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Many-Particle Theory of Nuclear Systems with
Application to Neurron Star Matter
This is a report on the research carried out on the following
projects since submitting the semi-annual status report on

April 5, 1973.

A. Calculation of an improved energy-density relation
for the normal state of neutron-star matter
B. <Calculation of the effects of superfluidity and

polarization in neutron star matter



PROJECT A

The Calculation of an Improved Energy-Density Relation in Neutroa
Matter in the High-Density Region

A-1 Constraints on Variation
The theoretical formalism is outlined in section IIT.1 of the oripin=7
proposal. In particuiar, the energy of the normal state of neutron matcer,

En, is developed in a clucter series

€= & v &, + &, -

In this report, we shall use E“to refer to our approximation for cnergy,
namely, (Eg +&, ¥ &5 ).

Reference is made in the original proposal to certain physically
motivated necessary conditions on the radial distribution function. These
in turn, constrain the variational parameters in the trial two-body
correlation factor f(r). There is aiso the so-called Pauli condition which
restricts £(r) directly. It arises from the effect of the Pauli Principle
which prevents particles in the fermi sea from scattering back to the
occupied states, The conditions which we use as constraints on our
variational procedure are listed below:

(1) IS = O (Pauli Condition)

an Stezo

(I11) Ic £ 1.243 {(Coulomb Inequality)
(IV} AN =0
(V) S{e) =0 (Structure-Factor Sum Rule)

where IB’ S(X}, Ic and AfNare defined as follows:
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We note that

204N) = | + 3o

Thus condition (IV) is equivalent to 8(03(0) = -1, Condition (V) means

it
o

Sy = 1+ S0 t 30 + e
we use it in the truncated form
1 + 8% + 8% =0

The origins of conditions (II} and (III) are discussed in E. Feenberg,

Theory of Quantum Fluids (Academic Press, New York, 1969},

The relative order of magnitude of the terms in the cluster series
for energy and all other associated cluster expansions is determined by the

“correlation parameter" ; defined by

S:nw , w:}(f‘(-r)-l)dr,

We note also that the five conditions are not completely independent of
each other because of the following relations: Condition (V) is related
to the k = 0 version of (II). The former can be satisfied by first
satisfying (IV)} and then requiring also that 5(1)(0) =0,

In order to expedite the numerical calculation, we usually avoid im-
posing (I1) and (III} directly. Often we find that (V) enables us to find
more easily the region of the parameter space where (II) and (III) are
satisfied, Similarly, (IV)(or (I)}enables us to locate regions where 'g‘ is

small,
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A-2 Numerical Procedur:s and Regults

Several methods of calculation, each involving a different set 0%
criteria governing the choice of constiaints in the variational procedus.,
have been pursued. As indicated in the proposal, we have used one-
parameter, two-parameter and three-parameter forms for the trial two-body
correlation factor f(r). Calculations using the various methods of
approximation have been carried out at the density corresponding to fermi
wave number, kF = 3.5 fm-l in order to test the rveliability of these methods
in the high-density region. The two-nucleon potential used for the
purpose is the hard-core potential of core radius 0.4 fm given by Ohmura,
Morita and Yamada (omy-4) (Progr. Theoret, Phys. 15 (1956) 222). This is

a central potential of the form

4
V’( Y‘a ) = £é| I\L,\n& ( |il)

- _—a - N
- . { - 06 - _ 3 +t+6-0;
A%'A?-""‘“Z."J‘ ) As'_/\@"*—*—j_——"-
' os Y, £
V, (%) = o iz < Ye
“Pr (5, - X
Vo @ PRI ey

where i = 1, 2, 3, 4 denotes, respectively, the component appropriate to the
singlet-odd, singlet-even, triplet-even, and triplet-odd state of the two-
nucleon system. The /\{are the corresponding projection operators. The

parameters are



. -1
= - A =2
V02 235.41 MeV, B2 2.0344 fm
N - -1
V03 = -475.04 MeV, 83 = 2.5214 fm
V01 = Vo4?% o

YE = 0.4 fm (in all States)
These parameters are chosen to fit the following data characterizing th:

low-energy interaction of two nucleons in free space:

2.226 MeV

Binding energy of the deuteron

i

5.378 X 10—15um
_23.69 x 10" cm

Singlet effective range of the neutron-proton system = 2.7 x10_13cm

Triplet scattering length of the neutron-proton system

1l

Singlet scattering length of the neutron-proton system

A two-nucleon state must be either singlet-eﬁen or triplet-odd
according to the Pauli Principle. Therefore, in our calculation, there 1is
no need for (Vos, 63).

Method 1

A trial two-body correlation factor,

o N 3 rY
{L” = —MLr-Te)

’

has been used. According to the variational principle, the minimum of E}‘
obtained using any trial wave function provides an upper bound to the true
energy E. Therefore, at each density we minimize (6?4- Z) with respect to
M- If this minimum occurs at }1=‘}é , then E3 { héj is calculated. The

corresponding approkimation to the emergy per neutron is EF' “"Ez( ‘%)"'Es(ﬂb)'

The results obtained by this method are given in Table A-1.



Method 2
The following two-parameter form for £{r) has heen used in this method:

o , Y £

fur = VIS 0% [ 'P‘r’“ﬁ]
L—%F ‘) I+ 3 e , r>r
14

The additional parameter gives f(r) more flekibility in order to help satisfy

the constraints better. Several alternate approaches in imposing these

conditions have been used. These are described below:

(A) The parameter M is fixed at f3= 2.9 fm'l.'y is varied and (£%+£i) is

found to have a minimum with respect to ¥ at ¥ = Y. Then E;(FL!;) is

calculated.

(BY Y is determined by condition (I). Then the minimization procedure of
method 1 is attempted.

(C) The same as (B), using condition (IV) instead of condition (I).

(D) The same as (B), but using condition W) instéad of (1), followed by an

attempt to use the minimization procedure of method 1.

In methods (B) and (C) neither CEF + Ez) nor (EF + ‘E2 + ES) is found
to have a minimum with respect to M . Results for method 2A, 2B and 2C
presented in Table A-1 are intended to illustrate the following fact: As
the value of M increases, energy gets larger and convergence of all clusteTr
expansions improves. This causes some ambiguity regarding the determination
of the minimum energy. However, the ambiguity can be removed when we impose
the conditions (II) and (III) on the‘En(rO curve. This is done in method

2D for which the complete results are given in Table A-2 for M values in the



range 2.0&€ M € 7.0 gm l. 1t should be pointed out here that there are
two values of ¥ that satisfies S(0) = 0 in method 2D. Only the smaller of
these values of ¥ is used for each # , since that corresponds to lower
energy and better convergence of all the cluster expansions.

Method 3

Here we adopt the following three-parameter form for f(r):
G , YT

f(r) =

[! _ e,-H(r“Tc')J L4 Ye Xir-vey ron
Several differenf procedures involving this £ (r) have been attempted. Of
these, the ones that turned out to be most fruitful are described below.

(A) For given p and X, ¥ is determined by condition (I). Then it is
found that at each3, both (E+&,) and & have a minimum with respect to

-F at approximately the same value of p= M. Now we bring the results for
in('/f: X) to better agreement with the constraints by changing ¥ to the lower
of the two values that will make S(0) = o. ¥ is to be determined by a
further minimization of energy. The results are presented in Table A-3.

(B} In this method, the procedure in (A) is followed upto the point of
obtaining the E“(,;,jo results. Then X is chosen as the value 4% which gives
the smallest ¥§1. Then ‘E“(f),jé)) is recalculated and its minimum with
respect to } is sought. The results are given in Table A-4.

(C} In this procedure, again we let M and X vary, but use condition (I) to

fix ¥= ¥  as a function of MandX . Then at each trial value of # , %K is

chosen as the value %° for which {aXl is smallest. The resulting data for

En()-l,je) and other auxiliary quantities are shown in Table A-5. The lowest



energy subject to the constraints is to be determined from this data.
(D) This procedure is the same as (C} except for the following changes:
Condition (IV) is used instead of (I) to fix Y J(,O is chosen correspond-
ing to the smallest value of IIB\. The results are given in Table A-6.
A-3 Discussion

The lowest energy obtained by each method is shown in Table A-7.
‘The criteria that are used to determine the lowest energy are the following:
(1) Whenever Sn("’) or EF+ fz () has a minimum with respect to M , we
choose that as the lowest value in spite of the violation of 5(0) = o that
is usually associated with it‘ (but, only in the high density r.egioh) .
However, S(k) 2 0 is satisfied for k values not near Xk = 0. This can be
considered adequate because in the high-density system the larger k
values are much more significant. Besides, in a convergent cluster
ekpansion for S(k),

sy =1+ 5@+ s+ ...

the neglected higher order terms, though expected to be small, may never-
thless be sufficient to "repair" small violations of S{o) = 0 and
5{(k) 2 0 for smaldl k. In short, the results for emergy obtained from a
calculation in which all the cluster expansions converge rapidly and all
the conditions are satisfied with the excéption of S(k)2 o at small k,
may be considered reliable. (2) Even when (EF + 52) or En has no wminimum
with respect to & in an unconstrained variation, it is found that conditions

(II) and (III) canno_.g: be satisfied when p is below a particular value/;' .
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Thus E.,.,_( r;) may be taken as the lowest energy consistent with the consyraznis
(3) Note that condition (II) is imposed in the modified sense discusscd
above, except for methods 2D and 3A, where we have sought to satisfy Sl = &
for all k. The results form these latter two methods, when compared with
results from other procedures, give Us an estimate of the error we m&;y -.
allowing through the violation of S(k)2 o for small k. (4} The reliabilivy
of all our results depends on the size of ‘f\obtained; if\ﬂis large,
adequate convergence of the cluster development is in doubt. Based on
all these criteria, so far the best results are obtained from method 3D,

We are in the process of testing four additional procedures involving
the three-parameter correlation factor. This is ekpected to'be completed
in about three weeks from now. Then we will adopt the most reliable of
the methods we have tested and carry out the complete calculation for
the entire density range 0.25< ka, 3.5 fm'l. It should be emphasized

here that the difficulties associated with imposing S(k) 2 0 for all k

do not arise in the intermediate - and low-density regions.
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Results from Method 2D
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PROJECT B

Effects of Polarization on Neutron Star Structure
B-1 Introduction

The invisible components in the so called "single-line spectro-
scopic binaries" in Hercules, Scorpius, etc., seen by the UHULRU satel-
1ite(1):are now commonly believed to be rotating neutron stars and in
some casesmay be even black hole revolving around the center of mass of
the system. It is possible to estimate the mass of the ncutron star
component by an elaborate study of the intensity curves and of the
spectral class of the visible components. Hence theoretical determinat-
ions of masses, mgments of inertia and radii of stable neutron stars have
become more important than ever.

Macroscopic neutron star properties have been calculated during the
past fifteen years using equations of state derived from different pheno
menological two-body interactions. One of the realistic effective inter-
actions between two neutrons is a combination of a strong short-range re-
pulsion and a 1qﬁg range attraction. It was firsf suggested by Migdal
and later proved by Yang and Clarktz) and others, that in a comparatively
low=density degenerate meutron liquid, for which the interparticle spacing

13cm), the

is large compared to the range of the repulsive forces (10~
attraction between pairs of neutrons of opposite spin and momentum would
lead to the formation of a condensate and the appearance of superfluidity.
However, our estimation of the pairing emergy Zor ''S" wavé attraction

is on the low side, since the enhancement of the attractive interaction
between neutrons arising from the fact that they are embedded in a highly

polarizable medium (the other neutrons) were not taken into account by us.

(Yang and Clark),
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B-2 Polarization Effect
According to Pethick and Pines(s), the additional term coming from
the polarizability of the medium is always attractive and is approximately
- lVFi‘/(l + Fz) where V is the "bare" interaction in the "S' wave
channel and Fz is the Fermi liquid parameter which describes the spin-
symmetric part of the interaction between two quasi-particles on the

neutron Fermi surface. The net effective interaction, hence, has the

simple form
Vego = V/(1+F;5) (8-

Since Fz for the neutron liquid is negative andraccording to Pethick &
.

Pines may be as negative as -0.7, such enhancement effects can be very
jmportant. An exact estimation of Fi seems unattainable at present al-
though such a calculation is desirable and necessarj in order to under-
stand ekactly how the polarized medium affects the energy state and
therefore the mass-energy density inside the neutron-star matter.
B-3 An Approximate Calculation of Fz |

Applying the Landau technique of functional differentiation of the

(4)

energy with respect to quasiparticle occupation numbers , we estimate
the Fermi liquid parameter Fi by summing over both the direct and exchange
interactions between the interacting quasiparticle pair via the following

integral

s Y ( rdk - -
A E‘f (_2_&“) So e 1 Ve V0o | (B-2)

Where No = m*kf/2ﬂgﬁ2 is the familiar density of states at the Fermi surface,

and fL is the volume of the system.
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ror the interaction between a quasiparticle pair, we choose the simple.
%

Yamaguchi potential(S}

(k'}vVik) = -(h2/m) K gk') gk), (S-wave only) (8-3)
with g(k) = (g + k55, For K = 0.18725 £ > and B= 1.254 ™t the singlet
seattering length and effective range are a; = -23.75 fm and T 2,482 fu,

s
The Fermi liquid parameter Fo is calculated for several densities. The

results are listed in Table B-1

S 3 ) » »
Table B-1 Fo for different demsities

1

kf(fm'l) 0 486 0.60 0.72 0.96 1.20

S
Q

F -0.081 -0,262 -0, 34  =0.552 -0.734

As can be seen from Table B-1, Fz depends on density quite strongly. As

the density increases, the Fz becomes more and more negative. At the

density kg = 1.20 fmnl, Fi is equal to “0.73, These results together with
the prediction by Pethick and Pings give a very strong indication that the
enhancement due to the polarization of the neutron medium may even be large
enough to give rige to a major mass-energy demsity discontinuity due to
neutron pairing effects. The existence of a concavity in the mass-enexgy
density vs. the number density curve is sufficient to give a first-oxder
phase-transition. Since there is no precise way of calculating the enzrgy
state for the neutron-star matter including the polarization effect, it is ¢f

interest to see how strong the enhancement wili have to be in order to produce

a first-order phase-transition.
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B-4 Effect of Polarization on Condensation Energy and Superfluid-State Enerpy

As has been mentioned in our original proposal we have all the nscussary

ingredients for the calculation of the normal state energy,i-:n, and the

condensation energy, £ ., and also the superfluid state emergy, ES (=€ —-€ ).
o

To simplify the calculation, we assume that the enhancement due to polasi-
zation results in an increase in the attractive potential well-depth only.

Then all we have to do in the calculations of the enhanced normal state cnergy,

Enenh, and the enhanced condensation energy, Egnh, is to substitute A_ by

(&)

ﬁAo @)\) in the Chmura potential

V(12) =\ o ’ r12< c
A, exp («£xr), _’ S-wave only, T, 7 ¢ (B_ 4)
Where ¢ is the radius of the hard core. Eﬁ“ﬁ‘gi"h and Egnh
enh nh

{ =£n ---Eg ) are then calculated according to the procedures described in

enh

our proposal for the ¢ = 0.4 fm Chmura potential. The results of En s

E(e:nh, and E:nh for 8= 1.0, 1.30, 1.45, and 1,50 are listed in Table B-2.

(Note that a @ = 1.50 is corresponding to a Fz = -0,33.) For the purpose of

easier reference, we show in Figure B-1 the plots of the enhanced normal state
energy per particle vs, kf for @= i.O, 1.15, 1.30, 1.45, 1.50, 1.55, 1.60,

and 1.80. In Figure B-2, the enhanced superfluid state energy per: particle
Eenh’ Vs kf for 8=1.30, 1.45, and 1.50 are plotted, Some interesting sets

of energies in Figure B-1 are plottec vs, the specific volume,?", in Figure B-3.
B-5 Discussion

From Table B-2 and Figure B-2 we find that at 8= 1.45, the superfluid state

energy,Egnh, turns negative at k. = 0.5 fm'l, while at 8= l.So,ignh turns
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negative at kf = 0.65 fm’l resulting in a major mass-energy density dis-

continuity around the density 1012_101

s gm-cm's.
We conclude that the polarization effect indeed enhances the condensation

energy (;cznd the gap) and there is a tendency of the neutron-star matter to under-

~go a first-order phasg-transition around the density of 1012—1013_ gm-:::m':5

provided the effect is as strong as indicated (or stronger).
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Table B-2 Condensation energy, E , normal state energy per particle, and
superfluid state energy per particle for P= 1.0 (unenhanced),
1.30, 1.45, and 1.50 (enhanced)

g k(£  MeV) JMe) eV

1.0 0.24 0.606 0.114 0,492
0.48 2.050 0.294 1.756

0.60 2.960 0.301 2.659

0.72 3,990 0.220 | 3.770

0.84 5.150 0.131 5.019

1.08 7.935 0.012 7.923

1.20 9,655 0.001 9.654

1.30 0.36 1.103 0.436 0.667
0.48 1.705 0.773 0.932

0.60 2.319 1.120 1.199

0.72 2.925 1,030 1.895

0.84 3.527 0.765 2.762

0.96 4,155 0.504 ° 3.651

1.08 4,853 0.352 4,501

1.20 5.674 0.107 5,567

1.32 6.679 0.021 6.658

1.45 0.36- 1,028 1.065 -0.037
0.48 1.533 1.601 -0,068

0.60 1.996 1,777 0.219

0.72 2.390 1.685 0.705

0.84 2.719 1.331 1.388

0.96 3.012 0.933 2.079

1.08 3,315 0.564 2.751

1.20 3.686 0.277 3.409

1.32 4.189 0.051 4,138

1.50 0.36 1.003 1,270 -0.267
0.48 1.476 1.853 -0,377

0.60 1.888 2,070 -0.182

0.72 2,212 1.959 0.253

0.84 2.450 1.554 0.896

0.96 2.632 1.105 1,527

1.08 2.803 0.686 2.117

1.20 3,023 0.359 2.664

1.32 3.359 0.068 3.:291
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