Many-Parricle Theory of Nuclear Systems with Application to Neutron Star Matter

= NGR-
Concract Number 19-005-006
NASA Headquarters Washington, D. C.

Contract Number 953549
Jet Propulsion Laboratory
Pasadena, California

October 12, 1973

signature Aemu Chuhalahe
Dr. Dennis A. Chakkalakal
Principal Investigator

Deparment of Pnysics
Souther. Seanch Post Office

Southem University
Baton Rouge, Louisiana 70813

TABLE OF CONTENIS

In troduction
ProJect a :
A-1 Constraints on Variation 1
A-2 Numerical Procedure and Results 4
A-3 Discussion 8
PROJECT B 17
B-1 Introduction 17
B-2 Polarization Effect 18
B-3 An Approximate Calculation of $\mathrm{F}_{\mathrm{o}}^{\mathrm{S}}$ 18
B-4 Effect of Polarization on Condensation Energy and
Superfluid State Energy 20
B-5 Discussion 20

Many-Particle Theory of Nuclear Systems with Application to Neurron Star Matter

This is a report on the research carried out on the following projects since submitting the semi-annual status report on April 5, 1973.
A. Calculation of an improved energy-density relation for the normal state of neutron-star matter
B. Calculation of the effects of superfluidity and polarization in neutron star matter

PROJECT A
The Calculation of an Improved Energy-Density Relation in Neutron Matter in the High-Density Region

A-1 Constraints on Variation

The theoretical formalism is outined in section III. 1 of the originey proposal. In particuiar, the energy of the normal state of neutron matcer. ε_{n}, is developed in a cluster series

$$
\varepsilon_{n}=\varepsilon_{F}+\varepsilon_{2}+\varepsilon_{3}+\cdots
$$

In this report, we shall use $\mathcal{E}_{\boldsymbol{n}}$ to refer to our approximation for energy, namely, $\left(\varepsilon_{F}+\varepsilon_{2}+\varepsilon_{3}\right)$.

Reference is made in the original proposal to certain physically motivated necessary conditions on the radial distribution function. These in turn, constrain the variational parameters in the trial two-body correlation factor $f(r)$. There is aiso the so-called Pauli condition which restricts $f(r)$ directly. It arises from the effect of the Pauli Principle which prevents particles in the fermi sea from scattering back to the occupied states. The conditions which we use as constraints on our variational procedure are listed below:
(I) $I_{B}=0 \quad$ (Pauli Condition)
(II) $S(k) \geqslant 0$
(III) $I_{C} \leqslant 1.243$ (Couiomb Inequality)
(IV) $\Delta \mathcal{N}=0$

$$
\text { (V) } \quad S(0)=0 \quad \text { (Siructure-Factor Sum Rule) }
$$

where $I_{B}, S(K), I_{c}$ and \mathbb{N} are definea as follows:

$$
\begin{aligned}
& I_{B}=\rho \int d r(f(r)-1)\left(1-\frac{1}{2} \ell^{2}\left(k_{F} r\right)\right) \\
& \ell(x)=\frac{3}{x}\left(\frac{\sin x}{x^{2}}-\frac{\cos x}{x}\right) \\
& S(k)=1+s^{(0)}(k)+s^{(1)}(k)+\cdots \\
& S^{(0)}(k)=p \int d r e^{i k \cdot r}\left(g^{(0)}(r)-1\right) \\
& S^{(1)}(k)=\rho \int d r e^{i k \cdot r} \delta g^{(1)}(r) \\
& g^{(0)}(r)=f^{2}(r)\left(1-\frac{1}{2} l^{2}\left(k_{F} r\right)\right) \\
& \delta g^{(1)}(r)=-\left(\frac{176}{105}\right) \pi \rho \frac{f^{2}(r)}{r} \int_{0}^{\infty} d s \int_{|r-s|}^{r+s} d t s t \eta(s) \text {. } \\
& \cdot\left[l^{2}\left(n_{F} t\right)-\frac{1}{2} l\left(k_{F} r\right) l\left(k_{F} s\right) l\left(k_{F} t\right)\right] \\
& +\pi \rho \frac{f^{2}(r)}{r} \int_{0}^{\infty} d s \int_{(r-s 1}^{r+s} d t s t \eta(s) \eta(t) \text {. } \\
& \cdot\left[2-\left(l^{2}\left(k_{F} r\right)+l^{2}\left(k_{P} S\right)+l^{2}\left(k_{P} t\right)\right)+l\left(k_{F} r\right) l\left(k_{F}\right) l\left(k_{F}-t\right)\right] \\
& I_{c}=I_{c}^{(0)}+I_{c}^{(0)}+\cdots \\
& I_{c}^{(0)}=(4 \pi \rho)^{2 / 3} \int_{0}^{\infty} d r r\left(1-g^{(0)}(r)\right) \\
& \left.I_{c}^{(}\right)=-(4 \pi p)^{2 / 3} \int_{0}^{\infty} d r r \delta g^{(1)}(r) \\
& \Delta N=\frac{1}{2} p \int d r\left(f^{2}(r)-1\right)\left(1-\frac{1}{2} l^{2}\left(k_{F} r\right)\right)
\end{aligned}
$$

We note that

$$
2(\Delta N)=1+5^{(0)}(0)
$$

Thus condition (IV) is equivalent to $S^{(0)}(0)=-1$. Condition (V) means

$$
S(0)=1+S^{(0)}(0)+S^{(1)}(0)+\cdots \cdots=0 .
$$

we use it in the truncated form

$$
1+S^{(0)}(0)+S^{(1)}(0)=0
$$

The origins of conditions (II) and (III) are discussed in E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969).

The relative order of magnitude of the terms in the cluster series for energy and all other associated cluster expansions is determined by the "correlation parameter" $\boldsymbol{\xi}$ defined by

$$
\xi=n w, \quad w=\int\left(f^{2}(r)-1\right) d x
$$

We note also that the five conditions are not completely independent of each other because of the following relations: Condition (V) is related to the $k=0$ version of (II). The former can be satisfied by first satisfying (IV) and then requiring also that $S^{(1)}(0)=0$.

In order to expedite the numerical calculation, we usually avoid imposing (II) and (III) directly. Often we find that (V) enables us to find more easily the region of the parameter space where (II) and (III) are satisfied. Similarly, (IV) (or (I)) enables us to locate regions where $|\xi|$ is small,

A-2 Numerical Procedure and Results
Several methods of calculation; each involving a different set of criteria governing the choice of constraints in the variational procedure. have been pursued. As indicated in the proposal, we have used oneparameter, two-parameter and three-parameter forms for the trial two-body correlation factor $f(r)$. Calculations using the various methods of approximation have been carried out at the density corresponding to fermi wave number, $\mathrm{k}_{\mathrm{F}}=3.5 \mathrm{fm}^{-1}$ in order to test the reliability of these method: in the high-density region. The two-nucleon potential used for the purpose is the hard-core potential of core radius 0.4 fm given by Ohmura, Morita and Yamada (omy-4) (Progr. Theoret. Phys. 15 (1956) 222). This is a central potential of the form

$$
\begin{aligned}
& V\left(r_{12}\right)=\sum_{i=1}^{4} \Lambda_{i} V_{i i}\left(r_{12}\right) \\
& \Lambda_{1}=\Lambda_{2}=\frac{1-\overrightarrow{\sigma_{\sigma}} \cdot \overrightarrow{\sigma_{2}}}{4} ; \Lambda_{3}=\Lambda_{4}=\frac{3+\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}}}{4} \\
& V_{i}\left(r_{i 2}\right)= \begin{cases}\infty & , r_{12}<r_{c} \\
V_{0 i} e^{-\beta_{i}\left(r_{12}-r_{c}\right)} & , r_{12}>r_{c}\end{cases}
\end{aligned}
$$

where $i=1,2,3,4$ denotes, respectively, the component appropriate to the singlet-odd, singlet-even, triplet-even, and triplet-odd state of the twonucleon system. The Λ_{i} are the corresponding projection operators. The parameters are

$$
\begin{aligned}
& V_{o 2}=-235.41 \mathrm{MeV}, \quad \beta_{2}=2.0344 \mathrm{fm}^{-1} \\
& V_{o 3}=-475.04 \mathrm{MeV}, \quad \beta_{3}=2.5214 \mathrm{fm}^{-1} \\
& V_{\mathrm{o} 1}=V_{o 4}=0 \\
& Y_{\mathrm{c}}=0.4 \mathrm{fm} \text { (in a11 States) }
\end{aligned}
$$

These parameters are chosen to fit the following data characterizing thi low-energy interaction of two nucleons in free space:

Binding energy of the deuteron $\quad=2.226 \mathrm{MeV}$
Triplet scattering length of the neutron-proton system $=5.378 \times 10^{-13}$ Singlet scattering length of the neutron-proton system $=-23.69 \times 10^{-13} \mathrm{~cm}$ Singlet effective range of the neutron-proton system $=2.7 \times 10^{-13} \mathrm{~cm}$
A two-nucleon state must be either singlet-even or triplet-odd according to the Pauli Principle. Therefore, in our calculation, there is no need for $\left(V_{03}, \beta_{3}\right)$.

Method 1
A trial two-body correlation factor,

$$
f(r)= \begin{cases}0 & , r \leq r_{c} \\ 1-e^{-N\left(r-r_{c}\right)} & , r>r_{c}\end{cases}
$$

has been used. According to the variational principle, the minimum of \mathcal{E}_{n} obtained using any trial wave function provides an upper bound to the true energy E. Therefore, at each density we minimize $\left(\varepsilon_{F}+\varepsilon_{2}\right)$ with respect to μ. If this minimum occurs at $\mu=\mu_{0}$, then $E_{3}\left(\mu_{0}\right)$ is calculated. The corresponding approximation to the energy per neutron is $\varepsilon_{F}+\varepsilon_{2}\left(\mu_{0}\right)+\varepsilon_{3}\left(\mu_{0}\right)$. The results obtained by this method are given in Table A-1.

Method 2

The following two-parameter form for $f(r)$ has been used in this method:

$$
f(r)=\left\{\begin{array}{cl}
0 & r \leq r_{c} \\
{\left[1-e^{-\mu\left(r-r_{c}\right)}\right]\left[1+\gamma e^{-\mu\left(r-r_{c}\right)}\right],} & r>r_{c}
\end{array}\right.
$$

The additional parameter gives $f(r)$ more flexibility in order to help satisfy the constraints better. Several alternate approaches in imposing these conditions have been used. These are described below:
(A) The parameter μ is fixed at $\bar{\mu}=2.0 \mathrm{fm}^{-1}, \gamma$ is varied and $\left(\varepsilon_{F}+\varepsilon_{2}\right)$ is found to have a minimum with respect to γ at $\gamma=\gamma_{0}$. Then $\varepsilon_{3}\left(\bar{\mu}, \gamma_{0}\right)$ is calculated.
(B) γ is determined by condition (I). Then the minimization procedure of method 1 is attempted.
(C) The same as (B), using condition (IV) instead of condition (I).
(D) The same as (B), but using condition (V) instead of (I), followed by an attempt to use the minimization procedure of method 1.

In methods (B) and (C) neither ($\boldsymbol{E}_{\mathrm{F}}+\boldsymbol{E}_{2}$) nor $\left(\boldsymbol{E}_{\mathrm{F}}+\boldsymbol{E}_{2}+\boldsymbol{E}_{3}\right)$ is found to have a minimum with respect to μ. Results for method $2 \mathrm{~A}, 2 \mathrm{~B}$ and 2 C presented in Table $\dot{A}-1$ are intended to illustrate the following fact: As the value of μ increases, energy gets larger and convergence of all cluster expansions improves. This causes some ambiguity regarding the determination of the minimum energy. However, the ambiguity can be removed when we impose the conditions (II) and (III) on the $\varepsilon_{n}(\boldsymbol{\mu})$ curve. This is done in method 2D for which the complete results are given in Table A-2 for μ values in the
range $2.0 \leq \boldsymbol{\mu} \leq 7.0 \mathrm{fm}^{-1}$. It should be pointed out here that there are two values of γ that satisfies $S(0)=0$ in method $2 D$. Only the smaller of these values of γ is used for each μ, since that corresponds to lower energy and better convergence of all the cluster expansions.

Method 3
Here we adopt the following three-parameter form for $f(r)$:

$$
f(r)= \begin{cases}0 & r \leq r_{c} \\ {\left[1-e^{-\mu\left(r-r_{c}\right)}\right]\left[1+\gamma e^{-k\left(r-r_{c}\right)}\right],} & r>r_{c}\end{cases}
$$

Several different procedures involving this $f(r)$ have been attempted. Of these, the ones that turned out to be most fruitful are described below. (A) For given $\boldsymbol{\mu}$ and $\boldsymbol{k}, \boldsymbol{\gamma}$ is determined by condition (I). Then it is found that at each \mathcal{K}, both $\left(\varepsilon_{F}+\Sigma_{2}\right)$ and ε_{n} have a minimum with respect to μ at approximately the same value of $\mu=\mu_{0}$. Now we bring the results for $\varepsilon_{n}\left(\mu_{0}, \mathcal{K}\right)$ to better agreement with the constraints by changing $\boldsymbol{\gamma}$ to the lower of the two values that will make $S(0)=0$. K is to be determined by a further minimization of energy. The results are presented in Table A-3. (B) In this method, the procedure in (A) is followed upto the point of obtaining the $\varepsilon_{n}\left(\mu_{0}, K\right)$ results. Then \mathcal{K} is chosen as the value \mathcal{K}° which gives the smallest $|5|$. Then $\varepsilon_{n}\left(\mu, \mathcal{K}^{0}\right)$ is recalculated and its minimum with respect to μ is sought. The results are given in Table A-4.
(C) In this procedure, again we let $\boldsymbol{\mu}$ and \mathcal{K} vary, but use condition (I) to fix $\gamma=\gamma_{0}$ as a function of μ and \mathcal{K}. Then at each trial value of μ, \boldsymbol{K} is chosen as the value \mathbb{K}° for which $|\Delta N|$ is smallest. The resulting data for $\varepsilon_{n}\left(\mu, \mathcal{H}^{0}\right)$ and other auxiliary quantities are shown in Table A-5. The lowest
energy subject to the constraints is to be determined from this data. (D) This procedure is the same as (C) except for the following changes: Condition (IV) is used instead of (I) to fix $\gamma ; \boldsymbol{K}^{\circ}$ is chosen corresponding to the smallest value of $\left|I_{B}\right|$. The results are given in Table $A-6$. A-3 Discussion

The lowest energy obtained by each method is shown in Table A-7. The criteria that are used to determine the lowest energy are the following:
(1) Whenever $\varepsilon_{n}(\mu)$ or $\mathcal{E}_{F}+\varepsilon_{2}(\mu)$ has a minimum with respect to μ, we choose that as the lowest value in spite of the violation of $S(0)=0$ that is usually associated with it (but, only in the high density region). However, $S(k) \geq 0$ is satisfied for k values not near $k=0$. This can be considered adequate because in the high-density system the larger k values are much more significant. Besides, in a convergent cluster expansion for $S(k)$,

$$
S(k)=1+S^{(0)}(k)+S^{(1)}(k)+\ldots
$$

the neglected higher order terms, though expected to be small, may neverthless be sufficient to "repair" small violations of $S(0)=0$ and $S(k) \geq 0$ for small k. In short, the results for energy obtained from a calculation in which all the cluster expansions converge rapidly and all the conditions are satisfied with the exception of $S(k) \geq 0$ at small k, may be considered reliable. (2) Even when $\left(\boldsymbol{E}_{F}+\boldsymbol{E}_{2}\right)$ or $\boldsymbol{E}_{\mathrm{n}}$ has no minimum with respect to μ in an unconstrained variation, it is found that conditions (II) and (III) cannot be satisfied when μ is below a particular value μ_{0}.

Thus $\mathcal{E}_{x}\left(\mu_{0}\right)$ may be taken as the lowest energy consistent with the consrainus (3) Note that condition (II) is imposed in the modified sense discussud above, except for methods 2 D and 3 A , where we have sought to satisfy $\mathrm{Sck} \pm 0$ for all k . The results form these latter two methods, when compared with results from other procedures, give us an estimate of the error we may allowing through the violation of $S(k) \geq 0$ for small k. (4) The reliabilacy of all our results depends on the size of $|\xi|$ obtained; if $|\xi|$ is large, adequate convergence of the cluster development is in doubt. Based on all these criteria, so far the best results are obtained from method 3D. We are in the process of testing four additional procedures involving the three-parameter correlation factor. This is expected to be completed in about three weeks from now. Then we will adopt the most reliable of the methods we have tested and carry out the complete calculation for the entire density range $0.25 \leq \mathrm{k}_{\mathrm{F}} \leq 3.5 \mathrm{fm}^{-1}$. It should be emphasized here that the difficulties associated with imposing $S(k) \geq 0$ for all k do not arise in the intermediate - and low-density regions.

TABLE A-1
Results from Methods 1, 2A, 2B and 2C

TABLE $A-2$
Results from Method 2D

TABLE AT
Results from Method 3A

TABLE A-4
Results from Method 3B

ξ	$\underset{\left(\mathrm{fm}^{-1}\right)}{\mathcal{K}_{\left(\mathrm{fm}^{-1}\right)}^{0}}$	γ	$S^{(0)}(0)$	$S^{(1)}(0)$	$S(0)$	$\Delta \mathcal{N}$	I_{B}	I_{c}	$\underset{(\mathrm{Mev})}{\varepsilon_{2}}$	$\begin{gathered} \varepsilon_{F}+\varepsilon_{2} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{aligned} & \varepsilon_{3} \\ & (\mathrm{mev}) \end{aligned}$	ε_{n} (Mer)	$S(k) \geqslant 0$ Satisfied for
0.23	1.41 .75	2.36	-0.36	-2-58	-1.94	0.32	0	0.81	$-45 \cdot 9$	106.	$85 \cdot 5$	192.	$\begin{aligned} & 0.4<k<1.2 \mathrm{sin}^{-1} \\ & 2.0<k<3.7 \mathrm{fm}^{-1} \end{aligned}$
0.18	1.62 .00	$2 \cdot 38$	-0.44	2.00	-1.4	0.28	0	1.09	-39.0	113.	$80 \cdot 2$	193.	$\begin{aligned} & 0.6<k<1.2 \mathrm{fm}^{-1} \\ & 2.0<k \lesssim 5.0 \mathrm{fm}^{-1} \end{aligned}$
0.17	1.8226	$2 \cdot 42$	-0.49	-1.63	-1.12	0.25	0	1.14	-28.0	124.	75.6	200.	$\begin{aligned} & 0.7<k<1.3 \mathrm{fm}^{-1} \\ & 2.2<k<? \mathrm{fm}^{-1} \end{aligned}$
0.19	2.02 .60	2.68	-0.53	-1.37	-0.90	0.23	0	1.04	-1.27	151.	73.5	225	$k>0.7 \mathrm{fm}^{-1}$
0.16	2.22 .80	2.55	-0.56	-1.19	-0.75	0.22	0	1.12	3.68	156.	67.4	223.	$k>0.9 \mathrm{fm}^{-1}$
0.17	2.53 .22	2.66	-0.60	-0.99	-0.59	$0 \cdot 20$	0	1.07	34.8	187.	61.1	248.	$k>1.0 \mathrm{fm}^{-1}$
0.16	2.83 .55	2.59	-0.62	-0.86	-0.48	0.19	0	1.05	52.1	204.	56.9	261.	$k>1.1 \mathrm{fm}^{-1}$
0.17	$3.0 \quad 3.80$	2.61	-0.63	-0.79	-0.42	0.18	0	1.03	$70 \cdot 6$	223.	54.0	277.	$k>1.1 \mathrm{fm}^{-1}$
0.17	3.24 .04	2.62	-0.64	-0.74	-0.38	0.18	0	1.01	88.2	241.	$51 \cdot 7$	292.	$k>1.0 \mathrm{fm}^{-1}$
0.18	3.5446	2.73	-0.65	-0.68	-0.33	$0 \cdot 17$	0	0.97	128.	281.	$46 \cdot 3$	327.	$k>0.9 \mathrm{fm}^{-1}$
0.18	3.84 .80	$2 \cdot 72$	-0.66	-0.63	-0.29	0.17	0	0.95	155.	308.	$44 \cdot 4$	352.	$k>0.9 \mathrm{fm}^{-1}$

ξ	$\underset{\left(f m^{-1}\right)}{\mu} \underset{\left(f m^{-1}\right)}{\mathcal{K}^{0}}$	γ	$S^{(0)}(0)$	$s_{(0)}^{(1)}$	S(0)	ΔN	I_{B}	I_{c}	$\varepsilon_{(\mathrm{mev})}^{\varepsilon_{2}}$	$\varepsilon_{F}+\varepsilon_{2}$ (Mev)	ε_{3} (Mev)	E_{n} (mev)	$s(k) \geqslant 0$ Satisfied for
-0.40	$1.4 \quad 1.80$	2.53	-1.01	-1.77	-1.78	0	-0. 33	0.69	-41.5	11.	88.7	200.	$0.4<k<1.3 \mathrm{fm}^{-1}$ $2.0<k<4.2 \mathrm{fm}^{-1}$
-0.37	1.62 .04	47	-1.00	-1-32	-1.32	0	-0.02	1.13	$-35-8$	116	79.7	196	$\begin{aligned} & 0.7<k<1.3 \mathrm{fm}^{-1} \\ & 2.0<k<? \mathrm{fm}^{-1} \end{aligned}$
-0.34	1.82 .30	2.49	-1.00	-1.00	. 0	0	-0.02	$1 \cdot 20$	$-25 \cdot 2$	27	4.0	201.	$\begin{aligned} & 0.8<k<1.4 \mathrm{fm}^{-1} \\ & 1.9<k<9 \mathrm{fm}^{-1} \end{aligned}$
-0.30	2.02 .60	62	-1.00	-0.7	-0.77	0	-0.02	15	$-6 \cdot 30$	146	64.7	216.	$k>1.0 \mathrm{fm}^{-1}$
-0.27	2.22 .88	$2 \cdot 67$	-1.00	-0.61	0.61	0	-0.02	$1 \cdot 13$	11.2	164.	64.8	228.	$k>1.1 \mathrm{fm}^{-1}$
-0.24	2.53 .25	2.64	-1.00	-0.4	-6.44	0	-0.02	1.10	$30 \cdot 6$	183.	59.1	242.	$k>1.3 \mathrm{fm}^{-1}$
-0.22	2.83 .64	$2 \cdot 65$	-1.00	-0.3	-0.33	0	-0.0	. 05	55.3	208.	54.8	262.	$k>1.3 \mathrm{fm}^{-1}$
-0.21	3.03 .90	$2 \cdot 67$	-1.00	-0.28	-0.28	0	-0.01	1.02	72.7	225.	52.5	278.	$k>1.2 \mathrm{fm}^{-1}$
-0.18	$3 \cdot 24.25$	2.83	-1.00	-0.23	-0.23	0	-0.01	0.98	108.	260.	47.3	308.	$k>1.1 \mathrm{fms}^{-1}$
-0.17	3.54 .64	2.84	-1.00	-0.18	-0.18	\bigcirc	-0.01	$0-96$	136.	289.	45-5	334.	$k>0.9 \mathrm{fm}^{-1}$
-0.16	3.85 .06	$2 \cdot 90$	-1.00	-0.15	-0.15	0	-0.01	0.93	172.	325.	$43 \cdot 8$	368.	$k>0.7$ for $^{-1}$

TABLE A-6

TABLE A-7

PROJECT B
Effects of Polarization on Neutron Star Structure

B-1 Introduction

The invisible components in the so called "single-line spectroscopic binaries" in Hercules, Scorpius, etc., seen by the UHURU satellite ${ }^{(1)}$ are now commonly believed to be rotating neutron stars and in some cases may be even black hole revolving around the center of mass of the system. It is possible to estimate the mass of the neutron star component by an elaborate study of the intensity curves and of the spectral class of the visible components. Hence theoretical determinations of masses, mqments of inertia and radii of stable neutron stars have become more important than ever.

Macroscopic neutron star properties have been calculated during the past fifteen years using equations of state derived from different pheno menological two-body interactions. One of the realistic effective interactions between two neutrons is a combination of a strong short-range repulsion and a long range attraction. It was first suggested by Migdal and 1 ater proved by Yang and Clark ${ }^{(2)}$ and others, that in a comparatively low-density degenerate neutron liquid, for which the interparticle spacing is large compared to the range of the repulsive forces $\left(10^{-13} \mathrm{~cm}\right)$, the attraction between pairs of neutrons of opposite spin and momentum would lead to the formation of a condensate and the appearance of superfluidity. However, our estimation of the pairing energy for " S " wave attraction is on the low side, since the enhancement of the attractive interaction between neutrons arising from the fact that they are embedded in a highly polarizable medium (the other neutrons) were not taken into account by us. (Yang and C1ark),

B-2 Polarization Effect

According to Pethick and Pines ${ }^{(3)}$, the additional term coming from the polarizability of the medium is always attractive and is approximately - $\left|V F_{0}^{S}\right| /\left(1+F_{o}^{s}\right)$ where V is the "bare" interaction in the " S " wave channel and $\mathrm{F}_{\mathrm{o}}^{\mathrm{S}}$ is the Fermi liquid parameter which describes the spinsymmetric part of the interaction between two quasi-particles on the neutron Fermi surface. The net effective interaction, hence, has the simple form

$$
\begin{equation*}
V_{e f f}=V /\left(1+F_{0}^{5}\right) \tag{B-1}
\end{equation*}
$$

Since F_{0}^{S} for the neutron liquid is negative and according to Pethick $\&$ Pines may be as negative as -0.7 , such enhancement effects can be very important. An exact estimation of $\mathbf{F}_{\mathrm{o}}^{\mathbf{S}}$ seems unattainable at present although such a calculation is desirable and necessary in order to understand exactly how the polarized medium affects the energy state and therefore the mass-energy density inside the neutron-star matter. B-3 An Approximate Calculation of F_{o}^{s}

Applying the Landau technique of functional differentiation of the energy with respect to quasiparticle occupation numbers ${ }^{(4)}$, we estimate the Fermi liquid parameter $\mathrm{F}_{\mathrm{o}}^{\mathrm{S}}$ by summing over both the direct and exchange interactions between the interacting quasiparticle pair via the following integral

$$
F_{0}^{s}=\frac{N_{0}}{2} \frac{(2 \pi)^{3}}{\sqrt{2}} \int_{0}^{2 k_{F}} \frac{k d k}{k_{F}^{2}}[V(0)-V(k)]
$$

Where $N_{0}=m^{*} k_{f} / 2 \pi^{2} \hbar^{2}$ is the familiar density of states at the Fermi surface, and Ω is the volume of the system.

For the interaction between a quasiparticle pair, we choose the simple Yamaguchi potential ${ }^{\text {(5) }}$

$$
\left(k^{\prime}|V| k\right)=-\left(h^{2} / m\right) K g\left(k^{\prime}\right) g(k),(S \text {-wave only) } \quad(B-3)
$$

with $g(k)=\left(\beta^{2}+k^{2}\right)^{-1}$. For $K=0.18725 \mathrm{fm}^{-3}$ and $\beta=1.254 \mathrm{fm}^{-1}$ the singlet scattering length and effective range are $a_{s}=-23.75 \mathrm{fm}$ and $r_{s}: 7.400$ fro The Fermi liquid parameter F_{o} is calculated for several densities. The results are listed in Table B-1

$$
\text { Table B-1 } \mathrm{F}_{\mathrm{o}}^{\mathrm{s}} \text { for different dersities }
$$

$\mathrm{k}_{\mathrm{f}}\left(\mathrm{fm}^{-1}\right)$	0.36	0.60	0.72	0.96	1.20
$\mathrm{~F}_{\mathrm{o}}^{\mathrm{s}}$	-0.081	-0.262	-0.364	-0.552	-0.734

As can be seen from Table $B-1, F_{o}^{s}$ depends on density quite strongly. As the density increases, the F_{o}^{s} becomes more and more negative. At the density $\mathrm{k}_{\mathrm{f}}=1.20 \mathrm{fm}^{-1}, \mathrm{~F}_{\mathrm{o}}^{\mathrm{s}}$ is equal to -0.73 . These results together with the prediction by Pethick and Pines give a very strong indication that the enhancement due to the polarization of the neutron medium may even be iarge enough to give rise to a major mass-energy density discontinuity aue to neutron pairing effects. The existence of a concavity in the mass-enexgy density vs. the number density curve is sufficient to give a first-order phase-transition. Since there is no precise way of calculating the energy state for the neutron-star matter including the polarization effect, ict is cf interest to see how strong the enhancement will have to be in order to produce a first-order phase-cransition.

B-4 Effect of Polarization on Condensation Energy and Superfluid-State Energy
As has been mentioned in our original proposal we have all the necussar, ingredients for the calculation of the normal state energy, ε_{n}, and the condensation energy, ε_{c}, and also the superfluid state energy, $\varepsilon_{s}\left(=\varepsilon_{n}-\varepsilon_{c}\right)$. To simplify the calculation, we assume that the enhancement due to polari. zation results in an increase in the attractive potential well-depth only. Then all we have to do in the calculations of the enhanced normal state energy, $\varepsilon_{n}^{e n h}$, and the enhanced condensation energy, $\mathcal{E}_{c}^{e n h}$, is to substitute A_{o} by $\beta A_{0}(\beta>1)$ in the Ohmura potential

$$
V(12)= \begin{cases}\infty & \quad r_{12}<c \\ A_{0} \exp (-\alpha r), & \text { S-wave only, } \quad r_{12}>c \quad(B-4)\end{cases}
$$

Where c is the radius of the hard core. $\varepsilon_{n}^{e n h}, \varepsilon_{c}^{e n h}$ and $\varepsilon_{s}^{e n h}$ ($=\varepsilon_{\mathrm{n}}^{\mathrm{enh}}-\varepsilon_{\mathrm{c}}^{\mathrm{enh}}$) are then calculated according to the procedures described in our proposal for the $c=0.4$ fm Ohmura potential. The results of $\varepsilon_{n}^{\mathrm{enh}}$, $\mathcal{E}_{\mathrm{c}}^{\mathrm{enh}}$, and $\varepsilon_{\mathrm{s}}^{\mathrm{enh}}$ for $\beta=1.0,1.30,1.45$, and 1.50 are listed in Table B-2. (Note that a $\boldsymbol{\beta}=1.50$ is corresponding to a $F_{o}^{S}=-0.33$.) For the purpose of easier reference, we show in Figure B-1 the plots of the enhanced normal state energy per particle vs. k_{f} for $\boldsymbol{\beta}=1.0,1.15,1.30,1.45,1.50,1.55,1.60$, and 1.80. In Figure B-2, the enhanced superfluid state energy per; particle $\varepsilon_{s}^{e n h}$, vs k_{f} for $\beta=1.30,1.45$, and 1.50 are plotted. Some interesting sets of energies in Figure B-1 are plotted vs. the specific volume, v, in Figure B-3. B-5 Discussion

From Table B-2 and Figure B-2 we find that at $\beta=1.45$, the superfluid state energy, $\varepsilon_{s}^{e n h}$, turns negative at $k_{f}=0.5 \mathrm{fin}^{-1}$, while at $\beta=1.50, \varepsilon_{\mathrm{s}}^{\mathrm{enh}}$ turns
negative at $\mathrm{k}_{\mathrm{f}}=0.65 \mathrm{fm}^{-1}$ resulting in a major mass-energy density discontinuity around the density $10^{12}-10^{13} \mathrm{gm}_{\mathrm{cm}} \mathrm{cm}^{-3}$.

We conclude that the polarization effect indeed enhances the condensation energy (and the gap) and there is a tendency of the neutron-star matter to undergo a first-order phase-transition around the density of $10^{12}-10^{13} . \mathrm{gm}^{13} \mathrm{~cm}^{-3}$ provided the effect is as strong as indicated (or stronger).

References

1. R. Giacconi, S. Murray, H. Gursky, E. Kellogg, E. Schrier and H. Tanenotiri. Astrophys. J., $\frac{178}{172)} 281$
2. C. -H. Yang and J. W. Clark, Nuc1. Phys. Al74 (71) 49
J. W. Clark and C. -H. Yang, Nuovo Cimo Lett. 1 (1970) 272, 2 (1971) 373
3. D. Pines in Proc: XIIth Into Conf. Low. Temp. Phys., edited by E. Kandu Tokyo, 1971
4. G. E. Brown, Rev. of Modern Phys. 43 (1971) 1
5. Y. Yamaguchi, Phys. Rev., 95 (1954) 1678
6. T. Ohmura, Progr. Theo. Phys. 41 (1969) 419

Table B-2 Condensation energy, \mathcal{E}_{c}, normal state energy per particle, and superfluid state energy per particle for $\beta=1.0$ (unenhanced), $1.30,1.45$, and 1.50 (enhanced)

β	$k_{f}\left(\mathrm{fm}^{-1}\right)$	$\mathrm{n}^{(\mathrm{MeV})}$	$c^{(\mathrm{MeV})}$	$s^{(\mathrm{MeV})}$
1.0	0.24	0.606	0.114	0.492
	0.48	2.050	0.294	1.756
	0.60	2.960	0.301	2.659
	0.72	3.990	0.220	3.770
	0.84	5.150	0.131	5.019
	1.08	7.935	0.012	7.923
	1.20	9.655	0.001	9.654
1.30	0.36	1.103	0.436	0.667
	0.48	1.705	0.773	0.932
	0.60	2.319	1.120	1.199
	0.72	2.925	1.030	1.895
	0.84	3.527	0.765	2.762
	0.96	4.155	0.504	3.651
	1.08	4.853	0.352	4.501
	1.20	5.674	0.107	5.567
	1.32	6.679	0.021	6.658
1.45	0.36	1.028	1.065	-0.037
	0.48	1.533	1.601	-0.068
	0.60	1.996	1.777	0.219
	0.72	2.390	1.685	0.705
	0.84	2.719	1.331	1.388
	0.96	3.012	0.933	2.079
	1.08	3.315	0.564	2.751
	1.20	3.686	0.277	3.409
	1.32	4.189	0.051	4.138
	- 3			
1.50	0.36	1.003	1.270	-0.267
	0.48	1.476	1.853	-0.377
	0.60	1.888	2.070	-0.182
	0.72	2.212	1.959	0.253
	0.84	2.450	1.554	0.896
	0.96	2.632	1.105	1.527
	1.08	2.803	0.686	2.117
	1.20	3.023	0.359	2.664
	1.32	3.359	0.068	3.291

$A_{0}=1235.414 \mathrm{MeV}$
$x^{d}=12.0344 . \mathrm{fm}_{1}^{-1}$

