https://ntrs.nasa.gov/search.jsp?R=19740004336 2020-03-23T12:33:27+00:00Z

NA\$A CR-134511 PWA FR-5852

SINGLE-STAGE EXPERIMENTAL EVALUATION OF TANDEM-AIRFOIL ROTOR AND STATOR BLADING FOR COMPRESSORS

PART VI - DATA AND PERFORMANCE FOR STAGE D

by D. R. Clemmons

ŧ!

1.	Report No.	2. Government Accession No.		3. Recipient's Catalog No.
	NASA CR-134511			
4.	I Fitle and Subtitle		NEM- AIRFOIL	5. Report Date
	ROTOR AND STATOR BLADING F	OR COMPRESSORS." PA	RT VI	30 November 1973
	DATA AND PERFORMANCE FOR STAGE D		6. Performing Organization Code	
7.	Author(s)			8. Performing Organization Report No.
	D. R. Clemmons			PWA FR-5852
9.	Performing Organization Name and Address	<u> </u>		10. Work Unit No.
ĺ	Pratt & Whitney Aircraft	_ 4 •		11. Contract or Grant No.
	Division of United Aircraft Corpor	ation Center		NAS3-11158
	West Palm Beach, Florida 33402			12 Turn of Report and Period Coursed
12.	Sponsoring Agency Name and Address			Contractor Report
	National Aeronautics and Space Ad	ministration		14 Spansoring Agency Code
	Washington, D. C. 20546			
15.	Supplementary Notes		anta Division	
	NASA - Lewis Research Center, C	ey, Fluid System Compon Eleveland, Ohio 44135	ents Division,	
16.	Abstract			
	An axial flow compressor stage, h	aving single-airfoil bladin	ng, was design	ed for zero rotor prewhirl,
	constant rotor work across the spa	an, and axial discharge flo	ow. The stage	was designed to produce
	0.8 The design procedure account	ted for the rotor inlet bo	undarv laver a	nd included the effects of
	axial velocity ratio and secondary	flow on blade row perform	nance. The ob	jectives of this experimental
	program were: (1) to obtain perfo	rmance with uniform and	distorted inlet	flow for comparison with the
	(2) to evaluate the effectiveness of	accounting for the inlet b	oundary layer.	axial velocity ratio, and
	secondary flows in the stage desig	n. With uniform inlet flow	w, the rotor ac	hieved a maximum adiabatic
	efficiency of 90.1% at design equiv	alent rotor speed and a p	ressure ratio o	of 1.281. The stage maximum $\frac{100}{100}$ at a maximum
	adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure			
	in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.			
		סחוכרכ	CUDIECT TO	I CHANGE
		PKICES	JADIECI IC	
17.	Key Words (Suggested by Author(s))	18. Dis	tribution Statemen	
	Compageor	1 Tr	olassified - ur	limited
	Secondary Flow		GLAGGLITEU - UL	annitu
	Tandem Blading			
10	Converte Classif (of this second)	20. Sequeity Classifier (of all)		
19.	Jecurity Glassified	Unclassified	gej	
	[*] For sale by the N	ational Technical Information S	ervice, Springfield	I. Virginia 22151

FOREWORD

This report was prepared by the Pratt & Whitney Aircraft Division of United Aircraft Corporation, West Palm Beach, Florida, to present the data and performance for Stage D, which was tested under Contract NAS3-11158, Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors. Mr. Everett E. Bailey, NASA-Lewis Research Center, Fluid System Components Division, was Project Manager.

The requirements of NASA Policy Directive NPD 2220.4 (September 14, 1970) regarding the use of SI Units have been waived in accordance with the provisions of paragraph 5d of that Directive by the Director of Lewis Research Center.

CONTENTS

PAGE

ILLUSTRATIONS	v
TABLES	xv
SUMMARY	1
INTRODUCTION	2
DESIGN SUMMARY	2
Blading Design	2
TEST EQUIPMENT	3
Compressor Test Facility	3 3 6
PROCEDURES	7
Test Procedures	7
Shakedown Tests	7 7
Data Reduction Procedures	8
Overall Performance	8 9 9
PRESENTATION OF DATA	9
Uniform Inlet	9
Overall Performance	$\begin{array}{c}9\\10\end{array}$
Rotor Blade Element Performance	$\begin{array}{c} 10\\11\end{array}$
Hub and Tip Radial Inlet Flow Distortion	12
Overall Performance	$\frac{12}{12}$
Rotor and Stator Blade Element Performance Flow Distribution Data	13 13
Circumferential Distortion	1 3
Overall Performance	13 14
SUMMARY REMARKS	15

CONTENTS (Continued)

•

PAGE

APPENDIX A – Tabulated Overall and Blade Element Performance Data	155
APPENDIX B - Stator D Static Pressure Coefficients	241
APPENDIX C - Definition of Symbols - Definition of Overall Performance Variables - Definition of Blade Element Performance	$\begin{array}{c} 243\\ 245\end{array}$
Variables	246
REFERENCES	249

-

ILLUSTRATIONS

FIGURE		PAGE
1	Stage D Airfoils	16
2	Compressor Research Facility	17
3	Single-Stage Compressor Rig	18
4	Flowpath Dimensions	19
5	Instrumentation Layout	20
6	Eight-Degree Wedge Traverse Probe	21
7	Stator D Static Pressure Orifice Locations	22
8	Twenty-Degree Wedge Traverse Probe	23
9	Total Pressure/Total Temperature Circumferential Traverse Unit	24
10a	Composition of Station 1 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	25
10b	Composition of Station 2 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen	20
1.0		26
100	the Circumferential Distortion Screen for Six Screen Positions	27
11	High-Response Probe	28
12	Typical Stall Transient Data	29
13	Station 0 Equivalent Static Pressure vs Equivalent Weight Flow for Stage D Flowpath with Support Screen	. 30
14	Overall Performance of Rotor D; Uniform Inlet Flow	31
15	Overall Performance of Stage D; Uniform Inlet Flow	32
16a	Rotor D Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow	33
16b	Rotor D Blade Element Performance; 10% Span from Tip; Uniform Inlet Flow	34
16c	Rotor D Blade Element Performance; 15% Span from Tip; Uniform Inlet Flow	-35
16d	Rotor D Blade Element Performance; 30% Span from Tip; Uniform Inlet Flow	· 36
16 e	Rotor D Blade Element Performance; 50% Span; Uni- form Inlet Flow	37
1 6ſ	Rotor D Blade Element Performance; 70% Span from Tip; Uniform Inlet Flow	38

o

2

-

v

FIGURE		PAGE
16g	Rotor D Blade Element Performance; 85% Span from Tip; Uniform Inlet Flow	39
16h	Rotor D Blade Element Performance; 90% Span from Tip; Uniform Inlet Flow	40
16 i	Rotor D Blade Element Performance; 95% Span from Tip; Uniform Inlet Flow	41
17a	Rotor D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow	42
17b	Rotor D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow	43
17c	Rotor D Loss Parameter vs Diffusion Factor; 50% Span Uniform Inlet Flow	44
17d	Rotor D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow ••••••••••	.45
17e	Rotor D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow	46
18	Rotor D Tip Static Pressure Ratio vs Percent Axial Chord; 100% Design Equivalent Rotor Speed; Uniform Inlet Flow	47
19a	Stator D Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow	48
19b	Stator D Blade Element Performance; 10% Span from Tip; Uniform Inlet Flow	49
19c	Stator D Blade Element Performance; 15% Span from Tip; Uniform Inlet Flow	50
19d	Stator D Blade Element Performance; 30% Span from Tip; Uniform Inlet Flow	51
19e	Stator D Blade Element Performance; 50% Span; Uniform Inlet Flow	52
19f	Stator D Blade Element Performance; 70% Span from Tip; Uniform Inlet Flow	53
19g	Stator D Blade Element Performance; 85% Span from Tip; Uniform Inlet Flow	54
19h	Stator D Blade Element Performance; 90% Span from Tip; Uniform Inlet Flow	55
19i	Stator D Blade Element Performance; 95% Span from Tip; Uniform Inlet Flow	56
20a	Stator D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow	57

.

o

.

	FIGURE		PAGE
	20b	Stator D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow	58
	20e	Stator D Loss Parameter vs Diffusion Factor; 50% Span Uniform Inlet Flow	59
	20d	Stator D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow	60
	20e	Stator D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow	6 1
	21a	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 120.02 lb/sec; Uniform Inlet Flow	62
	21b	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110.18 lb/sec; Uniform Inlet Flow	63
•	21c	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.67 lb/sec; Uniform Inlet Flow	. 64
	21d	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 95.36 lb/sec; Uniform Inlet Flow	65
	21e	Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.32 lb/sec; Uniform Inlet Flow	66
	22a	Wall Static Pressure Distributions Upstream and Downstream of Stator D; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110, 18 lb/sec; Uniform Inlet Flow	67
	22b	Wall Static Pressure Distribution Upstream and Downstream of Stator D; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.32 lb/sec; Uniform Inlet Flow	68
	23	Typical Rotor Inlet Total Pressure Profiles With Hub and Tip Radial Distortion; 100% Design Equivalent Rotor Speed	69
	24	Overall Performance of Rotor D; Hub Radial Distortion Compared With Uniform Inlet Flow	70
	25	Overall Performance of Stage D; Hub Radial Distortion Compared With Uniform Inlet Flow	71

FIGURE		PAGE
26	Overall Performance of Rotor D; Tip Radial Distortion Compared With Uniform Inlet Flow	72
27	Overall Performance of Stage D; Tip Radial Distortion Compared With Uniform Inlet Flow	73
28a	Rotor D Blade Element Performance; 5% Span from Tip; Hub and Tip Radial Distortion	74
28b	Rotor D Blade Element Performance; 10% Span from Tip; Hub and Tip Radial Distortion	75
28 c	Rotor D Blade Element Performance; 15% Span from Tip; Hub and Tip Radial Distortion	76
28d	Rotor D Blade Element Performance; 30% Span from Tip; Hub and Tip Radial Distortion	77
28e	Rotor D Blade Element Performance; 50% Span; Hub and Tip Radial Distortion	78
28f	Rotor D Blade Element Performance; 70% Span from Tip: Hub and Tip Radial Distortion	79
28g	Rotor D Blade Element Performance; 85% Span from Tip; Hub and Tip Radial Distortion	80
28h	Rotor D Blade Element Performance; 90% Span from Tip; Hub and Tip Radial Distortion	81
2 8i	Rotor D Blade Element Performance; 95% Span from Tip; Hub and Tip Radial Distortion	82
29a	Stator D Blade Element Performance; 5% Span from Tip; Hub and Tip Radial Distortion	83
29b	Stator D Blade Element Performance; 10% Span from Tip; Hub and Tip Radial Distortion	84
29 c	Stator D Blade Element Performance; 15% Span from Tip; Hub and Tip Radial Distortion	85
29d	Stator D Blade Element Performance; 30% Span from Tip; Hub and Tip Radial Distortion	86
29e	Stator D Blade Element Performance; 50% Span; Hub and Tip Radial Distortion	87
29f	Stator D Blade Element Performance; 70% Span from Tip; Hub and Tip Radial Distortion	88
29g	Stator D Blade Element Performance; 85% Span from Tip; Hub and Tip Radial Distortion	89
29h	Stator D Blade Element Performance; 90% Span from Tip; Hub and Tip Radial Distortion	90
29i	Stator D Blade Element Performance; 95% Span from Tip; Hub and Tip Radial Distortion	91

•

FIGURE

٠

PAGE

.

30a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.76 lb/sec; Hub Radial Distortion	92
30b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.44 lb/sec; Hub Radial Distortion	93
30e	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.40 lb/sec; Hub Radial Distortion	94
31a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.52 lb/sec; Hub Radial Distortion	95
31b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.60 lb/sec; Hub Radial Distortion	96
31c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 76.35 lb/sec; Hub Radial Distortion	97
32a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.96 lb/sec; Hub Radial Distortion	98
32b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 71.46 lb/sec; Hub Radial Distortion	99
32c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 59.11 lb/sec; Hub Radial Distortion	100

-

FIGURE

33a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 115.11 lb/sec; Tip Radial Distortion	101
33b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 106.05 lb/sec; Tip Radial Distortion	102
33c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 99.09 lb/sec; Tip Radial Distortion	103
34a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.62 lb/sec; Tip Radial Distortion	104
34b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.85 lb/sec; Tip Radial Distortion	105
34c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.04 lb/sec; Tip Radial Distortion	106
35a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 85.36 lb/sec; Tip Radial Distortion	107
35b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 80.21 lb/sec; Tip Radial Distortion	108
35c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 72.74 lb/sec; Tip Radial Distortion	109

FIGURE

.

36	Typical Rotor Inlet Total Pressure Distribu- tion With Circumferential Distortion; 100% Design Equivalent Rotor Speed; 92.4% Design Equivalent Flow (101.6 lb/sec); 50% Span	110
37	Overall Performance of Rotor D; Circumferential Distortion Compared With Uniform Inlet Flow	111
38	Overall Performance of Stage D; Circumferential Distortion Compared With Uniform Inlet Flow	112
39	Overall Performance of Rotor D; Circumferential Distortion Compared With Uniform Inlet Flow	113
40	Overall Performance of Stage D; Circumferential Distortion Compared With Uniform Inlet Flow	114
4 1 a	Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow =101.60 lb/sec; Circumferential Distortion	115
41b	Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	116
41c	Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	117
41d	Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	1 18
4 1 e	Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	119
41f	Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	120
41g	Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	121
41h	Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Cincumferential Distortion	122
	Circumferential Distortion	144

.

FIGURE		PAGE
41i	Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	123
41j	Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	124
41k	Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	125
411	Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	126
41m	Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion	127
42a	Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	128
42b	Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	129
42c	Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	130
42d	Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	131
42e	Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion.	132
42f	Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distantian	100
	on cumerential Distortion.	133

٠

FIGURE		PAGE
42g	Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	134
42h	Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	135
42 i	Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	136
42j	Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	137
42k	Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	138
421	Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	139
42m	Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion	140
43a	Rotor Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	141
43b	Rotor Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78'lb/sec; Circumferential Distortion	142
43c	Rotor Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	143
43d	Rotor Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	144

FIGURE		PAGE
43e	Stator Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	145
43f	Stator Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	146
43g	Stator Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	147
43h	Stator Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	148
43i	Stator Exit Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	149
43j	Stator Exit Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	150
43k	Stator Exit Total Temperature vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	151
431	Stator Exit Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion	152
43m	Stator Exit Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion.	153

TABLES

TABLE		PAGE
I	Rotor D Blade Element Design	4
П	Stator D Blade Element Design	5
A-1	Overall Performance - Stage D, Uniform Inlet	157
A-2	Blade Element Performance – Uniform Inlet Untranslated	158
A-3	Blade Element Performance - Uniform Inlet	159
A - 4	Overall Performance - Stage D, Radial Distortion	184
A-5	Blade Element Performance - Hub Radial Distortion	185
A-6	Blade Element Performance - Tip Radial Distortion	194
A-7	Overall Performance - Stage D, Circumferential Distortion	203
A-8	Blade Element Performance - Circumferential Distortion	204

.

,

.

.

SUMMARY

A single-stage axial flow compressor, having single-airfoil blading, was designed and tested as part of an overall program to evaluate the effectiveness of tandem airfoils for increasing the design point loading capability and stable operating range of compressors. The stage was designed with zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The resulting blading had large variations in twist (i.e., end-bends) in the endwall regions. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. The specific flow and resulting rotor inlet Mach number were generally consistent with design practice for compressor middle stages; however, the blade loading was appreciably higher. The stage was tested with uniform inlet flow and with hub radial, tip radial and 90 deg one-per-revolution circumferential distortion of the inlet flow.

Overall and blade element performance data for uniform inlet flow were obtained at 50, 70, 90, 100 and 110% of design equivalent rotor speed, and are presented herein. At design equivalent rotor speed and flow, the rotor achieved an adiabatic efficiency of 88.9% at the design pressure ratio of 1.28 compared with the design value of 89.9%. At the same flow and rotor speed, the stage achieved its design adiabatic efficiency of 84.8% at its design pressure ratio of 1.26. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 90.1% and 86.1%, respectively, were reached at approximately 96% design equivalent flow.

For both hub radial and tip radial distortion of the inlet flow, overall performance, blade element performance and flow distribution data were obtained at 70, 90 and 100% of design equivalent rotor speed and are also presented herein. For circumferential distortion of the inlet flow, overall performance data were obtained at 70, 90 and 100% of design equivalent rotor speed. Flow distribution data were also obtained with circumferential distortion of the inlet flow for two operating points (defined as a combination of flow and speed) at design equivalent rotor speed and one operating point at 90% design equivalent rotor speed.

Hub radial distortion and circumferential distortion produced moderate changes in surge pressure ratio for the stage, whereas tip radial distortion caused surge pressure ratio to decrease substantially. At design equivalent rotor speed with hub radial, tip radial, and circumferential distortion the surge pressure ratio decreased 2.0, 9.7, and 4.6%, respectively, when compared with the uniform inlet flow value. Peak adiabatic efficiency with hub radial distortion was essentially unchanged from the uniform inlet flow value (which occurred at design speed), even though the stage pressure ratio was reduced significantly at 90 and 100% design equivalent rotor speed with hub distortion. Tip radial distortion of the inlet flow resulted in a slight increase in peak adiabatic efficiency at 70 and 90% design equivalent rotor speed, but the stage lost 4.5 percentage points in peak efficiency at design rotor speed. Stage pressure ratio with tip radial distortion was reduced considerably over most of the 90%speedline and over all the 100% speedline. Stage pressure ratio was not affected significantly by circumferential distortion of the inlet flow, calculated values of adiabatic efficiency with circumferential distortion were considered to be inaccurate, prohibiting an evaluation of the effects of circumferential distortion on peak efficiency.

1

INTRODUCTION

The effectiveness of tandem airfoils as a means for increasing the loading limit and stable operating range of highly loaded compressor blade rows was investigated for the National Aeronautics and Space Administration at the Florida Research and Development Center of Pratt & Whitney Aircraft under Task I of Contract NAS3-11158 (References 1 through 3). During this program, tandem rotors demonstrated higher pressure rise and efficiency than a single airfoil rotor with identical inlet and exit airfoil angles. The performance of the conventional stage was controlled to a large extent by three-dimensional flow effects associated with high losses near the walls. The three-dimensional flows resulted even though the blading was designed with increased work input near the walls to compensate for the high losses in these regions and, thereby, maintain a constant radial pressure distribution.

A second single-stage compressor investigation was initiated to evaluate the potential of tandem blading for improving the performance over that of a more moderately loaded stage, composed of single-airfoil blade rows. A study was performed to select a radial work gradient for the rotor, which resulted in maximum rotor and stator loading levels consistent with good performance (Reference 4). Based on this study a rotor design with uniform work input at all radii and an overall pressure ratio of 1.28 at a design tip speed of 757 ft/sec was chosen for this investigation. This rotor has lower work input near the walls than the rotors of References 1 through 3. This lower work input near the walls should reduce the three-dimensional flows and high wall losses that are characteristic of highly loaded blade rows and provide a stage design that is not characterized by a highly three-dimensional flow and associated poor performance.

A single-airfoil rotor and stator, a dual-airfoil tandem rotor, and a dualairfoil tandem stator were designed and fabricated for this investigation. Because of the large inlet boundary layer noted during the Reference 1 through 3 testing, a design procedure was used that accounted for the inlet total pressure gradient and the effects of axial velocity ratio and secondary flow on blade row performance. This report presents the data and performance obtained with Stage D, which was composed of single-airfoil rotor and stator blading. A discussion of the aerodynamic and mechanical design of Stage D is presented in Reference 4.

DESIGN SUMMARY

Blading Design

The stage was designed with zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. A rotor tip inlet Mach number of approximately 0.8 and a specific flow of 33 lb/sec-ft² were selected to be generally representative of current design practice for highly loaded compressor middle stages. The design velocity diagrams were calculated by means of a computer program that solves the continuity, energy, and radial equilibrium equations for an axisymmetric flow field. The rotor inlet total pressure distribution from the data of the Reference 1 program was used for the vector diagram calculations. Radial gradients of enthalpy and entropy were included in the calculation, and the influence of wall and streamline curvature on the radial distribution of static pressure was taken into account. Simulated double-circular-arc

2

 \odot

airfoil sections (i.e., the mean camber line and the suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on a specified conical surface) were selected for the rotor and stator blading to be as consistent as possible with studies being conducted by NASA-Lewis Research Center (Reference 5). Design incidence (minimum loss) and deviation angles were calculated using equations 286 and 287 of Reference 6. The three-dimensional corrections to the incidence and deviation angles were omitted and a two-dimensional turning value, which includes the effects of axial velocity ratio and secondary flow, was used (Reference 4). This procedure combined with the use of the actual inlet pressure gradient resulted in blading with large variations in twist in the endwall regions of both the rotor and stator. (See figure 1.)

Rotor and stator design velocity diagram data, blade element geometry data, and predicted performance are presented in tables I and II for the rotor and stator, respectively. Symbols and performance variables are defined in Appendix C.

TEST EQUIPMENT

Compressor Test Facility

A schematic of the compressor test facility is shown in figure 2. The compressor is driven by a single-stage turbine, powered by exhaust gases from a J75 slave engine, with compressor speed controlled by means of the engine throttle. Air enters the compressor through a 103-ft combined inlet duct, plenum, and bellmouth inlet, and is exhausted through an exit diffuser to the atmosphere. The inlet duct contains a flow measuring orifice designed and installed in accordance with ASME standards. The area contraction ratio from plenum to compressor inlet is approximately 10 to 1.

Compressor Test Rig

A schematic of the compressor test rig is shown in figure 3. The flowpath dimensions are shown in figure 4. The hub/tip ratio at the rotor inlet is 0.798. The test section has a constant hub diameter of 32.85 in., and the outer wall converges from a diameter of 41.15 in. at the rotor leading edge to 39.99 in. at the stator trailing edge. Rotor bearing loads are transmitted to the rig support through struts located in the inlet and exhaust case assemblies. The inlet struts are sufficiently far upstream so that their wakes are dissipated ahead of the rotor. The stage design specifications of zero rotor prewhirl and axial discharge flow eliminated the need for inlet and exit guide vanes. Flowrate and/or backpressure were varied with a set of motor driven throttle vanes located in the exhaust case.

Distortion Screens

Twenty-mesh, 0.020-in. diameter wire was used for the distortion screens (i.e., tip radial, hub radial and circumferential). The tip and hub radial distortion screens covered 35 and 40% of the inlet annulus area respectively, and the circumferential screen covered a 90 deg sector of the inlet annulus area. The distortion screens were mounted on a 1.0-in. mesh 0.125-in. diameter wire support screen located approximately one rotor radius upstream of the rotor leading edge. The support screen, which spanned the entire annulus, was installed for all the Stage D tests.

VELOCITY DIAGRAM DATA

Equivalent Rotor Speed = 4210 rpm Percent Span Equivalent Weight Flow = 110 lb/sec

	Fro	m Tip											
	Leading Edge	Trailing Edge	V'le (ft/sec)	V _{zle} (ft/sec)	V' 0 le (ít/sec)	β 'le (deg)	U _{lc} (ft/sec)	V'te (fl/sec)	Vzte (ft/see)	V⁺ ∂ te (ft/sec)	β [*] te (deg)	Ute (ft/sec)	a (deg)
Hub	96.8	95.0	758,6	458,8	608.7	53,00	608.7	416.8	371,3	193,5	27,95	610.5	1.52
	92.0	90.0	787.8	488.5	615.8	51,50	615,8	493,9	448.9	204.8	24,55	617.6	1,37
	86.9	85.0	800.7	500.5	623.8	51,10	623,8	535,6	491.5	215.9	23.72	624.7	0,89
	71.0	70.0	819,8	501.1	642.9	52,20	642,9	575.8	519,6	249.0	25.70	645.9	-1.17
	49.5	50.0	844.3	499.9	680.6	53.60	680.6	603,1	525.8	293.7	29.35	674.3	-4.21
	28.1	30.0	869.4	496.5	713,2	55,00	713,2	622,8	521.1	339.8	32.95	702.6	-7.16
	12.0	15.0	877.9	473.4	737,8	57,10	737.8	596.0	464.2	370.0	38,35	723.9	-9.37
	7.1	10.0	861.4	428.7	745.3	59.80	745.3	553.0	400.9	379.7	13.18	730.9	-9.64
Тiр	3.0	5.0	837.2	375.1	751,5	64,10	751.5	483.5	270.0	388.9	53.00	738.0	-9.07

Note: $\beta_{le} = 0$ and is constant with radius.

Airfoil: Simulated Double-Circular-Arc**

DESIGN PERFORMANCE DATA

Rotor Pressure Ratio: 1,282

	Perec Fro	ent Span m Tip										
	Leading Edge	Trailing Edge	M' le	im (deg)	D	סי	Loss Parameter	δ [°] (deg)	Ple (psia)	Tle (°R)	P _{te} (psia)	T _{te} (°R)
llub	96.8	95.0	0.697	0.57	0.604	0,236	0.0604	12,79	14,427	518.7	17.765	561.14
	92.0	90.0	0.719	Ü.58	0.530	0.162	0,0432	10.38	14,659	518,7	18.361	561.15
	86.9	85.0	0.732	0.52	0.484	0,106	0,0288	9,08	14,694	518.7	18.735	561.14
	71.0	70.0	0,750	0.15	0.453	0,064	0.0177	7,05	14.699	518.7	19.000	561.34
	49.5	50.0	0.774	-0.36	0.436	0.046	0,0129	6,16	14.693	518.7	19.063	561.34
	28.1	30.0	0.796	-0.88	0.426	0,056	0,0158	5.44	14.701	518.7	19.010	561.07
	12.0	15.0	0.801	-1.41	0,461	0,123	0.0335	6,82	14,602	518.7	18.465	561.28
	7.1	10.0	0.783	-2.32	0.504	0.150	0,0382	10,45	14.308	518.7	17,915	561.14
Tip	3.0	5.0	0.757	-3,90	0.567	0,201	0.0428	17.12	13.820	518.7	17.130	561.38

GEOMETRY DATA

Number of Blades: 70

Chord Length: 2,57 in.

Adiabatic Efficiency: 89,9%

	Perc Fre	ent Span om Tip								
	Leading Edge	Trailing Edge	κ'le (tleg)	κ' _{te} (deg)	φ (deg)	γ° (deg)	σ	′ t/c	^r le (in,)	r _{te} (in.)
Hub	96.8	95,0	52,42	15,14	37.27	33.78	1,725	0.0782	0,009	0.009
	92.0	90.0	50,91	14.15	36.75	32.53	1.705	0.0763	0.009	0.009
	86,9	85.0	50.57	14.63	35,94	32,60	1.684	0.0743	0.009	0.009
	71.0	70.0	52.04	18,64	33,40	35,34	1.627	0.0681	0.008	0,008
	49.5	50.0	53,96	23.19	30.77	38.58	1.553	0.0599	0.007	0.007
	28.1	30.0	55.88	27.50	28,37	41,69	1.485	0.0515	0.006	0.006
	12.0	15.0	58.51	31,53	26,98	45.02	1.439	0.0454	0.006	0.006
	7.1	10.0	62,12	33.03	29.09	47.58	1.424	0.0433	0.006	0.006
Тір	3.0	5,0	68,00	35,87	32,12	51.93	1.412	0,0415	0,006	0,006

'Information included in this table is defined on planes tangent to the conic surfaces, which approximate design streamlines of revolution.

**Mean camber line and suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on the conic surface, which approximates the design streamline of revolution.

.

Table II. Stator D Blade Element Design

Equivalent Rotor Speed = 4210 rpm									Equivalent Weight Flow = 110 lb/sec				
	Perce Fro	ent Span m Tip											
	Leading Edge	Trailing Edge	V _{le} (ft/sec)	V _{zle} (ft/see)	V e le (ft∕sec)	$m{eta}_{ ext{le}}$ (deg)	V _{te} (ft/sec)	Vzte (ft/sec)	Vøte (ft/sec)	β _{te} (deg)	a (deg)		
Hub	95.0	. 95.0	569,9	383.9	417.2	47.65	395.1	395.1	0.0	0.0	-0.29		
	90.0	90.0	616,6	456.9	412.8	41.90	472.2	472.2	0.0	0.0	-0,57		
	85.0	85.0	645,3	501.1	407.9	39.20	514.3	514.3	0.0	0.0	-0,86		
	70.0	70,0	659.8	526.2	396.8	37.00	543,9	543.9	0.0	0.0	-1.72		
	50.0	50.0	655.9	533.7	380.5	35.50	554.2	554.2	0.0	0.0	-2.86		
	30.0	30.0	642.5	529.8	362.9	34.40	547.8	547.8	0.0	0.0	-4.00		
	15.0	15.0	595.2	471.9	354.3	36.50	486.2	486.2	0.0	0.0	-4.86		
	10.0	10.0	538,1	407.2	349.0	40.40	417.2	417.2	0.0	0.0	-5.14		
Tip	5,0	5.0	450.2	284.3	349.1	52,50	298.4	298.4	0.0	0.0	-5.43		

VELOCITY DIAGRAM DATA

DESIGN PERFORMANCE DATA

Stage Pressure Ratio: 1,265 Stage Adiabatic Efficiency: 84.8% Percent Span From Tip Leading δ° Pte (psia) Trailing Loss 1_m (deg) M_{le} Edge Edge D ω Parameter (deg) -2,51 -1,48 95.0 0.5024 Hub 95.0 0.540 0.0972 0.02216 8.83 11.31 $17.419 \\ 18.117$ 90.0 90.0 0.5463 0,462 0.0803 0.02027 -1.48 -1.08 -1.02 -1.18 -1.43 85.0 85.0 0,5751 0.423 0.0712 0.01902 11.31 18.472 70.0 70.0 50.0 0,5867 0.389 0.0604 0.01714 $10.97 \\ 11.01$ 18,748 18,864 30.0 30.0 0.5709 0.364 0.0587 0.01866 11.66 18,762 -2.15 -3.11 15.0 10.0 15.0 10.0 0.5262 0.418 0.0995 0.03165 12.4412.6818.153 17.534 Tip 5.0 5.0 0.3958 -6.64 0.630 0.1634 0.04282 4,85 16,738

GEOMETRY DATA

Airfoil: Simulated Double-Circular-Arc**					Numb	er of Vancs	: 66	С	Chord Length:		
	Perce Fro	ent Spen m Tip									
	Lending Edge	Trailing Edge	^K le (deg)	K _{te} (deg)	ф (deg)	γ° (deg)	σ	t/c	^r le (in.)	r _{te} (in.)	
Hub	95.0 90.0 85.0 70.0 50.0 30.0 15.0 10.0	95.0 90.0 85.0 70.0 50.0 30.0 15.0 10.0	50.16 43.38 40.28 38.02 36.68 35.83 38.65 43.11	$\begin{array}{r} - \ 8, 83 \\ -11, 31 \\ -11, 31 \\ -10, 97 \\ -11, 01 \\ -11, 66 \\ -12, 44 \\ -12, 68 \end{array}$	59.00 54.70 51.60 49.00 47.70 47.50 51.10 55.80	20,66 16,03 14,48 13,52 12,83 12,08 13,10 15,21	1.484 1.468 1.453 1.407 1.350 1.298 1.262 1.250	0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.023	$\begin{array}{c} 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ \end{array}$	
Tip	5.0	5.0	59.14	- 4.85	64.00	27,14	1,238	0.09	0.040	0.014	

^{*}Information included in this table is defined on planes tangent to the conic surfaces, which approximate design streamlines of revolution.

**Mean camber line and suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on the conic surface, which approximates the design streamline of revolution.

.

Instrumentation

Instrumentation was provided to obtain overall and blade element performance data for each blade or vane row. The locations of axial instrumentation stations are indicated in figure 4. Axial and circumferential locations of the instrumentation are shown in figure 5. Except for the omission of one rotor inlet total pressure probe during uniform inlet and radial distortion tests, dual instrumentation was provided at each axial station. The dual instrumentation provided (1) a redundant set of measurements during uniform and radially distorted inlet flow testing, and (2) measurements within and outside of the distorted region during the circumferential distortion testing.

Airflow was measured with an ASME standard thin-plate orifice located in the compressor facility inlet duct. Compressor rotor speed was measured with an electromagnetic sensor mounted adjacent to a 60-tooth gear on the rotor shaft. Gear tooth passing frequency was displayed as rpm on a digital counter. Rotor rpm was also recorded on magnetic tape. Inlet total temperature was measured in the inlet plenum by means of six half-shielded total temperature probes; inlet total pressure was measured in the plenum by means of five Kiel total pressure probes. Six equally spaced static pressure orifices were located on both the inner and outer walls at instrumentation Station 0.

Radial distributions of static pressure at the rotor inlet and exit and at the stator exit were measured by means of 8-deg wedge probes (figure 6). Four inner wall and four outer wall static pressure orifices, approximately equally spaced, were located at each of these stations. The rotor exit (i.e., stator inlet) instrumentation station also had two inner wall and three outer wall orifices installed across a vane gap to measure the static pressure variation across the gap. Likewise, the stator exit instrumentation station had four inner wall and four outer wall orifices installed across a vane gap to measure the gap-wise static pressure gradient on each wall. Eleven static pressure orifices were located over the rotor blade tips on the outer wall, between -26% and 107% rotor axial chord, to measure the rotor tip static pressures. Stator surface static pressure distributions at 10% and 90% span were measured with eight suction surface and three pressure surface orifices situated from approximately 15 to 85% chord at both span locations. The three pressure surface orifices at each percent span were installed on the same airfoil and a different stator vane was used for each group of eight suction surface pressure orifices, i.e., a total of three stators. The three stators were positioned in the stator assembly such that at least one uninstrumented vane separated those with static pressure orifices. The circumferential location of each instrumented airfoil and the location of the pressure orifices in terms of percent chord are shown in figure 7.

Twenty-deg wedge probes (figure 8) were used to measure the radial distributions of total pressure and flow angle at the rotor inlet and exit, and flow angle at the stator exit. Stator exit total pressure and temperature across a stator gap were measured at each of two circumferential locations by means of circumferentially traversed radial rakes with elements at nine radial positions (figure 9). The elements of each radial rake were designed to measure both total pressure and temperature. A fixed radial rake with five Kiel total pressure sensors was also installed downstream of the stator for use with the wall static measurements to calculate the freestream Mach number. This Mach number was used to correct the total temperature and the 8-deg wedge static pressure measurements. As previously stated, dual instrumentation was provided at each axial measuring station to provide measurements within and outside of the distorted regions during the circumferential distortion testing. The dual instrumentation also reduced the number of circumferential distortion screen locations required to obtain a uniform spacing of flow distribution data relative to a reference screen location. Six screen locations resulted in the circumferential distributions (relative to a reference screen location) of data shown in figures 10a through 10c for stations 1, 2, and 2A, respectively.

Steady-state pressure data were measured with a multichannel pressure transducer scanning system that includes automatic data recording on computer cards. Steady-state temperature measurements were also automatically recorded on computer cards by a multichannel scanning system in conjunction with a temperature reference oven and a digital voltmeter. Traverse pressure and temperature data and transient pressure data were recorded on magnetic tape at up to 600 samples per minute per channel.

One static pressure orifice located in the plenum, two of the outer wall static pressure orifices at Station 0, and a total pressure probe with sensors at 10, 50, and 90% spans at the rotor exit were close-coupled to transducers for transient recording during operation into and out of stall. High-response pressure transducers mounted as total pressure probes at 10, 50, and 90% span from the tip behind the rotor (figure 11) were used to measure high-frequency total pressure oscillations and to indicate the initiation of rotating stall. The highresponse transducer output was recorded on magnetic tape and correlated in time with the transient recording of the plenum and Station 0 statics and the stage exit total pressures.

Five rotor blades were instrumented with strain gages to provide vibratory stress data. The gage outputs were displayed on oscilloscopes and visually monitored during tests. Gage locations were determined by bench vibration tests with the aid of stresscoat and the selected locations were verified by a fatigue test.

PROCEDURES

Test Procedures

Shakedown Tests

A shakedown test was performed to check out the rig and blade vibration levels, blade stress levels, instrumentation, and data reduction programs. Overall and blade element performance data were obtained for two operating points with uniform inlet flow at 100% design equivalent rotor speed. One stall transient was performed during this test.

Performance Tests

Overall performance, blade element performance, flow distribution and stall transient data were obtained during the uniform inlet flow tests at 50, 70, 90, 100, and 110% of design equivalent rotor speed. Five data points (defined as a combination of flow and speed) were recorded at each speed to define stage performance between maximum obtainable flow and near stall. The near-stall point was determined on the basis of flow and rotor exit pressure. Overall performance, blade element performance and flow distribution data were obtained at three flow conditions, including maximum and near-stall flow, at 70, 90, and 100% of design equivalent rotor speed for the hub and tip radial inlet flow distortion tests. For circumferential distortion of the inlet flow, overall performance data were recorded for three data points at each of 70, 90, and 100% of design equivalent rotor speed. Flow distribution data were also obtained with circumferential distortion of the inlet flow for two of the above data points at design equivalent rotor speed and one data point at 90% design equivalent rotor speed. To obtain an approximately uniform spacing of flow distribution data around the circumference of the compressor, data were recorded for six screen locations for each of the three data points. The resulting circumferential locations of the instrumentation relative to a reference screen locations are shown in figure 10.

At each data point, traverse surveys were followed by the recording of fixed pressure and temperature instrumentation data. Blade stresses were monitored during steady-state and stall transient operation at all rotor speeds.

Transient measurements of bellmouth static pressure, rotor speed, and rotor exit total pressure were recorded ten times per second to define stall characteristics as the stage was operated into and out of stall. The output from a high-response total pressure probe (10, 50, and 90% spans) at the rotor exit was also recorded as the stage was operated into and out of stall and correlated in time with the other transient measurements.

Data Reduction Procedures

Data reduction was accomplished in two steps. The first step involved the use of two computer programs (1) to convert millivolt readings to appropriate engineering units, and (2) to provide a tabulated and plotted array of pressures, temperature, and air angle data at each station. Conversion of data to absolute values, appropriate Mach number corrections, and adjustment of pressures and temperature to equivalent NASA standard day conditions were performed in the second computer program.

The second step in the data reduction procedure involved a computer program to calculate overall and blade element performance variables for the rotor and stator. The array of data provided in step one above was analyzed for the selection of radial distributions of pressures, temperature, and air angle at each axial station for input into the computer program.

Overall Performance

Total pressure ratios and adiabatic efficiencies were calculated for the rotor and the rotor-stator (stage). The rotor and stator exit total pressures and total temperatures were weighted according to local mass flow to obtain average values. The mass-averaged stator exit total temperatures were used for both the rotor and stage efficiency calculations.

The stator wake total pressures and total temperatures at each radial measuring station were mass-averaged using the local total pressure in the wake, the local total temperature in the wake, and the 8-deg wedge probe static pressure. Mach number was determined from the local total and static pressure measurements. The local mass flow was then obtained from the relationship

$$\overline{m} = \frac{W\sqrt{T}}{PA} = \frac{\sqrt{\gamma g_{c}}}{R} \quad M \quad \left[1 + \frac{\gamma - 1}{2} M^{2}\right]^{\frac{1 + \gamma}{2(1 - \gamma)}}$$

where A is the flow area associated with each radial measurement increment.

For the circumferential distortion data, the mass flow averaged values of total pressure and total temperature measured at one circumferential location within and one circumferential location outside of the distorted flow region were weighted according to the circumferential extent of distorted and undistorted flow to obtain the actual values used to calculate the pressure ratio and efficiency. It was assumed that the relative extents of distorted and undistorted flow remained the same through each blade row.

Blade Element Performance and Flow Distribution Data

Blade element performance and flow distribution data are presented for each blade row for uniform and radially distorted inlet flow. Performance calculations were made along design streamlines that pass through 5, 10, 15, 30, 50, 70, 85, 90, and 95% span at instrumentation Station 2. The calculations were performed at the instrumentation stations and at the rotor and stator leading and trailing edges. The pressures, temperatures, and air angles at the blade row leading and trailing edges were obtained by translating the measured values from the instrumentation stations assuming conservation of angular momentum, conservation of energy, continuity, and that the actual streamlines do not deviate substantially from design streamlines for any test point. A description of the translation method is presented in Reference 3. For circumferentially distorted inlet flow, flow distribution data (i.e., total pressure, total temperature, flow angle, velocity, Mach number and turning) is presented for the three data points with six screen positions. These flow distribution data are at the instrumentation stations and not translated to the blade row leading and trailing edges.

Stall Transient Data

Bellmouth static pressure at incipient stall was determined from plots similar to the one shown in figure 12 and the corresponding weight flow was determined from the correlation of bellmouth static pressure and orifice weight flow shown in figure 13. The steady-state pressure ratio data were extrapolated to the stall flow using the shape of the transient data curve as a guide line. Incipient stall points were determined in this manner for each rotor speed.

PRESENTATION OF DATA

Uniform Inlet

Overall Performance

Overall performance data are presented in terms of total pressure ratio and adiabatic efficiency as functions of equivalent weight flow $(W\sqrt{\theta}/\delta)$ and equivalent rotor speed $(N/\sqrt{\theta})$ for the rotor in figure 14 and the rotor-stator (stage)

9

in figure 15. The design total pressure ratio and adiabatic efficiency for the rotor were 1.28 and 89.9%, respectively, at a design flow of 110.0 lb/sec. The corresponding design values for the stage were 1.26 and 84.8%. The design point is shown on each figure for comparison with the performance results. The solid symbol on the stall line in figures 14 and 15 is the stall point determined from the transient data. Pressure ratio, adiabatic efficiency and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points in table A-1 of Appendix A.

Based on a curve faired through the data points, the rotor achieved an adiabatic efficiency of 88.9% and a total pressure ratio of 1.28 at design equivalent rotor speed and flow. At the same flow and rotor speed the stage achieved an adiabatic efficiency of 84.8% and a total pressure ratio of 1.26. Peak efficiencies of 90.1% and 86.1% for the rotor and stage, respectively, were reached at design equivalent rotor speed and an equivalent flow of 103 lb/sec (i.e., 96% of design).

Blade Element Performance and Flow Distribution Data

As discussed on page 9, the blade element performance and flow distribution data were calculated for the instrumentation stations and for the rotor and stator leading and trailing edges. Table A-2 of Appendix A presents the data at the instrumentation stations at the near design point operating condition and is included only to illustrate the small differences between values calculated from the data at the instrumentation stations and the values calculated from the data that have been translated to the rotor and stator leading edges. Because of the small differences between translated and untranslated values, only the translated values are given in table A-3 of Appendix A for the remaining compressor test points. The plotted results discussed for the rotor and stator in the following paragraphs are based on the translated data.

Rotor Blade Element Performance

Rotor diffusion factor, deviation angle, and loss coefficient are shown as functions of incidence angle in figures 16a through 16i. At the design incidence angle and rotor speed, total pressure losses were less than or equal to the design values from 10 to 95% span from the tip and greater than the design value only at 5% span. Deviation angles were greater than the design values between 30 and 90% span from the tip and were equal to or less than the design values at 5, 10, 15, and 95% span. The diffusion factor at design incidence angle and rotor speed was greater than the design value at 5% span from the tip, approximately equal to the design values from 10 to 90% span, and less than the design value at 95% span.

Loss parameter versus diffusion factor is presented in figures 17a through 17e for 10, 30, 50, 70, and 90% span, respectively. The design curve representing a correlation of the minimum loss data from Reference 3, References 7 through 13, and unpublished Pratt & Whitney Aircraft in-house data is shown in these figures for comparison with the performance data. Although the data from References 7 through 13 are for Series 65 blade sections, the data presented in Reference 6 indicates that a single correlation of loss parameter vs diffusion factor can be used for Series 65 and double-circular-arc blade sections. The range of data in the Reference 6 correlation and the two-dimensional cascade data from figure 149 of Reference 6 are also shown at 10, 50, and 90% span in figures 17a, 17c, and 17e, respectively, for comparison with the selected design loss curves. At design equivalent rotor speed, the loss parameter values that correspond to the minimum loss coefficient at 10, 30, 50, 70, and 90% span (figures 16b, 16d, 16e, 16f, and 16h, respectively) are on or below the design curve.

Axial gradients of rotor tip static pressure ratio (p_L/p at -7.3% axial chord) are shown in figure 18 for each flowrate at design equivalent rotor speed. This figure indicates that the rotor tip loading shifted toward the leading edge of the blade as the compressor was throttled toward stall flow.

Stator Blade Element Performance

Stator diffusion factor, deviation angle, and loss coefficient are presented as functions of incidence angle in figures 19a through 19i. For design incidence angle, the stator losses were less than or equal to design at 5, 10, 30, 50, 70 and 95% span from the tip and greater than design at 15, 85, and 90% span. Deviation angles, at design incidence, were from 2 to 5 deg greater than the design values across the entire span of the vane. Diffusion factors, at design incidence angle, were less than the design value at 5, 10, 15, 30, and 95% span from the tip, approximately equal to the design value at 50, 70, and 90% span, and greater than the design value only at 85% span.

Loss parameter versus diffusion factor is shown in figures 20a through 20e for 10, 30, 50, 70, and 90% span, respectively. The design curve, representing a correlation of the minimum loss data derived from the same references discussed in the rotor blade element performance section, is shown on each figure. The design point, the range of stator data from Reference 6, and the two-dimensional cascade data from Reference 6 are also included in the figures for comparison with Stator D performance data. For design equivalent rotor speed, the loss parameter values corresponding to the minimum measured loss coefficients were below the design curve at 10 and 30% span from the tip, approximately equal to the design curve value at 50 and 70% span, and greater than the design curve value at 90% span.

The stator static pressure coefficient distributions at 10 and 90% span from the tip are shown in figures 21a through 21e for design equivalent rotor speed. Static pressure coefficient distributions for all uniform inlet data points are tabulated in Appendix B. Vane suction surface instrumentation at 90% span was inoperative at 45, 55, 65, 75, and 85% chord, preventing calculation of static pressure coefficients at these locations.

The wall static pressure data were examined to determine if circumferential gradients with respect to the stator vanes were significant. In general, the variations of static pressure at different circumferential locations (solid symbols in figure 22), at approximately the same location relative to the stator vane, are as large as any variations that may be noted within one stator vane pitch. It was therefore concluded that no significant pitch variation was present in these data. Representative curves for two flow conditions at design equivalent rotor speed are presented as figures 22a and 22b.

Hub and Tip Radial Inlet Flow Distortion

Overall performance, blade element performance and flow distribution data were obtained with hub radial and tip radial distortion of the inlet flow. The screens used to produce the distortion are described on page 3. At a flow of approximately 115 lb/sec (i.e., 105% design equivalent flow), the hub and tip radial distortion screens produced 15.6 and 17.2% total pressure distortion, i.e., $(P_{max} - P_{min})/P_{max}$, over the inner 47 and outer 38% of the compressor annulus area, respectively. Rotor inlet total pressure profiles are presented in figure 23.

Overall Performance

Overall performance data obtained with hub radial distortion of the inlet flow are presented in terms of pressure ratio and adiabatic efficiency as functions of equivalent weight flow and equivalent rotor speed for the rotor in figure 24 and the stage in figure 25. Similarly presented in figures 26 and 27, is the overall performance obtained with a tip radial distortion of the inlet flow. Uniform inlet flow data and the rotor and stage design point are presented in these figures for comparison with the radially distorted inlet flow data. The stall line shown is determined from stall transient data. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points with radial distortion in table A-4 of Appendix A.

With hub radial distortion of the inlet flow, rotor pressure ratio and efficiency at 100% design equivalent rotor speed and 110 lb/sec flow were 1.25 and 89%, compared with 1.28 and 88.9% for uniform inlet flow. Similarly, stage pressure ratio and efficiency were 1.24 and 84.5% as compared with 1.26 and 84.8% with uniform inlet flow. With the addition of hub radial distortion at 90 and 100% design equivalent rotor speed, there were 2.0% and 2.1% reductions, respectively, in stage surge pressure ratio and at 70% design rotor speed the loss in surge pressure ratio was only 1.1%. Therefore, Stage D was not appreciably affected by hub radial distortion.

With tip radial distortion of the inlet flow, rotor pressure ratio at 100% design equivalent rotor speed and 110 lb/sec equivalent weight flow, was 1.25 compared with 1.28 for the uniform inlet flow. Rotor efficiency under the same conditions was 87.5%, compared with 88.9% for uniform inlet flow. The corresponding stage pressure ratio and efficiency were 1.23 and 80.5% compared with 1.26 and 84.8% for the uniform inlet. With the addition of tip radial distortion stage surge pressure ratio decreased by 4.1, 7.2, and 9.7% at 70, 90 and 100% design equivalent rotor speed, respectively, when compared with the uniform inlet test results. Consequently, Stage D was substantially affected by tip radial distortion.

Blade Element Performance and Flow Distribution Data

Blade element performance and flow distribution data with radial distortion were calculated for each of the nine design streamline locations and the results, based on data translated to the blade row leading and trailing edges, are presented in tables A-5 and A-6 of Appendix A.

Rotor and Stator Blade Element Performance

Diffusion factor, deviation angle and loss coefficient with hub radial and tip radial distortion of the inlet flow are presented as functions of incidence angle in figures 28a through 28i for the rotor and in figures 29a through 29i for the stator. Comparison of the data shown in figures 28 and 29 with the uniform inlet flow data shown in figures 16 and 19 indicates that the rotor and stator deviation angle and loss coefficient distributions with radial distortion are generally equivalent to or are a normal extension of the values obtained with uniform inlet flow. However, comparison of diffusion factor distributions indicates a different level and rate of change of diffusion factor with incidence angle for each inlet flow condition. Diffusion factor is the only one of the three variables ($\overline{\omega}, \delta^{\circ}$ or D) that would be strongly influenced by hot properly accounting for radial flow shifts through the blade row. As discussed on page 9, the blade element performance calculations were made along design and not actual streamlines. One might expect larger differences between the actual and design streamlines with radial distortion than with uniform inlet flow. One might also expect differences in axial velocity ratio along the actual streamlines with and without distortion. Therefore, the changes in diffusion factor vs incidence curves may be attributed to both radial flow shifts and changes in axial velocity along a streamline.

Flow Distribution Data

Radial distributions of total and static pressure, total temperature, air angle, and axial velocity for the rotor inlet, stator inlet and stator exit are presented for hub and tip radial distortion of the inlet flow in figures 30a through 32c and 33a through 35c, respectively. The values for the nine design streamline locations are also presented in tables A-5 and A-6 of Appendix A.

The similarity of the stage inlet and exit total pressure and axial velocity profiles shown in figures 30a and 33a for hub and tip distortion, respectively, at design rotor speed and approximately 115 lb/sec (i.e., 105% design flow) indicates very little attenuation of either distortion pattern. Generally, this result is typical of the results obtained at other rotor speeds and flows.

Circumferential Distortion

Rotor and stage overall performance were obtained with circumferential distortion of the inlet flow. The screen used to produce the distortion is described on page 3. At a flow of approximately 116 lb/sec (i.e., 105% design equivalent flow), the screen produced 13.75% total pressure distortion, i.e., $(P_{1} \max - P_{1} \min)/P_{1} \max$, over a 90 deg sector of the compressor flow annulus. A typical rotor inlet total pressure distribution is presented in figure 36. The profile at approximately 105% design equivalent flow is not shown because at that flow pressure data were recorded at only two circumferential locations.

Overall Performance

The rotor and stage overall performance achieved with circumferential distortion of the inlet flow is compared with uniform inlet performance in figures 37 and 38, respectively. The half-solid symbols of figures 37 and 38 indicate the data points for which both overall performance and flow distribution data were recorded. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the rotor and stage are also presented in table A-7 of Appendix A for the steady-state data points with circumferential distortion.

The rotor and stage pressure ratios at design equivalent rotor speed and flow were 1.27 and 1.25 with circumferential distortion of the inlet flow, compared with 1.28 and 1.26 for uniform inlet flow. Surge pressure ratio for the stage decreased by 2.0, 2.4, and 4.6% with circumferentially distorted inlet flow when compared with uniform inlet flow results at 70, 90, and 100% design equivalent rotor speed, respectively.

The overall performance shown on figures 37 and 38 was calculated from pressures and temperatures measured at one circumferential location within and one circumferential location outside the distorted region. The pressures and temperatures were weighted according to the circumferential extent of the distorted and undistorted flow to obtain the average values for use in calculating the pressure ratio and efficiency. (See Appendix C.) In an effort to verify the high efficiencies shown on figures 37 and 38 and table A-7 with circumferential inlet flow distortion, the overall performance was recalculated for the three data points for which data were recorded at six screen locations using a larger sample of the data within and outside of the distorted area. Average pressures and temperatures were obtained by area weighing the spanwise mass-average values from each of twelve circumferential locations around the flow field, thus providing a better average of the rotor and stage exit pressures and temperature than was used to calculate the pressure ratios and efficiencies shown in figures 37 and 38 and in table A-7. The overall performance calculated from the data at twelve circumferential locations is compared with the performance calculated from two circumferential locations in figures 39 and 40 for the rotor and stage, respectively. As shown on figures 39 and 40, the larger data sample had little effect on pressure ratio but resulted in slightly different calculated levels of efficiency at the nearsurge flow points at 90 and 100% design equivalent rotor speed and a reduction in efficiency of approximately 4 percentage points at the midpoint on the design equivalent rotor speed operating characteristic. This result combined with the high efficiencies (i.e., over 100% for the rotor at 70% design equivalent rotor speed) shown on figures 37 and 38 suggest that the efficiencies are not correct and that additional data samples should be obtained in future test programs to obtain a more accurate assessment of the rotor and stage efficiencies with circumferential distortion of the inlet flow. Although the effects of distortion on efficiency cannot be accurately evaluated, the relatively low losses in surge pressure ratio indicate that Stage D was only moderately affected by circumferential distortion.

Flow Distribution Data

Table A-8 of Appendix A presents flow distribution data at the instrumentation stations for circumferential increments of 30-deg around the compressor annulus. Circumferential distributions of total pressure, static pressure, total temperature, air angle and axial velocity for each instrumentation station at the nine design streamline locations are shown in figures 41 through 43. Figures 41 and 42 present the values for the two data points at design equivalent rotor speed and figure 43 presents the data for the one point at 90% design equivalent rotor speed. The measured variables (pressure, temperature and air angle) are plotted at the circumferential locations of the measuring instrument relative to the distortion screen, and the axial velocity is plotted at circumferential locations corresponding to the locations of the 20-deg wedge probes relative to the distortion screen. A comparison of the circumferential distributions of total pressure and axial velocity at the rotor inlet with the corresponding values at the stage exit indicates very little attenuation of the inlet distortion by either the hub or tip sections of the compressor. This result is consistent with the results obtained with radial distortion of the inlet flow.

SUMMARY REMARKS

Stage D, composed of Rotor D and Stator D, was tested with uniform inlet flow and with hub radial, tip radial, and 90 deg one-per-revolution circumferential distortion of the inlet flow. The results of these tests provide performance data for: (1) comparison with data obtained from subsequent tests of a stage comprised of tandem-airfoil blading, (2) evaluating the effectiveness of accounting for the inlet boundary layer, axial velocity ratio and secondary flows in compressor design, and (3) evaluating the effects of inlet flow distortion on the stage performance.

With uniform inlet flow at design equivalent rotor speed and flow, the rotor achieved an adiabatic efficiency of 88.9% at a pressure ratio of 1.28 compared with respective design values of 89.9% and 1.28. At the same flow and rotor speed, the stage achieved its design adiabatic efficiency of 84.8% at a pressure ratio of 1.26. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 90.1% and 86.1%, respectively, were reached at approximately 96% design equivalent flow.

With tip radial distortion of the inlet flow, significant decreases in stage surge pressure ratio occurred, i.e., at design equivalent rotor speed, the surge pressure ratio decreased by 9.7%. The surge pressure ratio at design speed with hub radial and circumferential distortion decreased 2.0 and 4.6%, respectively, from the uniform inlet test results. Peak adiabatic efficiency for the stage was essentially unchanged with the addition of hub radial distortion. Tip radial distortion, however, produced a slight increase in peak adiabatic efficiency at 70 and 90% design speed and a significant decrease of 4.5 percentage points at 100% design speed. The effects of circumferential distortion on adiabatic efficiency could not be accurately determined. For both radial and circumferential distortion of the inlet flow, the hub and tip regions of the compressor produced very little attenuation of the inlet distortion.

ROTOR D

Figure 1. Stage D Airfoils

FD 75490

Figure 2. Compressor Research Facility

FD 75491

Figure 3. Single-Stage Compressor Rig

FD 75492

FLOWPATH LOCATION	LOCATION DESCRIPTION	INNER DIAMETER, in.	OUTER DIAMETER, in.	AXIAL DISTANCE FROM REFERENCE PLANE,
				in.
A	REFERENCE PLANE	32.850	41.790	0.0
В	DISTORTION SCREEN	32.850	41.790	1.500
С	SUPPORT STRUT LEADING EDGE	32.850	41.744	2.440
D	SUPPORT STRUT TRAILING EDGE	32.850	41.444	6.265
E	INSTRUMENTATION STATION 0	32.850	41.340	10.248
F	INSTRUMENTATION STATION 1	32.850	41.226	17.188
G	ROTOR INLET STATION	32.850	41.145	18.061
н	ROTOR D STACKING LINE	32.850	40.860	19.188
I	ROTOR EXIT STATION	32.850	40.562	20.315
J	INSTRUMENTATION STATION 2	32.850	40.520	21.368
к	STATOR INLET STATION	32.850	40.450	22.163
L	STATOR D STACKING LINE	32.850	40.220	23.293
M	STATOR EXIT STATION	32.850	39.990	24.468
N	INSTRUMENTATION STATION 2A	32.850	39,990	25.418

NOTE: ALL DIMENSIONS ARE IN INCHES.

Figure 4. Flowpath Dimensions

FD 64415A

19

Figure 5. Instrumentation Layout

FD 58981A
6 This page is reproduced at the back of the report by a different reproduction method to provide better detail.

NOTE: ALL DIMENSIONS ARE IN INCHES

FD 47069

😫 Figure 6. Eight-Degree Wedge Traverse Probe

FD 58983

STATOR GEOMETRY IS NOT TO SCALE

PERCENT CHORD LOCATION

10% SPAN FROM TIP		90% SPAN FROM TIP		
SUCTION SURFACE	PRESSURE SURFACE	SUCTION SURFACE	PRESSURE SURFACE	
(354° 36')	(338 ⁰ 12′)	(5° 30')	(338 ⁰ 12')	
15	15	15	15	
25	50	25	50	
35	85	35	85	
45		45		
55		55		
65		65		
75		75		
85		85		

NOTE: NUMBERS IN PARENTHESES INDICATE THE CIRCUMFERENTIAL POSITION OF THE INSTRUMENTED AIRFOIL IN THE STATOR ASSEMBLY. ZERO DEGREES IS TOP CENTER; THE ANGLE INCREASES CLOCKWISE LOOKING AFT.

Figure 7.	Stator D Static Pressure	FD 75493
	Orifice Locations	

S Figure 8. Twenty-Degree Wedge Traverse Probe

FD 58982

Figure 10a. Composition of Station 1 Instrumentation Relative to the Circumferential Distortion DF 97689 Screen for Six Screen Positions

Figure 10b. Composition of Station 2 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions

DF 97690

Figure 10c. Composition of Station 2A Instrumentation Relative to the Circumferential Distortion 27 Screen for Six Screen Positions

DF 97691

Figure 11. High-Response Probe

FD 58984B

Figure 13. Station 0 Equivalent Static Pressure vs Equivalent Weight Flow for Stage D Flowpath with Support Screen

DF 97692

Overall Performance of Rotor D; Uniform Inlet Flow

Figure 15. Overall Performance of Stage D; DF 97694 Uniform Inlet Flow

Figure 16a. Rotor D Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow DF 97695

. . .

Figure 16c. Rotor D Blade Element Performance; D 15% Span from Tip; Uniform Inlet Flow

1 0/1000

90% Span from Tip; Uniform Inlet Flow

95% Span from Tip; Uniform Inlet Flow

Figure 17a. Rotor D Loss Parameter vs Diffusion Factor; 10% Span from Tip; Uniform Inlet Flow

DF 97704

Figure 17b. Rotor D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow DF 97705 43

Figure 17c. Rotor D Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow

DF 97706

Figure 17d. Rotor D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow DF 97707 45

. . .

Figure 17e. Rotor D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow

DF 97708

Figure 18. Rotor D Tip Static Pressure Ratio vs Percent Axial Chord; 100% Design Equivalent Rotor Speed; Uniform Inlet Flow

 $\mathbf{52}$

DF 97715

Stator D Blade Element Performance; 90% Span from Tip; Uniform Inlet Flow

Figure 20b. Stator D Loss Parameter vs Diffusion Factor; 30% Span from Tip; Uniform Inlet Flow DF 97720

DF 97721

Figure 20d. Stator D Loss Parameter vs Diffusion Factor; 70% Span from Tip; Uniform Inlet Flow

DF 97722

Percent of Design Equivalent Rotor Speed 110

0

Figure 20e. Stator D Loss Parameter vs Diffusion Factor; 90% Span from Tip; Uniform Inlet Flow **DF 97723**

Figure 21b. Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110.18 lb/sec; Uniform Inlet Flow

DF 97725

Figure 21c. Stator D Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102. 67 lb/sec; Uniform Inlet Flow

DF 97726

Figure 21d. Stator D Static Pressure Coefficient vs DF 97727 Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 95.36 lb/sec; Uniform Inlet Flow

Figure 22a. Wall Static Pressure Distributions Upstream and Downstream of Stator D; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 110.18 lb/sec; Uniform Inlet Flow

Figure 22b. Wall Static Pressure Distribution Upstream and Downstream of Stator D; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.32 lb/sec; Uniform Inlet Flow

DF 97730

Figure 25. Overall Performance of Stage D; Hub DF 9773 Radial Distortion Compared With Uniform Inlet Flow

Figure 26. Overall Performance of Rotor D; Tip DF 97734 Radial Distortion Compared With Uniform Inlet Flow

 $\mathbf{72}$

Figure 27. Overall Performance of Stage D; Tip Radial Distortion Compared With Uniform Inlet Flow

DF 97735

- - -

Distortion

74

. . .

DF 97741

. . . .

C.2

Figure 29e. Stator D Blade Element Performance; DF 97749 50% Span; Hub and Tip Radial Distortion

ł

Figure 29i. Stator D Blade Element Performance; I 95% Span from Tip; Hub and Tip Radial Distortion

Figure 30a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.76 lb/sec; Hub Radial Distortion

DF 97754

Sigure 30b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.44 lb/sec; Hub Radial Distortion

Figure 30c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.40 lb/sec; Hub Radial Distortion

ج: Figure 31a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit, 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.52 lb/sec; Hub Radial Distortion

Figure 31b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 88.60 lb/sec; Hub Radial Distortion

Figure 31c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 76.35 lb/sec; Hub Radial Distortion

Figure 32a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.96 lb/sec; Hub Radial Distortion

Figure 32b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 71.46 lb/sec; Hub Radial Distortion

Figure 32c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 59.11 lb/sec; Hub Radial Distortion

Figure 33a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 115.11 lb/sec; Tip Radial Distortion

Figure 33b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 106.05 lb/sec; Tip Radial Distortion

Figure 33c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 99.09 lb/sec; Tip Radial Distortion

Figure 34a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.62 lb/sec; Tip Radial Distortion

Figure 34b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.85 lb/sec; Tip Radial Distortion

Figure 34c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.04 lb/sec; Tip Radial Distortion

Figure 35a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 85.36 lb/sec; Tip Radial Distortion

Figure 35b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 80.21 lb/sec; Tip Radial Distortion

Figure 35c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 72.74 lb/sec; Tip Radial Distortion

 $^{\circ}$

Figure 36. Typical Rotor Inlet Total Pressure Distribution With Circumferential Distortion; 100% Design Equivalent Rotor Speed; 92.4% Design Equivalent Flow (101.6 lb/sec); 50% Span

With Uniform Inlet Flow

Figure 38. Overall Performance of Stage D; Circumferential Distortion Compared With Uniform Inlet Flow

DF 97774

Figure 40. Overall Performance of Stage D; Circumferential Distortion Compared With Uniform Inlet Flow DF 97776

114

Figure 41a. Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41b.Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent RotorDF 97778Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential DistortionDF 97778

Figure 41c.Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed;DF 97779Equivalent Weight Flow = 101.60 lb/sec; Circumferential DistortionDF 97779

Figure 41d.Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent RotorDF 97780Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential DistortionDF 97780

Figure 41e. Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41f.Stator Inlet Static Pressure vs Circumferential Location; 100% Design EquivalentDF 97782Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential DistortionDF 97782

Figure 41g. Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; DF 97783 Equivalent Weight Flow = 101. 60 lb/sec; Circumferential Distortion

Figure 41h.Stator Inlet Axial Velocity vs Circumferential Location; 100% Design EquivalentDF 97784Rotor Speed; Equivalent Weight Flow = 101. 60 lb/sec; Circumferential DistortionDF 97784

Figure 41i. Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41j. Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 41k. Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

Figure 411. Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential Distortion

DF 97788

Figure 41m. Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent RotorDF 97819Speed; Equivalent Weight Flow = 101.60 lb/sec; Circumferential DistortionDF 97819

Figure 42a. Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42b.Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent RotorDF 97821Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential DistortionDF 97821

Figure 42c. Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42d. Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42e.Stator Inlet Total Pressure vs Circumferential Location; 100% Design EquivalentDF 97824Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential DistortionDF 97824

Figure 42f. Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

DF 97825

Figure 42g.Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed;DF 97826Equivalent Weight Flow = 90.59 lb/sec; Circumferential DistortionDF 97826

Figure 42h. Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion DF 97827

Figure 42i. Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42j.Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent RotorDF 97829Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential DistortionDF 97829

Figure 42k.Stator Exit Total Temperature vs Circumferential Location; 100% Design EquivalentDF 97830Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential DistortionDF 97830

.

Figure 421. Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential Distortion

Figure 42m. Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent RotorDF 97832Speed; Equivalent Weight Flow = 90.59 lb/sec; Circumferential DistortionDF 97832

Figure 43a.Rotor Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent RotorDF 97833Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential DistortionDF 97833

Figure 43b. Rotor Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43c.Rotor Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed;DF 97835Equivalent Weight Flow = 79.78 lb/sec; Circumferential DistortionDF 97835

Figure 43d. Rotor Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43e. Stator Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion DF 97837

Figure 43f. Stator Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43g. Stator Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

DF 97839

Figure 43h. Stator Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

X

Figure 43i.Stator Exit Total Pressure vs Circumferential Location; 90% Design EquivalentDF 97841Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential DistortionDF 97841

	in dia mandri dia dia amin'ny fisiana amin'ny fisiana dia dia amin'ny fisiana amin'ny fisiana amin'ny fisiana Ny fisiana amin'ny fisiana dia dia dia dia mampina dia dia dia dia dia dia dia dia dia di	
		l i realization de la la caracter de
沙漠城村市山壁湖北北市山市汕岸湖南: 西位1	DIRECTION OF RUTOR ROTATION	
	All Sympol Prevent Span	
물건 비명 해외 해외 해외 대해 방법을 하고 요.		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	Extent of Distortion	」 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
		- 이상 이상 가슴,
الما المات الذي التي المات المات """ """ """ """ "" "" "" "" "" "" "" "		

Figure 43j. Stator Exit Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

Figure 43k.Stator Exit Total Temperature vs Circumferential Location; 90% Design EquivalentDF 97843Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential DistortionDF 97843

151

o

,

Figure 431. Stator Exit Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

 o

Figure 43m. Stator Exit Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 79.78 lb/sec; Circumferential Distortion

DF 97845

 $153_{,}$

APPENDIX A TABULATED OVERALL AND BLADE ELEMENT PERFORMANCE AND FLOW DISTRIBUTION DATA

Rotor D and Stage D overall performance with a uniform inlet, hub radial distortion, tip radial distortion, and circumferential distortion of the inlet flow is tabulated in tables A-1, A-4, and A-7, respectively. Rotor D and Stator D blade element performance and flow distribution data for uniform inlet, hub radial distortion of the inlet flow and tip radial distortion of the inlet flow is presented in tables A-3, A-5, and A-6, respectively. The flow distribution data with circumferential distortion of the inlet flow are given in table A-8 for circumferential increments of 30 deg around the compressor annulus. Table A-2 is presented to illustrate the small differences at the near-design point between values calculated from the data at the instrumentation stations and the values calculated from the data that have been translated to the blade row leading and trailing edges.

The blade element performance and flow distribution data with uniform inlet flow and radial distortion of the inlet flow are arranged in order of decreasing rotor speed and decreasing flow at each rotor speed. The flow distribution data with circumferential distortion of the inlet flow are given at the instrumentation station planes and are arranged for a given equivalent rotor speed flow combination in order of increasing circumferential position. The circumferential positions of the data at each instrumentation station is noted at the top of each data sheet. These positions were selected so that they would correspond as close as possible to the locations of the 20 deg wedge probes relative to the distortion screen and provide data at increments of 30 deg around the compressor annulus.

Preceding page blank

NOMENCLATURE USED FOR OVERALL PERFORMANCE TABULATION

Mass-Averaged Rotor Inlet Total Pressure	\overline{P}_1
Mass-Averaged Stator Inlet Total Pressure	\overline{P}_2
Mass-Averaged Stator Exit Total Pressure	\overline{P}_{2A}
Adiabatic Efficiency*	η_{ad}
Polytropic Efficiency*	$\eta_{\rm p}$

NOMENCLATURE USED FOR BLADE ELEMENT AND DISTORTION DATA TABULATION

Exit Percent Span from Tip	PCT SPAN
Exit Diameter	DIA
Absolute Flow Angle	BETA
Relative Flow Angle	BETA (PR)
Absolute Velocity	v
Axial Velocity	VZ
Absolute Tangential Velocity	V-THETA
Relative Tangential Velocity	V↔THETA PR
Rotor Speed	U
Absolute Mach Number	Μ
Relative Mach Number	M (PR)
Relative Turning Angle	TURN (PR)
Loss Coefficient ($\overline{\omega}$)**	UUBAR
Loss Parameter**	LOSS PARA
Diffusion Factor**	DFAC
Polytropic Efficiency**	EFFP
Adiabatic Efficiency**	EFF
Incidence**	INCID
Deviation**	DEVM
Total Pressure	р
Total Temperature	Т
Stator Exit Average Freestream Total Pressure from Wake Rakes	P2 FS
Loss Coefficient Based on P2FS ($\overline{\omega}_{fs}$)	UUBAR FS
Loss Parameter Based on UUBAR FS	LOSS PARA FS

*Efficiencies calculated from mass-averaged values of total pressure and total temperature.

**Denotes variables excluded from circumferential distortion data.

Where applicable the appropriate instrumentation station is noted.

$\frac{\frac{\text{Weight Flow,}}{\text{lb/sec}}}{\frac{\overline{P}_2/\overline{P}_1}{10\% \text{ Design Equivalent Rotor Speed}}} \frac{\overline{P}_{2A}/\overline{P}_1}{\frac{\eta_{ad}}{10\% \text{ Design Equivalent Rotor Speed}}}$	η _p 6625
110% Design Equivalent Rotor Speed	6625
	6625
123.41 1.2185 0.7293 0.7368 1.1947 0.6539 0.	
116.07 1.3400 0.8855 0.8901 1.3226 0.8436 0.	8496
109.67 1.3540 0.8800 0.8850 1.3397 0.8470 0.	8532
102.55 1.3637 0.8774 0.8827 1.3414 0.8279 0.	8349
97.18 1.3671 0.8378 0.8449 1.3477 0.7948 0.	8033
100% Design Equivalent Rotor Speed	
120.02 1.1958 0.7570 0.7631 1.1742 0.6774 0.	6846
110.18 1.2782 0.8892 0.8929 1.2645 0.8481 0.	8531
102.67 1.2830 0.9008 0.9043 1.2692 0.8595 0.	8641
95.36 1.2928 0.8740 0.8785 1.2741 0.8222 0.	8282
88.32 1.3012 0.8545 0.8598 1.2784 0.7943 0.	8013
90% Design Equivalent Rotor Speed	
113.67 1.1697 0.8117 0.8159 1.1566 0.7516 0 .	7567
103.01 1.2170 0.8975 0.9004 1.2055 0.8532 0.	8562
91.28 1.2244 0.8745 0.8781 1.2154 0.8410 0 .	8454
85.21 1,2294 0.8908 0.8940 1.2174 0.8278 0.	8325
76.85 1.2334 0.8310 0.8360 1.2190 0.7823 0.	7883
70% Design Equivalent Rotor Speed	
92,54 1.1095 0.8597 0.8617 1.1005 0.7909 0.	7938
82,65 1.1238 0.8952 0.8969 1.1173 0.8490 0.	8514
71,87 1.1303 0.8675 0.8698 1.1255 0.8358 0.	8386
65.46 1.1378 0.8619 0.8644 1.1312 0.8213 0.	8244
58.62 1.1391 0.8303 0.8334 1.1287 0.7700 0.	7739
50% Design Equivalent Rotor Speed	
66.42 1.0530 0.7785 0.7802 1.0496 0.7292 0 .	7310
59,41 1,0603 0,8370 0,8384 1,0579 0,8036 0	8052
51, 12 1, 0647 0, 8367 0, 8382 1, 0618 0, 7992 0 .	8009
46.51 1.0650 0.8178 0.8195 1.0632 0.7953 0	7971
40.70 1.0672 0.7818 0.7838 1.0636 0.7399 0.	7422

Table A-1. Overall Performance - Stage D Uniform Inlet

Table A-2. Blade Element Performance Stage D, Rotor D - Stator D Calculations Using Untranslated Values Percent Equivalent Rotor Speed = 100.56 Equivalent Rotor Speed = 4233.41 Equivalent Weight Flow = 110.18 Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	80.90	71.00	49.50	28.10	12.00	7	3.64	Dr. #
	DIA	33.118	33.520	33.947	35.279	37.080	38.872	40.221	40 431	3.00	PCT SPAN
STATION G	EETA O	0.000	0.000	0.000	0-000	0.006	0.000	0.000	-0.031	40.415	DIA
STATIÚN I	BETA 1	0.000	0.000	0.000	0_000	0.000	0.000	0.000	0.000	0+000	BELA D
	νυ	437.82	417.82	417.82	437 84	437 03	437.020	0.000	0.000	0.000	BETA I
	Ý I	461.00	501-51	506.20	504 30	401.02	437.62	431+82	437.82	437.82	Vΰ
	¥7.6	437 87	437 83	437 62	504.50	500.00	489+76	471-30	446.99	462.62	¥ 1
	V2 1	461 00	501 50		-31.01	431.19	431.15	437.72	437.71	437.70	V2 C
	VE A	401.00	201.20	204.24	204-36	499.98	469.76	471.21	446+92	402.76	¥2 1
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA Q
	V-INCIA 1	0.00	0.00	0.00	0.00	0.00	0.00	Ú.00	0.00	0.00	V-THETA 1
	MC	0.3483	0.3983	0.3983	0.3983	0.3983	0.3983	0.3983	U.3983	0.3963	MO
	M 1	0.4201	0.4585	0.4650	0.4613	0.4571	0.4474	0-4299	6.4069	0.3656	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.007	0.3090	TUEN
	UUSAR	0.4554	0.2635	0.2471	0.3115	0-3082	0.3121	0 3564		4.4	TURN
	DFAC	د 50+0-	-0.145	-0.161	-0-152	-0-142	-0.119	-0.074	-0.021	0.0200	OULAH
	LEEP	0.2002	0.5573	0.5997	0.5249	0.5114	0 4403	-0.0000	-0.021	0.050	UFAL
	INCLU	0.0001	0.0061	0 0001	0 0003	0.0101	0.4603	0+3232	0-084E	-0.3403	EFFP
	ICENM	-1000	-0.000	-0.000	0.0001		0.0001	0-0001	0.0001	0.0001	INCID
	0 6	16 337	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0+000	-0.000	0EVM
	P U	12.221	15-221	12.261	15.227	15+227	15.227	15.227	15.227	15.227	ΡU
		14.708	14+011	14-831	14+735	14.741	14.734	14.673	14.518	14.240	P 1
	1 L	218.100	518.700	518.700	518.700	518.700	518.700	518.700	518.760	516.700	Τū
•	11	516.700	516.700	518.700	518.700	518.700	518.700	518.700	>18.700	518.700	T I
											••
KUTER D	PUT SPAN	94.94	90.00	84.99	70.00	50.00	36.00	14.95	9.99	4.42	PET SDAN
	UIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	19 744	40 1.0	LAA
STATIEN 1	EETA I	0.000	0.000	6.000	0.000	0.660	9.000	0.000	6.000	6 000	DIR BETA 1
514110N 2	BETA 2	42.980	40.450	39.440	37.700	36. 180	35.550	37 500	V+UUD	0.000	DETA 1
	bETA(PR) 1	52.999	50.994	50-972	52 - 74 1	53.472	55 704	57,500	₩U • D2Ú 40 · ~ =	42.090	UTIA 2
	BETA (PR) 2	25.63	26.741	27.404	29.114	221012	34 444	27.010	24.227	64.980	BETA(PR) L
	V 1	461.00	501-51	508 20	676117	210231	34.469	38.489	41.557	47.451	BETA(PR) 2
	ý Ž	59.1.41	A01 41	200.29	204-38 417 A/	506.00	469.76	471.30	446.99	402.E.	V E
	 V 2 1	776+Q1	501.01	auo.+j	011-06	626.90	620.17	567.97	555.61	502.75	¥ 2
	44 4 47 7	-01-00	501+50	508.29	5 04 +38	499.98	489.70	471.21	446.92	402.70	V2 1
	¥2 2 1. 3057	433+54	42 F. BU	468.34	486.23	504.48	503.87	465.45	419.55	354.24	VZ 2
	V~IHEIA I	6-00	0.00	0.00	0.00	0.00	0.00	0.00	D GL	0.60	V-18614 1
	V-THETA 2	404.60	390.31	385.24	377.34	371.67	360.07	357.15	362.40	355-50	V-THEA 2
	¥(P#1 1	706.0	796.B	807+2	824.1	848.0	869.2	879.6	675-5	555556	V 100 1 1
	V(PR) 2	481.7	512.6	527.5	558.9	590.3	612.0	595.4	561 9	574 4	N(00) 3
	VTHETA PK1	-611.7	-619.2	-627.1	-651.7	-684.9	-716.0	-743.0	-75/1 5	-764 0	11FRI 2 N11 I TA DO A
	VTHEIA PR2	-209.9	-230.7	-242.8	-272.0	-306-0	- 145.9	- 170-1	-750.9		VINEIA PRI
	U 1	611.75	619.17	627.06	651.66	696 93		742.05	- 261+9	-166.1	VINETA PRZ
	υ 2	613.89	620-96	628.06	649 30	477 43	710.03	742.93	120-27	120-99	n 1
	N I	0-4201	0 4585	0 4460	0 4410	011103	103+97	121.25	34 32	741.42	U 2
	N	0.5222	0 5330		0++013	0.4571	0.4414	0.4299	0.4069	0.3656	Mit
	MIDELL	0.4001	0 7305	0.7363	0.5482	0.5569	0.5505	0.5199	6.4897	0.4407	M 2
	M(10) 7	0.4261	0.1205	0.7385	0.7536	0.7753	0.7939	0.6025	v.7953	D.77L/	M(PK) 1
	TURK / 2	0.4253	6.4241	G+468Z	0.4965	0.5244	0.5433	0.5270	U.4952	0.46ci	MIPRJ 2
	TURNIPRI	21.100	24-234	23.567	23.143	22.652	21.290	19,218	17.775	14.6.5	TURNLER
	UUCAR	0.0962	0.1185	0.1083	Ü+0641	0.0492	0.0463	0.0960	0.1356	0.1576	UUBAR
	LLSS PARA	0.0251	0.0310	0.0285	0.0172	0.0135	0.0134	0.0261	Ú.0356	0.0370	LOSS PARA
	DFAC	0 .5242	0.5005	0.4663	0.4624	0.4443	0.4340	0.4621	0.5007	6-5341	LEAC
	£FFP	0.8407	0.8327	0.8757	0.9326	0.9532	0.9591	0.8977	0.8615	0.5085	4 F 4 0
	tff	0.6352	0.8273	0.8716	0.9304	0.9515	0-9576	4.6941	0.8568	6 6025	161
	i'vL I Li	0.573	Ú.U84	v.397	0.226	-D.L.YY	-1-1-1-5-6	-L. 900		0.002	1.1.1
	DE VM	10.5E4	12.582	12.772	10.477	H. 024	6 405	6 660	6 11		14610
	r 1	14.508	14.811	14.837	14.715	14 741	3	1. 173	0.412	11.414	UEVM
	P 2	18.455	16.569	16 642	16 11 1	10 014	10.047	10 7 .	14.510	14.240	P 3 -
	тэ	516.700	518.700	519 700	610 200	514 700	17.00/	10.700	10-432	17.927	P 2
	T 2	562.900	560.550	550 810	540 060	510+100	510.700	219-100	518.700	518.700	T 1
		2028.000	100.000	338.410	334*020	560-020	220-100	560+950	561.460	562.65U	72
STATUR D	PCT SPAN	95.00	90.00	86 AA	70.04	60.00	30.00	10.00			
	516	207	21 644	33 001	34 000	50.00	30.00	12+00	10.00	5.00	PCT SPAN
STATION .	BETA 2	42.00/	534704 6.4 650	324721	37.772	30.420	37-848	38.919	39.276	39.633	DIA
STATION 24	with Ja	1 060	70,720	37.440	37.700	36.380	35.550	37.500	40.820	45.056	BETA Z
		663 43	2.050	2.900	2.500	2.260	2.970	3.690	4.340	3.950	BFTA ZA
	• •	27¢+D1	001-01	606.43	617.08	626.90	620.17	587.97	555.01	502.75	V 2
	V ZA	458-38	462.30	466.08	512.78	539.23	548.37	503.25	482.55	465.73	V 24
	¥2 2	-5-6	457.80	468.34	488.Z3	504.48	503.87	465.45	419.55	359.24	V7 /
	V2 2A	458.05	461.72	465.46	512.24	536.69	547.43	501.90	460.89	467.46	W2 /4
	V-THETA 2	404.00	396.31	385.24	377.34	371.67	360.07	357.15	362.40	355.36	V-1-1-14 2
	V-THEIA ZA	16.40	22.99	23.58	22.36	21.26	28.40	12.17	36 50	17 75	V-TLATA 24
	4 Z	0.5233	0.5329	0.5383	0-5482	0.5569	0-5505	0.5199	0 4 90 7	0 6.07	M D
	M ∡Á	6.4064	0.4048	0.4089	0.4513	11 4757	6 493	0 6616	0,7077	0.4401	
	TURN(FR)	40.929	37.599	36-540	35,100	34, 101	12.674	34 714	14 17/		- 28 100 0 4 5 5 5
	UULAR	0.0704	0.0568	0.7487	0.0212		364364	33.110	30,314	41+030	TUKNEPR
	LOSS PARA	0.0234	0.0434	0.0374	4 0111	0.0227	0.0105	0.0837	0.0485	-0.1111	UULAR
	LFAC	0.4460	0.4344	0.4379	0.0111	0.0085	0.0064	0.0331	0.0153	-6.6447	LUSS PARA
	LEEP	0.8405	0 7044	0.010	0.3740	0.3477	0.3230	0.3645	6.3679	0.3265	DFAC
	LNC FL	1 100	0.7866	0.1605	0.9101	0.9221	0.9326	0.7177	0.B211	1.7616	EFFP
		-1-180	-2.938	-0.049	-0.326	-0.327	-0.340	-1.25+	-2.407	-14.167	INCID
		10+882	14+162	14.210	13.475	13.272	14.635	16.129	17.018	8.601	DEVM
	r 2	16.455	18.569	18-642	18.818	19.036	19.067	18.760	18-4-5	17,927	P Z
	P 2A	16.233	16.253	18.279	18.709	18.953	19.008	16.502	18.300	18,17	P 24
	1 4	562.900	560.550	558.810	559.050	560.020	560,100	560. 950	561.660	562.450	17
	T 2A	562.900	560.550	558,810	559.050	560.020	560,100	560.950	561.440	562-650	1 <u>2</u>
	UUBAR FS	0.0695	0.0811	0.0834	0.0444	0.0355	0.0170	0.000	0 100	J02 + 05 U	
	P2 FS	18.451	18.511	18.54			0.0323	0.1542	0.1365		CUSAR 15
	LOSS PARA RC	0.1.734	0.032	101249	+0+803	TA*093	19+124	18.932	18.725	18-596	PZ 15
			010210	VIV207	A*0121	0.0131	0+0124	0.0512	0.0552	0:0581	LUSS FAFA FS

.

.

Table A-3. Blade Element Performance
Stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 109,68Equivalent Rotor Speed = 4617,58Equivalent Weight Flow = 123.41
Uniform Inlet

1	N	L	£	τ	
---	---	---	---	---	--

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7 10	3.06	BCT SDAM
	D1A	33.122	33.529	33.962	35, 312	37.137	38.054	40.321	40.777	2000	DIA DEAN
	BETA O	0.000	04060	0.000	0-000	0.000	0.000	. 0.000	0.000	0.000	DET. A
	BETA 1	0.000	0.000	0.000	0.000	0.000	0_000	0.000	0.000	0.000	GETA 1
	V D	491.30	491.30	491.30	491.30	491.30	491.30	491.30	491 30	401 30	DE IA I
	Ý i	546.89	559.06	550.09	537.76	529 77	574 82	510 44	441.30	491030	
	VZ D	491.30	491.30	491-30	491.29	491.24	491 22	401 10	491432	401-03	¥ 1
	VZ I	546.88	559.06	550.09	\$ 37.77	529.73	528.45	530.61	497 77	443 73	W7 1
	V-THETA D	0.00	0.00	0.00	0.00	0.00	220.42	017401	971-24	407.73	¥4 1
	V-THETA J	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA G
	N (1	0.4488	0.4486	0 4488	D 4480	0.00	0.00	0.00	0.00	0.00	V-INETA 1
	i i	0 5020	0 6136	0.4400	0.4400	0.4084	0	0.4488	0.4488	0.4455	
	THEN	0.020	0.5136	0.2021	0.4733	0.4830	V++544	0.4159	U+4546	0.4200	H B
	LUCKIN LUCKIN	0 5134	0 3363	0.0	0.0	0.0	0.0	0.0	0.0	µ∎0	TURN
	GEAC	0.0104	0.3342	0.3131	0.3553	0.3790	0.3922	0.4501	0.5529	0.6768	UUBAR
		-0.115	-0-138	-0.120	-0.042	-0.078	-0.076	-0.058	-0.012	0.048	DFAC
		0.3306	0.9807	0.9055	0.3740	0.3145	0.2998	0.2189	0.0451	-0.1674	EFFP
	INCLU	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVM	-0.000	-0.000	-0-000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	PO	15.510	15.510	15.510	15.510	15.510	15.510	15.510	15.516	15.510	PO
	P 1	14.462	14.841	14.883	14.799	14.751	14 725	14.609	14.403	14.155	P 1
	τu	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	518.70G	Ť 1
POTC. D	DCT CDAN	05 00			-	<i></i>		•			
NUIUN U	FLI SPAN	79.00	~0.00	85.00	10.00	50.00	00،00	15.00	10.00	5.00	PCT SPAN
00TO0 · ·	ULA V	33-236	33.621	34+007	32.164	36.706	38.248	39.405	39.791	40.176	D1A
ROTOR TILLE	CCTA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
RUTUR -1+t+	BEIA 2	32.749	36.673	32.270	31.208	29+149	26.566	26.780	29.503	34.061	BETA Z
	DETAIPRE	50.587	48.514	48.586	50.283	52.470	53.902	55,134	56.539	58.315	BETA(PR) 1
	bETA(PR) 2	25.509	24.826	25.204	29.32B	32,226	35.701	40.359	47.191	56.614	BETALPRI 2
	V 1	546.41	597.23	603.17	590.12	573.95	572.54	567.35	543.91	511.93	V 3
	V 2	669.30	729.01	735.29	708.56	713.06	706.13	658.26	561.36	440.56	٧Z
	VZ 1	546.30	597.09	603.10	590.08	573.24	570.22	563,61	540.04	508.59	VZ 1
	VZ 2	559.40	613.62	621.70	605,77	622.47	632.38	566.13	+87.24	369.04	VZ 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THEIA 2	402.70	393.53	392.57	368.14	347.16	316.20	295.82	275.70	249.49	V-THETA 2
	V(PR) 1	663.7	901.5	911.8	923.5	941.4	969.2	988.1	981.6	970.1	VIPR) 1
	V(PR) 2	019.9	676.1	687.1	694.9	736.1	779.7	770.7	718.2	671.4	VIPRI Z
	VTHETA PRI	-467.2	-675.2	-663.8	-710.3	-746.3	-782.0	-808.9	-817.1	-824.0	VTHETA PH 1
	VTHETA PR2	-266.9	-283.9	-292-6	-340.3	-392.4	-454.4	-498-1	-526-0	-560-0	VTHETA PR2
	U 1	667.21	675.23	683.75	710.33	746.26	782.03	808.93	·B17-12	823.97	11 1
	υź	669.03	677.40	645.17	708.48	739.55	770.63	793.93	601.70	609.67	ŭ ż
	N 1	0.5035	0.5509	0.5567	0.5440	0.5282	0.5269	0-5218	0.4992	0-4685	
	# 2	0.6147	0.6537	0.6607	0.6345	0.6388	0-6351	0.5880	0-4971	0.3917	* 2
	MIPRI 1	0.7929	0.8316	0.8416	0.8513	0.8665	0.6919	0.9088	0.9008	0 8877	MIDD1 1
	MEPRI 2	D-5526	0.6063	0.6175	0.6720	0.6594	0.6993	0.6884	0.6360	0.5009	MIRRIS
	TURNEPRE	25-074	23.684	23-380	20-956	20.225	18.144	16.689	9.242	1.628	TUPNIPDI
	DULAR	D 2245	0.1893	0.1637	0.2045	0.1687	0 1320	D 1600	0 3670	0.2050	IN SALES
	LUSS PARA	0.0587	0-0504	0.0493	0.0549	0.0458	0.0340	0.0474	6.0612	0.0596	
	DEAC	0.6170	0.3762	0.3743	0.3701	0-3363	0.3064	0.4230	0.3454	0.3583	DEAC
	FFFP	(1.7399	0.7730	0.8110	0.7293	0 7448	0 7020	D 4040	0.5176	0.3567	DIAL ELEO
	F F F	0 73/0	6.7660	0.6058	0 7715	(1 7676	0 7846	0.0747	6 5026	0.3507	
	167.13	-1-644	-1.002	-1.697	-1 740	~1 633	-1 004	V.00/2	-6 775	0 = 3 4 2 5	
	DE VIE	10 240	10 444	10 570	10 400	-1.333	-2.090	+3,303	-3+110	-9.052	INCID
	0.1	10.300	10.000	10-043	10,000	74 UID	0.140	B+ /34	14.002	20.045	DEVA
	P 1	174702	14.041	14.003	19.003	16 103	14.722	14.004	14+403	19.155	P 1
		1/.071	10.419	10.935	10.092	10.10/	16.134	11-410	10.301	12.404	PZ
	- -	518.700	516.700	510.700	218-100	518.700	518.700	518.700	518-700	518.700	11
	1 2	562.620	2010010	200+320	201.100	200-400	559.120	557.580	556,900	557.450	14
STATUR D	PET SPAN	¥5.00	90.00	65+00	70.06	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	UIA	33.207	33.564	33,921	34.992	36.420	37-848	38.919	39.276	39.631	014
STATOR-L.E.	BETA 2	36+0+0	32.449	31.570	31.326	28.672	20.449	27.372	30 413	35.457	BITA 2
STATUR-T.E.	BETA 2A	1.600	2.700	2.700	0.750	0.500	1.761	1-901	-0.100	-4.201	FETA Za
•••••	¥ 2	664.58	733.72	750 23	708.88	725-04	712.11	645.87	546.75	431-84	
	V 24	590.48	623.04	644-06	673.61	684-20	662-36	605.68	566.55	442 87	V 2
	N7 2	553.55	619.15	619,16	605.44	635.83	636.94	672.17	470 5-	361 27	1 4A 173 19
	V2 24	590.25	672-33	643-31	673.66	443.94	681.65	604 86	545.05	571 62 1	44 2 147 54
	V-THATA /	402.76	393.66	362.36	365.69	347 49	314 85	204 64	374 40	240.14	42 2A
	V-THETA 24	14 49	20 35	30.34	0.07	5 07	20.24	30.67	210+40	200.10	V-THETA Z
	N 7	0.6102	0 4583	1. 4754	0 4 2 4 6	0 4 4 0 4	20.27	20.07		- 37 - 73	V-THE IA ZA
	M 24	0.62102	0.6573	0 6730	0.0049	0.0004	0.0309	0.5762	0.4030	0.3764	M 2
	5 68 THEN (05)	34 490	V49923 50 960		30 470	0.0105	0.0102	0.3382	0.014	0.4797	M ZA
	LONG LPR /	0 1:57	670140	20.007	34*210	20.120	24.720	40.432	30.466	39.597	TURN (PR)
	LOLL BADA	0.1632	0 6444	0.1368	-0.0025	-0.0023	0.009/	0.1023	-0.1091	-0.6236	UUBAR
	LUSS PARA	0.0017	0.00000	0.0000	-010003	~0.0009	0.0037	0.0405	-0.0437	-0.2510	LUSS PARA
		0.3276	0.3200	0.3086	0.2304	0+2314	0.2030	0.2329	0.1678	D.0148	DFAC
	EFFP	0.3712	0.4027	0.4919	1.0214	1.0181	0.9000	0.2534	-0.3234	0-0276	EFFP
	INCID	-14.127	-10.939	-8.720	-6.704	-8.031	-9.413	-11.327	-12.753	-23,745	INCID
	DEAM	10.432	14.012	14.010	11.725	11.512	13.366	14.340	12.580	0.657	DEVM
	P 2	17.691	18.419	18.535	18.092	18.107	16.134	17.416	16.361	15.464	P 2
	P ZA	17.163	17.522	17.770	10.103	16.198	18.092	17.058	16.625	16+371	P 2A
	T 2	562.820	561.810	560.350	561.180	566.900	559.120	557.580	556.900	557.450	T 2
	T ZA	564.820	561.810	560.350	561.180	560.900	559.120	557.580	556.900	557.450	T 2A
	UUBAR FS	0.1682	0.1302	0.1009	0.0449	0.0354	0.0472	0.2189	0.2640	0.2675	UUBAR FS
	P2 F5	17.819	18.083	18,231	18,305	18.363	18.305	17.941	17.587	17.233	P2 FS
	LOSS PARA F	5 0.0966	0.0442	U.0346	0.0161	0.0138	0.0180	0.0866	0.1057	0.1076	LUSS PARA FS

.

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 109.78 Equivalent Rotor Speed = 4621.54 Equivalent Weight Flow = 116.07 Uniform Inlet

	PCT SPAN	96.80	92.00	86.90	71.00	49.60	78 10		_		
	DIA	33.122	33.529	33 043	35 313	47130	20.10	15.00	7.10	3.00	PCT SPAN
	HETA D	0 000	0.000	338702	324315	314131	38+954	40,321	40.737	41.085	DI.
	NETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0_000	0.000	
	DETA 1	0.000	0.00.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA Q
	VO	464.12	464.12	464.12	444.12	444 12	444 33	0.000	0.000	0.000	BETA 1
	V 1	501.01	604.30	407 14	404412	404+15	404+12	464.12	464.12	464.12	V O
	¥7 0	444 33	307037	971.10	473.40	489+48	490.99	482.93	467-00	637 37	ů i
		404,15	404-12	464.12	464.11	464.09	464.04	444.00	443 440	4.1.1.00	· · · ·
	¥2 1	501.01	504.39	497.16	493.39	489.45	490.01	101.00	403.44	464.00	V2 0
	V-THETA D	0.00	0.00	0.00	0.00		470474	465+61	466.88	437.25	V2 1
	V-INETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETS O
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-INCIA U
	H U	0.4231	0.4231	0.4231	0.4231	0-4231	0.4231	0 4 3 3 3	0.00	0.00	V-THETA 1
	Mì	0.4581	0.4613	0.4544	0.4509	0 44 33	0.44238	0.4231	0+4231	0.4231	NU
	TINN	0.0			V14508	0.441	0+4485	0.4409	0.4258	0.3979	M Î
	LILL AT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	OUDAN	0.4166	0.2550	D.2432	0.2844	0.3020	0.3276	0.2775		0.0	IORN
	GFAC	-0.079	-0.087	-0.071	-0.043	-0.066		013743	0-4519	0.5928	LUBAR
	EFFP	0.2958	0.4315	0 2022	-01003	-0.055	-0.028	-0.041	-0.006	0.058	LIFAC.
	The TE	0.000	0.4345	4+3433	0.3260	0.2836	0.2821	0.1904	0.0282	-0.7450	ECCA
	INCID	0-0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000		EFFF
	DEVM	-0+000	-0.000	-0.000	-0.000	-0.000	0.000	0.0001	0.0001	0.0001	INCIO
	Ρú	15.280	15.280	15 300	15 000		-01000	-0+000	-0.000	-0.000	DEVM
	0		134200	12.280	12.280	15.280	15.280	15.280	15.280	15.280	P.0
	<u> </u>	14+346	14 828	14.849	14.776	14.745	14.709	14 420	14 400		μų
	то	518.700	518.700	518.700	518-700	518 700	614 300	14.020	14-480	14.230	P 1
	Ť 1	518,700	518-700	519 700	510 360	7104100	210-100	219-100	516.700	510.700	ΤD
		5446700	210.700	210*100	219.100	518.700	518.700	518.700	516.700	516.700	
CO										2109100	• •
ROICE D	PGT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	10	-		
	LIA	33-236	12-621	34 007	10000	10100	20+00	12.00	10.00	5.00	PCT SPAN
RUTER - L.E	6CTA 3	0 000		54-007	22.104	30.100	38.248	39.405	39,791	60.176	074
BDT/G 1	DETR I	0+000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		U14
- ROIDE - F-L-	BETA Z	45 • 750	43.567	42.758	60.385	30.074	37 470	20.000	0.000	0.000	BETA L
	BETA(PR) 1	53.056	51.573	51 441	E3 856	301724	21.014	37.628	43.042	46.953	BETA 2
	RETAIDEN 2	12. 6.0		71.041	22.028	24+101	56.010	57.200	56.284	60.108	RETAINS .
	V I	20.208	60.184	29.199	31.184	32.650	35.720	39.280	42 634	44 045	DETAIL
	V 1	502.28	536.26	541.66	538-52	528.16	520 00	576 00	42.930	40.840	BETA(PR) 2
	V 2	629.45	629.20	430 60	430 44		267.07	262.522	202.03	477.18	V 1
	1477 I	662 19		027.57	039.44	021+14	653.55	627.90	594 13	55A.28	<u> </u>
		202.10	230.13	541.60	538.49	527.53	527.74	521.76	8.05 L 1	4.74 6.7	
	VI 2	437,02	455.73	462.26	487.05	511.04	415.22	493 40	/ 7 3 - 2 4	4/4-0/	VZ 1
	V-THETA 1	0.00	0-00	0.00	A 00		JAJ ALL	402.00	433.39	379.08	VZ 2
	V-THETA 2	450.47	433 70	407.40	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA I
	V4000 1	-90.01	433.19	427.42	414.30	412.73	400.78	399.71	404.73	405 05	
	AILER'T T	635+6	662.7	872.8	891.9	914.9	945.2	9-6 1	444112	402.05	V-THETA 2
	V(PK) 2	490.9	517.1	529.6	540 3	407 3		707.1	403.3	952+6	V(PR) 1
	VTHETA PRI	-647-B	-475 0	-464 3	200.0	001+2	032+4	624.9	589.3	555.Z	V(PR) 2
	VTUCTA 015	00100	-0/2.0	-004.3	-710.9	-746.9	-782.7	-B09-6	-817-B	-824 7	WTWEN A
	FIRETA PAZ	-419+5	-244.2	-256.3	-294.8	-327.5	-370-5	-394.9	-307 3		VINEIA PRI
	01	667.78	675.81	684.34	710.94	744 00	79.2 70		-37/6/	-+04.3	VINETA PR2
	U 2	670.20	677-96	A 14 6 7 A	700 00	140.10	102.10	804-93	817.82	824.68	U 1
	M 2	0 6505	0.000	003170	104+08	/40.19	771+29	794.61	602.39	810.17	
		0.4395	0.4918	0.4970	0.4940	0.4640	0.4857	0.6817	0 4457	0.4054	
		0.5531	0.5545	0.5556	11-5649	0 6611	0.577		0.4057	0.4324	M 1
	MIPRE 1	0.7641	0.7912	0 8008	0	042011	V. 2774	0.5527	0.5210	0.4853	M 2
	NIDDIS	0 4316		0.0000	0+0101	0.8383	0.8663	0.8842	0.6813	0.8494	M (DB) 1
	The second second	0.4315	6.4550	0.4673	0.5029	0.5370	0.5614	0.5501	0 6168	0 6 4 4 4 9	HIRN L
	TURNIPRI	20.404	23.385	22.440	21.676	22.000	30 336		V45100	0.4045	RIPRE Z
	ULIBAR	0,1141	0.1333	0 1241	0.004.0		20.5222	11+020	12+002	13.203	TUKN(PR)
	LOSS DADA	0.1.207	001333	V+1241	0.0909	0.0614	0.0548	0.1008	0 1454	0.1687	MILE & B
	LCAC	0.0296	0.0345	0.0322	0.0229	0.0166	0.0150	0.0271	0.0374	0 0+00	LOSE OVER
	UPAL	0.5690	Q.5484	0.5388	0.5044	0.4808	0 4400		0.0310	0.0409	LUSS PARA
	LFFP	0.6455	4.8347	41 44 33	0.0055		0.4073	U+4747	0.5341	0.5669	DFAC
	FFF	0 0 0 0 0	0.0347	010032	0.4022	0.9560	D.9626	0.9065	0.8600	0.8168	FFFD
		0.0341	0-8282	0.8578	0.9016	0.9540	0.9609	0.9024	0 6647	0.0000	
	INCID	0.625	0+657	1.063	0.814	0.744	0.014		010342	0.0043	EFF , ,
	UEVM	11.419	14. n24	14 646	13 5/3	V. 104	0.012	-1*4AT	-4-028	-8.055	INCLU
	ניש	14 647			12-293	9.438	8.159	7.665	9-400	10.866	DEVM
			19-828	14.849	14.776	14.745	14.709	14.620	14 480	14 110	0.04
	P 2	19.362	19.414	19.471	19.627	19.991	20 043		14.400	19+230	۳1
	T 1	518.700	518.700	514 200	618 TOO		20.043	19-100	19,289	10.873	P 2
	12	571 3-0	544 D30	5101100	210-100	219*100	518.700	518.700	518.700	518.700	TI
	, 1	JI1.300	200-950	201.380	567.310	568.100	568.600	569-820	570.550	57. 660	÷.
										2124330	12
_											
STAICH D	PCT SPAN	95.00	96 65								
		33.207		0.2.00	10.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATER	41 T	33.207	13.764	33.921	34.992	36.420	37.848	38, 910	30. 374	20 4 2 2	794 97AN
JIMILK-LIL.	BLIA Z	46.123	43.315	41.935	40.430	28. 317	37.730		-7.270	37.035	DIA
STATOR-T.L.	ELTA ZA	4.760	3_000	5 100	2 160	200211	21+128	+0.558	44.617	49.441	BETA 2
	V	4.26 5	133 65	5.100	2+120	2.700	3.401	4 - 502	4.842	4-962	BETA ZA
		027.31	632.55	639.91	639.44	666.97	656-83	616 44	670 36	634 60	OLTR ZA
	Y ZA	469.03	468.62	468.96	509-14	544.04	550 43			220.04	* 2
	VŽ 2	435-40	660 22	474 01	101 10	244400	224903	203*29	490.88	478.88	V 2A
	47.54	040.00	400-23	410-01	700 t DZ	523+09	519.10	466.17	411.22	348.27	¥7.2
		408.49	+01.97	468.25	508.31	543.28	558.32	507.99	488 70	476 EL	
	V-INETA 2	4 0 74	433.93	427.63	414.69	613.36	401 41	400 43	400410	410,20	VL ZA
	V-THETA 24	22 - 47	24 62	25 34	37	10	TV 4.01	-00+07	+ U⊅•76	406.93	V-THETA 2
	M	0 6446		23.30	£1.98	25.62	33.18	40.00	41.39	41.37	W-THETA 74
		0+2433	0.5576	0.5653	0.5649	0.5904	0.5805	0.5474	0.5043	0 4 4 4 7	A STREAM 28
	M ZA	6.4068	0-4074	0.4061	0.4444	0.4741	0 4003	~ ~ ~ ~ ~	0+2063	0.4669	H 2
	TURN (PR1	43.384	40.414	30 034	37 300	V+4/01	0.4901	0.4443	0.4268	0.4152	M 2A
	ULLAR	0.0405	4V6314	20-034	31.201	35.599	34.294	36.010	39.726	64.476	TURNIPP
	VUDAR	0.0695	0.0900	0.1041	0.0422	0.0446	0.0241	0.0940	0.0304		
	LUSS PARA	0.023	0.0306	0.0358	0.0160	0.0145	A 000-75	0.0700	0.0300	-0.0755	UUSAR .
	OFAL	0.4607	0.4707	0 4 9 9 9	0.0100	0.0102	0*00A3	0.0379	0.0154	-0.0303	LOSS PARA
	6660	0.44001	V=+191	V.4838	Q.4192	0.4003	0.3651	0.4064	0.4044	0.3817	DEAC
	CPPP	U.8576	U.8215	0.7991	0.8979	0.8815	0.0220	0 7:10	A 6575	AP3031	DEAL
	INCID	-4.044	-4.073	1.444	3 453	~~~~	V. 7627	0.7279	V.8751	1.3394	EFFP
	DEVA	11 673		*****	2.407	1+911	1.860	1.850	1.445	-9.763	INCTO
	0.0	414272	14+315	14.410	14.125	13.711	15.065	16.939	17.617	0.810	DENN
	r 2	19.362	17.414	19.471	19.627	19.001	20 043	10 300	10 211	4-810	NEAH .
	P ZA	19.113	19-081	19-074	10 444		20-043	17+100	17+289	18.873	P Z
	T /	57 10/	ALCONT.	476070	17.400	TA*804	19.944	19.357	19.170	19-071	P 24
	· ·	211-280	208-820	>67.380	567.310	568.100	568.600	569.870	570-660	533 544	r 17
	1 ZA	571.380	568.820	567.380	567.310	568.100	548 400	540 ATA		-14+320	1 2
	UUBAR FS	0.0727	0.0430	0.0872	0.045		-90.9UU	207+820	>70+550	572.550	T 2A
	P2 E1	10.474	10	000072	0.0231	0.0453	0.0359	0.1356	0.1416	0.1279	ULIBAR ES
	16.55 0.04	4743/3	39.385	19.401	19+671	19.999	20.092	19,643	19.441	10.444	
	LUSS PARA F	5 0.0244	0.0282	0.0300	0.0140	0.0171	0.0135		1	471989	PZ F5
						****		Wev237	U+U304	0+0213	LOSS PARA FS

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 109.90 Equivalent Rotor Speed = 4626.64 Equivalent Weight Flow = 109.67 Uniform Inlet

INLET

INLEI											
	PCT SPAN	96.80	92 -00	86.90	71.00	49.50	29 10	12 50	-	3 65	
	014	22 122	33 670	11 0/ 3	36 313		20.10	12.00	1.10	3.00	PUT SPAN
	UTM .	22+155	22.254	33.902	32+315	37-137	38.954	40.321	40.737	4).085	01A
	BETA O	0.000	0.000	0.000	0.000	0 .00 0	0.000	0.000	U_000	000	6614 O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	A. 64A	0.000	0.000	66.T.e. 1
	V D	415.43	A35 A3	476 43	435 43	436 44			0.000	0.000	DETAL
				433643	433443	422.43	437,43	437.43	435.43	435.43	¥ u
	¥_1	401.74	419.19	475+70	478.94	458 43	460.25	442-46	423.17	396.25	¥ 1
	VZ, O	435.43	435.43	435.43	435.43	435.40	435.36	435 32	435.32	435.32	W/ D
	YZ 1	467.94	478.78	475-70	478.94	458.30	446 17	447 36	637 66	100000	12 0
	V-THETA O	8.00	0.00	0.00	0.00		400411		-23-03	370.11	42 1
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	A-HEIV T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	V-THETA 1
	мú	0.3961	0.3961	D.3961	0-3961	0.3961	0.3961	0.3941	1. 2041	0 3 4 5 1	
	M 1	0 4347	0 4370	0 4340	A () 11			0.0001	0.1401	0.3761	N U
	71 A	0.4201	0.4570	0.1340	0.4311	0.4177	0+4194	0.4027	G*3844	0.3595	M 1
	TUKN	0.0	0.0	0-0	0.0	0.0	0.0	0.0	Ű.Ű	U_ 0	TURN
	UUBAR	0.4110	0.2649	0.2649	0.3154	0.2915	0.3015	6.3898	0.4868	0 4040	
	UFAC	-0.075	-0.166	-0.092	-0.100	-11.1163	-0.057	-0.034	0.000	0.0007	OUDAR
	SEED.	0 2026	4. 4456	0.000	-0.100	-0.033	-41021	-0.010	0.028	0.040	UFAL
	EFFF	0-2836	V+4777	0.4363	0.4130	0.2821	U.291 2	0.0800	-0.1372	-0.4143	EFFP
	INCLD	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0-0001	0.0001	6.0661	DAC Do.
	DEVM	-0.000	-0_000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.000	
	6 C	16 314	16 310	16 010	-01000	-0.000	-04000	-0+000	-0-000	-0+000	CEAN
	FU	124510	12.419	12-218	12*519	15.218	15.218	15.216	15.218	15.218	γ υ
	P 1	14.577	14.805	14.805	14.726	14.764	14.748	14-610	14-669	14.272	ρ.
	דמ	518.700	518.700	518.700	518.700	518 700	616 700	516 700	610 300	610 701	
	1.	A10 700	510 700	510 300	510 300	710-700	510.100	210.100	219-100	218-100	10
	, ,	314+100	310.100	218.700	218-100	518.700	219 . 100	518.700	518.700	516.700	11
				~							
8010K D	PUT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5 04	DCT COAL
	014	33 334	22 4 11	34 007	1. 1	34 704	20100	23400	10100	3.00	FLI SPAN
n		2346.00	334021	344007	33+10+	20+100	30-240	27=4U2	34+141	40.170	DIA
KLIUK -LALA	DE LA I	0.000	0 .00 0	0.000	0.000	0.000	0.000	0.000	0.000	6.000	BETA 1
RUTOR -T.E.	BETA 2	46.001	46.094	45.279	43.232	41,984	40.472	67.786	45.366	49 114	LLTN V
	FETALPEL 1	NA 949	63.300	67 043	53 740	64 410	57 004		436300	47.6110	DEIAZ
		344747	33+100	22.703	22.149	20.013	21.406	37.364	60.873	62.589	BETA(PR) 1
	BETALPRE 2	24 935	27.492	28+723	31.061	34.202	36.645	40.618	44.538	48.166	LETAIPR 1 2
	¥ 1	469.09	508.09	517-01	521.91	493.29	495-32	479.37	449.47	440 04	N 1
	כ ע	636.66	677 69	676 33	431 48	4 3 3 3 3 3	436 04	400.40		400.70	
		0.000000		020451	031-00	031431	032+90	009.28	212+28	240.31	V 2
	¥2 I	469.00	507.98	516.95	521.86	492.6B	493.32	476.22	456.20	428.15	VZ 1
	VZ 2	425.84	435.27	440.70	460.23	469.12	462.08	450.16	402.27	356.16	W7 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00			550427	
	N-THETA 3	170.04			0+00	0.00	0.00	0.00	0.00	0.00	V-THEIA 1
	V-INCIA 2	4/2.96	452.22	445.01	432.67	422.16	413.52	409.41	407.44	413.04	V-THETA 2
	V(PR) 1	616.7	846.1	85B-3	882.6	895.8	927-0	941.7	938.8	831-3	VIDEN 1
	VIPRI 2	449 A	496.7	502 6	537 3	447.4		60. 0		-31-3	TIPNY 1
	UTUETA DELL		47041	20200	221.2	901.44	001+0	294.2	202.4	555.0	V(PK) 2
	VINCIA PRI	-008.0	-0/6.0	-682*1	-/11./	-747.7	-783.6	-810.5	-818.7	-625.6	VIHLIA PRI
	VTHETA PR2	-198.0	-226.5	-241.5	-277.2	-318.8	-358.6	-386.1	-395.8	-396.0	VTHETA DR.
	υı	668-52	676.50	685-10	711.72	747 32	782 64	910 67	61. 10	1.1.6.6.4	
		470 04	470 73	404 53	700 07		103.20	010+24	010+15	623.39	μı
	02	010.74	010.13	000.01	709.87	141-00	112.14	795.49	803.28	811.06	U 2
	Mil	0.4278	J.464 8	0.4733	0.4780	0.4507	0.4527	0.4375	0.4187	0.3919	M-3
	H Z	0.5586	0.5518	0.5516	0.5565	0.5559	A 6504	D 6344	0 6007	4 760	
		0 9440	0 77/0	0.3010	0.0000		0.3370	0.5340	0.0001	0+4720	■ 2
	HIPKJ I	0.7448	0-1140	V. 7858	0.8084	0.8185	0.8471	0+8594	0.8555	4.8469	M(PK) 1
	H[PR] 2	0.4122	6.4314	0.4425	0.4733	0.4996	0.5297	0.5211	0.4936	0-4652	MIPR) /
	TURN(PR)	30.009	25.603	24.238	22.687	22.400	21 106	16 872	34 343	1 221	TUDALAN
	111114 4 0	0 0931	0 1120	0 1010	A 4761	0.0000	210107	10.0012	10+103	144.241	TURNUPRI
	OODAK	0.0751	0.1120	0.1012	0.0751	0.0828	0.0747	0+1082	0.1436	D.1687	UUEAR
	LUSS PARA	0.0244	0.0291	0.0263	0.0196	0.0220	0+0202	0.0285	0.0354	0.0399	LOSS PAKA
	ÚFAC	0.5930	0.5770	0.5686	0.5419	0.5176	0.5000	0.5184	D 6105	6 1 8 1 3	() E. A.C.
	LAED	0 477)	5 6437	0 0067	0 0 3 30	0.0307	0.0000	040100	0.040.	0.2012	DFAC
		0.0//1	0.0037	V.0721	0.4270	0.9239	0.4446	0.8412	0.8344	0.8036	EFFP
	1	0.8716	D.6580	0.8913	0.9238	0.9200	0.9369	0.8864	0.6274	0.7954	4 F F
	INCLL	2,517	2.183	2.385	1.706	2-617	1.614	6.879	-1-431.	-1-544	INC 11
	UE MM	9.766	15.532	14 060	17 420	10 001	0 004	6 000	11 1.0	2004	INCID
				148003	11.4420	104771	7.004	0.773	11.379	15-140	DEVA
	P 1	144211	14.805	14.805	14.726	14.764	14.748	14.610	14.469	14.272	9 I
	₽2	19.875	19.BI3	19.844	19.927	20.025	20.165	14.823	19_388	10.099	р :
	11	518.700	518.700	518.700	516.700	518.700	518.700	519 700	510 700	L1. 1/1	÷
	1.1	633 810	473 100	510 500	510-100	2104100	210.100	510-100	210*100	510.700	1 1
	. 2	242-010	2/1.180	204 - 200	204-310	570.000	570.460	572.000	573.386	575.300	12
STATOR D	PET SPAN	95-00	\$0.00	65.00	70.00	50.00	30 00	15 0.0	10.00	1 60	0.57 50.11
		22 207					30.00	12.00	10.00	DUaC	PUT SPAN
	UIA	22+201	33.304	33.921	34.992	56.4ZD	21+846	30.919	39.276	39.633	LA LA
STATOK-Lake	EETA Z	48.409	45 799	44.388	43.290	41.341	40.465	43.287	47.034	51,897	BETA /
STATENTEL	RETA 24	2.940	3, 300	3.150	3,280	2.451	3.651	4 701			
	¥ 7	432 40	431 03	434 61	4.3	440 00		*****	20632	0.002	DLIA ZA
	• 2	032.447	031.02	020-21	031.08	04U+35	038.95	599.11	558.66	526.70	V 2
	V 2A	470.25	459.32	451.86	484.84	519.36	533.65	493.32	476.88	467.65	V 24
	V7 >	419-85	419.93	454.85	459.74	480.57	484 74	435 71	346.43	1 14 75	
	17 74	444 47		461 14			403670	432491	300.45	324+13	Ví Z
	VL_2A	407.04	920.22	421+10	483.98	218.11	>32.32	491-26	474.41	464.00	VŽ ŽA
	V-THETA Z	473.04	452.37	445+23	433.08	422.60	414.37	410.40	408.47	4 4 14	V-18€14 >
	V-THETA ZA	24.12	20.44	24.83	27.74	22.20	33 03	60 60	44 44	4.4	
		0.6560	0.6640	A 4+10	A 66.6		0.0.00			70.07	TTINE IA ZA
	m ¢	0.0000	U+>>+Y	0.2010	0.0065	0.5643	0.5627	0.5249	0.4871	0.4572	M Z
	M ZA	0.4070	0.3982	0.3921	0.4218	0.4528	0.4656	0.4284	0.4131	0.4042	M 2A
	TURN (PR 1	45-464	42.498	61.234	40,003	10.072	36.601	34.540	41 744	<u></u>	TURNIOS
	10.634.0	0.0024	0.0007	0 1147	0.0575	30601E	100001	302394U	41+120	42.044	LOKULLER
	OUDAR	0+0925	0.0997	0.1167	0.0575	0-0240	0.0239	0.0641	-0.0196	-0.1056	UULAR
	ŁŪSS PARA	0.0311	0.0339	0.0401	0.0204	0.0089	0.0092	0.0253	~0_0D7H	-0.0-24	1655 64+4
	UFAC	0-4457	4.5021	0.4177	0.4410	0.4214	0.3069	0 4 3 3 9	6 46.04	0 1000	LUGG PARA
	5550	0 0 0 0 0	0.0021	A 3000	0.4010	V+7217	V+ 2928	0.4229	0.4095	0.3939	UFAL
	6468	0.8149	0+9094	0.7890	0.8752	0.9381	0.9302	0.8208	1.0655	1.4541	68FP
	1 NC 10	-1,758	2.411	4.097	5,259	4.635	4.597	4,574	1.864	-7.305	INCTO
	DEVN	11.772	16.412	16.440	14.266	13.44.2	16.316	17 120	17 007		1760 F 0
	<i>i</i>			242400		130902	424642	11-124	L1.YU/	10-820	DEVM
	¥ 2	14+875	19+813	14.844	19.927	20.025	ZQ.165	19.825	19.388	14.098	P 2
	P 2A	19.526	19.440	19.398	19.709	19.932	20.072	19.606	19.445	19.347	P ZA
	1 2	673.010	571.140	644 600	N60 370	670 000	674 4 4 4 4	L72 000		17.501	
		>13401V	201010V	307.300	2076210	210.000	210+460	542-000	943.380	212-300	۲ĸ
	1 24	5/3.810	571,180	>69.500	569.370	570.000	570 ÷60	572.006	573.380	575.306	T 2.6
	UUBAR FS	0.0488	0.1072	0.1035	0.0889	0.0722	0.3443	0.1210	0.1262	0.1154	HUHAR FS
	P2 F5	19.860	19.844	19.707	20.054	20.227	20.260	20.044	10		
	1000 0404 1	A 2 8 0 0 0 0	170CHT 0.0001	474767	201030	EV1227	2444	201040	17.005	19.735	PZ #5
	LV33 FARA P	a nertag	0.0364	0.0355	0.0912	0.0257	010173	0+0485	3.494	145464	LUSS PAKA FS

161

 $2 \leq 1 \leq \ell \leq 1 \leq \ell$

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 109.60 Equivalent Rotor Speed = 4614.29 Equivalent Weight Flow = 102.55 Uniform Inlet

٤N	LE	Т
----	----	---

INLET											
	PCT SPAN	96.80	42.00	86.90	21 00						
	LIA	33.122	13.520	13.04.2	36 312	49.30	28.1G	12.00	7.10	3-66	PCT SPAN
	LETA Ó	6 000	15 66.0	JJ 8 702	35.312	31+131	38.954	40.321	40.737	41.065	(L) A
		0.000	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.000	BETA D
	DEIAL	0.000	0.000	0.000	0.000	0.000	0_0u6	0.000	0.066	E-60a	5574 J
	V O	405.14	405.14	405.14	405.14	405.14	405.14	405-14	605.14	40510	BEIA 1
	¥ 1	423.38	441.04	437.63	432.67	429-15	427.59	410 69	20. 14	403.14	Υü
	V2 U	405.14	405.14	405.14	405-14	405 11	405 05	+10.00	370.29	392.10	¥ 1
	V2 1	423.38	**1-Ú4	417-03	437.67	436 11	+02+00	405.04	405.04	405.04	VZ 0
	V-THETA C	6.00	0.00	0.00	432.00	747411	421.52	409.98	396.18	352.09	VZ 1
	V-THEIA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	V-THE TA D
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	VETHETA 1
	20	0.3010	0.3670	0.1678	0.3676	0.3678	Ú.367b	0-3674	0.3678	(. 3. 7/	V-INCIA 1
	M 1	0.3840	0.4013	0.3976	0.3935	0-3902	0.3887	6 3334	0 2606	0.3018	M U
	TURN	0.0	0.0	0.0	0_0	0.0	0.0	0.3124	4+3272	0.3180	M 1
	UUEAR	0.4418	0-2511	6.2335	A 2743	0.0000	0.0	0.0	0.0	0.Q	TURN
	LEAC	-0-045	-0.064	-0.075	V+2 102	0.2930	0-2945	0.3678	0.4342	0.0402	UUBAR
		0 1701	-0.007	-0.019	-0.066	-0-059	-0.055	-0.0L2	0.022	0.131	DEAC
		0.1103	0++200	0.4245	0.3462	ü.3040	0.2085	0.0651	-0.1155	-0.6453	6660
	INCIL	0.0001	0_0001	0.0001	0.0001	0.0001	0.600)	0.0001	0.000	0.0001	
	DEVM	-0.000	-0.000	-0.000	-0.0DU	-0.000	-0-000	-0.000		0.0001	INCID
	PC	15.129	15,129	15.129	15-129	15.129	15 120	16 170	-0.000	-0.000	DEVA
	P 1	14.533	14.791	14.614	1	16 734	1. 7	12+129	12.119	15.129	Ρü
	ΓC	515.700	518.700	516.700		144734	19-132	14 633	14 . 54 3	14.205	P 1
	Ť Ť	515 100	510 740	511 700	518.100	518.700	518.700	518.700	516.700	518,700	Ta
	••	2100100	510.700	>10.100	518.700	516.700	518.700	516.700	518.700	516.700	T I
	10 T										
KLICK D	PCT SPAN	95 ₊00	90.00	65.00	70.00	50.00	30-66	15.00	10.00	F 110	
	UIA.	35.23ь	33.621	34.007	35.164	36.704	36 344	30 404	10.00	2.00	PUT SPAN
RCTUR -L.E.	DETA 1	0.060	6.400	0.000	0.000	0.000	20+240	37.402	34.141	40+176	CIA
ROTON -F.E.	BETA Z	50-001	48-801	46 163	44 000		0.000	0.000	J.000	0.000	BETA 1
	FETA IPET 1	57.576	66 331		40.077	44-812	43.858	46.091	44+081	53.841	6ETA 2
	LATA (Guil	21.224	55.521	22.481	56-526	58.318	59.66t	61.425	64-425	65.262	STATES 1
	CLIATERI Z	23.000	21+103	26.602	31.160	34.676	37.769	42.735	45.754	49.279	BLTAIDE L
	V I	424.37	405.96	473.40	469.50	400.81	459-09	443 19	439.45	201 07	DETRIPRI 2
	V 2	030.88	6.0.61	617.57	621.14	616.43	615 0 /		127.440	281.87	¥ I
	VZ 1	424.29	400.86	471.34	469 47	440 74	01	203+10	262-35	542.53	V ż
	VI 2	404.36	406.90	412 00	410 70	100.24	437.23	440.28	420.42	374.58	VZ 1
	V-THILA .	0.00	0.00	412.00	430110	431-16	443.66	404.22	363.32	319.71	V1 2
	V-16614 S		0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	V-THETA 1
	V-INEIA 2	437.07	467.10	460.03	447.55	434.32	426.32	419,90	428.12	437.48	W-THLTA
	VIPEL	790.3	820.6	831.2	851.0	876.6	906-3	921 0	0.7	002 1	V-INCIA 2
	VIPR) 2	447.7	459.6	469.3	503-3	533.1	561 0	56117	722+0	401-0	ATAKE T
	VIHETA PK1	-666.7	-07+.6	-053.3	-709.0	-746 7	-71.1	351+3	241.0	490.8	VIPRI 2
	VTHE1A PR2	-181.3	= 05 - 5	-774 6	-740 4	-14217	-101-0	-806.4	-610.5	-623.4	VTHETA PR
	ы і —	666 71	414 76	4	-200.4	-204.7	-143-8	-373.5	-373.0	-371.4	VTHE1A PR2
	ů,	560 15	574.73	663.27	109.82	745.73	7B1.47	808.35	616.54	625.39	U 1
		007113	010192	004.00	101.97	739.02	770.06	793.37	801.13	606.64	ů ž
		0.2021	U-4258	6.4319	0.4282	0.4200	0.4183	0.4034	0.3905	0.3441	
		0.5552	0-5447	U.5428	0.5462	0.5415	0 - 5407	0.5098	0 4666	0.4764	
	M(PR)]	0.71.3	6.7482	0.7583	0.7761	0.7969	0.8250	0 0 0000	0.4390	0.44100	m 2
	M(PR) Z	0.3924	0.4033	0-4125	0.4426	0 4483	0.002.00	0.0390	0.6389	0+6-26	M(PR) 1
	TURN(PK)	33.640	25.154	26 643	36 360	0.4053	U.4934	0.4615	6.4541	0.4255	M(PR) 2
	LULAS	6 0460	6 1110	20.003	22+274	23.427	21.852	16.625	6.600	15.942	TURN (PR)
	1015 0404	0.0000	0+1110	0.1000	0.0857	0.0819	0.0889	0.1357	0.1767	6-1925	IIIIKAN
	LUJS PARA	0.CIRO	6+0290	0.0276	0.0226	0.0216	0.0236	0.0246	0.0437	0-0445	1011 010
	UFAC	0.6126	0.6071	0.5999	0.5702	0.5507	0.5370	0.5586	0. 6.464	0 6 3 0 5	LUSS FARA
	6666	0.9027	Ũ•6765	0.9111	0.9349	0.9475	0.4374	0.0570	0.1111	0.0200	DFAL
	t F F	6.8980	0.6710	0.91172	0 6310	0.0064	047314	0.8572	0+0146	0.86096	FFFF
	19610	1-1/28	4.46.5	. 104		0.7540	0.9345	0.8510	0.6069	0.9009	EFF
	LEVA	H . 7 16			*****	4.518	3-680	2 . 147	U.120	-2.00l	INCID
	P 1	1. 4.31	13.004	12.408	12.519	11.004	10.207	11.110	12.015	13.302	DEVM
		14.233	14.791	14.014	14.757	14.734	14.732	14.633	14.543	14.265	PI
		20.101	20+026	20.057	20.129	20.181	24.242	15.820	15.560	19.334	4 3
	1 1	510.700	518.700	516.700	518.700	516.700	515-700	516.700	519 700		F 2
	1.2	575.500	572.560	570.400	570-350	570-690	571 450	67. 000	1101100	518.700	1 1
							2010-120	J13. 700	515.500	5774500	1 2
STAILK D	FGT SPAN	95-00	96.70	86 DC	76		• /				
	1214	33. 207	4. 144	20.00	10.00	50.00	30+00	15.00	10.00	5.00	PCT SPAN
STATUS~L-F-	5FTA 2		33 304	334761	34.992	36+420	37.848	38.919	34.270	39.633	LIA
STATILE	LETA DA	50.435	40.401	41.162	46,162	44.120	43.642	47.210	51.616	57-034	6674 Z
STATUR-ILL.	TEIA ZA	3.000	3+700	3.360	3.250	2.090	3,501	4-031	5.161	L 76 1	
	۷ ۷	652.94	624.07	627.44	621.14	625.04	616 6	576 0	50404	24122	DETA ZA
	V ZA	461.29	449.41	443-40	470.11	440.15	444 10	774.05	247.72	2-2-12	V 2
	V2 2	463-12	413.67		400.11	400115	400.37	449.31	437.50	424.82	V 2A
	V2 2A	44.6		44.4.4.1	430.17	448.22	44/.10	369.64	339.99	264.49	V2 2
	V-THETA 2	6 H 7 H L	······	772.02	409.29	419.67	485.20	447.47	435.34	432.18	V2 2A
		461443	401.20	400.26	447.97	434.99	427-14	420.92	429.21	436.64	V-THETA 2
	INCIA ZA	24.14	c9.00	26.14	26.05	17.51	29.LA	38.40	49.4.	47.64	
	M ∠	0.5545	Ú.5478	0.5521	0.5462	0.5495	D. 5435	0.5009		73622	VEINCIA ZA
	M 2A	0.396.	G.3669	0.1843	0.4062	0 4170	0 4 7 3 4	0.007	0.4704	0-4551	M 2
	TURN (P.K.)	41.436	44.7HU	41.603	42.005	43 013	A 4 1 1 1	C 891.40	0.3773	0-3742	H ZA
	UUEAR	0.1046	0.1073	0 1317	0.000	42.0012	40+127	-2-512	40.408	51.234	TUKN(PR)
	LOSS PARA	6-113-14	1 03-14	0.02	0.0875	0.0811	0+0906	0.0940	0.0+63	-0.0292	UUBAR
	GEAL	0 61	1.0364	0-0453	0+0311	0.0366	0.034L	0.0371	0.019.	-0.0117	LOSS PARA
	LEED	0 5181	0+2141	0 16	0.4647	0.4800	0.4627	0.4244	0.4856	0.475.4	LEAC
	CFFF	6.7901	L.7444	0.7629	0.8155	0.8228	0.747.	1.174	0.6770	1 0447	ELES
	INCIL	6.271	5.693	6.641	6.131	7.414	3 45.		44477		C.C.F.F.
	DEVM	11.832	15.012	14	14. /25	12 100	16 111	c.3U2	0.44	-2.iot	14610
	P 2	20.181	20			13.102	12+105	17,068	17.837	10.599	LIE VM
	P 74	1. 7. /	10.020	20.057	20+129	26.181	20.242	19.820	IS.56C	17.334	P 2
	1	174504	19.630	19.563	19.805	17.677	19.969	19.527	14.4.4	19.405	Pre
		275.500	272.560	570.400	570.330	570.890	571.450	573.900	575.500	577 500	1
	I ZA	575.500	572.560	570.400	570.33L	570.490	571.450	57 4- 401	576	577 11 1	
	UULAK FS	0.0941	0.1199	0.1102	0 1020	0.1042	0.0996	213.700	212 300	217.560	1 2A
	P2 FS	20.115	20.079	19.966	20.107	20 285	210703	0+1328	0.1304	0+1111	UULAK FS
	LUSS PARA H	5 0.0914	0.0407	0.0370	200101	eve202	20.213	1949/1	19.827	19.734	42 FS
				010319	0.0361	0.0395	0+0378	0.0536	0.05∠0	v e U 4 4 5	LCSS PARA PS

•

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 110.20 Equivalent Rotor Speed = 4639.37 Equivalent Weight Flow = 97.18 Uniform Inlet

INLET

	PCT SPAN	96.80	92.00	86.90	71.00	49-56	20 17	12 44		_	
	DIA	33.122	33.529	33.962	35.312	37.137	38,954	12.00	7.10	3.06	PCT SPAN
	DETA U	0.000	0.000	0.000	0.000	0.000	0.060	0.000		41-085	
		0.000	0.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	NETA L
	V I	407.75	202+12	382.12	302.12	382.12	382.12	362-12	302-12	362.12	V L
	V2 0	382.12	362.12	307 17	415.83	406.19	401.73	361.33	364+05	331.12	V 1
	VZ 1	407.75	422.96	422.70	415.83	382.09	382 CC	382.02	302.01	362.02	VZ D
	V-THETA G	0.00	0.00	0.00	6.00	400+10	401.66	361,24	363.96	331.05	VZ1
	V-THETA 1	6.06	0.00	0.00	0.00	0.00	6.00	0.60	0.00	0.00	V-1Held ü
	M ()	0.3+61	0.3463	0.3463	0.3463	0.3463	0.3463	0.3463	0.3463	0.00	V-INETA L
	THEN	0.3702	0.3644	0.3842	0.3777	0.3647	0.3646	0.3456	0.3296	u-2992	H U H I
	ULIBAR	0 4634	6 2740	0.0	0.0	Û.Û	0.0	0.0	0.0	Û Û	TURN
	LFAC	-4.067	-107	U+2+21	0.2803	0-3026	0.2940	0.3636	0.4007	0.6188	UUBAR
	LFFP	6.2446	0.4595	0.4911	0.4072	~0.063	-0.051	0.002	0.647	لفلعا	UFAC
	INCID	0.0001	0.0001	0.0001	0-0001	0.0001	0.2720	-0.0113	-0.2613	-0.7029	ÉFFP
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.0001	010001	0.0001	0.0001	INCID
	PD	15.084	15.069	15.069	15.089	15.089	15.039	15.089	15.089	15 099	
	T 0	14+556	14.756	14.797	14.752	14.725	14.735	14.028	14.535	14.145	P U P I
	T 1	516 700	516,700	516.700	518.700	518.700	518.700	518.700	518.700	516.700	1 6
		3101100	5164 (00	>18-700	>16.700	518.700	518.700	516.700	516.760	516.706	ŤĨ
Ν ΟΤΟΚ Π	PCT SPAN	95.UU	90.00	b5.00	70.00	50-00	30.00	15 00	10.00	e	
67.77.0 L 1	DIA	31.236	33.621	34.007	35.164	36.706	38.244	19.405	30 701	5.00	PCT SPAN
ROTOR -1 4	DETA 1	C-000	0.000	000.00	0.000	0.000	0.000	0.000	0.000	40+176	
NUTOR TILL	001A 2	50.000	49.583	49.086	47.290	46.785	46.259	50.791	53.790	56.107	BETA Z
	BETA(PR) 2	26.26	20.004	56.350	57.732	59.881	61.371	63.304	64.539	66.715	BETA(PR) 1
	V 1	404.69	447.37	467 36	29.608	35.667	40.590	44.596	48.393	د 49.45 د	BETA(PR) 2
	V Ż	635.21	620 82	624.27	430.03	435.50	430.65	411.40	393.70	358.61	V 1
	VZ 1	408.61	447.27	457.30	450.60	634.94	207.40	5/1.25	547.89	555.69	V 2
	¥Z_2	+62.66	402.49	408.85	431.00	415.69	407.13	360-65	340.90	356.27	¥2 1
	V-THETA 1	ú.00	0.00	6.00	0.00	0.00	0.00	0.00	0.00	272.78	
	V-INEIA 2	491.25	472.65	471.75	406.90	442.49	+25.+3	442.05	441.51	470.63	V-THEIA 1
	VIPEL 2	767.I 261 7	812.6	625.3	844+0	867.1	890.0	910.9	910.5	902.2	V(Pk)
	YTHETA PRI	-670.4	+22+1	942.1 	495.7	513.2	536.7	507.3	467.0	451.4	V(PK) 2
	VIHETA PRZ	-181.5	-207.9	-216.7	-713.7	-749 8	-785.7	-612.7	-821.0	-627.4	VTHETA PK1
	υĭ	670.36	678.42	656.98	71	749.76	765 77	-355.6	-364.0	- 242.5	VTHETA PKZ
	UŽ	672.79	660_60	688.40	711.62	743.04	776.26	747.44	826+95 HUS 46	627.86	U 1
	<u>H 1</u>	0.3711	0.4073	0.4167	0.4104	0-3961	0.3916	0.1736	0.3571	013+24	
	M 2 ₩1001.1	0.5555	0.5436	0.5479	U.55B1	0.5315	0.5145	0.4965	0.4745	0.4802	H 2
	MIPRJ 1 MJ681 0	0.7128	0.7399	0.7519	0.7686	0.7867	6.B147	0.8272	0.8259	0.8166	N(PR1)
	TURNIPRI	34.465	V-1961	0.4061	0.4354	0.4491	0.4686	0.4409	4223	0.3905	N(PR) 2
	UUBAR	0.0755	0.1067	20.920	28-124	24.000	20.738	18.647	10.091	17.227	TURN (PR)
	LOSS PARA	0.0199	0.0276	0.0275	0.0220	0.1020	0.1287	0.2081	0.2396	0.2711	UULAR
	UFAC	0.6190	0.6133	0.6092	0.5826	4.5718	0.0329	0.0514	0.0558	0.0624	LOSS PARA
	EFFP	G.5749	0.8621	0.9056	0.9409	0.8899	0.6453	0.7795	0.0329	0.6629	UFAC
	LEF	0.0689	0.6559	0.9016	0.9361	0.8849	0.8385	0.7701	0.7244	0.7454	C
	114610	6.265	5-668	5.772	5.650	5.862	5.386	4.633	2.251	-1-971	INCID
	P 1	9-118	13.164	13.286	10.967	12.655	13.027	12.972	15.253	13.477	DEVM
	P 2	20-250	20.126	20. 250	14.152	14.725	14.735	14.628	14 535	14.345	PL
	Та	516.700	516.700	518.700	518.700	20.188 518 700	19.963	14.664	1 356	14.426	P 2
	T 2	577.750	574.900	572.650	573.000	574.000	574.950	510.fuu 576.120	518.700	518.766	<u>T</u> 1
								5161120	279.730	261.700	Τž
STATUR D	PCT SPAN	95-00	90.00	KN 00	70.00						
	Ū1A	33.207	33.564	33.971	70.00	50.00	30.00	15.00	10.uD	5.00	PCT SPAN
STATOR-L.E.	DETA 2	51.107	49.255	46.075	47.355	46.061	37-848 46-646	30.919 61.100	37.276	34.653	UIA
STATUR-T.E.	BETA ZA	060.6	4.030	3-410	3.020	2.060	2 0 0	3.461	5 121	61.970	btia 2
	¥ 2	631.29	624.07	634.36	635.43	615.65	592.08	561.93	534.07	545.05	DETA ZA
	V ZA	478.98	462.68	452.83	470.94	472.28	474.18	441-24	433.71	434-05	V ZA
	WZ 24	270.31	407.32	423 85	430.42	427.06	+10.36	344.96	296.29	251.33	¥2 2
	V-THETA 2	491.34	401.32	452.00	470.22	471-82	473.60	440.07	431.80	431.19	V2 ZA
	V-THETA 2A	25.57	32.51	26.93	767+35	993+17	426.30	443-12	442.03	472.07	V-THETA 2
	M 2	0.5518	0.5466	0.5573	0.5581	0.5392	10-07	20.01	38+65	45.74	V-THETA KA
	A 2 M	0.4134	6.3999	0.3919	0.4080	0.4068	0-4101	0.4000	0.3724	0.4621	M 2
	TURNEPKJ	46.046	45.224	44.004	44.329	43.982	46.015	48.594	50.855	443 <i>822</i> 55 645	M ZA Thereby
	UUDAR	0.0645	0.0791	0.1227	0.1360	0.0776	0.0339	6.0382	-0.0471	-0-0225	TURNIPAN
	LUSS PAKA	0.4999	0.0269	0-0421	0.0483	0.0267	0.0131	0.0151	-0.0168	-0.0092	LUSS PARA
	FEFP	0.4099	0.4990	0.5279	0.5069	0-4901	0+4667	0.5102	0.4924	0.5122	DFAL
	INCID	010345	V+0424 5,867	7,785	0.1290	0.8304	6-9147	0.9090	1.1266	1.0614	EFFP
	DEVM	11.892	15.342	14.720	7.327	7.335	10.221	13.394	12.650	2.775	INCID
	P 2	20.250	20.126	20.250	20.476	20.188	CU1+C1 FR0_Q[10.444	17-797	10.929	DEVM
	P ZA	19.988	19.834	19.777	19.945	19.907	19.670	19,551	10.440	19.428	F 2
	1 2	577.750	574.900	572.650	573.000	574.000	574.950	576,120	575.750	17.489	7 2A
		>77.750	574.900	572.650	573.000	574.000	574.950	576+120	579.750	581.700	T ŽA
	DUDAN P3	20.250	10 204 0*11AA	0.1233	0.1096	0.1459	0.1522	0.1433	0.1358	0.1270	UUBAK FS
	LOSS PARA F	5 D. 0111	404298 0×0408	20.252	20.360 0.0349	20.478	20.447	20.026	19.913	19.882	P2 +5
	Seve Fana I		440408	V+V423	0.0384	0.0539	0.0588	0.0566	0.0542	0+0510	LUSS PARA FS

•

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100.53 Equivalent Rotor Speed = 4232.16 Equivalent Weight Flow = 120.02 Uniform Inlet

INLET

INLET											
	FCT SPAN	56.BU	92.00	66.90	71.00	49 50	34 10				
	01A	32+122	33.529	33.962	35.112	17.117	10 05	12.00	7.10	3.60	PCT SPAN
	btTA U	0.000	0.000	0.000	0.000	0-000	30.734	40+321	40.737	41.085	DIA
	BETA 1	0.000	0.000	D.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA G
	Ψü	477.92	477.92	477.92	477.92	477.92	477.92	477 03	0.000	0.000	BETA 1
	¥ 1	524.57	536.78	530,49	521.77	509-88	507-02	441 30	411.92	477.92	V L
	VZ (J	477.92	477.92	477.92	477.91	477.88	477 64	471.20	410.84	449.40	V 1
	¥2 1	520.57	530.97	530.49	521.76	549.84	5115.54	-91.00	477.79	477.19	VZ L
	V-THETA u	0.00	0.00	0.00	0.00	0.00	0.00	471.00	11.4014	449.34	¥2_1
	V-JHETA 1	6.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	D.00	V-THETA U
	MU	0.4301	0.4361	0.4361	0.4161	0.4361	0 6361	0.00	0.00	0.00	V-THETA 1
	M 1	0.4771	6.4925	0.4863	0.4779	0.4465	0.44301	0.44301	U=4361	0.4361	MU
	TURN	0.6	U,G	0.0	0.0	0.4002	0.4038	0.4487	0.4351	0.4093	M L
	UULAK	6.5169	0.3169	6.2883	0.3189	0.3578	0.0	0.0	6.0	0.0	TURN
	LFAC	-0.690	-0.124	-0.110	-0-092	-0.047	0.3623	0=4439	0.5185	0.6407	UUBAR
	LFFP	6.2770	Ú+48H4	0 44 33	0 3916	0.001	-0-061	-0.028	0.602	J. 060	DFAC
	INCIS	0.0001	U.DCO1	0 0001	0.0001	0 0001	0.2089	0.1184	-0.0092	-0.2286	EFFP
	UEVM	-6.000	-0.000	-0.0001	÷0-500	-0.0001	0.0001	0-0001	0.0001	0.0001	INCID
	P U	15-624	15.423	15.423	15 422	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	P 1	14.445	14 h 1	14 - 6 76	14 921	14 747	10.423	15.423	15++23	15.423	Ρü
	Γυ	518.700	518.700	516.700	516.700	534 744	14.137	14.584	4.443	14.201	P 1
	Τ⊥	510.700	518.700	518.700	518-700	516.700	518.700	516.700	518.700	518.700	Τú
				2101100	5131100	516.100	>18+100	518.700	518.700	518.700	11
RUTUR J	PLT SPAN	55.00	90 . 00	85.00	70.00	50.00	30.00	15.00	10.00	5 GA	0C T
HI TO:		33.236	32.021	34.007	35-164	36.706	38-244	39.44	14.701	2.00	PUT SPAN
NUTUE -7 (DE LA L	L.04C	0.000	0.060	0.000	0.000	0.000	0-600	D-00/	- 0 0CO	VIA ELTA 4
ACTOR TIME.	LEIA 2	34.500	31.645	30.635	29.980	29.007	26.914	26-50	28.610	12 204	DETA 1
	CETA(PR) 1	49.500	47.230	47.212	48.735	51.168	52.712	56.343	40+017 55 4017	22.000	HETA Z
	5ETA(PR) ∠	27.214	20.928	25.433	20.005	31.797	34-723	39-444	2244UZ	27-147	DE TA (PR) 1
	V I	5.2.27	572.44	560.15	571.27	551 24	548.00	534 44		- 1.098	BETALPR} 2
	۷	614.64	661.0l	683.56	695.40	660.24	551: 72	A15 74	543 01	490+87	V L
	A5 T	522.17	572.31	560 . 06	571.24	550.56	5-1.76	531.12	545,00	407.90	¥ 2
	V2 2	510-61	503.00	568.15	602.36	577.17	566.21	560 10	210+01	13.18	¥2 1
	V-JHEIA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	414444	394.97	Ví Z
	V-IHEIA .	351.67	346=85	348.29	347.00	320.01	206 64	373 01	0.00	0.00	V-THETA 1
	V{PH1 1	604.2	£+3.0	8 - 4 - 0	866.1	878.5	270-00	213.00	201-02	252.40	V-THETA 2
	V(PK) 2	574.4	026.7	651.3	673.7	679.4	714 6	714+1	411-4	900.7	V(PR) 1
	VTHEIA PRI	-011.5	-018.9	-c20.7	-651	-664-0	-716 5	-761.6	011.1	629-8	VIPR) 2
	VIPEIA PR2	-202.1	-214.0	-279 7	-501.7	-157.8	-110.0	-441.4	-146+9	-755.2	VTHETA PRI
	01	611.52	018.87	626.68	651.04	643.97	214 25	745348	-413.8	-484.4	VIHETA PR2
	U 2	013.74	620.85	627.98	649.34	677.87	7 6 40	777	148.92	755.20	U 1
	M 1	0.4764	0.5265	0.5343	0.5256	0.5062	1.0.0.00	121400	134.19	741.91	U Z
	M 2	0.5516	0.5923	0.6143	(L. 6255		0.5031	0.4903	0.4125	0.4484	H 1
	M(PR) 1	0.7360	6.7756	0.7564	0.7946	6 60.7	0 5924	0.5496	0.4820	ü_4145	M 2
	M(Pk) 2	0.5113	6.5609	0.5553	0 4066		0.8283	0.8382	6.6351	0.8228	MIPR1 1
	TURN(PK)	22.269	21.306	21.776	22 127	10 363	D.0425	0.6376	0.5962	0.5555	M(PR) 2
	UUBAK	0.1075	6.1692	6.1369	0 1124	176332	17.930	14.729	10.354	5.979	TURN (PA)
	LUSS PARA	0.0403	1:-11446	0 0 4 7	0 0223	0.1481	U. Le CL	0.1437	0.2090	0.2518	UUGAR
	UFAC	0.4124	0. 1725	0.3566	0.3416	0.0407	6.6338	0.0305	0.0519	0.0560	LOSS PARA
	£₽F₽	0.7014	U-72HF	1.8.3.		0.3434	0.3163	0.3222	0.3625	0.3992	ÚF AC
	566	0.6919	0.7219		0.0301	0.7711	0.1911	0.72.2	しょうてとい	6.4835	EFFP
	INLIL	-2.92	-1-675		-1 367	0.7051	0.7914	C 715e	0.5 06	J.4754	i e te
	DEVM	12.064	11.765	10 700	-3.307	-2+335	-3-247	-4.315	-0.914	-11.624	INCLU
	PI	1 - 443	14.921	10.177	16 633	8.585	7.162	7.942	11.820	15.123	GEAN
	P 2	17-21-	17.640	16 001	14+021	14.747	14.737	14.584	14.443	14.201	P 1
	T 1	516.700	516.700	10.001	18.137	11-197	17.707	17.151	16.427	15.639	Ρ.
	14	557.140	555-420		518.700	518.700	516.76C	516.700	518.700	516.700	T 1
				2340100	994.70U	004.420	553.960	553.050	552.740	553.250	T 2
(TAT. 5											
STAILK 0	PET SPAN	95.06	90.00	85.00	70.00	50.00	30.00	15.00	10-00	5-00	PET LANA
STATIS-		35.267	33.564	33.921	34.992	36.420	37.840	36.914	34, 27,	34,433	PT-1 3740
STATCH T I	LETA Z	24.749	51.420	30.642	30.025	<0.58U	24.613	27.052	26 664	33 651	
JEALCH-LELE	LETA ZA	2.300	2== 50	1.900	0.624	0.500	1.550	2.161	1,000	-7 4 63	DCIA 2
	V 2	610.04	605.58	690.68	695.46	670.31	664-13	604.50	576 14	-2.001	BETA ZA
	V ZA	561.60	61 0.73	616.27	646.88	643-43	649-51	585.03	563 10	*******	V 2
	¥2 2	566.17	567.9E	002.54	602.04	568.33	592-14	537-61	454 06	374 34	V 2A
	VZ ZA	561.15	600.25	617.90	646.70	643.1P	C45-64	5+7-13	567 400	310+22	VL Z
	V-THETA 2	351.15	346.97	346.46	\$47.93	20.50	244.27	274 55	241 44	224.07	VZ ZA
	V-THEIA ZA	x2+54	23.5 6	20.50	7.00	6.74	17.56	.2.16	201-07	200410	Y-THETA 2
	M 2	V•>+82	0.5960	0.6264	0.6255	6.6011	0.5957	0.5394	7+07	-23.00	V-THETA ZA
	M ZA	0.4972	6.5344	6.5518	0.5767	0.5753	0.5617	6 5239	0.4014	0.4001	8.2
	TUKN (PR)	32.449	27.167	28.140	29.399	27.964	15.234	24.652	0 - 7719 25 570	0++028	FI 28
	UULAR	C=0484	6.6990	0.1154	0.0752		-0.0053	6-6607	20.030	30.9/4	TURNEPR)
	LUSS PAKA	0.0031	0.033 K	0.0397	0+0267	-0.0024	-6.06.6	0.0740	-0.0617	-0.5052	UULAK
	UFAL	G.2681	0.2630	0.2742	0.2444	6.2140	0.1442	6.1033	6 15 -	0.1230	LUSS PARA
	EFFP	0+4812	0.5336	0.5272	0.5217	1.0719	1.1644	-0.0004	0 1 40 1	1.0894	UFAC
	INCLU	-12+418	-11.966.	-10.249	-8 CD5	-8.123	-9,049	-11 -4-	0 2060	U 1820	LFFP
	UEVM	11.132	15.562	13.210	11.595	11.412	13,215	-44.040	-13.461	-22.269	INCIU
	ΡZ	17.214	17.666	16.001	18.137	17.447	17.7.7	17.121	13.019	2.2.6	DEVM
	P ∠A	16.901	17.312	17.518	17.421	17.702	17 7 7	11+101	10.4/7	15.639	P 2
	T 2	557.140	555.920	554.160	554.780	554.050		10.904	10.014	10.344	P ZA
	T 2A	557.140	555,920	554.160	554.780	554_060	223.96U	273.050	252+740	553.250	T 2
	UUBAR FS	0.1.24	0.0955	0.0799	0.0320	0-0231	223.750	223.050	252.740	553.250	T 2A
	P2 F5	17.377	17+671	17.830	17.040	17.860	17.77	0.1233	0.2120	0.2300	UUBAR FS
	LOSS PARA ES	5 0.0479	0.0325	0.0275	0.0111	A7+049 0-0114	4/14/5	1/+013	17.283	16.988	P2 F5
							010142	0 0 1 2 5	0.0048	0.0927	LUSS PARA F5

-

Table A-3. Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 100.56 Equivalent Rotor Speed = 4233.41 Equivalent Weight Flow = 110.18Uniform Inlet

INLET

ŧ

	PCT SPAN	96-80	92.00	84 00	23.04						
	i la	33.122	17 6 10	22.0.2	11.00	49.50	28.10	12.00	7.10	3.(1)	PCT SPAN
	SET O	0.000	33.527	33-901	35.312	37.137	38.954	46.321	46.737	41.01	() LA
	DETA O	0.000	0.000	0,000	0.000	0.000	0.000	6.000	0.000	1. 1.4.1	LITE A
	BE IA 1	0.000	0.000	0.000	0.000	0.000	0.460	0.100	0.000		DE LA U
	VΟ	437.84	437.84	437.84	437.84	437.64	637 64	637.61	0.000	Caller	BEIA 1
	V 1	467.56	483.07	477.92	449.44	451604	431504	437484	431+84	437.54	¥ د
	VZ D	437.63	437.63	437 84	437 43		403.85	459.04	440.20	446.01	V I
	¥2 1	407.50	483 07	477 01	437.03	437.80	437.76	4 7 73	+37.72	437.7.	¥2 (
	V-TECTA O	407.50	703.07	4/1.92	409.30	464.38	463.78	458.93	440.08	499445	W7 1
		0.00	0.00	0.00	0.00	0.00	i.00	0.00	0.00		National C
	A-THELY T	0+00	0.00	0.00	0,00	N.00	0.00	0.00	0.00	0.00	V-THEFA C
	мо	C.3983	0.3983	ú.3963	0.3983	0.3943	0.3063	0 50-3	0.00	0.00	V-LECTA 1
	H 1	0.4263	0-4410	6-4361	0 4 2 9 1	6 6 2 2 3	043763	0.5983	0*3483	0.3513	Νu
	TURN	0.4	0.0	()	0.7201	0.4234	0.4228	0.4183	0 •400⊳	は。きょうち	MI
	UU54Ř	0.4553	0 7476	0.0	0.0	0.0	0.0	0.U	0.0	0.0	TURN
	OC AC	014333	0.2035	0.2470	0.3114	0+3061	0.5121	0.3509	Ú.4494	0.6255	III fease
	UFAL	-0.060	-0.103	-0.092	-0.072	-0.061	-0.059	-4-046	-6.005		UC AN
	EFFP	0+2444	0.4667	0.4514	0.3364	0.3003	0.2020	6 2 84	0.000	0+005	UFAL
	INCIL	0.0001	0.0001	0.0001	0.0001	0 0 0 0 0 1	0.0001	0.2270	0.0245	-0.0655	EFFF
	DEVM	-0.000	-0.000	-0.000	-0.0001	010001	0.0001	0.0001	0.0001	0.0001	INCID
	8 1.	16 237	1. 000	-0.000	-0.000	-0-006	-0.000	-0.000	-0+UUU	-0.660	LA VE
	 	120221	1:+221	15 . 227	15.227	15.227	15+227	15.227	15.227	15.227	н.,
	<u> </u>	14.508	14.651	14.637	14.735	14.7-1	14.734	14.67	14.516	16 56.3	
	16	518.700	518.700	516.700	518.706	518.700	518.700	515 70.0	410 700	14.440	P 1
	11	518.700	518.700	516.700	519.700	516 700	516 705	516+100	518.700	216.700	70
						210.100	516.7UL	216.100	518.760	516.760	T 1
RDJUK u	PET SPAN	66 00	00.07								
	Set at An		90.00	82.00	70.00	50.UC	30.00	15.00	10.00	5.01	HIT LUCK
AC 11:0 -4 -		33.430	23.621	34.067	35.164	36.706	38.246	39.405	36.791	40 174	. IA
ACTOR -Lata	DE LA 1	6.000	0.000	0.000	Ú ∎0 0Ú	0.000	6.000	6.(66		404170	
RUIER -T.C.	BETA 2	42.976	46.524	39.662	17.684	36 640	35.6.1	0.000	0.000	ちょちにい	EFIY I
	EETAIPRI 1	52.545	50.366	50.449	61 067	30.407	37.444	30. 441	46.067	44.6te	5ETA ∠
	PETAIPRI 2	25.836	20 000	201247	51.002	23-875	55.252	56.292	57.6IC	60.101	SCTATPRI 1
	N 1	446 30	20.010	21.012	29.147	31.403	34.448	38.078	40.926	46. 57	611-14-1 2
		400.70	212.86	519.59	511.00	499.98	499.36	+98-03	675.64	4 16 6.5	
	¥ Z	542.61	600.64	603.49	617.06	624-88	621.25	694 70	643 / 1	411	¥ 4
	V7 1	468.61	512.74	519.53	510.97		607 74	374420	203.42	211+47	V 2
	VZ 2	433.55	456.55	444.57	400 23	633.14		494.70	412.23	432.470	VI 1
	V-THETA 1	6.00	6.06	6.00	400.33	202.17	202141	473.59	430.15	300.64	VZ L
	V-THETA S	403 03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cast	V-THEIA 1
	VIOAL 1	403.77	3YU 21	362.17	377.21	371.45	3: 9.79	356.8:	a62.0°	34.6	1 - 1 - 1 - 1
	VIPRI 1	110.0	603.9	¥14.2	827.1	647.4	873.7	AP4.3	HRGO	0.3.5	V-INCIA 2
	Y(PR] 2	461.7	511.0	524.3	559.1	548.4	613.6		1007-0	672+1	VIENT 1
	VTHETA PK1	-611.7	-619.1	-626-9	-651.2	-696	. 717	002.0	214-5	- 3	V(PR) 2
	VTHETA PK1	-209.9	-236-8	-243.0	-272 2	- 20- 4	-/1/+0	-/41.6	-/+/+1	-755.44	VIHE TA PRI
	11 T	611 70	110 01	-24040	-21213	300.6	-346.7	-371.0	-37s+U	-587.1	VIHLIA PR.
	v i	011.00	D19405	020 87	651.23	684.17	716.96	741.63	749.14	755-52	11 1
	02	013.92	621.04	626.16	649.53	678.02	706.51	727-88	735-00	74 - 13	
	M 1	0.4274	0.4694	0.4758	0.4676	0.4571	0.4565	0 4762	0 4340	11112	0 2
	M 2	0.5233	0.5320	0.5355	0.5481	0	0 KEN1	0.4002	0.4268	U.3904	M 1
	M(PR) 1	0.7627	11.7367	0 7464	0 7636	0.000	0.3315	0.5257	0.4969	6.4486	۳.
	MIPRI 2	() 4254	0 6631	011430	0.1975	0.7747	0.7967	U.81 66	0.E115	6.79.3	M(PK) 1
	TUNKADO		0+4951	0.4652	0.4967	0.5226	0.5449	0.5334	G. 5033	0.4665	MIRSI 2
	TOSALER!	20.103	23.545	ZZ.735	22.734	22.454	26.747	18.129	16.600	15 464	TINK CALL
	UUBAK	0.0952	0.1167	D.1066	0.0630	0.0493	0.0479	0-0937			IURNEP-1
	LOSS PARA	0.02+8	0.0306	0.0281	0.0171	0.0135	0 0113	0.0757	0.1318	41527	1.00 %
	DFAC	0-5270	4.5662	0 4947		010133	0.0155	0.0256	0.0349	D.U372	LLI PARA
		6 8467	0.000		0.4043	0.4409	0+4350	G+4625	6.4997	6.5.67	(FAL
		(1953	0+4321	0.8757	0+4358	0.9532	0_9591	0.8977	0.8619	D.8689	1 * * * *
		0.0352	0.8273	0.0716	0.9304	v.y515	0.9576	Ú.£941	5.6512	D. F. PF	TLC
	INCLU	0.114	-1.550	-0.229	-0.101	-3.440	-0.74+	-2.6UZ	- TU-		
	Dr VN	10.689	12.657	12.978	10.506	8-197		4 155		-/•>04 .	INCLO
	P 1	14.508	14-011	14.637	14 725	16 741	0.000	P+**22	1 + 164	10.500	DEAN
	P 2	18.445	10 644	14 44 3	19:122	144141	14+734	14.675	14.5it	14	P 1
	1	610 300	110.304	10.042	18-910	19.036	19 067	10.766	16,435	17. 927	₽,
		210-100	510.700	516.700	516.700	518.700	518.700	518.700	518.706	511 . 706	11
	• <i>2</i>	562.900	560.550	556.810	559.050	560.020	560.100	560.950	561.460	667 610	
										20110.00	
STATER D	PCT SPAN	95.UQ	90.00	65.60	70.00	50-07	20.00	16	-		
	Alu	33-267	33. 564	33 651	34 000		50.00	12.00	10.00	2	PUT SPAN
STATUR-LIE.	6ETA 2	63.302	641.700	36 913	37.774	30++20	21+040	30.919	39.276	3° c 3	D1A .
STATCOLT E		-1.102	40.200	38.947	31.132	35.961	35.313	37.809	41.457	40	+ {] 4
314104-1424	DLIA ZA	2.050	2.850	2.906	2.500	2.260	2.971	3.692	4. 341		61 TA 7.
	¥ 2	569.11	603.74	613.07	617.06	033.74	624 23	h64 1 1	548	331 A31	51 IN 24
	V ZA	458.40	462.31	466.09	512.75	539.23	.46 37		240.00	443+64	۷.
	YZ 2	426.72	460.52	676.75	487 05	512 27	500.01	503.20	402.55	406.94	V _ 4
	¥7 24	456-10	441 73	444 47	101.7.	316+11	206.42	460.99	410.89	341.29	V2 Z
	V-THETA :	40. 04	300.30	903 - 97	214+19	536.63	547.31	501.75	460.74	457.34	¥2 24
	The Table 14 2	404.04	390.39	362.20	377.57	372.02	366.53	357.69	362.97	355.05	N-71616 2
	V-INETA ZA	16.40	22+99	23.56	22.36	21.26	26.40	32.37			V-INCIA 2
	M 2	0.5200	0.5349	0.5445	0.5481	1.5636	(1 6543		30.50	36968	V-IHEJA CA
	M 2A	0.4604	0.4046	0.4049	0.4513	6 474	0.000	0.0103	V++C_+	0.43.4	Mi
	TURN (PR)	41 252	37.437	36.646	36 33		0036	0.9418	0.4226	0.4160	M LA
	LITTEAM	0 0717	0.0045	20.047	37.220	100.00	10 و ، يرد	34.072	37.066	42.140	TUKN (PR.)
	LOCA DAD -	0.0111	0-0962	0.1065	0.0313	0.0225	0.0164	0.6847	0.0445	-6.11	1116 AL
	LUSS PARA	0.0241	0.0327	0.0366	0.0111	0.0082	6.0063	0.0335	0-0197	-0.00	NOTAR DOC
	JEAC	0.4436	0.44 6	0.4431	0.3741	0.3569	0.3276	41.3404	0 4-55	-4.0402	LUSS PARA
	EFFP	0.6357	0.7503	0.7729	0.9101	6.9753	0 0347		0.2003	6.3164	UFAL
	INCID	-0.445	-1,100	-1 344	-0 100	0.7283	4+7364	0.7033	v.6014	2.0751	LFFP
	DEVIE	1. 003	14		-0.298	-0.744	-0.554	-u.59t	-1.716	-13.0ivs	INCLU
		10.002	14.104	14.210	13.475	13.272	14.635	16,130	17.016	6.801	1.E.V.M
	r 4	16.455	18.569	16.642	16.818	19,036	19.067	18.766	18.444	0.001	
	P 2A	16.233 -	18,253	18.279	18.709	18,953	19.000	18 500	10 13	4 f 4 7 4 f	r (
	T 2	562.900	560.550	556-810	559-050	541.020	540 10C	10,762	10+300	18-176	P ZA
	T 2A	562.900	560.550	558.810	LEG AEA	540.020	200.100	200 450	>¢1.+60	502.000	Τ.
	LILIBAR ES	9-0704	0.0405		J37.070	200-020	>00.100	566.950	561.460	562.010	1.4
	DO EF	10	0.0809	0.0817	0.0444	0.0348	0.0319	0.1311	0.1412	J alaha	UUDAN FS
	F 6 F 9	40+451	18+513	18.549	18.865	19.083	19.124	18.932	19.725	10.604	D. LT
	LOSS PARA F:	5 J.0236	0.0273	0.0280	0.0157	0.0128	0.0122	0.0518	130/23	404290	FK F1
								~ • • • • • • •	0.0202	0.0297	LLSS PARA FS
Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100,16 Equivalent Rotor Speed = 4216.70 Equivalent Weight Flow = 102.67 Uniform Inlet

1	14	L	F.	F.	

	PC1 SPAN	46.ED	₩2.LU	66.46	71.00	49.50	28.10	12 (10	• • •		
	LIA	33.1.2	33.529	33.962	35.312	37-137	38.954	40.321	411 727	3.06	PUT SPAN
	BEIA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	
		405 10	0.000	0 ∎000	0.000	0.000	0.000	0.000	0.000	0.000	DETA U
	v i	4//.48	400.18	406.18	406.18	400.16	406.18	406-16	400.18	406.16	Y b
	¥2 0	400.18	406-18	433 - 71	426-43	426.01	426.81	412.60	400.64	372.66	V I
	Vz I	422.47	435.94	433.41	426.42	405.15	405.12	406-08	406.07	406.08	V2 0
	V-THETA U	0.00	0.00	0.00	0.00	0.06	420-74	412.49	406.53	372.59	VZ I
	V-ThETA 1	0.00	0.00	0.06	0.00	0.00	0.00	5.00	0.00	0.00	V-THETA U
	MO	0.3087	0.3687	0.3087	0.3687	0.3687	0.3687	6.3687	0.00	0.3463	V-THETA 1
	TUEN	0-3839	6.3900	6.3947	0.3876	U.3873	0.3880	0.3747	0.3636	0.3376	
	illin 4 k	0.4354	(25.2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TUNN
	DFAC	-11-1/46		0.2308 ~0.049	0.2764	0-2817	ŭ.2625	0.3523	0.4∠07	0.5573	UULAR
	LFFP	0.1036	u 17H0	0.000	-0.050	-0.049	-0.051	~0.016	0.014	0+082	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.2715	0_2791	0.0862	-0.0726	-0.4147	EFFP
	DEVM	-0.000	-0.000	+0.000	-0.0001	-9.0001	-0.0001	0.0001	0.0001	0.0001	INCID
	Ρu	15.11в	15,118	15.110	15.118	15-118	15-118	-0.000	-0.000	-0.060	DEAN
	P 1	14.520	14.7c2	14.005	14.744	14.737	14.735	14.541	14.546	12.118	P 0
		15 700	515.700	518.700	518.700	513.700	516.700	516.700	518.700	515 700	
	1 1	>10.700	518+700	518.700	518.700	516.700	518.700	518.700	516.700	518.700	Ti
-ሮጀርት ነ	PLT SPAN	85-00	w		70.00						• •
	-1A	13.2.16	31-021	34 007	10.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ALTER PLACE	btla 1	0.000	0.000	0.000	0.000	20.105	38.240	39.405	39 791	40.176	0IA
ncies the r	LETA 2	45.847	44.180	4	41, 301	19-914	36 693	0.000	0.000	0.006	bETA 1
	EETA(PR) 1	55.205	53.190	53.040	54.513	50-166	57.419	40 34 F	42.305	45.709	beta 2
	LETA(PR) 2	25.915	27.777	29.567	31.129	33.554	36.316	30,101	2747/0	61.8P5	SETALPR) 1
	V I	423.46	461.43	469.90	462.44	457.35	458,23	445.99	434.37	40.000	BETATER 2
	V 2 V 7 1	579.42	575.63	509.84	580.92	587.29	567.18	572.49	549-10	508-60	
	¥	₩23 . 38	401.32	409.84	462.46	456.79	456.18	443.05	431.23	402.02	¥2 1
	V-1ELIA 3	100 a 100		415.46	436-41	450.30	450.54	435.49	404.90	554.54	VI 2
	V-THEIA C	415.49	+01-15	190.00	363 61	0.00	0.00	0.00	n=00	0.00	V-THETA 1
	V(FR) 1	7-2.0	770.1	761.5	794 7	3/0.07	108 1	369.94	369.11	363.43	V-THETA 2
	V(PR) 2	4+0.5	400.0	477.7	509-8	540.6	040.3	842.4	863.4	854.4	V(PR) 1
	VILLIA PEL	-et9.3	-110.0	-624+4	-6+8.7	-681.5	-714.)	-738.7	744.1	517.5	V(PK) 2
	VIEEDA PN2	-196.0	-217.4	-235+7	-261.6	-248.7	-335.6	- 355 . 1	-14042	- 152.4	VINETA PRI
	01	609 ZL	610-01	624.39	648.06	641.47	714.13	738.76	746-18	757.44	NINEIA PKZ
	U 2 W 1	511.50	618.59	625.68	646.97	675.35	763.72	745.01	732.10	739-20	U 1
	~ 4 M 2	0.5107	684205 N 6566	0.4265	0.4215	6.4167	0.4175	0.4660	0.3950	0.3073	Ň I
	HIPKI L	0.0744	4-7019	0.5040	0.5142	0.5200	0-5195	U.5054	0.4633	0-4457	M 2
	M(PK) Z	6.1955	u-4127	0.4225	0.7201	U 74 FB	0.7731	0.7855	0.7853	0.7755	M(PR) 1
	TURN(PR)	29.257	25.410	23.471	23.364	22.595	21 064	0.4970	0.4795	0.45.15	M(PR) 2
	UUSAR	0.0784	0.1103	0.1CB9	0.0787	0.0417	0.0528	0.0943	10-040	15-166	TURN (PR)
	LUSS PARA	D*1744	0.0286	0.0261	0.0207	0.0165	0.0170	0.0259	0.1230	0+1450	
		0.5580	U.5472	0.5371	6.5079	0+4885"	0.4762	0.4956	0.5170	0.0352	LUSS PAKA
	166	0.5840	0.6170	0.8854	6.9241	0.9620	0.9593	0.9272	0.8607	Ú-8295	FFFP
	33015	7 774	0.0025	0.4315	0-9266	t-9606	0.4578	0.9245	0.8104	0.6239	EFF
	ELVM	10.7.	24201	14 441	2=416	2+165	1.426	V-160	-<•>>>1	-0.271	INUID
	P 3	14.526	14.762	34.005	14 76 0	10-342	в.756	7.507	0.722	16-635	DEVN
	Ρ.	16.725	18.705	36.674	18.625	14.737	14.735	14.641	14 548	14.363	P 1
	T 1	518.700	\$15.700	518.700	518.700	518.700	516 700	114-911	10.053	16.262	P 2
	12	563.050	5au.780	55 U.U	559.210	555.570	560-240	561-260	5.2 2.	518.708	T L
							,		2028280	763.420	1 2
5.1.6 Lin	PCT SPAN	66 I G	00 ()								
	11 I I	43.267	13 644	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STRTOK-Late	UETA 2	46.200	91.972	53.721	34.992	36.420	37.846	36.919	34.270	39.633	LEA
CIATON-L.	Et1A 2A	3.200	2.750	3.750	7-640	7 5 20	30.140	41.245	835،د+	47.476	bella ż
	¥ 2	575.77	576.50	578.48	580.42	505.22	5.271	4-771	5.051	>+241	BETA ZA
	V ZA	-41.08	435 68	434.24	465.99	-83.96	498.47	457.94	222.11	490.95	V 2
	VL Z	348.51	416.66	427.05	436.00	460.09	459.70	422.94	385.61	370 46	V 2A
	VZ ZA	446.34	+34.73	435.30	465.43	463.35	497.11	455.99	419.16	475-85	V2 2 V2 JA
	V-THETA 2	410.00	401.29	390-19	363.77	77.27 ذ	308.90	370,64	370.25	304.39	V-The TA 2
	A C	E-4076	20.49	28.40	21.46	21.25	31.02	36.06	<u>28.</u> 82	34.34	V-THETA ZA
	► čA	ú.384b	0-3807	0.3800	0.5142	0.5274	0.5220	0.4966	0.4/04	0.4297	M Z
	TURN (PR)	43.000	46.171	38.606	38.702	36 913	0+4377 36 140	0.4000	0.3652	0.3757	M 2A
	UUBAR	U+6624	U+0744	0.0686	0+0321	0.0486	0.0363	30-427	38.755	42+686	TURN(Pr.)
	LOSS PARA	0.0210	0.0253	0.0236	0.0114	0180	0-0134	0.0474	0.0366	-0.0331	UUDAR
		0.4627	0.4665	0.4649	0.4200	0.4091	0.3709	6.4224	0.4.46	0.3969	UEAC
	INCER 1 NCEL	D.1.629	U-8438	0.8573	0.9167	0.6712	0.8862	0.6760	0.7.0)	1.1320	EFFP
	DEVM	-2.961	0.534	7 126	3, 324	2-645	2.678	2.537	0.063	-11.224	INCID
	P 2	16.725	12.4062	12.060	13.615	13.532	15.235	17.209	17.727	10.090	DEVM
	PZA	18.5.7	18.477	10.074	10.026	19.024	19.066	18.911	10.053	16.262	P 2
	t.	563.050	560.78	59.450	10+129	18.864	10.966	16.559	10.413	4دف، طل	P LA
	T 24	503.056	560.780	559.050	559,210	337.570	160.240 560.340	201-260	562.200	503.420	I c
	UUBAR FS	0≖J772	0.0906	0.0922	0.0561	D.0508	0.0355	0.1150	262.260	>63.420	T ZA
	PZ 15	10.774	18.756	18.753	18.907	19,031	19.042	18.897	18.750	Jeij/2 10.403	UUDAR FS
	LUSS PARA F	5	0.0308	0.0317	0.0199	C.0188	0+0136	0.0000	101107	10+091	76 75 : 35 0404 65
											LUGG FARF F3

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100.06 Equivalent Rotor Speed = 4212.51 Equivalent Weight Flow = 95.36 Uniform Inlet

INLET

10161											
	PCT SPAN	96.80	92.00	66-90	71.00	40.50	70 10	12 /16	* • •	3 64	
	DIA	33.122	32 620	33 44.7	35 313	77.50	20.000	12.00	1-10	3.00	PUI SPAN
	BETA	0 000	0 000	331302	33.312	31.131	30.777	90.321	40.737	41.085	DIA
	BEIA U	u=000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	D_000	0.000	6.000	RETA 1
	V O	375.24	375.24	375.24	375.24	375.24	375.24	375 24	376 74	375 37	
	¥ i	384.54	400 37	200 71	304 30	201 01	212464	212+24	515.24	312424	ΨU
	47.0	376 3		377672	374427	379.01	392.00	380.43	371+86	349.16	¥ 1
		372+24	312+24	212+24	315.24	375.22	375.18	375.15	375.14	375.15	VZ O
	¥4 L	366.54	400.37	399-71	394.26	394.76	392.54	360,84	371.76	349.06	V2 1
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N_THETA A
	V-THETA 1	0.00	0.00	0-00	0.00	0.00	0.00	0.00	0.00	0.00	
	MO	0 3400	0.3400	0 3400	0 3(00	0.00	0.00	0.00	0.00	0.00	V-INETA I
		0.3400	033400	0.3400	0.3400	0.3400	0.3400	0.3400	0.3400	0.3+00	H Q
	T •	0.3204	0.3633	0.3627	0.3576	0.3581	0.3561	0.3452	0.3368	0.3158	M 1
	TURN	C.O	0.0	0.0	0.0	0_0	0.0	0.0	0-0	0.0	TURM
	UUBAR	0.4374	0.2576	0.2142	0-2656	0.2691	0.2736	0.3400	0.3031	0 6000	
	DEAC	-0.030	-0.047	-0 045	-0.051	-0.053		0.3400	V+3751	0.5062	UUDAK
	6660	0 1344		-01005	-0.051	-0.052	-0.040	-0.015	0.009	0.070	OFAC
		0-1204	0+3245	0.3964	0.2900	0+2936	0.2651	0.0854	-0.0495	-0.3739	EFFP
	INCID	0.0001	0.0001	0.0601	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCTO
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	PO	15.042	15.042	15.042	15-042	15.042	15 042	16 04 2	14 043	16 0(0	UL VA
	P 1	16 674	16 764				12.042	1	12:042	12:042	F 0
	7 0	17130	14-144	19+779	14.735	14.731	14.726	14.649	1+.587	14.454	P 1
		218*100	218+100	518.700	518.700	518.700	518.700	518.700	518.700	518.700	το
	F 1	518.700	518.700	518.700	518.700	518.700	518.700	516.700	518.700	518.700	T 1
K0168 5	PLT SPAN	95 a D C	90.00	85.00	70.00	50.00	36.00	15.00	10.05	5.64	OFT SDAN
	DIA .	33.234	33 421	34 007	35 144	34 704	39 340	30.00	30.30-	2400	FUI SPAN
RUTUR - LE	hETA 1	0 000	0 000		32.107	20-100	20.240	37.405	37.191	40.176	UIA
PUTCH -T D	ULTA T		0.000	0.000	0.000	0.000	0.000	0-000	0.000	0.000	BETA 1
NOTOR TIPES	DETA Z	40 - 49 /	4r.106	+6.300	44.626	43.598	42.267	43.683	47.106	50.329	BETA 2
	BETA(PR) 1	57.529	55.526	55.310	56.639	58.174	59-577	61.048	61-814	63-422	BETAIPPI 1
	BETA(PR) 2	25.197	26 B21	30.53Å	32.141	36.500	34.664	10.844	44 607	48 002	ACTAINAL S
	V 1	387.42	423-04	431 01	474 47	433 04	470 1	410 00		70.902	DETATPRI Z
	к э	575 45	423400	10+154	420.01	423.00	420.65	410*40	402.34	378.53	¥ 1
	V 2	212.45	228.20	552.90	562.04	568.33	592.14	560.19	521.88	492.51	¥ 2
	¥2 I	387.34	422.96	+31.76	426.65	422.54	418.95	408.25	399.47	376.06	¥2 1
	¥2 2	381.65	379.92	361.95	399.99	411.45	437.73	603.06	354.62	312 95	47.7
	V-THETA 1	0.00	0-00	0.00	0.00	0.00	0.00	402400		513.75	
	V-THETA :	431 33	406 01	200 73	204.02	501.00	1000	0.00	0.00	0.00	V-THETA I
	VIDEL 1		400.73	377.12	344.93	341-90	391.84	201.00	381.70	378.55	V-THETA 2
	FIFRI L	121.2	14143	128.1	715.9	801.5	628.2	644.7	847.1	841.6	VIPR) 1
	V(PR) 2 .	421.6	433.7	443.5	472.5	499.5	534.3	526.2	498.9	478.3	VIPBE 2
	VTHETA PR1	-608.7	-616.0	-623.8	-648.0	-680.8	-713.4	-738.0	-745-4	-751.7	VTHETA OD 1
	VTHETA PR2	-179.6	-209-0	-225-3	-251.5	-282.9	-305.2	-334 4	-340 7	-350 6	WTHETA DOD
	11.1	608-66	616.00	623 77	449 01	480 70	713 43	737 07			TIBELA PRZ
	ŭ,	410 00	113 07	425.04	040-01	000.19	113442	131.91	143.44	121 02	01
	U 2	C10.84	911.41	625.06	646+32	014.68	703.02	724.29	731.36	736.46	U 2
	M 1	D+3513	0.3845	0.3927	0,3879	D.3845	0.3822	0.37.52	0.3651	0.3430	M 1
	M 2	0.5066	0.4912	0.4672	0.4957	0.5011	0.5231	0.4926	0.4569	0 4296	ж.>
	M(PR) 1	0.6542	0-6792	0-6899	0.7053	0.7285	0.7526	0 7470	A 7465	0 74 74	17 L
	MIPET 2	0.3710	0 2916	0 390.6	0 4147	0 4404	0 4 7 7 0	0.1010	011000	0.7020	MERKJ 1
	THENEDRE	22 220	24 301	34 380	Vet101		0.4720	V+402D	0.4368	0.4173	MIPR) 2
	TORALPR J	261364	20.101	294110	24.418	23.049	24.044	21.113	17.149	14.471	TURN(PR)
	UUBAR	0.0765	0.1149	0.1160	0.0913	0.0884	0.0778	0.1229	0.1686	ű.1904	UUBAR
	LOSS PARA	0.0200	0.0295	0.0297	0.0238	0.0235	0.0215	0.0327	0.0421	0.0443	LOSS PAPA
	UFAC	0.5889	0.5604	0.5720	0.5474	0.5335	0.5152	0 5346	0 6476	0 5004	CEAC
	LEED	6 8767	1. 8374	0 0507	0 0040	0.01.0			0.5675	0.2070	UTAL
	200	0.0102		0.0557	0.7040	0.9102	0.9735	0.8842	0.0057	0.7605	EFFP
	EFF	0.0114	0.8314	0.8539	0.4002	0.9152	0.9724	0.8802	0.7969	0.7521	ÉFF
	INCLU	5.098	4.609	+.732	4.597	4.173	3,589	2.369	-0.486	-4.728	INCLU
	DEVM	10.047	14.661	15.904	13.520	11.297	7-324	1.242	11.458	12.926	DEWN
	P 1	14.536	14.744	14.794	14-735	14.731	14.724	14 440	34 597	34 464	
	9 2	16.934	18.774	10 744	18 607	10 071		16 036	144301	14.434	PI
		616 700	510 7-0	101104	104707	1740/1	17.407	19+020	10.011	18.324	P 2
	1.1	510.100	210+100	218.100	518-700	218.100	>18.700	516.700	518.700	516.70U	71
	12	565.410	563.270	561.390	561.230	562.100	562.490	564.350	565.490	567.060	T 2
											-
STATOR U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10-00	5-00	PET SPAN
	01A	33.207	33.564	33, 921	34, 992	36.420	37.848	38,010	30,774	30.435	GTA CENT
STATUR-L F.	BETA 2	44.963	44 477	45.440	44 400	43 074	43 115	JU1717	274675	37-033	
CTATOR T	DCT. 74		40.021			72.714	44+112	44+941	48.867	52.586	DETA 2
are rue-Fata	DETA ZA	3.100	4.210	3-750	3.120	2,460	3.301	4.131	5.402	5.702	BETA 2A
	¥ Z	512.63	>60.92	201.09	562.04	575.85	594.87	551.10	508.96	475.68	V 2
	V 2A	427.92	417.95	413,92	441.65	453.09	461.34	421.79	407.11	400-28	¥ 24
	VZ 2	376.56	383.78	393.54	349-53	421-17	440.97	390.08	374 03	286 16	112 T
	42 24	427.00	414 91	412.01	440 03	463 63	(40.30	600 00		200014	VL 2
				413.01	770+73	492.02	400.50	420.30	404.90	341.00	VZ 2A
	A-INCIA 5	421+40	409.07	399-92	342*50	282.40	378.00	388.60	382.67	379.55	Y-THETA 2
	V-THETA 2A	28.06	30.65	27.07	24.03	19.44	26.55	30.36	38.29	39.75	V-THETA 2A
	M 2	0.5036	0.4937	0.4948	0.4957	0.5081	0.5256	0.4842	0.4452	0.4144	M 2
	M 2A	0.3722	0.3640	0.3610	0-3859	0.3959	0.4032	0.3670	0 1534	0 3430	
	TURN/PR 1	45,122	47. 414	41,708	41.647	40.444	38.744	40 314	43 353	67	
	100000			444100	714302	70.770	30.100	40.714	-2-35/	47.235	FURN (PR.)
	UUDAR	0.0100	0.0487	0.0241	0.0361	0+0605	0.1411	0.1536	0.0592	0.0476	UUBAR
	LOSS PARA	0.0235	0.0165	0.0203	0.0128	0.0224	0.0543	0.0607	0.0236	-0.0191	LÚSS PARA
	DFAC	0.4900	4.4847	0.4913	0.4494	0.4538	0.4666	0.4938	0.4726	D 444 V	UFAC
	EFFP	6.8555	0.9001	0-8815	0.9142	0.8560	0.6744	0.4640	0 . 84. 74	1 1617	6 E E D
	THETH	-1 264	3 4 3 9	6 140		4 34 5	V. UICO	V+03BU	010410	141211	EFFF
	14410	11 100	31437	2.107	P+02	0.200	Q+290	0.103	2.635	-0.215	INCLO
	UE YM	12.242	15.522	12-060	14.095	13.471	14.965	16.568	18.677	10.550	i∂E VM
	P 2	18.936	18.774	16.764	16.907	19.071	19.409	19.020	18.611	18.324	Ρż
	P 2 A	18.725	18.634	16.593	18.802	18,885	18.979	16.547	16.470	18.421	e
	T 2	565.410	563.270	561- 190	561.230	562.100	562.490	564 36/	645 400		
	+	541 410	544	FA1 300	5010230	513 100		207-330	5 D7 . 970	201-000	1 4
	1 48	20224410	-03.510	201.370	201+430	202.100	395.440	204.550	262.490	567.Ú6U	T 2A
	UUBAR PS	0.000	0.1040	A=1131	4.0798	0.0760	0+0652	0.1102	0.1272	0.1215	UUBAK ES
	P2 F5	18+995	18.954	16.949	19-046	19+123	19+138	18.882	18.795	18.718	P2 FS
	LUSS PARA F	5 0+6295	0.0354	0.0397	0.0283	0:0281	0.0250	0.0435	040506	3.0488	INSE BABA ES
	· · · · ·	-			+					*******	FORT LAVE LO

167

Table A-3, Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100.09 Equivalent Rotor Speed = 4213.61 Equivalent Weight Flow = 88.32 Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PET SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA D	0.000	0.000	0+000	0.000	0.000	0.000	u+000	0.000	0.000	BETA U
	¥ 0	346.20	346-20	366.20	344.20	264.20	0.000	0.000	0.000	0.000	BETA 1
	V 1	357.52	374.91	370.88	367.53	363.00	361.71	347.07	319.28	346-20	¥ U
	V2 0	346.20	346-20	346.20	346.20	346.18	346.15	346-12	346.11	346.11	¥Z u
	VZ 1 Vethet o	357.52	374.91	370.88	367.53	362.97	361.65	346.96	339.18	3-8-05	¥2 1
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	- M U	0.3131	0.3131	0.3131	0.3131	0.3131	0.3131	0.00	0.00	0.00	V-THETA 1
	H 1	0.3236	0.3397	0.3359	0.3328	0.3286	0.3274	0.3139	0.3067	0.2970	M L
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DEAC	U.9404	0.083	0.2268	0.2569	0.2631	0.2651	0.3252	0.3687	0.4392	UUSAR
	EFFP	0.1329	0.4148	0.4033	0.3369	0.2813	0.045	-0.002	0.020	0.050	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCLO
	DEVH	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.060	-0.000	-0.006	DEVM
	P U P 1	14.980	14.980	14.980	14.980	14.980	14.980	14.980	14.960	14.980	Ρú
	τά	518.700	516.700	518.700	19+148 518,700	19+721 519.700	14-719	14.660	14.618	14.548	P 1
	Ť i	518.700	516.700	51B.700	518.700	518.700	518.700	518.700	516.700	516.700	T L
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15-60	10.00	5-00	DET SDAL
0.0766	DIA	33.230	33.621	34.007	35.164	36.706	38.248	39.405	39.741	40.170	DIA
RUTUR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	0.000	BETA 1
NOTOR STACE	AFTAIPRE 1	59.570	47.304	40.731	4/.520	4/-246	46.550	50.33E	53.661	57.508	BETA Z
	BETA(PR) 2	23.951	27.444	30.607	30.195	32.099	37.240	43.778	03+773	64.610	BETALPRI I
	V 1	358.32	395.68	399.93	397.03	368.28	386.88	373.67	366.39	355.98	V 1
	¥ 2	579.39	563.60	547.58	571.87	581.88	563.48	525.14	514.21	515.30	V 2
	V4 1 V7 2	328.22	342 454	399.88	397.00	367.80	385.31	3/1.21	263.78	353-66	YZ I
	V-THETA 1	0.00	0.00	0.00	300.15	394.90	16/.17	334+73	304.17	216.52	
	V-THETA 2	447.65	427.29	411.57	421.80	427.14	408.69	403.73	413.79	434.19	V-THETA 3
	V(PR) 1	706.5	732.3	741.1	760.1	783.9	811.7	827.4	830.5	631.9	V(PR) 1
	VIPETA PEL	402.5	+14-1 	419+7	446.8	466.4	407.1	464.4	440.7	412.0	VIPRE 2
	VTHETA PR2	-163.4	-190.8	-213.7	-224.7	-747.7	-713.6	-738.2	-745.6	-751.9	VINETA PRI
	U l	608.84	616.16	623.94	648.16	680.97	713.61	736.10	745.04	751.19	U 1
	U 2	611.05	618.14	625.23	646-49	674.85	703.21	724.48	731,57	736.65	ů ż
		0.3243	0.3589	0.3629	0+3602	0.3521	0.3508	0.3385	0.3318	0.3221	M 1
	M(PR) 1	0.0394	D-6643	0.6725	0.5041	0.5129	0.4953	0.4590	0.4485	0.4455	MZ
	M(PR) 2	0.3538	0.3643	0.3692	0.3938	0.4111	0.4281	0-4059	0.3843	0.3586	HIPELL
	TURN (PR)	35.573	24.850	26.735	28.318	28.226	24.330	19.406	17.661	17.014	TURNIER
		0.0786	0.1173	0.1215	0.1058	0.1074	0.1256	6.2075	0.2525	0+2421	UUBAR
	UFAC	0.6142	0.0305	0.0310	0.0281	0.0293	0.0337	0.0520	0.0612	0.0496	LUSS PAKA
	EFFP	0.8962	0.8646	0-6647	0.927	C. 4549	0.9026	0.7816	0.7430	0.7350	
	EFF	0.6921	0.8597	0.8599	0.9248	4.9531	V-8966	0.7732	0.735c	0 72 6	LFF LFF
	INCID	7.098	6.362	0.700	6.471	6.340	5.049	4.036	1.16.	-20235	INCID
	P 1	14.541	14-732	12.77	11.55	5.867 14 731	9.698	12,152	13.114	11.776	DEVM
	P 2	19.146	18.993	18.861	19.167	19-452	14+/19	14.000	14+618	14,548	P 2
	11	518.700	518,700	518.700	518.700	518,700	518.760	516.700	518.700	516.700	TI
	12	566.250	564.130	562.500	502.730	503.800	564.950	567.650	509.060	570.750	Ť Ž
STATOR D		95 00	80.00	85 DO	70 40						
	DIA	33.207	33,564	33.921	10+00	50-00	30.00	15.00	10.00	5.00	PLT SPAN
STATUR-L.E.	BETA 2	51.014	46.996	47.824	47.592	46.528		51.575	39.270	39.033	DIA BETA J
STATGR-T.F.	BETA 2A	3.750	4.590	4.250	3.090	2.690	2.900	3,401	4.952	5.572	bETA ZA
	¥ 2	576.04	566.40	555.65	571.87	569.67	566.04	516.94	501.65	447.3r	V Z
	¥ 2#	431.34	420.64	414.13	428.61	435.51	435.54	394.85	390.71	(4.48د	V 24
	YZ ZA	430.41	419.48	412.97	427.93	402+27	390.28	321.05	281.53	240.05	¥4 2
	V-THETA 2	447.70	427.43	411.77	422.20	427.60	409.55	404-71	414.84	435-15	VALZA Vethela 2
	V-THETA 2A	28.21	33.67	30.69	23.10	20.43	22.03	23.76	33.64	37.77	V-THETA ZA
	M 2 M 2A	0.5063	0-4984	0.4892	0.5041	0.5201	0+4977	0.4515	0.4371	U.4326	H 2
	TURN (PR)	67.266	0-3003	43 572	0.3/3/	0.3795	0.3791	0.3464	0.3379	0.3362	M ZA
	UUGAR	0.0809	0.0677	0.0397	0.1067	0.1677	0,1281	40,120	20.840	55.512 0.0341	TURNEPET
	LOSS PARA	0+0272	0.0230	0.0136	0.0379	0.0620	0.0493	0.0245	6.0131	0.0157	LUSS PARA
	DFAC	0.4966	4+4939	0.4910	0.4991	0.5181	0-4955	0.5203	0.5270	0.5417	GFAC
	INCIO	0.0323	0.8620	0.9103	0.7776	0.6630	0.7124	4.8570	0.9222	0.9182	EFFF
	DEAN	12,582	5.008	15,560	9+501 14-066	9.822	10.512	12.868	12.665	1.933	INCIC
	P 2	19.146	15.993	18.861	19.187	19.452	19.279	15.034	11.021	10.420	Ut V 7
	P 2A	18.697	18.792	18.747	15.861	18.902	18.694	18.007	16.530	16.529	P LA
	T 2 T 34	566-250	564,130	562.500	562.730	563.000	564.950	567.650	569.060	570.750	T 2
	UUBAR FS	200+23U U+0933	204.130	562.500 0.1167	562.730	563-800	564,950	567.650	569.060	570.75u	T 2A
	P2 F5	19.167	19.131	19.101	19.279	19.320	19.213	18-YH1 18-YH1	0+1197	0.1149 (8.410	UUSAR FS
	LOSS PARA F	5 0+1313	0.0371	0+0392	0.0472	0:0491	0.0418	0.0429	0.0475	0.0461	LOSS PARA PS

.

.

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 90.72 Equivalent Rotor Speed = 3819.18 Equivalent Weight Flow = 113.67 Uniform Inlet

INLET

ī

۰

	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7-10	3.00	PCT SPAN
	DIA	33,122	33.529	33.962	35.312	37.137	38.954	40+321	40.737	41.085	DIA
1	BETA O	0.000	0.000	0.000	0+000	0.000	0.000	0.000	0.000	0.000	BETA C
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	¥ 0	452.47	452.47	452.47	452.47	452+47	452.47	452.47	452.47	452.47	V O
	V 1 V7 0	441.83	500.19	493.39	485.63	479.52	480.81	474.16	466.26	434.84	V 1
	¥7 1	492.47	92497	452.47	452.46	+52-43	452.39	452.35	452.34	452.35	VZ O
	V-THETA O	471.02	300.19	493.39	445.62	4/9.49	480.73	474.04	466.13	434 72	VZ 1
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0-00	0.00	0.00	V-THETA O
	N 0	0.4121	0.4121	0.4121	0 4121	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	H 1	0.4493	0.4573	0.4508	0.6434	0.4377	0.4200	0.4334	0.4121	0.4121	M D
	TURN	0.0	0.0	0.0	0.0	0.0	0.4567	0.4320	0.4291	0.3733	
	UUBAR	0.4497	0.2794	0.2622	0.3183	0-3726	0.1288	0.3639	0 6121	0 5616	I UKNI
	DFAC	-0.087	-0.105	-0.090	-0.073	-0.060	-0.063	-0.048	-0.030	0.039	DEAC
	EFFP	0.2984	0.4584	0.4344	0.3362	0.2681	0.2941	0.2219	0.1366	-0-1690	FFFP
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INC TO
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	PO	15.278	15.278	15.278	15,278	15.278	15.278	15.278	15.278	15.278	P O
	P 1 T 2	14.520	14.807	14.836	14.742	14.734	14.724	14+665	14.584	14.349	P 1
	1 0	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 0
	11	518.700	518.700	518.700	518.700	516.700	518.700	518.700	518.700	518.700	TI
SULCE D	DET CRAN	95.00	80.00	85 60	30.00					• • • •	
	DIA	33.236	33.621	34.007	35 344	36 706	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR +L.E.	LETA 1	0.000	0.000	0.000	0.000	0.000	20.240	37.403	34.141	40.176	DIA OFT. 1
RUTUR -T.E.	BETA 2	33.619	30+602	29.467	28-502	27.700	26.086	25.003	28.770	21 020	DEIA 1 DETA 2
	BETA(PR) 1	48.226	40.416	46.471	47.968	50-091	51.401	52.587	53.256	55.339	RETAIDDE 1
	BETA(PR) 2	26.992	26.365	26.312	26.478	29.680	33 309	39, 162	43,857	50-662	BETAIDEL 2
	V 3	493.06	531.60	537.28	529-61	516.88	518.43	515.17	508.18	474-31	V 1
	₩ 2	566.44	598.82	614.37	640.49	631.25	619.86	562.56	502.37	429 D8	¥ 2
	V2 1	442.46	531.54	537.22	529.58	516.24	516.33	511.78	504,56	471.22	¥Z 1
	VZ 2	471.67	515.39	534.88	562.84	558.65	555.84	504.33	439.15	363.26	VZ Z
	V-IPEIA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V+IHEIA 2	313.60	304 82	302+21	305+63	293.30	272.13	245.90	241,12	226.29	V-THETA 2
	V(FR) 1	140.0 620.4	675 3	180-1	791.0	805-1	828.9	844.4	845.6	830.3	V(PR) 1
	VTHETA PD1	-551.8	27343	390.1	D20.0	045.5	666-0	651.7	610-2	573.9	V(PR) 2
	VTHETA PR2	-240.2	-255.5	-264-5	-280-3	-318.4	-345 2	-604-1	-033 0	-001.5	VTHETA PRI
	Ul	551.84	558 4B	565.53	587.51	617.73	-303.2	-410-0	475 94		VINETA PRZ
	υ 2	553.85	560.27	566.70	585.98	611.68	637.38	656.66	663.09	440 51	U 1 11 7
	M 1	0.4505	0.4874	0.4928	0.4854	0.4732	0.4747	0.4716	0.4049	0.4327	Ф <u>2</u> М 1
	M 2	0.5047	0.5360	0.5516	0.5763	0.5673	0.5571	0.5033	0.4472	0.3798	N 2
	MIPR] 1	0.6762	0.7069	0.7155	0.7250	0.7371	0.7590	0.7730	0.7736	0.7575	MEPRI 1
	M(PR) 2	0.4717	0.5149	0.5358	0.5658	0.57BL	0.5985	0.5830	0.5432	0.5079	M(PR) 2
	TURN(PR)	21.229	20.046	20.156	21.490	20.392	18.029	13.334	9.305	4.602	TURN (PR)
	UUBAN	0.1648	0.1450	0.1133	0+0651	0.0757	0.0726	0.1305	0.2018	0.2357	UUBAR
	LUSS PARA	0.0925	0.0381	0.0302	0.0179	0.0212	0+0204	0.0351	0.0510	0.0529	LUSS PARA
	FFFD	0 6906	0.37724	0.3302	0.0238	0.3177	0.3062	0.3284	0.3774	0.4045	DFAC
	FFF	0.0841	0.7167	0.6069	0.9094	0.0072	0.0010	0.7334	0.5914	0.4819	EFFP
	INCID	-4-206	-4.500	74-106	-4-074	-3.912	We0040	0.7283	0.0852	0.4754	EFF Terr To
	DEVM	11.6+3	12.205	11.678	7.837	6-469	5.750	7.630	10 710	-12.637	INCIU
	P 1	14.520	14.807	14.536	14.742	14.734	14-774	14.665	14 584	14 340	
	P 2	16.791	17.113	17.306	17.581	17.510	17.385	16.750	16.220	15.674	- I - J
	ті	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	ŤĨ
	T 2	550.840	549.260	547.610	548.140	548.350	547,210	546,280	546.050	546.600	Ť 2
STATER (DET COM	86 AU	80.00		*** ***	FD 00	~~ ~~			_	_
JINION D		33-207	33.564	33,921	34.992	34.420	37 040	30.00	10.00	5.00	PCT SPAN
STATCR-L.E.	BETA 2	33.847	30.437	28.965	28.537	27.317	25.997	26.495	20.500	37.033	DIA DETA 2
STATCR-T.L.	BETA 2A	1.650	1.630	1.410	0.360	0.270	1.280	1.681	0.630	=3-241	961A 2 861a 24
	V 2	563.13	601.92	624.37	640.49	640.43	6ZZ .86	553.31	490-12	415.08	V 2
	¥ 2A	511.55	544+32	564.55	618.58	620.46	612.60	549.75	515.73	488.42	¥ 24
	VZ 2	467.70	518,96	546+25	562.57	568.71	559.29	494.50	425.56	346.86	¥2 2
	VZ ZA	511.33	544.09	564.35	618.48	620.24	612.09	549.06	515.26	487.12	¥2 2A
	V-THETA 2	313.65	304.92	302.36	305.92	293,75	272.69	246.49	241.73	226.89	V-THETA 2
	V-INEIA ZA	14.73	15.48	13.89	3.89	2.92	13.68	16.11	3.87	-27.58	V-THETA ZA
	M 24	0.4532	0.2309	0.5012	0.5763	0.5761	0.3599	0-4946	0+4359	0.3670	M 2
	TURNIPAL	32 197	28 807	37 664	28 371	0.9970	0.5501	0.4913	0.4596	0.4341	M 2A
	UUBAR	0.1011	0.0898	0.0002	-0.0091	-0.0151	-0.0007	24,110	27.122	36,373	FURN(PR)
	LOSS PARA	0.0347	4040.0	0.0276	-0.0032	-0.0057	-0-0001	0.0313	-0.0222		NADUU A NADUU
	DFAC	0.2705	0.2595	0,2550	0.2021	0.1999	0.1774	0.1724	0.1430	0.0717	LUSS PAKA
	EFFP	0.4644	0.5596	0.6109	1.1176	1.2164	1.0088	-1.4362	0.5263	0.3046	FFFP
	INCID	-16.320	-12,950	-11.325	-9.493	-9.366	-9.869	-12,203	-13.567	-26-010	INCID
	DEVM	10.482	12.942	12.720	11.335	11.2#2	12,946	14.120	13.110	1.610	DEVM
	P 2	16.791	17.113	17.306	17.581	17.510	17.385	16.750	16.220	15.674	P 2
	P 2A	16.517	16.638	17.038	17.613	17.564	17.386	16.654	16.330	16.077	P 2A
	12.	550.840	549-260	547-610	548,140	548.350	547.210	544.280	546.050	546.600	T 2
		350.840	249.Z60	547.610	548.140	548.350	547.210	544,280	546.050	546.600	T 2A
	DOORN P3	16.047	17,122	0.0902	0.0389	0 0272	0.0622	0+1999	0.2376	0,2353	UKIBAR FS
	LOSS PARA F	5 0. 3525	0.0316	1,0341 0.0310	A (0 / 9 (0 - 0 1 9 7	4/4004	47+607	1/+2/4	10.983	161629	P2 FS
	LUGU FARA F		444316	090310	010131	010101	040207	0.0794	0.0750	440947	LOSS PARA FS

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D – Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 90.27 Equivalent Rotor Speed = 3800.48 Equivalent Weight Flow = 103.01 Uniform Inlet

INLE	T

INLEI											
	PCT SPAN	96.80	92.00	86.90	71-00	40 60	30 10		.		
	ίλΙΑ	33.122	11.570	33 94 3	76 212	770.00	20.10	12.00	1.10	3.00	PCT SPAN
	AFTA O	0.000	0.000	0 000	22+215	37.137	30.954	40.321	40.737	41.085	DIA
	SLIK V	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	DETA L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DETA 1
	ΥO	407.27	407.27	407.27	407.27	407.27	407.27	407 27	(07.00	0.000	DETA L
	V 1	427.80	437.64	434.89	428.74	425 41	471 61	4V/+2/	441+27	407.41	¥ 0
	¥7 G	607.27	407.27	407 27	407 74	723.01	421401	411+38	395.65	359.67	¥ 1
	N7 1	437 60	407121	407.27	407.20	407.24	407.20	407.17	407.16	407.16	V2 0
	¥Z 1	421+80	41/.04	434.89	428.73	425.58	421.74	417.26	395.74	359.54	vz i
	V-THEIA O	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	22.120	** *
	V-THETA 1	ú.DQ	6.00	0.00	0.00	0.00	0.00	0.00	0.00	D+UU	V-THETA O
	ма	0.3697	0.3697	0.3697	0 3403	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	N 1	6 2000	0.200.2	01001	0.0071	0.3697	0.3697	ũ.3697	0.3097	0.3697	мg
		0.2007	0.3782	0.3936	0.3698	0,3869	0.3833	D.3792	0.3591	0.3256	H 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	D 0	6.6	
	UUBAR	0.4366	D.2750	0.2448	0.2901	0.3007	0 2001	A 3363		V.U	IUKN
	DFAC	-0.050	-0-075	-0.0AB	-0.013		0.001	0.5501	V++412	0.6225	UUBAR
	FFFD	0 1980	0 2719	0 1 3 4 2		-0+043	-0.036	-0.025	0.028	0.117	OFAC
		0.000	043111	0.0102	0.2814	0.2432	0.2082	0.1375	-0.1499	-0.5719	FFFP
	INCLU	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	6.0001	0.0001	0.0001	THEFO
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	010001	INCID
	0 ۴	15.134	15.134	15.134	15.174	15 174	16 13/	01000	-0.000	-0-000	DEAM
	P 1	16-539	14.754	14 601		17+134	12+134	12.134	15.134	15.134	ΡO
	TO	L16 700		LANDOL	14+139	19+124	14.739	14.684	د 14.533	14.286	P 1
		210-100	218+100	219-100	518,700	518.700	518.700	516.700	518.700	516.700	TÕ
	1 1	518,700	518.700	518.700	516.700	518.700	518.700	518.700	518 700	610 300	
									5104100	210.100	11
6DTU6 D	PCT SPAN	95.00	90.00	85 00	70 .00	50.00					
	D7.6	33.236	33 4 31	24 007		50400	20-00	15.00	10.00	5.04	PCT SPAN
9 PTO9 -1 :		334230	33.021	34.007	32.104	36.706	38.2+8	39.405	39.791	40.176	DT#
ROIDS -L.L.	SEIA I	6.000	0.000	0+000	0.000	0.000	0.000	6.000	0000	0 000	BCTA 1
RUILR -1.c.	BETA 2	41.096	38.464	37.492	35.734	34.844	33 603	019.46	37 344	0.000	DETAL
	GETA(PR) 1	52.020	56-191	50.076	61 400	53 380	55 6655	344010	31.300	40-110	BETA 2
	BETAIPR1 2	25.454	26 620	27 400		23.300	24 - 383	56+043	57.653	60.248	BETA(PR) 1
	y 1	220 01	20. 727	214670	21-163	30.316	34.056	37.847	40.398	46.650	BETA(PR) 2
	¥ 1	420+61	453.25	471.00	465.09	456.91	452.70	451.32	428.99	39/1-17	V 1
	¥ 2	542.42	551.38	550,09	576.58	579-25	568.89	563 76	616 14		
	¥Z 1	426 12	463.17	470.94	445 04	464 14	450.07	241410	212.30	970,79	¥ 2
	YI 2	MI 8.74	443.72	634 65		430.34	400.N/	440 - 1C	442.93	357.63	¥2 1
	V-THETA 1	100 00		410.49	400.02	+12+21	473.IB	443+84	408.6£	345.63	¥2 2
	V-INCIA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA B
	V-THETA 2	120.54	342.95	334.80	336.73	330.82	314.4/	308-59	312 04	207 45	
	V(PR) L	640.7	723.5	733.9	747.1	745.5	704 0	50. 3	707 7	277440	V-THETA 2
	V(PK) 2	+ 452 . 7	682.1	693 0	K 10 0		100.7	004+3	191.1	782.4	V(PR) 1
	VINETA DUI		-661 7	413.0	22047	220+1	2/1.9	563,2	537.7	506.3	V(PR) 2
				-202.0	-244-6	-614.2	-643.6	-665.8	-672.5	-676.2	VTHETA PHI
	VINCIA PRZ	-194+6	-214+6	-229.1	-246.4	-277.9	-319.B	- 344 . 9	-347-5	+ 364 . 6	WTHETA HER
	UI	549 14	555.75	562.76	584-63	614.21	643.64	445 74	477 63	6 00 10	VINETA PRZ
	11.2	661 14		E 4 3 . 0 5			040004	002117	016+55	018*11	υı
		221114	221.22	201.92	263*11	608.69	634.25	653.44	659.84	666.23	U 2
	M 1	0.3899	0.4223	0.4296	0.4240	0.4163	0.4123	0.6110	0.3900	0 3539	
	M 2	0.4809	0.4902	0.4697	0-5143	0.5166	0 5047	0 4 0 1 3	0.16	063330	P L
	M(PR) 1	0.6135	0.6595	0 6693	0 4611	0 (07)	0.5007	0. 4813	0+4208	0.4029	M 2
	MIREY	0 4014	0 / 20 /	0.0073	0.0011	0.0719	0-1161	0.7325	0+7253	0.7095	M(PR) 1
	THERE	0.4015	V-4286	0+4368	0.4718	0_4910	0.5094	0.5003	0.4766	0 4404	M(PS) 2
	TURALPRI	20.000	23.158	22,375	23.735	23.053	20.875	18,111	17.171	1 1 3 2 2	This has a man h
	UUBAR	0.0946	U.1051	0.1016	0.0492	0.0382	0.0405	0 0010		1 3 1 3 3 5 2	TURNIPRI
	LUSS PARA	0.0247	0.0276	0-0247	0 0136	6 6302	0.0400	0.0029	0+1124	0.1275	UUBAR
	DEAC	0 4947	0 6 730	0.4400	0.0134	0.0100	0.0113	0+0227	0.0300	0+0309	LOSS PARA
	EFE O	0 4 30	0.4729	0.4034	0-4305	0.4191	0.4066	0.4317	U.4618	0.4864	DEAC
	Erre	0.8301	0.8368	0.8668	0.9560	0.9723	0.9580	0.8966	0.8771	0.8024	FEED
	F	0.8254	0.8326	0.6633	0.9547	0.9715	0 9568	0 9957	0 9744	6 303	
	INCIU	-0.411	-0.725	-0.502	-0-544	-1 615	-1 467	0.0733	0.0130	V+1914	t+F
	DEVM	10.300	17 240	13 046	0.00	-0.019	-1.000	-2:001	-4.002	-7.913	INCID
	L L	1/ 6 7/	14.4207	13.085	9.163	1.105	6.496	6.224	7,260	10.879	DEVM
		14 *2 3 A	14.759	14.601	14.739	14.724	14,739	14.684	14.513	14.286	P 1
	P 2	11.605	17.695	17.705	18.014	18.138	18-097	17.829	17.671	17 077	b î
	11	518,760	518.700	518.700	518.700	518.700	518.700	510 TOO	5 10 300		
	τz	553.980	551-860	550.260	550 760	561 470	553	3104700	518.700	219*100	• 1
			>>11040	2204100	2201100	221-470	221+440	551,710	551,790	552.730	12
STATC9 0		AT	Ac								
JINICK C	PUT SPAN	42.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.60	DOT STAN
	UTA .	33.207	33.564	33.921	34.992	36.420	37.849	38.910	10 274	30 435	()) J () () () () () () () () () () () () ()
SIAluk-L.F.	BETA 2	41,385	36-25h	36-867	35 770	74 170	33	35 533	37.410	27.033	DIA
STATON-TLE.	bETA 2▲	2,050	/ 110	2 460		344310	33+472	22.251	58.550	42.528	BETA 2
	v 7	ELO IO	554 04	44230	10290	1.350	2+001	2.851	3.101	2.001	BETA 2A
	• <u>•</u>	237.34	>>+ 06	558 .33	576.58	587.04	571.45	533.03	502.60	441.72	¥ 2
	V ZA	433.63	440.83	444 .UU	490.54	509.88	514.62	467.45	445 11	433 67	4 74
	VZ Z	404.69	435.06	446 . 66	467.70	484 70	474 16	433 34		422471	¥ 2A
	V2 2A	\$13.55	440.45	443 73	400 70	10462	410.15	433.34	345+01	352*10	¥2 2
	V-THETA >	356.60	144 67	334 64	70 27	204.21	514.00	400.09	444.07	432.85	VZ ZA
	VETHETA			334.90	337.05	331+32	315.06	309.33	312.86	298.24	V-THETA 2
	ATTOCIA ZA	15+92	- 18+15	17+43	13.16	12.01	17.95	23.24	24-116	15.12	V-THETA 24
	M 2	0.4781	0.4927	0.4974	0.5143	0-5237	0.5091	0 4712	0 4460	0.0500	V"INCIA ZA
	M ZA	0.3814	0.3885	0.3921	0.4344	0.4510	0.2071	0 / 120	0.4470	0+3840	M Z
	TURN (PR)	39.335	35.897	34.414	4	33 030	0.9203	0.4130	0+3925	0.3616	M 2A
	IIIBAP	0 0463		J-+040	24+636	23-010	31.459	32.625	35.400	44.470	TURN(PR)
	LOCE DITL	0.0003	0.0830	0.0763	0.0384	0.0236	0.0074	0.0939	0.0756	-0.1333	UUBAR
	LUSS PARA	0+0230	0.0282	0.0262	0.0137	0.0088	0.0026	0.0372	0-0302	-0.0517	1055 0404
	DFAC	0.4086	0.4042	0.4006	0.3494	0.3335	0.3007	D 3344	0 344 7	0.0731	LUSS PAKA
	EFFP	0.6277	0.7444	0.4107	0 8744	0.00000	0.5001	0.000	0-3457	0+2186	UFAC
	INCLD		-6 130	A 10 10 1	V+d 140	V•¥138	0,9650	0.6258	0.6755	4.3941	EFFP
	C.E.VM	-0.02	-2+130	-3.4Z4	-2.252	-2.327	-2.374	-3.184	-4.621	-10-077	INCID
	DC WH	10.082	13.672	13.560	12.515	12,362	13.665	15,290	15,778	6.653	DEWM
	۳ ۷	17.602	17.695	17.705	18.014	18.138	18.007	17.020	17.571	1	D 2
	P 2A	17.428	17.470	17.495	17.000	18.045	10 074	17.027		11-077	¥ 2
	T 2	553.060	551.640	650 340	EFA 700	10.000	10.015	11.591	17.402	17.302	P 24
	1 24	553 000		390.280	550+100	551.470	>>1.440	551.710	551.790	552.730	12
	100040 65	2226760	221-840	220.200	>>0.760	551.470	551.440	551.710	551.790	552 730	T 2A
	DUDAN FS		0.0673	0.0867	0.0335	0.0253	0.0229	2,1411	0.1745	.).1846	INTEAD CC
	P2 FS	17,515	17.649	17.736	17.999	18.147	18.14.2	17.965	17 - / /	V44055	UUDAR PS
	LUSS PARA F	5 0.119	0.0228	0.0297	0.0110	0.309	0.0054		111044	110141	PZ PS
						~ • • • • • •	0.0000	0.000009	0+0(05	0.0751	LUSS PARA FS

Table A-3.Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 90.45Equivalent Rotor Speed = 3807.96Equivalent Weight Flow = 91.28
Uniform Inlet

INLET

	PCT SPAN	96.80	92.00	86.90	71.00	+9.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.520	33.962	34, 312	37 137	3. 054	41. 331	40 737	() (64	DBA
	HETA O	6 666	6 000	0 000	0 000	A (150	0.000	446361	406137	414003	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	BETA U
	deta 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.600	BETA 1
	V D	350.01	358.01	358.01	358.01	358.01	358.01	358 01	358.01	358.01	V 0
	¥ 1	367.84	386.12	384.78	376.51	375.73	375.04	359.97	351.18	314.65	V 1
	VZ O	358.01	358.01	358.01	358.01	357.99	357.95	357.92	357.92	357.92	¥2. 0
	V2 1	367.84	386-12	364 - 78	376.51	375.70	374.98	359 88	361.05	314-56	W 7 1
	V-THETA C	0.00	0.00	41-60	0.00	0.00	0.00	0.00	0.00	0.00	N-TULTA D
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		0.00	0.000	0.00	0.00	0.00	0.00	0.00	0,00	0+00	A-INFIV T
	a u	0.3240	0.3240	0.3240	0.3240	0.3240	0.3240	0.3240	0.3240	0_3240	ΜU
	M I	0.3331	0.3501	0.3488	0.3411	0.3404	0.3398	0.3258	0.3177	0.2841	M 1
	TURN	Ú.Ú	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4492	0.2513	0.2231	0.2746	0.2746	0.2823	0.3531	0.4010	0-5976	DUBAR
	DEAC	-0.027	-0.079	-0.075	-0-052	au. (169	-0.049	-0.005	0 019	0 171	DEAC
	EFFP	0.1133	0.4031	0.4199	0.2443	0 2772	0 7434	0 0211	-0 107.		
	The to	0.0001	0.0001	0 0000	0 0001	0.2003	0.2030	0.0311	-0.1010	-0.6363	EFFF
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	6.0001	0.0001	INCID
	UEVA	-0.000	+0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.00	-0.000	DEVN
	4 G	15.021	15.021	15.621	15.021	15.021	15.021	15.021	15.021	15.021	PO
	P 1	14.547	14.756	14.786	14.731	14.731	14.723	14.049	14.598	14.391	P 1
	T U	518.760	516.700	516.700	518.700	518.700	518-700	518.700	518.700	516-700	ТО
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	ŤĨ
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5101100	54047.00	
- ROTON U	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	U I A	33,234	33-621	34-007	35-144	36.744	38.244	10-405	30 761	40.74	014
80108 - Las	LETA 1	0.000	0.000	0.000	0.000	4 000	1 000	A 000	378774	-0.110	DETA 1
LOTON -T !	SET A		43 371	40.000	0.000	0.000		0.000	0.000	000+0	OCIA 1
RDIDK -IALA	DLIA 2	+2 - 390	43.115	42.675	41.031	40.255	39.486	42.293	43.428	46.809	BETA 2
	DETAIPR) 1	20.182	53.793	53+631	55.211	56.868	58.205	59.991	60.787	63.536	BETAIPR) 1
	GETA(PK) 2	25.742	27.224	28.603	31.117	34.782	36.892	39.053	41.826	47.428	BETA(PR) 2
	¥ 1	366.67	407.75	415.29	406.99	402.16	401-41	367.63	379.50	340.48	V 1
	v 2	525-66	525.39	673.19	523.77	518-67	674.72	616 21	405 30	463 40	<u>.</u>
		365 40	407 44	616 24	604 04	100.07	300 70	305 30	475430	499.00	* *
		200.00	401.00	410.24	900.70	401.07	347.17	302+40	310+80	338.20	VZ 1
	¥1 2	304.04	319.35	383.40	391.47	395.70	407.37	380.43	359.03	309.94	YZ 2
	V+THETA 1	6.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	Y-THETA 2	374.26	363.47	355.97	347.95	335.05	329,74	346.08	339.84	330.15	V-THETA 2
	V(PK) 1	602.3	670.2	700.3	713.3	735.2	759-6	771.6	773-4	760-0	V(PR) 1
	VIPE) 2	409.8	426.6	436.7	457.3	462-0	510-0	490-9	467.8	458.9	VIDEN 2
	VTHETA DOS	-560 2		-6/3 0		-416 6		-447)		170 5	
	VILLA TA DUS	17	- 306 - 3	2.0	-30340		-074+7	-00/+1	-013-7	-017.0	TINCIA PRI
	VINEIA PRZ	-178.0	-142+2	-209-1	-230.3	-2 (4.0	-305.8	-308.6	-24142	-331.4	V (HEIA PKZ
	01	550.22	556.84	563.87	585.78	615.41	644.91	667.10	673.85	679.50	U 1
	U 2	552.22	556.63	565.03	584.26	609.88	635.51	654.73	661.14	667.54	Ų 2
	M 1	0.3339	0.3702	0.3772	0.3695	0.3650	0.3643	0.3516	0.3439	0.3076	M 1
	MŻ	0.4646	0.4652	0.4639	D.4643	0.4595	0.4649	0.4557	0.4371	0.3987	M 2
	M(PR) 1	0.5998	0.6766	0-6361	0.6475	0.6672	0.6894	0.6996	0.7008	0-6672	
	MIDEL 2	0.3622	0. 4775	0.3872	0 4054	0 4270	0 4616	0 + 34	0 4 26 1	0 4634	Milandi 3
	TUENABOS	30 637	24 644	76 004	24 004	33 010			V*4X01	0.4034	HIFKJ Z
	TURNITE J	30,437	201204	231020	274077	22.009	21.202	20.000	19.940	10.000	TUKNEPRI
	UUDAK	0.0028	0.1009	0.0965	DPORTS	0.0164	0.0081	0+1284	0.1.80	0.1561	UUBAR
	LOSS PARA	0+017Z	0.0263	0.0251	0.0214	0.0203	0.0183	0.0346	0.0387	0.0379	LOSS PARA
	DEAC	0.5453	0.5366	0.5275	0.5088	0.4905	0.4736	0.5181	0.5284	0.5487	DFAG
	EFFP	0.673+	0.6620	0.6938	0.9123	0.9114	0.9295	0.9067	G_855h	0.6082	EFFP
	F F F	0-4696	0.8581	0.6968	0.9097	0.9088	0.9273	0.0039	0.8517	0.6025	6.66
	INCTO	1.751	2.877	3.653	3.169	2 847	2 214	1 304	-1 614	+1+	107.10
		10 503	11 014	12.0/0	13 / 3/	11 6 11	2	1.500	-14510		INCID
	DETA	10.372	13.004	13.707	12.4410	11.271	9.330	1.429	8-08/	11-421	DEAN
	P 1	144547	14+756	14.786	14.731	14,731	14.723	14.649	14.596	14.391	P 1
	P 2	17.950	17.971	17.981	18.012	18.032	18.145	18.053	17.045	17.490	P 2
	T 1	510.700	518.700	518.700	518,700	518.700	518.700	518.700	518.700	518.700	T 1
	12	555.620	553.720	552.160	552.410	552.640	553.110	554.000	554.710	555.730	T∠
STATUR D	PLT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	91A	33.207	33.564	33.921	34.992	36.42D	37.848	38.919	39.276	39.633	DIA
STATOR-Laba	BETA 2	45.727	43.535	42.150	41-686	39.736	38-866	43.207	44.878	49.069	ALTA 2
STATOR-T.L.	HETA 24	3.360	3.640	3.600	2.540	2.140	3.441	4.927	5 152	5 202	B674 34
		6 3 7 76	427 47	630 73	6 2 2 7 7	876 14	624	807 10	467 71	120 55	DEIA LA
		762+10	221401	330413	223411	222413	320.90	307+19	403+31	428+22	¥ 2
	2	402.91	370.04	340.00	940,33	434.80	+31.30	413+49	348 - 54	390.02	¥ 2A
	V£ 2	304.94	362.07	393+40	391.10	403-69	409,99	369,34	342+16	267.06	¥Z 2
	VZ 2A	402.21	395.74	395.88	426.07	439.41	450.22	411.63	346.28	387.94	VZ ZA
	V-THETA 2	374.32	363.59	350.15	348.28	335.56	330.41	346.92	340.71	331.03	V-THETA 2
	V-THETA 2A	23.61	26.56	24.91	18.90	16.42	27.07	35.44	35.73	36.00	V-THETA ZA
	M 2	0.4620	0.4675	0.4708	0.4443	0.4454	0.4449	0.4483	0.4241	0.3441	M 2
	N 34	0.3530	0.3680	0.3485	0.3754	0.3974	0.3074	0.2421	0 3401	0 3414	
	TURNICODA	42.547	30 404	28 4403	30 140	37 4 4/	75 707	28 330	26 470	43 334	m ZA Turnalina k
	IVERITE I	76+301	27+074	20.247	376190	212210	37.372	384237	610.TC		FUKIN (PR J
	UUBAR	0.0006	0.0340	0.1021	0.0314	0-0049	0+0142	0.1274	0.0986	-0.0559	UUBAR
	LUSS PARA	0.0231	0.0336	0.0351	0.0112	0.0018	0.0075	0.0503	0.0393	-0.0225	LDSS PARA
	DFAC	0.4553	0.4661	G.4677	0.4096	0.3882	0.3664	0.4296	0.4301	0.3839	DFAC
	EFFP	0.8440	0.7900	0.7864	0.9143	0,9849	0,9331	0.6468	0.7133	1.2505	EFFP
	INCID		0.147	1-840	3.454	3-026	2.000	6_400	1.704	-10, 135	TNCIO
	DEVE	12.102	15.152	14.910	13.515	13.161	15.105	17.160	17.027	10 160	DEVM
	0.7	17 050	17 07	17 001		10 017		14.057	13	10,120	VETR
	F 2	11-420	11.71	11.901	18-012	10-035	10-145	19-023	11+948	17.490	P 2
	P 24	17.783	17.724	17.722	17.934	18.020	18.096	17.756	17.642	17.586	P 2A
	T 🖌	555.620	553 .7 20	552,180	552.410	552.640	553.110	554.000	554.710	555,730	T 2
	T 2A	555.620	553.720	552.180	552.410	552,640	\$53.110	554.000	554.710	555.730	T 2A
	24 RABUU	0.0766	0.0935	0.1044	0.0665	0.0169	0.0430	0.1260	0.1347	0.1277	UNBAR FS
	#2 FS	17.971	17.956	17.987	18.104	18.134	18.204	18.044	17.941	17.849	D7 65
	1011 0404 7	474714 (C. 1).1 357	0.0317	(,0350)	0.0197	0.0100	101200	0.0107	414774		F4 F3
	LUSS MARA P	-9 neo121	0.0001	000334	U+U23/	0+0133	0+0103	U+U+97	U+U243	J#0514	LUSS PARA FS

-

171

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 89.98 Equivalent Rotor Speed = 3788.04 Equivalent Weight Flow = 85.21 Uniform Inlet

INLET

	PCT SPAN	96.80	¥2.00	66.90	71.00	49.50	28.10	12.00	7.10	2.00	0CT [D-1
	DIA	33+122	33 529	33 962	35.312	37.137	38.954	40.321	40.737	41.055	PUT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BEIA I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	v i	344-05	353+14	353.14	333.14	333.14	333.14	333.14	333.14	333.14	V O
	VZ O	333.14	343.14	333.14	330,50	346.60	346.62	334.99	323.42	294.66	¥ 1
	¥2 1	344.05	357.94	357.09	350-56	346.77	333.08	333-05	333.05	333.05	VZ O
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0-00	JJ4-71 (1.00	263.53	294.76	V2 1
	V-THETA L	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(0.00	V-THEIA O
	мо	0.3011	0.3011	0.3011	0.3011	0.3011	0.3011	0.3011	0.3011	0.3011	W D
	M 1	0.3111	0.3240	0.3232	0.3171	0.3137	0.3135	0.3028	0.2921	0.2660	MI
		0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DFAL	-0.033		-6 072	0.2635	0.2646	0.2613	0.3193	0.3697	0.5572	UUBAR
	LFFP	0.1363	0.3930	0.4197	0.072	-0.041	-0.040	-0.006	0.029	0.115	DFAC
	INCID	0,0001	0.0001	0-0001	0.0001	0.2103	0.0001	0.0347	-0.1769	-0.6585	EFFP
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.066	-0.000	-0.0001	-0.0001	0.0001	INCIO
	PC	14.962	14.962	14.962	14.952	14,962	14-962	14-962	16.962	14 951	DEAN
	P 1	14.573	14.757	14.767	14.721	14.720	14.724	14.671	14.606	14-454	P U P 1
	16	516.700	518,700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	T Ó
	11	516.760	518.700	516.700	518.700	518.700	518.700	518.70Q	516.700	518,700	Ťĭ
AUTUR D	PET SPAN	45.00	90.00	85.00	70 00	10.00					
	LIA	32.236	23+621	34.007	35-166	36.704	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.L.	BETA 1	0.000	0.000	0.000	0.000	0.000	0 000	37+403	34+181	46.176	DIA
RUTER -T.L.	BETA Z	47.999	46.483	45.949	44.282	43.268	44.376	64-409	47.000	0.000 50 kus	BETA 1
	BETA(PR) 1	57.796	55.730	55.556	57.008	58.838	60.096	61.649	62.665	501504 At 894	0CIA (65T4/001 1
	SETA(PR) 2	24.848	27,193	29.296	31.488	35.366	36.805	40.890	43.518	47.278	BETAIPAL 2
	¥ L	344.81	377.52	384.75	378.32	370.66	370.46	360.45	348.98	318.81	V 1
	¥ 2	521+70	515.07	506.92	511.32	504.80	515.69	494.65	471.75	455.36	ý ž
	V7 2	344.14	311+43	384.70	378.30	370.20	368.96	358.07	346.49	316.73	<u>1</u>
	V-THETA 1	0.00	0.00	0.00	300.02	307.46	380.70	352.92	324 .75	289.20	VZ Z
	V-THETA 2	387.00	473.50	364-11	356.99	345 80	0.00	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	646.9	670.3	680.2	674.8	715.7	740.0	342411	349.30	350.86	V-THETA 2
	V(PR) 2	354.7	396.7	404.2	429.3	450.8	476-1	467.7	464.7	637	¥1#RJ 1 M4003 ()
	VIHETA PRI	-547.3	-553.9	-500.9	-582.7	-612.2	-641.5	-663.6	+676.3	-675.9	VTULTA 001
	VTHETA PR2	-161.7	-182.2	-197.8	-224.2	-260.5	-284.9	-305.6	-306.4	-313-2	VTHETA PRO
		547.35	553.93	560.92	582.72	612-20	641.54	663.61	670.33	675.95	U 1
	0 Z N i	0 3115	222 - 14	562.08	581.20	600.69	632.15	651.30	657.68	664.05	Ų Ž
	N 2	0.4607	0.4555	0.3488	0.1428	0.3357	0.3355	0.3263	0.3157	0.2879	M 1
	N(PR) 1	0.5850	0.6074	0.4400	0 4266	0.4493	U.4564	0.4365	0.4206	0.3998	M 2
	HIPRJ 2	0.3397	0.3526	0.3577	0.3799	0.3987	0 4313	0.0836	0-6636	0.6749	M(PR) 1
	TURNEPRI	32.944	∠8-534	26.258	25.520	23.457	21.244	20.403	14 083	0.3/44	M(PR) 2
	UUBAR	6.0733	0.1040	0.1079	0.0865	0.0895	0.0878	0.1352	0-1727	11.573	IUKN(PR)
	LOSS PARA	0.0193	0.0271	0.0279	0.0227	0.0235	0.0237	0.0355	0.0439	0.0457	1055 PARA
	UFAL 1860	6.5792	0.5689	0.5650	0.5400	0.5251	0.5139	0.5381	0.5668	0.5935	DFAC
	1 F F F	0.8813	0.8738	0.8914	0.9164	0-9112	ú.9378	0.8660	0.8295	0.8031	LFFP
	INC IG	0.0110	0.8/01	0.8883	0.9139	0.9086	0.9358	0.8640	0.8246	0.7974	EFF
	DEVN	9-694	13,033	7.7/0	4,700	4.538	4.108	2.972	0.369	-3,251	INCID
	P 1	14.573	14.737	14.767	14.721	14 720	9-243	9.265	10.379	11.302	DEVM
	P 2	18.004	18.043	18.002	18.073	18.084	14.257	19.071	14+000	14.454	P 1
	T L	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518-700	518.700	P 2
	12	556.300	55+.190	552.700	552.960	553.270	553.830	555.260	555.900	557.090	
								-			••
STATUR D	PCT SPAN	95-00	90.00	85 00	70 00	40	34 4-				
	DIA	33.207	31-264	33.9/1	34 997	20.00	30.00	15.00	10.00	5.00	PCT SPAN
STATCK-L.c.	BETA 2	46.358	40.220	45-157	44,341	42.69k	370090 42,313	30.919 45,374	37.276	39.633	UIA DETA D
STATCR-1	BETA 2A	3.750	3.940	3.690	2.580	2.350	3.600	4545761	10.120	53.105	BETA 2
	ν 2	518.66	517.47	514.10	511.32	511.02	518.07	487.32	466.37	440.24	N 2
	V ZA	366.63	377.79	374.28	404.66	416.62	420.87	388.50	374.95	366.53	V 24
	VL Z UZ 35	344.77	358.01	362.51	365.64	375.43	383.27	342.02	307.43	264.10	VZ 2
	Veller 2	367.80	370.89	313.49	404.20	416.13	419-80	306.86	373.04	364.25	VZ ZA
	V-THETA ZA	25.24	213403	364-31	357.33	346.41	348.05	346.54	350.19	351.81	V-THETA 2
	M 2	0.4581	0.4577	0-4652	10+21	11-08	20.41	32.09	34.29	37.27	V-THETA ZA
	M 2A	0.3382	0.3309	0.3/62	0-3555	0.3661	0.3446	0.4296	0.4102	0+3861	M 2
•	TURN (PR)	44.607	42-282	41.465	41.754	40.330	38.60%	60.589	41.420	47 313	M 2A
	DUBAR	0.0611	0.0983	0.0961	0.0438	0.0262	0.0844	0.1217	0.0902	0.0126	
	LUSS PARA	0.0273	0.0334	0.0330	0.0156	0-0097	0.0324	0.0481	0.0359	0.0050	LOSS PARA
	LEED	0.4902	0.4989	0.5002	D.4448	0.4242	0.4279	0,4601	0.4688	0.4576	DFAC
	INCIO	-1.810	7.035	0.8103	0.8916	0.9278	0.7708	0.6876	0.7607	0.9620	EFFP
	DEVM	12.582	40033 15,252	74888	0.310	5+99Z	6.374	6.668	5.548	-6.097	INCID
	₽∠	16.054	18.043	18,002	18.073	13.301	12+204	17.179	17.927	10.690	DEAN
	P 2A	17.887	17.606	17.773	17.970	18.072	18,050	10.043	17.402	-17+060	P 2
	T Z	556.300	554.190	552.700	552.960	553.270	553.830	555.240	174003 555.900	47+042 557,000	P 2A T 2
	T ZA	556.30D	554.190	552.700	552.960	553.270	553.830	555.260	555.900	557-090	1 4 T 24
	UUDAN FS	2.6776	0.1042	0965	0.0834	0.0723	0.0732	0.1096	0.1185	3.1076	UUBAR FS
	F4 F3 1055 BACA E	18+974	18.059	18.003	10.176	18.201	18.227	18.013	17.921	17.850	P2 FS
	LUUS FARA F	9 000201	0.0354	640331	0.0297	0.0267	0.0291	0.0433	0.0471	J.C433	LOSS PARA FS

、

Table A-3. Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 90.17 Equivalent Rotor Speed = 3796.33 Equivalent Weight Flow = 76.85Uniform Inlet

INLET

INLET											
	PCT SPAN	96.80	92.00	86-90	71.00	49.50	29 16	12.00	. 10	3	DCT 00.00
	DIA	33.122	33.529	33.962	35.212	17 127	20.10	12.00	10 737	2.00	PLI SPAN
	BETA D	0.000	0.000		374312	374137	20.124	40.321	40 - 131	41.085	DIA
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	NO	200 76		0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	* 0	298.70	249-10	298.70	298+70	298.70	298.70	298.70	298.70	298,70	VO
	¥ 1	313-11	323.80	320+27	313.11	309.71	308.14	298.97	281.44	254.61	V 1
	¥2 0	298.70	298.70	298.70	298.69	298.68	298.65	298.62	296.62	298.62	V7 Ú
	VZ 1	313.71	323.00	320.26	313.11	309.68	308.09	298.89	281.36	254.54	¥2 i
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N_THET & O
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	THE REAL
	NO	0.2695	0-2695	0.2695	0-2695	0.2405	0.00	0 3405	0.000	0.00	V-INCIA I
	H Î	0.2832	0.2925	A 2883	A 2077	0 2304	0.2075	0.2075	0.2095	0.2695	M O
	TINN			012072	V+2021	0.2170	0.2101	V.2697	0.2551	0.2292	M 1
	1000	0 4003	0 7440	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UCBAR .	0.4093	0-2462	0.2240	0.2572	0.2711	0.2766	0.3333	0-4287	0.5622	UUBAR
	UFAL	-0.050	-0+064	-0.072	-0.048	-0.037	-0.032	-0.001	0_05ē	0.148	DFAC
	EFFP	0.2049	0.4225	0+4072	0.2831	0.2213	0.1923	0.0058	-0.3648	-0.9124	EFFP
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0+000	-0.000	DEVM
	Po	14.914	14.914	14.914	14,914	14.914	14.914	14.914	16.914	14 914	P (
	P 1	14.614	14.733	14.750	14.725	34.715	16.711	14.449	14 500	14 407	
	то	518.700	518.700	518.700	518.700	518.700	518.700	518-700	518 700	516 700	7 0
	TÍ	518.700	518.700	518-700	510.700	518.700	516 700	516.700	518.700	518.700	1 0
						2101100	7109100	2109100	210*100	210+100	11
ROTUR D	PCT SPAN	95.0u	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5 00	0CT CD.44
	PIA	33-236	33 621	34.007	35.144	36 704	38 244	30 400	20.20	2.00	PUT SPAN
ROTOR -Lata	EFTA 1	0.000	D-000	0.000	0 000	0.000	308240	376 403	376171	40.110	DIA
ROTOR -T.F.	HETA 2	50.600	49.704	40 607	40 731		0.000	0.000	0.000	0.000	BEIA I
	ACTA (00 1 1	40 194	50 470	47+303 64 60 3	40+721	40.100	47.867	20-010	53.834	57-112	BETA 2
	DETAINED 1	26 800	20.420	20.201	24.444	01.110	63.007	64.369	65.867	68.049	BETA(PR] 1
	DEINIPRI Z	24.000	20.477	24.109	31.492	38,296	30.292	40.547	44.927	48.528	BETA(PR) 2
	V 1	314.39	341.10	344.43	337.27	330.52	328.83	321.20	303.13	274.81	V 1
	Ψž	515.93	500.16	501.93	504.02	478.21	498.82	496 78	472.77	456.16	V Ž
	V2 1	314.33	341.02	344.39	337-25	330.11	327.50	319.09	300.97	273.02	¥7_1
	V2 2	327.47	323.45	325.42	332.52	318.91	334.34	313.51	278.64	248.52	W7 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	WATNETA 1
	V-THETA 2	398.60	381.48	382.14	378.77	356.18	369.59	364.53	341 10	304 33	
	VIPR 1 1	632.3	651.6	659.3	674.4	494.9	707 1	738 4	737.0	307433	V-INCIA Z
	V(PR) 2	361.0	368-0	172.5	390.0	404.5	474 6	413 4	131-0	131.0	VEPRI 1
	VTHETA PRI	-548.5	-655.1	-5.1 1	-584 0	-413 6	- 440.5	413.4	374-3	315.9	VEPRJ Z
	VIHETA DOS	-151 9	-175 4	-101 2	-203 3	-01343	-042.9		-011-8	-677.4	VTHETA PR1
	11.1	549 54	555 14	-101-2	-203.7	-421.0	-264.0	-268.2	-277.9	-281.2	VTHETA PR2
		550 53	513414	202412	203.99	013+33	042+94	665.06	671.79	677.43	U 1
		220+23	320.472	203.31	282.47	608.02	633.57	652.73	659.12	665.50	ΨZ
		0.2839	0.3084	0+3115	0.3049	0.2987	0.2971	0-2901	0.2735	0.2477	M 1
	. n ∡	0.4551	0.4414	0.4434	0.4453	0.4214	D.4396	0.4366	0.4146	0.4009	H 2
	M(PR) 1	0.576B	0.5891	0.5962	0.6095	0.6298	0.6525	0.6671	0.6651	0.6588	M(PR) 1
	M(PR) 2	0.3184	0.3248	0.3290	0.3445	0.3582	0.3759	0.3634	0.3457	0-3288	MIPRI 2
	TURN (PR)	35,302	29.957	29.399	28.502	23.406	24-675	23.766	20.890	19.497	TURNADE1
	UUGAR	0.1041	0.1342	0,1352	0.1257	0.1370	0.1474	0.2081	0.2394	0.2549	HILEAD
	LESS PARA	0.0274	0.0346	0.0351	0.0330	0-0346	0.0389	0.0549	0 0594	0 0600	
	OFAC	0.6126	0.6072	0.6073	0.5943	0.5805	0.5803	0 4104	0.007	0.0390	LUSS PARA
	FFFP	0.6696	0-8527	0.6801	0 9101	0 8637	0.0003	0.0194	0.0447	0-5704	DFAL
	FFF	0.8655	0.8484	0 8766	/ 0074	0 8404	0 0714	0.0207	0.1104	0.7604	EFFP
	18610	7.744	3 6 2 3	7 0 20	7 017	0.0494	V 0134	0.8203	0.7718	0.7532	EFF
	DEWN	6 731	14 24 4	14767	74952	7+719	7.026	5.702	3.585	-0.081	INCLU
	Å 1	74734	14+317	19-912	12.071	124000	10-730	8.922	11.788	12.552	DEVM
	F 1	14.014	44.133	14.750	14.725	14.715	14.711	14.669	14.599	14.487	P 1
	5 (10+120	18-036	18-041	18+188	18.016	18.259	18.198	17.965	17.853	P 2
	11	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	та
	1 2	557+060	555.070	554.310	554.260	555.050	556.520	558.870	559.740	561.070	T 2
STATIO D	8/7 (B.W										
STRICK D	PUT SPAN	40.00	40.00	00_00	70.00	50.00	30+00	15.00	10.00	5.00	PCT SPAN
	UIA -	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA Z	50.991	49.419	48.690	40.789	47.507	47.715	52.039	55.938	60.510	BETA 2
STATOR-1.E.	BETA 2A	3.780	4.130	4.020	3.360	2.330	2.291	3.321	4-061	6-022	RETA ZA
	¥ 2	513.14	502.46	509.00	504.02	483.93	500.89	489.22	461.58	442.93	
	¥ 2A	381.55	369.86	366.55	361.96	384.64	391.63	364.22	354.85	364.77	N 24
	V2 2	322.99	326.86	336.00	332.03	326.79	336.82	300 13	768 39	317 03	
	¥7 2A	380.71	368-89	365-63	381-25	384.19	101 00	343 31	212 27	211+73	** *
	V-THETA 2	398.73	381.60	382.32	379-13	354.72	370 25	343631	333437	222199	WL ZA
	V-THETA 24	25.15	24 44	26 40	22 28	16 62	18 4/	303.40	302.10	385.35	V-THEIA 2
	M 2	0 4676	A 4435	A 4400	42430	13103	12+04	21.08	28,61	37.18	V-THETA ZA
	N 24	0.3337	0 1224	0.9999	0.9953	0.9200	0.4413	0.4299	0.4044	0.3871	M 2
	TUDALANDA	410 10	46 200	0.3208	0+3347	56EL U	U-3426	0.3174	0.3089	0.3084	M 2A
	TURNIPKI	414211	42.285	44.000	45.423	45.159	45.390	48.672	51.231	54.443	TURN(PR)
	JUBAK	0.0755	0-0650	0.0969	0.1044	0.0273	0.1096	0.1823	0.1151	0.0608	UUBAR
	LUSS PARA	0.0254	0+0221	0.0333	0.0370	0.0101	0.0422	0.0722	0.0459	0.0244	LUSS PARA
	UFAC	0.5016	0.5046	0.5213	0+4943	0.4671	0.4922	0.5524	0.5394	0.5183	DFAC
	EFFP	0.6434	0.8681	0.8128	0.7718	0.9310	0.7374	0.6155	0.7348	0.8199	EFFP
	INCIL	0.824	6.031	6.399	10,758	10.801	11.846	13.333	12.749	1. 112	TNCTD
	DEVM	12.612	15.442	15.330	14.335	13, 341	13.955	15.740	17,227	10.040	DEVM
	P 2	18.158	18.036	18.097	18,144	18,014	18.250	18,100	17 044	17 483	
	P ŽA	17.974	17.888	17.870	17-947	37.959	18.009	17 803	17 745	11+022	r 2
	T 2	557 040	555 070	554.310	554. 240	655.0E0	EEL ENA	4740UJ	414143	11.141	P 28
	1 2	557.040	555.070	664 310	337820U	555+USU	220022U	334+81U	237.740	561.070	T 2
		0-1063	0.1279	0.1107		2224020	2284520	224.410	229.740	261.070	T 2A
	800AK F3	14 144	10 100	44417/ 10 170	0+1190	011290	0+1910	0.1706	0+1742	041691	UUBAR FS
	** F3	101234	12+125	10 108	18-229	18.264	18+371	18.168	15.102	18.082	P2 FS
	LUJS PAKA P	3 000337	V+0433	640411	U≜Ç4 <u>2</u> 4	0∔₽479	0.0581	040675	0.3695	J.C679	LOSS PARA FS

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 69.80 Equivalent Rotor Speed = 2938.61 Equivalent Weight Flow = 92.54 Uniform Inlet

INLET

INLET											
	PCT SPAN	96,80	92+00	86.90	71.00	49.50	28.10	12.00	7-10	3-00	DET CRAM
	DIA	33.122	33,529	33.962	35.312	37.137	38.954	40-321	40.737	41.UB5	DIA
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BEIA I	143 13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	¥ 0 ¥ 1	378.02	395.70	303.13	303+13	303.13	363.13	363.13	363.13	363.13	VO
	¥2 0	363.13	363.13	363.13	363.13	363.11	343 07	363.30	341.24	315.61	¥ 1
	VZ 1	378.92	395.70	392.71	386.19	378-86	377.52	366 21	363-03	303+04	VZ O
	V-THETA D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	VETHETA A
	V-THETA 1	6.00	0.00	0.00	0.00	0-00	0.00	0.00	0.00	0.00	V-THETA 1
	мо	0.3288	0.3288	0.3288	0,3286	0.3208	0.3288	0.3288	0.3286	D.3286	H D
	M 1	0.3434	0.3590	0.3562	0.3501	0.3433	0.3421	0.3317	0.3085	0.2850	N 1
	TURN	0.0	0.0	0.D	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DEAC	U,4404	0.2491	0.2303	0.2680	0.2680	0.2775	0.3435	0.4879	0.6266	UUBAR
	ELED	0.1706	-0.090	-0.081	-0.054	-0.043	-0.040	-0.009	0.060	6.131	DF AC
	INCEO	0.0001	6.0001	0.0001	0.0001	0.2001	0.2331	0.0502	-0.3275	-0.6642	EFFP
	DEVM	-0.000	-0-000	-0.000	-0.000	-0.0001	-0.0001	-0.001	0.0001	0.0001	INCID
	PO	15.028	15.028	15.028	15.028	15-028	15.028	15.026	15.029	16 020	
	Pi	14.545	14.758	14.779	14.738	14.738	14.728	14-656	16.500	14.349	P U P 1
	τo	516.700	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	T n
	Ť 1	516.700	518.700	516.700	516.700	518.700	518.700	518.700	518.700	516.700	Ť I
ACTOR D	PCT SPAN	95.00	90-00	85.00	70.00	50.00	30.00	15 00	10.00		
	DIA	33.236	33.621	34-007	35-164	36-704	38-244	12 - 00	10,00	5.00	PET SPAN
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	37+171	40.176	GETA 1
ROTOR -T.E.	BETA 2	32.848	29.943	29.235	28.169	27.063	25-254	24.618	26.395	26.951	BETA 2
	.SETA(PR) 1	48.195	45.796	45.742	47.263	49.533	51.029	52.698	54.866	57.094	BETA(DA) 1
	BETA(PR) 2	23.946	24.453	24.057	24.796	28,698	32.731	36.906	41.683	51.185	BETAIPRI 2
	<u>v 1</u>	379.76	418.03	424.06	417-70	405.65	404.22	394.80	368.55	341.54	¥ 1
	v 2	405.49	482.68	496.67	512.76	499.61	487.33	460,95	411.92	327-67	¥ 2
	¥7 1 V7 2	314+11	417.93	424 01	417.68	405-15	402.59	392.20	365.93	339.31	VZ 1
	V-THETA 1	0.00	910+23	433.39	952-01	444.70	440.05	417.84	367.91	283.15	V2 2
	V-THETA 2	252.47	240.01	243 67	242.05	111 10	0.00	0.00	0.00	0.00	V-THETA 1
	VEPRIL	569-7	599.5	607.6	A15.5	474.6	207-58	171.40	182.60	193-19	V-THETA 2
	V(PR) Z	+27.9	459.5	474.6	497.9	507.2	523.6	523.6	403 4	467.6	VIPE) I
	VTHETA PRI	-424.6	-429.7	-+35.1	-452.0	-474.9	-497.7	-514.8	-520.0	-524-4	VIPEL 2
	VIHETA PRZ	-173.7	-190.2	-193.5	-208.8	-243.4	-282.8	-313.5	-327.6	-352.0	VTHETA PR2
	U 1	424.61	429.71	435.14	452.05	474.92	497.68	514.80	520,01	524.37	U 1
	UZ	426.15	431,09	436.04	450.87	470.65	490.42	505.26	510.20	515.14	υż
	F I	0.3442	0.3798	0.3854	0.3795	0.3682	0.3669	0.3581	0.3338	0.3088	N 1
	# (DD 1 1	0.4159	0.4325	0.4461	0.460B	0.4466	0.4375	0.4131	0.3680	0.2912	M 2
	MIPAL 1	0 3634	0.5447	0.5522	0.5592	0.5670	0.5820	0.5885	0.5772	0.5658	M(PR) 1
	TURNIPRI	24.243	21 220	21 403	11 444	0+4224	0.4702	0.4693	0.4410	0.4020	M(PRJ 2
	UUBAR	0.0916	0.0995	0.0309	4.0289	20.014	10+230	12-049	13-093	5.837	TURN(PR)
	LOSS PARA	0.0242	0.0266	0.0192	0.0081	0.0108	0.0094	0-0124	0.0220	0.1470	
	UFAC	0.3775	0.3516	0.3375	0.3118	0-3045	0.2911	0.2943	0.3250	0.3687	LUSS FARA Dear
	EFFP	0.7614	0.7667	0.8785	0.9405	0.9093	0.9125	0.8662	0.7667	0.5631	FFFP
	EFF	0.7578	0.7634	0.8767	0.9395	0.9079	0.9112	0.8643	0.7636	0.5591	EFF
	INCID	-4.236	-5.120	-4.836	-4.780	-4.471	-4.971	-6.003	-7.455	-11.077	INCIU
	GEVM	8.799	10.293	9.423	6.155	5.488	5.172	5.284	8.545	15.211	DEVM
	P 1 D 0	14+5+5	14.756	14.779	14.738	14.738	14.728	14.656	14.500	14.349	P 1
	P 2 T 1	10.129	10.252	16.390	16.533	16.461	16.369	16.160	15.802	15.301	P 2
	12	518.700	537.470	518+700 834 460	518.700	518,700	518.700	518.700	518.700	518.700	· T 1
	••		2212010	J38.430	337.130	237.040	230-120	232+690	>3>+240	535-870	12
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
CTATER-L C	DIA DETA D	33.207	33.564	33.921	34-992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-T-S.	BETA ZA	33+040	29.804	20.806	28.203	26.753	25.186	25.046	27-094	31-052	BETA 2
President fille	¥ 2	463.07	484 87	502.60	612 74	-0.700	0.500	1.500	0.400	-3.251	BETA 2A
	V 2A	414.40	445.18	458.32	496.21	493 03	407.13	434.00	402.52	317-53	¥ 2
	VZ 2	388-16	420.73	441.34	451.79	451.40	442.32	410.73	357 83	271 70	V 2A
	VZ 2A	418.27	445-05	458.23	496.14	492.83	486.82	441.27	415.72	397.12	V7 21
	V-THETA 2	252.52	240.99	242.69	242.28	227.55	208.01	191 92	183.06	163.59	V-THE TA 2
	V-THETA 2A	10.59	10.10	8.08	0.67	-6.0Z	4.25	11.56	2.90	-22.56	V-THETA ZA
	M 2	0.4137	0.4345	0.4526	0.4608	0.4543	0.4393	0.4067	0.3594	0.2821	N Z
	M 2A	0.3726	0.3978	0.4104	0.4453	0.4424	0.4373	0.3954	0.3718	0.3553	M 2A
	IURN (PR)	31.596	28.503	27.794	28.097	27.437	24.659	23.508	26.651	34.247	TURNEPR
	1058 9707	0+1040	0.0631	0.0761	-0.0005	-0.0132	-0.0075	0.1046	0.0030	-0.4450	UUBAR
	LUSS PARA Deac	0.2775	0.0215	0.0262	-0.0002	-0.0049	-0.0029	0.0415	0_0012	-0.1792	LOSS PARA
	EFEP	0.4444	0.6374	0.5010	0.1444	0.1967	0.1655	0.1853	0.1463	-0.0162	UFAC
	INCID	-17.122	-13,594	-11.485	+9.827	442722	-10 475	-0.8441	1-0419	0.2606	6777 18670
	DEVM	10.282	12.612	12.320	11.075	10,112	12,144	13,040	13,080	1.404	DEVM
	P 2	16.129	16.252	16.390	16.533	16.461	16.369	16-160	15,802	15,301	P 2
	P 2A	15.934	16.127	16.226	16.534	16.490	16.385	15.978	15.798	15.647	P 24
	Ť 2	539.220	537.670	536.450	537,130	537.040	536.150	535.680	535.590	535.870	T 2
	T 2A	539.220	537.670	536.450	537.130	537.040	536.150	535.680	535.590	535-670	T 2A
	UUBAR FS	0.1400	0,0929	0,1579	0.0256	0.0252	0.0353	0.1917	0.2429	0.2391	UUBAR FS
	PZ FS	16.194	16.316	16.598	16,593	16.547	16.460	16.347	16-229	16+040	PZ FS
	LUSS PARA F	5 04-1471	0.0316	Ú.0543	0.0102	0.0093	0.0136	0.0760	0.0971	0.0963	LOSS PARA FS

Table A-3.Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 70.10Equivalent Rotor Speed = 2951.37Equivalent Weight Flow = 82.65Uniform Inlet

INLET

.

	PCT SPAN	96,80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	AIG
	BETA O	0.000	0.000	0.000	0.000	0-000	0-000	0-000	0.000	0.000	BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	RETA 1
	V D	322.90	322.90	322.90	322.90	322.90	322.90	322.90	322.90	322.90	N O
	ý i	340-66	345.72	338.74	328.50	323.69	329.41	317-58	304.15	262.01	N I
	¥2 0	322.90	322.90	322-90	322.90	322.69	327.85	322.62	322.82	322.82	v z 0
	v2 1	340.44	345.71	338.74	378.40	373 47	370 54	317 60	304 07	322402	V7 1
	V-THETA O	0.00	0.00	330114	320 47	313.01	343455	311100	0.00	6 00	
	V-THETA V	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.00	V-INCIA O
	T-INCIA A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-EHETA 1
		0.2917	0+2917	0.2411	0.2917	0.2917	0.2917	0.2917	0.2917	0.2417	M U
		0.3080	0.3127	2905-0	0.2968	0+2924	0.2978	0.2668	0.2745	0.2542	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.3703	0.2386	0.2208	0.2243	0.2386	0.2600	0.3478	0 - 4 309	0.5721	UUBAR
	DFAC	-0.055	-0.071	-0.049	-0.017	-0.002	-0.021	0.016	0.058	0.127	DFAC
	EFFP	0.2389	0.3877	0.3197	0.1385	0.0206	0.1425	-0.1069	-0.3665	-0.7322	EFFP
	INCIU	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVA	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVN
	PO	14.936	14,936	14.936	14.936	14.936	14.936	14.936	14.936	14.936	P 0
	₽1	14.619	14.732	14.747	14.744	14.732	14.714	14.638	14.567	14.446	PI
	τō	518.700	518.700	518.700	518.700	516.700	518.700	518.700	518-700	518.700	TO
	- Ť Ť	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	÷i
	••	2101100		2101100	/100100	2100100	210.100	2401140	>101100	>101100	• •
ROTOR D	OCT SOAN	95-00	90.00	95.00	70.00	50.00	30.00	15.00	30.00	5.00	BCT SPAN
KOTOK D	DT.	22 224	70,00	26 007	70.00	34 701	30.00	20 405	20.00	40 176	PUT SPAN
00100	0574 4	33+236	33.021	34.007	33+104	30.700	20.440	37.403	34.141	-0-170	
KUTUK "L.E.	DEIAL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BEIA A
KUTUK "1-E-	BETA Z	39.175	36.812	35.971	34.334	33.383	32.314	32.904	35.259	38.451	BETA 2
	BETA(PR) 1	51.325	49.826	50.164	52.050	54.107	54.954	56.735	58.060	60.108	BETA(PR) 1
	BETA(PR) 2	24.708	25.953	26.800	28.283	31.144	33.865	37.054	40.150	48.693	BETA(PR) 2
	V 1	341.41	364.46	364.62	354-10	345.61	352.01	341.43	327.93	304.72	V 1
	V 2	433.05	437.87	439.62	449.10	448.31	447.70	432.07	405.69	342.69	¥ 2
	¥Z 1	341.34	364.38	364.58	354.08	345.18	350.59	339.18	325.60	302.74	¥Z 1
	¥2 2	335.69	350.54	355.78	370.85	374.19	377.84	361.93	330.47	267.79	¥Z 2
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	273.54	26.2 35	258 21	263.29	244 67	228 00	226 18	723 64	212 43	W-THETA 2
	V4001 1	644 3	ELL O	540 7	676 0	500 A	411 4	410 4	414 7	400 6	MARAN 1
	MICRI 1	240.5	304.7	70746	21240	20710	01144	017.0	412 1	404 3	V176J L
	TIFN/ 2	307.3	307.7	370.0			42247		-33.3	400.5	VIERJ 2
	VINCIA PRA	-420.5		-437.0		-47740		-211.0	-722.5	-720.7	VINEIA PRI
	VINE IA PRZ	-124-5	-170.6	-179.7	-199.5	-226.1	-253.0	-273.3	-218.8	-304.7	VINEIA PRZ
	01	426.45	431.5B	437.03	454.01	476.98	499.84	517.04	522.27	526.65	U 1
	ŲΖ	428.00	432.97	437.93	452.83	472.69	492.55	507+45	512.42	517.38	U 2
	M 1	0.3087	0.3300	0.3301	0.3204	0.3126	0.3185	0.3087	0.2963	0.2750	M 1
	M 2	0.3856	0.3909	0.3929	0.4015	0.4006	0.4000	0.3856	0.3614	0.3040	M 2
	M(PR) 1	0.4939	0.5114	0.5153	0.5210	0.5327	0.5531	0.5602	0.5572	0.5491	MIPR) 1
	M(PR) 2	0.3293	0.3481	0.3562	0.3765	0.3908	0.4071	0.4056	0.3860	0.3605	MEPR) 2
	TURN (PR)	26.614	23.868	23 362	23.766	22.945	21.031	19.596	17.827	11.354	TURN (PR 1
	LILIBAR	0.0885	0.0922	0.0830	0.0544	0.0450	0.0389	0-0525	0.0935	0.1232	HIBAR
	LISS PARA	0.0233	0.0243	0.0220	0-0147	0.0174	0-0109	0.0145	0.0250	0.0288	LOSS PARA
	DEAC	0 4469	0 444.2	0 4345	0 4039	0 3014	A 3953	0 2046	0 4290	0 4540	DEAC
	FEED	0 6347	0 8543	0.0059	0.4030	0.2710	0 0400	0.3705	0 6013	0 7/07	ECED
	CFFF CFF	0.0200	0.0503	0.9098	0.7303	0.0110	0490Vd	V.7473	0.0715	0.7493	
	FFF	0.8239	0.05+1	0.9043	0.9372	0.9468	0.9601	0.9487	0.8895	0.7458	EFF
	INCID	-1-100	-1.090	-0.414	0.007	0.105	-1-042	-1+4>9	-4.253	-8+054	INCID
	DEVM	9.558	11.793	12,166	9.642	7.933	6.305	5.432	7.013	12.717	DEAN
	Ρ1	14+619	14.732	14.747	14.744	14.732	14.714	14.638	14.567	14.446	P 1
	P 2	16.406	16.447	16.477	16.579	16.620	16.630	16.518	16.325	15.939	P 2
	T 1	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	T 2	539.790	538-110	537.170	537.560	537.900	537.930	537.900	537.990	538.510	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
••••••	DIA	33-207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
TATOR_0 L	HETA D	39.418	36.639	35.447	34.376	33.006	37.776	33,501	36.258	39.994	AFTA 7
STATOR-T E	RETA DA	2,710	2,040	1.880	0 490	0.520	1. 240	2, 211	1.071	-0.040	AFTA 24
21410K-1+C+	DETA KA	430 97	420 77	446 49	440 10	463 64	440 40	436 93	204 83	222 11	DETA KA
	¥ 2	430.01	434411		447410	477,99		423402	378+33	332+11	• <u>2</u>
	Y ZA	324+40	302.00	300.11	401.34	412.96	413.44	518-14	339.02	350.09	¥ 28
	VZ Z	332.86	352.87	362.90	370.60	360.18	319,90	324.65	319.35	254.11	¥Z 2
	VZ 2A	354.19	361.82	366.56	401.26	412.80	413.08	377.97	355.50	349.72	¥Z 2A
	V-THETA 2	273.59	262.44	258.34	253.53	2+6-95	239.48	234.75	234.23	213.20	V-THETA 2
	V-THETA 2A	13.67	13.01	12.03	4.63	3.75	9.81	18.56	12.02	-0.37	V-THETA ZA
	H 2	0.3838	0,3926	0.3983	0,4015	0.4054	0.4017	0.3799	0.3531	0,2945	M 2
	M ZA	0.3143	0.3217	0.3262	0.3576	0.3681	0.3685	0.3369	0.3189	0.3107	M 2A
	TURN (PR)	37.208	34.578	33.565	33.680	32.469	30.834	30.646	34.288	39.998	TURN (PR)
	LIUBAR	0.0865	0.0821	0.0828	0.0052	-0.0034	0.0160	0.1169	0.0784	-0.2348	LUBAR
		0.0201	0.0279	0.0285	0.0010	-0.0013	0.0065	0.0443	0.0314	-0.0947	LUSS PARA
	LOUG FARM	0.3404	0.3400	0.3472	0.2034	0.2447	0.2770	0.3120	0.3701	0.2047	1000 CANA DEAC
	CECD	0.3000	0.3077	0 76012	0 4363	1 0144	0 6670	0 4707	V. 3441	-1 0167	ST AU
	EFFF THEFF	0.7407	Nº 1240	V. /301	-3 -1 -1	-3 /07	-3 (AC		4 010	-1-0120	CFFF Thete
	INCIO	-10.749	-0.749		-2.634	-2.677	-2.037	-2.203	-0.912	-14-207	INCLU
	DEVM	11.042	13.372	13-190	11.665	11.532	13.025	15.250	14,599	4.794	DEAN
	P 2	16.406	16.447	16.477	16.579	16.620	16.430	16.516	16.325	15.939	₽ 2
	P 2A	16.269	16.311	16.336	16.570	16.626	16.600	16.335	16.219	16.157	P 2A
	T 2	539.790	538.110	537.170	537.560	537.900	537.930	537.900	537.990	538.510	T Z
	1 2A	539.790	538.110	537.170	537,540	537.900	537.930	537.900	537.990	538.510	T 2A
	UUBAR FS	0.0576	0.0630	0.0729	0.0234	0 0107	0 0122	0.1430	0.1477	0.2026	UUBAR FS
	P2 E5	16.357	16.413	16.459	14.611	16.682	16-657	16.565	16.525	14.449	P2 FS
		5 0.019-	0.0214	0.0251	0.0046	0.0117	0.0174	0.0544	0.0783	0.0817	INSS PARA AS
	LUJJ FARA F		V\$V£17	0.0131	0100022	PROTIC	N#0154	440300	010192	0.0011	LUGG FRAM FO

.

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 69.75 Equivalent Rotor Speed = 2936.49 Equivalent Weight Flow = 71.87 Uniform Inlet

INLET

7167 6 1											
	PCT SPAN	96.80	92.00	86.90	71.00	40 60	24.10	10.00			
	DTA	33.122	33 570	33 643	71.000	47.30	20+10	12.00	7.10	3.00	PCT SPAN
	BETA O	0 000	336363	JJ. 702	32+315	31.137	36.954	40.321	40.737	41.085	DIA
	BEIA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BEIA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BUTA 1
	vo	278.95	278.95	278.95	278.95	278.95	778.95	770 06	170.00	0.000	DETAL
	¥ 1	287-02	290.94	289-14	200 20	107 05	204 44	210+73	518-92	218.95	vo
	¥7_0	278.95	379.05	175 05	207.30	201.97	200.00	275.30	264.45	242.60	ΥL
		202 02	210.73	210.72	210.94	278.93	278.90	278.80	276.87	278.87	V2 D
	44 1	201402	290.94	289.16	289.38	287.93	286-62	275.23	264.38	242 61	
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	242.53	12 1
	V-THETA 1	0.00	0.00	0_00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	H D ⁻	0.2514	0 2514	0 2614		0.00	0.00	0.00	0.00	0.00	V-THETA 1
		0.2514	0=2314	442214	0+2214	0.2514	0.2514	0.2514	0.2514	0.2514	MO
		0.2388	U+4024	0+2608	0.2610	0.2596	0.2585	0.2481	0.2382	0.2183	i i
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000	
	UUBAR	0.3749	U.2341	0.2104	0.2373	0.2531	0 3670	0 3444		U +U	IUKN
	DEAC	-0.029	-0.043	-0 0.27	-0.037		0 2 3 1 3	0.3404	0+4192	0.5616	UUBAR
	FEED	0 1377	0 0 0 0 0 0		-0.037	-0.032	-v.uza	0+013	0.052	0.130	DFAG
	LUCIO	0.1377	042774	4.2002	0.2474	0+2096	0.1818	-0.0830	-0.3264	-0.7864	FFFP
	TUCTO	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0 0001	This to
	DEVM	-0.000	-0.000	~0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.0001	INCID
	P Q	14.878	14.876	14.878	14.878	14 970	14 8 70	1, 010	-0.000	-0.000	DEAW
	P 1	14.638	14.728	14 747	14 774	141010	14+070	14.878	14.878	14.676	ΡQ
	T A	F10 700	110 700	1	14.120	14.715	14.713	14.656	14.609	14.518	P 1
	10	210+100	219*100	519.100	518,700	518.700	518.700	518.700	518.700	518.700	TO
	11	516.700	518.700	518.700	518.700	518.700	518.700	518 200	510 700	F10 700	
							- 104144	2104100	210-160	240+100	r 1
AUTCR D	PCT SPAN	95.00	90.00	96 00	70.00						
	DIA	11 224	30.000	02.00	10.00	20.00	30.00	15.00	10.00	5.00	PCT SPAN
50.T00 + C		33.230	23-051	54 + QQ 7	35.164	36.706	38.248	39.405	39.791	40.176	014
ACTOR TELE	BEIA I	0.000	0.000	0.000	0.000	D.000	0.000	0.000	0.000	0 000	9ET. 1
KUIUR −T ₊ €.	BETA 2	44.497	42.473	42.015	40.705	39.334	38.143	20 210	41.000	0.000	OCIA 1
	BETA(PK) 1	55-872	54.516	54 447	68 414	\$7 131	50 402	37.318	÷1.502	44.841	BETA 2
	AFTAIPO1 2	26 245	20 073	20.224	374910	21+121	56.529	60.292	61,460	63.607	BETAIPRE 1
	V I	224302	20.073	co. 534	30.359	32.875	36.051	39.203	41.295	45.553	BETA(PR) 2
	V L	287.63	306.18	310.58	311.43	307.03	305.65	295-47	284.44	741 74	
	¥ 2	409.86	403.13	407.25	411.02	414.98	412.21	400 01	364 60	201014	
	¥Z 1	287.57	306-11	310.54	311 41	304 45	712+21	400.01	366.60	361.12	¥ 2
	¥7.2	297 34	207 24	303 57		300.03	204*41	293.53	282.61	260.03	YZ 1
	N THETA		671634	205+24	311.57	320.86	323.63	308.86	289.16	255.60	¥7.2
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N-THET I
	V-THETA 2	287.25	272.20	272.58	268.05	262.94	254.50	262 84	355 05	20.00	T-INETA 1
	Y(PR) 1	512-6	527.4	514.1	549.7	646 3	£07 7	132.70	222103	429+19	V-THETA, 2
	V(PR) 2	423.5	337 0	343 0	34042	20242	203.7	593.2	592.5	585.7	V(PR) L
	VTHETA DOL	-424 3	-430.4	343.0	201+1	382.2	400.8	399.4	385.6	365.7	V(PR) 2
		-424.3	-+2 7+4		-+>1.7	-474+6	-497.3	-514.4	-519.6	-524-0	VTHETA DD 1
	VINEIA PRZ	-138.6	-158.6	-163.1	-182.5	-207.4	-235-6	-251.9	-254 0	-249.4	WTHETA PRI
	U 1	424.30	429.40	434.82	451.72	474.57	497 33	614 17	-23400	-200.0	VINEIA PRZ
	U 2	425.84	430.78	435 77	450 56	470 21	477422	214-43	213*04	524.00	U 1
	M I	0.2694	0 1747	0 3004	430.33	410+21	490.07	504+89	509.83	514.77	Ų 2
		0.2	0.2103	0+2004	0.1811	0.2771	0.2758	0.2665	0+2566	0.2357	M 1
	H 2	0.3641	0.3585	0.3626	0.3660	0,3695	0.3669	0.3556	0.3435	0_3199	H 2
	M(PR) 1	0.4622	0.4760	0.4824	0.4953	0.5101	0.5268	0 5351	0 5 1 6 3	0 5077	<u>.</u>
	H(PR) 2	0.2874	0.2997	0.3061	0.3235	0 3403	0 75/0	0.2324	0.3342	U+2275	M(PR) 1
	TURN(PB)	30.503	26 679	34 133		043403	0.3568	0.3550	0+3424	0.3240	MIPR] 2
	(H)DAD		201430	20.131	22+020	24.240	22.428	21.016	20.094	16.007	TURNIPRI
	OUDAR	0.0845	0.1020	0.0973	0.0796	0.0644	0.0626	0.0809	0.1176	0.1424	III IA A P
	LUSS PARA	0.0221	0.0264	0.0254	0.0211	0.0174	0.0170	0.0218	0.0390	A 0353	LOSS BAR
	DFAC	0.5314	0.5126	0.5083	0.4920	0.4730	0.4500	0 4 7 7 5	0.00277	0.0333	CUSS PARA
	LFFP	0-8254	0.8259	0 0037	0.00.1	0.00/3	0.7770	0.4135	0+4991	0+5281	DFAC
	FFF	0.8224	0 0 2 2 2 1	0.0000	047041	V. 7207	0.9265	0.8959	0.8628	0.8069	EFFP
	1100 111	0.0227	V-0431	0.0017	0.9024	0.9254	0.9251	0.8940	0.8604	0.8036	FFF
	INCID	2+44L	3+600	3.889	3,375	3,130	2.539	1.609	-0.841	-4-542	INCIA
	DEAN	10.216	13.913	13.700	11.718	9.663	8-490	7.570	8 167		INCID
	P 1	14.638	14.728	14.743	14.776	14 714	14 313	14217	0+131	4+210	UEAN
	P 2	16.554	36.516	14 644		14-710	144113	14.000	14.609	14+518	P 1
	T 1	510 700	510 300	10.304	10-013	10.000	16.696	16.625	16.524	16.352	P 2
	T 2	310-100	218.100	516.700	518.700	518.700	518.700	510,700	518.700	518.700	Ť I
	12	241+270	539.650	538.610	538.870	539.190	539.330	539.980	560.290	541 010	÷ 5
									2746270	2419010	· 4
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	EA 01					
-	DIA	11 207	23 544	0.0400	10.00	20.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-1 6	DETA 7		33.704	22-451	34.992	36.420	37.848	38.919	39.276	39.633	DIA
CTATED. T	DEIA Z	44.785	42.268	41.378	40.758	38.882	38.081	40.065	42.749	46.810	8674 3
STATUK-1.E.	BEIA 2A	3.700	3.750	3.300	2.320	2.060	3.771	4.441	4 061	4.4.7	DETA 2
	V 2	407.83	404.84	412-58	411-02	419-70	612 BD	304 37	74824	*****	DEIA ZA
	V 2A	327.89	322	377 44	348 44		74346V	37++30	518-25	349.85	V Z
	¥7 2	280 44	200 50	364.00	342.40	323+23	361.92	333.68	319.22	312.99	¥ 2A
	V1 5.	209.40	277.28	309.57	311.29	326.58	325,46	301.50	277.48	239.17	47.2
	VL CA	\$27.20	321.91	322.13	345.13	353.18	361.11	332-31	317 79	311 50	W7 74
	V-THETA 2	287.30	272.29	272.71	268-30	261.14	255.02	363 67	311417	311.30	VL 28
	V-THETA ZA	21.16	21.10	18.57	13 04	12 70	273494	233.31	220.90	254.86	V-THETA 2
	N 2	0.3623	0 3401	0.3435		46+70	20.04	21-09	26.97	26.93	V-THETA 2A
		0 2022	0.3001	0.3075	0.4660	0.3738	0.3684	0.3504	0.3357	0.3098	M 2
	7.00.00	0.2899	0.2856	0.2859	0.3064	0.3136	0,3212	0.2955	0.2874	0.2744	M 2A
	TURN (PR)	41.085	38.518	36.077	38,432	36.803	34.778	35, 260	37 040	A1 000	TIMMORE
	UUBAR	0.0430	0.0372	0.0714	0.0162	0-0310	0.0110	a 2007	211077	74+843	TURNEPR
	LOSS PARA	0.0145	0.0124	0.0245	0.005	0.0310	0.0123	0+1032	0.0906	-0.0202	UUBAR
	DEAC	0 4160	0 6 1 4 F	410272	0.0034	0.0115	0.0050	0-0408	0.0361	-0.0081	LOSS PARA
	LEED	0.7159	0.4145	0.4302	0.3799	0.3796	0.3447	0.3829	0.4004	0.3700	DFAC
	CTTP	0.8844	0.9032	0.8254	0.9511	0.8991	0.9441	0.4512	0.6004	1.0072	SEED.
	INCID	-5.382	-1.119	1.067	2.778	2.174	2,113	1 980		210772	errr
	DEVM	12.532	15.062	14.410	12.745	12 073	4.413	1.320	-0.423	-12.386	INCID
	P 2	16-554	16 514	14 644	121242	13.072	14.935	17.098	17.527	9.791	DEAN
	P 24		10.214	10+204	10-015	10.686	16.696	16.625	16.524	16.352	P 2
	7 £A	10-493	10.401	16.459	16.593	16.630	16.677	16.486	16-412	16.373	P 24
	12	541.270	539.650	538.610	538.870	539,190	539,230	510.080	540. 74h	E41 A1A	÷ : `
	T 2A	541.270	539.650	\$38.610	538.470	530,100	610 334	630 000	JTU: 270	241.010	1 2
	UUBAR FS	0.UAAA	0.0844	0.0015	0-0434			737 ¥80	240+290	241+010	T ZA
	P2 FS	14 64-		010743	0.0420	0-0245	0+0368	0 11 0	0+1407	0.1526	UUBAR FS
	1000 0404 -	10.766	10.080	16.596	16.657	16.682	16.733	16 6 2	16.596	16.566	P2 FS
	CO33 MANA F	a V+∪215	0.0286	0.0313	0.0151	0.0108	0.0142	0.0450	0.0550	0.0612	1055 0404 54
											EUGU FARA FO

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 70.18 Equivalent Rotor Speed = 2954.55 Equivalent Weight Flow 45.46 Uniform Inlet

INLET

	PCT SPAN	96.80	92.00	66.90	71.00	49.50	28.10	12.00	7.10	00_ د	PUT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00 • Q	BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0-000	0.000	0.000	BETA 1
	V D	253.22	253.22	253.22	253.22	253.22	253.22	253.22	253.22	253.22	¥o
	V 1	263.73	268.75	267.00	264.12	263.02	260-29	253.35	239-84	219.31	¥ 1
	VZ O	253.22	253.22	253.22	253.21	253.20	253.18	253.15	253.15	253.15	VZ O
	VZ 1	263.72	268.75	267.00	264.11	263.00	260.25	253.29	239+78	219.25	VZ 1
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	V-THETA O
	V-THETA 1	0.00	0-00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	H D	0.2280	0-2280	0.2280	0.2280	0.2280	0.2280	0.2280	0.2280	0.2280	мо
		0.2375	0.2421	0.2605	0.2379	0.2369	0.2344	0.2281	0.2158	0.1972	Mi
	TIDN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	THRN
	1000	0 1701	0.2374	0.2176	0.2470	0-2585	0.2700	0.3083	0_4023	0.5648	LIUBAA
	DEAC	-0 041	-0.041	-0.054	-0 043	-0 039	-0 028	-0.001	0.053	0.134	DEAC
	CEED	A .662	0 2520	0 3402	0 3443	0 2373	0 1767	0 0023	-0.3508	-0 8108	FEED
		0.1092	0.3520	0.3472	0.2002	0.0003	6 0001	0.00033	0.0001	0.0001	INCTO
	INCLU	0.0001	0.0001	0.0001	0.0001	0.0001	0-0001	0.0001	0.0001	0.0001	10010
	DEYM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000		
	PO	14.647	14+647	14-847	14.847	14.847	14.847	14.847	14-847	14.04/	PU
	P 1	14+647	14.722	14.735	14.717	14.711	14.705	14.084	14+035	14.247	<u>F 1</u>
	το	518.700	510,700	518.700	516.700	518.700	518.700	518.700	516.700	518.700	10
	T 1	518.700	518.700	510.700	518.700	518.700	518.700	518.700	516.700	518.700	т 1
ROTOR D	PCT SPAN	95.0 0	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33,236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
RCTOR -T.E.	BETA 2	46.170	46.792	46.436	44.688	44.014	42.889	45.225	47.738	51.107	BETA 2
	BETAIPRI 1	58.245	56.812	56.781	58.008	59.624	61.105	62.459	63.903	65.986	BETA(PR) 1
	BETA(PR) 2	23.354	28.410	26.873	30.234	33.738	37.157	39.994	44-142	47.605	BETA(PR) 2
	V 1	264.28	282-64	286-53	283.93	280.22	277.29	271.70	257.94	236.43	¥ 1
	v 2	414 75	394.33	394.89	605.63	402.80	399.41	391.17	365.92	353 79	¥ 2
	4 - 1	244 23	292 40	264 50	202.02	270 48	274 17	240 01	256.10	2 34.89	v71
	YZ 1	204+23	202400	200.50	203472	200 60	201.33	275.07	747.70	221.87	¥7 7
	¥1 2	210.00	207.71	213.52	200.30	297.27	272.033	212401	0.00	0.00	V-TUETA 1
	Y-THETA 1	0.00	0.00	0.00		170.00	0.00	277 22	272 64	174 07	V-THETA I
	V-THETA Z	309.03	287.40	287.58	202.22	219.19	2/1.24	211+23	212.50	2 19 4 7 1	THE LA 2
	VIPRJ 1	502.1	516+3	523+0	232+9	223+0	2/2-1	204.0	583.0	577.8	VUPRJ I
	V(PR) 2	301,3	306+9	312.4	333.8	348.4	367.3	359.7	345.8	329.5	VEPRJ 2
	VTHETA PR1	-426.9	-432.0	-437.5	-454.5	-477.5	-500.4	-517.6	-522.8	-527.2	VTHETA PRI
	VIHETA PR2	-119.4	-146.0	-150.B	-168.1	-193.4	-221.5	-230.8	-240.4	-243.0	VTHETA PK2
	U l	420.91	432.05	437.50	454.50	477.49	500.38	517.59	522.83	527.22	UL
	U 2	426.46	433.43	438.40	453.32	473.20	493.08	508.00	512.97	517.94	Ų 2
	М 1	0.2381	G.2548	0.2584	0.2560	0.2526	0.2499	0.2448	0.2323	0.2127	M 1
	H 2	0.3663	0.3502	0.3529	0.3607	0.3580	0.3547	0.3469	0.3266	0.3127	M 2
	M(PR) 1	0.4523	0.4654	0.4715	0.4831	0.4990	0.5156	0.5267	0.5250	0.5199	M{PR] 1
	M(PR) 2	0.2676	0.2726	0.2777	0.2968	0.3096	0.3262	0.3191	0.3062	0.2913	M(PK) 2
	TURNAPRE	34.687	28.398	27.906	27.773	25.071	23.904	22.401	19.702	16.343	TURN(PR)
	LINBAR	0-0644	0.1139	0.1115	0.0837	0.0915	0.0904	0.1412	0.1713	0.1885	UUBAR
	LOSS PARA	0-0224	0-0294	0.0290	0.0223	0.0245	0.0242	0.0376	0.0431	0.0450	LOSS PARA
	DEAC	0.5785	0.5690	0.5662	0.5407	0.5327	0.5165	0.5477	0.5692	0.5968	DFAC
		0 6793	0 8411	0.9956	0.9247	0.9163	0.9049	0.8551	4997.0	0-7757	FEED
		0.6769	000411	0 0078	0 9228	0 9147	0.9031	0.8526	0.7966	0.7717	FFF
		0.0137	0.0303	4 303	5 044	4 4 1 4	6 110	7 795	1 417	-2 154	THETE
	INCID	0.004	2.070	14 330	11 607	10 6 36	0 606	6 370	11 003	11 475	DEVM
	DEAN	0+200	14.200	144237	14 313	14 713	14 705	14 494	14 436	14 640	01
	P 1	14.04/	19.722	14.135	144711	1	14.105				
	P 2	16.755	10+020	16.663	10.128	16.773	10.761	10.722	104702	10.410	F 2
	T 1	518.700	518.700	518.700	518.700	218*100	218-100	518.700	518.700	218.700	1 1
	T 2	541.690	540.520	539.450	539.950	240.360	540.190	541.720	242.140	242.940.	12
	_		_		.						
STATOR D	PCT SPAN	95.00	90.00	B5.00	70.00	50.00	30.00	15+00	10.00	5+00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	UIA
STATOR-L.E.	BETA 2	48.499	46.556	45.705	44.746	43.485	42.775	46.151	49.291	53+597	BETA 2
51ATOR-1.E.	BETA 2A	4.590	4.530	3.210	2.860	2.450	3.291	4.511	5.312	6.722	BETA 2A
	V 2	412.69	395.96	402.00	405.63	407.34	400.93	385.68	360.79	342.80	V 2
	V 2A	306.56	299.76	295.90	321.26	328.60	335.03	307.77	295.21	292.93	V 2A
	VZ 2	273.46	272.29	280.72	268.05	295.44	294.10	266.96	235.13	203.29	VZ 2
	VZ 2A	307.57	298.81	295.42	320.81	328.19	334.28	306.57	293.69	290.61	VZ 2A
	V-THETA 2	309.08	287.50	287.72	285.52	280.22	272.10	277.91	273.27	275.70	V-THE1A 2
	W-THETA 24	24.69	23.67	16.57	16-03	14.04	19.22	24.19	27.30	34.25	V-THETA 2A
	M 2	0.3665	0-3517	0.1576	0.3607	0.3621	0.3561	0.3420	0.3193	0.3028	M 2
	M 24	0.2724	0.2649	0.2617	0.2843	0.2908	0.2965	0.2717	0.2604	0-2582	M ZA
	7 48 TUDN(100)	43 809	47 026	47 404	41.841	41-017	39.450	41.593	43.931	46.825	TURNIPRA
	EURNSPRJ	434747		0 0440	0 0445	0.0515	0.0423	0.1205	0.0137	-0.0184	INIRAR
	LOCE BARA	0.0301	0.0141	0.020/	0.0040	0.0349	0.0142	0.0474	0.0214	-0.0074	1055 0101
	LUSS PARA	0.0351	0.0151	0.0270	0.0227	0.0190	0 40-5	A 6447	D ALLY	0 4314	CUAS FARA DEAC
	UFAL	0.9845	0.4700	0.4704	0.075/	V+4301	0.044083	044043	0 8440	1 01210	0FA6 6660
	EFFP	0.7869	0.9007	0.8208	0.0334	0.8600	0.0004	V-0021	V.044U	1-0010	EFFF Thata
	INCID	-1.658	3.168	5.415	6.717	6.779	0.906	F+443	0.119	->.604	INCID
	DEVM	13.422	15.842	14.520	13.834	13.461	14-955	10.949	17.987	11.569	DEAN
	P 2	16.755	16.620	16.663	16.750	16.773	16.781	16.722	10.562	16.470	P 2
	P 2A	16.608	16.560	16.542	16.665	16.698	16.721	16.566	16.501	16.489	P 2A
	T 2	541.890	540.520	539.450	539,950	540.360	540.790	541.720	542.140	542.940	Ť 2
	T ZÁ	541.890	540.520	539.450	539.950	540.360	540.790	541.720	542.140	542.940	T 2A
	UUBAR FS	0.0839	0.1097	0.0968	0+0697	0+0697	0.0661	0+1325	0.1470	0.1346	UUBAR FS
	P2 F5	16 730	16.720	16.680	16.765	16.801	16.816	16.740	16.665	16.649	P2 F5
	1055 0404 0	5 0-0281	0.0372	0.0331	0.0247	0 0257	0.0254	0.0523	0.0585	3.0541	LOSS PARA FS
	LUJU TANA P										

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 70.40 Equivalent Rotor Speed = 2964.03 Equivalent Weight Flow = 58.15 Uniform Inlet

INLET

.

.

	PCT SPAN	96.80	92.00	86.90	71.00	10 -00					
	LIA	33.122	33.529	33-962	36 317	47.50	28.10	12.00	7.10	3.00	PET SPAN
	GETA O	0.000	0.000	0.000	0.000	31-131	38.954	40.321	40.737	41.085	DIA
	SETA 1	0.000	0.000	0.000	0.000	C-000	0.000	0.004	0.000	0.606	BETA O
	V O	224.22	224 22	226 27	0.000	0+000	0.000	0.000	0.000	0.006	BETA 1
	V I	2 . 44	261 36	229-22	224-22	224.22	224.22	224.22	224.22	224.22	V O
	¥7 u	176 22	274 22	237+23	231+13	229.91	231.99	225.07	213.35	198-11	
	¥2 1	23. 44	224.22	224.22	224.21	224.20	224.18	224.16	224-14	774 14	V. 1
	V-THETA (1 26470	441+34	239,25	231.73	229.89	231.95	225.02	213.30	199 04	42 U
	V-TULTA D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100-05	¥2 1
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
		0+2016	0.2016	0.2016	0.2016	0.2016	0.2016	0 2014	0.000	0.00	V-THETA 1
	m)	0.2091	u.2172	0.2153	0.2055	0.2068	0.2097	0.2016	0-2016	0.2016	MO
	TURN	C.0	0.0	0.0	0.0	0-0	0.2001	V+2U24	0.1918	0.1690	M 1
	UUBAR	278ر.0	6665.0	0.2143	0.2241	1. 2204	0.0	0.0	0.0	0.0	TURN
	LFAC	-0.037	-0.676	-0.067	-0.034	-0 016	V.2484	0.3044	0.3896	0.5844	UUBAR
	8FFP	0.1641	0+4032	0.3965	0.2347	0.1304	-0+035	-0.004	0.048	0.161	DFAC
	INCID	0.0001	N=0C01	0.0001	0.0001	0.1170	0.2239	0.0248	-0.3257	-1.0454	EFFP
	LEVM	-0.600	-0.000	-0.000		0.0001	0.0001	0.0001	0.0001	0.0001	INCIO
	РО	14.504	14-605	14 500	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	РÌ	14-647	14.008	14.808	14.808	14.BD8	14.808	14.808	14.805	14-808	P O
	ŤŌ	51. 2.0	144707	14.719	14+715	14.709	14.705	14.682	14.646	14.544	, U
	t i	430 700	510.700	218.100	518.700	518.700	516.700	518,700	518.706	519 300	F 1
	•••	510.700	518.700	518.700	518.700	518.700	516.700	518,700	518.700	510+700	10
NI.T. E	077 1644							5101100	2194100	210-100	11
ADICK O	PCI SPAN	95.00	90.00	85.00	70.00	50.00	30.00	16 00	10.00		
61. 7 2.8	AIU	236. د ت	JJ.tźi	34+007	35.164	36.706	38 260	10.00	10.00	5.00	PCT SPAN
RUILS -L.E.	EETA 1	0.000	0.000	0.000	0.000	0.000	201248	37.403	39.791	40.176	DIA
KUTUK +/•r•	HEIA 2	50.938	56.462	50.357	49.633	40 545	0.000	0.000	0.000	0,000	BETA 1
	bETAIPR) 1	61.463	57.600	59.644	61 377	47.000	47.496	51.940	54 742	57.379	BETA 2
	ELTA(PR) 2	23.060	26.600	26-616	34 104	02+908	03+848	65.232	66.540	69.163	BETA(PR) 1
	V 1	232.95	2 4 5	254 61	34+190	14.059	37.896	42.693	45.650	46.776	BETALPRI 2
	Υ.	413 45	307 07	200.01	248.85	244+71	246 94	241.17	229.27	262-62	V I
	VZ 1	20.00	263.63	207.33	318,35	392+57	391.06	376.27	169.39	367.38	<u>,</u>
	¥7 /	356 17	200.02	200 48	248.84	244 41	245 94	239.58	227.63	201 30	W7 1
	V-THETA 1	4.40	203.00	248.39	245.05	254.55	253.79	.31.68	212.98	197 54	17 3 3
	V-TULIA I	0.00	0.00	0.00	U.QO	0.00	0.00	0.00	0.00	0.00	* <i>L</i> _
	VETTE DA 2	319.41	500.64	299.79	286.26	298.73	297.13	295 69	201.00		V-INEIA 1
	VEPRI 1	407.5	502+2	508.4	519.4	537.9	559.4	572 5	501-20	304-10	V-INETA 2
	VIPK) 2	281.8	∠84+2	285.1	296.3	309.6	327-0	216.62	27244	500.4	V(PR) 1
	VIHEIA PRI	-428.3	-433.4	-438.9	-450.0	-479.0	-507.0	513.0	302.C	289.4	V(PR) 2
	VIPETA PRZ	-:10.4	-126.2	-140.0	-166.5	+176.0	-107.6		-524.5	-528.9	VTHETA PR1
	6 I	426.28	433.43	438.90	655.66	.70 02	-17/13	-213./	-213.4	-210.5	VINETA PR2
	υz	429.84	434.82	419.81	656 77	474 72	201+38	519.25	524.51	526.91	U 1
	H 1	0.2096	0.22.4	0.2310	0.3360	9/9+12	494+67	509.63	514.61	519.60	U 2
	M 2	0.3653	0.3545	0 2460	0.22.0	0.2202	0.2223	0.2170	0.2062	0.1821	M 3
	M(PRI 1	0.4386	11 4572	0 4670	0.33337	0-3484	0.3467	0.3329	0.3265	0.3244	MŻ
	MIPKE 2	6502	0.4362	0.4578	0.4676	<u>0_4841</u>	0.5035	0.5152	0.5149	0.5090	N(PR) 1
	TURN (PA I	30.400	0.2024 30 pt.	0.2733	0.2628	0.2747	0.2854	0.2794	0.2669	0.2555	MIDRA 2
	DUGAR	6 1650	26.024	30.208	27.181	28.296	25.965	22.467	21.447	22-365	TIGNIDUI
		0.10.39	0.1319	0.1411	0+1501	Ú.1569	0.1652	0.2183	4.2504	0.2605	
	LEAF	0.0277	0.0345	0+0365	Ú.U362	0.0416	0.0436	0-0557	0.0420	0.0433	UUDAK
	DFAC CCCO	C*P151	0.6134	0.6144	0.6002	0.6025	0-6018	0-6267	0 4562	0.40032	LUSS PARA
	(***	0.2946	0.6879	6.9007	6.84E7	U.8903	0.8631	0 3847	0.0002	0.0007	DFAC
	EFF	6.8940	v.6858	0.6484	0.8460	0.6862	0 5405	0.1001	0+1603	0.7713	EFFP
	14010	9 • C 2 4	6 / 1	9.121	9.335	A. 971	7 810	0.7628	0.1559	0.7669	LFF
	UE VM	7+210	12.649	14.776	15.555	11 667	10 725	E. 304	4.20	1.036	INCID
	P 1	14.647	14.709	14-719	14.715	14 700	10,353	11+067	11.911	10.799	ŰEVM
	Ρz	15.814	16.735	10.096	14.443	14.709	14.705	14.682	14.040	14.566	P 1
	T 1	518.700	518.700	514 700	104043	10.164	16-824	16.693	16.637	16.631	P 2
	Γz	542-010	540 736	520 (510.100	518.760	518.700	516.700	516.700	516.700	ті
	-		2401130	234.000	240.020	541.190	542.340	543.466	544.140	544.810	1.2
											••
STATCK	PCT SDAN	95 . 0	QV: - +	<i></i>							
··· -	LIA	3		00.00	70.0U	50.00	30.00	15.00	10.00	5.00	DIT COAL
STATUR-L-F.	5 F T 4 7	51 200		55.921	34.992	36.420	37.648	38.919	39.276	74.437	101 JEAN
STATONET	NETA 14	51.309	50 134	49.525	49.703	46.930	49.362	53.121	56. 774	60.414	DETA ~
**************	DETA ZA	4+550	4.570	+.100	2.670	2.220	2.631	1.541	4 73 1	00+013	EFIA 2
	¥ 2	409.17	399.65	394.31	378.35	396-96	392 57	371 04	70 132	0.072	DETA 2A
	V ZA	2×6.34	270.43	275.65	297.71	204 73	205 02	371-04	301.20	355+87	V 2
	V2 2	2>5.90	256.17	255.95	244 7	260 72	272872	216.33	200+02	270.80	V 2A
	VL ZA	207.43	277.54	274.93	207 14	200+12	200,03	222.53	197.63	174.54	V2 2
	V-TheIA 2	319.52	3DA - 75	200 02	271434	290.41	245.56	271.59	265.48	269+00	VZ ZA
	V-THETA 24	22.92	22 18	16 71	13 07	244.19	291.74	296.61	302.03	309.92	V-THETA 2
	M 2	6-3634	0.3650	0 3604	12-87	11-49	10.48	16.81	21.97	28.62	V-THETA 24
	M 2A	0.2543	0.2457	0.3204	0.3357	0.3524	0.3480	0.3282	0.3191	0.3141	8 2
	TURNIPAN	40 744	014497	0.2434	0.2630	0.2620	0.2610	0.2397	0.2344	0.2380	M 24
	LINPAR	-0 147	*2.363	45.423	47.026	40.692	47.298	49.534	51.998	54-404	THEATPRI
	LICES DAD -	0+1301	0+1566	0.1171	0+0218	0.1291	0.1476	0.1537	0.1360	0 1710	
	LEAC	0.0457	0.0441	0-0402	0.0077	0.0478	0.0568	D.D.C.C.R	0.0542	0 0404	
		6-5398	0+5459	D+5459	0.4717	0,5216	0.5291	0.5	0.67.0	0.0460	LUSS PARA
	C # # #	0.7420	0.7584	0.7807	0.9453	U. 7200	0.47.74	0 4700	0.0140	0.5600	UF AL
	INCLU	1.142	6.746	9.234	11.672	12.224	12 494	0+0140	V+7118	0.7226	EFFP
	DEVM	13.392	15,682	15 410	13.444	12.7-7	13.4974	14,415	13.606	1.417	INCIO
	P c	16.014	16.738	16.696	14 442	14 300	12.042	15.979	17.407	10.920	DEVM
	P ZA	16.614	16-557	16.677	10+0+3	10*184	16-B24	16.693	16.637	10.631	P 2
	T 2	542.010	5-0 7-0	10.037	10.015	10+010	16.625	16.509	16.482	10.498	P ZA
	T 2A	542_010	540 730	537.86U	540.650	541.190	542.340	543.460	544.140	544.810	T 2
	ULLAN FS	0.1051	0.1205	334.860	240.650	541.190	542.340	543.460	544.140	544.810	Ť 24
	PZ FS	16.764	V 1243	0.1276	0.0981	0+1447	0-1563	0.1529	0 1555	0.1528	
	1111 4404 -	101103 C A ASEA	10+737	16,712	16.747	16.813	16.838	16.692	16.667	16.677	000A0 F3
	EVJS PAKA P	5 0.0353	0.0439	0.0438	0.0346	0.0535	0.0601	0.0605	0.0619	404072	FC F3
									010017	00013	LUSS PARA FS

Table A-3. Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 49.38 Equivalent Rotor Speed = 2078.86 Equivalent Weight Flow = 66.42Uniform Inlet

•

INLET

-	0CT 60.00										
	PCI SPAN	90-80	92.00	86 e 90	71+00	49.50	28.10	12,00	7.16	3.00	PCT SPAN
	DIA	33.122	33.529	33.902	35.312	37-137	38.954	40.321	40.737	44.085	DIA
	RETA O	0.400	0.000	0.000	0.000	0.000	0 000	0 000	0.000	0.000	DETA O
	8574 1	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	04000	
	DETR 1	0.000	01000	0.000	0.000	0.000	0*000	0.000	0.000	0+000	PEIA 1
	Vü	257-13	257.13	257.13	257.13	257.13	257.13	257.13	257.13	257.13	VC
	¥ 1	268.20	272.95	271+63	267.37	265.27	263.65	252.24	248.79	239.77	V 1
	47.0	257 18	267 3	267 12	767 13	767.11	267 40	253 04	257 04	367 04	v 1 0
		220013	227622	6 71 4 5	2		221104	227+00	201.00	231+06	¥2 U
	VZ I	200.28	212+95	211.03	201.30	265.20	263.64	252+18	248.73	239.71	V2 1
	V-THETA U	0.00	Ú,,úQ	0.00	0-00	0.00	0.00	0.00	0.00	0+00	V-THETA D
	V-THETA 1	0.00	6.00	0.00	0 00	A (0)	0.00	0.00	0.00	0.00	M-THETA 1
		0.0011	1 70.44	0 3 3 3 6	A 9335	4 33 66		0.00	4600	0.000	A AREIA A
	M U	0.2315	V.2312	0.2315	0.2315	0.2315	0.2315	0.2315	0.2315	0.2315	F U
	M 1	0.2417	0.2459	0.2448	0.2469	0,2390	0.2375	0.2271	0.2240	0.2158	M 1
	TUKN	0.0	0.0	6.0	6.0	0.0	0.0	0.0	0-0	0-0	TURN
	1010 A B	0 4612	0 2433	1. 2660	6 2226	0 3415	0 74 14	A 3160	0 0753	0 4403	1818.10
	OOBAN	0.4012	0.2433	0.2077	0.6627	0.2415	0.2415	0.3120	4.3172	0.4402	UUBAA
	DFAL	-U,Q4-2	-0-062	~0.056	-0.040	+0.032	-0.025	0.019	0.032	5.068	DFAC
	EFFP .	د 183 ه 0	0.3468	0.3606	0.2709	0.2135	D.1786	-0.1383	-0.2093	-0.4306	EFFP
	INCTO	1000+0	0.0001	0.0001	0.0001	0.0001	0.0001	0 0001	0 0001	0.0001	THE TO
	-ACTUM	-0.000	-0.000	- 6 004	-0 (.00	0.000	0.0001	0.0001	0.0001	0.0001	THE TO
	DEAM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0+000	-0+000	
	PO	14.840	14-8-0	14.840	14.640	14.840	14.840	14.840	14.840	14,840	PG
	Р 1	14.622	14.708	14.726	14.719	14.709	14.709	16+669	14.636	14.401	P 1
	1 0	6 1 C 70 C	a 19 700	6.1. 70.0	610.200	515 700	610 700	E16 700	E10 700	510 700	
		510.100	510.100	510.100	516-100	514.100	516.740	510.100	510+100	210-100	
	TI	915.70G	518.700	515.700	518.700	518.700	516+700	518.700	518.700	518.700	¥ 1
KUTIR D	PET SPAN	95.04	90.00	55-CA	70.00	50.00	30.00	15.00	10.00	5.00	DCT COAN
NOTER D		22.121	53 4 33	24.003			30000	17.00	10100		FUT JEAN
	UIA	32.236	22.021	34.007	37.104	30.706	28+248	JV.405	24*141	40.176	UIA .
RCTOR -L+t+	LETA 1	0.000	6.000	6+000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
ROTOR +T.E.	BETA 2	32.490	30-918	29,804	28-437	27-361	25-644	24.995	26-156	28,654	BETA 2
		20 177	84 463	4. 550	10 050	10 043	63 63.		4/ 150	55 300	
	UCIAITRE L	40.111	40.043	40.339	40.090	44.402	21.220	23+2//	24-128	22-288	DETATERS
	RETAIPRE 2	24.044	د 6 د 2	23.991	25.508	28.686	32.767	37.472	40.471	51.867	BETA(PR) 2
	¥ 1	268-45	287.11	291.55	267.46	282.64	280.93	270.51	267-64	258.67	V 1
	<u>,</u> -	730 03	34.44	346 26	364 09	36.1 30	343 63	330 74	760 00	220 70	
	· · ·	330.03	342.72	347.23	220102	372+27	343.02	324.10	477477	220+10	* 4
	¥2 1	78° 897	287.04	291.52	287.44	282+29	279.79	268+73	265-74	256.98	¥2 1
	VZ 2	278.34	294.17	363.03	313.12	312.74	308.74	289.95	268.49	200.1	¥Z 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1-0	W-THETA 1
				1 70 11		0100	0.00		0.00	0.00	
	Y-THETA 2	111,10	110+13	1 /3 + 01	107.50	101.84	148.23	132+17	131.66	109.40	V-INETA Z
	V(PR) 1	463.1	416.1	424.0	430.0	439.0	450.4	453.7	454.9	452.2	V[PR] 1
	VIPEL 2	304-8	321-1	331.7	146.9	366.7	267-7	366-1	353.7	324 7	WIDE V
		200 (. 204 . 4	20.7.0	-310 6	334 0	367.1	344 3	343.0	- 771 0	
	VIELIA PLI	-300-4	-304.0	- 20 1 40	-217+0	-330.0	-276+7	-204.2	-201.7	-3/1-0	VINCIA PRI
	VTHEIA PRZ	-124+2	-126.8	-134.9	-149.4	-171.1	-198.7	-222.3	-229.	-255.0	VTHETA PR2
	U 1	300.38	364+00	307.83	319.AO	335.97	352.08	364.19	367.88	370.96	u 1
	n S	301 47	364 67	31.0 47	316.04	332 05	344 94	257 44	340 04	344 43	ů ž
	0 2	201041	207427	508.41	210140	332.93	340.74	3-1-44	200.74	304+43	0 2
	M 1	D+2422	0.2284	0.2629	0.2792	0.2548	0.2532	0.2437	0.2411	0.2329	M 1
	M 2	V.2950	0.3070	0.3151	D.3192	0.3157	0.3074	0.2871	0+2663	0.2039	M 2
	MERES 1	0.3612	0.3770	0.4874	0.3877	0.3058	0.4060	0.4087	0.4068	0.4073	M(BR) 1
		0.000	0.3110	0 0027	0 0 0 0 0 0	0.000	01-1000	0.1007	0.1070		
	M(PK) 2	0.2724	6.2876	0.2973	0.3110	0.3190	0.3294	0.3277	0.3163	0.2894	MIPRI 2
	TUKN (PR)	24.129	22.995	2 500	22.541	21.256	18.697	16.014	13.594	3-345	TURN (PR)
	HIGAR	0.0905	0-0960	0.0727	0.0184	0.0389	0.0410	0.0533	6.6904	0.1706	IDIRAC
	COOMA	0.0000	5 0100	0.0107	0.0107		0.0114	0.00000		0 0 0 0 0 0	Lost over
	LUSS PARA	0.0240	0.0220	0.0191	0.0107	0*0110	0.0110	0.0141	0.0241	0+05/5	LUDS PAKA
	UFAC	0.3715	0.3557	0.3394	0.3143	0.3058	0,2936	Q.2955	0.3232	ü.3670	DFAC
	FFFP	0.6805	0.7505	0.8417	0.8605	0.8542	0.8405	0.7869	0.7112	0.4121	EFFP
		0 . 7	1. 747	1 8405	0 95 94	A 8530	6 6 2 6 3	0 7854	6 7064	1 4000	EEE
			0.1401	040405		0.00000				10.00	
	11415		-4.213	-4.019	-3.995	-4+041		-2+155	-0+100	-14+961	anc:a
	UEVM	0.014	5.484	5.357	6.867	5.475	5.268	5.850	7.333	15.892	DEVM
	וע	14 622	14.708	14.720	14.719	14.709	14.709	16.649	14.436	14.601	P 1
		12 00.					15 400		16 303	14 004	
	¥ 2	12+240	124412	120222	12+214	13+230	12.200	120371	19.202	14,400	
	Τļ	518.706	518.700	518.700	518.700	518.700	518.700	518+700	516.700	518.700	11
	12	536.656	528.830	52 8+ 050	528-510	526.510	528.110	527.83D	527.770	528-140	12
	• •										• =
							_				
STATUR D	PCT SPAN	55.00	90.00	65.00	70.00	>0.00	30.0C	15.00	10.00	5.00	PCT SPAN
	DIA	33,207	33-56+	33-921	34-992	36-420	37-848	38.919	39-274	39.633	DIA
6 TATCH ()	N. T. A	21 477	20 20		78 477	77 000	75.804	76 207	76 600	20.443	BETA 2
STATUK-L.L.	DLIA Z	26.013	30+170	470941	20.411	4 / • V B7	40.000	29.376	* D. BUU	674023	021A 4
STATCR-T.E.	beta 2a	1.310	1.100	1.080	0.040	-0+810	0*210	1+671	0.990	-2.801	BETA ZA
	V 2	326.48	344.51	353.61	356.09	356.13	344.29	316.45	293.62	222.06	V 2
	V 5.4	198.47	313.36	3 22 . 73	347.00	347.54	343.21	307.23	201-14	284.09	W 21
		270.001			347480	314 00	310 31	385 13	3/1 /0		
	¥2 2	210.70	292+10	301+99	575+21	310+20	210+51	203.47	201+04	172+00	¥2 2
	V2 2A	296.54	27. د 31	322.66	347.75	347.39	342+99	306.85	290.86	283.45	VZ 2A
	V-THETA 2	177.55	176.24	173.69	169.72	162.09	148.53	135.50	132.19	109.69	V-THETA 2
	N-THE .	4 4 4 4		4 00	0.24	4 01	3 04	0 54	6 47	-13 47	N_THETA DA
	VTIPEIA 4A	0+03	1.11	e • Ud	V=27	-4071	3003	0.72	2403	-12441	T-INCIA CA
	Mi	U.2935	0.3083	0.3176	0.3192	0.3192	V.3085	0.2832	0.2625	0.1979	M Z
	M ZA	0.2665	0.2801	₽ .2889	0.3116	0.3114	0.3075	0.2748	0.2603	0+2538	H ZA
	THENDEN	31 343	29.449	28.340	28.425	27.8P3	25.044	23.684	25 74 -	32.300	TURN(PR)
	TUNNA PRJ	044000	474797	200240	4 4 4 4 4	_0 010/		0 0007	A		
	UUSAR	0.0768	0.0747	0.0671	-0.0101	~U.0124	-0.0041	0*0443	0.0692	-0.5165	UUBAR
	LESS PARA	6.0259	0.0254	0.0233	-0.006+	-0.0046	-0.0024	0.0393	0.0277	-0.2057	LOSS PARA
	DEAT	0.0447	0.2473	n 2507	0.1428	0.1982	0.1444	0.1985	0,1874	-0.0530	DEAC
	DIAC		0+4313		4.4740	0.1703	1 21000	0.2003		0.0000	
	LFFP	0.5715	0.5815	801640	1.3752	1.2483	1.9480	-0.6739	-3+0287	0.2194	EFFP
	INCID	-17.494	-12.598	-10.869	-9.559	-9.614	-10.275	-13.305	-16.362	-29 544	INCID
	DEMM	10-142	12.612	12.300	11-015	10-202	12-174	14-110	13.470	2.044	DEVH
	0.5	15 300			16 4 9 4	16	15 644	16 201	16 14-	4 004	0.7
	M 2	12+240	15+415	12+242	12+214	12+220	12.208	12.371	13+484	14.980	F 4
	P ZA	15.327	15.401	15.451	15.593	15.569	15.514	15.308	15.232	15.192	\$ 2A
	T	536-050	528-830	528-050	528-510	528.510	528.110	527-830	527.770	528-140	T 2
			- 34 8 50	505 DEC	6 3 6 6 5 M	6.0 614	636 110		1 3 374	630 140	÷ 5.
	1 24	> \$0.050	250-030	92 B. USU	248+210	250+210	550.110	261+030	221+110	228+140	1 28
	UUBAR FS	0.1039	0.0964	0.0784	0.0264	0.0186	0.0338	0+1646	0.2319	0.2281	UUBAR FS
	P2 F5	15.422	15.498	15.533	15-624	15.589	15.548	15.478	15.432	15.372	PZ FS
		S 0 0310		0.0740	0 0100	0.0069	0.012	0.072	0.0929	0 0010	LOFE PARA SE
	LUSS PARA P	-2 VIV220	U4U321	210207	010100	0.0004	0.0133	000734	V=V=20	AI027A	LUGG TRAA PS

•

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 49.47 Equivalent Rotor Speed = 2032.73 Equivalent Weight Flow = 59.41 Uniform Inlet

INLET

	PET SPAN	46.50	92.00	8690	71.00	40 60	20.10				
	ù1A	122 د ذ	33.579	31-402	25.11	47.20 Vet 52	28.10	12.00	7.10	3.00	PCT SPAN
	SETA D	L.000	0.000	0-600	0.000	0.000	20.924	40.321	46.737	41.685	AIO
	EETA 1	0.000	0.000	0.000	11-000	0.000	0.000	0.000	0.000	0.000	BETA O
	V O	229+28	229.28	229.29	220.28	229.29	0.000	0.000	6.000	0+000	BETA 1
	V 1	234.37	237.92	235 . 94	232.51	232.30	221 74	229.28	229.28	229.28	V O
	V2 C	229.28	229.28	229-28	229.25	229.17	236 14	223.83	217-34	198.03	¥ 1
	γŽ 1	234.37	237.92	235.94	c 3c - 50	232.36	227.24	229.22	229.22	229.22	VZ O
	V-THETA U	0.00	Ú. ú0	0.00	0.00	0.00	251+12	423+18	211.29	197.98	VZ 1 .
	V-THETA 1	0.00	0.00	0.00	4	0.00	0.00	0.00	0.00	0+00	V-THETA O
	мо	0.2662	0.2062	6.206/	0.2862	1 3 4 3	0.00	0.00	0.00	0+00	V-THETA 1
	M 1	0.2109	0.7141	0.2124	0 2092	0.2002	0.2002	0.2062	0.2062	0.2062	мо
	TUKN	0.0	0.0	6.6	4.0	0.2040	0.2085	0.2013	0.1954	0.1779	M 1
	LUBAR	0.5681	0.2261	6.2027	0.0		0.0	0.0	0.0	0.0	TURN
	DEAC	-0.02/	-0.038	-0.029	-0.016	0.2303	0.2425	0.3168	0.3867	0.5521	UUBAR
	EFF¥	0.1049	0.2539	6.2278	0.3102	-0.013	-0.011	0.024	0.052	D.136	DFAC
	INCID	6.6601	0.0001	0.0601	0.0001	· 0.00967	0.0831	-0.1773	-0.3621	-0.8685	EFFP
	DEVM	-0.00	-0.066	-0.600	-0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	ΡL	14.814	14.814	14-01-	14 414		-0.000	-0.000	-0.000	-0.000	DEVH
	P 1	14.055	14.715	14.726	14 714	14 7014	14.014	14-814	L+_814	14,814	ΡQ
	10	518 765	518.700	516. 700	518 700	14+703	14.709	14.677	14.647	14.575	P 1
	T Î	118.700	518.700	516.300	518 700	518.700	518.700	518.700	518.700	518.700	το
	, -			21.02 100	510.700	518.700	518+700	518.700	518.700	518.700	T 1
RUTLK C	PET SPAN	55.00	96-60	45.00	70.00	Fa 00	70				
	LIA	33.240	34.621	34 067	36 1-6	20.00	30-00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	561A 4	0.000	6.000	0.007	0 606	30-106	36.248	39.405	39.791	40.176	DIA
ROTOR -I.E.	BETA 2	a B - 3 - A	36 549	34	77 000	12 000	0.000	0.000	0.000	0.000	BETA 1
	SETAIPE) 1	24.436	50.619	50.040	53.702	5. 7.	31.867	31.738	33.546	36.401	BETA 2
	SETA(PR) 2	25-280	25.661	26 729	13 .71	22+123	22+140	56.856	57_B19	60.301	BETA(PR) 1
	¥ 1	234.84	250-04	240 264	21.211	24.110	\$3.670	37-417	40.847	50.742	BETA(PR) 2
	ΥĴ	Num + ĥ4	332.55	2 14 41	247.07	241.35	246-69	239.83	233.58	213.36	¥ 1
	V	234.H-	354-40	763 64	364462	343.49	110+25	405.05	284.72	231.87	¥ 2
	¥7.2	239-06	246 71	202071	249+07	241.05	245.70	238.25	231.92	211.97	¥Ž 1
	V-THELA 1	0 60	0.00	200.18	209+10	2 3 12	269.96	258.83	236.70	186.19	¥2 2
	Y-1HETA	159.13	164 73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	VIPR 1 1	381.7	204013	102.21	100+04	177.72	167.78	160.09	156.94	137-28	V-THETA 2
	VIPRI 2	266.4	377 1	390.9	400+2	417.7	430.4	*36.6	436.3	426.5	V(PR) 1
	VTHETA PRO	-100-5	217+0	282+8	302.6	314.6	32 + . 7	326.5	313.6	294.7	V(PR) 2
	VIHE1A PE2	-112.9	-304 8		-320.4	-336.6	-352.7	-304.9	-368.6	-371.6	VTHETA PRI
	LI	200.44	404 66	-120-0	-136 1	-122.9	-179.8	-148.C	-204.7	-227.8	VTHETA PR2
	Ū.	36 0.5	304.50	300.00	320.39	336.60	352.73	364.86	368.50	371.65	U I
	M 1	0	0.2251	0.00	314-22	33.57	347.59	358.10	361.60	365.11	U 2
	мž	1	(2774	0.2211	0.2248	0.2226	0.2220	0.2158	0.2101	0.1918	M <u>1</u>
	MIPRI 1	0.3.34	0 3547	0.2514	0.2900	0.2916	0.2645	0.2726	0.2541	0.2064	M 2
	4(PF) 2	0.0434	4. 26 34	0+3351	0.3657	0.3760	0.3874	0.3529	0.3926	0+3852	MEPRJ 1
	TURNIPSI	20. 762	26 263	0.2558	0.2708	0.2814	0.2904	0.2918	0.2799	0.2623	HEPR) 2
	LUBAR	(, (, aug	0 1004	24+313	24.800	23.993	21.413	19.355	16.889	9.498	TURN (PR)
	LUSS PARA	6-0-34	0.1000	0.0832	0+0445	0.0340	0+0445	0.0524	0.0873	0.1137	UUBAR
	LEAC	6.451.	0.0200	0.0221	0.0122	0.0095	0.0125	0.0144	0.0232	0.0255	LOSS PARA
	LEEP	(.7764	0.4597	0.4192	0.3915	0.3832	0.3757	0.3782	0.4063	0.4249	DF AC
	1.FF	1.7765	0.0231	0.7003	0+88644	6.9158	0.8800	0.8492	0.7863	0.6231	EF FP
	ii.c.a	-0.39	-2.207	0.9056	6.08-4	0.9150	0.8790	0.8479	0.7847	C.6207	£FF
	LIF VA	16	1 74		0.627	~0+5 00	-0.856	-1.630	-4.494	-7.860	INCID
	P 1	14 655	11.702	11.045	0.03.6	5.500	6-111	5.794	7.710	14.707	DEVM
	P ;	15.50-	15 5 10	14+120	14.714	14.703	14.709	14.677	14.647	14.575	P 1
	T	518.700	516 777	12.200	15+629	15.656	15.626	15.561	15.464	15.242	Ρż
	1	510 570	510 500	210.100	518.700	18.700	518.700	518.700	518.700	518.700	ті
		523.510	220.280	22 1+ 0 10	258.840	528.960	528.990	529.010	529.040	529.460	T 2
STATUR D	PCT SPAN	95.00	40-00	85-00	70.00	50 00	30.00		• •	_	
	LIA	13.207	33.504	14.921	34 00.		30+00	15.00	10.00	5.00	PCT SPAN
STATUR-L.L.	11 I A 2	30.500	6 35 S	14.96-	33,044	27.914	21.248	38.919	39.276	39.633	01A
STATUR-I.C.	EETA ZA	1.986	2.010	1.460	0.046	52+11B	31.193	32+261	34.419	37.763	BETA Z
	V 2	303.45	311.47	318-25	3 4 . 13	320 40	1.090	2-111	1.991	0.020	BETA ZA
	V 2A	261.97	205-05	269-10	205.06	267540 200 07	317-91	300.48	278.72	225 . D5	¥ 2
	VZ Z	237.2	250.72	201-81	244 83	277.01	301487	213+63	259.31	255.53	V ZA
	YZ .A	101.01	204 84	269.00	296.77	200 37	611+64 501 11	224.18	229+63	177.69	¥2 2
	V-1HEIA 🖌	169.10	184.80	182.36	191.01	177 00	501-64	213.22	2:8.93	255.26	VZ 2A
	V-THETA 24	4 C -	9.30	0.86	4.40	111.99	100+13	160-48	157.34	137.64	V-THETA Z
	N 2	6.2704	0.2785	0.2849	0.2400	0 39/6	0.305.	10.07	9.00	0.09	V-THETA ZA
	M 2A	0.23-5	0+2365	0.2403	0-2443	0 24 74	0 24 03	0.2089	0.2487	0.2003	M 2
	TURN(PR)	36-585	34, 182	33,560	12.988	32 634	20 471	0.2441	0.2312	0.2277	H ZA
	UUDAR	0.0201	0.0470	0.0000	-0.0302	0 0110	-0.0010	30-112	32.360	37.685	TURN (PR)
	LESS PARA	6.0101	0.0160	0.0.36	-0-0036	0.0041	-0.0012	0.0792	0.0619	-0.3931	UUBAR
	UFAL	6456.0	0.3410	0.3 445	6.2664	0.20041	6 34 1	0.0393	U-U248	-0.1586	LOSS PARA
	ŁFFP	0.6854	0.8349	0.7470	1.0595	0.0305	1.0101	0.5401	U.2838	0.1125	DFAC
	INCLU	-11.60.	-6.995	-5.329	-4.094	-1.000	140107	0.4444	0.5512	-0.3271	EFFP
	OL VM	16.612	13.322	12.770	11,425	11,142		-0.437	-8.750	-21.440	INCID
	P 2	15.546	15.538	15.568	15.629	15 664	12.100	1++550	14.669	4,874	DEAM
	P ZA	15.4HJ	15.499	15.500	15.434	15 444	17+040	12.201	17.464	15.242	P 2
	T 2	529-570	528.580	527.670	528, Hon	12+040 529_040	17.027	17.487	15.424	15.408	P 2A
	T 2A	529.570	528.580	527.670	528.440	528,845	520+990	52Y.010	>24.040	>29.400	12
	UUBAR FL	0.0688	0.0655	0.0697	0-0221	0.0141	20.990	>27+010	>24-040	329.460	T 2A
	22 FS	15.538	15.553	15.5AR	15.460	16.450	0.0195	0.1280	0.2122	0.1987	UUBAR FS
	LUSS PARA F	5 0.0231	0.0223	0.0230	0.0074	17487Y	17.044	12+613	15.588	15.553	P2 FS
		-				010023	010081	0+0040	0.0650	0.0801	LUSS PARA FS

.

.

C-3

Table A-3.Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 49.76Equivalent Rotor Speed = 2094.84Equivalent Weight Flow = 51.12Uniform Inlet

1 NL	. E T
------	-------

٠

	PCT SPAN	96.EU	92.DU	86 • 90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	A EU	33 . 122	33.529	3.3. 962	35.312	37.137	38.954	40,321	46.737	41.085	01A
	EETA D	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA D
	DETA 1		106 66	196 46		0.000	0.000	0.000	0_000	0.000	BETA 1
	¥ 1	202.18	208.16	217.49	253.33	201 89	202.37	190.04	170_04	170-04	V U V 1
	V2 G	196.64	196.64	1 96 - 64	196.63	196.62	196.60	196.59	196-58	196.59	v2 G
	Y2 1	202+18	208.18	2 07 . 48	203,33	201.87	202 34	195.43	190.18	172.23	vz i
	V-THETA G	0.00	ú.ĐÔ	0.00	_0*00	0.00	0.00	0-60	0.00	0.00	V-THETA O
	V-THETA 1	0.00	0.00	0.00	0+00	0.00	0.00	0.00	0.00	0.00	Y-THETA 1
	MO	0.1767	0.1767	0.1767	0.1767	0.1767	0.1767	0.1767	0.1767	0.1767	MO
	M 1 Yunki	0.1617	0.1871	0.1865	U-1827	0.1814	6.1819	D.1756	0-1709	0.1547	N 1
		(2953	6 2327	0.1950	0.7461	U+U 7. 24 05	0.00	0.0	0.0	0.0	IUKN
	DEAC	-0.025	-0.059	-0-455	+0.034	-0-027	-0-029	0.006	0.033	0.124	DEAC
	EFFP	0 1:44	0 3428	0.3688	0.2257	0.1793	0.1973	-0.0423	-0.2223	-0.7658	EFFP
	INCIC	6.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVH	-C.00u	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0,000	DEVN
	FG	14.762	14.762	14+782	14.782	14.782	14.782	14.782	14-782	14.782	PO
	P I	14.659	14.707	14.719	14.705	14.702	14.704	14.687	14.668	14.610	P 1
	10	>15.700 415 700	518.760	518.700	514.100	518-100	518.700	518.760	518.700	518.700	10
	• 1	2101100	310.100	310+100	214-100	518.100	518.700	510.700	218-100	518.700	• •
KUTUR D	PET SPAN	95.00	90.00	85 60	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	61A	33.136	120.66	34.007	35.164	36,706	38.248	39.465	39.791	40.176	DIA
RDIUR -L.E.	EETA A	0.006	0.000	6.000	0.000	0.000	C.060	0_000	0.000	0.000	BETA 1
R0†uR −T.E.	EETA 2	43.796	42.549	41.840	40.461	39.401	38.111	38.271	40.493	43,339	BETA 2
	EETA(PR) 1	56.210	54+466	54.382	55.902	57.646	58.656	60.466	61.314	63.757	BETA(PR) 1
	CERALPAJ 2	27.302	20.403	296992	290918	32.868	30.281	37.337	41.705	47.508	BETALPRI Z
	V.	202.00	285.72	265.82	295.72	295.84	212.20	207.27	274.66	246.56	¥ 1 ¥ 2
	v2 1	262.56	218.62	222.23	218-16	214.47	214.34	207.92	202.84	184.29	V7 1
	¥2 2	412-01	210.46	212.93	224.93	228.54	230.21	223.91	208.43	180.43	VZ Z
	V-THETA 1	0+00	0.00	U .00	0+00	0.00	0.00	0.00	Ü₌00	0.00	Y-THETA 1
	V-IHETA 🕹	263.29	193.20	190.65	191.98	167.73	180-58	176.65	177.97	170.27	V-THETA 2
	V(PR) 1	204.2	376.4	361.6	389.1	400.9	415.0	422-5	423.3	417.3	V(PR) 1
	V(Pk) 2	234.6	239.4	244.5	259.5	272.3	286.0	290.1	279.7	267.6	V(PR) 2
	VINEIA PRI Vineia della	-302.7	-200.3	-120.2	-322.3	-338.0	-354.8	-367.0	-370.7	-107 0	VINETA PRI
	IIII	142.69	506.33	310-20	322.25	338.55	354.70	366.98	370.70	373.81	H 1
	U 2	203.79	307.31	310.84	321.41	335.51	349.61	360.18	363.71	367.23	Ú 2
	Ĥ Î	6.1621	D.1966	0.1999	0-1962	0,1931	0.1935	D.1881	0.1836	0.1666	Ň Î
	NZ	6620	U 2550	0.2553	0.2640	0.2641	0.2614	0.2549	0.2448	0.2212	M 2
	M(PR) 1	0.3273	U.3384	Ú.3432	0.3499	0+3604	0.3731	0.3797	0.3604	0.3748	M(PR) 1
	M(PR) 1	U.21.93	0.2137	6.2184	0.2317	0.2431	0.2552	0.2587	0-2493	0.2381	M(PR) 2
	TURN (PR)	2U+644	26.016	24.937	25-963	24.741	22.519	21.056	19,538	16-202	TURN (PR)
	UDLAR LUSS BARA	0.0075	0.1019	0.1010	0.0262	0.0101	0.0109	0.0002	0.0296	0.1290	
	LEAC	0.517	0.5146	0.5077	0.6867	0.4710	0.4562	0.4572	0.4851	6.5021	DEAC
	LFFP	6.6357	6.8345	0.8255	0.8771	0.8939	0.8671	0.8410	0.7936	0.7284	EFFP
	666	6.0342	6.6331	0.6845	0.8760	0.8929	0.8659	0.8396	6.7918	0.7261	EFF
	1KU10	3.774		3.004	3.866	3.645	2.665	1.705	-0=980	-4.392	INCID
	bi vm	16.213	14.304	14-808	11-277	9.677	8-726	7.715	8.567	11-531	DEVM
	P 1	14.659	14,707	1 4. 719	14.705	14.702	14.704	14.687	14.666	14.610	P 1
	P 2	10.046	17.289	518 700	12.023	12.073	12+673	12-044	10-342	12.481	
	1	526.150	529,150	528.490	529-360	529.410	529-720	529.940	530-240	530.620	12
	••										
			-								
STATER U	PLT SPAN	95.00	90.00	85 00	76 .00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA .	33.207	33.504	33. 421	34.992	30.420	31.646	36.919	39-276	37.033	DIA DETA D
514 IUN-L.C.	DETA LA	3 1/0	42.327	41+427	2.080	1.950	2.821	50 - 74 1	4.151	474113	BETA 24
314106-1464		292.438	260.85	289.26	295.72	298.98	293.99	262.00	268.89	241.21	V 2
	V IA	235.56	232.09	2 30 93	250.73	257.43	262.19	243.73	233.07	228.04	¥ 2A
	VZ 2	:10.11	211.96	217.44	224.72	232+31	231.41	219.09	200.78	170.05	¥2 2
	VZ 2A	∡⊐5•∠0	231.73	6 - 30 2	250+53	257.19	261.72	242.93	232.25	228.00	VZ 2A
	V-IHELA 2	33 دن ،	193.27	190.75	192.16	186.02	180.95	177.08	178+42	170.72	V-THETA 2
	V-INETA ZA	1	12.83	14 . 69	9.10	8.76	12.94	17.25	16.55	16.47	V-THETA ZA
	M 4	0.2008	0.2360	V + 2 7 54	0.2234	0 2204	0.2327	0.2212	0.2390	0.2146	M 24
	TURNIPLY	40.940	39-188	38.057	38.447	37.016	35,160	34.841	37.474	40.976	TURN/PR1
	UUEAK	0.0655	ELE0.0	0.0498	0.0258	0.0266	0.0028	0.0897	0.0890	-0.0823	UUBAR
	LCSS PARA	0.0220	0.0113	0.0171	0.0092	0.0098	0.0011	0.0354	0.0355	-0.0331	LOSS PARA
	UFAC	6.4139	0.4052	0.4135	0.3726	0.3618	0-3294	0.3617	0.3751	0.3110	OFAC
	EFFP	6.6163	0.9061	0.8663	0.9107	0.9003	0.9871	0.6544	0.6502	1.8061	EFFP
	INCID	-6.107	-1.029	0, 968	2-503	2.279	2+156	0.241	-1+547	-14+092	INCID
	DEVM	11.952	14.482	14,510	13-035	12.962	14+492	16.499	10.828	8.981	DE VR
	P 2	17+010	15-544	121271	4	42,013	15-472	15 6034	40+776 15-830	17.401	P 2 A
	12	530 154	529-150	52 6-4 90	529.360	529 410	529-720	529 940	530.240	530.620	T 2
	TZA	530.150	529-150	528.490	529.360	529.410	529.720	529.940	530.240	530.620	T 2A
	UUBAR FS	0.0779	0.0971	0.0957	0.0455	0.0397	0.0364	0+1160	0.1777	0.1483	UUEAR FS
	P2 FS	15.638	15.638	15.633	15.668	15.663	15.698	15+663	15-658	15.613	P2 FS
	LOSS PARA F	\$ 0.0261	0.0329	0.0328	0-0162	0.0146	0.0143	0-0458	0+0709	0.0596	LDSS PARA FS

.

181

Table A-3. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 49.75 Equivalent Rotor Speed = 2094.55 Equivalent Weight Flow = 46.51 Uniform Inlet

INLET											
	PCT SPAN	96.8C	42.0U	86 • 5 0	71.00	49.50	28-10	17-00	7 10	2.00	D. Z
	61A	33-122	33.529	32.502	35.312	37.137	36.954	40.321	40.737	3+00 41-085	PLI SPAN
	otia D	D+000	0.000	0.000	0.000	0+000	0.000	0.000	0.000	0.000	BETA O
	201A 1	176 6.	174 54	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	v ĭ	184.28	189+06	1 10 - 20	1/6-58	178.28	178+58	176.56	178.58	178.58	V O T
	VZ U	176.58	178.58	178 • 56	178.58	175.57	178-55	170 53	169.73	156.82	V 1
	¥2 1	184+28	189.06	187-10	165.48	184.54	183.83	177.90	160-69	118.33	VZ D
	V-THETA L	04.00	0.00	0.00	0.00	0+00	0.00	0.00	0.00	0.00	V_THETA A
	V-THEIA 1	0.00	0.00	0.00	0.00	0.00	0.00	0+00	0.00	0.00	V-THETA 1
	4 L	0.1455	0.1694	0.1604	0.1604	0.1604	0.1604	0,1604	0.1604	0.1604	MQ
	TURN	0.0	0.0	0.1001	0.1000	0.1658	0.1651	D+1598	0.1524	0.1407	м 1
	UUHAR	6.3766	0.1257	0.2666	0.295	0.2333	0.0	0.0	0.0	μ.0	TURN
	OFAC	-0.032	-0.059	-V. 048	-0.039	-0.033	-0.030	0.004	0.050	0.3239	UUBAR DEAC
	EFFP	6,1465	0.3505	0.3228	u.2568	0.2274	0.2141	-0.0263	-0.3567	-0.78+3	FFFD
	INCLU	6.0001	0.0001	0.0001	0.0001	0,0001	0.0001	0.0001	0.0001	0.0001	INCID
	PO	14.703	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0-000	-0.000	DEVM
	P 1	14.664	14.764	14.769	14.703	14.703	14.103	14.763	14.763	14.763	ΡO
	T G	518+700	515.700	518.700	518.700	518.700	518.700	518.700	14.000	14.625	PL
	11	510.700	518.700	518.700	518.700	518.700	518.700	518.700	518 700	518.700	T 1
ROTUR D	PET SPAN	95.00	90.00	65.00	70.00	50.00	30.00	15.00	10.00	5 .00	0CT (040
01.700	DIA .	ەدمەدت	33.021	34.007	35+164	36.706	36.248	39.405	39.791	9.00 40.174	PUT SPAN
RDILK ~L.t.	GETA 1	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA L
NOTOR -THEE	HETAIRLE 1	41.323	46.417	46-260	44.975	43.984	42.884	43.244	44 690	47.89Z	BETA 2
	PETAIPET 2	-0.018	51.050	57.145 56 766	58.309	59.930	61.234	62.724	63.985	65.835	BETA(PR) 1
	V L	164.60	196.53	200.32	196.94	196 23	37.019	40.982	43.647	+8.464	BETA(PR) 2
	V 2		279.54	281.90	282.96	278.60	280.10	273.82	182.20	168-80	¥ 1
	V2 1	lt+.t2	1,8.48	200+30	196.93	195.99	194.70	189.19	180.90	167.70	¥ <u>2</u> ¥7 1
	VZ Z	195.86	192.71	194.90	200.16	200.40	205.02	199.12	187.15	164.27	VZ 2
	V-THEIA I		0.00	0.00	0.00	C+00	0.00	0-00	0.00	0.00	V-THETA 1
	V(FR) 1	54.5	202-40	203+00	200.00	193.42	190.42	167.27	185.14	181.75	V-THETA 2
	VUPRI _	.16.1	-19-4	24.4	234-1	245.7	705+0 250 p	413.4	413.0	410.1	V(PR] 1
	VTHE1A PK1	-262.8	-306.3	-310.1	-322.2	-338.5	-354.7	-366-9	437+1 -37n-6	44841 -373.0	VIPR) Z
	VINETA PRA	-91.4	-164.5	-107.1	-121.4	-142-0	-159+1	-172.9	-178.5	-185.4	VTHETA PRZ
		361.65	306.29	310 15	322.21	338.51	354.73	366.93	370.65	373.76	U 1
	N I	6.1655	0.1784	0 1 800	321.37	335 46	349.56	360.13	363.66	367.18	U 2
	M2	0.2570	U 2494	4.2517	0.2524	0 2494	0.1756	0.1711	0.1636	0.1515	MI
	M(PR) 1	0.3104	0.2680	0.3318	0.3403	0.3515	0.3639	0 3714	0.2346	0.2182	M Z
	M(PR) 2	6.1527	0.1957	0.1986	0.2086	0-2191	0.2317	0.2353	0-2307	0.2207	MIPRI 1
	TURNIPKI	33.600	28.510	28.346	27.078	24.585	23.376	21.700	20.279	17.332	TURN (PR)
	LESS Paka	0.0853	0.1184	0.1177	0.1048	0.1112	0.1084	0.1224	0.1385	0+1585	UUBAR
	UFAC	4.5644	0.0505	0.5414	0.0276	0.0292	0.0288	0.0321	0.0351	0.0372	LOSS PARA
	LFFP	0.1512	0.8494	0.9180	0.4807	0.8517	0 9492	0.0168	0.5283	0.5506	DFAC
	EFF	6-8445	0.5461	0.9173	0.8796	U 8498	0.8469	0.8050	0.7405	0.7188	EFFP
	14010	じゅんじン	l≁6	0-567	0.261	5.930	5.254	4,051	1+694	-2.305	INCID
		9.003	1376	1+104	12-596	12-118	10.257	9.337	10,508	12,487	DEVH
	Н.	15.662	25.67.5	14.109	14.703	14.702	14.705	14.689	14.666	14.625	P 1
	τī.	512 760	518.760	51 8. 700	518,700	12+02/	174683	519 700	15+606	15.528	P 2
	T ¿	530.300	529.390	526.760	524.470	529.780	530.080	530.540	530-920	531.190	
STATLE D	PCT SPAN	95.00	46.60	85.UQ	70.00	50.00	30.00	15.00	10-40	5-00	PCT SPAN
(TATED_6 6	-514	53.207	33.564	33+ 921	34.442	36.420	37-846	38,919	39.276	34.633	DIA
STATUR-1.1.		*f+D24 4.140	40.201	42.263	45.039	43.500	42.785	44.055	46.007	49,988	BETA 2
	V .	207.50	280.64	245.24	34410	3-110	2.871	3.801	4.892	6.092	BETA ZA
	¥	221.53	216.35	214 32	232-16	201.01	261.10	270.22	258.23	238.13	¥ 2
	VL Z	193.81	194.24	199.65	199.92	204 13	205.16	194.03	179.20	162 97	V CA
	V2 24	224.45	215.77	213.80	231.72	239.75	243.17	222.94	212.84	209.11	VZ ZA
		212.43	202.55	203.76	200.19	193.71	190.81	187.72	165.61	182.23	V-THETA 2
		10.07	15.64	14.76	13.81	13.03	12.19	14_81	18-21	22.32	V-THETA ZA
	M 2A	0.1976	0.1925	0 2 3 4 7	0.2524	0.2511	0.2506	0+2407	0-2298	0.2117	M 2
	TURN (PR)	43.464	4.050	41.632	61-622	40.372	39.880	0.1488	0.1900	0.1870	
	UUBAK	0.0600	0.0497	Ú .0873	0.0237	-0.0135	0.0090	0.0942	0.0785	-0-0568	IUKNLPKJ
	LUSS PARA	0.0222	0.0169	ú .u 300	0.0084	-0.0050	0.0035	0.0372	0.0313	-0.0228	LOSS PARA
	UFAL FFED	0.4547	0.4560	0.4771	0.4141	0.3853	0.3793	0.4276	0.4331	0.3688	OFAC
	INCLU	-2.544	2,813	0.0044	0.9296	1.0485	Q. 9652	0.7078	0.7555	1.2552	EFFP
	DEVM	14.992	15.462	15.260	14,385	0.795	0.916 14 515	5.347	2.834	-9.216	INCID
	H c	15.462	15.6.3	15.645	15.664	15.657	15.683	40+239	15.404	10.940	UEVM D 2
	P 2A	15.010	15.590	15.585	15.648	15.666	15.677	15.597	15.562	15.555	P ZA
	1 2 T 24	006.04	29-390	526.760	529.470	529.760	530-080	530.540	530.920	531.190	T 2
	LIUSAR FS	0.05400	327-390 0 1005	228-760	>29.470	529.780	530.080	530.540	530.920	531-190	T 2A
	P2 FS	15.677	15.647	15,472	15,703	0.0582	0.0550	0-1193	0.1199	0.1260	UUBAR FS
	LUSS PARA P	5 0.0291	0.0372	0.0420	0.0272	0.0215	0.0252	0.0471	17+032 0+0474	12:027	P2 P5
					= . =				010410	000000	LUSS PARA PS

-

Table A-3. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 49.50 Equivalent Rotor Speed = 2084.12 Equivalent Weight Flow = 40.70
Uniform Inlet

INLET

14661											
	PLT SPAN	96-80	97.00	86.90	71 00	40 60	26 10	13.60			
	LITA.	33 122	22 6 20	35 445	36 333		20.10	12+00	7.10	3.00	- PLI SPAN
	667. A	0.000	33.747	334 402	33.312	31.131	20.924	40.321	40+737	41.085	DIA
	DETA U	0+000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	BETA O
	BEIA L	D+000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	RETA 1
	VO	155.93	155.93	155.93	155.93	155.91	155.95	155 03	155 03	166 63	
	V 1	163.60	169.94	169.89	145.91	140.63	141 70	164 04	148 01		
	VZ G	155.43	166.03	146 03	166 02	166 00	101.70	104+03	149.20	128,49	¥ 1
	N 2 1	4.2 6.0			233233	411476	122.41	122-20	122.94	155-89	. VI 0
		103.00	109.94	104-94	165+81	160.82	161.67	154.81	145.23	128.45	¥2 1
	V-INETA U	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	V-THETA D
	V-THETA 1	0.00	0.00	0+00	0.00	0,00	0.00	0.00	0.00	0.00	U-THETA 1
	MG	6.1399	0.1399	0.1309	0.1300	0.1100	0 1166	0 1200		0.00	A-LUCIN T
	M I	0.1470	0 15 74	0 16 25	0 1400	0+1377	0.1377	0.1344	0-1397	0.1344	A O
	TUGN		0.1920	041525	0.1468	0.1444	0-2451	0.1390	0.1303	0.1152	M 1
	TURN	0	0.0	0.0	0+0	0.0	0.0	0.0	0.0	0.0	TURN
	UUSAR	0.3756	0.2204	0 -2 003	0.2204	0.2204	0.2404	0.2755	0.3906	0,5910	ULIGAR
	DFAC	-0.050	-0.090	-0.089	-0.063	-0.031	-0.037	0-007	0-068	0.176	DEAC
	EFFP	0.2166	Ú. 4618	0.4839	0.3736	0.2249	0.2380	-0 0544	-0 5160	-1 2075	CEEC
	INCT.	6.0601	0.0001	0.0001	0.0001	0.0001	0.2007	-0.0744	-0.9109	-1.2025	CFFF
	DEVM	-0.000	-(1.0.00	0 0001	0.0001	0+0001	0.0001	0.00001	0+0001	0.0001	INCID
		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-6.000	-0.000	-0.000	DEAN
	PV	14-124	14+154	14.754	14.754	14.754	14.754	14.754	14.754	14.754	PO
	P 1	14.079	14.710	14+714	14.710	14.710	14.706	14.699	14.676	14.636	P 1
	та	518,700	518.700	518.700	518.700	518.700	518.700	518 700	616 700	619 700	1
	τ1	516.700	518.700	518.700	518.700	518.700	518-700	518.700	514.700	510 700	1 5
							2101100	200000	2+0+100	510.100	• •
ROTOR D	PCT SPAN	95.UQ	90.00	65.00	70.00	50.00	30-00	15-00	10.00	5-00	PET SPAN
	DIA	33-236	33-621	34-007	35-164	36-704	38-240	10 4.54	30 701	40 174	014
RUTCR -L.F.	561A 1	6.000	0 000	(1.60C	0 000	0.000	000170	37.903	274171	-0.110	NIA I
RUTER -T F	LETA -	40 EUR	5.000		0.000	0.000	0.000	0.000	0.000	0.000	BELN 1
Seres Trace	LETA Z	50.507	20.417	20.301	>0.084	50.107	49.685	50.808	52.964	54.997	BETA 2
	BETALPKE 1	61.413	59-664	59.497	60,995	63.121	64.131	65.739	67.238	69.733	BETA(PR) 1
	BETA(PR) 2	22.650	28.700	29.663	30.973	35.144	39-402	44.347	45-434	45-212	AFTAIDD1 2
	V 1	164-11	176.39	181.63	177.76	170.03	171.85	145.44	165 04	179 27	N 3
	V 2	291.44	273.05	272.14	277 45	272 0-	240.00	102407	122+82	130+23	
		144 10	17. 35	2 72 9 14	217.55	213.73	209.02	201.00	220+22	201.03	¥ 2
	14	104.10	110-35	1 01 - 00	111+15	170+72	171.15	164.56	154.75	137.32	VZ 1
	V4 4	102+34	113+10	1/3-61	178.09	175,66	173.91	162.59	154.12	150.01	¥Z 2
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	2.4.85	210.61	209.57	212.87	210.14	204.96	199.41	204.26	214.22	V-THETA 2
	V(PR) 1	343.U	353.1	358.2	366-6	377.7	392.6	400.B	400.4	204 9	WIND 1
	VIPRI 2	200.5	196.1	20.0.2	207 7	216 0	275 2	20017		370+0	
	VTHETA PRI	- 101 - 1	-104 8	- 20 6 4	-200 4	_ 14 0	44949		220.0	213+3	VIPRI Z
	VINCTA OP	-77 7		-308.0	-320.0	-330+0	-323-0	-202-1	-368.8	-371.9	VTHETA PRI
	UNCTA FRE				-100+3	-123+1	-142.9	-158.9	-157.6	-151.1	VTHETA PR2
	01	201-14	304.10	309-01	320.60	336.82	352.96	365.11	368-80	371.90	U 1
	U 2	302.23	305.74	309.45	319.77	333.79	347.62	358.34	361.84	365.35	1J 2
	мт	6.1473	0.1602	0.1633	0.1596	0.1535	0.1543	0.1487	0.1399	0.1240	n i
	M 2	0.2598	0.2434	0.2427	0.2474	0.2441	0.2395	0.2201	0 2277	0 2227	
	M(PE 1	0. 2079	0. 1171	0.3217	0.3202	0 3301	0 3635	0 3600	0 3503	0.2321	H 4
	MIPRI	0.1746	0 1744	0 1 705	0 1661	0.3371	0.3525	V433777	0.3393	0.3224	MIPRJ L
	THE MARK A	2 . 7.0	061100	V 41 102	0.1001	041412	0.2000	V-2025	0.1463	0.1896	MIPR) 2
	TURNIER	30.700	30.490	29.032	30.021	27.965	24.692	21.343	21.559	24.500	TURN (PR)
	UUBAR	0.1010	0,1377	0.1365	0.1406	0.1640	0.1701	0.2012	0.2249	0.2377	ULBAR
	LUSS PARA	0.0272	0.0354	0.0352	0.0371	0.0432	0.0442	0.0499	0.0551	0.0593	LOSS PARA
	UFAC	0.6047	0.6142	0 -6 150	0.6118	0.6094	0.6004	0.6030	0.6257	0 4519	DEAC
	EFFP	6-8554	0.8224	G .h 766	0-8627	0.0111	0 2427	0 7044	0 4045	0.7367	CCC D
			0.0200	6 0404		0.0332	0.1021	0.7000	0.0703	0.1201	EFF#
	51.6.1	0.0000	0.02.07	0.0074	0.0014	0.0310	0.1000	0.7040	0.6938	0.7180	EFF
	10010	6.904	D.14D	P* 27A	8.952	9.124	8.152	7.078	4.962	1.611	LINCID
	JE WM	7.500	14.540	15.229	12.332	11.932	11.839	12.721	12.497	9.236	DEVM
	P 1	14.679	14+710	14.714	14.710	14.710	14.706	14.699	14.676	14.636	P 1
	P 2	15.727	15.655	15.664	15.704	15.702	15.694	15.638	15-624	15.644	
	ті	516.700	518.700	518.700	516.700	518.700	518.700	518.700	519.700	518 200	T T
	τ.2	530.790	5.0.040	529.460	530.190	526 640	531 140	511 860	510+100	510.100	11
			2001040	24 11 400	3304130	330.440	221+100	221-020	532.190	232.580	12
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.60	10-00	5-00	PCT SPAN
	DIA	33.207	33.564	33, 921	34.992	36.420	37.848	38,010	39.274	19.413	DIA .
STATES-Lat-	stTA Z	50.834	50.224	49.584	50-155	49.510	40.545	41 977	54 74.5	67 77/	DETA 2
STATUR-T-F	FFTA 24	4 766	4 200	6 610	3 200	774940	774 207	244011	24-128	214114	DCIA 2
STATUR-TIC:	N D	7.100		44.910	24640	2.720	2.101	2+671	4.121	5,262	BETA 2A
	¥ 2	240+68	Z74+11	2 15 . 39	277.55	276.81	269.97	254.27	250.89	254.05	¥ 2
	V 2A	211.99	202.58	2 02 •47	208-88	210.64	214.30	200.99	192.36	194.83	¥ 2A
	V2 2	103-19	175.36	178.54	177.81	179.69	175.01	156-67	144.08	1 35. 39	W7 2
	¥2 2A	211.27	201.90	201.84	208-50	210.30	213.93	200-61	191.69	193.80	N7 34
	V-THETA 2	224 92	210 44	2119-67	212.00	210.44	205 74	100 00	206 70	174400	96 6 8
	M-THETA J-	17 -7	14 40	36 03	++3+00	10.40	203.30	177+07	204+16	214+18	V-THETA Z
	W S		0.00	13 472	11479	10.13	10.52	4.16	13.61	17.92	V-THE TA ZA
	⊓ ∠	0.2980	0.2445	U+2430	U.2474	0.2467	D.2403	0.2261	0.2230	0.2257	M 2
	M cA	0.1684	0.1801	0.1801	0.1857	0.1872	0.1904	0.1764	0.1706	0.1727	M 2A
	TURN(PR)	46.139	45.526	45.073	46.859	46.571	46.771	49.159	50.590	52.444	TURN (PR)
	UULAR	6.1082	0+0583	0.0717	0.1089	0,1111	0.0715	0.0716	0.0831	0.0958	LILINAR
	LUSS PARA	0.4363	0.0198	0-0244	0-0384	0-0411	0.0275	0.0284	0 0332	A 034F	LOCK DIDA
	LEAL	0.5103	0.5022	0.5072	0-5055	0 6077	0 4 88 9	0+0204	V+V332	0.0365	LUSS PAKA
	LEED		0. 1022	0.0012	0.0000	0.0072	0.0828	0.9082	0.5397	V-5478	DF AC
	CPFF	0-1734	0.8744	U +8 4 75	0. 242	U.7420	D-8111	0.8130	0.8021	0.7720	EFFP
	INCLU	0.672	6.B40	¥ 294	12.125	12.804	13.697	13.170	11-568	-1.425	INCID
	DEAW	13.532	16.012	15.820	14.265	13.931	14.425	15.110	16.798	10.130	DEVM
	P 2	15.727	15.655	15.664	15,704	15,702	15.694	15.638	15.674	1	P 2
	P 24	15.650	15.418	15.418	15 411	15.430	15 440	16.600	16 870	16 603	P 6
	T 2	N10 70.	630.044	520.440	520 200	520 440	E31 1/2	A74799	424213	12+242	r 28
	1 54	520 170	520 010		530-190		551.100	231.020	232-190	532.580	1 Z
	1 24	220.140	234.040	34 7, 460	aan*140	230.440	> 51 . 160	>31.850	532,190	>32.580	T 2A
	UUBAR FS	0.0828	0.1105	0.1041	0.1331	0.1506	0+1324	0.1337	0.1462	0.1476	UUBAR FS
	P2 FS	15.707	15.692	15.687	15.722	15.732	15.737	15.677	15.662	15.677	P2 FS
	LUSS PARA F	5 9+0277	0.0375	0.0357	0.0471	0+0557	0.0509	0.0530	0.0584	0.0593	LOSS PARA ES
		- · ·									LOUD FARA FO

183

Equivalent		ROTOR		STAGE				
lb/sec	$\overline{P}_{2}/\overline{P}_{1}$	η_{ad}	η_{p}	$\overline{P}_{2A}/\overline{P}_{1}$	$\eta_{ m ad}$	η_{p}		
		Hub Ra	adial Distortion	<u> </u>				
	100	0% Design H	Equivalent Roto	r Speed				
114.76	1.2493	0.8863	0.8899	1.2355	0,8399	0.8446		
97.44	1.2603	0.8838	0.8875	1.2444	0.8329	0.8380		
84.40	1.2538	0.8045	0.8107	1,2299	0.7331	0.7408		
	9()% Design H	Equivalent Roto	r Speed				
102.52	1. 1875	0.8944	0.8970	1, 1769	0.8459	0.8494		
88,60	1.2135	0.8964	0,8992	1.2011	0.8467	0.8506		
76.35	1,2026	0.8103	0,8152	1.1858	0.7464	0,7525		
	. 70)% Design H	Equivalent Roto:	r Speed				
82,96	1.1180	0.8925	0.8942	1, 1109	0 8397	0 8491		
71.46	1. 1292	0.8854	0.8874	1. 1234	0 8461	0.8487		
59.11	1.1272	0.8143	0.8175	1. 1190	0.7629	0.7667		
		<u>Tip</u> Ra	dial Distortion					
	100	% Design E	quivalent Roto	r Speed				
115.11	1.2430	0,8520	0.8565	1.2183	0.7704	0.7767		
106.05	1.2585	0.8792	0.8831	1.2382	0.8143	0.8199		
99.09	1.2739	0.8653	0.8698	1.2556	0.8112	0.8172		
	90	% Design E	quivalent Rotor	r Speed				
105,62	1. 1862	0.8559	0.8594	1, 1724	0.7954	0 7999		
97,85	1.2089	0.9122	0.9146	1, 1955	0.8566	0.8602		
90.04	1.2207	0.8776	0.8810	1.2079	0.8292	0.8337		
	70	% Design E	quivalent Rotor	r Speed				
85.36	1.1212	0.8996	0,9012	1 1199	0 8/15	0 8490		
80.21	1.1301	0.9106	0.9121	1. 1217	0.0410	0.0439 0.8559		
72.74	1.1331	0.8871	0.8891	1. 1266	0.8444	0.8470		

Table A-4.Overall Performance - Stage D,
Radial Distortion

Table A-5. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 99,96 Equivalent Rotor Speed = 4208,22 Equivalent Weight Flow = 114,76 Hub Radial Distortion

.

INLET

	PCT SPAN	96.80	92.00	86-90	71.00	49.50	78 10	12 04	3 1/	3 (0	07.7 5544
	DTA	33-122	33.579	33.962	35 31 2	37 137	35 1154	40 333	// 333	5.00	PUT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	0 000	40+321	40.131	414002	
	BETA Y	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA C
	V 7	414 34	614 34	01000		0.000	0.000	0.000	0.000	0.000	beta 1
		410.30	410.30	410,30	410.30	416.36	416.36	416.36	416.36	416.36	V D
	V I	280.83	241.80	301-94	304.24	469.37	557.87	534+08	506.51	405.20	Vl
	¥2 U	416+36	416.36	416+36	416.35	416.33	416.29	416.25	416-25	416.25	¥2 0
	VZ 1	286.83	297.86	301.94	304.24	469.34	557.77	533.94	56E.37	465.14	V2 L
	V-THETA C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0-00	V-THETA D
	V-THETA 1	0.00	0.00	0.00	. 0.00	0.00	0.00	0.00	0.00	6.76	W-T-T-CTA)
	M O	0.3782	0.3782	0.3762	0.3782	0.3782	0 3765	6 2792	0 278 2	0000	
	N I	0.2586	0.2687	0.2724	0.2746	0 4 7 8 0	0.1124	0.5102	0.5102	0.5102	H V
	THEM	0.0	0.0	012124	0.2140	0.4200	0.5120	0.4097	6.465.	6.424.	M I
	LIN CO A D	2 2440			0.0	0.0	0.0	0.0	0.0	6.0	TURN
	OUBAR	2.2407	2.10/3	2+1212	2.1311	1.2697	0.5458	U.7U51	U.6786	1.1394	UUBAR
		0.311	0.285	D.215	0.269	-0+127	-0.340	-0.283	-6.221	-6.117	LIF AC.
	2772	-0.2622	-0+2705	-0.2679	-0.2616	0.1764	0.0046	0.4875	0.3651	ú+1607	EFFP
	INCIL	6.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	6.0001	INCIO
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.00	-0.600	-0 - 000	DEVM
	ΡQ	16.551	16.551	16.551	16.551	16.551	16.551	16-551	16.55	16.551	P C
	P 1	13+054	13.178	13.240	13.235	14-575	15.701	15.454	15 145	14 776	
	τo	516.700	518.700	516.700	516-700	518.700	518 700	615 700	616 700	616 70.0	F 1
	TI	516.700	516-700	514.700	518.700	518'700	516 700	510.700	5165700	210.100	I U
			5100100	5101100	3104104	510.700	3101100	210+100	219.100	219*100	14
KOTOR 0	PET SPAN	95-00	90.00	45 DA	70.00	60.00	30.00	15 04			
	TATA DEMIN	77.00	30.00	03.00	10100	50.00	30.00	15.00	10.00	5.00	PCT SPAN
NOTEL -+ -	OFTE 1	33+230	33-021	34.007	32.104	36.706	36 - Z4 c	39,405	39.791	40 17c	0IA
RCIDE -L.	DETA 1	0.000	0.000	0.000	0.000	0.000	6+000	0.000	0 .0 0U	6,000	BETA 1
REIGH -LOCO	DETA 2	42.197	43.580	42.636	38.782	29.991	27.514	29+211	31.65-	34.251	OLTA 2
	BETALPRI 1	64 . 703	63.664	62.495	63,156	53.410	49.719	51,790	53.411	50.04	BETA (PR] 1
	UETA(PR) 2	24.567	26.876	29.164	32.473	32.282	32.158	37.645	41.449	44.495	be TAI PE)
	V 1	207.44	313.56	324.49	327.62	505.54	606.45	564 - 18	556-80	568-96	V 1
	V 2	589.31	564.35	574.00	575.23	644.00	689.91	624 - 64	573	533.41	
	V2 1	267.39	315.49	324.40	127.60	504.51	A(13.96	580 34	552 63	A	¥ 7 1
	VíŽ	410.45	4/3.34	422.27	448.40	557 57	410 97	542.03	167 20	10100	*2 1
	V-THEIA 1	0.00	0.00	0.00	0.00	0.00	010475	243402 A DZ	401.20	439.01	V1 Z
	V-THETA 2	A \$ 7 45	402 82	300 70	240.20	201.30	0.00	0.00	Dibe	0.00	V-INCIA 1
	10011		400 7	200416	560.50	351+18	219.55	304-01	300.30	299.49	V-THETA 2
	V(DP1)	612.60	010.1	102.0	122.2	041.4	935-8	940+6	929.0	907.2	V(PR] 1
	WTUCTA DUA	- JI - D		483.0	231.2	659.7	122.0	680+2	651.3	622.0	V(PK) 2
	VINCIA PRI	-000+1	-015-4	-623.1	-647.4	-680.1	-712.7	-737.2	-744,7	-756.5	VTHEIA PK1
	VINETA PRZ	+191+8	-214.5	-235.6	-285.4	-352.2	-384.1	-419.5	-436.3	-+36.2	VINETA PR.
	UI	608.06	615.37	623 14	647.35	680.10	712.70	737.22	744.68	750.93	UL
	V z	610.27	617.35	624.43	645.67	673.99	702.31	723,55	730.63	737.71	υz
	M 1	0.2592	0.2831	0.2931	0.2960	0.4624	0.5600	0.5362	0.5116	0.4050	M 1
	M 2	ū.5204	Ú.5168	0.5080	0.5098	0.5751	0.6191	0.5575	0.5096	6.4714	М н
	M(PR) 1	0.6065	0.6235	0.6347	0.6555	0.7751	0.5641	0.8666	0.6544	0.851.6	NIERI I
	MIPRI 2	0.3996	0.4197	0.4280	0.4710	0.5892	0.0485	0.6161	0-5766	0.550	MIDEL 2
	TURN (PR)	40.133	36.125	33.329	30.684	21.109	1798	14.051	11.865	11.679	TUENIPES
	UUBAR	-0.6875	-0.0748	-0.0593	-6.1193	-0.0229	0.07.7	0.1304	0-16+4	0 1474	10.64.
	LOSS PARA	-0-0233	-0-0196	-0.0154	-0.0310	-0.0067	0 0204	6 0360	0.0451	6 6.06	LCCC HANNA
	UEAC	0.5106	0.4142	0 4747	0 4 200	0 3433	6 3633	0.0357	0.0431	0.0405	LLSS PAKA
	6660	1.0472	1.0534	1 6424	1 1147	6 0073	0.3713	0.3173	0.4117	0.4302	DFAL
	661	1 0405	1 0557	1 61 60	1.1103	0.7723	0.0/34	0.7635	0. 7306	0.7471	EFFP
	10/10	1.0473	1.0556	1.0047	1.1211	0.9920	0.0077	9.7774	Q.7242	0.7407	F F F
	INCID	14+213	12.089	11.917	11.116	-0.593	-6.262	-6.912	-8.914	-11.12e	INGLU
	DEAN	. <u>∀</u> :414	10:11:0	14.530	13,632	9.071	4 5 7 9	6.622	1641	8.41L	DIVM
	P 2	17.571	17.537	17.458	17.537	18.585	19.452	18-619	18.055	17	
	T 1	516.700	518.700	516.760	518.700	518.700	518.700	515 700	516 766	110 20	F 2
	12	562.500	560.500	558.750	557-456	555.300	556 360	555 390	5164100		1 1
						2201300	//0.3/0	2224100	つつつもしつで	222.14	1 6
STATOR O	PCT SPAN	95-00	90.00	65.00	70 00	NO 00	30 00				
	314	33.207	51.564	33 971	74 407	14 4 30	30.00	15.00	10.00	5.00	PLI SPAN
34708-1	6174 2	44 155	41 374	43 974	56 633	30.457		30.414	39.200	34.63	
CATCH-1 :	- 5 7 4 2 4	3 800	3 300	41+014	30.032	27.001	21.391	29-632	32.660	35+771	EETA 2
	DCIA ZA	2.000	31100	2.900	1.000	0.110	2.001	1.65)	L 900	-2+6L1	DETA ZA
	¥ Z	282-62	567.30	582+75	575 23	653.62	693.65	613.53	558.74	514.33	V 2
	V ZA	456.13	450.84	443.93	486.01	587.48	650.55	577.08	541.55	515.441	V 2A
	VŽ 2	405.83	427.25	433.91	448.03	568.28	615.24	531.53	469.77	410.71	N/ 2
	V2 2A	455.5B	450.17	443.34	485.77	587-24	649.71	576.91	541.00	114 . 14	V7 2A
	¥-THETA ∠	422,52	402,95	368.97	360.64	322.27	316.67	304 8	301-13	31.0.25	Nathi ta 2
	V-THETA 2A	22.28	24.38	22.46	13-14	7.76	22.70	18.64	6 6.0	-13 ./	V-T-FT-
	M 2	0.5172	0.5195	0.5161	0.5096	0.5843	0.4727	0 5	0		T-IGELA 11
	M ZA	0.3985	0.3945	0.3889	6 4275	0.5216	0.5812	0.5400	0.475		- 2
	TURNIPR	43.354	411-273	38.973	17 276	447410		0.0101	0.4146	0.4552	H ZA
	LADBAR	0_1000	C. 1033	5-16713	0 0110	20.031	22.307	21.940	41.714	21-214	FLEN(PE)
	LOSS DADA	0 033-	0.0343	0.0771	0.0119	0.0059	0.0302	0.0756	0=4404	ひょけいどみ	UUL AK
	LUDI PAKA	0.0550	0.0371	0-0334	0+0042	0.0022	0.0116	0.0300	0.0102	いっししまし	LÉSS PAKA
	UPAL	0.4516	0.4520	U 455U	0.3702	0.2802	0.2274	6.2443	0.241	0.2009	DFAL
	CFFF	0.1697	0.7721	0.7899	0.9627	0.9734	6.7856	0.4079	V-3474	1.5242	tffp
	INCID	-4-015	-0.064	1.583	0.801	-7.146	-8.465	-0.869	-10.507	-23.425	INCLU
	DEVM	11.632	14.412	14.210	12.525	11.722	13.065	14.290	13.560	6.256	DEVM
	ΡZ	17.571	17.537	17.458	17.537	18.585	19.452	16.619	16.055	11.661	P 2
	P 2A	17.278	17.233	17.177	17.503	18.562	19,317	18.10	17.545	17. 65	P . 4
	T 2	562.500	560.500	558.750	557,450	556.300	556.350	555, iAu	555 054	+ + + C 2 C	1 10
	T 2A	562.500	560.500	558.750	557.450	556-300	556-350	555 181	555.05(ALA 30	1 K
	UUBAR FS	0.0508	0.0840	0.0792	0.0444	0.0397	0.0493	0.1444	D. 3334	0 3300	26
	P2 FS	17.419	17.475	17.403	17.478	18.710	19,614	10.004	10 360	9.6273	CUEAN PS
	LOSS PARA P	\$ 0.0170	0.02.5	0-0272	0.0204	100113	124213	17+005	10+/29	18+348	P2 FU
				AAAA I T	ACCENC	0+01+0	0.0100	0.0799	0.0796	0.0955	LUSS PAFA FS

185

Table A-5.Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 100.05Equivalent Rotor Speed = 4212.04
Hub Radial Distortion

U	٩L	٠	T	
---	----	---	---	--

INLEI											
	PET SPAN	96.60	42.00	£6-90	71.00	49 80	29 10	10.04			
	51A	34-122	33.629	33 04 1	1	47.50	20.10	12.00	7.10	3.00	PCT SPAN
	LETA O	55 BEE	556567	33.902	33.312	31-131	38.954	40.3∠1	40.737	41.085	D1A
	LETA O	0-000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	D-000	HETA IN
	beta i	· 0.000	0.000	0.000	0.000	0.000	0.000	0.600	4 000	6 000	
	VÖ	364.71	364.71	304.71	344.71	366 71	34. 31	2.000	0.000	0-000	GETA I
	ŵ î	313.84	316 34	316 63	313 00	J07011	204411	304.71	364.71	364.71	ve
	11.0	344 71	210414	210.42	313.89	+00+45	481.64	469.55	467.74	413.83	V 1
	¥2 0	204-11	704 * 11	304.71	364.71	364 69	364.65	364.62	364-61	364.67	¥7_0
	¥Z 1	313+83	316.14	316.42	313.88	400.89	4B1.54	409-41	467.61	413 72	<u>11</u>
	V-THITA O	00+0	0.00	0.00	0.00	0.00	0.00		407.01	419412	V2 1
	V-THETA &	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	V-THETA C
		0 3202		0.00	0.00	0.00	V+U0	0.00	0.00	0.00	V-THETA I
		0.3302	20266-0	0+3302	0.3302	0.3302	0.3302	0.3302	0.3302	0-3367	H D
	M 1	D+2633	0,2855	0.2657	U.2834	0.3638	6.4397	6.4282	0.4741	0 3766	
	TURN	0.0	Q. U	0.0	0.0	0.0	0.0	0.0	0.4101	0.3154	2.4
	CUBAR	1-6320	1-5584	1.5107	1 5445	1 0613		0.0	V.U	0.0	TURN
	0641	1 120	0 143		1,000	1.0012	0.3874	0.4610	0.4810	0.8553	UUBAR
	0.40	0.137	0.133	0.132	0.139	-0.099	-0.321	-0.267	-0.252	-0.135	UFAL
	FEED	-0.1653	-0.1898	-0.1915	-0.1950	0.1656	0.6670	0.5867	0.5819	0 2551	LECO
	INCID	0.0001	6.0001	0.0001	0.0001	0.0001	0.0001	0.000.1	0.0001	0.000	LIFF
	UEVM	-0.000	-0.000	-0-000	-0.000	-0.000	-0.0001	0.0001	0.0001	0.0001	1 MC [D
	0.1	16 7.0	15 740	16 3	0.000	-0.000	-0+000	-0.000	-0.000	-0.00	DEVM
		13,700	10.100	124100	12-100	12+100	15.760	15+760	15.760	15.766	P 0
	P 1	13*840	13+991	14°018	13.965	14.544	15.310	15.209	15-264	14.784	D I
	τu	f15.700	518.7UD	518.100	518.700	518.700	515.700	518.700	518 700	516 300	T 6
	11	518.700	518.700	518.700	516.700	518 700	519 700	516 700	510 100	518 700	10
					,101,00	>101100	2102100	210+100	216*100	210.700	71
SUTCE D	BCT SPAN	06 66	04.00	65.00							
NOTOR D	ELE AFAN	*2.00	70+00	0>+U0	10.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	UIA	33.230	33₌oźł	34+007	35.164	36,706	38.246	39.405	39.791	40.174	TITA
HEICK -Lais	LETA I	0.000	0.000	0.000	0.000	0-000	c. oo.	0.066		0 000	
Refur -Tata	BETA 2	52-994	51.104	52-614	48.275	Au 10	72 405	0.000	0.000	0.000	OFIA 1
	SETAIOPL 1	67 571	61 415	41 404	-0.213	40.304		32.376	34+ 384	37.561	BETA 2
	DETRIPTE A	02.0010	01.012	DI+340	02+445	57.766	54.052	55.529	55.816	59.222	SETA(PR) 1
	DETATPET 2	25.190	.29.077	31+658	32.651	36.451	36.56/	38.242	39.49	44 944	RETATOON
	Ψl	314.52	352.95	340.23	338.11	429.74	519.70	509.93	500 07	661. E.	ULINIPRI Z
	V Z	5.4.70	545.11	533 21	561 03	AK 1 00			207.01	420.29	¥ I
	47.1	314 45	112 07	260.00		22.70	CU0.84	604.39	200.00	526+15	V Z
		3.4.40	332.07	240.19	138.04	429+23	517.28	506.58	506.25	447.00	VZ 1
	VI 2	334.01	321.25	323.79	366.74	421.48	512.23	509.30	424.76	417.71	V2 2
	V-IHEIA 1	0.00	0.00	0.00	0.00	0-40	0.00	0.00	A 44		W-Turte v
	V-THETA Z	450.96	415.93	423.78	411 76	367 66	313 00	222	0.00	0.00	V-INEIA I
	VIERTIT	665-1	7011 2	710 5	711120	321033	323.87	322.03	331.74	321.24	V-THETA 2
			100.2	110-5	130*4	805.0	882.4	896.9	903.1	576+3	V(PR) 1
	41FR 2	313.0	54415	301.2	435.6	527.6	638.0	649.7	629.6	591-4	VEPHI 7
	VINLIA PRI	-606.6	~015.9	-623.7	-647.9	-680.7	-713-1	-717.9	745 4	-751 4	WTHE TA DOLL
	VTHETA PR2	-159.9	-182.0	-201_{-2}	-235-0	+317-0	-376 1		-340 4	()]	FIREIA FRI
	11 h	606.61	.16 01	+ 22 20		-51160	-37941		-344-0	-417+1	VTHETA PK2
		411.63	013473	043.70	047.74	080-12	713.34	737.89	745.30	751.61	U 1
		010.02	011+41	024.99	646+25	674.60	702,95	724.21	731.29	738.30	42
	4 I	0.2046	u.3009	0.3076	0.3057	0.3908	0.4756	0-4000	0-6665	0 4105	
	M 2	Ú∎4961	0.4787	0.4686	0.4656	0.4858	0.5400	0 5 470	0 5 43 0	0.4103	
	MIPR) 1	0.6185	0.4.126	0 6424	0 4.07	0.7030	0.1407	0.3314	0.5250	L	M 2
	M/001 1	0 4300	0.0020	0.0424	0.0001	0.1320	D*9090	0.0207	v ∙8263	0.7580	M(PK]]
	317 NJ 2	0+3300	C.3289	0.3350	0.3839	0.4665	0.5686	0.5783	0.5592	0.5220	M(28) 7
	TURNIPRI	37.482	32.531	29.530	29.793	20.799	11.493	17-201	16.231	16 200	T1/D M / An h
	UUHAR	0.12+0	0.1019	0.1672	0.0969	0.1120	0 0744	0.0466	6 1133	0 1200	TURNEFR
	LUSS PARA	0.0425	0.0415	0 0422	0.0161	0 0300	0.004	0.0010	VALLOS	0.1205	UUBAR
	HEAC	0 44 77	0.6403	0.0722	0.0221	0.0286	0.0200	0.0179	0.0307	0.0302	LUSS PARA
	6650	0.0121	0+0401	0.5401	0.5769	0.4970	0.3995	0.3994	0.4304	0.4536	DFAC
		0.6018	0+8514	D+8569	0.9538	0.8901	U.9371	6.9498	0.896 0	6.85(1	FFFF
	FHF	ü∎8772	u.8461	0.6516	0.9521	0.6665	0.4351	0.9461	0.6427	3 6456	CEE
	INCIÚ	10.245	10-696	10.812	10.402	3 745	-1 944	-3 144		0.0455	EFF
	DEVM	311-041	14 417	17 / 26	16 010		- 14 74 3	-2.100	-0.004	-8.743	INCIS
	2	14 50.	1 1 1 1 1 1	LIVELLY	144010	13-139	8.941	6.618	t.358	6.962	DEVM
	-	13.070	12.447	14.010	13.905]4,544	15.310	15 201	15+207	19.78.	2 1
	<u>r</u> 4	19-122	11.4492	17.696	18.143	10.244	19.070	19.124	16.952	11.444	P '
	T 1	516.700	518.700	518.700	516.700	518.700	518.700	518.700	518.700	510 TC/	
	ĭ.'	565.700	564.300	567-700	561.000	557 860	554 400	555 7C -	5100100	510.100	<u>i</u> 1
				2010100	2010000	551.650	224+000	222.160	220.400	557.400	τ 2
STATES /	DOT COAN	06 01	4.6	(se	-	_					
STRICK D	FUT SPAN	43.00	70.00	85 . 00	70.00	50.00	30.00	15.60	10.00	5.00	PCT SPAN
	014	33.207	39.564	34.921	34.992	36.420	17-848	36.919	39.27	19	DIA
317 I L K - L . E .	beta 2	53.444	52+766	51.93	48.342	39.765	32-101	44-664	16 6 16	10 3.1	LITA D
STATUR-1.E.	6E7A 2A	3,930	4-440	4,050	3,100	2 007	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 100 1		- 201	JLTR Z
	V 2	561-50	547 72	541 00	663 02		24201	J. VO 1	24601	9.IUI	BEIR ZA
	V DA	201 41		271100		360.00	009+76	243*41	513.44	569.17	¥ 2
		ده.د.ر	203.92	309-52	413.94	454.84	14+14	511.50	487.OL	469.02	V 2A
	¥1 2	534.44	41،1دف	3 . 6 . 1 3	366 - 22	430.33	515-56	497.20	465-81	393.70	47.7
	V2 2A	342.71	302+36	379.56	413.27	454 41	533.42	510.44	455.6	447 33	N7 1
	V-THETA 2	451.0 4	4.16.44	623.90	411.45	359 10	100 672	122	-0.04	401-33	FL LA
	V-THETA 24	11 40	215 44	71.39.77	711400	320+10	344.35	223.01	332.58	3.72.09	V-THETA 2
		20470	47407	2D+D1	22+35	15.87	22+18	27.47	36.50	14+3د	Y-THLIA ZA
		0++932	0.4011	0.4757	0.4856	0.4954	Ú.5436	0.5261	0.5083	6.4489	H 2
	M ZA	0.3415	0.3230	0.3308	0.3611	0.3991	0.4710	0.4514	6-47 -	0-41-1	
	TURN(PR)	49.513	48 - 125	47.542	45,23	37.747	76 776	26 02	31 47		TOP LA
	UULAR	6.1406	11. 11.00	1 C 6.			476119	27.7.4	21-910	12+12-	I CAN LPR 1
	1055 0.04	D (4472	0+110V	0.0000	0+0952	0.0133	0+0293	u+1232	0-1576	0.0645	UUEAR
	LOUG FARA	0.0413	0.0401	0.0304	0.0338	0.0049	0.0113	U=0467	0.0624	0.0618	LOSS PARA
	L'FAL	0.534	U-5526	6.5497	0,5004	0.4149	0.3159	0.337	0.36/4	0.3094	[iEas
	EFFP	0.7451	0.7864	0.8384	0.7993	0.9445	0.8870	6.5.07	0 4130	6 6 7 7	6
	INCLU	3.27.	9.370	11 103	141 717		V.0014	0.209/	V. 4629	0.4121	CPPP
	DEVM	10 74 -		11.303	10.312	2.000	-3.0/4	->.645	-1+6+5	-19.923	INCED
	0.0	14.102	17. 752	12.360	14.075	13.012	14.0+5	15.520	10+278	d., 451	DEVM
	P 7	16.153	17.992	17.896	18.143	18,244	19.076	19-124	16-95	16.309	P 2
	P cA	17.762	17.681	17.668	17.885	18,207	16,074	16.71.	14.7	16 566	, <u>,</u>
	ΤZ	565.760	564, 300	561 200	541.000	557 050		10.110	101413	10.290	P 2A
	T ZA	565 . 7/11/	144 300	FT 3 300	5010000	221.820	224.600	222+100	-56.400	557+460	1.5
	111.45.55	0 101-	>01.300	204.100	201.000	257.850	554.660	555.700	556.400	557.400	T 2A
	OUDAR PS	0+1068	0.1380	0.1275	0.0995	0.0655	0.0417	0.1267	0.1580	0-1754	UNITER ES
	P2 F5	18.047	18.053	18,010	18,155	18.401	19,120	10.174	18.054		0. 61
	LUSS PARA F.	5 0.035A	0.0449	0.0434	0.0362	0.0001	+ + + 1 2 0	171130	18+924	16 198	PZ P3
					***333	A4A541	A#0190	0.0200	0.0630	0.0701	LLSS PATA FS

Table A-5. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100.56 Equivalent Rotor Speed = 4233.69 Equivalent Weight Flow = 84.40 Hub Radial Distortion

INLET			•								
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	SIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	UIA
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	BETA 1	0.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
	V U V 1	240 78	245 34	319.00	314.08	319.00	319.06	319.06	319.06	319.66	VO
	¥7 0	319.06	319.06	319.06	319.06	210 04	314 01	412.73	343-21	301.10L	¥ 1 N2 0
	¥2 1	260.78	265.33	265.31	274.71	364-84	421.98	412.43	393.16	361-07	¥2 U ¥2 1
	V-THETA Q	0.00	0.00	0.00	0.00	0.00	0.00	0_00	0.00	0.00	V-THETA D
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	MO	0.2881	0.2881	0.2881	0.2881	0_2881	0.2881	0.2881	0.2881	0.2881	H O
	M 1	0.2349	0.2390	0-2390	0.2476	D.3304	0.3835	0.3747	0.3567	0.3269	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	TURN
		1-6305	1.5431	1.5418	1.4847	0.8371	0.2928	0.4459	6.5601	0.7625	UUBA R
	UFAL EEEO	-0 2616	-0 3444	0.108	0.139	-0.144	-0.323	-0,293	-0.235	-0.132	DFAC
	INCID	0.0001	0.0001	0.0001	0.0001	0+2716	0. 7251	0.0001	0.4873	0.2677	EFFP
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.0001	-0.0001	-0-001	-0-0001	-0.0001	DEVN
	ΡQ	15,415	15.415	15.415	15.415	15.415	15.415	15.415	15.415	15.415	Pa
	Pi	14.007	14.082	14.083	14.133	14.692	15.162	15 030	14.931	14.739	P 1
	το	518.700	516.700	518,700	518.700	518.700	518.700	516.700	518.700	518.700	τö
	Ť 1	518.700	518,700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
BLITCH D	DET CRAN	95.00	90.00	95 00	70.05	50 40	30.00	15 00	10.00		DCT CD14
NOTON U	UTA	33,734	70.00	34.007	35, 144	36 704	00.00 946 BK	30 40E 13000	10.00	5.00	PUT SPAN
RUTON -Lafa	BETA 1	0.000	0.000	0-000	0.000	0.000	0.000	0 000	59.191	40.110	DIA DETA 1
ROTOR -T.E.	BETA 2	57.695	58.231	58,189	54-969	48.241	39-082	36.210	37.525	+0.578	ALTA 2
	BETA(PR) 1	66.872	65.742	65.578	65.601	60.328	57-822	59.152	60-546	62.739	BETA(PR1 1
	BETA(PR) 2	26.910	29.468	32-644	32.283	38.458	37.815	38.226	40.738	46+024	BETA(PR1 2
	V 1	261.33	279.05	284.71	295.44	390.31	452.97	445.92	426,11	391.83	¥ 1
	¥ 2	549.92	541.18	529.03	549.80	532.00	573.77	594.86	570.14	517.31	¥ 2
	VZ 1	261.26	278.99	284.67	295.42	389.83	451.14	442-98	+23-68	389.27	V2 1
	VI Z	293.69	284.93	278-86	315.60	354.22	444-86	478,96	451.15	392.10	V2 2
	V-THELA 1	4.4.70	440.00	0.00	0.00	0.00	0.00	00-0	0.00	0.00	V-THETA 1
	V/001 1	4646.7	400.07	447.20	716 2	370./4	301+30	320.07	340449	335.80	V-IHLIA Z
	VIPRI 2	329-6	327.3	331.2	373.3	452.5	563.8	610.9	594 4	645 7	VIPR) 1
	VTHETA PRE	-611.7	-619.1	-626.9	-651-3	-684-2	-717.0	-741.7	-749.2	-755.5	VIHE TA PRI
	VTHETA PRZ	-149.2	-161.0	-176.6	-199.4	-281.3	-345.3	-377.3	-38B.L		VTHETA PR2
	UΙ	611.74	619.09	626.91	651.27	684.22	717.01	741.68	749.19	755.47	V 1
	U 2	613.96	621.08	628.21	649.57	678.07	706.56	727.93	735.05	742.17	U 2
	M 1	0.2354	0.2515	0.2567	0.2665	0.3540	0.4126	0.4059	0.3873	0.3554	M 1
	H 2	0.4812	0.4739	0.4634	0.4829	0.4679	0.5082	0.5272	0.5043	0.4552	M 2
	M(PK) 1 M40() 1	0*2441	0.6121	0.6208	0.6451	0.7143	0.7725	0.7878	0.7835	0.7716	M(PR) 1
	TURNIPE 1	39.040	4.271	37.937	23.317	21.454	044994 10 064	20 840	0.5277	0.4977	MIPR) 2
	HUBAR	0-2220	0-2571	0.2569	0.2326	0.2594	0.1854	0 1147	0 1173	10.007	INIBAO
	LOSS PARA	0.0573	0-0657	0-0642	0.0605	0-0654	D-0493	6.0312	0.0365	0.04)9	LOSS PARA
	DFAC	0.7073	0.7171	0.7131	0.6714	0.5870	0.4775	0.4334	0.4474	0.4739	DFAC
	EFFP	0.8011	0.7954	0.8025	0.8630	0.7635	0.6376	0.8957	6.8700	U.7932	EFFP
	LFF	0.7936	0.7881	ú.7956	0.8580	0.7563	0.8326	0.6922	0.6657	0.7869	EFF
	INCIU	14.442	14.827	15.000	13.558	6.328	1.830	0.466	-1.159	-5444	TWO/TO COLOR
	DEVM	11.761	15.308	18.010	13.642	15-245	10.253	6.603	7.600	10.047	DEVM
	P 1	14.007	19.002	14.083	10.113	14.092	15-162	15-030	14.931	14.739	PI
	F 2 F 1	516 200	518 200	619 200	518 700	518 700	10+171 Kin 700	19.030	15./90	18-211	P 2
	1 2	560.550	567.000	565-600	566.550	561.500	557.750	550.250	558.950	559 770	
			20.0000		2010200	2011200			3308730	<i></i>	14
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.06	5.00	PCT SPAN
	ÚTA –	33.207	33.564	33.921	34.992	36.420	37.848	36,919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	56-220	57.814	56,945	55.053	47.548	38.949	37.000	38.781	42.461	BETA 2
STATUR-1-L-	BLIA ZA	1.800	1.800	1.700		1.400	3.401	4.751	5.142	5+302	BETA ZA
	¥ Z V 34	373.63	343.00	240.00	247.00	230.00	210+30	2044/0	222.23	442 86	¥ 2
	¥ 2 4	288.00	269.68	292.71	314.92	363.48	403-10	417.20	432.34	347 49	V 2A V2 2
	VZ ZA	373-64	363.80	360.75	390.48	429.98	482-02	475-1B	453.24	440.49	W2 2A
	V-THETA 2	464.87	460.24	449.79	450.62	397.35	362.04	351.52	347-37	336.70	V-THETA 2
	V-THETA 2A	11.74	11.43	10.71	5.45	10.51	28.64	39.50	40.76	40.85	V-THETA 2A
	M 2	0.4784	0.4763	0.4704	0.4829	0.4740	0.5107	0.5178	0.4905	0.4385	# 2
	M ZA	0.3231	0.3149	0.3126	0.3392	0.3756	0.424B	0.4188	0.3992	0.3875	M 2A
	TURN (PR)	56.420	56.013	55.243	54.246	46.130	35.515	32.204	33.591	37.126	TURN (PR I
	UUBAR	0.1669	0.1790	0.1661	U-1956	0+0648	0.0957	0.2003	0.1860	0.0372	UUBAR
	LUSS PAKA	0.5962	0.4130	0.0372	0.0073	0.0240	0.0000	0.004	0.4023	0.0150	LUSS PARA
	FFFD	0.3730	0.4997	0.0094	0.6338	0_8167	0-3070 0.7080	0.4522	0.4021	0.2222	UTAL SEED
	INCLO	8-052	14-424	16-654	17-022	10.842	3.08)	-1-707	-4-393	-16,721	EFFF INCTO
	DEVM	10.632	13.112	13.010	11.775	12.412	15.045	17.189	17.817	10-150	DEVH
	P 2	18.117	16.044	17.960	18.253	18.159	18.757	19.030	18.746	16.211	P 2
	P 2A	17.679	17.579	17.540	17.727	17.991	18.464	18.393	18.218	16.128	PZA
	12	566.550	567.000	565.000	564.550	561.500	557.750	559,250	558.950	559.770	T 2
	T 2A	566.550	567.000	565.600	564,550	561.500	557.750	559.250	558.950	559.770	T 2A
	UUBAR FS	0.1546	0.1771	0.1959	0.2191	0.1719	0+0877	0.1312	0-1671	0.1831	UUBAR FS
	P2 FS	18+079	18.037	18-053	16+320	10.491	18.729	244777	18.682	14.414	P2 F5
	LUSS PARA P	-7 010250	A*08A5	U+0874	U + 0 784	V40636	0+033/	A46314	010663	010735	LUSS PARA FS

•

187

ī

Table A-5.Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 89, 86Equivalent Rotor Speed = 3783.29
Hub Radial Distortion

INLET

	PCT SPAN	96.80	92.00	86.90	71.00	40.60	78 10	17.00			
	DIA	33.122	33-529	33-962	35, 112	37.127	20.10	12+00	7.10	3.00	PCT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	30.774	40.521	40.131	41.085	DIA
	BETA 1	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	V D	381-48	341.44	281 48	201 40	0.000	0.000	0.000	0.000	0.00.0	BETA 1
	v i	337 34	370 10	301.49	301+48	361.46	381.48	381.40	301.48	301.40	VO
	1 1	327430	336-10	334.51	325.22	415±91	494 48	496.93	469.68	430.91	Ŷ Î
	V2 U	301.40	301.40	381.48	381.47	381.45	381.42	381.38	381.38	361.38	¥70
	V TUPPA A	327.35	338.10	334.57	325.21	415+88	494.39	496.80	469.56	630.80	W7 1
	V-THETA D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Y-THEIR O
	MO	0.3457	0.3457	0.3457	0.3457	0.3457	0.3457	0 3.67	0.0467	0.00	Y-THETA 1
	M 1	0.2958	0.3057	0.3024	0.2938	0.1778	0 4610	0.3437	0.3477	0+3477	MG
	TURN	0-0	0.0	0.0	0.0	0.3110	444219	0.4542	0=4283	0.3918	M 1
	UUBAR	1.7784	1-6670	1 4564	1 1 5 6 4	0.0	0.0	0.0	0.0	0.0	TURN
	OFAC	0.142	0 114	0 123	1+0204	1-1434	0.4065	0.4065	0.6637	0.9038	UUBAR
	6660	-0 1400	-0 1444	0+123	U+1+F	-0.090	-0,296	-0.303	-0.231	-0.130	OFAC
	THETO	-0.1007	-0.1444	-0.1580	-0.1926	0.1425	0.6363	0.6092	0.4453	0.2373	FFFP
	0.544	010001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	TNCTO
	0.0	-0.000	-0.000	-0.000	-0+000	-0.000	-0.000	-0.000	-0.000	-0.000	NEVH
	PO	15.947	15.947	15.947	15.947	15.947	15.947	15.947	15.947	15 947	9.0
	P 1	15.696	13.837	13.848	13.846	14.499	15.433	15.357	15-107	14 803	, , , , , , , , , , , , , , , , , , ,
	TQ	518.700	518.700	518.700	518.700	518.700	518.700	518-700	518.700	516 TOO	F 1
	Τ 1	518.700	518.700	518.700	518.100	518.700	518.700	519 700	510 700	516.700	1 0
								2403190	210.100	219*100	11
ROTOK (J	PCT SPAN	95.00	90.00	85.00	70.00	50.00	20.00				
	DIA	33.236	33-621	34.007	38 144	36 706	30.00	15.00	10.00	5.00	PCT SPAN
RGTUR -L.E.	BETA 1	0.000	0.000	0.000	331107	30.100	30.240	39.405	39.791	40.176	DIA
ROTER -T.F.	BETA 2	44 498	43.973	41 017	0.000	0.000	0.000	0-000	0.000	0.000	BETA 1
	AFTAIDPN 1	50 035	42.073	41-01/	30.184	29.676	25.628	26.471	29.032	32.445	BETA Z
	0CTAIRD 1	25.202	27.221	21+215	58.942	53.913	50.316	50.952	52.785	55.338	BETALPRI 1
	U I	27.661	27.109	29.060	32.B73	32.902	34.047	37.557	41.292	47.394	BETALOGY 2
	V 1	328+08	370.33	360.06	350.51	446.20	533.81	541.20	512.0V	469 84	V)
	V 2	528.70	525.82	519.38	515.45	573.40	607.05	575.10	525.54	487.20	N 2
	VZ 1	328.01	356.25	360.02	350.49	445.65	531.65	537 66	508 45	444 00	
	VZ 2	377.10	385.34	367.07	405.15	497.97	564-44	513 47	460 35	400-00	¥ <u>Z</u> <u>1</u>
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	D 00		304.93	¥Z 2
	V-THETA 2	370.55	357.74	346.29	318.65	783.76	24.2 14	368 40	254 24	0.00	V-THETA 1
	V(PR) 1	637.6	658.1	665-9	679-6	754 0	434 0	277.00	429+30	244+70	V-THETA 2
	V(PK) 2	+17-1	432.9	442.8	487.4	601 1	034-0	82241	842.9	B22.5	V(PR) 1
	VTHETA PR1	-546.7	-553.2	-560.2	-582.0	-411 4	-440 7	047.0	611-2	569.5	V (PR) 2
	VTHETA PR2	-178.1	-197-3	+215-1	-261.9	-322 3	-3(0.0	-002.8	-669.5	-675.1	VTHETA PR1
	U 1	546.66	553.23	560.22	581.00	-322.02	-304.2	- 394.8	-402.5	-418.5	VTHETA PR2
	U 2	548.64	555-01	561.37	590 47	406 03	490.13	002.78	669.49	675.10	01
	M 1	0.2964	0-3225	0.3259	D 2171	0.4040	031434	620.49	656.85	663.22	U 2
	M 2	0.4680	0-4662	0-4611	0 4597	0.4002	0.000	0.9700	0.4686	0.4285	M 1
	M(PR) L	0.5760	0.5955	0 4029	0 4144	0.9131	0.2435	0.5154	0.4692	0.4059	M 2
	M(PR) 2	0-3491	A 2836	0 3023	0+0140	0.0841	0.7647	0.7851	0.7714	Ú.7501	M(PR) 1
	TURNIPRI	33.751	30 107		0 7288	0.2309	0+5934	0.5817	0.5456	0.5055	M(PR) 2
	LILIBAR	D (1435	0.0830	20.211	20.009	20.993	19*500	13.300	11.398	7.870	TURN(PR)
	LOSS PADA	0 0144	0.0017	0+0789	0*0191	-0.0175	0.0515	0.0897	0.1367	0.1744	UUBAR
	DEAC	0 E14E	0+0227	0.0205	0.0047	-0.0047	0.0144	0.0247	0.0360	0.0418	LOSS PARA
	5110	0.0077	0.9016	0.4898	0.4341	0.3363	0.3131	0.3442	0.3797	0.4120	DFAC
	666	0.0422	V-8956	0.9369	1.0032	1.0331	0.9138	0.8530	0.7871	0.6846	FFFD
		0.6890	D.8936	0.9352	1.0033	1.0340	0.9118	0.8498	0.7829	0.6791	111
	34010	5.604	6.305	6.695	6.900	-0.090	-5.686	-7.753	-9-541	-12 979	THCTO
	DEAL	10+131	12,949	14.426	14.232	9.690	6.487	5.934	8-154	11.417	DEVH
	P 1	13.090	13.837	13.848	13.848	14.499	15.433	35.357	15,107	16 902	
	P 2	16.865	16.654	16.822	16.876	17.581	18.189	17-864	17 371	14.203	P 1
	11	518,700	518.700	518.700	518.700	518.700	518.700	518.200	810 700	10+113	
	¥ 2	554.450	552.350	550.400	548.750	547.100	546.050	545 450	545 100	510.700	11
								J4J60J0	242-100	242.050	12
STATOR D	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	16.00	10.00		· · · · · ·
	DIA	33.207	33.564	33.921	34.992	36.420	17 044	10.00	10.00	5.00	PCT SPAN
STATOR-L.t.	BETA 2	44.818	42.640	41.120	38.233	29.204	35 834	30.919	37+276	39.633	DIA
STATOR-T.L.	BETA ZA	3.300	3.300	3, 25 0	1 900	A 24A	22.238	20,442	29.893	33.771	BETA 2
	¥ 2	525.80	528.30	524 64		0.340	1+450	2.351	0.900	-2.001	BETA ZA
	V ŽA	423.66	417.27	410.00	212.42	201400	6UV.94	565.49	512.39	442.01	¥ 2
	V7 2	372 00	711441	410.00	437.33	521.38	586.95	526.24	490.37	466.03	¥ 2A
	¥7 74	473 04	200.02	340-81	404-83	504.50	549.79	503.19	443.60	366.90	¥7.2
	V. 10 V. TUCTA 1	766477	416.9/	409.32	439.25	527.19	586.41	525.37	489.87	465.25	¥7 24
	V-THEIR Z	210.01	351.86	346.46	318.94	284.19	262.68	256.30	255.00	245.35	V-THETA 2
	V-INEIA ZA	24+38	Z4+02	23.24	13.80	3.13	14.85	21.57	7.70	-14-25	V-THETA 24
	n 2	0.4653	Q.4685	0.4680	0.4582	0.5203	0.5482	0.5063	0.4569	0 2010	W THEIR ZA
	M ZA	0.3721	0.3670	0.3611	0.3865	0.4700	0.5264	0-4696	0.4365	0 4120	M 24
	TURN(PR)	41.518	39.339	37.869	36.426	Z8.940	24-061	74 413	28.047	0.4137	M 2A
	UUBAR	0.0840	0-1015	0.1111	0.0336	0.0073	-0.0032	0.1247	0 0705	-0.1303	TURN (PK)
	LOSS PARA	0.0283	0.0345	0.0382	0.0119	0.0027	-0.0012	0.0510	0.0202	-0.0531	GUDAK
	OFAC	0+4161	0.4255	0.4332	0.3561	0.2721	0.1950	0.2340	0 3333	-0.0521	LUSS PARA
	EFFP	0.7792	0.7511	0.7397	0.8868	0.9428	1.0346	0 1300	0.2372	0.1855	UPAL
	INCID	-5.350	-0.748	0.830	0,202	-7.407	-10 233	-11 200	V+2305	-0.0735	EFFP
	DEVM	12.132	14.612	14.560	17.776	11.343	-10-343	-11.706	-13.272	-25.429	INCID
	ΡŻ	16.865	16.854	6.827	16.874	17.641		14.190	13.500	2.855	DEVM
	P 2A	16.670	16,615	16.541	16.400	17_844	10.107	11.004	17.321	16.713	P 2
	T 2	554,450	552.350	550.400	548.7EA	67979U 847.100	10.200	11.473	17.158	16.930	P 2A
	T 2A	554.450	557, 350	550.400	548 784	344+100	248.050	545.650	545.100	545.650	T 2
	UUBAR FS	0.0425	0-0954	0.0775	2704 (DU	>>1+100	346.050	545+650	545.100	545.650	T 2A
	P2 FS	16.412	16.030	Veu//3	0.0554	0-0426	0+0329	0.1829	0.2193	0+2575	UUBAR FS
	LOSS PARA E	5 0.11210	10+837	10+136	10+953	17+690	18.314	18.054	17.761	17.587	PZ FS
	-VUV FANA FS		0.0323	0.0255	0.0231	0.0157	0.0123	0+0724	0.0877	0.1037	LOSS PARA ES

188

Table A-5. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 90.37 Equivalent Rotor Speed = 3804.45 Equivalent Weight Flow = 88.60 Hub Radial Distortion

INLET

•

14661											
	PCT SPAN	96.80	92.00	86 - 90	71-04	46 40	26 10	11.40			
	DTA	22 122	33 6 70	20.000		47.20	20+10	12+00	1.10	3.00	PCT SPAN
		331122	33.329	23+902	35.512	37.137	38.954	40.3.1	46.7:7	41.6とう	1.1.4
	BEIA O	0+000	0.000	ú <u>.</u> 600	0,000	0.000	0.000	0.000	0.110	(- La P	3 71 1
	BETA 1	0.000	0.000	0.000	0.000	0.666	6.000	0.000	0.160		
	vo	333.31	333.31	3 5 3 3 1	222.21	222 21	222.22	0.000	0.000	しょうじし	CLIA 1
	Ú.	177 12		333.31	333.31	222028	10000	10.556	333+31	ادوفت	V u
		211+23	200.05	6 56 + 30	217.21	356.15	4.2.88	420.o5	44.د0+	372.37	V 1
	42 U	333.31	333.31	333.31	333,30	333.26	333.25	353.22	333.25	144.09	
	YZ 1	277.23	280.03	2 82 . 30	279-50	356.13	633 80	421 55		222000	
	V-THETA O	0.00	0.00	0.60	6 00	220012	432.00	42 0 - 27	463+03	2120-7	VZ 1
	V-+	0.00	4400	0.00	0.00	0.00	しゅじし	0+00	0.01	しょしじ	V-THETA C
	1-INCIV T	0.00	0.00	0.00	0.00	C+00	0.00	6+60	6.00	նենն	V-THIJA 1
	MD	0.3012	0.3012	0.3012	0.3012	0.3012	0.3012	0.3012	0 3015	0 3015	
	# 1	0.2499	0-2524	0.2845	4-2516	6 3523	0 2637			0.0012	
	TURN	0.0	0.0		V-1-11	0.3223	0.3731	0+2042	0.2079	. انت ا	
	tillo + E	1 600/		0.0	V.U	0.0	Q.U	0.0	6.0	0.0	luka
	DUBAR	1.0990	1.5271	1.4880	1,5271	1.0195	6.3726	6.4016	0.5957	0-10-6	Ulun 48
	UFAC	0,166	0.160	Ú.153	0.161	-0.069	-0.255	-0.27.2	-0.216	-/ 11/	1.6.4.
	ÉFFP	-0-2367	-0.2354	-0 2314	-0 2260	0 1001		-01202	-0.210		DEAL
	THCID	6 6601	0 0001	0.2001	-0+1300	0.1251	V+0204	C 5699	0.4437	U 2 43	EFFP
		0.0001	0-0001	0.0001	0.0001	0,0001	0.0001	0.0001	0_0061	6.6401	INCLE
	ODAM	-0.000	-0.000	- Ü+ UDD	-0.000	-0.000	-0.000	-0.000	-4+000	m1-0.0	UE VM
	PO	15.550	15.550	15.550	15.550	15.550	15.550	15.660	16 654	16 66	
	P 1	14-033	14-162	14.130	14 103	16 545	15 100			1.000	Ρü
	TO	618 700	-16 Top	1 1 1 2 7	14.102	14,003	12-141	120115	14.965	14.789	P 1
		219-100	518.100	518.700	516.700	518.700	518.700	518.700	518.700	516.700	16
	T 1	518.700	518.700	518.700	518.700	518.700	518.760	518.700	516.760	£15 706	T 1
							2100100	210+100	210.100	210-100	1 1
0.100 D	OCT COAN	05 00	00.00	14 00							
Noron B	FOT SPAN	33.00	70+00	as.00	10.00	20.00	30,00	15.40	16.60	5.00	PÚT SPAN
	DIA	33.23 6	33.621	34.007	35,164	36.706	36.246	39.405	39-741	- G. 374	6.1.4
ROTOR -L.É.	LETA 1	0.000	0.000	0.000	0.000	6.666	0.000	0.00	6.000		
ROTOR -T.E.	BETA 2	52.400	52.607	62 307	47 670	30 400	0.000	0.000	0.000	5.0006	ELIA 🛓
	RETAKONA 1	12 100			41 - 7 1 7	34.003	32.500	32.271	34.715	37.559	ELTA 2
	DETALPR +	03+143	04-141	ol.714	-2.811	58.258	54+296	55.857	57.195	59.319	EFTA(PEL L
	BETA(PR) 2	24.439	28,304	32+336	30.251	36.573	35.684	37 667	41. 140		
	V 1	277.82	296-61	303.20	300 45	360 63	44. 64	15. 07	404140		DLIACPRI Z
	v 2	515 u.C	407 14		300.00	200+03	4D4.74	424.97	431.00	405.42	VI
		010:00	477+10	419.00	>15.07	504+12	55++07	549.23	5. 4. 39	471.53	V
	VZ 1	217.76	294.54	303.16	300-63	380.36	463. Qn	451.58	433.45	41.7.74	¥ - 1
	VZ 2	314.74	301.91	2 92 . 27	344 - 74	386.28	455.41	46.1.41		22. 2.	
	V-THETA 1	6.00	0.00	0.00	6 00	2000000	-00001	401100	447.70	212110	¥2 4
	N_THETA 3	400	0.00	0.00	0.00	0.00	D. 00	0.00	6.00	د و ل ا	V-THETA 1
	V-INEDA Z	408.09	394.98	379.49	382.63	321.25	297.35	295.15	257.53	267.05	V-Tot LA 2
	V1PR.) 1	615.9	629.5	63 7.8	656.0	723.2	794.5	K07.0	807.7	760.7	VIDEL
	VIPR) 2	345.7	343.2	3.5.9	396.1	493 7	674 7			47041	ILENE 1
	VTHETA PRI	-646 7	-654		504 0	403.1	21011	500.0	203.6	233.2	V(PK) _
		-244.1	-226-2	-203.3	-265.2	-014+6	-6+4 3	-666.5	-673.2	-075.9	VTHCTA PK1
	VINE LA PRZ	-143.0	-163+1	-185,0	-201.1	-288.1	-357.6	-355.0	-361.6	74 - 9	VIDETA PRA
	υı	549+72	556.33	563.35	565.24	614-85	+66-31	666.48	6 7 7 7 7	1.76 06	L 1
	U 2	551.71	556.11	546.61	642 75	400 31	474 05	000.000	013625	010.00	01
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	6 360	0.0.60			007+32	024672	024.43	660.5	066.53	u 2
	M 1	0.2004	0.2657	0.2130	0.2713	0-3451	0.4239	D.4145	0.3976	0.3650	M 1
	H 2	0.4551	0.4385	6.4224	0.4559	6.4469	0.4939	0.44449	La Abaż	11 11 71	м. <u>.</u>
	M(PR) 1	0.5551	0.5678	0.5773	0.5436	0.6555	0.7/63	0 7261	0 7502	(1) 7(11 A.
	B(691 2	0.3050	0 5027	0 2061	0 26 3 9	0.0303	6,7243	0+1251	0.1302	0.1116	MIRK) I
	THONLOOD		0.3027	0.3051	0.0000	0.4267	6+5140	0.5220	ü₊5U11	6.4716	M(PR) 2
	TURNEPRI	30.172	33.714	29+376	32,559	21.670	18.355	17,904	16.970	13.715	TURN (PE I
	UUBAR	0.1163	0.1463	0.1568	0.0867	0.0875	0.0692	0.0640	0	0 1776	
	LUSS PARA	0.0307	0.0376	0.0398	0 0.30	0.0274	0.0104	0.0040	0.0734	0.1224	UUTAR
	05.46	0 4310	0.0000	0 40 3 10	0.0230	0.0220	0.0189	0+0175	0.0250	v.0304	LUSS PARA
	DFRC	0.0311	0.0345	0.0320	0.5721	V.4736	0.3992	0.3996	U.4267	0.4532	UFAL
	EFFP	0-8947	0.6757	U-8637	0.9937	0.9102	6.9212	0.9445	ú.9263	6. 6 . 9	6.5.F.b
	EFF	6.8913	6.5719	D + 8 5 58	6-9935	1.5077	6 6161	6 44 50		444.327	
	INCTO	10.763		1.4.1.56	11. 7. 9	4 365		0.77.0	0.7225	0.0200	SPP
	DI MA		11.100	11.130	10.104	4.208	-1.701	-4 + U + D	-5.121	-6.045	4.4616
	DEVE	A* 5 PA	14+224	11-102	11,610	13.361	8,323	0+243	7.605	9.31.5	Jr VM
	P 1	14.033	14.102	14.139	14+102	14.583	15.197	15.112	14.685	1. 7.9	
	P∡	17.525	17.396	17.271	17.661	17 66.2	16 367	1		140107	1
	TI	E1H 700	616 700	E1 x 700	510 700		10.201	10.227	10.044	11.001	P 2
	11	510-100	510+100	510.100	218*100	>18*100	518.700	516.700	518.700	518.700	T 1
	12	220.020	555 <u>+</u> 500	55 4+ 200	553.200	556-750	549.350	549.500	549.350	556.25.	1
											• •
STATOR O	DET COAN	65 00	9 0 00	46 O.	20.00	10	a	1.5			
		33 305	22.00		10.00	20.00	20.00	12.00	10.00	5.00	PCT SPAN
	DIA	33.201	33.764	33-941	34,992	36.420	⇒7 .84 8	36+919	39-276	34.033	ila.
STATOR-L.E.	BETA 2	52.817	52.290	51.437	48.045	39,102	32.404	33.045	25 764	30 16	61.74
STATOR-T-E-	BFTA 24	4,350	4.150	4-030	3.500	1 760	2 4 0 1			37.42.34	CETA Z
•••••	N 2	A12 OF		105 50	515 07	14100	2.4401	3-101	ションレキ	3.401	LLIA CA
	· · ·	213002		+02-58	212:01	210*23	556.52	546.35	511.27	455.01	۷.4
	V ZA	365.13	357.13	353.17	386.99	417.97	488.28	463.74	438.93	424-11	V . A
	¥Z 2	310.07	305.49	312.69	344.31	395.47	460.45	45 . 74	414 17	467.4.	
	V7 24	364 08	356.09	452.20	384 31	417 45			74741	322.40	VI A
	N THETA D		200.07	3 72 8 20	200+21	411403	467-37	90∠ +00	437.73	422.82	VZ "A
	V-INCIA 2	4V8 - 10	342.11	3 13+98	383.00	321.74	297.96	295.67	₹98.6 9	207.01	V-THEIA 2
	V-THETA ZA	27.69	27.09	24 82	23.6.	12.76	20.44	25.55	24.36	26.13	N-1-14 57
	N 2	0.4525	0.4406	0.4284	0.4559	0.4526	0.4961	0 4 4 1 4	0.4413	0.00	
	M 24	0.3160	0 21 21		0	0.7220	0.44401	· 0+4010	0+4341	0.40.6	M L
	TURNING STA	V. 3100	0.3121	0.004	V+3375	U.3652	0.4329	0.4103	0.3877	6.3739	M LA
	TURN LPR J	40.467	47,939	47.406	44,539	37.334	29.972	30,041	32.249	35.779	TURNIPHI
	UUBAR	ú=1244	0.0999	0,0569	0.1174	0.0343	0.0393	0.1334	0	-0.0145	Tarre A D
	LOSS PAPA	0.0418	0-0330	0.0105	0.0414	N 0177	0.0101	0.0400	0+1200	-0.0143	UUCAK
	OF AC	0 8 3 82	0.0337	0.00473	V.V410	0.0121	0.0121	0.0529	0.0542	-0.0057	LUSS PAKA
	UPAL	0.5360	V.5360	0.5245	0.4972	0.4059	0.3156	0,3412	0+3556	0.30.5	(FAL
	EFFP	0.7653	0.6093	0.8873	0.7497	0.9039	0.8455	0.5342	0.5216	1.0004	1660
	INCID	2.450	8,907	11.144	10.014	2.304	-9 44 9	_6 / 40	-7	440774	
	DEVM	13 10.4				2.0390	-3.402	-2.477	-1+312	-17.707	INCIL
		13.182	12+00%	12-340	14.475	12+762	14.065	15.599	16.178	8.251	ÚE VM
	P 2	47.525	17.398	17.271	17.641	17.652	18-287	18.267	18.0.4	17.567	P .
	P 2A	17.239	17.181	17.155	17.366	17.573	18.174	17.9/9	17.721	17 646	 B
	1 2	556.860	555, 600	554.200	552.400	560 350	640 354	414767 618 504	*******	11.544	PEA
		BEA AFA	EEE AA			350 1750	247.370	249.200	244.320	, 50 210	12
	1 28	100.000	222,200	33 9. 200	223.200	220.750	247-350	549,500	549.350	550.250	T 2A
	UUBAR FS	0.0913	D.1153	0.1331	0.1117	0.0684	0.0303	0.1321	0.1812	0,2108	ULIBAN FS
	P2 FS	17.441	17.435	17.451	17.626	17.737	16.261	18.287	18.176	18.097	0 60
	LOSS PARA E	A0.0404	0.0101	0.0454	0.0104	0.0241	0.0114	0.0533	0.0731	40107/	F_ FS
	ages cana la			*****	414373	444433	A60110	V.V343	010/24	J 4U84 Ü	LUSS PARA FS

189

Table A-5.Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 90.38Equivalent Rotor Speed = 3805.08Equivalent Weight Flow = 76.35Hub Radial Distortion

INLET

	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28-10	12.00	7.10	3 00	077 COAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40-321	40.737	A1 000	PUT SPAN
	BETA O	0_000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		DIR BETA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0-000	0-000	6.000	0.000	DENA U
	V Q	289.27	289.27	289.27	289.27	289.27	289.27	289.27	289.27	709 77	N N
	¥ 1	229.49	239.38	239.97	242.92	319-20	375-65	366.89	351.21	210 45	
	¥2 0	289.27	289.27	289.27	209.27	289-25	289.22	289.20	289.19	789.10	N 7 0
	¥Z 1	229.49	239.38	239.97	242.92	319.17	375.59	366.80	351.12	310 54	W2 1
	V+THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	517.56	VETHERA D
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THEFA U
	мо	0.2609	0.2609	0.2609	0.2609	0.2609	0.2609	0.2609	0.2605	0 2100	T-INCIA I
	M 1	0.2064	0.2154	0.2159	0.2166	0.2863	0.3403	0.1322	0 3177	0.2007	
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.2007	7 1
	UUBAR	1.5892	1.4906	1.4640	1.4199	0.8528	0.3226	0.3478	0 5 7 6 9	0.0	FURN
	DFAC	0.207	0.172	0.170	0-160	-0.103	-0.299	-0.268	-1) 714	-0.105	UUBAK
	EFFP	-0.3002	-0.2657	-0-2684	-0.2602	0 2052	0.6863	0-6166	0 4761	-0.105	DEAL
	INCID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0 0001	0.0001	
	DEVA	-0 .000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.0001	-0.0001	INCID DOM
	P 0	15.272	15.272	15.272	15.272	15.272	15.272	15.272	16.272	16 373	VENN
	P 1	14.151	14.220	14.239	14.270	14.670	15.044	14.994	14 600	13.210	P U
	ΤC	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518 700	E10 700	1
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518 200	516.700	510.700	10
							2101100	210-700	510+100	214.100	
KOTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15-00	10.00	E 00	DCT 5040
	JIA	33.236	33.621	34 007	35.166	36.706	38.246	30 405	20 701	2.00	PUI SPAN
RUTUR -L.E.	6ETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0,000	37.171	40.176	UIA
RETOR -T.L.	BETA 2	56.995	57.414	57.556	54.270	47.829	38.890	34 34 3	37 840	40 610	BEIR I
	BETA(PR) 1	67.306	65.673	65-459	65.973	61-039	59.143	50 400	10 747	40.019	BEIA Z
	BETA(PR) 2	27.421	30.443	33.376	32.291	38.140	38.180	39.700	61 070	034171	BETALPK) 1
	¥ 1	229.97	251-60	257.79	260.96	340 74	402 00	376211	41.010	40.513	BELAIPR) 2
	¥ 2	492.15	481.59	471-56	494.42	679 84	517 77	532.44	519.53	345.91	¥ 1
	¥Z 1	229.92	251.5	257.26	260.84	340 32	512911	223.90	508.65	400.02	V 2
	YZ 2	268.05	259.37	252.97	288.72	301 20	306 45	376+04	310.03	343.72	VZ 1
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	74447	700+07	347.43	VL Z
	V-THETA Z	412.72	405.77	397.95	401-35	364.00	331 65	140.00	0.00	0.00	V-THETA 1
	VIPRI 1	596.0	610-7	619.6	A40.9	702 0	760 4	309.07	311.47	298.64	V-INETA 2
	V(PR) 2	302.0	300.9	302.9	341.6	410 7	507 7	112+1 545 1	112.9	rez . i	V(PRJ 1
	VTHETA PRA	-549.8	-556.4	-503-4	-585.3	-616.9	-444 4	1.000	332.0	308.6	VIPR) Z
	VTHETA PR2	-139.1	-152-4	-166.7	-182.5	-764 4	-212 6	-000.0	-613.3	-619.0	VTHETA PRI
	U 1	549-81	556.42	563-44	585-34	614.05		-344.4	-344.2	-368.4	VINETA PRZ
	U 2	551.80	558.21	564-61	581.81	609.42	435.03	454 27	613-34	010+44	01
	M 1	0.2069	0.2265	0.2317	0.2350	0.1001	037603	034463	000+04	007.04	0 2
	M 2	0.4326	0.4235	0-4148	0-4341	0 4227	0 4649	0.4460	0.3439	0+3129	M 1
	8(PR) 1	0.5361	0.5498	0.5576	0.5772	0 4347	A 4403	0.4020	0.4510	0.406/	M 2
	M(PR) 2	0-2655	0.2666	0.2665	0 2012	0 3431	0.0073	0.7031	0.7005	0.6892	MIPRE 1
	TURN (PR)	34-482	35-227	32.081	33 491	22 437	10 013	0.4838	0.4122	0.4491	MIPR) 2
	UUBAR	0.2077	0.2400	0-7480	0.9924	444037	17.713	20.142	14.625	16.588	TURN(PR)
	LUSS PARA	0.0534	0-0607	0.0615	0.0597	0 0567	0.1000	0.1194	0+1305	0+1573	UUBAR
	UFAC	0+6942	0.7025	0.7019	0.4595	0 6703	0.4330	0.0321	0.0361	0.0363	LUSS PARA
	EFFP	0.8029	0.7976	0.7984	0.6726	0 7020	0 0330	0.9392	0.4510	0.4702	DFAC
	EFF	0.7970	0.7920	0.7978	0.8680	0 7074	0.0320	0.0752	048754	0.8049	FFFA
	INCID	14.876	14-758	14.882	13.031	7 040	2 151	V-8718	0.8721	0.8001	EFF
	DEVM	12.272	16.283	18.747	13 45 1	16 174	40121	0.003	-1.937	-5.001	INCID
	P 1	19.151	14.720	14.239	14-770	10.170	10.01/	1+0+1	1.932	10.536	DEAN
	PZ	17.440	17.367	17.310	17 546	17 577	13.044	14.990	14.579	14.717	P 1
	T 1	518-700	518,700	518.700	518.700	518 300	418 TOD	10.009	17.918	17.492	PZ
	12	556.750	557.200	556.250	585-200	553.000	510.700	518.100	518.700	518.760	TI
					3334600	JJ34000	990÷900	331.200	220*400	551.500	12
STATER D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30-00	15.00	10.00	5 00	PET CALM
	ыIA	33.207	33.564	33.921	34.992	36.420	37.848	38-919	39.276	39.433	DTA
STATUR-L.E.	BETA 2	57.479	57.043	56.407	54 351	47.182	38 771	37.041	39,059	42,324	RETA 2
STATOK-T.E.	BETA ZA	Z.340	2.400	2.270	1.690	1.900	3-311	4.891	5.102	4 997	NETA 24
	¥ 2	489.56	483.76	477.98	494.42	484.58	514.94	\$15.76	496.13	44702	DETA ZA
	¥ 2A	341.67	328.38	325.26	356.94	383.65	433-00	423.88	405.81	107 10	¥ 2 ¥ 24
	¥2. 2	263.19	263.17	264.45	288.13	329.25	401-12	610.99	184.81	338 60	N 7 3
	VZ ZA	341.38	328.08	324.99	356.73	383.31	632.02	622.00	401.84	300.26	V4 4 V7)4
	V-THETA 2	412.79	405.91	398.15	401.73	355.34	322-21	310.62	313 24	300 44	
	V-THETA ZA	13.95	13.75	12.88	10.53	12.72	24.99	36-11	36.05	34 02	V_THETA 2
	M 2	0.4302	0.4256	0.4207	0.4361	0.4280	0.4568	0.4574	0.4394	0.3927	V-INC(A 2A
	M 2A	0.2975	0.2861	0-2836	0.3120	0.3366	0.3818	0.3734	0 1671	0 3447	N 24
	TURN (PR)	55.139	54.642	54.136	52.655	45.764	35.427	32.144	11,000	37 280	THOMADO
	UUBAR	0.1347	0.1482	0.1388	0.1691	0.0752	0.0826	0.1479	0.1774	0.0205	
	LOSS PARA	0.0453	0.0504	0.0477	0.0601	0.0278	0-0316	0.0663	0-0707	0.0110	LUCC DIDA
	UFAC	0.5766	0.5974	0.5973	0.5598	0.4710	D. 3874	0.3904	0.4043	0.3413	LUSS FARA DEAF
	EFFP	0.7536	0.7414	0.7566	0.6688	0.4120	0.7194	0.5102	0.4994	0.0013	SEED
	INCID	7.312	13.655	16.117	16.321	10.474	2,803	-1.424	-4 112	-14.000	STFT THETA
	DEVM	11.172	13.712	13.580	12.665	12,912	14.975	17.329	17.777	9.930	DEVN
	P 2	17.440	17.367	17.310	17.565	17-523	17.929	18.044	17.010	17.463	0.2
	P 2A	17.160	17.066	17.035	17.201	17.367	17.711	17,449	17.672	17.4476	F 4 B 74
	T 2	558.750	557.200	556.250	555,200	553.000	550.000	551,200	550.000	551,500	T 2
	T 2A	558.750	557,200	556,250	555.200	553.000	550,900	551,200	550.000	551.500	T 24
	UUBAR FS	0.1406	0.1793	0.2012	0.1768	0.1397	0.0641	0.1774	0.1546	0.1704	1 28 181840 EC
	P2 FS	17.455	17.444	17.465	17.590	17.678	17 841	17.01	17.870	17.742	000MK F3
	LOSS PARA F	S U.473	0.0610	0.0691	V. J635	0.0518	0.0246	0.0483	0.0636	0.0443	1055 0494 55
											LUJJ PARA PJ

Table A-5.Blade Element Performance (Continued)
stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 71.15Equivalent Rotor Speed = 2995.46Equivalent Weight Flow = 82.96
Hub Radial Distortion

INLET

-

4 196.4.1											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28-10	12 00	7 10	3 00	DET EDIN
	DIA	33.122	31.529	33.942	35.212	37 137	30 064	10 333	10 707	3.00	PLISPAN
	BETA O	0 000	0 000	0.000	371312	31.131	20+724	40+221	40.131	41.085	DIA
	BETA 1	0.000	0.000	4.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA U
	BEIAL	0.000	0.000	0.000	0.000	0.000	0+000	0.000	0.000	0.000	BETA 1
		312.82	312.02	312.82	312 .8 2	312.82	312.82	312.82	312.82	312.82	VO
	Y I	259.69	262,99	263.37	260+03	337,44	397.52	392.41	391.01	334.40	V I
	V2 0	312.82	312.82	312.82	312.81	312.80	312.77	312.74	312.73	312.74	47 0
	¥2 1	259.69	262.99	263-37	260.03	337-61	397.45	392.31	200 00	334 37	W2 1
	Y-THETA Q	0.00	0.00	0.00	0.00	0.00	0.00	272.31	370.70	334.32	72 1
	V-THETA 1	0-00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Y-THETA D
		0.000	0 3000	0.00	0.00	0.00	0.00	9.00	0.00	0.00	V-THETA 1
		V.2024	0.2024	0.2029	0.2824	0.2824	0.2824	0.2824	0.2824	0.2824	мо
		0+2339	0.2369	0.2372	0.2342	0.3050	0.3607	0.3559	0.3546	0.3022	ні
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	THEN
	UUBAR	1.590L	1.5207	1.5017	1.5270	0.9713	0.3625	0.3966	0.4097	0 8460	1110 4 0
	DFAC	0.170	0.159	0.158	0.149	-0.079	-0.271	-0 264	-0.350	-0.0(0	DOBRA
	EFFP	-D. 239A	-0-2361	-0.2379	-0.3607	0 1454	A 4141	-0.294	-0.250	-0.004	UFAL
	THETO	6 0001	0.0001	042317	-012307	0+1+24	V-0302	0.2493	0*2828	Q.146Z	EFFP
		010001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	UCTH	-0.000	-0.000	-0.000	-0.000	-0*000	-0.000	-0.000	-0.000	-0.000	DEVM
	PO	124427	15+427	15.427	15.427	15.+27	15+427	15.427	15.427	15.427	P 0
	PI	14.105	14.163	14.178	14.157	14.619	15,125	15.097	15.087	14.724	PI
	то	518.700	518.700	518.700	518.700	518.700	518.700	518-700	518.700	518.700	ŤŌ
	T 1	518,700	518.700	516.700	516. 700	518.700	518-700	518.700	516.100	518 700	, D T 1
									7101100	2108100	
ROTOR D	PCT SPAN	95.00	90.00	85.00	70-00	50.00	30.00	16.00	10.00	K AA	BCT CRAN
	DIA	13.236	33.621	34 007	75 144	24 704	30 340	19.00	10.00	3.00	PCI SPAN
ROTOR -L.F.	BETA 1	0 000	0.000	2 000	324494	204100	30+245	37.402	28.141	40.175	DIA
ROTOR -T :		12.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0+000	BETA 1
NOTON THE	DEIR 2	42+343	42.009	41.188	37.580	29.464	25.337	25.219	26.902	30.434	BETA 2
	BETATPRE 1	58.788	57.737	57.501	58.762	53.360	50.091	51.271	51.570	56.049	BETA(PR) 1
	BETA(PR) 2	24.116	26.594	28.079	30.499	31.492	33.320	37.014	39.944	48.801	RETAIDED 2
	V 1	260.24	276.57	282-60	279.50	360.50	426-03	423.44	423 40	343 33	U I
	¥ 2	427.30	671.90	419.33	474.88	444 24	400 00	444 01	423.00	302.23	¥ 1
	¥7 1	760.19	274 61	202 67	370 44	400.24	407.90	400+01	434.65	353.01	V 2
	47.2	200.17	210471	202.37	617470	300.05	424+31	420+85	420.58	359.87	V2 1
		307.40	313.23	312.56	338,30	405,75	442.06	420.47	386.71	303.56	¥Z 2
	A-INFIV T	0+00	C.OO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	296.78	282.62	276.13	260.33	229.23	209.31	198.03	196.20	178.34	V-THETA 2
	V(PR) 1	505.0	518.0	525.9	538.9	603 . 6	662.5	674.4	478-5	645.7	V(001 1
	Y(PR) 2	336.8	350.3	357.7	392.6	477.1	529.7	627.7	606 6	64.3	VICE 1
	VTHETA PRI	-412 B	-438.0	-443.6		-484 1	-607 3	-634 6	-530 1	401.0	HTHE Z
	VTHETA PR7	-117.6	-154 8	- 44 3	-100 3	- 36.0 6	-10165	-724.0	-220-1		VTHETA PRI
	11 1	423 83	436 03	-100.3	-177.3	-190-9	-290.6	-317.0	-323.9	-346.8	VTHETA PR2
		432.402	430-03	443.20	400.17	484.10	507-31	924+76	530.07	534.52	U 1
	0 2	434.3V	434.43	444.47	437.37	479,75	499.91	515.03	520.07	525.11	U 2
	- F - E	0.2344	0.2493	0.2548	0.2519	0.3263	0.3873	0.3850	0.3850	0.3279	Ml
	M 2	0.3797	0.3754	0.3736	0.3809	0.4175	0.4398	0.4177	0.3891	0.3141	мž
	M(PR] 1	0.4548	0.4669	0.4741	0.4858	0-5464	0.4022	0.4130	0.6167	0.5845	M (00 1 1
	M(PR) 2	0.2993	0.3117	0.3186	0.3503	0.4272	0.4756	0.4730	0.4522	0 4107	MIRON 2
	TURN (PR 1	14.869	31, 139	29.420	24.242	21 446	14 700			0.4101	MIPRI 2
	14164.0	0 0815	0 0870	0 0773	0 0070	-0.0130	101107	14.102	14.740	1.113	T URON T PIK 3
	LOES BIRA	0.0032	040870	040112	0.0010	-0-0130	0.0376	0.0240	0.1189	0.1350	UUBAR
	LUJJ FARA	0.0221	0.0220	0.0202	0.0014	-0.0036	0.0106	0.0165	0.0320	0.0317	LOSS PARA
	UFAL	0.5036	0.4840	0.4760	0.4199	0.3314	0.3058	0.3186	0.3555	0.3821	DFAC
	EFFP	0.8459	0.0686	0.9239	1.0311	1.0119	0.9194	0.8665	0.7671	0.6584	EFFP
	EFF	0.8431	0.8663	0.9225	1.0317	1.0121	0.9182	0.8646	0.7643	0.6548	FFF
	INCID	6.557	6.822	6.923	6.720	-0-643	-6.910	-7-422	-10-768	-12-126	INCIO
	DEVM	8.967	12-434	13.645	11.858	8.481	5 740	5 301	6 808	13 635	DENH
	P 1	14-105	14.163	14.178	14.157	14 410	16 125	15 007	15 007	16+043	DEAN
		14 074	14 04 3	14 050	14 194	141017	12+422	19.077	15-087	190729	P 1
	T D	10.074	104042	10.072	10.130	10.340	16.840	16.672	16+430	15.874	P 2
	11	510.100	001+010	210.100	218+100	218.100	219*100	218-100	518.700	518.700	T 1
	12	542.100	540,400	539.000	537.850	537+150	536.300	535.950	535.450	535.900	1 Z
*T +T(-A -D	067 604W	05 00		A	T o o-					_	
STATUR D	FUI SPAN	72.00	40-00	82.00	10.00	20.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	\$5.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	44.280	41.855	40.568	37.628	29.135	25.265	25.661	27.626	31.574	BETA 2
STATUR-T.E.	BETA 2A	3.400	3.500	3.000	1.250	0.200	1.400	2.001	1.000	-2.001	RETA 24
	¥ 2	425.16	423.71	424.81	424.88	471.79	491-93	459.05	474 83	342.01	V 3
	¥ 24	349.54	345.30	338.61	346.94	433.70	478.20	477 78	403 05	308 33	
	v7 2	304.30	315.50	322.44	334 04	411	444 43	413 10		302.11	V 24
	N7 24	344 03	344 45	338 13	330.004	414.87	444446	413-14	3/2+85	240.40	¥Z 2
		340.73	344.03	330.13	200.00	433-07	91/+08	431+01	403.96	385.13	VZ ZA
	V-THETA Z	290.83	282+72	216.27	260.58	229.58	209.74	198,51	196.70	178.81	V-THETA 2
	V-THETA ZA	20.73	21.08	17.72	8.00	1.51	11.68	15.08	7.05	-13.45	V-THETA 2A
	M 2	0.3776	0.3771	0.3786	0.3809	0.4226	0.4417	0.4113	0.3799	0.3042	N 2
	N 2A	0.3092	0.3058	0.3002	0.3262	0.3870	0.4290	0.3866	0.3607	0.3439	H 24
	TURN (PR)	40.880	38.354	37.567	36.371	28.414	23.838	23.423	26,582	11.510	TURN (PP 1
	UUBAR	0.0731	0.0735	0.1090	0-0560	0-0363	-0.0075	0.1212	D-1747	-0.2286	A DOM FOR A
	LOSS PARA	0-0744	0-0250	0-0375	0.0100	0.0047	-0.0070	0.0400	0.0400	-0.02200	JUDAR
	DEAC	0 3947	0 3865	0 413*	0 1611		-V+VU27		V. V477	-0+0922	LUSS PARA
	OFAL CEED	0.3701	V- 3733	W.#147	4.3711	V+2414	VA 1835	U.Z176	0+2287	0.1000	DFAC
	EFFF	0.7865	V.7928	0.7144	0.7976	0.8929	1.1256	-0.0169	-0.2308	0.2008	EFFP
	INCID	-5.887	-1.533	0.270	-0.403	-7.569	-10.596	-11.036	-15,537	-27.624	INCID
	DEVM	12.232	14.812	14.310	12.225	11+212	13.044	14.440	13.679	2.455	DEVH
	P 2	16.074	16.042	16.052	16.134	16.544	14.840	16-672	16.430	15.874	8 2
	P 24	15,961	15.912	15.884	14.050	16-511	14.454	14.444	16.724	14.100	7 4 D 74
	1 2	542.100	540-400	639.000	517.460	E17.16A	100000 134 100		100230 E36 485	101100	r 28
	T 3	642 100	540 400		817 45-	221412V		337.770	333.97U	333.900	14
	1 48	342.100	>40.400	337+900	221.630	>37.13U	>30.300	333.750	333.450	535.900	T 2A
	UUBAK PS	0.0014	0.0873	0.0845	0.0411	0+0246	0+0Z48	0.1827	0.2431	D.2650	UUBAR FS
	PZ PS	10.054	16+064	16.012	16,112	16.558	16.910	16.805	16.673	16.537	P2 FS
		C	0.0297	0.0200	0.0146	0.0001	A. 0094	0.0723	0.0973	5 1040	

-

.

Table A-5.Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 71.21Equivalent Rotor Speed = 2997.75Equivalent Weight Flow = 71.46Hub Radial Distortion

	 -

INLET	Ļ										
	PCT SPAN	96.80	92.00	46.90	71.00	49.50	28.10	12.00	7.10	3.60	DET SEAN
•	DIA Beta o	33,122	33.529	33.962	35.312	37-137	38,954	40.321	40.737	41.út5	DIA
1	BETA 1	0.000	8.000	0,000	0.000	0.000	0.000	0.000	6.000	0.000	GETA U
	V Q	270.49	270.49	270.49	270.69	220.69	270 49	0.000	0.000	0.00	BETA 1
	V 1	218.30	224.73	229.10	223.92	284.26	341.12	331.42	322 01	270.69	V D
	VZ O	270.69	270-69	270.49	270.69	270.67	270.65	270.63	270.62	270.62	¥ 1 ¥7 (j
	V/ L V-THETA O	218.30	224-73	2 29 + 10	223-91	284.24	341.06	331.34	321.92	101.93	¥2 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6-06	V-THLIA G
	MO	0-2439	0,2439	0.2439	0.2439	0.2439	0.2430	0.00	0.00	6.00	V-THETA 1
	M 1	D.1963	0,2039	0 -2061	0.2014	0.2563	9.3084	0.2995	0-2434	0.2439	. M.C.
	TURN	0.0	0.0	0.0	0.0	0.0	D.0	0.0	0.0	0.2725	n L Turk
	UDBAR	1.5140	1.4082	1.3747	1.4166	0.9634	0.355B	0.4179	0.4935	0.0731	UUBAR
	EFFP	-0.2976	-0.2674	-0.124	0.173	-0.020	-0.260	-0.224	-0-190	-0.116	LFAL
	INCID	0.0001	0.0001	0.0001	0.0001	0+0970	0.6283	0.5494	0.4616	6.2080	EFFP
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0-0001	+0-0001 0-0001	6-6601	INCLD
	PO	15,215	15.215	15.215	15.215	15.215	15.215	15.215	15.215	15.215	E Li
		14+281	14.346	14.367	14.341	14.621	14.995	14.957	14.911	14.797	H L
	Ť 1	518.700	518.700	518.700	518.700	518.700	518.700 518.700	518.700	518.70C 518.700	516.700 516.700	ТС
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50,00	30.00	16 00	10.00	,	• •
	DIA	33.236	33.621	34.007	35.164	36.706	38.245	39-405	30.761	54UC 40 134	PET SPAN
ROTOR -L.E.	LETA 1	0.000	0.000	0.000	0.000	0-000	0.000	D.u00		B.060	
RUTOR -T.E.	BLIA Z	50.796	50.682	50.256	45.877	38.060	31.915	32.233	34.070	-7-655	
	RETAILED 2	24.275	01.482	61.052	62.468	58.004	54 . 4 3 4	56.002	50.904	58.757	LETAIPR) 1
	V 1	218.75	238.24	245.55	240.40	34.623	35.578	37.865	40-396	4e • 799	LETA (PR) 2
	¥ 2	410.15	391.82	387.99	394.63	413.95	441.07	433.34	347.44	326.65	V 1
	VZ 1	218.71	238.19	245.52	240.39	302.69	363.01	3540	712.41	302-20	V 2 V 2
	VZ Z	259_24	248-25	249.04	274.88	325.73	373.67	300.00	340.76	286.15	VZ c
	V-THEIA 1	317.91	202.12	0.00	0.00	0.00	0+00	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	485.3	498.9	507.3	203.42	477.22	232-65	230-81	230.50	224.66	V-THETA 2
	V(PR) 2	204.4	283.4	268.1	326.7	396.0	460.3	634.8	63401	626-8	VIPRI 1
	VTHETA PRI	-433,2	-438.4	-443.9	-+61.1	-484.5	-507.7	-525-2	-530.5	-534.9	¥19KJ Z VTHEJA 483
	VIHETA PR2	-116.9	-136.7	-146.5	-176+5	-224.9	-267.4	-204.0	-240.0	-304.7	VINLIA PRZ
	U 2	434.73	438.30	443.90	461.15	484.47	507-69	- 525.16	530.46	554.93	U I
	Ă Î	0.1967	0.2144	0.2210	429.92	480.12	500+29	515.42	520.47	5-5-51	U 2
	H 2	0.3636	0.3476	0.3445	0.3508	0.3657	0.3939	0.3227	0-3143	L	M 1
	M(PR) 1	0.4365	0.4489	0.4566	Q.4680	0.5157	0.5659	0.5744	0.5736	6.5663	M(26.) 1
	TIRNIPRI 2	0.2523	0.2514	0.2558	0.2903	0.3527	0.4110	0.4146	0.3995	0.3718	M(PK) 2
	UUBAR	0.0986	22+040	30,487	29.759	23.365	18.799	18.052	د16-46 د	11.893	TUKN (PK)
	LOSS PARA	0.0260	0.0356	0.0360	0.0187	0.0145	0.0364	0.0630	0.0985	0.141	UULAR
	DFAC	0+0040	0.6105	0.0069	0.5393	0 4502	0.3879	0.3931	0+0203	0.0345	LUSS PARA
	EFFP	0.8778	0.8481	0.8619	0.9421	0.9455	0.9177	0.9187	0.66ti	U.7566	free de la companya de la
	10010	10.776	0.8453	0.8797	0.9410	6.9445	0.9163	6.9173	0.2640	0.75:3	CHF
	DEVM	9.125	14-671	10.475	10+420	4.063	-1.563	-2,692	-5-352	-7.410	INUIL S LUIS
	P 1	14-281	14.346	14.367	14.341	15-621	8.017	6+242	7+256	10.822	LEVM
	P 2	16.420	16-314	10.314	16.386	10.583	16.862	14.836	16.681	14+191	P 4
		518.700	518.700	518.700	518.700	518.700	518.700	518.700	-16.700	518.704	T Ì
	• •	342.610	241+050	540-500	540.100	538.820	538.000	538.150	53t.200	530.0.0	1.
STATOR D	PCT SPAN	95.00	90.cn	85-00	70.00	50.00	30.00		1		
	DIA	33.207	33 564	33.921	34 992	36-420	37.846	12.00	10.00	5.00	PLT SPAN
STATOR-L.E.	BETA 2	51.156	50.413	49.428	45 939	37.648	31.829	32.815	35.459	37.633	
STATOK-I-E.	BETA ZA	5.010	4.800	4-350	2.890	1.440	1.750	2.941	3+081	2.581	FETA ZA
	V 24	303.84	393.46	392.95	394.83	418.66	442.81	427.47	403.61	350 92	V 2
	VZ 2	255.97	250-73	255.57	319.51	349+57	398.47	373.62	354,60	542+07	V ZA
	VZ ZA	302.70	293.31	2 88 . 58	314.12	349.35	398.05	375 62	329.55	271.71	VL Z
	V-THETA 2	317.87	303.22	298.47	283.69	255.01	233.52	231.05	231.69	341440	V 2A V-1411A
	V-THEFA 2A	26.54	24.63	21.95	16.11	6.7s	12.16	19.16	19.01	15+41	V-ThETA A
	П 2 М 2А	0.3620	0.3490	0.3490	0.3508	0+3730	6.3955	0.3813	0.3589	0.3114	M 4
	TURN (PR)	46.146	45-612	9 ar 220	0.2827	0.3102	0.3548	D.3323	Ú.31+3	0.3040	M
	UUBAR	0.1042	0.0683	0.0865	0.0349	0.0443	30.e046 0.0180	29-831	31.910	30.526	TUKN (PK)
	LUSS PARA	0.0350	0.0232	0.0297	0.0124	0.0164	0.0065	0 1224 0 0464	0.1495	-0.0179	UULAR LESS BARA
	UFAL 6 669	0.4960	0.4931	0.5050	0.43.0	0.3841	0.2934	Ú 3234	6.355	0.2618	CFAC
	INCTO	0.1771	0.8517	0.8193	6.9037	0.8616	0.9113	0.5075	6.4035	2.6030	[++¥
	DEVM	13.842	16,112	9+137 15,640	13 908	0.942	-4.035	-5.889	-6.130	-20.031	INCID
	P 2	16,420	16.314	16.314	16.180	14.583	10,5410	15.380	15.758	7.432	DEAN
	P 2A	16.272	16.223	16,200	16.339	16.516	16,831	16.640	10-001	10,432	17 2 12 - 2
	1 2 T 24	542.810	541.650	540-500	540.100	538.820	538.000	538.1>0	538.400	536.020	Γε
	LILIRAR FS	2 54.810 0.1010	541.650	540.500	540.100	538.820	38.000	538.150	538.260	539.020	1 24
	P2 FS	16.414	16.409	0.1127	0.0732	0.0426	0-0428	0.1265	0.1795	0.1828	UULAR IS
	LOSS PARA F	\$ 0.0339	0.0449	0.0387	0.0260	10+980	16+905	16-844	16.777	16.689	P. FS
						~ ~ ~ ~ ~ /	410104	7 0300	0.0111	0.0/30	LULS PAKA PS

Table A-5. Blade Element Performance (Continued)
Stage D, Rotor D - Stator D
Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 71.59Equivalent Rotor Speed = 3013.87Equivalent Weight Flow = 59.11
Hub Radial Distortion

-

-

INLET

	PCT SPAN	96.80	92.00	86 - 90	71.00	49.50	28.10	12.00	7.14	2.0	0/1 (Dat
	DIA	33.122	33 529	33.962	35.312	37.137	36.954	40-3/1	46.737	5.UL 61.UL5	PUL SPAN
	BETA O	0.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	EFTA D
	DCIA L	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	SETA 1
	V 1	224+58	224-28	Z24-58	224+58	224.58	224+58	224.58	224.58	224.56	Ψü
	ν.z [°] ο	226.58	224.58	100.07	190.94	252.27	294.54	276.14	263+16	242.67	¥ 1
	¥2 1	185.70	184.04	186.87	224.30	269.20	229.29	224.72	224.52	224.52	V2 C
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	218-01	263.15	£42+6U	¥4 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	U+00	V-THEIA U
	M O	0.2020	0+2020	0,2020	0.2020	0.2020	0.2020	6.2020	6.2026	0.00	V-SHEIA I
	M 1	0-1668	6.1653	0.1679	0.1715	0.2271	0.2657	0.2507	0.2376	6.2184	M 1
	TUXN	0.0	0.0	0.0	0.0	0.0	0.0	ú.U	0.0	0.0	TURN
	DEAC	1.41/0	1-4302	1+2841	1.3933	0.8593	0.3423	0.4224	0.5510	6,7355	UULAK
	FFFP	-0.2059	0+161	0.108	0.150	-0.123	-0.311	-6.238	-0.172	-0.061	UF AC
	INCID	0.0001	0.0001	0.0001	-0-2474	0.2348	0.6814	0.5619	0.4067	0.1069	EFFP
	DEVM	-0.000	-0.000	-0.000	-0.0001	~0.0001	-0-0001 -0-600	-0.0001	0.0001	C.DUU1	INCIL
	P 0	15.033	15.033	15.033	15.633	15.033	15-033	15.033	16 012	16 (33	LEVII L O
	P 1	14_436	14.473	14.492	14.446	14.671	14.889	14.655	14-601	14-72	F 0
	то	518.700	518.700	516.700	518.700	518.700	518.700	518,700	516.700	514.7.0	1 0
	та	518.700	518.700	51 6. 700	518.700	518.700	518.700	518.700	510.700	-16.7Cu	† ī
ROTOR D	PCT SPAN	95.00	90-00	85.00-	70.00	50 .00	30 00		• • • • •		
	UIA	33.236	33-621	34-007	35.164	36 706	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	GETA 1	0.000	0.000	0.000	0.000	0.000	0.000	374903	39+791	40.175	
RCTOR -T.E.	BETA 2	55.794	56.198	56.508	54.015	45.122	34-490	57.268	36 636		SLIA I
	BETA(PR) 1	66 867	66.330	65 655	66.167	61.148	58.492	60.676	62.197	41.470	511# 2 55744861 1
	BETA(PR) 2	29.037	32.095	32.439	31.490	37.605	38.672	40.luž	42.167	47.351	BETA(PR) 2
	V I	186.06	193.24	200.66	26++82	266.68	314+16	298.55	283.25	261.61	¥ 1
•	¥ 2	383.70	374.74	377.49	395.54	382.80	400.98	407.L4	393.46	-58-74	V 2
	¥£ 1 N7 7	188-04	193-19	200.05	204.81	268.35	312-89	246.58	201.23	260.11	VZ 1
	V-THETA 1	212010	208+47	207+97	232.38	250-46	306.86	323.16	365.55	565.12	¥2 4
	V-THETA 2	317-32	311.59	315-02	320.07	250 26	157 30	0.00	6.00	6.00	V-THETA 1
	VIPR) 1	473.6	+61.2	689.1	506.9	554.3	£37839 500 6	240+91	240.12	6-6-66	V-THETA 1
	V(PR) 2	246.7	240.1	246.4	272.5	316.5	343.5	6/3-4	412.6	348-1	VIPEL I
	VTHETA PR1	-435.5	-440.7	-446.3	-463.6	-487.1	-510.4	-520.0	-533.3	-137-1	VIERI Z
	VTHETA PR2	-119.7	-150.7	-132.2	-1-2-3	-193,3	-245.6	-272.2	-116.6	-291.1	VTHETA PK2
	0 1	435.48	440.72	446.28	403.03	487,08	510.42	527.99	533.35	537.60	U 1
		431.06	442.14	447.21	+62.42	482.70	502.98	518.20	5237	528.34	U 2
	M 2	0.3394	0-1736	0.1798	0.184I 6 3600	0+2421	0.2836	0-2693	0.2553	υ	8 I
	MIPRES	0.4254	0.4323	0.4395	V=33U8	0-3396	0.3567	0.3635	0.3495	0.5151	8 L
	M(PR) 2	0.2183	0.2176	0.2183	0.2417	0.3012	0.0411	0.54/2	0.5444	v.5367	M(PK) 1
	TURN (PR)	37.828	34.232	33 41	34.676	23.469	19.77)	20 5 4	1.3670	4.3516	MUPKE 2
	UUBAR	D.1977	0.2235	0.2390	0.1949	0.2214	0.1562	0.10.4	0.1308	10.173	IUKN IPKI
	LUSS PARA	0.0501	0.0555	0,0599	0.0511	0.0564	6.0410	0.0260	0.0340	6.46346	LUSS DARA
	ÜFAC	0.6735	0.6787	0.6876	0-6564	0.5978	. 0.4868	0.4414	0.4583	0.4764	DEAC
	LAND	6.7729	0.7732	0.8019	0.8826	0+8241	0.8364	1.0773	0.8639	0.7511	LFFF
	10010	14 417	0.7692	0.1984	0.8803	0.8211	0.8337	1.0706	0-P61&	6.7777	LPF
	DEVN	13.687	17.035	12.211	19-124	149	2,501	1-995	-0.101	-2495C	INCID 1
	P 1	14.436	14.473	14.492	12+047	14.473	14.200	5.477	9+028	11.374	DEVM
	P 2	16-421	16.382	16-416	16.556	16.508	14.683	14+022	14 461	14.123	P 1
	T 1	518.700	518.700	518.700	518.700	516 700	518.700	518.700	538.700	10.421	P 2
	12	544.000	543.000	5+2-250	5-2.100	540.350	535.256	535.550	539.300	5.5.82.	
STATOR D	PCT SPAN	95.00	90.00	65 - 00	70.00	50.00	10 00	16 00			
	DIA	33.207	33+564	33,921	34.992	36.420	37.846	19.00	50.00	5.00	PC1 SPAN
STATCR-L.E.	BETA 2	56.219	55.874	55.539	54-100	48.501	39.885	37.464	40.076	27+633	
STATOR-T.E.	BETA 2A	3+200	3.080	3. 480	2.700	1.800	3+251	4.751	4-952	5.052	
	¥ 2	381.64	376-29	382 • 27	395.54	387.05	402.51	4015	384.01	347.56	
	Y ZA	243.76	275.75	2 72 . 45	290.46	300.72	337.24	331.70	315.01	306-55	V IA
	¥2 2	212.31	211.10	216.30	231.91	256.39	308.63	316-00	293.98	252.90	¥2 2
	¥1 28 V-74674 4	283.31	275.32	272 02	290-10	300.47	336,50	3309	313.55	307+03	VE LA
	V-THETA 24	15.84	14.62	15 11	320.38	289.81	257.92	240.57	247.34	237.05	V-THETA 2
	M 2	0.3377	4.3330	0.3387	13.00	7.44 A 3437	19.11	27.45	27.17	27.14	V-THETA 2A
	N ZA	0.2497	D.2428	0.2400	0.2562	0.7458	0.3081	0.3582	0.3418	0.3080	H Z
	TURNEPRI	53.019	52.793	52.357	51.394	46.683	36.601	33,168	042107 35.074	U+2744 Sm 13e	R ∠A TUSA (DE)
	UUGAR	0.0656	0.0777	0.1184	0.1492	0.0829	0.0586	0.1403	0.1464	-0.1068	UNN LEN I UUGAR
	LOSS PARA	0.0221	0.0264	0.0407	0.0530	0.0307	0.0225	0.0554	U.0584	-0.0034	LOSS PARA
	DFAC	0.5229	0.5358	0+5578	0.5418	0.4922	0.3918	0.3911	0.4115	0.3585	DEAC
	6777 18672	0+9285	0.5389	0.7690	0.6697	0.7998	0.8131	0.3065	0.5737	+-0444	FFP
	THEID	8.002 12.4112	14.9480 14.997	12.248	10.070	11-795	4.017	-6.743	-3,096	←15 +960	INC16
	P 2	16.471	16.382	16.416	13.013	14.6012	14.915	17-188	17.627	9+900	DEVM
	P 24	16.334	16.786	16.267	16.354	16.400	10.083	10.728	16.651	10+411	H 2
	TI	544.000	543.000	542.250	542.100	540.350	539,250	10-227	579.3/0	10.431	P ZA T S
	T 2A	544.000	543.000	5+2.250	542-100	540,350	539.250	539.550	539,300	527.020 529.420	1 2
	UUBAR F5	0.1515	0.1791	0.2023	0.1901	0.1645	0.0990	0.1391	0.1607	0.1747	UUGAR ES
	PZ FS	16.547	16.531	16.947	16.623	16.633	16.746	16+756	16.705	16-654	P2 F5
	LUSS PARA F	3 D.J510	0.0608	0.0695	0.0675	0.0609	0.0380	0.0549	0.0721	0.0695	LUSS PARA FS

Table A-6. Blade Element Performance Stage D, Rotor D – Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 100.34 Equivalent Rotor Speed = 4224.11 Equivalent Weight Flow = 115.11 Tip Radial Distortion

INLET

INLEI											
	PCT SPAN	V680	92-00	84 00	71 64	10.00					
	DTA	22 122	33 530	00.90	11.00	47.JU	28.10	12.00	7.10	3.00	PCT SPAN
		239955	33.329	33+962	35.312	37.137	38.954	40.321	40.737	41.045	DIA
	BEIAU	0.000	0.000	0.000	0.000	0.000	0.00 .0	0.000	0.000		
	BETA 1	0.000	0.060	0.000	0.000	0.000	0 000	0.000	0.000	0.000	BETA O
	V D	427.48	477.69	477 40		0.000	01000	0.000	0.006	0,000	BETA 1
		630.04	447100	421400	427.05	427.08	-27.60	+27.66	427.68	427.68	v á –
		230.00	249.70	>>4-44	564.32	547,77	363.61	268.73	250.03	224 00	
	VZ 0	427.68	427.68	427.68	427.67	427.65	427.41	437 57		220.07	* 1
	VZ 1	530.05	549.70	554 44	644 31	647 33	-27.01	421.31	427+36	427.57	VZ O
	V-THETA D	0.00	0.00		204131	241+13	203.55	268.66	259.86	226.03	¥Ž 1
	THE THE T	0.00	0.00	0+00	0.00	0.00	0.00	0.00	0-00	0.00	NATHETA O
	A-tHEIN T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6 60	0.00	V-INEIA U
	MG	0.3880	0.3868	0.3888	0.3668	0.3868	0 3000	0 1000	0.00	0.00	V-THETA 1
	м 1	0.4458	0 504 9	0 6000	0.5300	0.3000	0.3000	0.3888	0.3886	0.3866	MO
	TUDA		0.3040	0.0093	0.2107	0.5029	0.3292	0.2421	0.2341	0.2033	M 1
	TORN	0.0	0.0	0.0	0.0	0.0	0_0	0.0	0.0		
	UUBAR	0.9307	0.6592	0.5458	0-4530	0.6489	1 7044	2 1120		0.0	TURN
	DFAL	+0.239	-0.285	-0.294	-0.210	0 203		2.1120	2+1208	2.1955	UULAR
		0 3317	0.6000	-0.276	-0.319	-0.281	0.150	0.372	0.392	0.471	DEAC
		0.3/11	0.5080	0.5671	0.6335	0.5075	-0+1752	-0.3706	-0.3881	-0 4444	CCFD
	INCID	0.0001	D*0001	0.0001	0.0001	0.0001	0-6001	0.0001	0.0001	0 0000	EFFF
	LEVM	-0.000	-0.000	-0.000	-0.000	-0.000		0.0001	V-0001	0.0001	INCID
	P O	14 227	14 337	16 000	-0.000	-0.000	-0°0°00	-0.000	-0+000	-0.000	DEVN
		101221	10.221	10+227	16,227	16.227	16.227	16.227	16.227	16.227	P n
	P 1	14.732	15+168	15.351	15.500	15,185	13-341	12.973	12 611	10 760	
	10	518.700	518.700	518.700	518 700	518 TOO	610 200	12.035	12+011	12.700	P 1
	тэ	518.700	519 700	E14 700	510 700	2194100	219*100	210./QD	518.700	516.700	то
	• •	210+100	210.100	219.100	518,700	518.700	518.700	518.700	518,700	518.700	ŤĨ
										7101100	• •
KGTCR D	PET SPAN	95,00	90.06	65.00	70.00	50.00	20.00	15			
	L I A	33.234	37 + 21	34 003	10100	20+00	20.00	15.00	10.00	5.00	PCT SPAN
			120.021	241001	32,104	36.706	36.248	39.405	39.791	40.174	DTA
	DEIA I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	BETA 1
KUTOR ∸T₊E.	beta 2	37.498	33.162	31.482	30.787	31-102	26 407	20.215	0.000	0.000	BEIA 1
	DETA(PR))	46.940	66 691	44 441		51.102	33.075	34.298	42.816	45.831	BETA 2
		10.05	101101	42+001	40+210	45.974	61.565	68.639	69.617	72.165	RETA(PR) 1
	DETALPRI Z	29.000	27.365	26.392	26.551	28.271	35.375	39.498	43 344	50 534	
	V 1	531,44	586.7ú	6U8.32	621-66	594.72	360 04	206 26	121217	201 234	DETATERJ 2
	Υ 2	553-67	632.17	44 2 00	600 47		300.74	200.35	219.13	243.60	V 1
		633 64	032317	004177	000.01	692 . 73	608 47	572.49	536.49	474.41	¥ 2
	VI 1	221.24	290.21	608.24	621.61	593 99	357.37	286-45	277.74	747 11	ນັກ ໂດ
	V2 2	463.05	529.17	505.39	591.61	592.89	403 53	442 34	303 33	220 22	** *
	V-THETA 1	0.00	0.00	0.00	0.00		4,3,3,3	446.30	396 . [[329.99	¥Z 2
	V-THETA S	265 V.O	246 30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-JACIN Z	222020	342.19	346.22	352.49	357.68	354,55	361.65	363.92	339.70	W-THETA 1
	A(64) I	809 . 3	851.9	872.5	899.3	905.4	814 3	79.4 1	705.3	202.5	T INCIA 2
	V(PR] 2	529.8	595.9	631.2	443 4			17442	170+1	(92.2	YIPRI 1
	VTHETA PRI	-610 6	417 7			013.3	0001	2/4.4	540.3	519.9	.Y(PR) 2
		-010.4	-01/+/	-020.0	-649.8	-682.7	-715.4	-740.0	-747.5	-753.6	VTHE TA DO 1
	VINE IA PRZ	-201.5	-273.9	-280.6	-295.6	~318.9	-350.4	-364-6	-369.5	-400 8	WTHETA DOD
	U 1	c10.35	617.69	625.49	649.80	682.67	716 30	740.00			VINEIA PRZ
	υz	612.57	619.68	676.79	449 11	176 60	113+37	140.00	141+49	153.76	01
	M 1	6 7 7		010110	040+11	010*23	704.96	726.28	733.39	740.50	U 2
		0.4072	0+>+06	0.5618	0.5749	V+5485	0.3527	0.2600	0.2521	6.2194	
	- 2	0.5164	ú.5647	0.5949	0.6186	0.6216	0.5405	0.5055	0 4 700		
	M(PR) 1	C.7419	0.7850	0.0059	0 0317	0.0160		0+2022	0.4722	0.4149	H 2
	WIDDI 7	0 1305	0.0000	010030	0+0311	0*8320	0.7384	0.7161	0.7194	0.7130	MIPR) 1
	THE NEW A	V.4705	0.5323	0.5663	Q.5941	0.6041	0.5384	0.5072	0.4755	0-4547	M(PD) 2
	EUKN(PR)	15.897	19.110	19.406	19.719	20.681	26.146	29.304	74 377		
	UUBAR	C.1868	0.1493	0.1201	11 1244	0 0005		274307	20.33/	21.043	TURNIPRI
	LOSS PAGA	0 1.472	4 0300	0 4 3 1 5	0.11.47	040393	-0*0201	-0.0833	D.D166	0.0438	UUBAR
		0.0413	V.U307	0.0319	0.0344	0.0282	-0.0156	-0.0169	0.0042	U_0099	1055 0404
	UFAL	0.4726	0.4198	0.3945	0.3850	0.3828	0.4011	0.4334	0 4814	0 4047	LOJJ FARA
	LFFP	6.7319	6.7711	0.5494	() B444	6 8070	1 1 1 1 1		044014	0.4443	UFAL
	FFF	0.7251		0.000	010440	0.0414	1+1211	1.0991	1.0257	D.9050	EFFP
•	1.5.5.1.		0.1022	0.8452	0.8401	0.8946	1.1261	1.1034	1.0267	0.9014	FFF
·• •*	INCID	+3+47z	-4.430	-4.777	-2.772	-2.030	5.581	10-192	7.3.4	4 077	1 1 1 1 1
	DEVM	13,909	13.206	11.756	7.910	h.(in1	7 814	7 03/		4.011	10010
	P 1	14.757	15,166	15.361	16 500	16 100	1 - 0 + -	1.014	10-110	14.559	DEVM
	0	17 600	130100	124221	12*200	12+182	13.341	12.833	12.611	12.700	P 1
	5.5	11.592	10+192	18.619	18.951	19.006	17.780	17.344	16.966	14-455	
	11	516.700	518,700	518.700	518,700	518,700	518.700	510 700	510 700		<u> </u>
	T 2	555 900	554,800	553.500	665 200	667 100	710.700	2101100	219-100	219*100	T 1
			>>10000	33 3 6 7 0 0	3334600	221-100	228 • 100	561.000	561.200	562,900	T 2
CT. 140 .											
STATUK D	PCT SPAN	95.0 0	90.00	65.00	70-00	50.00	30 00	16.00	10 00		
	C1A	33.207	33.564	33 921	14 007	34 435		13400	10.00	5.00	PUT SPAN
STATOK-L-F-	LETA >	17		336721	24.342	30.420	31.848	36.919	39.276	39.633	DIA
STATCL 7	LIVA CO	21.103	32.912	30.894	30.825	30.607	35.565	40,130	44,290	68.044	RETA 3
STATUR-THE.	BEIA ZA	1+100	1.700	1.700	0.850	0.900	3.853	4 301	1 450		
	V 2	580.25	635.59	674.48	688-47	702 01	411	40 JU L	1.470	-1-131	BETA ZA
	V 24	5/16 21	636 6 3			103+73	011.33	203+02	522.99	458.43	¥ 2
		200-11	238.22	263.04	609.23	626.57	574.72	485.31	461-11	452.20	<u>v</u> 24
	V2 2	458.71	533.20	576.93	591.28	605.57	696 R9	430.04	374 00	204 21	1.12
	VZ ZA	508.61	538.27	562.77	609-09	474 70	573 00	430.00	514.00	300.21	42 2
	V-THETA 2	355.34	345 60	144 30	007000	020+20	2/3.09	483.33	460+56	451.51	VZ ZA
	V-THETA A		343.70	240+34	332.82	358.23	355.27	362.53	364.84	340.60	V-THETA 2
•	V-INLIA ZA	9.11	15.97	16.70	9.04	9.84	38.58	36. 37	11-66	-13 80	H THEYA DA
	H 2	0.5152	0.5679	0.6061	0.6186	0.0377	0.64.33	0 4040		-13+50	V-INCIA ZA
	N ZA	Ú . 4.6. 8 Ú	6.4746	0 6003	0	0.0322	V+2+35	0.4768	0+4598	0+4004	M 2
	THEMADO	34	V - 7/07	0.0003	0.2428	U.5581	0.5090	0.4255	0.4035	0.3948	M 2A
	TORNAPR J	20,002	31.272	29.192	29.969	29+690	31.682	35.74%	62.787	40.724	TURNICAS
	UUBAR	0.0171	Ú.105Ú	0.1363	U-085A	0.0401	-0.0000	0 0000		774134	TURNER
	LUSS PARA	0.0057	14.0367	0.0449	0.0304	0.0003	-0+0803	0.0902	0.0433	-0+2085	UUBAR
	OFAC	0 22.4	0.0301	0.0407	0.0305	0+0223	-0.0308	0.0357	0.0173	-0.0841	LOSS PARA
		4+3240	U.\$296	0.3339	0.2931	0.2938	0.2605	0.3691	0.3900	1.3777	DEAC
	FFFB	6.9338	0.6696	0.6061	0.6586	0.7512	1.6066	0 400.		0.3211	UP AL
	INCID	-12.404	-14-416		_7	V+1243	1.0032	0.6804	0.0212	8.1230	EFFP
	LENN		-10+413	-7.397	-/.205	-6.097	-0.303	1.423	1.117	-11,160	INCID
	01.9M	7.732	13.015	13.010	11.525	11.912	15.515	16.739	16-129	3.105	DEVE
	P 2	17,592	18,189	16.619	16.941	19.004	17.700	17 3/4	1	3.105	VETR
	P 24	17.544	17.614	18.040	10 441	10 744	41476U	11.347	10.996	10.455	PZ
	t 5	666		10.002	10.701	10.132	18.040	17.107	16.897	16.014	P 2A
	· ·	222*400	224.800	553.500	555.200	557.100	558.100	561.000	561.200	562.000	T 2
	1 2 A	>>>-900	55+.600	553,500	555.200	557.100	558.100	561 000	541 300		
	UUBAR FS	0.1462	0.1091	11.0970	0-0427	0 0170	0.0800	201-000	201-200	364.900	T ZA
	P7 F5	1.000		10	0.0427	0.02/9	0-0592	0.1699	0.1550	0.1129	UUBAR FS
	1010	10+013	18+204	18.420	18.756	18.856	18.260	17.608	17.299	17.078	P2 F5
	LOSS PARA F:	5 9+0487	0.0371	0,0316	0.0151	0.0101	0 0777	0.0472	0.0410	0.0466	
										400922	LUSS PARA FS

Table A-6. Blade Element Performance (Continued) Stage D, Rotor D – Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 98,51 Equivalent Rotor Speed = 4147.38 Equivalent Weight Flow = 106,05 Tip Radial Distortion

INLET

.

,

ANGLI											
	PCT SPAN	96.80	92.00	86.90	71.00	49 40	76 10	17.00			
	FITA	33 133	33 630			47.00	20.10	12+00	1.10	3.00	PUT SPAN
		33+122	33+324	33.901	37.312	37.137	38.954	40.321	40.737	41.065	DIA
	BEIAU	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0_000	0.000	HETA (1
	BETA 1	0+000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6 006	1474 1
	V O	601.26	401.24	401 24	401 24	101 01	(01.00	0.000	0.000	0.000	OLIA 1
				401.24	401.24	901.29	401+14	401.24	401 24	401.24	vo
		210.10	242.22	290.11	527.43	495.64	370.45	312.63	295.29	261.77	¥ 3
	¥Z 0	401.24	401-24	401.24	401.23	401.21	401.17	401.14	401.13	401.13	¥7 u
	VZ 1	516.09	545.55	540.77	527.42	495.60	370.39	312 55	206 21	243 20	
	V-THETA D	0.00	0.00	0.00	0.00	0.00		216422	273+21	201+10	V£ 1
	M. THEFT		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	A-INETA T	0.00	0.00	0-00	0.00	0.00	0,00	0.00	ú.00	00.0	V-THE 1A 1
	MO	0.3641	0.3641	0.3641	0.3641	0.3641	0.3641	0.3641	0.3061	0-3641	NO
	H 1	0.4725	0-5007	0.4961	0.4833	0 4530	0 3366	0.0000	0 3444	0.0041	
	TIPN	6.5	A 0			0.4550	4+3322	V.2022	U+2004	V.2350	M 1
		0.0	0.0	VAU	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAK	0.7068	0.3880	0.3452	0.3841	0.5396	1,4104	1.6281	1.6748	1.7914	LIUBAK
	DFAC	-0.286	-0.360	-0.348	-0.315	-0.235	0.077	0-221	0.266	6.444	CIE AF
	EFFP	0.4896	0-6975	0.7140	0.4441	0.5030	-0 1169	-0 3066	-0.3430	-0 (107	UFAC
	INCTO	0.0001	0.0001	0.0001	0.0001	0.0000	-0+1198	-0.3000	-0+3030	-V .++7 /	EFFP
	1901D	010001	0.0001	0-0001	0.0001	0.0001	0+0001	6.0001	0.0001	0.0001	INCLU
	UEVA	-0.000	-0+000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVN
	PO	15.783	15.783	15.783	15.783	15.783	15-763	15.783	16-763	15 76 3	9.0
	P 1	16.807	15.247	15 204	16 762	16 020	12 075		131103	4/0103	F U
	T O	610 700	5 30 300	414 344		12.030	13.032	13,234	13-410	13.308	P 1
		216.100	2 19 * 100	210.100	214.100	518,700	518.700	518.700	518.700	518.700	Τü
	11	518+700	518.700	518.700	518.700	510.700	518.700	518.700	518.700	518.700	11
ROTOR D	PCT SPAN	95.00	90-00	85.00	70.00	60.00	20.00	16.00	10.00		
	OTA .	33 33/	33 4 3 1	34 00-		30.00	30100	12-00	10-00	5.00	PUI SPAN
entron · ·		33.430	22.021	100.001	32.104	30.706	38.248	39.405	39.791	40.176	DIA
KUTUK MERER	DEIA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA 1
huluk -lete	BETA 2	39.998	36.466	34.494	32.786	34-504	41-877	48.240	51.744	65.062	86TA -
	BETATPRI 1	49,190	46-183	46-045	47 4 36	51 492	40 44 9	AE 001	44 700	40 732	PUTR 2
	BCTL/DD1 7	24 444	24 202	708073		214435	100.001	82.324	00+105	69.224	BETA(PR) 1
	DEIALPRE 2	20.091	26, 395	24.823	26+555	29.984	36.642	42.974	46.097	51.120	BETA(PR) ∠
	V 1	517.39	582.07	592.19	577.96	535.12	396.40	336.03	318.26	282.62	¥ 1
	¥ 2	585.62	61Z.45	626.02	661.72	637.75	547.77	622 41	504 74	477 07	
	V7 ⁻ 1	617.20	691 04	503 13	5 77 03		301.32	322-01	504.70		V Z
			201074	272 - 16	211.422	234+40	394.8U	333.82	315.99	280.78	VZ 1
	42 2	448.60	492.52	515.95	556.29	525.34	421.96	347.43	311.95	267.29	VZ 2
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	WATHETA 1
	V-THETA 2	376.40	363.99	354.51	358-31	341.14	274 20	300 40	305 03		T-THE TA I
	W/BELL 1	201 3		334431	330.31	201+14	310.30	383*40	342.43	393.35	V-THATA 2
	ALPRI 1	191+1	040.D	823+1	860.Y	857.7	806+5	800.5	799.9	792.2	V(PR) 1
	VIPR) 2	501.9	549.9	576.2	621.9	606.8	526.5	475.7	450.0	426-4	VIPE) 2
	VTHETA PR1	-599.3	-606.5	-614-1	-638.0	-670-3	+702.4	-726-6	-737.9	-74/1 1	VTNL71 801
	VTHETA PR2	-225-0	-744.4	-240.9	-278 0	-202 1	-212 0		10/ 1		VINCIA PAI
	111	600 37	404 47	-10019	-210.0	-30341	~313.9	-363.1	-324.1	+331.5	VINEIA PRZ
	01	244-51	506.4 <i>1</i>	014+13	638.00	670,27	702.39	726.56	733.92	740.07	U 1
	U 2	601.44	608+42	615.40	636.33	664.24	692.15	713.09	720.07	727.04	LI 2
	M 3	0.4737	0.5361	0.5660	0.5321	0.4907	0.3594	0 3037	0 2074	0 3646	1.
	N 2	0.5193	0 6455	0 \$602	0 5030	0.5400	0.000	443037	944014	442248	
			0.9499	0.3372	0.3720	0.3940	0-2011	0+4592	0.4421	6.4170	M 2
	MIPRJ 1	0.1249	0.7743	0.7866	0.7926	Q.7865	0.7317	0.7236	0.7224	0.7142	M(PR) J
	H(PR) 2	0.4451	0.4898	0.5165	0.5571	0.5414	0.6660	0.4180	0.3947	0.3776	MIGH1 2
	TURN (PR1	22-554	19.763	19.220	21.273	21 420	23 872	23.000	30 513	10 070	
	HINDAD	0 1204	0 1367	0 1001		210440	634713	22.299	20.302	19-013	I DRN (PR J
	UUBAR	0.1300	0+1337	0.1007	0.0979	0.0836	0.0612	0.1405	0.1836	0.2028	UUBAK
	LUSS PARA	0.0338	0.0356	0.0267	0.0131	0.0233	0.0165	0.0357	0.0447	0.0451	LOSS PARA
	OFAC	0.5040	0.4731	0.4458	0.4055	0.4275	0.5038	0.5731	0.4084	0 4370	DEAC
	FFFP	0.8112	0.8087	A 9747	0 9757	0 0376	1 0336	0.0000	0.0400	0.0370	OFAC .
		0.0057	0.0000	0.0101			1.0329	0.7203	A*8011	0.0100	EFFF
	EFF	0.6051	0.0033	0+8731	0.4144	0.9355	1.0337	0.9173	0.8572	0.8101	EFF,
	INCID	-3+232	-4.734	-4.533	-4.Z14	-2.572	4.675	0.661	4.427	1.099	unito 🐂
	DEVM	11.492	12.235	12.109	7.916	6-773	9.081	11.348	17 064	16 146	OL NM
	P 1	14.907	16 24 7	15 204	16 363	16 076	12 025			470477	. DE TH
	A 0	16 104		10.300		19.030	13-035	12.334	12-410	13.308	P 1
	P 2	10-140	19+252	19.143	19.216	18.948	18,013	17.487	17.304	17.057	P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	53B-700	т
	T 2	557.750	555.680	554-100	555.000	556.550	558.000	561-650	547-600	545.760	
								2011020	303,000	2020120	12
LTATUS O	DET EDIN	-		AF 44		*		• /			
STATUR D	PUT SPAN	43-00	20.00	00.00	70.00	50.00	30,00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	40.288	36.258	33.877	32.826	33,997	41.728	49.404	53, 761	59,224	RETA 2
\$14TO6+T.F.	BETA 24	1.550	2.550	7.150	2.301	1 200	4 101	4 36 1			OLIA Z
2		E03 14	436 47	4.24	4 4 4 7 4	1+300	4+344	74274	3.121	1-001	BETA 2A
	* 4	202.10	013401	0.50 - 34	081+7Z	09/.16	749493	514-45	492.53	461.80	¥ 2
	V 2A	473.20	491.51	505.37	566.11	549.32	486.27	413.58	396.25	395.46	V 24
	VZ Z	444.09	496.45	528.29	\$55.96	536.29	425.05	334.51	291.04	236 0.0	47.2
	N7 24	473.03	491.02	504.77	548 64	648 48	484 47	413 11	105 30		VL 2
	N-THERA O	174 44				200 - 70	104+01	415 211	373,30	344+98	VZ ZA
	V-INCIA C	310.90	304-11	334.67	320.02	201 105	\$ 19.07	390.34	396.94	396.60	V-THETA 2
	V-THETA ZA	12.00	21.87	24.25	23.01	12.91	36.45	30.63	21.76	11.03	V-THETA ZA
	M 2	0.5163	0.5486	0.5690	0.5920	0.5740	0.4044	0.4510	0.4330	0.4024	M 2
	M 74	0.4157	A 4333		0 80.74	0 6047	A 4376			007027	n 2
	THOM (DO)	10 734	33 34 5	33	042027	V42V7/	V64472	V- 30V0	V+3443	0.3431	A 24
	1 UKR (PK)	20 + (30	33 - 107	31-123	30.430	32 .6 80	37,393	45.107	50.551	57.585	TURN(PA]
	UUSAR	0.0622	0.1050	0.1206	0.0674	0.0028	-0.0019	0.0494	0.0321	-0.0895	LIUKAR
	LOSS PARA	0.0209	0.0357	0.0415	0.0230	0.0010	-0.0007	0.0105	0.0120	-0.0343	I DEC BADA
	DEAL	0.7077	0.2011	0.7040	0.2340	0.2207			V+V120	-0.0301	LUSS PAKA
	17 ML		V+3711	V.2070.	V.3246	V+32U5	n*21A2	V+4748	0.5020	0.4824	DFAL
	EFFP	0.6344	0.7405	0.7040	0.7803	0.9892	1-0042	0.0710	0.9154	1_3124	EFFP
	INCID	-9,879	-7.130	-6.413	-5.204	-2.707	5.459	10.487	10.500	0.010	THAT ILL
	DE VM	10.382	13.442	14.040	11. 144	12	18 444	14 444	. 15 404	0.037	4 MG-10
	9.7	36 104	10 630		14 347				12.044	0.433	DEAN
	F 4	10+170	19-24	40./43	144519	20.740	10.013	17.467	17.304	17.057	P 2
	P ZA	18.008	18.169	18.298	18.942	34.937	18.018	17.374	17.238	17,216	P 2A
	T 2	557.750	555.680	554.100	555,000	554-550	556,000	541.440	563.400	545.740	T 2
	Ť 24	557.750	555, 440	514. 100	555.000	BRA BRO	SEA ARA	E41.460	50000000 E41 400		1 4
			0.000			22002226	220.VVV	2010420	203-000	262.150	T 2A
	JUDAR 73	0.0884	0.0811	0+0846	0.0202	0.0398	010640	9+0912	0.0943	0.0820	UUBAR FS
	P2 F5	18.284	18+462	18.590	19.144	19.095	18.215	17.592	17.447	17.393	PZ FS
	LOSS PARA F	\$ 0.0298	0.0296	0.0284	0.0179	0.0142	0.0236	0.0360	0.0376	0.0321	1010 0404 77
										0.0000	LUJJ FAKA PJ

Table A-6, Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 98, 93 Equivalent Rotor Speed = 4165, 08 Equivalent Weight Flow = 99, 09Tip Radial Distortion

INLET

	PET SPAN	96.80	92.00	86.90	71 00	40 80					
	DIA	33.122	33.529	33.962	35.312	37 127	20.10	12.00	/.10	3.00	PCT SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000	30.734	+V+321	40-737	41.065	DIA
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA O
	V O	375.66	375.66	375.66	375.66	375.66	375.44	375.44	376 44	0.000	BETA 1
	V 1	465.24	498.83	499.90	496.97	473.32	348.81	290 23	373.00	3(2+66	¥ 0
	V2 0	375.66	375.66	375.66	375.65	375.63	375-60	375 57	277+28	240+11	¥ 1
	VZ 1	465.24	498.83	499.90	496.96	473.29	348.76	290.25	373+20	313.36	YZ O
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0 00	277.50	240-70	VZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA D
	NO	0.3404	0.3404	0.3404	0.3404	0.3404	0.3404	0.3404	0.3404	0.00	V-INEIA 1
	M 1	0.4241	0.4560	0.4570	0.4542	0.4318	0.3155	0.2418	0.3404	0.3404	M O
	TURN	0+0	0.0	0.0	0.0	0.0	0.0	D.0	0.0	V.2221	
	UUBAR	0.7368	0.3834	0.3127	0.3657	0.5513	1.3640	1-6114	1.4370	1 74 30	FURN
	DFAC	-0.238	-0.328	-0.331	-0.323	-0.260	0.071	0.227	0.241	447727	OUDAR
	EFFP	0.4270	0.4756	0.7211	0.6822	0.5250	-0.1118	-0.3250	-0 2720	-0.4461	UFAL CEED
	INCIO	0.0001	0.0001	0,0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	EFFF THETO
	DEVH	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.0001	TWCTO
	ΡO	15.625	15.625	15.625	15.625	15.625	15.625	15.625	15-625	15 4 25	
	P]	14.739	15.164	15.249	15.185	14.962	13.984	13.686	13.454	12 674	P U
	TO	518.700	518.700	518.700	518.700	518.700	518.700	518-700	518.700	518 700	
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	
										2202100	• •
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5 00	BCT COAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39-405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	- 000	DETA 1
RUTOR -T.E.	BETA 2	41.398	38.469	37.205	35.139	38,115	46.651	54.162	58.321	41.353	BETA 1
	BETA(PR)]	52.232	48.968	48.549	49.738	52.886	62.236	66.998	68.064	20 409	ACTICON 1
	BETA(PR) 2	25.523	26.706	27.405	27.376	30.022	38.382	45.374	47.533	51 429	DETA(PR) L
	¥ 1	466.38	530.16	544.78	542.47	509.97	372.85	311.61	298.92	266.29	DEIMIPKJ Z
	¥ 2	592.51	601.44	607.35	639.70	622.57	547.45	510.68	508.05	493.80	V 2
	VZ 1	466+29	530.04	544.71	542.64	509.34	371.34	309.76	296.79	244.64	N N N
	VL Z	444.44	470.88	483.72	523.11	489.64	375.45	298.67	744-54	237.20	47 3
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V. L V. TUCTA 1
	V-THETA 2	391.80	374.13	367.24	368.17	384.14	397.72	413.54	431.92	417.69	V-THETA 2
	VEPRE 1	761.4	807.5	822.9	839.6	844.5	797.9	793.5	795-4	789.5	V(00))
	V(PR) 2	492.5	527.1	544.9	589.1	545.8	479.5	425.8	395 4	361.1	WIDD'S S
	VIHETA PRI	-601.8	-609-1	-616.7	-640.7	-673.1	-705.4	-729.7	-737.0	-743.2	WTHEYA PD 1
	VTHETA PR2	-212.2	-236.9	-250.8	-270.9	-282.9	-297.4	-302.6	-291-2	-297.6	WTHETA DO 2
	01	601.83	609.06	616.75	640.72	673.13	705.39	729.65	737.05	743.23	LI 1
•	UZ	604.01	611.02	618.03	639.05	667.08	695.11	716.13	723.14	730.15	11 2
	.	0.4252	0.4859	0.5000	0.4980	0.4666	0.3377	0.2815	0.2697	0.2399	M I
	H 2	0.5243	0+5340	0.5404	0.5706	0.5538	0.4822	0.4464	0.4431	0.4293	M 2
	HIPRI I	0+6942	0.7401	0.7553	0.7705	0.7727	0.7227	0.7163	0.7176	0.7112	M/Pol 1
	MIPKI 2	0.4359	0.4680	0.4646	0.5255	0.5032	0.4224	0.3722	0.3449	0.3314	N(PR) 2
	IUNN [PK]	26.705	22.250	21,142	22.361	22.845	23.013	21.580	20.494	18.959	TURN (PR)
	UUBAR	0-0696	0.1011	0+0920	0.0408	0.0982	0-1184	0.1944	0.2433	0.2491	LHIRAR
	LUSS PARA	0+0185	0.0265	0-0242	0.0111	0.0274	0.0312	0.0474	0.0576	0.0550	LOSS PARA
	OF AL	0.5024	0.4833	0.4705	0.4331	0.4759	0.5654	0.6425	0.6914	0.7096	DFAC
	555 555	0.8703	0.8455	0.8823	0.9684	0.9503	0.9487	0-8422	0.8125	0.7864	EFFP
	14610	0.8659	0.8407	0.8786	0.9673	0.9485	0.9467	0.8363	0.8054	0.7783	EFF
	INCIU	-0.199	-1-948	-2.029	-2.304	-1.117	6.253	8.342	5.795	2.289	INCID
		10.373	12.046	12.771	8,735	6.811	10.820	13,748	14.394	15.654	DEVM
		14.139	15,104	15.249	15.185	14.962	13.984	13.686	13.654	13.526	P 1
	1	10+013	12-971	18.939	19.332	19.095	18.173	17.737	17.716	17.599	P 2
	7 7	516.100	518.700	518.700	514.700	518.700	518,700	518.700	518.700	518.700	ŤĨ
	• 2	200.000	>>8.0>0	556.410	557.000	558.200	561.300	566.400	568.450	570.750	Ť 2
STATOR D	OFT SOAM	05 00	PA								
	0TA	33 207	70.00	82.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	RETA 2	53.207 61 705	33.304	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-T.E.	RETA 24	2.700	3 300	30,393	32.183	37.557	46.492	55.579	60.915	65.470	BETA 2
	¥ 2	589-01	3.200	3.150	3.250	3.451	3.451	3.601	3.751	2.151	BETA ZA
	¥ 24	444.19	472 84	017.00	634.10	631.43	547.83	502.81	495.72	476.94	¥ 2
	¥7 2	430.74	474 74	407.07	732.63	526.02	450.08	400.00	388.34	390.60	V ZA
	V7 74	445.47	471 70	492.12	222 - 72	500.34	376.31	284.06	240.87	197.94	VZ 2
	V-THETA 2	201.07	374 34	9/0.87	531.70	524.89	449.00	398.89	387.17	389.91	VZ ZA
	V-THETA 24	21.96	24 24	301.42	308.23	384.73	398.54	414.54	433.02	433.73	V-THETA 2
	H Z	0.5211	0.5360	21.91	30-14	31.65	27.07	25.10	25.30	14.64	V-THETA 2A
	H 24	0.4043	0.4360	0.3493	0.5 104	9.5622	0.4844	0.4392	0.4320	0.4142	N 2
	TURN (PA)	39_004	35.044	33 144	V-4705	0.4638	0.3935	0.3470	0.3360	0.3373	M 2A
	LAUBAR	0.0491	0.0947	330143	314721	34.067	43.007	51,934	57.122	63.277	TURN (PR.)
	LOSS PARA	0.0232	0.0329	0.0245	0.0337	0.0346	-0.0079	-0.0145	0.0150	-0.0488	UUBAR
	DFAC	0.4201	0.4144	0.4144	V.V227	0.0120	-0.0030	-0.0057	0.0060	-0.0197	LOSS PARA
	EFFP	0.8110	0.749	V+7173	V.3337	U.3748	0.4429	0.5132	0.5476	0.5376	DFAC
	INCID	-8.447	-5,110	-1.744	V++101	0.7000	1.0217	1.0365	0.9641	1.1380	EFFP
	DEVN	11.432	14.812	3.790	-2.898	0,851	10-423	16.874	17.750	6.280	INCID
	P 2	18.472	38.837	14.000	14,227	14.441	15.115	16.039	16.428	7.002	DEVH
	P 24	18.466	14.0021	10.737	17.332	14-048	10+173	17.737	17.716	17.599	P 2
	t z	560.600	4803V3 558.0KA	584 -11A	17,018	10.771	10.195	17.769	17.684	17.695	P 24
	T 2A	540.400	558.050	3304410	77/8UUU	>>0,200	561.300	566.400	548.450	570.750	T 2
	UUBAR FS	0.0718	0.0787	0.0782	2374000	>>8.200	241.300	746.400	568.450	570.750	T 2A
	P2 FS	18.682	18.741	040/93 18.01#	10 107	0.0611	0.0901	0.0924	0.1159	0.1139	UUBAR FS
	LOSS PARA #	S (141,241	10101	10+810	19+191	19.203	18.464	17,996	17.959	17.959	P2 FS
			V 8 0 2 D /	OFOX12	0.0105	U+0225	0=034Z	0.0363	0.0463	0.0459	LOSS PARA FS

Table A-6.Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 87.36Equivalent Rotor Speed = 3677.76Equivalent Weight Flow = 105.62Tip Radial Distortion

INLET

	PCT SPAN	96.80	92.00	86.90	71.00	40 60	26 10	12 00	7 10	3 10	07 T (114N)
	BIA	33,122	33.520	33 947	26 312	37 137	20 064	12.00	1.10	5.00	PUT SPAN
	BETA O	0_000	0.000	0.000	0 000	0.000	0 000			11.0000	
	DETA V	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BEIA U
		401.43	401 53		0.000	0.000	0.000	0.000	0.000	0.000	BEIA I
	VU	401-25	401.52	401.52	401.52	401+52	401.52	401.52	401.52	401.52	¥ 0
	¥ 4	204-20	218*21	214 -61	508.25	485.64	358.79	309.11	306.24	309.61	V 1
	YZ O	401.52	401.52	401.52	401.51	401.49	401.45	401.42	401.41	401.41	VZ O
	¥Z 1	504.28	518.93	514+67	508.25	485.60	358.73	309.03	300.10	309.53	¥2 1
	V-THETA O	0+00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA D
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	A D	0.3644	0.3644	0.3644	0.3644	0.3664	0.3666	0.3666	0.3666	0.3644	M O
	M I	0.4612	0.4752	0.4711	0-4650	0.4435	0.1247	0.2790	0 2782	0.33044	
	TUNN	0.6	0.0	0.0	0.0	0.0	0.5241	0.2170	0.2102	0.2195	
		0 4700	0 3626	0 24 71	0 3335	0.044	1 1000			0.0	TURN
	GEAG	010109	013323	V.2011	4-5215	U.3900	1+1440	1+248.3	1.2949	1-0210	UUBAR
	DERG	-0.200	-0.292	-0.202	-0.200	-u.210	0.106	0.230	0.232	u.229	DFAC
	EFFP	0.4715	0.0009	0.7179	0.6638	0.4685	-0.1827	-0.3481	-0.3371	-0.3136	EFFP
	INLID	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	INCID
	DEVM	-0.000	-0.000	-0.000	-0-000	-0.000	-0.000	-0.000	-0.000	-0.000	DEVM
	ΡO	15.714	15.714	15.714	15.714	15.714	15.714	15.714	15.714	15.714	PO
	P 3	14.790	15.229	15.346	15.272	14.961	13.924	13.582	13.516	13.432	P 1
	тр	516.700	518.700	518.700	518-700	518.700	518.700	518.700	516.700	516 700	10
	ŤĨ	518-700	518.700	518.700	518-700	518.700	510 TOO	510 700	516 700	510 TOO	10
	••	2101100		2101100	-100100	2100100	310.100	310.100	3191100	210.100	• 1
50T09 B	PET SPAN	95.00	90.00	85 00	70 00	60 00	30.00	16.00	10.00	5 00	DC7 CO.W
	17.	33 334	33 4 33	24 007	10100	30.00	30.00	12*00	10.00	5.00	PUL SPAN
orton i r		33.230	33.011	34.007	32-104	30.100	38.248	39.403	34.141	40.176	DIA
KLIDK TLACA	OCIA I	0.000	0.000	0_000	0,000	0.000	0.000	0.000	0-000	0.000	BETA 1
KUTOK -I-E-	BELA 2	32.648	31.852	30.003	28.890	30.285	35.749	40.290	42.756	47.130	BETA 2
	BETAIPR} 1	40.434	44.243	44.114	45.518	48.643	58.470	62.876	63.110	63.110	BETA(PR) 1
	BETA(PR) Z	26.367	26.310	26.213	25.492	27.669	35.279	39.219	41.951	50.770	BETALPK) 2
	V 1	505.56	552.33	561.76	555.64	523.86	383.70	332.23	332.40	334.98	V 3
	V 2	540.91	569.33	589.08	626-56	613.76	530.53	499.17	477.65	412 27	N 5
	v7 1	505.46	552.20	561.69	555.61	522.22	382 14	320.04	320 02	333 70	47 T
	¥7 2	419.75	493 57	510 12	545 69	570 34	430 02	330.04	350.003	336.17	
	V. THE TA 1	0.00	403421	210-13	348,35	247.34	430.02	380.04	320-10	200.02	¥2 2
	V-THEIR I	0.00	2000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA I
	V-THETA Z	312*01	300.43	294.50	302.71	309.13	309.55	322.19	323.77	301.65	V-THETA 2
	VIPRI I	733.5	770.9	782+4	793.0	792.3	731.6	724.9	730.6	730.0	V(PR] 1
	V(PR) 2	490.3	539.5	568.6	607.8	599.1	527.4	491.5	+71.8	443.5	V(PH) 2
	VTHETA PRI	-531.4	-537.8	-544.6	-565.8	-594.4	-622.9	-644-3	-650.6	-656.3	VTHETA PRI
	VTHETA PR2	-217.7	-239.1	-251.2	-261.6	-279.9	-304-2	-310.2	-314-6	- 143-1	WTHE TA PRO
	U 1	531.41	537.80	544.59	565.75	594.37	622-86	666.29	650.81	656.27	14 1
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	533. 14	539.53	545.72	566.28	589.03	613.78	637.34	434 64	A44 77	11 2
	Ĩ.	0 44 74	0.6073	0 6144	0 5105	0 4700	013170	032+34	030.93	044.12	0 2
	N 2	0.4014	0.5403	0.5104	0.5103	0.4177	0.3470	0.3002	0.3004	0.3026	
	7 2	0.4010	0.3091	0.5284	0.3031	0.5503	0.4720	0.4424	0_4225	0.3624	M Z
	MOPK) I	0.6709	0.7080	0.7192	0.7285	0.7258	0.6631	0.6551	0.6604	0-6660	#4PR] 1
	M(PR) 2	0.4365	0+4824	0.5100	0.5468	0.5375	0.4692	0.4355	0-4171	0.3898	M(PK) 2
	TURN(PR)	20.063	17.928	17.899	20.025	20.753	23.140	23.595	21.096	12.261	TURN (PR)
	UUBAR	0.1489	0.1459	0.1147	0.0552	0.0625	0-0332	0.0679	0.1054	0.1503	UUHAR
	LOSS PARA	0.0386	0.0384	0.0306	0.0153	0.0178	0.0091	0.0183	0.0275	0.0337	LOSS PARA
	UFAC	0.4564	0.4147	0.3851	0.3509	0.3690	0-4203	0.4748	0.5083	0.5419	DEAL
	FFFP	0.7203	0.7156	0.7869	0.9235	6.9316	0.9914	0.9749	0.0244	0 7751	FLLD
	+ F F	0.7145	0.7101	0.7824	0.9214	0.0208	A 0011	0 8743	0 0323	017191 0 3(0)	(C C C
	100 10	-5 009	-4 473	-4 666	-4 674	-6 741	3 4 70	/ 10.5	0.7222	0.7091	
	DEVM	11 317	12 146			-3.301	2+717	4.203	0.010	-3+041	INCAD
	0.00	11.000	12.130	11.777	0+031	94039	1.118	1.274	8*813	14.803	OEVM
	<u>, , , , , , , , , , , , , , , , , , , </u>	14.170	15.229	13.390	15+272	14+401	13.924	13.582	13.518	13.432	P 1
	P 2	17.090	17.432	17+089	18.106	17.913	16.983	16.662	16.469	15.956	P 2
	τ1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	т)
	12	549.300	547.450	546.150	546.750	548.150	549.250	550.650	551.350	552.650	12
STATOR U	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	O1A	33.207	33.564	33.921	34.992	36.420	37.648	38.919	39.276	39.633	DIA
STATUR-L.C.	BETA 2	35.935	31.686	29.509	28.925	29.871	35.639	41.121	44.151	49.351	BETA 2
STATCH-T.L.	BETA 2A	1.150	1.780	1.630	0.800	0.890	3.321	4.901	3.301	0.500	BETA 2A
	¥ 2	537.89	572.16	598.34	626.58	621.94	532.79	491-56	446.45	398.90	¥ 2
	¥ 24	449-44	496.40	517.92	574.34	576.68	504.03	424.81	404 35	400 41	V 74
	v, 5	435.52	486.67	520.48	648.33	579.05	437 44	749 04	374 34	360 40	4 2 A
	V1 14	ALG 44	404 16	617 60	574 74	574 43	503 80	307.90	334+30	237.00	VZ Z
	16 68 N THE TA D		-70.12 500 E0	211407	217+67	219492	202.88	422-91	403.33	244.41	VL 2A
	Y-INCIA 2	313.01	300.53	294-10	303.00	304.00	210-14	322+97	329.29	302.45	V-THETA 2
	V-THETA ZA	9.43	12+45	14+13	8.02	8.92	29.15	36.26	Z3 . Z 6	3.49	V-THETA 2A
	MZ	0.4788	D.5117	0.5371	0.5637	0.5585	0.4741	0.4354	0+4121	0.3504	H 2
	M 2A	0+4158	0.4411	0.4616	0.5142	0.5138	0.4474	0.3744	0.3557	0.3517	M 2A
	TURN (PR)	34.785	29.905	27.078	28.119	28.964	32.286	36,174	40.799	48.793	TURNEPRE
	UUBAR	0.0668	0-0801	0.0950	0.03#1	0.0	-0,0729	0.0972	0.0965	-0.2099	UUBAR
	LOSS PARA	0.0225	0.0300	0.0327	0.0135	0.0	-0.0280	0.0384	0.0386	-0.0847	LOSS PARA
	DEAC	0.3187	0.3022	0.2956	0.2510	0.2554	0.2582	0.3686	0.3932	0.3004	DEAC
	FFFP	0.7430	0.4774	0.6404	0.7402	1.0000	1.4172	0.4427	0.4341	-74 4344	LEED
	INCLO	-14, 777	-11.702	-10.751		-4.437	-0.234	2 417	V-0301	-20-0300	
	DEMM	-1714 <i>34</i> 11 007	-344702	-100101		-04633		2.413	U.V/8	-7.623	INCID
		7.782	13.092		11+119	41.702	14.947	11.338	15.978	5.354	DEAW
	r 2	17.090	17.432	17.689	18.106	17.913	16.983	16.662	16.409	15.956	P 2
	P 2A	10.924	17.181	17.389	17.972	17.913	17.159	16.464	16.294	16.229	. P 2A
	12	549.300	547.450	546.150	546.750	548,150	549.250	550.650	551.350	552.690	τ2
	T 2A	549,300	547.450	546.150	546.750	548.150	549.250	550.650	551.350	552.690	T 2A
	UUBAR FS	0.1368	0,1025	0.0804	0.0255	0.0193	0.0737	0.1417	0.1531	0,1420	UUBAR FS
	P2 FS	17.291	17.478	17.638	16.060	17.980	17.365	16.767	16.590	16.489	P2 F5
	LOSS PARA 6	5 0 460	0.0349	0.0274	0.0000	0.0000	0.0281	0.0559	0.0612	1.0573	1055 8484 55
								~~~~	V . V	240212	POSS LAVA LS

Table A-6. Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 88.49 Equivalent Rotor Speed = 3725.25 Equivalent Weight Flow = 97.85Tip Radial Distortion

INLET

5

	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12-00	7.10	3.00	PCT SDAM
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.485	DTA COMPANY
	BETA O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	AFTA O
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	LETA D
	V O	371.51	371.51	371.51	371.51	371.51	371.51	371.51	371.51	371.51	V A
	¥ 1	460.55	486-62	483,85	472.68	454.70	337.66	279.64	264.14	240-87	
	¥2 0	371.51	371.51	371.51	371,50	371.46	371.45	371.42	371.41	371.41	พ่อก
	VZ 1	400.55	486 - 62	483.85	472.67	454.67	337.60	279.57	264-07	240.80	¥2 1
	V-THETA O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0-00	V-THETA ()
	V-THETA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	W-THETA 1
	MO	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	0.3365	0 3346	
	N 1	0.4197	0.4444	0.4+18	0.4312	0.4142	0.3052	0-2521	0.2379	043305	H U H 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.2100	THEM
	UUBAR	0.6716	0.3376	0.2925	0.3737	0.5543	1.3036	1.5424	1.6667	1 7469	
	DFAC	-0.240	-0.310	-0-302	-0.272	-0.224	0-091	0.247	0.289	1 26 9	UUDAR
	EFFP	0.4517	0.6893	0.7138	0.6335	0.4818	-0-1535	-0.3649	-0 4006	_0 6703	ECCO.
	INCID	0.0001	0.0001	0.0001	0.0001	0-0001	0.0001	0 0001	0.0001	0.0001	
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	+0.000	-0.001	-(1 0001	14610
	ΡO	15.581	15.581	15.581	15.581	15.581	15-581	15.581	15.581	16 501	DEVA
	P 1	14.792	15.184	15.237	15-142	14-930	14.050	13-710	13.676	12.520	P 0
	10	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518 700	619 700	<b>F</b> 1
	T 1	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518 700	510,700	10
							,	2100100	200100	319:100	• •
ROTOR D	PCT SPAN	95.00	90.00	85.00	70.00	50,00	30.00	15.00	10.00	5 00	OCT CRAN
	DIA	33.236	33.621	34.007	35, 164	36.706	38.248	39.605	30 701	40.174	PLI SPAN
ROTOR -L.E.	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	A (00	0 000	40,170	
ROTOR -T.E.	BETA 2	39.398	35.554	33.974	32.466	34-092	40.882	46.177	49 447	54 000	DCIA 1
	BETA(PR) 1	49.380	46.520	46-344	48-070	50.941	60.340	45.443	47,007	24.000	DETA Z
	BETA(PR) 2	26-298	26.102	25.966	25.900	78.908	36.35)	41 74 3	60.817	60 . 1 16	BETATPRI I
	¥ 1	401.67	516-69	526.40	514.75	489.11	364-74	414203	704 30	37.229	DETAIPHI 2
	Ý Ž	531.43	557.64	574.21	403.77	595 43	513.00	401 70	204.30	229.82	VI
	Ý2 1	461.50	516.58	526.22	514.72	400.42	260 20	702.10	+28.15 202 20	+-8-63	V Z
	¥7 2	410_45	453.44	476.17	500.37	400+93	327.20	298.20	282.28	258-16	VZ I
	V-THETA 1	0.00	0.00	0.00	0.00	A 00	200+11	333.11	290.08	257.50	VZ 2
	V-THETA 2	337.29	324.23	120.87	324.37	379 87	224.03	0.00	0.00	0.00	V-THETA 1
	V(PR) 1	709.1	750 8	747 6	770 3	328.37	330.03	397-71	348.12	354.42	Y-THETA 2
	VIPRI 2	458.1	505.2	520 7	544 3	113+1	120.0	/10.3	717-9	713+7	VIPRI 1
	VTHETA PRI	-538.3	-544-7	-51.4	-673 1	224.0	982.6	444.5	420-9	394.9	V(PR) 2
	VINETA PR2	-202.9	-322 3	-221 0	-267.2	-002.0	-030.9	-652.6	-659.2	-004.7	VTHETA PRI
	U 1	538.27	544.75	551.42	573	-200-1	-285.7	-292.8	-298.1	-296.6	VTHETA PR2
	ū ž	540.23	544.40	553 14	571 67	502.07	030.90	072.61	659.22	664.74	U 1
	Ň Ī	0.6206	0.4710	0 4433	211421	270×04	021.71	040.01	646.78	653.04	02
	M 2	0.4774	0.4976	0.5137	0 5414	V-1400	0.4530	0.2708	0.2563	0.2340	M 1
	M(PR) 1	0.6463	0.4874	0.6967	0.7051	0.7085	0.4570	0-9282	0.4032	0.3849	M 2
	H(PR) 2	0.4072	0-4508	0.4738	0.507	0.4060	0.6379	0.0401	0.6472	0.6428	MIPR) 1
	TURN ( PR )	23.084	20.414	20 274	22.160		024291	0.3927	0.3704	0.3465	MIPR) 2
	LUBAR	0.1245	0.1271	0.0975	0 0349	0 0440	434774	29.128	21+382	19.521	TURN (PR.)
	LOSS PARA	0.0323	0.0335	0.0260	0.0102	0.0069	0.00149	0.0992	0.1357	D-1686	UUBAN
	DEAC	0.4920	0.4540	0 4104	0 3044	0.4104	0.0100	0.0239	0.0335	0.0391	LUSS PARA
	EFFP	0-8123	0.8082	0.8808	A 8007	0.0471	1 0051	0.2413	0.0823	0.6210	DFAC
	EFF	0_8078	ú.8036	0.8780	0.9902	0.7071	1.0677	0.9610	0.8944	0.8491	EFFP
	INCIO	-7-045	-4-396	-4 725	-1 071	-3 041	6 363	0.7370	0.0412	0.0446	EPP A Star
	DEVM	11.165	11.947	11.332	7 250	-2-VOL	4 700	0.130	4.342	0.649	INCLO 215
	P 3	14.792	15.184	15.227	15.142	14 070	04170	74030	12.022	13.273	DEVA
	P 2	17-496	17.793	17.994	10 344	14.730	17 150	13,110	13+020	13.530	P 1
	TI	518.700	518.700	518.700	518.700	50013L 610 700	17e370	519 300	10+011	10.009	P 2
	Ť 2	550.250	548.400	547-460	547.950	5105100	5484400	518.100	518.700	518.700	! 1
				2110120		J474 JJ4	3405400	2224220	224-110	330+42U	12
STATCR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15-00	10.00	5-00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36-420	17.848	38.419	19.976	39 433	DIA DIA
STATOR-L.E.	BETA 2	39.666	35.375	33.411	32.527	33.634	40.755	47.200	51.434	56.943	RETA 2
STATOR-T-E+	BETA ZA	1.400	2.360	2-400	1.950	1.930	4-05T	4.841	3.851	2.401	DETA 2
	V 2	528.50	560.26	583.04	603.77	594.40	516-17	475.43	447.47	424 . 25	N 7
	V ZA	439.85	458.40	474-16	529.48	529 34	456.45	.98.24	371.82	349 80	V 7.
	V2 2	406.83	456.81	486.67	508.97	494.67	390.77	327.76	278.70	211 20	V7 2
	VZ ZA	439.72	458.00	473.73	529,10	528.87	455.04	184 54	370.35	247 47	46 £
	V-THETA 2	337,35	324.34	321.03	324 . 58	329.07	336.72	348.56	349.40	256 24	V_TNETA 2
	V-THETA 2A	10.75	18.88	19-85	18.02	17.82	32.22	32.74	24.93	15.4/	V-THETA 2A
	M 2	0.4696	0.5000	0.5220	0.5414	0.5118	0.4590	0.4195	0.3935	0.3719	M 3
	M ZA	0.3882	0.4058	0.4207	0.4716	0.4708	0-4040	0.3406	0.3251	0.3220	M 24
	TURN (PR)	38.266	33.014	31.009	30. 571	31.484	34-471	42, 31 3	47.510	54.490	TUENIOS
	UUBAR	0.0389	0.0911	0.1067	0.0432	-0.0053	-0-0341	0-0764	0-0365	-0-0419	ING AD
	LOSS PARA	0.0131	0.0310	0.0367	0.0151	-0.0020	-0.0131	0.0302	0-0137	-0-0169	
	OFAC	0.3760	0.3676	0.3644	0.3039	0.3040	0-3441	0.4483	0.4417	0.4544	DEAC
	EFFP	0.8839	0.7489	0.7219	0.0335	1,0230	1.1478	0.7855	0.4011	1.1410	LEED
	INCID	-10.501	-8.013	-6.880	-3.504	-3,071	6.884	N. 487	8,247	-2.364	CTTT INCIO
	DEVM	10.232	13.672	13.710	12.925	12-942	15,714	17,270	16.674	7.949	
	'P 2	17.496	17.793	17.994	18,344	18,127	17.150	17.030	16.917	14,440	P 2
	P ZA	17.400	17.538	17-669	18.201	18.149	17.439	14.88	16.759	16 737	P 24
	ΤZ	550.250	548.600	547.450	547.950	549.180	548.400	553, 734	554.770	556.420	7 2
	T ZA	550.250	548.600	547.350	547.950	549.350	548,400	553.220	554. 770	555,496	T 74
	UUBAR FS	0+0992	0.0715	0.0758	0.0289	0.0237	0.0652	0.0959	0.0932	0.0772	• 40 Ininad es
	P2 FS	17.659	17.733	17.892	18-295	18.224	17-606	17-071	16.920	16-846	80 EK
	LUSS PARA F	\$ 0.0334	0.0243	0.0261	0.0102	0.0080	0.0250	0.0170	0.0172	A01004	FZ F3
									D B Q B I Z	U 6 U 5 4 K	CO33 PAKA P3

 Table A-6. Blade Element Performance (Continued)

 Stage D, Rotor D - Stator D

 Calculations Using Translated Values

 Percent Equivalent Rotor Speed = 89.54 Equivalent Rotor Speed = 3769.57 Equivalent Weight Flow = 90.04

 Tip Radial Distortion

INLET

10161											
	PCT SPAN	96-60	92.00	84 00							
	014	32 122	72.00	00.90	/1.00	49.50	28.10	12.00	7.10	3-00	PET LOAL
	BETA O	334122	33.264	33.962	35,312	37.137	38.954	40 321	40.717	41.086	CIA
	DETA D	0.000	0.000	0-000	0.000	0.000	0,000	0.000	0.000		
	BEIA 1	0.000	0.000	0.000	0-000	0.000	0.000	0.000	0.000	0.000	BETA G
	vo	342.49	342.49	342.49	342.40	342 40	24.2 4.0	0.000	0.000	0.000	DETA 1
	V 1	423.95	442.22	441 94	437 44	342.47	392.49	442.49	342.49	342.49	V C
	VZO	342.40	343 46	771+00	431.40	414.09	311.15	261.78	241.82	210.16	V i
	¥7 1	412 RK	376477	342.49	342.49	342.47	342.44	342.41	342.40	342.44	ม่ว้อ
		423.95	442.22	441.86	437.46	414.00	311.10	261-71	241 74	210 10	¥1 0
	Y-INETA U	0.00	0.00	6.00	0.00	D.00	0.00	0.00	0.00	210.10	47.1
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA O
	M O	0.3097	0.3097	0.3097	0 1007	0.000	0.00	0.00	0.00	0.00	V-THETA 1
	M 1	0.3853	0 4026	0 (033	0+2041	0.3097	0.3097	0.3097	0.3097	0.3097	MO
	THON	0.0000	V+4U23	0.4021	0.3960	0.3761	0.2809	0.2358	0.2176	0-1669	M I
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.007	71 4 71 (15 b)
	UUUAK	0.6177	0.3427	0.2898	0.3321	0-5331	1.2947	1 604 2	1 540.	0.0	FURN
	UFAC	-0.238	-0.291	-0-290	-0.277	-0.200	0 001	467003	142003	1-0401	UUBAR
	EFFP	0.+696	0.6691	0.7044	0 6636	01207	0.072	0.230	0.29	0.386	DFAC
	INCID	0.0001	0.0001	0.0000	040030	0-4/15	-0.1556	-0.3751	-0.4546	-0.5625	EFFP
	NEWN	000001	0.0001	0-0001	0.0001	0.0001	0.0001	6.0061	0.0001	0.0001	THETO
	0.7	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	
	ΡU	15.418	15.418	15.418	15.418	15-416	15.416	15 616	16 (10)	0.000	DEVA
	PL	14.805	15.076	15.131	15.069	14 860	14 134	12+710	12*418	12.419	PO
	то	518.700	518.700	518 700	619 700	610 700	19+139	13.924	13.851	13.735	Pì
	т 1	518.700	516.700	510 700	510.700	518.700	518-700	518.700	518.700	518.700	Τü
	-		2101100	510.700	219.100	218+100	518,700	518.700	518,700	518.700	та
KOTER O	BCT COAN	AF 05									• •
	FCI SFAN	<b>75</b> • 00	90.00	85+00	70.00	50.00	30.00	15.00	10.07	E 1/2	DIT FOIL
0.07(0)	NIN	33.236	33.621	34.007	35.164	36.764	38-244	30	20 20	5.00	PUI SPAN
RUIGR -LE	BETA I	0.000	0.000	0.000	0.000		200140	37.403	24*141	40.176	DIA
RUTOR -T.E.	BETA 2	41.898	39.543	27 403	35 467		0.000	0.000	0.000	6.000	6ETA 1
	BETAIPR) 1	52 046	40 440	37	37.004	28*101	46.261	53.ZO9	57.355	60.662	BETA 2
	BETATOD 1 7	24 107	47.000	97.380	50.686	53.937	62.615	67.099	68.638	71.503	RETAINDS
	UCIALFRI Z	20.197	27.112	27.625	28.144	30.916	36-840	44.130	44 717	60 471	SCINCER 1
	¥ I	424.95	468.24	478.81	474.89	444.20	312.05	264 62	364 00	20+011	DETATPRI 2
	¥ 2	528_69	540-22	546.31	549 34	554 05		200-02	200.00	220.51	V 1
	¥Z 1	674 .86	448 14	470 75	174 01	334433	201+03	407.00	463.Űo	450.00	V 2
	W2 2	207 61	4.1.1.4		4/4.00	443+DD	330.70	278.97	258 23	225.03	VZ 1
	V-TUETA 1	147451	422.34	433.46	461.56	436.54	350.63	260.91	249.53	220.30	¥7 2
	V-THEIR I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	V-THETA Z	353.05	336.74	332.49	331.47	342.31	366 . 41	176 4 3	206 63	0.00	V-THETA 1
	V(PR) 1	690.8	723.3	735.4	749.5	754 0	710 4	313403	209.22	391.94	V-THETA 2
	V(PR) 2	4380	474.6	400 5	637.5		114.0	111.0	/16.0	709.6	Y[PK] ]
	VTHETA PRI	-544.7	-551 1		523.5	209.1	438+7	392.0	364.6	348.1	V(PK) 2
	VTHETA 027	-142 4	-314 2	-220.2	-219.9	-609.2	-638.4	-660.4	-667,1	-672.7	VTHETA PRI
	TINLIA FRE	-142.6	-210.3	-226.8	-246.9	-261.4	-262.7	-272.5	-265-0	-268 9	VTHETA 00.2
	01	244.05	551.23	558.18	579.08	609.21	638-41	660-17	447 04	473.44	VINE IA PRZ
	02	540.65	553.00	559.34	578.37	603.73	629.10	440 13		012103	0 1
	M L	0.3863	0.4270	0.4370	0-4111	0 4043	0 2001	0 0 0 0 0 0	029-41	000+01	U 2
	M 2	0.4688	0.4804	0 4947	0 6071	0.4043	0.3001	0.2>31	0.2342	0.2037	M 1
	M(PR) 1	0.6279	0 4606	0.1001	0.0011	0.4941	0.4491	0.4126	0.4062	0.3936	M 2
	MIDD1 7	0.0217	0.0375	0.0712	0.0838	0.6863	0.6503	0.6469	0.6448	6.6384	H(PR) )
	HIFNI L	V+3684	0.4220	0.4359	0.4671	0.4532	0.3861	0.3444	0.3198	6 3645	HIDD'S S
	TUKN (PR)	25+844	22.544	21.753	22.542	23.002	25.734	22.024	22 066		MIFRI 2
	UUBAR	0.0937	0.0979	0.0878	0.0509	0.0646	0 1040	A 1001	22.0000	50°01A	TURN (PR)
	LOSS PARA	0.0244	0-0255	0.0231	0 0139	0.0340	0.1000	0+1093	0=2303	0.2369	UUBAK
	ÚF≜C.	0.5134	0 4804	0 4401	0.0130	0+02+0	0.0265	0+0472	0.0554	0-0532	LDSS PARA
	LELD	0 9490	0.0530	0.4071	0.4575	0.4704	0.5604	0.6337	0.6797	0.7034	DEAC
	1.55	0.0487	0.0262	0-9033	0.9685	0.9640	0.9963	0.8543	0.8328	0.6093	ELED
	LFF	0.8448	0-8484	0.9006	0.9676	0.9629	0.9962	6.5498	0.8276	0 6033	
	INCID	-0.387	-1.256	-1.198	-1.357	-0.066	6-633	N-444	4 6 9 1	040032	
	DEVM	11.048	12,952	12.991	9.503	7.705	0 370	10 604	0.311	3.340	INCLU '
	P 1	14-805	15.078	15.131	16 000	16 880	74210	12.304	13-248	14.696	DEVM
	P 2	17.869	18.014	16 111	19.007	144004	14.139	13.924	13.851	13.735	P 1
	7 1	510 700	£10.700	19-111	10.341	18+202	17.670	17.271	17.208	17.124	P 2
	T 3	510.100	210+100	518-700	518.700	516.700	516,700	518.700	518.700	518.700	ŤĨ
	12	>>2+600	550.600	549.050	549.450	550.550	553.000	557.450	558.800	540 700	÷ •
									2200000	200-100	• 2
STATOR D	PCT SPAN	95.00	90.00	85-00	70.00	50 00	30 00	16		_	
	DIA	33.207	33.544	33.021	34.000	34 4 3 5	30.00	13-00	10+00	5.00	PCT SPAN
STATOR-Lit.	BETA 2	42.100	38.360	14 67-	38 344	30.920	31.648	38.919	39.276	39.033	DIA
STATOR-T-C-	BETA 24	7 2 4 4 4	201377	30.874	22.129	37.597	46.113	54.528	59.765	64.619	BETA 2
	ULIA 2A	2.400	5.200	3.190	Z+920	3.100	3.751	4.201	4,101	3.001	BETA 24
	¥ 2	525.78	542.01	554.41	568.26	562.16	509.76	442.42	452 23	424 14	UC IN ZN
	V 2A	422.21	429.71	441.11	479.98	473.10	611-04	370	260 31	722619	* 4
	VZ 2	389.50	425.63	443.40	441 73	446 33	711600	310131	228.21	322.15	V ZA
	VZ 24	421.84	420.03	440 41	4 30 30	442423	222011	268.30	227.60	186.44	VI 2
	V-THETA 3	363 11	-23603		414.23	+12+25	409.93	369.22	350.98	355.26	VZ 2A
	V THETA A	933+11	220+92	332.66	331.70	342.83	367.17	376.54	390.50	397.99	W-THATA 7
	V-THETA ZA	17.68	23.98	24.54	24 45	25.58	26.87	27.17	25 40	16 43	V THEIR 2
	# 2	0.4661	0.4828	0.4943	0.5071	0.5008	0-4511	0.4047	0 3012	40+02	VTINCIA ZA
	M 2A	<b>Ú.3714</b>	0.3789	0.3898	0.4747	0.4104	0.3411	0.3334	0.3403	0.3802	M 2
	TURN (PR.)	39.790	35,150	33.481	12 444	V07104	V+3012	0.3235	0.3121	0.3097	M 2A
	UUBAR	0.0420		JJ+062	36.803	37+4 TV	+2.329	50.283	55.621	61.575	TURN ( PR )
		0.0720	0.0010	0.0141	0.0409	0.0231	0.0410	0.0057	0.0178	-0.0290	ULIBAR
	CUBB PARA DEAE	0-0141	0.0275	0.0272	0.0145	0.0085	0.0158	0.0022	0-0071	-0.0117	1015 0404
	UPAL	0.4119	0.4048	0.3959	0.3480	0.3682	0-4520	0.5002	0.5374	0 6 200	LUGG FARA
	EFFP	0.8912	0.8011	0.8032	0.871)	0.9245	0.0917	0 844 7	0.0551	0+2308	UPAL.
	INCID	-7.977	-3.029	-3-417	-2.101	0.041	V4071/	V+7823	0.9551	1.0829	EFFP
	UEVM	11, 232	14 412		-2.302	V+671	10.244	15.823	10.599	5.428	INCID
	P 2	17 640	14.214	14.300	13.945	14-111	15.415	16.639	16.777	7,852	DEVN
	· •		10.010	18.111	18,341	18.205	17.670	17.271	17.208	17.124	P 2
	r ZA	17.765	17.001	17.890	18.221	18.139	17.576	17.241	17.127	17 173	F 4
	12	552.600	550.600	549,050	549.450	550.550	553.000	557.450	474477 668 000	11.112	r 28
	T 2A	552.600	550.600	549.050	549.450	550.LEA	553 000U	291443U	>>8-800	760.100	12
	UUBAR FS	2661	0.0775	0.0652	0.0408	0.0500		331-430	>>#+800	560.700	T 2A
	P2 F5	17-033	18-005	14.040	10 4.1	10.0309	0.0887	0.0929	0.1080	0.1089	<b>UUBAR FS</b>
	1055 8484 5	4/4952	72400b	TEADDA	10+241	18-289	17 791	17.450	17.387	17.376	P2 FS
	LUSS PARA F	a U.1222	0.0263	0.0224	0.0144	0.0187	0.0341	0.0158	0.0431	0.404.39	1056 0404 74
										~ = ~ = 3 7	FOR LANK L2

Table A-6.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator D<br/>Calculations Using Translated ValuesPercent Equivalent Rotor Speed = 70.73Equivalent Rotor Speed = 2977.76Equivalent Weight Flow = 85.36<br/>Tip Radial Distortion

INLET	
-------	--

INFEA	•										
	PCT SPAN	96.80	92.00	86.90	71.00	40 60	78.10		_		
	DTA	33.122	13 620	33 04 3		47.29	50.10	12.00	7.10	3.00	PCT SPAN
	GETA O		334527	33.902	32,315	37.137	38.954	40.321	40.737	41.085	<b>FITA</b>
	BETAU	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0-000	5 606	
	BETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	BETA U
	V O	324-69	124.49	376.49	174 40	324 40	174 40	0+000	0.000	0.000	BETA 1
	ý i	300 34		32 4.07	264.07	324.09	324.69	324.69	324.69	324.69	¥ O
		370.30	461496	412-20	403+24	383.78	285.84	235.51	227.27	204.03	N N
	47.0	344.68	3Z4.69	324.69	324.68	324.66	324-63	174.60	334 40		
	VZ 1	390.36	411.32	412.20	603.23	383.76	295 60	726 44	324.00	329.00	V2 0
	V-THETA O	0.00	0.00	0.00		303413	£0340U	232+92	227.21	235.96	VZ 1
	V-THETA 1	0.00	0.00	0.00	0.00	0+00	0.00	D.00	0.00	0.40	NOTHERA D
	V-INEIA L	0.00	0.00	0.00	0.00	0.00	ũ <b>₊</b> 00	0.00	0.00	4.00	
	M Q	0.2933	0.2933	0.2933	0.2933	0.2933	0.2933	A 2022	4 0000	0.00	A-INCLV T
	M 1	0.3540	0.3735	0. 2742	0 3440	0 24 30	012733	0.2735	0.2933	0=2933	M 6
	THEN	0.0	0.0		4.3000	0.0414	0-2311	0.2119	0.2044	0.1852	M 1
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	TURM
	UUBAR	0.6329	0.3335	0.2748	0.3335	0.5390	1.2552	1-5077	1 6405		TURN
	OFAC	-0.202	-0,267	-0.270	-0.242	-0-187	0 1 10	0 274	165005	1=00012	UUBAK
	EFFP	0.4188	0.6522	0 4074	0 4370		0.120	0.213	0.300	0+365	OFAC
•	THETO	0 0001		440770	0.00110	0.4306	-0+2180	-0.4510	-0.+762	-0.5472	FFFP
		0.0001	0+0001	0.0001	0.0001	0.0001	D.0001	0.0001	0.000	0.0001	THETO
	DEVM	-0+000	-0.000	-0.000	-0.000	-0-000	*0.000	-0.000	-0.000	000001	INCID
	РQ	15.335	15.335	15.335	15 335	16 335	16 226	- 0.000	-0.000	-0.000	DEAW
	P 1	4.772	15 026	16 000	10.000	12+335	12-332	15.335	15.335	15.335	Ρü
			12:030	12-040	12.038	14.856	14.219	13,995	13.945	13.64.6	P 1
	10	219*100	518.700	518.700	518.700	518.700	518.700	518.700	630 766	616 300	<u> </u>
	71	518.700	518.700	518.700	518 700	519 200	510 700	5101100	514.100	219-100	10
					3101100	2104100	210 0100	218.400	518.700	516.700	71
AOTER I.	DCT COM	0F									
AUTER D	FUT SPAN	42.00	90.00	85.00	70.00	50.00	30.00	15.00	16 64	6 00	00 T
	DIA	33.236	33.621	34,007	35-166	36.706	20 744	20 /05	10.00	5.00	PUT SPAN
RUTUR -L.E.	RETA 1	0.000	0 000	0 000	5 000	304100	20.4240	37.403	39.791	40.176	DIA
BCT1.0 _1 +	GETA 3		4.000	0.000	0.000	D+000	0.000	0.000	0.000	6,000	RETA 1
RETOR -IFLE	BEIR 4	29+141	31.546	29.738	28.689	29.671	35.104	39,166	42.076	46 047	
	BETA(PR) 1	47+725	45.048	44.699	46.378	49.517	56 057	44 334	42.020	42.041	BEIA Z
	5ETA(PR) 2	25.724	25-015	25 004	25 534	20.007	20.721	04+320	02.201	o7.455	BETA(PK) 1
	¥ 1	201 25		23.070	22.234	28-297	35.484	39.332	42,147	51.606	HETA(P6) 2
	* *	371.23	434.81	445.65	+36.57	411.00	30+.76	252.42	266-32	222	V V
	¥ 2	447.13	474.41	489.48	506.15	695.56	4.29 - 1	666 00		222.04	V 1
	VZ 1	391.17	434.71	445.40	4 3 4 4 4		747 61	404.89	360.08	330.89	¥ Z
	¥7.5	347 34	404 30		730-34	410+49	303.53	250.76	242.56	220.54	¥Z 1
	W THE TA .	201.30	404420	425.UI	445.76	430.40	351.01	313.21	286-25	233.36	¥7
	A-LUFTUR T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	V-THETA 2	254.83	248.19	242.80	241 03	246 20	24.4		0.00	0.00	V-IHEIA I
	VEPRIT	581.6	416.4	474 6		243420	640+13	200+34	257.92	233.75	V-THETA 2
	VIDEN 3	107.0		0207	032.0	632.9	589 Z	579.5	580.8	575.9	VERKIS
	VIERĮ Z	40148	446 Z	469.3	494.0	489.D	431.6	405.7	384.9	.7. 4	HIODI
	VIHEIA PRI	-430-3	-435.4	-440.9	58 1	-481.2	-504.3	-421 7	- 6 3 4 6		TIPKI 2
	VTHETA PR2	~177.0	+168-7	-199.1	-712 0	- 271 7	20413	-921-7	-720.9	->\$1.4	VTHETA PRI
	- u a	430.27	436 44			-251+1	-220.2	-256.7	-259.1	-266.3	VTHETA PR2
	ŭ 3	430421	432444	440.44	428-07	481.24	504.31	521.66	526 94	531.56	11.1
	υz	431+83	436.84	441.85	456.68	476.92	496-96	511.00	\$17 DG	5 3 2 / 1	
	M 1	0.3546	0.3955	D-4457	0-1972	0 2722	0.3760	2	211400	255-01	02
	N 2	0.3003	0 4 36 1	0 4 7 0 4		0.3132	0+2120	0.2213	0.2199	0.1997	M 1
	M4003 1		0.72.71	V-4572	0.4369	0.4447	0.3835	0.3604	0.3432	0.29/4	H /
	MUPRJ 1	0-2214	0.5597	0.5707	0.5757	0.5747	0.5318	0.5217	0.5027	6 6 70	****
	M(PK) 2	0.3642	0.3998	0.4214	0.4442	0.4300	0 3963	0.2414	0.0227	0.0177	MIPKJ I
	TURN (PR)	21.997	20-028	19 400	20 64.2	21 310	0+3033	0+2011	0-3438	0.3288	H[PR] 2
	IIIILAR	A 1140	A 1920	17.000	20.043	21.219	23.424	24.937	23,080	16.414	TURNEPRI
	COGAR	0.1704	Q.1229	0+0564	0.0354	0.0412	0.0348	0.0624	0-1044	0 1220	10.00 + 1.
	LUSS PARA	0.0305	0.0327	0.0232	0.0098	0.0117	0.0095	0.0147	0.0071	0.1220	OUDAR
	UFAC	0.4259	0.3934	0.3666	0 3377	0 3635	0.0075	0.0101	0.0211	0.0272	LLSS PAKA
	FFFP	0 7400	0.000	0.0000	V+3577	0*3212	0.4073	0.4514	0.4882	0.4970	DFAC
	tee	0.1077	0.1991	0.0613	0,9909	0.9850	1.0261	0.9983	0-9515	0-8029	55EQ
	EPP	0.7665	0.7838	0.6796	0.990B	D.984H	1.0766	A UDLI	0.050	6 002.4	EFFF
	INCIU	-4.707	-5-866	-5.586	-5.664	-4 447	3 0 4 5	967702	01000	N+1990	LFF
	UEVM	10 676	Pr. 054		24004		2.968	2.059	2.996	-0.078	TNCLL '
		10-515	10.020	10.402	6.893	5.087	7.923	7.708	9-009	15-033	DEWM
	P 1	14.172	15.035	15.090	15.038	14.856	14.219	13.005	12 040		
	P 2	16.343	16.551	16.697	16.895	14 740		13.775	12.740	13.659	P 1
	Τι	518.700	\$10 700	619 300		10-100	10+110	12+268	15.863	15.529	P ∠
	÷ -		2101100	210-100	⊃18•100	518.700	518.700	516.700	518.700	518.760	тъ
	12	228.250	537.080	536.000	536.320	537.170	537-660	536.850	530 120	540 176	
									3374430	240.120	12
STATUR D	PCT SPAN	95.00	90.00	BE 00	***						
	DIA .	33 000	70.00	02.00	10.00	50.00	30.Du	15.00	10.00	5-00	PCT SPAN
	UIA	33+207	33.564	33,921	34 992	36.420	37.844	36 010	20 074		PUT SEAN
⇒IAIUK≁L.Ł.	EETA 2	34.456	31,399	29,303	28-724	29 324	26 010	30.05*	37+210	37.033	OTV
STATUR-T.E.	6ETA 24	1-400	1 450	1 600	200124	67.360	32-010	34+232	43.291	47.006	BETA 2
	W 2	164 00	46730	1.400	0+100	0.050	2.800	4.841	3.651	1.250	BETA 24
	• 2	444.82	+(0+55	496.35	506.15	501.66	431+30	399.14	377 47	3 /	
	V ZA	389.39	413.75	435.17	473.08	667.34	414 14	366 34	211+41	250 - 14	¥ 2
	VZ 2	364.59	404 75	433 63			71D-17	222+28	110.90	327.75	V ZA
	¥7 74	200 22	TODATO	412.05	442+24	437,14	352.95	305.74	274.48	218.51	W2 2
		304.21	411401	435.02	472.97	467.21	415.45	353-84	335.92	377 35	
	A-THEIY 5	254.87	248.27	242.92	244.17	245 50	247 24	255 05		241424	12 2A
•	V-THETA ZA	9.51	10.47	10 63		243.30	241424	233+22	258.58	2.4.37	V-THETA 2
	M 2	0 3070		10.00	2.10	0.41	20+32	29.97	21.43	7.14	V-THETA ZA
		0.3712	0-4271	0.4460	0+4569	0.4504	0.3850	0.3552	0.3453	0 2425	<b>H</b> >
	m ZA	V. 1464	0.3691	0.3892	0.4241	0.4185	0.3712	0.3164	6 2002	0 2 2 2 2 2	
	TURN(PR)	33.556	29.948	27, 902	28.014	20.310	33 3 70	042134	0.2986	0+2403	M 2A
	UUBAR	0.0849		4 4 4 4 4 4	50+014	27.200	52+178	35.048	39.590	45.698	TURN (PR )
	1000 0101		OPTOT L	0.0882	0.0232	0.0048	-0.0863	0.0782	Ú <b>⊾(17</b> 6a	-0.2346	1/1/646
	LUSS PARA	0.0292	0.0346	0.0303	0.0082	0.0018	-0.0332	0.0300	0 0 2 0 1	-0.00/2	ADDA CARA
	UFAC	0.3105	0.3018	0.2845	0.2361	0 2400	0 01 -	0.0307	0.0201	-0.0947	LUSS PARA
	LFFP	0.0500	4 4 4 4	0	002301	0.2779	0.2387	0.3354	0.3664	6.2656	ŨFAC
	THE TO		U-DIAU	V-04/1	0.8407	0.9667	2.1704	0.6413	4.6697	-6.0835	FFFP
	INCID	-15.211	-11.989	-10.967	-9,306	-7.377	-0.854	1.076	0 110		
	DEVA	10.232	12.762	12.710	11.476	11.043		++260	0.118	-15+149	1MC10
	P 2	16.343	14 561	14	11019	11+002	19.405	17.27B	16.320	6.103	DEVM
	D 24	14	10.331	10 . 0 . 1	10+992	16.760	16.176	15.988	15.863	15.529	P 2
	r ca	10.197	16.353	16.510	16.833	16.750	16.311	15,002	16.776	16 777	
	í ż	536.520	537.080	530.000	536. 320	537, 170	537 444	136	474117	42+147	P ZA
	T 2A	536-520	537.000	534 000	536 355	2374170	-31-000	220.620	239.130	540.130	T 2
		A 1444		220+000	230-320	231+170	537.660	538.850	539.130	546.136	T ZA
	OUDAR F3	0+1323	0.1046	0.0885	0.0372	0.0262	0+0847	0 1411	D. 1729	0.1742	1116 8 2 5 5
	PZ FS	16.437	16.557	16.69#	16.918	16.808	16.440	14,110	14.000	14 744	VUDAK F3
	LUSS PARA F:	S 0+0455	0.0355	0.0304	0.0111	0.009-	0.0331	104113	10.009	12:341	P2 F5
	• • •					000070	0=0928	0.0030	0+0081	0.0702	LUSS PARA ES

Table A-6. Blade Element Performance (Continued)Stage D, Rotor D - Stator DCalculations Using Translated ValuesPercent Equivalent Rotor Speed = 70.80 Equivalent Rotor Speed = 2980.69 Equivalent Weight Flow = 80.21Tip Radial Distortion

INLLT

	PCT SPAN	96.80	92.00	86.90	71.00	49.50	26.10	12-00	7 - 10	3.00	DET COLN
	UIA	33,122	33-529	33-462	35, 312	\$7.137	10.054	40 431		3100	PCI SPAN
	BETA O	0.000	0.000	0.000	0.000	0.000		70.321	40.131	-1.065	LIA
	RETA 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	BETA D
		0.000	0.000	0-000	0.000	0.000	0.000	0.000	0.000	υ. 6ύ0	BETA 1
	• •	202*49	302-88	305.98	305.98	305.98	305.98	305.90	305.98	305.98	V G
	V 1	364.30	344.65	384.60	379.79	363.13	270.36	221-01	209.84	185.54	ม้
	VZU	305.98	305.96	305.98	305.97	305-96	305.93	305 60	366 66		
	¥Z 1	369.30	184-65	384.60	376.74	343-10		5 20	202120	303.90	V2 U
	V-THELA D	0.00	0.00	204000	377110	303+10	210+31	420.96	209.75	182*51	VZ L
	N-T-CTA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	V-THETA O
	T-INCIA I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	V-THEIA 1
	H U	0.2761	0.2761	D-2761	0.2761	0.2761	0.2761	0.2761	0.2761	0.2761	N O
	M 1	0.3345	0.3487	0.3486	0.3442	0.3288	0.2436	0 1987	0 1004	6 1	
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.1.01	0+1000	0.1001	<u>n.</u> 1.
	LUBAR	0.5725	0.2110	0 3550	0.000	0.0	0.0	0.0	0.0	0.0	TURN
	DEAC	-0.207	0.0213	V-2007	0.2023	0.4933	1*1199	1.4762	1.5090	1.6277	UUEAR
	UT AC	-0.207	-0.257	-0+257	-0.241	-0+187	3 <b>11</b> .U	0.278	0.314	U.394	DEAC
	EFFP	0.4493	0.6501	0.7005	0.0019	0.4589	-0.2194	-0-4829	-4.5323	-0-5204	LELD
-	INCLL	0.0001	D_0001	0.0001	0.0001	0.0001	0.0001	0.0001	0 0001	0.0001	The To
	DEVM	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.0001	0.0001	0.0001	INCID
	P D	15.227	15.227	16 127	16 227	16 000	0.000	-0.000	-0.000	-0.00C	TIE AM
		14 775	1/ 07/	1.4221	12+227	12+221	15.227	15+227	15.227	15.227	ΡÚ
		14+110	741214	12*0%0	15.006	14.840	1+.270	14.083	14.042	13.949	PI
	1.0	518.700	518,700	516.700	518.700	518,700	518.700	518.700	516.700	518.700	10
	11	516.700	518.700	518.700	518.700	518.700	518.700	516.700	518-700	518.200	
								2121100	2104/00	2149100	
RUTUR L	PET SPAN	95-60	90.00	85.00	30.00	60.00	20.00				
	014	22.0	20.000	36	10.00	_⊃0+00	20.00	15.00	10.00	5.00	PCT SPAN
6C104		22.420	22-041	34.007	35.164	36.706	38.246	39-405	39.791	40.176	U1A
NUTUR HEALS	BETA 1	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.000	6.000	BETA 1
KLIUR ←T+I+	BETA 2	37.995	34.850	33.250	31.826	33.075	39-434	66.79.	47.201	54-929	Arta o
	BETA(PR) 1	49.330	47.024	46.761	48.147	51.154	40 36-	46 34 0	47.007	JU.020	DE LA Z
	BETAIPES 2	26.008	25 734	76 614	26 0127	21+124	00.000	02.149	6 r. 003	67.529	BETA(PR) 1
	N N	20.000	274 (3D	22+011	23-819	28.156	35.029	40.610	44.720	50.757	bETAIPRI 2
	<u>v</u> .	\$10.13	406.17	415.09	410.61	368.42	288.10	236.74	225.47	149.20	Y 1
	V 2	432.23	452.21	404.22	487.35	474.94	423 27	369	3.4.51	447 61	
	VZ 1	370.06	406-Ob	415-04	610-56	347.95	264 04	345.37	100.50		• <u>-</u>
	22.2	340 41	371 00	306 51	410200	301495	200.94	233-23	223.80	198.56	¥Z 1
	N THETA A	540.01	571+07	200-11	414401	341-81	326.52	276+08	249.53	213-14	V2 2
	V-INEIA I	0.00	0.00	0.00	0_00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-ThETA 2	Z66.07	250.39	254.52	256.99	259.09	266.57	274 - 1 D	270.33	241 60	N-The Tel 3
	V(PK) 1	507.5	595.8	605.9	615-5	618-8	581-2	672.4	671 -	644 3	
	V(PR) 2	579-0	412.0	411.2	440.0	454 0	200		113.0	200.02	VIPRI I
	VTHETA BOIL		-496.0				377.3	365.4	351.9	337.4	V(PR)∠
		-+30.1	-932+9	-941.4		-481.7	-504.0	-522.2	-527.5	-531.9	VTHETA PRA
	VIHEIA PKZ	-166.2	-176+9	-187.8	-200.3	-218.3	-228.9	-238.4	-247-2	-260-9	VINETA PA2
	U I	430.69	435.87	441.37	458.52	461.72	504-80	5/2.17	627 46	618 8A	
	U 2	432.25	437.27	442.28	657.33	477.39	497 45	619 40	617 61	533.43	
	E 1	0.3352	0-3667	6 3770	0 3770	4 16 3 3	771443	212449	211+21	222+22	02
	M 2	0 2054		0.3170	0.3129	0.3522	0.2348	G+2130	0.2028	0.1796	州 1.
	п с 	0.3854	0.4042	0+4158	0 4371	0.4251	0.3773	0.3466	0.326/	0.2967	M 2
	MIPRJ I	0.5143	6.5408	0.5504	0.5589	0.5011	0.5241	0.5159	0.5155	0.5106	MILES 1
	M(PR) 2	0.3379	0-3683	0.3662	0.4125	0.4064	0.3554	0.3244	0 3116	0.3467	
	TURN(PR)	23.315	21.286	20.947	22.337	22 378	25 300	34 640	10 330	0.2702	MUPRI 2
	1115-2.5	0 1167	0 1113	0.0545	0.0305	22,0010	22.309	24.087	22.230	18.749	TURN(PP)
	UUUAN .	0.1192	0.1112	0.0845	0.0393	0.0475	0.0476	0+101+	0.1332	6.1413	UUBAK
	LUSS PARA	0.0300	0-0294	0.0226	0.0109	0.0134	0.0131	0 0266	0.0332	0.0317	LOSS PARA
	DFAC	0.4686	0.4359	0.4131	0.3809	0.4005	0.4673	0.527L	0-5563	0.5678	DEAC
	EFFP	0.7989	0.8269	0.9078	0_9979	0.9861	1.0461	0 9494	0 8836	( 017)	LEED.
	é F.be	0.7955	11-1-262	0.9044	0 0070	0 0460	1 0400	6 6 4 7 4	0.0027	Protic	CFFF
	FMF TTI	-1.101	- 4 0410	0.004		0.7037	1.0470	0.9410	0.0807	0.8144	£FF, .
	10010	-2-101	-24040		-3-885	-2.849	4.399	1*085	4.728	1.436	INULU
	DEVM	10.854	11.576	11.178	7.178	5.546	7.469	9-185	11.589	14.782	DEVA
	P 1	14.778	14.974	15-026	15.006	14.840	14.270	14.083	14-042	13.049	B 1
	Ρż	16.456	16.622	16.746	16.954	14.850	14 304	14 164	34 011	1	
	11	518.700	518 700	519 700	E19 700	£10 300	636 300	10+150	10.011	12-632	P 2
	<b>i</b> 5	620 610	517 760	53. 300	510+700	510.700	2104 100	218-100	518.700	518.700	T 1
	. 2	337.030	221+120	230*100	231*120	>38+120	538.700	540.600	541.200	542.200	T 2
-											
STATOR D	PCT SPAN	95.00	90.00	65.60	70.00	50.00	30.00	15.00	10.60	5.40	DET COAN
	UIA	33,207	33.564	33.971	34.002	36.420	17. 444	36 010	20 37.	2000	DT.
STATOR-L.F.	BETA 2	38.224	36. 697	12 14 5	31 041	10 100	30 090	30.714	370610	34.011	DIA
STATING T	LETA 34	1 000		36+103	31+003	34+045	37.332	45.704	44.816	53.269	BETA 2
STATUS-1	DE LA ZA	1.000	1.680	1+600	1.350	0.600	3.851	5.451	5.252	801 د د	BETA 2A
	V Z	430,05	454.20	470.55	487.35	480.64	424.92	364.21	360.39	327.51	V 2
	V 2A	363.10	381.01	394.45	+35.76	432,85	383.14	376.57	330 44	204 40	
	VZ 2	337.83	373.47	395-67	413.83	606-31	328.42	248 00		165 30	7 68 1
	47 24	362.92	380.43	304 78	436 60	404431	310.43	200404	237+11	192.72	V2 2
	V-THE TA	344 11		374.20	433.34	932.00	382.05	324.18	308-85	305,50	V2 2A
	VTINEIA 2	200.11	228-48	234.65	221.24	259 <b>.</b> 48	269.12	274.76	271.02	202.29	V-THETA 2
	V-THEIA ZA	11.40	11.17	11.01	10.26	6.04	25.72	30.99	28.39	20.30	V-THETA 24
	ΜZ	0.3834	0.4061	0.4216	0.4371	0.4304	0.3788	0.3410	0 2102	0 2000	A THE IN EN
	H ZA	0.3223	0.3390	0-3516	0 3993	0 3843	0 3404	0.3460	0.3172	0.2093	<b>n</b> 2
	TURNEDAL	36 4 20	33.004	31 142	20 600	1003	0.5406	V+2887	U-2743	0.2705	H ZA
	10.540	30.120	33.000	21.103	30.509	31.875	35+448	40.207	43.516	49.415	TURN LPR )
	UUBAK	0.0451	0.0778	0.0914	0.0323	0.0051	-0.0302	0.0622	0.0142	-0.1554	UUDAR
	LGSS PARA	0.0152	0.0265	6.0314	0.0115	0.0019	-0.011£	0.0245	0.0057	-0.0475	
	OFAC	6.3553	0.3467	0.1402	0.2844	0.2041	0.2201	0 +033		0.000029	LUSS PARA
	FFFP	0.8520	6.7546	A 7137	A 4614	V+1773	1 1815	0.4032	0.4097	0.3042	UFAC
	A CONTRACTOR	0.0340	0.1536	V.1121	0.9210	0.9749	1+1517	0.7860	0.9470	2.2016	EFFP
	INCID	-11.939	-6.701	-7.526	-6.165	-4.012	3.464	6.996	5.646	-3.953	INCES
	DEVM	10.632	12.992	12.910	12.325	11.612	15,515	17.RAR	17.027	H_441	DEVM
	P 2	16.456	16.622	16.746	16.954	16.850	16.794	16.164	14 011	16 0001	
	P 24	16.285	16.403	14.470	14 984	14 6/6		10.120	10-011	10.035	PZ
	7 .	10,303	400 000	10+210	10.000	10.040	10.441	16.078	15,995	15.973	P 2A
	1 4	234.020	231.150	>36.700	537.150	538.150	536 700	540.600	541.200	542.200	12
	1 ZA	539.050	537.750	536,700	537.150	538.150	538.700	540.600	541.200	542.200	T 24
	UUBAR FS	0,0954	0.0755	0.0718	0.0302	0.0203	0.0641	0.1104	0.1154	0.0007	
	P2 FS	16.544	16.617	16.705	14.944	14.441	14.840	16.333	ba 194		NODAK PS
	1055 0404 5	5 0.0121	0.0317	0.0344	A	AUCU41	AV. 370	10.243	10+135	10.073	P2 F5
	LUGG FARM F		0.0131	V+V270	444444	0.0012	0+0245	0+0435	0+0464	0.0357	LUSS PARA FS
# Table A-6. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Calculations Using Translated Values Percent Equivalent Rotor Speed = 71.31 Equivalent Rotor Speed = 3002.25 Equivalent Weight Flow = 72.74 Tip Radial Distortion

	PCT SPAN	90.80	92.00	56.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
		33.122	33+529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	0.000	0.000	0+000	0.000	U+000	0.000	0.000	0.000	0.000	BETA G
	BEIAL	0.000	0.000	0.000	0.000	0.000	0.000	0.600	0.000	6.000	BETA 1
	V U	277.57	277.57	277.57	277.57	277.57	277.57	217.57	277.57	277.57	V 0
	V I	330.03	348.21	343.00	337.19	330.01	24 <b>7.</b> 18	206.33	193.89	169.21	Ý Í
	VZO	277.57	277.57	277.57	277.57	277.55	277.53	277.50	277.50	277.50	ΨZ [¯] D
	VZ 1	330-03	348.21	343.06	337.19	529.99	247.14	Z06+28	193.83	109.16	VZ 1
	V-THETA O	0+00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	V-THETA O
	V-THETA 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	MO	0.2502	0.2502	0.2502	0.2502	0.2502	0-2502	0.2502	0.2502	0.2502	Ma
	M 1	0.2982	0.3150	0.3102	0.3048	0.2982	0.2225	0.1854	0.1742	0.1519	H I
	TURN	0.0	0.0	<b>0.0</b>	0.0	0.0	0.0	0.0	0.0	0.4	THEN
	UVEAR	0.5655	0.2620	0.2460	0.2939	0.4856	1.1566	1.4282	1.4971	1-6039	IIILEAE
	UFAC	-0.169	-0.254	-Ú.236	-0.215	-0.189	0.109	U-257	0-301	0.590	DEAC
	EFFP	0.4270	0.6921	0.4876	0.6239	0.4649	-0.2183	-0.4521	-0.5162	-0-6325	FFLO
	INC1D	0.0001	ú.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000	INCID
	DEVM	-v₊0Du	-0.000	-L.000	-0.000	-0.000	-0.000	-0.000	+0_000	-0.000	DENN
	P 0	15.125	15.125	15.125	15.125	15.125	15.125	15-125	15,125	15 125	P /
	P 1	14.761	14.950	14.967	14.936	14.812	14.386	14.205	14-164	14,092	P 1
	το	518.700	515.700	518,700	518.700	518.700	518.700	518.700	518-360	518-700	T O
	T T	518.700	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	ŤĬ
au166 u	NCT COAN	05.04			76.00						-
KUILE D	PUT SPAN	33.00	90.00	85.00	70.00	50.06	30.60	15,00	10.00	5.00	PCT SPAN
FITE STA	DIA DETA 1	53.230	33+021	34.007	32+104	36.706	38.246	39++05	39.791	40.176	Ŭ Ê Ă
	OLTA 1	41 102	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	ÓETA 1
ALILA TIALA	SEIN 2 SETAIDUL 1	414 4 8 4	30-333	30.703	35.383	37.384	44.173	50.573	53.779	57.191	BETA 2
	DETATPRJ I	26.682	20.103	26.283	51+786	54.039	62.725	67.345	66.735	71.333	SETA(PR) 1
	DETALPHI Z	25.400	21.424	46-413	29.002	30.610	37.808	43.235	45.624	47.899	BETAIPR) 2
	¥ L	330-15	.367-12	369.36	363.63	352.45	263.22	220.97	208+24	182 IB	¥ 1
	¥ 2	425+20	428.70	431.02	446.79	446.52	400.17	377.+1	369.98	365.64	¥ 2
	VZ 1	330 69	367.04	369.31	363.61	352.01	262.16	219.52	206.76	180.99	¥2 1
	VZ Z	519+94	336.17	344.38	364.26	354.67	266.73	239.37	218.35	198.02	¥2 2
	V-DILIA 1	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V-THETA 1
	V-THETA 2	260.03	266.00	259.17	258.70	271.01	278.57	291.14	296.10	307.16	V-THETA 2
	VIPRI 1	545+5	572.3	578.0	587.0	599.7	572.5	570.5	570.6	565.9	V(PRI 1
	VIPR) 2	355.7	376.6	391.6	416.5	412.3	363.4	329,1	312.6	295.8	VIPR1 2
	VIBETA PAL	-433.8	-439.0	-444.0	-461.8	-+85.2	-508.5	-525.9	-531.3	-535.7	VTHETA PRI
	VIDETA PR2	-155+4	-174+4	-186.3	-201.9	-209-8	-222.5	-225.1	-223.2	-219.1	VTHETA PRZ
	υι	433,80	439.02	444.56	461.B4	485.20	508.+6	525.95	531.27	535.73	U 1
	02	435.38	440.43	445.48	460.64	480.84	501.04	516.20	521.25	526.30	U 2
	M ]	6.2989	0.3324	0.33+5	0.3292	U.3189	0.2371	0.1987	0.1872	0.1036	Ň Ī
	N 2	0.2767	U.3625	0.3650	0.3993	0.3986	0.3557	0.3344	0.3274	0.3232	H Z
	M(PR) 1	0.4930	u.5182	6.5235	0.5322	U.5426	0.5157	0.5130	0.5124	0.5062	MEPRI 1
	M(PR) 2	0.3168	U.3379	0.3498	0.3723	U.3682	0.3230	0.2916	0.2768	0.7614	N(PR)
	TURN(PK)	26.779	22 . 674	21.667	22.783	23.410	24.876	24.069	23.076	24.422	TURNIPRI
	UUBAR	6.0946	0.1170	0=0943	0.0627	0.0794	0.0982	0.1615	0 1951	0.2117	LIJBAR
	LUSS PARA	0.0245	0.0305	0.0246	0.0169	0.0220	0.0261	0.0408	0.0479	0-0563	LOSS PAHA
	LEAC	6.4964	0.4747	0.4558	0.4267	0.4574	0.5278	0.5986	0.6334	0.6678	DEAC
	EFFP	0.0612	0.6505	0.9212	0.9655	0.9981	0.9721	0.8946	0.8650	0.8442	FHER
	E F F	0.8609	0.8461	0.9199	0.964B	D.9980	6.9716	0.8925	4.6624	0.8411	FFF
	TNCTO	6-251	-0.013	-0_296	-0.256	0.036	6.743	8.692	b-46h	24/14	INCRU 1 : 1
	DEVN	10.750	13.265	13.779	10.361	7.399	10.246	11.609	12.485	11.972	DEWN
	Pi	14./61	14.956	14.967	14+930	14.012	14.380	14.205	14.104	14-052	P 1
	P 2	10.639	16.086	16.727	16,845	16.850	16.490	16.305	16-254	16-243	. <u>-</u> P 2
	T 1	518.700	516.700	518.700	518.700	518.700	518.700	516.700	518.700	518.700	Ť
	T 2	539.660	530+120	536.900	537.500	538.200	540.000	542.050	542-820	544 . 256	τĴ
											• •
MAILE 1	DIT COAN	95 00		45.00							
VIALUE D	DIA	33.207	70.00	100-00	00+01	50.00	20.00	15,00	10.00	5.00	PCT SPAN
STATOS-Latio	E FIG 2	41.45	16 171	334761	34.772	30.420	51.848	38.919	39.276	39.033	DIA
STATON-T.E.	45TA 24	2 840	3 744	30.423	22.421	36+948	44.055	51.695	55.736	60.396	BETA 2
	V Z	423.07	20174U 2311 KE	434 77	4.140	4.220	3.541	4.381	4.431	4.161	BETA ZA
	V 24	335 04	430.35	430+12	440.79	421.14	401.70	372.16	361.83	354.40	¥ 2
	¥ • •	317 00	341.32	340.03	387.00	384.37	347+16	300.03	287.09	284.50	V 2A
	¥2 C	515 67	338.41	371-38	364-01	300.81	288.50	230.53	203.59	174.98	¥7 2
	VATU, IA	200.04	340.73	347.70	304-00	384.00	346.30	298.91	265.97	266.42	¥2 2A
	V-THEIR 2	16 46	200.04	239.30	250.95	271.42	279.14	291.84	298.85	367.90	V-THETA 2
	W /	10.00	10.34	14-12	14+71	17.11	21.43	22.90	22.16	21.09	V-THETA 2A
		0.3101	0-3642	0.3903	0.3993	0.4036	0.3571	0.3296	0.3200	6.3129	M 2
	-7 48 Tug Ninu (	4.2770	0-3029	0.1093	0.3427	0.3421	0.3076	0.2647	0.2530	0-2548	M 2A
	LUKALPAD	30,013	37+432	33 . 994	33.231	34+301	40.481	47.268	51.258	50.160	TUKN(PK)
	LUCC DIDI	0.0729	0.080	0.0864	0.0170	0.0316	-0.0296	0.0392	0.0506	0.0338	UUBAR
	LUSS FRRA	0.0245	0-0293	0.0541	0.0060	0.0117	-0.0114	0.0155	0.0203	0.0136	LOSS PARA
		0 0100	0.4049	0.3960	0.3330	0.3579	0.3841	0.4619	0.514+	0.5118	DFAC
	CPPP Three L	0.8129	<b>U.7809</b>	0.7764	0.9381	0.8923	1.1109	0.8928	0.8681	0.9023	EFFP
	INCLU	-0.714	->-215	-3.865	-2.603	0.243	8.186	12.988	12.567	1.200	INCID
		11-672	14.052	13.740	13.165	13.562	15.205	16.819	17,105	9.031	DEVM
	r 2	10.039	16.680	16.727	16.845	16.850	16.490	16.305	16.253	16.243	P 2
	- CA	10-526	16.547	10.583	16.815	16.794	16-531	16.258	16.197	16.207	P 2A
	1 2	539+6BU	>34.120	>36.900	537.500	538.200	540.000	542.050	542.820	544,250	T 2
	1 2A	>37.680	538 120	536.900	537.500	538.200	540,000	542.050	542.820	544.250	T 2A
	OVCAN PS	0.0507	0.0586	0.0598	0.0111	0.0256	0.0379	0+0756	0+0922	0.1028	UUBAR FS
	P2 F5	16+602	16.638	16-680	16+834	16.839	14+587	16+350	14+304	14-325	P2 FS
	LU22 PARA F	5 0.0170	0.0199	0.0205	0.0039	0.0094	0-0146	0.0298	0+0368	0+0413	LUSS PARA FS

INLET

Equivalent Weight Flow		ROTOR		STAGE				
lb/sec	$\overline{P}_2/\overline{P}_1$	$\eta_{\rm ad}$	$\eta_{ m p}$	$\overline{P}_{2A}/\overline{P}_{1}$	$\eta_{\rm ad}$	$\eta_{ m p}$		
	:	100% Desig	n Equivalent Rot	or Speed				
116.07	1.2386	0.8472	0.8517	1.2163	0.7731	0.7794		
*101.60	1.2835	0.9596	0,9610	1.2643	0.8998	0.9030		
* 90.59	1,2809	0.8613	0.8661	1.2478	0.7674	0.7745		
		90% Desig	ı Equivalent Rot	or Speed				
107.38	1. <b>197</b> 3	0.8930	0.8957	1. 1839	0.8358	0.8398		
90.90	1.2257	0.9556	0.9568	1.2085	0.8874	0.8903		
* 79.78	1.2252	0.8622	0.8661	1.2013	0.7763	0.7821		
		70% Design	n Equivalent Rot	or Speed				
87.12	1.1216	0. <b>9</b> 488	0.9496	1. 1142	0.8928	0 8948		
73.45	1.1368	1.0113	1.0111	1. 1286	0.9536	0 9540		
6 <b>1.</b> 84	1. 1371	0.8612	0.8637	1. 1233	0.7776	0.7816		

•

### Table A-7.Overall Performance - Stage D,<br/>Circumferential Distortion

NOTE: *Data taken at multiple screen positions.

### Table A-8. Blade Element Performance Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

•

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9,99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	4.536	2.728	-2.335	-2.344	-1.592	-1.615	-1.397	-1.789	-1-911	BETA 1
STATION 2	BETA 2	54.082	53.791	53.121	48.012	46.003	44.969	46.586	50.313	55.454	BETA 2
	BETAIPRE 1	61.321	61.313	61.633	60.913	61.138	62.909	64-280	65.590	68.877	BETA(PR) 1
	BETA(PR) 2	24.743	18.205	27.790	30.027	33.114	35.850	39.363	42.693	47.673	BETA(PR) 2
	¥ 1	316.45	325.15	340.82	365.18	377.26	366.75	356-36	340.06	291.55	V 1
	¥ 2	558.99	610.08	553.46	565.23	568.69	570.75	555.34	532.44	505.25	v 2
	VZ 1	315.45	324.77	340.53	364.88	377.10	366.55	356.19	319.84	291.36	v7 1
	VZ 2	327.91	360.39	332.14	376.11	394.89	403.37	381.04	339.49	286.15	VL 1 VJ 2
	V-THETA 1	25.03	15.47	-13.89	-14-94	-10-48	-10.33	-8-69	-10.61	-9.72	V-THETA 1
	V-THETA 2	452.70	492.25	442.71	420.11	408.96	402.93	402 - 74	409.09	415.63	V-THETA 2
	V(PR) 1	657.3	676.6	716.7	750.6	781.2	804.9	820.8	822.4	808.5	V(99) 1
•	V(PR) 2	361.1	379.4	375.4	436.7	471.7	498.3	493.9	467.8	425.3	VIDP1 2
	VTHETA PR1	-576.7	-593.5	-630.7	-655.9	-684.2	-716-6	-739.5	-748-8	-754.2	VTHETA POI
	VTHETA PR2	-151.1	-118.5	-175.0	-218.5	-257.6	-291.5	-312.6	-313.2	-313-6	VTHETA DD2
	U1 '	601.71	609.02	616.77	640.97	673.70	706-25	730.76	738.71	744-46	H 1
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	11 2
	H 1	0.2857	0.2937	0.3082	0.3306	0.3418	0.3321	0.3225	0.3075	0.2629	M 1
	Ħ 2	0.4894	0.5376	0.4860	0.4965	0.4990	0.5018	0.4864	0.4649	0.4399	M 2
	M(PR) 1	0.5935	0.6112	0.6480	0.6796	0.7079	0-7289	0.7428	0.7435	0.7292	M(00) 1
	M{PR} 2	0.3161	0.3343	0.3297	0.3836	0.4139	0.4381	0.4326	0.4041	0.3703	MIDDI 2
	TURN(PR)	36.578	43.108	33.843	30.888	28-041	27.113	25-010	23.003	21.345	T101/501
	P_1	13.302	13.472	13.519	13.548	13-564	13,595	13.679	13.429	13 452	
	P 2	18.227	18.804	18.169	18.399	18,517	18-684	18.524	18.287	19 049	P 1
	т 1	518.699	518.699	518.699	518-699	518.699	518.699	518.499	518.499	518.499	F 2
	T 2	568.911	566.964	565.050	565.941	567.361	565.513	568.034	569.384	570.168	Ť 2
STATOR D	0°7 - 5944										
STATUK U	PUE SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
CTATION 2		33.207	33.564	33.921	34.992	36.420	37.B48	38.919	39.276	39.633	DIA
STATION 2	DETA Z	54.082	53.791	53.121	48.012	46.003	44.969	46.586	50.313	55.454	BETA 2
STATION ZA	DEIA ZA	2.031	1.978	0.641	0.077	3.093	3.831	4-651	5.306	4.926	BETA 2A
	¥ Z	228.99	610.08	553.46	565.23	568.69	570.75	555.34	532 .44	505.25	V 2
	V 2A	406.71	399.91	392.36	416.13	443.75	466.37	441.45	426.96	430.09	V 2A
	VZ Z	327.91	360.39	332+14	378.11	394.89	403.37	381.04	339.48	286.15	¥Z 2
•	VZ ZA	406.45	399.67	392.32	416.09	443.01	465.16	439.78	424.89	428.19	VZ ZA
	V-THETA Z	452.70	492.25	442.71	420.11	408.96	402.93	402.74	409.09	415.63	V-THETA 2
	V-THETA ZA	14.41	13.80	4.39	0+56	23.94	31.15	35.78	39.46	36.90	V-THETA 24
	M Z	0.4894	0.5376	0.4860	0.4965	0.4990	0.5018	0.4864	0.4649	0.4399	M 2
	F ZA	0.3514	0.3460	0.3398	0.3607	0.3849	0.4057	0.3826	0.3693	0.3718	M ZA
	IURN (PR)	52.050	51.812	52.480	47.933	42.890	41.079	41.839	44.902	50.426	TURN (PR)
	PZ	18.227	18,804	18.169	18.399	18.517	18.684	18.526	18.287	18.048	P 2
	r 2A	17.912	17.825	17.778	17.952	18.170	18.361	18.157	18.049	18.062	P 2A
	12	568.911	566.964	565.050	565.941	567.361	565.513	568+034	569.384	570.168	T 2
	1 24	571.067	569.328	567.570	568.224	569.385	567.875	570.196	571.433	572.178	TŽA

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 98.91Equivalent Rotor Speed = 4163.97Equivalent Weight Flow = 101.60<br/>Circumferential DistortionStation 1 (46°) - Station 2 (36°) - Station 2A (25°)

RUTOR D	PCT SPAN	94.99	90,00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34,001	35.151	36.665	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.541	5,131	4.687	3.733	4.174	2.028	2.670	3.207	4.804	BETA 1
STATION 2	BETA 2	45.619	45.766	45.665	40.276	39,363	38.142	40.384	44.314	48.163	BETA Z
	6ETA(PR) 1	52.278	51,402	51.113	50.617	52.538	54.715	57.125	58.323	61.712	BETA(PR) 1
	BETA(PR) 2	26.263	27.153	26.660	29,369	31.333	36.044	39.643	43.741	51.453	BETA(PR) 2
	V 1	434.98	455.45	468.15	500.49	490.22	487.93	459.06	441.06	384.71	¥ 1
	V 2	569.74	568.55	579.43	593.67	603.49	584.31	560.39	523.15	461.72	¥ 2
	V2 1	432.94	453.62	466.58	499.43	488.90	487.56	458.48	440.30	383.32	VZ 1
	VZ Z	398.49	396.61	404.94	452.91	466.39	458,95	426.01	373.59	307.44	VZ 2
	V-THETA 1	42.00	40.73	38.25	32.59	35.68	17.26	21.38	24.67	32.21	V-THETA 1
	V-THETA 2	407.19	407.36	414.45	383.77	382,59	360,40	362.35	364.75	343.40	V-THETA 2
	V(PR) 1	707.6	727.1	743.2	787.1	803.8	844.1	844.7	838.5	808.9	V(PR) 1
	V(PR) 2	444.4	445.7	453.1	519.7	546.3	568.4	554.4	518.1	494.1	V(PR) 2
	VTHETA PR1	-559.7	-568.3	-578.5	-608.4	-638.0	-689.0	-709+4	-713.5	-712.2	VTHETA PR1
	VTHETA PR2	-196.6	-203.4	-203.3	-254.9	-283.9	-334.0	-353.0	-357.5	-385.9	VTHETA PR2
	ψı	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	υ2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	H 1	0.3957	0.4149	0.4269	0.4576	0.4478	0.4456	0.4183	0.4014	0.3487	M 1
	M 2	0.5057	0.5056	0.5167	0.5298	0.5367	0.5213	0.4981	0.4633	0.4065	MŻ
	M(PR) 1	0.6437	0.6624	0.6777	0.7196	0.7343	0.7709	0.7697	0.7630	0.7333	M(PR) 1
	M(PR) 2	0.3944	0.3964	0.4041	0.4638	0.4876	0.5071	0.4927	0.4589	0.4350	M(PR) 2
	TURN (PR)	26.015	24.250	24.453	21.250	21.222	18,725	17.574	14.687	10.366	TURN (PR)
	P 1	14.585	14.748	14.830	15.073	15.010	15.119	14.947	14.887	14.572	P 1
	P 2	18.267	18.262	18.402	18.661	18.879	18.781	18.592	18.201	17.660	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	516.699	518.699	518.699	T 1
	12	555.243	553.182	551.253	551.916	552.657	551,247	552.882	553,363	554.737	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10-00	5.00	PCT SPAN
	DIA	33,207	33,564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45.619	45.766	45.665	40.276	39.363	38.142	40.384	44.314	48,163	BETA 2
STATION 2A	BETA 2A	1.825	2.453	1.809	1.583	2.363	3.155	4.118	4.579	4.292	BETA 24
	V 2	569.74	568.55	579.43	593.67	603.49	584.31	560.39	523.15	461.72	¥ 2
	V 2A	419.21	414.33	409+47	448.00	477.41	480.41	437.10	421,25	418.89	¥ ZA
	VZ 2	398.49	396.61	404.94	452.91	466.39	458.95	426.01	373.59	307.44	VZ 2
	VZ ZA	419.00	413.94	409.25	447.78	476.90	479.50	435.75	419.67	417.41	VZ ZA
	V-THETA 2	407,19	407.36	414.45	383.77	382.59	360.40	362.35	364.75	343.40	V-THETA 2
	V-THETA 2A	13.35	17.73	12.93	12.37	19.68	26.43	31.37	33.61	31.33	V-THETA 2A
	M 2	0,5057	0.5056	0.5167	0.5298	0.5387	0.5213	0.4981	0.4633	0.4065	M 2
	M 2A	0.3674	0.3637	0.3600	0.3947	0.4212	0.4241	0.3844	0.3699	0.3672	M ZA
	TURN (PR)	43.793	43.312	43.856	38.691	36.980	34,929	36.170	39.628	43.762	TURN (PR)
	P 2	15.267	18.262	18.402	18.661	18.879	18.781	18.592	18.201	17.660	P 2
	P 2A	18.053	18.001	17,971	18.296	18.535	18.538	18.126	18.002	17.975	P 2A
	T 2	555.243	553.182	551,253	551.916	552.657	551.247	552.882	553.363	554.737	ΤZ
	T 2A	556.266	554.260	552.349	52.757	553,550	553.132	553.850	554.389	555.998	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (76°) - Station 2 (66°) - Station 2A (55°)

_

o

RETOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4 - 98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39,754	40-138	DIA
STATION 1	BETA 1	1.559	1.267	0.923	1.444	0.970	1.014	0.770	1.180	1.652	BETA 1
STATION 2	BETA 2	43.284	40.256	38.972	37.455	36.389	36.041	37.318	40.291	43-465	BETA 2
	BETA(PR) 1	54.561	52.908	51,584	50.600	52.668	54-823	57.615	58.711	59.703	BETA(PR) 1
	BETA(PR) 2	24.231	25.807	26.798	28.297	30.654	34.291	37.146	40.416	45.470	BETA(PR) 2
	V 1	420.26	453.01	483.03	515.99	507.37	491.79	459.70	443.27	427.99	¥ 1
	¥ 2	595.94	601.61	604.68	616.77	622.99	610.0B	593.10	558.47	512-56	v 2
	VZ 1	420.10	452.89	482.96	515.83	507.27	491.65	459.57	443.10	427.77	¥7_1
	¥Z 2	433.81	459.12	470.11	489.59	501.28	492.63	470.65	425-04	371.24	¥7 2
	V-THETA 1	11.43	10.02	7.78	13.00	8.59	8.70	6.18	9.13	12.34	V-THETA 1
	V-THETA 2	408.58	388.76	380.31	375.06	369.43	358.45	358.78	360.34	351.87	V-THETA 2
	V(PR) 1	724.5	750.9	777.3	812.7	836.5	853.4	858.1	853.2	848.0	V(PR) 1
	V(PR) 2	475.7	510.0	526.7	556.1	583.0	597+1	591.8	559.5	530.4	V(PR) 2
	VTHETA PR1	-590.3	-599+0	-609.0	-628.0	-665.1	-697.6	-724.6	-729.1	-732.1	VTHETA PRI
•	VTHE TA PR2	-195.2	-222.0	-237.4	-263.6	-297.1	-335.9	-356.5	-361.9	-377.4	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	u t
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	ŭ 2
	M'1	0.3819	0.4126	0.4410	0.4724	0.4641	0.4493	0.4189	0.4034	0.3891	<b>N</b> 1
	M 2	0.5268	0.5352	0.5391	0.5498	0.5552	0.5448	0.5269	0.4943	0.4516	H 2
	M(PR) 1	0.6583	0.6840	0.7096	0.7440	0.7652	0.7797	0.7820	0.7766	0.7709	M(PR) 1
	M(PR) 2	0+4221	0.4537	0.4696	0.4957	0.5196	0.5332	0.5257	0.4952	0.4673	M(PR) 2
	TURN (PR)	30.330	27.101	24.786	22.304	22,030	20.584	20.560	18.399	14.342	TURN (PR)
	P 1	14.432	14.737	14.955	15.169	15.144	15.075	14.936	14.855	14.789	P 1
	P 2	18.709	18.782	18.816	19+018	19.191	19.169	19.040	18.657	18.217	P 2
	т 1	518.699	518.699	518.699	518.699	518.699	518.699	518,699	518.699	518.699	TI
	T 2	558.061	555.905	553,939	555.346	556.274	552.824	556.623	557.200	557+925	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	20.00	15.00	10.00	F 00	007 00 44
	DIA	33.207	33.564	33,921	34.002	36-420	37 949	29 010	20.00	2.00	PUT SPAN
STATION 2	BETA 2	43.284	40-256	38.972	37.455	34.380	36 041	27 219	40 201	J7.0JJ	DIA D
STATION 2A	BETA ZA	1.806	2.788	2.710	2.702	1.904	2.598	3 579	3 804	3 4 9 5	DEIA Z
	V Z	595.94	601.61	604-68	616.77	622.99	610-08	593.10	558.47	517 54	DETA ZA
	¥ 2A	442.34	448.07	443.28	492.18	529.67	533.53	493.15	469.4R	455.33	V 24
	V2 2	433.81	459.12	470.11	489.59	501-28	492-63	470.65	425-04	371.24	W7 2
	VZ 2A	442.12	447.53	442.76	491.58	529.26	532.78	491.96	448.17	454-07	V2 2
	V-THETA 2	408.58	368.76	380.31	375.06	369.43	358.45	358.78	360.36	351.87	VATHETA 2
	V-THETA 2A	13.94	21.79	20.96	23.20	17.59	24.17	30.34	31.88	29 24	V-THETA 24
	M 2	0.5288	0.5352	0.5391	0.5498	0-5552	0.5448	0.5269	0.4943	0.4516	M 7
	M 2A	0.3881	0.3940	0.3904	0.4345	0.4686	0.4736	0.4349	0.4131	0.3999	H ZA
	TURN (PR)	41.477	37.467	36.262	34.751	34.466	33.384	33.695	36.280	39.670	TI10 N / 00 1
	P 2	15.709	18.782	18.816	19.018	19.191	19,169	19.040	18-657	16.217	10001CC/
	P 2A	18.242	16.284	18,252	18.681	19.036	19-053	18.577	18-367	18.219	P 24
	T 2	558.061	555.905	553.939	555 346	556 274	552.824	556-623	557.200	557.925	T 2
	T 2A	556.977	554.856	552.895	554 124	554 974	551,753	555.228	555.797	556.620	Ť ŽA

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

~

. .

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33+234	33.617	34.001	35,151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	2.377	2,508	2.257	0.735	1.316	1.103	1.918	1.494	2.599	BETA 1
STATION 2	BETA 2	33.791	35.014	38.410	36.395	35,728	35.378	36.460	39.314	42.601	BETA 2
	BETA(PR) 1	55.231	52.759	52.323	53.103	53.496	56.00Z	59.697	61.874	67-011	BETAIPR) 3
•	BETA(PR) 2	28.321	27.617	25.393	26.844	29.115	32.600	35.764	40.552	45.364	BETA(PR) 2
	V 1	406.38	448.48	462.59	476.66	490.39	470.39	419.20	389.36	310-22	V 1
	V 2	601.40	609.42	621.96	638.22	643.62	631.92	610.90	558.78	513.79	¥ 2
	VZ 1	406.02	448.04	462.23	476.62	490.24	470.24	418.88	389.17	309.87	¥2 1
	VZ 2	499.80	499.11	487.36	513.70	522.25	514.52	490.23	431.33	377.39	YZ 2
	V-THETA 1	16.85	19.62	18.22	6.11	11.26	9.05	14.03	10.15	14.07	V-THETA 1
	V-THETA 2	334.47	349.66	386.41	378.67	375.66	365.35	362 . 22	353.21	347.04	V-THETA 2
	V(PR) 1	712.0	740+4	756.3	793.9	824.1	841.0	830.2	825.6	793.4	V(PR) 1
	V(PR) 2	567.8	563.3	539.5	575.8	598.1	611.6	605.5	568.9	538.2	VIPR) 2
	VTHETA PR1	-584.9	-589.4	-598+6	-634.9	-662.4	-697.2	-716.7	-728.1	-730.4	VTHETA PRI
	VTHETA PR2	-269.3	-261.1	-231.3	-260.0	-290.9	-329.0	-353.1	-369.1	-382.2	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	UZ	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	Ū Ž
	M 1	0.3689	0,4083	0.4216	0.4349	0.4480	0.4290	0.3809	0.3531	0.2800	<b>H</b> 1
	M 2	0.5339	0.5426	0.5555	0.5705	0.5750	0.5644	0.5437	0.4947	0.4526	M 2
	M(PR) 1	0.6463	0.6741	0.6893	0.7244	0.7528	0.7670	0.7543	0.7486	0.7162	M(PR) 1
	M(PR) 2	0.5040	0.5015	0+4818	0.5147	0.5344	0.5463	0.5389	0.5037	0.4741	M(PR) 2
	TURN (PR)	26.910	25.142	26.930	26.261	24.397	23.453	24.022	21.427	21.757	TURN (PR)
	P 1	14.488	14.770	14.868	14.955	15.123	15.008	14.736	14.595	14.251	P 1
	P 2	18.792	18,951	19.129	19.356	19.510	19.478	19.280	18.683	18.241	P 2
	<u>T 1</u>	516.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	ŤĪ
	т 2	553.146	555.902	553.893	554.717	555.830	554.864	556.509	556.909	558.223	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50,00	30.00	15.00	10.00	5 00	
	DIA	33.207	33.564	33.921	34.992	36-420	37.848	38,919	39.274	20.422	
STATION 2	BETA 2	33.791	35.014	38.410	36.395	35.728	35.378	36.460	39.314	42.401	BETA 3
STATION 2A	BETA 2A	2.203	2.636	2.555	2.362	2.094	2.504	3.296	4.082	4.012	95TA 2
	V 2	601.40	609.42	621.96	638.22	643.62	631.92	610.90	558.78	513.79	V 2
	V 2A	464.51	465.53	463.92	511.26	536.66	542.48	489.67	469.86	459.22	V 24
	V2 2	499,80	499.11	487.36	513.70	522.25	514.52	490-23	431.33	377.39	¥7 2
	VZ ZA	464.17	465.03	463.44	510.77	536.19	541.76	488.61	468.40	457.77	W7 24
	V-THETA 2	334.47	349.66	386.41	378.67	375.66	365.35	362.22	353.21	347.04	V6 68 V-T9674 7
	V-THETA 2A	17.66	21.41	20.68	21.07	19.60	23.69	28.14	33.43	32.11	V-THETA 2A
	M 2	0.5339	0.5426	0.5555	0.5705	0.5750	0.5644	0.5437	0.4947	0.4574	
	M 2A	0.4077	0.4095	0.4088	6.4517	0.4747	0.4801	0.4312	0.4130	0.4029	M 24
	TURN (PR)	31.567	32.377	35.855	34.031	33.615	32.818	33.071	35.127	38.480	TURNIPRI
	P 2	18.792	18.951	19.129	19.356	19.510	19.478	19.280	18.683	18.241	9 2
	P 2A	15.478	18.476	18,460	18.908	19.162	19.179	18.582	18.397	18.294	9 74
	T 2	558.140	555.902	553,693	554.717	555.830	554.864	556.509	556.909	558.223	T 2
	T 2A	556.029	555,805	\$53.890	554.849	555.858	555.731	556.615	556.895	556.539	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (136°) - Station 2 (126°) - Station 2A (115°)

ROTOR D	PCT SPAN	94,99	90.00	84.99	70-00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
		33 234	33-617	34.001	35.151	36.685	38 219	39.371	39.754	40.138	DIA
STATION 1	6FTA 1	2.607	1.874	1.097	0.806	0.970	1.148	1.363	1.629	1.035	BETA 1
STATION 2	BETA 2	42.805	40.134	38.975	37.498	36.518	35.876	37.673	39.963	43.753	BETA 2
UTRIENT E	BETA(PR) 1	52.489	51.418	51.128	50.663	52.293	53.427	57.153	58.051	59.677	BETA(PR) 1
	BETA(PR) 2	24.760	26.107	27.803	29.325	30.624	34.597	36.563	41.537	45.157	BETA(PR) 2
	V 1	446.76	473.76	489.71	519.39	514.19	516.50	464.87	452.61	430.98	¥ 1
	V 2	593.22	599.27	594.61	605.72	622-72	607.32	598.29	547.88	515.40	V 2
	v7 1	446.29	473.50	489.62	519.33	514-09	516.32	464.65	452.35	430.87	VZ 1
	V7 2	435-22	458-15	462.26	480.54	500-23	491.42	472.53	418.98	371.52	VZ Z
	V-THETA 1	20.32	15.49	9.38	7.31	8.70	10.35	11.06	12.86	7.78	V-THETA 1
	V-THETA 2	403-09	366-27	374.00	368.70	370.40	355.42	364.86	351.11	355.69	V-THETA 2
	V (PR) 1	732.9	759.3	780-2	819.3	840-6	866-6	856.7	854.9	853.5	V(PR) 1
	V(PR) 2	479.3	510.2	522.6	551.2	581.6	597.8	589.6	561.0	527.9	V(PR) 2
	VTHETA PRI	-591.4	-593.5	-607-4	-633.7	-665.0	-695.9	-719.7	-725.3	-736.7	VTHETA PR1
	VTHETA PR2	-200.7	= 224 - 5	-243.8	-269.9	-296-1	-339-0	-350-5	-371.2	-373.6	VTHETA PR2
		601-71	609.02	616.77	640.97	673.70	706-25	730.76	738.21	744.46	U 1
	ü 2	603-82	610.78	617.75	638-65	666-52	694.39	715.32	722.28	729.26	Ú 2
	M 1	0.4067	0.4322	0.4473	0.4756	0.4706	0.4729	0.4238	0.4122	0.3919	<u> </u>
	M 2	0.5257	0.5324	6-5290	0.5390	0.5543	0-5416	0.5311	0.4838	0.4537	ΜŻ
	M (PP) 1	0.6673	0.6927	0.7126	0.7503	0.7694	0.7933	0.7810	0.7786	0.7761	M{PR] 1
	MIPRI 2	0.4247	0.4533	0.4650	0.4905	0.5178	0.5332	0.5234	0.4954	0.4647	M(PR) 2
	THEN(DD)	77 779	25.312	23.425	21.340	21-686	18.882	20.680	16.618	14.631	TURN (PR)
	P 1	14.583	14.831	14.965	15,197	15.104	15.186	14.875	14.820	14.687	P 1
	P 2	18.733	18.862	18.622	18.974	19,282	19.221	19.181	18.613	18.312	P 2
	т <b>1</b>	518.699	518.699	518-699	518-699	518-699	518-699	518.699	518.699	518.699	T 1
	7 2	559.249	557.171	555.115	555,993	557.393	553.944	557.931	558.582	559.066	Ť Ź
		JJJ • 247	<i>&gt;&gt;</i> /•••/•	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50,00	30.00	15.00	10.00	5.00	PCT SPAN
	<b>UIA</b>	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	42.805	40.134	. 38.975	37,498	36.518	35.876	37.673	39.963	43.753	BETA 2
STATION 2A	BETA 2A	2.511	2.537	2.426	2.042	2.217	2.502	3.161	4.216	4.162	BETA 2A
	V 2	593.22	599.27	594.61	605.72	622.72	607.32	598.29	547.88	515.40	V 2
	V 2A	459.78	467.24	459.87	502.91	538.08	541.77	499.92	477.25	464.55	¥ 2A
	¥Z 2	435.22	458.15	462.26	480.54	500.23	491.42	472.53	418.98	371.52	VZ 2
	VZ ZA	459.33	466.77	459.44	502.54	537,56	541.05	498.91	475.69	463.00	VZ ZA
	V-THETA 2	403.09	386.27	374.00	368.70	370.40	355.42	364.86	351.11	355.69	V-THETA 2
	V-THETA ZA	20.14	20.68	19.46	17.92	20.81	23.64	27.55	35.07	33.69	V-THETA 2A
	M 2	0.5257	0.5324	0.5290	0.5390	0.5543	0.5416	0.5311	0.4838	0.4537	N 2
	M ZA	0.4032	0,4108	0.4049	0.4439	0.4757	0.4805	0.4404	0.4195	0.4077	M 2A
	TURN (PR)	40.293	37.596	36.549	35.454	34.282	33.317	34.41B	35.641	39.482	TURN (PR)
•	P 2	18.733	18.862	18.822	18.974	19.282	19.221	19.181	18.613	18.312	₽ 2
	P 2A	18.447	18.495	18.433	18.817	19.168	19.187	18,699	18.482	18.354	P 2A
	† 2	559.249	557.171	555.115	555.993	557.393	553.944	557.931	558.582	559.066	T 2
	T 2A	558.692	556.505	554.392	555.180	556.484	553.435	556.995	557.629	558.230	T 2A

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 98,91Equivalent Rotor Speed - 4163.97Equivalent Weight Flow - 101.60<br/>Circumferential Distortion<br/>Station 1 (166°) - Station 2 (156°) - Station 2A (145°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4,98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	1.876	2.032	2.014	2.231	2.062	2.431	2.140	2.326	3.044	BETA 1
STATION 2	BETA 2 /	42.182	40.194	39.283	36.901	35+854	35.275	37.026	39.779	44.297	BETA 2
	BETA(PR) 1	55.600	53.447	52.546	53.195	55.744	56.876	60.548	62.224	66.865	BETA(PR) 1
	BETA(PR) 2	25.977	26.800	28.034	28.515	30.250	34,550	38.715	41.411	46.043	BETA(PR) 2
	V 1	403.19	440.24	460.38	466.36	448.13	448.86	404.47	381.05	311.49	¥ 1
	V 2	584.BC	592.29	590.99	617.15	630.04	610.17	577.15	549.41	507.22	V 2
	VZ 1	402.97	439 95	460.09	466.01	447.82	448.40	404-12	380.67	311.02	VZ 1
	VZ 2	433.34	452.42	457.44	493.49	510.42	497.44	459.76	421.27	362.30	VZ 2
	V-THETA 1	13.20	15.61	16.18	18.15	16.12	19.04	15.10	15.46	16.54	V-THETA 1
	V-THETA 2	392.68	382.24	374.18	370.54	368.85	351.88	346.78	350.73	353.52	V-THETA 2
	V(PR) 1	713.3	738.7	756.6	777.9	795.6	820.6	821.9	816.9	791.6	V(PR) 1
	V(PR) 2	482.1	506.9	518.2	561.7	591.2	604.8	590.5	562.9	522.9	V(PR) 2
	VTHETA PR1	-588.5	-593.4	-600.6	-622.8	-657.6	-687.2	-715-7	-722.8	-727.9	VTHETA PRI
	VTHETA PR2	-211.1	-228.5	-243.6	-268.1	-297.7	-342.5	-368.5	-371.6	+375.7	VTHETA PR2
	Ú 1	601.71	609-02	616.77	640.97	673.70	706-25	730.76	738.21	744.46	U 1
	U 2	603.82	610.78	617.75	638-65	666.52	694.39	715.32	722.28	729.26	Ŭ Ž
	Ň I	0.3659	0.4006	0.4196	0-4252	0.4080	0.4087	0.3671	0.3453	0.2812	N 1
	M 2	0.5170	0.5249	0.5245	0.5485	0.5600	0.5418	0.5099	0.4841	0.4447	H 2
	MIPRI 1	0.6474	0.6722	0.6895	0.7092	0.7244	0.7472	0.7460	0.7404	D-7146	M(PR) 1
	M(PR) 2	0.4262	0.4492	0.4599	0.4992	0.5254	0.5371	0.5217	0.4960	0.4585	M(PR) 2
	TURN (PR)	29.623	26.647	24.512	24-682	25.511	22.380	21.924	20.918	20-932	TURN ( PR )
	P 1	14.542	14,799	14,940	14.947	14.821	14.931	14.728	14.630	14-316	P 1
	P 2	18-657	18.735	18.727	19-096	19.343	19.242	18.940	18-641	18-251	P 2
	ŤĨ	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518-699	518.699	ŤĪ
	Ť 2	560.692	559.134	557.394	558.468	559.811	558.723	560.894	561.204	562.730	Ť 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	GETA 2	42.182	40.194	39.283	36.901	35.854	35.275	37.026	39.779	44.297	BETA 2
STATION 2A	BETA ZA	2.503	2.671	2.605	2.117	2.012	2.597	3.174	4.032	3.693	BETA ZA
	V 2	584.80	592.29	590.99	617.15	630.04	610.17	577.15	549+41	507.22	¥ 2
	V 2A	474 79	473.18	476.16	528.17	560.95	569.22	512.88	491.02	479.70	¥ 2A
	¥Z 2	433.34	452.42	457.44	493.49	510.42	497.44	459.76	421.27	362.30	VZ 2
	VZ ZA	474.34	472.66	475.65	527.76	560.48	568.43	511.83	489.53	478.36	¥Z 2A
	V-THETA 2	392.68	382.24	374.18	370.54	366.85	351.88	346.78	350.73	353.52	V-THETA 2
	V-THETA 2A	20.73	22.05	21.64	19.51	19.69	25.78	28.38	34.51	30.88	V-THETA 2A
	M 2	0,5170	0.5249	0.5245	0.5485	0.5600	0.5418	0.5099	0.4841	0_4447	<b>K</b> 2
	M 2A	0.4159	0.4151	0.4183	0+4653	0.4949	0.5026	0.4502	0.4302	0.4193	M 2A
	TURN (PR)	39.678	37.522	36.678	34.782	33.823	32.622	33.758	35.641	40.494	TURN(PR)
	P 2	18.657	16.735	18.727	19.096	19.343	19.242	18.940	18.641	18.251	P 2
	P CA	18.601	18.586	18.611	19.105	19.435	19.513	18.845	18.625	18.507	P 2A
	12	560.892	554.134	557.394	558.468	559.811	558.723	560.894	561.204	562.730	T 2
	T 2A	561.049	559.443	557.971	559.373	560.857	560.729	562-020	562,151	563.854	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91. Equivalent Rotor Speed = 4163.97. Equivalent Rotor Speed = 101.60 Circumferential Distortion Station 1 (196°) - Station 2 (186°) - Station 2A (175°)

ROTOR D PCT SPAN 94.99 90.00 64.99 70.00 50.00 30.00 14.98 9.99 4.98 PCT SPAN 34.001 38.219 39.371 39.754 JIA 33.234 33.617 35.151 36.685 40.138 DIA BETA 1 2.212 STATION 1 2.479 2.457 1.850 3.647 2.326 1.846 2.507 BETA 1 2.038 STATION 2 BETA 2 42.873 40.600 39.763 37.085 35.956 37.509 40.768 43.823 BETA 2 38.584 BETA(PR) 1 55.953 57.538 BETA(PR) 1 51.343 49.876 50.566 50.389 51.378 54.096 59.468 BETA(PR) 2 37.539 BETA(PR) 2 24.274 26.131 27.493 29.407 30.420 33.793 39.496 45.016 ۷1 465.65 495.83 494.38 515.62 513.22 497.84 481.08 460.49 428.47 V 1 597.34 596.91 594.20 622.39 615.95 588.36 566.75 V 2 600.13 516.69 V Z VZ 1 495.36 494.12 497.40 480.60 460.17 465.21 515.29 512.16 428.02 ¥Z 1 437.76 453.21 456.76 469.09 497.90 465.71 428.29 372.02 VZ 2 496.28 VZ Z V-THETA 1 V-THETA 2 V-THETA 1 15.96 18.34 19.21 19.52 14.83 20.14 21.26 32.64 18.74 V-THETA 2 380.06 357.47 369.28 357.04 406.41 388.45 374.26 375.13 361.16 VIPR1 1 V(PR) 1 744.7 768.7 777.9 808.2 820.5 848.2 858.4 857.4 842.6 588.6 V(PR) 2 480.2 514.9 575.8 600.0 556.3 527.3 V(PR) 2 504.8 538.5 VTHETA PR1 VTHETA PR1 -581.6 -587.8 -600.8 -641.1 -687.0 -711.2 -723+4 -725.7 -622.6 VTHETA PR2 VTHETA PR2 -237.7 -353.0 -372.2 -197.4 -222.3 -264.4 -291.4 -333.2 -357.9 01 601.71 609.02 616.77 640.97 673.70 706.25 730.76 738.21 744-46 UI υ 2 603.82 610.78 617.75 638.65 666.52 694.39 715.32 722.28 729.26 U 2 M 1 0.4245 0.4531 0.4518 0.4720 0.4697 0.4551 0.4391 0.4197 0.3896 # 1 0.5300 0.5293 0.5228 0.5022 0.4556 MZ 0.5307 0.5347 0.5552 0.5512 M 2 0.7836 0.7814 M(PR) 1 0.6790 6.7025 0.7108 0.7399 0.7510 0.7753 0.7660 M(PR) 1 M(PR) 2 0.4930 M(PR) 2 0.4261 0.4587 0.5230 0.4488 0.4798 0.5137 0.5369 0.4650 TURN (PR) 23.073 18.146 TURN ( PR ) 27.070 23.745 20.984 20.974 20.355 18.504 14.563 P 1 14.873 15+093 15+087 15.227 15.173 15.153 15.104 14.961 14.810 P 1 18.841 P 2 P 2 16.795 18.815 18.804 18.915 19.269 19.352 19.082 18.339 T 1 518.699 518.699 518.699 518.699 518.699 Τ 1 518.699 518.699 518.699 518.699 Ť 2 556.082 556.645 558.358 553.772 554.169 555.165 551.279 555.795 557.333 T 2 STATOR D PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN 33.207 33.921 34.992 37.848 38.919 39.276 39.633 DIA DIA 33.564 36.420 STATION 2 STATION 2A BETA 2 39.763 38.584 35.956 37.509 40.768 43.823 42.873 40.600 37.085 BETA 2 2.909 2.892 4.060 BETA ZA BETA 2A 3.370 2.549 2.226 1.896 2.675 3.570 597.34 566.75 V 2 596.91 594.20 600.13 622.39 615.95 588.36 516.69 ¥ 2 V ZA 451.19 453,15 448.65 491.42 534.08 537.20 502.46 480.04 463.50 ¥ 2A VZ 2 437.76 453.21 456.76 469.09 496.28 497.90 465.71 428.29 372.02 VZ 2 VZ 2A 450.74 452.56 448.06 491.00 533.67 536.42 501.33 478.56 462.27 VZ 2A V-THETA 2 V-THETA 2 406+41 368.45 380.06 374.26 375.13 361.16 357.47 369.28 357.04 V-THETA 2A V-THETA ZA 20.07 23.00 22.64 19.09 17.67 25.06 29.52 33.97 28.84 M 2 0.5300 0.5307 0.5293 0.5347 0.5552 0.5512 0.5228 0.5022 0.4556 M 2 M 2A 6.3951 0.3977 0.3944 0.4332 0.4719 0.4763 0.4425 0.4218 0,4064 H 2A TURN (PR) 40.323 37.690 36.871 36.356 35.170 33.224 34.045 36-602 40.143 TURN (PR) ΡZ 18.795 18,815 18.804 18.915 19.269 19.352 19.082 18.841 18.339 P 2

18.590

556.645

558.190

18.422

557.333

559.091

P 2A

T 2A

T 2

P 2A

T 2

T 2A

18.490

550.358

559.546

18.505

556.082

557.400

18.407

553.772

555.143

16,826

554.169

555-614

19.230

555.165

556.692

19.241

551.279

553.297

18.813

555.795

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-0.849	0.956	3.878	3.933	3.708	2.607	3.214	4,585	5.917	BETA 1
STATION 2	BETA 2	42.027	40.395	40.209	38.470	37.088	35.951	37.925	40.872	44.102	BETA 2
	BETA(PR) 1	56.362	53.958	51.848	51.492	54.199	56.263	58,745	60.820	61.799	BETA(PR) 1
	BETA(PR) 2	25 922	26,911	27.374	28.034	31.220	35.100	38.495	43.052	47.411	BETA(PR) 2
	V 1	404.40	437.90	461.08	484.69	465.20	458.28	429.67	395.90	380.25	A.J
	¥ 2	585.94	590.35	593.43	614.71	613.72	601.50	577.19	531.94	494.69	V 2
	VZ 1	404.34	437.84	460.02	483.55	464.20	457.75	428.91	394.57	378.18	VZ 1
	VZ 2	435.25	449.60	453.20	481.26	489.34	486.25	454.32	401.36	354.52	VZ 2
	V-THETA 1	~5.99	7.31	31.18	33.24	30.08	20.84	24.09	31.64	39.19	V-THETA 1
	V-THETA 2	392.27	382.57	383.10	382.40	369.93	352.65	354.00	347.32	343.58	V-THETA 2
	V(PR) 1	729.9	744.2	744.7	776.6	793.6	824.2	826.7	809.3	800.3	V(PR) 1
	V(PR) 2	483.9	504.2	510.3	545.3	572.5	595.2	581.7	550.4	524.0	V(PR) 2
	VTHETA PR1	-607.7	-601.7	-585.6	-607.7	-643.6	-685.4	-706+7	-706.6	-705.3	VTHETA PR1
	VTHETA PR2	-211.5	-228.2	-234.7	-256.3	-296.6	-341.7	-361.3	-375+0	-385.7	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	ม <u>2</u>	603-82	610.76	617.75	638.65	666.52	694.39	715.32	722.28	729.26	UZ
	<b>M</b> 1	0-3671	0.3984	0.4202	0-4426	0.4241	0.4176	0.3907	0.3592	0.3446	И 1
	M 2	0.5203	0.5254	0.5289	0.5482	0.5468	0.5353	0.5122	0.4700	0.4353	M 2
	HIPR1 1	0.6625	0.6770	0.6787	0.7091	0.7235	0.7510	0.7517	0.7342	0.7253	M(PR) 1
	MIPRI 2	0.4297	0.4487	0.4549	0.4863	0.5101	0.5297	0.5162	0.4863	0.4618	M(PR) 2
	TURN (PR 1	30-440	27.047	24.474	23.460	22.996	21.216	20.341	17.873	14.498	TURN(PR)
	PI	14.590	14.838	15.008	15.161	15.056	15.062	14.934	14.766	14.757	P 1
	P 2	18.666	18.769	18.830	19.136	19.191	19.149	18,957	18.459	18.125	P 2
	TI	518,699	518-699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	Ť 2	556.290	554 396	553.143	554.606	555.605	555.566	556.193	556.606	557.892	Ť 2
	, _										
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	42.027	40.395	40.209	38.470	37.088	35.951	37.925	40.872	44.102	BETA Z
STATION 2A	BETA 2A	2.801	3,353	3.383	2.333	2.035	2.674	3.994	4.729	4.493	BETA ZA
	V 2	585.94	590.35	593.43	614.71	613.72	601.50	577.19	531.94	494.69	¥ 2
	V 2A	451.00	448.59	451.17	500+98	519.16	527.96	479.10	460.80	447.77	V 2A
	VZ 2	435.25	449.60	453.20	481+26	489.34	486.25	454.32	401.36	354.52	VZ 2
	VZ 2A	450.46	447.82	450.37	500.51	518.71	527.19	477.70	458.97	446.07	VZ 2A
	V-THETA 2	392.27	382.57	363.10	382.40	369.93	352.65	354.00	347.32	343.58	V-THETA 2
	V-THETA 2A	22.04	26.24	26.62	20+39	18.43	24.62	33.35	37.97	35.05	V-THETA 2A
	MZ	0.5203	0.5254	0.5289	0.5482	0.5468	0.5353	0.5122	0.4700	0.4353	H 2
	M ZA	0.3965	0.3951	0.3979	0.4428	0.4591	0.4674	0.4220	0.4052	0.3930	H 2A
	TURN (PR)	39.225	37.041	36.826	36.135	35.034	33.220	33.837	36.037	39.500	TURN (PR)
	P 2	18.666	18.769	18.830	19.136	19.191	19.149	18.957	18.459	10.125	P 2
	P ZA	18.501	15.482	18.506	18.949	19.093	19.126	18.589	18.416	16.302	P 2A
	T 2	556.290	554.396	<b>53.143</b>	554.606	555.605	555.566	556.193	556.606	557.892	T 2
	T 2A	555.195	553.198	551.943	553.469	554.656	554.121	555.417	555.798	557.002	T ZA

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (256°) - Station 2 (246°) - Station 2A (235°)

.

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35,151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	4.037	3.605	3.466	3.101	3.761	2.545	2.544	2.289	3.193	BETA 1
STATION 2	BETA 2	42.486	42.528	42.793	40.682	39.941	38.764	41.930	44.719	50.036	BETA 2
	BETA(PR) 1	52.865	52.514	52.674	53.577	54.334	57.618	60.210	62.167	64-422	BETA (PR) 1
	8ETA(PR) 2	24.938	25.580	25.550	30.372	31.808	34.783	39.477	42.973	47.433	RETAIPE) 2
	¥ 1	433.61	446.45	450.36	455.44	462.73	436-11	408.44	382.07	347-65	V 1
	¥ 2	592.98	593.73	599.68	582.59	596.68	595.43	559_48	529.93	498.34	¥ 2
	VZ 1	432.53	445.56	449.54	454.78	461.71	435-62	407-96	381.71	347.07	V7 1
	¥7 2	437.28	437.54	440.05	441.78	457.79	443 48	415 44	375 97	210 67	W7 2
	V-THETA 1	30.53	28-07	27.23	24.44	30.35	19.36	19.13	15.24	10.34	V-THETA 1
	V-THETA 2	400.49	401.33	407.39	370.75	382.01	272.23	373.14	272.15	201.22	V-THETA 2
	VIPRI 1	716.5	732.1	741.4	766 0	701 0	912 4	921 2	817 4	20103 B	VI001 1
	V/PP1 2	482 3	465 1	497 7	612 1	1717 639 /	61354	520 3	614 7	603.7	V(D01 0
	VTHETA DD1	-571 7	-590 9	-680 6	-414 7	-443 3	-444 0	-712 6	-772 0	-776 1	TIPRJ Z
		~201.2	~200 4	-210.4	-250 0	-203 4	-333 1	-742.0	-760 1	-747 0	VTUTTA PRA
	111618 662	401 71	- <u>2</u> 0767	~21044	-20047	-203+0	-242+1	-24242	-350.1	-341.47	VINEIA PRZ
	01	402.02	609.0Z	010+//	090.97	613.10	106.25	130+10	738.21	144.40	UI
		003+02	010-70	01/1/2	030.07	000.72	074+37	(12.32	122.28	129.20	02
		U+3744	0.4084	0.4101	0.4149	0.4218	0.3967	0.3708	0.3463	0.3144	81
		0.5251	0.5265	0.5328	0.5162	0.5292	0.5280	0.4940	0.4664	0.4369	M Z
	MIPRJ 1	0.6516	0.0005	0+6751	0.6976	0.7218	0.7399	0.7456	0.7410	0.7271	M(PR) 1
	MUPRJ 2	0.4270	0.4302	0.4334	0.4538	0.4775	0.5013	0.4762	0.4530	0.4149	M(PR) 2
	TURN (PR)	27.928	26.934	27.124	23+207	22+543	22.888	20.826	<u> 19-299</u>	17.099	TURN(PR)
	ΡI	14.955	15.146	15.156	15.195	15.237	15.142	15.061	14.913	14.719	P 1
	P 2	18.902	18.949	19.046	18.658	19+043	19+097	18.730	18.407	18.140	P 2
	<u>T 1</u>	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	τ 1
	T 2	560.012	558.461	557.065	558.197	558.616	558.735	559.793	560.686	562.123	T 2
STATOR D	PCT SPAN	95.00	90,00	85-00	70-00	50.00	30.00	15.00	10.00	5.00	
	DIA	33.207	33.564	33,921	34.992	36.420	37.949	38.010	39.276	39.433	DIA
STATION 2	BETA 2	42 486	42.528	42.793	40.682	39 941	38.764	41-930	44.710	50.036	BETA 2
STATION 2A	BETA 2A	2.947	3,531	3-601	2.470	7.497	2.750	3.900	4.301	4-047	ACTA 24
	V 2	592.98	593.73	599.68	582.59	596.68	595.43	559.48	529.91	498.34	V 2
	¥ 24	490.02	485.62	481.73	518.77	532.40	536.79	494.15	472.58	443.82	¥ 24
	¥7 2	437.28	437.54	440.05	441.78	457.70	463.68	415.44	375.82	318.67	4 5 7
	VZ 2A	489 37	464.68	480.76	518.73	531.78	535.07	497.76	470.99	442.34	W7 24
	V-THETA 2	400 49	404.00	407 30	370 75	282 83	277 32	272 14	377 36	201 37	76 68 M-THETA 9
	V-THETA 24	75.19	20 01	30.24	22 25	22 14	25 74	33 60	26 42	32 71	V-THETA 24
		0 6 251	0 5745	0 5320	A 6143	A 5 3 6 3	A 5390	A 4040	22+74	24+11	V DE LA ZA
	H 21	0 4306	0.4273	0 4 3 4 3	0.0102	0.5272	0.5200	0.4740	0 4147	0 4047	
	TINN ( DE 1	20.520	24 004	20 107	20 210	27 620	96 064	V:4340	40 311	4 8 4 4 4	T 28
	D 2	16 003	30.770 18 0/0	374174	30.210	31.429	37.770	27+724	40.011	40.00L	IOKN LPK I
		10.702	10.747	15 720	10.070	19.043	10.007/	18.750	10.00	18-140	P 2
	r <u>(</u> A	10+175	10.700	18.730	49.071	17+107	19+183	18.708	18.507	18.417	P ZA
	1 4 T 3A	200.0012	0000401 €57 0/7	257,005	228-197	228+010	356 - 735	774.143	969.000	262-123	T Z
	1 48	222.023	227+347	222.413	221.028	つう (+647	221.090	>>8.310	<b>&gt;58+997</b>	<b>260.347</b>	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Uquivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (286°) - Station 2 (276°) - Station 2A (265°)

- -

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35-151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA I	-2.615	-2.618	-2.747	-1.794	-2.135	-1.781	-0.500	-2.050	-2.305	BETA 1
STATION 2	BETA 2	39.673	39.740	39.643	40.743	42.781	43.609	47.672	51.266	55.560	BETA 2
	BETA(PR) 1	55.862	54,459	55.301	56.429	58.763	61.032	64,133	66.946	69.880	BETA(PR) 1
	BETA(PR) 2	26.312	25.956	26.251	28.644	33.251	38+469	43.777	46.533	50.665	BETA(PR) 2
	V 1	421.45	450.23	442-25	434.63	418.36	398.06	355.91	319.30	277.07	V 1
	V 2	592.56	602.58	606 •98	598 + 85	574.60	549.52	517.47	502.27	482.03	V 2
	VZ 1	421.00	449.76	441.73	434.42	418.05	397.82	355.83	319.04	276.82	VZ 1
	VZ 2	456.09	463.35	467.39	453.70	421.57	397.45	347.90	313.80	272.26	VZ 2
	V-THETA 1	-19.23	-20,57	-21.19	-13,61	-15.58	-12.37	-3.11	-11.42	-11.14	V-THETA 1
	VHTHETA 2	378.29	385.23	387.25	390.83	390.12	378.60	381.96	391.21	397.04	V-THETA 2
	V(PR) 1	750.2	773.7	776.0	785.6	806.2	821.4	815.6	614.7	804.7	V(PR) 1
	V(PK) 2	508.8	515.3	521.1	517.0	504.4	508.3	482.7	457.0	430+2	V(PR) 2
	VTHETA PR1	-620.9	-629.6	-638.0	-654.6	-689.3	-718.6	-733.9	-749.6	-755.6	VTHETA PR1
	VTHETA PRZ	-225.5	-225.5	-230.5	-247.8	-276.4	-315.8	-333.4	-331.1	-332.2	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706+25	730.76	738.21	744.46	U 1
	Ú 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	M 1	0.3830	0.4100	0,4025	0.3953	0.3801	0.3612	0.3221	0,2884	0.2497	M 1
	M 2	0.5242	0.5341	0.5386	0.5300	0.5070	0.4835	0.4527	0.4384	0.4195	M 2
	M(PR) 1	0.6817	0.7046	0.7062	6.7146	0.7324	0.7453	0.7301	0.7358	0.7253	M(PR) 1
	M(PR) 2	0.4501	0.4568	0.4624	0.4576	0.4450	0.4473	0.4223	0.3988	0.3744	M(PR) 2
	TURN (PR)	29.556	28.503	29.050	27.787	25.530	22.619	20.451	20.518	19.324	TURN (PR)
	Р 1	14.838	15.116	15.062	15.064	15.050	15.055	14.902	14.735	14.596	P 1
	P 2	19.030	19.174	19,238	19,114	18.783	18.490	18.129	17.975	17.819	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	T 2	560.944	559.866	559.170	561.078	561.971	562.586	566.039	567.290	568.790	Ť 2
CTATOR D	DCT CDAN	95 00	90.00	85 00	70.00	50.00	30.00	15.00	10-00	5.00	PCT SPAN
STATUR D	PGT SPAN	73 207	23 544	23 971	34.992	36.420	37,949	38,919	39.276	39.633	DTA
CTATION 2	5576 3	20 672	39.740	30.443	40.743	42.781	43.609	47.672	51.266	55-560	RETA 2
STATION 24	BETA 24	2.805	3-048	3,160	2.715	3-648	3.013	1.970	1.070	0.045	BETA 2A
STRILLON CR	V 2	592.56	602-58	606.98	596.85	574.60	549.52	517.47	502.27	482.03	¥ 2
	v 2	488.05	466-00	486-20	508-80	498.97	479.41	427.46	410-86	405.36	¥ 24
	v7 2	456.09	463.35	467.39	453 70	421.57	397.45	347.90	313.80	272.26	VZ 2
	V7 24	487.46	485.31	485.44	508.18	497-80	478.57	426.99	410.55	405.07	VZ ZA
	V-THETA 2	375.29	385.23	387.25	390.83	390.12	378.60	381.96	391.21	397.04	V-THETA 2
	V-THETA 24	23.88	25.84	26.80	24.10	31.74	25.19	14.69	7.67	0.32	V-THETA 2A
	M 2	0.5242	0.5341	0.5386	0.5300	0.5070	0.4835	0.4527	0.4384	0.4195	M 2
	M 2A	0.4291	0.4276	0.4280	0.4479	0.4386	0.4205	0.3726	0.3573	0.3518	M ZA
	TURN (PR)	36.867	36-691	36.483	38-076	39.113	40.537	45.604	50.089	55.410	TURN (PR)
	P 2	19.030	19.174	19.238	19.114	18.783	18.490	18.129	17.975	17.819	P 2
	P 2A	18.816	18.788	16.782	18.965	15.828	18.583	18.110	17.989	17.941	P ZA
	τ 2	560.944	559.666	559,170	561.078	561,971	562.586	566.039	567.290	568.790	T 2
	T ZA	558.248	557.152	556.579	558.584	559.066	560.009	562.984	564.299	566.148	T 2A

## Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 98.91Equivalent Rotor Speed = 4163.97Equivalent Weight Flow - 101.60<br/>Circumferential Distortion<br/>Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

RCTOR D	PCT SPAN	94.99	90.00	64.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34,001	35.151	36.685	36.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-12.470	-12.460	-12.290	-12.968	-13.118	-14.160	-13.707	-14.179	-15,059	BETA 1
STATION 2	BETA 2	45.464	51,311	52,835	51.414	53.223	49.248	53.740	57.716	62.902	BETA 2
	BETA(PR) 1	67.697	66.551	65.652	66-464	68.378	69.919	71.651	73.464	75.449	BETA(PR) 1
	.BETA(PR) 2	28.209	28.591	34.694	36.432	37.082	36.034	44.292	49.318	53.088	BETA(PR) 2
	V 1	278.01	299.22	313.63	318.43	302.11	293.37	271.48	244.44	215.16	VR
	¥ 2	554.47	544.75	508.40	514.21	531.88	563.95	517.72	492.97	487.66	¥ 2
	VZ 1	271.45	292.17	306.44	310.31	294.21	284.42	263.70	236.95	207.75	¥Z 1
	¥2 2	388,88	340.51	307.13	320.70	318.35	367.81	305.83	263.01	221.95	VZ 2
	V-THETA 1	-60.03	-64.56	-66.76	-71.46	-68.56	-71.76	-64.32	-59.87	-55.90	V-THETA 1
	V-THETA 2	395.23	425.20	405.14	401.93	425.91	426.83	416.95	416.30	433.77	Y-THETA 2
	V(PR) 1	715+3	734.2	749.1	777+1	798.4	828.4	837.7	832.5	826.9	V(PR) 1
	V(PR) 2	441.3	387.8	373.5	398.6	399.2	455.5	428.0	404.1	370.1	V(PR) 2
	VTHETA PRI	-661.7	-673.6	-683.5	-712.4	-742.3	~778.0	-795.1	-798.1	-800.4	VTHETA PR1
	VTHE TA PR2	-208.6	-185.6	-212.6	-236.7	-240-6	-267.6	-298.4	-306.0	-295.5	VTHETA PR2
	U 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	V 2	603+82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	Ŭ Ž
	M 1	0.2506	0.2700	0.2832	0.2876	0-2726	0.2646	0.2446	0.2200	0.1934	<b>N</b> 1
	M 2	0.4851	0.4767	0.4441	0.4491	0.4645	0.4940	0.4506	0.4279	0.4229	H 2
	M(PR) 1	0.6447	0.6624	0.6763	0.7018	C.7205	0.7472	0.7548	0.7493	0.7434	M(PR) 1
	M(PR) 2	0.3860	J.3393	0.3263	0.3481	0.3487	0.3990	0.3725	0.3508	0.3210	H(PR) 2
	TURN (PR)	39.488	37.961	31.159	30.034	31.315	33.940	27.455	24.252	22.468	TURN (PR)
	P 1	13.630	13.815	13.831	13.806	13.768	13.780	13.790	13.761	13.675	P 1
	P 2	18.407	18.303	17.953	18.027	18.238	18.618	18.050	17.823	17.809	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	TI
	Ť 2	569.36Z	568.171	566.809	567.612	569.061	568.732	571.756	572.490	573.048	T 2
STATOR D	PCT SPAN	95.00	96.00	85.00	70.00	50.00	30.00	15.00	10,00	5.00	PET SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45.464	51.311	52.835	51.414	53.223	49 248	53.740	57.716	62.902	BETA 2
STATION 24	BETA 2A	2.596	2.540	2.439	2.429	4.337	3.328	1.098	-0.415	-1.863	BETA 2A
	V 2	554.47	544.75	508.40	514.21	531.88	563.95	517.72	492.97	487.66	¥ 2
	V 2A	414.74	410.22	404.74	418.27	429.65	412.89	379.14	362.11	363.90	V ZA
	VZ 2	388.88	340.51	307.13	320.70	318.35	367.81	305.83	263.01	221.95	VZ 2
	VZ 2A	414.32	409.80	404.36	417.85	428.32	412.04	378.88	361.89	363.44	VZ ZA
	V-THETA 2	395.23	425.20	405.14	401.93	425.91	426.83	416.95	416.30	433.77	V-THETA 2
	V-THETA 2A	18.76	18.18	17.22	17.72	32.48	23.96	7.26	-2.62	-11.82	V-THETA 24
	M 2	0.4851	0.4767	0.4441	0.4491	0.4645	0.4940	0.4506	0.4279	0.4229	M 2
	M 2A	0.3600	0.3563	0.3518	0.3634	0.3731	0.3582	0.3273	0.3120	0.3134	MZA
	TURN (PR)	42.867	48.770	50.396	48.983	48.867	45.861	52.548	58.032	64.672	TURN (PR)
	P 2	18.407	18.303	17.953	18.027	18.238	18.618	16.050	17.823	17.809	P Z
	P 2A	18.110	18.058	18.020	18.101	18,154	18.002	17.763	17.656	17.656	P ZA
	τz	569.362	568+171	566.809	567.612	569.061	568.732	571.756	572.490	573.048	T Z
	T ZA	566.755	565.594	564.433	565.717	567.163	567.03Z	570.488	571.432	572.219	T ZA

.

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 98.91 Equivalent Rotor Speed = 4163.97 Equivalent Weight Flow = 101.60 Circumferential Distortion Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

**`**.

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	32.017	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-7.204	-6.577	-6.369	-6.946	-6.542	<b>~7.126</b>	-6.387	-6.678	-7.168	BETA 1
STATION 2	BETA 2	53.766	54.390	54.561	50.604	47.815	46.293	47.895	50.696	54.266	BETA 2
• • • • • • •	BETA(PR) 1	63.777	61.262	60.783	61.218	61.659	62.893	64.101	65_608	68.454	BETA(PR) 1
	BETA(PR) 2	24.595	28.623	38.109	39.072	32.960	38.419	44.564	47.956	48.808	BETA(PR) 2
	V 1	318.58	358.85	370.20	380.17	389.69	389.29	377.63	355.98	311.76	¥ 1
	Ŷ 2	560.57	540.15	486.60	495.84	566.76	546.92	510.91	490.03	493.72	V Ž
	VZ 1	316.06	356.48	367.91	377.38	387.33	386.24	375.21	353.51	309.30	VZ 1
	VZ 2	331.34	314.51	262.15	314.69	380.47	377.53	342.03	309.92	287.96	VZ 2
	V-THETA 1	-39.95	-41.10	-41.07	-45.98	-44.42	-48-29	-42.00	-41.39	-38.90	V-THETA 1
	V-THETA 2	452.16	439.14	396.45	383.16	419.82	394.96	378.46	378.60	400.24	V-THETA 2
	V(PR) 1	715.3	741.4	753.7	783.8	815.9	847.7	859.1	856.0	842.2	V(PR] 1
	VIPR) Z	364.4	358.3	358.6	405.4	453.7	482.5	480.9	463.6	438.0	V(PR) 2
	VTHETA PRI	-641.7	-050.1	-657.8	-686.9	-718.1	-754.5	-772.8	-779.6	-783.4	VTHETA PRI
	VTHE TA PR2	-151.7	-171.6	-221.3	-255.5	-246.7	-299.4	-336.9	-343.7	-329.0	VTHETA PR2
	Ú 1	601.71	609.02	616.77	640.97	673.70	706.25	730.76	738.21	744.46	U 1
	U 2	603.82	610.78	617.75	638.65	666.52	694.39	715.32	722.28	729.26	U 2
	<u>й 1</u>	0.2877	0.3248	0.3353	0.3445	0.3536	0.3530	0.3422	0.3221	0.2814	H 1
	M 2	0.4900	0.4719	0.4239	0.4322	0.4967	0.4786	0.4453	0.4261	0.4291	H 2
	M(PR) 1	0.6460	0.6711	0.6627	0.7103	0.7399	0.7687	0.7784	0.7747	0.7603	N(PR) 1
	MIPR) 2	0.3185	0.3130	0.3123	0.3533	0.3976	0.4222	0.4191	0.4031	0.3806	H(PR) 2
	TURN (PR)	39.182	32.640	22.674	22.148	28.716	24.530	19.632	17.758	19.756	TURN (PR)
	P 1	13.546	13.686	13.718	13.700	13.673	13.713	13.757	13.734	13.578	P 1
	P 2	18.350	18,102	17.619	17.762	18.562	18.449	18.035	17.843	17.902	P 2
	TI	518-699	518.699	518+699	518.699	518.699	518.699	518.699	518.699	518.699	T 1
	T 2	570.870	569.574	568.172	568.143	568.529	568.340	569.593	570.257	571.217	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33,564	33.921	34.992	36,420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	53.766	54.390	54.561	50.604	47.815	46.293	47.895	50.696	54.266	BETA 2
STATION 2A	BETA ZA	2.302	2.122	1.198	0.837	3.787	3.739	3.158	2.873	1.993	BETA 2A
	V 2	560.57	540.15	486.60	495.84	566,76	546.92	510.91	490.03	493.72	V Z
	V 2A	379.28	375.09	367.25	382.51	413.45	415.77	377.82	369.56	572.44	¥ 2A
	VZ 2	331.34	514.51	282,15	314.69	380.47	377.53	342.03	309.92	287.96	¥Z 2
	VZ ZA	378.97	374.82	367.16	382.43	412.46	414.73	377.06	368.89	371.95	¥Z 2A
	V-THETA 2	452.16	439.14	396.45	383.16	419.82	394.96	378.46	378.60	400.24	V-THETA 2
	V-THETA 2A	15.23	13.89	7.68	5.59	27.30	27.10	20.80	18.51	12.94	V-THETA 2A
	M 2	0.4900	0.4719	0.4239	0.4322	0.4967	6.4786	0.4453	0.4261	0.4291	H 2
	M ZA	0.3276	0.3242	0.3177	0.3312	0.3587	0.3606	0.3267	0.3193	0.3215	M 2A
	TURN (PR)	51.463	52,267	53.363	49.765	44.008	42.495	44.640	47.717	52.168	TURN(PR)
	P 2	18.350	16,102	17.619	17.762	18.562	18.449	18.035	17.843	17.902	P 2
	P ZA	17.786	17.748	17.701	17.779	17.985	17.991	17.722	17.673	17.685	P 2A
	T 2	570.876	569-574	568.172	568.143	568.529	568.340	569.593	570.257	571.217	T 2
	T 2A	569.672	565.582	567.344	567.061	567.216	567.703	568.581	568.935	569.995	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

ROTOR D	PCT SPAN	94.99	40 ₊ 00	84.99	70.00	50.00	36.00	14.98	9.99	4.98	PCT SPAN
	DIA	33-234	33.617	34.001	35.151	36.685	38:219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-4.794	-4.700	-4.428	-4.168	-3.426	-3.497	-3-850	-4.098	-4.581	BETA 1
STATION 2	BETA 2	55.144	55.313	55.327	51.322	48.967	47.789	51,343	55.065	60.400	BETA 2
	BETA(PR) 1	63.980	62.299	61.511	61.933	62.264	63.965	64.715	65.897	67.466	BETA(PR) 1
	BETA(PR) 2	19.125	15.166	25.516	36+250	33.075	36.763	42.331	46.306	48.191	BETA(PR) 2
	V 1	312.44	340.84	356.24	362.50	372.48	362.20	363.30	347.79	325.85	¥ 1
	¥ 2	602.48	635.79	574.03	524.02	573.41	568.58	539.38	518.00	521.89	Ý Ž
	VZ 1	311.34	339.69	355.18	361.53	371.79	361.48	362.41	346-84	324 78	¥Z 1
	VZ 2	344.32	361.82	326.56	27.47	376.17	381.65	336.47	296.26	257.54	¥2 2
	V-THETA 1	-26.11	-27.93	-27.50	-26.47	-22.26	-22-09	-24-39	-24-85	-26-02	V-THETA 1
	V-THETA 2	494.39	522.79	472.09	409-08	432.54	420.73	420-63	424-13	453-35	V-THETA 2
	V(PR) 1	709.7	730.8	744.6	768-4	798.9	823.6	848.5	849.3	847.5	V(PR) 1
	V(PR) 2	364.4	374.9	361-9	406 - 1	449.1	477-0	456.0	429-6	387.0	V(PR) 2
	VTHETA PRI	-637.8	-647-0	-654-5	-678.0	-707.1	-740.0	-767.2	-775.3	-782.8	VTHETA PRI
	VTHETA PR2	-119.4	-98.1	-155-9	-240.1	-245.0	-285.1	=306.5	-310.1	-288.0	VTHETA PR2
	U 1	611-65	619.07	626.96	651 56	684.82	717 97	742 83	750.40	754 74	11 1
	<u>11</u> 2	613.79	620-86	627.05	649 19	4 <b>77</b> 57	705 84	777 13	734 31	741 20	
	M 1	0.2821	0 3082	A 2224	0 7 2 5 7	0 3374	A 3279	121-13	134.61	0 2044	
	M 2	0.5202	0 5616	D 5044	0.4684	0 5024	0.4000	0 4717	0.4530	0 4550	M 2
	M ( OP 1 1	0.5692	0.5014	0.5040	0.4054	0.7034		0+4/1/	0.4520	044220	F 4
	M(DD) 2	0 3201	0.3310	0.3101	0.0770	0.1230	0+1420	0.1082	0.7002	9.1020	MIPRI I
	THOMADO Y	46 954	47 122	V42101	0.3353	0.3943	0-4190	0.3968	0.3/49	0.3374	MIPR} 2
		44.004	47.133	32.775	22.085	29.206	21.221	22.419	14-941	19.355	TURNEPRE
	F 1	12.261	13-723	13.121	13.147	13.795	13.703	13-817	13.758	13.648	P 1
	<b>P</b> 2	18.919	19.317	18.574	18.133	18.790	18.852	18.541	16.319	18.365	P 2
		218-044	518.699	518.699	518+699	518.699	518.699	518+699	518+699	518.699	T 1
	12	269.266	567.449	565.943	566.568	567.238	567.271	568.296	568.792	570.066	τz
STATOR D	PCT SPAN	95.00	90,00	85-00	70.00	50-00	30.00	15.00	10.00	5.00	DCT SDAN
	DIA	33.207	33.564	33,921	34-992	36.420	37.848	38.919	39.276	30.433	DTA
STATION 2	BETA 2	55.144	55.313	55.327	51-322	48.987	47.789	51,343	55.065	60.600	RETA 2
STATION 2A	BETA ZA	3-612	0.557	-1.815	-2.075	2.510	3.997	5.516	6.249	4-497	RETA 24
	¥ 2	602.48	635.79	574-03	524-02	573.41	548.58	519.38	519.00	521 80	W 2
	V ZA	409.47	401-63	398 56	407.87	430.35	440.09	477 56	414 24	420 15	V 2A
	¥7 2	344.32	361.82	326.56	327.47	376 17	281 45	224 47	204 74	757 EA	477
	¥7 24	408-65	401.61	348.35	407.56	479 84	438 84	426 27	411 64	£31+34 A16 00	VL L W7 74
	V-THETA 2	494.39	522.70	472.09	400 00	427 64	420.00	420 42	434 13	410470	74 4A V_TUETA 3
	V-THETA 24	25.60	3 90	-12 21	-14 77	10 04	720.00	420.03	729+13	+22+32	V-INCIA 2
	M 2	0 6202	0 6414	-12.31	-14011	10+04	30.00	41.00	42.00	40.70	V-INCIA ZA
	M DA	0.2620	0.3474	0.33(3	6 3631	0.5034	0.4770	0.4717	0.4520	0.4330	
•	THEN (DC)	51 531	0+34F4 64 768	0.330Z	0.3531	0.3728	0.3814	0.3700	0.3580	0.3029	T ZA
	P 2	21.731	24+122	27.14Z	23.342	46+457	43.733	45.733	48.716	53.611	TURN (PR)
	F 62	10 114	10 013	17 020	10+133	10.140	10.072	10-241	18.319	18.365	P 2
	· **	10.410	10+014	11.720	10+009	10.243	18.328	10.231	18+131	18-100	PZA
	T 24	207.200 571 666	20 <b>7+447</b> 7 540-45	202.743	300.005	201-238	267.271	200+296	>68+792	570.066	T 2
	1 28	271.449	207.020	568.522	569.090	209.946	570.183	571.037	571.399	572.560	T 2A

# Table A-8. Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 100.54Equivalent Rotor Speed = 4232.72Equivalent Weight Flow = 90.59<br/>Circumferential Distortion<br/>Station 1 (46°) - Station 2 (36°) - Station 2A (25°)

SOTOS D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	5 <b>1</b> 4	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.763	6.005	6.525	4.815	5,454	4.433	5.106	5.037	6+649	BETA 1
STATION 2	BETA 2	46 929	46.300	45.694	42.370	43.059	41.016	43.867	47.261	51.706	BETA 2
••••••	BETAIPE1 1	53.350	51.563	51.527	52.286	53.423	55.360	57.746	58.800	61.545	BETA(PR) 1
	BETA(PR) 2	27.710	27.993	29.252	31.920	33.765	38.778	42.216	45.772	49.326	BETA(PR) Z
	V 3	425.46	455.98	459.69	474.71	476.72	472.25	445.59	433.17	388.39	V 1
	¥ 2	558.52	569.49	567.35	572.44	578.69	559.79	540.76	513.74	492.98	V 2
	ýz 1	423.30	453.47	456.71	473.03	474.54	470.78	443.73	431.43	385.74	VZ 1
	¥Z 2	366.94	393.45	396.29	422.90	422.66	421.87	389.16	348.04	305.04	VZ 2
	V-THETA 1	42.72	47.70	52.24	39.85	45.31	36+50	39.65	38.03	44.97	V-THETA 1
	V-THETA 2	421.06	411.72	406-01	385.76	394.95	366.93	374.07	376.65	386.33	V-THETA 2
	V(PR) 1	709.1	729.5	734.1	773.3	796+4	828.3	831.5	832.9	809.6	V(PR) 1
	V(PR) 2	414.5	445+6	454.2	498.3	508.7	541.8	526.5	499.9	468.8	V(PR) 2
	VTHETA PR1	-568.9	-571.4	-574.7	-611.7	-639.5	-681.4	-703.2	-712.4	-711.8	VTHETA PR1
	VTHETA PR2	-192.7	-209.1	-221.9	-263.4	-282.6	-338.9	-353.1	-357.6	-355.0	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	U 2
	M 1	0.3867	0.4154	0.4189	0.4331	0.4350	0.4308	0.4056	0.3940	0.3522	M 1
	M 2	0.4937	0.5050	0.5040	0.5087	0.5147	0.4969	0.4784	0.4532	0.4333	M 2
	M(PR) 1	0.6446	0.6645	0.6690	0.7055	Ū.7267	0.7555	0.7569	0.7575	0.7341	M(PR) 1
	M(PR) 2	0.3664	0.3951	0.4035	0.4428	6.4524	0.4809	0.4657	0.4410	0.4121	M(PR) 2
	TURN(PR)	25.640	23.570	22.275	20.368	19.676	16.638	15.624	13,134	12.328	TURN (PR )
	P 1	14.526	14.749	14.760	14.869	14.912	14.939	14.634	14.811	14-579	P 1
	P 2	18.386	18.525	18.530	18.685	18.836	18.741	18.592	18.306	18.112	PZ
	T 1	518.699	518.699	518.699	518+699	516.699	518.699	518+699	518.699	518.699	T I
	Ť 2	558,516	556.309	554.130	554.129	553.928	554.323	556.052	556.789	558.876	12
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
210100 P	DIA	33.207	33.564	33.921	34.992	36.420	37.846	38+919	39.276	39.633	DIA
STATION 2	BETA 2	48 929	46.300	45.694	42.370	43.059	41.016	43.867	47.261	51.706	BETA 2
STATION 24	BETA 2A	3.261	2.104	1.104	0.854	2.738	4.031	5.494	5.897	6.067	BETA 2A
	¥ 2	558.52	569.49	567.35	572.44	578.69	559.79	540.76	513.74	492.98	V 2
	V 2A	403.72	399.16	392.24	413.40	433.27	445.71	420.13	411.88	408.98	V 2A
	VZ 2	366.94	393.45	396.29	422.90	422.66	421.87	369.16	348.04	305.04	VZ 2
	VZ ZA	403.06	396.88	392.16	413.31	432.68	444.44	417.99	409.47	406.40	VI ZA
	V-THETA 2	421.06	411.72	406+01	385.76	394.95	366.93	374.07	376.65	386.33	V-THETA 2
	V-THETA 2A	23.11	14.65	7+56	6.16	20.69	31.32	40.20	42.29	43.19	V-THETA 2A
	M 2	0.4937	0.5050	0.5040	0.5087	0.5147	0.4965	0.4784	0.4532	0.4333	M 2
	M 2A	0.3526	0.3492	0.3437	v.3627	0.3807	0.3919	0.3682	0.3604	0.3570	H 2A
	TURN (PR)	45.647	44.195	44.590	41.514	40.301	36.927	38.277	41.258	45.534	TURN(PR)
	P 2	18.386	18.525	18.530	18.685	18.836	18,741	18.592	16.306	18.112	P 2
	P ZA	18.131	18.057	18.022	18.190	18.333	18.438	18.212	18.134	18.113	P 2A
	<b>T</b> 2	558.516	556.309	554.130	554.129	553 <b>.</b> 928	554.323	556.052	556.789	558.876	T 2
	T 2A	559.163	557.078	554.755	554.685	554.496	554+902	556.599	557.619	559.901	T 2A

#### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (76°) - Station 2 (66°) - Station 2A (55°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38,219	39.371	39.75+	40.138	DIA
STATION 1	BETA 1	3.178	1.848	1.003	1.389	0.836	0.571	0.424	0.427	1.158	BETA 1
STATION 2	BETA Z	46.218	44.505	43.155	41.480	40.083	39.387	40.823	44.324	48.107	BETA Z
	BETA(PR) 1	58.017	50.595	56.031	54.545	55.488	58.388	60.547	61.842	63.682	BETA(PR) 1
	BETA (PR) 2	25.310	27.130	20.427	30.670	31.818	35.029	38.330	41.210	45.696	BETA(PR) 2
	¥ 1	369.72	399.99	417.53	456.24	466.26	439.26	417.81	400.14	370.71	¥ 1
	Ý 2	585.02	582.21	600.04	586.65	605.94	594.67	581.93	555.12	519.83	¥ 2
	VZ 1	369.15	399.78	417.47	456.10	466.19	439.18	417.72	400.06	370.60	VZ 1
	¥Z 2	404.78	415.22	437.73	439.49	463.41	459.03	439.49	396.35	346.50	VZ 2
	V-THETA 1	20.50	12.90	7.31	11.06	6.80	4.38	3.09	2.98	7.49	V-THETA 1
	V-THETA 2	422.36	408.11	410-41	388.56	390.00	376.88	379.67	387.11	386.28	V-THETA 2
	V(PR) 1	696.9	726.1	747.2	786.3	822.8	837.9	849.6	847.8	835.9	VEPRI 1
	VIPRI 2	447.8	466-6	488.8	511.0	545.7	565.5	561.4	528.0	497.0	V(PR) 2
	VTHETA PRI	-591.2	-606-2	-619-6	-640.5	-678.0	-713.5	-739.7	-747.4	-749.3	VTHETA PR1
	VTHETA PR2	-191.4	-212-8	-217-5	-260-6	-287.5	-329-0	-347.5	-347-1	-355-0	VTHETA PR2
	11 1	611.65	619.07	626-96	651.56	684 .82	717.92	747 .83	750.40	756.76	<b>U</b> 1
	11 2	613.79	620.86	627.95	649.19	677.52	705-86	727.13	734-21	741-30	ŭ 2
	M 1	0.3348	0.3630	0.3793	0.4156	0.4251	0.3997	0-3796	0.3631	0.3756	N I
	M 2	0.5170	0.5155	0.5330	0.5202	0.5382	0-5275	0-5149	0-4900	0.4569	H 2
	M/PRI 1	0.6312	0.6589	0.6788	0.7163	0.7502	0.7624	0.7718	0.7693	0.7571	M(PR) 1
	M/001 2	0.3967	0.4131	0.4742	0.4532	0.4947	0.5016	0.4967	0.4661	0.4369	M(PR) 2
	TUDM ( DD )	22 207	20 446	30 4 06	72 977	22.489	22.813	22,309	20.737	18-097	TURN ( PR 1
	D 1	14 357	14.548	14.633	14.891	14.960	14-827	14.778	14.481	14.518	P 1
	<b>D</b> 2	10 003	19 764	19 005	10 074	19 190	10 147		18 781	19.420	P 2
	T 1	516 800	518.600	518 699	516.699	518.699	518.699	518.699	518.499	518.400	т. Т.
	T 2	541 406	550 061	567 364	567 704	659 027	559.353	550.779	560.735	561.026	T 2
	12	301.403	J 30 8 70 8	J) [ 6 J) 4	3210170	3308.027		JJ 7 6 7 7 7	2274132	2011024	
STATOR D	PCT SPAN	95.00	90-00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37 848	30.919	39.276	39.633	DIA
STATION 2	BETA 2	46.218	44.505	43.155	41.480	40.083	39.387	40.823	44.324	48.107	BETA 2
STATION 2A	BETA 2A	3.111	3.426	3.491	3.151	2.832	3.645	4.806	5.042	5.017	BETA ZA
	V 2	585.02	582.21	600.04	586.65	605.94	594.67	501.93	555.12	519.83	V 2
	V 2A	435.78	428.82	417.25	452.54	481.93	496,71	461.31	441.87	435.85	V 2A
	VZ 2	404.78	415.22	437+73	439.49	463.41	459.03	439.49	396+35	346.50	VZ 2
	VZ 2A	435,14	428.05	416.47	451.81	481.24	495.52	459.45	439.92	433.87	VZ 2A
	V-THETA 2	422.36	408.11	410,41	388.56	390.00	376.88	379.67	387.11	386.28	V-THETA 2
	V-THETA 2A	23.65	25.63	25.41	24.87	23.81	31,57	38.63	38.81	38+09	V-THETA 2A
	M 2	0.5170	u.5155	0.5330	0.5202	0.5382	0.5275	0.5149	0.4900	0.4569	M 2
	M 2A	0.3610	0.3755	0.3657	0.3975	0.4241	0.4375	0.4047	0.3871	0.3811	H 2A
	TURN(PR)	43.106	41.078	39.664	36.327	37.231	35.684	35.921	39.175	42.982	TURN(PR)
	P 2	18.802	18.764	18.995	18.876	19.190	19.167	19.089	18.781	18.420	ΡZ
	P 2A	18.444	18.367	18.313	18,591	18.830	16.949	18.583	18.422	18.342	P ZA
	T 2	561.405	558.981	557.354	557.796	558.027	558.353	554.779	559.735	561.024	T 2
	T 24	560.344	557.941	556 . 196	556.510	556-572	556-882	558-439	558.569	560.057	T 24

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35,151	36.685	38.219	39.371	39 <b>.7</b> 54	40.138	DIA
STATION 1	BETA 1	3.226	4.177	3.938	3.352	3.470	2.828	1.812	2.103	2.942	BETA 1
STATION 2	BETA 2	45.657	43.312	42.506	40.927	39.613	38.891	40.103	42.655	46+653	BETA 2
•••••	BETAIPR) 1	56.636	55.191	53.611	53.763	54.581	56.689	59.717	61.797	64.897	BETA(PR) 1
	BETA(PR) 2	25.945	28+080	29-512	31.603	33.649	36.098	39.900	43.000	48.025	BETA(PR) 2
	V 1	388.97	410.71	440.78	458.64	467.76	457.57	426.21	394.97	346.70	V 1
	v 2	581.67	578.00	574.55	579.69	589.21	591.25	567.58	539.63	498.37	V 2
	¥7 1	388.35	409-61	439.74	457.85	466.88	456.95	425.91	394.64	346.21	¥Z 1
	¥7 2	406-55	420.57	423.56	437.96	453.71	459.61	433.26	396.04	341.45	¥Z 2
	V+THETA 1	21.89	29.91	30.27	26.82	28.31	22.57	13.47	14.49	17.79	V-THETA 1
	V-THETA 2	415.98	396.49	388.20	379.73	375.52	370.74	364.87	364.88	361.75	V-THETA 2
	V(PR) 1	706.1	717.6	741.2	774.6	805.6	832.1	844.6	835.1	816.1	V(PR) 1
	VIPRI 2	452.1	476.7	486.7	514-2	545.3	569.6	565.9	542.6	511.4	V(PR) 2
	VTHETA PRI	-589.8	-589.2	-596.7	-624.7	-656.5	-695.3	~729.4	-735.9	-739.0	VTHETA PR1
	VTHETA PR2	-197.8	-724-4	-239-8	-269.5	-302-0	-335.1	-362.3	-369.3	-379+6	VTHETA PR2
	U 1	A11.65	619-07	626-96	651.56	684-82	717.92	742.83	750.40	756.76	U 1
	11 2	413.70	620.66	627.95	649.19	677.52	705-86	727.13	734.21	741.30	U 2
	N 1	0.3527	0.3730	0.4011	0.4179	0.4265	0.4169	0.3874	0.3583	0.3136	<u> </u>
		0 6139	0.5114	0.5092	0.5139	0.5226	0.5242	0.5017	0.4754	0.4370	H 2
	M/001 1	0 6403	0.6516	0.6765	0.7058	0.7366	0.7581	0.7678	0.7575	0.7381	M(PR) 1
	M4003 2	0 2664	0.4218	0.4314	0-4559	0.4837	0.5050	0.5002	0.4781	0.4485	MIPR) 2
	TUDN ( 00 )	20 401	27.311	24-099	22.163	20.950	20.665	19,910	18.902	16.982	TURN (PR)
		14.435	14-606	14.789	14.879	14.957	14-974	14.825	14-687	14.458	P 1
	P 2	10 840	18 822	18.795	18.894	19.091	19.214	19.010	18.714	18.297	<b>2</b>
	F 4	516 400	516.699	518.499	518.699	518.699	518.699	518.699	518-699	518-699	Ť Ī
	T 2	5104077	650 120	557 244	557 447	557.820	558.448	559.394	560-301	541.885	Ť 2
	1 4	2011441	,,,,,,,,,,,,	<i>JJ16240</i>	2210 441	3911020	3501400				• •
STATOR D	PCT SPAN	95.00	90.00	85+00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	45+657	43.312	42.506	40+927	39.613	38.891	40,103	42.655	46.653	BETA 2
STATION 2A	BETA 2A	3.414	3.634	3.542	2.840	2.773	3.594	4.562	5.128	5.205	BETA ZA
	V 2	581.67	578.00	574.55	579.69	589.21	591.25	567.58	539.63	498.37	V 2
	V 2A	450.06	442.01	435.86	465.88	488.36	503.18	462.79	445.54	439.37	V 2A
	VZ 2	406.55	420.57	423.56	437.96	453.71	459.61	433.26	396.04	341.45	VZ 2
	VZ 2A	449.26	441.11	435.01	465.26	487.68	502.00	461.09	443.51	437.25	VZ 2A
	V-THETA 2	415,98	396.49	388.20	379.73	375.52	370.74	364.87	364.88	361.75	V-THETA 2
	V-THETA ZA	26.80	28.01	26.93	23.08	23.62	31.53	36.79	39.80	39.83	V-THETA 2A
	M 2	0.5138	0.5114	0.5092	0.5139	0.5226	0.5242	0.5017	0.4754	0.4370	M 2
	M 2A	0.3935	0.3869	0.3822	0.4092	0.4295	0+4428	0.4055	0.3898	0.3836	M ZA
	TURN (PR)	42.242	39.677	38.964	38.085	36.820	35.239	35.446	37.421	41.339	TURN (PR)
	ΡZ	18.849	18.822	18.795	18,894	19.091	19.214	19.010	18.714	18.297	PZ
	P ZA	18.617	18.550	18.510	18,747	18.932	19.043	18.636	18.497	18.424	P ZA
	T 2	561.447	554.339	557.246	557.447	557.820	558.468	559.394	560.301	561.885	T 2
	T 2A	561.347	559.280	557.135	557.435	557.854	558.532	559.742	560+264	562.042	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (136°) - Station 2 (126°) - Station 2A (115°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14+98	9.99	4+98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36+685	38+219	39,371	39.754	40.138	DIA
STATION 1	BETA 1	3.276	2,540	2.096	1.524	1.964	1.461	1.590	0.742	0.450	BETA 1
STATION 2	BETA 2	46.816	44.602	43.646	42.326	40.817	40.155	42.395	43.808	47.736	BETA 2
	BETA(PR) 1	57.483	55.958	55.474	55.116	56+968	58.194	61.413	63.486	63.833	BETA(PR) 1
	BETA(PR) 2	25.406	27.596	28.016	30.294	33.513	36.177	37.959	41.661	45.648	BETA(PR) 2
	V 1	376.82	406.46	421.00	446.15	435.84	438.41	398.98	372.06	370.44	¥ 1
	V 2	582.25	577.27	564.03	587.39	586.94	587.10	582.63	551.33	520.04	¥ 2
	¥2 1	376.20	406.06	420.71	445.99	435.56	438.21	398.76	371.97	370.40	VZ 1
	VZ 2	398.45	409.59	422-61	434-25	444.02	448.17	429.47	397.08	349.13	VZ 2
	V-THETA 1	21.53	18.01	15.40	11.87	14.94	11.33	11.07	4.82	2.91	V-THETA 1
	V-THETA 2	424-54	406 .77	403-09	395.50	383.50	378.13	392.09	380.90	364.16	V-THETA 2
	V(PR) 1	699-8	725.4	742.3	779-B	799-0	631.5	833.4	833.Z	839.9	Y (PR) 1
	V(PR) 2	441-1	462-2	478-7	503-0	532.8	556+0	545.9	532.6	500.4	VIPRJ 2
	VTHETA PRI	-590-1	-601-1	-611-6	-639.7	-669.9	-706-6	-731.4	-765-6	-753-8	VTHETA PR1
	VTHETA PR7	-189-2	-214.1	-774-0	-753-7	-294.0	-327.7	-335.0	-153.3	-157.1	VTHETA PR2
		411 65	A10 07	476.94	451 54	484 82	717.42	767.83	750.40	756.76	
	11 2	613.79	620.86	627.95	649 19	677.52	705-86	727-13	734.21	741.30	11 2
	N 1	0 3414	0 3490	0 3874	0 4042	0 2045	0 3989	0.3420	0.3370	0.3355	ŭ ī
		0 5145	045070	0.5020	0 5312	0.5702	0 5 205	0 6141	043310 0 4943	0 4871	M 2
	M 601 1	0 4341	0.5110	0.5102	0.7000	0.3200	0.9209	0 754 2	0 7649	0 7408	MIGO 1 1
	M1001 0	0.0341	0.0089	0.0149	0.1097	0.1207	0.7909	0 4035	0.4400	0.1000	H(DO) 2
	MIPKJ 2	0.3898	0.4091	0.4240	0.4403	0.4726	0.4929	0.4835	044077	0.4375	
	TURNIPRI	32.077	28.362	27.458	24.024	23.473	22.071	23.343	21.930	10+293	TURNIPKJ
	r 1	14+443	14.074	14.071	14.772	14.670	14.702	144137	14+004	14 636	P 1
	¥ 2	18.892	18-842	10.933	19.031	14-109	14+511	19+237	18.690	10.232	P 2
	11	218+948	518.699	518+699	218+988	518.699	518+699	518.699	518.699	210-044	
	12	201-111	558.735	550.948	557.293	557+636	558.125	229+824	200.004	201-103	12
STATOR D	PCT SPAN	95.00	90.00	85.00	70-00	50.00	30-00	15.00	10-00	5.00	PCT SPAN
•••••	DIA .	33.207	33.564	33-921	34.992	36.420	37-648	38,919	39-276	39-633	DIA
STATION 2	BETA 2	66-816	44 -802	43-646	42.326	40.817	40.155	42.395	43.806	47.736	BETA 2
STATION 24	BETA ZA	3.610	3.702	3-450	2.470	2.779	3.556	4.371	5-219	5.372	BETA 2A
	¥ 2	582.25	577.27	584-03	587-39	586.94	587.10	582.63	551.33	520-04	¥ 2
	V 24	441.20	430.69	423.50	459-01	482.86	500.15	460.36	441-85	435.83	¥ 24
	V7 7	398-45	409.59	422-41	434-25	444-07	448.17	429.47	397.04	349.13	¥7 2
	W7 7A	440.32	479.78	472 77	458.54	482.19	499.00	458.79	439.77	433-41	¥7 24
	VE EN VETHETA 2	474.54	404.77	403.09	305.50	283.50	279-12	307.09	380.90	364.18	V-THETA 2
	V-THETA 24	37 70	77 41	75 49	19 70	22 41	31 01	35.07	40.17	40.77	V-THETA 24
	W D	21410	21401	22440 0 5103	17470	23471	D 5205	0 6 1 6 1	0 4942	0 4571	M 3
		0.2055	0.37.6	0.37102	0.7212	0.0200	0.5205	A 1033	V+4003	0 2904	M 2A
		0.3000	0-3168	0.3710	0.4030	0.4247	0.99901	27 022	U-3003	43 364	
	IUKNEPKI	43+205	41.099	40.130	37+854	70+018	30+241	31.948	30.40Z	72.20	
	r 2	10.092	19+945	19.423	14.7051	19.074	17+217	10 440	10.070	10.737	F 4 D 24
	r 28	18.568	18.505	10.440	18.720	10.924	14+003	10+008	10,347	10.727	7 4A T 2
	1 2	261.111	228.735	226.948	>>7.293	557+636	228.122	770.027 550 010	500.009	201.103	T 24
	1 2A	<b>261,408</b>	>59.117	557.251	>>7+447	>>1+7>U	358,207	220.013	200-103	201.321	1 28

τ.

### Table A-8.Biade Element Performance (Continued)Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 100.54Equivalent Rotor Speed = 4232.72Equivalent Rotor Speed = 100.54Equivalent Rotor Speed = 4232.72Circumferential DistortionStation 1 (166°) - Station 2 (156°) - Station 2A (145°)

ROTER D	PCT SPAN	94.99	90.00	64+99	70.00	50.00	30.00	14.98	9.99	4,98	PCT SPAN
	DIA	33.234	33.617	34.001	35+151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.820	5.498	5.804	5.801	5.571	4.988	5.308	6.055	6.040	BETA 1
STATION 2	BETA 2	46-554	44.027	43.312	41.933	40.662	39.456	40.998	43.872	48.305	BETA 2
••••••	BETA(PR) 1	54 895	53.213	52.413	53.379	55.411	56.937	59.885	62.019	65.289	BETA(PR) 1
	BETA(PR) 2	25.690	28.343	28.895	31.688	32.722	36.908	39.723	43.259	47.207	BETA(PR) 2
	V 1	403-29	433.83	449.88	452.57	444.59	443.96	410.67	379.59	333.96	V 1
	v 2	586.79	573.37	577.40	575.81	594.47	581.51	567.81	536.43	506.83	¥ 2
	vz 1	401-21	431.83	447.57	450.26	442.47	442.22	408.83	377.41	332.07	¥Z 1
	¥2 2	399.39	412.25	420.13	428.34	449.41	448.42	427.70	385.94	336.54	VZ 2
	V-THETA 1	40.89	41.57	45.49	45.74	43.16	38.60	37.98	40.03	35.14	V-THETA 1
	V-THETA 2	421.66	398.49	396.08	384.77	368.77	369.07	371.77	371.03	377.79	V-THETA 2
	V(PR) 1	697.7	721.1	733.8	754.8	779.4	810.6	814.9	B04-4	794.4	V(PR) 1
	V(PR) 2	443.2	468.4	479.9	503.4	534.5	561.6	557.2	531.0	496.3	V(PR) 2
	VTHETA PRI	-570.8	-577.5	-581.5	-605.8	-641.7	-679.3	-704.8	-710.4	-721.6	VTHETA PRI
	VTHETA PR2	-192.1	-222.4	-231.9	-264.4	-268.8	-336.8	-355.4	-363.2	-363.5	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684 B2	717.92	742.03	750.40	756.76	U 1
	u 2	613.79	620-86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	U 2
	й ї	0.3660	0.3946	0.4097	0.4122	0.4047	0.4041	0.3729	0.3440	0.3018	M 1
	H 2	0.5140	0.5083	0.5129	0.5109	0.5280	0.5155	0.5023	0.4729	0.4450	M 2
	M(PR) 1	0.6332	0.6559	0.6682	0.6875	0.7095	0.7378	0.7400	0.7290	0.7180	M{PR} 1
	M(PR) 2	0.3923	0.4152	0.4263	0.4467	0.4747	0.4979	0.4929	0.4681	0.4357	M(PR) 2
	TURN ( PR )	29.205	24.870	23.518	21.694	22.706	20.083	20.255	18.865	18.193	TURN (PR)
	P 1	14.659	14.890	14.982	14,981	14.946	15.006	14.836	14.686	14.485	P 1
	P 2	16.817	18.742	18,801	18.843	19.150	19.094	19.008	16.672	10.371	P 2
	T 1	518.699	518,699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	т 1
	<b>T</b> 2	559.340	556.945	555.119	556.150	556.865	557.569	558.543	559.493	561.237	Ť 2
			~~ ~~		-	<b>5</b> 0.00		15 00	10.00	E 00	ACT CONN
STATUR D	PUT SPAN	95.00	90.00	85.00	26.00	30.00	30.00	12.00	20 274	30 433	DTA
	DIA	33.207	33.704	33.921	34.992	J0472V	20 454	204717	42 972	37.023 4 9 9 0 5	DIR DITA D
STATION 2	BETA Z	40.224	44.027	45.512	91.933	40.002	370400	40.770	4J.012	40.JVJ 5 274	DETA 24
STATION ZA	BETA ZA	3+941	5+111	5+777	2000Z	2.777	5-247	4+277 647 81	534 43	5+210	951A 2A V 9
	V 2	280.17	212+21	577.40	212+01	274641	501-51	467 10	440 28	674 30	N 21
	V ZA	432.32	423.37	420.13	478.03	404.14	449 42	427 70	295.04	134.54	¥7 2
	¥2 2	377.37	412.22	420.13	420.34	447671	500 00	465 60	478.37	412.25	W7 74
	VZ ZA	434.53	300 40	417.0V	421.22	403.37	369.07	271 77	371 02	277 70	VE LA Vetheta 2
	VTINEIA 2	421.00	370.47	370.00	207011	200.11	30,00	377.011	30 07	30 07	V-THETA 24
	V-INETA ZA	20+13	27+2 <del>4</del> 0 5063	20+2+ 0 4120	6 5109	6 5 2 9 0	0 5155	0 5023	0.4729	0.4450	
		0 2000	0.2720	0 3480	0.4035	0.5200	0.5155	0 4007	0 2052	0 3793	
			40 315	20 773	20 340	37 843	36.961	1000-007	26.574	47.021	THON (OD )
		43+112	40.313	37.133	27.349	37.043	19.091	19.008	18.672	18.371	P 2
	F 4	10.017	10.142	16.437	18.722	18.654	19.085	18.642	16.507	18.437	P 24
	F 4A T 2	10+3+3 550.340	556 965	555.139	556.150	566.866	557 569	555 543	559 491	561.237	T 2
	T 24	2274240 886 889	557 184	555.193	556. 464	557.130	557_834	558 9P5	559.784	561.551	T 24
	• 64	227 = 200	JJ104J7	JJJ6 103	JJ000J00						

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 100.54Equivalent Rotor Speed = 4232.72Equivalent Weight Flow = 90.59<br/>Circumferential DistortionStation 1 (196°) - Station 2 (186°) - Station 2A (175°)

	OCT COAN	01.00		D/ 00	70.00						
AUTOR D	PUI SPAN	74477	90.00	34 001	70.00	50.00	30.00	14.98	9.99	4+98	PCT SPAN
STATION 1	DETA 1	324234	33+017 5 440	34.001	32-121	30.083	38-219	39.371	39 154	40.138	DIA
STATION 1	DETA 1	2.09Z	24047	2+414	7+201	4.249	4.104	4.338	4.463	4.236	BETAL
31A1104 2	051A 2 0514/001 1	40.772	43.201	44+013	43.890	42.072	40.013	42.896	45.795	50.908	BETA 2
	DETAIDON 1	35.773	24.432	22.122	34.980	20.901	20-822	61.062	62.732	64.988	BETA(PR) 1
	DETALPHI Z	22+113	21.000	28.888	31.093	32.765	36.109	38.504	41.370	46.992	BETA(PR) 2
	¥ I	373.22	412.47	412+30	430.61	424+52	416.72	395+38	373.01	342.24	V 1
	V 2	578.72	572.41	573.25	575+60	590.51	586.64	576.57	552.70	511.28	¥ 2
	V2 1	393.59	413.44	410.55	428.80	423.16	415.56	394.17	371.82	341.27	VZ 1
	VZ 2	394.72	405.44	407.65	414.80	438.16	444.79	421.61	384.64	321.89	¥Z 2
	V-THETA 1	38.95	40.90	37.90	39.48	33.67	30.25	29.90	29.02	25.28	V-THETA 1
	V-THETA 2	423.21	408.29	403.03	399.04	395.52	381.41	391.72	395.46	396.20	V-THETA 2
	V(PR) 1	694.9	710.8	718.0	747.3	776.6	803.5	814.7	811.6	807.2	V(PR) 1
	V(PR) 2	438.3	457 <b>.</b> 8	465.6	484.4	521.3	551.3	539+9	513.6	472.8	V(PR) 2
	VTHETA PR1	-572.7	-578.2	-589.1	-612.1	-651.2	~687.7	-712.9	-721.4	-731.5	VTHETA PR1
	VTHETA PR2	-190-6	-212.6	-224.9	-250.2	-28Z.O	-324.4	-335.4	-338.7	-345.1	VTHETA PRZ
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	U 2
	H 1	0.3586	0.3774	0.3744	0.3916	0.3859	0.3786	0.3587	0.3379	0.3095	<u>Ň</u> 1
	M 2	0.5123	0.5103	0,5090	0.5108	0.5245	0.5206	0.5108	6.4879	0.4492	M 2
	M(PR) 1	0.6304	0.6457	0.6521	0.6796	0.7059	0.7299	0.7390	0.7352	0.7299	M(PR) 1
M(PR) 2	M(PR) 2	0.3880	0.4060	0.4134	0.4299	0.4631	0.4892	0.4783	0-4534	0.4153	M(PR) 2
	TURN (PR)	29.729	26.765	26.237	23.895	24.233	22.801	22.650	21.467	18-106	TURN ( PR )
	P 1	14.770	14.918	14.903	15.001	14.960	14.953	14.902	14.796	14.617	P 1
	P 2	18.796	18.792	18.784	18.654	19.090	19.132	19.060	16.780	18.373	P 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518-699	TI
	T 2	558.887	556+593	555.210	555.920	556.440	557.095	557.842	559.395	560.968	T 2
	DET SDAN	95 00	90.00	<b>66.00</b>	70 00	50.00	30.00	15 00	10.00	E 00	<b>667</b> 6945
	DTA	7000	33 544	33 621	34 002	24 4 20	37 846	19.00	10.074	20 (22	PUT SPAN
STATION 2	BETA 2	551201	45 201	226721	41 99A	42 077	27.040	20.717	37+210	37+033	DIA D
STATION 24	067A 3A	408773	-2.01	3 744	12.070	42.012	40.013	42.070	42 . ( 72	50.908	DETA Z
STREEUN ZR	V D	2+472	576 41	20104	2+101 575 40	5.020	3.405	4.200	2.279	2+424	BETA ZA
	V 24	210012	272071 438 OF	426 07	272+00	270.21	260.04	210-21	22.10	511.28	¥ Z
	¥ 48	304 73	420.472	463471	434+02	417474	407.40	421.01	433.91	432.021	Y ZA
•	<u>VZ</u> Z	399.12	402.44	407.05	414.80	438+10	444.19	421.61	364.04	321.89	VZ 2
	VE ZA	428.31	428.01	427.03	423.42	476.96	488.41	450-17	431.84	430.01	VZ ZA
	V-INEIA 2	423.21	406.29	403-03	399.04	595 52	381.41	391+72	395.46	396.20	V-THETA 2
	V-THETA ZA	23.23	28.18	28.11	21.92	25.23	29.06	33+75	39.75	41.06	V-THETA 2A
	<b>H</b> Z	0.5123	0.5103	0.5090	0.5108	0.5245	0.5205	0.5108	0.4879	0+4492	N 2
		0.3843	0.3760	0.3739	0.3990	0.4203	0.4308	0.3962	0.3796	0.3776	M 2A
	TURN (PK)	43.699	41.433	40.889	41.121	39.024	37.149	38.511	40.429	45.348	TURN (PR)
	P Z	18.796	18+792	18.784	18.854	19.090	19.132	19.060	18.780	18.373	P 2
	M ZA	18.555	18.464	18.451	16.678	16.865	16.952	18.572	18.432	16.384	P 2A
	1 2	<b>558.887</b>	556.593	555.210	555.920	556.440	557.095	557.842	559.395	560,968	T 2
	T 2A	559.206	556.816	555.309	555.989	556.526	557.195	557.860	559.251	560.830	T ZA

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232,72 Equivalent Weight Flow = 90,59 Circumferential Distortion Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

-

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	8.133	7.973	8.154	7.758	7.948	7.454	8.512	7.281	9.709	BETA 1
STATION 2	BETA Z	45.864	44.766	44.578	43.539	45.112	43.276	48.052	51.857	56.706	BETA 2
	BETA(PR) 1	56.389	54.843	54+333	55.437	56.768	59.635	61.212	62.343	65.633	BETA(PR) 1
	BETA(PR) 2	25+954	27.370	27.677	30.401	34.054	37.534	41.941	44.567	47.406	BETALPRI 2
	¥ 1	375.05	400.75	412.18	414.14	415.09	394.04	361.42	371.63	322.75	¥ 1
	V 2	580.90	579.30	583.89	562.70	575.94	567.65	541.70	527.15	517-94	V 2
	V2 1	371.27	396.87	408.01	410.35	411.08	390.66	377.15	368.57	318.10	¥7_1
	VZ 2	404.51	411.29	415.90	422.36	420.29	412.81	361.47	325.11	283.98	ŶZ Z
	V-THETA 1	53.06	55.59	58.46	55.90	57.39	51.11	56.45	47.09	54.43	V-THETA 1
	V-THETA 2	416.90	407.94	409+B2	401.37	393.46	388.71	402.33	413.98	432.41	V-THETA 2
	V(PR) 1	670.7	689-2	699.8	723.3	750.1	772.8	783.Z	794-1	771.0	V(PR) 1
	V(PR) 2	449.9	463.1	469.6	489.7	507.5	521.3	486.9	457.2	420.3	V(PR) 2
	VTHETA PR1	-558.6	-563.5	-568.5	~595.7	-627.4	-666.8	-686.4	-703.3	-702.3	VTHETA PR1
	VTHETA PR2	-196.9	-212+9	-218.1	-247.8	-284.1	-317.1	-324.8	-320.2	~308.9	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
	U 2	613.79	620.86	627.95	649.19	677.52	705,86	727.13	734.21	741.30	Ũ Ž
	M 1	0.3398	0,3637	0.3743	0.3762	0.3770	0.3574	0.3457	0.3366	0.2915	<u> </u>
	M 2	0.5152	0.5146	0.5195	0.5174	0.5107	0.5023	0.4770	0.4631	0.4537	M 2
	M(PR) 1	0.6077	0.6254	0.6355	0.6570	0.6814	0.7010	0.7098	0.7193	0.6964	M(PR) 1
	MIPR) 2	0.3990	0.4114	0.4178	0+4349	0.4500	0.4613	0.4287	0.4016	0.3682	M(PR) 2
	TURN ( PR )	30.436	27.473	26.656	25.038	22.732	22.156	19.365	17.882	18.338	TURN (PR )
	P 1	14.748	14.899	14+979	14.999	15.022	14.939	14.969	14.945	14.741	P 1
	P 2	18.746	18.770	18.858	18.858	18.639	18.791	18.519	18.361	18.288	P 2
		518.699	518.699	518.699	516.699	518.699	518.699	518.699	518.699	518.699	T 1
	12	557 <b>.</b> 155	555.375	554.141	555.974	556.681	558.215	561.174	562.436	564.570	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70-00	50,90	30.00	15-00	10-00	5 00	867 50AN
	DIA	33.207	33.564	33 921	34.492	36-420	37.448	38,919	39.276	30.00	DIA
STATION 2	BETA 2	45.864	44.766	44.578	43.539	43,112	43.278	48-067	51.857	57-033	DETA 2
STATION 2A	BETA 2A	3.291	3.970	4.157	3.025	2.583	3-081	4-611	5_812	6.581	BETA 24
	V 2	580.90	579.30	583.89	582.70	575.94	567-65	541.70	527-15	517.94	V 2
	V 2A	438.71	428.84	428.22	458.00	466.00	405 85	422.55	413-05	616.80	V 24
	VZ 2	404.51	411.29	415.90	422.38	420.29	412.81	361.47	325.11	283.08	¥ • • • •
	VZ 2A	437.98	427.80	427.07	457.32	465.42	465.00	420.97	410.70	411.77	VL L V7 24
	V-THETA 2	416.90	407.94	409.62	401.37	393.46	368.71	402-33	413.98	432-41	V-THETA 2
	V-THETA 2A	25,18	29+69	31.04	24.17	21.00	25.03	33.95	41.80	47.50	V-THETA 24
	MZ	0.5152	0.5146	0.5195	0.5174	0.5107	0.5023	0.4770	0.4631	0-4547	1-10LIA 4A
	M 2A	0.3847	0.3764	0.3764	0-4027	0.4096	0.4092	0.3694	0-3604	0-3613	M 2A
	TURN(PR)	42.572	40.795	40,421	40.512	40.509	40.138	43.355	45,942	50.024	TURNIPES
	P 2	18.748	16.770	10.850	18.858	18.839	18.791	18.519	16.361	18.288	P 2
	P 2A	16,559	]8.484	18.468	18.716	18.752	18.711	18.309	18.244	16.243	P 24
	T 2	557.155	555.375	554.141	555.974	556.881	558.215	561.174	562.436	564 576	T 2
	T 2A	557.168	555.411	553.922	555.790	556.697	557.411	559.479	560.779	562.821	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (256°) - Station 2 (246°) - Station 2A (235°)

ROTOR D	PCT SPAN	94,99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35,151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.789	4.640	4.698	4.286	4.784	4.073	4.927	5.876	6.202	BETA 1
STATION 2	BETA 2	44.946	44.200	44.560	45.035	47.133	53.303	63.249	66.668	69.958	BETA 2
	BETA(PR) 1	55 844	57.864	57.766	56.904	60.498	64.205	66.035	67.894	71.556	BETA(PR) 1
	BETA(PK) 2	24.975	26.055	27.028	29.494	32.038	37.993	47.070	49.590	53.751	BETA(PR) 2
	¥ 1	350.22	371.24	377.13	377.05	371.28	336.33	319.23	294.16	245.02	¥ 1
	¥ 2	592.41	592.62	589.55	586.33	584.95	556.84	528.49	531.04	527.16	Ý Ž
	VZ 1	348.43	370.02	375.86	375.99	369.97	335.43	317.99	292.56	243.56	¥2 1
	VZ 2	419.29	424.85	420.06	414.33	397.81	332.50	237.71	210.19	160.58	¥Z 2
	V-THETA 1	35.32	30.03	30.69	28.18	30.96	23.89	27.41	30.11	26.47	Y-THETA 1
	V-THETA 2	415.50	413.15	413.66	414.84	428.58	446.14	471-59	487.32	495.01	V-THETA 2
	V(PR) 1	673.5	695.6	704.7	728.0	751.3	170.9	782.9	777.5	769.8	V(PR) 1
	V(PR) 2	462.5	472.9	471.6	476.0	469.5	422.5	349.6	324.8	305.8	V(PR) 2
	VTHETA PR1	-576.3	-589.0	-596.1	-623-4	-653.9	-694-0	-715-4	-720.3	-730.3	VTHETA PR1
	VTHETA PR2	-195.3	-207.7	-214-3	-234.4	-248.9	-259.7	-255-5	-246.9	-246-3	VTHETA PR2
	U 1 -	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
,	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	ů ž
	M I	0-3168	0-3363	0.3417	0.3416	0.3363	0-3040	0.2883	0-2653	0.2205	<u> </u>
	MZ	0.5250	0-5261	0.5235	6.5196	0.5176	0.4899	0.4619	0.4636	0.4592	H Z
	M(PR) 1	0-6092	0.6301	0.6385	Ú.6596	0.6805	0.6968	0.7071	0.7012	0-6929	M(PR) 1
	MIPRJ 2	0.4099	0.4196	0-4167	0.4218	0.4155	0.3717	0.3055	G.2836	0-2664	M(PR) 2
	TURN ( PR )	33.869	31.810	30.738	29.412	28.477	26.267	19-060	18-410	17.910	TURN (PR)
	P 1	14.641	14.975	15.020	15.039	15.042	14.973	14.968	14.852	14.643	P 1
	P 2	18.897	18.940	18.925	18.907	18.884	18.517	18.246	18.288	18.281	P 2
	Τ1	518.699	516.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	71
	T 2	559.100	557.242	556.707	558.574	559.912	563.325	567.995	569.376	571.610	ΤZ
										•	
STATCR D	PCT SPAN	95.00	90.00	85.00	70.00	50+00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.648	38.919	39.276	39.633	DIA
STATION 2	6ETA 2	44.946	44 • ž Q U	44.560	45.035	47.133	53.303	63.244	66.668	69.958	BETA 2
STATION 2A	BETA ZA	3.298	4.048	4.332	3,305	1.950	0 <b>.97</b> 2	1.889	3.081	4.111	BETA 2A
	V 2	592+41	592-62	589.55	586.33	584.95	556.84	528.49	531.04	527.16	¥ 2
	V 2A	462.63	455.39	456.97	467.46	450.97	435.68	403.98	394.19	399.43	V 2A
	VZ 2	419,29	424.85	420.06	414.33	397.81	332.50	237.71	210.19	180.58	VZ 2
	VZ 2A	461.66	454.24	455.65	466.63	450.60	435.46	403+56	393.40	398.12	VZ ZA
	V-THETA 2	418.50	413.15	413-66	414.84	428,58	446.L4	471.59	487.32	495.01	V-THETA 2
	V-THETA 2A	26.61	32.15	34 - 52	26.95	15.34	7.39	13.31	21.18	28.61	V-THETA 2A
	H 2	0.5250	0.5261	0.5235	0.5196	0.5176	<b>0.4899</b>	0.4619	0.4636	0.4592	M 2
	M 2A	0.4060	0,4001	0.4018	0.4107	0.3954	0.3807	0.3509	0.3418	0.3458	M 2A
	TURN (PR)	41.647	40.151	40.226	41.728	45.163	52.273	61.281	63.509	65.777	TURN (PR ]
	P 2	18.897	18.940	18.925	18.907	18.884	18.517	18.246	18.288	18.281	ΡZ
	P 2A	18.626	18.569	18.581	18.637	18.477	18,306	18.053	17.986	18.016	P 2A
	T 2	559.100	557.242	556.707	558.574	559+912	563.325	567.995	569.376	571.610	T 2
	T 2A	556-130	556.238	555.508	557.188	558.221	560.889	565.113	566.421	568.616	T 2A

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (286°) - Station 2 (276°) - Station 2A (265°)

ROTOR D	PCT SPAN	94.99	<b>40.00</b>	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.017	34.001	35.151	36.085	38.219	39.371	39.754	40-138	DIA
STATION 1	BETA 1	-6.861	-6.291	-6.045	-5.567	-4.709	-6.275	-5.914	-5.889	-5-931	BETA 1
STATION 2	BETA 2	43.967	44.076	44.362	46.561	51,629	58,959	67.734	70.730	74.394	BETA 2
	BETA(PR) 1	62+228	61.402	61.456	62.386	64.825	68.244	70.952	74.166	78.541	BETA(PR) 1
	BETA(PR) 2	26.239	25.661	25.721	26.939	31.629	39,998	52.023	56.609	60.905	BETA(PR) 2
	V 1	346.39	361.26	363.90	360.85	336.21	301.50	267.46	220.44	157.55	¥ 1
	V 2	585.05	596.56	601.73	603.63	581.06	547.71	515.66	508.44	512-60	¥ 2
	VZ 1	343.90	359.08	361.88	359.14	335.03	299.65	265.98	219-24	156.69	¥7 3
	VZ 2	420.94	428.57	430.20	415.03	360.60	282.27	195.29	167.73	137.86	VZ 2
	V-THETA 1	-41.38	-39.59	-36.32	-35.01	-27.95	-32.95	-27.55	-22.61	-16.28	V-THETA 1
	V-THETA Z	406.31	414.97	420.72	438.28	455.43	469.02	476.97	479.75	493.56	V-THETA 2
	V(PR) 1	738.0	750.2	757.3	774.8	787.6	608.5	815.0	803.5	788.8	V(PR) 1
	V(PR) 2	469.3	475.5	477.5	465.6	423.7	368.9	317.8	305.1	283.8	V(PR) 2
	VTHETA PR1	-653.0	-656.7	-665.3	-686.6	-712.8	-750.9	-770.4	-773.0	-773.0	VTHETA PR1
	VTHETA PR2	-207.5	-205.9	-207.2	-210.9	-222.1	-236.0	-250.2	-254.5	-247.7	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734.21	741.30	ŪŽ
	M 1	0.3133	0.3270	0.3295	0.3266	0.3039	0.2720	0.2409	0.1982	0.1414	Ň 1
	M 2	0.5150	0.5263	0.5314	0.5315	0.5093	0.4769	0.4463	6.4393	0.4421	H 2
	M(PR) 1	0.6675	0.6791	0.6857	0.7014	0.7119	0.7295	0.7342	0.7225	0.7079	M(PR) 1
	M(PR) Z	0.4131	0.4195	0.4217	0.4099	0.3714	0.3212	0.2750	0.2636	0.2448	M(PR) 2
	TURN ( PR )	35.989	35.742	35.735	35.449	33.213	28.303	19.022	17.656	17.731	TURN (PR)
	P 1	14.847	14.946	14.979	15.023	15.000	14.939	14.865	14.700	14.548	P 1
	P 2 ·	16.937	14+091	19.156	19.142	18.810	18.398	18.108	18.065	18-142	P 2
	T 1	518+699	518.699	518.699	518.699	518.699	518.649	518.699	518.699	518.699	T 1
	T 2	565.587	564.266	563.722	567.053	564.638	573.965	577.660	579.025	581.262	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10-00	5.00	ACT SPAN
	DIA	33.207	33.564	33.921	34.992	36-420	37.846	38.019	39.276	39.433	DTa
STATION 2	BETA 2	43.987	44.076	44.362	46.561	51.629	58,959	67.734	70.730	74.394	BETA 2
STATION 2A	BETA 2A	3.295	3.639	4.679	3.698	0.962	-5.454	-8-315	-7.732	-7.284	BETA ZA
	V 2	585.05	596.56	601.73	603.63	581.06	547.71	515.66	508-44	512.60	V 2
	V 2A	467.79	472.92	477.62	479.74	439.68	413.10	360.87	379.98	391.28	¥ 24
	VZ 2	420.94	428.57	430.20	415.03	360.60	282.27	195.29	167.73	137.86	¥7 2
	VZ ZA	467.02	471.85	476.39	478.69	439.52	411.08	376.67	376.31	387-85	¥7 2A
	V-THETA Z	406.31	414.97	420 <b>.7</b> 2	438.28	455.43	469.02	476.97	479.75	493.56	V-THETA 2
	V-THETA 2A	26.89	1.66	33.97	30.94	7.38	-39.25	-55.05	-51.09	-49.57	V-THETA 2A
	M 2	0.5150	0.5263	0.5314	0.5315	0.5093	0.4769	0.4463	0.4393	0.4421	H 2
	M 2A	0.4092	0.4144	0.4189	0.4195	0.3624	0.3572	0.3275	0.3262	0.3354	M 24
	TURN(PK)	40.691	40.236	40.283	42.861	50.647	64.357	75.975	78.389	81.614	TURN(PR)
	P 2	16.937	19.091	19.156	19.142	18.810	18.398	18.108	18.065	18.142	P 2
	P 2A	16.535	18.568	18.592	18.563	16.207	17.995	17.783	17.782	17.877	P 2A
	T 2	565.587	564.266	503.722	567.053	569.836	573.965	577.660	579.025	581.262	T 2
	T 2A	561.961	560.653	559.975	563.447	566.260	570+640	574.956	576.596	578.979	T ZA

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

,

ROTOR D	PCT SPAN	94, 99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33+017	34.001	35.151	36.665	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-23.657	-22+520	-21.469	-26.439	-21.745	-24.021	-24.433	-24.721	-25.866	BETA 1
STATION 2	BETA 2	45.457	46.214	49.203	48.503	55.704	61.720	74.846	79.057	85.154	BETA 2
	BETA(PR) 1	69.878	66.963	68.073	68.401	70.175	72.613	73.997	74.422	75.076	BETA(PR) 1
	BETA(PR) 2	28.383	31.525	36.528	32.792	37.007	44.293	65.120	72.822	62.311	BETA(PR) 2
	¥ 1	291.43	306.68	322.20	322.94	310.45	286.07	269.10	264.26	257.52	A 1
	V Ż	562.23	537.84	506.01	552.12	541.77	525.88	475.70	460.12	457-01	Ϋ́́Ζ
	VZ 1	266.94	283.28	299.84	302.61	268.34	261.27	244.96	240.01	231-67	¥2 1
	VZ 2	394.37	358.30	330.62	365.81	305.20	249 03	124.33	87.33	38.61	¥2 2
	V-THETA 1	-116.94	-117.49	-117.92	-112.77	-115.01	-116.44	-111.29	-110.50	-112-42	V-THETA 1
	V-THETA 2	400.71	401.03	383.06	413.52	447.48	462.89	459.05	451.69	455.36	V-THETA 2
	V(PR) 1	775.9	789.2	803.0	822.1	850.2	874.3	888.6	893.7	899.5	V(PR) 1
	` V(PR) 2	448.3	420.4	411.4	435.2	382.4	348.3	295.7	295.6	288.5	V(PR) 2
	VTHETA PK1	-728.6	-736.6	-744.9	-764.3	-799.8	-634.4	-854.1	-660.9	-869.2	VTHETA PRI
	VTHETA PR2	-213.1	-219.8	-244.9	-235.7	-230.0	-2+3.0	-268.1	-282.5	-285.9	VTHETA PR2
	U 1	611.65	619.07	626.96	651.56	684.82	717.92	742.83	750.40	756.76	U 1
-	U 2	613.79	620.86	627.95	649.19	677.52	705.86	727.13	734-21	741.30	Ŭ Ž
	M 1	0.2628	0.2768	0.2910	0.2917	0.2802	0.2579	0 2424	0-2380	0.2319	Ă Î
	M 2	0.4903	6.4687	0.4400	0.4811	0.4709	0.4554	0.4098	0.3958	0-3924	H 2
	M(PR) 1	0.6498	6.7122	0.7253	0.7425	0.7675	0.7883	0.8005	0.8050	0.8100	M(PR) 1
	M(PR) 2	0.3909	0.3664	0.3578	0.3792	0.3323	0.3016	0.2547	0.2544	0-2478	M(PR) 2
	TURN (PR)	41.496	37.438	31.546	35.611	33.187	28.378	8.950	1.660	-7.207	TURN(PR)
	P 1	13.929	14.025	14.081	14.071	14.086	14.078	14.064	14.066	14-036	Ρ 1
	ΡZ	18.608	18.320	17.993	18.463	18.386	18.188	17.671	17.571	17.594	P 2
	T 1	518.699	510.699	518.699	518.699	518.699	518.699	518.699	518.699	518-699	TI
	T 2	573.431	572.058	571.667	573.521	575.281	577.843	579.645	580.077	581.772	7 2
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15-00	10.00	5-00	PCT SPAN
	DIA	33,207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	GETA 2	45.457	40.214	49.203	48.503	55.704	61.720	74.846	79.057	85.154	BETA 2
STATION ZA	BETA 2A	3.351	3.158	2.929	2.991	0.561	-8.232	-12.935	-12.724	-12.672	BETA ZA
	V 2	562.23	537.84	506.01	552.1Z	541.77	525.68	475.70	460.12	457.01	V Z
	V 2A	431.92	431.28	433.33	421.39	392.03	367.50	343.58	342.12	364 .82	¥ 2A
	V2 2	394.37	358.38	330.62	365.81	305.20	249.03	124.33	87.33	38.61	¥Z 2
	VZ 2A	431+18	430.61	432.75	.420.78	391.93	363.58	334.70	333.54	355.69	VZ 2A
	V-THETA 2	400.71	401.03	383.06	413.52	447.48	462.89	459.05	451-69	455.36	V-THETA 2
	V∸THETA ∠A	25.25	23.76	22.14	21.99	3.84	-52.60	-76.87	-75.31	-79.98	V-THETA 24
	M 2	0.4903	0+4687	U.4400	0.4811	Ú.4709	0.4554	0.4098	0.3958	0.3924	M 2
	H ZA	0.3737	0.3736	0.3756	0+3641	0.3375	0.3151	0.2935	0.2921	0.3113	N ZA
	TURN ( PR )	42.105	45.055	46.274	45.510	55,124	69.898	87.725	91.733	97.798	TURN (PR )
	P 2	18.608	18.320	17.993	18+463	18.386	18.188	17.671	17.571	17.594	P 2
	P ZA	18.137	18+112	18.115	17.967	17.764	17.612	17.539	17.562	17.715	P 2A
	T 2	573.431	572.058	571.667	573.521	575.281	577.843	579.645	50.077	581.772	T 2
	T 2A	571.369	569.971	569.619	572.055	574 237	577.420	579.892	580.627	582.510	T 2A

### Table A-8, Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.72 Equivalent Weight Flow = 90.59 Circumferential Distortion Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

ROTOR D	PCT SPAN	54.99	40,00	54.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35,151	36.685	36.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-11.179	-10.560	-10.196	-10.048	-10.115	-9.670	-9.355	-9.278	-10.320	BETA 1
STATION 2	BETA 2	51.969	53.427	53.687	50.400	50.065	50.307	52.765	57.688	62.812	BETA 2
	BETA(PR) L	64.456	63.265	63.027	63.412	64.746	65+444	66.434	68.093	71.960	BETA(PR) 1
	BETA(PR) 2	31.449	34.045	40.548	35.410	33.474	38.581	47.852	52.790	58.566	BETA(PR) 2
	¥ 1	329.05	350.09	356.87	363.42	358.31	360.89	353.87	327.32	266.35	V 1
	V 2	527.11	514.95	478.40	530.55	568.93	552.37	497.07	474.47	453.20	¥ 2
	VZ 1	322.80	344.15	351.23	357.84	352.72	355.72	349.10	322.99	262.01	¥Z 1
	VZ 2	324.74	366.83	283-34	338+17	365.10	352.48	300.39	253.34	206.90	VZ 2
	V-THETA 1	~63.79	-64.16	-63.17	-63.41	-62.93	-60.61	-57.51	-52.76	-47.71	V-THETA 1
	V-THETA 2	415.18	413.55	355.54	408.78	436.11	424.67	395.25	400.56	402.80	V-THETA 2
	V(PR) 1	748.6	765.0	774.4	799.5	826.8	856.0	873.2	865.7	946.1	VEPR) 1
	V(PR) 2	380.7	\$70.3	372.9	414.9	437.9	451.5	448.3	419.5	397.2	VEPR) 2
	VTHETA PR1	-675.4	-683.2	-690.1	-715.0	-747.7	-778.5	-800-3	-803.2	-804.5	VTHETA PR1
	VTHETA PR2	-198.6	-207.3	-242.4	-240.4	-241.4	-281.2	-331.9	-333.6	-338.5	VTHETA PR2
	U 1	611.65	619+07	626.96	651.56	684-82	717.92	742.83	750.40	756.76	U 1
	U 2	613.79	620.86	627.95	649.19	677+52	705.86	727.13	734.21	741.30	U 2
	M 1	0.2973	0.3167	0.3230	0.3290	0.3243	0.3267	0.3202	0.2957	0.2399	M 1
	M 2	6.4591	0.4485	0.4161	0.4628	0.4975	0.4819	0.4314	0.4110	0.3916	H 2
	M(PR) 1	0.6764	0.6921	0.7008	0.7238	0.7483	0.7748	0.7901	0.7821	0.7622	M(PR) 1
	M(PR) 2	0.3315	Ú.3225	0.3243	0.3620	0.3829	0.3939	0.3891	0.3634	0.3431	M(PR) 2
	TURN (PR)	33.007	29.221	22.479	28+004	31.290	26.919	18.676	15+405	13.493	TURN ( PR )
	P 1	13.844	13.969	13.979	13.967	13.958	13.968	14.013	13.917	13.717	P 1
	P 2	18.146	17.944	17.605	18.157	18.687	18,541	17.911	17.712	17.562	P 2
	т 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	516.699	518.699	T 1
	τ 2	571.686	570.601	569.395	570.265	571.244	572.179	572.964	573.239	574.564	T 2
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15-00	10-00	5-00	PCT SPAN
• • • • • •	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	51.969	53.427	53.687	50.400	50.065	50.307	52.765	57.688	62-812	BETA 2
STATION 2A	BETA ZA	3.555	1.400	-0.289	-0.390	1.604	-1.456	-2.715	-2.172	-1-866	BETA ZA
	¥ 2	527.11	514.95	478,46	530.55	568.93	552.37	497.07	474.47	453.20	¥ 2
	V 2A	383.61	381.39	379.66	391.60	401.45	390.81	355.30	349.03	356.15	V 2A
	¥Z 2	324.74	306.83	283.34	338.17	365.10	352.48	300.39	253.34	206.90	VZ 2
	VZ ZA	382.87	361.27	379.64	391.55	401.20	390.54	354.72	348.56	357.71	VŽ ZA
	V-THETA 2	415.18	413.55	385.54	408.75	436.11	424.67	395.25	400.56	402.80	V-THETA 2
	V-THETA 2A	23.79	9.32	-1.91	-2.67	11.23	-9.93	-16.82	-13.22	-11.65	V-THETA 2A
	M 2	0.4591	0.4485	0.4161	0.4628	0.4975	0.4819	0.4314	0.4110	0.3916	H 2
	M ZA	0.3310	ü.3292	0.3280	0.3383	0.3467	0.3368	0.3054	0.2998	0.3074	H 2A
	TURN(PR)	45.413	52.026	53.976	50.788	48.441	51.703	55.383	59.760	64.585	TURN(PR)
	P 2	18.148	17.944	17.605	18.157	16.687	18+541	17.911	17.712	17.562	P 2
	P 2A	17.883	17.874	17.855	17.915	17.978	17.902	17.705	17.685	17.744	P 2A
	T 2	571.686	570.601	569.395	570.265	571.244	572.179	572.964	573.239	574.564	T 2
	T 2A	571.281	570.480	569.379	570.371	571.443	572.931	573.865	574.156	575.677	T 2A

227

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

ROTOR D	PCT SPAN	94.99	90.00	84.99	70.00	56.60	30.00	14 09		6 00	007 FR.1.
	DIA	33.234	33-617	34-001	35-151	36.685	36.219	30 271	7.77	9490 (A 196	PUI SPAN
STATION 1	BETA 1	-3.35B	-3-538	-3.473	-3-407	-2.199	-2.207	-> 227	-2 243	-2.261	
STATION 2	6ETA 2	54.976	54.979	54-271	51-662	50-075	40.034	- <u>202</u> 37 61 774	-20243	-2+271	BEIA L
	BETA(PR) 1	64.811	02.891	62.380	63.297	53 116	40 + 7 34	24+117	22.019	39.100	BEIA 2
	BETAIPR) 2	15.858	17.757	26-564	33 209	36 671	34 330	41 303	01.012	600.83	BETA(PR) 1
	¥ 1	263.08	291.05	361.30	300 46	204011	301 03	41.372	70+293	47.905	BETALPR) 2
	V 2	536-66	549.45	503.29	494 17	212+12	501.93	299+19	280.78	275+95	V I
	¥7 1	262.62	290 49	200 75	707.12	314 00	201-04	487.62	401-48	461.77	V 2
	¥7 2	367.95	216 47	300.13	277.72	314490	301.00	299.50	286.51	275+71	VZ 1
	V-THE TA 1	-15 61	-17 04	273-07	300.29	310-09	333.18	300.09	258.95	236.89	VZ 2
	V-THETA 2	439 46	-1/070	-10+23	-11-80	-13.19	-11.63	-11.70	-11.22	-10-84	V-THETA 1
	V(99) 1	417 0	430412	400.00	314+11	310.54	382.39	360.99	361.31	395.82	V-THETA 2
	V/DP1 2	336 6	027.2	040+1	00/-4	096+4	715+6	734+9	735+5	736.2	V(PR) 1
	VIELIA DD1	525+5	22102	329.4	358.9	380.8	413.7	400.8	375.1	354+0	V(PR) 2
	VINCIA PAL	->>0++	-201-2	-214.8	-296.2	-621.1	-648.9	-671.1	-677.3	-682.6	VTHETA PR1
	VINCIA PRZ		-101.0	-148.9	-196.6	-230.9	-244.2	-264.5	-270.4	-262.2	VTHETA PR2
	<b>N 1</b>	244.92	249.24	556+54	578.38	607.91	637.29	659.40	666.13	671.77	Ul
	U 2 	244.00	221+13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	U 2
•	M L	0.2370	0.2625	0.2719	0+2711	0.2846	0+2724	0.2705	0.2586	0.2487	н 1
		0.4732	0+4860	0.4441	0+4263	0-4254	0.4490	0.4270	0.4047	0.4048	M 2
	M(PK) 1	0.5558	(-5750	0.5853	0.6022	0.6268	0.6457	0.6631	0.6631	0.6635	MIPR] 1
	H(PK) 2	0.2870	0.2929	0.2907	0.3161	0.3405	0.3658	0.3524	0.3290	0.3103	M(PR) 2
	TURNEPRI	45.923	+5.136	35.516	30.090	20.403	28.884	24.652	20.935	20.211	TURN(PR)
	P 1	13.906	14.003	14.331	14.006	14.073	14.036	14.067	14.007	13.957	P 1
	P 2	18.034	18.182	17.726	17.623	17.745	18.048	17.835	17.630	17.637	P 2
		518.699	518.699	518.699	518.699	516.699	518.699	518.699	518.699	518.699	Ťī
	12	559.149	557 <u>+32</u> 9	555.546	556.150	556.574	553.470	557,905	558.742	559.346	T 2
					N						
STATOR D	PCT SPAN	95.00	90.00	85.00	70.00	56.00	36-00	15-00	10-00	5.00	OCT CDAN
	UIA	33.207	33.564	33.921	34.992	36-420	37-648	38.919	39.276	20 6 2 2	DIA
STATION 2	BETA 2	54.476	54.979	54.271	51.662	50.675	48-934	51.774	55.619	57.033	DETA 2
STATION ZA	BETA ZA	2.921	1.628	-0.762	-2.030	9. 152	1.693	4.995	5 004	4 027	DETA DA
	¥ 2	526.60	549.65	503.28	484 12	463.32	507.64	485.42	461 49	441 77	DETA ZA
	V 2A	358.90	349.80	340.79	363.88	377.86	382.01	374 71	241 03	340 01	V 2
	V2 2	307.98	315.43	293.89	300-29	310.09	433.18	300.09	258 46	200.01	¥ 2A
	VZ 2A	358.43	349.73	340.75	363.61	377.77	381.70	376 41	240 34	230+07	¥4 4
	V-THETA 2	439.48	450.12	406-56	379.71	370.54	387.24	380.00	201 23	200,27	VL ZA
	V-THETA 2A	16.29	9.94	-4-53	-12.89	2.47	11 29	34 33	201621	377+82	V-THEIA 2
	M 2	0.4732	6.4866	0-4-41	0.4263	0.4254	0 660	20.23	21+24	31.58	V-THEIA ZA
	M ZA	0.3121	0.3046	0-2970	0.3172	0.3265	0+4450	U+727U	0.214	0.4048	
	TURN (PR)	54.056	53.350	55.633	53.659	49.703	u7 162	47 40E	10 311	0.3199	
	P 2	18.034	18.182	17.724	17.672	17.745	16 049	47+002	20.110	24+017	TURNEPRE
	P ZA	17.432	17.334	17.28	17.421	17 431	17 671	17 510	17-030	17.637	P 2
	T 2	559.144	557 . 324	555-544	556.154	174-JI 555 574	11.07/1	17-018	11-431	114457	P ZA
	T 2A	560.962	559 304	57.7.2	558.581		JJJ3047U	227.903	226+142	>>9-346	T 2
			2278004			224.52	200.030	200.203	201.267	561.924	T ZA

### Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stalor DPercent Equivalent Rotor Speed = 89.25Equivalent Rotor Speed - 3757.35Equivalent Weight Flow - 79.78<br/>Circumferential Distortion<br/>Station 1 (46°) - Station 2 (36°) - Station 2A (25°)

RUTOR D	PCT SPAN	94.99	<b>40.00</b>	84.99	70.00	50.00	30.00	14.98	9.95	4.98	PCT SPAN
	ÚΙΑ	33.234	33.617	34-001	35.151	36.685	36.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.040	4.746	5.187	3.942	4.784	2.944	3.681	3.751	5.702	BETA 1
STATION 2	BETA Z	49.042	46.729	40.012	44.062	43.327	42.160	44.531	47.568	51.898	BETA 2
	BETA(PR) 1	54,985	53.492	53.514	54.825	55.349	57.765	60.460	62.442	65.482	BETA(PR) 1
	BETA(PR) 2	26.487	27.396	28.466	33.167	35.579	38.081	41.793	45.011	46.452	BETAIPRI 2
	V 1	359.66	384 .54	387.30	389.67	398.60	389.81	361.35	336.90	294.54	V Í
	V 2	503.65	508.73	508.59	494.65	446.66	501.03	463.07	462.04	458.91	νz
	VZ 1	358.26	383.21	385.71	368.75	397.19	389.25	360.54	336.12	293.05	VZ 1
	VZ Z	330.14	348.71	353.22	355.44	362+61	370.97	343.76	311.20	282.75	VZ 2
	V-THETA 1	31.6u	31.82	35.01	26.79	33.24	20.02	23.19	22.04	29.26	V-THETA 1
	V-THETA 2	360,35	376.41	365.92	343.95	342.03	335.90	338.18	340.43	360.58	V-THETA 2
	V(PR) 1	624.4	644.1	648.7	674.8	698.6	729.8	731.3	726.5	706.2	V(PR) 1
	V(PR) 2	368.9	392.8	401.8	424.6	446.1	471.9	462.0	441.0	411.2	V(PR) 2
	VTHETA PR1	-511.4	-517.7	-521.5	-551.6	-574.7	-617.3	-636+2	-044.1	-642.5	VTHETA PR1
	VTHETA PR2	-164.5	-180.7	-191.5	-232.3	-259.4	-290.7	-307.3	-311.3	-297.5	VTHETA PR2
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	υź	544.80	551.13	557.43	576.28	601+43	626.58	645.47	651.75	658.04	υz
	M 1	0.3255	6.3486	0.3512	0.3534	U.3617	0.3535	0.3271	6.3045	0.2657	H 1
	<u>N 2</u>	0.4470	6-4523	0.4528	0.4397	U.4433	<b>0.4461</b>	0.4284	0.4088	0.4055	M 2
	M(PR) 1	0.5651	0.5839	0.5881	0.6119	0.6338	0.6618	0.6626	0.6568	0.6370	MIPRI 1
	M(PR) 2	0.3273	U.3492	0.3577	0.3775	0-3966	0.4201	0_4097	0.3902	0.3633	M(PR) 2
	TURN ( PR )	28.498	26+096	25.048	21.660	19.788	19.739	18.760	17.537	19.140	TURN (PR)
	P 1	14.639	14.802	14.612	14.838	14.894	14.902	14.795	14.690	14.521	P 1
	P 2	17.752	17.836	17.857	17.770	17.912	17.996	17.866	17.685	17.663	₽ 2
	T 1	518.699	518.699	518.699	518.699	518.699	518.699	516.699	518.699	518.699	T 1
	T 2	549.507	547.979	546.590	547.023	547.167	545,910	>48.555	549.316	550.451	T 2
STATOR D	PCT SPAN	95.00	50.00	85.00	70.00	50.00	30.00	15.00	10.60	5.00	DCT SDAN
	LIA	33.207	33.564	33.921	34-992	36-420	37.848	38.919	39.276	39.433	DIA
STATION 2	BETA Z	44.04Z	46.729	46.012	44-462	43-327	42.100	44.531	+7-568	51.498	AFTA 2
STATION ZA	BETA 2A	3.430	2.821	1.576	0.613	1.476	2.905	4.509	5.311	5.312	BETA ZA
	¥ 2	503.65	508.73	508.59	494-65	498.66	501.03	483.07	462.04	456.91	¥ 2
	V 2A	360.00	355-34	347.27	370.89	374.56	385.57	364.36	356.30	363.94	V ŽA
	VZ 2	330.14	346.71	353.22	355.44	362.61	370.97	343.76	311.20	282.75	¥7 2
	VZ ZA	359.35	354.90	347.12	370.63	374 35	364.73	363.05	354.63	352.17	¥2 24
	V-THEIA 2	360.35	370.41	365.92	343.99	342.03	335.90	338.18	340.43	360.58	V-THETA 2
	V-THETA ZA	41.58	17.49	9.55	3.97	9.65	19.52	28.63	32.97	32.74	V-THETA 24
	M 2	n 4470	1.4672	6.4528	Ú-4397	0.4433	0.4461	0.428+	C.4088	0.4055	M 2
	· · ·	0.47770	0.472.5								
	M ZA	0.3164	0.3127	C+3058	0.3270	0.3302	0.3400	0.3206	0.3132	0.3107	M ZA
	M ZA Turn(PR)	0.3164	0.3127 43.507	C.3058 44.436	0.3270	0.3302 41.831	0.340C 39.196	0.3206 39.925	0.3132 42.151	0.3107	M 2A TURN ( PR )
	M ZA Turn(Pr) P I	0.5164 45.605 17.752	0.3127 43.507 17.636	C+3058 44+436 17+257	0.3270 42.447 17.776	0.3302 41.831 17.912	0.3+0C 39.196 17.996	0.3206 39.925 17.866	0.3132 42.151 17.685	0.3107 46.480 17.663	M 2A TURN(PR) P 2
	N ZA Turn(Pr) P 1 P 14	0.3164 45.605 17.752 17.472	0.3127 43.507 17.636 17.418	C.3058 44.436 17.857 17.344	0.3270 42.447 17.778 17.514	0.3302 41.831 17.912 17.553	0:3400 39:196 17:996 17:628	0.3206 39.925 17.866 17.461	0.3132 42.151 17.685 17.406	0.3107 46.480 17.663 17.395	M 2A TURN(PR) P 2 P 2A
	M ZA TURN(PR) P I P IA T 2	0.3164 45.605 17.752 17.472 549.507	0.3127 43.907 17.636 17.418	0.3058 44.436 17.857 17.304 546.590	0-3270 43-447 17-778 17-514 547-023	0.3302 41.831 17.912 17.553 547.167	0+3400 39+196 17-996 17+628 545+910	0.3206 39.925 17.866 17.461 545.555	0.3132 42.151 17.685 17.406 549.316	0.3107 46.480 17.663 17.395 550.451	M 2A TURN(PR) P 2 P 2A T 2

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 89.25Equivalent Rotor Speed = 3757.35<br/>Circumferential Distortion<br/>Station 1 (76°) - Station 2 (66°) - Station 2A (55°)

.

-

RGTCR U	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4-58	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40-138	DIA
STATION 1	BETA 1	3.669	3.160	2+254	1.735	1.661	1.782	1.785	2.156	3, 355	BETA I
STATION 2	beta 2	40.264	44+245	43,131	42.103	40.725	40.037	41.718	45.477	49-629	6ETA 2
	BETALPRJ 1	58.045	56.157	57.936	55.646	57.133	58.921	62,114	62.659	64.525	RETAIPEN 1
	EETA(PR) 2	25.558	20.107	26-427	28.734	34.057	36.497	39.316	42.340	46 705	BETALPR 2
	Vì	326.23	330.50	340.50	387.50	385.73	377.28	343.50	338.13	311.93	¥ 1
	V 2	517.37	525.51	532.73	534.99	516.59	518.58	506.53	483.01	454 . 78	¥ Z
	VZ 1	325.55	329.99	340.23	387.32	385.55	377.05	343.27	<u>37-84</u>	311.36	¥2 1
	VZ 2	357.07	376.45	388.76	396.91	391.34	396 55	377.36	338.05	294-09	V7 2
	V-THETA 1	20.99	18.22	13+42	11.74	11.18	11.73	10.70	12.73	18-25	V-THETA 1
•	V-THETA 2	373.81	366.66	364.21	358.67	336.90	333.18	336.43	343.72	345.41	V-THETA 2
	V(PR) 1	615.2	625.5	<b>640</b> .9	686.4	710.5	730.4	734.0	735.6	723.9	VIPEL 1
	V(PR) 2	396.5	419.2	434 2	452.7	472.6	494.0	488.8	458.3	429-6	VIPR) 2
	VTHETA PR1	-522.0	-531.3	->+3-1	-566+6	-596.7	-625.6	~648.7	-653.4	-653.5	VTHETA PRI
	VTHETA PR2	-171.0	-184,5	-193.2	-217.6	-264.5	-293.4	-309.0	-308.0	-312.1	VTHETA PRZ
	U 1	542.95	549.54	556.54	578.36	607.91	637.29	659.40	666.13	671.77	U 1
	U 2	544.86	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	υž
	M 1	0.2947	u.2987	0.3079	0.3513	0.3497	0.3419	0.3106	0.3057	0.2816	# 1
	M 2	0.4577	0.4660	0.4734	0.4753	0.4580	0.4617	0.4482	0.4263	0.4003	Ħ 2
	M(PR) 1	0.5558	0 <b>.</b> 5652	0.5795	0.6223	0.6441	0.6618	0.6637	0.6650	0.6535	M(PR) 1
	M(PR) 2	0,3507	0+3717	<b>0.3858</b>	0.4022	0.4190	0.4398	0.4325	0.4045	0.3782	M(PR) 2
	TURN (PR)	32.490	32.051	31.509	26.914	23.094	22.476	22.891	20.424	17.930	TURN (PR)
	P 1	14.602	14.632	14.681	14.936	14.942	14.894	14.782	14.767	14.651	P 1
	P 2	17.974	18.068	18.173	18.246	18.112	18.208	18.108	17.889	17.656	P 2
	T 1	510.699	518.699	518.099	518.699	518.699	516.699	518.099	518.659	518.699	71
	T 2	554.007	552.260	550.539	551.060	551.010	547.433	552.747	553.697	554+206	T 2
STATOR D	PCT SPAN	95.00	96.60	<b>85.00</b>	70.00	50-00	30-00	15.00	10 00	5 00	OCT CDAN
	LIA	33.207	33.564	33,921	34, 992	36.420	37-646	38.010	30 374	20.432	DIA
STATION 2	EETA 2	40.204	44.745	43,131	H2-103	40.725	40-037		376210	27.033	DIA DETA D
STATION 2A	EETA ZA	3.850	3.786	3.472	2.742	2.341	3.442	4. 333	4.985	5 176	BETA VA
	V 2	517.37	525.51	532.73	534.99	516.59	518-58	506-53	483.01	454.78	
	V 2A	392.19	365.65	378.19	410.39	430.03	435.13	410-59	392.57	385.87	V 2A
	VZ 2	357.67	316.45	358.75	396.91	391.34	396.55	377.36	338-05	294.09	V7 2
	VZ ZA	391.31	384.78	377.49	409.87	427-58	434.19	409-21	390.86	344-03	
	V-THETA 2	373.81	306.66	364.21	358.67	336.90	333.18	336.43	343.72	345.91	V-THETA 2
	V-THETA 2A	26.33	25.46	22.90	19.63	17.56	26.04	31.01	34.09	34.79	V-THETA 2A
	M 2	6.4577	U.466C	6.4734	0.4753	U-4580	0.4617	0 4482	0.4263	N-4003	H 2
	M IA	Ú.3444	90د3+0	0.3326	0.3617	U-3793	0.3853	0.3613	0.3448	0.3386	M 24
	TUKN(PK)	42.413	40.458	39.054	34.354	36.364	36.547	37.289	40.385	44.346	TURN ( PR )
	Ρ2	17.974	10.068	18.173	18.246	16.112	16.208	18.108	17.889	17.656	P 2
	P 2A	17.750	17.712	11.672	17.880	16.030	18.070	17.629	17.702	17.647	H ZA
	T 2	554.067	:52.260	550.539	551.060	551.016	547.433	552.747	553.697	554.206	T Z
	T ZA	552.525	>5Ú+823	549 <b>.</b> 214	549 <b>.</b> 761	550+174	546.386	551.331	552,285	552.901	Ť ZA

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 89.25Equivalent Rotor Speed - 3757.35Equivalent Weight Flow = 79.78<br/>Circumferential Distortion<br/>Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

-

ROTOK D	PCT SPAN	94.99	9Ú.OU	64.99	70.00	50.00	00.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	<b>53.617</b>	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	5ETA 1	1.675	2.203	2.637	2.845	1.529	2.278	0.841	1.159	0.451	BETA 1
STATION 2	beta z	45.265	43.690	42.803	41.758	40.743	39.738	41.014	43.965	47.012	BETA 2
	BETA(PR) 1	59.464	57.665	56.184	55.254	57.138	58.858	62.112	62.967	68.540	BETA(PR) 1
	beta(PR) 2	24 - 494	27.584	28.224	30.858	33.627	36.555	39.627	42.849	47.000	BETA(PR) 2
	V 1	314.74	339.87	361.27	388.29	386.20	376.38	346.37	336.54	263.29	V l
	V 2	528.47	515.76	519.38	518+41	520.24	518.73	504.85	479.52	450.71	V 2
	VZ 1	314.60	339.61	360.83	387.62	386.04	376.03	346.27	336.41	263.25	VZ 1
	VZ 2	371.95	372491	381.06	386.69	393.99	398.39	380.18	344.46	306.75	VZ 2
	V-THETA 1	9.22	13.06	17.68	19-27	10.30	14.96	5.08	6.81	2.07	V-THETA 1
	V-THETA 2	375.40	356+31	352.90	345.23	339.40	331.20	330.65	332.23	329.09	V-THETA 2
	V(PR) 1	619.0	634.9	648.3	680.4	711.5	727.1	740.3	740.2	719.6	V(PR) 1
	V(PR) 2	406.7	420.7	432.5	450.5	473.4	496.6	494.6	470.8	450-6	V(PR) 2
	VTHETA PR1	-533.7	-536.5	-536.7	-559.1	-597.6	-622.3	-654.3	-659.3	-669.7	VTHETA PR1
	VTHETA PR2	-169.5	-194+8	-204.5	-231.0	-262.0	-295.4	-314.8	-319.5	-329.0	VTHETA PR2
	U 1	542.95	549=54	556.54	578.38	607+91	637.29	659.40	666.13	671.77	U 1
	U 2	544.00	551.13	557.43	576+26	601.43	626.58	645.47	651.75	658.04	U 2
	M <u>1</u>	0.1842	0.3073	0.3270	0.3521	0.3501	0.3410	0.3133	0.3042	0.2371	M 1
	M 2	0.4664	ú.45 <b>7</b> 4	0.4616	0.4605	0.4619	0.4609	0.4470	0.4236	0.3969	M 2
	M(PR) 1	0-5594	0.5741	0.5869	0.6170	0.6450	0.6588	0.6696	0.6691	0.6481	M(PR) 1
	M(PR) 2	0.3623	0.3731	0.3843	0+4002	0.4203	0.4413	0.4380	0.4159	0.3968	M(PR) 2
	TURN (PR)	34.990	30.081	27.960	24.397	23.529	22.356	22 <b>.</b> 578	20.224	21.651	TURN ( PR )
	P 1	14.491	14.620	14.743	14.902	14.881	14.883	14.796	14.771	14.476	P 1
	P 2	16.152	18.037	18.094	18.125	18.217	18.269	18.176	17.941	17.694	P 2
	T 1	516.699	516.699	516.699	516.699	518.699	518.699	518.699	518.699	518.699	Τ 1
	12	553.011	551.200	549.355	549.759	550.490	549.423	551.999	552+493	553.616	Т 2
STATOR D	PCT SPAN	95.00	<b>90.</b> 00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38,919	39.276	39.633	DIA
STATION 2	EETA 2	45.265	43.696	42.603	41.756	40.743	39.738	41.014	43.965	47.012	BETA 2
STATION 2A	BETA ZA	3.939	670 د ف	3.517	2.635	2.355	3.162	4.152	4.919	5.576	BETA 2A
	V 2	528.47	515.78	519.38	518.41	520.24	518.73	504+85	479.52	450.71	V 2
	V 2A	410.95	400.97	396.85	423.93	437.83	447.09	411.32	393.39	386.96	V 2A
	VZ 2	371.95	372.91	381.06	386.69	393.99	398.39	380.18	344.46	306.75	VZ 2
	VZ ZA	409.98	400.04	396.09	423.44	437.36	446.24	410.03	391.72	384.65	VZ 2A
	V-THETA 2	375.40	356.31	35z .90	345.23	339+40	331.20	330.65	332.23	329.09	V-THETA 2
	V-THE1A 2A	28.20	27.06	24.34	19.49	17+99	24.65	29.77	33.71	37.59	V-THETA 2A
	N 2	<b>U.+684</b>	6.4574	0.4616	0.4605	0.4619	0.4609	0.4470	0.4236	0.3969	N 2
	M 2A	0.3606	U-3524	u.3493	0.3736	0.3861	0.3945	0.3016	0.3453	0.3391	M 2A
	TURN(PR)	41.325	59.825	34.286	39.121	35.366	36.518	36.766	38,939	41.326	TURN (PR )
	P 2	18.152	18.037	18.094	18.125	16.217	18.269	18.176	17.941	17.694	P 2
	r ZA	17,915	17.846	17.821	18.022	16-127	18.139	17.865	17.744	17.687	P 2A
	T_	553.011	551.200	544.055	544.759	50.490	549.423	551.999	552.493	553.616	τ 2
	T 2A	553.932	552-609	550.250	550.317	550.979	551.177	552.550	552.979	554.260	T 2A

. .

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 39.25 Equivalent Rotor Speed - 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (136°) - Station 2 (126°) - Station 2A (115°)

ROTOR D	PCT SPAN	74.99	90±00	54.99	70.00	50.00	30.00	14.98	9,99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	30.085	38.219	34.371	39.754	40.136	DIA
STATION 1	BETA I	3.683	3.036	2.443	1.623	2.242	2.536	2.104	2.602	2.482	BETA 1
STATION 2	BETA 2	40.331	44.584	43.475	42.177	42.059	40.891	42.43+	46.296	49.113	BETA 2
	BETA(PR) 1	58.918	56.017	55.417	55.630	57.011	58.683	61-505	62.787	62-898	BETA(PR) 1
	BETA(PR) 2	24.572	28.566	29.714	29.729	33.736	37.255	40.762	41.848	45.976	BETAIDE 1 2
	V 1	315.74	350.34	373-06	385.37	385-15	377.98	351-07	226.11	134 49	V I
	¥ 2	524 38	505.75	505.75	526-49	516.13	510.21	403 20	494 45	450.00	V 1
	ý2 1	315.08	549.89	372 72	266 21	304 03	277 54	350 74	700.02	737.70	* 2
	V7 2	362.07	460.17	367 01	306 16	307403	2011-20	343 30	227+11	330.33	¥2 1
	VETHETA	70 25	14 54	16 90	10 01	303400	303+23	202-27	222.02	300.53	¥ <u>Z</u> Z
	V-THETA 2	20.20	365 04	12.70	10.91	12.07	10.72	13+25	12.21	14.58	V-THETA 1
	V-INCIA 2	317.30	373.04	341.91	373.45	342.02	333.59	332.22	351.16	347-10	V-THETA 2
	VIPRJ A	010.5	032.9	020+1	662.9	100-8	126.4	735.2	732.0	738.3	V(PR) 1
	VIPRE Z	398.1	+10.1	422.6	449.3	460.9	484.6	480.7	451.5	433.3	V(PR) 2
	VIHEIA PRI	-522+7	->31.0	-540.6	-567.5	-592.8	-620.6	-646.2	-650.9	-657.2	VTHETA PR1
	VTHETA PR2	-105.0	-196.1	-209.5	-222.8	-255_8	-293.0	-313.2	-300+6	-310.9	VTHETA PR2
	Uì	542.95	549-54	556.54	578.38	607.91	637-29	659+40	666.13	671.77	U 1
	U 2	544+86	551.13	557.43	576.20	601.43	626.58	645.47	651.75	658.04	U 2
	M 1	6.2851	0.3170	0.3379	0.3494	0.3492	0.3425	0.3176	0-3029	0.3043	N 1
	H 2	0.4654	0.4489	0.4497	0.4683	0.4583	0.4549	0-4-367	0.4303	0.4056	¥ 2
	M(PK) 1	0.5511	0.5753	0.5949	0.6218	0.6+08	0-6582	0.6652	0.6616	0.6676	T F GQ1 M
	M(PR) 2	0.3534	0.3640	0.3757	0.3997	0.4093	0.4321	0-4256	0.3993	0.3621	M4001 2
	TURNIPRI	34-346	28-051	25.703	26.103	23,293	21.483	20 837	21 045	17 021	
	P 1	14.533	14.727	14-869	14.931	14_948	16-933	14.825	14 743	14 776	DI
	P 2	18-150	17.981	17.994	16.252	16 218	19 247	10 003	10 064	17 900	F 1
	T 1	518-699	518-699	518-699	518.444	516 400	516 400	10.075 610 600	10.070 610 L00	1/+CU7	r 2
	T Z	551 065	544 542	547 434	540.077	540 854	545 344	561 557	210+077	210+077	
	• •	331.003	2476242	2418034	2474008	J#9+0J#	242.240	551.156	771 <b>.7U</b> 4	772 <b>.</b> 734	12
STATCR D	PET SPAN	95.00	<b>90</b> 00	85 (0)	<b>70</b> 00	<b>NO CO</b>	20.00	15.00	10.00		
	61A	2000	22.644	140 55	34 400	24 ( 10	30.00	12.00	10.00	5.00	PUT SPAN
STATION 2	4574 3	22 221		JJ-721	42 177	10.420	31+840	30.414	39.210	39.033	DIA
STATION 2A	5674 JA	40.331	****	43+472 7 435	-2-177	42+009	40.841	42+434	40.296	49-113	BETA Z
STATION ZA	DETA ZA	2.721	3+00Z	3.432	2.411	2.203	3.009	4.040	4.909	5.739	BETA 2A
	* 2	224.30	202.72	202.12	526.49	210.13	510.21	493+29	486.65	459.90	V Z
	<b>T</b> 4 <b>A</b>	370.38	339.72	319.39	410.53	430.29	434.96	407.06	385.65	379.88	V 2A
	VL L	362.07	360-17	367.01	390.15	383.00	385+23	363.39	335.63	300.53	VZ 2
	VZ ZA	395+45	366+62	376 - 70	409.42	429.85	434.20	405-84	384.01	377.71	VZ 2A
	V-THEIA 2	379.30	355 04	347.97	353.48	345.62	333.59	332.22	351.16	347.10	V-THETA 2
	V-THETA 2A	27.15	7د.04	22.73	17.20	17.14	22 <b>.</b> 8∠	28.60	32.98	37.96	V-THETA 2A
	M 2	0.4054	6.4489	ù.4497	0.4683	6.4563	U.4549	0.4367	0.4303	0.4056	M 2
	M 2A	じゅご485	0-3-20	0.3343	0.3619	0.3797	0.3854	6.3582	0.3367	0.3333	N 2A
	TOKN(PR)	42.403	40.706	40.040	39.764	39.756	37.823	38.297	41.280	43.267	TURN (PR)
	P 2	18,150	17.981	17.994	16,252	16.218	16.247	15.093	18.056	17.809	P 2
	P 2A	17.003	17.818	17.747	17.900	16.099	16.136	17.571	17.714	17.065	P 24
	τż	551.665	549.543	547.034	549.000	5-4.854	545-246	551-154	551.904	552-534	T 2
	T 2A	551.500	549.911	547.971	549.054	549 917	545 865	551.240	551.957	552-055	T 24
			-	· · · -							

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (166°) - Station 2 (156°) - Station 2A (145°)

·· - -

ROTOR D	PCT SPAN	94.99	40.00	84.99	70.00	50.00	40-00	14-98	9,99	4.98	PET SOAN
	DIA	3.234	53.617	34-001	35.151	36.685	38-219	39,371	39.754	40.138	FUT SPAN
STATION 1	EETA 1	4.004	4.026	4.080	3.995	3.770	3.172	2.969	2.948	4.140	BETA T
STATION 2	BETA 2	40.651	45.107	44.089	42.780	41.324	40.316	41.817	44.518	48.675	BETA 2
	6ETA(PR) 1	57.273	55.053	54-161	55.128	56-804	58.541	62 412	64-417	67.091	RETAIDED 1
	SETA(PK) 2	25 735	27.364	26.435	32.061	34.246	36.663	40.228	43.062	47.213	RETAIDED 2
	VI	334.55	366.95	383.25	365.31	342-15	377.75	135.69	311.70	274 21	V 1
	V Z	514.96	513.31	513.90	505-02	513.56	516-52	408.55	477 53	450 13	V 2
	v2 1	333.70	306-04	342.28	384.37	381.30	377.12	225 19	111 22	276 44	V Z )
	¥2 2	353.44	362-28	369-11	371.38	385.52	303.36	270 85	220 92	204 73	
	V-THETA 1	23.71	25.76	27.27	26.83	25 13	20 00	17 39	337.03	270.13	
	V-THETA 2	374.47	363.64	357 54	249.44	220 00	323 70	221 22	10+43	17.74	V-INEIA I
	VIPEL 1	617-2	639-0	467.9	477 3	220+70	222410	227411	334-10	331+40	V-THETA 2
	VIPP1 2	362.4	A 07 9	410 0	67243	676.3	122+0	124+3	120.8	101.1	YUNK) I
	VTHETA DE 1	-610 2	-672 0	-510 3			491.0	480.1	900-1	431.0	VCPRJ 2
	VTULTA DOS	-170 4	-123.0	-160 0	- 332.6		-010.4	-642+0	-650.1	-651.8	VTHETA PRI
	D X	-170+4 662 05	-10111	-17767	-434.0	-202.9	-292.8	-313+7	-317.0	-320.6	VTHETA PRZ
	U I 11 2	542673	247+24	220.24	578.38	607.91	631.29	659.40	666.13	671.77	U 1
	U Z	294600	221+13	57 / • 43	716.28	601.43	626.58	645.47	651.75	658.04	U 2
		0.3024	0.3323	0.3474	0.3493	0.3464	0.3423	0.3034	0.2814	0.2489	M 1
	m 2	0.4200	0.4003	0+4565	0.4489	0.4556	0+4586	0.4410	0.4215	0.3961	M 2
•	MIPRJ I	0.5579	0.5786	0.5918	0.6095	0+6312	0.6548	0.6547	0.6507	0.6378	M(PR) 1
	MIPRI 2	0.3475	0.3615	0.3729	0.3888	0.4139	0.4360	0.4305	0.4114	U.3851	M{PR} 2
	TURN (PK)	31 535	27.689	25.726	23.068	22.576	21.932	22.298	21.461	19.968	TURN (PR)
	P 1	14+641	14.821	14.924	14.923	14.917	14.925	14.743	14.653	14.543	P 1
	P 2	18.006	18.012	18.033	18.006	18.142	18.251	16,111	17,930	17.686	P 2
	T 1	516 699	516-699	516.699	518.699	518.699	516.699	518.699	518.699	518.699	ТІ
	T 2	552.708	550.861	549.300	550.142	550.801	550,000	552.489	553.001	554.229	T 2
STATOR D	PCT SPAN	95-00	<b>90 - 0</b> 0	85.00	70.00	50.00	20.00	16 00	10.00	E 00	
	01 <b>4</b>	33.27	71.554	33.921	34 002	34 420	37 844	10.010	20.276	20.00	PLI SPAN
STATION 2	ELTA 2	46-651	45-107	44.590	176776 45 700	41 776	40 316	204717	37.210	39.033	DIA DETA D
STATION 2A	HETA 24	1.7.4	2 036	3 444	72.000			41.011	44.518	40.070	BETA Z
	V Z	514-96	513.31	613.90	506 62	517 64	514 43	49100	2+007	3+299	BETA ZA
	V 2A	368.57	374.59	373.82	412 79	212+20	510.52	470-22	+(1.))) VEN 04	400+13	V Z
	V7 2	353.49	347 74	349 11	271 20	266 63	305 24	370.05	371.00	383-13	V ZA
	V7 24	317.73	347 60	772 11	212.30	202.22	373.30	510.05	339.83	290.13	VL 2
	VETHETA D	274 47	362 66	313411	412.57	430+39	443+22	400.19	389.31	381.22	VZ ZA
	V-THETA 24	26.61	JUJ • 04	227.20	17 .1	330 • 70	333+10	221+11	334-16	337+40	V-THETA 2
	M /	4 6 4 0	62077	22.670	LI+01		20.30	29.13	34.53	35.36	V-THETA ZA
	™ <u>∠</u> M 2A	0 4/30	0.4933	0 3360	0.3.3.	0.4256	0.4586	0.4410	0.4215	0.3961	M 2
		100041 <u>2</u> 47 661	V03320	40 - 2404	0.3038	0.3800	0+3719	0.3582	U-3433	0.3357	M ZA
	D S	46.000 16 AL4	18 612	40.075	40.333	39.082	30.854	37.535	39-342	43.268	TURN (PR)
	F 2	10+000	10.012	10.000	10.005	18-142	18.251	18+111	17.930	17.686	P 2
	1	11+017 517 700	11+1+0	47+734	110782	16-112	18.206	17.885	17.760	17.700	P 2A
	T 12	222 <b>.108</b>	220.661	549.300	550-142	550-601	550.000	552.489	553.001	554.229	12
	I ∠A	224+422	220 228	249 <b>₊</b> 040	550.015	550.779	550.968	552.49U	552.632	554.191	T 2A

- -

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 89.25Equivalent Rotor Speed = 3757.35Equivalent Weight Flow = 79.78<br/>Circumferential DistortionStation 1 (196°) - Station 2 (186°) - Station 2A (175°)

RUTCR D	PCT SPAN	74.49	90.00	84,99	70.00	50+00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.23+	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1	bETA 1	0.245	5.320	4.691	4.658	4.744	4.240	5,159	5.205	5.759	BETA 1
STATION 2	beta 2	47.505	45.395	44.993	44.579	42.844	42.117	43.886	47.565	51.907	BETA Z
	BETA(PK) 1	56.311	55.113	55.437	55.155	56+860	59,200	60.914	61.879	64.010	BETA(PR) 1
	BETA(PK) 2	24.116	25.178	27.900	29.674	33.232	37.315	39.674	43.479	47-316	BETAIPR) 2
	V 1	339.37	301.38	364.12	381.54	377.79	364.87	350.75	340.93	313.76	¥ 1
	¥ 2	523.69	>21.34	515+45	520.26	518,51	507.52	500.86	473.83	452.65	¥ Ž
	VZ 1	337.35	359.01	362.69	380.17	376.48	363.83	349.27	339.46	312.15	VZ 1
	VI 2	353.47	365.69	364.52	370.55	380.03	376.03	360.33	319.16	278.84	VZ 2
	V-THETA 1	36.92	<b>53.</b> 51	29.78	32.01	31.28	26.97	31.53	30.92	31.48	V-THETA 1
	V—THETA ∠	386.07	571.17	364.43	365.15	352.45	339.97	346.59	349.10	355.70	V-THETA 2
	V(PR) 1	o08.2	629+1	639.7	665.4	688.7	710.0	718.5	720.2	712.3	V(PR) 1
	¥(PR) ∠	ذ₊782	407.9	412.5	426.5	454.6	473.4	469.1	440.7	412.0	V(PR) 2
	VTHETA PR1	÷5ù6₊u	-516.0	-526.8	-546.1	-576.6	-610.3	-627.9	-635.2	-640.3	VTHETA PR1
	VTHETA PR2	-158.2	-180.0	-193.0	-211.1	-249.0	-286.6	-298.9	-302.7	-302.3	VTHETA PRZ
_	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
-	U 2	544.80	551+13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
	н 1	0.3068	0.3271	0.3297	0.3450	0.3423	0.3304	0.3173	0.3083	0.2833	ĂĪ.
	M 2	<b>4.464</b> 3	0.4029	0.4581	0.4622	6.4004	0.4518	0.4433	0.4161	0.3985	H Z
	M(PR) 1	0+5498	0.5695	0.5791	0.6031	0.6240	0.6433	0.6500	0.6512	0.6431	M(PR) 1
	M(PR) Z	0+3432	0.3022	0.3660	0.3789	0.4036	0.4215	0.4152	0.3889	0.3628	M(PR) 2
	TURN(PR}	32.201	28.935	27.537	25.483	23-646	21.940	21.332	18.506	16.804	TURNIPRI
	P 1	14.760	14.865	14.876	14.989	14.961	14.943	14.881	14.856	14.732	P 1
	Ρ∠	16.055	16.092	16.057	18.139	18.161	18.140	18.101	17.855	17.678	P 2
	τ 1	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518-699	518.699	Ť I
	T 2	552.617	550.528	548.889	549.761	550.286	540.439	552.037	553.090	553.906	T 2
STATCE C	PET SPAN	95,00	St. 60	85 (10	70.00	NO. 00	20.00	16 00	10.00	E 00	
	LIA	33.207	3 1.54	22.021	34 483	26 420	37 - 49	19400	10.00	2000	PUI SPAN
STATION 2	BETA 2	47.569	45.345	44.903	44-570	43 644	27.040	JD4717 43 004	27.646	37.033	LIA LIT N
STATION ZA	EETA ZA	3-607	4.086	3.727	7-504	72+074	74 + 11 /	438000	4/+202	51.907	DETA Z
	¥ 2	523.69	5/1-34	515.45	520.26	516.51	507.52	500 84	5+10Z	7.121	DE PA ZA
	¥ 2A	390.43	389.57	366.27	A12.76	430.49	418.78	412 26	713.03	726.02	
	VZ 2	153.47	100-09	364-52	370.56	300 03	376 03	360 33	373402	370.02	V 2A
	V2 24	395-64	388-57	385.44	412.32	- 10 0H	417 78	410 90	301 20	200 10	¥4 2
	V-THE TA Z	360.07	3/1.17	364-43	365.15	352.45	330 07	346 59	344 16	300.10	VETHETA D
	V-THETA 2A	24-94	27.76	25-11	18-03	14.36	70767	20 71	247.10	373.10	VTINEIA Z
	M 2	0.4043	D. 44.74	0.4561	0.4672	0.4604	0.4516	0 4413	JJ.J4 7 4161	27+17	VTINEIA ZA
	M 2A	0.461	0.3425	0.3401	0.3634	0.4796	0.4910 ().3884	0.3624	U. 74401	V+3703 (1 3420	п <u>с</u> М Эл
	TURN (PR)	43.961	41_204	41.266	42.073	40-645	58.519	30.515	42.767	44 48A	77 47 TINN 100 1
	Ρż	16.095	18.092	18.057	16-139	18.161	18.144	18-101	74+477	17.474	
	P 2A	17.651	17.614	17.774	17.961	16,091	16.138	17.594	17.753	17 714	F 4
	14	554.617	550 52B	546 889	549.761	550-205	540-414	552.037	553_690	557.904	Γ 68 1 2
	T 2A	552 964	550.850	549-182	549.974	550-504	547.095	552, 152	553.070	553.924	7 2 A
			· • • • •								1 68

# Table A-8. Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78<br/>Circumferential Distortion<br/>Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

ROTER D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35-151	36+685	38.219	39.371	39.754	40.138	DIA
STATION 1	EETA I	6.516	5.982	6.553	6.469	6.078	5.121	6.317	6.610	7.223	BETA 1
STATION 2	БЕТА 2	46.208	45.364	45.122	44.168	43.554	43.447	46.914	50.296	53.959	BETA 2
	BETA(PR) 1	60.362	56.487	57.036	56.760	59.049	61.142	64.933	65.575	69.530	BETAIPR) 1
	BETA(PK) 2	25.329	27.048	26.854	31.115	33.946	37.924	41.485	43.422	46.440	BETA(PR) 2
	V I	291.96	316.33	338.12	355.10	344.64	336.05	295.09	289.36	241.38	¥ 1
	¥ 2	519.21	514.93	522.98	510.14	511.24	500.48	484.51	475.12	461.67	ý ž
	VZ 1	290.06	316.59	335.91	352.84	342.69	334.67	293.24	287.39	239.44	ÝZ 1
	VZ Z	359.31	361.79	369.02	365.90	370.37	362.95	330.44	303.04	271.26	VZ 2
	V-THETA 1	33.13	33.17	38.59	40.01	36.49	29.99	32.46	33.30	30.35	V-THETA 1
	V-THETA 2	374.79	366.41	370.59	355.43	352.13	343.79	353.28	364.96	372.79	V-THETA 2
	V(PR) 1	586.6	605.7	617.3	643.7	666.3	693.4	692.2	695.0	684.7	V(PR) 1
	V(PR) 2	397.5	406+2	413.6	427.4	446.7	460.7	441.9	418.1	394.4	V(PR) 2
	VTHETA PR1	-509.8	-514.4	-518.0	-538+4	-571.4	-607.3	-626.9	-632.8	-641.4	VTHETA PR1
	VTHETA PR2	-170.1	-164.7	-186.8	-220.9	-249.3	-282-8	-292.2	-286.8	-285.2	VTHETA PR2
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1 –
	U 2	544.80	551.13	557.43	576.28	601.43	626.58	645.47	651.75	658.04	U 2
	M 1	0.2633	<b>€</b> ₊2875	0.3057	0.3213	0.3117	0.3038	0-2662	0.2609	0.2172	M I
	M 2	U.4610	0.4577	0.4657	0.4531	0.4538	0.4438	0.4279	0.4189	0-4061	мź
	M(PR) 1	0.5290	<b>0-</b> 5470	0.5581	0.5625	0.6026	0.6268	0.6243	0.6268	0.6161	M(PR) 1
	M(PR) 2	0.3529	0.3611	0.3683	0.3797	0.3965	6.4085	0.3903	0.3686	0.3469	H(PR) Z
	TURN(PR)	35.034	31.439	30.182	25.648	25.121	23.273	23.542	22.260	23.200	TURN (PR)
	P 1	14.643	14.783	14.883	14.977	14.925	14.929	14.811	14.812	14.662	P 1
	P 2	17.977	17.977	18.082	17.980	18.052	17.977	17.854	17.769	17.648	P 2
	т 1	518.679	518.699	518.699	516.699	516.699	518.699	518.699	518.699	518.699	T 1
	<b>T</b> 2	550.390	548.706	547.627	549.057	549.934	550.095	553.161	554.170	555.635	T 2
STATOR D	PCT SPAN	95.00	90-00	85-00	70.00	50,00	30-00	15.00	10.00	5 00	ACT COAN
	DIA	33.207	33.564	33-921	34,992	36.420	37.848	38,919	39.276	39 4 2 2	DTA
STATION 2	BETA 2	40.208	45.364	45-122	44-168	41.554	43.447	46.914	50.296	57 050	DLTA 2
STATION 2A	BETA 2A	3.512	4-487	4.384	2.577	2.203	3.074	4.365	5.273	5.972	BETA 24
	¥ Z	519.21	514.93	522.98	510-14	511.24	500.48	484.51	475.12	461.67	V D
	V 2A	378.91	369.95	372.54	405.56	416.13	419.50	378.44	366-10	365.40	V 24
	V2 2	359.31	361.79	369.02	365.90	370.37	367.45	330.44	303.04	271.24	¥ 2 M
	VZ 2A	378+20	308.81	371.44	405.13	415.73	418.75	377.14	364-34	363.18	V7 24
	V-THETA 2	374.79	366.41	370.59	355.40	352.13	343.79	353-26	364.96	372 79	VATHETA 2
	V-THETA 2A	23.21	26.94	28.48	18.25	15-99	22.49	28.79	33-63	37.77	V-THETA 24
	M 2	0.4610	0.4577	0.4657	0.4531	0.4538	6.4438	0.4279	0.4169	0-4061	
	H 2A	0.3330	0.3255	0.3282	0.3576	0.3668	0-3696	0-3320	0.3208	0.3197	N 20
	TURN (PR)	44.695	40.876	40.738	41.589	41.331	40.314	42.452	44.918	47.918	TURNIPAL
	P 2	17.977	17.977	18.062	17.980	18.052	17.977	17.854	17.769	17.648	0 2
	P 2A	17.737	17.076	17.690	17.917	17.969	17 967	17.638	17.563	17.555	P 2▲
	12	550.396	548.700	547.027	549.057	549.934	550.095	553-161	554-170	555-635	1 2
	T 2A	556.764	548.848	547.740	549.112	549.920	550.665	552.422	553.194	554.707	T 24

### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (256°) - Station 2 (246°) - Station 2A (235°)

ROTUR U	PCT SPAN	44.99	90.00	44.49	70.00	50.00	30.00	14.98	9.99	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	30.065	38.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	5.316	5.071	5.245	4-840	4.760	4.427	5.894	6.382	6.720	BETA 1
STATION 2	BETA 2	45.039	+5 <b>.</b> 067	44.429	44.989	40.059	51.808	60.650	64.826	67.362	BETA 2
	BETA(PR) 1	60.724	59.131	58.988	59.642	61.301	63.571	67.058	68.412	69.822	BETA(PR) 1
	BETA(PK) 2	24.201	24.933	25-234	29.351	32.974	37.108	44.108	46.893	49.589	BETA(PR) 2
	V 1	290.55	313.17	318.40	323.92	319.41	305.97	268.90	254.02	238.29	V 1
	V 2	531.49	531.85	537.76	521.70	513.10	500.19	479.68	479.75	478.84	V 2
	VZ 1	284.29	311.94	317.07	322.76	318.30	305.02	267.43	252.41	236.63	VZ 1
	VZ Z	375.56	375.63	384.02	368.95	352.04	309.02	234.92	203.93	184.20	VZ 2
	V-THETA 1	26.93	27.66	29.11	27.33	26.50	23.61	27.61	28.23	27.88	V-THETA 1
	V-THETA 2	376.07	376.51	376.44	308.81	373.04	392.81	417.76	433.88	441.69	V-THETA 2
	V(PR) 1	591.6	606.0	615.4	638.6	662.8	685.3	686.1	686.0	686.0	V(PR) 1
	V(PR) 2	411.8	414.2	424.5	423.3	419.8	368.0	327.7	299.0	284.6	VIPR1 2
	VTHETA PR1	-516.0	-521.9	-527-4	-551.1	-581.4	-613.7	-631.8	-637.9	-643.9	VTHETA PR1
	VTHETA PR2	-168.8	-174.6	-181.0	-207.5	-228.4	-233.8	-227.7	-217.9	-216-4	VTHETA PR2
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659-40	666-13	671.77	U 1
	U 2	544.86	551.13	557.43	576.26	601.43	626.58	645.47	651.75	658.04	ũ 2
	H 1	0.2620	0.2827	0.2875	0.2926	0.2885	0.2761	0.2423	0-2287	0-2144	<u>й 1</u>
	M 2	0.4719	0.4728	0.4788	0.4631	0.4546	0.4435	0.4218	0-4213	0-4200	N 2
	M(PR) 1	0.5335	6.5489	0.5558	0.5769	0-5986	0.6185	0.6181	0.6177	6-6173	M(PR) 1
	M(PR) 2	0.3656	6.3683	0.3780	0.3757	0.3720	0.3440	0.2882	0-2625	0.2496	MIPR3 2
	TURN (PR)	30.524	34-199	33.754	30.293	28.345	26.518	23-045	21.625	20-342	TURM ( PP 1
	P 1	14.782	14-920	14.943	14.987	14.998	14-996	14.893	14.843	14.778	PI
	P 2	18.073	16.113	18.207	18.077	18.018	17-895	17-692	17.700	17.710	P 2
	T 1	518.699	516-699	518-699	518-699	516.699	518-699	516-699	518.699	518.699	<b>T</b> 1
	TÀ	551.328	550.072	549 088	550.812	552.097	550-230	557.253	558.864	540.041	T 2
	-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5510255	2201004	2000041	
STATOR D	PCT SPAN	95.00	90.00	85+00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATION ∠	BETA 2	45.039	45.067	44.429	44.989	40+659	51.808	60.650	64.826	67.362	BETA 2
STATION 2A	BETA 2A	3.361	4.511	4.621	2.756	1.996	0.945	1.736	2.532	3.549	BETA ZA
	V 2	531.49	531.85	537.76	521.70	513.10	500.19	479.68	479.75	478.84	¥ 2
	V 2A	402.01	396.87	394+97	412.42	410.66	399.76	371.06	359.56	363.08	V 2A
	VZ 2	375.50	375.63	384.02	368.95	352.04	309.02	2:54.92	203+93	164,20	VZ 2
	VŽ ZA	401.32	395.64	393.67	411.90	410.32	399.56	370.70	359.01	362.12	VZ 2A
	V-THETA 2	376.07	376.51	376.44	368.81	373.04	392.81	417.76	433.88	441.69	V-THETA 2
	V-THETA 2A	23.57	31.21	31.82	19.83	14.30	6.59	11.25	15.68	22.46	V-THETA 2A
	H 2	0.4719	0 <b>.47</b> 28	0.4768	0.4631	0.4546	0.4435	0.4216	0.4213	0.4200	# 2
	M ZA	6.530	6.3496	0.3483	0.3635	0.3616	0.3523	0+5246	0.3139	0.3167	11 ZA
	TURN ( PK }	41.677	40.555	39.808	42.231	44.643	50.804	58.828	62,211	63.735	TURN (PR.)
	ΡŽ	18.073	18.113	18.207	18.077	18.018	17.895	17.692	17.700	17.710	P 2
	P ZA	17.793	17.752	17.743	17.653	17.820	17.725	17.511	17.432	17.448	P 2A
	т 2	551.328	550.672	549.088	550.812	552+097	550.236	557.253	558.864	560.041	Τž
	T ZA	550.726	549.337	548,256	544.744	550.858	549.160	555-300	556.846	558.074	T 2A

# Table A-8.Blade Element Performance (Continued)<br/>Stage D, Rotor D - Stator DPercent Equivalent Rotor Speed = 89.25Equivalent Rotor Speed = 3757.35Equivalent Weight Flow = 79.78<br/>Circumferential Distortion<br/>Station 1 (286°) - Station 2 (276°) - Station 2A (265°)

ROTOR D	PCT SPAN	94.99	90.0U	84.99	70.00	50.00	30.00	14.98	9,99	4.98	PET SPAN
	DIA	33.234	33.617	34.001	35.151	36.085	38.219	39.371	39.754	40 138	DIA
STATION 1	BETA 1	-7.156	-7.033	-7.670	-5+652	-5.496	-6.435	-5.082	-6 243	-6-419	BETA 1
STATION 2	bETA 2	45.509	45.597	45+793	47.854	51.682	55.467	64.553	67.756	70.732	BETA 2
	BETA(PR) 1	62.587	62.127	62 425	63.412	66.043	68.990	71.078	73.805	77.750	BETA(PR) 1
	BETA(PK) 2	26.360	25.483	25.725	26.749	30.639	38.043	48-549	52.121	55.832	BETA(PR) 2
	VI	299.44	313.29	313.16	306.05	263.49	257.50	234.12	201.03	150.47	¥ 1
	V 2	513.57	525.94	529-49	503.78	520.97	494,73	464.83	461.77	460.33	V 2
	VZ 1	297.10	310.93	310.78	304.57	262.17	255 85	233.16	199.81	149.51	VZ 1
	VZ Z	359.9ú	567.99	369.19	358.13	322.93	280.26	199.60	174.69	151.84	VZ Z
	V-THETA 1	-37.31	38.36	-38.54	-30.14	-27.15	-28.86	-20.73	-21.86	-16.82	V-THETA 1
	V-THETA 2	366.35	375.74	379.55	395.78	408.63	407.28	419.47	427.17	434.36	V-THETA 2
	V(PR) 1	651.9	665.1	671.4	680.5	694.9	713.6	719.0	716.4	704.6	V(PR) 1
	V(PR) 2	461.7	407.7	409.5	401.1	376.3	356.3	302.0	284.9	270.7	V(PR) 2
	VTHE TA PR1	-580.3	-587.9	-595.1	-608.5	-635.1	-666.1	-680.1	-688.0	-688.6	VTHETA PR1
	VTHETA PR2	-176.5	-175+4	-177.9	-180.5	-192.8	-219.3	-226.0	-224.6	-223.7	VTHETA PR2
	01	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666.13	671.77	U 1
	UZ	544.86	551.13	557.43	576.28	601.43	626 - 58	645.47	651.75	658.04	Ū Ž
	M 1	0.2702	0.2828	0.2827	0.2762	0.2556	0.2319	0.2106	0.1807	0.1350	M 1
	Н 2	0.4531	0.4650	0.4685	0.4714	0.4586	0.4339	0.4054	0.4022	0.4005	NZ
	H{PR} 1	0.5882	6-6004	0.6061	0.6141	0.6265	0.6426	0.6469	0.6436	0.6323	MIPR] 1
	M(PR) 2	6.3545	0.3604	0.3626	0.3542	0.3313	0.3125	0.2634	0.2482	0.2355	M(PR) 2
	TUKN(PR)	36.507	36.644	36.699	36.665	35.222	31.002	22.623	21.786	22.022	TURN(PR)
	P 1	14.830	14.909	14.921	14.928	14.910	14.872	14.827	14.729	14.610	P 1
	P 2	17.973	18.129	18.166	18.206	18.082	17.819	17.554	17,540	17.567	P 2
	ТТ	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	TI
	Ť 2	556.499	555.376	554.900	557.305	559.533	561.431	564.957	566.152	567.485	T 2
STATOR D	PCT SPAN	95.00	90.06	85.00	70-00	50-00	30.00	15.00	10.00	5 00	667 584N
	DIA	33.207	33.564	33.921	34.992	36-420	37-848	38,919	39.276	39.43%	DZA -
STATION 2	BETA 2	45.509	45.597	45.793	47-859	51.682	55-467	64.553	67.758	70.732	RETA 2
STATION 2A	BETA 2A	3.063	3-613	3.826	3.249	1.230	-5-079	-7-486	-7-134	-6.828	AETA 2A
	¥ 2	513.57	525.94	529.49	533.78	520.97	494.73	464.83	461.77	460.33	V 2
	¥ 2A	405.46	409.28	409.65	419.37	396.48	372.69	347.42	344.91	354.78	V JA
	¥Z ∠	359.90	367.99	369.19	358.13	322.93	280.26	199.60	174.69	151-64	¥7 2
	VZ 2A	404.88	408.46	408.73	418.65	596.30	371.09	344.29	342.05	352-01	¥7 24
	V-THETA 2	<b>خد.666</b>	375.74	379.55	395.78	408.63	407.28	419.47	427.17	434.36	V-THETA 2
	V-THETA ZA	21.67	25.79	27.33	23.77	8.51	-32.98	-45.25	-42-61	-42-15	V-THETA 24
	H 2	0.4531	0.4650	0.4685	6.4714	0.4586	0.4339	0.4054	0.4022	0.4005	M 2
	M 2A	0.3560	0.3596	0.3602	0.3681	0.3469	0.3249	0.3015	0.2996	0.3072	H. ZA
	TURN(PR)	42.445	41.983	41.967	44-608	50,432	60.485	71.960	74.811	77.485	TURNEPRI
	₽ 2	17.973	18.129	16.166	18.206	18.082	17.019	17.554	17,540	17.567	P 2
	₽ 2A	17.723	17.732	17.739	17.742	17.606	17.436	17.275	17.200	17.330	P ZA
	Τ _	556.499	555-376	554. 900	557.305	559.533	561.431	564.957	566.152	567.465	T 2
	T ZA	552.550	552.445	55∠.08C	554.664	556.606	559.210	562.621	563.78Z	565 . 355	T ZA

. . .
# Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed = 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

KUTER D	PCT SPAN	949	¥0.0C	84.99	7ù.0u	56+00	30.00	14.98	9.99	4.96	PCT SPAN
	LIA	33.234	3.617	34+061	151.52	36.065	38,219	39.371	34.754	40.138	DIA
STATION 1	BETA 1	-21.156	-20+641	-14.181	-18.382	-16.261	-19.046	-18.893	-19,411	-19.884	BETA 1
STATIEN 2	bETA 2	40.999	48.821	49.865	51.211	56.520	د90.61	74.267	78.396	82.752	BETA 2
	ELTA(PR) 1	70.636	69.712	66.743	69.284	70.766	72.748	74.123	74.861	75.447	BETA(PR) 1
	BETALPR) 2	25.767	27.807	32.261	31.170	38.168	42.620	63.094	70.179	78.117	BETA(PR) 2
	¥ 1	233.77	252.20	265.11	263.65	252.41	234.55	219.64	211.24	204.69	¥ 1
	V Z	513.75	501.08	475.84	497.50	474-41	474.84	431.32	423.93	413.48	¥ 2
	V2 1	216.01	∠36.01	250.39	250.16	239.69	221.66	207.77	199.71	192.47	87 1
	¥2 2	350.38	329.91	306.59	311.65	263.03	229.42	116.93	\$5.26	52-16	¥2 2
	V-THETA 1	-84.37	-88.90	-87.10	-83.14	-79.09	-76.53	-71.11	-70-20	-69-61	V-THETA 1
	V-THETA 2	375.72	377-14	363.90	387.77	394.69	415.47	415.06	415.20	410.15	V-THETA 2
	V(PR) 1	664+1	680.7	690.6	707.2	727.6	747.5	759-5	762 .8	766-0	V(PH) 1
	V(PR) 2	369.1	373.ú	362.6	364.3	334.7	312.1	258 6	251.6	253.4	V(PR) 2
	VTHETA PR1	-627.3	-036+4	-043.6	-661.5	-687.0	-713.8	-730.5	-736.3	-741-4	VTHETA PRI
	VTHETA PR2	-109.1	-174.0	-193.5	-188.5	-246.7	-211-1	-230. +	-236-5	-247.9	VTHETA PR2
	U 1	542.95	549.54	556.54	578.38	607.91	637.29	659.40	666-13	471-77	
	U 2	544.86	551.13	557.43	576.20	601.43	626-58	645-47	651.75	658.04	U 2
	M 1	6.2163	0.2271	0.2388	0.2375	0.2272	0.2110	0-1975	0.1899	0.1860	
	M 2	6.4566	v.4395	0.4170	C.4361	0.4144	ũ.4151	0.3745	0.3675	0.3580	M 2
	M(PR) 1	0.5975	0.6128	0.6221	0.6170	4.6551	0.67/5	0-6829	0-6457	0.6884	M/DD1 1
	M(PR) 2	0.3413	0.3272	0.3177	0.3193	0-2923	0.2726	0.2245	0.2161	0.2193	MIDD1 2
	TURN(PK)	45.069	41.906	36.481	35.117	32.618	30-186	11.107	4-750	+2-427	TIBLING
	P 1	14.122	14.206	14.253	14.251	14.242	14.234	14.245	14.224	14.211	P 1
	P 2	17.966	17.665	17.635	17.649	17.655	17.647	17.275	17.224	17,197	P 2
	T 1	518.699	518.699	518.699	518.695	518.699	516.699	518.699	518.699	518.699	11
	T 2	562.860	501.715	560.774	502.455	504.171	503.382	567.588	568.741	569.446	T 2
STATUR D	PCT SPAN	95.00	90.00	85.00	70.00	50,00	30.00	15-00	10.00	5-00	DÊT SDAN
	UIA	33.207	53.564	33.921	34.992	30-4/4	37.848	38-919	39.276	39.433	DIA
STATION 2	BETA 2	46.999	48.021	49.885	51-211	56-320	61-093	74.767	76.396	82.752	BETA 2
STATION 2A	BETA 2A	2.034	2.677	2.523	2.659	0.563	-8.022	-11.824	-11-653	-11.903	BLTA 24
	V 2	513.75	501.08	475.84	497.50	474.41	474.84	431.32	423.93	413.48	¥ 2
	V 2A	386.87	360.56	360.53	374.61	351.41	330.29	319.56	315-63	335-63	V 2A
	VZ 2	350.38	529.91	306-59	311-65	203-03	229-42	116.93	85.26	52-16	¥7 2
	VZ ZA	300.40	510.14	38u.15	374.15	351.32	326.94	312.65	308-96	328-18	W7 2A
	V-THEIA 2	375.72	377.14	363.90	387.17	394.69	415.47	415-06	415.20	410-15	VE LA Vetheta 2
	V-THETA 2A	18.83	17.77	16.75	17-64	5.45	-46-68	-65.45	-63-72	-69-18	V-THETA 2A
	M 2	0.4505	6.4395	0.4170	0.4361	0.4144	0.4151	0.3745	0-3675	0.3580	H 2
	M ZA	6.3315	0.3316	0.3319	0: 60	Ú.3044	0.4663	0-2755	0.2720	0.2893	M 74
	TURN (PK)	44.104	46.140	47.362	48.510	55.738	69.061	86-033	89.999	94.618	TURNEPR
	P 2	17.966	17.865	17.635	17.849	17.655	17-647	17.275	17.274	17.197	D 2
	P IA	17.477	17.456	17.447	17.390	17.254	17.124	17.106	17.104	17.220	P ZA
	Τ 2	502.606	201.115	560.774	502.250	564.171	563.36	567.58R	568.741	569.446	T 2
	T 2A	561.ZZI	560-057	559.231	561.001	562.093	562.985	567.320	568 582	569.417	Ť 2A

•

#### Table A-8. Blade Element Performance (Continued) Stage D, Rotor D - Stator D Percent Equivalent Rotor Speed = 89.25 Equivalent Rotor Speed - 3757.35 Equivalent Weight Flow = 79.78 Circumferential Distortion Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

ROTLR D	PCT SPAN	94.99	90.00	84.99	70.00	50.00	30.00	14.96	9.99	4.98	PCT SPAN
	ÚIA –	33.234	33.617	34.061	35+151	36.685	30.219	39.371	39.754	40.138	DIA
STATION 1	BETA 1	-1 <b>0.46</b> 1	-10+053	-10.062	-9.993	-9.707	~10.243	-9.785	-9.921	-10.942	BETA 1
STATION 2	BETA 2	51.295	52.069	52+669	50.981	51.343	52.797	58.046	62.120	66-538	BETA 2
	BETA(PR) 1	66.541	64.94B	64.819	65.546	66.698	68.024	68.978	70.794	74.644	BETALPRI 1
	BETA(PR) 2	28.361	27.106	32.392	31.243	35.095	40.472	49.552	55.794	60-784	SETA(PE) 2
	V 1	260.48	284.44	289.94	290.34	286.78	281.93	275-46	250.90	198.45	¥ 1
	¥ 2	487.38	499.49	472.31	497.30	493.18	477.80	439.74	414.98	404.15	¥ 2
	VZ 1	256.14	280.07	265.48	285.93	282.66	277.40	271.41	247-10	196-82	¥Z 1
	VZ Z	304.76	307.04	285.11	313.08	307.98	288.66	232.50	193-89	160-81	¥7 2
	V-THETA 1	-47.29	-49.65	-50.66	-50.38	-48.35	-50-13	-46-81	-43.22	-37.47	V-THETA 1
	V-THETA 2	380.34	593.97	376.55	386.36	385-02	380-27	372.74	366.51	370.50	W-THETA 2
	V(PR) 1	643.4	661.4	671.0	690.7	714-5	741.3	756.6	751.2	735.7	V/API 1
	VIPRJ 2	346.3	344.4	337.6	366.2	376.6	379.9	358.9	345.1	329.8	· V(Dp1 2
	VTHETA PR1	-590.2	-599.2	-607.2	-628.8	-656.3	-687.4	-706-2	-709.3	-709-4	VTHETA DO 1
	VTHETA PR2	-164.5	-157.2	-180.9	-189-9	-216.4	-266-3	-272.7	-285.2	-287.5	WTHETA DOD
	U 1	542.95	549.54	556.54	578.38	607-91	637.29	659.40	666.13	471.77	H T
	U 2	544.86	551-13	557-43	576.28	601.43	626.58	645.47	661.75	458 04	U 2
	M 1	0.2346	0.2564	0.2615	0.2618	0.2586	0.2542	0.2482	0.2259	0.1703	<b>4</b> 1
	N 2	0.4272	0.4387	6.4144	0.4366	0-4324	0.4185	0.3835	0.3612	0.3512	
	M(PR) 1	0.5795	0.5963	0-6051	0-6229	0-6443	0.6682	0.6818	0.4762	0-6611	M/001 1
	M(PK) Z	0.3036	0-3050	0-2962	0.3215	0-3302	0.3328	0.3130	0.3004	0 2044	N(90) 1
	TURN(PR)	36.180	37.843	32.427	34.305	31.621	27-609	19.519	16-000	12.066	
	P 1	14.016	14.119	14-131	14.115	14.121	14,109	14.128	16-057	13.035	P 1
	P 2	17.622	17.699	17.469	17.759	17-811	17-658	17.308	17 130	17 044	<b>P A</b>
	T 1	516.699	518.699	518-699	518.699	518-699	518.499	514.699	418.490	516 400	F 6 T 1
	T 2	561.297	560-135	559.178	560-515	561.596	561.306	563-101	563.470	566.575	14
								2020101		2040222	1.2
STATOR D	PCT SPAN	95.00	¥ú.00	65.00	70.00	50.00	30.00	15.00	10.00	5-00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	27.848	38.919	39.276	39-633	DIA
STATION 2	BETA 2	51.295	52.069	52.869	50.981	51.343	52.797	58.046	62.120	66.538	BETA 2
STATION 2A	BETA ∠A	2.786	1.844	0.220	-0.438	0.226	-2.870	-3.169	-2.498	-2.688	BETA 24
	V 2	457.38	499.49	472.31	497.30	493.18	477.80	439.74	414-98	404-15	¥ 2
	V 2A	د 7+4	339.9Ú	335.68	354.85	361.00	353.11	323.89	317.66	329.72	Ý ZA
	VZ 2	304.76	307.04	285.11	313.06	307.96	286.68	232.50	193.69	160-81	¥7 2
	VZ 2A	344+34	339.71	335.86	354.61	360.91	352.54	323 23	317.17	329.12	¥7 24
	V-THETA 2	360.34	393.97	76.55	366.36	385.02	380.27	372.74	366-51	370.50	V-THETA 2
	V-THETA ZA	10.76	10.94	1-24	-2.71	1.42	-17.67	-17-90	-13.84	-15-45	V-THETA 24
	M 2	0.4272	6.4387	0.4144	0.4366	0.4324	0.4185	0.3835	0-3612	0-3512	# 7
	M 2A	0.∠995	6.2955	0.2922	0.3085	0.3136	64د ما	0.2804	0.2748	0-2851	H 2A
	TUKN(PR)	48.506	50.224	52.649	51.417	51.097	55.608	61.124	64.526	69-142	TURN ( PE )
	¥ 2	17.622	17.699	17.469	17.759	17.811	17.658	17.308	17.130	17.066	P 2
	P ∠A	17.318	17.284	17.257	17,352	17.384	17,326	17.168	17.159	17.226	P 24
	۱ ۲	561.297	560.135	259.178	>60.515	501 596	561.306	563.101	563.470	564.525	T 2
	T 2A	560.960	560.046	559.402	566.952	562.311	563.206	564-158	564.465	565.707	T 24

•

.

- - -

# APPENDIX B STATOR D SURFACE STATIC PRESSURE COEFFICIENTS



	Percent Design	Equivalent		Percent Chord																
	Equivalent Rotor	Weight Flow.						Suct	tion Surfa	ce						· · · · ·	Pressure	Surface		
	Speed	lb/sec	10% Span From Tip						90% Span From Tip				10% Span From Tip 90% Span From T				Tip			
			15	25	35	45	55	65	75	85	15	25	35	*	15	50	85	15	50	85
	110	123,41	-0.76	-1.24	-1.61	-1.94	-1.79	-1.61	-1.39	-1.03	-0.27	-0.60	-0.81	_	-0,69	-0.31	-0.36	-0.04	0.91	0.22
	110	116.07	-0.65	-0,76	-0.76	-0.74	-0,53	-0.34	-0.28	-0,20	-0.48	-0.48	-0.41	-	0.31	0.36	0.22	0.46	0.49	0.44
· ·	110	109.67	-0.73	-0.78	-0.73	-0.67	-0,47	-0.29	-0.23	-0.17	-0.49	-0.45	-0.34	-	0.38	0.39	0.24	0.49	0.51	0.44
P	110	102.55	-0.65	-0.62	-0.53	-0.42	-0.27	-0.13	-0.09	-0.02	-0,47	-0.38	-0,24	-	0.55	0.49	0.33	0.53	0.52	0.45
DG .	110	97.18	-0.70	-0.54	-0.42	-0,30	-0.20	-0,12	-0.09	-0,03	-0.49	-0.38	-0.23	-	0.58	0.47	0.31	0.51	0.51	0.43
edi	100	120,02	-0.68	-l.16	-1,52	-1.87	-1.71	-1,54	-1.33	-0,96	-0.34	-0.68	-0.91	-	-0.60	-0.24	-0.30	-0.11	A 15	0.15
	100	110,18	-0.60	-0.78	-0.81	-0.83	-0.63	-0.47	-0.36	-0.27	-0.42	-0.48	-0.46	_ [	0,21	0.30	0.17	0.38	0.15	0,15
•	100	102.67	-0.60	-0.67	-0.65	-0.62	-0.42	-0.25	-0.18	-0.13	-0.48	-0.48	-0.41	_	0.40	0.42	0.28	0.46	0.40	0.40
lag :	100	95.36	-0.62	-0.62	-0.55	-0.47	-0,30	-0.13	-0.10	-0.06	-0,53	-0.48	-0.36	-	0.52	0.49	0.33	0.50	0.50	0.41
95	100	88.32	-0,64	-0.50	-0.38	-0,28	-0,15	-0,06	-0.03	-0.03	-0.47	-0.39	-0,25	-	0.63	0.54	0.37	0.52	0.51	0.43
트	90	113.67	-0.67	-1.10	-1.43	-1.72	-1,64	-1.56	-1.36	-0.97	-0.37	-0.68	-0.88	_	-0.66	-0.27	-0.33	-0.12	0.14	0.14
an	90	103,01	-0,59	-0.78	-0.85	-0,91	-0.76	-0.58	-0.49	-0,33	-0,41	-0.52	-0.52	_	0.13	0.24	0.12	0.32	0.42	0.37
	90	91,28	-0.56	-0.62	-0,61	-0.58	-0.40	-0.23	-0.16	-0,11	-0.46	-0.48	-0.41	_	0.40	0.41	0.27	0.45	0,42	0 41
·	90	85,21	-0.56	-0.56	-0,50	-0.42	-0,25	-0.10	-0.06	-0.03	-0,45	-0.42	-0.32	-	0.52	0.49	0.33	0.52	0.52	0.43
	90	76.85	-0,58	-0.44	-0.33	-0.25	-0.13	-0,04	-0.01	0.04	-0,47	-0.38	-0.25	-	0.63	0.52	0.35	0.55	0.51	0.43
	70	92.54	-0.62	-1.02	-1.29	-1,58	-1.53	-1.49	-1,31	-0.90	-0.39	-0.68	-0.83	-	-0.59	-0.23	-0.28	-0.05	0.16	0.14
	70	82,65	-0.58	-0.79	-0,91	-1.00	-0.89	-0.77	-0.64	-0,40	-0,41	-0.55	-0.59	_	0.01	0.16	0.05	0,00	0,10	A 22
	70	71,87	-0.58	-0.67	-0.68	-0.67	-0.52	-0.30	-0.24	-0,17	-0.52	-0.56	-0.52	-	0.32	0.36	0.22	0.38	0.43	0.35
	70	65.46	-0.67	-0,66	-0.61	-0.54	-0.36	-0.19	-0,15	-0.11	-0.53	-0.50	-0,40	_	0.46	0.42	0,26	0.47	0.46	0.38
	70 _	58,15	-0.54	-0.41	-0,29	-0.19	-0.08	0.00	0.03	0,09	-0.40	-0.32	-0,18	-	0,66	0.56	0.40	0.57	0.55	0.47
	50	66,41	-0.55	-0.89	-1.11	-1.39	-1.31	-1.28	-1.14	-0.76	-0.39	-0.67	-0.83	_ ]	-0.43	-0.12	-0.17	-0.02	0 17	0.15
	50	59.41	-0.62	-0.87	-0,99	-1.12	-1.01	-0,94	-0.77	-0.49	-0.45	-0.61	-0.67	_ }	-0.05	0.09	0.00	0,02	0.21	0.20
	50	51,12	-0.63	-0.73	-0.75	-0.84	~0.61	-0.44	-0.36	-0.24	-0,55	-0.62	-0.59	_	0.27	0.29	0.16	0.34	0.38	0.31
	50	46.51	-0.60	~0.62	-0.57	-0,52	-0.35	-0,16	-0.12	-0.06	-0,53	-0.52	-0.44	- I	0.48	0.46	0.31	0.45	0.46	0.37
24	50	40.70	-0,61	-0.49	-0.39	-0.28	-0.16	-0.07	-0.03	-0.03	-0.49	~0.43	-0,29	-	0.62	0.52	0.36	0,53	0.50	0.41
· •																				

*Suction surface static pressure instrumentation at 45, 55, 65, 75 and 85% chord, 90% span from tip were inoperative.

#### APPENDIX C DEFINITIONS

### Definitions of Symbols

a _o	Inlet relative stagnation velocity of sound, ft/sec
с	Chord length, inches
с _р	Static pressure coefficient
d	Diameter, inches
D	Diffusion factor
gc	Gravitational acceleration, 32.174 $lb_m$ - ft/lb _f -sec ²
i _m	Incidence angle, degree from axial direction
М	Mach number
N	Rotor speed, rpm
Р	Total pressure, psia
PR	Rotor tip static pressure ratio (ratio of local static pressure to static pressure at -7.3% axial chord)
р	Static pressure, psia
R	Gas constant for air, 53.34 ft-lb _f /lb _m -°R
r	Radius, inches
S	Blade passage gap (leading edge), inches
t	Blade maximum thickness, inches
Τ "	Total temperature, °R
Ts	Static temperature, °R
U	Rotor speed, ft/sec
v	Velocity, ft/sec
W	Actual flowrate, $lb_m/sec$
α	Cone angle (angle of plane tangent to conic surface that approximates the design streamline of revolution), deg
β	Air angle, degrees from axial direction

Preceding page blank

243

2

.

# Definitions of Symbols (Continued)

γ	Ratio of specific heats
γ°	Blade-chord angle, degree from axial direction
δ	Ratio of total pressure to NASA standard sea level pressure of 14.694 psia
δ°	Deviation angle, degree
η	Efficiency
θ	Ratio of total temperature to NASA standard sea level temperature of 518.7°R
κ	Blade metal angle, degree from axial direction
ρ	Density, $lb_f/sec^2/ft^4$
σ	Solidity, chord divided by blade spacing (c/S)
φ	Blade camber angle, $\kappa_1 - \kappa_2$ , degree
$\overline{\omega}$	Loss coefficient
$\overline{\boldsymbol{\omega}}\cos{\beta/2\boldsymbol{\sigma}}$	Loss parameter
Subscripts	
0	Compressor inlet (bellmouth)
1	Rotor inlet
2	Rotor exit/stator inlet
2A	Stator exit
ad	Adiabatic
f	Force
fs	Freestream value
id	Isentropic condition
$\mathbf{L}$ .	Local
m	Mean or mass
max	Maximum
min	Minimum

,

.

 $\mathbf{244}$ 

÷ .

### Definition of Symbols (Continued)

٥

Subscripts (Continued)

le	Leading edge
р	Polytropic
te	Trailing edge
S	Static condition
z	Axial component
θ	Tangential component

## Superscripts:

- ' Related to rotor blade
- Mass average value

#### Definitions of Overall Performance Variables

Pressure ratio:

Rotor: 
$$\frac{\overline{P}_2}{\overline{P}_1}$$
 Stage:  $\frac{\overline{P}_{2A}}{\overline{P}_1}$ 

Equivalent flow:

$$\frac{W\sqrt{\theta}}{\delta}$$

Equivalent rotor speed:

$$N/\sqrt{\theta}$$

Adiabatic efficiency:

.

Rotor: 
$$\eta_{ad} = \frac{\left(\overline{P}_2/\overline{P}_1\right)^{\frac{\gamma-1}{\gamma}} - 1}{\overline{T}_{2A}/518.7 - 1}$$
 Stage:  $\eta_{ad} = \frac{\left(\overline{P}_{2A}/\overline{P}_1\right)^{\frac{\gamma-1}{\gamma}} - 1}{\overline{T}_{2A}/518.7 - 1}$ 

 $\mathbf{245}$ 

# Definitions of Overall Performance Variables (Concluded)

Polytropic efficiency:

Rotor: 
$$\eta_{p} = \frac{\frac{\gamma - 1}{\gamma} \ln (\overline{P}_{2}/\overline{P}_{1})}{\ln (\overline{T}_{2}/518.7)}$$
 Stator:  $\eta_{p} = \frac{\frac{\gamma - 1}{\gamma} \ln (\overline{P}_{2A}/\overline{P}_{2})}{\ln (\overline{T}_{s_{2A}}/\overline{T}_{s_{2}})}$ 

Change in surge pressure ratio:

$$\Delta \text{ Surge Pressure Ratio} = \left[1.0 - \frac{(\overline{P}_{2A}/\overline{P}_{1})_{\text{Distorted}}}{(\overline{P}_{2A}/\overline{P}_{1})_{\text{Uniform Inlet}}}\right] N/\sqrt{\theta} = \text{ constant}$$

Values of pressure ratio for each condition are at constant value of flow which corresponds to the flow at surge with distortion.

Average pressures and temperatures for circumferential distortion tests:

$$\overline{P}_{1} = \frac{(3) (P_{1} \text{ Undistorted}) + (1) (\overline{P}_{1} \text{ Distorted})}{4}$$

$$\overline{P}_{2} = \frac{(3) (\overline{P}_{2} \text{ Undistorted}) + (1) (\overline{P}_{2} \text{ Distorted})}{4}$$

$$\overline{P}_{2A} = \frac{(3) (\overline{P}_{2A} \text{ Undistorted}) + (1) (\overline{P}_{2A} \text{ Distorted})}{4}$$

$$T_{1} = \text{ Plenum Conditions (corrected to standard day)}$$

$$\overline{T}_{2} = \text{ Set equal to } \overline{T}_{2A}$$

$$\overline{T}_{2A} = \frac{(3) (\overline{T}_{2A} \text{ Undistorted}) + (1) (\overline{T}_{2A} \text{ Distorted})}{4}$$

Definitions of Blade Element Performance Variables

Incidence angle:

Rotor: 
$$i_m = \beta_1' - \kappa_{le}$$
 Stator:  $i_m = \beta_2 - \kappa_{le}$ 

Diffusion factor:

Rotor: 
$$D = 1 - \frac{V_2'}{V_1'} + \frac{d_2 V_{\theta 2} - d_1 V_{\theta 1}}{(d_1 + d_2) V_1' \sigma}$$

¢

 $\mathbf{246}$ 

Definitions of Blade Element Performance Variables (Concluded) Diffusion factor:

Stator: 
$$D = 1 - \frac{V_{2A}}{V_2} - \frac{d_2 V_{\theta_2} - d_{2A} V_{\theta_2 A}}{(d_2 + d_{2A}) V_2 \sigma}$$

Deviation angle:

Rotor: 
$$\delta^{\circ} = \beta'_2 - \kappa_{\text{te}}$$
 Stator:  $\delta^{\circ} = \beta_{2A} - \kappa_{\text{te}}$ 

Loss coefficient:

Rotor: 
$$\overline{\omega}' = \frac{(\overline{P}'_2)_{id} - P'_2}{\overline{P}'_1 - p_1}$$

where:

$$(P'_{2})_{id} = P'_{1} \left\{ 1 + \frac{\gamma - 1}{2} \left( \frac{U_{2}^{2}}{a_{0}_{1}^{2}} \right) \left[ 1 - \left( \frac{d_{1}}{d_{2}} \right)^{2} \right] \right\}^{\frac{\gamma}{\gamma - 1}}$$

$$P' \text{ is found from } p/P' = \left[ 1 + \frac{\gamma - 1}{2} - M'^{2} \right]^{\frac{\gamma}{1 - \gamma}}$$

and M' is calculated using trigonometric functions and the measurements of U,  $\beta$ , P, and p.

Stator: 
$$\overline{\omega} = \frac{P_2 - \overline{P}_{2A}}{P_2 - p_2}$$
  $\overline{\omega}_{fs} = \frac{P_{2A_{fs}} - \overline{P}_{2A}}{P_{2A_{fs}} - p_2}$ 

where:

 $P_{2A_{fs}}$  = stator exit average freestream total pressure from wake rakes  $P_2$  = stator inlet total pressure from 20-deg wedge probes Definitions of Blade Element Performance Variables (Continued) Rotor tip static pressure ratio:

 $PR = \frac{p_L}{p \text{ at } -7.3\% \text{ axial chord}}$ 

Stator static pressure coefficient:

$$Cp = \frac{p_{surface} - p_{2fs}}{(\rho V^2/2)_{2fs}}$$

#### REFERENCES

- 1. Brent, J. A., J. G. Cheatham, and A. W. Nilsen, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part I - Analysis and Design of Stages A, B, and C," NASA CR-120803, FR-4667, June 1972.
- 2. Brent, J. A. and D. R. Clemmons, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part III – Data and Performance for Stage C," NASA CR-120938, FR-5028, August 1972.
- 3. Brent, J. A., "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part II - Data and Performance for Stage A," NASA CR-120804, FR-4719, July 1972.
- 4. Brent, J. A., J. G. Cheatham, and D. R. Clemmons, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part V - Analysis and Design of Stages D and E," NASA CR-121008, FR-5212, December 1972.
- 5. Sanger, N. L., "Analytical Study of the Effects of Geometric Changes on the Flow Characteristics of Tandem-Bladed Compressor Stators," NACA TND-6264, March 1971.
- 6. "Aerodynamic Design of Axial Flow Compressor," (Revised), NASA SP-36, 1965.
- Linder, C. G. and B. A. Jones, "Single-Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part V - Data and Performance for Slotted Rotor 3 - Slotted Stator 2," NASA CR-54548, FR-2285, August 1967.
- 8. Linder, C. G. and B. A. Jones, "Single-Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part VIII - Data and Performance for Slotted Stator 3," NASA CR-54551, FR-2288, October 1967.
- 9. Miller, M. L. and G. Seren, "Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, Part III -Data and Performance of Single-Slotted 0.65 Hub Diffusion Factor Stator," NASA CR-54566, Allison EDR-5759, June 1968.
- Carmody, R. H. and G. Seren, "Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, Part IV -Data and Performance of Double-Slotted 0.75 Hub Diffusion Factor Stator," NASA CR-54567, Allison EDR-5861, August 1968.
- 11. Horn, R. A., Jr., G. Seren, and R. H. Carmody, "Single-Stage Experimental Evaluation of Boundary Layer Bleed Techniques for High Lift Stator Blades, Part IV - Data and Performance of Triple-Slotted 0.75 Hub Diffusion Factor Stator," NASA CR-54572, Allison EDR-5944, August 1969.

#### **REFERENCES** (Continued)

- 12. Brent J. A., and B. A. Jones, "Single-Stage Experimental Evaluation of Compressor Blading With Slots and Vortex Generators, Part II - Data and Performance for Stage 5 Without Slots or Vortex Generators," NASA CR-72634, FR-3481, March 1970.
- 13. Brent, J. A., "Single-Stage Experimental Evaluation of Compressor Blading With Slots and Vortex Generators, Part IV - Supplemental Data for Stage 4," NASA CR-72778, FR-4135, December 1970.

THE FOLLOWING PAGES ARE DUPLICATES OF ILLUSTRATIONS APPEARING ELSEWHERE IN THIS REPORT. THEY HAVE BEEN REPRODUCED HERE BY A DIFFERENT METHOD TO PROVIDE BETTER DETAIL