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PREFACE

In recent years there has been-a large number of solutions presented in the
fluid flow and heat transfer literature which have employed numerical marching
techniques. However, most of these techniques seem to have been invented to
solve the specific problem at hand, and they, therefore, seldom build on the
work of previous investigators. To the author’s knowledge, no unified presentation
of these techniques;, including the many aspects of their use, is available.

Any discussion of a field in science or technololy must necessarily reflect
the author’s personal views about the evolution of that field. Since the author’s
interest in the numerical solution of fluid flow problems was begun and developed -
at the Carnegie Institute)\of Technology (now Carnegie-Mellon University), the
natural evolution of the field appears to him to be that which has taken place at
that instiiution, and in which he took part. Had the author, for example, come from
the University of Michigan or the University of Wisconsin, where excellent nu-
merical work of this type has also been done, it is likely that he would see the
field from an entirely different perspective. This is particularly true in a field
in which there is so much art rather than science in the evolution of the methods

- of solution. The author would therefore like to note at this point that much has
been done in the field other than that referenced here and would like'to apologize
to those who may feel that their work has been slighted. It was felt, however,
that much was to be gained by the unified approach used here rather than by
presenting a motley literature survey of the vast number of techniques which
have been employed in the past.

It .is the purpose of this book to present the finite difference formulation
and method of solution for a wide variety of fluid flow problems with associated
heat transfer. Only a few direct results from these formulations will be given
as examples, -since the book is intended primarily to serve as a discussion of the
techniqiles and as a starting point for further investigations; however, the formu-
lations are sufficiently complete that a workable computer program may be written
from them.

Some of the finite difference formulations given may be found complete with
all results in the literature by the author and others; in these cases the references
will be cited. For other problems apparently no finite difference formulation has
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NUMERICAL MARCHING TECHNIQUES

been previously employed, and in these cases the formulation is that of the author:
For most of these cases the author or his associates have at least done experi-
mental calculations which verify that the formulation and method of solution are
workable. In a few cases such extensive work would be necessary to verify the
formulation and method that a major research project would ensue, and in these-
cases the formulanon must be considered as tentative, although no radical de-
partures from the conventional techniques have been made. Such unproved formu-
‘ations are clearly noted in the text.

It is hoped that the real utility of thls book will be found not only in the actual
formuiations presented, which admittedly in a number of cases are for classical:
problems treated adequately by other means in the literature, but perhaps more
importantly for situations in which the same or similar equations must be used for
problems which are not readily amenable to other methods of analysis. Typical
problems of this type are those which include any arbltrary distribution of suction
or injection at a body surface, body forces such as MHD or EHD forces, any class
of variable properties including those in which tabulated property variations must
be used, and any type of velocity or temperature boundary condition. A number of
such problems are presented and a solution formulated at the end of each chapter.

In the appendixes a number of topics are discussed which are of i interest with
respect to the finite -difference equations presented in this book. These include a
very rapid method for solving certain sets of linear algebraic equations, a discussion
~ of numerical stability, the inherent- error in flow rate for confined flow problems,

‘and a method for obtaining high accuracy with a relatively small number of mesh
points.

" The author would also like to note that the use of the term marching technique
is'used here to apply to any numerical method of solving an initial value problem
in the original sense of the term as used by L. F. Richardson in 1925. The term is
thus applied equally to implicit and explicit techniques for the solution of parabolic
and hyperbolic differential equations. There seems to be considerable current
feeling that the term marching should apply only to explicit methods, but the
author feels it is equally descriptive for implicit methods and it will.be so used
throughout this book. :

v
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CHAPTER 1

INTRODUCTION

1.1 HISTORICAL BACKGROUND OF MARCHING PROCEDURES

Marchmg procedures for the finite difference solution of parabohc partxal
difference equations (particularly the diffusion equation) have been known
for many years (refs. 1 to 3). Only since the advent of the digital computer as an
engineering tool, however, have these methods been widely used to obtain solu-
‘tions to a variety of fluid flow and heat transfer problems. In many cases these
numerical solutions represent the most accurate avail\able solution to a given
problem or at least the most accurate solution to the equations which are assumed
to apply to the physical situation. In other cases the numerical solution represents
the only one available. Any  analytical solution of the momentum and energy
equations is difficult because of the nonlinear convective terms. In most cases a
solution can only be obtained by linearizations or approximations. On the other
hand, the accuracy of a properly posed set of finite difference equations is limited
only by the size of the grid spacing used in the solution.

‘Step-by-step integration processes (marching procedures) for boundary
layer flows were employed by a number of investigators in the 1930’s and 1940’s
(refs. 4 to 6). It was not, however, until the work of Friedrich and Forstall (ref. 7)
in 1953 and Rouleau and Osterle (refs. 8 and 9) in 1954 and 1955 that these finite
difference methdds reached a sufficiently mature stage that they could be con-
sidered generally useful. Although in these investigations a desk ealculator was
employed, formulations were used which have been found of considerable value
in electronic digital computer applications. Friedrich and Forstall (ref. 7) solved
the problem of coaxial viscous jets using an explicit method with which some
stability problems were encountered. Rouleau and Osterle (refs. 8 and 9) formu-
lated an implicit finite difference scheme which was universally stable and then
considered a variety of external flow problems. Bodoia and Osterle (ref. 10) ex-
tended this implicit formulation to confined flow situations. These four papers
formed the basis for all of the steady flow solutions which were to follow. The

1
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first extensive use of these methods for compressible flow problems was apparently

that of Mitchel (ref. 11) for external flow problems, followed by Walker (ref. 12),

" Deissler and Presler (ref '13), and Worsge-Schmidt and Leppert (ref. 14),\who
solved internal flow problems. .

The basic work on the numerical solution to transient flows of the boundary
layer type was done at the University of Michigan. These investigations include
those of Hellums (ref. 15), Farn (ref. 16), and Farn and Arpaci (ref. 17).

The pioneering work of Fromm and his associates at Los Alamos on the
solution by numerical methods of the complete elliptic time-dependent Navier-
Stokes equations will not be discussed here since this book will be restricted to
equations of the parabolic and hyperbolic type. See reference 18 for a discussion
of the work and further references.

1.2 RANGE OF APPLICABILITY OF MARCHING PROCEDURES

Numerical marching procedures are methods in which the solution is obtained
in a step-by-step manner, always moving downstream in the flow field, forward
in time, etc. Their use is restricted to certain classes of differential equations.
The equatlons must be parabolic or hyperbolic (classical examples being the diffu-
sion equation and the wave equation) and cannot be elliptic (e.g., Laplace’s
equation). The character of the basic equations of fluid flow and heat transfer,
the Navier-Stokes equations and the energy equauon, implies that there may be
no derivatives higher than first order in the main flow direction. Thus, the second
derivatives along the main flow direction in the viscous terms of the Navier-
Stokes equations may not be present, nor can the axial conduction term in the
energy equation. In many physical situations it is justifiable to neglect these.
terms, and if so, a marching procedure ‘can be applied. As a general rule, the
second axial derivatives may not be neglected if there is anything in the flow which
will have an influence upstream (e.g., an object in the stream, a sharp constriction
in the channel, or a heater grid in the stream). The second axial derivative may be
neglected and marching procedures may be apphed if the problem has an

“open boundary in the flow direction. Transient problems of the boundary-layer
type have an “open boundary in time as well as space, and marching techniques
may be apphed to these problems in the time (as well as the space) direction.

An additional restriction on fluid flow solutions using the marching technique
is that large backflow is not permitted anywhere in'the flow field. This condition
'is generally associated with separating flows, and, as a result, the solution cannot

be carried far beyond the separation point. Of course, the physical validity of the
" parabolic equations may be questioned even slightly upstream of the separation _
point. :
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1.3 STABILITY, CONSISTENCY, AND CONVERGENCE

The terms stability, consistency, and convergence have acquired many mean-
" ings both in and out of numerical analysis, so it becomes necessary to define them
as used in the context of this book. . .

The concept of stability of a numerical solution is somewhat difhicult teo
precisely define, although, as anyone experienced in obtaining numerical solu-
tions is well aware, instability usually manifests itself in a very obvious, usually
catastrophic manner. This is actually a fortunate state of affairs in that, at least
for all problems arialyzed so far, there is a distinct dividing line between insta-
bility and stability. Instability is generally considered to.be the result of either the
cumulative growth of roundoff errors without bound as the solution is marched
forward, or the growth of error due to the presence of an extraneous solution to the
difference equations. Instability of either type will generally be seen as a strongly
growing, oscillatory cululative error which, in practice, rapidly causes a computer
- overflow. The usual distinction between stability and instability ‘s that given by
Forsythe and Wasow (ref. 19). This distinction is that a procedure is stable if the
cumulative error as the solution is marched forward does not grow faster than
some low power of the reciprocal of the mesh size in the marching direction;
instability corresponds ‘to the cumulative error being an exponential function of
the reciprocal of the mesh size. There seems to be no intermediate condition. ’

The criteria for stability of many of the difference representations given in
this book may be obtained in a relatively straightforward way. For some cases it
is extremely difficult to obtain analytical expressions for the stability criteria; in
these cases it is reasonable to simply proceed with the numerical solution. If
instability develops, as was previously mentioned, it will do so rather quickly and-
violently, in which case adjustments in the mesh sizes and parameters may be
tried until stability can hopefully be attained. Throughout the book. stability
criteria are presented where available. Afipendix B gives a stability analysis for
a typical case and outlines the method in general. :

A consistent finite difference representation has an exact solution (assuming
no roundoff error) that approaches the solution of the differential equations which
the difference equations replace as the mesh sizes used approach zero. Consist-
ency of a difference representation is dependent on the difference forms used to-
replace the various terms in the differential equations and, to a certain extent,
on the boundary conditions and difference- representation of these boundary
conditions. Where the term consistency is used in this book, many investigators
use the term convergence, but since convergence is also widely used to describe
a characteristic of an iterative process, the less widely used consistency seems a
- better choice. : '

All of the difference representations given in this book are consistent, except
for certain formulations given for plane and axisymmetric jets which are con-.
sistent only for nonzero secondary velocities. Consistent representations which
allow zero secondary velocities are also given for these cases.
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If an iteratively obtained solution to a set of linear or nonlinear algebraic
equations approaches the exact solution as the number of iterations becomes
large, the method of solution is called convergent. As mentioned before, this term
is also widely used to describe what in this book is called consistency.

1.4 EXPLICIT AND IMPLICIT DIFFERENCE REPRESENTATIONS

‘Explicit difference representations are those in which, as each step in the
marching direction is taken, the unknown quantities in the equations may be solved -
for one at a time. Implicit representations require the solution of a set of simul-
taneous equations for the unknowns as each step is taken.

The choice of explicit or implicit finite difference representations will depend
on many factors, including the problem itself and the size and speed of the available
computer. ' :

In order to examine the various representations, consider the flow field with
a mesh imposed on it shown in figure 1-1. The main flow direction is x. No bound-
ary conditions will be considered. Assuming the flow may be adequately described
by the incompressible constant property Prandtl equations, the basic equations
of motion are ’

du, du_ o

w ”ay_”W . (1-1) -

FiGURE 1-1.—Flow field and finite difference grid.
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du  9v . :
—4+ —=0" . 1-2
dx dy . ( )

For any numerical work, the first step should be to put the basic equations in’
dimensionless form. However, since our interest here is in a discussion of ex-
plicit and implicit forms, this step is omitted. It is assumed that both u and v are
known for all values of x and ¥ in the region 0 < x < x;. It should now be possible
by using a marching procedure to advance the solution to xjy, , then to x4, ete.

A number of difference forms are possible for the representation of equation
(1-1). The following are examples:

Explicit:

:

Ujri, k" Uj, k ul‘,k+1;uz',k—1 ’
S G v AT G 7

-y <uf,k+1 —-2u,~,k+uj,k_1)

(By)* (1-3)

Implicit:

' Ujs1,k— Uj, & Ui+, k+1 —Uj+1, k-1
| . (BEEELE ), (M5

Wjrr,kert — 2841,k Ujer, ko (1-4)

(Ay)?

Semi-implicit (Crank-Nicholson):

w Wirr, k= UWj, k
i | T —=
4 Ax

U1, k41— Uiy, k-1, Wi ey — UG, k-1
2Ay 2Ay
2

+vjk

Wjtr, ke1 — 28541, et Ujer, k1 +uj,k+1—2uj,k+ Uj, k-1
(Ay)? (Ay)?
2

=5

These representations are illustrated in figure 1-2. The explicit form (eq.
(1-3)) has only one unknown, uj;,,%. in each equation. Therefore this form can
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©{j k+) . C 9l ke (j, k+ 1) 1, kD)
(j, k) GeLk o Gk (+1K G,6 (j+1,K)
G k-1 ' (+1, k-1 G,k (+1 k-1
Explicit Implicit Semi-implicit

FIGURE 1-2.—Finite difference representations of momentum equation. (j, last x value at which ve-
locities are known; j+ 1, x value at which velocities are to be found.)

be solved directly (explicitly) for the values of uj.1, x entirely in terms of known quan-
tities. The explicit form has the advantages of high speed and simplicity of solu-
tion. The primary disadvantage of this form is that there are stability restrictions
on its use. These restrictions are that vAx/[u;,x(Ay)?] < V2 and |vj,«|Ayfv<2.
These criteria are derived by Rouleau in reference 9. This restriction may not be
too serious for such problems as free jets with moving secondaries, but for situa-
tions where u may become small or reach zero (as in cases where solid boundaries
are present) this restriction can be so serious as to preclude the use of the explicit
form. ]
The implicit form (eq. (1-4)) involves three unknowns: u;+1, k-1, #j+1,k, and
. uj+1,k+1- When this difference equation is written for each value of £ in the flow
field, a set of simultaneous linear algebraic equations in the values of wji1,x is
formed. This set must be solved before another step can be taken in the x-direction.-
- The .implicit form has the advantage of universal stability for all mesh sizes so
long as u does not become negative. The seeming disadvantage of the implicit
representation is that the solution of a set of linear equations is, in general, time
consuming. It should be noted, however, that for a set of linear algebraic equations’
of the type generated by equation (1-4) there exist methods Wwiiich are very nearly
as rapid as carrying out the explicit solution from equation (1-3). See appendix A
for a description of one such method.

The semi- 1mph01t representation (someumes called a Crank- Nlcholson repre-
sentation), equation (1-5), is an effort to gain a more accurate representation of
the differential equation by averaging the various terms wherever possible so
that each of the terms will be evaluated at essentially the same point. The solution
and stability criteria for the semi-implicit’ form are identical to those for the
implicit form. In practice, the author has found the advantages of the semi-implicit
form to be somewhat exaggerated, and that simply employing the implicit form
with a slightly smaller mesh size results in virtually the same effect. Forsythe and
Wasow (ref. 19} also note the lack of evidence for significant advantages of the
semi-implicit approach. It should be noted that the representation in equation
(1-5) has been chosen in such a way as to eliminate nonlinearities in the difference
equations. It is questiona‘ble whether it is ever worthwhile to make the difference
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‘equations nonlinear only to mcorporate the . advantages of the semi- 1mphclt
representation, since a considerable increase in computer time is required in
order to solve the nonlinear equations.

The continuity equation has generally been written in a form whlch for the
present problem at least, is explicit. Only one of the many possible representations
is ' '

uj+1,k+lTuj,k+l+yj+l,k+l_vj+l,k=0 ’ (1—6) i

Ax Ay

This equation may be solved in an explicit stepwise manner for vj4+1, x+1 assuming

vj+1, & is known. The solution is started from a point where vj+1, « is known (a lower

‘boundary, centerline, axis of symmetry, etc.) and marched upward. The values of
Uj+1, k+1 and uj.1, x are known from the solution of the momentum equation. Vari-
ous representations of the continuitv equation are employed in this book for

different flow situations. For external flows, the form of equation (1-6) will be almost

universally used. For confined flows, the form employed will be dictated by the

particular problem being considered and will be discussed in detail for each new

situation.

1.5 CHOICE OF MESH SIZE

~ The choice of mesh sizes for the problems considered in this book is dictated
primarily by the truncation error of the difference equations and, in some cases,
by the stability criteria. The only way in which a final mesh size may be chosen
with complete conﬁdencé is to run the problem with successively smaller mesh -
sizes until little or no change is observed in the results. Such a procedure may be
impractical from the standpoint of computer time required, and in this case an
alternative, although somewhat less desirable, solution is to run the problem for
two mesh sizes and use one of the techniques for extrapolating to zero mesh
size (refs. 19 and 20). This method will not produce satisfactory results if the
mesh' sizes’ chosen are not fairly close to the size requlred to glve a reasonable
solution. :
No quantitative statements can be made about the choice of mesh sizes in
various regions; however, smaller mesh sizes are required in regions of more
rapidly changing velocity and temperature. This means that a fine mesh is required
close to the wall in boundary layer problems, as well as close to the leading edge.
It is worth noting that the leading edge (or the entrance in a channel flow problem)
is a point of singularity in boundary layer theory, and that solutions obtained using
the boundary layer equations in the region close to the entrance will be incorrect
in this region. The effects of this point of singularity can be confined to the region
very close to the singularity if very small mesh sizes in the downstream direction
are used until the profiles smooth out somewhat. Typically, mesh sizes in the
marching direction of the order of 1/100 of those employed further downstream

459-174 0 - 73 -2
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may be desirable in order to confine the leading edge effects to the region close
to the singul_ayity. A number of investigators have transformed the equations to
boundary layer coordinates in an effort to minimize the effects of the singularity,
but in view of the success of simply using a very small mesh size in this region,
such a procedure becomes mainly useful in minimizing the effects of boundary
layer thickness along the plate and its value must be welghed against its greater
complexity. In chapter 2, section 2.4, a detailed discussion is presented of the
effect of the leading edge singularity on the calculations for an actual problem.

In the region close to a wall, or in the mixing region of streams of different
velocities, it is usually desirable to employ a finer mesh size than that needed far
out in the free stream where velocity and temperature gradients are less steep.
The technique for changing transverse mesh sizes in the flow field is discussed
in appendix D.

To give a starting point for the choice of mesh sizes, it may be stated that trans-
verse mesh sizes of the order of 10-! to 10-2 will usually be sufficient, while mesh
sizes.in the downstream direction may vary from as small as 10-% close to the
leading edge to 10-3 farther downstream. These sizes are, of course, predicated - .
on the use of the dimensionless variables used in succeeding chapters of this
book. Any other choice of dimensionless variables may have a profound effect
on the mesh sizes which are necessary.
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CHAPTER 2

BOUNDARY LAYERS

This detailed discussion of numerical téchniques is begun by considering
the external laminar boundary layer which forms on the surface of a body when
the body is placed in a free stream of a viscous fluid.

2.1 TWO-DIMENSIONAL BOUNDARY LAYERS

For our purposes it is convenient to reformulate the general two-dimensional
boundary layer problem (of which an example is shown in fig. 2-1(a)) into a flat
plate boundary layer problem (as shown in fig. 2-1(b)). The pressure gradient and
velocity far above the plate may be functions of x. Their values are determined
from the solution for potential flow around a body having the shape of the actual
body. This potential flow solution, evaluateéd at the surface of the body, yields the
desired values of u,(x) and dp(x)/dx. The flow at the “leading edge” of the flat plate
'is a uniform velocity with a value equal to that obtained from the potential flow
solution evaluated at the surface of the body and x=0 (e.g., if x=0 is a stagnation
point on the original body, then this velocity will be zero).

The temperatures in the stream far above the plate and at the “leading edge”
are assumed constant for the incompressible case, but they must be computed
from the energy equation for the compressible case since the velocity and pressure
- fields of the potential flow solution affect the temperature.

- 2.1.1 Incompressible Constant Property Flow—Velocity'Sblution

For the incompressible flow case, the equations of momentum and energy
are uncoupled so that they may be solved separately. The basic equations of
motion, making the usual boundary layer assumptions; are

ou, ou\__dp. (0w | |
p(”ax+'-’ay) dx T H <6y) - @)
' 11

PRECEDING PAGE BLANK NOT FILMED
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- Quter edge of -
boundary layer

-Wall
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R X
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(a) Typical two-dimensional boundary layer conﬁguration.
(b) Two-dimensional boundary layer problem reformulated as flat plate boundary layer.

FIGURE 2—l.¥Modeling of a two-dimensional boundary layer as a flat plate boundary layer.

u , dv__ _ _
o 6y_0 , 2-2)

The boundary conditions are

u(x, 0') =0
v(x, 0)=0 2-3)
u(x’ oo)zux(x)

w0, y)= um(O) (see appendix F)

Before undertaking a numerical solution, the first step should invariably be to
place the equations to be solved in a dimensionless form having as few parameters
as possible. This may be accomplished for equations (2—1) and (2-2) by employing
the following dimensionless variables: ' '
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__xp )
ulua " L2pu,
L :
y=L= Y=y/L 2-4)
Lt _ .
P Do
pui J

where the characteristic velocity uo will usually be chosen as the velocity far
upstream from the body, and a typical length L is measured along the surface
in the x-direction. For the flat plate case u.,,(0) = u,.

The differential equations in dimensionless form become

U oU dP  9U

Caxt oy~ @& "o (2-5)
U oV _ '
X or (2-6)
. . N
with boundary conditions
Ux, 0)~
V(X,0)= ~
UX, w)—um/uo—U X) (27
U,Y)=U.(0)

From the potential flow solution, U, and dP(X)/dX are known

Equations (2—5) and (2—6) may now be written in difference form. A dlfference .
grid is imposed on the flow field as shown in figure 2—2. The most useful repre-
sentation for equation (2—5) is the following implicit form:

Uj’_k_Uj+1,lI;;Uj,k+Vi,kUj+1',k+é;YUj+1,k—1
=_PJ'+A;PJ'+Uj+l,k+l—2(UA]';'1),2k+‘Uj+l,k—l (2-8)

A simple explicit form is used for equation (2-6):

U}+1,k+1—Uj,k+1+Vj+1,l.-+1— Lk _ g ’ (2_95
AX AY
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.l
r k-1
|| Ll
U0 | ey e —
y 1) .
)
I.
| -
k=1
777 TITYTITT “Frrrrrrr 777 0
4 X ;
4

F1GURE 2-2. —Finite difference grid.

Equatidn (2-8) may now be rewritten in a more useful form as
/WS S [ Ui, 2 :
[ 2AY (AY)2]U’“”‘"+[ AX (AY)z]Uf“’"

y. e Pj— Py + U2 :
| G L | v e =20 (2-10)

2AY (AY)? AX

Equation (2-10) is now written for all values of k from k=1 to a sufficiently large
value of Y to ensure that the free stream has been reached; this value of ¥ will
correspond to k=n. The free stream boundary condition will then be U=U,, at
k=n+1. As a general rule, the value of n should be chosen to ensure that there
are several points (3 or 4) for k < n+1 such that U = U... If the solution is actually
\started from the leading edge, it will be relatively simple to find an adequate value.
of n as the solution is carried downstream. The value of n must be increased as
the boundary layer grows in thickness if a fixed AY.is used. When n reaches
" a sufficiently large value that computations become awkward (perhaps 50 or 60)
it will be found worthwhile to double AY and halve n before continuing.
The set of linear algebraic equations corresponding to equation (2—10) for
k=1(1)n (k varying from 1 to n in steps of 1) may be written in matrix form as
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B : _ /TON b
(42 Bz 02 .Uj+l,2 i ¢‘l
oz B ‘ Uiir,s b3
Tl N2 2
Qn-1 Bn—] Qny | I]j+1, n—1 (bn—l
o Bn . Uj+1,n A ¢n_
(2-1)
where - :
___V,-,,e_ 1 v
WTTIAY T (AY)2 >
Uik, 2
Re=2ax *ay):
N Vik 1
Q= 2AY (AaY):

mza—gﬂ+ug
TAX

~ (All elements are zero ex‘cept those shown.) -

- The matrix of coefficients in equation (2—11) is tridiagonal; that is, the matrix
" consists of a band three elements wide centered on the main diagonal. For tri-
diagonal matrlces a very efficient solution method exists and is discussed in
appendix A.

Once the values.of Uj,,,, have been found, equation (2—9) may be solved

' for Vji1, k41 to give

Vj+1,k+1=Vj+1,k—A—X U1, k41 =Uj, k1) . o (2-12)

Since Vji1,0=0, this solution may be marched upward to the free stream, starting
at the plate surface. The entire procedure may now be repeated at the next step
downstream and continued as far as desired.

The truncation error of the finite dlfference representation at each step is

of O(AY?) and O(AX) for the momentum equation and of~@(AY) and O’(AX) for
continuity.

The solution is universally stable for U=0. fU<0 as w1ll occur at and
past separation, the stability criteria are given by Bodoia (ref. 1) as
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|U|(AY?)
: ©2-13)

[2|U]
V= A

These conditions will be satisfied only if the negative value of U is very small; .
hence, the solution may be carried only up to and perhaps very slightly past the
separation point. A complete solution to the problem posed in this section is
presented in section 2.4 as a representative example of the use of the techniques
of this chapter. The solution is carried out for the case of dP(X)/dX=0.

1
2_
2

2.1.2 Incompressible Constant Property Flow—Temperature Solution

For constant properties, the energy equation is uncoupled from the flow
equations. Neglecting viscous dissipation (which may readily be included if
desired), the energy equation may be written as

at at a%t '
| folof < u 6x+‘v ay)_ k 3y (2—.14)
A number of temperature boundary conditions. at the wall are possible. Two com-
monly employed conditions will be considered here— constant wall temperature
or constant wall heat flux. The complete boundary conditions for the problem are

 t(x,0)=t,  (constant wall temperature) \
or
ot
—k g{ ~ =gq (constant wall heat flux)
=0
| ol | Yy e
and - ’ . _ ' ' 4
t(0, v) =t,
t(x, ) =t, }

The choice of dimensionless variables is
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_ | XM
U=ulu, X Topue
_pvL. =Y
Vv " Y 7
t—1ty ’
T———;Tt— (constant wall temperature)
%0 w

or

—k
T_qL (t—t.) (constant heat flux)

Inserting these dimensionless variables into equation (2-14) yields

aT oT _ 1 o°T
U6X+V6Y—PrM”
where ‘
HCp
Pr= T

In dimensionless form, the boundary conditions (2—15) become
TX,0) =0

T(0,Y) =19 (constant wall temperature)

T T(X,») =1
or
aT ‘
FX0=-1
(constant heat flux)
T(0,Y) =0
TX,x) =0

17

(2-16)

(2-17a)

(2-17b)

(2-18)

Since an implicit difference scheme has been used to solve the momentum
equation and since it is most desirable to use the same mesh sizes for the tempera-
ture solution and not to be limited by stability criteria, an implicit difference
scheme is also employed for the energy equation. Equation (2—-17a) may be written

in difference form as
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Ty =T
£ j+1,k J. k J+1 k+1 —
Sax TV 2AY

j+1, k-1

Uj, ke

L Thren1=2T 500, kb T 1 0
Pr (AY)?

(2-19)
This may be rewritten in a more convenient form as

Viee 1 U; 2
[ ZAIk’ Pr(AY)‘ ] Tj“"k_’_i_ [7&’*’ Pr(AY)* ] Tjr,k -

V Yik ]. .—UZ" kTi,k
+[2AY Pr (AY)z]Tf“’“*"'- AX

(2—20)

The marked 51m11amy of equation (2—20) to the momentum equation dlfference
representatlon (2—10) can be useful in the writing of a computer program.

The finite difference forms of the boundary conditions (2—18) are obvious
except for the gradient condition on the constant heat flux case. A difference
form for the gradient which is consistent in truncation error with the energy
equation (see appendix B, section B.1) is b

ﬂ ___3Tj+1',0+4'7}+1,1

— _Tj+1,2=_1
aY | v=o ~ 2(AY)

@-21)

s

where Ty, 0 = Tw which for the constant wall heat flux case is unknown. The
difference representations of both the basic equation and the boundary conditions
must have truncation error of the same order so that accuracy is not lost. Com-
bining representations of one error order for the basic equation and a different
‘error order for the boundary conditions may-give results which are less accurate
than either representation alone. ' \

The matrix formulation of equatlon (2-20) written for k=1(1)n with constant
wall temperature is

B QT T T T || T T
a B Lo - Tivr,2 oM
—_ Tj+1,3 d):;

'
ay,

Br-1
a,

Q,,
Bx

Tj+1,n—1 )

Tj+l,n

'
n-i

b,

(2-22)
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where . . ’
ar — Vz',k 1
k 2AY Pr(AY)?

AX Pr(aY)?
Q' = V!',k 1
¥T3AY  Pr(AY)?

The matrix of coef’ﬁc1ems of equation (2—-22) is trldxagonal indicating the use of
the method of appendix A.

If the constant heat flux boundary conditions are used, the additional unknown
wall temperature requires an additional equatlon (eq. (2—21)). The matrix formula-

tion is

\

-3 4 -1 Tj1,0 —2(AY)
o By Q Tie1.1 Y
a B Q, Tjir,» oM
2 w| = _1=
al’l—] Bl’l—l Ql,l—l Tj+1,n-1 (b;,_,
'al,l Bl’l T}"’l’" ¢;l
(2-23)

where o, B, {1, and ¢, are defined in equation (2-22). This matrix is no longer
tridiagonal, but it can be made tridiagonal by using Gaussian elimination (ref. 2)
to eliminate the off-tridiagonal element (—1). Only the top row of equation (2—23)
is modified and becomes

LRl B"
_3+ﬁ 4+E Tis1,0 —2(AY)+¢‘
o B & Tii1 oM

(2—24)

If the velocity and temperature fields are to be solved in the most economical
manner (in terms of computer time and storage space), the velocity solution at
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the next step should be computed next, then the temperature at that step, etc.
In this way only one column of velocities and temperatures need be saved at any
one time. Of course, the same mesh sizes should be used for the velocity and
temperature solutions.

In solving for both the velocity and temperature it may be found advantageous
to employ a fine mesh size near the wall and a coarser one near the free stream.
The details of this technique are discussed in appendix D. Usually the velocity
solution requires finer mesh sizes near the wall than does the temperature solution
so that the velocity solution is the determining factor in the choice of mesh size.
An exception is for high Prandtl number fluids, for which the thermal boundary
layer becomes very thin. In this case, the temperature solution becomes the
determining factor in the choice of mesh size, and even finer mesh sizes are
needed than those required for an accurate velocity solution.

2.1.3 Incompressible Constant Property Flow — Heat Transfer Solution

. The local Nusselt number is given by

qx

N = = ta)

(2-25)

where ¢ is the local heat flux. In dimensionless form; the local Nusselt number is,
for constant wall temperature,

oT
Nux—aYXRe | ' | (2.—26)
where
Re= pucl
“
and for constant wall heat flux
] .
Nu,=-T—XRe R (2-27)

The mean Nusselt number is given by
. 1 . X
um=—f Nu, dX S (2-28)
XJo

Equations (2-26) to (2-28) may now be expressed in finite difference form.
For constant wall temperature, -
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_ "3Tj+1,0'+;4Tj+1,1—Tj+1,2j| )
and for constant wall heat flux, .
_Xjn .
Nue=g "~ Re ' (2-30)

To find the mean Nusselt number, Simpson’s rule (ref. 2) may be used. Since,
however. an even number of intervals are required for integration by Simpson’s
rule, the value of Nux can only be obtained at every other step. The mean Nusselt

number is given by
AX 1
)5 )+ Nun j_,(x,-_l)](Xm) (2-31)

= [(Nu, P

2.1.4 Compressible Flow—Velocity and Temperature Solutions

+4Nu,

Num j+ J+Nu.l‘ i+

For the compressible flow case, the equations of momentum and energy are
coupled and must be solved simultaneously. The compressible flat plate boundary
layer problem has been solved numerically by Mitchel (ref. 3). The formulation
_given here draws on the work of Mitchel, as well as that of Walker (ref. 4).

The basic equations for the compressible boundary layer are

bu, du\_ dp, o ( du | .
p(”ax+ ay) dx+ay< ay) (2-32)
d(pu) , 3(pv) _ . g_an
ax T ay =0 . (2-33)

ot , 9t _ dp i( 3_t> (3_“)2 -
pcp<uax+vay) udx+ay kay + 3y (2-34)
p=p%t (2-35)

The viscosity and thermal conductivity are generally assumed as functions of
temperature only. As an example of such functions, the commonly employed
power-law relationships will be used here, although of course any desired relation-
ship could be readily substituted. The assumed expressions for viscosity and
" thermal conductivity are

~N

= pu(t) = uo(t/to)f (2-36)

k=k(t)=ko(t/to)? (2-37)



22 . NUMERICAL MARCHING TECHNIQUES

where po and ko are the viscosity and thermal conductivity at a reference tem-

perature to: . :
Equations (2—-32) to (2-37) constitute six equations in the six unknowns

u,v,t,p, ., and k. '
The boundary conditions on velocity for this problem are

u(x,0)=0

v(x,0)=0

u(x, ©) = u,(x)

u(0, ¥)=u,(0) (see apgendix 3]

(2—-38)

As in the incompressible case, only the commonly considered thermal conditions
of constant wall temperature and constant wall heat flux will be used here, although
any other temperature boundary conditions can easily be accommodated. For
constant wall temperature the boundary conditions are ' S

N | , t(x, 0) =ty
‘ tx, ®) =tn(x) . 2-39)
(0, Y)=to=t.0) } -~

For constant wall heat flux, the temperature boundary conditions are

ot
k ay y=0—q . N
t(x, ©)=t,(x) (2-40)

t(0, y) =to=1(0)

In equations '(2—38), (2—39) and (2—40), the values of u, and t., both of which are
functions of x, are presumed known from the inviscid flow solution in the free
stream. T '

The next step in obtaining a numerical solution should be to put the basic
equations and boundary conditions in dimensionless form. The dimensionless
variables are chosen as :
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v=% =1L
Uo to
—povL p=L
Mo Po

XHo pr=P (2-41)
p()ll,()L2 Po
_Y sk
Y 1 k P
pr=E
Ho

All quantities with subscript 0 are evaluated in the free stream at the leading edge.
When these variables are inserted into equations (2—32) to (2—37), the dimen-
sionless forms of these equations may be written as

o (13U ﬁ/)_'_ 1 dp ( +20) )
p (U xtV oy )= e dX+aY Y @-42)
S 9(p*U)  a(p*V) _ o e
aX + aY ' (2 43)

T P.1a /(T | 2
g(Ug; VL)—ly—UgX+P (7% )+(y—1)‘M§p,*(-‘£]) (2-44)

F)4

P=p*T | (2-45)
=Ts (2-46)

k*=To - (2-47)

where the free-stream Mach number at the leading edge is My= uo/ V'y%to and
the Prandtl number evaluated at the same location is Pr= pocylko. Equations
(2—42) to (2—47) now constitute a complete set of dimensionless equations.

The boundary conditions may now be written in dimensionless form. The
velocity conditions are -

459-174 O - 73 -3
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U(X,0)=0
V(X,0)=0 s
v =X g (T
U,Yy)=1

For constant wall temperature, the temperature boundary conditions are

T(X,0)=T,
T(X, ®) =£f'°—(tj—(l= T.(X) 3 | (2-49)

T0,Y)=1

For constant heat flux, the temperature conditions become

—* oT _—_ﬂ
oY |y=0 koto
T(X, %) =T.(X) (2-50)
T(0,Y)=1

The basic equations may now be written in finite difference form. An implicit
. . ) . . A
form is chosen. The difference equations are

k= Uj Usir,ier—Ussr
L, —J¥LE My R s 2 h—
Pk [U,,,c - Ly, ke

AX

_1 Pin—P;

2(AY) ]

Ujs1,k61 =2Us41, 5+ Ujir e ]

J *
M2 AX +“f”“[ (AY)?

#;k,k-#l—#‘;‘,k-l][U.i+lyk+l_Uj+l,k—1 o
+[ 2(AY) 2(AY) ] (2-51)

Pj+1,k+lUJ+"k+‘ Pj,k+1UJ,k+1+Pj+1,k+1VJ+l,k+l pj+1,kVJ'+1J~‘_

AX

T; T

AX

NG 0 (2-52)

* +3, k— 1,k T_j+l,k+1 _Tj+1,k—1
P}k [ Ujr =5+

2(AY)

1

= ik
Y

'Y“lU Pj+1‘-P

’+—k;“,,£[

Tis, k1= 2T 11,1 +T 541, k-1
AX Pr

(AY)?



BOUNDARY LAYERS 25

+_}_':kf,k+1_k&—l] [Tj+1,k+1—’ j+1,k—i]
Pr 2(AY) 2(AY)

+M; (v—l)M;’k[Qm,m— j+l,k—‘-1]2 @2-53)

2(AY)
* . PZ'+1 ' i !
Pjs1,k T (2-54)
j+1, k
ik = (T, k)t (2-55)
kYo k= (Tj+1,k)g (2-56)

This finite difference representation presents distinct advantages in that all
equations are linear in the various unknowns. Thus at each step the equations
represented by equation (2-51) may be solved for the values of Uj.1,x, then
. equation (2-53) for the values of Tj+1, x, equation (2—54) for p,, ,, equation (2-52)
for Vjs1,x, and finally equations (2—55) and (2~56) for mir . and £

Before this solution can be carried out, it is neceséary to express the boundary
conditions in finite difference form. The only condition which it is necessary to
discuss here is the heat flux condition in (2-50), which may be represented as

k* [ j+1,0 Jj+1,1 ]+1,2]= 2_ 7
.0 Z(AY) koto ( > )
The method of solution for the basic equations may now be presented.
The momentum equation (eq. (2—51)) may be rewritten in a more convenient
form as ' :

[—p;k,kl/},k_ /"’]*,k +#ﬁk+l—ﬂf,k_l]U‘
2(AY)  (AY)? 4(AY)? AR

pf“, Ui v 2[.1,*,
+[ JZXJ +(A;/)k2]UJ‘+l,k

+[P}k,ij,k_ Mj*,k _l“]fk,kﬁ-l_/“"_;k,k—l]U.
2(AY) (AY)? 4(AY)? Jrt ke
=pj*’ka’k— 1 Pj+1.—Pj
AX yM3  AX

(2-58)
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This equation written for k=1(1)n may be written in matrix form as

B o '
[42) Bz (),2 ) l]j+1, 2 ¢2_
Q3 Bs Q3 Uj+1, 3 ¢3 .

. | = -

Qln_1 Bn—l‘ Qn—l U1+1, n-1 dJn-l '

Oin Bn Uj-}l, n d)n - QnUao J

(2-59)

where

ap =

— ¥ *
PiuVik H )k

NUMERICAL MARCHING TECHNIQUES

Uj+1,]

+

2(AY) (AY)? 4(AY)?
P; AUJ k21
b=

(:U‘;: ket M;: 1)

0 ____p;jkV:i,k_ i";:k _»(“;:kﬂ—l’“ﬁk—x)
kT 2(AY)  (AY): 4(AY)2

PO 1 Pk
WTTA M AX

The matrix of coefficients in equation (2—59) is tridiagonal and the method of
appendix A may be applied to solve for the values of Uj1, «-
The energy equation (eq. (2—-53)) should be solved next and may be rewritten as

—PheVik_ 1 Kk +1_(j,k+l—kj,k—1)]T.
2(AY)  Pr(AY)2 Pr  4(AY)? J+1, k-1

oh Ui, K ]
+[ AX Pr(AY)2 K

+[p.;'ieri,k___1_ k:k 1 (k k+1_'k_?:k-1)]T‘ _
2(AY)  Pr(AY): Pr  4(AY)? AR



BOUNDARY LAYERS » 27

=‘Y_1 : Pj+1 1 [Uj+1,k+1“ j+1,k—1:|2 ’ _

Equation (2—60) written for k=1(1)n now may be expressed in matrix form.
Only the constant wall temperature case matrix equation will be presented here
since the constant heat flux case is only slightly different, and details of the
matrix formulation can be readily extended from the. discussion for the incom-
pressible case temperature solution (section 2.1.2).

The matrix equation is.

| B O, . Tjii,a & — o Tw
o B0 SRR B O N Y
o Bs O » Tjirs | #s
_ — X | — =| —
iy Bl’l—l -1 - T).'+l, n—1 b
a, B,’, Tj+|, n } ¢l’l -0, T.
(2-61) .

where

,=—p;;kﬁV,-,k_L .kj"jk.+1 (k¥ esr— k1)
¥~ 2(AY)  Pr(AY)z Pr 4(AY)?

a

B’=&ZU""‘ 2 ki,
Pe="ax tPhr(ar)

pX Wik 1 kY, 1 (kY

*
J» k1 _; k—l)

Y=2@aY) Pr@aY)y . Pr 4(ar):
,_')/-1 Pj+1"‘Pj _ % Uj+|‘,k+l_Uj+l,k—l 2
=I5 U g = D, | S

Agam as in the velocity solution, the matrix is trldlagonal and the method of
appendix A may be used to solve for the Tiir. k.

With Ujs1,x and Tji1,x known, the perfect gas law (eq. (2-54)) may be used
to obtain the density as
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_ P j+1

* =
Piv1,k.

(2-62)

Tj+l,k

Next the continuity equation (eq. (2-52)) may be solved for the transverse
velocities yielding :

Vj+l,k+l=<%’j’i)V_]+l kTt [(_f_)_l_ﬂ_) U k1 _‘Uj+l,k+l_] (2-63)

1, k41 A)‘ P]+1 k+1

This solution is started at the plate (Y 0) where Vj.1,0= 0 and marched out t¢
the free stream.

Finally, the dimensionless v1scosnty and thermal conduct1v1ty are found
from equations (2—55) and (2—56):

wii e =(Tie1,6)’ ' (2-64)

N

k} j+1,k (T]+1 k)g (2_65)

This solution at.j+1 is now complete and the solution may be advanced another
step downstream. The process may be continued as far as desired.

The truncation error for both the momentum and energy equations is of #(AY?)
and O(AX). For continuity the truncation error is of @(AX) and O(AY).

The difference representation given here is stable for all mesh sizes. 80
long as U= 0. ’ A

2.1.5 Compressible Flow — Nonlinear Finite Difference Representation

Many finite difference representations of the momentum and energy equa-
tions are possible, including a number which are not linear in the unknowns.
These nonlinear representations, such as those used by Walker (ref. 4), must
be solved-iteratively, but their advantage is a possibly more accurate influence
of the variable properties on the solution (i.e., a possible use of larger mesh sizes).
Except for the use of the iterative method, the solution for these representations
is quite similar to that used for the linear difference equations. As an example,
consider the following possible representations of the momentum equation (2-42)
and the energy equation .(2~44). The momentum equatiori may be written as

U;
ok [U]k Uik —Unk ZX L4 Vi

Upsr, k1— j+1,k—1]=
2(AY)
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_LPj+1_Pj+ * [Ifj+1,k+1—2(/}+1,k+l/j¥1,k—1]
M3 AX Mok (AY)?

l";—:—l,k+1 _l"’]tl,k—l] [Uj+l,k+l - j+1,k—l:| 2-66
+[ 2(AY) 2ar) | (%)

And the energy equation becomes
+

'P;ik [Uj,ijH’Z;Tj’k‘*' Vj,k Tj+1[,k;z;y)j+x,k—l ]

y—1 P.f""l—Pj 1 [Tj+l,k+1_2Tj+l,k+Tj+l,k—l]
= i +—Fk*
v Usx AX Pr itk (AY)2
_‘_i[kj*+l,k+l_ J*+l,k—l]|:Tj+l,k+l— j+1,k—1]
Pr 2(AY) 2(2Y)

’ Uier k1= Ujr1,6-1 12
+M2(y—1) u¥ [ L. eLdn ]
8O =1 s 2(AY) 2-67)

The viscous term in equation (2—66) and the conduction term in equation (2-67)
have been represented by using the dimensionless viscosity and thermal con-
ductivity at the unknown (j+ 1) position. Since w}, j is afunction of temperature,
equation (2—66) cannot be solved directly for the Uj. 1 « values, and since K%k is
also a function of temperature and appears in equation (2—67), this equation is
no longer linear in Tj:1,x. However, a straightforward procedure is simply to
guess values for wf , , and £}, , (probably the values from the lglst column).,
The properties are then considered as known and equations (2—66) and (2—67)
may be solved in exactly the same manner as in the previous section for Uj.1,«
and Tj+1,k. The property relations are then re-evaluated using the new values
of Tj.1,x and the process repeated until the values of Uji1,x and Tj41,x agree
with those obtained on the previous iteration to any desired degree of accuracy.
In general, only a few iterations (less than 10) will be required to give good ac-
curacy. The values of Vji1,x can now be determined from continuity, equation
(2—-63), and another step taken downstream. The procedure may be continued
as far downstream as desired. -

2.1.6 Compressible Flow—Heat Transfer Solution

The heat transfer solution is identical to that for the incompressible case
(section 2.1.3) except that kj"‘0 will appear in the heat flux expression.

~
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2.2 AXISYMMETRIC BOUNDARY LAYERS

For axial flow and heat transfer along a body of revolution, approximations
to the basic equations of momentum, continuity, and energy result in two dif-
ferent sets of ‘equations of the boundary layer type. These two sets of equations
correspond to two different physical situations. In one case the body has a radius
"of the order of the boundary layer thickness (i.e., a slender body) and in the
other case the radius of the body is large compared to the boundary layer thick-
ness. In both cases it is assumed that there are no steep variations of radius with
axial distance.

For the large radius case, transverse curvature may be neglected in the
momentum and energy equations and the equations are quite similar to those
for two-dimensional flow. This led Mangler (ref. 5) to develop a transformation
which maps the axisymmetric problem into an equivalent two-dimensional prob-
lem. Since we have already discussed two-dimensional boundary layer solutions,
the large radius solution will be considered as formulated and we shall not discuss
it further. It should be noted that for compressible flow the Mangler transformation
is only valid for perfect gases and constant specific heats. :

The formulation for the slender body will be of value for several reasons.
The formulation is valid not only for slender bodies but also for axial flow along
a circular cylinder of constant radius of any size and includes the transversed
curvature effects which are of considerable interest (refs. 6 to 8). In addition, the
difference equations derived here will also be valid for the axisymmetric jet with

' moving secondary which will be discussed in chapter 3.

The problem configuration and coordinate system are shown in figure 2——3
The inviscid flow solution around the body is assumed known, giving i, t.,, and
dp/dz. The free stream velocity far upstream from the body is us. Within the
limitations of the assumptions (slender body, only small variations in radius) it
is adequate to consider the coordinate system as the r, z—system rather than
going to a curvilinear coordinate system in which the coordinates are normal
and tangential to the surface of the body. Depending on the nose shape, the
formulation given here may.not be valid close to the nose of the body.

2.2.1 Incombressible Constant Property Flow — Velocity Sqlqtion

The equations of motion for -the constant property incompressible flow
problem are

du  du)_ _dp,  (Lau ) '
p (u 6z+-v ar) dz+M (r 8r+672 (2-68)
. du, 13Gr)_, | (269)

0z r Odr
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FIGURE 2-3.— Configuration for boundary layer flow on slender axisymmetriz body

The boundary conditions for the problem are

u(.rb, z2)=0
u(, z) =uw(2)-
v(r, 2) =

(2-70)
u(r,0)= um(O) (see appendix F)

The problem must now be restated in dimensionless form. This can be
accomplished by the following choice of dimensionless variables

U== £
Uo puoa”
y=2% R=. (2-71)
I
_P—po ' r
p= pud .Rb Ta

In equations (2-71), a is a characteristic value of the radius.

When these dimensionless variables are used, equations (2—68) and (2—69)
become . -

aU dP 193U 93U
Ua—Z_+VaR__ +

AN DS (2-72)
oU 1 9(VR) _ _
212 (2-73)

31
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The boundary conditions in dimensionless form are

U(Rs, Z)=0
U=, 2) =2 P=0.(2)
V(Ry, Z)=0 &
U(R, 0)= ”“(0) =U.,(0)

A finite difference grid is now imposed on the flow field. This grid is shown
in figure 2-4 for the case of a cylindrical body (Ry= a constant) with k=0 at the
surface of the body. Variations in R, introduce certain computational difficuliies
which will be dealt with later. Equations (2-72) and (2-73) may now be ex-
pressed in finite difference form as -

Ui,k =Ui ke, , Uprrkrr = Ujrr,
2z Vi 2(AR)

Pj+1_Pj+L Uisr, k61 = Ujir, x21
AZ R 2(AR)

Ui,

Ussr, k1= 2Ujs1, 5+ Ujsr, 1

+ (AR)? (2~75)
UolZ)
L k= n+1 (U= UgZ)
[L k=n
R - A=
T
R k=1
b BE v \
P 0

b

Fi1GURE 2-4. —Finite difference grid for constant radius cylinder.
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and .
UJH’H/;_Z_ i, k41 +RL,, (Vj+1,k+1Rk;1R_'. }'+l,kRk>=0 (2-76)
Equation (2-75) may next be rewritten in a more convenient form as
T v e R v vy LS
+[2{%§)’§RJAR)‘UET{‘F] U"“"‘*‘:%“L&_;z@ | &)

Equation (2-77) written for k=1(1)n constitutes a set of simultaneous
linear algebraic equations which may be written in matrix form as

Bl . Q, ' ’ - Uj+1‘,1 ¢1
a2 B : . Ujir,2 ¢a
az Bz Q; . Uji1,s &3
T o
Qp_1 Bn—l Qn—l ’ Uj+1,n—1 ¢n—1
Apn ,Bn Uj+1,n ¢H_QnUco
(2-78
where
Vi 1
*%="3(AR)  2R:(AR)  (AR)

Uik, 2
Be="az T aR):

oV 11
¥ 2(AR) 2R:(AR) (AR)?

_Uix Pi—Pj.,
$=2z T az



34 , ' NUMERICAL MARCHING TECHNIQUES

The matrix of coefficients in equation (2-78) is tndlagonal and the method of
appendix A may be applied to solve for the values Uj1, k-

The continuity equation (eq. (2—76)) may now be snlved for Vi1 k+1 to yield:

—— (Ujs1,641—Uj k41) 2-79

R AR R
Viet,gs1= j+1,k< k) £

RI.-+1 AZ RI.+1

Since Vj+1,0=0, this equation may be solved in a stepwise manner from k=0
(the surface of the body) and marched out into the free stream, obtaining a value
of Vji1,k+1 for each k. _ A '

The solution may now be advanced downstream one AZ and the previous
process repeated. In this manner the solution may be carried as far downstream
‘as desired.

The variation of the radius of the body with Z may slightly comphcate the
orderly advancement of the solution downstream. If R, varies with Z, and at the
axial station j the surface of the body is set on a mesh point, then at station j+ 1
the surface will not fall on a mesh point for arbitrary AZ. One possible solution
is to transform to a coordinate system in which R, does not appear to vary, but
this is difficult to generalize, and the viewpoint taken in this report is to solve the
basic equations directly without recourse to transformations.

* The method for accommodating R, variations with Z which seems to best
combine accuracy and simplicity is to let the surface of the body fall on the
mesh where it may and call this point k=0. Then at k=1, the first mesh point
above the surface, the difference equations must be slightly modified to account
for the fact that the space between this point and the surface is only a fraction
of a full AR (see fig. 2—5). The method for doing this is identical to that for changing
to a different mesh size in a field and is discussed in detail in appendix D. The
only modifications to the matrix equation (2—78) are in Bl and (;, and these
become ,

B‘=[£.21+[V""v_.a(;zz)][atA_lf)]“La(AzR)z | (2-80)
Q‘=[?g_S(AIR')Z](iia)_(Aiav(lia) (2-81)

where 8 is the fraction of a full AR mesh space from the surface to the first mesh
point above it. The only modification necessary to continuity (eq. (2—79)) is to use
8(AR) in place of AR for k=0. Note that the k=0 point may shift as the radius
changes. Care must be taken to incorporate this shift in & in the values in the
jth column—for example, what ‘was ¥, before may be ¥;, x+1 now in reference
to the new origin for k=0. o
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R
u_Az_{
| Az
k=0 } i
1/’ BAR)
k=0 l
! \&AR) . | ®AR)
Al
2 —
Ry
7 7
(a) o
R.
: » ,
] S(AR)
%‘/—Lbo ) /,//‘;Backwarddifferences'
% P S \evaluated here
- r' , o .
1 ; SAR) \
AR | | L0 \
'__Azl . \
L A %%bx,_;\
.
/»\
Az teaz' -
D) Z

(a) Overall view of mesh configurations.
(b) Enlarged view of body surface crossing horizontal grid lines.

FIGURE 2-5.—Mesh configurations for slender boay of varyin'g radius.

Another problem becomes evident if the body is decreasing in size with
increasing Z and the body surface crosses a horizontal grid line as occurs at
two points in figure 2-5(a). In this case, the backward differences may be eval-
uvated by employing AZ' instead of AZ as shown in the enlarged view in figure
2-5(b), and by using the values of the variables at the surface of the body for
U;,\ and Vj,; (both are of course zero).
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As in all external flows, the thickness of the boundary layer will determine
where the edge of the numerical field should be and how many points are re-
. quired. This was discussed in detail in the flat plate boundary layer formulation
(section 2.1.1).

The solution will-be stable for all U=0. For U<0,it is necessary that

AZ 1

[U1(AR)? ™ 2 @-82)
and
1 2[0]
‘V—R—k =Ny - (2-83)

‘These stability criteria were obtained by Hornbeck (ref. 9).
The truncation error of the momentum equation is of @(AZ) and 0’(AR2)
For continuity the truncation error is of @#(AZ) and O’(AR)

2.2.2 Incompressible Constant Property Flow—Temperature Solution

The energy equation corresponding to the slender body assumption is

: ot at 0t 1 at
pc”( a+”ar) k<6r2+rar) (2-84)

As in the flat plate case, only the common temperature boundary conditions
of constant surface temperature or constant surface heat flux will be considered
here. However, any other conditions may be readily substituted. The boundary
conditions are

it(ro, 2y =ty (constant surface temperature) -
or
—k ar =q (constant surface heat flux) _
. - (2-85)
and )
t(o, z)=t,(z)
t(r, 0)=1.(0)

The following dimensionless variables may now be defined:
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Zp
U= u/uo = '2
a?puo
va
y=£% : R=rla
M ;
t~—1ty
T= — (constant surface temperature)
x tw

or

— & (t—t,)  (constant heat flux)
qa

Equation (2-84) in dimensionless form becomes

oT 8T _ 1 (92T 19T
UaZWLVaR—Pr(aR2 RaR)

and the boundary conditions written in dimensionless form are

T(Ry, Z)=0
T(R, 0)=1 (constant surface temperature)
T(«x, Z)=1

or - r
ar . o
R Re,Z2)=—1
(constant wall heat flux)
T(R,0)=0 '

T(, Z) =0

Equation (2-87) may be written in finite difference form as

U Tg+1,2‘Z— T, o Vi Tj+1,k;l(ZR7;j+l,k-l

_1 {Tj+1,k+1"‘2Tj+1,k+1j+1,k—1 _1_[T}+1,k+1—' 1kt

~pr (AR) R 2(AR)

This may be rewritten in a more useful form as

37

(2-87)

(2-88)

]} | (2-89)
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[_ Vie - 1 __ 1 . Upe , 2
[~ staay + sparecamy ~ Frame) Toei | B+ Brcams) T

+[ Vi k 1 1

2(AR) 2(Pr)R,,-(AR) " Pr(AR)? AZ

N ‘ l ‘ . 1 s
] ]j+1,k+1='—‘l‘_“?__"k K (2_90)
'l he finite difference form_ of the heat:ﬂux co'nditioh in (2-88) is

oT
" 3R

—3Tj+1 o+ 4Tj+1 1 j+l,2l .
= AR =—1 -
3(BR) &2

The finite difference form of the remainder of the boundary conditions is self-
evident. : .

‘Equation (2—90) written for k= 1(1)n along with the proper boundary condi-
tions constitute a set of algebraic equations which may conveniently be written in
matrix form. Only the constant surface temperature case will be given in matrix
form here. The modifications necessary for the constant heat flux case are identical
to those for the flat plate case (section 2.1.2) and will not be repeated. ’

The matrix equation for the constant surface temperature case will be

B R B b
a B &, ‘ . Tivi2 | | &
Cay By B Tivi,s' | | s
= = = X | — =|—
Sy Baor 2y Tje1,n-1 Gns
o Bl T 6,—Q,
(2-92)
where . _ :
al __V;',k ]. 1

k¥ " 2(AR) 2(Pr)RVA-(_A-R“)‘—Pr(AR)2

U . 2
r __Zi,rk <
Be="az TPr(aR): .

g 1 1
k" 2(AR) 2(Pr)Rx(AR) Pr(AR)2
gy = Lkl

AZ



BOUNDARY LAYERS ' , 39

If the method discussed in the velocity solution section to allow for R, varia-
tions with Z is used, then 8 and {}; must be modified to become

Bi=G5+ | 7 Pr(§)(AR)][8(AR)]+6(P.r)(AR)2 (2-93)

Q;%[%_br(a)l(AR)h](1-?—8)_Pr(iR)-2<l:-6> A(2—94)

The matrix of coefficients in equation (2-92) is tridiagonal, and the method of
appendix A may be applied to solve for Tj.,  at.each step downstream.
For the constant heat flux case, «; also appears and is given by

’

=2 (o1 1 _
“T 5P (1+3) (AR)? (V Pr(8)(AR))(8(1+8)(AR)) (2-95)
The heat flux ex.pression (2-91) becomes

AT = (429 Tji 0t (1+8)2 1,1 = (8)2Tjur,2_
R |r=r, 8(1+8)AR '

-1 (2-96)

- As in the velocity solution, if the body surface crosses horizontal grid lines as
shown in figure 2—5(b), then AZ 'may be employed in evaluating the backward dif-
ferences and Uj 1, Vj,1, and T, are evaluated at the surface of the body. The
quantities U;,, and ¥V, are zero, and T; ; will be known for the constant wall
temperature case and may be found by linear extrapolation of the surface tempera-
tures at the two preceding axial steps for the constant wall heat flux case.

" The temperature formulation for the axisymmetric boundary layer problem is
universally stable. The truncation error of the finite difference representation is of

0(AZ) and O(AR)%

2.2.3 Incompressible Constant Property Flow — Heat Transfer SAolution

The heat transfer solution for the slender body of revolution is identical to that
for the flat plate (section 2.1.3) except that the characteristic length L is replaced
by the characteristic radius a.

2.2.4 Comp.ressil.)le Flow— Velocity and Temperature Solutions

As in the two-dimensional case, a perfect gas has been assumed and the
viscosity and thermal conductivity relations have been assumed as a simple power
law. These relations between properties are for illustrative purposes only and any.

459-174 O - 73 - 4
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other relationships may be substituted. The coupled fundamental equations
for the compressible flow—slender body case are '

B ) _dp 10, 00 i
p(uaz_.-i-var) ' 'dz+r6,r p.rar _ (2-97)
a(gu) +1alem) : (2-98)
92 . - r oOor . )

ot 8tN_ dp 19 [, dt) <3_“>2 _g
per (u Oz T ar) uv dz + rar (kr ar) tr ar (2-99)
D :pg?t . ~ . (2_].00)
w=u(t) = po(t/to)’ 2-101)
k=k() =ko(t/ta)? (2-102)

. . »
The velocity boundary conditions are assumed to be

N u(ry, 2) =0 /
v(ry, 2) =0

. 2-103

u(r, 0) =u.(0) (see appendix F) ¢ )

u(o, z) =uy(z) '

As examples of typical temperature boundary conditions, constant surface

temperature and constant surface heat flux will be considered here. For constant
-surface temperature the boundary conditions are

t(ro, z)=t, -
t(r, 0)=t.(0) (2-104)

t(w, ‘z) = i;oo(z)
and for constant heat flux,

at _
or | r=r, q

—k

¢(r, 0) =1..(0) (27105)

t(%®, z) =t,(z)
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The dimensionless variables which seem to offer the most advantages are

U:l Z_ ot
o poltoa’
V=”;’L”“ R=" (Rb=';”)
0
t k ‘
T=— e — -
o k ke '(2 106)
p=L x_ M
Po * Mo
*;ﬁ
P P

If these variables are used, equations (2—97) to (2-102) may be written as

oU 1. dP 134 aU _
p(UaZ+VaR)_ M2dZ+RaR( RaR) (2-107)
d(p*l) la(P*RV)= _
SRR (2-108)
aT y—1 1 d aT
* e =Ll Pl
p (UaZ+VaR) 5 U (P)RaR("RaR)
U |
2 —
+ (y—1)Map* (aR) . (2-109)
P=p*T | @)
. w*=(T)yr . (2-111)
k* = (T)9 (2-112)

where the Mach number evaluated at to is Mo = uo Vv. to, and the Prandil
number evaluated at to is Pr= pocp/ko.

The boundary conditions on velocity in dimensionless form are

U(Rb’ Z) =0
V(Ry, Z) =0
U(w,Z)=u.(Z)ue=U.(Z) | - (2-113)

U(R,0)=Ux(0)/uo=Ux(0)
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and those on temperature for constant surface temperature are .

T(R,0)=1 ‘
T(>, Z) =t (Z)/to— T» (Z) o (2-114)
T(R», Z) = twlto =Ty

or'for constant heat flux

T(R,0)=1
T(o, Z) =t (Z)[to=T,(Z)
o7 w . | > (2-115)

x4
k aR R=Ry koto

Equations (2-107) to (2-112) may now be written in difference form. An implicit
representation is used for momentum and energy and all representations are
chosen in such a way as to make all difference. equations linear in the various *
unknowns. The dlﬁerence representations of equations (2—-107) to (2—112) are

PE (UJ-,A.M+ g, Uinee = Uj-H,k—])

AZ nE 2AR
__ 1 P P!+F4 .[Uj+l,k+l_2.Uj+l,k+Uj+1,k—1
yM3 AZ (AR)?
+.L Ujri, k01 — Uj+1,k—l]
Ri 2AR ]

ﬂﬁk+1.—-/"ﬁk—l] [-Ui+1,k+1_ J'+1»k"‘1j| =
+[ AR 4 SAR) @2-116)

p;+1,kUJ'+1,k—P;kUi,k+Pf+1,k+1Rk+lV‘J'“»k“ _pj*ﬂ,kR"'Vi“’l‘:O @-117)
AZ R«(AR)

. Ty, x—T;, Tievier—=Tivnen | _y—1 Py —P;
P?fk[Uf”‘_JLZz—”“LV’”" BTV ]_ Ui =5z

{k* [Tj+l,k+l"‘2Tj+1,k+Tj+1,k—l+i Tivr, ke1— j+l,k—1]+
T ¢ (AR Ry 2(aR)
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_"_ _k;kﬂ-—_kﬁk_l 7}+1,k+1—' j+1,k—l]}
[ 2(AR) ][ 2(AR) '

Uiy 101 —=U; e
_ % j+1, k41 j+1, k-1 ) _
+ (v l)Mguj,k[ 2(3R) ] (2-118)
P
P~ (2-119)
J
who o= (Tra, k) ' ' 2-120)
| kfr o= (Tjer, )9 f - (2-121)

As in the two-dimensional case discussed in section 2.1.4, these equations
may be solved successively in the following order which essentially decouples
them: equation (2—116) for the Uj.1, ’s, equation (2-118) for the T}, «’s, equation
(2-119) for the p},, i’s, equation (2-117) for the ¥j.1,i’s and ﬁnally equations
(2-120) and (2-121) for pf,, , and k}, et ke

The only boundary condition for which the finite difference form need be
discussed is the heat flux condition j in equation (2—115). This may be represented
by

—3Tj1,0+4T 41,0 — j+1,2] _T4qa
¢ [ 2(AR) koto

k¥ 2-122)
The relation (2— 122) must be solved simultaneously w1th the energy equation
2-118).

Equation (2—116) may be rewritten in a more useful form as

[— PﬁkV~’:\- . IJa;:k f“';:k 4 I‘l'_;’:k+lv_ p’;jk—l:l U :
2(AR)  (AR)® ' 2(Rx)AR 4(AR)? rbet
P;:ij,k F'*j,k _ /"’*j,k

phelin 20547 _
[ AZ _—F(AR)“’] U’“’k+[2_(AR) (AR)? - 2(Rx)AR -

¥ % : P —P. * [z
e . 1 P — Py pf U,
T T A ADYe Uj+1,k+l -

4(AR)? YMz~ AZ AZ

0

(2-123) |

Equation (2—123), written for k=1(1)n, now constitutes a complete set of equa-

tions for the values of U; 1, x. This-set may be written in matrix form as .
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,Bl 0, : Uj+1,1 d)l
o B2 O . _ Uj+1,2. b2
a3 Bz s ' Ujir,s b3
(£ 77881 B_n—l Qn—l Uj+1,n—1. 4)"#1 |
- Ay Bn ‘ Uj+1,-n 'd)n—QnU“,
(2-124)
where

. * * CE %
_ Pkl Mk M, & M5, ke ™ My r—

*=T5(AR) (AR)® 2(R0AR ' 4(AR)?
piUi v | 21
= + ,
B=""az (ary :
) =P;|,</.-Vj, l\'_.l*"';jk _ B _':“;',:/.-H_,U«;fkq
*“2(AR) (AR)? 2(R:)AR 4(AR)?
L Pra=P pb U3,

¢(C=_7M§ AZ AZ

The coefficient matrix of equation (2-124) is tridiagonal, and the method of ap-
pendix A may be applied to solve for the values of Uj,, &.
The energy equation (eq. (2—118)) may now be rewritten as

[_Pﬁij.k_ Kk + kS i kﬁkﬂ_,k;fk—_l]r . |
2(AR)  (Pr)(AR)* ' 2R.(AR)(Pr) " a(Pry(AR): ] """

+

+[pj>l,<kUj,k 2k} ] .
AZ T (Pr)(AR)2 ]

* * ® % _ L%
+[Pj,ij.k kS y L T T

2(AR) ~ (Pr)(AR)? 2R.(AR)(Pr) 4(Pr)(AR)? ]T1+1,k+l='
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_'y'—lUj'kPj+1_Pj+Pji,‘kUj,ij»k

vy AZ AZ

Uj+1, k+1 Uj+1,k—l

2(AR)

+ (v—l)Mﬁu;'fk[ ]2 (2-125)

Equation (2—125) written for k=1(1)~ along with the proper boundary condition
at k=0 constitutes a complete set of equations in the values of Tj.1,. This set
of equations may now be written in matrix form. Only the constant surface tem-
perature formulation will be given here. The constant heat flux matrix form and
method of solution can be readily inferred from the two-dimensional incompressible
case given in section 2.1.2. The constant surface temperature matrix equation is

B: €4 ' S Tje1,1 d1—oTw
a, B; £, ' . - Tjs1,2 0%
a; Bi Q Tit1,s b3
. | — _|—
P Q’n—_l Tjvr,n1 | bnos

o, B Tjsi,n ¢,— 0, T-

2-126)

where -

,=_p‘;k,kl/:iyk_ k]?k,k ) k_;k,k ) kf,k+l—k-;k,k—]

%~ T2(AR) (Pry(AR)? 2R (AR)(Pr)  4(Pr)(AR)?
,_Pf,kUj,k 2kj*,k

A%z TP.aR)
szpﬁka»k_ k;k,k _. k;k,k _kf,kﬂ_k;‘,k—l
¥ 2(AR) (Pr)(AR)% 2R:(AR)(Pr) 4(Pr)(AR)?

y=1  Pi—P; p* Ui iTie [ Ut ksi—Upen ke 1
11y, fllin e U =
R L O e 1777

The coefficient matrix of equation (2-126) is tridiagonal and the method of appendix
A may be used to solve for Tji1,&. v

Equation (2-119) may now be used to give p}, ; at each point.

The continuity equation (2—117) can be solved for Vi1, k41 to give
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p]?k-}-l kRk AR Rk
Vier, ko1 =—3——"———Vjy1, +(———>—(pak Ui i
jH1,k+1 pjtl,k+1Rk+l j+1,k AZ P}k+1,k+,Rk+1 i, kY

- P;:L'l kUj+1 k) (2.—127)

Equatlon (2-127) may be marched outward from the surface (k 0) to give all
values of Vi1, 1 +1.
Finally, equations (2-120) and (2-121) can be solved for u}, , , and £}, ;.
If R, is a function of Z, then the difficulty of the surface not falling exactly
- on' a mesh point will be encountered. The method of attack applied here is the same
as that described in section 2.2.1 for the incompressible case. The matrix equations
(2-124) and (2-126) must be modified to account for the partial grid space at the
surface. As before, 8 is the fraction of the grid space adjacent to the surface. The
modifications are, for equation (2-124),

p_;'leJ',l p;:IVj,l(l —3d) 2#'}?1

h="az 5(AR) | 5(AR): |
(I=®uf  (wf,—#i)1=8)
TTE@R): | 2m(AR) e
e 30, (8 g — 1) .
=135 (aR) A+ 8)(AR)?  2(1+ ) (AR)? 2-129)
Wheré

I e | &
B a= R 511 +2p.]1(1—8)-i-2;Lw1 1+35

and the modifications to equation (2-126) are, for constant surface temperature,

B,=p1?f1(/},1+913':11’},1(1';5) 2k,
A 5(AR) (Pr)8(AR)?
(A=8)kr, - (kf ,—kj,0)(1—8)
"~ (Pr)&(AR):  2(Pr)®(AR)? (2-130)
¥y 3k* K -
0;=—FPeiid 2L (&, o) (2-131)

(1+8)(AR) (1+8)(Pr) (A‘R)2—2(Pr) (1+a) (AR)?

and
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_71

*
Pjsi — P1+pi,1Uj,1 G,

Ui AZ AZ
82 2
8)+UJ+1 2( +8)J

& —aiT,,

Ups1,.(1—
. 2,k j+1,1
+ ('Y l)MOl“'J,I[ 5(AR)

_[ _p;jlle.l _ 2kj=fi kJ*l
8(6+1)AR §(1+8)(Pr)(AR)2 82(l+5)(1)r)(AR)2

kg — ko _
+2(Pr)(]8:-1)182(AR)2]T“’ (2-132)

where
5—1 &

k?"-*( )2* 5 2k*<———-)

=Ko\ ggr )T Lm0 1+

For constant wall heat flux, an expression for o/ is also needed along with modi-
fications of ¢ and the heat flux expression. The necessary quantities are

,__'_pjglile,l _‘ 2kj>|:1 ' k*
17 8(6+1)AR 8(1+8)(Pr)(AR)? 82(l-+-8)(Pr)(AR)2

a

K =k,

2(Pr)(6+1)62(AR)2 (2-133)
., o y—1 Piwn—P;  pf U; \T;,
b= U=+ v
( &2 ) 2 )
+(v—l)Mﬁu}fl[Uﬁl’l(l_a;&%“'z 149 ] ' (2-134)
L~

and the heat flux con_dition

LT |

0T g [T,-+1,1(1+8)2'—1};1,2(62)—T,-H,o(1+25)]
R lp=r, 7°° 8(1+8)(AR)
=2 ® (2-135)

koto
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For details of handling the constant heat flux case see section 2.1.2.

When all quantities have been obtained at the station (j+ 1), the solution:
may be advanced downstream one AZ and the process repeated. The representa-
tion is universally stable for all U = 0. The truncation error is of @(AR?) and 0’(AZ)
for momentum and energy and of @(AR) and #(AZ) for continuity.

2.2.5 Compressible Flow —Heat Transfer Solution

The heat transfer solution is identical to that for the incompressible case
(section 2.2.3) except that k¥ o will appear in the heat flux expression (see eq.
(2-135)).

2.3 OTHER PROBLEMS WITH A SIMILAR FORMULATION

2.3.1 Wake Behind a Flat Plate.

The problem is illustrated in figure 2—6. Rouleau (ref. 10) solved the incom-
pressible wake problem using a finite difference formulation similar to that to
be presented here in order that he might evaluate the finite difference results in
comparison with the classical solution of Goldstein (ref. 11). The formulation is
virtually identical to that for the flat plate boundary layer with dp/dx=0 except,
that the boundary condition ‘

UX, 0)=0

for the boundary layer problem is replaced by
"’—g (X, 0)=0 L (2-136)

Because the additional unknown Uj, 1,0 has been introduced, it will be necessary
to write the momentum equation at Y=0. Consider, for example, the incompres-
sible case. The momentum equation in difference form at ¥ =0 may be written as

: UJ ol_]%yj_ﬂ_‘_n o J+1 1 Uj+1,—1 =Uj+1,1_2Uj+1,0+U,‘L+l,—l (2_137).

2(4AY) (AY)?

The boundary condition (2—136) in difference form is

D Uiy —Upr. |
+1,1 +1, 1= —
Pt =0 (2-138)
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Ficure 2-6. - Wake behind flat plate.

and hence

Uj+1,|=Uj+1,_1 (2—139)

When equation (2—139) is used, equation (2—137) may be rewritten as.

Uper.o— U Upr = U |
) +1,0 0 _ +1,1 +1,0 _
Uyo i =it =2 [—J————J—( ) ] 2-140)
or .

Ui.o Uz

(55 o o [ 0 = @-an

This equation, along with the momentum equation (2—10), written for k=1(1)n
now forms a complete set of algebraic equations for the values of Uj1,x. The
" resulting matrix equation, in which equation (2-141) now ‘forms the top row,
retains the desirable tridiagonal form of the coefficient matrix. A similar change
must be made for the energy equation, with a symmetry condition d7/d¥=0
applying at Y=0. The extension to the compressible case is straightforward. In
all cases the velocity profile used for starting the solution at the end of the plate
will be a boundary layer profile, obtained either by the numerical methods of this
chapter or by classical analytical techniques.
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2.3.2 Two-Dimensional or Axisymmetric Body With Suction or Injection at
the Surface

The only change to the formulations given in this chapter to accommodate
suction or injection at the surface is that instead of the transverse velocity being
zero at the surface of the body a transverse velocity is specified. For the two-
dlmensmnal case

VX, 0=VoX) (2-142)

and for the axisymmetric case N

V(Ry.Z)= Vw(Z) : (2-143)

where ¥, can be any desired function of the axial coordinate. No changes in the
difference equations are necessary.

2.3.3 Tangential Jet Adjacent to a Wall

The problem configuration is shown in figure 2-7. Tangential jet injection has
- recently received considerable attention as a means of providing boundary layer
and heat transfer control {refs. 12 and 13).

Several minor modifications to the two-dimensional formulation are necessary
in order to consider this case. The dimensionless variables should be redefined so
that the characteristic length L is replaced by the jet height d, and the proper ve-
locity and temperature profiles must be used at the “leading edge” (actually any-

Joo{0)
o0’

UptY) ' -

F1GURE 2-7. —Tangential jet adjacent to wall.
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where on the surface that the jet is injected). This initial profile may be expressed
as

S U0.Y)=uy(Y) uy=Uy(Y) | forY=<1 (2-144)
and '
77(0, Y) = uw(O)/uo— U.(0) forY>1 (2-145)

Possibilities for U,,(Y) include a umform proﬁle of any desired magnitude or a para-
bolic profile. It is also possible to modify equation (2-145) to represent a Blasius
type profile corresponding to the situation of a jet injected somewhere downstream
of the leading edge of the plate' where a boundary layer has already begun to de-
“velop before the jet is reached. A very wide variety of boundary conditions on tem-
perature are possible so none will be discussed in detail here, but their applica-
tion to the finite difference problem is straightforward.

It should be noted that difficulties have been encountered by the author and
" others when jet velocities become very large compared to the secondary velocity.
This difficulty generally is manifested as an oscillatory character of the profile in
the mixing region of the jet and secondary. This phenomenon has not yet been
satisfactorily explained. -

2.3.4 Boundary Layer Flows With Body Forces (MHD, EHD, etc.)

A large class of problems in which there is a body force on the fluid may be
" approximated by using an equation of motion for two-dimensional flows of the
form

du duy . dp a'( au) :
—typ— )=+ — — |+ F , Y, U, -
P (u dax vay)‘ dx 9y May (x5, u,v) (2-146)

where F is the body force on the ﬂmd An equivalent equation for axnsymmemc
. flows is

pudtsod)——doy 1o (m B 4Pz - @4
. dx  ror d ' : '

A complete discussion of magnetohydrodynamics and electrohydrodynamics
‘cannot, of course, be undertaken here; the reader is referred to any of the stand-
ard references such as Pai (ref. 14) or Hughes and Young (ref. 15). However,
the problems encountered may be placed in two broad categories; those in which
the form of the body force as a function of the velocity may be determined without
‘simultaneously solving for the velocity distribution (that is, where the induced
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fields are small compared to the applied fields), and those in which the solution
for the velocity distribution and the body force distribution must be obtained
simultaneously.

If the induced fields are neglected then the body force distribution as a
function of velocity' may be inserted in equation (2—146) or (2—147) and, with
some variations to allow for the form of the body force, the fluid flow and heat
transfer problems may be solved essentially as before. The continuity equation -
will be unchanged, and the proper form of the energy equation (refs. 14 and 15)
must be used. A number of different forms of the body force distribution may be
encountered. If the body force is a function of position-only, it adds only to the
right side of the difference representation of the momentum equation and does
not affect the method of solution at all. If, as is often the case, the body force is
a linear function of u, then the only change in the difference equation is an addi-
tion to the coefhicient of Uj,y,x in the difference equation. If the body force were
a nonlinear function of u or v then it would be necessary to employ an iterative
" method to obtain a solution to the resulting set of difference equations. The
methods discussed in the next chapter for jet flows with zero secondary velocity
may be useful in this context.

If, for incompressible flow, the induced field eﬂects must be included and it
becomes necessary to simultaneously solve for the velocity and body force dis-
tributions, then the difference forms of both the equation of motion and the nec-
essary field equation (e.g., one of Maxwell’s equations) must be solved simul-
taneously. The resulting difference equations, at least for MHD, will be linear.
‘The matrix of coefficients will not be tridiagonal, however, so the solution will
‘necessarily be somewhat time consuming. An iterative method in- which all
off-tridiagonal terms are evaluated at the last iteration may be found useful.
' If the flow is compressible, the energy and continuity equations will have to
be solved simultaneously with the equation of motion and field equations, and an
iterative scheme becomes almost mandatory.

2.4 EXAMPLE PROBLEM—FLAT PLATE BOUNDARY LAYER

As an example of the use of the numerical technique and of the problems
which may be encountered near a leading edge, we shall now consider the classical
problem of the incompressible boundary layer on a flat plate.

Since for the flat plate case dp/dx =0, the dimensionless form of the differen-
tial equations of motion and the associated boundarv condltlons (egs. (2-5) 10 (2-7))
become

U aU_gl_f : .
U +V— e (2-148) .

ol Vv _
X G_Y_O . (2-149)
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U(X,0)=0
V{x,0)=0 _
UX o) =1 (2-150)
. U, y)=1
With the similarity transformation
' Y
"=y (2-151)

-equation (2—148) may be transformed into a total differential equation, the solution
of which is the Blasius series (see Schhchtmg ref. 16). This solution is shown as
the dotted line in figure 2—-8.

‘ Numerical solutions to the set (egs. (2-148) to (2 150)) were obtamed using the
difference representations (2-8) and (2-9). The U velocity profiles are shown as
solid lines in figure 2-8. The mesh sizes used were AX=0.001 and AY = 0.025
with n=80 (i.e., with 80 increments from the plate to the free stream). - _

If the numerical solutions were exact (no truncation or roundoff error), then
when plotted as a function of 5 all values U(7) should fall on the same curve, and
that curve would be the one obtained from the Blasius series. In actuality, since

71—
61—
' ————Blasius series
Numerical solutions
51—
=
.o
F=1
E 41—
e
?g ) Distance,
= 3 X (steps)
E
s : 0.01(10)

Dimensionless velocity, U

FIGURE 2-8. — Comparison of numerical solution with Blasius series solution for ﬂat plate boundary
layer.
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the boundary condition at the leading edge is such that the velocity at the plate

"drops abruptly to zero, two sources of error are introduced. The first of these is
truncation error, since only a few mesh points in the transverse direction will be -
affected due to the thinness of the boundary layer at the first step downstream of
the leading edge. The second, and far more serious, error is introduced by the fact
that the leading edge is a singular point, and hence the solution in the neighborhood
of that point cannot be adequately represented by a Taylor series expansion. Since
a finite difference representation is simply the first few terms of a Taylor series ex-
pansion, it cannot be expected that a finite difference solution will be accurate in
the neighborhood of the leading edge. The solution should improve in accuracy as
more downstream steps are taken and the singularity left behind.

The curves shown in figure 2-8 demonstrate the expected behavior. The in-
fluence of the singularity is very strongly felt at 1 step and 10 steps (although the
boundary layer thickness is surprisingly good). After 100 steps (at X =0.10), the
numerical solution deviates from the Blasius solution by at most about 6 percent.

The question now arises as to how the effect of the singularity may be confined
to thevregion close to the leading edge. To help to-answer this question, a numeri-
‘cal solution was then obtained using AX = 0.00025; one-fourth of the value of AX
used in the previous solution, with AY and n remaining the same. Curves virtually
identical to those shown in figure 2-8 were obtained when the same number of
AX steps were used. This was true despite the fact that these curves were ob-
tained at an X value only one-fourth of that at which the previous profiles were ob-
tained. This result indicates that the downstream effect of the singularity is a

“function primarily of how many AX steps are taken from the leading edge and not
the value of X. The effect of the singularity may thus be confined to the region very
‘close to the leading edge by 51mplv takmg a large number of steps with a small AX
in that region.

A common criticism of the approach emploved here, in Wthh the partial differ- .
ential equations are solved directly, is that it is not an effective way to obtain very
accurate answers, due to the leading edge singularity and the effects of large varia-
tions in boundary layer thickness along the plate. As mentioned in chapter 1, a
change to boundary layer coordinates is helpful in overcoming this problem, and
many numerical schemes of varying complexity have been evolved which are
based on this transformation. However, since the approach taken in this book is
to solve-the partial differential equations directly without transformations, it was
felt worthwhile to determine the mesh sizes and computer time required in order
to obtain an accurate solution by this direct approach. After some experimentation,-
results were obtained for the U velocity distribution which varied from the exact
solution by no more than two digits in the third decimal place (less than 0.5 percent
error). This solution required mesh sizes as follows: AX =1.5X10-%, AY=0.003425
up to k=180, and AY=0.01370 from k=180 to k= n= 320 (a total of 320 transverse
mesh points; see appendix D for details of employing two different transverse mesh
sizes). Five thousand steps were taken in the downstream (X) direction from the
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leading edge to reach X =0.075 where the comparison with the exact solutions was
made. This procedure took slightly over 2¥2 minutes of high speed digital com-
puter time. This time could:have been shortened cdnsidérably if a variable num-
ber of transverse mesh points were used, depending on the local boundary layer
‘thickness, but in the interests of sxmphcxtv a constant number of transverse mesh
points was employed.
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CHAPTER $

s

In this chapter solutions are formulated for the problem of a laminar plane
or axisymmetric jet issuing into an infinite medium, either stationary or moving.
For a first approach the surrounding medium is assumed to be of the same fluid
as the jet. More complex situations will be considered in later sections of this
chapter. A uniform external pressure field in the surrounding medium is assumed.

The equations employed in this chapter are valid only if the pressure in the
interior of the jet may be considered equal to that of the surrounding medium.
This requires that the surface tension of the jet be negligible and that the jet be
fully expanded. A fully expanded jet is one in which the pressure at the jet mouth
is equal to the pressure in the surrounding fluid (e.g., a jet emerging from a tube);
an underexpanded jet is one in which the pressure is higher at the jet mouth than
‘that of the surrounding fluid (e.g., a jet emerging from a reservoir). In the latter
case the pressure in the jet interior does not reach the pressure in the surrounding
fluid until after the vena contracta is reached. This situation is not considered
here.

3.1 PLANE JETS

The plane jet is illustrated in figure 3—1 along with the coordinate system
used in this chapter. ‘

3.1.1 Incompressiblc Constant Property Flow — Velocity Solution

The incompressible constant property equations of motion for a plane jet in
a uniform pressure field are

2' 3 .
p<u%+v§l£>= a_g (3-1)
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FIGURE 3—1.—Plane jet configuration showing velocity profile at x=0. »

du  Ov '
2L % 9 -
_ax+8yA (3-2)

The boundary conditions to be considered are

¢ . u(0,)=up(y) y=a(seeappendixF)
u(0,y)=us(y) y>a: :
u(x, ®) = ug .

Ju
0y (60 =0
v(x,0)=0

3-3)

The basic equations are made dimensionless by the following choices of di-
mensionless variables: . » '
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U=~ x=2
Ue pucat ‘
(3-4)
y=pve o y=X
I a

Equations (3-1) and (3—2) may be rewritten in dimensionless form using the
variables (3—4) as

oU BU_ﬂ/ ) _
Uﬁ-*-VW—BYz - (3-5)

aU | oV '
ax Tar= 0 . (3-6)

The boundary conditions (3—3) in dimensionless form are

U0,Y)=U,(Y) - Y<1
U0,Y)=U,(Y) Y>1
U(X, o) =Us() :

oU B
5 (X, 0=0
V(X,0)=0

6-7

3.1.1.1 Highly implicit difference representation valid for small secondary
velocities.— A finite difference representation must now be chosen for equations
(3—-5) and (3—6). The finite difference grid is shown in figure 3—2. The difference
form selected for equation (3—5) is highly implicit in that not only are all Y-deriva-
tives evaluated at j+ 1 but, in addition, the coeflicients of the nonlinear convective
terms are also evaluated at j+ 1. This representation, which results in nonlinear
algebraic equations for the unknowns Uj.y,x and Vi1, %, is necessary if zero and
small secondary velocities are to be considered, since the usual implicit scheme
with the coefficients evaluated at j is inconsistent for these conditions. This in-
““consistency is not discussed in detail, but for zero secondary velocity the usual
implicit form results in the U velocity profile decreasing linearly from the edge
of the jet to whatever value of Y is chosen as infinity. This result is obviously
incorrect. The usual implicit scheme, which is also discussed in this chapter,
does give correct results if the secondary velocity is of the order of the primary
velocity or larger.
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\
k=n+l-
k=n
AY
K
[ P
r—"" .-/“ e el F—pr————
k=2
k=1 -
k0 ———— - X
Flj2 : IR

FI1GURE 3-2. —Finite difference grid for plane jet.

The nonlinear difference representation chosen here is valid for all values of
el up: )

U Ui,k — Uk U1, ke1 = Ujer, k1] _ Ujsr, 601 = 2Ujs1, s + Ujpr, k1
ok (T +Vir1,x =

2(AY) (AY)?
3-8
The representation of the continuity equation (3—6) is conventional:
[]j+1,k+l_Uj,k+li+ Vj+l,k+1_Vj+l,k=0 ('3_9)

AX AY

Equation (3—8) is nonlinear so that none of the usual techniques for linear
algebraic equations may be employed. However, one very simple and effective
iterative technique is now described. First, equation (3-8) is rewritten, using
superscripts to indicate on which iteration that value was obtained; for example, .
UJ(QI_,‘ is obtained on the (/)th iteration while Uj(j_*ll)k is obtained on the (/+1)th
iteration. Equation (3—8) becomes

0, () U= ) Ul U U
Lk \TTAX ik 2(AY) (AY)*
3-10)
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It is useful to rewrite equation (3—10) as

yo _ v, ,
|~ 5iats — e Ve + [+ ] U

2(AY) (AY)? (AY)2| vtk
re 1 U U
+ [z‘(_:\}"i ‘_(Ay)z] U= ’—"‘A“y(’—’ (3-11)

The first iteration is started by guessing values for U9, , and Vj(ﬂ)l - These
guesses are usually the values at the preceding step upstream (i.e.; U;,» and
Vi,k). Taking [=0 in equation (3-11) and writing this equation for k=0(1)n
result in (n+1) linear equations in the (n+1) unknowns U(), ., since UJ‘?), X
and V(g)l . are now considered known. As in the boundary layer case, n must be
taken large enough so that on several points of the grid the U velocities are essen-
tially that of the free stream, and n will have to be increased as the jet expands.
Eventually n may be halved and AY doubled. When the set of equations has been

solved for U, ,, equation (3—9) may be solved for V() ,

V;(1+)1 k+1_V(]'lF)l k—_( J+l k+1 = Uj k1) (3-12) -

All values of V;H ksr CAN beA found in a stepwise manner from equation (3—12)
by working outward from the centerline of the jet.

The entire procedure can now be repeated for [=1; that is, U“+>l . and
Vi), . will be in the coefficients of a set of linear equations in U?), ,. These equa-

tions are solved and then ¥{®, | is obtained from continuity. The iterative process

is repeated as many times as necessary until U{{) and U{), | agree to within any

FE2 W
desired degree of accuracy; a similar requirement exists for VJ‘:;“,{ and VJ(R o At

each iteration, the matrix form of the set of linear equations may be written as

B ey | uen || e
oD | B QY U;l:‘l)‘ 'd,(‘z)
A BY QY Uwn, | Y
—_ - — x| — = —
aU)l B(nl)—l Q(nl)—l U(jtll)n 1 ¢(nl)—1

O O 0= QPU()

(3-13)
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where

L,
&) =—3(AY)  (AY)?

()] .
Bu)z Uj+l,k + 2 .
k AX (,AY)z,
' Q= Vi 1

2(AY) (AY)?

(U]
U)+1 k U ok

¢l(c’)=

Equation (3-13) incorporates the symmetry condition at k=0 which in finite
difference form is

Uj+1,1=Uj+1,—1

The coefficient matrix of equation (3—13) is tridiagonal and the method of appendix
A may be used at each iteration to solve for the values of U(’“) After the iteration

process has converged, another step downstream may be taken and the process
repeated. ‘

It might be noted that this iterative procedure is a composite of Jacobi and
Gauss-Siedel iterative techniques as extended to nonlmear equations. Crandall
(ref. 1) discusses these methods for linear equations.

In some cases it may be desirable or necessary to either overrelax or under-
relax the iterative procedure. If difficulty in obtaining convergence of the iterative
_ process is encountered, then underrelaxation is indicated; overrelaxation is usually
employed to accelerate an already convergent iterative process. The author’s
experience with jet flows having uniform velocity profiles at the point where mixing
of the two streams begins is that underrelaxation is not necessary to obtain con-
.vergence. However, for the example discussed in section 3—4, where the velocity
profile in the primary was parabolic and the secondary was at rest, underrelaxation
was necessary. . :

Before discussing the relaxatlon procedure, we shall briefly mention the

notation to be used. In the straight iterative procedure, the quantities Uj(.fr)l .

appearing in the equation of motion take on the values of U{D, after each itera-
_tion, and then a new set of Ug*l”k’s is solved for on the next iteration. Symbolically
this may be written as

0 (1+1) S o
U1+1 k (_Uj:l.k
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In the relaxanon procedure, the values of U(’) . are modlﬁed somewhat from

the previous ones. This modlﬁcatlon may be expressed as

Ul U, 43 U =00, )
‘where X is called a relaxation factor. Values of A in the range 0 < A < 1 correspond
to underrelaxation while 1 < A =<2 correspond to overrelaxation. For A=1 the
procedure again becomes straight iteration which simply corresponds to replacing
the old value with the newly computed value.

An iterative method such as this will necessarily be more time consuming than
the usual implicit scheme in which only one set of simultaneous linear equations
of the type (3—13) need be solved at each step; however, this representation is
necessary to ensure a consistent solution for zero or small secondary velocities.

One interesting consequence of employing the highly implicit technique is
that since Vj i does not appear in the equations, V' (0, Y) need not be specified
at the mouth of the jet to start the marching procedure. Since ¥ (0, Y) is not truly
a boundary condition (see appendix F), this is at least esthetically pleasing.

3.1.1.2 Implicit formulation valid only. for large secondary velocities.— We
now present an alternative formulation to the jet problem which is valid only if the
secondary velocity is at least of the order of the primary velocity. This implicit
scheme is very similar to the implicit scheme used for boundary layer problems in
chapter 2 and in those cases where it can be used has a considerable time-saving
advantage over the iterative method just discussed.

The difference representation of equation (3—5) for this alternative formulation
is
U;, L Ujsr,641— Uj+1,k—1=- Uivr, k61— 2Uj41,6+ Ujir k1

7 2(AY) (AY)?

¥ ]+1 k—
Uik

AX .
(3-14)

In order to facilitate a matrix representation, equatlon (3—14) may now be re-
arranged as

e L e Lo

Vi 1 o (U;0)? .
HEr e R vy

Equation (3-15) wﬁtten for k=0(1)n constitutes a set of (n+ 1) linear equations
in (n+1) unknowns which may be rewritten in matrix form as
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Bo Ujsi,0 do
(047 []j-f-l.,l 4)1
Q. Ujsi,2 b2
. X | —- _
Qn—1 Bn—l Oy Vl]j+l,n,—1 d)n-l
(2773 B" . [Jj+l,n d)n—Qn(Us(oo))
A (3-16)
where
qype = -
2(AY) (AY):
Ui, 2
AX (AY)? g
_ V1
*T2(aY) .~ (AY)?
 (Upx)?
P= 0%

At each step, the tridiagonal set of equations (3:16) is solved once, which provides
Uj+1, k. Then from equation (3—9).

AY | -
Vj+1,k+1=Vj+1,k—ﬁ(L[j+1,k+l_l]j,k+1) (3-17)

This equation is marched outward from the centerline to the secondary stream
to provide all values of ¥Vji1,x+1. The solution may now be advanced downstream
one step.

The representation (3—14) obviously has great time saving advantages over
the representation (3—8). However, no guarantee can be made as to exactly how
large u;/u, must be in order for the representation (3—14) to be valid. If any doubt
exists, the results of (3—14) should be verified by carrying out at least a small part
of the solution using (3—8).

Both forms (3—8) and (3-14) are implicit. It would be possible to formulate an
explicit solution to the jet problem which would, however, be valid only for nonzero
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secondary velocities. The explicit formulation would have no advantages over the
implicit formulation (3—14), since the times required for solution are comparable
and there are stability restrictions on the mesh sizes which can be used with an
explicit form. The explicit form, therefore, is not considered here.

The truncation error of the finite difference representation at each step is of
O (AY)? and @ (AX) for the momentum equation (both forms) and of @ (AY) and
@ (AX) for continuity.

The implicit solutions are stable for all U = 0. This has been demonstrated
by Rouleau (ref. 2) for the form (3—14) and has been found to be true for form
(3-8) by experience, although a stability analysis cannot be readily carried out
because of the nonlinearity of the difference equation. Since -only positive values
of U should be encountered in the jet problem, the solution can be considered
universally stable. It should be noted, however, that difficulties similar to those
discussed in section 2.3.3 may occur if the disparity in velocity between the primary
and secondary streams is too great. This can result in small oscillations in the axial
velocity in the mixing region. The reason for this behavior is not understood.

3.1.2 Incompressible Constant Property Flow¥Temperature Solution

Assuming constant properties and neglecting viscous dissipation, the energy
. equation for this problem may be written as

at ?*t
pc p(ll +v ay) ayz (3—18)
The boundary conditions are
t(0,y) =t y<a
t(0,y) =t y>a :
t(x, oy=ts (3-19)

at
3y (x,0)=0

Equation (3-18) may be made dimensionless by the following choice of .
dimensionless variables:

' T=tt __t: X=pz‘t12
P t) P
U=ulu, Y=y]la (3-20)
V=pua/pn

When these variables are inserted in equations (3—18) and (3— 19) the problem
may be restated in dimensionless form as
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of 1 °T
U VaY Pr oYz (3-21)
. 7(0, Y)=1 ‘ Y<1
T(0,Y)=0 Y>1
T(X, ©)=0 - (3-22)
aT o - .
oy X, 0)=0

A finite difference representation may now be chosen. The finite difference
form given here will correspond to the finite difference form of the momentum
equation (3—8) and should be used when that form is used. If the secondary
velocity is sufficiently high to allow the use of the form (3—14) for the momentum
equation, then the coeflicients of the convective terms in the following equation
should be made U,k and Vj, k. The difference form of equation (3-21) is

- T T
Uj+1 k J—%——q. V+1 k Hl,k;_l(Ayfr‘l’k 1

_1 Tier k01— 2T 51,0+ Tjr k1 (3-23)
Pr - (AY)?

Equation (3-23) is similar to equation (3—8) in that the coefficients are evaluated at
Jj+1. However, in the incompressible case being considered, the flow equations are
-'solved first and the coefficients are hence known and the difference equation
remains linearin 7. :

Equation (3—-23) may be rearranged in a more useful form as

Vi 1 ' U, 2
[_ SLE_ ]Tj+1,k—1 +[ Ll k+ ] j+1,k

2(AY)  Pr(AY) AX. " Pr(ay):
Viei i 1 Ui 1T .
+lgz&11’/h) Pr(AY)]T’“ Vel Gl

Equation (3—24) written for £=0(1)n and expressed in matrix form is
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! _2 J 0
B Brarn R I s
o B Ty | | &

ar o B , Tjir,z ¢,
— X | — =|—
Uy ,Br;—x (OAEPE Tj+l,n—l d;','*l
an Be. Tj+l,n n .
(3-25)
where
a,=__Vj+1,k_ 1
¥~ T2(AY) Pr(AY)
v Ussrk 2
P ax T Priaty
,=Vj+'1,k_ 1
¥ 2(AY) Pr(AY)?
,_Ujer,kTj, k
P TAx

The coefficient matrix of (3—25) is tridiagonal and the method of appendix A
may be applied. It.is of course most desirable to employ the same grid for the
velocity and temperature solutions. '

The truncation error of the difference representation is of @ (AX) and & (AY?).
The representation is universally stable.

3.1.3 Compressible Flow— Velocity and Temperature Solutions

For the compressible case, we again assume that the jet is fully expanded,
has no surface tension, and emerges into a uniform external pressure field. In
the compressible flow situation the basic equations are coupled and must be solved
simultaneously. o

The basic equations are

p (w240 20) 22 (,29) 320

3-27)
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Ot v i A I e
pt = constant (3—-29)
= n(e) | (3-30)
| k=1Fk(t) A (3-31)

Equation (3—29) assumes a perfect gas at constant pressure. Any other equation

of state may be used if desired.
The boundary conditions are

. u'(09 }’)=up
w0, y)=us
u(x, ©) =u,

Ju

4

v(z, 0)=0"
. t(07 )’)=tl)
t(0, y) =t
t(x, ©)=t;

at n

¥ < a (see appendix F)
y>a

Yy<a
y>a

T (3-32)

J

These equations may be put in dimensionless form by the following choice

of dimensionless variables: .

— _Xip
ppupa®
y=%
a
k
* o
k %
% M
# Hp
. P
P Py

(3-33)
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For these dimensionless representations the conditions in the primary stream at the
jet mouth have bheen chosen as reference values. Inserting these variables into
equations (3—26) to (3—31) gives ’

(UaU+V5U) '9( au) ‘ | (3-34)

aY aY

3(p*U) L 3™ V) _
aX aY

(3—35)

oT 1 9 (,.0T v\ :
(U6X+V6Y> Pr6Y<k )+(7 DM p (aY) (3-36)

(where the Mach number in the pnmary stream at X=0 is M,= up/ Vy%tp,and
the Prandtl number at the same location is Pr=(ucplk)p)

(3—37)

1

=T
=Ty | (3-38)
k*=(T)9 (3-39)

" The usual power law relations for u and & have been assumed as in the preceding
chapter. Any other relationship may be readily considered.
The boundary conditions (3—23) in dimensionless form become

U, Y)=1 Y<1
U0, Y) = usup Y>1
U(X, °°)=us/up
W x,0)=0
oY (3-40)
V(X,0)=0
T(0,Y)=1 Y<1
T(0,Y) =tt, Y>1
T(X,®) =tftp
oT
y &, 0)=0

3.1.3.1 Highly implicit representation valid for small secondary velocities.—
Equations (3-34) to (3—39) may now be expressed in finite difference form. An
implicit representation similar to that used for equation (3—-8) in section 3.1.1
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is used here for both momentum and energy in order that the formulation may
be valid for zero and small secondary velocities. The representation which must
be used results in nonlinear difference equations. Since this is the case, the equa-
tions must be solved using an iterative method; therefore, it is not necessary to
always evaluate the properties in such a way that they are known when a given
equation is considered. Evaluating the properties in this way was useful in sections
2.1.4 and 2.2.4 since the linearity of the difference equations was preserved.
Somewhat better accuracy can presumably be obtained, however, by evaluating
the properties simultaneously with the velocities and temperatures in each equa-
* tion. The solution in this case can be accomplished by using an iterative method,
and since an iterative method is a]ready necessary, no complications are added

to the solution.
The difference representations of equatlons (3-34) 10 (3— 39) are

o Upr,c—Uj Upiroirr— Uperoie
P;:n,k [Ujﬂ,k—JH’ZX ]’k+Vj+1,k JH”‘;(AY)J“’,‘ 1:|

% I:Uj+1,k+1—2Uj+1,k+Uj+1,k—-1:|

- Jj+1,k (AY)2
7% — X AUy voi—Us
) L SO WS R KW 1][ 1, k+1 )+1,k—1] _
[ 2(AY) 2(AY) (3-41)
pjtl,k (Jj+1,k_P;jk Uj,k p_;:"l,k+l V;‘+1,k+1_p;11,[; V:i+l,k__ .
: AX + ; AY =0  (3-42)
T, T T £
P;H,k [[]j+1,k -&I"—ZY—]’—’C-F Vie, i JH’k;(AY)JH’k"I]
=.l..{ * [Ti+l,k+l—27}+1,k+Tj+1,k_‘1:|
Pr {i+bk (AY)?
[kj*+1 k1 k]tl k- 1] [Tj+1,k+1—Tj+1,k—1]}
2(AY) 2(AY)
+ (y—1) M2 u* [Uj+l,k+l_Uj+l,k—l]2 (3-43)
PrLE 2(AY) -
« -1 :
Pk T T (3-44)
B, ™ Tivr k) : : (3-45)
ke = (Tj1,6)9 e ~ (3-46)

The iterative method of solution for equations (3-41) to (3-46) discussed
here is quite similar to that employed in section 3.1.1 for the incompressible mo-
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mentum equation. It is not necessarily the fastest way to solve the set of difference
equations but it is reasonably fast and is very straightforward. As in section 3.1.1,
the superscript [ on a quantity indicates that quantity was obtained on the (/)th
" iteration, while the superscript ({+ 1) indicates the ([+1)th iteration. Equations
(3—41) and (3—43) are rewritten as

l:_p]ﬂi),ij(i)l,k_Mﬁéi),k KD ks — ;:5:),1:_1] a1 +[P;‘ﬂ),,\.U}i)1,k
2(AY) (AY)? 4(AY): he AX

*(1) *(1) YD) B () - — g * D)
+2/'Lj+1,k:| Ui + [pj+l,ij+l,k_P“jil),k  Hen ke j+1,k—1] (1+1) -

(AY)2 ] "Ik 2(AY) (AY)? 4(AY)? JH1, ke
| o g U
=p1+1,k A_,+X1k Js k (3-47)
and '
[_ p;:fi),kVJgi)l'k _ k;ir(i),k (k;:fi).k+l - k;k.;_(i),k_l):] .
2(AY) Pr(AY)? 4Pr(AY)? jt1, k-1
_;_ [pJ*:i)kU](-l:il;c + 2k;k+(i),k ] (41) [P;;(i),kV;i)l,k _ k;ilx),k
AX Pr(AY):] i+bk 2(AY) Pr(AY)?
_ (k;kir(i),kﬂ —k]fk-ifi),k—l) (1+1)
4Pr(AY)? FE TS
Ua+n  — ji+1) 2 p*) JU+DT;
= — 2,4 %) J+1,k+1 j+1, k-1 JtL kTt k Js

Equation (3—47)>written for k=0(1)n now constitutes (n+ 1) linear equations
in the (n+1) unknowns U](.fjll”k, since those quantities with superscript (/) are
considered known from the previous iteration. Equation (3—48) represents a
similar set of equations in T{!%") . For each iteration the procedure is to solve the’
set of equations represented by equation (3—47) for .Uﬁ,’:]”k, then the set repre-
sented by equation (3—48) for T;.ﬂjl"’,\_, and finally the equation of state (3—44) for
p;i*y) to yield

®U+1) = -
Pisik — Taen (3-49)
Jti,k

The continuity equation (3-42) may now be solved for ¥{!4!), giving
¥+ *(1+1) * ‘
pu+n :_pl_“’_k_ (1) ——— MU(_I+1) __Pik ok (3-50)

J+1,k+1 *(1+1) itk AX *(1+1) j+1,k *(141)
Piv1,k+1 Pivy kb1 Pii1 k1

459-174 O - 73 - 6
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Finally, equations (3—45) and (3 —46) are used to give pii*) and EFUHD.

All quantities now have been determined for the (l+ Dth 1terat10n and the
process can be repeated to find values for the (I+2)th iteration. This should
continue until the values of each quantity obtained on a given iteration agree to

. within some specified accuracy with the values for that quantity obtamed on the

preceding iteration.

The set of linear equatlons in U{'+Y), represented by equation (3— 47) may

be written in matrix form as

2 *(D
B(l) - Hivt o s d)(l)
e (AY)2 j+1,0 0
1 { 1
ar g ap o, | et
i i ! .
oo B Uy, | |
o, BY, 00 |0 (e,
! ! 1 n_
ald  BY U}fll,)n d’('k)
where
*(1 ! *(1 *(1 R
ah=— pl“‘(‘)"VJ(“‘)l k 'U‘+(1)k p‘j+(l,k+1 /"'j+(1),k4
2(4Y) (AY)? 4(AY)?
*({). 3 *({
B”) p]+l k 'gl,k 2"" +(1)[_
k AX (AY)?2
p*O ' *(2) () )
Q(l)_ Pj1, "V(“ k_ M5enk _ K1, ke i+1, k—1
2(AY) (AY)? 4(AY)?
*(1)
()= p_]+l k +1 IcUJ k
Z AX

QO (us/up)

(3-51)

and the set of linear equations represented by (3—48) for T].(J’r’;”k may be written

in matrix form as
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—2KD '
.OL(D — Ji0 Ta+1) Y
Pr(AY)? j+1,0 )
a® B T, prw
Ky 4 "W '
w0 g o | e [
(D '« ' L '
an—l 'Bn(—)l ‘Qns-)l Tj(+-‘;})n—l ¢n(—q
a0 BTG 1 18,0 — Q0 ()
3-52
where ( )
' gD *(1) 0
W=Dt iVt e _ Giik +1, k+1 41, k-1
k 2(AY) Pr(AY)? 4Pr(AY)?
*(1) 1+1) *(0)
(D= p]+l k +-*i k 2kj+1 k
k AX Pr(AY)?
*(l) . *(1) *(l) *(
Qo= j+1 kV(+l k_ k]+1 k _k]+l k+1 k_)+1)k 1
: 2(AY) Pr(AY)? 4Pr(AY)?
- *(1) (I+1) (1+1) (I+1)
O UES _f_+_"‘U++‘—"T’+ (y— 1)M2 *(1) [ UJ'++1,k+1 UH] k- 1] 2
d AX Hivt k 2(AY) ;

The matrix of coefficients in both equations (3-51) and (3-52) is tridiagonal and
the method of appendix A can be used to solve the sets of equations.

If desired, overrelaxation or underrelaxation can be applied to any or all
of the equations given here. The method is discussed in section 3.1.1. Only ex-
perience and experimental calculations will indicate whether anything can be
gained by going to the relaxation procedure. '

3.1.3.2  Implicit representation valid only for large secondary velocities. — As
in the incompressible case, if the secondary velocity is large, the coefficients of
.the convective terms in the momentum and energy equations can be evaluated
at the X-position corresponding to j (i.e., at a position where they are known from
the solution at the preceding step). This makes it possible to obtain linear dif-
ference equations if the manner in which the properties enter the equations is
chosen carefully. Linear difference equations are, of course, most desirable since
each set of linear algebraic equations need be solved only once at each axial
station. This is in contrast to the many solutions necessary at each step in the
iterative method which is required for nonlinear difference equations.
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The linear difference representations of equations (3-34) to (3—39), valid
~ only for high secondary velocities, are ‘

UI kT Ug k U"+1 k+1_" ‘+1,k—l]
+1, J > J
[Uf FTTUAX i 2(aY)

% Uj+1,k+1"2Uj+1,k+Uj+l,k—1
=Mk

(AY)?

Eﬁkﬂ_l-‘f,k-x][l]jﬂ,kﬂ— j+1,k—1] _
+ M5 ~ 2@ | ¢

BL+l,kUJ+1'k pj,kUJ-k pj+!,k+lVJ+lsk+1 pj+l,kVJ+1k

AX —+ AY —=0" (3-54)
. T; , '—T',k T; Lk -T; Lk —
Pﬁ;.-l:Uj,k JHAX L2t Vik JH_;I(AY)JH I:I
_1 ¥ Tivi k1= 2T 501, 6+ Tiir i1
Pr| %ok . (AY)?

+[’5ﬁk+1 kF iy ] [Tj+1,'k+1 —Tie1, k-1
2(4Y) 2(AY)

+(‘y_'l)M;_,}“j*,k[Upl,kH_Uj+1,k-1:IL— (3_55)

2(AY)

o1 ‘

Pivik =T 0 - (3-56)
Wi o= (Thar. i) @5
kJ*H ke (TJ+1 A)(’ (3—58)

Equations (3—53) and (3— 55) may be rewritten in more useful forms. Equation
(3—53) becomes

} ._P;k.ij,k_ #?ﬁk +“g?{ikf1_#!?lik—l]U. o~
1 2(AY) (AY)? 4(AY)? AL

pixUin  2uf,
[0 e | O

P, Vi E_ L"_)*A _ﬂjﬂik+|‘_l~"ﬁk-1 ) _Pik,kU.g,k _
+[ 2(AY)  (AY)? 4@z U=y (8-59)

and equation (3-55) becomes
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[—" p;:ij’k'_ k)*k +k;;‘k,k+1_k_;k,k_1} T, p:kUj,k
2(AY)  Pr(AY)? 4Pr(AY)? Il k=1 AX
+ 2k.;|:’\ ] T - [p;:ij’k _ k;:k _ k;jk-{\-l B kjfk—l] T )
C U Pr(AY):] TR oAy Pr(av): aPr(aY): | TTTRET
e Uj+l,k+l —- p;kk Uj,ij,k

= (y=Dmzut, ( (3-60)

j+1,k—l)
2(AY) AX

The set of equations corresponding to equation V-‘(3—59) written for k=0(1)n
must be solved first at each axial position for Uj,1, . This set may be written in
matrix form as

—2u.*
Bo (A};,)g Uj+l,0 ¢0
an B Q, Ujsr,s oM
‘O ,32 Qz Uj+1,2 (f)z.
_ x| =|_
2 27881 Bn—l Qo Un_, l Gno1
Ve
«y Bn Un ¢n—0nu3/u1p .
3-61)
where
A N _=piVik B R T B
' "7 2(aY)  (AY): 4(AY)®
B.:p;kU""‘ 2u] |
’ AX ' (AY)?
O =’ikV””"_ M _Esz+i_ﬁ2k—l
“TT2(8Y) T AY)RT T 4(AY)
p¥ U?
— ik , k
bk ——LAX

The matrix of coefficients in (3—61) is tridiagonal and the method of appendix A

may be applied.

Next, the set of linear equations corresponding to equation (3—60) is solved
for Tj41, k. The set can be written in matrix form as
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—2kfo b

Ao prav)y URR) o
all Bl' Q; Tj+1,1 ¢>1’
o B Te | |6
. x| _ =|__
C!y’._l Br'l—l ;1—1 Ti+1,n—1 d):l—j
a  Bn Tis1,n b — Qe
(3-62)
where
I_A—p;:kr/;',k_ k;:k kjfk+l—k;:k—l

ETNG) TPr(AY)E | 4Pr(AY):

Bé:pﬁ"Ui”q 25,
AX ' Pr(AY)

* * * 1k
_PiiVie Kk L

¥T 2(AY) Pr(AY):  4Pr(AY):

* ’ '
_ P kUi, kT x Ujsr, k1= Ujsr, k1 ] 2

g =i g, | o

The matrix of coefficients in equation (3—62) is also tridiagonal.
Equation (3-56) can now be used to find p},, ,, and then the continuity

equation (3—54) is used to find ¥4, «. Solving equation (3—54) for Vj;1, 141 gives

Pl x AY P * '
VJ’+lv,k+1=( *JH”‘ )I/j+l,k+A_X‘[(—L)l/j,k_< ijﬂ’k )Uj+1,k] (3"63)

*
Pi+1, k41 Pis1, ke P, k+1

Equation (3—-63) can be applied in a stepwise manner starting at 4 =0 and moving
in the direction of increasing k. Finally the property relations (3—57) and-(3—58)
‘are used to obtain iy, cand kX . '

The solution is now complete at the present axial station and a step AX may
be taken and the process repeated. The truncation error of the difference equations -
is of @ (AX) and @ (AY?) for momentum and energy and of @ (AX) and 7 (AY) for

continuity. The equations are stable for all U = 0. .
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3.2 AXISYMMETRIC JETS

The problem configuration and coordinate system for the axisymmetric jet
flows to be considered are shown in figure 3—3. While there is considerable simi-
larity between the formulations for the plane and axisymmetric cases, variations
in difference representations and techniques due to the different form of the basic
equations in the two cases would appear to make a complete presentation of the
axisymmetric formulation worthwhile.

3.2.1 Incompressible Constant Property Flow-* Velocity Solution

The incompressible equations of motion for the axisymmetric jet are

du, du\_p o 6_u) _
p(’”az+var) r6r<rar (38-64)
du 1o(m)_, (3-65)
dz r Or

Ug to °°T
ug
up a
~2=0 7
~
Us
ug to l

FIGURE 3-3.— Axisymmetric jet configuration showing velocity profile at z=0.
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The boundary conditions to be considered here are

u(r,0)=up r<a (see appendix F)
u(r, 0)=u, r>a
ule, 2) = us | | (3-66)

du .
ar (09 z) _0

v . ) /

v(0, z) =0

" The basic equations may be made dimensionless by the following choice of
dimensionless variables:

=t e
2 .
Up - pa (3-67)
_pva _I
4 R==

~ Equations (3-64) and (3-65) in dimensionless form are

U oU 19U, 92U . o _
UVaz TV sR"Ror Tor® ' (3-68)

W, La0R)_, [

aZ R OR
The boundary conditions in dimensionless form are
UR,0) =1 R<1
U(R,0)= g-; R>1
“U(OO, Z)=%:; ‘ (3-70)
% (0,2)=0

V(,z2) =0

3.2.1.1 Highly implicit difference representation valid for small secondafy
velocities. —Equation (3-68) must now be  placed in finite difference form.- The
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R
k=n+l
k=
n 1
AR
L LAt — ———
k=2
k=1
k=0 —— 74
12 gl '

FIGURE 3—4.—Finite difference grid for axisymmetric jet.

finite difference grid is shown in figure 3—4. As in the two-dimensional case, a
nonlinear finite difference form of the momentum equation is necessary in order
that the representation be consistent for zero or small secondary velocities. The
finite difference form chosen for equation (3—68) is

U U U i —_
. Lk~ Yk V. jt1, ket — Ujer, k-1
UJ+1,k +

AZ Jj+1,k 2(AR)
1 Uj+] ;,-+1‘Uj:§-1 k~1 Uj+1 k+1_‘2Uj+1,k+Uj+l,k—'l

=— Jitn, .21} : 3-71
Ri  2(3R) + (AR)* B

Equation (3-71) applies for all £ > 0. For k=0, a specml form of the equation
must be obtained by lettmg R — 0 in equation (3—68). Equation (3-68) wuewn
becomes

= lim
R=0 R—0

Uﬁ

(_l aU) R
ROR/) " aR2| o (3-72)
When L’Hospital’s rule is apphed to the first term on the right side, equation (3-72)
becomes

U
=2 OR2| g=¢

(3-73)

Equation (3-73) may be written in difference form as
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Ujr1,0— Uj,0=4 [Uj+l,1 - Uj+1,0]
AZ (AR)?

Ujst,o (3-74)

Incorporated in equation (3-74) is the symmétry condition
' Uj+1,-1 = Uj+1,—1
Continuity (eq. (3—69))' may be written in finite difference form as

Uns=Upsy L (Vi eriRies = Vi, ) o (3-75)

' AZ R AR

A special form of continuity is also necessary for k=0. This- may be found by
_ letting R — 0 in equation (3—-69). This gives

o

ol
3Z |r-o IR R=0——0 (3_76.)
The finite. difference form used for (3—76) is
U. —U, V. » .
j+1,0 i, 0 j+1,1 _
A7 +2 ( AR ) 0o . (3-77)

Equation (3—75) then applies for £ > 0 and equation (3-77) for k&=0.

The method of solution for equations (3—71) and (3—74) is very similar to that
used for the plane jet in section 3.1.1. The superscript (/) indicates values obtained
on the (/)th iteration while those with superscript (/+ 1) are the ones obtained on
_ the ({+ Ith iteration. Equation (3—71), valid for £ > 0, may be written in the form

(€3] . )
[__V.Hl,k_'_ 1 1 }U('I+l) +[l_fu+ 2 ]U““)

2(AR) " 2R, (AR) (AR)Z ] i+1.k-1 AZ " (AR)? | Gtk
+|: V.(i:-)l,k _ 1 - 1 ] U('1+1) ‘=U(i,+)1,k UJ"A“ (3"78)
2(AR) 2Ri(AR) (AR)z | i+t k+1 AZ
Equation (3—74), valid for k= 0, may be written as
usd, 4 —4 _U(‘Ql,ou',o :
vanarar K Frvor LS e vanl )

Equation (3-78) written for k=1(1)n along.with equation (3-79) for k= 0-now"
constitute (n+1) equations in the (n+1) unknowns Uj(fjll’)k. At each iteration,
these may be considered as linear since all values with superseript (/) are known

0
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from the preceding iteration. The set of linear equations

written in matrix form as

4
Y~k v
gy o v,
«Ww gy s
al B, QD ‘Cﬁ”nn
ar(l,) B 1(1,) l]_)(ri ! )n
"where
o Vi 11
k 2(AR) 2Ri(AR) (AR)?
(1)_% k>0 .
B'="az TR *70
Q(H:K(ZQ""'— LI
 2(AR) 2R.(AR) (AR)?
d)“) M
and
U
'35)1)=_.L+_"_(l+ (k=0)

AZ (AR)?

81

which results may be

¢4
d)(]l)
¢él)

U}
d)n 1

S0 — Oy

(3-80)

The matrix of coefficients in equation (3—80) is tridiagonal, and the method of
appendix A may be used to solve for the values U(’“) at each iteration. In order
to complete the iteration, the values of V"“’. must be found from continuity.

From equatlon (3—~77) for k=0

pu+n =_ (Uj.0—

k1,1

Ud+n )

j+1,0

(3-81)
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and from equation (3—75) for £ >0

Vi+1) = p+1) <

j+i,k+1 j+i,k

. ) SDR (U““’ —Uj.x) (3-82)
Riei ) AZ)Ryt 710k |

The values of V““) can be found in a stepwise manner working outward from
k=0. _

The iteration is now complete and the values just determined now assume a
superscript ({) and the process is repeated. This is continued until the values of
~ Un, and U, as well as F{14Y, and V{0, | agree to within some predetermined
accuracy. Then another step AZ downstream may be taken and the iterative
procedure again employed. '

3.2.1.2 Implicit difference representation valid only for large secondary
velocities.— As in the plane case, if thé secondary velocity is sufficiently high,
a linear representation of the difference equation for momentum may be used.
This representation of equation (3—68) is, for k¥ >0,

Us o UZ'*""_U!""+V, . Uiii,ior1=Ujer ka
J. Vi,

AZ 2(AR)
1 Uirr ko1 =Ujar, k- .Uj+1,k+1_2Uj4.-1,k+Uj+l,k—1 _
TR 28R T (2R (3-83)
and the ﬁnite difference form of equation (3—-73) is, fork = 0,
Uj,on-H’ZZ_ Uj’?=4‘Uj+l’(lA;z)(£j+l’o . . (3—84-)
Equations (3-83) and (3—84) may be written in more useful forms as
_ Vi 1 1T . ‘ U; 2 ] .
[ 2(AR)+ 2R (AR) (AR)Z] Ujir,6-1 +[ + (AR)? U,+1,l,.
Vj,[.- 1 1 . . _ U_]’ Kk -
+[2(AR) SR+ (AR) (AR)Z] Uj+1,k+l ="A7 (3-85)
and
¢ . . U)
U; 4 4 0
[A—%O-FWJ Uj+1,()+[—m] Uj+],1 —AJ_Z— (3—86)

Equation (3-85) written for k=1(1)n along with equation (3-86) for k=0 con-
stitutes a complete set of linear equations in the values of Uj, , and may be -
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written in matrix form as

4
Bo ~{aR): 1 Ujsryo
@ B 0 Ujei 1
az B: Ujir,2
X
Qp—y Bn—] ()n—l Uj+|, n—1
Ay ‘ :B" Uj+l,n
where
Vi k 1 1
= b —
%="3(AR) T 2R:(AR) (AR)
Uj. « 2 .
— LR
Bx AZ+(AR)2 (£>0)
Q‘ = Kbk —_ l _ 1
*I"2(AR) 2R./(AR) (AR):
Se=U: JAZ
and
U' 0 4- -
=Yjio —
Fo=3z T aR) (k=0)

83
o
(o}
o2
d) n-1
¢n - Q,,us/u,,
(3-87)

The matrix equation (3—87) for Ujs1, x may be solved by using the method of
appendix A. This set is solved only once for each axial position. After the values
of Ujsy, » have been determined for a given value of Z, equations (3—77) for k=0 and

(3—75) for k > 0 may be solved for the transverse velocities to give

Vi

and

AR

+1,1=m(

Uj,o"Uj+1,0)

(3-88)
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Rk (AR)RA
Rk+,> (AZ)Ri Wi, x=U) (3-89)

Vier, k1= Vj+1,k (
Another step AZ downstream may now be taken and the procedure repeated.

3.2.2 Incompressible Constant Property Flow — Temperature Solution

Under the assumption of constant properties and neglecting viscous dissipa-
tion, the energy equation for the axisymmetric jetis given by

o, o\_ (o, 1ot .
pcp(u_a—+v5)_k(8r2+rar) (3-90)

The boundary conditions are

t(r,0)=t, (rsa)
t(r, 0)‘=t; (r>a)
1(o,z2)=t, . . C (391

o B
o 0,2)=0

Equation (3-90) may be made dimensionless by the following choice of
_dimensionless variables:

T= t_ts u
tp_ts ILp
z
=E y =L (3-92)
pupa M
R=Z
a

If these variables are inserted into equations (3—90) and (3—91) the problem may
" be restated in dimensionless terms as

T ,9T_ 1 (92T 1 3T :
UaztV R Pr(»aR2+ R aR) | (3-93)

subject to
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T(R,0)=1 (R<1)

T(R, 0)=0 (R>1)

T(»,Z)=0 (3-94)
aT
57 (0. 2)=0

As in the plane case, the difference representation for the energy equation
will correspond to the nonlinear representation of the momentum equation, which
in this case is equation (3—71). If the form (3—83) can be used for the momentum
equation, the coefficients of the convective terms in the next equation should be
replaced by U;, x and Vj &. :

The finite difference form of (3—93) chosen is

T; c—T; Tiq, —T1, 8-
Ujer, k %M+V}+l,k Ll k;(AR;H kol

_1 T_}il,k+1—2Tj+l,k+rTj+1,k—1 A T ke — j+1,k—l] _
_Pr[ (AR)® oy 2(AR) (38-95)

This equation is valid for # > 0 and may more conveniently be written as

td

_y 1 .
[ Vierk : ]Tj+1,k—1+[U”+l'k+ 2 ]Tj+1,k

2(AR) _ Pr(AR): T 2(Pr)Rx(AR) AZ T Pr(AR):
Vis 11 O UpaTi
+ [2EAR) Pr(AR)? 2(Pr)Rk(AR)] Tier ke ’ AZ (3-96)

For k=0 a special form is necessary. Taking the limit of equation (3-93) as R —> 0

gives .
oT 2 92T
- == — —97
UaZ R=0 Pr 6R2 R=0 (3 )
This may be written in finite difference form as
Tivv,o—Tj0 _ 4 Tiv1,1 —Tji1,0
Uj+l,0 AZ Pr (AR)2 (3_98)
Equation (3-98) incorporates the symmetry condition Tjiq,, =T+, -1 This A

may be rearranged in a more useful form as
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U, 4 —4 Ussi,o;
|57+ g | Tooo* [ Fotaeys] Do = 69

Equatlon (3-99) is valid for £ = 0.

Equation (3~ 99) along with (3—96) written for k—- 1(1)n now constitutes a set’
.of n+1 linear equations in T;,,, ; and may be written in matrix form as

4 . ,
[ — T‘
o ~Pr(aRry: 1.0 %
af oy Qf Ty | | &4
ar B, 1, > Tjs1,2 - b,
a;l—l Br:—l Q?’l—l Ti+1, 01 . d),’,_]
aT’l Bt’l 7}+1J" ¢;l
(3-100)
~ where
ar=_ Vj+l,k__ 1 + ’ 1 ‘
K 2(AR) Pr(AR)2 2(Pr)Ri(AR)
Uj+1k 2
= : >0
| B="az TPraR): (k> 0)
_Q/_V}+lk 1 1
¥ 2(AR) Pr(AR)Z 2(Pr)R«(AR)
¢,:=———-U"*ZQT“'
and
,_Uj+l,0A 4‘ —
Be="az T Pr(aR)? (k=0)

The matrix of coefficients in (3—100) is tridiagonal and the method of appendix
A may be applied. A procedure of increasing the size of the field as the jet expands
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while keeping the total number of points reasonably small should be employed.
Details are given in section 2.1.1. It is, of course, most desirable to employ the
same grid for the velocity and temperature solutions.

The finite difference representation is universally stable for all mesh sizes.
The truncation error of the energy equation is of @ (AR2?) and & (AZ).

1 3.2.3 Compressible Flow — Velocity and Temperature Solutions

In the compressible flow situation the basic equations are coupled. For this
case they are .

dw, du\_1d ( du\. _
p(uaz-}—var)—ra.r(ﬁ"ar) - (3 lol)";.
Apu) Lalpro) _ (3-102)
0z . r a_r
' ot oty 19 at du\* ' ‘
; C - — === iy pund : —
| Pp<uaz+var)r r6r<kr6r>+#(6r) (3-103)
pt = constant ~(3-104)
= pu(t) - (3-105) .
k= k(t) (3-106)
subject to the boundary conditions
u(r, 0) = u, (r < a) (see appendix F)
u(r, 0) = u, (r>a)
u(°°, Z) = U
du
ar 0,2) =0 :
v(0,2) =0 (3-107)
t(r,0) =1¢, - (r=sa)
t(r,0) =1, (r>a)
t(°°9 Z) =
Jat o
ar (0,2) =0 \‘

The basic equations may be put in dimensionless form by the following
choice of dimensionless variables: '

459-174 0 - 73 - 7
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U=ulu, 7z ="t
Pplipa®
Pprva -
V=" R=rla (3-108)
T = tity k* = klk), .
m* = plpp
P* = plpp

As in the plane case, the primary conditions at the‘jet mouth have been chosen
as reference values. Inserting the dimensionless variables (3—108) into equations
(3—101) to (3-106) gives

'O*(UZ_[Z]+ VZ—E - % % ("*R f,—g) (3-109)
A
(U%Jr Vg;) Pr}R) R (k*R >+ (V—l)Mf,M* (%)2 (3911i)
prr=1 | (3-112)
pr= (1) (3-113)
pomy (3-114)
where |
u
=
and
(),

The usual power law relatlonshxps have been assumed for equations (3-113) and
(3-114).
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The transformed boundary conditions in dimensionless form are

U(R,0)=1 (R<1)
U(R,0)=2 (