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CHAPTER I
THE BEGINNING

1.1 Techniques of System Control

The wnderlying notion of modern control system theory is the
acceptable contrel of a process.that has the inherent capability of
being influenced. The process is mathematically described in a way
so as to potentially define its behavior completely for any choice
of control stimulus; the collection of all variables for defining
the process behavior is called the state. The primary objective of
control system theory is to define the evolution of a control stimulus
in order to cause the evolution of the process state to behave in a
desired manner.

In some cases, the control may not be dependent upon the system
state. However, for most instances tﬁe control does depend upon the
system stafe and consequently at least some of the variables in the
state evolution must be measured in order to cﬁnstruct the evolution
of the control: such a situation is'called feedback econtrol.

For a significaﬁt percentage of applications, it is either
impossible or undesirable - perhaps from a cost standpoint - to measure
all the state variables called for in the control law. In this insfance;
the choice is either to alter the critérié defining the acceptability
of the state behavior so as to eliminate the necessity of measuring

the unavailable state variables, or to find a simple way to make the



-2-

wavailable measurements that are needed. Moreover, with the presently
known criteria of system control, the conditions for which the desired
behavior of the system state can be made to depend only upon available

measurements are not always clearly understood.

1.2 Purpose of Work Herein Reported
This dissertation adopts the second choice noted above, namely
the simple generation of state from the available measurementf, for

use in systems for which the criteria defining the acceptable state

behavior mendates a control that is dependent upon wnavailable measure-

-~

At e .
ment. (It is assumed that the system structure allows such a genmeration

of state.)

To be sure, this approach has been actively investigated pre-
viously [1]-[4] for systems in which the parameters are known. This
dissertation proposesJan\ adaptive means for determining the state
of a linear time-invariant different:;:val system having unknown parameters
by using only available measurements. This procedure is called an
adaptive observer,

The adaptive observer not only generates the state of a linear
time-invariant dynamical system having unknown parameters but also
simultaneously identifies all or some - dependent upon the cbserver
structure - of the system parameters.

The adaptive cbserver possesses some noise suppression qualities,
dependent upon a free choice of observer eigenvalues., In the absence
of noise the adaptive algorithm employed is guaranteed to converge to the
proper values regardless of the magnitude of parameter ignorance
or of the magnitude of the adaptive gain constants selected, and

requires no derivatives of output or of other measurements



for implementation. There is inherent freedom in adjusting the
adaptive rate of convergence. Some restriction, however, is placed
upon the system input to insure parameter identificationm,

The adaptiwve cbserver appears in either a full-order version
(that is, of same dynamic order as the system being cbserved, discount-
ing the adaptive algorithm) for single-cutput systems or a reduced order
cbserver for multiple output systems. The full-order adaptive observer
completely identifies the system parameters and generates as well the
entire state of the single-output system. The reduced-order observer
generates the remainder of system state information needed to completely
construct, along with the output information, the state of the system,

and partially identifies the parameters of the system.

1;3 Organization of the Dissertation

The major contribution of this dissertation appears in Chapters
IV and VI. Chapter IV has appeared substantially in [71] and Chapter
VI in (72], In these two chapters, the single-input single-output
adaptive observer and the reduced adaptive observer is developed.
Chapter V surveys the investigations into the adaptive observer by
other authors undertaken subsequent to the initial report by this
author of the material in Chapter IV. Chapter II examines the basic
ideas for the non-adaptive (Luenberger) cbserver for linear time-
invariant dynamical systems with known parameters, and in doing so
lays a foundation for the comstruction of Chapters IV and VI. Chapter
III is a survey of the Lyapwnov synthesis technique. Lyapunov synthesis
is employed in the adaptive algorithm for the adaptive observer. This
survey has appeared as [69] and contains 40 references. Chapter VII

outlinez a considerable amount of work left for future research.



CHAPTER II

THE NON~-ADAPTIVE OBSERVER

2.1 The Worth of The Observer

Unlike the Kalman filter [ 1], the Luenberger observer [2,3;4] for
generating the state of a system using input and output measurements
is theoretically postulated in a noise-free environmeﬁt. The worth
of the observer, however, rests ultimately upon the likelihood that
noise is inherent in the available measurements.

To understand the motivation for the cbserver, consider the three

following means of generating the state of the system.

I .-
xl 0 1 6W xl 0
X, = o 0 1 X, + 0 |r
_x3- -c -b -a| fi p_d.~

(I7.1)

y=101 0 0}x=x
when given the input r, the output y, the structure of the system
matrix, input matrix, and output matrix, and the values of the
parameters in each of these matrices. Although these three methods
are discussed here with respect to (II.1) for illustration, the comments
apply to a general linear system.

One possibility is to determine x, and x, by di fferentiators,

2 3

illustrated in Figure 2.1(a). This method simply recognizes that
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from (II.1). Thus one may ascertain x, by differentiating y

X

]
[

i

“

and X4 by differentiating y twice. In the absence of measurement
noise introduced at any peint within or without the system, and by
assuning the availability of a perfect differentiation algorithm,
this differentiation technique is successful. However, in the
presence of broad band or high-frequency noise (even assuming the
feasibility of a perfect differentiator), the magnitude Bode-plot
characteristic of a differentiator prohibits a meaningful result to
emerge. Since noise within a system, or in the differentiation
itself, is very common, the differentiation technique has little
value.

The parallel-model scheme, illustrated in Figure 2.1(k), is
based upon the certain knowledge of the system parameters and
structure. A model is constructed identical to the system, but so as
to allow access to the model state (unlike the corresponding system,
in which only the output is accessible). The system state is identical
to the model state when both the system and the model are in a noise-
less environment, when the same input is applied to each, and when
the initial conditions are the same in each. The initial condition
requirement may be waived if the system is stable, since then the
effect of the initial condition eventually vanishes.

The state of the model is therefore used in place of the system state

to implement a control law. This arrangement is an open loop process in
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that the output of the system is not connected to the input.

The lack of feedback in the system control law does not allow the
decreased sensitivity to disturbances - occurring at the system input,
within the system, or in the output measurements - that is a beneficial
property of feedback control. Rather, noise originating within the
system or {if possible) within the model sericusly affects the behavior
of the system, especially since the system may well receive disturbances
unequal to that received by the model. Consequently, while the parallel-
model scheme is more valid than the differentiation scheme, it has limited
usefulness in a noisy environment.

The third scheme is the model-following scheme of Figure 2.1.c).
The observer is characterized by this scheme.

When the model estimate of the system state is used to contreol the
system, the result is feedback control. Moreover, it will be later seen
that the model-following scheme allows an inherent capability of noise
suppression not present in the other two schemes, an additional advantage.

From the preceeding it may be readily perceived that, although
the observer is postulated theoretically to be implemented in a distur-
bancefree envirconment, its worth rests in the inherent ability of the
ohserver both to be less sensitive to the origination of measurement
neise and to possess the capability to suppress the adverse effects of
noise.

However, the observer is not necessarily optimal with regard to
noise suppression as is the Kalman filter. Consequently, the usefulness

of the observer is mainly limited to those cases for which the signal-
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to-noise ratio is high enough so that it is not considered worthwhile
to implement the optimal Kalman filter. Since the various forms of

the observer allow considerable reduction in complexity, when compared
with the Kalman filter, the use of the cbserver rather than the Kalman
filter, when noise considerations allow, presents an attractive alter-

native.

2.2 The Full-Order Observer

The basic noticn of the model-following scheme illustrated in
Figure 2.1(c) is that the model, which is fed by the output of the system
whose state is to be observed, tends to track a linear transformation
of the system state if the model is stable. It is this basic tendency
which allowed Luenberger [2] to formulate the particular dynamics of
the model so that it eventually perfectly tracks a transformation of
the system state. When the model is designed so, It is called an
cbserver,

The full-order cbserver is of the same dynamic order as that of
the system. The Luenberger chserver [2,3,4],which is discussed in
this section, is defined for a linear time-invariant differential
system in the absence of a disturbance vector. This system may be
described by the equations

Ax + Br

X
(I1.2)

y = Cx
R . o, gm .
in which x € E. is the system state, r ¢ is the system command input
vector, y € E;p is the system output, and A, B, and C are appropriately-
dimensioned matrices which are known and constant with time., It is

assumed that the pair (C,A) is completely ohservable. Moreover, it is
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assumed without restriction that C is of rank p.

The observer is hypothesized as

z = Fz + Gy + Dr (I1.3)

for which =z sEi11 is the estimate of the system state x. By censtructing
the cbserver (II1.3) so that the observer state z is available for
measurement and by defining F, G, and D so that 2z -+ x, then the state
of the system x can be determined by measuring z rather than x. This
is accomplished, it is noted, by utilizing only the available system
measurements y and r in the observer (II.3).

Rather than make z ~ x as just described, the system (II.2) can
first be transformed by the non-singular square matrix T by defining
x = T x; then (II.2) becomes

= 1
X

T 1

AT% + T ~Br (IT.4)

CTx

H

y

Now the cbserver may be built so that z + x or that z =+ T_lx.*
Consequently a transformation of the state of the system (IX.2) may
be abserved, This additional freedom possibly allows greater flexibility
in actually constructing the observer.
n .
An error vector e £ & may be defined as
- = -1 .
etz-x=2-T7x (II.5)

in which e is a compariscn between the observer state and the system
state. The desired condition that z - x or, equivalently, z -+ T_lx is
the same as requiring e + 0.

To find conditions on G, F, and D in (II.3) so that e » 0, a
differential equation in the dependent variable e is derived and
conditions are imposed so that the equilibrium e = 0 is asymptotically

* This unusual notation is employed in anticipation of later clhaptors.
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stable.

Differentiating (II.5) gives

. . -
e = Z - X

= Fz + Gy + Dr - T “ATk - T 1Br
which may be rewritten as
- - --1 - —]-B
e = Fe + (F-T "AT + GCT)x + (D - T "B)r (II.6)

In (I1.6), suppose that F is an asymptotically stable matrix

LAT + GCT)x and

[5]; then e is bounded vwhenever the inputs (F - T
(D - T—lB)r are bounded. To make e - 0 it is sufficient to make

D- 118 = 0. Doing this, F, G, and D are defined

F - T IAT + geT
so that

1. 7 1a Coge (I1.7)

-3

Then (II.6) becomes
&= (T72AT - ceT)e (II.8)

and the equilibrium of e is asymptotically stable if the eigenvalues
of T iaT - GCT all have negative real parts. This implies that the
initial condition of e vanishes at a rate dependent upon the values
of the eigenvalues of T AT - GCT. Thus e » O asymptotically.

The question remains, is it possible to make F = rar-ger have
etigenvalucs all with negative real parts for any matrices A and C?

Luenberger showed [2] for a single-output system, and Wonham
showed [6] for a multi-output system, that the answer is affirmative
whenever the pair (C,A) is completely observable.

In addition, Luenberger showed that if the eigenvalues of F and

A are not identical, then the non-singular matrix T exists satisfying
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(II.7). This result is somewhat intuitive, since G = 0 in (II.7) is
equivalent to saying that F and A have the same eigenvalues, and implies
that the output information is omitted from the observer (II.3).

Thus with F = T-lAT - GCT, the solution to (II.8) is

e(t) = exp[F(t-to)]e(tO) (11.9)
in which the behavior of e is explicitly obtained. The more negative
the real parts of the eigenvalues of F are, the more rapidly the error
between the system state and the cbserver estimate of that state
vanishes.

However, eigenvalues of F with highly . negative real parts
tend to make the observer behave like a set of differentiators. For
effective noise suppression F should be chosen with fime constants
voughly equal to the time constants of the system (I1.2) [4]. It is
seen that a tradeoff exists between rapid estimation of system state and
effective noise suppression in the estimate.

At present, criteria for the optimal locaticn for placing the
eigenvalues of F for the various kinds of Luenberger observers has
not been reported ,althouph the Kalman filter does so For the full order
ol server.

1f the transformation matrix T is chosen as the identity matrix,

then the resulting observer configuration is known as the identity

observer. For T = I, the equations (II.7) are

F=4A-0GC

]

(11.10)
D = B.

Then the observer estimate z approaches X.
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2.3 The Reduced-Order Observer

In (11.2) it is seen that the output ¥ represents Information
about the state x directly without necessity of generating that
information. This can be illustrated explicitly by introcducing the

transformation.

x =[x (I1.11)

in which M is any matrix selected so that the transformation is non-
singular. Then in the transformed system, analogous to (II.4), the

output equation is

y= I, :0lx (1I1.12)

where I_ is an identity matrix of rank p.

Using the transformation (I1.11) it is seen that there is no
necessity of generating the first p state variables of x by an observer
since they are directly measurable in the output y according to (II.12).
The question naturally arises, s there an observer structure which
generates cnly the lower n-p state variables of the state x, and if
8o, is there an advantage in employing it rather than the full order
observer?

The answer to both questions is affirmative. The advantage of
the ohserver structure which generates only the missing state variables
in (I1.12) is that its dynamic order is n-p rather than the full-order
n dimension.

The reduced-order observer is due to Luenberger [3], but the
development given below follows Gopinath [7].

It is assumed that transformation (II.)1) has been made (if

necessary) of system (II.2) so that the output equation is as (II.12).
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Then (II.2) is written as

% = Ax + Br

(11.13)

<
[}]

[Ip E 01x

in which it is understood that A and B have been transformed by (II.1l)
and the notation x has been dropped in favor of x for simplicity.
Now (II.13) is partitioned. The first p state variables of x
equals y, and the remaining are denoted as w so that
-y
x =[]

Then accordingly (II.13) is written as

v Aj ¥y + AW + Byr

12 L (II.14)
W =_A21Y + A22w + B2r
for which y is measurable and w ¢ E™P is not.
The reduced observer is hypothesized as
z=Fz+ Ly + Dr ' (11.15)

in which z € Ezn-P is an estimate of a function of w as illustrated
in Figure 2.2,

An error vector is defined as

e =z + Qy ; W

The object is to make e + 0; then z + Gy = w. To insure e » 0, the
matrices L, F and D are to be chosen so that the error equatlon is
ésymptotically stable about its equilibrium e = 0. The underlying
motivation in accomplishing this is to construet an identity observer
for the second equation in (II.14) using f and r as multiple inputs.

From above,
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&=+ ey -

[Fz + Ly + Dr] + Gy - [A21y + AWt BQr]

Fe + (F - A22)w + (L - FG - Agl)y + Gy + (D-Bz)r

Suppose that L = FG + A21 - GAll. The above becomes

Fe + (F-A,,0w + G (y - Ally) +(p - B

- 2)r

Since, from (II.1ld},
¥ - Ay T AW By

the error equation is equivalent to-
¢ = Fe + (F- A

+ GAlQ)w + (D + GB, - B2)r (IV.18)

22 1
Equation (II.16) is analogous to (II.6), which is the full-order error
equation. As in the full-order equation, if F and D are defined as

F=A,-GA

22 12
' (II.17)
D=3, - GB
then (II.16) hecomes
é = Fe (I1.18)

for which the discussion following (II.8) applies here.
The n-p eigenvalues of F may be arbitrarily chosen if and only if

the pair (A AlQ) is completely observable [6]. It has been shown

22°

[7] that if (C,A) is completely observable, then so is (Agg, Al2)'

(The simple proof is omitted here.)} Consequently the eigenvalues of

F may be arbitrarily chosen when observing the state of system (II.2).
The observer for the system is therefore

z = (A,, - GAl2)z + (A22 - GAlz)Gy + (Azl - GA

22 1Y
+ (82 - GBl)r (I1.1%)

and the estimate of x is
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y .
cevee]| = %
L]

for the state x ¢ & of system (II.13).

Cne important ﬁoint regarding this reduced-order cbserver will
be made here. The particular form (II.19) of the reduced observer
derived here is but one of many possible. That is to say, the system
(171.13) may be transformed by a non-singular matrix T, analogous to

(II.4), to allow many different forms of the observer equation (II.15).

2.4 Closed-Loop Properties of the Observer

An important feature of the observer is the ability to not adversely
affect the stability of a closed-loop system employing the cbserver
within the loop. An example of this applicatioen, illustrated in
Figure 2.3, is the pole placement problem. The state estimate generated
by the cbserver is used in a linear time-invariant feedback to adjust
the system poles. Since the cbserver estimate of the system state is
used rather than the (unmeasurable) system state, it would be undesirable -
yet conceivable - that the system becomes unstable in the closed loop
due to the presence of the observer. However, Luenberger showed [2]
that the‘introduction to the cbserver within a closed-locp employing
a linear time-invarient feedback does not affect the stability of the
system. In fact, the poles of the composite system employing the
observer are exactly the poles of the system,assuming the control law
enjoyed state feedback,plus the poles of the cbserver. Since the
cbserver poles may always be chosen stable, the overall stability of a
closed-loop system is not affected when penerating the state by means

of an observer,
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To see this, suppose the system

% = Ax + Br {II1.2)

y = Cx
has the control law

r = Kx (II.20)
Then supposing that the state is available for measurement {or that
K = MC for some M), the closed—;oop system is

% = (A + BK)x (11.21)
and its poleg are the eigenvalues of the matrix A + BK.

However, if an observer is employed to generate the state of
(I1.2} for imﬁlementing (II.20), then using the equation (II.15) the
control law becomes

r = Kx = Ez + Hy (Ii.22)
where z is the reduced-cbserver estimate and

K= ET" T + HC (1I.23)
Then the composite system is

X A + BHC BE X

e+ e Fe T lE z

(I1.24)

. -1
Introducing thé coordinate change £ = z - T "x, the above becomes

% A+ BK BE x|

= (I1.25)
0 T z

L
The eigenvalues of (II.25), and therefore (II.2u4}, are the eigenvalues
of A + BK and of F.

Consequently, an nth order system that is completely coentrollable

and completely observable with m independent output variables may, by
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use of a linear feedback law and an observer of order n-p, have the
2n-p eigenvalues of the closed-loop system take on any preassigned

value.

2.5 Other Kinds of Observers

Other kinds of cbservers include cbservers which generate a linear
function of system state variables, and observers which generate the
state of time-varying systems, discrete systems, and stochastic systems.

The linear-function cbserver generates a function e of the form

£ = aTx
where aT is any desired row vector and x is the system state. The
utility of such a function ¢ is that many linear feedback laws merely
require this function for control of pole placement within a time-
invarient system. An observer which geﬁerates a linear function may
be considerably lower in dynamical order than the multivariable
observer of Section 2.3 which generates the state x. The linear-
function observer was developed by Luenberger [3].

The major result of the linear-function observer is that the function
aTx can be generated by an observer of order v-1 where v is the
cbservability index (3] of system (II.2). The cbservability index v
is defined as the least positive integer for which the matrix

rc:ca:ocaZ ... a1yt

has rank n (equal to system order). For any completely observable
system, (n/p)-1 < v-1 < n-p, and in many cases v-1 is much less than
n-p. Therefore there is often a considerable savings in dynamic order

by generating aTx directly rather than penerating x and then forming

a X.
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The estimate of ¢ = aTx is

-

£ = bTy + otz (I1.26)

Fz + Ly + 771 Br

e
1]

where

rla-ml-y (II.27)

blc + oTpt T

H
u

and

2 e E\)—l

The wnderlying notion for this capability is that the matrix noted by
Tfl need not be square if it is understood that its Inverse does
not exist. The design procedure is to choose 171 o that the sccond
equation in (IX.27) is satisfied; then the remaining values of qu
and the values of L may now be determined by the first of these
equations. Other techniques can also be used in the design.

Observers for time-varying systems have been reported in [8] and
[9]). Discrete time observers have been investigated in [10] - [12] and
stochastic observers in [13] - [15].

Other papers of note are {16] - [21].



CHAPTER III
THE LYAPUNOV SYNTHESIS TECHNIQUE

3.1 Lyapunov Stability

It is not the purpose of this thesis to delve deeply into the
general stability problem or to survey the stability literature. However,
within this section the basic concepts in stability which are used in
the subsequent sections for synthesizing an adaptive algorithm are
briefly described.

The concept of ILyapulov stability deals with the family of motions
defined by the differential equation

x = f(x, £) t 2> t, (ITI. 1)

in which it is assumed that the trivial solution x = 0 is a member of

that family in the sense that

1]

0 = £(0,t),t > t

0

Moreover, x = 0 is also called the equilibrium of (III.1l). Each member
of the family of motions defined by (I1I.1) is designated by
p (ty %5, to) , t2t,

where p(tu, X s to) = %y It is assumed that each p(t,xo,to) is
continuous in all its arguments whenever X, is in the neighborhood of
the equilibrium; in other words, plt, Xg to) satisfies a Lipschitz
condition [22].

The notion of Lyapunov stability is that the stability of an

equilibrium of (117.1) can be determined by examining the behavior of

the entire solution, for all t 3_t0, with respect to the initial value

23
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X In particular, if the initial value is close to the equilibrium,

o0’
then the subsequent motion p(t, g3 to) remains correspondingly close
to the equilibrium,

The precise definition [23] is that an equilibrium of the differ-

ential equation (III.1) is called stable in the sense of Lyapunov if

for every real number ¢ > 0 there exists a real nurber § > 0 such that

[lpCt, %, t]] <€ | for all t > t,
whenever ||x0|| < 4.

Consequently it is the relationship between the initial value x,
and the ultimate bound on the motion p(t, Xqs to) that denotes stability
in the sense of Lyapunov. Indeed, it is easy to visualize trajectories
which are bounded for all t > t, but not stable due to a lack in
relationship between that bound and the closeness of Xy from the
equilibrium. It should be pointed out that the definition of stability
applies only in the neighborhood of the equilibrium.

An equilibrium of (III.1) is said to be attractive [5] if there
exists a feal number n > 0 for which

1im p(t, %., tO) =0

1o
whenever ||x0|| < n, assuming there is no other initial value x' such

that F(x',t) = 0 for t > t, and {[x'|| <n.

0
From the preceeding discussion it is readily seen that the attract-

iveness of the equilibrium bears no relation to the concept of stability

in that a motion which is stable nced not be attractive and vice versa.
Attractiveness of the equilibrium is a concept which applies only

in the neiphborhood of the equilibrium defined by [|x0|| <n.

If in addition, however, the motion p(t, Xg» to) is attractive for
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every n > 0 then the equilibrium is said to be globally attractive.

The concept of stability and attractiveness may be conbined to
form the concept of asymptotic stability. The equilibrium of (III.1)
is said to be asymptotically stable in the sense of Lyapunov if it is
both attractive and stable in the sense of Lyapuov,

Moreover, if the equilibrium of (III.1) is both stable and glcbally
attractive then the equilibrium is said to be globally asymptotically
stable.

Given the preceeding definitions {which by no means are the totality
of definitions currently in use in the theory of Lyapunov stability
[see 23]),it is desired, for purposes of this thesis, to state certain
methods for determining the stability of the equilibrium of a differential
equation with the ultimate aim of constructing a control to influence
the stability of the equation. TFor this purpose, the so-called Direct
VMethod of Lyapunov will be briefly examined.

3.8 Lyapunov's Direet Method

The Direct Method is a means of determining stability and
asymptotic stability (either global or nonglobal). Unfortunately, the
ability to use this method usually depends upon the ingenuity of the
user.

A simple explanation [5] of the Direct Method can be had with
reference to Figure 3.1. Consider a differential equation of the form

x = £(x) (111.2)
which, for purposes of illustration here, is taken as a vector equation
with x ¢ E 2, (Consider also a quadratic function

vV = xTPx

in which P is a symmetric matrix having its two eipenvalues positive;
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Figure 3.1

Criteria for an Asymptotically Stable
Trajectory
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such a matrix is a member of a class of matrices called positive
definite [24]. The ellipses in Figure 3.1 represent the locus of
the equations
V= Ci
for positive constants C,.

Suppose the solution p(t, XO) of (III.2) spirals toward the origin
as indicated in Figure 3.1. Such a motion represents an asymptotically
‘stable equilibrium with respect to the initial value, It is seen that
any motion which is always directed inward to the ellipses is an
asymptotically stable motion. This property is taken as an easy
test to determine whether the equilibrium of (III.2) is asymptotically
stable. In order to gain a relationship in terms of V to insure that
the motion spirals inward with respect to the ellipses, the angle between
the trajectory (in the direction of motion) and the ellipse is required
always to be negative,

Taking the outer normal to an ellipse as

BV/Bxl
grad V =
BV/Bx2
it is desired to compute the angle ¢ between a trajectory and the outer

normal. Then
(prad V)Ti

cos ¥ = T]Egrad V)Till

The trajectory is always inward with respect to the function V whenever
cos ¢y < 0. Since the denominator of cos ¢ is always positive, the
condition is that

(grad ik <o

since in this case
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T, aV . . _d
(grad V)x'"é;l"l*'s;;:z‘a'f v

the requirement that V be negative along the trajectory insures that
the solutions of (III.2) are asymptotically stable.

This simple viewpoint can be expanded into a rigorous test for
stability known as the Direct Method.

One theorem for stability is the following [5]: let V(x) be a
function with continuous first order partial derivatives. Suppose
there exists a region 6 such that 0 < V(x) < a in which v < 0. Let
M be the lafgest invariant subset of the set V= 0. Then every motion
of (III.2) which begins in G tends toward M.

As a corollary to the above theorem, the more familiar theorem is
given:

If additionally V(x) is positive definite with derivative & for
(III.2) negative semi-definite (definite) or identically zero, then
the equilibrium of (III.2) is (asymptotically) stable. If in addition
there exists a monotone increasing function w (]|x||) such that
V(x) > w (]]x||) and if w (J1x|1y » = as {|x|| » =, then the equilibrium of
(I1I.2)is globally (asymptotically) stable.

In analyzing an equation of the form (III.1) or (IIT.2)to
determine the stability of an associated equilibrium, a function V
is sought which satisfies the condition of the theorems here given
(or the numerous other theorems omitted here). TFailure for the V
function to be as described does not imply instability of the

equilibrium however, only that the choice of V was inappropriate. Although
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there exist several methods of finding appropriate Lyapunov functicns,
in the general case,theingenuity of the investigator is the sole
means of constructing an appropriate function.

In synthesizing a control r to make the equilibrium of the equation

% = £(x, t, v) ' (III.3)
stable, the situation is somewhat altered. A Lyapunov-function candidate
is first selected, its derivative found, and a control is selected to
meke the derivative negative semi-definite or definite. With this
procedure, ingenuity is required additionally in the choice of control.

The next section deals specifically with the question of synthesis.
Suffice it to say here that with the synthesis technique as presently
developed the derivative of V is negative definite in some of the
parameters over which V is defined but only semi-definite over all the
parameters. This involves the stability of non-compaet manifelds.

One of the few results in the study of stability on a non-compact
manifold is the following [25].

Assume for the system

% = f(t, %, ¢)

glt, =, ¢)

’

that f is bounded for bounded x and r and all t > t_,and that there

0
exists a funetion V(x,$) satisfying
1. V(x,$) positive definite with continuocus first partial
derivatives

2. V(x,$) »= as|x|]2 + |]4]]2 +=

3. V(x,4) < - WH(x) + hl(t)q(x,¢) + hz(t) Vix,¢)
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i) W(x) is continuous and positive definite

ii) q (x,4) is continuous

iii) [“ |hi(t)| dt < e for 1 = 1,2
0
then the state x = 0, ¢=0 is eventually stable and, correspending to each
T > 0,there is a T_ such that |[|x(t,)|]|? + ||y(t,)}|%2 < ©? for some
’ T 0 o
t) > T implies ¢(t) is bounded and x(t) - 0 as t + =.
If, in additiom,

4., Tor some K » 0 and some 0 < a < 1

la(x, )| 5_KVa (x,9)

then all solutions ¢(t) are bounded,and all x(t) ~ 0 as t + =,

3.3 Synthesis Techniques*

This section surveys the literature devoted to the synthesis of
mode l-tracking adaptive systems based on épplication of Lyapunov's
second method. In the early work [26] - [34], the model tracking

' probiem was approached by using the sensitivity or gradient approach,
without assurance of global asymptotie stability. Rang [35], Shackcloth
and Butchart [36, 37] and Parks [38], were first to employ the Lyapunov
design in finding an adaptive control law which guaranteed global
stability. It is the purpose here to introduce the basic synthesis
procedure, and to critically review extensions to the theory which
have appeared since 1966, relating to: design for relative stability,
reduction of order techniques, design with disturbance, design with
time variable parameters, multivariable systems, identification, and

an adaptive observer.

* This section exclusively used underscoring to indicate vector for
purposes of clarity.
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Synthesis Using Lyapunov's Second Method

The basic problem to be considered in this section is that of
designing a model tracking system for stability without specifying
exact values of the plant parameters, Lyapunov's stahility theorems
offer a means of synthesizing various control laws which offer possible
solutions to this design problem, the particular solution depending
in part upon the form of the Lyapunov fimction selected. In this

section the rudimentary ideas involved will be introduced in a somewhat
limited context. In subsequent sections elaborations on the elementary
theory will 5e discussed, indicating some practical design considerations
as well as defects in the method.

The concept which is central to adaptive schemes to be discussed in
this section can be explained with reference to the model tracking
system in Figure 3.2, for which the state equation of the stable model
is given by

§.= Ay + Br (model) y(0) = y©
(I11.4)
and that of the time-invariant plant by

X = A¥x + Bu. (plant) x(0) = x°
(111.5)
Here X_=‘{yi},.§ = {xi} are n dimensional state vectors, and r, u

are m dimensional control inputs. A¥®, B® contain unknown coefficients.

If the differential equation of the tracking error (§_= y - %) is now

written in the form
§_= Ae + f (IIT.8)
where f = (A -~ A¥)x + Br - Biu, then the control objective is to

manipulate f in some way so that lim e(t) = 0. To this end we introduce
1ty
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the positive definite function

V = e'Pe + h(,¥) (111.7)
where ¢, Y are matrices of parameter vectors ¢., wi to be defined. Then
along the trajectory of (III.6) we cbtain for the time derivative of V

¥ = -e’Qe +2¢'Pf + h (111.8)

where
_ Al :
-Q = A'P + PA. (111.9)
By a theorem of Lyapwunov [39], with any QT = Q >0, it follows that
P = PT > 0 is a wnique solution to (III.9) iff A is a stability matrix,
as assumed.

Using the classification suggested by Phillipson [40], we will

introduce two methods which have been reported for causing e = 0.

Input Modification

This scheme uses the solution obtained with h = 0. Although it is
not in itself useful in synthesizing an odaptive control law, i. e. one
in which a set of parameters are automatically adjusted so as to reduce
the tracking error, it has been used to advantage in solving certain of
the design problems to be discussed in the survey.

With h = 0, asymptotic stability in e will be satisfied if [41]

E?P§_= 0 for A - A% =0
< otherwise. (I11.10)
This inequality cannot be satisfied except in special cases depending
on the system structure. In some restricted cases, such as if (III.4),
(I1I1I.5) are in phase variable form, a sclution exists. In this case
u becomes a scalar, B =Db, and bn’ fn are the only nonzero elements of

L, f respcctively. We then have the simplification
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5%5:(5%3)ﬂ1

where ) is the nth colum of P, Writing

f = f'+b u,

n n n
and assuming that bn > 0, we see that conditions (2.7) are fullfilled
if

lul>[ £/ |

T
sgn u = sgnep,e¥0,
as might be realized by a switching function. Solutions of this form

have been reported, together with design considerations {42 ,43].

Feedback Synthesis

This scheme differs from input modification in that parameters
in the system are adjusted continuously so that in the simplified case
treated here e ~ 0.

In feedback synthesis, we write for (III.7)

-
i

n m

= e'Pe + 614, + T ooyly, (I11.11)

- = . =11 . =i
i=1 izl

wherein ii’ 2& are misallignment parameter vectors to be defined in terms

of the elements of the matrices A-A% and B-B#* which express the mis-
allignment between the model and the plant. In this case (III.8)

becomes

n m

U = ~e'Qe + 2(e PF + Yo bin. + ) bl ). (I11.12)

- == . e RN
i=] =]

let E define the whole state space with £eE, where £ is defined by ET =

[SE’ EE’ ceny 2:, mg, ceny ﬂi]. Let ElEE, where El is the n dimensicnal

subgpace with ceky. Clearly V in (ITI.11) is pozitive definite in L.



35

The basic idea in feedback synthesis is to specify'(gi; Ei) in
(I11.12) so that
1

b;0: * Z (III.13)

o
o

..-l—

and conseguently

V= :elge (III.14)
Since V is only negafive gemidefinite in E, but negative definite in

El’ we may conclude from the theorems of Lyapunov [39] that the equilibrium
at e = 0 1s asymptotically stable, and the equilibrium at § = 0 is

stable. It follows in the present formulation that e + 0, and that

the missallignment parameter vectors are bounded. It will be shown

in certain cases that § + 0 if the frequency content of r is rich

enough [u44, 59].

In implementing the controls to satisfy (III.13), there are two
schemes which will be described in this survey as direct and indirect
adaptation. Direct adaptation assumes that plant parameters are adjust-
able, Indirect adaptation requires that adjustment take place extermal
to the plant.

Direct Adaptation

In this scheme u = r in (III.5). ¢ and ¥ are in turn defined by
¢ = A-A%, = B-B%, with columns 9, and ¥, respectively. Then (III.6)
becomes

€=Ae + f (III.15)

wherein

£= 0x + ¥r.

It is seen that (III.13) can be satisfied if
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{=-ePx, (71,...0) (I11.16)

5
1

Te o eTPri, (i=1,...m).

=
[ H

If adaptive contrel (Figure 3.2) is the objective, thenr elements of A%, B®
should be adjusted, in which case (III.16) becomes

- 4T
Caf’= eTPx s i=1,...n

_l_ I (I1I.17)
éﬁg = g?fri, i=1,...m.

Here it is assumed that A, B are constant. In the identification section

control is applied to matrices A, B instead of A%, B%,

Indirect Adaptation

Whereas the adaptive control law in (III.17) can be implemented for
the multivariable system if direct adaptation is possible, restrictions
must be placed on the form of the state equations in order to apply
indirect adaptation [34, u5]%.

Assuming that the elements of A%, B* are not directly adjustable
it becomes necessary to modify the system. Consider the single-input

single-output plant defined by

* K
n , n=1
u 5 + at s + +2s t+ a®
o 1

By introducing kr’ k k2, ...kn as adjustable parameters as in Figure

1’

3.3, it is seen that the compensated system has been cast into the form

"% = A%x + bip

* As discussed in the section on reduction of order, if it is desired
to require convergence of fewer than all the states, Lhe reslriction on
form can he relaxed if there are 1l.h.p. zeros in the plant transfer
Tunction.
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Model-Reference Adaptation by Feedback
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where

r. -

o . 1

1 AT :

A* - ‘ * *xe = « a2 3 = 2 I -b_" =[0, . ’O,bscn]’
E L3

81 e 2 n

with b="€n = krk*, and ar,:i = -a;{‘ + ki' i =1,...n. Thereby the problem

is amenable to direct adaptation by application of (III.17). For the
single-input case it is noted that only n coefficients in A% can be

adjusted. The multivariable problem suffers restrictions also [u451].

Degree of Stability - Improved Speed of Response

The adaptive step response [36] has been helpful in analyzing the
relative stability of adaptive systems., With the aid of this concept
Phillipson [40] showed that it is possible in case of an adaptive gain
to improve the relative stability by appropriately modifying the adaptive
control law, Gilbart and Monopoli [u46] formalized the synthesis pro-
cedure by redefining the V finction in (III.11).

In the ensuing discussion let the error equation be defined by

e = e + r (I11.18)
(k =k#)|

where k* is the only adjustable parameter. If (III.11) is written as

TP |
V=¢ePe + —, h. = const. {I1I.19)
= = hl 1
then (III,8) becomes
: T T o J
V=-eQet+ 2(e Ea(k-k")r + ;-J-:—'J-J-) (II1.20)

1

wherein P—g}. = [p12p22}, and P is found according to (III.%). 1In this
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case, with ¢ = k-k®*, it is seen that (III.13) is satisfied if
.¥ :
k¥ (91261 + 92262) hl r. (111.21)

If r is assumed to be a step of magnitude R, then differentiating
(IT1.18) and using (IIT.21) leads to the characteristic equation

%+ as% + a5+ (py,+ Py, SIh K = 0 (III.22)
The roots of this equation characterize the adaptive step response. A
typical root locus, as shown in Figure 3.4, demonstrates that the relative
stability is depgraded with increasing R2, even though the system by
design cannot be unstable.

As a means of improving the relative stability with increasing R2

Phillipson modified the adaptive rule in {III.21) by setting u = k¥*r + Uy

to insert input modification. Thus, with u = Yﬁ*r, (1I1.8)

and using u 1

1

becomes

o . T T 2 2

V= -e'Qe ~2(e'p,)" h,r". (I11.23)
The effect has been to make V more negative with r2. It is also
instructive to examine the adaptive step response. The equation corres-
ponding to (III.22) is

s34 a1$2 +as+ (b, + by, (1 + Ys)th2 -0
(III.24)
The root locus indicates an improved relative stability for large R2
(see Figure 3.5).
More in the spirit of involving the Lyapunov function in the
synthesis procedure, Gilbart and Monopoli [46] have proposed modifying

the V function in (III.11) so that the desired result is obtained more

routinely. The concept will be illustrated using the system equation
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(III.18). According to [46] we introduce the modified V function

T oy o+ hlz)2

V=oe pe + ———————, (II]:.QB)

£PE h

2

(I11.8) now becomes
V= -elQe + 2¢ TP, (k-k®)r + 2— (¥ + h.¢% + h.z) + hozs).
—_ = - =2 h2 1 1 1

(I17.29)

If we equate for this example

z-eT r

_-_P_2
p = k-k* (111.30)
P = -hzz—hlz

then (III.29) becomes
o T T 2
V= -e Qe 2hl(g-22r) . (1I1.31)

This is seen to be identical to (III.23). For the adaptive control,

we have from (III,30)

t
T T '
o=
k h.e'p.r + h2 f g_pzrdt+k(t0). (I1I1.32)

The general matix formulation of this scheme for the entire
parameter set ¢,¥ is given in [47], together with simulation results

showing that improvement in convergence time can be cobtained.

Reduction of Order

The basic model-reference Lyapunov adaptive law requires measurement
of the entire error vector for its implementation. If all the state
variabies of the plant under control are not available, then the basic
adaptive law is inadequate since ipnorance of parametevs and inherant
system noise may prohibit their peneration by an observer or by differ-

entiators.
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To overcome this practical problem investigators have attempted
to find adaptive laws that require a minimum of state variable measurements.
The first such attempt by Parks [38] was for the restrictive system shown
in Figure 3.6 in which only the constant plant input gain KV is mis-
matched to model gain K. The adaptive law adjusts K_ so that the error
vanishes. Parks use of Kalman's lemma [48] subsequently extended by
Monopoli [49] using the Kalman-Meyer lemma [50], has shown that the
adaptive law kc = l-le

r, in which only the output error e. appears, is

1 1

sufficient for asymptotic stability of e if

N(s) . ‘s i .
1) sy is 3 positive real function (III.33)

2) [1 0 0 .. 0]Abf0

where %%zg-is the transfer function representation of the plant equation

x = Ax + br. If 2) does not hold but 1) does, the set V = 0 must be
examined to insure asymptotic stability of e.

Monopoli [49] extended the criteria to nonpositive real transfer
functions that can be made positive real by multiplying by a polynomial
in s with roots of negative real parts. In doing so, the resulting
adaptive law requires n-m-2 derivatives of the output error ey where n
is the number of plant poles and m is the numher of plant zerces.

In the more general case where adaptation of both plant poles
and zeros arc desired, the basic indirect adaptive scheme fails (but
not divect adaptation) even with full state measurement available. This
is seen since, referring to Figure 3.7 with D(s) = 1, the error
equation

N(s)e, = [(Q(s)-N(s) + P(s) H(S)]xl + [M(s) - P(s) 6(s)Ir
(TII.2W)
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reveals H(s); a polynomial, may have at most only n-m free parameters
so as not to increase the order of the nth order polynomial Q-N+FPHj
coensequently there exists no steady-state solution to tﬁe problem of
adjusting n parameters in Q-N+PH state feedback.

Monopoli and Gilbart [51], however, have employed dynamic feed-
back on a reduced state of order n-m-1 to accomplish adaptation with
plant zeroces. Moreover, they have shown that the plant matrix A%* need
not be of any particular form; nﬁr must A* be stable nor C*(sI«A*)_lB*
be positive real; and the cutput matrix C% need not be known.

Their basic idea is for D(s), after adaptation, to cancel P(s),
with the model zeroes placed in cascade with the plant by G(s). Due
to the cancellation, the zeroces of the plant necessarily must be in the
LHP.

The vector error equation (III.6) is "collapsed" to yield a scalar
error eq#ation in the output error ey from which the synthesis proceeds:

- - (i) m (i) m
+ ] aet = ] dagx, 4 3 ety Z

i=0 i=0 i=0 i
(II1I.35)

Note that the output error, defined as the di fference between the scalar
model ocutput and the scalar plant output, is always available for
measurement by definitiom.

For clarity in illustrating the synthesis procedure, a 2nd order
system with one zerc will be treated here. For this system; (III;BE)
becomes

2 _ ~
(s+a s+a0)el = (Aals+Aa0)x1 + abor + (s+b0)u

(III,36)

1
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in which initial conditions have been ignored and Abl=0 and bl=l for
simplicity in this treatment, Dividing (III.36) by s+e, 0<c<al, and
taking the Laplace inverse transformation yields

=]
) ) -1,%1
¢+ (a)-cle) = ["(al'c)'azli (G + dapx

+[Aa—cﬂa]5f,l S+c)+Ab ELI

+u+ [b —ad S+c) (II1.37)

Now if u is chosen as u = I k, iV where v, are each of the terms on the
. . : : &13 _

right side of (II1I.37) (i.e, ¥ s+c) Vy = X etc.) then

(ITI.37) has the form for which the indirect adaptation scheme can be

applied with the important difference that the resulting adaptive

law containg only ey and not its derivatives.

In general, a division polynomial, such as that which produced
(II1.37), should be of order m with zerces chosen so that the left side
of (III.37) is stable. Then the left side contains n-m terms, so the
resulting adaptive law contains n-m-1 derivatives of ey

It should be pointed out that since vector state information is
destroyed in collapsing the error equation to (III.35), convergence of
e (output error) dees not in general imply that the state variables
converge. If the output matrix is known and A is in companion form,
then convergence of ey implies convergence of the first n-m state
variables.

At present, Indirect adaptation cannot take place when there is a

right half-plane zero in the system.

Effects of Disturbanece in Adaptive Control

As noted in the synthesis section, if disturbance is neglected
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then, aqcording to (III.1M), V becomes negafive definite in El and
negative semi-definite in E. However; it has been demonstrated, and

in some cases proved, that the input to the system can be so chosen that
the solution V = 0 can be satisfied only at the origin of the entire

E space.

Recently Lindorff [52] and Narendra et al. [53] have considered
the effect of disturbance upon stability. In [52] it is shown that,
even though ¢ remains bounded (theoretically), disturbance can cause
the adaptive gains to be unstable (unbounded). In [53] a modified
scheme is derived such that V is strictly negative in E outside of some
boﬁnded regicn about the origin, theréby guaranteeing boundedness in E,
without placing special requirements on the input signal.

In [52] the effect of disturbance é_and incomplete adaptation has
been examined with reference to the single input plant described by the
equation .

% = A%x + bf(r + ul) + d. (III.38)
The tracking error in this case defined by

é_: Ae + fl + f.+ £, = f

L4t h
where f& includes 3ll adjustable parameters ¢,¥ (although these need
not be the antire set of unknown parameters), and fQ contains the remaining
terms in £, including d. The adaptive controls when applied to this
problem cause V to be reduced in the form

7= -eloe + e'PE,. (I1T.39)
Since V in (III.39) is strictly negative outside of some bounded region
about e = 0 in E,, and indefinite elsewhere, e will ultimately lie
inside a calculable region about the origin. However, due to the

presence of f,, ¥ is indefinite in E, and stability in E can no longer
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be gﬁaranteed. This has been demonstrated for the case in which (III.38)
is in phase variable form [52], and d and r are constant. It is shown
that parameter errors can be unbounded if the disturbance is opposite
in sign to r.

Narendra et al. [53] have considered the problem of synthesizing
an adaptive control law which guarantees boundedness of the errors
when disturbance is present. Since their method also allows for time
varying plant paramete;s, we shall include this degree of generality
in the discussion, although the time variable case is treated in more
detail later. For simplicity of exposition consider the first order
differential equations

(stable .
model) ¥

(plant) %

z -ay + 1 (1I1.40)

-(a®*+k)x + r + d, a* = a*(t)

it

in which k is an adjustable parameter, 4 is a disturbance entering the
plant, and r is the common input. The tracking error (e =y - x) is

governed by

u

& = -ae + ¢x ~d (ITII.41)

with ¢ = -a + a%* + k. If we now choose the positive definite form

n

v %-(ye2 + ¢2), Yy >0 (II1.42)

and introduce the modified adaptive control
k =-Bk -yex (III.43)

the equation for V becomes

i —Yae2 -B¢2 + (B{a* -a) + é*)¢ ~yde. (III.u4)

From this result it follows that boundedness in e, ¢ it guaranteedsince
-V contains a negative definite part in ¢ and 4. These quadratic terms

control the sign of V for large enough values of |e|, |¢|, if (a%* - a),
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d and &% are bounded. This result in turn depends upon the introduction
of B in the modified adaptive control law (III.43).

This design has been generalized [53] for the single-input nth
order plant. Simulation results indicate that, in the absence of noise
disturbance, best results are obtained with 8 = 0 and with the input
rich enough in frequency content to assume asymptotic stability in the

entire E space.

Time-Varying Parameters
For the time-varying plant

X = A%(t) x + B¥(t)(r-uw) (III.45)
to behave as a time-invar%ant model requires an indirect adaptive law
that depends upon the time derivative of an unavailable quantity if the
synthesis.is followed. Porter and Tatnall [54%] have pointed out that
this term may be ignored under some conditions on A*(t) and B*{t) for
eventual asymptotic stability of e. These conditions are restrictive,
hiowever.

In the more general case, use of a new adaptive law due to Narendra
et al. [53] leads to the determination of Lagrange stability bounds
whenever the time varying plant parameters satisfy certain restrictions.
Reference is also made here to the next sectiom.

To illustrate their adaptive scheme, consider a first-order time
varying plant (III.45) with B%*(t) = b*(t). The corresponding error

equation with u = k. x + kzr is

1
e - ae = (a-a®(t) + b*kl)x + (b-b*(t) + b*(t)kz)r

(ITII.46)
= ¢lx + ¢2r

acx<o
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Using the adaptive law [53]

kl =-Bkl - Xe

(I11.47)

k2 = - Bké - re

the Lyapunov function may be shown to be (with b#(t) chosen as in (III.L9)).

2 2 2
= b#
V = b&(t) e” + o] t+ ¢,

. % "% e
¥ =4b*( 2 + 2a) &% + 225 -B) o2 + 227 -8)03

» [ ]

+ 2(a* -a) ( Dp -8)4, - 2b(Rp -8)¢, -2&%e, - 28bie,

(III.48)
Now if the following restrictions are placed upon the parameters

(1) 0 <b, <b¥t) <b, <o

1
(11) -~ = < aliaa'c(t) ia < oo

2 ,
" b
(i1i) - » < b <22 ¢ p <a (IIT.49)
3_b% —"4 2

(iv) B8 > bu

(v) |a#| X a,

The function V can be shown to be negative outside of a region in
the space (e, ¢l' $). Bounds on the region of attraction can therefore
be found by determining the smallest ellipse V = C that encloses the
region of indefinite V.

It is noted that (III.47) does mot produce an asymptotically stable
error even in time-invariant systems unless B = 0. This follows from
the obsérvation that the adaptive parameters k cannot converge to a
non—zerd value whenever the error e vanishes simultaneously.

Narendra [55] extended the above technique along these lines for nth
order systems.

Monopoli, Gilbart and Thayer [49] produced a "practically Asymptotically
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stable™ system of Figure 3.4 when only the time-varying plant input
gain K, (t) is adapted. The plant must have the same general attributes
as in the section entitled Degree of Stability. They found, using a
Lyapunov function V = 1)2(XIE?PE_+‘A(t) ¢2), that practical asymptotic
stability of‘é_is attained with an adaptive law ﬁc = AIETPb£_+6K(K—KCKV)|r[
where E_is related td n-m-1 derivatives of es M &£ m defined as in the
Degree on Stability section. The region of attraction is inversely
proporticnal to the magnitude of § and r.

The reduction of order with time-varying parameters was extended by
Gilbart and Monopoli {56] to include adaptation of time-varying plant input
coefficients and characteristic polynomial coefficients. A scalar error
equation in e, analogous to (II1.35) but with time-varying coefficients
en the right side is assumed. For clarity, a second order example.is
demonstrated here. Suppose first that the second order plant is without
input derivatives. After dividing by plant input ccefficient b#(t), the
scalar error equation is

o (S.taé tae) = LD __p+ ! % + - X - u,b*(t)>0 ¥£>0
bE(t) "1 S11 071 T BR(x) bF(t) b%E(T) ? )

This can in turn be put in the form

1 - . _ . ' )

BECEY (el+alel+aoel) = [fl+gl(t)]r + [f2+g2(t)}x + [frg,(t)Ix - u
(1I1.50)

in which the coefficients have been broken into time-invarient parts f

and time-varying part g. Choosing u = (ki+k§)r +(k§+k§)i + (k§+k§)x

and
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£ T
kl = ae P2r
*Fo_ T (2-1) , _
kl = -aie sz i=2,3 {III1.51)
B
. - l
k€ = M sat[ = T
1 1 M, e P2r]
. .B.
CE _ "L T, (2-1), .
kl = M, sat [ﬁt-e P, ] i=2,3
i
t 2 £
then the function V= ePe + | .(f, +k;) has a negative derivative
1=1 ‘ -

outside a region whose boundary is directly proportiocnal to the bound
on [gi(t)| and b(t) and inversely proporticnal to Bi. Consequently
(II1.51) delivers stromg practical stability of e.

Tt is shown also by Gilbart and Monopoli [56] that a reduction of
crder techniqué similar to that in the Reduction of Order section, but
modified to account for the time-varying nature of the scalar error
equation (III.35), can be applied so that the resulting equation is in
a form similar to (III,50) in order that adaptive laws like (III,51)
may be used to produce & strong practically stable system. The reduction

of order allows only n-m-1 derivatives to be used in forming the adaptive

laws.,

Adaptive Control of Multivartable Systems

It has been noted by Winsor and Roy [34] that the adaptive control
law in the form of (III.17) can be implemented for the general multi-
variable plant if the plant parameters are direétly adjustable {direct
adaptation). The practical case in which feedback control signals are
used to implement compensation (indirect control) warrants attention,
however, particularly for the multi-input systems,

Starting with (III.4) and (III.5),(II1.6), Lindorff [45] has shown
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that certain conditions are imposed on the form of (IIL.4) (III.5) in
order that the Lyapunov design may yield a wnique set of controls. This

may be clarified by considering the term in (III.8)
. . n .
elpg = ¥ eTE_.f. (1I1.52)
SR =5 T

in which

n m m
= . . b¥,u,.
f Z $..%, + ‘El Vi ¥ +jzl B

Since P is positive definite, Ej and p; are linearly independent for
all i¥#j. Therefore a different u.j must be identified with each fi in
generating a ggrticular component of the adaptive control law. It
follows that not more than m components of f can be nonzero, and théf a
stable adaptive control law can be realized if (1) there are no more
outputs than inputs, (2) the state equation is written in partitioﬁed
phase variable form, (3) the matrices B¥, B are in triangular form.
Extension of the reduction of order technique [51] to the multivariable

problem has not been repecrted.

Identification

The identification problem can be approached so that the process is
inherently stable. Lion [59] has derived a very praétical solution to
the problem of identification for ;ingle-input, single-output plants,
with guaranteed asymptotic stability. Kudva and Narendra [57] have
applied the Lyapunov synthesis method to the identification of time
variable systems, illustréting an application of direct adaptation.

Lion uses the so called Generalized Equation Error System
of Figure 3.8. In this scheme the parameters of ﬁ, D are adjusted
so as to minimize ez. A significant feature of the method is that no

derivatives of u, y are required (G is a low pass filter).
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Figure 3.8

Lion's Identification Scheme
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The scheme is based on the scalar error equation
e = (D~ D) v, * (N - N} ;.

in which

o

D-D =
k

1 t~13

"k
4o, p
ok

with p z d/dt, and Uy, y, are filtered values of u, y.

the sinple form 15t

If the parameter adjustment law is defined as
A&j = -ke(prl) pzd/dt
. i
48, = ke(p ul)

and the parameter misalignment vector is defined by

T
¢ = [Aao,Aal,...,Aan_l,VBD,...VBm],

it is possible to show that the function
V= %’E.E.is a Lyapunov function with

V= E?i = -kezfp.

(II11.53)

G(s) may have

(III.54)

(II1.55)

However V in (III.55) is only negative semi-definite, i. e., e may be zero ’

for ¢#0, and ¢=0 is required for identification. By application of a

theorem due to Lasalle [58], Lion has shown that global asymptotic

stability will be achieved if u is periodic, and meets certain conditions

as to frequency content.

Kudva and Narendra [57] have used direct adjustment of the model

to solve the identification problem for the multivariable time-variable
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plant. In constrast to Lion, all plant states must be known. No
restrictions are placed on the form of the state equations,

Given the state equations

Plant x = A¥x + By

(IIX.56)

Model § ='Cy + (A-C)x + Br

where C is a stability matrix, and A, B represent the model, then the
error equation (e = y-x) becomes
3 ='Cg_ +0x + Yu - | (II1.57)
in which ¢=A-A%*, y=B-B%, It is seen that €0 if the parameter mis-
alignhent matrices approach zero,
Following the scheme outlined in the Time-Varying Parameters

section, for a single-input plant, the direct adjustment scheme for a

time-variable multi-input plant becomes

8; = ~Rja, -Pex; (I11I.58)
5 -~ =5.b, -Per

where it is observed that (III.57) is a modification of (III.17). R, ,
S; are any positive definite diagonal matrices, and are introduced so
that V will contain/fegative definite component in E(See the Time-
varying Parameter section). It is noted that the model parameters
(Ei’ Ei)’ rather than the plant parameters, are adjusted in this case.
Computer simulation of?fourth—order two-input blant is shown to yield

good results.



CHAPTER IV

THE SINGLE-INPUT SINGLE-OUTPUT
ADAPTIVE OBSERVER - PART I

4.1 Motivation for em Adaptive Observer

In this chapter the first adaptive cobserver, which was developed
by this author, is described. 1In the next chapter, the subseguent
development by other investigators based upon the formulation described
herein is detailed.

The motivation of the adaptive observer rests upon the necessity
of certain knowledge of the system parameters for formulating a non-
adaptive cbserver. This may be seen with reference to equation (II.b ),
copied below

Lar 4 GCT)x + (D—T‘ln)r (II. &)

& = Fe + (F-T

As shown in section 2.2, the above equation is made asymptotically
stable by defining

rte T

p=T"'8

and choosing the eigenvalues of F to all have négative real parts by

1 1

A-GC, i.e. T “AT-GCT=F C(11. 7

choice of G.

If the elements of the matrices A, B, or C are unknown, then the
equations (II. 6) cannot be assuredly satisfied. In this case, (II.6 )
becomes

&€ = Fe + ¢x + ¥r (Iv. 1)

for which ¢#0 and ¥# 0. Thus, cven if F may be chosen to be an

58
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asymptotically stable matrix, the error e in general does not vanish
whenever the system is excited by a non-vanishing r.
Since e is defined as
e =z - X,
the conditicn that e does not vanish implies that the cbserver state z
does not eventually reproduce the system state x,

It is therefore proposed that the matrices ¢ and ¥ be adaptively
adjusted to zero during system operation. Since (IV.1) is then
asymptotically stable (for suitable choice of F) when ¢ = ¥= 0, the
ocbserver state becomes equal to the system state.

Moreover, since ¢ and ¥ are defined here as the ignorance in
equations (II. ©) when A, B, and C are unknown, adaptively reducing
¢ and ¥ to zero allows the values of A and B to be ascertained if C
is known. Thus in addifion to adaptively generating the state of an
unknown system, the full order adaptive observer identifies the para-
meters of the unknown system.

As will be seen, the adaptive observer converges to a Luenberger
chbserver, implying the noise suppression characteristic. of the

Luenberger observer is retained in some measure in the adaptive observer.

4.2 Development of the Adaptive Observer

The Luenberger cbserver [ 2]-[# ] allows extraction of the state
of an cbservable linear system when giﬁén (1) the system input, (2) the
system output, {3) the form of the system, and (4) the-parameter values
of the system. In those cases for which the system parameters are
unknown, the state observation is subject to crror., Some previous

investigators of parameter ignorance in observers {60], [61] alleviate
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to some degree the observation error, but they are unable to guarantee
that the error vanishes or that their computational algorithm converges
when the magnitude of parameter ignorange is large. The basics of a

full order adaptive Qbserver which negates these disadvantages have

been previously reported [44]. The present chapter, following [711],
considerably simplifies the exposition of the previous paper and extends,
both computaticnally and theoretically, the topic of that paper. Briefly,
the full order adaptive dbserver for single-input single-output cbservable
continuous linear differential systems in the absence of a deterministic
or random disturbance vector guarantees the vanishing of cbservation
error regardless of the size of the comstant or slowly varying parameter
ignorance. The cbserver parameters are directly changed in a Lyapunov
adaptive way so as to eventually yield the unknown full order Luenberger
chserver. The observer poles may throughout be placed freely in the

stable region, and no derivatives are required in the adaptive law.

The Problem

A differential system is assumed of the form

W Aw o+ Br, w(0) = w0
y=[1 0 0 .., 0lw=cw
Rnxn
Bnxl (1v. 2)

for which only the single-output y = Cw = v, is available for measurement.
It is assumed that a similarity transformation has been made, if
necessary, sothat the single-input single-output system has the form

of (IV. 2). It is assumed that some or all of the elements of matrices

A and B are unknown, wC may be unknown, and the pair (C,A) is completely
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observable. The cbserver is of the form
z = Kz + GCW + Dr + Hu, z(0) = z°

Fnxn Gn=x1l

Dnx1l Hn xn and diagenal (Iv. 3)
where K is arbitrary and u is a control vec¢tor yet to be defined, but
" with the property that u > 0 as t > =, The problem is to adaptively
form a triple (G,D,T) so that the error-veétor defined as e = z - T-lw
vanishes as the system adapts. Tis a nonsingular square matrix with
the property that CT = C. Figure 4.1 illustrates the adaptive strategy.
It is noted that T © between w and x in Figure 4.1 is not physically
réalized.

The Adaptive Strategy
The overall strategy for solving the problem is to determine an
adapti‘;ve law for progressively forming the triple (G,D,T). The adaptive
law shall require that the error between the system output and the
corresponding cbserver state varisble be asymptotically stable in the
sense of Lyapunov. This requirement alone does not guarantee that the
error between the system state and the observer state vanishes, since
the system output remains unchanged under a range of similarity
transformations of the system state. In the section entitled “The
Transformation" it is therefore shown that the adaptive cbserver
generates but one of these similar states and that, by introducing the
transformation matrix T, the system state can always be adaptively
constructed by the constrained matrix T(t) whenever the systenm is
cbservable, since lim %(t) = T.
‘t—}m
The required adaptive law may be explicitly obtained by the use

of Lyapunov's direct method. In the section entitled "The Adaptive Law"
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Single-Output Adaptive Observer
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the equation of error is manipulated in such a way as to obtain it in
terms of only those variables which can be directly measured without
recourse to differentiation; the resultant equation is therefore neces-
sarily defined on a noncompact manifold of the error space. A
Lyapunov function is introduced on this noncompact manifold, and the
adaptive law is accordingly synthesized. Theorem 2 expands the

validity of the law to the compact manifold.

The Transformation
Define a transformation x = T-lw so that e = z - x. Then (IV. 2)

becomes

1]

% Byx + T—lBr, x(0) = T %0

eTx = Cx, A, = 7 LAT (IV.24)

y
and (IV.3) becomes

Z = Kgz + GCx + Dr + Hu, 2(0) = 20, (IV.3A)

It is desired for subsequent development that EO = 71T be in the

"output" form

-a, 1 0 0 en 0]
-321 0 l 0 4 0
"a.al 0 0 l * L] 0
AO : » . L] -
- 0 ¢ e 0
anl 0 |

wherein the first colum contains the system parameters, and all other
elements are zero, save the super-diagonal elements which are wnity.

The following theorem defines the restriction that must be placed upon

R so that both R = T_l

0 AT and CT = C.
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THEOREM 4.1 [CARROLL): Let A be an n xn matriz, C=[100 ... 0] a

1 x n matrix, ‘:1,'0 an 1 x n matrix in output form. Then there exists
a mtrix T such that A = TI&OT"‘1L and CT = C 1ff the pair (C,A) is
completely observable.

PROOF : (;\,C) is observable and by duality (AT,CT) is controllable

iff there exists a transformation Q such that

e — - A

0 | - o
0 . 0
"T "l » . T ..
QA'Q = ) . 1 s QC" = ) .
i al a2 - h e an 0
1
Thus
0 0 . e al
- u b a2
-Te T T _
Q AQ = I a; [, co =1[0 0 0 11.
d
- n-—
Let 0 0 0 1]
Y hd l 0
M E » * = MT - M"l
0 1
1 0 . - 0
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and let
T = MQ T, 712 QTM'l.
Then
" a 1 0 ... 0]
n
a1 o 1 ... 0
TAT"]. - M{Q—TEQ—T]M-J. = + ’ . .
a2 . 1l
al 0 LI I LI 0
Also,
~T
c(MQ ") = C. Q.E.D.

As a result of the theorem, any observable system (IV. 2) may be
placed by similarity transformation into system (IV.2A) with CT = C.
The elements of T may be unknown since A is unknown. The problem will
be considered as defined by (IV.2A) and (IV.3A), so that e = % - z
must vanish. Eventually the prcblem of contructing w from x will be
solved by intreoducing the adaptive matrix T(t). It will be shown that
1im T(t) = T so that w = lim T(t)z = w (in which @ is the observer
ot ] T
estimate of w) since lim z = x.

oo

After the adaptation of the observer (IV.3) to the unknown system

(Iv.2) has been essentially completed, the values of G and D are then

p=T B

(T lA’I‘~K0)CT
G = ———————

CCT
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Consequently, the adaptive observer converges to a Luenberger identity
observér of the transformed system (IV.2A) with knowledge of parameters.
It is noted that there is no physical realization of matrix Tt

between w and x in Figure u.l.

The Adaptive Law
It is now assumed, more for explanatory purpose tham actual practical
need, that some stable "nominal" plant matrix is either known or is chosen

has all known elements and is in output

so that A, = A, + BAj, where A

0 0

form. Consequently, AAO contains all zero elements, except for the
left column which has elements that are to be adapted. Letting
e = 2 - X, the vector error equation is

&=Ke+ (K+ GC- Ay - 8A)% + ABr + Hu, e(0) = &f

D - T-lB. A theorem of Luenberger [ 2] allows the eigenvalues

where AB
of Ay - GC to be arbitrarily placed by selection of 6 (with the sole
exception that AO - GC cannot have the same eigenvalues as AO). For the
above error equation, let G = G1 + G2 and K = AO - Gzc. Then as a
result of the theorem of Luenberger and of the special forms of AO and
€, the vector error equation is

é = Kje + (G,C ~ 8AIx + ABr + Hu | (Iv, u)
where Ko is an arbitrary stable constant matrix in output form with
eigenvalues differing from Ay The adaptive strategy is to change
Gl and 4B to eliminate the influence of x and r in (IV.4); since
by assuming K, is a constant matrix, changing Gl is equivalent to
changing G and will be considered as such in the ensuing.

For notational ccnvenience in the next sections, the following

definitions are made
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-kn—l 1 0 0 [N ] 0
-knﬂz O l 0 LR N 0
-kn"'s 0 0 1 e 0
KO = - - L - *
_-ko 0 0 0 . 0#
(@, 0 0 ... 0
@ o 0 0 P 0
O‘.n_a 0 0 "o 0
GC -~ AAO = . . . .
_.QO 0 0 cns 0 _
= T
AB=1[0 0 ... 0 Bm Bm—l Bm_2 80] . (1v.5)

- T
C=Tle; 8o &g - &l-

H = diag [0, hn—2’ hn—3’ veey ho] and n x n.

=]
1

order of plant.

number of zeros in system transfer functionm.

g
"

The error between plant state x and observer state z may be
measured only by the scalar state variable € T2y Y T 2 - XK. To
insure that only available measurements are called for in the adaptive
laws, a differential equation of first order in terms of the error

variable el is derived by using the so-called reduction of corder

technique similar to that of Gilbart and Menopoli [511. To this end,
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(IV.4) is first "collapsed" to yield the equivalent scalar form of
the differential equation given by

n n-1
(i) _
izo Koy 7L

Tt o, By @)
j=0  i=0

1 it] 1

L R (1)_(§)
+ EO iZO ( i ) Bi+j T

n-2 . |
+ Z hiui(l) (Iv.6)
i=0

where (-)(i) denotes the ith time derivative of (-).

Equation (IV.6) can now be reduced in order by first altering
its form and then appropriately defining the n-1 elements of the
control vector u. Thus, if ll is taken to be a real and arbitrary
characteristic value of KO and p E d/dt, then (IV.6) can be written

in the form

nil i nil i Em
(p + A,) ( a.p e, = ( a,p’) ¢.v.] + f
1 j=o 1 1 i=0 i i=0 i1 4
n-2 ()
+ £ + ) hou 'l (1v.7)
r j=0 i)

where it is understood that the left side of (IV.7) is a partially
factored form of the left side of (IV.B).l The right side of (IV.7)
has likewise beeg constructed to be equivalent to the right side of
(Iv.6). The underlying purpose is to form fx and fr from measurable

quantities so that a u can be realized which satisfles the equation
n-2 .
£+ f + ¥ b3 :
X 55y 33
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subject to the condition that lim u(t) = 0. It follows, disregarding
t+mo

initial conditions, that {IV.7) can be reduced to the form
n+m
(p t e,y =-.E ;v
i=0
where ¢i and v, are appropriately defined to ensure the desired asymptotic

behavior of u.

The defining equations of v, are given by

n-l (.) (o) ’ :

'Zo ajvi] =x11 , 10,1, 2, «o.p n-2 (1v.8)
3:

vh-l = *1
n-1 .
z a.vl(l) = r(i-n), i=n, ntl, n+2, ..., 2(n-1) (IV.8A)
j=0 ‘
Vop-1 T T

where it is seen that each Ve is obtained from %) or r by low-pass
filtering, and hence is realizable.

The defining equations for $; are given by

e

a. [ == a.a
i imn-1?

b =9 a1,

Si—n’

e

n-1

[N
1]

1%

i 'n, n'i'l, n+2, LI ]TH‘n < 21‘1—1. (IV.g)

However, should m=n-1, then (IV.9) should be corrected to the extent

that
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Bin = %in Bn---l'

[
1]

n,n+l, n+2, ey 2“-2

on-1. (1v.94)

[,
1

These have been chosen so that the terms in fx and fr contain only
derivatives of ¢i as required, so that fx and fr may be realizable,
Although by is not directly measurable, it will be seen that $i is a
measurable quantity to be defined by the adaptive algorithm.

The resulting expressions for fx and fr become

—n"2 k‘l dj (k"'j"l) .
k=1 j§=0 dt
n-2 n-2 n-2-j 3 .
d (i)
- Ay 0.0 — [v ¢, ] (Iv.10)
k=0 j=o =0 TI*L 4 "k Tk
e T R Y
fp = z ! 3 |:q)n+kr ]
k=1 §=0 dt
vnim n-2 n7§—2 ] Ei_ 0 (i)& ..
ksn §=0 i=o iTItl g4d "k Tk
(IV.11)
However, if m=n-1, then (IV.1l) should be changed to
Re? okl L (g
£ = 2 3 I:cbn+kr ]
k=1 j=0 4t
311-2 n-2 n-.f—j . 91. [vk(i)&’k]'
k=n j=0 i=0  TTITL 44
' (1v.114)

It is further noted that, since ¢k is the change in parameters due

to adaptation, as adaptation is completed $k+0,0 <k <n +m, and
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consequently, limu, = O.
Tt
As noted, the implementation of u reduced (IV.7) to

( {nil i nil N n+§ .
P+ ) a,ple, = ( ap) L $.V, J (IV.12)
PWiso ¥ 71 iz 4 izo * %

v

Taking the Laplace transform of (IV.12) and dividing by

n-1 3
a.s yields
i=0
n+m i(initial conditions)
(s + )tl)sl = [Z .7, J+ n-1 i
i=0 Z a;s
i=0 (Iv.13)
for which follows
. ntm n-1
e, t Alel = -Z ¢ivi + .Z ¥, exp [-Ait] (Iv.14)
i=0 i=2

where wi_are unknown constants or time-dependent functions depending
upon the initial conditions and'{Ai}, the set of characteristic values
n-l .
i

of E a,s .,
i=o 7

A Lyapunov function is now to be formed so that stability of the
adaptive cbserver may be assured. To this end, a positive definite
function of the measured error ey and the unknown parameter errors

¢i is defined as

n+m

V= %’- (msei + izo mi¢§). (1v.15)
Following Shackcloth [37], V can be made to be
. 2 n-1
V=o-m e +e iZO ' exp[-Ait] (I1v.18)
when
&:.=-T§-v'.e 0 <i<n+m (Iv.17)
i m, 1 1° - -
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Other adaptive laws can easily be chosen instead {571].
Implementation of the adaptive law in (IV.17) can be accomplished
by reference to (IV.9) and to the definitions of the variables oy

and Bi' For example,

m

. e . _ __s
-1 %-17 &1 T w1
n-1

. . . . m_
b2 = %o T 720 5 S & ot R, m_ 1%

By

= - P Vh-Zel’ etc.
n-2

in which él may be ascertained.

From the form of 9, e, is stable in the sense of Lagrange with

1
the region of attraction determined by the unknown constants wi and
the decaying exponential time function., Clearly, the region of

7

attraction shrinks exponentially with time and eventually vanishes;

consequently, e. is eventually asymptotically stable and lim e, = 0.

1 +ora0
All derivatives of e, must vanish in the limit as well since the scalar

1
error equation (IV.1l4) is linear and of first order and possesses
finite freqﬁencies .

However, the Lyapunov function (IV.15) is defined on a noncompact
manifold. Consequently,‘{¢i} is shown to be (eventually) stable but
not necessariiy asymptotically stable [ 5]. It is evident from (IV. 4)
that each ¢i must vanish by adaptation in order to cbserve the correct

plant state. Theorem 2 defines the restriection placed upon r(t) in

order to guarantee that each ¢i+0 as t»0,

THEOREM 4.2 [CARROLL): Suppose there exists no set of real constants

{qil, i=0,1, 2, «o., n+ m for which the command input r(t) of the
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observable and controllable system in ite steady-state condition iz a

~ solution of the homogeneous differential equation

n+m z
E q £“£P= o
i=0 dt

where n and m are defined in (IV.5). Then lim ¢£(t) = 0,

trm

1=0, 1, 28, e, n 4+ m, and lim e(t) = 0 is assured.
troo

PROOR : It has been shown that

1im el(t) =0

¥

lim u,{t) = 0 for each j

tao I

lim ¢.(t) = constant for each i. (Iv.18)
tro T

Therefore from {(IV.8) and (IV.8A)

lim o,{t) = constant for each i

tom T

lim B.(t) = constant for each i (1v.19)
tao T

Referring to n equations (IV.4), each equation may be differentiated

in a manner so as to form the vector es(t) = [el(“), eé“*lgegn‘Q),

ey én]T. Employing (IV.18)and (IV.19) in determining lim es(t) and
tm

letting B, 20 for i > m, (IV.20) results.

- (n-1) {n-1) (n-1)
0= e, + Gh—ly + Bn-lr
(n+1-i) _ (n-1) (n-i) (-1} . _
e, = eyt Y + Bnrir , 1L =2,3,4,...n-1
e = oy + Bor. (Iv-20)

Al) e's may be easily eliminated from (IV.20), yielding
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n-1 i m i
0 =(} @,s Yy o+ () B;s . (Iv.21)
i=0 i=0

let the stable (but unknown) plant transfer function be
n i m i
() a;s)y=(} b;sHr, a Z1 (1v.22)
. i . i n
i=0 i=0
Combining (IV.21) and (IV.22) yields
| m

)

a 1} .
Bisl) ) aisl):lr. (1V.23)

n-1l i m 1
0=|:(Zuis)():bis)+(
i=0 ’ 0 i=0

i=0 i

Equation (IV.23) represents a condition upon r(t) which is assured in
the limit by (IV.18) and (IV.19), that is to say, after adaptation
has forced e, to vanish. Two distinct possibilities exist regarding
the solution of the (n + m)th-order linear homogeneous differential
equation'(IV.ZB):‘a) either the steady-state system command input r(t)
obeys (IV.23) for some &alues @y and Bi’ or b) then + m + 1 coeffi-
cients of polynomial in brackets are in the limit each zero. By
supposition of the theorem, a) cannot occur; consequently b) must be
true.,

Using the assumption of observability and controllability to
insure that (IV.22) is relatively prime, it is'easy to show by mathe-

matical induction that condition b} implies that the constants o, and B,

are each zero, which was to be proved.

COROLLARY: If the steady-etate command input r(t) is periodic, a
sufficient condition in order for lim e(t) =0 in (IV.4) ig that r(t)

£y
contain at least [n + m +11/2 distinct frequencies in its steady-state

eondition.

It is cmphasized that r is the command input to the system and not
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necessarily a special identification signal. If the steady-state
r is periodic, then it must possess the required number of frequencies.
However, an r which is steady-state aperiodic must meet no restrictions
to satisfy Theorem 2.

Reconstruction of T

Using the '"nominal" matrix A, as initial condition, the actual

0
value of the system parameters may be determined by integrating the
change in parameters'{¢i}, defined in (IV,17), until adaptation is
complete, and combining appropriately in the form of the matrix T. Thus
%(t) "drifts" toward T as adaptation progresses and lim %(t) = T. The

) 4500

example makes this technique clear.

G, the estimate of w, is constructed from the cbserver output z
by forming T(t)z. Consequently, lim w = w.

Rt

Example

A third-order plant with one zero is considered for illustratienm.

Let the plant be described by

1l 0 ¢]
W = 0 1 Wt cl T
--(a0 + ao) -(al + al) —(a2 + ag) e,
y = v, (Iv.2%)

in which Gy B35 %53 Cps and c, are unknown . 3y @, 3, are the

nominal values. In output form, (IV.1%) is

- o
(a, + 02) 1 0
> : _ _ 'E
x (al + al) 0 1| x + bl Bl T (IV.24%)
—(a0 + uo) g o _bO - BO_
y =X, =W
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The error equation (IV.4) is now

-k2 1 0 e, 0 0
- _ _u%
é Ky 0 Ll esfay+ | BTt U (IV-4%)
-k0 0 0 ao BO u0

and the scalar equation (IV.6) is now

e +kye, + k&) tkoey = (g b oay o Gdxy

+ (al + 2&2)i + o ¥ +B.r+ (B, + é )r + a, + u_.

1 271 1 0 1 1 0
(IV.6%)
The scalar error equation (IV.6%) is eéuivalent to
(p +1 )(p +ap + agde, = (p? + ap + ag) ( Z $;vy)
i=0
. 1 I 1-j j (1) .
txpy - L] [1¢}+¢r
1 k=0 420 i=0 1+3+l 4
4 1 1-3 3
d (1) .
- Y oa, = ¢ 1+ 4, + g (1IV.7%)
k=3 j=0 i=0 Tt 4] Ui % 0

It is seen from the right side of (IV.7%) that v, and ﬁk must be

generated in order to allow removal by U, and u N s which is defined

l.
in (IV.8), may be generated by state-space means.

To illustrate generation of Vs the following notation is adopted:

vk(l) = v
d
v, (2) = =¥,
k dt k
* i
o d
vk(l) = — Y
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Then the generation of v, and V. defined by

1l 1
Vl + alvl + aovl = Xl
results in
vl(l) i 0 1 vl(l) 1
. - + : xln
vl(z) ~a,  -a, v1(2) -a,

Thus both vl and %1 are available measurements without the benefit of

differentiation of vy OF X,. Other v, may be generated similarly.

Using this notation, the implementation of inputs as

Uy * &JO(VO(Z’) + alvo(l)) + c'pl(vl(2) + alvl(l))
+ dg(vy(2) + a,v (1) + 8,(v,(2) + a,v,(1))
u, = iuvb(l) + ¢lvl(l) + $uvu(1) + ¢, vs(l)

reduce s (IV.7%) to
2 2 g
(p + Al)(p +ap+ ao}el = (p© + a,p + ao} ( iEo ¢ivi)
(IV.12%)

Defiﬁing &l as in (IV.17), the observer has the form

-k 1 0 g, 0 0

2
z = -kl 0 1y z + g |y ¢t bl roHouy
-k0 L gg b0 Y,y

where
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m
g = - e x
€7 m, 171
M Mg
g. = -e, (=v. +a, —x)
1 1 ml 1 1 m2 1
. m m
By * - e { E;'vb + 2, ﬁ; xl)
and
- 1 ! 0 ' o
t t '
. t 1 i 0
[ g2dt T 4 i ! z
W = I t o 2 t frt l
: gzdt - a2 + f gldt - a, II g2dt - 3, : 1
0 lo
L | I -
z = T(t)z.

w is the estimate of plant state w, and limw = w.
) Faco

Note that CT=C.

A, Simulation
The third-order system of the example was simulated on a digital
computer using the following parameters:

a, = 2% @ =0 ¢, =30 k=24 m.o/m3 = 8000

al = 26 al = 74 02 = 195 kl = 26 mO/m5 = 2000
a, = 9 G, = 0 bl = 30 k2 =9 | By = 8 = 0
The eigenvalues of the observer (determined by {ki})were A = o-b,
12 = -2, A3 = -3. The input to the plant was a sguare wave of magnitude
; )

1 and frequency d@j Two parameters, bo and g, were adjusted by the
adaptive law. These were initially set at b0 = 73, g = -5 corres-
ponding to a correct value of by = 75, g, = -7 Figure 4,2

illustrates the behavior of bo, gl, e2 and e, as a function of time.
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It is noted that the behavior is somewhat slow and oscillatory.

Remark

As has been previously stated, w and Tz and limw = w. In the
Tt

-

general case of an artibrary plant matrix A, the determinant of % may
vanish for some instances of time. These moMentary occurrences, of
course, have no detrimental effect on ;J since convergence of ;r tow is
guéranteed. It need not be feared, either, that the elements of E‘
may become impossibly large at any time during operation, since the
elements of E‘ are guarénteed by the Lyapunov function (IV,15) and
(IV.18) to be stable in the sense of Lyapunov and therefore bounded.
The following theorem summarizes the results of this section.
THEOREM 4.3 [CARROLL] A full-ovder adaptive observer (I V 34) can be
constructed to observe the state of and to identify the parameters
of system (IV.2) having wnknam parameters in matrices A and B iff
(;-1_, ) is a completely observable pair and if the command input r i8
periodic, possesses more steady state frequencies than half the number
of parameters being adapted.
The adaptation is accorplished by algorithm (IV.17), dependent
upon definitions (IV.9) or (IV.9A), when the control u is imp lemented
aceording to (IV.7) subject to definitions (IV.8), (IV. 84}, (Iv.10),

(IV.11), (IV.114).
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4.3 An Altermate Adaptive Algorithm for the Observer

In Section 4.2 the single-output adaptive observer was synthesized.
The adaptive algorithm depends upon the filtered-output and filtered-
input variables vis defined in eqs. (IV.8) and (IV.8A). The transfer

function of these filters is

1
s
Rt %, a.s+a (xv-24)
n-2 B R

for i=0, 1, 2, ..., n-2. This configuration apparently allows effective

noise suppression since high frequency signals contained in the input

of the filters are attenuated.

However, according to (IV.8) and (IV.17), the adaptive laws for

oy and Bi are given by

Mg Mg
w, = ~ ( ﬁ;-vl t a.xl)el i=0,1, ..., n=2
b n-1
. m m
. = - (S, o+ = a, rle i=n,n+l, ..., 2n-2
i-n ., 1 -1 i-n 1 ?

excepl for i = n-1 and i = 2n-1, and for which it is assumed that
an-lgc’ Bn_l#O. Therefore for the case in which un_l#o, Bn_l#D, the
adaptive alporithm depends upon the corbination of vy and %, or r.

The resulting transfer function is, for the first of the above equations,

m i m

s s 5
m n-1 n-2 + ai

i s +a s +...+a,s+a n-1

n-2 1 0
which equals

m m .

s n-1 n-2 g 1
— 5 +a s F..0ta, Mt —
m “i (= “n-2" r0) m,

-1 i

n-. n-2 LV,
B ! + a 3 +...+ 3.5 + a (1v.25)
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A similar expressioﬁ is obtainable for the second of the adaptive
equations.

From the appearance of (IV.25), it seems doubtful that the result-
ing filter offers much noise suppression in the adaptive law for the

case where #0, B 1#0.

“n-1 n-

In this section the adaptive algorithm is altered so that It
depends directly upon filters having transfer functions of the form of
(IV.24), thus enhancing the noise suppression capability. In additiom,
the filter poles in the alternate algorithm may be chosen distinet from
the observer eigenvalues if desired, and the Gilbart and Monopoli adaptive
law ([46]; also refer to the section Degree of Stability in Chapter

111) way be implemented in order to imprové the speed of response of

the adaptive algorithm.

Deve lopment of the Algorithm
The new algorithm is based upon the same form of the olserver
as the form cf the observer in Section 4.2 with the exception that,

in equ. (IV.5), the matrix H is defined as

H = diag [hl, H.y s0r hn] and nxn;

25
that is to say, hl is here non-zero. Consequently the discussion of
the transformation and the error equation is the same as in Section
4.2. The new algorithm is therefore developed from the starting

point of the error equation (IV.4)

g = Koe + (GC ~ AAO)x + AB + Hu (IV.4)

in which
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-
'kn-l 1 0 0 - 0
-kn—2 0 l o LK) 0
Ko = | . . . )
#ko 0 0 0 .es 0
¥ 3]
¢, 0 0 . 0
¢2 0 4] . 0
¢3 0 0 [ N ] 0
(IV.26)
GC-BA, = _
l?n 0 0 . 0

AB = [¢l, wg, vees mn]T

The vector error equation (IV.4) is collapsed (in the same

manner as (IV.€)) to yield

uGn-j) (Iv.27)

. 3
in which p] £ %Ej and in which it is to be understood that the second

summaticn is to be ignored when n-k-1 < 0.
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The intent at this point is to define the vector v in such a

manner so as to make the right side of (IV.27) equal

n-1 i n ( .)
( L ep ] [ IoGav, + s, i] + Z hyw 3“ ] (1v.28)
1

i=0 i=1 i
where vs and s; are filtered-output and filtered-input variables with
transfer functions similar to (IV.24). w is a vector to be defined

later.

The function vs and s are accordingly defined as

T e 2 oD
520 j Vi 1
pel o (5) _ _(n-1) (1Iv.29)
) c.s;7 =
j=0 1
i=1,2,3, ...,1n andcn_lEl.

It is pointed out tha the 2n equations (IV,28) actually represent two

low-pass filters of order n-1 each. This follows from the transfer

function.
sn-ix
v, = 1
1 R M2, + c.s +
n-2 15 N
(IV.294)
n-i
8 r
si - n-1 n-2
s + oS + + ¢y + o
i=1,2, 3, .y 0
from which it is seen that
vi = Via
(Iv.30)
s, = 8
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From the identity that

(i-3- 1)) . (1)

pt (4v) = Z o} (v ov 7,

j=0
it follows that (IV.28) equals

n n-1 i-1 n
(i-3-1) (1)1
[ p’ (§ v Y+ 4o v +3 ¢
kzl izl 1 [jZO e kk k-1

¥ g nil [ I o sty 4ys 1):] Y S, + Z h w23
k=1 i-1 4 3=0 K>k k'k k 1 “o¥x k. 572 33

This expressicn is set equal to the right side of (IV.27) and the vector
u is subseguently determined. After employing (Iv.29), the resulting

expression is

n .
) h.ugn—]) = Z h.w (n-3) z z P ( Z cq ¢k (1-3- l))

j=1 33 §=2 33 k=1 jem-k  i=j+1
n-1 n-k-1 n-1
i k—j-1 1
N R R AP R Casiteb
k=1 j=0 i=+1

n n-2 .n-1
+3 X ](Z wk (i-j- l))
k=1 jen<k  i= 3+1

n-1 n-k-1 , 'y D=1 -
. ~k=- s
_ z ) pJ {wk(r(n i=1)} Z Cisil 3 1))]
- j=0 i=§+1
for which it is understood that a summation term is to be ignored
if the upper index i1s less than the lower index, and that n > 2. This

expression is simplified by use of (IV.29A) and (IV.30) so that
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. n-2
u(J) z h .w (i)
j=o. "7 BTl

n n-2 . n-1
I I Nl e

+ )
k=2 j=n-k i=j+l

i V14341

k=1 3=0 i=0

n-1 n-k-1 . g y

-1 Yktitl

°5 VSk-1e541)

From the above, the vector u can easily be determined by equating terms
containing equal values of j on both sides. The result is

n~l

Pply = Pp¥y ~ S [kgl (e Vi1 ¥ ¥ Sien?
E I'IE-‘]- . .
h.u. = c.{d w ) + ¢ s, s )
373 k2§ i=n-j+l 1"k k-itn-j+l k "k-itn-jtl
ph S n'ij . n'z:j
- [é I S ¢ . .8 . .1+ h.w,
ko1 k jog P Tkrisl ki=0 n-j-i "k+i+l 13
(Iv.31)

for j = 1,2, ..., n-1. It is understood in (IV.31) that summation
terms are to be ignored if the upper index is less than the lower
index. The function wj will be defined later.

By employing {IV.31), the collapsed error equation (IV.27)

hecomes
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7 ‘”41 e €] Go v us01 oL n D
i=0 1 k=1 KK s20 m-in-d
k =1, € =1 - (If.sz)

n n

The Laplace transform of (IV.32) is taken and both sides of the
n-1

equation is divided by Z cisl yilelding
i=0
I i
) k.s
i=o_* éf, s
Y S T L1 (hw t us)]
Z 1 k=
;s
i=Q
n-2
+) h s s W
j=0 n ] :]
n-1
i
I e s
i=0
f(s) (1v.33)
+
n-1
i
) ¢y s
i=0

for which f(s) depends upon the initial conditions of the variables
in (IV.32). On the left side of (IV.33) is the ratio of polynomials

2

7 i n- ;
Z k. s { p. S
L i i
O T SR s
n-1 . 7 n-1 n-2 n-1
1 1
Y c. s 7 c. s
\ i .
1=0 i=0
(IV.34)
where
Py = ko = %l ~ Gpo2?
p, =k, - ¢, ,-c.{k -¢c ) i=1,2,...,n-2
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Defining

e

hn—j wn-j : pj 1

then (IV.33) becomes ' -

n
(s + ko1~ Cn—E)el = [k££§:(¢kvk + wksk)] +

In the time domain (IV.35) is

n
ETMALNEIRIL WL kzl (v * hesy)
n-1
+ ) x exp [-Ait]
i=1 i

(1Iv.35)

(IV-36)

Lere Xg is a bounded function dependent upon the unknewn initial

condition of the equation (IV.27). Eq. (IV.36) is equivalent to

(IV.27) and to (IV.4) with the exception that (IV.36) is a scalar

equation in terms of ey

A Liapunov function candidate can be

constructed so that it depends upon e but not the other elements

of the vector error e. This function will be chosen according to

[46]so as to allow a faster rate of convergence of the resulting

adaptive law.
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n T
1 2 1 2 1 - 2
vegel+t 1 5n (e qgvie; ) * .Z — (4 + q;84¢,)
i=1 i i=1 Emi

The time derivative of V aleng the trajectory described by (IV.36)} is

Ll
n
I
.
=
1
9]

n
2
n-1 " Sa-2’%1 Y kzl (e * B0

n .
1 . LI
* izl”a; (35 + qgvie )y + 43V
A .
¢ 7 2 o, +agse)y +a; se)
.- ~ i i"if1 L i i1
i=1l m,
i
n-1
+ey 1o exp[—lit]
i=1
Define
¢i = - omviey - 93V
- . (1V.37)
s A A 955:%
m, > 0, m, > 0, Q > 0, q; >0 i=1l,2, ...,0
Then
n n-1
) 2 22 =~ 22
v =~ (k T CnﬂQ)el - ) (qiviel + qi°1el) ) X5 exp[~Ait]
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If the set of constants {c;} are chosen so that the filter poles

all have negative real parts and if kn—l ~e 5 0, then x; exp[—lit]
vanishes exponentially and V is then negative semidefinite on the
compact manifold (e, &, ¥) but negative definite on the non-compact
manifold ever which V is defined. Consequently, e, = 0.

The expansion to the noncompact manifold - i.e. require e, ®,¥*0 -
has been discussed in Section 4,2, The results obtained there, in terms
of a steady-state frequency requirement for the input signal r, applies
equally here. The reader is referred to Section 4.2 for a discussion
of this. |

The adaptive equations (IV.37) appear to requiré the generation
of a derivative for implementation whenever either q, or ai is positive.
Of course, in the actual adaptation of ¢ and Y, no derivative is
required. Since ¢i =g - Aai and wi = di - bi where Aai and bi are

constant, (IV.37) defines

g, = -m, v. e, - q; Ve
i i il i 171 (IV.37A)
di = - my Si el -9y sie1
or, what is the same .
gi:—qiviel—mifvieldt
0 (1v.37B)
: . t
di = -q; S; € m, [ . ey dt
0

1n (1V.37B) it is seen that the parameter estimates g, and di for each
i are available without recourse to differentiation.

lowevor, implementation of (IV.31) seems to require the availability
ol $ and b which are dependent upon 4 diffarentintion network if Qi

or q. is positive. Nevertheless, the di fferentiation can Le avoided
q; is p
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by careful manipulation of the u, terms in (IV.31). The basic

notion here is, wheﬁever ¢i and ii appear in a uj term, to place

the derivative part of $i and @i'in u]._l without implementing a

derivative network. The relccation of the derivative part of ii

or $i in a different u implicitely generates the differentiation.
This operation is accomplished by use of the identity

e d

ev, v, = rry (evl

The results are found to be

VQ) - ev ¥,

n
Tty :kgl oM %p1 = % MY &1 F Pp¥y

n - o
t1ocglm sy - g s) s e
k=1 .
n n-1
hjuj =ij i=n§j+1 c, e v (a Ve tan-i" M vk—i+n—j+l)
i-l n=j
+1<-);1 1% 4, (M S gt Vieind T % Snogei Vit
i n~§+l
+k=l qk el vk i=0 cn_j"i—l vk"’i"'l
Iz'l I‘lil .
- C. q e, Vv, V. .. .
k:l+j j_:n_j i *k 1 'k k-i+n J 1
n n-1 . }
+ij fens i ¢; eq S (9 S sinis T M S sanogel)

=1 n-j

b . "
+ Z ¢, S z { c . .5 . - Q. C_ . . S ..)
c -3 + g
x=1 1 Pi=0 " “n j-1 Tkti+l k m-j-i "k+i
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Cn-j-i-1 Sk+itl

k=1 i=0
(1v.38)
% nil -
- c, q e, S S . . . +hw,
k=3+1 i=n-j i %%k "1 "k Tk-itn-j-1 33
n n
hyvy = - E 41 k-1 T 951y .Z Ch-i-2 Vosi
k=2 1=0

n . n
‘kzz % %1% %k-1 T Uty EO “n-i-2 S2+i

For reference with the

repeated
h . w
n-i n~1i
P = Ko -
pi:ki_
i=0,1,

It is noted that u has
To summarize, the

Theorem 4.4 [CAREROLL]

i

use of the above, the definitions of wj are

L]
{(1IV.34)
o (ko Suo?
ey ey Uiy = epoy)
2, «, D~-2

the desirable property that lim u = 0.

)
theorem 4.4 is given.

A full-order adaptive observer (IV.34) can be constructed to

observe the state of and to ideniify the parameters of system (IV.2)

having unknown parameters in matrices A and B tff (A, C) is a completely

obgervable pair end, tf the commend input r is periodic, r possesses

more steady state frequencics than half the nurber of parometers

heing adapted,

rhe adaptation in azcomplished by the algovithm (IV.3783) dependent
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wpon low-pass filtration of the eystem input and output. The filters
are given by (IV.29) or (IV.29A) and the poles of these filters may
be freely chosen independently of the observer eigenvalues whenever
al ki 4-Cp>0 ,
b) the filter poles are chosen so that all lie in
left half plane, and
e) the control input u is eonstructed according to

(IV.38) and (IV,34) :

L

Example
The system of Section 4.2 is used here as on example of the
altered adaptive law. let the system be as (IV.1%) and the error

equation is

- -~

e -k2 1 0 e ¢l 0 Uy
e, = —kl 0 1l e, + ¢2 Xy + ¢2 r + u2
©3 Ky 00 3 & by U3
where
4 Fety by =4y v By
938t by = 4yt By
¢3 = ga + uo.

The collapsed error eguaticn is

. ) 2
e, + k2el + kl?l + koel = p (¢lxl) + p(¢2x) + ¢3x

+ p(wzr) + (wsr) + ﬁl + ﬁz +u,
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The filters are given by

2 _ 2 2 ]
(p° + cp + co)vi =Px) {(p” + c,p ¥ co)sl

2 2 -
(p” + c,p + CO)VQ = pxy (p” + cyp + co)s2 =

2 _ 2 _
(p° + c,p + co)v3 = % (p~ + e.p ¥ c0)53 =

which may be generated by

- -

v 0 1 v 0 ]
8 = 3 + xl
Vé -Cy —cl VQ 1
L. . " o ~ -
-- 1 3 - - -
S3 ) 0 1 s3 0 )
s ) -C -C s + 1 1
72 o 1 | 2] i
vl = -clv2 ~c0v3 + 3
Sl = —0182 *cosa + xl

The input vector u is given by

u

u, = ¢1(clv§ + V3 ) + ¢2c2 5 + c2¢3v3
c2¢232 Qwss + [k —CO(k2 -cl)]el

According to (IV.37B) the adaptive laws are

g1 7 QN5 T ™ ft vi®y &

D
t

By T TUV% T M fo o8y 9T

B3 T93V5%1 T M ft veey &

n = =%, ( &lv ¢2v3 + wzs ) + Ek Cy ~Cy (kQ_Cl)]el
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. . gt
d2 = - Q,8,@y - My | S,ey dr
0
d3 =~ 93532 ~ M3 r Sgey 47
0
With this definition, v becomes
uy = (=myvye) + qyvie; - Gy + q covyley
+ (-mys, + q,8,)cpe 8, + (omyvy + qyvyde,e v,
+ (mgsy + qgsy)ope sy + (-mgvg + qgvyle,e vy
t€0,818,8, T €5 8,V V, + cpQye V,V, * [kl—co—cl(kz—c
u, = - coelvl(qlvl - mlvz) - cDelvz(q2v2 - m2v3)
- egeysylays, - mysy) + [k - egliy - cp)ley
u, = - q.e,v, {c.v, + c.v.) - ¢c,e.(q V2 o+ q v2)
1 1%1V1 Y42 T SYs 281495V T d5Y3

~c.e.(q 32 + a 52)
2717272 33

The poles of the filters may be arb
- C

k2 1

The observer configuration and tran

same as in Section &,2.

itrarily placed sc long as
> 0,

sformation reconstruction is the

1

)]el



CHAPTER V
SUBSEQUENT EXTENSIONS OF THE SINGLE-INPUT
SINGLE-QUTPUT ADAPTIVE OBSERVER - PART Il
5.1 New Canonical Form

Subsequent to the published appearance of the single-input single-
output adaptive observer in [71j, and earlier in a different context in
[443, interest was generated among other researchers in the adaptive
observer concept. This chapter examines the published effort of those
regearchers partiqularly in comparison with the adaptive observer of
Chapter IV.

The first ﬁodification of the adaptive observer was by Luders and
Narendra {62]. They proposed a transformati&n of the system that is to be
observed inte a different canonicql form than the outpuf form of
Chapter IV in order to lawer the order of the state variable filters.

Whereas, with the output-form observer, the filters are of the form

, 0 <1i<n-2,

s + a ,s + ... + as + a
1 0

in which n is the order of the system, the new cancnical form allows the

state variable filter to be of the form

0 :_i <n-1

In crder to compare the two schemes it is supposed that n parameters in
each of :he input and system matrices of the system are to be adapted.
Then by the method of Chapter [V there are required 2n-4 inteprators to

implement the filters whereas the system in the new canonical form

96
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requires 2n-2, certainly not an improvement! However,, if the nurber

of parameters being adapted is q, the method of Chapter IV requires

d

2n-4 integration to implement the filters as corpared to g-2 integrators-ﬁ

for the method with the other canonical form. Thus with the second

form there is a significant savings when the number of parameters being
adapted is small. But there is a penalty for this savings: the eigen-
values of the observer (ﬁhich are the same as the roots of the denominator
polynomial of the state variable filters) must be both real and distinct
with the canonical form of Luders and Narendra where there is no such

restirction in the output form representation.

The canonical form proposed by [62] is

(V.1)

nxn

where A is a square diagonal matrix of order n-1 having arbitrary but
real and distinct eigenvalues. A system (IV.2) may be trans formed so
that the system matrix A is in the form (V.1) iff the system is completely

observable through its single output [62]. The elements e, of (V.1)
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represent the unknown parameters of the system.

It is noted that the wnknown parameters of the system appear in the
left-most column of the transformed matrix in both the output form and
the form (V.1); this i3 a necessary requirement for any eanonical form
used in an adaptive observer when the system output matrix is (€ 0 0.;.0],
C # 0. 'The reason for the necessity is that the uninown parameters must
appear in the range space'of the available measurements, so that the
parameters may be adapted by an algorithm dependent only upon available
measurements. That is to say, the unknown parameters must appear in(RFCT]
where C is the output matrix of a system (IV.2) and the symbol Cg,denotes
"the range of".

The observer of [62] is, analogous to (IV.34), of the form

Z = Kz + GCx + Dr + Hu (v.2)
in which x is the state of the transformed system (that is, transformed
so that the system matrix A of (IV.2A) is in the canonical form (V.1))

and K has the form

-('-11 111 ... 1
0
0
0
A (v.3)
L o
“ nxn

Then D and G are adjusted in (V.2) to make the error equation (IV.4)

asymptotically stable in the sense of Liapunov. The control u is synthesized

to enable this to be done.
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It is apparent that the approach in [62] is very like that of the
last chapter but with the exception that a new canonical form is used.
The new canonical form allows, however; one difference in the develop-
ment of Chapter IV. In the technique of Chapter IV, the vector error
equation (IV.3) is first converted to a scalar differential equation
(IV.6) and then integrated to a first-order differential equation (IV.14)
by use of the filtered state variables. The canonical form of [62]
allows the sequence of these steps to be reversed. By doing this the
awkward expressions in (IV.10) and(IV.1l) are avoided. Tor a detailed
accomnt of the procedure of [62], the reader is referred to the "adaptive
law" section of Chapter VI.

The same researchers have proposed yet another canonical form {631,

albeit a generalization of their form (V.1). This form is

I

(v.u)

where qT is a row vector of dimemsion 1 x (n-1) and F is a(known) square
natrix of dimension (n-1)x(n-1). A requirement is that the pair (qT,F)
be completely observable. (V.1) is seen to be a special case of {V.4),
The advantage of (V.u4) over (V.1l) is that n-1 of the observer eigen-
values, which are the eigenvalues of F, need not be both real and dis-
tinct as required by the form (V.1). The corresponding disadvantage is
that, when F is not diagonal, the resulting state variable filter in-

evitably requires more integrators for implementation, which puts the
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adaptive observer based upon (V.4) at a greater disadvantagé'over the
output fbrm cbserver when the parameters that are to be adapted are
many, and lessens its advantage for few parameters.

Nevertheless, this author believes that the form (V.u4) is a signi-~
ficant contribution because of the requiremént that (qT;F) need be com-
pletely observable, as opposed to the need, in (V.l); that g projects onto

each axis of Eirl. As yet there has been no verification of the possi-

bility that significant simplification of the observer structure can be
accomplished by judiciously choosing F and qT.
One final point should be made in comparing the form (V.4) or (V.1)
with the output form of Chapter IV for developing adaptive cbservers,
That is the fact that, despite the existence theorems for transformations
to the diver5e cancnical forms, cne must have available a literal trans-
formation matrix in order to implement the retransformation of the
observer output. In the output form, since the iiteral transformation
from companion form to output form is easily produced for any order
system, and since the van der Monde matrix couples the Jordan form to
the companion form, the problem of cbtaining a literal transformation

matrix is simplified to the problem of finding a literal expression

for the eigenvalues of the system. Although this is a difficult chore,

it is perhaps a less difficult task than seeking for a literal transformation

directly from the equation A = T"IAT as must be done with the other forms

that have been suggested.

5.2 Graater Filter Freedom
In the adaptive cbserver of Chapter IV and the diverse forms of
section U.l, the poles of the state variable filters must be the same

as the eigenvalues of the observer. Since the system in which the
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observer is to be used may contain noise, the requirement that the
filter poles be equal to the correspondihg c¢bserver eigenvalues might

not allow so effective an adaptation as could be obtained if the eigen-

values of the observer and the poles of the filters could be independently

chosen.

Kudva and Narendra have proposed [64] an cbserver of the same form

as that in Chapter IV, i. e. having the observer matrix in output form,

and have shown that the poles of the filters may be independently
chosen from that of the observer eigenvalues.

This observation is proved by use of the Kalman-Yakubovich lemma
[u8]. This lemma says that if

1) the square matrix K is a stable matrix,
and if

T -1_ . s

2) h™ (sI-K) 4 is positive real,

where h and d are vectors, ' '
then there exists a positive definite square matrix P and a vector g
such that

T

K'P + PK = - qu

and
Pd = h.

The development of the proof, tha the poles of the filters can be
freely chosen, picks up essentially at equation (IV.12). This scalar
equation is then re-converted to a vector equation of the form

t=Ke+d v (v.5)
where € 5 € and ¢ is the vector composed of the parameter differences

: T : o
a; and g, @ Loy o .. anBOBl ...Bm] . dis a vector with first
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element unity. The Liapunov candidate is now chosen as

{eT

<3
L]

Pe + @Tm} (v.8)

where P and T are both positive definite and T is diagonal. The

differential of (V.6) along the trajectory described by (V.5) is

V= %-ET(KTP + PK)e + sTPd oy + @TFé (v.7)
Therefore choosing
& = -r LeTpav, . (V.8)
(V.7) becomes )
P=zet ™ + PK)e (v.9)

By applying the Kalman-Yakubovich lemma the adaptive law is reduced to
s -1
b= - Te,v _ (V.10)

since €, =‘el. Equation (V.10) is similar to (IV.17).

The poles of the state variable filters are determined by d in the

sense that each Ni has the form

On the other hand, the eigenvalues of the observer are the eigenvalues of
the matrix K in (V.5), which is in output form. Thus the poles of the

filters and the eigenvalues of the cbserver are independently chosen.

5.3 Cyclie Multivariable Adaptive Observer

One may recognize the distinction between adapting (and identifying)
parameters in the system matrix A of a system (IV.2) and adapting (and
identifying) parumeters in the input matrix B by means of the adaptive

observer. That is te say, the adapting of parameters in the system matrix
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A is accomplished by entirely depending upon a transformation T to place
A in a canonical form, while adapting parameters of the input matrix B is
accomplished by adapting parameters of T-]B without regard to which T,
dependent only upon A and the chosen canonical form, has been chosen.

This being so, the single-input single-output adaptive cbserver can
readily be extended to a multi-input system (because no change is required
in selecting a T which delivers A into canonical form).

Luders and Narendra reported [65] just such an extension based upon
their previously reported single-input single-output adaptive cbserver
[62] (see section 5.1). In addition they noted that 1f the system has
multiple outputs and if it is possible to cofnbine these outputs in a
manner so that the system is completely observable by this single com-
bined measurement, then the single-output multiple-input cobserver can
serve as a multivariable cbserver. |

Not all multivariable systems can be observed through a single
output even though it is completely observable through multiple outputs.
In this, the system matrix A plays a crucial role [66]}. Let 0 # b ¢ \an
and let range be denoted by the symbolq. Then the space Eb is called

the eyelic subspace generated by b when

Eb = [A:é{(b)]

where[A:@_ (b)]= R () + AR (b) + AQG{(b) +oee. + An-l(P\(b).
The space En is eyelic if there exists ab e En such that Eb = En.
It is common usuage to say that A is cyclic in order to imply that En
is cyelic,

A matrix A need not be cyclic. A ‘triv_ial example is

1 0
A= , b=1[b

bQJT#O
0o 1

1



104

Then E - R o) 72

From the preceeding discussien, it is apparsnt that the multivariable
system of [65] is limited to cfclic systems.

One interesting observation made in [65] is the following. Suppose
that the system (IV.2) can be obtained, by transformation if necessary,
so that the uppermost row of the output matrix C is of the form [1 0 0 ... 0],
suppose that there are unknown elements in the remainder of C, and finally
suppose that the system is observable through the first output Yy {i.e.
the pair [1 0 0 ... 0] and A are completely cbservable). Since the
state of the system can be determined through the single output Yy the
unknown elements of C may be determined, and this may be denme adaptively.

Choosing

=
1]

tr [(AC)T(AC)]

then v

-t [(AC)T esz] (v.11)

= - eT e +eh.e
y .

y " fynf1

where AC is the difference between the estimate of the output matrix
and the true value and ey equals the.error between the observer estimate
of the output and the output itself. Since e 0 in (V.11), v is
negative  semi-definite. Hope fully*this implies-that AC+0, thereby
estimating the unknown values of C.

It is apparent that the cyclic multivariable observer [65] is of
nth order and the output measurements are therefore generated even
though they are available for measurement. The next chapter describes

a reduced adaptive observer which generates the state of the system by

an observer of order dependent upon the number of output measurements.

¥ Tote that Vv in (V.11) is only semidefinite on the space of V.



CHAPTER VI

THE REDUCED ADAPTIVE OBSERVER

6.1 Comparison with Cyclic Adaptive Observer

The adaptive cbserver concept is a scheme for determining the
state of a system possessing unknown parameters when only the system
input, output, and form are known. The first reported adaptive
observer, for single-input single—output time invariant linear systems,
appeared in [44] and [71]. A modification of this observer to simplify
the adaptive dynamics was subsequently reported [62]. Both these
schemes exhibit the desirable properties that the eiéenvalues of the
cbserver matrix may be freely chosen (an important capability for
systems with measurements corrupted by noise), that the simple Lyapunov
adaptive algorithm is implemented entirely on line during system
operation, that mno derivative networks are required in the adaptive
algorithm, and that both the state of the system under observation
and the unknown parameters of that system are progressively determined
regardless of the magnitude of parameter ignorance.

tn [65] the single-input single-output adaptive observer was
extended to cyclic multivariable systems by introducing a suitable
tpans formation that converts the system to a single-output system.
Consequently the multivariable adaptive observer in this scheme is of
the same order as the system regardless of the number of system outputs
available, and thc number of adaptive pains needed to implement the
observer algorithm equals at least the sum of the system order and the

nurber of input parameters being adapted.
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In this chapter an adaptive observer for multivariable systems
is reported for which the dynamic order of the observer is reduced,
subject to mild restrictions given in Theorem 6.1, to n-pt+l where n
is the order of the syétem being observed and p is the number of
independent output measurements. The observer structure which is
developed here depends directly upon the multivarizble structure of
the system rather than a t+ransformation to a single-output system.
The number of adaptive gains is at most the sum of the order of the
system and the nurber of input parameters being adapted. Moreover,
for the relatively frequent specific cases for which the nunber of
required adaptive gains is less than the sum of system order and
input parameters, the number of these gains is easily determined by
inspection of the system structure. This adaptive cbserver possesses
all the properties ascribed earlier to the single-input single-output
adaptive observer. Like the other adaptive observers menticned, some
restriction is required of the allowable system command input to
guarantee convergence of the adaptive algorithm, but the restriction
is more lenient than that required by the full-order multivariable

observer in [65]. Finally, this reduced observer is not restricted

to cyclic systems as is [651.

6.2 Development of The Reduced Observer
The Problem to be Solved
An cbservable and controllable linear time-invarient dynamical
system described by'

% = Ax + Br §(t0) = x0
(v1.1)

y = Cx
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is considered, where x{t)e €™ is the state of the system, r(t)e gnm
is the command input and y(t)e E P is 1Ehe output. For purposes of
this chapter, (VI.1l) is multivariable with n>p>1 and m>1, the pair
(C,A) is completely ohéervable, and the pair (A,B) is completely
controllable. A and B are appropriately - dimensioned matrices having
parameters of unknown value. C is a known matrix of dimension pxn.

The problem is to determine the state x of (VI.1) using only the
input r, the output y, and the structure, but not the values, of
matiices A and B. This is to be accomplished by a generating process
which duplicates as little as possible the state information available
in the output; thus the generating process is said to be a reduced
adaptive cbserver.

The reduced adaptive observer is of the form

P = FE + Gy + Dr + Hu
E(ty) = €° (VI.2)

where Eszitpﬁﬁﬂ'is the estimate of the missing state information in the
output of (VI.1). The matrices G and D and the vector u are to be
adaptively manipulated so as to guarantee that E asymptotically equals
a transformation of the unknown state variables in (VI.1l). F may have
arbitrary distinct eigenvalues.

The state x can be ultimately constructed once the transformation
has been identified. Figure 6.1 illustrates the situation.

The Strategy of the'Solution

The transformation T, indicated by T-l in Figure 6.1, allows the

system (VI.1) to be assumed to be in a form suitable for constructing

an adaptive law bazed upon Lyapunov synthesiz techniques.
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The strategy for solving the problem posed in the section labeled
"The Problem to be Solved" is to first determine the effects of para-
meter uncertainty in the system upon the accuracy of the observer
estimate of the system state. In the section labeled "The Error
Equation" an error vector is defined as a comparison between the
transformed system sfate and the observer estimate; subsequently an
error equation is derived reflecting the Influences of parameter un-
certainty in the system. Theorem 5.1 of the ﬁext section defines suffi-
cient conditions under which (VI.1l) may be transformed into a form
suitable for a Lyapunov synthesis technique. It is seen in this section
that with this form the error equation may be considerably simplified.
In the section labeled "The Adaptive Law'a Lyapunov adaptive synthesis
technique is used to derive an adaptive law. The essence of this method
is to define tﬁe adaptable parameters in such a way as to insure, by
means of a Lyapunov function, that the error equation is asymptotically
stable. Due to the fact that the resulting Lyapunov function chosen
here (as may be seen by equation (VI.18) and (VI.20)) is defined on a
noncompact manifold, Theorems 6.2 and 6.3 give sufficient restriction
upon the system input to insure that the error equation is asymptotically
stable on the compact manifold., Thus an estimate of the system state,
which asymptotically converges to the true system state, may be obtained
by inverting the original transformation of the system as indicated in
the appropriate section.

As an illustration of the technique of this chapter, an exanmple
is given and a computer simulation of this example appears subsequently.

It is propitious to collect here certain definitions which allow
brevity in the remaining sections of this chapter, The motivations

for these definitions will be discussed in the appropriate locations.
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Definition 6.1
;j n hereafter refers tc the collection of all non-singular
]

square matrices T of dimension nxn having the following properties

T may be partitioned as

(p-1)x{p-1) (P~i)x(n-p+l)

T 7

12

1
[
'
'
¥
'
!
1

(n-p+L)x(p-1) (n-p+1l)x(n-p+1)

wherein a) T., = 0;

12

b) each element in the uppermost row of T21 is independent‘

of any system parameter.
and ¢) the uppermost row of T22 is {c 0 0 ... 0]with C# 0.
When there is no possibility of confusion,.:jn,P will be referred to
as Cj.
Definition 6.2
The "“adaptive canonical form" refers to all matrices R of

dimension nxn having the following properties:

in partition

™ i

A1y 12

™t
]

Aoy Bop

-

a) A22 has the form
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. n"P

i

(n-p+1)x(n-p+1)
where An«p is a diagonal matrix with distinct eigenvalues of

dimension n-p and o, any real number,

1

and b) A21 has no more than n-1 non-zero elements.

Definition 6.3

A square matrix A is said to be cyclic if there exists a vector
¢ such that the pair (c,A) is completely observable. Otherwise A is

said to be non-cyclie.

The Error Equation
The development of the error equation is somewhat similar to
that in [ 7] for systems with known parameters.

Without restriction if C is known, it may be assumed in (VI.1)

that C = [Ip + 0] where Ip is a pxp identity matrix. For example,

- C - '
the transformation x = {'ﬁ'] 1x transforms (VI.1l) into this form for
any C, where H is selected to make the transformation matrix non-

singular. Then in partitioned form (VI.1) is written as
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y = Ally + A12w + Blr
w = A21y + A22w + B2r
y y
= = w. = uppermost element
Y x 1 in w (VI.3)
L W

where ye EP 1l g we E* P The dimensions of ¥ and w indicate the
dimensions of the partitions in (VI.3). Since only w is to be estimated
by the adaptive observer, the dimension of the vector w is chosen as
small as possible while still retaining an element of the cutput, which
is essential for implementation of the adaptive law.
The adaptive observer is initially described by
E = FE+ (FK + G-KM)y -~ Ky + (D-KB)r + Hu (VI.L)
in which Ee gn—pﬂ_ If at this point (VI.4) is taken as a hypothesis
for a generator of w, it will be shown that the error between w and a
function of £ can be made to vanish by adaptively adjusting G, D, and
K. It will be subsequently shown that a suitable transformation of
(VI.3) allows (VI.4) to be rendered unto (VI.2).
let an estimate of w be £ + Ky. Then defining, as in [ 7], the
error
e=E+Ky-w (VI.5)
on the reduced space En—p+l’ it follows that.
&=+ Ky + Ky - w

F(g + Ky - w) + {(F ~ A

1l

2
+ Ky - My) + (D-3, - KB.)r + Hu

2)w + (G - AQl)j-r

- N - s . -
Defining M M-—All so that y - My = y - Ally - My = A12w + Blr - My,
+ KAlz)w + (G - A,

= Te + (F - A - KM)y

o

1then

22 1 (VI.6)

+ (D - B2)r+ Hu
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in which it is seen that the reduced error depends upon both the
measurable vector y and the unmeasurable (save the first element)
vector w. It is impossible in a manner similar to the Luenberger

chserver [3 , 4] to define F = 4,, - KA M

22 12°

and H = 0 to eliminate these dependences from (VI.6), since A and B

= ﬁll’ D= B2, G = A2l’

are here unknowm.
Rather, it is desired to adaptively adjust the triple (G, D, K)
8o that the coefficients of w, ;, and r in (VI.8) eventually wvamish,
Then if F is chosen with eigenvalues all with negative real parts and
if u » 0, the reduced error e vanishes.
The Transformation
If it is possible to show with respect to (VI.3) that a suitable

transformation matrix T exists so that Tll = CT and that A = T-lAT is
in adaptive canonical form with the partition element A,, = T;;

(A , having arbitrary specified eigenvalues, then

22~ To1 8122 Ty

setting F = A,, in the equation (analogous to (VI.6))

22

@=TFe+ (T -A,,+t KAlQ)w + (G - Ay - KM)y

22
+ (D - Bz)r + Hu (VI.7)

permits defining K = 0. Doing this is advantageous since the influence

of w in (VI.7) is eliminated, the necessity of adapting K is removed,

and (since M is related to All) the influence of unknown elements of

-
Ay = Tyy (84 Typ * 45 Tog

As will be seen, wunder some restrictions on A a transformation T

(a ) is diminished.

can be found that satisfies the preceeding requirement and the additiocnal
requirement that Tll = CT be independent of parameters of A. By virtue
of this latter requirement the outputs can be treated as transformed

state variables without specifically identifying T.
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For a suitable definition of u, the transformation which satisfies
these requirements is a member of the collection j and the transformed
1

matrix A = T “AT is in adaptive canonical form. Theorem 6.1 gives

sufficient conditions on A for the existence of such a T ¢ j .

In the following thecrem, let the symbol@\[x] denote the range of
X, letQ=z[C 0 0 ... 0], C# 0 be a row vector of dimension 1x(n-p+l)

and let 322 denote the (n-p+1)x(n-p+l) partition of the adaptive can-

onical form

THEOREM 6.1 [CARROLL]

Let the pair (Am, Azz) of the matrix A be completely observable.
Then there exists a T € j that transforms A into the adaptive canonical
form in which n-p etgenvalues of 1122 may be almost arbitrarily chosen.

If in addition, @[QT] < &[Ag;g 1, then the n-p eigenvalues of

I122 may be arbitrarily chosen.

PROOF: The proof is in two parts: to show that a T sj exists that
puts 322 into adaptive canonical form with the desired properties, amnd

that 1\21 also satisfies the requirements of the adaptive canonical form.

Suppose that (A22, AJ.Q) of the matrix A is completely cbservable.
According to the definition of j , the (n-p+l) x (n-p+l) partition T22
of T e j is arbitrary except for the uppermost row which is

1
2 (A22 - T21A12)T22’ where

T21 is the (n-p+1) x (p-1) partition of T ¢ j , it must be shown that

322 is of the form required by definition of the adaptive canonical

form, and that by choosing T,ithe n-p eigenvalues can be freely chosen.

g=z[c ¢ 0 ... 0],C#0. Sincegzz*—'T;

It has been shown [62] that there exists a matrix T,, of the required

form which transforms a cyelic matrix P into A22 + L, where L is a
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matrix having 6n1y the leftmost colum non-zero, if and only if (Q,P}
is completely observable. In the present context, P = A22-T21A12. Thus

if by choice of T P can have n-p eigenvalues equal to the desired

21°
eigenvalues of A22 and if (Q,P) is completely observable for this choice
of T21’ then L = 0 (except perhaps for the element in the upper left
corner, which is irrelevant by definition of the adaptive canonical form).

Suppose first that Q[QT]C &£A§2]' Then for any choice of T,y

) is completely observable and at least n-p

the pair (Q, A22 - T21A12
eigenvalues of Bypy - T21A12 can be arbitrarily chosen [67]. Therefore
A, =T, (a,, - T A )T, is in adaptive canonical form with arbitrary

22~ T22 “P22 T t21727 %22

eigenvalues for some choice of T.. and T22 of T e j .

21
T T . .
Suppose now that@_ [qQ ]<,‘£ &[Alz:[. Since the pair (A12 ,A22) is

completely. cbservable, aﬁ least n-p eigenvalues of P = A22 - T21A12 can
be arbitrarily chosen but (Q,P) may not be observable. A trivial exten-
sion of theorem 4 of [68] says that the set hﬁs'{Tzl](A22 -~ TyyArys Q)
not observable} is either an empty set or a hypersurface in the parameter
space of T2l when the pair (A22, A12) is completely cbservable. Con-
sequently A22 is in adaptive canonical form with almost arbitrary eigen-
values for some choice of T,, and T,, of T ¢ j, since the choices of

22 21

T21 is limited to those T2l e’q"(. Thus the first part of the theorem

is proved.

Now it is shown that ;\21 has not more than n-1 non-zero elements
with the appropriate choice of T ¢ j . In the (n-p+l) x (p-1)
partition T, , of T e j there are (n-p+1)(p-1) - (p-1) = {(n-p)(p-1)

parameter-dependent elements. At most n-p of these elements are needed

to specify the n-p eigenvalues of A22 - T21A12' Therefore, at least

(n-p)(p-1) - (n-p) = (n-p){p-2) parameter-dependent elements of T,,
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are unspecified. FEach unspecified element may be specified so as to

~ _ -1 -1
make an element of Agl = T22 (Alell + A22T21 - TlellAllTll - T21A12T21)

zero. Since there are at most (n-p+1)(p-1) non-zero elements in 312,
eliminating (n-p)(p-2) of them leaves at most {n-p+1)(p-1) -

(n-p)(p-2) = n-1 non-zero elements in A21. Thus the theorem is proved.

Remark

The stipulation that the eigenvalues are "almost'" arbitrary when

Gl(QT)st 02(A§2) may be illustrated as follows. Let

all 0 0
_ A= [0 0o 1]
Bog T | 21 39 33 12
0 a )
32 832#03 321 # 0

Then the cobservability matrix of the pair (Q, Byp - T21A12) is

1 0 0

a1 0 “t

a2 -a. .t t. . (t..-a,.)
i 11 32711 11" 731 11° |

From the cbservability matrix it is seen that the pair (Q; A22—T21Al2)
is completely observable for any cheoice of T21 except t11 = 0.
This implies there exists a hypersurface of dimension unity for which

the observer eigenvalues may not be located.
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COROLLARY

If in addition to the requirvements of the theorem the pair (Q,Azz)
is completely observable where § = [C 0 0 ... 01 , ¢ # 0, then the
uppermost row of the partition T21 of T e(f may be chosen as zero.
PROQF:

The proof of the theorem requires that (Q, A22 - T21Al2) be
completely observable for some choice of T21° If (q, A22) is cbservable,

then (Q, } is completely observable by the trivial choice

Ay = Toahpo
T21 = 0, However, since n-r eigenvalues of A22 - T21A12 are to be

arbitrarily chosen by choice of T,, and at least (n-p){p-2) elements

of A21 are to be chosen zero by choice of T21’ it generally requires
all but p-1 non-zero elements of T21' Generally these elements must be
parameter-dependent; thus only the p-1 parameter-independent elements

appearing in the uppermost row of T21 may be zero.

The Adaptive Law
Tt is assumed that (VI.3) satisfies the conditions of Theorem

6.1 and consequently may be written as

Yy = Ally + Alzw + Blr
W = Azly + A22w + B2r
y
y = (vI.8)
w

where A is of adaptive canonical form and the scalar w is a linear

combination of W, and elements of y. The scalar w is constructed

externally to the system in accordance with the upper row of T21 50

thal the transformed system output matrix is in the form assumed in

(VI.3). According to the corollary, w = Wy if (Q, A22) is completely
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cbservable.

F in (VvI.2) is taken at

F = 0 (VI.9)

L 0 | (n-p+1) x (n-p+l)

for ll any real number distinct from the distinct eigenvalues of the
diagonal matrix An-p' Let h,u, = (o + A; - gl)wl = 4wy and (VI.7)
may be written
e = FTe + ¢y + ¥r + Hu (VI.10)
. 0
e(to) = e

where ¢ = G - A2l and ¥ = D - B.. The other elements of u will be

Z
defined later.

The adaptive law for ¢ and ¥ in (VI.10) must be defined in terms
of only thoée variables which are available for measurement. Consequently
(VI.10) will be manipulated in a way to obtain a scalar equation,
equivalent to (VI.10), for which such an adaptive law can be formulated.

Let the (n-p+l) x {p-1) matrix V be defined as

Velde oo e mm = - (VvI.11)

1

in which p means " %E" and hl f1 1 1 ... 1] of appropriate

dimension. Clearly the (n-p) x (p-1) submatrix (pI_An_P}‘lhlgT is
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composed of filtered output variables.

In a similar manner, let the (n-p+l) x m matrix S be defined as

R (v1.12)

in which hg =[1 1 2 ... 1] of appropriate dimension. It will later

be shown that the adaptive law requires at most n-1 elements of V.,
Consider now the lowermost n~p scalar equations of (VI.10). The

ith equation, 2 < i < n-ptl, is

p-1
E R TR R T R (1-19)

If in (VI.13) hiui’ 2 < i < n-ptl, is defined as

hyuy = 4wy
Pil 'Y If .
h.,u, = $.. V., + P.. 8.,
i’1 j=p 4 ij 551 ij "ij (VI.14)

2 <i < n-ptl
then (VI.13) is a separable differential equation for each i. To show

this, the identities for each i

Ty &
55 43

"
m
. w3
it e~
=
-
[ N
.
~
(-
1
1
-
-

I

Do el Dowy s
oo Say = == [ $.. s,.,1 - Yoo S,
3=1 i3 713 dt 3=1 ij "ij : 13 7ij

are needed. Using them, (VI.13) becomes
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p-1 m
“ +

-7 $ss - Vs -

j_.___l 1] 1] j=1 1] 1]

p-1 m

a

to== [ §  $.. V..t ) .. ]
dt j=1 ij 1] 521 ij] 1)

Substituting (VI.11) and (VI.12) into the above ylelds

4 oy -1 ) i j
— [e, - by, Vo4 = V., 8..1= -2 [e., =) ¢.. V.. — Yoo Saal
dt i 21 ij 'ij 521 ij "ij i-71 351 ij '1ij 3=1 iy 1)
(vI.15)
(VI.15) is integrated to yield
| p-1 . m
°3 =j§l 15 Vig * jzl Vi5 Syg * 8 ewpl-agtl (VI.16)

where

0 p-1 m
B, = el —jzl ¢ij(t) vij(t) -_Z wij(t) sij(t)

j=1
at t = to.
Equation (VI.16) is applied to the first equation of (VI.10)

giving

. T T n—E+l
e, = —Alel + tr ¢V + tr ¥'S 4+ ¢lyp + L Bi exp [-Ait] (VI.l?)

1t is thus seen that (VI.10} and (VI.17) are equivalent, with
definition of u in (VI.1l4), but with the difference that (VI.17)
is a scalar equation. The adaptive law, dependent upon measurable
variables only, may now be formulated,

A Lyapunov function candidate is selected as

Vaol e 62 g2 vt 0 @ ") v x5 2'8)  (VI.18)

in which A and I' are matrices having no non-positive element and the

symbol() represents element-by-element multiplication of matrices.
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The time derivative of (VI.18) along the trajectory described by
VI.17) is

2 2
vV - -
2 rept (61 ¢, * ypel)¢1

+tr T (a(®) o+ Ve,) + tr yi(r ® v+ Se,)

(vi.19)
n~E+l
tl 0, exp E—Ait]el
1=2
Then (VI.19) can be made
. 9 n-§+l
2V = —Alel + L ei exp[-lit]el (vi.20)
i=2
whenever $l’ &, and ¥ are defined as
2 _
81 % Yty
PN ORYE ve, (VI.21)
r (:) yo= - Sel
Equations (VI.21) may be also written in scalar form as
- . l e =-.
¢ = Ei_—yp 1 "8
AR SV |
1] 83y 13 1 (VI.21a)
Voo = - s, e =-d.
1] 2 1 1 13
Yij

for each i, j in their proper domains. Equations (VI.21) or (VI.2la)
are the adaptive laws sought.
V is eventually negative definite whenever all the eigenvalues

-A., =X have negative real parts since then the initial

1 “A2r o A

condition disturbances Bi decay exponentially. Consequently ey is

asymptotically stable in the sense of Lyapunov,
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Tt is desired that lim e{t) = O in order for the adaptive observer
S

to generate the system s:ate. I1f some restriction on the input vector
r is imposed, it can bg shown that e~ 0 implies e + 0.

To see this, consider the limiting value of (VI.17) which is

0=1tp & V+tr ¥'s +¢lyp (v1.22)
If by suitably restricting r, or equivalently V, S, and yp, so that
(vI.22) implies in the limit that ¢T =0, ?T = 0, and ¢, = 0, then
(VI.10) is |
e = Fe

implying e +.0 since T is an asymptotically stable matrig. The above
equation follows from (VI.10) since Uy 2 <1< n-ptl, is zero in the
1imit as evident from {(VI.14) and (VI.21).

The following theorems define the restriction on r guaranteeing

¢ =0,y =0, and ¢ = 0 for e, = 0 when the steady state v is periodic.

THEOREM 6.2 [CARROLL)

Let q be the number of adaptive parameters in the observer
(VI.2), let the observer matriz F have eigenvalues all with negative
real parts, and let the system (VI.3) be completely controllable
through each colwm vector in the input matriz B. If the collection
of inputs'{rl, Pos sovs rm} possesses no fewer than [( q )/2] distinet
steady-state frequencies then (VI.2) generates the system state.
PROOF: |

The proof is by induction. It is shown [71,62] that the theorem
holds for m=1. Assuming that the theorem holds for mem,, it will be

shown that it holds for m=ml+l.

m,+1

Let each yj, 1 <3j < pybe related to the inputs Pia Ty oees T
: 1
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by

ml+l
v. = ) h, (p)nm
Ioxmp KK
where p = d/4dt.

Then {VI.22) is

m +1
) p-1 n-p+l p-1 h.k(p) LI
o= § {gy,, + ¥} ¢..h, (p)+ E Yo (¢, = +
k=1 X g2 1) ?k i22 41 W PN P+A
¢ hpk(p)} r (vI.23)

Since, by (VI.20)}, e, » 0 and, by (VI.21}, ¢ij’ wij’ and ¢, are

1

constants, (VI.23) may be written

Hl(p)rl + H(pIry + o0 4 Hml(P)Pml = - Hml+l(p)rml+l (VI.24)

where Hk(p) are the terms in brackets in (VI.23) for each k, 1 <k i_ml+l.

Let the number of distinct adaptive coefficients in the left side of

(VI.2u) be q; and the number of distinct adaptive coefficients in R, +l(p)
1

be q,. By definition Q=q, t+ dy- By assumption {rl, Tos ones rml}
contains [( q }/27 distinct frequencies and the left side of (VI.24)

is zero since Hl(p) = H2(p) 2 L. = Hml(p) = 0 and

0 = H {(p)r
ml+l ml+l

Therefore only the distinct coefficients of H_ +l(p) are
1
non-zero. By inspection of (VI.23), these are the ¥y, terms which are

q, in number. Thus by (71,621 if r contains at least [( a, )/2]

l+1

distinct frequencies (i.e. distinct from the frequencies of

{rl, Tps weos rml}) then Hml+l(p) = 0. Consequently {rl, Tos eves rml+l}
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containing [( q )/2] distinct frequencies implies that Hl(p) = Hz(p) =

—— Hml+l(p) = 0 which was to be proved.

THEOREM 6.3 [CARROLL]

| Let the conditions on the observer (VI.2) be as stated in Theorem
6.2, but let there be no requirement upon the colum vector of the
input matrix B of the system (VI.3). Then it is sufficient that each
input r.er each possess [(a )/2] distinct steady-state frequencies
in order for (VI.2) to generate the system state.
PROOF:

The proof follows from equation (vI.23).

When any hjk(P) is zero or linearily dependent, then the parameters
¢ij and wij are not fully "coupled" with each of the inputs v of
equation (VI.23). This in general requires that frequencies must be
assigned to each . depending upon the degree of ffeedom in the
coefficient of ) in section (VI.23). Assuming completedecoupling"

of each ¢ and ¢ with respect to each Vios it is clearly sufficient that

each v, must possess [(q )/2] frequencies from equation (VI.2u).

Remark:

The sufficient conditions stated in Theorem 6.3 are noted to be
very conservative as a cursory glance at the proof of this theorem
reveals. It is suspected by the author that under the conditions of
Theorem 6.3 the requirement for state generation may be liberalized to
allow only the collection of inputs‘{rl, Ty +nes rm} possess [{ q )/2]
steady-state frequencies, as in Theorem 6.2, but with the additional
restriction that the frequencies must be assigned in some way depending

upon the controllability structure of system {VI.3).
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At the time of this writing, however, the above speculation has not

been proved.

Reconstruction of the System State
The ohserver (VI.2) generates the state of the transformed system
(vI.8). To obtain the state of the system (VI.1l) the observer estimate

£ must be transformed by

® >
1
Lo

o

where x is the estimate of the gystem state x. T cannot be immediately
written since it contains wmknown elements of A; however, sufficient
identification of the system matrix A occurs as a result of the adaptive
laws (VI.21) to allow T to be determined. Consequently, the time-

varying matrix T(G,D) may be constructed so that

- y
X = T(G,D)[ ]
g

is the cbhserver estimate of x. Since 1lim "f'(G,D) = T, the state x is
1o
obtained.

Theorem 6.4 summarizes the results of this .Chapter

THEQOREM 6. 4
The state of system (VI.1) may be adaptively eonstructed by the
observer (VI.2) by employing the adaptive algorithm (VI.21) and the
control vector u of (VI.14), both subject to definitions (VI.11} and
(vr.12) if
a) in (VI.1) the partition (A12’ A22) i3 completely

observable, and



126

b) the number of distinet frequencies in the system
command input r is no fewer than {( 4 ) /2] where
q is the nurber of parameters to be adapted. More-
over, the number of parameters to be adapted is not greater

than n plus the number of input parameters.

Example
A specific example is giveh here to illustrate the design of a
reduced-order adaptive observer.

Suppose the system is represented by

X) | -a, 1 0 0 Xy | 0 0 ]
% -
2 -3 0 0
2 1 x2 bl 0
. = _ + r
Xq —al 0 0 1 Xq 0 0]
X -a 0 0 0 % 0 b
L 4 ] . 0 ) | L 2 |
e 4 T 0 . B (VI.1%)
¥, ) 1 0 0 X,
Yq ] 0 0 1 0 ] %y
-xu—'

with a , a,, 35, ag, bl’ and b, wnknown constants. (This is, of course,

not the most general input matrix.)

] _ _ 0 0 1l .
It is seen that (Al2’ A2.2) = ( [1 G:I . [0 0]) is completely
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cbservable. Therefore there exists a non-singular square transformation

T E:j that puts (VI.1%) into adaptive canonical form. Such a matrix is

! 0 0 0]
0 1 0 0
T:
0 0 1 0
2
i al —lz 12 l-

Note that the uppermost row of T21 is zero since ({1 0], A22)

is a completely cbservable pair.

Then
. - - - - o -
xl a3 1 0] 0 xl 0 0
x2 -a2 0 1 0 xQ bl 0 rl
= 2 +
N 0 =y A2 1 Xq 0 0] T,
3 2
}-:u i T 12-—31 0 -AQ 1 _xu ] _bll2 bg-
{VI.8%)
1 0 0 0
y = 0 1 0 ] X
Q 0 1 0]
where 1 = a,a_ - a A2 - a
193 7 %2 2 7 %
From the form of (VI.3%) it is seen that
%01 ~ 821 T T
_ ‘ 3
byg = Bgp * (3)72))
- _ 2 (VI.10%)
%1 7 9oy T Py

bpp = oy = By
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Note that only 4 parameters need to be adapted for

which in (VI.1®) there are 6 unknowns.

The adaptive laws are

in which e

with

and

821

€ro T

4,5,

doy

178

1

641

v

21 ©

1

1
v a
322 22 1
(VI,21%)
1

S,. €,
Yoy 21 71
1

Y22

s e

22 71

- Y and the reduced cobserver is

=2

N

(vI.2%)

+

+ (Al + Az)y3

(VI.,1u#)

T V082

%5121 ¥ ®a0Vao b 21551

82
22

T

Y21

2
21 7

1

—

Y90

)el

21
(VI,11%)

"

22
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Sgr t %1% T

(VI.12%)

Spp t A8y B T

The cbserver eigenvalues, - and =1, are arbitrary but distinct
negative numbers.

The state x of system (VI.1%*) may be constructed by the equation

%= 1e,0 |7
4
where
1 0 0 0
0 1 0 0
T = 1lim T(G,D) = lim 0 0 1 0
e e
g (t)+A3 -12 A 1
| 522 2 2 2 _

Computer Simulation
The system of section "Example" was simulated on a digital
computeyr. The system parameters assumed unknown were b2, a3 8595

and a.. The following values were chosen for simulation:

0
a, = 15 b, =1 Yy, = 1/10
a, = 33.5 b, = 2 8y, = 1/250
a, = 26,0 A = 10 8,,(0) = 180.25
a, = 8.5 A, =5 ¥,,(0) = -100

The inputs Ty and r, were chosen as sine waves with frequencies of
3.5 and 5 rad/sec. respectively. The behavior of the two adaptive
parameters $,, and y,, are shown in Figure 6.2 and the (transformed)

observer error e, is shown in Figure 6.3.



1801

1501

1207

907

60«-

301

_30..

FIGURE 6.2 PARAYETER ALNCTIONS VS. TIME

0eT



18Ct

1207

60+t

/\:f\ D, /\/\f\ D, ‘A-/\”}.,D..—u—@bﬂ&-n——n——é-é————a—
o A = N

“1204

}GC‘L

FIGURE 6,3 ERROR £y V. TIME

TEeT



CHAPTER VII

UNRESOLVED QUESTIONS

Due to the newness of the adaptive cbserver concept and the apparent
richness of this concept, there remains much to be done with the adaptive
observer. With reference to Chapters IV-VI, the thrust of investigation
has been to attain greater simplicity in design (Chapters V and VI)
and to allow greater freedom in eigenvalue selection of the adaptive
network (Section 5.2). Certainly even better results may be attained in
this endeavor; however there are a number of different questions that
should be resolved. This chapter discusses some of them and, in the
section entitled "Desipn Considerations', the complexity of choosing gain

parameters is illustrated by simulation examples.

7.1 A Separation Theorem

Throughout the literature concerming the'adaptive observer, the
technique has been to require the eventual generation of state of an
wnknown linear system given the input and output measurements of the
system and its structure. This is essentially an open-loop process.
Since in the full order observer the unknown parameters are identified
as a by-product of adaptation, the adaptive observer may be plaéed in a
closed loop in order to control the system. In this case both the state
of the system and the observer estimate of the parameters of the system
are used in the feedback control law. Notwithstanding the certainty
that the adaptive cbserver eventually becomes a form of the Luenberger

observer and therefore comes to possess the closed loop properties of the

132
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Luenberger cbserver (see section 2.4), it has not been shown that such a
feedback system is stable throughout the adaptive process.

The difficulty in showing this lies in the fact that, before adapta-
tion is essentially complete, the observer is both time-varying and non-
linear; comsequently a simple pole location analysis in order to determine
over-all system stability cannot be made as was done with the Luenberger
cbserver. Rather, investigations into this subject must employ a more

sophisticated stability analysis.

7.2 A Funetional Adaptive Observer

Should the observer be used in a closed loop to generate a control of
the form v = aTx, it was seen in Section 2.5 that a Luenberger functional
cbserver could be constructed of order v-1 to generate T rather than the
complete étate vector x. Since v may be much smaller than n-p, this re-
presents a great savings in complexity.

An adaptive functional cobserver might therefore considerably reduce
not only the order of the observer but also the complexity of the associated
adaptive law. It is the complexity of the adaptive law - in terms of the
number of integrators and number of multipliers needed to conmstruct the
law - that is a serious factor in applications.

However, the theory of the functional cbserver must account not
only for the generation of a linear function aTx, as the Luenberger
1inear function observer dees but also for the identifiability of the
parameters associated with aT. The reason for this is that, in general,
the vector aT is dependent upon the unknown parameters of the system when
r = aTx is used for many controls. Consequently the functional adaptive
ohmapver must be defined on the adjoined space of the system state and

the system parameter space. No attempt, to the author's knowledge, has
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been made to develop a functional adaptive observer.

7.3 Canonical Forms

As previously remarked in Section 5.1, the more general canonical
form offered in [63] offers exciting investigation in the adaptive
laws resulting from the many choices of canonical forms.

In addition to the various improvementd, if any, in the gquality
of different adaptive laws synthesized, it is hoped that a general
theory will be developed whereby one may determine a priori at least
some of the qualities of adaptive laws in relation to the canonical form

chosen.

7.4 The Effects of Noise

This dissertation has emphasized the importance of the observer,
whether of the Luenberger kind or the adaptive kind, to generate the
state of a linear system in the presence of noise. However, there has
been no reported work with the adaptive observer in terms of its ability
to do this. Investigations are needed to determine the degree of
susceptibility of the adaptive law to noise, to determine the vrelative
mepit of the different cancnical forms proposed in regard to this degree
of susceptability to noise, and the effects of cbserver, and filter, pole
placement in minimizing that susceptability. By susceptability, one means
the bownd on the region for which the error between observer estimate
of state and the state of the unknown system cannot be guaranteed to
diminish, and the effect éf noise upon convergence rate outside this
bound. (That, in fact, a bound exists has been demonstrated in relation

to the model-reference Liapunov adaptive problem).
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7.5 Modeling

One may wonder what happens to fhe adaptive observer when an output
of a non-linear system is substituted for that of a linear one, or if an
output of a system of higher order than the (full order) adaptive
cbserver is substituted; That this is an important question is indicated
by the observation that fEW; if any; real systems are linear; and that
many real systems are of unknown order.

It has been maintained by some that the resulting configuration of
the adaptive cbserver in each instance discussed above will be the
"best' linear model of the process being cbserved. It is unknown to
thé author whethér in fact this occurs. The difficulty in determining
this is the vagueness of the term "best linear model". Nevertheless,
medeling is an important factor which should be the subject of an interest-

ing investigation.

7.6 Design Congideration - Speed of Response

As has been previously noted, one of the salient features of the
Liapunov synthesis technique is that the resulting adaptive algorithm
is guaranteed to converge regardless of the magnitude of parameter
ignorance. In additien, this algorithm is guaranteed to converge
regardless of the choice in magnitude of the positive adaptive
gain constants, appearing in Section 4.2 as.ms/mi and in Section

6.2 as T and A.

However, as the third chapter makes evident, this choice of the
adaptive gain constants affects the rate of convergence of the parameter
estimates and the error between state estimate and system state. In

the context of the adaptive observer, the accelerated adaptive laws
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due to Phillipson and Monopoli (See chapter III) cannot be implemented

because of the requirement that 1im u(t) = 0. Consequently the choice
0

of the adaptive gain constants Ft A, or ms/mi play a significant role

in determining the rate of convergence of the cbserver estimates to

their proper values.

However, the criteria for determining a "good” choice of gain
constants is not defined., It is difficult to do so because of the non-
linear nature of the formulation of the adaptive observer, and the
consequent interaction between the various other constants to be
chosen in the chserver.

Other constants which may affect the rate of convergencé are the
abserver eigenvalues, the filter poles, the magnitude and frequency
of the system input, the initial conditions upon the pargmeter ignorance,
and the amount of noise inherent in the measurements.

To gain some understanding of the relationship among these various
factors and the rate of convergence, the example of Chapter VI has been
investigated in the absence of noise by computer simulation. The
remainder ﬁf this chapter reports some of these results. It is not
intended that these results establish a relationship for all adaptive
cbserver structures or even to establish "rule of thumb" design
techniques; rather these results are given to indicate the complexity
of the problem and to provide a starting point for future investigations
into the relationship between rate of convergence and parameter gains.

In Figure 7.1, the parameter estimate ¢22 for the plant parameter
a; - Ag of the example in Chapter VI is plotted against time and as a

function of the gain constant §,, when ¢, ig the only parameter being

adapted (the other being preset to their proper values). The ochserver
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eigenvalues were -4 and -5 and the input was a square wave of
frequency 3.5 and 5 rad/sec and magnitude 50. It is noted that for 11621=
100 the curve decays almost exponentially, but for larger gains
there iIs some oscillafion. The convergence time for all choices of
gains is about 3 seconds.

In Figure 7.2, only the input parameter L9 is adapted. The
data for eigenvalues and input is as before. It is noted that even
for low gains the behavior is oscillatory, yet faster in convergence
than the plant parameter. This behavior characterizes the input
parameter behavior. One additional point: for high gains of l/Y22
the convergence time increases. This implies an existence of an .
"optimal” gain.

The major observation drawn from Figures 7-1 and 7-2 in that,
with but one parameter being adapted in the example of Chapter VI, the
reduced order cbserver, the convergence rate is very acceptable for |
a wide range of adaptiwve gains.

| When two parameters are adapted simultanteously the situation

is more complicated. This stems from the fact that interaction between
the two parameters affects the rate of convergence. In Figure 7-3
both ¢21 and w22 are simultaneously adaptive; the curves shown here
are the effect on the plant parameter ¢21 as the plant gain constant
is changed but the input gain constant, for y,,, is held constant
at 1/Y22 = 10, The input is a sine wave of frequency 3.5 amd 5.0
rad/sec. and the observer eigenvalues are -5 and -10. TFigure 6-2
may also be compared with these. 1In this case, there is a radical change
in the behavior of ¢,, as a function of the corresponding gain. The

better pain scems to be for l/‘(21 = 500. The fact that the curve for
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1/6,. = 1000 is slower to converge indicates the existence here of

21
an "optimal" gain.

To explicitly see the effects of the interaction between gainms,
Figure 7.4 is offered. This is the plot of ¢22 corresponding to
Figure 7.3. It is emphasized that in Figure 7.4 the input gain con-
stant 1/722 is the same for each of the curves; the difference in the
curves illustrated here is due entirely to interaction with the change
in plant gain 1/621. It is seen that the effects of interaction are
marked.

The insight to be gained from Figures 7.3 and 7.4 seems to be
that convergence time is much lohger for two adaptive parameters, that
there is marked interaction between the two parameters, and that an
optimal choice of gain exists in order to minimize convergence time.

In Figure 7.5, the plant parameter ¢21 is shown when the plant
adaptive gain 1/621 = 50 but the input adaptiwe gain l/w(22 changes.
The input is as in Figures 7.3 and 7.4, but it is warned that the two
curves shown in Figure 7.5 are not exactly compatible since the
initial condition on ¢22 was also increased when l/'r22 = 50. Never-
theless, the figufe tends to indicate that a faster convergence rate
is obtained if the ratio 722/621 is high.

The effects of changes in the quality of system input frequency
is shown in Figures 7.6, 7.7, and 7.8. In Figure 7.6, the plant
parameter ¢21 is shown for an input adaptiwve gain l/y22 = 10 and
plant adaptive gain 1/621 = 50 when the system input is either a sine
wave or a square wave of frequency 3.5 and $ rad/sec. and magnitude of
50. The plant eigenvalues were -5 and -10. It is seen that the square

wave input forces ¢21 to converge faster than the sine wave input for

these choices of plant and input gains. The same effect is scen in
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w22, not shown here.

Contrarily, for gains in which 1/62l = 1000 and 1/722 = 10,

Figure 7.7 shows that the sine wave input converges faster than the square
wave input. The curve for the square wave input is much more oscilla-
tory than the sine wave input; no such effect is seen in Figure 7.6.

The same effect is seen in Figure 7.8 for the input parameter ¢22:

for gains l/ﬁzi = 1000 and 1/722 = 10, the sine wave input forces

¢22 to converge faster without as much oscillation as the square

wave input, unlike the case for which l/621 = 50 and l/Y22 = 10,

As a result of Figures 7.6, 7.7, and 7.8, it may be concluded that
the convergence rate 18 frequency dependent and that the choice of
"good" adeptive gains depends not only upon the interaction between
all the gains but also wpon the frequency of the input signal.

Other investigations not illustrated here tend to show that
the convergence rate is very dependent upon the choice of observer
eigenvalues A

These studies serve to emphasize both the need and the difficulty
of finding a rule whereby a éhoice of adaptive gains may be chosen
in order to yield an &acceptable convergence time. Lacking such a
rule, it is a very difficult task, when there are many adaptive gains
to be chosen, to choose the gains because of the interaction between
all the gain constants, between the gain constants and the input
frequency, and between the gain constants and the observer eigenvalues.

The effects of initial conditioms (dependent’upon parameter

ignorance) of the adaptive integration have not been Investigated.
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