrm{E} 03 \quad 2.4141 \mathrm{E} 02-1.0393 \mathrm{E} 03$
ROW 2

6.7257E O1-1.1862E 03 1.5974E $02-1.0911 E 03$ 7.0214E 01 -7.2060E O2

ROW 3
$\begin{array}{llllllllllllll}4.1318 E & 01 & 5.2318 E & 00 & -4.3543 E & 01 & -5.9188 E & 01 & -6.2769 E & 00 & 8.3985 E & O 2 \\ -2.0159 E & 02 & 1.4728 E & 03 & -1.7634 E & 02 & 1.3894 E & 03 & -3.8601 E & 01 & 9.3225 E & O 2\end{array}$
ROW 4
$5.6176 \mathrm{E} 00 \quad 7.1805 \mathrm{E} 00 \quad 2.4934 \mathrm{E} 01 \quad 1.6915 \mathrm{E} 00 \quad 3.5982 \mathrm{E} 01-1.2 \mathrm{~B} 34 \mathrm{E} 02$ 2.4860 E O1-8.0951E O1-2.0626E O1 7.3255E 00-4.4439E O1 3.2904E OL

ROW 5
$\begin{array}{rlrllllllllllll}\text { ROW } \\ 1.4432 E & 02 & -2.5445 E & 01 & -7.8839 E & 02 & -4.1060 E & 02 & -1.3081 E & 03 & 8.0301 E & 03 \\ -1.7170 E & 03 & 1.1600 E & 04 & -9.6005 E & 02 & 9.0615 E & 03 & 3.8217 E & 02 & 4.8568 E & 03\end{array}$
$\begin{array}{llllllllllllllllllllll}\text { ROW } \\ -1.1306 E & 02 & 1.6201 E & 01 & 9.8463 E & 01 & 1.6680 E & 02 & 5.8640 E & 02 & -1.7514 E & 03\end{array}$
$5.3704 E \quad 02-1.3334 E \quad 03 \quad 3.0068 \mathrm{E} \quad 02-7.7404 \mathrm{E}$ O2 -2.2462E $02-1.6100 \mathrm{E}$ O2

ROW 7

$-1.4146 \mathrm{E} 01-8.1473 \mathrm{E}$ OO 2.4280 E 02 5.4049E 01 3.7930E $02-1.9599 \mathrm{E} 03$ $3.4671 E 02-3.0370 E 03 \quad 1.9418 E \quad 01-2.4201 E \quad 03 \quad 3.1486 E 01-1.3323 E \quad 03$

ROW 8
$-6.2314 \mathrm{E} \quad 01 \quad 2.6527 \mathrm{E} \quad 01 \quad 1.6262 \mathrm{E} \quad 02 \quad 1.5054 \mathrm{E} \quad 02 \quad 6.0249 \mathrm{E} \quad 02-1.7249 \mathrm{E} \quad 03$ $2.8194 \mathrm{E} 02-2.0198 \mathrm{E} \quad 03 \quad 2.7591 \mathrm{E} \quad 02-1.2339 \mathrm{E} \quad 03-1.4132 \mathrm{E} \quad 02-1.8575 \mathrm{E} \quad 00$

ROW 9
-3.3757 E O1-1.0847E 01 1.3141E 02 4.9288E O1 9.7467E O1 -1.2630E 03 $3.1736 \mathrm{E} 02-2.2366 \mathrm{E} 03$ 1.2327E $02-2.0011 \mathrm{E}$ O3-9.6342E 01 -1.3447E 03

ROW 10
$\begin{array}{rrrrrrrrrrrr}-5.0625 E & 01 & -1.3906 E & 01 & 7.3491 E & 01 & 5.1182 E & 01 & 2.3122 E & 02 & -7.0332 E & 02 \\ 1.7606 E & 02 & -1.0324 E & 03 & 1.0770 E & 02 & -6.2517 E & 02 & -8.3946 E & 01 & -3.0074 E & 02\end{array}$
ROW 11
-2.8068 E O1 8.2371E 00 7.4442E 01 5.8097E O1 1.7330E O2 -9.7675 E O2 2.1927E O2-8.9913E 02 1.2071E 02-7.7190E O2-6.0588E 00 -4.5589E 02

ROW 12
$-1.2839 E \quad 01-5.8845 E \quad 00 \quad 1.4336 E \quad 01 \quad 6.1077 E \quad 00 \quad 2.7504 E \quad 01-1.1222 \mathrm{E} 02$ 4.7198E O1 - $2.5649 E 02$ 1.7967E $01-1.2902 E 02-2.3873 E 01-7.7980 E 01$

CRESATEO	No.	D3-8884
SECT	PAGE	

```
MATRIX \({ }^{\prime} \mathrm{d}_{3}{ }^{\prime}\)
\(1 \times 12\)
```


ROW 1

1.5000E-02 1.5000E-02 1.5000E-02 1.5000E-02 1.5000E-02 $1.5000 \mathrm{E}-02$
$1.5000 \mathrm{E}-021.5000 \mathrm{E}-02 \quad 1.5000 \mathrm{E}-02 \quad 1.5000 \mathrm{E}-02 \quad 1.5000 \mathrm{E}-02 \quad 1.5000 \mathrm{E}-02$

MATRIX ${ }^{2} \mathrm{D}_{4}{ }^{\prime} \quad 12 \times 12$

ROW 1
2.4698E O1 6.2633E 00 1.5249F $02-9.8617 E \quad 00 \quad 6.6975 E \quad 02-7.2666 E 02$
8.498SE O1 6.3286E $02-1.9936 \mathrm{E} \quad 02$ 9.7672E $02-2.4404 \mathrm{E} \quad 02$ 9.2221E 02

ROW 2
$1.0547 \mathrm{E} 01-8.5182 \mathrm{E} 00 \quad 2.3376 \mathrm{E} 01-2.8108 \mathrm{E} 01 \quad 2.6032 \mathrm{E} 02$ 6.9608E OL $-4.1052 \mathrm{E} 01 \quad 9.8037 \mathrm{E} \quad 02-1.5019 \mathrm{E} \quad 02 \quad 9.1038 \mathrm{E} \quad 02-7.4982 \mathrm{E} \quad 01 \quad 6.2376 \mathrm{E} \quad 02$

ROW 3
-4.5064E O1-8.8073E 00 2.4608E 01 5.6734E 01 2.2151E 00"-6.8127E 02 1.8080E 02 -1.2040E 03 1.7815E 02 -1.1734E 03 4.9577E 01-7.9061E 02

ROW 4
$-5.6863 E \quad 00-1.0229 E \quad 01-2.7358 \mathrm{E} 01-5.8881 \mathrm{E} \quad 00-6.0655 \mathrm{E}$ 01 $\quad 01.5194 \mathrm{E} 02$
-3.0626E OL 1.4945E O1 1.777OE 01-7.9392E O1 5.7785E O1-9.9247E O1
KOW 5
$-1.9291 E \quad 02 \quad 2.0667 E \quad 01 \quad 6.2636 E \quad 02 \quad 4.2987 E \quad 02 \quad 1.0318 E \quad 03-6.9596 E \quad 03$ $1.6618 \mathrm{E} \quad 03-1.0415 \mathrm{E} 04 \quad 1.0790 \mathrm{E} \quad 03-8.2129 \mathrm{E} \quad 03-2.8032 \mathrm{E} \quad 02-4.3607 \mathrm{E} 03$

| ROW | 6 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1.5449 E$ | $C 2$ | $9.2314 E$ | 00 | $-9.5128 E$ | 01 | $-1.9228 E$ | 02 | $-5.8613 E$ | 02 | $1.7564 E$ | 03 |
| $-6.0236 E$ | 02 | $1.6778 E$ | 03 | $-4.2269 E$ | 02 | $1.1134 E$ | 03 | $1.6604 E$ | 02 | $3.1261 E$ | 02 |

$\begin{array}{llllllllllllll}\text { ROW } \\ 9.6640 E & 01 & -1.2599 E & 01 & -1.5650 E & 02 & -1.7139 E & 02 & -5.7696 E & 02 & 1.7171 E & 03\end{array}$ $-2.8988 \mathrm{E} \quad 02 \mathrm{Z}$. $3158 \mathrm{E} \quad 03-3.4044 \mathrm{E} \quad 02 \quad 1.6162 \mathrm{E} \quad 03 \quad 9.0735 \mathrm{E} \quad 01 \quad 2.2684 \mathrm{E} \quad 02$

$-3.2352 \mathrm{E} \quad 02 \mathrm{l}$ 1.7796E $03-1.6312 \mathrm{E} \quad 02 \quad 1.6300 \mathrm{E} \quad 03 \quad 1.1744 \mathrm{E} \quad 02 \quad 1.1267 \mathrm{E} \quad 03$
 $\begin{array}{rlllllllllll}7.3539 E & 01 & 2.6220 E & 01 & -6.3283 E & 01 & -5.5990 E & 01 & -1.5952 E & 02 & 6.3736 E & 02 \\ -1.9061 E & 02 & 1.2503 E & 03 & -1.4412 E & 02 & 8.4979 E & 02 & 5.9075 E & 01 & 5.2484 E & 02\end{array}$

ROW 11
 $-2.1832 \mathrm{E} 026.9490 \mathrm{E} 02-1.4062 \mathrm{E} 02 \quad 6.1838 \mathrm{E}$ O2 - 2.8140 E O1 3.4229E O2
$\begin{array}{llllllllllll}\text { ROW 12 } \\ \text { 1.8074E O1 } & 8.5987 E & 00 & -1.0649 E & 01 & -6.2147 E & 00 & 1.3903 E & 00 & 8.0755 E & 01\end{array}$ -5.2434 E O1 $3.1915 \mathrm{E} 02-2.6823 \mathrm{E} 01 \mathrm{l}$ 1.7576E 02 1.9267E O1 1.2423 E O2

MATRIX 'd4' 1×12
ROW 1
$2.1000 E-02 \quad 2.1000 E-02$
2.1000E-02 2.1000E-02 2.1000E-02 2.1000E-02 2.1000E-02 2.1000E-02


```
MATRIX ' C2, 8
ROW 1. 1. % 038E 03-4661E 02 9.5133E 02 3.1098E 02 5.7941E 03 -7.2531F 03-
    -9.4633E C2 -3.9740E 03
```

```
ROW 2
```

ROW 2
7.3631E-02-5.61-7EE-02 7.5104E-02-4.0109E C2-2.9654E-03-4.8371E-03
7.3631E-02-5.61-7EE-02 7.5104E-02-4.0109E C2-2.9654E-03-4.8371E-03
-5.3CC4E 02 -2.5107E 03

```
    -5.3CC4E 02 -2.5107E 03
```



```
    ROW }
    -2.2652E-C2-3.7073E 01 -5.9045E 01* 3.3301E C? - . .2215E C3 3.9574E 02
        5.5631E 02 1.1814F 03
    ROW 5
        1.1920E 03 -7.7428E 03
    ROW 6
        1.8271E 03 1.4735F 03 4.0551E 02 -6.64e9E 02-4.3669E 03\cdots 9.3129E 03
        -2.2974E 03 1.3192E 04
    ROW 7
        7.243BF 02 4.1441E n2 -4.021 DE n> -4.2103E O2-2.0537E C3 1.5752F 03
    -6.43G9E 02 -R.9256E O1
```

```
20W 8
```

20W 8
-3.4428FC2-1.3514F 02-5.917TE 02-1.52t5FC2-3.7766F-03 5.0A06E 03
-3.4428FC2-1.3514F 02-5.917TE 02-1.52t5FC2-3.7766F-03 5.0A06E 03
9.9691E 01 1.630NF 04

```
    9.9691E 01 1.630NF 04
```

OOEVME	NO. D3-8884
SECT	PAGE 43

```
MATPIX 'C}\mp@subsup{C}{3}{\prime}\quad&\times
ROW 1
    6.7642E 00-4.1394E-01 3.4064E 01 9.6679E00-1.3993E-02-2.1626F02
    7.2457E OC -3.7638E C2
ROW 2
-3.3889E-00-4.951SE-01 1-9148E OL-9.C690E 00-8.73-3.2E E1-1.2966E 02-
-3.7426E 00 -2.0471E O2
```

```
ROW 3
```

ROW 3
-5.4654F-00 1.1496E ON - %.9788E 00 6.0104F 00-5.2429E C1 3.3300E 00
-5.4654F-00 1.1496E ON - %.9788E 00 6.0104F 00-5.2429E C1 3.3300E 00
2.5414E O1 -5.4585E O1
2.5414E O1 -5.4585E O1
ROW 4.4.0.98F nO-2.6503E on -2.4685E on 5.3893E-01-2.2143E 01 3.1169E 01
ROW 5

```

```

 1.6211E O2 -3.59C7F 0?
 ROW 6
 1.5433F O1 1.0824F O1 5.5762E 01 3.2458E C1 3.1415E O2-4.4156E O?
 -1.3^92E n2 4.3382E C2
 ROW }
 9.94C8F OC - 3.7597E 00 2.8788E 01-1.4385F OO-1.6807E 02-1.3390E n2
 -4.4658E C2 -5.9373E R1
 RCW 8
 -4.8859F-C1-4.9457F-01 -3.9125E 02-5.7724E-CI-8.7666E 00-2.6031E OL
-3.8?31E ON 5.22E4E O?
MATRIX 'D D'
8 }\times
ROW 1

- 3.8914F-02-4.4476E-N2 - 8.2333E-02-9.1RC8F-03-3.5450E-C1-1.0764E-01
2.3468E-C2 2.3795E-C1
ROW 2
3.9685E-02 2.6344\pi-n2 1.8294E-0? -1.9479E-02 5.0.892E-02 1.1487F-01
-3.1710F-02 3.5817E-C1

```

```

 -2.n12gF-C2 1.7698F-01
 ROW 4
 -2.75AGE-02-8.2435F-03 8.1493E-03-1.08ClE-0? - 2.3766E-03 -8.5505E-02
 1.7041F-C? -1.4347E-n!
 ROW 5
4.5345f-02 -4.2.6534-n2 - 3.1703E-01 1.1621F-C1 -5.5835E-01 -4.72P4F-\cap1
1.9788E-O1 -1.3AGCF O?
ROW 6
1.2756F-n1 1.4542E-02-1.2847E-01 -1.59GOF-O1-3.199EE-N1 2.122OF On

```

```

ROW \& 8-1.9.50E-C2-1.29C3F-02- 9.5901F-03-~1-2150E-07-2.8153E-03-1.6662E-01-
-1.9750E-C2-1.29C3F-C2
MATRIX 'd}\mp@subsup{]}{1}{\prime

```

\(\begin{array}{rlrl} \\ & \\ & D_{2} & 8 \times 8\end{array}\)
```

ROW 1
-1.4591F00-7.7930E-n1-2.3938E 00-1.1741E-00-6.6840F-00-3.3461F01-
6.1977E-C2 4.1557E O1
ROW 2 % NO-5.1221E-n1-4.2514E On 3.1087E-01 -1.4409E 01 1.2857E 01:

```

    6.0818F-01-3.1990世 C1

    -6.5304E-01 4.0047F-01


        \(3.16 C 5 \mathrm{~F} 003.0805 \mathrm{Cl}\)

        1.2943F-ก1-5.85C4E C
        MATRIX ' \(d_{2}\) ' \(1 \times 8\)

        G. NOMOF-03 9.OOOCE-N3
    YATRIX \({ }^{\prime} \mathrm{D}_{3}\) ' \(8 \times 8\)
    ROW 1
        \(9.1131 F\) On 7.46485 OC -1.1235 E n 6.7143 F On-3.6324En1-1.0097En?
\(5.4819 \mathrm{EO}-8.7502 \mathrm{ECI}\)
```

ROW 2 2 ORF ON 4.6226E OO 1.2940E 01-1.2379E 00-4.5880E 01 -3.5677E 01-
-8.1343F 00 -1.6385E O1

```

```

RNW 4 4 0-135E 00-1.8248E 00-8.8864E-01 1.8653E 00-1.1104E 01-5.3644E-NO-
3.70O1E 00-1.3941E O1

```
ROW 5
    \(2.5367 E 01-4.9133 E \quad 00-1.0021 \mathrm{E} \quad 026.5014 \mathrm{E}\) OO-2.2181F 02 1.9556E 02
    \(3.7237 E\) C1 1.8167E C2



MATRIX \({ }^{\prime} \mathrm{d}_{3}\) ' \(1 \times 8\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline R CW 1 & & & & & \\
\hline \(1.500 \cap \mathrm{E}-02\) & 1.500OE-02 & 2.500nf-02 & \(1.5000 E-0 ?\) & 1.5000E-C2 & 2 \\
\hline 1.50@nE-02 & 1.50COE-02 & & & & \\
\hline
\end{tabular}
MATRIX \({ }^{\prime} D_{4}\) ' \(8 \times 8\)
\[
\begin{aligned}
& \text { ROW } 1
\end{aligned}
\]
\[
\begin{aligned}
& \text {-7.849RE OC 9.9696F Ol }
\end{aligned}
\]
```

RNW ? -7.128NE On -5.5393E OC-1.6173F O1 6.1819E-O1 -5.3511F C1 5.4080E O1
-7.128NE OO -5.5393E NC

```

        1.44のnE 01 -1.119RE OZ

    \(-5.2161 E\) OO 1.6665E O1


MACH 0.6
```

ROW 6
-3.n077E 01 -3.0447E On-4.1630E Ol 3.7872E nl - 1.6303E 02 -2.7053E n>
4.0927E 01 - 2.1857E 0?
ROH }
3.4722F-0n-1.3549E 0N-3.0354E 01 6.0901E-0n-6.7895E-01-3.5904E 01
1.1709F 01 6.1649E 01
P.OW 8
6.3647E NO 2.7219E 00-3.6583E ON 3.8116E 00 4.2811E CC-4.7258E Ol
1.3847E 00-2.08CIE O1
MATRIX '1d4' 1. X 8
ROW 1
2.1000E-02 2.100CF-02
2.1007F-02
2.1000E-c2
2.100CE-02
2.1005E-C2
2.100NF-02 2.10COE-C2

```

MATRIX \({ }^{\prime} \mathrm{C}_{1}\) ' \(8 \times 8\)


MATRIX ' \(\mathrm{C}_{2}\) ' \(8 \times 8\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1.64448 F & c3 & 1.02248 E 03 & 6.57634 F & & \(-4.83633 \mathrm{E}\) & & -1.67707E & & 6 F & 03 \\
\hline -2.894E7E & 03 & 6.54 C9BE 02 & & & & & & & & \\
\hline 9.003895 & 02 & \(8.10383 \mathrm{E} \mathrm{O2}\) & 4.37531 F & 02 & 1.44464 E & 02 & -3.26790E & 01 & -1.11998E & 03 \\
\hline \(-1.83612 \mathrm{E}\) & 03 & 4.47359 E 02 & & & & & & & & \\
\hline 3.11561 E & 02 & \(5.20115 E 02\) & 8.39647 F & 02 & 3.33012 E & 02 & 1.53932 E & 03 & -9.91102E & 02 \\
\hline -1.75689E & 03 & 5.34977 F 02 & & & & & & & & \\
\hline - 6.85389 E & 01 & 1.02049 E 02 & 3.48672 E & 02 & 6.00313 E & 02 & -2.51956E & 02 & \(-5.65560 E\) & 02 \\
\hline C.137C3E & C2 & 3.80529 E 02 & & & & & & & & \\
\hline S.51589E & C2 & 1.82339 E 02 & 5.23090 E & 02 & -6.07225E & 02 & 8.87192 E & 03 & -6.49887E & 03 \\
\hline - \(8.78829 E\) & 03 & \(6.88676 E ~\)
\(-5.34677 E\) & & & & & & & & \\
\hline -8.40573E & 02 & -5.34677E 02 & 1.80301 F & 02 & -1.37225E & 02 & -6.32260E & 03 & 1.36913 E & 04 \\
\hline \(1.072 C 2 E\)
3.04983 E & C4
07 & \begin{tabular}{c}
-1.13918 E \\
1.85453 E \\
\\
\hline 1.0
\end{tabular} & -3.04648E & 02 & -3.21030E & 02 & -1.86298E & 03 & 2.E1455E & C3 \\
\hline 3.33 Cl 3 E & C3 & \(0.00000 \mathrm{~F}-01\) & & & & & & & & \\
\hline -1.42941F & 03 & -1.17432E 03 & -3.41231F & 02 & 3.54416 E & 02 & -3.75207E & 03 & 5.72328 E & 03 \\
\hline 7.716245 & 03 & 1.44666E 04 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline HECAEMNE & NO. D3-8884 \\
\hline SECT & PAGE 48 \\
\hline
\end{tabular}

MATRIX \({ }^{\prime} \mathrm{C}_{3}\) ' \(8 \times 8\)
1.17883 E 01 8.20263E-01
1.03256F OL -3.52417E 0?
4.25572 E CO 1.04562 E 00
5. \(67483 F 00-2.07 .288 E 02\)
-5.2326 CE \(00-1.40556 E 00\)
3.12645E CI -1.48572E 02

\(-6.95494 \mathrm{E} 00 \quad 1.16258 \mathrm{E} 02\)
\(-1.79866 \mathrm{E} 01-6.30923 \mathrm{E} 00\)
2. CEC44E C2 -1.01902E 03
2.22754 FCl 1.91898 E 01
-1.93813 E C2 1.25222 E 03
8.10466E NO 3.377C9F 00
-5.21456 E C 2. COOCCF-01
\(4.3113 \mathrm{EE}-03-1.34863 \mathrm{E} 00-1.18585 \mathrm{E}\) O1 -8.20690E \(00-2.26626 \mathrm{E}\) O1 1.C3947E O2 2.7C5C9E CO 1.30105E 03
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(4.40056 E\) & 01 & 1.064 ClE & 01 & 2.18312 E & & -2.71655E & 02 \\
\hline 2.C7921E & 01 & 9.77275 E & 00 & 1.09550 E & & \(-1.45634 E\) & 02 \\
\hline 2.00159 E & 00 & 7.71825E & 00 & -3.33349E & & -6.C7876E & 01 \\
\hline -5.45414E & 00 & -1.71370E & 00 & -4.54686E & 01 & 5.45588 F & 01 \\
\hline -1.19362E & 01 & 1.10855 E & 00 & -2.61531E & 02 & -3.460C7E & 01 \\
\hline 2.93068 E & 01 & 1.64002E & 01 & 2.87250 E & 02 & -2.28288E & 02 \\
\hline 1.65893 E & 01 & -5.66132E & 00 & 1.31735 E & 02 & -6.31852E & 01 \\
\hline -1.18585E & 01 & \(-8.20690 E\) & 00 & -2.26626E & 01 & 1.C3947E & 02 \\
\hline
\end{tabular}

MATRIX \({ }^{\prime} D_{1}\) ' \(8 \times 8\)
-6.01543E-01 1.25C28E 00-4.23218E 00 6.92064E-01-2.83688E 01-1.59500F OL \(-4.95637 \mathrm{E} 00-2.02172 \mathrm{E} 00\) 5.5Є5¢3E-02 2.76872E-01 -2.29530E-02-1.19718E 00
1.14602F-01 2.C6167F-01
\(-2.23379 \mathrm{E} 00-1.03559 \mathrm{O} 00\)
\(1.5694 \mathrm{CE}-01-2.25980 \mathrm{E}-01\)
1.CE394E CO 4.90011E-01
-7.76629E-01 2.26827E 00
-1.66C6EF Cl -6.27643E 00
\(-1.39204 \mathrm{E}-01-1.48819 \mathrm{E} 00\)
1.15399E O1 7.G5609E 00
\(-1.18915 \mathrm{E}-01-1.90161 \mathrm{E}-02\)
\(-7.89703 \mathrm{E}-\mathrm{Cl}\) C.00000E-01
\(-3.73591 E-01-1.18334 E 00\)
-6.53250 EO 1.08902E O1
-5.41037E-01-1.37821E-01-5.45951E OO-1.22214E OC -3.00507E-01 3.31057E-02-1.18254E OC 1.52362E 00 8.76395E-01-6.38037E-02 5.59713E \(00 \quad 3.61562 \mathrm{E}\) OC -7.76216 E 00 1.74479E OC \(-4.24894 \mathrm{E} 01-2.57048 \mathrm{E} 01\) \(4.85370 \mathrm{E} 00-7.96204 \mathrm{E}-01 \quad 2.52071 \mathrm{E} 01\) 1.42224E 01 \(-2.03780 E-01\) 1.24083E-02-8.84319E-01-1.97269E 00 4.12853F. \(00-\) - . \(36521 \mathrm{E}-01\) 2.80687E 01 1.17362E 01

MATRIX ' \(d_{1}\) ' \(1 \times 8\)

\(\square_{3}\). COCOOF-03 3.000COE-03 \(3.00000 \mathrm{E}-03 \quad 3.000 \mathrm{COE}-03 \quad 3.00000 \mathrm{E}-03 \quad 3 . \operatorname{COOCOE}-03\) 3. COOOOE-03 3.00000E-03
\begin{tabular}{|c|c|}
\hline COEATME & Na. D3-8884 \\
\hline SECT & PAGE 49 \\
\hline
\end{tabular}

MATRIX ' \(D_{2}\) ' \(8 \times 8\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline -4.E7614E CO & -3.47124F 00 & -1.47481F 00 & 8.94350E 00 & E & & & 01 \\
\hline 1.72727 E 02 & 3.23918 F 01 & & & & & & \\
\hline -3.5t392E 00 & -1.31C93E 00 & -3.97593E 00 & \(5.60154 E\) OC & 1.92228 E & & & \\
\hline 3.30229 F 01 & 1.91318 E 01 & & & & & & \\
\hline -1.79436E 00 & \(-1.82138 \mathrm{E} 00\) & -1.99934E 00 & 2.63242 E OC & 1.87961E & & E & 00 \\
\hline 7.31277 E 01 & 1.65784 E 01 & & & & & & \\
\hline \(2.82827 \mathrm{E}-01\) & \(6.50558 \mathrm{E}-31\). & -1.87524E 00 & -1.395C5E OC & \(2.68636 E\) & & 2.14256E & co \\
\hline -2.89E36E 01 & -7.68763E 00 & & & & & & \\
\hline -9.33416E CO & -1.08333E 01 & 1.02551E 01 & 9.15584E 00 & 5.17529 F & 01 & 1.31025E & 02 \\
\hline \(4.95320 E C 2\) & \(9.58726 E 01\) & & & & & & \\
\hline 1.5281 CE 01 & 1.20789E 01 & -1.42953E 01 & -8.16487E 00 & \(8.46021 E\) & 00 & 1.31313 E & 02 \\
\hline -4.11E11E 02 & -1.26776E 02 & & & & & & \\
\hline 1.05683 E 00 & \(4.43741 \mathrm{E}-01\) & \(4.67606 \mathrm{E}-01\) & -7.65747E-01 & \(-1.33206 E\) & 01 & 1.1C278E & 00 \\
\hline 1.557CIE 01 & \(0.00000 \mathrm{E}-01\) & & & & & & \\
\hline 2.24519 El & 6.57872 E 00 & 1.70914E-01 & -7.53121E 00 & 2.61C84E & & \(1.21396 E\) & 01 \\
\hline
\end{tabular}

MATRIX ' \(\mathrm{d}_{2}\) ' \(1 \times 8\)
\(9.000005-03 \quad 9.00000 \mathrm{E}-03\)
\(9.00000 \mathrm{~F}-03 \quad 9.00000 \mathrm{E}-03 \quad 9.00000 \mathrm{E}-03 \quad 9 . \mathrm{COOCOF}-03\)
9.COOOOE-03 9.00000E-03

MATRIX \({ }^{\prime} D_{3}\) ' \(8 \times 8\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1.5386CE & 01 & 2.25197E 01 & 3.12849F01 & -3.83271E & 01 & -9.19851E & 01 & 4.34563 E & C2 \\
\hline -6.14CleE & C2 & -1.53188F 07 & & & & & & & \\
\hline \(1.2795 C E\) & 01 & 9.22968E 00 & \(4.22620 E 00\) & -2.69256E & 01 & -1.57161E & 0 & 2.74316 E & \\
\hline -1.60146E & c? & -9.05120E 01 & & & & & & & 02 \\
\hline ¢.65656E & 00 & 7.42 COCE 00 & 1.26038 E 01 & -2.13656E & 01 & 1.04441 E & 02 & 1.78813 E & 02 \\
\hline -3.48C47E & 02 & \(-7.85183 \mathrm{E} 01\) & & & 00 & & 01 & -7.04932E & 00 \\
\hline 1. ECECSE & 00 & -3.34C525 00 & 1.27782F 01 & 3.4458 ¢E & 00 & 2.68556 E & 01 & -7.04932E & \\
\hline 7.95573E & Cl & 3.60098F 01 & & & & & 01 & 3.33110 E & 02 \\
\hline 3.91712E & 01 & 5.23573 E 01 & 7.23960F 01 & -6.524C2E & 01 & 8.62461 E & 01 & 3.33110 E & 02 \\
\hline \(-2.11105 \mathrm{E}\) & 03 & \[
-4.71510 E 02
\] & & & 01 & 3.96172 E & 01 & -1.51063F. & 02 \\
\hline \[
\begin{array}{r}
-6.23351 \mathrm{E} \\
2.07157 \mathrm{~F}
\end{array}
\] & 01 & \[
\begin{array}{r}
-6.67634 \mathrm{E} 01 \\
5 . S 8920 E \\
02
\end{array}
\] & 7.96731 E O1 & \(7.26057 E\) & 01 & 3.96172 C & & & \\
\hline -S.5621CE & 00 & -1.53603E 00 & \(2.44644 \mathrm{E}-01\) & 3.76172 E & 00 & 4.36328 E & 01 & -3.31541E & 1 \\
\hline -E. 33257 E & C1 & 0.00200E-01 & & & & -1.40327E & & -3.12954E & 02 \\
\hline -8.31611E & Cl & \[
-3.9<591 E 01
\] & 2.55208 E & \(5.22903 E\) & & & & & \\
\hline
\end{tabular}

MATRIX ' \(\mathrm{d}_{3}^{\prime} \mathrm{I}^{\prime} \times 8\)
1.5C00CE-02 1.500COE-02
1.50COOE-02 1.500CCE-02
1.500COE-02 1.500COE-02 1.50000E-02 1.500C0E-02

AFOMETNEF NO. D3-8884 \begin{tabular}{|l|l|}
\hline SECT PAGE 50
\end{tabular}

MATRIX ' \(D_{4}\) ' \(8 \times 8\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline -1.87441E & 01 & -2.87824E 01 & 4.70626 El & 3.26071E 01 & 2.54065 E & & & \\
\hline 9.2439CE & 02 & \(1.92697 E 02\) & & & & & & 02 \\
\hline -1.siczes & 01 & -1.39148E 01 & -2.68585E-01 & \(2.87650 E 01\) & 8.21414 E & 01 & -3.01765E & 02 \\
\hline 1.898685 & 02 & 1.13859 E 32 & & & & & & \\
\hline \(-1.47287 \mathrm{E}\) & Cl & -1.20C29E 01 & -8.52344E 00 & 2.62240E 01 & -3.41777E & 01 & 78 & 02 \\
\hline 3.55c73E & 02 & 9.87056 E 01 & & & & & & \\
\hline -6.C6224E & 00 & 1.72990E 00 & 1.52033 OL & 2.43790E-01 & -2.48373E & 01 & -4.2241CE & Cl \\
\hline -7.72546F & CI & -4.55228E 01 & & & & & & \\
\hline -5.45781F & 01 & -7.02356E 01 & \(1.41562 E 02\) & 6.18513 E 02 & 4.04977 & & -5.44191E & 02 \\
\hline 1.99 EGEF & C3 & \(5.93844 E 02\) & & & & & & 02 \\
\hline 0.67983 E & 01. & \(8.73 \mathrm{C69E}\) OL & -1.49466E 02 & -8.716C3E 0 & -5.73137E & 02 & 5.25359 E & 02 \\
\hline -2.18603E & 03 & -7.54455E 0? & & & & & & \\
\hline 1.472 CBE & 01 & 4.43855 E 00 & -2.00677E 01 & 2.68570E-01 & -1.37137E & & \(5.24294 E\) & \\
\hline 1.14031 E & C2 & \(0.00000 \mathrm{E}-01\) & & & & & & 02 \\
\hline H.6C750E & Cl & 5.69818E 01 & -5.81238E 01 & -6.08999E O1 & \(-1.93887 E\) & 02 & \(4.20399 E\) & \\
\hline 1.00173 E & C3 & -1.cosise 03 & & & & & & \\
\hline
\end{tabular}

MATRIX ' \(\mathrm{d}_{4}\) ' 1 x 8
```

2.10000F-02 2.10000E-02
2.100COE-02 2.10000E-02
2.10000E-02
2.10000E-0?
2.100COE-C2 2.10000E-02

```

3.0 SST WING MODEL CONTROL SURFACE MECHANIZATION

This section discusses the analyses, design, and laboratory testing accomplished on the mechanization of control surfaces for the SST wing model flutter suppression system. Actuation system components have been identified to provide the desired performance, but work remains in incorporating the systems into the model.
3.1 Introduction

Since 1970, Boeing-Wichita has provided support to the NASA-Langley Research Center Aeroelasticity Branch on a research program to demonstrate in the Langley transonic dynamics wind tunnel an active flutter suppression system on a 1/17 scale SST semispan wing model. The initial effort was directed toward mechanizing an electromechanical actuation system for the model trailing edge control surface (see Reference 2). This system was subsequently determined inadequate for the flutter suppression system demonstration, and in 1971 an effort began to develop electrohydraulic actuation systems for the model midspan leading and trailing edge control surfaces. The following paragraphs describe the work that has been accomplished on this development.

The design philosophy followed in this development is straightforward: establish performance requirements that will lead to a successful wind tunnel demonstration of the flutter suppression system, purchase and/or design and fabricate components that satisfy the performance requirements, and breadboard test the systems thoroughly before installation in the model.

The NASA-developed flutter suppression system was formulated on the assumption that ideal actuators would be used to drive the control surfaces. Based on this assumption, a dynamic requirement of minimum phase and gain variations was set in the frequency range 5 to 25 Hz , with the model flutter mode frequency about 12 Hz . A goal of no more than 15 degrees phase lag at 25 Hz was chosen.

The actuation systems must be capable of \(\pm 10\) degree amplitude up to 25 Hz , and produce at least 20 inch-pound maximum torque. No external leakage of hydraulic fluid can be permitted in either the model or the wind tunnel test section. The hydraulic actuators must mount close to the control surface hinge lines without violating the wing airfoil.

A subminiature rotary actuator was designed and fabricated to be used with high performance Moog servovalves to actuate the midspan leading and trailing edge control surfaces. Detailed discussions of the design, testing, and analyses accomplished to date are presented in Sections 3.2 and 3.3. Section 3.4 presents a discussion of work necessary to complete the control surface mechanization. Section 3.5 contains nomenclature and detail drawings.

RIVLTR:
\begin{tabular}{|c|c|}
\hline EROEINE & NO. D3-8884 \\
\hline SECT & PAGE 52 \\
\hline
\end{tabular}
3.2 Control Surface Actuation System Design

A survey of current "off the shelf" subminiature electrohydraulic components indicated that, while satisfactory servovalves were available, special actuators would have to be designed and fabricated to meet the requirements. Therefore, two single vane rotary actuators with 0.5 inch vane radius and length were designed and fabricated for installation at the control surface hinge lines without protruding into the airstream.

\subsection*{3.2.1 Actuator Design}

The design torque requirement of at least \(20 \mathrm{in}-1 \mathrm{l}\) maximum was based on control surface hinge moment estimates. To insure satisfactory operation of the actuation systems during the wind tunnel tests, a design goal of achieving a higher maximum torque capability was set, within the geometric constraints of the model. A limit of 1000 psi was chosen for hydraulic supply pressure to minimize fluid sealing difficulty in the actuator and lines.

A detailed drawing of the final actuator design is shown in Section 3.5. The actuator body and end caps are 2024 alumimum, and the vane and shaft are \(17-4 \mathrm{PH}\) high strength stainless steel. Vane sealing is provided by coating the vane with adiprene in conjunction with a straight segment of an AN 5227 0 -ring behind the shaft. Gasket seal between the end caps and actuator body is accomplished with two loops of 3 mil copper wire set in a light adhesive around the vane cavity. The \(1 / 8\)-inch precision shaft is supported by ball bearings in each end cap and AN 5227-1 O-rings provide fluid seal around the shaft. A photograph of one of the actuators prior to assembly is shown in Figure 3.1.

The two actuators were designed to be identical, with the actuator body and end cap thickness machined to lie within the airfoil at the inboard edge of the leading edge control surface. Layouts of a proposed installation at each surface are shown in Section 3.5. Special 1/8-inch tube fittings were designed and fabricated to provide oming seals at the actuator ports.

The actuators were designed to produce 4.0 in-1b torque with twothirds of the 1000 psi supply pressure across the actuator vane. Usual actuator design procedures were followed (see Reference 3). A method of attaching the surfaces to the actuator shaft has not been determined. The use of a tapered pin would reduce the stress area of the shaft and aluminum tubing the surfaces are mounted on to the point where failure would occur at \(30-35 \mathrm{in}-1 \mathrm{~b}\).
3.2.2 Electrohydraulic Servovalve Selection

Servovalves were selected to produce 10 degree actuator amplitude capability up to 25 Hz in a no-load condition. The servovalves selected are Moog Series 30 flow control type (part number 030 A 17010 E 022 F4) rated at \(1.7 \mathrm{in}^{3} / \mathrm{sec}\) no-load flow rate at 1000 psi supply pressure. With a load pressure of two-thirds the supply pressure, the maximum flow rate is \(58 \%\) of the no-load flow rate. With the design torque load ( \(41.0 \mathrm{in}-\mathrm{lb}\) ) on the actuator, the servovalve can produce 10 degree actuator amplitude up to 14 Hz and 5.8 degrees at

PI-VLTR:
\begin{tabular}{|l|l|l}
\hline EREANE & NO. \(\quad\) D3-8884 \\
\hline SECT & PAGE 53
\end{tabular}


25 Hz . This capability was estimated with the assumption that the servovalve and actuator would be mounted close together, whereas in the model they will be separated by about 42 inches of stalnless steel hydraulic tubing. Fluid compliance will degrade this estimated performance slightly, but the actual performance should be more than adequate to work the 12 Hz flutter mode.

The Moog Series 30 servovalves were selected primarily because of their high bandpass dynamic capability. The apparent undamped natural frequency ( \(-90^{\circ}\) phase point) is about 240 Hz with 0.50 danping ratio.

Port manifolds were designed and fabricated from 2024 aluminum to use with the servovalves (see Section 3.5). O-ring seals are used between the manifold and the servovalve ports. The manifolds (and servovalves) will mount on the wing mount plate within the fuselage fairing.

During the wind tunnel tests, the flutter suppression system will be mechanized on an analog computer. The error voltage to drive the servovalves (and subsequently the control surfaces) will be formed as the output of a computer operational amplifier. A servo amplifier has been designed and built using a 741 operational amplifier to accept the error voltage and produce current to drive the servovalve as a constant function of the error voltage, independent of frequency. A schematic of the servo amplifiers is shown in Figure 3.2. The servo amplifier will permit maximum current to the 500 ohm servovalve coils (in series) up to about 25 Hz . Thus, the maximum flow rate capability of the servovalves can be attained up to this frequency. The two servo anplifiers are mounted on a small circuit card and will mount close to the servovalves under the fuselage fairing.

Figure 3.3 shows a simplified plumbing diagram from the hydraulic supply pump to the servovalves, and return. The punp naust supply MII-H-5606 petroleum base fluid at \(1000 \pm 50 \mathrm{psi}\) at a maximum flow rate of \(3.4 \mathrm{in}^{3} / \mathrm{sec}(.88\) GPM). A 5 micron nominal, 15 micron absolute filter is required in the pressure line. A \(25 \mathrm{in}^{3}\) (or larger) accumulator, precharged to 500 psi , in the pressure line is recommended to damp out pressure transients or ripple from the pump, and to keep the punp from having to respond to high load frequencies.
3.2.3 Actuation System Installations

A sketch of the actuation system installations is shown in Figure 3.4. Two feet of \(1 / 8\)-inch outside diameter stainless steel tubing will be used in each line, from the actuators inboard. The remaining distance will be \(1 / 4\)-inch tubing. This choice of tubing sizes represents a compromise between pressure loss due to fluid friction at maximum flow and compliance in the lines between the servovalves and actuators. The hydraulic tubing will be set into channels cut into the balsawood, and bonded with epoxy to the alumimu alloy plate out to about one foot from the actuators, where an elastic adhesive will be used. The channels will be filled in over the lines before the wind tunnel tests.

Layouts showing details of the actuator installations at the leading and trailing edge control surfaces are included in Section 3.5. The actuators will mount on the model aluminum alloy plate. The actuator shafts will be attached

RI VLTR:
\begin{tabular}{|c|c|c|}
\hline COLELNE & NO. & D3-8884 \\
\hline SECT & PAGE & 55 \\
\hline
\end{tabular}


NOTE: CIRCLED NUMBERS REFER TO TERMINAL STRIP MARKING


FIGURE 3.2
SERVO AMPLIFIERS


\section*{FIGURE 3.3}

SIMPLIFIED PUMBING DIAGRAM

directly to the aluminm tubing the balsawood control surfaces are mounted on, and will provide the inboard support for the surfaces. The outboard supports shown in the layouts will be used for laboratory testing of the actuation systems, but during wind tunnel tests pivot bearings mist be used to prevent binding as the wing flexes.

An angular position sensor is being designed to mount on the actuator shaft on the side opposite the control surface. The sensor will use two silicon photocells mounted on a common brass base, with 0.010 inch gap between the cells. A semicircular area of light will be projected on the cells such that the differential voltage generated is proportional to the shaft angular position (see Reference 2).
3.3 Baseline System
3.3.1 Baseline System Testing

A baseline actuation system was assembled for breadboard testing to evaluate the hydraulic actuation systems. The baseline system, shown in Figure 3.5, has about 15 inches of \(1 / 4\)-inch outside diameter stainless steel tubing and 4 inches of \(1 / 8\)-inch tubing between the servovalve and actuator. Ad.c. film type potentiometer provides the position feedback signal and the feedback loop is closed on an EAI TR-48 analog computer. Commands from the analog computer pass through the servo amplifier to the servovalve. The trailing edge control surface is used in the baseline system because it possesses higher inertia than the leading edge surface, resulting in a lower frequency surface-shaft mode. An MS 28797-1 accumulator is used in the pressure line to isolate the system from the pump in the hydraulic test bench.

The baseline system with position feedback only is unstable with the control surface connected to the actuator shaft. The instability appeared during testing as a sustained \(55.9 \mathrm{~Hz}, 1.2\) degrees peak to peak oscillation as the supply pressure was increased from zero at about 550 psi, with a nominal loop gain of \(633.7 / \mathrm{sec}\). This gain had been determined through testing of the baseline system without the control surface to provide less than 15 degrees phase lag at 25 Hz (see frequency response shown in Figure 3.6). The frequency response indicates a lightly damped peak at about 99 Hz . No attempt was made to determine the peak exactly during the laboratory testing due to the high anplitudes near the resonant frequency.

\subsection*{3.3.2 Baseline System Analysis}

A simplified, linear mathematical model of the baseline actuation system was developed using the system sketch shown in Figure 3.7 and the frequency response of Figure 3.6. This mathematical model will be used to predict additional feedback compensation required to stabilize the baseline system.

Consider the sketch shown in Figure 3.7. This combination free body flow diagram is drawn to represent the baseline system. Suming torque about the
M.VLTR: A



PHASE ANGLE ~DEG


NOTE: LOOP GAIN \(633.7 / S E C, 1.00 \operatorname{SIN}(2 \pi f) t\) DEGREES INPUT COMMAND, POSITION FEEDBACK ONLY
\begin{tabular}{|c|c|c|}
\hline APCETME & NO. & D3-8884 \\
\hline SECT & PAGE & 61 \\
\hline
\end{tabular}


FIGURE 3.7
SKETCH OF BASELINE ACTUATION SYSTEM
actuator shaft produces the equation
\[
I_{E Q} \frac{d^{2} \theta_{A}}{d t^{2}}+D_{E Q} \frac{d \theta_{A}}{d t}+K_{S} \theta_{A}-K_{S} \theta_{S}=T_{A}
\]
where \(I_{E Q}\) is the equivalent rotary inertia of the hydraulic fluid and the actuator vane, \(\mathrm{D}_{\mathrm{EQ}}^{\mathrm{EQ}}\) is an equivalent linear (viscous) damping coefficient and \(\mathrm{T}_{\mathrm{A}}\) is the torque developed by the actuator. The developed torque can be determined by assuming the pressure acts on the vane area at the average radius:
\[
T_{A}=\left(P_{1}-P_{2}\right)\left[\left(r_{0}-r_{S}\right) l\right] \frac{r_{D}+r_{S}}{2}=\frac{1}{2}\left(P_{1}-P_{2}\right)\left(r_{D}^{2}-r_{S}^{2}\right) l=C_{A}\left(P_{1}-P_{2}\right)
\]
where \(C_{A}\) is the actuator effectiveness coefficient with units of in \({ }^{3}\).
The Moog servovalve dynamic characteristics can be assumed constant for low imput commands and loads. The approximate servovalve equation of motion can be expressed as
\[
\frac{d^{2} Q(t)}{d t^{2}}+2 \int_{v} \omega_{n_{v}} \frac{d Q(t)}{d t}+\omega_{n_{v}}^{2} Q(t)=\omega_{n_{v}}^{2} K_{v} i(t)
\]
where \(i(t)\) is the coil current and \(K_{V}=Q_{\text {max }} / j_{\text {max }}\). The flow rate of hydraulic fluid to the servovalve divides into damping flow ( \(Q_{D}\) ) due to leakage across the spool, flow due to fluid compressibility \(\left(Q_{H}\right)\), and actuator flow ( \(Q_{A}\) ). The damping flow is accounted for in the approximate servovalve equation given above. The flow in the line from the servovalve to the actuator is
\[
Q(t)=Q_{H}(t)+Q_{A}(t)
\]

The compressibility flow can be determined from the definition of the fluid bulk modulus
\[
B=\frac{\Delta P}{\Delta V / V}, \quad \text { or } \frac{\beta}{V} \Delta V=\Delta P
\]
where \(\Delta V\) is an incremental change in fluid volume due to an incremental change in pressure, \(\Delta P\), and \(V\) is the fluid volume on either side of the actuator vane. Both sides of the equation can be divided by an incremental time, \(\Delta t\), and in the limit
\[
\lim _{\Delta t \rightarrow 0}\left[\frac{B}{V} \frac{\Delta V}{\Delta t}\right]=\lim _{\Delta t \rightarrow 0} \frac{\Delta P}{\Delta t}
\]
produces
\[
\frac{B}{V} \frac{d V}{d t}=\frac{d P}{d t} \text {, or } \frac{d P}{d t}=\frac{B}{V} Q_{H}(t)
\]


The actuator flow can be obtained by recognizing the flow rate is the rate of change of volume in the actuator on one side of the vane due to an angular displacement, \(\theta_{A}\).
\[
Q_{A}=\frac{d}{d t}\left[\frac{1}{2}\left(r_{D}^{2}-r_{3}^{2}\right) \ell\right] \theta_{A}=C_{A} \frac{d \theta_{A}}{d t}
\]

Then,
\[
Q(t)=\frac{V}{\beta} \frac{d P}{d t}+C_{A} \frac{d \theta_{A}}{d t}
\]

The load pressure \(P_{1}-P_{2}\) is twice the pressure \(\Delta P\) since pressure increases on one side of the actuator vane by \(\Delta \mathrm{P}\) and decreases by the same amount on the other side as the servovalve opens. Then the flow equation may be written as
\[
Q(t)=\frac{V}{2 \beta} \frac{d\left(P_{1}-P_{2}\right)}{d t}+C_{A} \frac{d \theta_{A}}{d t}
\]

This equation can now be used to obtain the actuator torque as a fundtion of servovalve flow rate. Integrating from some time \(t_{0}\) to time \(t\) gives the form
\[
\left(P_{1}-P_{2}\right)(t)=\frac{2 \beta}{V} \int_{t_{0}}^{t} Q(r) d r-\frac{2 \beta}{V} C_{A} \theta_{A}(t)
\]
where it is assumed \(\left(P_{1}-P_{2}\right)\left(t_{0}\right)=0\) and \(\theta_{A}\left(t_{0}\right)=0\). From the torque equation above,
\[
T_{A}(t)=\frac{2 \beta}{V} C_{A} \int_{t_{0}}^{t} Q(\gamma) d \gamma-\frac{2 \beta}{V} C_{A}^{2} \Theta_{A}(t)
\]

Substitution of this equation into the actuator equation of motion gives
\[
I_{E G} \frac{d^{2} \theta_{A}}{d t^{2}}+D_{E Q} \frac{d \Theta_{A}}{d t}+K_{S} \Theta_{A}-K_{S} \Theta_{5}=\frac{2 \beta}{V} C_{A} \int_{t_{0}}^{t} Q(r) d r-\frac{2 \beta}{V} C_{A}^{2} \Theta_{A}
\]
or,
\[
I_{E G} \frac{d^{2} \Theta_{A}}{d t^{2}}+D_{E G} \frac{d \Theta_{A}}{d t}+\left(\frac{2 B}{V} C_{A}^{2}+K_{S}\right) \Theta_{A}-K_{S} \Theta_{S}=\frac{2 B}{V} C_{A} \int_{t_{0}}^{t} Q(r) d r
\]

The other equation of motion required to describe the baseline system dynamic behavior can be obtained by summing torque about the surface shaft.
\[
-K_{S} \Theta_{A}+I_{S} \frac{d^{2} \Theta_{s}}{d t^{2}}+K_{S} \Theta_{S}=0
\]

Assuming zero initial conditions, the Laplace transformation of the two equations produces

FIVLTR:
\begin{tabular}{|l|l|l|}
\hline CODEINE & NO. \(\quad\) D3-8884 \\
\hline SECT & PAGE 64
\end{tabular}
\[
\begin{aligned}
\left(I_{E Q} s^{2}+D_{E Q} S\right. & \left.+\frac{2 B}{V} C_{A}^{2}+K_{S}\right) \theta_{A}(s)-K_{S} \Theta_{S}(s)
\end{aligned}=\frac{2 B}{V} C_{A}\left(\frac{1}{S}\right) Q(S),
\]

The transfer function \(\theta_{A}(S) / Q(S)\) can be determined by applying Creamer's rule
\[
\frac{\theta_{A}}{Q}(s)=\frac{2 \theta C_{A}\left(I_{s} s^{2}+K_{S}\right)}{s\left[\left(I_{E Q} s^{2}+D_{E Q} s+\frac{2 \beta}{V} C_{A}^{2}+K_{S}\right)\left(I_{s} s^{2}+K_{S}\right)-K_{S}^{2}\right]}
\]

This transfer function for the baseline system without the surface inertia can be obtained by setting \(I_{S}=0\) and \(K_{S}=0\) in the transformed equations.
\[
\frac{\theta_{A}}{Q}(s)=\frac{\frac{2 B}{V} C_{A}}{s\left[I_{E Q} S^{2}+D_{E Q} S+\frac{2 B}{V} C_{A}^{2}\right]}
\]

The block diagram shown in Figure 3.8 represents the baseline actuation system without the control surface. The frequency response of this system, Figure 3.6, indicates a resonant peak at about 99 Hz and 0.30 damping ratio. This node is: the closed loop equivalent hydraulic fluid-actuator inertia mode. The closed 100 p transfer function is
\[
\frac{\Theta_{A}}{V_{C}}(s)=\frac{57.3 K_{A M P} K_{V} \omega_{n V}^{2}\left(2 B C_{A} / V I_{E Q}\right) \quad(D E G / V O L T)}{S\left(S^{2}+2 I_{V} \omega_{n_{V}} s+w_{n V}^{2}\right)\left(s^{2}+\frac{D_{E Q}}{I_{E Q}} s+\frac{2 B C_{A}^{2}}{V I_{E Q}}\right)+57.3 K_{F} K_{A M D} K_{V} \omega_{T V}^{2}\left(\frac{2 B C_{A}}{V I_{E Q}}\right)}
\]
where the fifth order denominator has two pair of complex conjugate roots and one real root. The closed loop denominator can be written in terms of open loop quantities:
\[
\begin{aligned}
\left(s^{2}+2 J_{1} w_{n_{1}} s+\omega_{n_{1}}^{2}\right)\left(s^{3}+a_{1} s^{2}+a_{2} s+a_{3}\right)= & s\left(s^{2}+2 \rho_{v} \omega_{n_{v}} s+\omega_{n_{v}}^{2}\right)\left(s^{2}+\frac{D_{E O}}{I_{E Q}} s+\frac{2 B C_{A}^{2}}{V I_{E Q}}\right. \\
\cdot & +57.3 K_{F} K_{A M P} K_{V} \omega_{n_{v}}^{2}\left(\frac{2 B C_{A}}{V I_{E Q}}\right)
\end{aligned}
\]
where \(\varphi_{1} \approx .01\) and \(\omega_{n_{1}} \approx(2 \pi)(99)\). Five linear simultaneous equations in the five unknown coefficients \(\left(a_{1}, a_{2}, a_{3}, \frac{D_{c a}}{I_{E G}}\right.\), and \(\left.\frac{2 B C_{A}^{2}}{V I_{E}}\right)\) can be obtained by substituting the known quantities in the above equation and equating coefficients of like powers of \(S\). The solution of these equations gives the open loop hydraulic fluid-actuator inertia mode as
\[
\begin{aligned}
& s^{2}+\frac{D_{E Q}}{I_{E Q}} s+\frac{2 B C_{A}^{2}}{V I_{E G}}=s^{2}+4.777 \times 10^{3} s+3.080 \times 10^{6}=(s+768.4)(s+4008.3) \\
& \text { CTOREINER } \\
& \text { LTR:A }
\end{aligned}
\]

FIVLTR: A

- indicating that this mode is overdanped. This appears reasonable due to the friction between the actuator vane and body, and between the shaft and 0-rings. The equivalent damping and inertia are \(D_{E Q}=4.012 \frac{\mathrm{in}-1 \mathrm{~b}}{\mathrm{rad} / \mathrm{sec}}{ }^{\text {and }} \mathrm{I}_{\mathrm{EQ}}=.00084 \mathrm{in}-1 \mathrm{~b}-\mathrm{sec}^{2}\).

The transfer function \(\theta_{A}(S) / Q(S)\) with the control surface inciluded (derived above) may be written in the form
\[
\frac{\theta_{A}}{Q}(s)=\frac{\frac{2 B C_{A}}{V I_{E Q}}\left(s^{2}+\frac{K_{s}}{I_{S}}\right)(57.3)}{s\left[\left(S^{2}+\frac{D_{E O}}{I_{E Q}} S+\frac{2 B C_{A}^{2}}{V I_{E Q}}+\frac{K_{S}}{I_{E Q}}\right)\left(s^{2}+\frac{K_{S}}{I_{S}}\right)-\frac{K_{S}^{2}}{I_{E Q} I_{S}}\right]} .
\]

The shaft spring rate was estimated at 368.9 in-1b/rad, considering both the actuator shaft and the alumimm tubing that the surface is mounted on. The hydraulic fluid-actuator inertia mode becomes
\[
\begin{aligned}
s^{2}+\frac{D_{E O}}{I_{E Q}} S+\frac{2 \beta C_{A}^{2}}{V I_{E Q}}+\frac{K_{S}}{I_{E Q}} & =s^{2}+4.777 \times 10^{3} S+3.080 \times 10^{6}+\frac{368.9 \mathrm{NN}-L B / R A C}{.00084 \mathrm{~N}-L B-S E C^{2}} \\
& =s^{2}+4.777 \times 10^{3} \mathrm{~S}+3.519 \times 10^{6} \\
& =(S+910.1)(\mathrm{S}+3866.6)
\end{aligned}
\]

The midspan trailing edge surface inertia was supplied by ITASA and is \(9.432 \times 10^{-4}\) \(1 n-1 b-\sec ^{2}\). The surface inertia-shaft mode is
\[
s^{2}+\frac{K_{s}}{I_{s}}=s^{2}+\frac{368.9 \mathrm{NN}-L B / R A D}{9.432 \times 10^{-4} \mathrm{IN}-L B-S E C^{2}}=s^{2}+3.911 \times 10^{5}
\]
\[
\begin{aligned}
& \text { The transfer function denominator then becomes } \\
& \begin{aligned}
& s\left[\left(s^{2}+4.777 \times 10^{3} s+3.519 \times 10^{6}\right)\left(s^{2}+3.911 \times 10^{5}\right)-\frac{(368.9)^{2}}{(.00084)(.0009432)}\right] \\
&=s\left(s^{4}+4777 s^{3}+3.910 \times 10^{6} s^{2}+1.868 \times 10^{9} s+1.204 \times 10^{12}\right) \\
&=s(s+859.3)(s+3870.8)(s+23.43 \pm j 601.2)
\end{aligned}
\end{aligned}
\]
and the mumerator is
\[
\begin{aligned}
\frac{2 B C_{A}}{V I_{E Q}}(57.3)\left\langle s^{2}+\frac{K_{5}}{I_{5}}\right) & =\frac{2\left(1.9 \times 10^{5} L B / 1 N^{2}\right)\left(.06151 N^{3}\right)(57.30 E G / R A D)}{\frac{1.111}{2} 1 N^{3}\left(000841 N-L B-S E C^{2}\right)}\left(5^{2}+3.911 \times 10^{5}\right) \\
& =2.870 \times 10^{9}\left(s^{2}+3.911 \times 10^{5}\right)
\end{aligned}
\]

FI:VLTR: A
\begin{tabular}{|c|l|l|}
\hline SOESNCF & NO. & D3-8884 \\
\hline SECT & PAGE & 67
\end{tabular}

The block diagram of the baseline system with the control surface included is shown in Figure 3.9, with the position feedback loop closed. Additional feedback compensation mast be determined to stabilize the system, and the analysis extended to the actuation systems as installed in the model. The compensation that stabilizes the baseline system should also stabilize the actual systems. The compensation will be incorporated into the breadboard system and performance verified through laboratory testing.

Several simplifying assumptions were made in the above derivation. The most significant is the assumption that the servovalve behavior can be described by a constant coefficient, linear ordinary differential equation. The change in flow gain due to load pressure has been neglected, but since this is reflected as a loss in loop gain, the mathematical model is conservative. The servovalve apparent undamped natural frequency and danping ratio were taken from a Moog brochure for the Series 30 servovalve. Combining the hydraulic fluid mass with the actuator vane mass into an equivalent inertia is not new (see Reference 4). The correctness of all assumptions will be determined through laboratory testing of the breadboard system, with the analytically identified compensation incorporated.
3.4 Remaining Work

Components have been selected for the electrohydraulic actuation systems, but work remains in integrating these components into stable systems meeting all the performance requirements. The primary item to be accomplished is the determination of feedback compensation (in addition to actuator shaft angular position feedback) required to stabilize the systems. A mathematical model of the baseline system has been developed to permit analytical determination of the required compensation. The compensation will be tested on the breadboard baseline system to verify the analysis results. The breadboard system will be modified to include the line length dictated by the wing geometry. When the systems have been proven through breadboard testing, they will be installed in the model and retested to verify performance.

Some effort must also be spent in perfecting the silicon photocell angular position sensor. The concept has been proven through laboratory testing, but the design for this particular application must be perfected to provide a reliable actuator shaft position feedback signal.

Provisions have already been made to install the midspan trailing edge surface actuator in the model, but nothing has been done to the model toward installing the leading edge surface actuator.

Nomenclature and Drawings
This section includes nomenclature and detail drawings of fabricated hardware required for the control surface actuation systems.

RIVLTR:

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{3.5 .1} & \multicolumn{2}{|l|}{Nomenclature} \\
\hline & Symbols used in the mathematical development in Sec & 3.2 are \\
\hline \multicolumn{3}{|l|}{listed below.} \\
\hline SMMBOL & DEFINITION & UNITS \\
\hline \(C_{A}\) & Actuator torque effectiveness coefficient \(\left(C_{A}=1 / 2\left(r_{D}^{2}-r_{S}^{2}\right) l\right)\) & in \({ }^{3}\) \\
\hline \(\mathrm{D}_{\mathrm{EQ}}\) & Equivalent viscous damping coefficient of actuator and hydraulic fluid & \[
\frac{\mathrm{in}-\mathrm{oz}}{\mathrm{rad} / \mathrm{sec}}
\] \\
\hline i & Servovalve coil current & 8 n 9 \\
\hline \(\mathrm{I}_{\mathrm{EQ}}\) & Equivalent rotary inertia of actuator vane and hydraulic fluia & in-1b-sec \({ }^{2}\) \\
\hline IS & Rotary inertia of control surface with respect to its hinge line & in-lb-sec \({ }^{2}\) \\
\hline \(\mathrm{K}_{\mathrm{F}}\) & Actuator shaft angular position feedback gain & volt/deg \\
\hline \(\mathrm{K}_{\mathrm{S}}\) & Torsional spring constant of actuator shaft and surface tubing & in-1b/rad \\
\hline \(\mathrm{K}_{\mathrm{V}}\) & No-load flow gain of servovalve & \[
\frac{\mathrm{in} 3 / \mathrm{sec}}{\operatorname{sen}}
\] \\
\hline \(\ell\) & Leneth of actuator vane ( \(=.50\) inch ) & inches \\
\hline P & Fydraulic fluid pressure & Ib/in \({ }^{2}\) \\
\hline Q & Hydraulic fluid flow rate from servovalve & \(\mathrm{in}^{3} / \mathrm{sec}\) \\
\hline \(r_{\text {D }}\) & Actuator vane radius, measured from shaft axis ( \(=.50\) inch \()\) & inches \\
\hline \(\mathbf{r}_{S}\) & Actuator shaft radius & inches \\
\hline S & Laplace transform operator & 1/sec \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Torque developed by actuator & in-1b \\
\hline V & Volume of hydraulic fiuid on one side of actuator vane (from servovalve to vane) & in3 \\
\hline 8 & Bulk modulus of hydraulic fluid (taken as \(1.9 \times 10^{5} \mathrm{lb} / \mathrm{in}^{2}\) for \(\mathrm{MII}-\mathrm{F}-5606\) fluid) & \(1 \mathrm{~b} / \mathrm{in}^{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|ll} 
CBETEANE & NO. & D3-8884 \\
\hline SECT & PAGE 69
\end{tabular}
\begin{tabular}{lll} 
SYMBOL & \multicolumn{1}{c}{ DEFINITION } & UNITS \\
\(\zeta_{\mathrm{V}}\) & Apparent damping ratio of open loop servovalve & - \\
\(\theta_{\mathrm{A}}\) & Actuator shaft angular displacement & radian \\
\(\theta_{\mathrm{S}}\) & Control surface angular displacement & radian \\
\(\omega_{\mathrm{n}_{\mathrm{V}}}\) & \begin{tabular}{l} 
Apparent undanped natural frequency of open loop \\
servovalve
\end{tabular} & \(\mathrm{rad} / \mathrm{sec}\)
\end{tabular}

\subsection*{3.5.2 Detail Drawings}

Copies of detailed drawings of the actuator (2 sheets) and servovalve port blocks, and layouts of the actuator installations in the model, are presented in this section.


NOTES
1. The two end caps are identical 2. SLOT MUST BE DRILLED FROM EACH PORT TO AREA OF ACTUATOR BODY BEHIND VANE IN MAYIMUM DISPLACEMENT POSITIONS
3. ACTUATOR BODY AND END GADS TO BE FABRICATED FROM 2024 ALUMINUM ALLOY 4. ACTUATOR WILL OPERATE AT 1000 PSI MAX PRESSURE, USING 1000 PSI MAX PRESSU
MIL-F- S6OS FLUID 5. MIL-F-S6OG FLNID



SCALE: \(2 / 1\)
* REFERENCE DIMENSION

PORT MANIFOLD 2024 ALUMINUM

\title{
ACTUATOR INSTALLATION \\ TRAILING EDGE S゙ったニこE
}




The synthesis of a ride control system for the NASA one-thirtieth scale B-52E aeroelastic model is described in this section. The final system produces more than 30 percent reduction in rms vertical acceleration (airplane response to random atmospheric turbulence) along the entire model fuselage, using forward body horizontal canards, inboard wing flaperons, and elevator control surfaces. This system will be mechanized on the model and demonstrated in the Langley transonic dynamic tunnel.

\subsection*{4.1 Introduction}

A three phase study to design a ride control system for the B-52 aeroelastic model was formulated in 1970 and reported in Boeing Document D3-8390-2 (Reference 5). This document is included as Section 3 of D3-8390-4 (Reference 2).

The objective of this study was to design and evaluate a ride control system (RCS) for the B-52 aeroelastic model with maximum performance for minimum model modifications. During Phase I, the ride improvement attainable using the existing elevator and aileron control surfaces was evaluated. These surfaces were capable of producing no more than a five percent reduction in rms vertical acceleration (A) at the pilot station (BS 172) for a random vertical gust disturbance. Performance attainable with canard and canard/elevator systems was investigated during Phase II. Satisfactory \(\bar{A}\) reduction was obtained at the pilot station, but mid and aft body reductions did not meet the design goal of thirty percent. A ride control system was designed and evaluated during Phase III using canard, flaperon, and elevator control surfaces. This system produces \(\bar{A}\) reductions in excess of thirty percent over the length of the model fuselage.

The remaining work includes using updated cable-mounted model equations of motion for evaluating the system performance, refining the system design and for generating system responses for correlation with wind tunnel data.

\subsection*{4.2 Design of Ride Control System}

The objective of this study was to analytically demonstrate feasibility of improving passenger/pilot ride using active controls. The control surfaces, and surface locations, considered in the study are shown in Figure 4.1. The system design goal was to obtain a minimum of 30 percent reduction in fuselage rms vertical accelerations in a random atmospheric turbulence enviroment.

The design study was conducted using model equations of motion that did not include the cable mount effects on the model dynamic behavior. All data shown in the following pages is model scale, but wing and body station designations are airplane scale. The mathematical model included the first 14 symmetric degrees-of-freedom for wind tunnel test condition 1 (Reference 6). The model equations included lift growth effects and the Von Karman gust spectrum. The characteristic gust length used in Phase I and II was 16.67 feet and 83.3 feet (equivalent to 500 feet and 2500 feet in airplane scale) was used in Phase III. Phase III was believed to be more representative of actual flight conditions. Actuator dynamics

PIVLTR:


in Phase I and II were represented by a first order lag, while Phase III included the actual second order actuator dynamic behavior.

The RMS-PSD analyses conducted in this study included the full 0-40 cps frequency range of the model equations. All percentage reductions in vertical acceleration presented in this section are based on the full frequency range.
4.2.1 Phase I - Existing Control Surfaces

The B-52 aeroelastic model was originally constructed with elevator and aileron control surface actuation systems. The objective of this phase was to determine the ride improvement attainable with these control surfaces.

Figure 4.2 shows the effects of elevator and aileron \(r\) ide control systems on rms vertical acceleration along the model fuselage. Corresponding results tabulated as percent change in rms vertical acceleration are given in Table I. The results show that the elevator can significantly reduce mid and aft body vertical accelerations, but the ailerons are considerably less effective. The two systems were synthesized independently to produce the maximum vertical acceleration reductions attainable with the elevator and ailerons. Block diagrams of the elevator and aileron ride control systems are shown in Figures 4.3 and 4.4. Results with both loops closed simultaneously show that the elevator system alone is better. Since the aileron system alone was not effective in reducing fuselage vertical acceleration, no atterpt was made to refine the aileron system with the elevator loop closed.

TABLE I
EFFECTS OF ELEVATOR AND AILERON RIDE CONTROL SYSTEMS ON RMS VERTICAL ACCELERATION
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Body \\
Station
\end{tabular}} & \begin{tabular}{c} 
Percent Change in RMS Vertical Acceleration \\
RCS
\end{tabular} & \begin{tabular}{c} 
Aileron \\
RCS
\end{tabular} & \begin{tabular}{c} 
Elev. \& Aileron \\
RCS
\end{tabular} \\
\hline 172 & -4.4 & +3.3 & -1.0 \\
860 & -16.7 & -1.7 & -11.4 \\
1655 & -20.7 & -9.3 & -20.2 \\
\hline
\end{tabular}

Figures 4.5 through 4.16 show PSD and RMS data which support the results given in Figure 4.2 and Table I. Some of the accumulative RMS plots are not complete out to 40 cps , but under each plot a final RMS value (corresponding to 40 cps ) is printed. The units for the PSD and RMS axes respectively are ( \(\left.g^{\prime} \mathrm{s} / \mathrm{ft} / \mathrm{sec}\right)^{2} / \mathrm{rad}\) and \(\mathrm{g}^{\prime} \mathrm{s} / \mathrm{ft} / \mathrm{sec}\). These plots are all with respect to a \(1 \mathrm{ft} / \mathrm{sec}\) RMS vertical gust on the model. Due to velocity scaling, a \(1 \mathrm{ft} / \mathrm{sec}\) gust has the

FI VI TR:


\footnotetext{
E-3033 R \(\boldsymbol{f}\)
}


EFFECTS OF EILEVATOR AND AILERON RCS
ON RMS VERIICAL ACCELERATION

FIGURE 4.2
\begin{tabular}{l|l|} 
POOETNE & NO. \(33-8884\) \\
\hline SECT & PAGE 80
\end{tabular}


ELEVATOR RIDE CONTROL SYSTEM BLOCK DTAGRAM
FIGURE 4.3


AIIERON RTDT CONIROL SYSTEM BLOCK DIAGRMM
FTGURE 4.4


BS 172 VERTICAL GUST RESPONSE SYSTEM OFF

FIGURE 4.5


BS 172 VERTICAJ, GUST RESPONSE
GYSTHEM ON
FIGURE 4.6



BS 172 VERTICAL GUST RESPONSE ATIERON SYSTEM ON

FIGURE 4.7


BS 172 VERTICAL GUST RESPONSE
ELEVATOR AND AILERON SYSTEM


BS 860 VERTICAL GUST RESPONSE SYSTEM OFF

FIGURE 4.9


BS 860 VERTICAL GUST RESPONSE
ELEVATOR SYSTEM ON


BS 860 VERTICAL GUST RESPONSE AILERON SYSTEM ON

FIGURE 4.11



BS 1655 VERTICAL GUST RESPONSE SYSTEM OFF

FIGURE 4.13



BS 1655 VERTICAL GUST RESPONSE AILERON SYSTEM ON

FIGURE 4.15

same effect on the model as a \(5.48 \mathrm{ft} / \mathrm{sec}\) gust has on the full scale airplane. Equivalent airplane values can be obtained by dividing the model RMS values by 5.48. Ride performance was evaluated at three stations along the fuselage: BS 172 (pilot's station), BS 860 (approximate cg ), and BS 1655 (aft fuselage).

The PSD's in Figures 4.5 through 4.8 show that the model gust response at BS 172 has contributions from rigid body motions and several structural modes and that neither the elevator nor the aileron ride control system changes the response significantly.

Figures 4.9 through 4.16 show that the model gust response at BS 860 and BS 1655 are similar in that they both indicate predominant rigid body and first structural mode contributions. The elevator ride control system is effective in reducing rigid body response but neither the elevator nor the aileron effectively couples with the first structural mode.

Pitch rate feedback from BS 860 is used in the elevator ride control system as depicted in Figure 4.3. Its effect on model dynamics may be observed in the root locus of Figure 4.2la. Primary coupling is with the short period mode. Figures 4.17 and 4.18 indicate model elevator displacement and rate in a gust environment. Equivalent airplane surface activity may be obtained by dividing displacement by 5.48 and rate by \((5.48)^{2}\).

The aileron ride control system shown in Figure 4.4 uses acceleration feedback from the wing (WBL 487.5 which is near the aileron). Root loci for this system used alone and in support of the elevator system are shown in Figures 4.21 b and 4.21c. Aileron surface activity is shown in Figures 4.19 and 4.20.

The 12th structural mode showed no coupling with the systems and was omitted from the root loci in Figure 4.21.

The systems presented have at least 6 db gain margins and 60 degrees phase margins.
4.2.2 Phase II - Canard Surfaces

Phase I results indicated that a control surface on the forward body would be necessary to improve ride at the pilot station. For preliminary analysis purposes, a point force (P.F.) representation of canards at BS 172 was added to the equations of motion. The canard coefficients were obtained by transposing the BS 172 Z-modal coefficient row.

Phase II included evaluation of a canard ride control system and a canard/elevator system. Effects of these ride control systems on RMS vertical acceleration are given in Table II.


ELEVATOR DISPLACEMENT/VERTICAL GUST
FIGURE 4.17


ELEVATOR RATE/VERTICAL GUST
FIGURE 4.18

*


AIIERON DISPLACEMENT/VERTICAL GUST



EFFECTS OF CANARD AND ELEVATOR RIDE CONTROL SYSTYEMS ON RMS VERTICAL ACCELERRATION
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Body Station} & \multicolumn{2}{|l|}{Percent Change in RMS Vertical Acceleration} \\
\hline & \[
\begin{gathered}
\text { Canard (P.F.) } \\
\text { RCS }
\end{gathered}
\] & Canard (P.F.) and Elevator \\
\hline 172 & -37.9 & -35.0 \\
\hline 860 & -10.2 & -23.7 \\
\hline 1655 & + 1.5 & -12.2 \\
\hline
\end{tabular}
\(\ddot{z}\) at BS 172 was sensed and fed back to the canard through the feedback transfer function
\[
\frac{-.0001 S}{(.006375+1)(.025+1)^{2}}
\]

The elevator system was the same as presented in Section 2.1 for Phase I.
Figures 4.22 through 4.27 show the PSD and RMS data from which Table II was derived. The canard system provides adequate vertical acceleration reduction at the pilot station and some reduction at the mid body station. Comparing Figures 4.14 and 4.27 , it is evident that the canard excited the aft body ist structural mode and the 10 cps mode. With both the canard and elevator loops closed, the reduction at the mid and aft body is lower than the reduction obtained with the elevator system only. The canard system was designed independent of the elevator to produce the maximum vertical acceleration reduction possible with the forward body canards.

Figure 4.28a presents a root locus of the canard system and Figure 4.28 b shows the effect of the elevator system on the closed loop canard system. The canard system is a wide bandpass system that causes large movements of the higher frequency structural mode poles.

None of the systems presented thus far significantly inproved the lst mode response at the mid and aft body stations nor indicated adequate potential for reducing vertical accelerations by 30 percent over the length of the fuselape.

FI VLTR:
\begin{tabular}{|l|l|l}
\hline ERERNE & NO. \(\quad\) D3-8884 \\
\hline SECT & PAGE 92
\end{tabular}


BS 172 VERTICAL GUST RESPONSE
CANARD SYSTEM ON
FIGURE 4.22



BS 860 VERTICAL GUST RESPONSE CANARD SYSTIEM ON

FIGURE 4.24


FINAL RMS \(=9.74099 E-02\)

BS 860 VERTICAL GUST RESPONSE
CANARD AND ELEVATOR SYSTEM
ON
FIGURE 4.25


BS 1655 VERTICAL GUST RESPONSE CANARD SYSTEM ON

FIGURE 4.26


BS 1655 VERTICAL GUST RESPONSE CANARD AND ELEVATOR SYSTEM ON FIGURE 4.27


The results of Phases I and II indicated that a three surface control system would be required to achieve the design goal of 30 percent vertioal aeceleration reduction over the length of the model fuselage. Table III presents the percent reduction obtained with a canard-flaperon-elevator aystem.

\section*{TABLE III}

EFFECTS OF CANARD-FLAPERON-ELEVATOR RIDE CONTROL SYSTEM ON RMS VERTICAL ACCELERATION
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Body \\
Station
\end{tabular} & \begin{tabular}{c} 
Percent Change in RMS \\
Vertical Acceleration
\end{tabular} \\
\hline 172 & -36.4 \\
\hline 510 & -35.6 \\
\hline 860 & -39.2 \\
\hline 1237 & -32.7 \\
\hline 1655 & -31.0 \\
\hline
\end{tabular}

These reductions were computed using the Von Karman gust spectrum with a characteristic length of \(2500 / 30=83.3 \mathrm{ft}\). The mumerical values as a function of body station are shown in Figure 4.29. Figures 4.30 and 4.34 present the RMS-PSD data supporting Table III.

Figure 4.30 indicates that the short period mode has been effectively suppressed at the pilot station, the lst structural mode shows an insignificant increase and the 2nd through 10th structural modes have been suppressed.

Aft from the pilot station, the basic airplane short period and lst structural mode response increase monotonically and the higher frequency structural mode responses become nearly insignificant by comparison. Using the elevator and flap system, the short period and list mode can be controlled. The increased response shown by Figures 4.31 through 4.34 in the frequency range of 4 to 12 cps results from the flap and canard systems.

For Phase III, the mathematical representation of the canard was updated to include canard aerodynamics. Aerodynamic flaperon representation was also used. Second order actuator dynamics based on control surface moments of inertia were used as shown in Figure 4.35. A significant difference between this system and the previous systems is that the elevator is driven with \(\ddot{z}\) sensed at the aft body station which permits significant reduction of the lst structural mode response.

FIVLTR:
\begin{tabular}{|l|l|l}
\hline SOCEINE & NO. & D3-8884 \\
\hline SECT & PAGE 97
\end{tabular}


EFFECTS OF CANARD-FTAPERON-ELEVATOR RCS ON RMS VERTICAL ACCEETHRATION

FIGURE 4.29
\begin{tabular}{|l|l||l|l|l|l|}
\hline CALC & W/ \(\omega\) & & REVISED & DATE & \\
\hline CHECK & & & & \\
\hline APPD & & & & \\
\hline APPD & & & & \\
\hline REV LTR: & & & & \\
\hline
\end{tabular}


BS 172 VERTICAL GUST RESPONSE
FIGURE 4.30


BS 510 VERTICAL GUST RESPONSE


BS 860 VERTICAL GUST RESPONSE
FIGURE 4.32



b) Canard-Flaperon-Elevator System On

BS 1237 VERTICAL GUST RESPONSE


b) Canard-Flaperon-Elevator System on

BS 1655 VERTICAL GUST RESPONSE
FIGURE 4.34
\begin{tabular}{l|l|l|}
\hline GTROEINE & NO. \({ }^{\text {D3-8884 }}\) \\
\hline SECT & PAGE 103
\end{tabular}


CANARD-FLAPERON-ELEVATOR RCS BLOCK DTAGRAM

Washout filters were included in each of the feedback systems to provide satisfactory handling qualities. Normal acceleration and pitch rate due to step elevator comands are presented in Figures 4.36 and 4.37 for the model with and without the suppression system. With the suppression system operating, the model response is slightly degraded but still considered acceptable.

The root locus of Figure 4.38 indicates the reason for the response degradation. The notch filter pole associated with the elevator loop moves closer to the origin than the short period mode, and thus becomes the dominant system root. The filter was introduced to provide lag at the short period frequency and lead at the lst structural mode frequency ( - and +15 degrees respectively). Both the elevator and the flap loops are rolled of \(f\) at relatively low frequencies. The canard loop, however, has a wide bandpass to make possible the vertical acceleration reduction for modes 2 through 10 shown in Figure 4.30. ndditional compensation was introduced into the canard loop to provide the required gain margin of 6 db . The movement of the canard actuator root sets the upper limit for the canard loop gain. Nominal gains are those shown on the block diagram of Figure 4.35.

RMS control surface displacement and rate requirements per \(\mathrm{ft} / \mathrm{sec}\) gust are presented in Table IV. Equivalent airplane scale values can be obtained by dividing RMS displacement by the velocity scale factor, and RMS rate by the velocity and frequency scale factors. For example, in airplane scale, the canard rate would be \(\frac{161.8}{(5.48)(5.48)}=5.39 \frac{\mathrm{deg} / \mathrm{sec}}{\mathrm{ft} / \mathrm{sec}}\)

TABIE IV
RMS CONIROL SURFACE REQUIREMENTS
\begin{tabular}{|l|c|c|}
\hline Surface & \begin{tabular}{c} 
Displacement \\
\(\frac{\text { deg }}{\mathrm{ft}^{\prime} / \mathrm{sec}}\)
\end{tabular} & \begin{tabular}{c} 
Rate \\
\(\frac{\text { deg } / \mathrm{sec}}{\mathrm{ft} / \mathrm{sec}}\)
\end{tabular} \\
\hline Canard & 3.77 & 161.8 \\
Flaperon & 2.16 & 28.2 \\
Elevator & 0.34 & 9.16 \\
\hline
\end{tabular}

Figures 4.39 through 4.41 present the RMS-PSD plots from which Table IV was derived. Figures 4.42 through 4.47 present Bode magnitude plots of the control surface displacements and rates for \(1 \mathrm{ft} / \mathrm{sec}\) simusoidal vertical gusts.

For reference, the RMS values corresponding to Figures 4.30 through 4.34 are tabulated as a function of frequency in Tables V. and VI. All percentage reductions quoted in this report have been based on the frequency range 0 to 40 cps.

a) System Off

b) Canard-Flaperon-Elevator System On NORMAL ACCELERATION/1 DEGREE STEP ELEVATOR

FIGURE 4.36

a) System Off

b) Canard-Flaperon-Elevator System On

PITCH RATE/1 DEGREE STEP ELEVATOR
FIGURE 4.37


\section*{.}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{.} \\
\hline &  \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Mores} \\
\hline \(\times\) & Oprat coop polet \\
\hline -4 & - Momimal GAM \\
\hline \[
9.0
\] & MOMANAL SASN \\
\hline e- & REMOMAMAL GANA \\
\hline
\end{tabular}


CANARD EXCITATION/VERTICAL GUST
FIGURE 4.39

NO. D3-8884
SECT


FLAPERON EXCITATION/VERTICAL GUST


ELEVATOR EXCITATION/VERTICAL GUST
FIGURE 4.41


FIGURE 4.42



FLAPERON DISPLACEMENT/VERTICAL GUST FREQUENCY RESPONSE



ELEVATOR DISPLACEMENT/VERTICAL GUST FREQUENCY RESPONSE


TABI有 \(V\)
CUMULATIVE RMS VERTICAL GUST RESPONSE - SAS OFF



Figure 4.48 shows the effect of reducing all feedback gains to . 7 of the values given on the block diagram (Figure 4.35). Note that the slope of the curve for the aft body is considerably less than for the other two locations. It is estimated that operating at .7 of the normalized gains would reduce canard and flap displacement requirements by 22 percent and elevator displacements by 27 percent. Decreasing the gains to .7 increases the response of the short period and list structural mode as shown in Figure 4.49. At the same time, high frequency structural mode responses are increased on the forward body and decreased on the aft body. The dotted curve shows the effect of increasing the normalized elevator gain to 1. with the canard and flaperon gains remaining at .7. A sumary of the percent RMS reductions associated with these gain variations is presented in Table VII.

TABLE VII
EFFECTS OF RCS FFEDBACK GAINS ON RMS VERTICAL ACCELERATION
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{} & \multicolumn{3}{|c|}{\begin{tabular}{c} 
Percent Change in RMS Vertical Acceleration \\
NORMALIEED FEFDBACK GAINS*
\end{tabular}} \\
\cline { 2 - 4 } \begin{tabular}{c} 
Body \\
Station
\end{tabular} & \(\mathrm{K}_{\mathrm{C}}=1\). & \(\mathrm{K}_{\mathrm{C}}=.7\) & \(\mathrm{~K}_{\mathrm{C}}=.7\) \\
\hline & \(\mathrm{~K}_{\mathrm{F}}=1\). & \(\mathrm{K}_{\mathrm{F}}=.7\) & \(\mathrm{~K}_{\mathrm{F}}=.7\) \\
\hline 172 & \(\mathrm{~K}_{\mathrm{E}}=1\). & \(\mathrm{K}_{\mathrm{E}}=.7\) & \(\mathrm{~K}_{\mathrm{E}}=1\). \\
\hline 860 & -36.4 & -29.5 & -28.8 \\
\hline 1655 & -39.2 & -32.3 & -33.8 \\
\hline
\end{tabular}

\subsection*{4.3 Remaining Work}

A ride control system has been synthesized to produce at least 30 percent reduction in vertical acceleration along the entire fuselage. This system was designed using model equations of motion that did not include the cable mount effects. The cable-mounted model equations of motion will be updated to account for the change in cable attach point, and will then be used to evaluate and refine the RCS before the wind tunnel tests.

A procedure must be established to bring the RCS on line on the model in the tunnel. Through analyses, the order of closing the RCS feedback loops and gain changes as necessary will be determined to ensure stability of the model during start up of the wind tunnel. Responses will be generated for comparison with model responses to monitor the model behavior during the test runs.

The wind tunnel tests will be accomplished with the sinusoidal gust vanes as the model disturbance. Theoretical frequency responses will be generated for direct correlation with the wind tunnel results.
\begin{tabular}{|l|ll} 
PCOEENNE & NO. \(\quad\) D3-8884 \\
\hline SECT & PAGE 120
\end{tabular}


EFFECT OF RCS FEEDBACK GAINS ON RMS VERTICAL ACCELERATION REDUC'PION

FIGURE 4.48
\begin{tabular}{|l|l|l||l|l|l|l|}
\hline CALC & WI \(\omega\) & & REVISED & DATE & \\
\hline CHECK & & & & \\
\hline APPD & & & & & \\
\hline APPD & & & & & \\
\hline
\end{tabular}
REV LTR:

1. Boeing Document D3-8390-1, "Analysis and Mechanization of NASALangley Flutter SAS Concepts," 21 September 1970.
2. Boeing Document D3-8390-4, "Analysis of Aeroelastic Model Stability Augmentation Systems - Final Report," 4 March 1971.
3. "Electrohydraulic Servomechanisms," Allen C. Morse, McGrawHill Book Company, 1963.
4. "Computing the Effects of Fluid Mass on Frequency Response," W. E. Schiesser, Control Engineering Magazine, February 1966.
5. Boeing Document D3-8390-2, "Design and Mechanization of Ride Control System for B-52 Aeroelastic Model - Work Statement."
6. Boeing Document D3-7348, "Wind Tunnel Measurement of B-52 Dynamic Response with a Stability Augmentation Flight Control System - Program Plan," 2 February 1967.```

