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OFF-CENTER-LINE SHOCK-INTERFERENCE HEATING PATTERNS ON

BASIC SHAPES IN HYPERSONIC FLOWS

By J. Wayne Keyes
Langley Research Center

' SUMMARY

Experimental off-center-line shock-interference heating results on basic bodies
are presented for a range of hypersonic Mach numbers, specific heat ratios, Reynolds
numbers, and impinging shock strengths. Three interference flow patterns explicitly
defined in previous studies were generated by the intersection between a plane impinging
shock and the bow shock created by a hemisphere or a cylindrical fin.

Heat-transfer rates higher than stagnation values were measured over much of
the off-center-line model surface. For example, heating levels equal to or much higher
than stagnation existed over most of the lower half of the hemisphere. Heating amplifi-
cations up to 17 times that for stagnation were measured on the hemisphere because of
jet impingement. The results of this study imply that shock interference on a high-speed
flight vehicle can cause severe heating over large areas near the interaction region.

INTRODUCTION

Shock-interference heating can be a serious problem in the design of high-speed
vehicles such as the space shuttle and hypersonic cruise aircraft. Heat-transfer values
several times the stagnation-point values can occur on vehicle surfaces because of the
interfering flow fields. (See refs. 1 to 3.) These interfering flow fields are influenced by
free-stream flow conditions, real-gas effects, and angle-of-attack changes as the vehicle
moves along its trajectory.

Edney (ref. 1) made a detailed study of the entire spectrum of interference flows
and defined six types of shock-interference patterns. The local pressure and heating
peaks were a result of either shock—boundary-layer interaction, free shear-layer attach-
ment, or supersonic jet impingement. The results of an extensive analytical and experi-
mental study of shock-interference heating at hypersonic speeds are reported in refer-
ences 2 to 6. Reference 2 presented theoretical flow models and semiempirical methods
of predicting the peak pressure and heat-transfer levels for the six types of shock-
interference patterns; also included were center-line experimental pressure and heat-



transfer distributions on hemispheres, a 30° wedge, and a cylindrical leading-edge fin
for different interference patterns.

This paper presents the effects of free-stream Mach number and Reynolds number,
specific heat ratio (shock density ratio), and impinging shock strength on the interference
heating amplification away from the plane of symmetry. Heat-transfer data were obtained
over a range of nominal Mach numbers (6 to 20), specific heat ratios (1.40 and 1. 67),
and impinging shock strengths (5° to 25°). This investigation supplements the study
reported in reference 2.

SYMBOLS

The measurements and values are given in SI units; calculations were made in U. S.
Customary Units.

A cylinder length (see fig. 2(a))

c specific heat of model material

h heat-transfer coefficient

k thermal conductivity of model material

L fin length

M Mach number „

Np Reynolds number

p pressure

R^ radius of hemisphere

T temperature

X = x/L

x axial coordinate

coordinates of shock intersection in plane of symmetry (see fig. 2)



7 ratio of specific heats

6 body angle for hemisphere (see figs. 2(a) and 5(a))

6 ̂  shock generator angle

"gL shear-layer angle relative to surface (see fig. 3(c))

* sweep angle of fin

p density of model material

P2/P1 normal-shock density ratio

0 angle in a plane perpendicular to axis of hemisphere or cylindrical leading -
edge fin (see figs. 2 and 5)

Subscripts:

aw adiabatic wall

cyl stagnation-line value

pk peak value

ref reference value

stag stagnation value at outer edge of boundary layer

t total value

w wall value

00 free -stream value

Abbreviations (see fig. 3):

BS bow shock



IP

IS

SL

TS

impingement point

impinging shock

shear layer

transmitted shock

APPARATUS AND TEST CONDITIONS

Test Facilities

The wind tunnels used in this study are summarized in table I:

TABLE I. - TEST FACILITIES

Facility

Langley 20 -inch Mach 6 tunnel
Langley 22 -inch helium tunnel

Test gas

Air
Helium

7

1.40
1.67

MOO

6
20

Facility described
in reference -

7
8

Models

The experimental setup shown in figure 1 was designed to use interchangeable
models. These interchangeable models (shown in fig. 2) consisted of a 2. 54-cm- and
a 5. 08-cm-diameter hemisphere and a 2. 54-cm-diameter cylindrical leading-edge fin.
A 15. 24-cm-wide by 25. 40-cm-long sharp leading-edge plate which can be set at angles
up to 30° was used as a shock generator. The main series of models were made of a
silica-base epoxy material. Additional models of solid stainless steel (type 347) were
used to measure peak heating in some tests.

The model thermophysical properties (density, specific heat, and thermal con-
ductivity) were measured on samples of material for each model. The value of the pro-
duct pck used was approximately 1. 798 x 10^ W/sec/m2-K for the epoxy models
and 7. 260 x 10^ W/sec/m^-K for the stainless-steel models. Further details are
available in reference 2.

Test Parameters

A summary of the models, nominal flow conditions, and types of interference
patterns investigated is presented in table IE:



TABLE E. - SUMMARY OF TEST PARAMETERS

Test

6352

6363

6363
373

Model

5. 08 -cm -diameter
hemisphere

5. 08 -cm -diameter
hemisphere

Fin
2. 54 -cm -diameter

hemisphere

M00

6

6

6
20.2

1

1.40

1.40

1.40
1.67

P2/P1

5.5

5.5

5.5

4.0

Pt,00>

N/cm2

83
290
290

290
690

Tt,-
K

478

478

478
433

NRe,co/m

7. 9 x 106

25.6
25.6.

25.6
9.8

Type of
interference

(ref. 1)

in and IV

in and IV

IVa and V
HI and IV

The types of interference are discussed in a later section.

EXPERIMENTAL TECHNIQUE AND DATA ACCURACY

The methods of testing were similar for both facilities. The phase-change coating
technique described in detail in references 9 and 10 was used to measure the heating.
Because of the highly nonuniform heat-transfer distribution on the models, some models
were tested with two or more temperature coatings. In some cases, peak heating was
so intense that the coating temperature that would be needed was near Taw. (This con-
dition would indicate short melt times and the possibility of large errors.) To measure
the peak heating in these cases, the stainless-steel model with its larger value of pck
was used; this model permitted the use of a coating with a lower melt temperature,,

Phase-change heat-transfer data are subject to numerous errors. Errors in
measuring the thermophysical properties of the model material, the melt temperature
and time, the initial model wall temperature, and the initial time of exposure to the free
stream can affect the accuracy of the heat-transfer data. Another important source of
error is the determining of the adiabatic wall temperature distribution. In the present
tests, Taw was assumed to be equal to the free-stream total temperature. An analysis
of these combined errors indicated that the heating amplification measured at Mach 6
in air may have a maximum error of about 29 percent (25 percent at Mach 20 in helium).

A semi-infinite slab solution of the general heat conduction equation was used to
reduce the heating data. (See ref. 9.) In order for this assumption to be valid, the radius
of curvature must be much greater than the depth of heat penetration,, As stated in
reference 10, the heat penetration depth for the semi-infinite slab is approximately inde-
pendent of the aerodynamic heat-transfer coefficient and depends only on the thermal
diffusivity of the wall material and the thermal diffusion time. The minimum distance



from peak heating for which the semi-infinite slab solution is valid can also be deter-
mined by using the melt time. (See ref. 10.) Although the phase-change method does
not account for lateral conduction errors, these errors can be important. (See ref. 10
for additional details.)

Details of the interference flow regions were observed by using the schlieren tech-
nique. Surface flow patterns were obtained by using a mixture of titanium dioxide and
silicone oil in the Mach 6 facility. Further details of the flow-visualization technique are
given in reference 2.

TYPES OF SHOCK-INTERFERENCE PATTERNS

In estimating the effects of shock-interference heating, it is necessary to determine
the type of interference pattern that will exist when two shocks of different strength inter-
sect. The pattern that will occur depends on body geometry, Mach number, specific
heat ratio, and strength of the impinging shock and its position relative to the body. (See
ref. 1.) The six possible shock-interference-flow patterns as defined by Edney are shown
in figure 3.

These interference patterns can be further grouped according to the flow mechanism
that causes the heat-transfer change at the surface. Types I, II, and V are associated
with a shock—boundary-layer interaction and type in is characterized by an attaching
free shear layer. Type IV is characterized by an impinging or grazing supersonic jet
(type IVa) and type VI by an expansion-fan—boundary-layer interaction. In the present
study, only types III, IV, IVa, and V were investigated. Types III and IV occurred on
the hemispheres and type IVa and V on the fin.

For a weak two-dimensional shock impinging on the bow shock of a hemisphere,
the interference pattern in the plane of symmetry depends on the relative shock locations
as shown in figure 4. The type of interference can be different away from the plane of
symmetry where the bow-shock strength is weaker. A detailed description of these six
types of shock-interference patterns and the transition from one type to another is given
in references 1 and 2.

s'

PRESENTATION OF RESULTS

The heat-transfer data are presented as nondimensional heat-transfer contours
(h/href) along with off-center-line peak heating distributions and the center-line heating
distributions from reference 2. Selected schlieren photographs and oil-flow patterns are
also shown. The data are presented according to the type of interference occurring on
the center line, the free-stream Mach number and Reynolds number, the strength and



location of the impinging shock, and the model geometry,
the figures presented in this paper.

Table in provides an index to

TABLE IH.- DATA FIGURES

(a) Hemisphere

Figure
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IV
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IV
IV
IV

IV
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at
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6.00

6.00
20.2

\

6.00
5.94

\ 1

6.00

}

NRe,~/m

1 . U *** AU

7.7

7.9
7.6
7.8

25.9
25.8

9.9
9.7
9.8

9.7
9.8
9.8

25.7

7.6
8.0
7.5
7.7
7.6

7.8
25.6

25.0
25.7

25.6
25.4

T

1 Af\1 .

\

1U

1.67

1

1.40

\
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'

ij

4.0

^

5.5

^
1

»i
nominal,

deg

1 Ri j

10
15
20
25
15
15
5
5

10

10
15
15
15

5
10
15
15

20
25

5
10

15
20
25

VRb

0 914. £ J.1

.228

.214

.262

.262

.233

.209

.310

.260

.252

.200

.218

.257

.248

.288

.291

.204

.223

.252

.282

.301

Yi/Rb

-O R9 1U. Ufc i.

-.417
-.621

-.680
-.786
-.548

-.650

-.370

-.480

-.427

-.141

-.340
-.340
-.513
-.557

-.640

-.199
-.252
-.427

-.417
-.534

Model
diameter,

cm

R Oft<j.

\

LH/

2.54

5.08

\

Test- run numbers
(ref. 2)

6352-16,17,30
6352-12,13
6352-21,22
6352-25,26
6363-36,37

6363-39,40
373-19,20
373-22,23,24

373-11,12,26

373-8,9
373-5,6
373-2,3

6363-48

6352-14,15
6352-27,28
6352-8,9,29

6352-18,19,20
6352-23,24
6363-46
6352-31,32,33

6352-1,2,3
6363-41,42
6363-43,44

(b) Cylindrical fin

Figure
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32

33
34

35
36
37

aooOO

39

40
41

42

43
44

Type

IVa
IVa

IVa
IVa

IVa
IVa
IVa

V
V
V

V

V

V

M.O

6.00
5!94

1
i

6.00

5.94

1

i
6.00

J

NRe,°o/™

o c Q v in25. o X 1(J
8.1
7.7
7.9

26.2
25.4
25.8
QC Q
iiO.y

7.2

7.3
7.6

25.7

26.2
25.9

.

\

f

1 f\lu

"2

\

/>!
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nominal,
deg

on
£>\J

10
15
20
10
15
20
QA
£i\J

10
15

' 20

10
15

20

VL

O Qf»C.oUD

.355

.435

.310

.340

.425

.305
inn.ouu

.330

.360

.310

.300

.340

.300

YI/L

0 1 OR. 1UO

.080

.095

.110

.075

.090

.105
f!7fi.U iU

.060

.065

.065

.050

.060

.070

\
nominal,

deg

0
0

0
0
0
0

oc£i ij

25
25

25
25

25
25

Test-run numbers
(ref. 2)

6363-24
6363-22
6363-18

6363-23
6363-20
6363-19

6363-6

6363-3
6363-14

6363-9

6363-10

. 6363-13
aSchlieren and/or oil-flow photographs.



The off-center-line peak heating data on the hemisphere are plotted by using the
coordinate system defined in figure 5(a); values of 8 and <t> were measured by using the
intersections of the individual heating contours h/hstag with the attachment line or jet
impingement line. (See fig. 7(a), for example.) Since the body is axisymmetric, this
system collapses the off-center-line data on to the center line in the vertical plane of
symmetry. The values of e and <t> are listed on the heating-contour figures. Off-
center-line peak heating data on the fin were plotted by using the coordinate tf> as shown
in figure 5(b). In this case <s> is located in a plane perpendicular to the fin center line.
The undisturbed heating levels on the hemisphere and cylindrical fin are included for
comparison purposes.

Reference values hgj.ag. for the hemispheres are obtained from an expression
for laminar stagnation-point heating in reference 11. Laminar stagnation-line heating
hcyj calculated from a method in reference 12 is used for the cylindrical leading-edge
fin.

DISCUSSION OF RESULTS

Type III Interference

An extensive investigation of type III interference (shear-layer attachment) on
hemispheres was conducted at Mach 6 in air (? = 1. 40) and Mach 20 in helium (r = 1. 67).
Typical schlieren and oil-flow photographs for a type in interference pattern on a hemi-
sphere are shown in figure 6. The reshaped bow shock and the attaching free shear
layer which emanates from the shock intersection can be, seen in figure 6(a). The
attaching shear layer with its accompanying high shear flow appears as a "feather"
pattern on the surface with the flow moving away from the attachment line (fig. 6(b)).

Hemisphere (5. 08-cm diameter). - Heat-transfer results for the 5. 08-cm-diameter
hemisphere at Mach 6, 7 = 1. 40 ( f t^ /P \ = 5. 5) are presented in figures 7 to 12 for a
range of shock generator angles and two free-stream Reynolds numbers. The attaching
shear layer has a strong influence on the heating along the lower surface of the hemisphere
as shown in part (a) of figures 7 to 12. For example, the attachment line (dashed line
on contour plots) extends from the vertical plane of symmetry around to the tangent, point
of the hemisphere and cylindrical afterbody. The extent of the high heating region near
the nose decreases as the local unit Reynolds number increases for a given a^ and e^.
(See, for example, figs. 8(a) and 12(a).) The size of this region is also influenced by
the location of the impinging-shock—bow-shock intersection (x^/R^, y^/Rb) relative to
the sonic point (e <*= 47°) for a given e^ and Reynolds number. (See figs. ll(a) and 12(a).)



Comparisons of the undisturbed heating on the model with the vertical center-line
heating and the off-center-line peak heating (along the attachment line) are presented
in parts (b) and (c), respectively, of figures 7 to 12. Peak heating values from 7.5 to 14
times the stagnation values were measured on the vertical center line. It was shown in
reference 2 that this peak heating is a function of shock generator angle 0., the shear-
layer angle, relative to the surface 9

gL, and the state of the shear layer at attachment
(laminar, transitional, or turbulent). The shear layers at Mach 6 are either transitional
or turbulent. (See ref. 2.) The entire heating on the center line is considerably higher
than the local undisturbed level (for example, 10 to 15 times at e = -80°). Off-center -
line attachment heating distributions indicate that heating levels of comparable severity
to center-line heating are also observed over large parts of the hemisphere surface.
These results show that even though the maximum peak is located near the center line,
severe heating can extend over much of the model surface.

Hemisphere (2. 54-cm diameter). - Heating contours, center-line, and off-center-
line peak heating distributions are presented in figures 13 to 18 at e. = 5°, 10°, and 15°
for various shear-layer attachment locations on the 2. 54-cm-diameter hemisphere at
Mach 20, 7 = 1. 67 (P2/pl ~ 4- °)- ^ general, .the heating data in helium followed the
same trends as the Mach 6 air data. However, the peak heating ratios were lower in
helium as a result of the lower normal-shock—density ratio and the laminar shear-layer
attachment (refs. 5 and 6) as opposed to transitional or turbulent attachment for the
Mach 6 data.

Type IV Interference

Of the six types of interference, type IV (supersonic jet impinging in a subsonic
region) results in the most severe heating (refs. 1 and 2); therefore, considerable inter-
ference heating data were obtained, A typical schlieren photograph of the shock and jet
patterns is shown in figure 19(a) at Mach 6 in air. The effect of jet impingement on the
surface oil flow on a hemisphere is shown in figure 19(b). At @i - 15°, the surface flow

. pattern appears to be similar to the pattern for shear-layer attachment (fig. 6(b)). The
model stagnation region is severely displaced since the jet stagnation pressure can be as
high as 6 to 8 times the model stagnation value. (See ref. 2.)

Hemisphere (5. 08-cm diameter). - Heating data at two Reynolds numbers for shock
generator angles from 5° to 25° are presented in figures 20 to 30 for the 5.08-cm-diameter
hemisphere at Mach 6, T = 1.40 (P2/p l = 5.5). The contours and center-line distribution
at e. = 5° in figures 20 and 26 are very similar to the shear-layer attachment patterns
of type HI; however, as e^ increases, the heating patterns become very complex as shown
in figures 21 to 25 and 27 to 30. The secondary areas of high heating appearing in these
patterns are a result of flow distortions caused by shocks and expansions in the jet flow



moving along the surface. (See ref. 2.) Peak heating values 17 times the stagnation
heating values were measured on the vertical center line. The variation of the maximum
off-center-line peak heating along the jet impingement line (dashed line in part (c) of
figs. 20 to 30) indicates that high heating extends far back on the model similar to type III
off-center-line heating. The interference pattern may also change from one type to
another with increasing distance from the vertical center line.

Cylindrical fin (2. 54-cm-diameter leading edge). - A typical schlieren photograph
of a type IVa grazing jet pattern is presented in figure 31 for a 2. 54-cm-diameter leading-
edge cylindrical fin at Mach 6, 7 = 1.40 (^o/^l = ^ ^' *° ̂ s case ^e Jet is turned
upward and flows parallel to the model surface since the pressure in the lower subsonic
region is higher than that in the upper region. The dark and light areas near the 'surface
above the shock interaction are compressions and expansions in the jet flow. The flow
in this region is unsteady as indicated by the wavy bow shock.

Heating contours, center-line, and off-center-line heating distributions for type IVa
interference are shown in figures 32 to 37. The peaks and dips observed in the heat-
ing distributions are caused by the compressions and expansions in the grazing jet flow
interacting with the fin boundary layer. The sharp increase in heating and the spike
appearing near the lower end of the fin (figs. 33 and 36) are a result of the expansion waves
from the trailing edge of the shock generator interacting with the lower segment of the
bow shock. Heating levels as high as the stagnation-line values were measured on the
cylindrical leading edge as far back as 0 ^60°. (See part (c) of figs. 32 to 37.)

Type V Interference

A schlieren photograph showing the complex flow pattern on the 2. 54-cm-diameter
leading-edge cylindrical fin at Mach 6, T = 1.40 (P2/ P 1 ~ 5.5) is shown in figure 38(a) at
x = 25° and e i = 20°. This photograph also shows that the jet flow is unsteady as for
type IVa. The oil-flow pattern for the fin leading edge is shown in figure 38(b).

Heating contours, stagnation-line heating distributions, and off-stagnation-line
peak values are presented in figures 39 to 44 for various o. values and two free-stream
Reynolds numbers. In general, the heating contours and stagnation-line distributions
exhibit similar shapes and trends, respectively, regardless of the impinging shock
strength. The secondary peaks observed in the stagnation-line distribution are the
result of the grazing jet and shear layer interacting with the boundary layer. (For exam-
ple, compare the interactions shown in fig. 38(a) with the heating of fig. 39(c).) The peak-
off-stagnation-line distributions show that heating as high as stagnation-line values can
exist as far back as <t> = 85°. (See fig. 30(c).) Small areas of high heating which appear
to be caused by vortices from the lower corner were observed in some runs. (See
figs. 43(a) and 44(a).)
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CONCLUDING REMARKS

The results of an extensive experimental study of off-center-line shock
interference heating on simple shapes are presented for three interference flow pat-
terns. These patterns were formed' by the intersection of a plane impinging shock and
the bow shock created by a hemisphere or cylindrical fin. The study covered a range
of hypersonic Mach numbers, specific heat ratios, Reynolds numbers, and impinging
shock strengths.

Heating levels higher than stagnation values were found over a large percentage
of the off-center-line body surface. For example, in most cases the lower half of the
hemisphere was exposed to levels equal to or much greater than stagnation heating.
Maximum amplifications up to 17 times the stagnation heating were measured on the
hemisphere near the center line for an impinging jet. These results indicate that shock
interference on high-speed flight vehicles can cause severe heating over significant
areas in the vicinity of the interaction region.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., September 19, 1973.
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Figure 1. - Sketch of model test assembly.

13



Center line
(plane of symmetry)
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(a) Hemispheres.
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Peak heating
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(a) Schlieren photograph.

Figure 6.- Shock and oil-flow patterns on a 5.08-cm-diameter hemisphere at Mach 5.94
in air for a type III interference. 6i - 14.8°; NR /m = 7.9 x 10 .
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Figure 31.- Shock pattern for a type IVa interference on the cylindrical fin at

Mach 6 in air. 0. = 19.9°; A = 0°; N- /m = 25.8 x 106.i Ke,°°/
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(a) Heating contours, h , = 367.70 W/m2-K.

Figure 32.- Type IVa interference on a fin at Mach 5.94 in air.
0, = 9.9°; A = 0°; N- /m = 8.1 X 106.
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Figure 33.- Type IVa interference on a fin at Mach 5.94 in air.
6* = 14.9°; X = 0°; N~ An - 7.7 X 106.i Ke,oo/
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Figure 34.- Type IVa interference on a fin at Mach 5.94 in air.
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Figure 35.- Type IVa interference on a fin at Mach 6 in air.
0j = 9.9°; X = 0°; NRe Jm = 26.2 x 106.
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Figure 36.- Type IVa interference on a fin at Mach 6 in air.
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Secondary peak

L-73-6876
(a) Schlieren photograph.

Figure 38.- Shock and oil-flow patterns for a type V interference on a fin at
Mach 6 in air. 6^ = 19.9°; A - 24.8°; NRe ^/m = 25.9 x 106.
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\ \
Shock-boundary
layer interaction1

L-73-6877
(b) Oil-flow pattern.

Figure 38.- Concluded.
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(a) Heating contours, h , = 306.42 W/m2-K.

Figure 39.- Type V interference on a fin at Mach 5.94 in air.
0. - 9.9°; X = 25°; NRe -Jm = 7.2 x 106.
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(b) Center-line heat-transfer distribution.

4

h

"cy, '

o

— .

Q

O

o

~~

— No i nte

0

•̂

rference

"•̂

0 20 40 60 80 100
<t>, deg

(c) Off-center-line heating. X = 0.35.

Figure 39.- Concluded.
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(a) Heating contours, h j = 306.42 W/m2-K.

Figure 40.- Type V interference on a fin at Mach 5.94 in air.
6. = 15°; X = 25°; N~ /m = 7.3 x 106.i - Ke, oo /
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cylinder, laminar

1.00

(b) Center-line heat-transfer distribution.

\
— No interference

20 40 60 80 100
<t>, deg

(c) Off-center-line heating. X = 0.39.

Figure 40.- Concluded.
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(a) Heating contours. hc 1 = 306.42 W/m2-K.

Figure 41.- Type V interference on a fin at Mach 5.94 in air.

9. = 19.8°; A = 24.9°; Nc An = 7.6 x 106.i ' ' tie,<x> /
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(c) Off-center-line heating. X = 0.36.

Figure 41.- Concluded.
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Test Run Model Isotherm

Grid lines

Peak heating line

(a) Heating contours, h , = 592.41 W/m2-K.

Figure 42.- Type V interference on a fin at Mach 6 in air.
?, = 9.9U: A = 25l N.'Re /m =

,oo/
= 25.7 X 10°.
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(b) Center-line heat-transfer distribution.
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(c) Off-center-line heating. X = 0.34.

Figure 42.- Concluded.
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t (Stagnation line)

Test Run Model Isotherm h/h

Grid lines

Peak heating line

Vortex heating

(a) Heating contours. hcyl = 692.41 W/m2-K.

Figure 43.- Type V interference on a fin at Mach 6 in air.
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(b) Center-line heat-transfer distribution.
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(c) Off-center-line heating. X = 0.37.

Figure 43.- Concluded.
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(a) Heating contours, h , = 592.41 W/m2-K.

Figure 44.- Type V interference on a fin at Mach 6 in air.
0. = 19.8
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X = 24.9 /m = 25.9 x 10
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(c) Off-center-line heating. X = 0.33.

Figure 44.- Concluded.
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