NASA TM X-2846

A COMPUTER PROGRAM

FOR AUTOMATED FLUTTER SOLUTION

 AND MATCHED POINT DETERMINATIONby Kumar G. Bhatia
Langley Research Center
Hampton, Va. 23665

MEMORANDUM

[^0]
CONTENTS

Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 2
GENERAL DESCRIPTION OF THE COMPUTER PROGRAM 4
Equations Required To Implement the Procedure 5
Organization of Program MATCH 7
INPUT AND OUTPUT DESCRIPTION 11
Input 11
Output 15
CONCLUDING REMARKS 17
APPENDIX A - SAMPLE RUN OF PROGRAM MATCH 18
APPENDIX B - FORTRAN PROGRAM LISTING 31
APPENDIX C - USAGE DESCRIPTION OF LANGLEY LIBRARY SUBROUTINES USED BY PROGRAM MATCH 44
REFERENCES 54

A COMPUTER PROGRAM FOR AUTOMATED FLUTTER

SOLUTION AND MATCHED-POINT DETERMINATION

By Kumar G. Bhatia*
Langley Research Center

SUMMARY

The use of a digital computer program (MATCH) for automated determination of the flutter velocity and the matched-point flutter density is described. The program is based on the use of the modified Laguerre iteration formula to converge to a flutter crossing or a matched-point density.

A general description of the computer program is included and the purpose of all subroutines used is stated. The input required by the program and various input options are detailed, and the output description is presented. The program can solve flutter equations formulated with up to 12 vibration modes and obtain flutter solutions for up to 10 air densities. The program usage is illustrated by a sample run, and the FORTRAN program listing is included.

INTRODUCTION

An automated method for determining the flutter velocity and the matched-point flutter density is described in reference 1 which contains the theoretical development of the method and outlines the computational steps necessary to implement the method on a digital computer. However, reference 1 does not contain detailed information about the computer program MATCH that was developed to implement the method. The purpose of this report is to serve as a user's manual for this computer program. The basic equations used in the computer program are repeated from reference 1, and the general program organization is described. The purpose of all the subroutines used is stated, and flow diagrams for the two main subprograms are included. The program input and

[^1]output are described, and a sample run of the program is included in appendix A. The FORTRAN program listing and the Langley library subprograms used by MATCH are described in appendixes B and C, respectively.

The present report relies on reference 1, but this report contains complete information regarding the use of the computer program. It is, however, recommended that reference 1 be used in conjunction with this report for a complete understanding of the theoretical basis of the procedure implemented.

SYMBOLS

[A] nondimensional aerodynamic matrix (see eq. (4))
$[\mathrm{AI}]=4 \pi(\mathrm{BR})^{3}\left(\frac{\mathrm{SS}}{\overline{\mathrm{BR}})^{2}\left(\frac{1}{\mathrm{k}}\right)^{2}[\mathrm{~A}]}\right.$
$[\mathrm{AF}]=\rho[\mathrm{AI}]$
$\mathrm{A}_{\mathrm{S}} \quad$ airspeed

BR reference chord length
$F=V_{f}-A_{S}$
$\{G\} \quad$ vector of damping functions (see eq. (5))
$\{G 1\} \quad$ first partial derivative of $\{G\}$ with respect to $\frac{1}{k}$
$\{G 2\}$ second partial derivative of $\{G\}$ with respect to $\frac{1}{k}$
[I] identity matrix

IOK current value of $\frac{1}{\mathrm{k}}$ (see eq. (6))
$\mathrm{k} \quad$ reduced frequency
\{RFI\} vector of predicted values of $\frac{1}{\mathrm{k}}$ corresponding to flutter crossings [SK] symmetric structural stiffness matrix
[SM] symmetric structural inertia matrix

SS semispan
$\left\{\mathrm{U}_{\mathrm{m}}\right\} \quad$ eigenvector (see eq. (1))

V velocity
$V_{f} \quad$ lowest flutter velocity for an air density
$\left\{\mathrm{V}_{\mathrm{m}}\right\} \quad$ associated eigenvector (see eq. (2))
$\mathrm{v}_{\mathbf{f}} \quad$ flutter velocity
$x, y \quad$ Cartesian coordinates
$\mu \quad$ eigenvalue (see eqs. (1) and (2))
$\xi=\sqrt{\rho_{\mathrm{o}}} / \rho$
$\rho \quad$ air density
$\rho_{0} \quad$ air density at sea level
$\omega \quad$ harmonic frequency

Superscripts:

R,I denote real and imaginary parts of a complex number, respectively

Subscript:

m
denotes the mode number

Subscripts following a parenthesis denote derivatives.

GENERAL DESCRIPTION OF THE COMPUTER PROGRAM

The basic equations used to implement the procedure for the flutter solution and determination of the matched-point flutter condition and the general organization of the computer program MATCH are described in this section. A matched-point flutter condition is obtained when the flutter velocity, air density, and Mach number are consistent for standard atmospheric conditions. The aerodynamic matrices are generated external to the present program and are required as input to MATCH. These matrices are calculated for a given structural configuration and a fixed Mach number. The reduced frequency range of interest is selected, and the aerodynamic matrices are evaluated at discrete values of the reduced frequency within the selected range. The Mach number is held fixed in the program, and therefore the same set of aerodynamic matrices is used.

The program can be used to obtain a flutter solution at one or more air densities or to determine a matched-point density. For a flutter solution at a specified air density, an initial value of the inverse of the reduced frequency is input to start the iteration procedure, and the program will automatically determine the velocities at which the damping becomes zero, if any, within the range of reduced frequency for which the aerodynamic matrices have been input. If a matched-point density is desired, an initial air density and an inverse of the reduced frequency are input into the program. The program determines the lowest flutter velocity for the input density. This flutter velocity will, in general, not be the same as the airspeed corresponding to the input density and the fixed Mach number. A new air density is predicted to yield the matched-point flutter condition, and the lowest flutter velocity for the predicted air density is determined for comparison with the airspeed (at the predicted density). This procedure is repeated until an air density is determined where the lowest flutter velocity is within a specified tolerance of the airspeed.

The program is dimensioned for a maximum of 12 modes and 10 air densities, that is, the structural and aerodynamic matrices can be up to (12×12), and flutter solutions for up to 10 air densities may be obtained during one run. The program does not provide a rigid-body mode capability, but it is possible to extend the program to include rigid-body modes. The program requires a field length of about 46000 octal storage locations plus the field length required by the loader.

Equations Required To Implement the Procedure

The basic equations to implement the flutter solution procedure and to determine the matched-point flutter density are stated in their final form. The derivation of these equations is given in reference 1 and is not repeated here.

The characteristic flutter equation is expressed as an eigenvalue problem in matrix form by

$$
\begin{equation*}
\left[[\mathrm{SK}]^{-1}[[\mathrm{SM}]+[\mathrm{AF}]]-\mu_{\mathrm{m}}[\mathrm{I}]\right]\left\{\mathrm{U}_{\mathrm{m}}\right\}=\{0\} \quad(\mathrm{m}=1, . . ., \mathrm{NM}) \tag{1}
\end{equation*}
$$

where μ_{m} and $\left\{U_{m}\right\}$ are the complex eigenvalues and eigenvectors, respectively. The associated eigenvectors $\left\{\mathrm{V}_{\mathrm{m}}\right\}$ are determined from the following equation:

$$
\begin{equation*}
\left[[\mathrm{SK}]^{-1}\left[[\mathrm{SM}]+[\mathrm{AF}]^{\mathrm{T}}\right]-\mu_{\mathrm{m}}[\mathrm{r}\rceil\right]\left\{\mathrm{V}_{\mathrm{m}}\right\}=\{0\} \quad(\mathrm{m}=1, \ldots ., \mathrm{NM}) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& {[\mathrm{AF}]=\rho[\mathrm{AI}]} \tag{3a}\\
& {[\mathrm{AI}]=4 \pi(\mathrm{BR})^{3}\left(\frac{\mathrm{SS}}{\mathrm{BR}}\right)^{2}\left(\frac{1}{\mathrm{k}}\right)^{2}[\mathrm{~A}]} \tag{3b}
\end{align*}
$$

and the elements of [A] are nondimensional. Each element $A_{i j}$ of matrix $[A]$ is defined by

$$
\begin{equation*}
A_{i j}=\frac{1}{8 \pi} \iint_{S} h_{i}(x, y) \frac{\Delta \mathrm{p}_{\mathrm{j}}(\mathrm{x}, \mathrm{y})}{(\mathrm{BR})\left(\frac{1}{2} \rho \mathrm{~V}^{2}\right)} \frac{\mathrm{dx}}{(\mathrm{SS} / \mathrm{BR})} \frac{\mathrm{dy}}{(\mathrm{SS} / \mathrm{BR})} \tag{4}
\end{equation*}
$$

where $h_{i}(x, y)$ is the displacement in the ith vibration mode, and $\Delta p_{j}(x, y)$ is the aerodynamic pressure over the lifting surface S induced by the downwash associated with simple harmonic motion in the jth vibration mode.

A flutter solution is obtained (for an assumed density ρ) when the imaginary part of one of the eigenvalues of equation (1) (or eq. (2)) is zero. A damping function $G(M)$ is defined for each eignevalue μ_{m} and is given by

$$
\begin{equation*}
\mathrm{G}(\mathrm{M})=\frac{\mu_{\mathrm{m}}^{\mathrm{I}}}{\mu_{\mathrm{m}}^{\mathrm{R}}} \quad(\mathrm{~m}=1, \ldots, \mathrm{NM} ; M=1, \ldots, \mathrm{NM}) \tag{5}
\end{equation*}
$$

where

$$
\mu_{\mathrm{m}}=\mu_{\mathrm{m}}^{\mathrm{R}}+\sqrt{-1} \mu_{\mathrm{m}}^{\mathrm{I}}
$$

Thus, a flutter solution is obtained when one of the damping functions is zero and the corresponding frequency is real $\left(\mu_{m}^{R}>0\right)$. Each $G(M)$ is regarded as a function of the inverse of reduced frequency $\frac{1}{\mathrm{k}}$.

A modified Laguerre iteration scheme is used to predict a value of $\frac{1}{\mathrm{k}}$ for which the damping function would be zero and the slope of the curve for damping as a function of $\frac{1}{\mathrm{k}}$ is positive. The modified Laguerre formula used to predict a zero of $G(M)$ is

$$
\begin{equation*}
\mathrm{RFI}(\mathrm{M})=\mathrm{IOK}-\frac{\mathrm{GM}}{\sqrt{[\mathrm{G} 1(\mathrm{M})]^{2}-[\mathrm{G}(\mathrm{M})][\mathrm{G} 2(\mathrm{M})]}} \tag{6}
\end{equation*}
$$

where IOK is the current value of $\frac{1}{\mathrm{k}}$ and $\operatorname{RFI}(\mathrm{M})$ is the predicted value of $\frac{1}{\mathrm{k}}$ corresponding to $G(M)=0$. The first derivative ($G 1(M)$) and the second derivative $(G 2(M)$) of $G(M)$ with respect to $\frac{1}{\mathrm{k}}$ are evaluated from the following expressions:

$$
\begin{equation*}
\left.\mathrm{G} 1(\mathrm{M})=\frac{(\mu \stackrel{\mathrm{m}}{\mathrm{~m}})_{\frac{1}{\mathrm{k}}}-\mathrm{G}(\mathrm{M})(\mu \mathrm{R}}{\mathrm{m}}\right)_{\frac{1}{\mathrm{k}}}, \mu_{\mathrm{m}}^{\mathrm{R}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G} 2(\mathrm{M})=\frac{\left(\mu_{\mathrm{m}}^{\mathrm{N}}\right)_{\frac{1}{\mathrm{k}} \frac{1}{\mathrm{k}}}-\mathrm{G}(\mathrm{M})(\mu \stackrel{\mathrm{R}}{\mathrm{R}})_{\frac{1}{\mathrm{k}} \frac{1}{\mathrm{k}}}-2 \mathrm{G1}(\mathrm{M})(\mu \mathrm{R} \underset{\mathrm{~m}}{\mathrm{R}})_{\frac{1}{\mathrm{k}}}}{(\mu \mathrm{R})_{\frac{1}{\mathrm{k}}}} \tag{8}
\end{equation*}
$$

The expressions for $\left(\mu_{\mathrm{m}}\right) \frac{1}{\mathrm{k}}$ and $\left(\mu_{\mathrm{m}}\right) \frac{1}{\mathrm{k}} \frac{1}{\mathrm{k}}$ are given by equations (9) and (10) of reference 1.

The flutter solution is determined by using equations (1) to (8), and there may be several flutter crossings where one of the damping functions is zero. The flutter solution consists of the values of $\frac{1}{\mathrm{k}}$, and ω^{2} and v_{f} for the flutter mode (eigenvalue for which the damping is zero) at each crossing. The lowest flutter velocity V_{f} thus obtained will, in general, not be consistent with the airspeed A_{S} for the assumed Mach number (fixed) and the assumed air density determined from the standard atmosphere (ref. 2). An iterative scheme similar to that used for the flutter solution is used to predict an air density at which the lowest flutter velocity and the relevant airspeed will be nearly the same. A function F is defined as

$$
\begin{equation*}
F=F(\xi)=V_{f}-A_{S} \tag{9}
\end{equation*}
$$

where $\xi=\sqrt{\frac{\rho_{\mathrm{O}}}{\rho}}$, and V_{f} and A_{S} are also regarded as functions of ξ. It is apparent that a zero of F will yield a matched-point density. The predicted zero of F, that is, ξ_{p}, is determined from the Laguerre formula

$$
\begin{equation*}
\xi \mathrm{p}=\xi-\frac{2 \mathrm{~F}}{(F)_{\xi}+\operatorname{sgn}\left[(F)_{\xi}\right]\left\{\left[(F)_{\xi}\right]^{2}-2 F(F)_{\xi \xi}\right\}^{1 / 2}} \tag{10}
\end{equation*}
$$

where $(F)_{\xi}$ and $(F)_{\xi \xi}$, respectively, are evaluated by using equations (18a) to (20f) of reference 1. A flutter solution is again obtained for the air density corresponding to ξ_{p}, and the value of F is determined. If F is within some acceptable tolerance, then the iteration is terminated; if F is not within the tolerance, the whole procedure is repeated.

Organization of Program MATCH

The program MATCH is divided into the two major subprograms LEFCROS and CROSMAT. LEFCROS is the subprogram which controls the basic flutter solution capability, and CROSMAT controls the determination of the matched point. Both of these subprograms call various other subprograms, and since flutter solutions are required as a part of the matched-point search CROSMAT calls LEFCROS. Simplified flow diagrams of subprograms CROSMAT and LEFCROS are presented and the various subroutines called by these two subprograms are described subsequently in this section.

Simplified Flow Diagram of Subprogram LEFCROS

The aerodynamic matrices and their derivatives are stored in the program on a random-access file for easy retrieval during program execution. This aerodynamic information is furnished as input to the program by the user. The random-access file is generated in subprogram RANDAX which is called from subprogram LEFCROS. The required aerodynamic matrix and its first two derivatives are retrieved from the randomaccess file by calls from LEFCROS to subprogram GETAERO and entry point GETDAER. These and other subprograms called from CROSMAT and LEFCROS are briefly described.

Description

SOUND Determines the airspeed and its first two derivatives with respect to ξ between geometric altitudes of -5000 meters ($\xi=0.7964651669$) to 20000 meters $(\xi=3.711884976)$. The airspeed is expressed as a secondorder polynomial in ξ for altitudes between -5000 meters and 11100 meters, and as a constant between 11100 meters and 20000 meters. This functional representation is based on data from U.S. Standard Atmosphere, 1962 (ref. 2).

DERVDEN Evaluates the first two derivatives of the flutter velocity with respect to ξ. It also determines the first two derivatives of the reduced frequency and the flutter frequency squared with respect to ξ. It calls subprogram TMMPROD to evaluate a matrix triple product.

FOMATCH This is an entry point in LEFCROS, and is called from CROSMAT.
MATINV Langley library subroutine used for determining the inverse of the stiffness matrix when the matrix is not diagonal. (See appendix B.)

RANDAX Called only once to read nondimensional aerodynamic matrices from a disk file, convert them to appropriate dimensional form, and write them on a random access file. It uses computer-system-dependent Control Data subroutines OPENMS and WRITMS at Langley Research Center. (See appendix B.)
GETAERO Called to retrieve the aerodynamic matrices corresponding to a value of the inverse of reduced frequency from the random access file generated by subprogram RANDAX. It uses computer-system-dependent Control Data subroutine READMS. (See appendix B.)

EIGSOL Called from LEFCROS to determine the eigenvalues, eigenvectors, and associated eigenvectors by solving equations (1) and (2). It calls Langley
library subroutine EECM to solve these equations (see appendix B), and subprogram TMMPROD to evaluate triple matrix products.

GETDAER This is an entry point in GETAERO and is called from LEFCROS to retrieve the derivatives of the aerodynamic matrix from the random access file.

DERF Called from LEFCROS to evaluate the first two derivatives of the inverse of flutter frequency squared with respect to the inverse of reduced frequency. It calls subprogram TMMPROD to evaluate the matrix triple products required.

LEGROOT Called from LEFCROS to calculate the predicted values of the inverse of reduced frequency corresponding to zero damping crossings by using equation (6), and arranging the predicted values in ascending order. It calls subprogram DAMPAR to calculate damping from each eigenvalue by equation (5).

INPUT AND OUTPUT DESCRIPTION

Input

The input required by the computer program is described. There are two types of input to the program:
(1) Aerodynamic matrices through a disk file (tape 4)
(2) Namelist input

Description of tape 4. - All the aerodynamic matrices are in nondimensional form. These matrices must be generated by the user and provided as input to the program on a disk file (tape 4) in a format and arrangement that is compatible with the program read operations described. Tape 4 is rewound in the program and all information is read in binary.

The first read statement executed is

READ (4) NK, MACH, NM
where NK is the number of reduced frequencies for which aerodynamic matrices are on tape 4 (NK $\leqq 1600$), MACH is the Mach number at which the aerodynamic matrices have
been calculated, and NM is the number of modes defining the size of the aerodynamic matrices. The next 3 NK read operations are described by the following three read statements executed NK times:
$\operatorname{READ}(4) R F, X,\left(\left(A^{R}(L, M), L=1, N M\right), M=1, N M\right),\left(\left(A^{I}(L, M), L=1, N M\right), M=1, N M\right)$
$\operatorname{READ}(\dot{4})\left(\left(\mathrm{DA}^{\mathrm{R}}(\mathrm{L}, \mathrm{M}), \mathrm{L}=1, \mathrm{NM}\right), \mathrm{M}=1, \mathrm{NM}\right),\left(\left(\mathrm{DA}^{\mathrm{I}}(\mathrm{L}, \mathrm{M}), \mathrm{L}=1, \mathrm{NM}\right), \mathrm{M}=1, \mathrm{NM}\right)$
$\operatorname{READ}(4)\left(\left(\mathrm{SDA}^{\mathrm{R}}(\mathrm{L}, \mathrm{M}), \mathrm{L}=1, \mathrm{NM}\right), \mathrm{M}=1, \mathrm{NM}\right),\left(\left(\operatorname{SDA}^{\mathrm{I}}(\mathrm{L}, \mathrm{M}), \mathrm{L}=1, \mathrm{NM}\right), \mathrm{M}=1, \mathrm{NM}\right)$
where
NM number of modes, $\leqq 12$
RF reduced frequency for which the six aerodynamic matrices have been calculated
$\mathbf{X} \quad$ a dummy scalar (real), not used in the program
$A^{R} \quad$ real part of (NM $\times N M$) aerodynamic matrix defined by equation (4)
AI imaginary part of (NM $\times N M$) aerodynamic matrix defined by equation (4)
$D A^{R} \quad$ first partial derivative of A^{R} with respect to reduced frequency
$D A^{I} \quad$ first partial derivative of A^{I} with respect to reduced frequency
$S D A^{R} \quad$ second partial derivative of A^{R} with respect to reduced frequency
SDA ${ }^{I} \quad$ second partial derivative of A^{I} with respect to reduced frequency
It is required that the aerodynamic matrices be on tape 4 for increasing values of the inverse of reduced frequency $\frac{1}{\mathrm{k}}$ and at a constant increment of $\frac{1}{\mathrm{k}}$. For example, if the first value of $\frac{1}{k}$ for which the aerodynamic matrices are on tape 4 is RFIL ($\mathrm{RF}_{1}=1 / \mathrm{RFIL}$), the second value of $\frac{1}{\mathrm{k}}$ must be $\mathrm{RFI}_{2}=\mathrm{RFIL}+\operatorname{DEL}\left(\mathrm{RF}_{2}=1 / R F I_{2}\right)$, and the last value of $\frac{1}{k}$ must be RFIR $=$ RFIL $+(N K-1) D E L \quad\left(R_{N k}=1 / R F I R\right)$ where DEL is the constant increment in $\frac{1}{k}$.

Description of namelist input. - The following two namelists are read from the input file in the order presented.
(1) NAMELIST/NAMATCH/PERF, MAXMAT, MACH, ITROPO, IMATCH REFSLD, UNITL
(2) NAMELIST/NAM1/SK, SM, LSTIFF, SS, BR, NM, RFIL, RFIR, DEL, NROOT, NITMAX, ND, RHO, RFIMIN, IPRT, IOPT

The dimensional parameters in the namelist statements determine the force (for example, newtons, pounds, etc.) and length (meters, feet, etc.) units with which the program operates; the unit of time used is seconds. The user must therefore prepare the namelist input to be consistent with any desired force and length units. The definitions of the various namelist input parameters in NAMATCH are

PERF Nondimensional convergence tolerance for matched-point flutter solution. The program will terminate when $\left|1-\frac{\text { Airspeed }}{\text { Lowest flutter velocity }}\right| \times 100 \leqq 1$ 7.RF. Not required if IMATCH $=0$.

MAXMAT Maximum number of iterations permitted for the matched-point density search. Not required if $\mathrm{IMATCH}=0$.

MACH Mach number (real variable) for which the aerodynamic matrices have been calculated. Not required if $I M A T C H=0$.

ITROPO Defines the initial air density for the matched-point search if $=0$, initial density $=$ sea-level density
$=1$, initial density $=$ density at altitude of 11100 meters $=-1$, initial density $=\mathrm{RHO}(1)$ from input for namelist NAM1.
Not required if IMATCH $=0$.
IMATCH If IMATCH $=0$, flutter solutions for densities in namelist NAM1 are required. If IMATCH $\neq 0$, a matched-point flutter solution is required.
REFSLD Reference sea-level density in $\frac{\text { Force-sec }{ }^{2}}{\text { (Length) }^{4}}$ units. Not required if $\mathrm{IMATCH}=0$.
UNITL Ratio of the number of length units selected to 1 foot. Not required if the length units selected are feet.

The definitions of the various namelist input parameters in NAM1 are
Symmetric structural stiffness matrix ($\frac{\text { Force }}{\text { Length }}$ units) or symmetric structural flexibility matrix $\left(\frac{\text { Length }}{\text { Force }}\right.$ units), (NM $\left.\times \mathrm{NM}\right)$. Symmetric structural inertia matrix $\left(\frac{\text { Force-sec }}{\text { Length }}\right),(\mathrm{NM} \times \mathrm{NM})$.
LSTIFF \quad If $=0$, SK is diagonal stiffness matrix.
If $=+1$, SK is nondiagonal symmetric stiffness matrix.
If $=\mathbf{- 1}$, SK is flexibility matrix, and may or may not be diagonal.

Semispan (or reference length) used to generate the aerodynamic matrices (Length units).

Reference chord used to generate the aerodynamic matrices (Length units). Number of vibration modes used to generate aerodynamic matrices. Maximum value of NM is 12 .

Inverse of reduced frequency (nondimensional) corresponding to first value of reduced frequency for which aerodynamic matrices are on tape 4.

Inverse of reduced frequency (nondimensional) corresponding to last value of reduced frequency for which aerodynamic matrices are on tape 4.

Constant increment of the inverse of reduced frequency (nondimensional) at which the aerodynamic matrices are on tape 4 , for example, the first set of matrices are for $\frac{1}{k}=$ RFIL, the second set for $\frac{1}{k}=$ RFIL + DEL, etc.

ND Number of densities for which a flutter solution is required ($1 \leqq \mathrm{ND} \leqq 10$). If IMATCH $\neq 0$ in namelist NAMATCH, then ND should be input as 1 .
Maximum number of iterations per crossing allowed for convergence. If a crossing cannot be determined in NITMAX iteration, the execution will be terminated. Suggested value 5. One-dimensional array of input densities ($\frac{\text { Force-(Second) }{ }^{2}}{\text { (Length }^{4}}$ units) for which flutter solutions are required. If IMATCH $\neq 0$ and ITROPO $=-1$ in namelist NAMATCH, then $\mathrm{RHO}(1)$ is the initial density for the matched-point density search. If IMATCH $\neq 0$ and ITROPO $\neq-1$, no input is required for RHO.

Initial guess for inverse of reduced frequency to start search for first flutter crossing. Experience with the program indicates that the convergence from a value of RFIMIN which is higher than the inverse of reduced frequency for the (actual) first crossing is faster than that from a RFIMIN which is lower.

Determines amount of output printed by program. It is nominally set to zero within the program, and if nominal output is required, then it can be omitted
from the namelist input. This procedure will be discussed further when the program output is described.

IOPT Unused parameter, not required.

Output
The program output is described in this section. The program output consists of two categories:
(1) An output summary on a coded (BCD) disk file (tape 7) which may be routed for printing.
(2) Output file containing either a nominal printout (IPRT $=0$ specified by input) or a detailed printout (IPRT = 1 or 2).

The first category of the output is described first and is followed by the second category. The output is in all cases in units consistent with those used for the program input.

The output summary on tape 7 includes the following:
(1) Air density and the initial value of $\frac{1}{\mathrm{k}}$ for each air density at which a flutter solution is determined.
(2) Root number, flutter velocity, the inverse of reduced frequency, and the total number of iterations required for each flutter crossing determined.
(3) Iteration number, air density, square root of sea-level density/air density, lowest flufter velocity, airspeed, and $\left(1-\frac{\text { Airspeed }}{\text { Lowest flutter velocity }}\right) \times 100$ for each matched-point iteration, if matched-point density search is executed.
(4) Informative messages:
(a) "FOUND NR ROOTS, RFI FOR THE NEXT ROOT PREDICTED = X, IS BEYOND RANGE." This message is printed when the predicted inverse of reduced frequency (X) for the NRth crossing (NR NROOT) is not within the range RFIL to RFIR.
(b) 'RFI PREDICTED FOR THE NEXT ROOT = . . ., DIFFERENCE FROM RFI FOR PREVIOUS ROOT LESS THAN DEL/2.0." This message is printed to inform the user that the next flutter crossing is within DEL/2.0 of $\frac{1}{\mathrm{k}}$ for the previous flutter crossing; therefore, the next crossing is taken to be at the same value of $\frac{1}{k}$ as the previous flutter crossing.
(5) Various messages explaining abnormal termination:
(a) "MATCH-POINT ITERATION DID NOT CONVERGE IN MAXMAT ITERATIONS. "
(b) "ARGUMENT OF RADICAL IN LAGUERRE = X, ITERATION NO. = . . ., DENSITY = . . ., VEL = . . ., SPEED OF SOUND * MACH = . . ." This message is printed out when X is negative during a matched-point density search.
(c) "ARGUMENT OF RADICAL IN LAGUERRE ITERATE IS NEGATIVE FOR NM MODES." This message is printed out when a real value for predicted inverse of reduced frequency for a flutter crossing (from eq. (6)) cannot be obtained for any of the NM modes.
(d) "RFI = . . ., IS OUTSIDE THE RANGE OF VALUES." This message is printed when the initial value of the inverse of reduced frequency input in the program is outside the range RFIL to RFIR.
(e) "PROGRAM TERMINATED, COULD NOT FIND ROOT NO. NR IN NITMAX ITERATIONS. "
(f) "NUMBER OF EIGENVALUES COMPUTED M." This message is printed out from subprogram EIGSOL when during eigensolution, convergence is obtained for only $\mathrm{M}<\mathrm{NM}$ eigenvalues.

The second category of the output depends on the value for IPRT (0,1 or 2). In all cases, the printout described for tape 7 is included. The output for IPRT $=0$ is described by stating the additional output relative to printout on tape 7, output for IPRT =1 is described by stating the additional output relative to $\operatorname{IPRT}=0$, and the output for IPRT = 2 is similarly described.

For $\operatorname{IPRT}=0$, the following information is printed in addition to the information written on tape 7:
(1) Printout of the two namelists.
(2) Eigenvalues and the predicted values of the inverse of reduced frequency (RFI) in increasing order of magnitude, for flutter crossings at each iteration. RFI $=1000.0000$ indicates that a real value for the inverse of reduced frequency corresponding to a flutter crossing could not be predicted for that mode. RFI $=3000.0000$ indicates that the real part of the eigenvalue corresponding to that mode was negative.
(3) Flutter eigenvalue number, eigenvalues, correspondence of the predicted crossings (which are arranged in increasing order of magnitude) to eigenvalues (which are obtained (and printed) in the decreasing order of their absolute values from the eigensolution), root number, flutter velocity, the inverse of reduced frequency at the crossing, and the total number of iterations required for convergence for each flutter crossing determined. The number of iterations for convergence include the last iteration for the convergence check.
(4) The inverse of reduced frequency, the first and second derivatives of reduced frequency, flutter frequency squared, and flutter velocity with respect to ξ, for each match-point iteration.
(5) Predicted values for ξ and the inverse of reduced frequency for a matched-point solution for each match-point iteration.

For $\operatorname{IPRT}=1$, damping, the first and second derivatives of damping with respect to $\frac{1}{\mathrm{k}}$, argument of the square root in equation (6), and the predicted crossing are printed for each mode during every iteration for a flutter solution. If IPRT $=2$, the eigenvectors and associated eigenvectors, and the eigenvalue derivatives are printed during every iteration for a flutter solution.

CONCLUDING REMARKS

A digital computer program MATCH for automated determination of the flutter velocity and the matched-point flutter density has been described. The program was based on the use of the modified Laguerre iteration formula to converge to a flutter crossing or a matched-point density.

A general description of the computer program and the related subroutines has been included. Detailed descriptions of the output, input, and input options have been presented. The program can solve flutter equations formulated with up to 12 vibration modes and can obtain flutter solutions for up to 10 air densities. Use of the program is illustrated with a sample run and the FORTRAN listing is included.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., September 10, 1973.

APPENDIX A

SAMPLE RUN OF PROGRAM MATCH

The input and output for a sample program run are presented in this appendix in order to illustrate the application of the program. The units used in this sample run are pounds and inches; the program dictates use of second as the unit for time.

This sample run is for the all-movable control surface example of reference 1. The flutter equation is formulated with five vibration modes and the aerodynamic matrices have been calculated for a Mach number of 0.6 . A matched-point flutter solution is required, and the initial values of air density and the inverse of reduced frequency are $1.146797839 \times 10^{-7} \frac{\mathrm{lb-sec}^{2}}{\mathrm{in}^{4}}$ (sea-level density from ref. 2) and 6.5 , respectively. A detailed output is desired, and IPRT $=2$ is input. The namelist input for a sample run follows.

NAMELIST INPUT FOR SAMPLE RUN

APPENDIX A - Continued

Note that namelist NAM1 does require an input for air density since ITROPO $=-1$ in namelist NAMATCH.

The program output is in two parts: (a) summary on tape 7 and (b) output file. The output obtained from the sample run follows.
(a) Listing of tape 7

```
OENSITY = 1.146798E-07 RFIMIN = 6.5000
RDOT NUMBER L , VELOCITY = 6316.702, RFI= 10.000, NG. OF ITERATIONS REQD, = 3
ROOT NUMBER 2, VELOCITY = 29430.954, RFI = 11.350. NO. OF ITERATIONS REQO* = 1
FOUND 2 ROOTS RFI FOR THE NEXT ROOT PRECICTED = 22.8007 IS BEYONU THE RANGE
ITERATIGN ND. L DENSITY = 1. 1468E-07 SORT(SEA LEVEL UENSITY/DENSITY) = 1.OOOOE+00 
DENSITY = 7.806131E-08, RFIMIN = 13.1467
ROOT NUMBER 1, VELOCITY = 7650.904, RFI = 13.150. NO. OF ITERATIONS REQD, = I
ROOT NUMBER 2 VELOCITY = 35709.560, RFI = 13.800, NO. OF ITERATIONS REQO, = I
FOUND 2 ROOTS, RFI FOR THE NEXT ROOT PREDICTED = 27.64C3 IIS BEYOND THE RANGE
ITERATION NO. 2 DENSITY = 7.806LE-0B SORTISEA LEVEL DENSITY/OENSITYJ = 1. 212IE+OO
FLUTTER VEL = 7.6509E+03 AIR SPEED = 7.6504E+03 (VEL-AIRSPEED)*100/VEL = 0065
```

(b) Listing of output file

\$NAMATC.H

```
PFRF = 0.15+01,
MAXMAT = 3,
MACH=0.6\Xi+00,
ITROPO = -1.
IMATCH = 1,
RFFSLD = 0.1146797839F-96,
UNITL = 0.12'r+02,
```

$\$ \mathrm{CNO}$
\$NAMI

SK

SM

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
0.4049 \mathrm{~F}+01, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, \\
0.0, & 0.0, & 0.0, & 0.1016+03, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, \\
0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.625+03, & 0.0, & 0.0, & 0.0,
\end{array} \\
& \begin{array}{lllllllll}
0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.625+03, & 0.0, & 0.0, \\
0.0 & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0 & 0.0 & 0.0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { I, } \\
& \text { I, } \\
& \text { I, I + I, } \\
& =0.76315-02,0.0,0.7,0.0,0.0,0.0,0.0,0.0,0.0,0.0 \text {, } \\
& 0.0, ~ 0.0, ~ 3.0, ~ 0.4741 \mathrm{~F}-02,0.0,0.0,0.0,0.0,0.0,0.0, \\
& \begin{array}{llllllllll}
0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.249 \mathrm{~F}-02, & 0.0, & 0.0, & 0.0, \\
0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 3.0, & 0.75625-02,
\end{array} \\
& \begin{array}{llllllllll}
0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.0, & 0.75625-03, \\
0.0 .0 .0, & 0.0,
\end{array} \\
& 0.0,0.1933 \mathrm{C}-02,0.0,0.0,0.0,0.0,0.0,0.0,0.0 .0 .0, \\
& 0.0 \text {, 0. 0. } 0.0,0.0, I, I \text {, } \\
& \text { I, } \\
& \text { I, } \\
& \text { I, }
\end{aligned}
$$

LSTIFF $=1$,
$S S=0.165+02$,
$B^{D}=0.65^{\mathrm{c}}+01$,
NM $=5$,
RFIL $=0.1 E+01$,
RFIR $=0.2 F+02$,

APPENDIX A - Continued

```
DEL \(=0.5 E-01\),
NROOT \(=3\),
NITMAX \(=5\),
ND \(=1\),
RHO \(=0.1146797839 \mathrm{E}-06, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}\),
RFIMIN \(=0.65^{c}+01\),
\(I P R T=2\),
1 OPT \(=0\),
\$END
```


eigenvalues $1.711 \mathrm{E}-03$	$-1.798 \mathrm{E}-04$	$1.093 \mathrm{~F}-04$	$-1.245 \%-06$	5.5245-06	-5.6025-08	2.698E-06	-7.886E-08	9.356F-07	-6.9995-08
EIGENVECTORS									
$9.758 \mathrm{E}-01$	2.142E-01	-6.0395-02	-6.409E-02	-1.923E-02	2.3895-31	$2.736 \mathrm{~F}-02$	1.873E-01	-4.1705-03	-2.7165-03
-4.246E-02	-1.257E-02	$9.930 E-01$	-5.5615-02	1. $2 \mathrm{B4} 4 \mathrm{E}-02$	$4.600 \mathrm{E}-\mathrm{D1}$	1.566E-02	3.245F-02	1.1235-01	$-2.2015-0$?
$3.682 \mathrm{E}-03$	1.280E-03	-5.386E-02	-2.849E-04	7.4855-02	$8.0535-01$	-9.596E-02	-7.555F-01	5.776F-02	-6.003F-02
-5.892E-04	-1.564E-04	$1.050 \mathrm{E}-02$	4.330F-04	$7.344 \mathrm{E}-03$	2.737E-01	$1.199 \mathrm{~F}-01$	$6.070=-01$	-3.436F-02	$5.270 \mathrm{~F}-02$
-7.939E-04	-2.520E-04	1.145 F -02?	-2.518F-04	-7.300 c-03	-4.086E-02	5.636E-03	-6.979F-03	-3.687F-01	8.8995-01
ASSOCIATED FIGENVECTIRS									
1.432E+02	-1.554E+01	$1.012 \mathrm{~F}+02$	$1.464 E+01$	$-1.070^{c}+01$	$4.980 r+31$	1.3605+01	-6.2535+01	-1.807F+01	-8.209F+01
3.467E-01	3.427E-01	B.890E+01	$6.152 E+00$	5.3145*00	-6.2765+01	-3.2735+01	$1.0965+02$	2.869E+01	$1.188 \mathrm{~F}+02$
-1.484E-01	-2.961E-02	-5.504E+00	-6.233e-01	1.5775+01	-2.510F+02	-5.560F+01	$2.195 F+02$	$-3.578 \mathrm{~F}+01$	$-6.738 \mathrm{~F}+01$
-5.287E-01	-3.923E-02	$-8.799 F+00$	-1.207E+00	4.5785+01	-3.440F+02	1.4275+02	$-7.809 \mathrm{c}+02$	$-2.619 \mathrm{E}+01$	$-1.247 E+02$
$9.317 \mathrm{E}-03$	3. 298E-03	$1.079 \mathrm{~F}+00$	$1.430 \mathrm{~F}-01$	9.5435-01	-9.024	-8.435F+00	$1.786 \mathrm{~F}+01$	-1.740E+02	$-5.431 \mathrm{C}+0$?
DERIVATIVES OF INVERSE OF FREQ. SQUARFD, NUMBER 1 FIRST DERIVATIVE $-3.745 F-05 \quad-1.930 F-05$ SECDNO DERIVATIVE									
-4.298E-06	$5.097 \mathrm{E}-07=$	7.605E-06	$3.9195-06+$	-4.560E-07	-3.804F-074	-1.145F-05	-4.049 --06		
DERIVATIVES OF INVERSE OF FREQ. SQUARED, NUMBER 2 FIRST DERIVATIVE $1.399 E-05 \quad 1.042 \mathrm{E}-06$ SFEGND DERIVATIVE									
1.907E-06	5.044E-0T $=$	-2.841E-06	-2.116E-07+	4.6785-07	3.7759-07+	4.280F-06	$3.385 \mathrm{E}-07$		
DERIVATIVES of inverse of freq. Squaden, number 3 FIRST DERIVATIVE $4.228^{85}-07 \quad 3.084 F-08$ SECGND OERIVATIVE									
$1.0906-07$	$9.498 \mathrm{E}-07=$	-8.585E-08	-6.261E-09*	$6.5705-08$	5. $722 \mathrm{~F}-09+$	1.2915-07	$1.004 \mathrm{E-08}$		
DERIVATIVES OF INVERSE OF FREQ. SQUARED, NUMGER 4 FIRST DERIVATIVE 7. 324F-08 -2.603E-08									
-6.581E00 -	$3.576 E-09=$	-1.487E-08	5.286F-09*	-7.316E-08	-1.743E-09+	2.222F-08 -	-7.119F-09		
DERIVATIVES OF INVERSE DF FREQ. SQUARED, NUMBFR 5 FIRST OERIVATIVE -3.419F-08 -1.103F-08									
-7.834E-09	1.456t-09 =	6.943E-09	2.240E-09+	-4.328F-09	-1.049e-09+	-1.045E-08 -	-2.6475-09		
subroutine legroot									
DAMPING	FIR	St DEAIV	SECOND DER	Iv Radical	In in leguerra	ElgFnvalje	F NO. PROJ	rfo crissing	
-1.0141E-02		. $3583 \mathrm{~F}-03$	9.4621	8-04	5.0024E-05		3	$1.12845+01$	
-1.1390E-02		.0989E-02	1.9996	E-03	$1.4354 \mathrm{~F}-04$		2	$1.0901 \mathrm{~F}+01$	
-2.9233E-02		8569-03	-1.5577	E-03	3.29075-05		4	$1.4946 \mathrm{E}+01$	
-8.3760E-02		.6632 ${ }^{\text {- }}$-02	-3.0888	E-03	-4.9108E-05		5	$1.0000 F+03$	
-1.0509E-01		.3580=-02	-1.1563	-03	$6.29205-05$		1	$2.3098 \mathrm{~F}+01$	
ITERATION 2									

sIGenvalues $1.650 \mathrm{E}-03$	-2.094E-04	1.326F-04	$9.718 \mathrm{c}-07$	6. $2845-06$	-1.6799-10	$2.734 \mathrm{~F}-06$	-1.	199E-07	7.752E-07	-9.836F-08
Etgenvectors										
$9.657 \mathrm{c}-01$	2.521E-01	-8.3355-02	-8.037F-02	3.0585-01	1.2495-31	1.079E-01		338E-02	-1.1255-02	-5.380E-03
-5.795E-02	-2.148E-02	$9.8995-01$	-5.282F-02	5.349--01	$1.736 \mathrm{~F}-01$	-1.714F-02	-1.	575F-02	2.761E-01	-7.365E-02
5.0195-03	2.0925-03	-6.026E-02	-5.455E-0.4	$6.640 \mathrm{E}-0$?	$1.531 \mathrm{~F}-01$	-8.0605-01		4076-01	$1.8722^{\text {F-01 }}$	-1.3565-02
-8.0545-04	-2.781E-04	1.1705-02	3.869F-04	3. $5^{\text {35-01 }}$	9.380=-32	$4,983 E-01$		1575-01	-1.025E-01	1.7265-02
$-1.0835-03$	-4.2165-04	1.288C-02	-1.8505-04	-3.835¢.-02	-6.209F-03	$2.64 \mathrm{BE}-\mathrm{D3}$	-9.	17F-03	-8.7995-01	3.130=-01
ASSOCIATFD FIGENVEC TORS										
$1.483 E+02$	-1.835F+ 01	1.170¢+02	$1.8035+01$	-4.632F+01	$5.042 ¢+00$	8.215E+01	-1.	25e+01	-9.843F+01	-5.473F+01
5. 000E-01	4. 338¢-01	$7.3405+01$	$3.652 \mathrm{~F}+00$	$4.9868+01$	-1.371E+0?	$-1.470 \%+02$		$1245+01$	1.319F+02	$7.9515+01$
-2.116E-01	-3.844E-02	-5.675 +00	$-5.943 \mathrm{f}-01$	$1.9855+02$	-5.765 $5+01$	-2.989F+02		4845+01	$-8.196 \mathrm{f}+01$	-1.8995+01
-7.539E-01	-5.232E-02	$-1.017 ¢+01$	$-1.3895+00$	3.729E+02	-8.3275+01	1.1.34F+02	-1.	139E+02	$-1.249 \mathrm{E}+02$	-8.667E401
$1.3365-02$	4. 303E-03	$1.016 \mathrm{~F}+00$	$1.044 \mathrm{E}-01$	$1.7965+30$	1.903F-01	$-4.035 \mathrm{~F}+01$	-8.	975E-02	$-5.688 \mathrm{~F}+02$	$-2.767 F+02$
DERTVATIVES OF INVFRSE gF FREQ. SQuared, Number 1 FIRST DFPIVATIVF $\quad \mathbf{- 4 . 4 1 1 5 - 0 5 ~ - 2 . 0 2 5 F - 0 5 ~}$ second derivative										
-4.58bc-06 -	7.7675-07=	7.772c-06	3.569E-064	-6. 7555-07	-5.9535-07*	-1.168F-05	-3.75	E-0s		
DERTVATIVES OF INVERSE TF FRFQ. SDUARFD, NUMEFR 2 FIRST DERTVATIVE 1.70GE-05 3.9795-06 SECOND DFRIVATIVE										
2.201F-O6	7.6715-07 $=$	-3.006E-06	$-3.4885-074$	6.782F-07	5,9065-074	4.5295-06	5.25	5-07		
merivatives of inversf jf freg. souarfo, number z FIRST DERIVATIVF $\quad 5.904=-07 \quad 4.306 \mathrm{~F}$-08										
1.117F-07	$7.2745-09=$	-1.040E-07	-7.588F-094	5.932c-38	3.477 F-094	1.554F-07	1.14	3F-08		
derivatives ta inverse gf frso. SQuarcd, number 4										
EIRST DERIVATIVE $\quad-2.309 E-08 \quad-2.752 E-08$SFCOND DERIVATIVE										
-5.94π-08	1. $2228-09=$	4.0685-30	4.850¢-09*	-5.739¢-99	2.717e-09*	-6.144E-09 -	-6.34	5E-09		
ofrtivatives of inverse of freo. squarfd, number 5 FIRST DERIVATJVF $\quad-4.6605-08 \quad-1.369 E-08$										
SFEOND DERIVATIVE										
SUBRDUTINE LFGRDOT										
DAMPING		T Ofriv	SECONO dera	iv olorcal	al in lfgueare	figenvalus	¢ No.	PR	En canssing	
7.3308E-03		39895-02	2.0545	-03	1.80555-34		2		1.0804F+01	
-2.67275-05		$8553-03$	-1.3013		$4.6992 \mathrm{~F}-05$		$?$		$1.1354 \mathrm{E}+01$	
-4.3870E-02		$0438 \mathrm{C}-02$	-6.8352		7.8964F-05		4		$1.6287 \mathrm{c}+01$	
-1.12988-01		$4392 \mathrm{c}-02$	-6.8370	-02	-1.8426F-34		5		1.0000F-03	
-1.26935-01		5655E-02	-1.6609	E-03	$3.4592 \mathrm{E}-0.5$		1		3.29315+01	
fluttfa eigenvalue no. $=3$, eigenvalues										
RFI FRO PREDICTEO CROSSINGS CORRESPOND TI ETGCNUALUES NUMERS										

figenvalues									
1.370-03	-3.269E-04	2.49RE-04	4 2.787r-05	1.354E-05	$53.19 \cdot 5-07$	$2.090=06$	$-2.1095-07$	$4.017 F-97$	-1.750c-37
CIGFNVCTIMRS									
-7.385F-01	-6.5449-01	1.4315-01	1 2.277c-01	5. $962 \mathrm{r}-01$	$18.4<92-02$	$-7.224=-02$	1.166F-01	$4.420 \mathrm{~F}-02$	-5.061F-02
$9.177^{\text {c-02 }}$	1.334E-01	-9.352c-01	- $-2.180=01$	7.? 7 $^{\text {r 5-01 }}$	1 1.06RE-31	6.799C-02	-9.8985-02	-1.688F-01	2.8B6F-01
-7.764F-03	-1.197E-02	$6.927=-0$?	2.0705-0?	3.078 $=01$	$1.1 .456 \mathrm{t}-03$	5.1675-01	-7.5776-01	-?.841F-01	$5.4815-01$
1.2915-03	$1.849 \mathrm{E}-03$	-1.318=-02	$2-3.750 \mathrm{C}-3 \mathrm{l}$	2. $9775-01$	$12 . ? 965-02$	-1.8A4E-01	$2.982^{2}-01$	$1.3745-01$	-2.085F-01
$1.7025-03$	2.515E-03	-1.501F-02	- $-2.2025-03$	-1. $\mathrm{P}_{\text {2 }} \mathrm{AL}-02$	2 1.4475-03	3.491 F-02	-3.929F-03	2.5915-0!	-5.632-01
ASSECTATFD CIGENVFETARS									
-1.64 DF+02	7. 9215+01	-1.73650.02	- $9.738 \mathrm{~F}+30$	$-4.6) 5=+01$	- $-6.1325+30$	-7.116F+01	-1.052t+02	-4.6185 +01	3. $5688^{\text {c }}+02$
-1.786F+00	-6.4415-01	-2.822^{6+01}	! 1.201F+01	3.094 $5+01$	$1-2.8605+00$	1.1415.02	$2.003 \mathrm{c}+02$	8.168F+01	$-5.696 F+02$
6.4165-01	-5.129F-02	$5.363 \mathrm{~F}+00$	$-1.144 \mathrm{~F}+00$	$1.253^{5}+02$	2-1.566t+01	2.767F+02	$5.006 \mathrm{~F}+02$	$1.210 \mathrm{~F}+02$	$6.0605+0$
2.223F+00	-3.7245-01	$1.3605+01$	$1-2.325 F+00$	$4.01{ }^{\text {ceto }} 02$	- 3 .148 +01	$-3.802 \mathrm{~F}+02$	$-6.008 \mathrm{c}+02$	$-1.3644+02$	5.54 ? $7+0$?
-4.304F-02	-1.8845-03	-7.713 ${ }^{\text {c-01 }}$	2.355:-03		9.164F-02	$9.6015+01$	$2.393 F+02$	1.787E+01	$1.522^{\text {c }}+0$ 2
DFRIVATIVES BF INVERSE JF FREQ. SOUARCD, NUMBFR 1 EIRST DERIVATIVE -7.062C-05 -2.984F-05 SFCONO MFRIVATIVE									
-6.194F-06-4	- $1958-06=$	8.6b*c-06	$2.6615-064$	-1.7545-06	-3.56B5-06t	-1.3!0r-05 -4	-4.2975-06		
DFRIVATIVFS OF INVERSE gF FREO. SOUAPED, NUMBFR 2									
FIRST MERIVATIVE $3.169 F-35$ $1.150 F-05$ SFCTND DERIVATIVF									
$3.758=-06=$	-183F-05 $=$	-3.8日ge-06	$-1.411 F-06+$	1.736206	3.557F-08+	$5.91]^{-06}$	$2.0785-06$		
TERIVATIVES CF INVFRSF OF FDEO. SQUARED, NUMREP ?									
$1.147 \mathrm{~F}-97$. 41 JF-O8=	-1.389E-07 -	-1.1290-08+	4.4945-09	$9.546^{5}-094$	2.3865-07	1.575e-08		
MERTVAT !VES MF tNVFRSE JF FPEQ. SJIAPFD, NUMBEP 4 FIRST TERIVATIVE -1.999C-07 - - BREFE-09									
second jerivative									
-1.2825-08	. $123 \mathrm{~F}-37=$	2.4425-00	$4.748^{5}-10+$	$-6.370 c-10$	7.562 ${ }^{-09+}$	-3.680F-08	8.4805-11		
DEPTVATIVES GF INVFRSE MF FDFQ. SOIIARFD, NUMRFO 5 FIRST DEPTVATIVE -1.16J5-07 -?.503F-08									
SEOND DERIVATIVE									
$-2.378 \mathrm{~F}-08 \quad-7$. $6458-07=$	1.423F-08	4.3975-09*	-1.655c-c9	$-6.2305-09+$	-2.146F-08 -5	-5.712F-09		
SUBrnutinf lfgrnot									
DAMPING	Ftas	T DFRIV	SFCRNO DER	iv padical	AL IN Leglifrge	cifenvalue	NO. PROJ	ctel conssing	
?.11585-01		1894F-02	6.9776	-03 Ratal	2.3816=-04	ernenvalu	$2{ }^{\text {a }}$	9.0710 tco	
3.0272F-02		47975-03	-1.6806	-04	3.5114E-05			1.1!91F+01	
-1.0090\%-01		1467E-12	1.0844	$=-03$	3.4090 「-34		4	\cdots ?.780IF+01	
-2.387CF-01		4091 -03	-7.6580	$=-3$	-6.657 C -34			1.0309\%+92	
-4.90195-01	-2.	28745-0!	-1.8017	-01	-3.59985-02		5	$1.0000{ }^{-1} 33$	
$\text { ITERATION } 1$									

RFDUCED FREG. $=10.800$

* \&THE DERIVATIVFS ARE H.R.T. SORTISFA LEVFL DENSITYIOENSITYI**

DERIV. OF REDUCED FREQ, = $-9.48 \mathrm{DDFF}-02$

SFCOND OERIV. DF RF $=1.9344 \mathrm{~F}-01$, SECONO DERIV. OF FREQ**2 $=1.0175 E+03$, SECOND OERIV. DF VELE $6.0119 F+01$
DENSITY $=\quad 7.806131 E-08$, RFIMIN $=13.1467$

$\begin{aligned} & \text { EIGENVALUES } \\ & \text { 1.6S9E-03 } \end{aligned}$	-1.643E-04	1.2485-04	-9.995E-10	$6.0075-06$	-1.774F-08	$2.735 \mathrm{~F}-06$	-8.727E-08	7.959E-07	-6.752E-08
EIGENVECTIRS									
9.757E-01	2.120E-01	-7.3325-02	-6.663E-02	$2.9505-01$	-5.938F-32	1,687F-01	-5.965f-02		
-5.355E-02	-1.582E-02	$9.930 E-01$	$2.038 \mathrm{~F}-02$	S.126F-01	-1.407E-01	-5.7445-03	-7.547F-03	$-4.900 \mathrm{E}-03$ $2.692 \mathrm{E}-01$	-6.767E-03
$4.662 \mathrm{~F}-\mathrm{D} 3$	1.555E-03	-5.8335-02	-4.163E-03	$6.855 E-01$	-2.377F-01	-7.805k-01	$-7.547 \mathrm{~F}-03$ $2.527 E-01$	$2.692 \mathrm{E}-01$ $1.398 \mathrm{E}-01$	$4.842 E-02$ $5.118 E-02$
-7.412F-04	-2,032E-04	1.127E-02	1.070f-03	3.021c-01	-8.712F-02	$5.069 \mathrm{c}-01$	$2.527 E-01$ $-1.946 \mathrm{c}-01$	$1.398 E-01$ $-8.6505-02$	$5.118 \mathrm{~F}-02$ $-2.275 \mathrm{~F}-02$
-1.003E-03	-3.119E-04	1.346E-02	$6.382 \mathrm{~F}-04$	-3,716F-02	$1.539 \mathrm{E}-\mathrm{Dz}$	-4.054E-03	-6.419F-03	$-9.402 \mathrm{E}-01$	$-2.275 \mathrm{~F}-02$ $-1.048 \mathrm{E}-01$
associated eigenvec tors									
$1.472 \mathrm{E}+02$	$-1.651 \mathrm{E}+01$	1.131E+02	6.579E400						
$4.54 \mathrm{BE}-01$	$3.260 \mathrm{E}-01$	7.799F+01	-1.407F+00	-4.3576+01	$-1.999 E+01$ $1.679 E+01$	$7.192 E+01$ $-1.245 E+02$	2.903F+01	-9.691E+01	-5.179F+03
-1.902E-01	-2.646E-02	-5.685E+00	-1.328F-01	2.1075402	6.380F+01	-2.558E+02	-1.100 +02	-1.429E402	$5.932 F+00$ $1.803 E+01$
-6.771E-01	-2.924E-02	$-9.8085+00$	-4.672F-01	$3.513 c+02$	$1.275 \mathrm{E}+02$	$7.006 \mathrm{~F}+02$		-7.946+601	$1.603 E+01$ $-1.216 E+01$
1.203E-02	3.092E-03	1.0415*00	$2.941 \mathrm{E}-02$	1.311E+00	$1.052 \mathrm{E}+00$	$-2.745 \mathrm{~F}+01$	-1.716E+01	-1.432E+02	-1.216E+01
ofrivatives of inverse jf freg. squared, numbra 1 First dertvative $-3.463 \mathrm{E}-05 \quad-1.356 \mathrm{E}-05$ SFCOND DERIVATIVE									

```
OER!VATIVFS OF INVERSE DF FREG, SQUAREO, NUMBER 2
```

$1.460 \mathrm{e}-06 \quad 3.826 \mathrm{E}-07=-2.024 \mathrm{E}-06 \quad-1.705 \mathrm{c}-\mathrm{O} 7$
4.413F-07
2.919E-07*
3.043E-06 2.613F-97

OERIVATIVES OF TNVFRSE TF FRFO. SQUARED, NUMELR 3
FIRST DERIVATIVE
SFCOND DERIVATIVE
$7.6655-08: 405 E-09=-6.713 E-08 \quad-4.094=-09$
4.291c-08 2.120F-09
1.009E-07 6.279E-09

OERIVATIVES OF INVERSF JF FREQ, SQUAQED, NUMDER 4
FIRST DERTVATIVF
6.380F-09 -1.895E-08

GERIVATIVES BF TNVERSE OF FAFQ. SQUARFD, NUMBER 5
EIRST NFRIVATIVE - $3.516 F-08$ - B.626C-OS
SECOND RERTVATIVE

SUBROUTINE LFGRCOT

DAMPING	first deriv	FCONO DERTV	ratical in leguerra		
-8.0085E-06	$8.9845 \mathrm{C}=03$	1.15005-03		eigenvalue no.	Pronectao crassing
-2.9531E-03	$4.6981=-03$	6.3973 c-05	2.2261 E-95		1.315 $1.379+01$
-3.1908E-02	-6.8534 F-03	-4.9126f-04	$3.1293 \mathrm{E}-05$	4	$1.8854+01$
-8.4835E-02	-1.45855-02	$-3.17705-03$	-5.6847E-05	5	1.0000F+03
-9.8396E-02	-1.0165F-02	-8.3629F-04	2.1048 $\mathrm{F}-05$	S	1.00975

 $9.3771 \mathrm{E}-02$ 2.493うE-02 -8.3046E-02 $-1.9804 \mathrm{E}-01$
-4.09675-01

TEERATIDN 1
19.7500^{1}

SECRND DFRIV PADICAL IN LEGUERRE
$\begin{array}{ll}4.4264 \mathrm{~F}-03 & 9.8871 \mathrm{~F} \rightarrow 35 \\ 9.5807 E-05 & 1.6314 \mathrm{FE} 5 \mathrm{O}^{2}\end{array}$ $-9.5807 E-05$ 6.08685-04 4. $7313 \mathrm{E}-03$ - $1.0542 \mathrm{E}-01$ 1.1078E-04 -3.663 8E -14 $-1.7634 \mathrm{~F}-32$

FIRST DERIV 2.26665-0 3.7317F-03 $-7.7608 \mathrm{E}-02$
$-2.38 \mathrm{BTE}-02$ $-2.38875-02$
$-1.5985-01$
$10.3100 \quad 13.5771$ 27.64031000 .0000

FOUND 2 RONTS, RFI FOR THF NEXT ROOT PRFDICTED $=27.6402$, IS BEYONO THF RAVGE

ITERATION NO. 2 DENSITY = $7.8061 E-08$ SQRTISEA LEVFL DENSITY/OENSITYI $=1.2121 E+00$ FLUTTERVEL $=7.65095+03$ AIR SPEED $=7.6504 \mathrm{~F}+03$ (YEL-AJRSPEEDI*100/VEL $=\quad .0065$

APPENDIX B

FORTRAN PROGRAM LISTING

The FORTRAN program listing for program MATCH and related subroutines are presented in this appendix.

Program MATCH

APPENDIX B - Continued

Subroutine CROSMAT

```
        SUAROUTINE CROSMAT(MACH,PFRF,MAXMAT, ITROPD,REF,UNITL)
        COMMON/DEFIVS/ DRE,DMU,DVEL,SORF,SDMU,SDVFL
        COMMON NM,NMAX,NEIG,NVEC
        RCAL. MACH
        OFNTRDP = 1.836R26%92
        IMATCH = 1
        NOER = 2
        NL = 2
        NL! = NL - l
        IF (ITROPO) 6,7,8
    6 QHO = -1.0
    ŋп Tп 9
    7 RHT = RFF
        马0 Tत 9
    8 पHר = PFF*2.9639F-01
        ORFI = -RFI*RFI*DRF
        SDPFI = 2.O*DRFI*JRFI/RFI - PFI*RFI*SORF
        QFI = RFI + DRFI*ПEL + 0.5*SDRFI*DEL*DFL
        GП T\ 1
    500 RETURN
1000 FORMAT(//,43H MATCH-PQINT ITEOATION DIO NOT CONVERGE IN .IX,
    I IIH ITFRATIONSI
?000 FODMAT (/, ?5H ARGUMENT OF RAOICAL IN LAGUFRRF = ,F12.3.!8H, ITFRATI
    1\capN NO. = ,13,12H, DFNSITY = ,}12.4,8H,VFL = F9.2,1,10X,24H, SPEF
    20 OF SOUND*MACH = F9.3)
2500 FORMAT(1HI)
3000 FORMATI//.14H ITERATION NO.,I3,IIH DENSITY = F12.4, 35H SQRTISFA
    1LEVFL DFNSITY/OFNSITYI = F12.4,/,16H FLUTTER VFL = F12.4,
    213H AIR SPFED = ,FI2.4.?6H (VEL-AIRSPEFD)* 100/VCL =,FB.4)
    END
```

Subroutine DERVDEN

```
                SUBROUTINE DFRVDEN{RHO,NDER,RFI)
C* RHO = SQRTIREFEREVCE DENSITY/DENSITYI
        CDMMON/DERIVS/ DRF,DMU,OVEL,SDPF,SDMU,SDVFL
        COMMON NM,NMAX,NEIG,NVEC
        COMMON/BLKI/ AF,DAF,SOAF
        COMMON/BLK2/ EIG,VEC,AVEC,OIFS,SDIFS
        OMMCN/BLK3/ TP.TP2
                COMPLEX VSAU,RII,RIL,RI5,RIT,RI7,RI8
                COMPLEX AF(12,12),DAF(12,12),SOAF(12,12),EIG(12),VFC(12,12),
            1 AVEC(12,12),DIFSI12),SDIFS(121,TP(12,12),TP2(12,12)
C****************************************************##*********************
C* KUMAR G. BHATIA, JULY 21,1972.
C* COMPUTES DERIVATIVES WITH RESPF(.T TN SQRT(2.378E-03/DFNSITY)
C* DVFL = FIRST DERIV OF VCLITCITY, SDVFL = SFCOND DFRIV NF VELDCITY *
C* DMU,SDMU ARE THE FIQST AND SCCOND DERIV,RFSP, DF FLUTTER FRFQ**2 *
C* DRF,SORF ARF THE FIRST AND SECCND DFRIV,RFSP, OF RFDUCED FREQ.
    NOER = NUMBER OF DERIVATIVES REOUIPFD, I OR 2
```



```
        REWINO }
        READ(4) M,RFI,VFL,VSAU,EIG,VEC,AVEC,AF,TP
        RHOS = RHO*RHO
```

```
    EIGM = FIG(M)
    CALL TMMPROD(AVEC, AF,VEC,NM,NVFC,NMAX,NDFR,TP2I
    FIGMI = 1.0/EIGM
    RII = 2.O*TP2 (M,MI/PHO
    R2 = -REAL{TP{M,M}}
    A? = -AIMAG{TP(M,M)|
    DRF = -AIMAG{RII\/AS
    DM\ = EIGMI*( RFAL{RII\+DRF*R2)
    COFF=0.5*FIGM*DMU - RFI*ORF
    DVEL = VFL*COEF
    PRINT 1000, RFI, ORF, DMU, OV CL
    IF (NDER .EQ. 1) {ETURN
    RI4 = 2.0*EIGM*OMU*DMU
    RI5 = 0.0
    9 CINTINUF
    C.ALL LEFCROS(IMATCH,RHM,RFI,VFL)
    OFV = SQRT\REF/RHJ)
    \ENL = DFN
    OENI = 1.O/DFN
    か\capTワ 2
    1 cINTINUE
    IMATCH = IMATCH+I
    VELL = VFL
    OENL = OEN
    RHOI = RFF%DFNI*DFVI
    CALL FOMATCHIIMATCH,RHO,RFI,VELI
    CONTINUE
    CALL SOUND(MACH,DEN,SOS,DSOS,SOSOSI
    SOS = SOS*UNITL
    OSTS = DSOS *UNITL
    SDSOS = SDSOS*UNITL
    F = VEL-SOS
    PFR = F*100.0/VFL
    PRINT 2500
    PRINT 3000, IMATCt,RHO,DFN,VFL,SOS,PFR
    WRITE(7,3000) IMATCH,RHO,OFN,VFL,SOS,PER
    IF (ABS(PFR) - PFRF ) 500,500,5
    5 IF IIMATCH NE. MAXMATI GO T\cap 10
    PRINT 1000,IMATCH
    WRITEIT,10001 IMATCH
    GO TO 500
10 CALL DERVOFN(DEN,NDER,RFI)
    IF (DFN .NE. DENTROP) GO TO 200
    IF {F .GT. O.O| GJ TO 200
    OSTS = 0.0
    SDSOS = 0.0
200 CONT INUF
    DF = DVEL - DSOS
    SOF = SOVEL-SDSOS
    H=NL1*(NL!*DF*DF -NL*F*SDF)
    IF (H .GE. O.O) GJ TO 25D
    PRINT 2000, H,IMATCH;RHO,VEL,SOS
    WRITF(7,2000) H,IMATCH,RHD,VEL,SOS
    GOTO 500
250 CDNTINUE
    H=SORT(H)
    H=SIGN(H,DF)
    DEV = DFN - NL*F/{DF+H}
    IF (DENL - DENTROP) 260,290,270
260 IF (DEN - DENTROP) 290,290,280
270 1F (DEN - DFNTROPI 280,290,290
280 DEV = DENTROP
290 こONTINUE
    DENI = 1.0/OEN
    DEL = DFN - DEML
    0\ 100 L=1,NVEC
        IF (L.FG. M| 30 TO 100
    RIT = DRF*DRF*TP{L,MI*TP(M,L} - 2.0/RHO*DRF*{TP2(L,M)*TP(M,L) +
    1 TP2(M,L)*TP(L,M)) + 4.0/RHOS#TP2(L,M)*TP2(M,L)
    RIT = RIT/(1 1.0-EIGM/EIG(L) )
```

```
        RIS = RI5 + PIIT
100 CONTINUF
    QI5 = 2.0*EIGMI #RI5
    QIT = -EIGMI* (6.O#TP?(M,M)/RHOS-4.0*TP(M,M)*DRF/RHN)+VSAU*ORF*
        1 DRF I
            RI& = -EIGMI*TP(M,M)
            SIRF= -AIMAG\RI5+RI4+RI7)/AIMAG(RI8)
            SOMU = REAL{RI5+RI 4+RIT) + REAL(RI8)*SDRF
            SDVEL = DVEL*COFF + VEL*( 0.5*FIGM*(SDMJ-FIGM*OMU*DMU\ + RFI*{RFI*
        1
            DRF*DRF-SDRF) )
        QRINT2000, SDRF,SDMU,SDVFL
        RETURN
100O FORMAT(//,17H REDJCED FRFQ. = FFB.3,/,63H **THE OFRIVATIVES ARE W.
    1R.T. SQRT\SEA LEVEL DENSITY/DFNSITYI**,1,1,28H DERIV. OF RFDUCFO
    2FREQ. = F13.4,/,22H DERIV. DF FREQ**2 = F13.4./,
    3 23H D'PPIV. OF VELOCITY=,F13.4)
2000 FDRMATI/, 22H SFCOVD OFRIV. JF RF =, S13.4,29H, SECONO DFRIV. OF FR
    IᄃQ**2 =, F13.4,24H, SECOND OFRIV. OF VFI=,5:13.4)
    ENO
```

Subroutine SOUND

```
    SURRDUTINF STUNO(MACH,RHO,STS,OSOS,SOSOS)
    PEAL MACH
C* RHJ = SQRT(SFA LEVFL DENSITYI/SQFTIOFNSITY)
    IF (RHO .GT. 1.836826B82) rO TM \O
    A = 1515.639571.
    3=-520.6920622
    C = 121.1&24916
    SOS = MACH*(A+RHO*(B+DHO*C) )
    OSTS = MAC.H*( R+2.0*RHO*()
    SJSOS = MACH * 2.0 * C
    QFTUQN
20 5OS = MACH*968.08
    nSOS = 0.0
    SOSNS = 0.0
    RETURN
    CND
```


Subroutine LEGROOT

```
SUBROUTINF LFGRCOT(NEIG,ICIN,RFI,G,IAR,IPRT,NL)
C\capMMON/RLK2/ EIG,VEC,AVFC,OIFS,SDIFS
COMPLFX FIG(12),VFC(12,12),AVC(112,12),DIFS(12),SDIFS(1.2)
OIMFNSION RFI(1),ICON(I),G(I),IAP(I)
RFAL IOK, MINIOK
r.* KUMAR G. BHATIA, JUNP 12,1972.
C* CTYPUTES THF ROOTS USING MOJIFIFD LEGURRFF ITERATIDN, WHFRE THE *
    ROOTS CORRESPOND TO THE IMAGINARY PART OF INVFRSE OF THF FREQ.*
            SQUARFD AS A FJNCTION OF INVERSF OF RFOUCED FREQ.(RF). *
C* ST INPUT EFIIIJ CINTAINS I/RF WHERE FUNCTION+DFRIVATIVES ARE KNOWN
C* AT MUTPUT RFI(J) CCNTAIN PROJECTEN ROOTS
C* PROJECTED CROSSING = 3000, RFAL PART OF FIGTNVALUF IS NFGATIVF *
C* PROJECTEO CROSSING = 2000, 1CON(J) .NE. 0 *
C* PRDJECTED CROSSINS = 1000, REAL RFIIJ) COULO NOT BE PREDICTFD *
```



```
IOK = RFI(I)
RFI2 = 0.5*IOK
N=0
CALL DAMPAR{NEIG,CIG,G.IAR)
```


APPENDIX B - Continued

```
    IF IIPRT .NE. OI PRINT 1000
    DN 200 J=1,NEIG
        I = IAR(J)
    II = I
    GI = 0.0
    G2 = 0.0
    A = 0.0
        IF (GII) .FQ. -1000.0 ) GחTO 4
        IF IICCN(J) EQQ OI GO TO }
    RFIIJI = 2000.0
    RFIJ= RFI\JI
    FD TO 100
4 RFI(J) = 3000.0
    QFIJ = RFI(J)
        GO TO 100
5 CINTINUF
        AO = AIMAG(EIGII)
        AI = AIMAG(DIFS(I))
        A? = AIMAGISOIFSII)I
```



```
    GO=G(I) $G1= (A1-GO*R1)/RO$G2 = (A2-GO*R2-2.*G1*R1)/RO
    A = G1*G1-GO*G2
    IF (NL.NF. 0) A = (NL-1)*( (NL-1)*GI*G!-NL*GO*G2)
    IF I A .GT. 0.0 I GOTO 10
    IF (GO .LT. 0.0) SO TO 8
    IF (GI .GF. 0.01 २FI(J) = 10K - GO/G1
    IF (GI .LT. 0.0) RFI(J) = IOK + G0/G1
    IF (RFI(J) LTT. RFII) RFI(J)= RFI2
    GO TO 12
    8 CONTINUF
    N=N+1
        RFI(J)=1000.0
    RFIJ= RFI\J)
        GO to 100
10 IF (NL .EO. O) GO TO 11
    RFI(J)= IDK - NL*GO/(GI+SORT(A))
    FO TO 12
11RFI(J)= IOK - GO/SORT(A)
12 CONTINUE
    RFIJ= RFI(J)
    IF ( J .EG. I ) GO TO 100
    IF (RFIJ.GF. RFI(J-1) (GO TM !00
    J1 = J - 1
    DN 15 I=1,J1
    IF|RFIJ.GF.RFI\J-I|) GחTO 16
    JMIN = J - I
15 CONTINUF
16 SAVEI = IAR\J)
    JJMIN = J-JMIN
    DD 20 I= 1,JJMIN
    IAR(J-I+1)=IAR(J-I)
20 RFI(J-I+1)= RFI(J-I)
    RFI(JMIN) = RFIJ
    IAR(JMIN) = SAVEI
100 CONTINUE
    IF IIPRT E.Q. O| 30 TT 200
    PRINT 1500,GO,G1,G2,A,II,RFIJ
200 CONT INUE
    IF | RFI|l| .GT. 3.0 | GO T\ 400
    IF ( RFI(NEIG).LS.0.0) GO TO 400
    NEIGI = NFIG - 1
    OO 300 J=1,NEIG1
        JJ=NCIGI -J + 1
        IF [RF[(JJ)) 250,250,300
250
        JJ1 = JJ + 1
        D0 300 I =1.Jل
```

```
RFI(I) = RFI(JJI)
```

300 CONT INUE
400 CTNT INUE
IF (N.LT. NEIGI RETURN
PRINT 2000. N
1000 FORMAT //, I9H SUBRJUTINF LFGROOT, /, $6 \mathrm{X}, 8 \mathrm{H}$ DAMPING,10X,12H FIPST DFRI
IV, $7 \mathrm{X}, 13 \mathrm{H}$ SFCCND DERIV, $4 \mathrm{X}, 2 \mathrm{OH}$ RADICAL IN LFGUFRRF, $3 \mathrm{X}, 15 \mathrm{H}$ EIGENVALUF
2 Nก.. $3 \mathrm{X}, 19 \mathrm{H}$ PROJECTED CROSSING)
1500 FORMAT\{4(5X,f11.4,5X1,10X,I2,13X, $\left.{ }^{2} 11.4\right\}$
2000 FORMAT $/ / / .38$ H ARGUMFNT TF LAGUERRE IS NFGATIVF FOR , I $3, T H$ MDDESI
CND

Subroutine DAMPAR

```
        SUBROUTINF DAMPARINEIG,EIG,G,IARI
        COMPLEX EIG(I)
        DIMFNSION G(1),IAR\1)
        IAR(1) = 1
        G(I) = AIMAG(FIG(1)|/RFAL(EIG(1))
        IF (REAL{EIG\I|).LF. 0.0) G(I)= =1000.0
        O\cap 5 I =2,NEIG
        IAR(I) = I
        G(I) = AIMAGIEIG(I))/REAL(EIG(I))
        IF (REAL{FIG(I)).LF. 0.0) G(I) = -1000.0
        IC=I
        II = I - I
        DO 4 J=1,11
            M = I 1 - (J-1)
        ICC = IAR(IC)
        MMM = IAR(M)
            IF (GIICC) LS.G(MMI) GO TO 5
            IT = IAR(M)
            IAR(M)=IAR(IC)
            IAR(IC) = IT
            IC = IC-1
        CONTINUE
    4 CONTI
        RETURN
        FNO
```

 SURROUTINE GETAERO(NM,NMAX,RFI,ID,RFIL,RFIR,DFL)
 CDMMON/BLKI/ AF,DAF,SDAF
 COMPLEX AF (12,12), DAF(12,12), SOAF(12,12)
 C* GETS AEROTYNAMIC FDRCES FROM RANDNM ACCESS FILE 88 IF ID=0,FLSE *
© * GETS DERIVATIVES TOD. FNTRY GFTDAFR GFTS OFRIVS. ONLY. *
C* RFI = 1.O/RFDUCFD FRFQ., RFIMIN = FIRST PFI RFCORD JV 8R.
C* DFL = CONSTANT INCRFMENT OF RFY ON 8B.
C* KUMAR G.BHATIA, JUNF 13.1972.
IF (RFI .GE. RFIL .AND. RFI .LF. RFIRI GO TO 10
PRINT 2000, RFI
2000 FORMAT(/,* RFI $=*, F 10.3 * *$ iS OUTSIDS THF RANGF OF VALUFS *)
STOP

APPENDIX B - Continued

```
10 CONTINUE
    NW = 2*NMAX*NMAX
    STEPS = (RFI-RFIL)/DFL
    IK = STEPS
    IR = 2
    IF ((STEPS-IK) .LE. 0.5) IR=1
    PFI = RFIL + (IK+IR-1)#DEL
    IK = (IK+IR-1)*3 + 1
    CALL READMS(88,AF,NW,IK)
    IF (IO .EO. O) RETURN
    ENTRY GETDAFR
    CALL READMS(88,DAF,NW,IK+1)
    CALL READMS(88,SDAF,NW,IK+2)
    RETURN
    FND
```

Subroutine RANDAX

SURROUTINF RANDAXINM,NMAX,SS,RR,RHO,NRFI
DIMENSION NRF (1)
COMMDN/BLK1/AF,DAF,SDAF
COMPLEX AF (12,12), DAF(12,12), SOAF(12,12)
DIMENSION RO(2,12,12),R1(2,12,121,R212,12,12)
FOUIVALENCE (AF,RJ), (DAF,R1), (SDAF,R2)
THE SURROUTINE READS FROM TAPF 4 ANO. TRANSFERS TO RANDOM ACCESS *
FILE ON TAPE 88. THF AERO FORCFADERIV MATRICFS ARE MULTIPLIED*
BY DENSITY PARAMETER BEFORF TRANSFFR TTO 88.
kumar g. bhatia, JJNE 13,1972
COMPUTE THE DENSITY PARAMETER
OP IS IN LB.SEC*\$2/INCH UNITS
INPUT SS=SEMISPAN, BR=REFERENCE SFMICHORD ARE IN INCHES RHO=AIR DENSITY IN SLUGS/FT**3
$P I=3.14159265358979$
$D P=4.0 * P I * B R * S S * S S * R H O$
REWIND 4
REAO(4) NK, MACH,NM
CALL OPENMS (B8,NRF, 1600,0)
$N W=2 * N M A X * N M A X$
OO 100 IK=1,NK
QEAП(4) RF, X, ($(R O(1, I, J), I=1, N M), J=1, N M),((R O(2, I, J), I=1, N M), J=1$,
1 NM)
RFAD(4) ((RI (1,I, J), I=?,NM), J=I,NM), ((R1(2,I,J),I=1,VM),J=1,NM)
READ(4) ($(R 2(1, I, J), I=1, N M), J=1, N M),(\{R 2(2, I, J), I=1, N M), J=1, N M)$
RFI $=1.0 / R F$
$F=D P * R F I * R F I$
DD $10 \quad 1=1, \mathrm{NM}$
$0010 \mathrm{~J}=1$, NM
$A F(I, J)=F * A F(I, J)$
DAF (I, J) $=F * D A F(I, J)-2.0 * R F I * A F(I, J)$
$S D A F(I, J)=F * S D A F(I, J)-2.0 * R F I *(2.0 * D A F(I, J)+R F I * A F(I, J))$
CONTINUF
IK3 $=(1 K-1) * 3+1$
CALL WPITMS(88, AF,NW, IK3)
CALL WDITMS(88, DAF, NW, IK3+1)
CALL WRITMS(88, SDAF,NW, IK $3+2)$

APPENDIX B - Continued

100
CONTINUE R.ETURN

END

Subroutine LEFCROS

SURROUTINF LEFCROSITMATCH, RHOM,RFIMIN,SVFLI
CTMPLEX AF(12,12), DAF(12,12), SOAF(12,12),TP112,12),TP?(12,12),
1
EIG(12), VEC(12,12), AVFC(12,12), DIFS(12), SDIFS(12)
OIMENSION INTH(12, 21, NQF (1600), ICON(12), SH(12, 12), SK (12, 12),
1
C(12,12), RFI(12),G(12),IAR(12),VEL(12),RHO(10)
FQUIVALENCF (SK,CI
COMPLEX MUM
COMMON NM,NMAX,NEIG,NVFC
COMMON/BLKI/ AF,DAF,SDAF
COMMON/BLK2/ FIG,VEC, AVEC, DIFS,SDIFS
COMMON/BLK3/TP, YP2
COMMON/BLK4/ SM, C, INTH
NAMELIST/NAMI/SK,SM,LSTIFF,SS,BR,NM,RFIL,RFIR,DFL, 1 NRJOT, NITMAX, ND, RHO,RFIMIN, IPRT, IOPT
NAMFLIST/OPTION/ NMAX, NEIG, NEVQFD, FIGRAT, NL, ICON
C*

COMPUTES FLUTTER CROSSINGS AND VELDCITIES FOR SINGLE OR MULTIPLF* DENSITIES, IMATCH $=0$ AND ND $=$ NO. DF DENSITIES.
FIR IMATCH .NE. O, THE LEWEST FLUTTER VELOCITY AND OTHER INFO IS* RETURNED TO THE CALLING PROGRAM. THE INITIAL GUESS FOR RFIMIN* IS PICKED UP FQOM THE NAMELIST FOR IMATCH $=0$ OR I, FOR DTHFR*
VALUFS OF IMATCH THE GUFSS SUPPLIED FROM THC PAPAMFTFR LIST. *
KUMAR G. BHATIA, PROGRAM CHECK COMPLETED JULY 20,1972.

DEFINITION AND ASSIGNFMCNT DF THF NAMFLIST NAMI PARAMETFRS *
LSTIFF $=0$ CIAGONAL STIFFNESS MATRIX IS INPUT IN SK, DIAGONAL *
FLEXIBILITY MATRIX IS CDMPUTED AND STRRFD IN SK *
LSTIFF $=+1$ FULL STIFFNESS MATRIX IS INPUT IN SK, IS INVFRTED AND*
DESTROYED USING CDC MATRIX INVERSION RDUTINE
STIFF $=-1$ DIAGONAL OR FULL FLEXIBILITY MATRIX IS IVPUT IN SK
K = GENERALISED STIFFNESS
ITR MATRIX, SEE LSTFF
maybf diagnnal tir full
SS = SEMISPAN, RR = REFERENCE CHORD - BOTH MUST BF IV APPRMPRIATE* UNITS
DEL = FQUAL INCREYENT DN PFI AT WHICH AERODYNAMIC FORCES ARF ON *W9 TAPF 4
RFIL = MINIMUM VALUF OF RFI FIR WHICH AERO FDRCFS ARE SUPPLIFN
RFIR = MAXIMUM VALUE OF RFI FחR WHICH $\triangle E R D$ FORCES ARE SUPPLIFD
IAFPO = O AFRODYNAMIC FORCES AND FIRST THO DCRIVATIVFS ARF
SUPPLIFD AT EQUAL RFI INTFRVAL OF DEL, STARTING WITH RFIL
IAFRO .NF. O DRLY AEROOYNAMIC FORCES ARE SUPPLIED FOR INCREASING* VALUFS DF RFI, STARTING WITH RFTL
NM $=$ NUMBER OF MODES, NMAX $=$ MAXIMUM NO, OF MODES ALLOWED $=12$
NCIG = NO. DF EIGENVALUES TO BF COMPUTED, NEIG .LE. NM
NVET = ND. OF EIGENV
EIGRAT
NFVRED $=0$ NEIG EIGFNVALUFS
 FIRST ANO SUBSFQUENT EIGFNSOLUTIONS
NEYRED .NF. O AFTER THE FIRST FIGENSOLUTION ONLY THE SMALLFST figenvalufs (AND VECTORS) are COMPUTFD SUCh That the smallfit EIgenvalue not computeo is at lfast eigrat times the flutter \# EIGENVALUE
ICON IS INITIALLY SET TO ZERD, IF ICON(L) IS INPUT AS NMNZFRD THE L TH LARGEST DAMPING ROOT PROJFCTION FRR FINDING PFI, IS * NOT COMPUTEO

APPENDIX B - Continued

```
C* NITMAX= MAXIMUM VUMASR OF ITTRRATIONS ALLOWEO PER RONT 
    REWIND 7
    OD 5 I =1,12
    5 ICDN(I) = 0.0
    NL = O
    INPT = 0
    IPRT=0
    NEVPFD=0
    NMAX = 12
    READ(5,NAMI)
    WRITE(6,NAM1)
    NFIG = NM
    NVEC = NM
    IF (IOPT EQ. O) GOTM 7
    REAL(5,OPTION)
    WRITE(6,OPTION)
    7 CONTINUF
    0SL2 = DEL/2.0
    IF (LSTIFF) 14,E,12
    OП 10 I=I,NM
    DO 10 J=1,VM
        IF I J.PQ. I I C(I,J)=1.O/SK(I,J)
    10 CONTINUE
    G\eta TR 14
    12 CALL MATINV (SK,NM, DUMMY, O, DFT,NRF,INTH,NMAX,ISCALE)
    14 REFRHO = RHO(1)
    IF (RHOM .EQ. -I.)\RHOM = RHM\11
    IF ITMATCH .NF. OI REFRHC = RHCM
    15 CALL RANDAX(NM,NMAX,SS,BR, QEFRHD,NRFI
    FNTRY FOMATCH
    IF (IMATCH EEQ. O) GO TO 16
    ID=1
    RHO\ID)= RHOM
16 CONTINUE
    DO 500 ID=1,ND
    PRINT 9000
    PRINT 4000, RHO(IO), RFIMIN
    WRITE{T,4000) RHO(ID),RFIMIV
    NR=1
20 CONTINUE
    DO 100 I= ,NITMAX
    PRINT }900
    CALL GETAERO(NM,NMAX,RFIMIN,O,RFIL,RFIR,DELI
    IF IID.EO. 1 .AND. IMATCH .LF. II GO TO 40
    DM = RHO\IDI/RFFRHO
    DO 30 IA =1,NM
    D" 30 JA=1,NM
30 AF(IA,JA) = DM * AF(IA,JA)
40 CALL EIGSDL(NM,NMAX,NFIG,NVFC,IPRT)
    CALL GETDAERINM,NMAX,RFIMIN,1,RFIL,RFIR,DELI
    IF IID.FQ. I .AND. IMATCH.LF. 1) GOTO 60
    D\cap 50 IA=1,NM
    DO 50 JA=1,NM
    OAF(IA,JA)=DM* DAF(IA,JA)
50 SDAF(IA,JA) = DM * SDAF{IA,JAI
60 CALL DERF(2,NM,NMAX,NVEC,RFIMIN,IPRT)
        RFI|l| = RFIMIV
    CALL LFGROOT(NFIG,ICON,RFI,G,IAR,IPRT,NL)
```


APPENDIX B - Continued

```
    PRINT 1000,I, RFIMIN, (RFI(J), J=I,NCIG)
    IF INEVRED EEQ. OI GO TO gO
    NEVRED = 0
    IM=IAR(NR)
    MUM = EIG(IM)
    IMI = IM + I
    DO 70 J=1M1,NM
    O=MUM/EIG(J)
    IF (D .GE. EIGRAT) GO TO TS
70 CDNTINUE
    NSIG = NM
    NVEC =NM
    GO TO 80
75 NEIG = J-1
    NVFC = j-1
    PRINT 6000,NVEC
    HRITEIT,6000) NVE=
80 IF & ABSIRFIMIN-RFI(NRI) *L. OEL2) GחTO IIO
    RFIMIN = RFI(NR)
    IF (RFIMIN GT. RFIL .AND. 2FIMIN .LT. RFIR) GO TO 100
    NRI = NR - 1
    PRINT 7000, NRI,RFIMIN
    WRITE(7.7000) NP1, RFIMIN
    IF (NR1 -GT. O) GO TO 400
    STOP
100 CONTINUE
    PRINT 1500. NR,I
    STOP
110 CONTINUE
    IM = IAR(NR)
    PRINT 5000, IM,(EIGII).I=1,NEIGI
    PRINT 5500, II AR(II,I=1,NEIG)
    VEL(NR)= BR*SQRT(I.O/RFAL(EIGIIM)| |*RFIMIN
    IF INR .NF. 1\ GO TD 200
120 CONTINUF
    REWIND 4
    WRITE{4) IM,RFIMIV,VFL{NR},TP2(IM,IMI,FIG,VEC,AVFE,AF,TD
    NFROOT = NIR
    SVFL = VEL{NR)
200 IF (VFL(NR) GE.VEL(NFROOT)) GO TO 300
    GO TO 120
300 ORINT 3000, NR,VEL(NR), RFIMIN,I
    WRITEIT.3000I NR,VELINRI,RFIMIN,I
310 CINTINUE
    IF I NR .FQ. NRDOT I GD TO 400
    NR=NR+1
    IF I ABS {RFIMIN-RFIINRI) GT. DFL2:GO TO 350
    RFI(NR) = RFIMIN
    WRITE(7,8000) RFI(NR),DEL2
    PRINT 8000, RFIINR), DEL2
    IM=IAR(NR)
    VFL(NR) = 8R*SQRT(1. D/RFAL{FIG(IM)) )*RFIM|N
    IF (VEL(NR) -GE. VEL(NFROOT)) GO TO 320
    REHIND 4
    WRITE(4) IM,RFIMIN,VFL(NRI,TP2IIM,IM),FIG;VFC,AVFC,AF,TP
    NFR\cap\capT = NR
    SVEL = VEL(NR)
320 CONTINUF
    PRINT 3000, NR,VELINRI, RFI MIN,I
    WPITFIT,300OI NR,VEL(NR), QFIMIN,I
    GO TO }31
350 COVTINUE
    RFIMIN = RFI(NR)
    IF (RFIMIN GF. RFIL .AND. RFIMIN .LF. RFIR\GOTO 2O
    NRI = NR - 1
    PRINT 7000, NRI,RFIMIN
    WQITF(7,7000) NRI,RFIMIN
```

```
400 CONT INUF
    IF (IMATCH .FQ. O) RFIMIN = RFI(1)
    IFIIMATCH.NE. OI GO TO 60O
500 CONT INUE
600 COVTINUF
    RETURN
1000 FORMAT (//10H ITFRATION,13,/,F1?.4,8X,5F12.4,(/20X,5F12.4))
1500 FORMAT (/,* PROGRAY TERMINATCD, COULO NOT FIND ROOT NO. *,I3, * IN*
    1,I3,* ITERATIONS*I
3000 FORMATT//.12H ROOT NUMBFR ,I3,14H,VELOCITY = F9.3.
    1. 9H, RFI = F8.3.29H, NO. OF ITRRATIONS REQN, =, I2)
4000 FORMATI///,11H DEVSITY =, =15.6.12H, PFIMIN =,F12.41
5000 FIRMATI/,26H FLUTTER CIGFNVALIJF NO. = II 3.13H, EIGENVALUFS,/,
    1 (l0F12.4/))
GOOO FORMAT\/,9IH OPTICIN TT RFDUTE NO. OF FIGENVALUES AND EIGENVECTORS
    IFXFRCISFD, NFIG AVD NVFC SFT FQUAL TO,I3)
5500 FORMAT (/,G2H RFI FOR PREDICTFD CROSSINGS CORRFSPOND TOL EIGENVALUFS
    1 NUMBFRS,(/12151)
7000 FORMAT(/,GH FOUND,I 3,42H RONTS, RFI FOR THE NFXT ROOT PREDICTFD =
    1,F10.4,21H,IS REYONO THF RANGCI
8000 FORMAT (/,35H RFI PREDICTED FOR THE NFXT DONT = F10.4,
    I 52H, DIFFERFNCF FROM RFI FOR PREVIOUS ROOT IS LESS THAN,F8.4)
9000 FORMAT(1HI)
        CND
```

Subroutine DERF

	SUBRQUTINE DERFIND,NM, NMAX,NVFC,RFI, IPRTI
	COMMON/BLK1/ AF,OAF,SDAF
	COMMON/BLK2/ FIG,VEC, AVEC, DIFS.SDIFS
	COMMDN/BLK3/ TP,TP2
	1 AVEC(12,12), DIES(121,SOIFSI12), TP(12,12), TP2(12,121, A, B, C,
	2 MUM
C\#\#\#\#\#\#	\#\#\#\#\#\#**********************\#\#\#************************************
C*	
C*	ND = NUMBFR OF DERIVATIVFS REQUIRED, 1 OR 2.
c*	NM = NUMBER DF MODES.
C*	NMAX = MAXIMUM NUMBER IF MODES DFFIVING SIZE OF VARIOUS ARRAYS.
c *	NVEC = NUMBER OF FREQUENCIES FIR WHICH THE DERIVATIVES CMMPUTED. *
C*	DF $=$ REDUCED FREQUENCY
C*	EIGINMAXI VECTOR OF INVERSE OF FRFQUENCIES SQUARED.
C*	VEC(NMAX, NMAX) ARRAY TF EIGFNVFCTIRS, ONE PER COLUMN.
C*	AVEC (NMAX, NMAX) ARRAY DF ASSDCIATFO EIGENVECTORS, ONE PER COLUMN.*
C*	AFINMAX, NMAXI AIR FORCE MATRIX.
C*	DAF (NMAX, NMAX) FIRST DERIVATIVE OF AF W.R.T. RFDUCED FREQUENCY.
C*	SOAF (NMAX, NMAX) SECOND DERIV. OF AF W.R.T. REDUCED FREQ.
C*	DIFSINMAX) FIRST DERIV. DF FIG(NMAX) W.R.T. 1/RF.
C*	SDIFS(NMAX) SFCDNO DERIV. DF EIG (NMAX) W.R.T. 1/RF.
C*	TP(NMAX, NMAX), TP2(NMAX, NMAX) TEMPORARY STORAGE ARRAYS.
C*	COMPUTES DERIVATIVES DF INVERS OF FREQUENCY W.R.T. I/REDUCFD
c*	FREQUENEY WHER
c*	(STIFFNFSS - LAMBDA MASS+AF)IVEC $=0$
C*	KUMAR G. Bhatia, June 8,1972.
¢*****	************************
t	COMPUTF THE REQUIRED ELEMFNTS OF TRIPLE PRIDUCT MATRIX
¢	AVEC TPASPASED * DAF * VEC.
	CALL TMMPRDO(AVEC, DAF,VEC, NM, NVEC, NMAX, 2,TP)
c.	COMPUTE THE FIRST DERIVATIVES OF l./FREQ**2 W.R.T. 1/RF
	RF $=1.0 / \mathrm{RF} 1$
	OO $10 \mathrm{M}=1$, NVEC
10	DIFS(M) $=-\operatorname{RF*RF*CIG(M)*TP(M,M)~}$
	IF (ND. 2 Q. 1) RETURN

APPENDIX B - Continued

```
C COMPUTF THF SECONO DFRIVATIVES IF L./FRFO**2 W.R.T. 1/RF
        CALL TMMPROD(AVFC,SDAF,VFC,NM,NVFC,NMAX,I,TP2)
        RF4=RF椋4
        DO 100 M=1,NVEC
            MUM = FIG(M)
            A = - 2.0%RF&\IFS(M)
            B=0.0
            OO 20 L=1,NM
                    IF (L.FQ. M) GOTO 20
                    R=B + TP(L,M)*TP{M,LI/(1.0 - MUM/FIG(L))
        20 CONTINUF
        B = - 2.O*B*RF4*MUM
            C=RF4*MUM*TP\{M,M)
            Sח[FS(M) = A + B + C
        IF (IPRT. FQ. 2) PRINT 1JO),M, DIFS(M),SDIFS(M),A,B,C
    100 EDNTINUE
1000 FORMAT (// 48H DERIVATIVES רF INVERSE OF FRFQ. SQUAREO, NUMBFR,I 2,
        1 /, 17H FIRST OERIVATIVE,F15.3,F13.3.1.18H SFCCND OFRIVATIVF
        2/F13.3,E12.3,1H=, [13.3,F12.3,IH+,F13.3,E12.3,1H+,F13.3, [12.3)
            RETURN
            CND
```

Subroutine TMMPROD

```
            SUBROUTINF TMMPROD(A,D,V,N,NV,NMAX,ND,R)
                COMPLEX A(NMAX,11,D(NMAX,1),V(NMAX,1),R(NMAX,1),TFMP
C T
C COMPUTES A *D*V = R . IF ND=1 THEN ONLY DIAGONALS ARF COMPUTFD
            DO 100 I=1,NV
            DO 100 J=1,NV
            IF IND .EQ. 1 .AND.I .NF. J) GC TO 100
            RII.JI = 0.0
            OO 50 K =1,N
            TEMP = 0.0
            DO 40 L=1,N
                    TFMP = TFMP + D{K,L)*V(t,J)
            40 R(I,J)=R(I,JI+A(K,I)#TFMP
    100 CONTINUE
        RFTURN
        FNO
```

Subroutine EIGSOL

```
        SUBROUTINE EIGSOL(NM,NMAX,NEIG,NVEC,IPPT)
        COMMON/BLK1/ AF,H,HL
        COMMON/BLK2/ EIG,VFC,AVEC,CNT,COLM
        COMMON/BLK3/ TP,TP2
        COMMON/BLK4/ SM,C,INTH
        COMPLEX AF(12,12),H (12,12),HL (12,12),FIG(12),V5C(12,12);
        1 AVEC(12,12),CNT(12),COLM(12),TP(12,121,TP2(12,12),SUM,SUM1
        DIMENSION SM{12,121,C(12,121,INTH(12,2)
C C
    COMPUTE THE PRODUCT C*(SM+AF
    DO 10 I=I,NM
    DO 10 J=1,NM
        TP{I,J} = 0.0
        OO 5 K=1,NM
                        TP{I,J)=TP{I,J) + C(I,K|*(SM{K,J}+AF(J,K))
```

C
5

APPENDIX B - Concluded

```
    10 CONT INUF
    INTH(1,1)=NM
    INTH(2,1) = NVEC.
    CALL EECM(TP, EIG,AVEC,HL,H,CNT, CCLM, INTH,NMAX)
    IF (INTH(1,1), EQ. NMI GO TO :5
    PRINT 1000, INTH(1,1)
    STDP
    15 CDNT INUE
C COMPUTE TP2 = SM+AF, AND C*(SM+AF)
    DO 20 I=1,NM
    DO 20 J=1.NM
    20TP2(I,J)=SM(I,J)+AF{I,J)
    DO 30 I= 1,NM
    DO 30 J=1,NM
        TP(I,J) = 0.0
        DO 25 K=1,NM
    25 TP(I,J)=T?(I,J)+C(I,K)*TP2(K,J)
    30 CONTINUF
        INTH(1,1)=NM
        INTH(2,1) = NVEC
        CALL EECM(TP,EIG,VFC,HL,H,CNT,COLM, INTH,NMAXI
        IF (INTH(1,1) .FQ. NM) GO TO 40
        PRINT 1000, INTH(1,1)
        STOP
        40 CONTINUE
C
    NORMALIZE VEC
    O] 50 J=1,NVEC
        SUMR = 0.0
        DO 45 I=1,NM
        45 SUMR = SUMR * REAL(VEC(I,J))**? + AIMAGIVEC(I, J) |**2
        SUMR = SQRT(SUMR)
            07 50 I = I,NM
                VEC(I,J) = VEC(I;J)/SUMR
    5O CONTINUE
    NORMALIZE AVFC
    OП 70 J=I,NVEC
        SUM = 0.0
        OO 60 I= 1,NM $ SUM1 = 0.0
            OO 55 L=1,NM
    55 SUMI= SUM1+TP2(I,L)*VFC(L,J)
    SO SUM = SUM + AVEC(I,J)*SUM1
    0\ 70 I= 1,NM
        AVFC(I,J)=AVFC(I,J)/SUM
    TO CONTINUE
    IF (IPRT FQ. O) GO T3 100
    PRINT 2000, (EIGII),I=1,NFIG)
    IF (IPRT .EQ. 1) GO T? 100
    PRINT 3000, ((VEC(I,JI,J=1,NVEC),I=I,NM)
    PRINT 4000, ({AVEC(I,J),J=1,NVEC),I=1,NM)
    100 CONTINUE
    RFTURN
1000 FORMAT (//,31H NUMBER OF FIGENVALUCS COMPUTED, I5)
2000 FORMAT(//,12H EIGENVALUES/(1X,5(F14.3,F12.31))
3000 FORMAT(//,13H FIGENVFCTOFS,/,(1X,5(F14.3,E12.31))
4000 FIPMAT (//,24H ASSICIATFO EIGFNVECTORS,/,(1X,5(E14.3,512.3)))
    FNO
```


APPENDIX C

USAGE DESCRIPTION OF LANGLEY LIBRARY SUBROUTINES USED BY PROGRAM MATCH

Usage descriptions of the Langley library subroutines used by program MATCH are presented in this appendix.

Langley Library Subroutine MATINV

Language: FORTRAN

Purpose: MATINV solves the matrix equation $A X=B$ where A is a square coefficient matrix and B is a matrix of constant vectors. The solution to a set of simultaneous equations, the matrix inverse, and the determinant may be obtained. If the user does not want the inverse, use SIMEQ for savings in time and storage. For the determinant only, use DETEV.

Use: CALL MATINV (A,N,B,M,DETERM,IPIVOT,INDEX,NMAX,ISCALE)

A A two-dimensional array of the coefficients. On return to the calling program, A^{-1} is stored in A .

N
The order of $\mathrm{A} ; 1 \leqq \mathrm{~N} \leqq \mathrm{NMAX}$.

B A two-dimensional array of the constant vectors B. On return to calling program X is stored in B.

M The number of column vectors in B. $M=0$ signals that the subroutine is used solely for inversion, however, in the call statement an entry corresponding to B must still be present.

DETERM Gives the value of the determinant by the following formula:
$\operatorname{DET}(\mathrm{A})=\left(10^{100}\right) \mathrm{ISCALE}(\mathrm{DETERM})$

IPIVOT A one-dimensional array of temporary storage used by the routine.

INDEX A two-dimensional array of temporary storage used by the routine.

NMAX The maximum order of A as stated in the dimension statement of the calling program.

ISCALE A scale factor computed by the subroutine to keep the results of computation within the floating point word size of the computer.

Restrictions: Arrays A, B, IPIVOT, and INDEX are dimensioned with variable dimensions in the subroutine. The maximum size of these arrays must be specified in a DIMENSION statement of the calling program as: A (NMAX, NMAX), B (NMAX, M), IPIVOT (NMAX), INDEX (NMAX, 2). The orginal matrices, A and B, are destroyed. They must be saved by the user if there is further need for them. The determinant is set to zero for a singular matrix.

Method: Jordan's method is used to reduce a matrix A to the identity matrix I through a succession of elementary transformations: $\ell_{n}, \ell_{n-1}, . . ., \ell_{1} . A=I$. If these transformations are simultaneously applied to I and to a matrix B of constant vectors, the results are A^{-1} and X where $A X=B$. Each transformation is selected so that the largest element is used in the pivotal position.

Accuracy: Total pivotal strategy is used to minimize the rounding errors; however, the accuracy of the final results depends upon how well-conditioned the original matrix is.

Reference: Fox, L.: AN INTRODUCTION TO NUMERICAL LINEAR ALGEBRA

Storage: 5428 locations.

APPENDIX C - Continued

Subroutine OPENMS

Language: COMPASS

Purpose: To open a random access file.

Use: CALL OPENMS (U,IX,L, P)
where
U The logical unit number.

IX The first word address of the index.

L The length of the index.
$P \quad P=0$ for numbered indexing.
$P=1$ for named indexing.

Restrictions: OPENMS must be the first operation on a random access file. The file must be a disk file. For n index entries, the length of the index must be at least $2 n+1$ if using named indexing, whereas the index length must be at least $n+1$ for numbered indexing.

Method: OPENMS sets the first word in the index to a positive number for numbered indexing or to a negative number for named indexing. The random access bit, index address, and index length are set by OPENMS into the FET of the file for system communication. If the file already exists, the master index is read into central memory.

Accuracy: Not applicable.

References: None.

Storage: 103_{8} locations.

APPENDIX C - Continued

Subprograms used: GETBA, SIO\$, SYSTEM

Error messages: (1) UNASSIGNED MEDIUM FLLE XXXXXX
(2) FILE DOES NOT RESIDE ON A RANDOM ACCESS DEVICE, XXXXXX
(3) INDEX BUFFER IS OF INSUFFICIENT LENGTH, XXXXXX XXXXXX is the file name. Termination is abnormal in each case.

APPENDIX C - Continued

Subroutine WRITMS

Language: COMPASS

Purpose: To write a record on a random access file.

Use: CALL WRITMS (U, FWA, N, I)
where
U The logical unit number.

FWA The central memory address of the first word of the record.
$\mathrm{N} \quad$ The number of central memory words to be transferred.

I The record number or record name depending upon the indexing mode set by the initial call to OPENMS.

Restrictions: The file must have been opened by a call to OPENMS.

Method: The specified record is written on the file and an address entered in the index to reference the record.

Accuracy: Not applicable.

References: None.

Storage: 1028 locations.

Subprograms used: GETBA, SYSTEM, SIO\$

Error messages: (1) UNASSIGNED MEDIUM, FILE XXXXXX
(2) FLLE WAS NOT OPENED BY A CALL TO SUBROUTINE OPENMS
(3) INDEX BUFFER IS OF INSUFFICIENT LENGTH.

APPENDIX C - Continued
 Subroutine READMS

Language: COMPASS

Purpose: To read a record on a random access file.

Use: CALL READMS (U, FWA, N, I)
where
U The logical unit number.

FWA The central memory address of the first word of the record.
$\mathrm{N} \quad$ The number of words of the record to be transferred.

I The record number or record name depending upon the indexing mode set by the initial call to OPENMS.

Restrictions: The file must have been opened by a call to OPENMS.

Method: The disk address of the record is determined by using the index. If n words are requested to be transferred and there are m words in the record, where $m \leqq n$, m words are transferred. If $\mathrm{m}>\mathrm{n}, \mathrm{n}$ words are transferred.

Accuracy: Not applicable.

References: None.

Storage: 131_{8} locations.

Subprograms used: ${ }^{\circ}$ GETBA, SYSTEM, SIO\$

Error messages: (1) UNASSIGNED MEDIUM, FILE XXXXXX
(2) FILE WAS NOT OPENED BY A CALL TO SUBROUTINE OPENMS
(3) RECORD NAME REFERRED TO IN CALL IS NOT IN THE FUE INDEX
(4) *READ PARITY ERROR*
(5) SPECIFIED INDEX IN THIS MASS STORAGE CALL .GT. MASTER INDEX OR IS ZERO.

Termination is abnormal.

APPENDIX C - Continued

Subroutine EECM

Language: FORTRAN

Purpose: To compute eigenvalues and eigenvectors of a complex N by N matrix.

Use: CALL EECM (A, LAMBDA, VECT, HL, H, CNT, COLM, INTH, MAX)

A A two-dimensional complex array of the input matrix. It is not destroyed.

LAMBDA A one-dimensional complex array of eigenvalues. They are arranged in descending order of absolute magnitude.

VECT A two-dimensional complex array of eigenvectors. Each vector is normalized so that the sum of the squares of the moduli of the components is unity.

HL, H Two-dimensional complex temporary arrays.

CNT, COLM One-dimensional complex temporary arrays.

INTH A two-dimensional integer array.
Upon entry - Before each CALL, set INTH as follows:
$\operatorname{INTH}(1,1)=\mathrm{N}=$ order of matrix A.
$\operatorname{INTH}(2,1)=\mathrm{NV}=$ number of eigenvectors to be computed.
Upon return
$\operatorname{INTH}(1,1)=$ the actual number of eigenvalues computed. $\mathrm{INTH}(2,1)$ is destroyed.

MAX An integer, the maximum order of A.

Restrictions: The calling program must type the following complex arrays and dimension them as follows: A(MAX, MAX), LAMBDA(MAX), VECT(MAX, NV), HL(MAX, MAX),

APPENDIX C - Continued

H(MAX, MAX), CNT(MAX), COLM(MAX). The integer array is dimensioned INTH(MAX, 2).

Before each CALL to EECM, N and NV must be stored in the first 2 locations of INTH (see Use).

The column dimension, NV, for VECT may be $\leqq N$. If no vectors are to be computed ($\operatorname{INTH}(2,1)=0$), VECT need not be dimensioned, but it must appear as an argument in the call statement.

The eigenvalues are not necessarily calculated in any absolute order, but are arranged in descending order of absolute magnitude prior to the calculation of the eigenvectors. Ten iterations per eigenvalue are allowed. In case of nonconvergence, the subroutine will return a value less than the order of the input matrix in $\operatorname{INTH}(1,1)$. Thus, the user should test $\operatorname{INTH}(1,1)$ upon return. If, then, it is less than the value of the number of vectors asked for, only that number of eigenvalues and eigenvectors is computed. If the number of eigenvalues computed is less than the order of the input matrix, the programer may want to use arbitrary shifts on the input matrix, or add a constant to the diagonal. Either change may eliminate the difficulty. Matrices apt to get nonconvergence are lower triangular with all equal eigenvalues, those with ones on the lower diagonal, and those with one as the Nth component of the first row and zeros elsewhere.

If overflows or underflows occur, scaling the input matrix so that its largest element is in modulus about 1 will probably eliminate the difficulty.

Equal computed eigenvalues return identical corresponding eigenvectors even though linearly independent vectors may exist.

Method: The input matrix A is reduced to an upper Hessenberg matrix H by a sequence of elementary triangular and permutation matrices which make up a matrix P such that $P^{-1} A P=H$. The $Q R$ algorithm is made use of in EECM by applying unitary similarity transformations to Hessenberg matrices, $H_{i}: H_{1}=P-1 A P, H_{S}=\left(h_{i j}(s)\right)$ $=Q_{S} T_{S}, \quad H_{S+1}=Q_{S}^{H} H_{S} Q_{S}=Q_{S}^{H} Q_{S} T_{S} Q_{S}=T_{S} Q_{S}$ where Q_{S}^{H} is the product of plane rotations, chosen so that T_{S} is upper triangular. This process makes $h_{n, n-1}^{(s)}$ converge to zero and therefore $h_{n n}^{(s)}$ converges to an eigenvalue of A. When convergence is met $\left(\mathrm{h}_{\mathrm{n}, \mathrm{n}-1} \mathrm{~s}\right.$ negligible), the Hessenberg matrix H_{S} is deflated (i.e., last row and column eliminated) and EECM proceeds with its leading principal submatrix (a new H_{1}) of

APPENDIX C - Concluded

order one less. If $h_{n-1, n-2}^{(s)}$ becomes negligible, the eigenvalues of the lower righthand matrix of order two are calculated and EECM proceeds with the leading principal submatrix of order two less. It can be shown that convergence is accelerated by judiciously subtracting scalar matrices from the H_{S} matrices. EECM actually replaces H_{S} by $H_{S}-k_{S} I$ so that k_{S} is one of the eigenvalues p_{S} or q_{S} of the lower right-hand 2×2 matrix of H_{S}. The choice of p_{S} or q_{S} is made on the basis of whether $\left|\mathrm{h}_{\mathrm{nn}}^{(\mathrm{s})}-\mathrm{p}_{\mathrm{S}}\right|$ or $\left|\mathrm{h}_{\mathrm{nn}}^{(\mathrm{s})}-\mathrm{q}_{\mathrm{S}}\right|$ is a minimum. The shift technique is applied at each iteration. Two passes of the Wielandt inverse power method are used to calculate the eigenvectors, Y_{i} of H. Very little work is required for the second pass since the necessary elementary triangular and permutation matrices are stored in COLM and INTH(col. 2) (both internal storage areas). Finally, the eigenvectors of $A, P Y_{i}$ are calculated. The matrix P is in INTH (col. 1) and the lower part of H (internal arrays).
The theory and a complete description of the algorithms appear in the first reference.

Accuracy: The accuracy obtainable in computing the eigenvalues of input matrix A is usually related to the spectral radius, rho(A), of matrix A or more generally to some norm of A times the norm of its inverse. Hence, the greater rho(A) $/ \min (\operatorname{abs}(\operatorname{LAMBDA}(1)))$, the fewer significant digits the smaller eigenvalues may have. Accuracy also decreases as the order of the matrix increases. Close eigenvalues are usually less accurate than well separated ones.

References: Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Clarendon Press (Oxford), 1965.

Householder, Alston Scott: The Theory of Matrices in Numerical Analysis. First ed., Blaisdell Pub. Co., 1964.

Storage: 27458 locations.

Subprograms used: None

Timing: On Control Data 6000 computer, time for the actual solution of all eigenvalues and eigenvectors of a 30 by 30 matrix was 5.2 seconds. This was about 5 times faster than routines presentiy in the Langley library.

REFERENCES

1. Bhatia, Kumar G.: An Automated Method for Determining the Flutter Velocity and the Matched Point. AIAA Paper No. 73-195, Jan. 1973.
2. Anon.: U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962.

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]: *NRC-NASA Resident Research Associate.

