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CHAPTER I

THE BEGINNING

1. I1 Techniques of System Control

The underlying notion of modern control system theory is the

acceptable control of a process that has the inherent capability of

being influenced. The process is mathematically described in a way

so as to potentially define its behavior completely for any choice

of control stimulus; the collection of all variables for defining

the process behavior is called the state. The primary objective of

control system theory is to define the evolution of a control stimulus

in order to cause the evolution of the process state to behave in a

desired manner.

In some cases, the control may not be dependent upon the system

state. However, for most instances the control does depend upon the

system state and consequently at least some of the variables in the

state evolution must be measured in order to construct the evolution

of the control: such a situation is called feedback control.

For a significant percentage of applications, it is either

impossible or undesirable - perhaps from a cost standpoint - to measure

all the state variables called for in the control law. In this instance,

the choice is either to alter the criteria defining the acceptability

of the state behavior so as to eliminate the necessity of measuring

the unavailable state variables, or to find a simple way to make the

1
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unavailable measurements that are needed. Moreover, with the presently

known criteria of system control, the conditions for which the desired

behavior of the system state can be made to depend only upon available

measurements are not always clearly understood.

1.2 Purpose of Work Herein Reported

This dissertation adopts the second choice noted above, namely

the simple generation of state from the available measurement , for

use in systems for which the criteria defining the acceptable state

behavior mandates a control that is dependent upon unavailable measure-

ment. (It is assumed that the system structure allows such a generation

of state.)

To be sure, this approach has been actively investigated pre-

viously [1]-[4] for systems in which the parameters are known. This

dissertation proposes4an adaptive means for determining the state

of a linear time-invariant differential system having unknown parameters

by using only available measurements. This procedure is called an

adaptive observer.

The adaptive observer not only generates the state of a linear

time-invariant dynamical system having unknown parameters but also

simultaneously identifies all or some - dependent upon the observer

structure - of the system parameters.

The adaptive observer possesses some noise suppression qualities,

dependent upon a free choice of observer eigenvalues. In the absence

of noise the adaptive algorithm employed is guaranteed to converge to the

proper values regardless of the magnitude of parameter ignorance

or of the magnitude of the adaptive gain constants selected, and

requires no derivatives of output or of other measurements



3

for implementation. There is inherent freedom in adjusting the

adaptive rate of convergence. Some restriction, however, is placed

upon the system input to insure parameter identification.

The adaptive observer appears in either a full-order version

(that is, of same dynamic order as the system being observed, discount-

ing the adaptive algorithm) for single-output systems or a reduced order

observer for multiple output systems. The full-order adaptive observer

completely identifies the system parameters and generates as well the

entire state of the single-output system. The reduced-order observer

generates the remainder of system state information needed to completely

construct, along with the output information, the state of the system,

and partially identifies the parameters of the system.

1.3 Organization of the Dissertation

The major contribution of this dissertation appears in Chapters

IV and VI. Chapter IV has appeared substantially in [71] and Chapter

VI in [72]. In these two chapters, the single-input single-output

adaptive observer and the reduced adaptive observer is developed.

Chapter V surveys the investigations into the adaptive observer by

other authors undertaken subsequent to the initial report by this

author of the material in Chapter IV. Chapter II examines the basic

ideas for the non-adaptive (Luenberger) observer for linear time-

invariant dynamical systems with known parameters, and in doing so

lays a foundation for the construction of Chapters IV and VI. Chapter

III is a survey of the Lyapunov synthesis technique. Lyapunov synthesis

is employed in the adaptive algorithm for the adaptive observer. This

survey has appeared as [69] and contains 40 references. Chapter VII

outlines a considerable amount of work left for future research.



CHAPTER II

THE NON-ADAPTIVE OBSERVER

2. 1 The Worth of The Observer

Unlike the Kalman filter [ 1], the Luenberger observer [2,3,4] for

generating the state of a system using input and output measurements

is theoretically postulated in a noise-free environment. The worth

of the observer, however, rests ultimately upon the likelihood that

noise is inherent in the available measurements.

To understand the motivation for the observer, consider the three

following means of generating the state of the system.

x 0 1 0 x, 0

x2  0 0 1 x2 + 0 r

x3 c -b a xd

(11.1)

y = [1 0 0] x = xl

when given the input r, the output y, the structure of the system

matrix, input matrix, and output matrix, and the values of the

parameters in each of these matrices. Although these three methods

are discussed here with respect to (II.1) for illustration, the comments

apply to a general linear system.

One possibility is to determine x2 and x3 by differentiators,

illustrated in Figure 2.1(a). This method simply recognizes that
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Generation of State by Differentiation
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x2 =

x3 = x2  
= y

from (II.1). Thus one may ascertain x2 by differentiating y

and x3 by differentiating y twice. In the absence of measurement

noise introduced at any point within or without the system, and by

assuming the availability of a perfect differentiation algorithm,

this differentiation technique is successful. However, in the

presence of broad band or high-frequency noise (even assuming the

feasibility of a perfect differentiator), the magnitude Bode-plot

characteristic of a differentiator prohibits a meaningful result to

emerge. Since noise within a system, or in the differentiation

itself, is very common, the differentiation technique has little

value.

The parallel-model scheme, illustrated in Figure 2.1(b), is

based upon the certain knowledge of the system parameters and

structure. A model is constructed identical to the system, but so as

to allow access to the model state (unlike the corresponding system,

in which only the output is accessible). The system state is identical

to the model state when both the system and the model are in a noise-

less environment, when the same input is applied to each, and when

the initial conditions are the same in each. The initial condition

requirement may be waived if the system is stable, since then the

effect of the initial condition eventually vanishes.

The state of the model is therefore used in place of the system state

to implement a control law. This arrangement is an open loop process in
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x y
x = Ax + Br C

System

z Estimate
z Az + Br of x

Figure 2.1 (b)

Generation of State By Parallel-Model Scheme
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that the output of the system is not connected to the input.

The lack of feedback in the system control law does not allow the

decreased sensitivity to disturbances - occurring at the system input,

within the system, or in the output measurements - that is a beneficial

property of feedback control. Rather, noise originating within the

system or (if possible) within the model seriously affects the behavior

of the system, especially since the system may well receive disturbances

unequal to that received by the model. Consequently, while the parallel-

model scheme is more valid than the differentiation scheme, it has limited

usefulness in a noisy environment.

The third scheme is the model-following scheme of Figure 2.1.c).

The observer is characterized by this scheme.

When the model estimate of the system state is used to control the

system, the result is feedback control. Moreover, it will be later seen

that the model-following scheme allows an inherent capability of noise

suppression not present in the other two schemes, an additional advantage.

From the preceeding it may be readily perceived that, although

the observer is postulated theoretically to be implemented in a distur-

bance-free environment, its worth rests in the inherent ability of the

observer both to be less sensitive to the origination of measurement

noise and to possess the capability to suppress the adverse effects of

noise.

However, the observer is not necessarily optimal with regard to

noise suppression as is the Kalman filter. Consequently, the usefulness

of the observer is mainly limited to those cases for which the signal-



y + z State
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Figure 2.1 (c)

Generation of State By Model Following Process
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to-noise ratio is high enough so that it is not considered worthwhile

to implement the optimal Kalman filter. Since the various forms of

the observer allow considerable reduction in complexity, when compared

with the Kalman filter, the use of the observer rather than the Kalman

filter, when noise considerations allow, presents an attractive alter-

native.

2.2 The Full-Order Observer

The basic notion of the model-following scheme illustrated in

Figure 2.1(c) is that the model, which is fed by the output of the system

whose state is to be observed, tends to track a linear transformation

of the system state if the model is stable. It is this basic tendency

which allowed Luenberger [21 to formulate the particular dynamics of

the model so that it eventually perfectly tracks a transformation of

the system state. When the model is designed so, it is called an

observer.

The full-order observer is of the same dynamic order as that of

the system. The Luenberger observer [2,3,4],which is discussed in

this section, is defined for a linear time-invariant differential

system in the absence of a disturbance vector. This system may be

described by the equations

k = Ax + Br
(1.2)

y = Cx

in which x E n is the system state, r e m is the system command input

vector, y CE F is the system output, and A, B, and C are appropriately-

dimensioned matrices which are known and constant with time. It is

assumed that the pair (C,A) is completely observable. Moreover, it is



assumed without restriction that C is of rank p.

The observer is hypothesized as

z = Fz + Gy + Dr (II.3)

for which z E S n is the estimate of the system state x. By constructing

the observer (11.3) so that the observer state z is available for

measurement and by defining F, G, and D so that z - x, then the state

of the system x can be determined by measuring z rather than x. This

is accomplished, it is noted, by utilizing only the available system

measurements y and r in the observer (11.3).

Rather than make z - x as just described, the system (11.2) can

first be transformed by the non-singular square matrix T by defining

x = T x; then (11.2) becomes

x = T ATx + T Br (11.4)

y = CTx

-l
Now the observer may be built so that z - x or that z - T x.*

Consequently a transformation of the state of the system (11.2) may

be observed. This additional freedom possibly allows greater flexibility

in actually constructing the observer.

An error vector ee n may be defined as

-l
e = z - x = z - T x (11.5)

in which e is a comparison between the observer state and the system

-l
state. The desired condition that z - x or, equivalently, z + T x is

the same as requiring e - 0.

To find conditions on G, F, and D in (II.3) so that e - 0, a

differential equation in the dependent variable e is derived and

conditions are imposed so that the equilibrium e = 0 is asymptotically

* This unusual notation is employed in anticipation oF later chaptCrs.
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stable.

Differentiating (11.5) gives

=-x

= Fz + Gy + Dr - T-ATx - T-Br

which may be rewritten as

e = Fe + (F-T- 1 AT + GCT)x + (D - T-B)r (11.6)

In (11.6), suppose that F is an asymptotically stable matrix

[5]; then e is bounded whenever the inputs (F - T-1AT + GCT)x and

(D - T-B)r are bounded. To make e + 0 it is sufficient to make

F - T-1AT + GCT = D - TB = 0. Doing this, F, G, and D are defined

so that

FT- 1 = T-IA - GC (1I.7)

D = T-lB

Then (11.6) becomes

*-1
= (T AT - GCT)e (II.8)

and the equilibrium of e is asymptotically stable if the eigenvalues

-l
of T -AT - GCT all have negative real parts. This implies that the

initial condition of e vanishes at a rate dependent upon the values

-l
of the eigenvalues of T -AT - GCT. Thus e - 0 asymptotically.

The question remains, is it possible to make F = T-1AT-GCT have

eigenvalues all with negative real parts for any matrices A and C?

Luenberger showed [2] for a single-output system, and Wonham

showed [6] for a multi-output system, that the answer is affirmative

whenever the pair (C,A) is completely observable.

In addition, Luenberger showed that if the eigenvalues of F and

A are not identical, then the non-singular matrix T exists satisfying
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(11.7). This result is somewhat intuitive, since G = 0 in (11.7) is

equivalent to saying that F and A have the same eigenvalues, and implies

that the output information is omitted from the observer (11.3).

Thus with F = T-1AT - GCT, the solution to (11.8) is

e(t) = exp[F(t-t 0 )]e(t 0 ) (11.9)

in which the behavior of e is explicitly obtained. The more negative

the real parts of the eigenvalues of F are, the more rapidly the error

between the system state and the observer estimate of that state

vanishes.

However, eigenvalues of F with highly negative real parts

tend to make the observer behave like a set of differentiators. For

effective noise suppression F should be chosen with time constants

roughly equal to the time constants of the system (11.2) [4]. It is

seen that a tradeoff exists between rapid estimation of system state and

effective noise suppression in the estimate.

At present, criteria for the optimal location for placing the

eigenvalues of F for the various kinds of Luenberger observers has

not been reported ,although the Valman filter does so ror the full order
ol server.

If the transformation matrix T is chosen as the identity matrix,

then the resulting observer configuration is known as the identity

observer. For T = I, the equations (11.7) are

F = A - GC
(II.10)

D = B.

Then the observer estimate z approaches x.
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2.3 The Reduced-Order Observer

In (11.2) it is seen that the output y represents information

about the state x directly without necessity of generating that

information. This can be illustrated explicitly by introducing the

transformation.

C
x = [''x (II.11)

M

in which M is any matrix selected so that the transformation is non-

singular. Then in the transformed system, analogous to (II.4), the

output equation is

y : [Ip " O (11.12)

where I is an identity matrix of rank p.

Using the transformation (II.11) it is seen that there is no

necessity of generating the first p state variables of x by an observer

since they are directly measurable in the output y according to (11.12).

The question naturally arises, is there an observer structure which

generates only the lower n-p state variables of the state x, and if

so, is there an advantage in employing it rather than the full order

observer?

The answer to both questions is affirmative. The advantage of

the observer structure which generates only the missing state variables

in (11.12) is that its dynamic order is n-p rather than the full-order

n dimension.

The reduced-order observer is due to Luenberger [3], but the

development given below follows Gopinath [7].

It is assumed that transformation (II.11) has been made (if

necessary) of system (11.2) so that the output equation is as (11.12).
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Then (11.2) is written as

S= Ax + Br

(11.13)

y = [I O]x
p .

in which it is understood that A and B have been transformed by (II.11)

and the notation x has been dropped in favor of x for simplicity.

Now (11.13) is partitioned. The first p state variables of x

equals y, and the remainingare denoted as w so that

x = [Y]

Then accordingly (II.13) is written as

S = Ally+ A12w + Br (II.14)

= A2 1 y + A22w + B2r

for which y is measurable and w e & n-p is not.

The reduced observer is hypothesized as

z = Fz + Ly + Dr (II.15)

in which z E -p is an estimate of a function of w as illustrated

in Figure 2.2.

An error vector is defined as

e = + Gy - w

The object is to make e - 0; then z + Gy = w. To insure e - 0, the

matrices L, F and D are to be chosen so that the error equation is

asymptotically stable about its equilibrium e = 0. The underlying

motivation in accomplishing this is to construct an identity observer

for the second equation in (11.14) using y and r as multiple inputs.

From above,
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Reduced-Order Observer
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= [Fz + Ly + Dr] + G - [A21 + A22w + B2r]

= Fe + (F - A22)w + (L - FG- A21)Y + Of +(D-B2)r

Suppose that L = FG + A21 - GAll. The above becomes

4 = Fe + (F-A22)w + G AllY) +(D - B2)r

Since, from (II.14),

- AllY = Al2W + Bl r

the error equation is equivalent to-

= Fe + (F - A22 + GA12)w + (D + GB1 - B2)r (IV.16)

Equation (11.16) is analogous to (II.6), which is the full-order error

equation. As in the full-order equation, if F and D are defined as

F = A22 - GA12
(11.17)

D = B2 - GB1

then (II.16) becomes

4 = Fe (11.18)

for which the discussion following (II.8) applies here.

The n-p eigenvalues of F may be arbitrarily chosen if and only if

the pair (A2 2 , A1 2 ) is completely observable [6]. It has been shown

[7] that if (C,A) is completely observable, then so is (A2 2 , A12).

(The simple proof is omitted here.) Consequently the eigenvalues of

F may be arbitrarily chosen when observing the state of system (II.2).

The observer for the system is therefore

S= (A22 - GA1 2 )Z + (A2 2 - GA1 2 )Gy + (A2 1 - GA11)Y

+ (B2 - )r (II.19)

and the estimate of x is
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z+Gy

for the state x E n Of system (11.13).

One important point regarding this reduced-order observer will

be made here. The particular form (11.19) of the reduced observer

derived here is but one of many possible. That is to say, the system

(11.13) may be transformed by a non-singular matrix T, analogous to

(II.4), to allow many different forms of the observer equation (11.15).

2. 4 Closed-Loop Properties of the Observer

An important feature of the observer is the ability to not adversely

affect the stability of a closed-loop system employing the observer

within the loop. An example of this application, illustrated in

Figure 2.3, is the pole placement problem. The state estimate generated

by the observer is used in a linear time-invariant feedback to adjust

the system poles. Since the observer estimate of the system state is

used rather than the (unmeasurable) system state, it would be undesirable -

yet conceivable - that the system becomes unstable in the closed loop

due to the presence of the observer. However, Luenberger showed [2]

that the introduction to the observer within a closed-loop employing

a linear time-invarient feedback does not affect the stability of the

system. In fact, the poles of the composite system employing the

observer are exactly the poles of the system,assuming the control law

enjoyed state feedback,plus the poles of the observer. Since the

observer poles may always be chosen stable, the overall stability of a

closed-loop system is not affected when generatinF the state by means

of an observer.
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Reduced-Order Observer in Constant Feedback Loop
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To see this, suppose the system

= Ax + Br (11.2)

y =Cx

has.the control law

r = Kx (11.20)

Then supposing that the state is available for measurement (or that

K = MC for some M), the closed-loop system is

= (A + BK)x (11.21)

and its poles are the eigenvalues of the matrix A + BK.

However, if an observer is employed to generate the state of

(11.2) for implementing (11.20), then using the equation (11.15) the

control law becomes

r = Kx = Ez + Hy (11.22)

where z is the reduced-observer estimate and

K = ET- 1 + HC (11.23)

Then the composite system is

C (II.24)
=L A + BHC BE [12

-l
Introducing the coordinate change 4 = z - T- x, the above becomes

A + BK BE x
A +BK (II.25)

0 F

The eigenvalues of (11.25), and therefore (11.24), are the eigenvalues

of A + BK and of F.

Consequently, an nth order system that is completely controllable

and completely observable with m independent output variables may, by
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use of a linear feedback law and an observer of order n-p, have the

2n-p eigenvalues of the closed-loop system take on any preassigned

value.

2. Other Kinds of Observers

Other kinds of observers include observers which generate a linear

function of system state variables, and observers which generate the

state of time-varying systems, discrete systems, and stochastic systems.

The linear-function observer generates a function E of the form

T
e = ax

where aT is any desired row vector and x is the system state. The

utility of such a function E is that many linear feedback laws merely

require this function for control of pole placement within a time-

invarient system. An observer which generates a linear function may

be considerably lower in dynamical order than the multivariable

observer of Section 2.3 which generates the state x. The linear-

function observer was developed by Luenberger [3].

.The major result of the linear-function observer is that the function

a x can be generated by an observer of order v-1 where v is the

observability index [3] of system (II.2). The observability index v

is defined as the least positive integer for which the matrix

[C 2 CA : CA2: ... : CAv-1]
T

has rank n (equal to system order). For any completely observable

system, (n/p)-l < 9-i < n-p, and in many cases v-1 is much less than

n-p. Therefore there is often a considerable savings in dynamic order

'T
by generating a x directly rather than generating x and then forming

T
a x.
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T
The estimate of c = a x is

c y + c z (11.26)

i = Fz + Ly + T- 1 Br

where

T-A - FT- = L (II.27)

T T -1 T
bC + cT = a

and

z E -

The underlying notion for this capability is that the matrix noted by

T- 1 need not be square if it is understood that its inverse does

not exist. The design procedure is to choose T-1 so that the second

equation in (11.27) is satisfied; then the remaining values of T-1

and the values of L may now be determined by the first of these

equations. Other techniques can also be used in the design.

Observers for time-varying systems have been reported in [8] and

[9]. Discrete time observers have been investigated in [10] - [12] and

stochastic observers in [13] - [15].

Other papers of note are [16] - [211.



CIAPTER III

THE LYAPUNOV SYNTHESIS TECHNIQUE

3. 1 Lyapunov Stability

It is not the purpose of this thesis to delve deeply into 
the

general stability problem or to survey the stability 
literature. However,

within this section the basic concepts in stability which 
are used in

the subsequent sections for synthesizing an adaptive 
algorithm are

briefly described.

The concept of Lyapuiov stability deals with the 
family of motions

defined by the differential equation

k = f(x, t) t > t (III.)

in which it is assumed that the trivial solution x 
= 0 is a member of

that family in the sense that

0 = f(O,t),t > t0

Moreover, x = 0 is also called the equilibrium of (III.1). 
Each member

of the family of motions defined by (III.1) is designated by

p (t, x0 , t o ) , t t o

where p(t 0 , x0 , t o ) = x0. It is assumed that each p(t,x0 ,t0 ) is

continuous in all its arguments whenever x0 is in the neighborhood of

the equilibrium; in other words, p(t, x0, t0 ) 
satisfies a Lipschitz

condition [22].

The notion of Lyapunov stability is that the stability of an

equilibrium of (III.1) can be determined by examining the behavi.or of

the entire solution, for all t > t O , with respect to the initial value

23
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x0 . In particular, if the initial value is close to the equilibrium,

then the subsequent motion p(t, x 0 , t0 ) remains correspondingly close

to the equilibrium.

The precise definition [23] is that an equilibrium of the differ-

ential equation (III.1) is called stable in the sense of Lyapunov if

for every real number E > 0 there exists a real number 6 > 0 such that

l p(t, x0 , to)ll < for all t > to

whenever 1x011 < 6.

Consequently it is the relationship between the initial value x0

and the ultimate bound on the motion p(t, x0 , t o) that denotes stability

in the sense of Lyapunov. Indeed, it is easy to visualize trajectories

which are bounded for all t > t O but not stable due to a lack in

relationship between that bound and the closeness of x0 from the

equilibrium. It should be pointed out that the definition of stability

applies only in the neighborhood of the equilibrium.

An equilibrium of (III.1) is said to be attractive [5] if there

exists a real number n > 0 for which

lim p(t, x0 , t0 ) 
= 0

t4Q

whenever JXoJI  < n, assuming there is no other initial value x' such

that f(x',t) = 0 for t > t0 and IIx'll < n.

From the preceeding discussion it is readily seen that the attract-

iveness of the equilibrium bears no relation to the concept of stability

in that a motion which is stable need not be attractive and vice versa.

Attractiveness of the equilibrium is a concept which applies only

in the neiighborhood of the equilibrium defined by I IxI < n.

If in addition, however, the motion p(t, x0, t0) is attractive for
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every n > 0 then the equilibrium is said to be globally attractive.

The concept of stability and attractiveness may be combined to

form the concept of asymptotic stability. The equilibrium of (III.1)

is said to be asymptotically stable in the sense of Lyapunov if it is

both attractive and stable in the sense of Lyapunov.

Moreover, if the equilibrium of (III.1) is both stable and globally

attractive then the equilibrium is said to be globally asymptotically

stable.

Given the preceeding definitions (which by no means are the totality

of definitions currently in use in the theory of Lyapunov stability

[see 23]),it is desired, for purposes of this thesis, to state certain

methods for determining the stability of the equilibrium of a differential

equation with the ultimate aim of constructing a control to influence

the stability of the equation. For this purpose, the so-called Direct

Method of Lyapunov will be briefly examined.

3.2 Lyapunov's Direct Method

The Direct Method is a means of determining stability and

asymptotic stability (either global or nonglobal). Unfortunately, the

ability to use this method usually depends upon the ingenuity of the

user.

A simple explanation [5] of the Direct Method can be had with

reference to Figure 3.1. Consider a differential equation of the form

k = f(x) (III.2)

which, for purposes of illustration here, is taken as a vector equation

with x ~ 2. Consider also a quadratic function

V = xTpx

in which P is a symmetric matrix having its two eigenvalues positive;
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Figure 3.1

Criteria for an Asymptoticall.y Stable
Trajectory
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such a matrix is a member of a class of matrices called positive

definite [24]. The ellipses in Figure 3.1 represent the locus of

the equations

V = C.

for positive constants C..
1

Suppose the solution p(t, x0 ) of (111.2) spirals toward the origin

as indicated in Figure 3.1. Such a motion represents an asymptotically

stable equilibrium with respect to the initial value. It is seen that

any motion which is always directed inward to the ellipses is an

asymptotically stable motion. This property is taken as an easy

test to determine whether the equilibrium of (111.2) is asymptotically

stable. In order to gain a relationship in terms of V to insure that

the motion spirals inward with respect to the ellipses, the angle between

the trajectory (in the direction of motion) and the ellipse is required

always to be negative.

Taking the outer normal to an ellipse as

rV/ ax
grad V = V

LV/3x2

it is desired to compute the angle ' between a trajectory and the outer

normal. Then

(grad V) T
cos ' = C 11(grad 

V) Tx k

The trajectory is always inward with respect to the function V whenever

cos p < 0. Since the denominator of cos ' is always positive, the

condition is that

(grad V) T < 0

since in this case
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T. a. 3V d
(grad V) : xl + x2  V

the requirement that V be negative along the trajectory insures that

the solutions of (111.2) are asymptotically stable.

This simple viewpoint can be expanded into a rigorous test for

stability known as the Direct Method.

One theorem for stability is the following [5]: let V(x) be a

function with continuous first order partial derivatives. Suppose

there exists a region G such that 0 < V(x) < a in which V < 0. Let

M be the largest invariant subset of the set V = 0. Then every motion

of (111.2) which begins in G tends toward M.

As a corollary to the above theorem, the more familiar theorem is

given:

If additionally V(x) is positive definite with derivative V for

(111.2) negative semi-definite (definite) or identically zero, then

the equilibrium of (111.2) is (asymptotically) stable. If in addition

there exists a monotone increasing function w (I I x) such that

V(x) > w ( lxI ) and if w (l xll) - as lixl IJ , then the equilibrium of

(III.2)is globally (asymptotically) stable.

In analyzing an equation of the form (III.1) or (III.2)to

determine the stability of an associated equilibrium, a function V

is sought which satisfies the condition of the theorems here given

(or the numerous other theorems omitted here). Failure for the V

function to be as described does not imply instability of the

equilibrium however, only that the choice of V was inappropriate. Although



29

there exist several methods of finding appropriate Lyapunov functions,

in the general case,the ingenuity of the investigator is the sole

means of constructing an appropriate function.

In synthesizing a control r to make the equilibrium of the equation

= f(x, t, r) (111.3)

stable, the situation is somewhat altered. A Lyapunov-function candidate

is first selected, its derivative found, and a control is selected to

make the derivative negative semi-definite or definite. With this

procedure, ingenuity is required additionally in the choice of control.

The next section deals specifically with the question of synthesis.

Suffice it to say here that with the synthesis technique as presently

developed the derivative of V is negative definite in some of the

parameters over which V is defined but only semi-definite over all the

parameters. This involves the stability of non-compact manifolds.

One of the few results in the study of stability on a non-compact

manifold is the following [25].

Assume for the system

k = f(t, x, #)

= g(t, x, p)

that f is bounded for bounded x and r and all t > t 0 ,and that there

exists a function V(x, ) satisfying

1. V(x,4) positive definite with continuous first partial

derivatives

2. V(x,) asllxll 2 + I111

3. '(x, ) < - W(x) + h (t)q(x, ) + h2(t) V(x,)

where
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i) W(x) is continuous and positive definite

ii) q (x,#) is continuous

iii) F Ihi(t)I dt < for i = 1,2

0

then the state x = 0, =0O is eventually stable and, corresponding to each

T > 0,there is a T such that Ilx(t 0 )11 2 + IIy(t 0 )11 2 < . 2 for some

t > TT implies (t) is bounded and x(t) + 0 as t - a.

If, in addition,

4. for some K > 0 and some 0 < a < 1

Iq(x, )j < KV (x, )

then all solutions (t) are bounded,and all x(t) - 0 as t -+ .

3. 3 Synthesis Techniques

This section surveys the literature devoted to the synthesis of

model-tracking adaptive systems based on application of Lyapunov's

second method. In the early work [261 - [34], the model tracking

problem was approached by using the sensitivity or gradient approach,

without assurance of global asymptotic stability. Rang [35], Shackcloth

and Butchart [36, 37] and Parks [38], were first to employ the Lyapunov

design in finding an adaptive control law which guaranteed global

stability. It is the purpose here to introduce the basic synthesis

procedure, and to critically review extensions to the theory which

have appeared since 1966, relating to: design for relative stability,

reduction of order techniques, design with disturbance, design with

time variable parameters, multivariable systems, identification, and

an adaptive observer.

This section exclusively used underscoring to indicate vector for
purposes of clarity.
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Synthesis Using Lyapunov's Second Method

The basic problem to be considered in this section is that of

designing a model tracking system for stability without specifying

exact values of the plant parameters. Lyapunov's stability theorems

offer a means of synthesizing various control laws which offer possible

solutions to this design problem, the particular solution depending

in part upon the form of the Lyapunov function selected. In this

section the rudimentary ideas involved will be introduced in a somewhat

limited context. In subsequent sections elaborations on the elementary

theory will be discussed, indicating some practical design considerations

as well as defects in the method.

The concept which is central to adaptive schemes to be discussed in

this section can be explained with reference to the model tracking

system in Figure 3.2, for which the state equation of the stable model

is given by

.= Ay + Br (nodel) y(O) = yO

(III.4)

and that of the time-invariant plant by

S= A*x + B*u. (plant) x(O) = xo

(111.5)

Here y = {yi } , x = {x i } are n dimensional state vectors, and r, u

are m dimensional control inputs. A*, B* contain unknown coefficients.

If the differential equation of the tracking error (e = y - x) is now

written in the form

& = Ae + f (111.6)

where f = (A - A*)x +'Br - B*u, then the control objective is to

manipulate f in some way so that lim e(t) = 0. To this end we introduce
t.xoO
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the positive definite function

V = e Pe + h(4,9) (111.7)

where 4, \ are matrices of parameter vectors ±i, i. to be defined. Then

along the trajectory of (111.6) we obtain for the time derivative of V

= -eQe + 2e Pf h (111.8)

where

-Q = A P + PA. (11.9)

By a theorem of Lyapunov [39], with any Q = Q > 0, it follows that

P = PT > 0 is a unique solution to (111.9) iff A is a stability matrix,

as assumed.

Using the classification suggested by Phillipson [40], we will

introduce two methods which have been reported for causing e -> 0.

.rnput Modification

This scheme uses the solution obtained with h = 0. Although it is

not in itself useful in synthesizing an adaptive control law, i. e. one

in which a set of parameters are automatically adjusted so as to reduce

the tracking error, it has been used to advantage in solving certain of

the design problems to be discussed in the survey.

With h - 0, asymptotic stability in e will be satisfied if [41]

e Tpf = 0 for A - A* = 0

< otherwise. (III.10)

This inequality cannot be satisfied except in special cases depending

on the system structure. In some restricted cases, such as if (I1.4),

(111.5) are in phase variable forn, a solution exists. In this case

u becomes a scalar, B = b, and b , f are the only nonzero elements of
b, f r ctively. We hen have the n

b, f reepectively. We then have the simplification
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eTpf = (eTE) f

where p is the nth column of P. Writing

f = ft + b u,n n n

and assuming that bn > 0, we see that conditions (2.7) are fullfilled

if

IuJ> f1/b

sgn u = sgn ep , e 0,

as might be realized by a switching function. Solutions of this form

have been reported, together with design considerations [42,43].

Feedback Synthesis

This scheme differs from input modification in that parameters

in the system are adjusted continuously so that in the simplified case

treated here e - 0.

In feedback synthesis, we write for (111.7)

n m
V = ee + I1 + - (III.11)

i=l i=l

wherein -- ,-. are misallignment parameter vectors to be defined in terms

of the elements of the matrices A-A* and B-B* which express the mis-

allignment between the model and the plant. In this case (111.8)

becomes
n m

=-e Qe + 2(e PF + T + ). (III.12)
i=l i=l

Let E define the whole state space with CEE, where ( is defined by =

e0, ... ' . Let E 1E, ihere E is the n dimensional

!:ubspace with eE . Clearly V in (III.11) is positivu definite in i.
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The basic idea in feedback synthesis is to specify (±i, 4i) in

(111.12) so that

n m
e + m o (111.13)

i=l i=l

and consequently

V = -e Qe (111.14)

Since V is only negative semidefinite in E, but negative definite in

El, we may conclude from the theorems of Lyapunov [39] that the equilibrium

at e = 0 is asymptotically stable, and the equilibrium at = 0 is

stable. It follows in the present formulation that e + 0, and that

the missallignment parameter vectors are bounded. It will be shown

in certain cases that -+ 0 if the frequency content of r is rich

enough [44, 59].

In implementing the controls to satisfy (111.13), there are two

schemes which will be described in this survey as direct and indirect

adaptation. Direct adaptation assumes that plant parameters are adjust-

able. Indirect adaptation requires that adjustment take place external

to the plant.

Direct Adaptation

In this scheme u = r in (111.5). P and T are in turn defined by

D = A-A*, = B-B*, with columns - and -- respectively. Then (111.6)

becomes

= Ae + f (111.15)

wherein

f = cx + 'r.

It is seen that (111.13) can be satisfied if
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S= - e Px., (i=l,...n) (III.16)
-11

. = - e Pr. ,  (i 1,...m).

If adaptive control (Figure 3.2) is the objective, then elements of A*, B*

should be adjusted, in which case (11.16) becomes

a.--  e Px., i=,...n

,T eTPr, i=l,...m.--1 -- i1 ''

Here it is assumed that A, B are constant. In the identification section

control is applied to matrices A, B instead of A*, B*.

Indirect Adaptation

Whereas the adaptive control law in (111.17) can be implemented for

the multivariable system if direct adaptation is possible, restrictions

must be placed on the form of the state equations in order to apply

indirect adaptation [34, 45]*.

Assuming that the elements of A*, B* are not directly adjustable

it becomes necessary to modify the system. Consider the single-input

single-output plant defined by

xl k*
u n n-l

s + a* s + ... + a*
n 1

By introducing kr, kl, k2 , ... kn as adjustable parameters as in Figure

3.3, it is seen that the compensated system has been cast into the form

SC = A*x + b*r

* As discussed in the section on reduction of order, if it is desired
to require convergence of fewer than all the states, the r?:: Lriction on
form can be relaxed if there are 1.h.p. zeros in the plant transfer
function.
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Figure 3.3

Model-Reference Adaptation by Feedback
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where

0. 1

A . . .. . . . b*T = [0,..,0,b*

a*nl ... a*nn

with b* = k k*, and a*. = -al + k., i = 1,...n. Thereby the problem
n r n 1 i'

is amenable to direct adaptation by application of (111.17). For the

single-input case it is noted that only n coefficients in A* can be

adjusted. The multivariable problem suffers restrictions also [45].

Degree of Stability - Improved Speed of Response

The adaptive step response [36] has been helpful in analyzing the

relative stability of adaptive systems. With the aid of this concept

Phillipson [40] showed that it is possible in case of an adaptive gain

to improve the relative stability by appropriately modifying the adaptive

control law. Gilbart and Monopoli [46] formalized the synthesis pro-

cedure by redefining the V function in (III.11).

In the ensuing discussion let the error equation be defined by

0 1 0
e = e + r (111.18)

-a 0  -a (k -k*)

where k* is the only adjustable parameter. If (III.11) is written as

T $V = e Pe + -, h = const. (III.19)
h 1

then (111.8) becomes

V = -e Qe + 2(eTp (k-k*)r + - ) (111.20)
wherein p h

wherein T = E12 22, and P is found according to (111.9). In this
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case, with p = k-k*:, it is seen that (111.13) is satisfied if

k* = (pl2el + P22e2 ) h1 r. (III.21)

If r is assumed to be a step of magnitude R, then differentiating

(111.18) and using (11.21) leads to the characteristic equation

S3 + alS2 + a0S + (p1 2 + P2 2S)hl
R 2 = 0 (111.22)

The roots of this equation characterize the adaptive step response. A

typical root locus, as shown in Figure 3.4, demonstrates that the relative

stability is degraded with increasing R2 , even though the system by

design cannot be unstable.

As a means of improving the relative stability with increasing R
2

Phillipson modified the adaptive rule in (111.21) by setting u = k*r + Ul1

and using ul to insert input modification. Thus, with ul = yk*r, (111.8)

becomes

V = -e Qe - 2 (e Tp )2 hlr 2  (111.23)

2
The effect has been to make V more negative with r2. It is also

instructive to examine the adaptive step response. The equation corres-

ponding to (111.22) is

S3 + alS2 + a0S + (2 + 22S) (1 + yS)hlR2 = 0

(III.214)

The root locus indicates an improved relative stability for large R2

(see Figure 3.5).

More in the spirit of involving the Lyapunov function in the

synthesis procedure, Gilbart and Monopoli [46] have proposed modifying

the V function in (III.11) so that the desired result is obtained more

routinely. The concept will be illustrated using the system equation
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Figure 3.4

Root Locus for Change in Adaptive Gain
Parameter
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Figure 3.5

Improved Degree of Stability
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(III.18). According to [46] we introduce the modified V function

T (i t hz )2

V = e pe + . (111.28)
h2

(111.8) now becomes

S T T 2 h2-e Qe + 2e P (k-k*)r + - (Q + 2hlz + hWl. + hlzz).

(III.29)

If we equate for this example

T
z ep 2 r

= k-k* (111.30)

= -h2Z-hl

then (111.29) becomes

-eT Qe -2h(eTp r)2 . (111.31)

This is seen to be identical to (111.23). For the adaptive control,

we have from (111.30)

k* = heTpr + h2  eTp2 rdt+k(t0). (111.32)

t0

The general matix formulation of this scheme for the entire

parameter set ,T is given in [47], together with simulation results

showing that improvement in convergence time can be obtained.

Reduction of Order

The basic model-reference Lyapunov adaptive law requires measurement

of the entire error vector for its implementation. If all the state

variables of the plant under control are not available, then the basic

adaptive law is inadequate since ignorance of parameters and inherent

system noise may prohibiL their generation by an ob:server or by differ-

entiators.
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To overcome this practical problem investigators have attempted

to find adaptive laws that require a minimum of state variable measurements.

The first such attempt by Parks [38] was for the restrictive system shown

in Figure 3.6 in which only the constant plant input gain KV is mis-

matched to model gain K. The adaptive law adjusts K so that the errorc

vanishes. Parks use of Kalman's lemma [48] subsequently extended by

Monopoli [49] using the Kalman-Meyer lemma [50], has shown that the

-1
adaptive law Kc = -lel r , in which only the output error el appears, is

sufficient for asymptotic stability of e if

N(s)
1) -T is a positive real function (III.33)

2) [1E 0 0 .. 0 Ab$O

N(s)
where N(s) is the transfer function representation of the plant equation

x = Ax + br. If 2) does not hold but 1) does, the set V = 0 must be

examined to insure asymptotic stability of e.

Monopoli [49] extended the criteria to nonpositive real transfer

functions that can be made positive real by multiplying by a polynomial

in s with roots of negative real parts. In doing so, the resulting

adaptive law requires n-m-2 derivatives of the output error el where n

is the number of plant poles and m is the number of plant zeroes.

In the more general case where adaptation of both plant poles

and zeros are desired, the basic indirect adaptive scheme fails (but

not direct adaptation) even with full state measurement available. This

is seen since, referring to Figure 3.7 with D(s) = 1, the error

equation

N(s)l = [Q(s)-N(s) + P(s) H(c)]x + [M(;) - I(s) C(s)]r

(III.34)
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reveals H(s), a polynomial, may have at most only n-m free parameters

so as not to increase the order of the nth order polynomial Q-N+PH;

consequently there exists no steady-state solution to the problem of

adjusting n parameters in Q-N+PH state feedback.

Monopoli and Gilbart [51], however, have employed dynamic feed-

back on a reduced state of order n-m-l to accomplish adaptation with

plant zeroes. Moreover, they have shown that the plant matrix A* need

not be of any particular form; nor must A* be stable nor C*(sI-A*)- B*

be positive real; and the output matrix C* need not be known.

Their basic idea is for D(s), after adaptation, to cancel P(s),

with the model zeroes placed in cascade with the plant by G(s). Due

to the cancellation, the zeroes of the plant necessarily must be in the

LHP.

The vector error equation (111.6) is "collapsed" to yield a scalar

error equation in the output error el from which the synthesis proceeds:

(n) n-1 (i) n- (i) m (i) m .u(i)
e + ae = a.x. + Ab.r + I bu
1 aie 11 1

i=0 i=O i=0 i=0
(III.35)

Note that the output error, defined as the difference between the scalar

model output and the scalar plant output, is always available for

measurement by definition.

For clarity in illustrating the synthesis procedure, a 2nd order

system with one zero will be treated here. For this system, (111.35)

becomes

(s2+alS+a0 )el = (Aals+a 0 )x1 + Ab0r + (s+b )U

(III.36)
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in which initial conditions have been ignored and Abl=0 and bl=1 for

simplicity in this treatment. Dividing (111.36) by s+c, 0<c<al, and

taking the Laplace inverse transformation yields

el + (al-c)el [c(al-c)-a 2 ] (- ) + eAa

2 s -c 1 1

+ [Aa0cAa+ A 0 -i rC

+ u + [bo-c u- -) (111.37)S+C

Now if u is chosen as u = E k.v. where v. are each of the terms on the2. 1

right side of (III.37) (i.e. v = -1 ( _-), v2 = Xl, etc.) then
1 s+c 2

(III.37) has the form for which the indirect adaptation scheme can be

applied with the important difference that the resulting adaptive

law contains only el and not its derivatives.

In general, a division polynomial, such as that which produced

(111.37), should be of order m with zeroes chosen so that the left side

of (III.37) is stable. Then the left side contains n-m terms, so the

resulting adaptive law contains n-m-l derivatives of e1.

It should be pointed out that since vector state information is

destroyed in collapsing the error equation to (111.35), convergence of

el (output error) does not in general imply that the state variables

converge. If the output matrix is known and A is in companion form,

then convergence of el implies convergence of the first n-m state

variables.

At present, indirect adaptation cannot take place when there is a

right half-plane zero in the system.

Effects of Disturbance in Adaptive Control

As noted in the synthesis section, if disturbance is neglected



48

then, according to (III.14), V becomes negative definite in E1 and

negative semi-definite in E. However, it has been demonstrated, and

in some cases proved, that the input to the system can be so chosen that

the solution V E 0 can be satisfied only at the origin of the entire

E space.

Recently Lindorff [52] and Narendra et al. [53] have considered

the effect of disturbance upon stability. In [52] it is shown that,

even though e remains bounded (theoretically), disturbance can cause

the adaptive gains to be unstable (unbounded). In [53] a modified

scheme is derived such that V is strictly negative in E outside of some

bounded region about the origin, thereby guaranteeing boundedness in E,

without placing special requirements on the input signal.

In [52] the effect of disturbance d and incomplete adaptation has

been examined with reference to the single input plant described by the

equation

k = A*x + b*(r + u ) + d. (111.38)

The tracking error in this case defined by

S Ae + f + f f + f f
-1 -2' -1 -2

where fl includes all adjustable parameters 0,T (although these need
Z-1

not be the entire set of unknown parameters), and f2 contains the remaining

terms in f, including d. The adaptive controls when applied to this

problem cause V to be reduced in the form

S eT e + eP . (III.39)=2

Since V in (111.39) is strictly negative outside of some bounded region

about e = 0 in El, and indefinite elsewhere, e will ultimately lie

inside a calculable region about the origin. However, due to the

presence of f V is indefinite in E, and stability in E can no longer
-2'1
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be guaranteed. This has been demonstrated for the case in which (111.38)

is in phase variable form [52], and d and r are constant. It is shown

that parameter errors can be unbounded if the disturbance is opposite

in sign to r.

Narendra et al. [53] have considered the problem of synthesizing

an adaptive control law which guarantees boundedness of the errors

when disturbance is present. Since their method also allows for time

varying plant parameters, we shall include this degree of generality

in the discussion, although the time variable case is treated in more

detail later. For simplicity of exposition consider the first order

differential equations

(stable
model) y = -ay + r (III.40)

(plant) k = -(a*+k)x + r + d, a* = a*(t)

in which k is an adjustable parameter, d is a disturbance entering the

plant, and r is the common input. The tracking error (e E y - x) is

governed by

= -ae + Ox -d (111.41)

with 4 = -a + a* + k. If we now choose the positive definite form

V = -(ye + 2), y > 0 (III.42)

and introduce the modified adaptive control

k =-Bk -yex (III.43)

the equation for V becomes

= -yae 2 -82 + (8(a* -a) + a*)4 -yde. (III.44)

From this result it follows that boundedness in e, 4 is guaranteedsince

.V contains a negative definite part in e and 4. These quadratic terms

control the sign of V for large enough values of Jel, If1, if (a* - a),
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d and A* are bounded. This result in turn depends upon the introduction

of 8 in the modified adaptive control law (I1.43).

This design has been generalized [53] for the single-input nth

order plant. Simulation results indicate that, in the absence of noise

disturbance, best results are obtained with 8 = 0 and with the input

rich enough in frequency content to assume asymptotic stability in the

entire E space.

Time- Varying Parameters

For the time-varying plant

= A'(t) x + B*(t)(r-u) (111.45)

to behave as a time-invariant model requires an indirect adaptive law

that depends upon the time derivative of an unavailable quantity if the

synthesis is followed. Porter and Tatnall [54] have pointed out that

this term may be ignored under some conditions on A*(t) and B*(t) for

eventual asymptotic stability of e. These conditions are restrictive,

however.

In the more general case, use of a new adaptive law due to Narendra

et al. [53] leads to the determination of Lagrange stability bounds

whenever the time varying plant parameters satisfy certain restrictions.

Reference is also made here to the next section.

To illustrate their adaptive scheme, consider a first-order time

varying plant (111.45) with B*(t) = b*(t). The corresponding error

equation with u = klx + k2r is

- ae = (a-a*(t) + b*kl)x + (b-b*(t) + b*(t)k2 )r

(III.46)

= x + a2r

a < 0
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Using the adaptive law [53]

kl =oSkl- xe

(11.47)

k2 - Bk2 -re

the Lyapunov function may be shown to be (with b*(t) chosen as in (111.49)).

2 2 2
V = b*(t) e2 + 2 + 2

1 2

b* 2 b* 2 b* 2-=+b*( + 2a) e + 2( -B) 1 + 2(b -) 2

b* bW+ 2(a* -a) ( e 8)1 - 2b( -8) 2 -2*4 1 - 28b* 2

(III.48)

Now if the following restrictions are placed upon the parameters

(i) 0 < b, < b*(t) < b <

(ii) - - < al < a*(t) < a2 <

(iii) - - < b3 <- * < b < a2  (III.49)

(iv) 8 > b4

(v) Ija* a 3

The function V can be shown to be negative outside of a region in

the space (e, 01, *). Bounds on the region of attraction can therefore

be found by determining the smallest ellipse V = C that encloses the

region of indefinite V.

It is noted that (III.47) does not produce an asymptotically'stable

error even in time-invariant systems unless 8 = 0. This follows from

the observation that the adaptive parameters k cannot converge to a

non-zero value whenever the error e vanishes simultaneously.

Narendra [55] extended the above technique along these lines for nth

order systems.

Monopoli, Gilbart and Thayer [49] produced a "practically Asynmptotically
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stable" system of Figure 3.4 when only the time-varying plant input

gain KV(t) is adapted. The plant must have the same general attributes

as in the section entitled Degree of Stability. They found, using a

Lyapunov function V = ii2(XwTpw + X(t) 2) that practical asymptotic

stability of e is attained with an adaptive law kc = XwTPbr +6K(K-KcKv) Ir

where w is related to n-m-1 derivatives of el, n & m defined as in the

Degree on Stability section. The region of attraction is inversely

proportional to the magnitude of 6 and r.

The reduction of order with time-varying parameters was extended by

Gilbart and Monopoli [56] to include adaptation of time-varying plant input

coefficients and characteristic polynomial coefficients. A scalar error

equation in el analogous to (III.35) but with time-varying coefficients

on the right side is assumed. For clarity, a second order example is

demonstrated here. Suppose first that the second order plant is without

input derivatives. After dividing by plant input coefficient b*(t), the

scalar error equation is

1 Ab al Aa0
+al r + x + x - u,b*(t)>0 Vt>0.

This can in turn be put in the form

b7-'- ) (e1+al+ael) = [f1+gl(t)lr + [f2+g2 (t)]k + [f 3 +g 3(t)]x - u

(III.50)

in which the coefficients have been broken into time-invarient parts f

and time-varying part g. Choosing u = (k +kl)r +(k +kg)k + (k3+k3)x
S 2 and 3 3

and
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1f = aleTP2r

kf = -aieTP2x(2-i) i = 2,3 (111.51)

kg = M sat[- T
1 1 tI eTP2 r]

g M i T (2-i)= M. sat [--eP x ] i = 2,3i 1 M. 2
1

3
then the function V = e + (f. + kf) has a negative derivative

i=l1
outside a region whose boundary is directly proportional to the bound

on Igi(t)I and b(t) and inversely proportional to 8i . Consequently

(111.51) delivers strong practical stability of e.

It is shown also by Gilbart and Monopoli [56] that a reduction of

order technique similar to that in the Reduction of Order section, but

modified to account for the time-varying nature of the scalar error

equation (III.35), can be applied so that the resulting equation is in

a form similar to (11.50) in order that adaptive laws like (I1.51)

may be used to produce a strong practically stable system. The reduction

of order allows only n-m-i derivatives to be used in forming the adaptive

laws.

Adaptive Control of MultivariabZe Systems

It has been noted by Winsor and Roy [34] that the adaptive control

law in the form of (111.17) can be implemented for the general multi-

variable plant if the plant parameters are directly adjustable (direct

adaptation). The practical case in which feedback control signals are

used to implement compensation (indirect control) warrants attention,

however, particularly for the multi-input systems.

Starting with (III.4) and (III.5),(III.6), Lindorff [451 has shown
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that certain conditions are imposed on the form of (111.4) (111.5) in

order that the Lyapunov design may yield a unique set of controls. This

may be clarified by considering the term in (111.8)

TPf = Tf (111.52)

i=l

in which

n m m
f. = ..x + . r + b.u..

Sj=1 i jxj 1 j=1 13 3

Since P is positive definite, pj and pi are linearly independent for

all ijj. Therefore a different u. must be identified with each f. in
3 1

generating a particular component of the adaptive control law. It

follows that not more than m components of f can be nonzero, and that a

stable adaptive control law can be realized if (1) there are no more

outputs than inputs, (2) the state equation is written in partitioned

phase variable form, (3) the matrices B*, B are in triangular form.

Extension of the reduction of order technique [51] to the multivariable

problem has not been reported.

Identification

The identification problem can be approached so that the process is

inherently stable. Lion [59] has derived a very practical solution to

the problem of identification for single-input, single-output plants,

with guaranteed asymptotic stability. Kudva and Narendra [57] have

applied the Lyapunov synthesis method to the identification of time

variable systems, illustrating an application of direct adaptation.

Lion uses the so called Generalized Equation Error System

of Figure 3.8. In this scheme the parameters of T, D are adjusted

2
so as to minimize e2. A significant feature of the method is that no

derivatives of u, y are required (G is a low pass filter).
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Figure 3.8

Lion's Identification Scheme
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The scheme is based on the scalar error equation

e = (D - D) yl + (N - N) ul. (III.53)

in which
. n k
D-D I A kp

k=O

S m k
N-N = ASkPk

k=O

with p - d/dt, and ul, yl are filtered values of u, y. G(s) may have

the sinmple form 1 /s n - l

If the parameter adjustment law is defined as

Aa. =-ke(p yl ) p=d/dt

A = -ke(pu l) (111.54)

and the parameter misalignment vector is defined by

T
' 0 [Aa 1nA,.. .•,An-1 0,. O .Vm,

it is possible to show that the function

V = - T_ is a Lyapunov function with2

V = €T = -ke2<0. (111.55)

However V in (III.55) is only negative semi-definite, i. e., e may be zero

for #'0, and 4=O is required for identification. By application of a

theorem due to Lasalle [58], Lion has shown that global asymptotic

stability will be achieved if u is periodic, and meets certain conditions

as to frequency content.

Kudva and Narendra [57] have used direct adjustment of the model

to solve the identification problem for the multivariable time-variable
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plant. In constrast to Lion, all plant states must be known. No

restrictions are placed on the form of the state equations.

Given the state equations

Plant x = A*x + B*r

(111.56)
Model _ = Cy + (A-C)x + Br

where C is a stability matrix, and A, B represent the model, then the

error equation (e = y-x) becomes

= Ce + Ox + 'u (111.57)

in which E-A-A*, '-YB-B*. It is seen that e-* if the parameter mis-

alignment matrices approach zero.

Following the scheme outlined in the Time-Varying Parameters

section, for a single-input plant, the direct adjustment scheme for a

time-variable multi-input plant becomes

.=-R.a. -Pex.
-1 1- - 1 (111.58)

b. - -S.b. -Per.
-1 1--i -

where it is observed that (111.57) is a modification of (111.17). R.

Si are any positive definite diagonal matrices, and are introduced so

that V will contain/Aegative definite component in E(See the Time-

varying Parameter section). It is noted that the model parameters

(ai, b i), rather than the plant parameters, are adjusted in this case.

Computer simulation oqfourth-order two-input plant is shown to yield

good results.



CHAPTER IV

THE SINGLE-INPUT SINGLE-OUTPUT
ADAPTIVE OBSERVER - PART I

4.1 Motivation for an Adaptive Observer

In this chapter the first adaptive observer, which was developed

by this author, is described. In the next chapter, the subsequent

development by other investigators based upon the formulation described

herein is detailed.

The motivation of the adaptive observer rests upon the necessity

of certain knowledge of the system parameters for formulating a non-

adaptive observer. This may be seen with reference to equation (11.6 ),

copied below

S= Fe + (F-T-1AT + GCT)x + (D-T- B)r (II. 6)

As shown in section 2.2, the above equation is made asymptotically

stable by defining

FT-1 = T-1A-GC, i.e. T -AT-GCT=F (II,. 7)

D = T-B

and choosing the eigenvalues of F to all have negative real parts by

choice of G.

If the elements of the matrices A, B, or C are unknown, then the

equations (II. 6) cannot be assuredly satisfied. In this case, (11.6 )

becomes

= Fe + Ox + Yr (IV. 1)

for which 4/0 and I' 0. Thus, even if F may be chosen to be an

58
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asymptotically stable matrix, the error e in general does not vanish

whenever the system is excited by a non-vanishing r.

Since e is defined as

e = z - x,

the condition that e does not vanish implies that the observer state z

does not eventually reproduce the system state x.

It is therefore proposed that the matrices ; and T be adaptively

adjusted to zero during system operation. Since (IV.1) is then

asymptotically stable (for suitable choice of F) when D = Y= 0, the

observer state becomes equal to the system state.

Moreover, since 0 and T are defined here as the ignorance in

equations (II. 6) when A, B, and C are unknown, adaptively reducing

0 and ' to zero allows the values of A and B to be ascertained if C

is known. Thus in addition to adaptively generating the state of an

unknown system, the full order adaptive observer identifies the para-

meters of the unknown system.

As will be seen, the adaptive observer converges to a Luenberger

observer, implying the noise suppression characteristic of the

Luenberger observer is retained in some measure in the adaptive observer.

4. 2 Development of the Adaptive Observer

The Luenberger observer [ 2]-[4 ] allows extraction of the state

of an observable linear system when given (1) the system input, (2) the

system output, (3) the form of the system, and (4) the parameter values

of the system. In those cases for which the system parameters are

unknown, the state observation is subject to error. Some previous

investigators of parameter ignorance in observers [60], [61] alleviate
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to some degree the observation error, but they are unable to guarantee

that the error vanishes or that their computational algorithm converges

when the magnitude of parameter ignorange is large. The basics of a

full order adaptive observer which negates these disadvantages have

been previously reported [44]. The present chapter, following [71],

considerably simplifies the exposition of the previous paper and extends,

both computationally and theoretically, the topic of that paper. Briefly,

the full order adaptive observer for single-input single-output observable

continuous linear differential systems in the absence of a deterministic

or random disturbance vector guarantees the vanishing of observation

error regardless of the size of the constant or slowly varying parameter

ignorance. The observer parameters are directly changed in a Uyapunov

adaptive way so as to eventually yield the unknown full order Luenberger

observer. The observer poles may throughout be placed freely in the

stable region, and no derivatives are required in the adaptive law.

The Problem

A differential system is assumed of the form

w = Aw + Br, w(O) = wO

y = El 0 0 ... O]w E Cw

An xn

Bn xl (IV. 2)

for which only the single-output y = Cw = wl is available for measurement.

It is assumed that a similarity transformation has been made, if

necessary, sothat the single-input single-output system has the form

of (IV. 2). It is assumed that some or all of the elements of matrices

A and B are unknown, w0 may be unknown, and the pair (C,A) is completely
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observable. The observer is of the form

z = Kz + GCw + Dr + Hu, z(0) = zo

Fn xn Gnx l

D n x 1 H n x n and diagonal (IV. 3)

where K is arbitrary and u is a control vector yet to be defined, but

with the property that u -> 0 as t - m. The problem is to adaptively

-1form a triple (G,D,T) so that the error vector defined as e = z - T w

vanishes as the system adapts. T is a nonsingular square matrix with

the property that CT = C. Figure 4.1 illustrates the adaptive strategy.

It is noted that T- 1 between w and x in Figure 4.1 is not physically

realized.

The Adaptive Strategy

The overall strategy for solving the problem is to determine an

adaptive law for progressively forming the triple (G,D,T). The adaptive

law shall require that the error between the system output and the

corresponding observer state variable be asymptotically stable in the

sense of Lyapunov. This requirement alone does not guarantee that the

error between the system state and the observer state vanishes, since

the system output remains unchanged under a range of similarity

transformations of the system state. In the section entitled "The

Transformation" it is therefore shown that the adaptive observer

generates but one of these similar states and that, by introducing the

transformation matrix T, the system state can always be adaptively

constructed by the constrained matrix T(t) whenever the system is

observable, since lim T(t) = T.
t

The required adaptive law may be explicitly obtained by the use

of Lyapunov's direct method. In the section entitled "The Adaptive Law"
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the equation of error is manipulated in such a way as to obtain it in

terms of only those variables which can be directly measured without

recourse to differentiation; the resultant equation is therefore neces-

sarily defined on a noncompact manifold of the error space. A

Lyapunov function is introduced on this noncompact manifold, and the

adaptive law is accordingly synthesized. Theorem 2 expands the

validity of the law to the compact manifold.

The Transformation

Define a transformation x = T-1w so that e z - x. Then (IV. 2)

becomes

A AOx + T-Br, x(0) = T 1 O

-
y = CTx = Cx, AO = T AT (IV.2A)

and (IV.3) becomes

z = K0 z + GCx + Dr + Hu, z(0) = z0 . (IV.3A)

It is desired for subsequent development that AO T-1 T be in the

"output" form

-all 1 0 0 ... 0

-a21 0 1 0 .q. 0

-a31 0 0 1 ... 0

A-

-a 0 0 0 ... 0
ni

wherein the first colun contains the system parameters, and all other

elements are zero, save the super-diagonal ecements which are unity.

The following theorem defines the restriction that must be placed upon

o that both A = T-1
A zo that both A = T AT and CT = C.
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THEOREM 4.1 [CARROLL]: Let 2 be ann x n matrix, C = [1 0 0 ... 01 a

1 x n matrix, A0 an n x n matrix in output form. Then there exists

a matrix T such that A = TA0T-1 and CT = C iff the pair (C,A) is

conpete ly observable.

PROOF: (A,C) is observable and by duality (AT,C T) is controllable

iff there exists a transformation Q such that

0 0

0 0

ATQ-1 . . TQC
. . .

a1  a2 ... an  0

1

Thus

0 0 ... 1
0 a2

a2

-T- T T
Q AQ I a3  , CQT =[0 0 ... 0 .11

a
n

Let 0 0 0.. 0 1

* "1 0
•T -M-E " . : M M-

0 1 "

1 0 ... .0.
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and let

T = MQ-T -1 TM- 1

Then

a 1 0 ... 0
n

a 0 1 0
n-1

TAT- = M[Q -TAQ -T]M

a 2  1

a 0 ... ... 0

Also,

C(MQ- ) = C. Q.E.D.

As a result of the theorem, any observable system (IV. 2) may be

placed by similarity transformation into system (IV.2A) with CT = C.

The elements of T may be unknown since A is unknown. The problem will

be considered as defined by (IV.2A) and (IV.3A), so that e = x - z

must vanish. Eventually the problem of contructing w from x will be

solved by introducing the adaptive matrix T(t). It will be shown that

lim T(t) = T so that w = lim T(t)z = w (in which & is the observer

estimate of w) since lim z = x.
t-4C

After the adaptation of the observer (IV.3) to the unknown system

(IV.2) has been essentially completed, the values of G and D are then

D = T1 B

(-1 T
(TAT-K)C

G =

CC
T
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Consequently, the adaptive observer converges to a Luenberger identity

observer of the transformed system (IV.2A) with knowledge of parameters.

It is noted that there is no physical realization of matrix T- 1

between w and x in Figure 4.1.

The Adaptive Law

It is now assumed, more for explanatory purpose than actual practical

need, that some stable "nominal" plant matrix is either known or is chosen

so that A0 = A0 + AA0, where AO has all known elements and is in output

form. Consequently, AA0 contains all zero elements, except for the

left column which has elements that are to be adapted. Letting

e = z - x, the vector error equation is

= Ke + (K + GC - A0 - AA )x + ABr + Hu, e(0) = eO

where AB = D - T-B. A theorem of Luenberger [ 2] allows the eigenvalues

of A0 - GC to be arbitrarily placed by selection of G (with the sole

exception that A0 - GC cannot have the same eigenvalues as A ). For the

above error equation, let G = G1 + G2 and K = A0 - G2C. Then as a

result of the theorem of Luenberger and of the special forms of A0 and

C, the vector error equation is

= K e + (G C - AA0)x + ABr + Hu (IV. 4)

where K0 is an arbitrary stable constant matrix in output form with

eigenvalues differing from A0 . The adaptive strategy is to change

G1 and AB to eliminate the influence of x and r in (IV.4); since

by assuming K0 is a constant matrix, changing G1 is equivalent to

changing G and will be considered as such in the ensuing.

For notational convenience in the next sections, the following

definitions are made
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-k 1 0 0 ... On-i

-kn- 2  0 1 0 ... 0
-kn-23 0 0 1

-k 0 0 0 ... 0

a n 0 ... on-3 0 0

aGC 0 AA. .a 0 0 ... 0

AB = 0 0 ... 0 8m  m- 1  a m- 2  0 T .  (IV.5)

G = gn-1 gn-2 gn-3 "

H = diag [0, hn-2, hn3, ... , ho] and n x n.

n = order of plant.

m = number of zeros in system transfer function.

The error between plant state x and observer state z may be

measured only by the scalar state variable el = z1 - y = z1 - xl. To

insure that only available measurements are called for in the adaptive

laws, a differential equation of first order in terms of the error

variable el is derived by using the so-called reduction of order

technique similar to that of Gilbart and Monopoli [51]. To this end,
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(IV.4) is first "collapsed" to yield the equivalent scalar form of

the differential equation given by

n i) n- n-l-jie(i) (i + j) (i)X(j)
i=O j=0 i=O0

m m-j i + j (i)(j)

+ I X I i B j
j=0 i=O

n-2 ) (IV.6)
+ I h.u.
i=0

where ()(i) denotes the ith time derivative of (*).

Equation (IV.6) can now be reduced in order by first altering

its form and then appropriately defining the n-l elements of the

control vector u. Thus, if X1 is taken to be a real and arbitrary

characteristic value of K0 and p = d/dt, then (IV.6) can be written

in the form

n-l n-i . +m
(p + A ) ( aiP )e = ( ap ) i.v + f

i=O i=O i=

n-2
+ f + h.U. (IV.7)

r j=O

where it is understood that the left side of (IV.7) is a partially

factored form of the left side of (IV.6). The right side of (IV.7)

has likewise been constructed to be equivalent to the right side of

(IV.6). The underlying purpose is to form fx and fr from measurable

quantities so that a u can be realized which satisfies the equation

n-2 (j)
f + f + h.u. 0

x r j= ]
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subject to the condition that lim u(t) = 0. It follows, disregarding
t**

initial conditions, that (IV.7) can be reduced to the form

n+m
(p + Al)e 1 =. I iv

i=O

where i and v. are appropriately defined to ensure the desired asymptotic

behavior of u.

The defining equations of v. are given by

n-i
av = x i) i = 0, i, 2, ... , n-2 (IV.8)

j=O

Vn = x
n- n-

Sa.v = r i = n, n+l, n+2, ... , 2(n-1) (IV.8A)
j=0

V2n-1 =

where it is seen that each v. is obtained from x or r by low-pass

filtering, and hence is realizable.

The defining equations for i are given by

a .. a.a
1 in-i

1 n-'

i-n'

i = 0, 1, 2, ... , n-2

i=n-l

i =n, n+l, n+2, ... , m+n < 2n-1. (IV.9)

However, should m=n-1, then (IV.9) should be corrected to the extent

that
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n i-n a n-l'

n-l,

i = n,n+l, n+2, ... , 2n-2

i = 2n-1. (IV.9A)

These have been chosen so that the terms in f and f contain only

derivatives of *i as required, so that f and f may be realizable.

Although *i is not directly measurable, it will be seen that $i is a

measurable quantity to be defined by the adaptive algorithm.

The resulting expressions for f and f become

n-2 k-1 dJ (k-

k=l j=O dtk

n-2 n-2 n-2-j j

- ai 1  [vk k (IV.10)
k=O j=O i=O dt j

m k-1 d(k-j-)

r k=l j=O dt]  tnk

n+m n-2 n--2 j
- ai ij+ 1 d3 [vk ik
k--n j=O i=O0 dtj

(IV.11)

However, if m=n-l, then (IV.11) should be changed to

n-2 k-1 jfr 2 -d [dn+k * (k-j-1 ) ]

k=1 j=O dt n

2n-2 n-2 n-2-j dj
- a i+j+1  [vk k
k=n j=O i=O dtj  k

(Iv.11A)

It is further noted that, since 4k is the change in parameters due

to adaptation, as adaptation is completed k O,O < k < n + m, and
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consequently, lim u. = 0.

As noted, the implementation of u. reduced (IV.7) to

n-1 n-i rn+m
(p + A l)( aiP )el = ( a.p ) i= v . (IV.12)

i=O i=0 ii0

Taking the Laplace transform of (IV.12) and dividing by

n-i

Sa.s i yields
i=O

Sn+m 1 (initial conditions)
(s + xs = i.v. + n- i

=0 ( a.s
i=O (IV.13)

for which follows

n+m n-1
el+ lel I= ivi + I i exp [-X t] (IV.14)

i=0 i=2

where i .are unknown constants or time-dependent functions depending

upon the initial conditions and {Ai}, the set of characteristic values

n-1
of a.s i .

i=O

A Lyapunov function is now to be formed so that stability of the

adaptive observer may be assured. To this end, a positive definite

function of the measured error el and the unknown parameter errors

i is defined as

n+m
V (m e + m ). (IV.15)

2 s 1 1 1i=O

Following Shackcloth [37], V can be made to be

n-1
V = -mle2 + el i exp[-Xit] (IV.16)

i=O

when

m
- s vie, 0 < i < n + m. (IV.17)

i m. i 11
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Other adaptive laws can easily be chosen instead [57].

Implementation of the adaptive law in (IV.17) can be accomplished

by reference to (IV.9) and to the definitions of the variables a.

and a.. For example,

;n-1= n-1 k-1 m lel
n-1

m
* =a -a-2a = +a xe
n-2 n-2 an -n-1 -2 an- 2 m 1 e 1n-l

; vn e 1 etc.m n n-2el etc
n-2

in which gl may be ascertained.

From the form of V, el is stable in the sense of Lagrange with

the region of attraction determined by the unknown constants .i and

the decaying exponential time function. Clearly, the region of

attraction shrinks exponentially with time and eventually vanishes;

consequently, el is eventually asymptotically stable and lim el 0.

All derivatives of el must vanish in the limit as well since the scalar

error equation (IV.14) is linear and of first order and possesses

finite frequencies.

However, the Lyapunov function (IV.15) is defined on a noncompact

manifold. Consequently, {4i} is shown to be (eventually) stable but

not necessarily asymptotically stable [ 5]. It is evident from (IV. 4)

that each *i must vanish by adaptation in order to observe the correct

plant state. Theorem 2 defines the restriction placed upon r(t) in

order to guarantee that each i.+0 as t*O.

THEOREM 4.2 [CARROLL]: Suppose there exists no set of real constants

(qi), i = 0, 1, 2, ... , n + m for which the command input r(t) of the
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observable and controllable system in its steady-state condition is a

solution of the homogeneous differential equation

n+m di

qi .r= 0
i=0 dt

where n and m are defined in (IV. 5). Then lir 0it) 0,
t+W

i = 0, 1, 2, ... , n + m, and lim e(t) = 0 is assured.
t)c

PROOF: It has been shown that

lim el(t) = 0

lim u.(t) = 0 for each j

lim (4.t) = constant for each i. (IV.18)
t+

Therefore. from (IV.8) and (IV.8A)

lim a.(t) = constant for each i
t- W

lim 8i(t) = constant for each i (IV.19)
t4 1

Referring to n equations (IV.4), each equation may be differentiated

in a manner so as to form the vector e (t) = el(n , e (n-) (n-2)s 1 2  Y 3
T

... , en] . Employing (IV.18)and (IV.19) in determining lim e (t) and
t).as

letting 8i  0 for i > m, (IV.20) results.

0 e( n - 1) + l(n - l ) + r(n-l)
2 n- n-lr

(n+l-i) (n-i) (n-i) + (n-i) i = 2,3,4...ne. = i+l + any + 8ni = 2,3,4,...n -1
1 +n- n-i

en y + 80r. (IV-20)

All e's may be easily eliminated from (IV.20), yielding
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n-i . m i
0 =( a is )y + ( s )r. (IV.21)

i=O i=O

Let the stable (but unknown) plant transfer function be

n m .
S ais )y = ( bis )r,  an  1. (IV.22)

i=O i=O

Combining (IV.21) and (IV.22) yields

n-l m . m n
0 = s) ( b.s) + ( 1 i s ' ) ( a.s )r. (IV.23)

i=0 i=0  i=0 i=0

Equation (IV.23) represents a condition upon r(t) which 
is assured in

the limit by (IV.18) and (IV.19), that is to say, after adaptation

has forced el to vanish. Two distinct possibilities exist regarding

the solution of the (n + m)th-order linear homogeneous differential

equation (IV.23): a) either the steady-state system command 
input r(t)

obeys (IV.23) for some values a i and 8i, or b) the n + m + 1 coeffi-

cients of polynomial in brackets are in the limit each zero. By

supposition of the theorem, a) cannot occur; consequently b) 
must be

true.

Using the assumption of observability and controllability to

insure that (IV.22) is relatively prime, it is easy to show by mathe-

matical induction that condition b) implies that the constants a. and 8i

are each zero, which was to be proved.

COROLLARY: If the steady-state command input r(t) is periodic, a

sufficient condition in order for lim e(t) = 0 in (IV. 4) is that r(t)
t-).

contain at least [n + m +1]/2 distinct frequencies in its steady-state

condition.

It is emphasized that r is the command input to the system and not
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necessarily a special identification signal. If the steady-state

r is periodic, then it must possess the required number of frequencies.

However, an r which is steady-state aperiodic must meet no restrictions

to satisfy Theorem 2.

Reconstruction of T

Using the "nominal" matrix A0 as initial condition, the actual

value of the system parameters may be determined by integrating the

change in parameters {)i } , defined in (IV.17), until adaptation is

complete, and combining appropriately in the form of the matrix T. Thus

T(t) "drifts" toward T as adaptation progresses and lim T(t) = T. The

example makes this technique clear.

w, the estimate of w, is constructed from the observer output z

by forming T(t)z. Consequently, lim w = w.

Example

A third-order plant with one zero is considered for illustration.

Let the plant be described by

0 1 00

w= 0 0 1 w+ c r

-(a + O)  -(al + al )  -(a 2 + a 2  0

y = wl (IV.2*)

in which a0 , al, '2, c0 , and cl are unknown. a0 , al, a2 are the

nominal values. In output form, (IV.1*) is

-(a2+ a2) 1 0 0

-(a + al) 0 1 x + bI - 1  r (IV.2A*)

-(aO + aO ) 0 0 b 0 0

y = x, = w1.
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The error equation (IV.4) is now

-k 1 0 0

= -k1 0 1 e + y + r + u(IV-4*)

-k 0  0 a0 0 u0

and the scalar equation (IV.6) is now

e + k2 1 + kle kel = (a0 + al +2)xl

+ (a + 2& 2)t + a2 + 81 + (8 O + l)+ + uO '

(IV.6*)

The scalar error equation (IV.6c*) is equivalent to

4
(p + Xl)(p 2 + alp + ao)e 1  (p 2 + al p + ao ii

i=O

1 1 1-j dj (i)
+ x - ai+j+l - k k + r

k=O j=O i=0 dt

4 1 1-j i)]
- I I ai+j+1 d Vk k + ul + u O (Iv.7*)
k=3 j=O i=O dt1

It is seen from the right side of (IV.7*) that vk and Vk must be

generated in order to allow removal by u0 and ul. vk , which is defined

in (IV.8), may be generated by state-space means.

To illustrate generation of vk, the following notation is adopted:

vk(l) = vk

vk(2 ) - vk
dt

vk(i) - . vkdt
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Then the generation of vI and l defined by

V1 + al 1 + a0 1 = xl

results in

= 0  [l + [21

Thus both v and vl are available measurements without the benefit of

differentiation of vl or xl . Other vk may be generated similarly.

Using this notation, the implementation of inputs as

u0 0= 0(v0(2) + alv 0(1)) + 1 (v1(2) + alv1 (1))

+ 3 (v3(2) + alv 3(1)) + ;(v4(2) + alv4(1))

ul OV0 ( ) + ; 1 v 1 (1) + $4v4(l ) + €3 v3(1)

reduces (IV.7*) to

(p + )(p2 + alp + a)el = (p2 + alp + a )  ii
i=O

(IV.12*)

Defining 1 as in (IV.17), the observer has the form

-k2 1 0 g2 0 0

Z = -kl 0 1 z + gl + b r + u

-k0 0  0 go b u

where

ms elv v
1 m 1 4

m

b - -m3 e v
0 m 3 1 3
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m

g2 -m elX1

m m
S = - e ( -in + al x )

1 1 11 Im 1

m m

0 =- e l  0 v 0 + a0  
2 x )

in 0  m 2

and

1 I 0 0

ft I 1 0
f 2dt - a2 I z

t 0 - 2 I

g2dt a2 ' + gldt - all 2dt - a2 1

0I

S T(t)z.

w is the estimate of plant state w, and lim w = w.

Note that CT=C.

A. SimuZation

The third-order system of the example was simulated on a digital

computer using the following parameters:

a 0 = 24 a0 = 0 c1 = 30 k 0 = 24 m0/m 3 = 8000

al = 26 a 1 = 74 c 2 = 195 kl = 26 m0/m 5 = 2000

a 2 = 9 a2 
= 0 bl = 30 k2 =9 g0

= g2 = 0

The eigenvalues of the observer (determined by {k })were X1 = -4,

2 = -2, X3 = -3. The input to the plant was a square wave of magnitude

1 and frequency 6> Two parameters, b0 and gl were adjusted by the

adaptive law. These were initially set at b0 = 73, gl = -5 corres-

ponding to a correct value of b 0 = 75, gl = -74. Figure 4.2

illustrates the behavior of b0, gl, e 2 and e 3 as a function of time.
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Figure 4.2

Adaptive Response
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It is noted that the behavior is somewhat slow and oscillatory.

Remark

As has been previously stated, w and Tz and lim w = w. In the

general case of an artibrary plant matrix A, the determinant of T may

vanish for some instances of time. These momentary occurrences, of

course, have no detrimental effect on w since convergence of w to w is

guaranteed. It need not be feared, either, that the elements of T

may become impossibly large at any time during operation, since the

elements of T are guaranteed by the Lyapunov function (IV.15) and

(IV.16) to be stable in the sense of Lyapunov and therefore bounded.

The following theorem summarizes the results of this section.

THEOREM 4.3 [CARROLL] A full-order adaptive observer (IV.3A) can be

constructed to observe the state of and to identify the parameters

of system (IV. 2) having unknown parameters in matrices A and B iff

(A,C) is a coplZetely observable pair and if the command input r is

periodic, possesses more steady state frequencies than half the number

of parameters being adapted.

The adaptation is accomplished by algorithm (IV. 17), dependent

upon definitions (IV.9) or (IV.9A), when the control u is implemented

according to (IV.7) subject to definitions (IV.8), (IV.8A)., (IV.10),

(IV. 11), (IV. 11A).
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4. 3 An Alternate Adaptive Algorithm for the Observer

In Section 4.2 the single-output adaptive observer was synthesized.

The adaptive algorithm depends upon the filtered-output and filtered-

input variables v., defined in eqs. (IV.8) and (IV.8A). The transfer

function of these filters is
i

s (IV.24)
n-i n-2

s +an_2 s +... as+a 0

for i=0O, 1, 2, ... , n-2. This configuration apparently allows effective

noise suppression since high frequency signals contained in the input

of the filters are attenuated.

However, according to (IV.9) and (IV.17), the adaptive laws for

a. and 8i are given by

m ms s
- v. - a.x )e i = 0, I, ... , n-2

1 m. I m 1i 1 1
1 n-1

m m
-n - v. + a. )e i = n, n+l, ... , 2n-2

T.-n m. 1 in 1 -n
1 m2n-1

except for i = n-i and i = 2n-1, and for which it is assumed that

an-_1 /, n-1 0. Therefore for the case in which a nl0, n-_l~0 , the

adaptive algorithm depends upon the combination of v. and xl or r.

The resulting transfer function is, for the first of the above equations,

m i m
s s s

+ -- a.
m. n-1 n-2 m 1
r s +a s +...+a s+a 0  n-I

which equals

m m
s n - l n-2 s i

- (r +a n-2 s  +...+a. )+ m-- s
n-i 1-2 . 0
n-1 n-2 (IV.25)
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A similar expression is obtainable for the second of the adaptive

equations.

From the appearance of (IV.25), it seems doubtful that the result-

ing filter offers much noise suppression in the adaptive law for the

case where a nl, 8 ni0.

In this section the adaptive algorithm is altered so that it

depends directly upon filters having transfer functions of the form of

(IV.24), thus enhancing the noise suppression capability. In addition,

the filter poles in the alternate algorithm may be chosen distinct from

the observer eigenvalues if desired, and the Gilbart and Monopoli adaptive

law ([46]; also refer to the section Degree of Stability in Chapter

III) may be implemented in order to improve the speed of response of

the adaptive algorithm.

Development of the Algorithm

The new algorithm is based upon the same form of the observer

as the form of the observer in Section 4.2 with the exception that,

in eqs. (IV.5), the matrix H is defined as

1H = diag [hl, h 2 , ... , hn ] and nxn;

that is to say, h I is here non-zero. Consequently the discussion of

the transformation and the error equation is the same as in Section

4.2. The new algorithm is therefore developed from the starting

point of the error equation (IV.4)

= Koe + (GC - AA ) + AB + Hu (IV.4)

in which
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-k 1 0 0 ...n-i

-kn- 2  0 1 0 ... 0

K0 . . . ..

-k0  0 0 0 ... 0

01 0 0 ... o

2 0 0 ... 0

(IV.26)

GC-A 0 =

n 0 0 ..... 0

AB 5 i)29 -$ nI T

The vector error equation (IV.4) is collapsed (in the same

manner as (IV.6)) to yield

n -n n-k-1
(i) k (n-k) k(n-k-j-1)

kie kl + p (kx(nk )i=0 k=l j=O

L (n-k) n-(n-k-j-k-)

k=l j=0

n (n-j) (IV.27)
+ h. u.
j=1

in which p .-j and in which it is to be understood that the second

summation is to be ignored when n-k-1 < 0.
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The intent at this point is to define the vector v in such a

manner so as to make the right side of (IV.27) equal

n- [in . w(n-j)
n-cip (v. + s) + I h.w.n-j (IV.28)

i=0 i=j=2 

where v. and s. are filtered-output and filtered-input variables with
1 1

transfer functions similar to (IV.24). w is a vector to be defined

later.

The function v. and s. are accordingly defined as
1 1

n-i (j)  (n-i)c.V. = x
j=0

n-i () (n-i) (IV.29)

j=O ] 1

i 1 i, 2, 3, ... , n and Cn_ 1  i.

It is pointed out tha the 2n equations (IV.28) actually represent two

low-pass filters of order. n-1 each. This follows from the transfer

function.

n-i
s xI

Vi n-i n-2
s + c + ... + CS+ 1 + c o

(IV.29A)
n-i

s r
Si n-i n-2s + C n2S + ... + Cs + c

i = 1, 2, 3, ... , n

from which it is seen that

v. v.
1 1-1

(IV.30)

Si. i-i
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From the identity that

i i-1 i ( i - j - l )  (i)
p 4 1 p (v ) + v

j=0

it follows that (IV.28) equals

n n-1 i-l . (ijl )  M n

I X Ci  p ( vk+ k k + X C kVk
k-1 i=l j=0 k-1

n n- i- ((ij) (i )  n n w(n-j)
+ I c p + XksCOkSk + X hw

k=l i=l L 0 k=l j=2

This expression is set equal to the right side of (IV.27) and the vector

u is subsequently determined. After employing (IV.29), the resulting

expression is

n h.u(n-j) n h.w(n-j) n n-2 n-i (i-j-1)
X h = + P P( k ci k ))

nj=2 k jn-k i=jl n

n-i n-k-i (n-k-j-1) n- (i-j-1)
- P k x - vk
k=1 j=O i=j+l

n n-2 .n-1 (i--

+ p P ]( s c i k
k=1 j=n-k i=j+1

n-i n-k-i n-in-1 [ik-(n-k-j-1) n-1 e s(i-j-l)
- p F[k(r- Y ik
k-i j=0 i=j+l

for which it is understood that a summation term is to be ignored

if the upper index is less than the lower index, and that n > 2. This

expression is simplified by use of (IV.29A) and (IV.30) so that
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n-i n-2
h .u = h w(j)

j=0 n-j n-j j=0 n-] n-j

n n-2 . n-1

+ p ( c. kvk-i+j+l)
k=2 j=n-k i=j+l

n-i n-k-1

- I P(k c-i Vk+i+l)
k=1 j=O i=O

n n-2 n-1
+P ( ci ksk-i+j+l)

k=2 j=n-k i=j+l1

n-1 n-k-1 .
- p 9 c. . s )
k=1 j=0 i=0 -i Ski+l

From the above, the vector u can easily be determined by equating terms

containing equal values of j on both sides. The result is

n-i
n n n n 0 k k +k k+l)

k=l

n n-i

h u I ci( k Vk-i+n-j+l + k Sk-i+n-j+)
k=j i=n-j+l

j-1 n- n-j
- c v + c . .s 1+ h.w.k k i= Cn--i Vki+l + Jki 0 n-j-i k+i+l h.w

(IV.31)

for j = 1,2, ... , n-l. It is understood in (IV.31) that summation

terms are to be ignored if the upper index is less than the lower

index. The function w. will be defined later.
I

By employing (IV.31), the collapsed error equation (IV.27)

becomes
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n n-1 n n-l1
kieI  = ( iP) e i (kVk k) ] +. hn- Wn- j

i=0 i=0 k=l j=

k = 1 C E 1 (IV.32)
n n

The Laplace transform of (IV.32) is taken and both sides of the
n-1 i

equation is divided by I c s yielding
i=O

n .
k.s

i=O 1 I n
n-l el (kvk + k)

Z Cisi k=l

i=O
n-2 .

=0 hn-j n-j
j=o

n-i

I Ci s
i=O

f(s) (IV.33)
n-1

I ci
C. Si=O

for which f(s) depends upon the initial conditions of the variables

in (IV.32). On the left side of (IV.33) is the ratio of polynomials

n n-2
Sk. s Pi s

i=0 i=O
n-i n-i Cn-2 n-i

c. s 5 C s
i=O i=O

(IV.34)

where

p0 = k0 - c 0 (kn- 1 - Cn2)

Pi = k - Ci-ci(k - Cn ) i = 1, 2, .. , n-2
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Defining

hn- n-j = p e j = 0, 1,2, ... n-2

then (IV.33) becomes

(s + knI - 2 )e1 
= nk 2k k 1 k )  + n-i(s)

k=l 1 cis

i=O

(IV.35)

In the time domain (IV.35) is

n

1 + (kn- - n-2)el (kVk +ksk) (IV-36)
k=l

n-I
+ X exp [-Ait]

i=l i

Here Xi is a bounded function dependent upon the unknown initial

condition of the equation (IV.27). Eq. (IV.36) is equivalent to

(IV.27) and to (IV.4) with the exception that (IV.36) is a scalar

equation in terms of e1. A Liapunov function candidate can be

constructed so that it depends upon el but not the other elements

of the vector error e. This function will be chosen according to

[461so as to allow a faster rate of convergence of the resulting

adaptive law.
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V -e2 1 + q.v.e 1 ( + qisel) 2

i= 2m i i= 2m

The time derivative of V along the trajectory 
described by (IV.36) is

n
V (k - c )e1 + ( kVk + *kSk)el

n- n-2 k=l

+ ( i + qiviel)($i + qv-e-)
i=l 1

1n
+ - (i + qisiel)(*i + qi siel)

i=1 m.

n-i

+ el Xi exp[-X.t]
i=l

Define

S= - miviel - qiviel

(IV.37)
i = - mis i e l  qisiel

mi > 0, m > 0, qi 0, q > 0 i = , 2, ... n

Then
S2 n-i

= (kn- - Cn-2)e - i (qi ve 2 + qisiel) i+ exp[-Xit]
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If the set of constants {c.} are chosen so that the filter poles

all have negative real parts and if kn_ 1 - Cn_ 2 > O, then Xi exp[- it]

vanishes exponentially and V is then negative semidefinite on the

compact manifold (e, 4, ') but negative definite on the non-compact

manifold .over which V is defined. Consequently, el - 0.

The expansion to the noncompact manifold - i.e. require e, 4,+-0 -

has been discussed in Section 4.2. The results obtained there, in terms

of a steady-state frequency requirement for the input signal r, applies

equally here. The reader is referred to Section 4.2 for a discussion

of this.

The adaptive equations (IV.37) appear to require the generation

of a derivative for implementation 
whenever either qi or qi is positive.

Of course, in the actual adaptation 
of c and 4, no derivative is

required. Since i = gi Aa i and i = d. - b. where Aa. and b. are
S1Since

constant, (IV.37) defines

gi =-m i v. el - i vi e (IV37A)

di - m s e1 -sel is iel

or, what is the same

g = - qi vi e - mi v i e  dt

0 (IV.37B)

d - qi si el - m s e dt

0

In (OV.37B) it is seen that the parameter estimates g and di for each

i aret available without recourse to differentiation.

lHowevor, inplemcntation of (TV.31) seems to require the availability

oif 7 and iP which are dc-pndent upon a differentiti on network if 9q

or q. is positivc. Nevertheless, the differentiation can be avoided
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by careful manipulation of the u. terms in (IV.31). The basic
1

notion here is, whenever *i and pi appear in a u. term, to place

the derivative part of 4. and ;i in ui_ 1 without implementing a

derivative network. The relocation of the derivative part of i

or 4. in a different u implicitely generates the differentiation.

This operation is accomplished by use of the identity

ev 1  v2  (evlv2) - evl 2

The results are found to be
n

h1nun = Co( k Vk+l - k Vk)Vk el + h nn
k=l

n

+~ cO(mk Sk+l - k Sk) Sk el
k=l

n n-1
hu. = c. e. l k (qk Vk-i+n-j- 1T Vk-i+n-j+l)

k=j i=n-j+1

j-1 n-j

+ k el Vk (mk cn-j-i k+itl qk cn-j-i vk+i)
k=l =0

n- +l

qk el Vk n-j-i-1 Vk+i+l
k=l i=0

n n-l

. c. qk el Vk Vk-i+n-j-1k=l+j i=n-j

n n-1

+ I . Ci el Sk (qk Sk-i+n-j -k Sk-i+n-j+l)
k=j i=n-j+l

j-1 n-j
+ 1 el s. (k Cn-j-i Sk+itl 9k Cn-j-i Sk+i)
k=l i=0
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n- +1

qk el Sk .L en-j-i-1 sk+i+l
k=1 i=O

(IV.38)

n n-1i
-_ c. qk el S + h.w.S I Ci k 1 'k Sk-i+n-j-1 + h ]
k=j+l i=n-j

n n

hlul kel kVk-1 lel1 : Cn-i-2 v 2 + i
k=2 i=0

n n

qk el Sk Sk-1 - q1 e 1 S 1 'n-i-2 
52+i

k=2 1=0

For reference with the use of the above, the definitions of w. are

repeated

h . w-i = Pi en-1 n-. 1
(IV.34)

PO = k0 - co (kn-1 - Cn- 2 )

p. = k. - c. - c. (k - c n-2 )i 1 i-i 1 n-i n-2

i = 0, i, 2, ..., n-2

It is noted that u has the desirable property that lim u = 0.
t-*o

To summarize, the theorem 4.4 is given.

Theorem 4.4 [CARROLL]

A full-order adaptive observer (IV.3A) can be constructed to

observe the state of and to identify the parameters of system (IV.2)

having unknown parameters in matrices A and B iff (A, C) is a completely

observable pair and, if the command input r is periodic, r possesses

more steady state frequencies than half the number of parameters

beina adapted.

T;'ea ampt lation i' naoc,:,n.pliahed by the atlgori thm (IV.'371) (dependent
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upon low-pass filtration of the system input and output. The filters

are given by (IV.29) or (IV.29A) and the poles of these filters may

be freely chosen independently of the observer eigenvalues whenever

a) k - a2 > 0

b) the filter poles are chosen so that all lie in

left half plane,and

c) the control input u is constructed according to

(IV. 38) and (IV. 34)

Example

The system of Section 4.2 is used here as on example of the

altered adaptive law. Let the system be as (IV.1*) and the error

equation .is

e -k2 1 0 el 1 1

2 = -kl 0 1 e2 + l + 2 r + u 2

3 0 0 e 3 3 [3 u 3

where

1  gl1 + a2  2 = d2 
+ 8 1

2 = g2 + a1  *3 = d3 + 83

03 = g3 + a0'

The collapsed error equation is

e + k2e 1 + kle + ke = (1X) + p(2 x ) + $3x

+ P( 2 r) + (p 3r) + "1 + u2 + u3
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The filters are given by

2 2 2 2
(p + clp + c0 )v = p2xl (p2 + clp + c0 )s = pr

(p2 + clP + 0 )v 2 = pxl (p2 + cp + c)s 2 = pr

(p2 + clP + 0 )v 3 = (p 2 + clP+ c0 )s3 = r

which may be generated by

v 0 
1 3

3 0 1 s 0

* + X

v1 = -Clv 2 -c0 3 + x1

s I = -C1s 2 -c0s 3 + x1

The input vector u is given by

u2  -CO( *1v2 + C2 v 3 + 2 s 3 ) + [k1 -c0 --c1 (k 2 -cl)]e 1

u 3  - 1 (c lV 2 + C0 3 ) 2c 2 + 22 v2  3

+ c 2 2s2 + c 2 3 s 3 + [k 0 -c 0 (k 2 -cl)]e1

According to (IV.37B) the adaptive laws are

gl = -q1 vlel - ml vle1 dT

0

2 = -q2 v2 e - m2  v2e1  dT

g 3 = -q 3 e 1 - m3  f v 3e1  dT

0
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d2 = - q2 s 2 e 1 - m2  s 2 e dT

0

d 3 = - q 3 s3 el - m3 s 3 e 1 dT

0

With this definition, v becomes

u2 = (-mlv2c1 + q1 1 1 - c0ml1 3 + q1c0v2 )el1v

+ (-m2 s 2 + q2 s l)c 2 e1 s2 + (-m2v2 + q2 v 1 )c 2 elv2

+ (m3s 3 + q 3s 2 )c 2 els3 + (-m 3v3 + q 3v2 )c 2 elv3

+ Co0 2 e1 s2 s 3 + c 0q1el 1 2 + 2e +[kl-cO-cl(k2-cl)

u3 =- c0el 1v 1(q 1v1 - mlv2 ) - cel 2(q2v2 - m2v3)

- cels2(q2s2 - m2s 3 ) + [k0 - c0(k 2 - Cl)]el

2 2
u -q lel 1 (c 1 2 + c0 v 3 ) - c 2 e(q 2 v2 + q 3v 3

- 2 - 2
-c2e 1 (q 2 s 2 + q 3 s3 )

The poles of the filters may be arbitrarily placed so long as

k 2 - C > 0.2 1

The observer configuration and transformation reconstruction is the

same as in Section 4.2.



CHAPTER V

SUBSEQUENT EXTENSIONS OF THE SINGLE-INPUT
SINGLE-OUTPUT ADAPTIVE OBSERVER - PART II

5. 1 New Canonical Form

Subsequent to the published appearance of the single-input single-

output adaptive observer in [71], and earlier in a different context in

[44], interest was generated among other researchers in the adaptive

observer concept. This chapter examines the published effort of those

researchers particularly in comparison with the adaptive observer of

Chapter IV.

The first modification of the adaptive observer was by Luders and

Narendra [62]. They proposed a transformation of the system that is to be

observed into a different canonical form than the output form of

Chapter IV in order to lower the order of the state variable filters.

Whereas, with the output-form observer, the filters are of the form

i
S- a. + O < i < n-2,i n-1 n-2 -s + an_s + ... + als + a0

in which n is the order of the system, the new canonical form allows the

state variable filter to be of the form

O <i <n- 1
s+ .' -

In order to compare the two schemes it is supposed that n parameters in

each oF .he input and system matrices of the system are to be adapted.

Then by the method of Chaipter IV there are required 2n-1 inteprators to

implement the filters whereas the system in the new canonical form

96
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requires 2n-2, certainly not an improvement! However,, if the number

of parameters being adapted is q, the method of Chapter IV requires

2n-4 integration to implement the filters as compared tc q- 2 integrators .

for the method with the other canonical form. Thus with the second

form there is a significant savings when the number of parameters being

adapted is small. But there is a penalty for this savings: the eigen-

values of the observer (which are the same as the roots of the denominator

polynomial of the state variable filters) must be both real and distinct

with the canonical form of Luders and Narendra where there is no such

restirction in the output form representation.

The canonical form proposed by [62] is

a 1 1 1 ...

n-2

n-3
A

* (V.1)

a 0
nxn

where A is a square diagonal matrix of order n-l having arbitrary but

real and distinct eigenvalues. A system (IV.2) may be transformed so

that the system matrix A is in the form (V.1) iff the system is completely

observable through its single output [62]. The elements ai of (V.1)
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represent the unknown parameters of the system.

It is noted that the unknown parameters of the system appear in the

left-most column of the transformed matrix in both the output form and

the form (V.1); this is a necessary requirement for any canonical form

used in an adaptive observer when the system output matrix is [C 0 0...0],

C / 0. The reason for the necessity is that the unknown parameters must

appear in the range space of the available measurements, so that the

parameters may be adapted by an algorithm dependent only upon available

measurements. That is to say, the unknown parameters must appear iniC C T I

where C is the output matrix of a system (IV.2) and the symbol 0 denotes

"the range of".

The observer of [62] is, analogous to (IV.3A), of the form

i = Kz + GCx + Dr + Hu (V.2)

in which x is the state of the transformed system (that is, transformed

so that the system matrix A of (IV.2A) is in the canonical form (V.1))

and K has the form

-X1 1 1 1 ... 1

0

0

0 A 
(V.3)

0

nxn

Then D and G are adjusted in (V.2) to make the error equation (IV.4)

asymptotically stable in the sense of Liapunov. The control u is synthesized

to enable this to be done.
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It is apparent that the approach in [62] is very like that of the

last chapter but with the exception that a new canonical form is used.

The new canonical form allows, however, one difference in the develop-

ment of Chapter IV. In the technique of Chapter IV, the vector error

equation (IV.3) is first converted to a scalar differential equation

(IV.6) and then integrated to a first-order differential equation (IV.14)

by use of the filtered state variables. The canonical form of [62]

allows the sequence of these steps to be meversed. By doing this the

awkward expressions in (IV.10) and(IV.11) are avoided. For a detailed

account of the procedure of [62], the reader is referred to the "adaptive

law" section of Chapter VI.

The same researchers have proposed yet another canonical form [63],

albeit a generalization of their form (V.1). This form is

T
n-1 q

n-2
(V.4)

n-3

* F

a0 nxn

where qT is a row vector of dimension 1 x (n-l) and F is a(known) square

matrix of dimension (n-l)x(n-l). A requirement is that the pair (qT F)

be completely observable. (V.1) is seen to be a special case of (V.4).

The advantage of (V.4) over (V.1) is that n-l of the observer eigen-

values, which are the eigenvalues of F, need not be both real and dis-

tinct as required by the form (V.1). The corresponding disadvantage is

that, when F is not diagonal, the resulting state variable 
filter in-

evitably requires more integrators for implementation, which puts the
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adaptive observer based upon (V.4) at a greater disadvantage over the

output form observer when the parameters that are to be adapted are

many, and lessens its advantage for few parameters.

Nevertheless, this author believes that the form (V.4) is a signi-

ficant contribution because of the requirement that (q ,F) need be com-

pletely observable, as opposed to the need, in (V.1), that q projects onto

each axis of n. As yet there has been no verification of the possi-

bility that significant simplification of the observer structure can be

accomplished by judiciously choosing F and q .T

One final point should be made in comparing the form (V.4) or (V.1)

with the output form of Chapter IV for developing adaptive observers.

That is the fact that, despite the existence theorems for transformations

to the diverse canonical forms, one must have available a literal trans-

formation matrix in order to implement the retransformation of the

observer output. In the output form, since the literal transformation

from companion form to output form is easily produced for any order

system, and since the van der Monde matrix couples the Jordan form to

the companion form, the problem of obtaining a literal transformation

matrix is simplified to the problem of finding a literal expression

for the eigenvalues of the system. Although this is a difficult chore,

it is perhaps a less difficult task than seeking for a literal transformation

- -l
directly from the equation A = T AT as must be done with the other forms

that have been suggested.

5.2 Gr. ater Filter Freedom

In the adaptive observer of Chapter IV and the diverse forms of

secti.on .... , the poles of the state variable filters must be the same

as the eigenvalues of the observer. Since the system in which the
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observer is to be used may contain noise, the requirement that the

filter poles be equal to the corresponding dbserver eigenvalues might

not allow so effective an adaptation as could be obtained if the eigen-

values of the observer and the poles of the filters could be independentZy

chosen.

Kudva and Narendra have proposed [64] an observer of the same form

as that in Chapter IV, i. e. having the observer matrix in output form,

and have shown that the poles of the filters may be independently

chosen from that of the observer eigenvalues.

This observation is proved by use of the Kalman-Yakubovich lemma

[48]. This lemma says that if

1) the square matrix K is a stable matrix,

and if

2) hT (sI-K)- d is positive real,

where h and d are vectors,

then there exists a positive definite square matrix P and a vector q

such that

K TP + PK - qq

and
Pd = h.

The development of the proof, that the poles of the filters can be

freely chosen, picks up essentially at equation (IV.12). This scalar

equation is then re-converted to a vector equation of the form

= KE + d 4 v (V.5)

where 1 
= el and D is the vector composed of the parameter differences

a i and i., O = I a" an 61 ... B ]T d is a vector with first
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element unity. The Liapunov candidate is now chosen as

1 {cT Pc + Tr } (V.6)
2

where P and r are both positive definite and r.is diagonal. The

differential of (V.6) along the trajectory described by (V.5) is

- E (K P + PK)c + c Pd P v + 4 r (V.7)

Therefore choosing

-= -1Pd (V.8)

(V.7) becomes
1i T T (V.9)
V -e (K P + PK)E (V.9)
2

By applying the Kalman-Yakubovich lemma the adaptive law is reduced to

S -lelv (V.10)

since £ = el. Equation (V.10) is similar to (IV.17).

The poles of the state variable filters are determined by d in the

sense that each N. has the form

n-i
N.i n-l n-2 n-3

s + d2s + d3s + ... +d n

On the other hand, the eigenvalues of the observer are the eigenvalues of

the matrix.K in (V.5), which is in output form. Thus the poles of the

filters and the eigenvalues of the observer are independently chosen.

5.3 Cyclic Multivariable Adaptive Observer

One may recognize the distinction between adapting (and identifying)

parameters in the system matrix A of a system (IV.2) and adapting (and

identifying) parameters in the input matrix B by means of the adaptive

observer. That is to say, the adapting of parameters in the system matrix
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A is accomplished by entirely depending upon a transformation T to place

A in a canonical form, while adapting parameters of the input matrix B is

accomplished by adapting parameters of T-B without regard to which T,

dependent only upon A and the chosen canonical form, has been chosen.

This being so, the single-input single-output adaptive observer can

readily be extended to a multi-input system (because no change is required

in selecting a T which delivers A into canonical form).

Luders and Narendra reported [65] just such an extension based upon

their previously reported single-input single-output adaptive observer

[62] (see section 5.1). In addition they noted that if the system has

multiple outputs and if it is possible to combine these outputs in a

manner so that the system is completely observable by this single com-

bined measurement, then the single-output multiple-input observer can

serve as a multivariable observer.

Not all multivariable systems can be observed through a single

output even though it is completely observable through multiple outputs.

In this, the system matrix A plays a crucial role [66]. Let 0 V b rn

and let range be denoted by the symbolq. Then the space eb is called

the cyclic subspace generated by b when

b = [A:6. (b)]

where [A: (b) (b) (b)+ A(b) + A2 a(b) + ... + An-l(b).

The space in is cyclic if there exists a b n such that = n

It is common usuage to say that A is cyclic in order to imply that n

is cyclic.

A matrix A need not be cyclic. A trivial example is

A= 0 , b = [bl b2]T 0
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Then Fb = ?(b) / 2

From the preceeding discussion, it is apparent that the multivariable

system of [651 is limited to cyclic systems.

One interesting observation made in [65] is the following. Suppose

that the system (IV.2) can be obtained, by transformation if necessary,

so that the uppermost row of the output matrix C is of the form El 0 0 ... 0],

suppose that there are unknown elements in the remainder of C, and finally

suppose that the system is observable through the first output yl (i.e.

the pair El 0 0 ... 0] and A are completely observable). Since the

state of the system can be determined through the single output y l , the

unknown elements of C may be determined, and this may be done adaptively.

Choosing

V = tr [(AC)T(AC)]

then V = -tr [(AC) T e zT ]  (V.11)

Sey e + eyhle
y y 1

where AC is the difference between the estimate of the output matrix

and the true value and e equals the error between the observer estimate

of the output and the output itself. Since el - 0 in (V.11), V is

negative semi-definite. Hopefully*this implies that AC+0, thereby

estimating the unknown values of C.

It is apparent that the cyclic multivariable observer [65] is of

th order and the output measurements are therefore generated even

though they are available for measurement. The next chapter describes

a reduced adaptive observer which generates the state of the system by

an observer of order dependent upon the number of output measurements.

*'Note -that V in (V.11) is only semidefinite on the space of V.



CHAPTER VI

THE REDUCED ADAPTIVE OBSERVER

6. 1 Comparison with Cyclic Adaptive Observer

The adaptive observer concept is a scheme for determining the

state of a system possessing unknown parameters when only the system

input, output, and form are known. The first reported adaptive

observer, for single-input single-output time invariant linear systems,

appeared in [44] and [71]. A modification of this observer to simplify

the adaptive dynamics was subsequently reported [62]. Both these

schemes exhibit the desirable properties that the eigenvalues of the

observer matrix may be freely chosen (an important capability for

systems with measurements corrupted by noise), that 
the simple Lyapunov

adaptive algorithm is implemented entirely on line 
during system

operation, that no derivative networks are required in the adaptiv

algorithm, and that both the state of the 
system under observation

and the unknown parameters of that system are progressively determined

regardless of the magnitude of parameter 
ignorance.

In [65] the single-input single-output adaptive observer 
was

extended to cyclic multivariable systems by 
introducing a suitable

transformation that converts the system to a single-output 
system.

Consequently the multivariable adaptive observer 
in this scheme is of

the same order as the system regardless of the number of system 
outputs

available, and the number of adaptive gains needed to implement the

observer algorithm equals at least the sum of the system order and the

number of input parameters being adapted.

105



106

In this chapter an adaptive observer for multivariable systems

is reported for which the dynamic order of the observer is reduced,

subject to mild restrictions given in Theorem 6.1, to 
n-p+l1 where n

is the order of the system being observed and p is the number of

independent output measurements. The observer structure which is

developed here depends directly upon the multivariible structure of

the system rather than a transformation to a single-output system.

The number of adaptive gains is at most the sum of the order of the

system and the number of input parameters being adapted. Moreover,

for the relatively frequent specific cases for which the number of

required adaptive gains is less than the sum of system 
order and

input parameters, the number of these gains is easily determined 
by

inspection of the system structure. This adaptive observer possesses

all the properties ascribed earlier to the single-input single-output

adaptive observer. Like the other adaptive observers mentioned, some

restriction is required of the allowable system command input to

guarantee convergence of the adaptive algorithm, but the restriction

is more lenient than that required by the full-order multivariable

observer in [65]. Finally, this reduced observer is not restricted

to cyclic systems as is [65].

6.2 Development of The Reduced Observer

The Problem to be Solved

An observable and controllable linear time-invarient dynamical

system described by

R = Ax + Br x(t 0 ) = x

y =x (VI.1)
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is considered, where x(t)E n is the state of the system, r(t)E c m

is the command input and y(t)c g P is the output. For purposes of

this chapter, (VI.1) is multivariable with n>p>l and m>l, the pair

(C,A) is completely observable, and the pair (A,B) is completely

controllable. A and B are appropriately - dimensioned matrices having

parameters of unknown value. C is a known matrix of dimension pxn.

The problem is to determine the state x of (VI.1) using only the

input r, the output y, and the structure, but not the values, of

matrices A and B. This is to be accomplished by a generating process

which duplicates as little as possible the state information available

in the output; thus the generating process is said to be a reduced

adaptive observer.

The reduced adaptive observer is of the form

= F& + Gy + Dr + Hu

o (VI.2)

where Ee f n-p+l is the estimate of the missing state information in the

output of (VI.1). The matrices G and D and the vector u are to be

adaptively manipulated so as to guarantee that asymptotically equals

a transformation of the unknown state variables in (VI.1). F may have

arbitrary distinct eigenvalues.

The state x can be ultimately constructed once the transformation

has been identified. Figure 6.1 illustrates the situation.

The Strategy of the Solution

The transformation T, indicated by T
-1 in Figure 6.1, allows the

system (VI.1) to be assumed to be in a form suitable for constructing

an adliptive law ba:zed upon Lyapunov synl:hesis techniques.



v1 E
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y A I

x Ax + Br T -1 COBSERVERE

* Output Transformation (c.f. Section 6)

FIGU 6. 1 AwTIVE OBSERVER SCHEW
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The strategy for solving the problem posed in the section labeled

"The Problem to be Solved" is to first determine the effects of para-

meter uncertainty in the system upon the accuracy of the observer

estimate of the system state. In the section labeled "The Error

Equation" an error vector is defined as a comparison between the

transformed system state and the observer estimate; subsequently an

error equation is derived reflecting the influences of parameter un-

certainty in the system. Theorem 6.1 of the next section defines suffi-

cient conditions under which (VI.1) may be transformed into a form

suitable for a Lyapunov synthesis technique. It is seen in this section

that with this form the error equation may be considerably simplified.

In the section labeled "The Adaptive Laq 'a Lyapunov adaptive synthesis

technique is used to derive an adaptive law. The essence of this method

is to define the adaptable parameters in such a way as to insure, by

means of a Lyapunov function, that the error equation is asymptotically

stable. Due to the fact that the resulting Lyapunov function chosen

here (as may be seen by equation (VI.18) and (VI.20)) is defined on a

noncompact manifold, Theorems 6.2 and 6.3 give sufficient restriction

upon the system input to insure that the error equation is asymptotically

stable on the compact manifold. Thus an estimate of the system state,

which asymptotically converges to the true system state, may be obtained

by inverting the original transformation of the system as indicated in

the appropriate section.

As an illustration of the technique of this chapter, an example

is given and a computer simulation of this example appears subsequently.

It is propitious to collect here certain definitions which allow

brevity in the remaining sections of this chapter. The motivations

for these definitions will be discussed in the appropriate locations.
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Definition 6.1

J n,p hereafter refers to the collection of all non-singular

square matrices T of dimension nxn having the following properties

T may be partitioned as

(p-l)x(p-1) (p-l)x(n-p+1)

T T12

T21 T22

(n-p+l)x(p-l) (n-p+l)x(n-p+l)

wherein a) TI2 = O;

b) each element in the uppermost row of T21 is independent

of any system parameter.

and c) the uppermost row of T22 is [C 0 0 ... 0] with C V 0.

When there is no possibility of confusion, n,p will be referred to

as J.

Definition 6.2

The "adaptive canonical form" refers to all matrices A of

dimension nxn having the following properties:

in partition

A A ll  12

A21 A22

a) A22 has the form



ai  1 1 1 ... 1

0

0

0

A
. n-p

0
(n-p+l)x(n-p+l)

where A is a diagonal matrix with distinct eigenvalues of
n-p

dimension n-p and al any real number,

and b) A21 has no more than n-I non-zero elements.

Definition 6.3

A square matrix A is said to be cyclic if there exists a vector

c such that the pair (c,A) is completely observable. Otherwise A is

said to be non-cyclic.

The Error Equation

The development of the error equation is somewhat similar to

that in [ 7] for systems with known parameters.

Without restriction if C is known, it may be assumed in (VI.1)

that C = [I 0] where I is a pxp identity matrix. For example,
p. p

C -1
the transformation x = [C' ] x transforms (VI.1) into this form for

any C, where H is selected to make the transformation matrix non-

singular. Then in partitioned form (VI.1) is written as



y = All + A1 2 w + Br

= A21 + A22w + B2r

y= x= w1
= uppermost element

in w (VI.3)
w w

where ye9 P- and we n-p+l. The dimensions of y and w indicate the

dimensions of the partitions in (VI.3). Since only w is to be estimated

by the adaptive observer, the dimension of the vector w is chosen as

small as possible while still retaining an element of the output, which

is essential for implementation of the adaptive law.

The adaptive observer is initially described by

= FC + (FK + G-KM)y - Ky + (D-KB )r + Hu (VI.4)

in which E n-p+l If at this point (VI.4) is taken as a hypothesis

for a generator of w, it will be shown that the error between w and a

function of E can be made to vanish by adaptively adjusting G, D, and

K. It will be subsequently shown that a suitable transformation of

(VI.3) allows (VI.4) to be rendered unto (VI.2).

Let an estimate of w be 5 + Ky. Then defining, as in [ 7], the

error

e = 5 + Ky - w (VI.5)

on the reduced space £n-p+l, it follows that.

= + Ky + Ky - w

= F( + Ky - w) + (F - A22)w + (G - A21)y

+ K(y - My) + (D-B 2 - KB )r + Hu

L " -

Defining M = M-A1 1 so that y - My = y - AllY - My 1 2 w + Br - y,

:hen = Fe + (F - A2 2 + KA1 2 )w + (G - A2 1 - KM)y (VI.6)

+ (D - B 2 )r + Hu
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in which it is seen that the reduced error depends upon both the

measurable vector y and the unmeasurable (save the first element)

vector w. It is impossible in a manner similar to the Luenberger

observer [3 , 4] to define F = A22 - KA1 2 , M = All, D = B2 , G = A2 1 '

and H = 0 to eliminate these dependences from (VI.6), since A and B

are here unknown.

Rather, it is desired to adaptively adjust the triple (G, D, K)

so that the coefficients of w, y, and r in (VI.6) eventually vanish.

Then if F is chosen with eigenvalues all with negative real parts and

if u -+ 0, the reduced error e vanishes.

The Transformation

If it is possible to show with respect to (VI.3) that a suitable

- -1
transformation matrix T exists so that T CT and that A =T AT is

~ -1
in adaptive canonical form with the partition element A22 = T22

(A22 - T2 1 A1 2) T22 having arbitrary specified eigenvalues, then

setting F = A22 in the equation (analogous to (VI.6))

S= Fe + (F- A2 2 + KA12 )w + (G - A2 1 - KM)y

+ (D - B2)r + Hu (VI.7)

permits defining K = 0. Doing this is advantageous since the influence

of w in (VI.7) is eliminated, the necessity of adapting K is removed,

and (since M is related to All) the influence of unknown elements of

A = T (A T + A T 21) is diminished.
11 11 11 11 12 21

As will be seen, under some restrictions on A a transformation T

can be found that satisfies the preceeding requirement and the additional

requirement that T11 = CT be independent of parameters of A. By virtue

of this latter requirement the outputs can be treated as transformed

state variables without specifically identifying T.
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For a suitable definition of u, the transformation which satisfies

these requirements is a member of the collection J and the transformed

- -1
matrix A = T AT is in adaptive canonical form. Theorem 6.1 gives

sufficient conditions on A for the existence of such a T j .

In the following theorem, let the symbol, [X] denote the range of

X , let Q E- C 0 0 ... 0], C V 0 be a row vector of dimension ix(n-p+l)

and let A22 denote the (n-p+l)x(n-p+l) partition of the adaptive can-

onical form

THEOREM 6. 1 [CARROLL]

Let the pair (A 1 2, A22) of the matrix A be conpletely observable.

Then there exists a T e J that transforms A into the adaptive canonical

form in which n-p eigenvalues of A2 2 may be almost arbitrarily chosen.

If in addition, Q[QT] C [AT ], then the n-p eigenvalues of

A22 may be arbitrarily chosen.

PROOF: The proof is in two parts: to show that a T E J exists that

puts A22 into adaptive canonical form with the desired properties, and

that A21 also satisfies the requirements of the adaptive canonical form.

Suppose that (A2 2 , A1 2 ) of the matrix A is completely observable.

According to the definition of , the (n-p+l) x (n-p+l) partition T22

of T E j is arbitrary except for the uppermost row which is

Q -[C 0 0 ... 0], C 1 0. Since A2 2 = T22 (A2 2 - T2 1 2 )T 2 2 where

T21 is the (n-p+l) x (p-l) partition of T c , it must be shown that

A22 is of the form required by definition of the adaptive canonical

form, and that by choosing T2 1the n-p eigenvalues can be freely chosen.

It has been shown [62] that there exists a matrix T22 of the required

form which transforms a cyclic matrix P into A22 + L, where L is a
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matrix having only the leftmost column non-zero, if and only if (Q,P)

is completely observable. In the present context, P A22-T21 A 12. Thus

if by choice of T21 , P can have n-p eigenvalues equal to the desired

eigenvalues of A22 and if (Q,P) is completely observable for this choice

of T2 1 , then L = 0 (except perhaps for the element in the upper left

corner, which is irrelevant by definition of the adaptive canonical form).

Suppose first that ( [QT]cC [AT2]. Then for any choice of T21

the pair (Q, A22 - T21A 12) is completely observable and at least n-p

eigenvalues of A22 - T21 A2 can be arbitrarily chosen [67]. Therefore

~-1A 22 = T22 (A22 - T21A2 )T22 is in adaptive canonical form with arbitrary

eigenvalues for some choice of T2 1 and T2 2 of TE .

Suppose now that Qa [QT] Q[AT2 ]. Since the pair (A1 2 ,A 2 2 ) is

completely. observable, at least n-p eigenvalues of P = A22 - T21Al2 can

be arbitrarily chosen but (Q,P) may not be observable. A trivial exten-

sion of theorem 4 of [68] says that the set -- I{T2 1 1(A2 2 - T2 1A12, Q)

not observable} is either an empty set or a hypersurface in the parameter

space of T21 when the pair (A22 , A12 ) is completely observable. Con-

sequently A22 is in adaptive canonical form with almost arbitrary eigen-

values for some choice of T22 and T21 of T E j, since the choices of

T21 is limited to those T21 V . Thus the first part of the theorem

is proved.

Now it is shown that A21 has not more than n-l non-zero elements

with the appropriate choice of T e j . In the (n-p+l) x (p-l)

partition T21 of T E j there are (n-p+l)(p-l) - (p-l) = (n-p)(p-l)

parameter-dependent elements. At most n-p of these elements are needed

to specify the n-p eigenvalues of A22 - T21AI2. Therefore, at least

(n-p)(p-l) - (n-p) = (n-p)(p-2) parameter-dependent elements of T21
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are unspecified. Each unspecified element may be specified so as to

make an element of -1 (-T T A T --T AT

21 T22 (A 2 1 T1 1 + A2 2 T2 1  21T 1111 11- T21A 2T21

zero. Since there are at most (n-p+l)(p-l) non-zero elements in A1 2,

eliminating (n-p)(p-2) of them leaves at most (n-p+l)(p-l) -

(n-p)(p-2) = n-i non-zero elements in A2 1 . Thus the theorem is proved.

Remark

The stipulation that the eigenvalues are "almost" arbitrary when

(QT(AT ) may be illustrated as follows. Let

all 0 0

A22 = a21 a22 a23 A1 2

0 a32 0 a32 0, a21 V 0

Then the observability matrix of the pair (Q, A22 - T21A 2) is

1 0 0

all 0 -t11

2 t (t
a1 1  -a 3 2 tll tll 31-all

From the observability matrix it is seen that the pair (Q, A2 2 -T 2 1 A1 2)

is completely observable for any choice of T21 except tll = 0.

This implies there exists a hypersurface of dimension unity for which

the observer eigenvalues may not be located.
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COROLLARY

If in addition to the requirements of the theorem the pair (Q,A22 )

is completely observable where Q = [C 0 0 ... 0] , C O0, then the

uppermost row of the partition T21 of T c f may be chosen as zero.

PROOF:

The proof of the theorem requires that (Q, A22 - T2 1A1 2 ) be

completely observable for some choice of T21. If (Q, A22 ) is observable,

then (Q, A22 - T21 A 12) is completely observable by the trivial choice

T21 = 0. However, since n-r eigenvalues of A22 - T21A12 are to be

arbitrarily chosen by choice of T21 and at least (n-p)(p-2) elements

of A21 are to be chosen zero by choice of T2 1 , it generally requires

all but p-1 non-zero elements of T21. Generally these elements must be

parameter-dependent; thus only the p-1 parameter-independent elements

appearing in the uppermost row of T21 may be zero.

The Adaptive Law

It is assumed that (VI.3) satisfies the conditions of Theorem

6.1 and consequently may be written as

y = Ally + A12w + Blr

w= A21 + A22w + B2r

Y = (VI.8)

where A is of adaptive canonical form and the scalar w is a linear

combination of wl and elements of y. The scalar w is constructed

externally to the system in accordance with the upper row of T21 so

that the transformed sy:;tcm output matrix is in the form assumed in

(V[.3). According to the corollary, rj = w1 if (Q, A22) is completely
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observable.

F in (VI.2) is taken at

- I  1 1 1 ... 1

0

0

F= 0 (VI.9)

A
n-p

0 (n-p+l) x (n-p+l)

for X1 any real number distinct from the distinct eigenvalues of the

diagonal matrix An- p . Let hlul = (a + -gl)W1 ~1W and (VI.7)

may be written

e= Fe + -y + r + Hu (VI.10)

e(t0)= eO

where = G - A21 and ' = D - B2.  The other elements of u will be

defined later.

The adaptive law for 4 and ' in (VI.10) must be defined in terms

of only those variables which are available for measurement. Consequently

(VI.10) will be manipulated in a way to obtain a scalar equation,

equivalent to (VI.10), for which such an adaptive 
law can be formulated.

Let the (n-p+l) x (p-l) matrix V be defined as

-T

V = - - - - (VI.11)

(pI-A) - 1 h-T

in which p means " d_ and hT = [1 1 1 ... 1] of appropriate
d the n- ( ) s (p

dimension. Clearly the (n-p) x (p-l) submatrix (pI-An-p)-lI is
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composed of filtered output variables.

In a similar manner, let the (n-p+l) x m matrix S be defined as

T

S = (VI.12)

(pI-A)
-1 h2 r

T

T
in which h2 = [1 1 1 ... 1] of appropriate dimension. It will later

be shown that the adaptive law requires at most n-l elements of V.

Consider now the lowermost n-p scalar equations of (VI.10). The
.th
ith equation, 2 < i < n-p+l, is

p-1 m
e. =-.e. + ij Yj. + ij rj + h.u. (VI.13)

j=1 j=1

If in (VI.13) hui., 2 < i < n-p+l, is defined as

hlu1 =

p-1 m .

Si j1 ij jI ij (VI.14)

2 < i < n-p+1

then (VI.13) is a separable differential equation for each i. To show

this, the identities for each i

p-1 d p-1 p-1
I $ vi Oidtj vij - ij i

j=1 j=1 13 j= 13

m m m
I j sij = d sij .. ] - 4,..j s..

are needed. Usin them (VI.13 becomes

are needed. Using them, (VI.13) becomes
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p-1 m
e- = -e. + . L ij yj + I .ij r

i=1 j=1

p-1 m

L .ij..- i
j=l j=1 i.

d p- m
+ I ..ij v.. + 1 ..ij sj..dt ji 1] 11 1)

j=1 j=1

Substituting (VI.11) and (VI.12) into the above yields

p-i m p-i m
d-[ev.. s -e - v.. - j ]
dt iij 13 i 13 1 . 3 1j=1 j=l ]1 j =l

(VI.15)

(VI.15) is integrated to yield

p- m
ei = .. v.. + i.. s..ij + O. exp[-Xit]=1. 1] (VI.16)

where
p-1 m

i = e9 - I .(t) v..(t) - ij(t) sij (t)
j=1 j=1

at t = t o.

Equation (VI.16) is applied to the first equation of (VI.10)

giving
n- +1

el e + tr V + tr TS + 1 .y +. exp [-Xit] (VI.17)

It is thus seen that (VI.10) and (VI.17) are equivalent, with

definition of u in (VI.14), but with the difference that (VI.17)

is a scalar equation. The adaptive law, dependent upon measurable

variables only, may now be formulated.

A Lyapunov function candidate is selected as

V = e2 + 62 2 trA T) + tr (i @ T ) (VI.18)

in which A and I' are matrices having no non-positive element and the

symbol( represents element-by-element multiplication of matrices.
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The time derivative of (VI.18) along the trajectory described by

VI.17) is

2 = -A le2 + (62 + pel)

+ tr T (A® P + Vel) + tr YT(r 'T + Se 1 )

(VI.19)

n-p+1
+ +I 8i exp [-Xitle
i=2

Then (VI.19) can be made

2 n- +1
2V = -lel + i. exp[-A.t]e1  (VI.20)

i=2

whenever D1, $, and ' are defined as

6 I = -ypel1 1 1

A 0 =- Vel (VI.21)

r = - Se 1

Equations (VI.21) may be also written in scalar form as

1 - ypel ='1
1

j =6, v.. ei =-g..
ij 6 i el -ij (VI.21a)

ij - --- s e = - d..
ij 2j  1 1 1]

ij

for each i, j in their proper domains. Equations (VI.21) or (VI.21a)

are the adaptive laws sought.

V is eventually negative definite whenever all the eigenvalues

-X - ... , -n-p+ 1 have negative real parts since 
then the initial

condition disturbances 68 decay exponentially. Consequently el is

asymptotically stable in the sense of Lyapunov.
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It is desired that lim e(t) = 0 in order for the adaptive observer

to generate the system state. If some restriction on the input vector

r is imposed, it can be shown that el + 0 implies e - 0.

To see this, consider the limiting value of (VI.17) which is

o = tr cT V + tr TTs + Yp (VI.22)

If by suitably restricting r, or equivalently V, S, and y p, so that

(VI.22) implies in the limit that = 0, T = 0, and = 0, then

(VI.10) is

e = Fe

implying e + 0 since F is an asymptotically stable matrix. The above

equation follows from (VI.10) since ui, 2 < i < n-p+l, is zero in the

limit as evident from (VI.14) and (VI.21).

The following theorems define the restriction on r guaranteeing

4 = 0, = 0, and ¢l = 0 for el = 0 when the steady state r is periodic.

THEOREM 6.2 [CARROLL]

Let q be the number of adaptive parameters in the observer

(VI. 2), let the observer matrix F have eigenvalues all with negative

real parts, and let the system (VI.3) be completely controllable

through each column vector in the input matrix B. If the collection

of inputs {rI, r 2 , ... , r m } possesses no fewer than [( q )/2] distinct

steady-state frequencies then (VI. 2) generates the system state.

PROOF:

The proof is by induction. It is shown [71,62] that the theorem

holds for m=l. Assuming that the theorem holds for m.ml, it will be

shown that it holds for m=m 1 +l.

Let each y, 1 < j < p,be related to the inputs rl, r2, ... , rml+
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by

ml+1

Yj = hjk(p) rk
k=1

where p E d/dt.

Then (VI.22) is

m+1 p-1 n-+1 p-1 hk() ik
0= I {$ + ..ij hjk(P) + ( + )

k=1 j=1 i=2 j ij P+i

+ Jl hpk(P)l rk (VI.23)

Since, by (VI.20), el -+ 0 and, by (VI.21), ij, . ij, and 1 are

constants, (VI.23) may be written

H1 (P)rl + H2 (p)r 2 + ... + Hml (p)rm = - Hm +1(P)rm +1 (VI.24)
1 m1 1

where H(p) are the terms in brackets in (VI.23) for each k, 1 < k < ml+l.

Let the number of distinct adaptive coefficients in the left side of

(VI.24) be ql and the number of distinct adaptive coefficients in H ml+l(

be q2. By definition q=ql + q2. By assumption {rl, r 2 , ... , rml 1

contains [( ql )/2] distinct frequencies and the left side of (VI.24)

is zero since H1 (p) = H2 (p) = ... Hml(p) = 0 and

0 = Hml+l(P)r ml+1

Therefore only the distinct coefficients of H ml+(p) are

non-zero. By inspection of (VI.23), these are the lik terms which are

q2 in number. Thus by [71,62] if r m+1 contains at least [( q2 )/2]

distinct frequencies (i.e. distinct from the frequencies of

{rl, r2, ... , r}) then Hm +1(p) = 0. Consequently {rl, r2, ... , rm +1
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containing [( q )/2] distinct frequencies implies that HI(P) = H2(P)

... = Hml+1(p) = 0 which was to be proved.

THEOREM 6. 3 [CARROLL]

Let the conditions on the observer (VI.2) be as stated in Theorem

6.2, but let there be no requirement upon the column vector of the

input matrix B of the system (VI. 3). Then it is sufficient that each

input ri c r each possess [( q )/21 distinct steady-state frequencies

in order for (VI.2) to generate the system state.

PROOF:

The proof follows from equation (VI.23).

When any hjk(P) is zero or linearily dependent, then the parameters

ij and .ij are not fully "coupled" with each of the inputs vk of

equation (VI.23). This in general requires that frequencies must 
be

assigned to each rk depending upon the degree 
of freedom in the

coefficient of rk in section (VI.23). Assuming complete"decoupling"

of each 4 and * with respect to each vk, it is clearly sufficient that

each vk must possess [(q )/21 frequencies from equation (VI.24).

Remark:

The sufficient conditions stated in Theorem 6.3 are noted 
to be

very conservative as a cursory glance at the proof of this theorem

reveals. It is suspected by the author that under the conditions of

Theorem 6.3 the requirement for state generation may be liberalized to

allow only the collection of inputs {rl, r 2 , ... , rm} possess [( q )/2]

steady-state frequencies, as in Theorem 6.2, but with 
the additional

restriction that the frequencies must be assigned in some way depending

upon the controllability structure of system (VI.3).
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At the time of this writing, however, the above speculation has not

been proved.

Reconstruction of the System State

The observer (VI.2) generates the state of the transformed system

(VI.8). To obtain the state of the system (VI.1) the observer estimate

E must be transformed by

x= T

where x is the estimate of the system state x. T cannot be immediately

written since it contains unknown elements of A; however, sufficient

identification of the system matrix A occurs as a result of the adaptive

laws (VI.21) to allow T to be determined. Consequently, the time-

varying matrix T(G,D) may be constructed so that

x = T(G,D)[ &x =

is the observer estimate of x. Since lim T(G,D) = T, the state x is

obtained.

Theorem 6.4 summarizes the results of this Chapter

THEOREM 6.4

The state of system (VI.1) may be adaptively constructed by the

observer (VI. 2) by employing the adaptive algorithm (VI. 21) and the

control vector u of (VI.14), both subject to definitions (VI.11) and

(VI. 12) if

a) in (VI.1) the partition (A1 2 , A 2 2 ) is completely

observable, and
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b) the number of distinct frequencies in the system

conmmand input r is no fewer than [( q )/2] where

q is the number of parameters to be adapted. More-

over, the number of parameters to be adapted is not greater

than n plus the number of input parameters.

Example

A specific example is given here to illustrate the design of a

reduced-order adaptive observer.

Suppose the system is represented by

l -a3 1 0 0 x1  0 0

x2 -a 2  0 1 0 2 bi 0

+ r

x3  -al 0 0 1 x3  0 0

X4 -a0 0 0 0 0 b 2

(VI.l*)

y l 1 0 0 0 x

Y2 0 1 0 0 x2

y 3  0 0 1 0 x3

x4

with a0 , al, a2 , a 3 , bl, and b 2 unknown constants. (This is, of course,

not the most general input matrix.)

It is seen that (A1 , A2 2 ) = ( 01 [D I ) is completely
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observable. Therefore there exists a non-singular square transformation

T E i that puts (VI.1*) into adaptive canonical form. Such a matrix is

1 0 0 0

0 1 0 0
T=

0 0 1 0

2
al - 1
1 2 2

Note that the uppermost row of T21 is zero since ([1 0], A2 2)

is a completely obsetvable pair.

Then

Xl -a3 1 0 0 0 0

2 -a2 0 1 0 x2  b 0 r

0 -X2 1 x0 0 r

3 21
T X2-al 0 -x b X2  b

(VI.8*)

1 0 0 0

y= 0 1 0 0 x

0 0 1 0-

where T = ala3 - a2 X -a

From the form of (VI.3*) it is seen that

021 = 21-

2  (VI.10*)
21 = d21 - bl 2

22 = d22 - b2
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is to be adapted. Note that only 4 parameters need to be adapted for

which in (VI.1*) there are 6 unknowns.

The adaptive laws are

21 6 21 1el
1

22 v 22 e l

22
( VI. 21*)

1 1
21y21 21 e

21

d - s e
22Y22 22 1

in which e = - Y3, and the reduced observer is

[ I 1  1  1 - 2 Y

2 0 g21 22J

S 0 r1 u1
+ + (VI.2*)

d21 d22 r2 u2

with

Ul= + ( +2)Y3

u2 = €21v21 + ¢2 2v2 2 + 921s21 + 22s22 (VI.14*)

1 2 1 2 1 2 1 2
6 V21 6 22 - 21 y 22 1
21 22 2 21 22

and

V2 1 
+ X2 v2 1 = Y1

(VI.11*)

22 + 2 v22 Y2
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s21 + X2 21 =  1l
(VI.12*)

s22 + 12S22 = r2

The observer eigenvalues, -X 1 and -12, are arbitrary but distinct

negative numbers.

The state x of system (VI.1*) may be constructed by the equation

x = T(G,D)

where

1 0 0 0

0 1 0 0

T = lim t(G,D) = lim 0 0 1 0
t> t) 3 2

22 2 2) 2 1

Computer Simulation

The system of section "Example" was simulated on a digital

computer. The system parameters assumed unknown were b2 , a3, a 2 1 ,

and a0. The following values were chosen for simulation:

a 0 = 15 b I 
= 1 = 1/10

a, = 33.5 b2 = 2 622 = 1/250

a2 = 26.0 11 
= 10 =21(0) = 180.25

a3 = 8.5 12 = 5 22 (0) 
= -100

The inputs rl and r2 were chosen as sine waves with frequencies of

3.5 and 5 rad/sec. respectively. The behavior of the two adaptive

parameters 021 and 22 are shown in Figure 6.2 and the (transformed)

observer error e2 is shown in Figure 6.3.
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CHAPTER VII

UNRESOLVED QUESTIONS

Due to the newness of the adaptive observer concept and the apparent

richness of this concept, there remains much to be done with the adaptive

observer. With reference to Chapters IV-VI, the thrust of investigation

has been to attain greater simplicity in design (Chapters V and VI)

and to allow greater freedom in eigenvalue selection of the adaptive

network (Section 5.2). Certainly even better results may be attained in

this endeavor; however there are a number of different questions that

should be resolved. This chapter discusses some of them and, in the

section entitled "Design Considerations", the complexity of choosing gain

parameters is illustrated by simulation examples.

7.1 A Separation Theorem

Throughout the literature concerning the adaptive observer, the

technique has been to require the eventual generation of state of an

unknown linear system given the input and output measurements of the

system and its structure. This is essentially an open-Zoop process.

Since in the full order observer the unknown parameters are identified

as a by-product of adaptation, the adaptive observer may be placed in a

closed loop in order to control the system. In this case both the state

of the system and the observer estimate of the parameters of the system

are used in the feedback control law. Notwithstanding the certainty

that the adaptive observer eventually becomes a form of the Luenberger

observer and therefore comes to possess the closed loop properties of the

132
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Luenberger observer (see section 2.4), it has not been shown that such a

feedback system is stable throughout the adaptive process.

The difficulty in showing this lies in the fact that, before adapta-

tion is essentially complete, the observer is both time-varying 
and non-

linear; consequently a simple pole location analysis in 
order to determine

over-all system stability cannot be made as was done with the Luenberger

observer. Rather, investigations into this subject must employ a more

sophisticated stability analysis.

7.2 A Functional Adaptive Observer

Should the observer be used in a closed loop to generate 
a control of

the form r = a Tx, it was seen in Section 2.5 that a Luenberger functional

observer could be constructed of order v-1 to generate r rather than the

complete state vector x. Since v may be much smaller than n-p, this re-

presents a great savings in complexity.

An adaptive functional observer might therefore considerably reduce

not only the order of the observer but also the complexity of the associated

adaptive law. It is the complexity of the adaptive law - in terms of the

number of integrators and number of multipliers needed to construct the

law - that is a serious factor in applications.

However, the theory of the functional observer must account not

only for the generation of a linear function a x, as the Luenberger

linear function observer does but also for the identifiability of the

parameters associated with a . The reason for this is that, in general,

the vector aT is dependent upon the unknown parameters of the system when

r = Tx is used for many controls. Consequently the functional adaptive

ol)server must he defined on the adjoined space of the system state and

the sys-tem parameter space. No attempt, to the author's knowledge, has
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been made to develop a functional adaptive observer.

7. 3 Canonical Forms

As previously remarked in Section 5.1, the more general canonical

form offered in [63] offers exciting investigation in the adaptive

laws resulting from the many choices of canonical forms.

In addition to the various improvementd, if any, in the quality

of different adaptive laws synthesized, it is hoped that a general

theory will be developed whereby one may determine a priori at least

some of the qualities of adaptive laws in relation to the canonical form

chosen.

7. 4 The Effects of Noise

This dissertation has emphasized the importance of the observer,

whether of the Luenberger kind or the adaptive kind, to generate the

state of a linear system in the presence of noise. However, there has

been no reported work with the adaptive observer in terms of its ability

to do this. Investigations are needed to determine the degree of

susceptibility of the adaptive law to noise, to determine the relative

merit of the different canonical forms proposed in regard to this degree

of susceptability to noise, and the effects of observer, and filter, pole

placement in minimizing that susceptability. By susceptability, one means

the bound on the region for which the error between observer estimate

of state and the state of the unknown system cannot be guaranteed to

diminish, and the effect of noise upon convergence rate outside this

bound. (That, in fact, a bound exists has been demonstrated in relation

to the model-reference Liapunov adaptive problem).
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7.5 Modeling

One may wonder what happens to the adaptive observer when an output

of a non-linear system is substituted for that of a linear one, or if an

output of a system of higher order than the (full order) adaptive

observer is substituted. That this is an important question is indicated

by the observation that few, if any, real systems are linear, and that

many real systems are of unknown order.

It has been maintained by some that the resulting configuration of

the adaptive observer in each instance discussed above will be the

"best" linear model of the process being observed. It is unknown to

the author whether in fact this occurs. The difficulty in determining

this is the vagueness of the term "best linear model". Nevertheless,

modeling is an important factor which should be the subject of an interest-

ing investigation.

7.6 Design Consideration - Speed of Response

As has been previously noted, one of the salient features of the

Liapunov synthesis technique is that the resulting adaptive algorithm

is guaranteed to converge regardless of the magnitude of parameter

ignorance. In addition, this algorithm is guaranteed to converge

regardless of the choice in magnitude of the positive adaptive

gain constants, appearing in Section 4.2 as ms /mi and in Section

6.2 as r and A.

However, as the third chapter makes evident, this choice of the

adaptive gain constants affects the rate of convergence of the parameter

estimates and the error between state estimate and system state. In

the context of the adaptive observer, the accelerated adaptive laws
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due to Phillipson and Monopoli (See chapter III) cannot be implemented

because of the requirement that lim u(t) t 0. Consequently the choice

of the adaptive gain constants r, A, or ms/m i play a significant role

in determining the rate of convergence of the observer estimates to

their proper values.

However, the criteria for determining a "good" choice of gain

constants is not defined. It is difficult to do so because of the non-

linear nature of the formulation of the adaptive observer, and the

consequent interaction between the various other constants to be

chosen in the observer.

Other constants which may affect the rate of convergence are the

observer eigenvalues, the filter poles, the magnitude and frequency

of the system input, the initial conditions upon the parameter ignorance,

and the amount of noise inherent in the measurements.

To gain some understanding of the relationship among these various

factors and the rate of convergence, the example of Chapter VI has been

investigated in the absence of noise by computer simulation. The

remainder of this chapter reports some of these results. It is not

intended that these results establish a relationship for all adaptive

observer structures or even to establish "rule of thumb" design

techniques; rather these results are given to indicate the complexity

of the problem and to provide a starting point for future investigations

into the relationship between rate of convergence and parameter gains.

In Figure 7.1, the parameter estimate 422 for the plant parameter

a - 3 of the example in Chapter VI is plotted against time and as a
1 2

function of the gain constant 621 when 421 is the only parameter being

adapted (the other being preset to their proper values). The observer
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eigenvalues were -4 and -5 and the input was a square wave of

frequency 3.5 and 5 rad/sec and magnitude 50. It is noted that for 1/621 =

100 the curve decays almost exponentially, but for larger gains

there is some oscillation. The convergence time for all choices of

gains is about 3 seconds.

In Figure 7.2, only the input parameter *22 is adapted. The

data for eigenvalues and input is as before. It is noted that even

for low gains the behavior is oscillatory, yet faster in convergence

than the plant parameter. This behavior characterizes the input

parameter behavior. One additional point: for high gains of 1/y 2 2

the convergence time increases. This implies an existence of an

"optimal" gain.

The major observation drawn from Figures 7-1 and 7-2 in that,

with but one parameter being adapted in the example of Chapter VI, the

reduced order observer, the convergence rate is very acceptable for

a wide range of adaptive gains.

When two parameters are adapted simultanteously the situation

is more complicated. This stems from the fact that interaction between

the two parameters affects the rate of convergence. In Figure 7-3

both 21 and 22 are simultaneously adaptive; the curves shown here

are the effect on the plant parameter p2 1 as the plant gain constant

is changed but the input gain constant, for 22' is held constant

at 1/y 2 2 = 10. The input is a sine wave of frequency 3.5 and 5.0

rad/sec. and the observer eigenvalues are -5 and -10. Figure 6-2

may also be compared with these. In this case, there is a radical change

in the behavior of 21 as a function of the corresponding gain. The

better rain seems to be for /y 2 1 = 500. The fact that the curve for
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1/621 = 1000 is slower to converge indicates the existence here of

an "optimal" gain.

To explicitly see the effects of the interaction between gains,

Figure 7.4 is offered. This is the plot of 22 corresponding to

Figure 7.3. It is emphasized that in Figure 7.4 the input gain con-

stant 1/Y 2 2 is the same for each of the curves; the difference in the

curves illustrated here is due entirely to interaction with the change

in plant gain 1/621. It is seen that the effects of interaction are

marked.

The insight to be gained from Figures 7.3 and 7.4 seems to be

that convergence time is much longer for two adaptive parameters, that

there is marked interaction between the two parameters, and that an

optimal choice of gain exists in order to minimize convergence time.

In Figure 7.5, the plant parameter 21 is shown when the plant

adaptive gain 1/621 = 50 but the input adaptive gain 1/y 2 2 changes.

The input is as in Figures 7.3 and 7.4, but it is warned that the two

curves shown in Figure 7.5 are not exactly compatible since the

initial condition on a22 was also increased when l/Y 2 2 = 50. Never-

theless, the figure tends to indicate that a faster convergence rate

is obtained if the ratio y2 2 / 6
2 1 is high.

The effects of changes in the quality of system input frequency

is shown in Figures 7.6, 7.7, and 7.8. In Figure 7.6, the plant

parameter 42 1 is shown for an input adaptive 
gain 1/y 2 2 = 10 and

plant adaptive gain 1/621 = 50 when the system input is either a sine

wave or a square wave of frequency 3.5 and 5 rad/sec. and magnitude of

50. The plant eigenvalues were -5 and -10. It is seen that the square

wave input forces P21 to converge faster than the sine wave input for

these choices of plant and input gains. The same effect is seen in
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22' not shown here.

Contrarily, for gains in which 1/621 = 1000 and 1/y 2 2 = 10,

Figure 7.7 shows that the sine wave input converges faster than the square

wave input. The curve for the square wave input is much more oscilla-

tory than the sine wave input; no such effect is seen in Figure 7.6.

The same effect is seen in Figure 7.8 for the input parameter *2 2 :

for gains 1/621 = 1000 and 1/Y2 2 = 10, the sine wave input forces

22 to converge faster without as much oscillation as the 
square

wave input, unlike the case for which 1/621 = 50 and 1/y 2 2 = 10.

As a result of Figures 7.6, 7.7, and 7.8, it may be concluded that

the convergence rate is frequency dependent and that the choice of

"good" adaptive gains depends not only upon the interaction between

all the gains but also upon the frequency of the input signal.

Other investigations not illustrated here tend to show that

the convergence rate is very dependent upon the choice of observer

eigenvalues X..

These studies serve to emphasize both the need and the difficulty

of finding a rule whereby a choice of adaptive gains may be chosen

in order to yield an acceptable convergence time. Lacking such a

rule, it is a very difficult task, when there are many adaptive gains

to be chosen, to choose the gains because of the interaction between

all the gain constants, between the gain constants and the input

frequency, and between the gain constants and the observer eigenvalues.

The effects of initial conditions (dependent upon parameter

ignorance) of the adaptive integrationhave not been investigated.
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Figure 7.5

Dependence of Rate of Response of <21 upon Gain Ratios
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